On the hardnesses of several quantum decoding problems.
Gespeichert in:
| Titel: | On the hardnesses of several quantum decoding problems. |
|---|---|
| Autoren: | Kuo, Kao-Yueh1 (AUTHOR) d9761808@oz.nthu.edu.tw, Lu, Chung-Chin1 (AUTHOR) |
| Quelle: | Quantum Information Processing. Apr2020, Vol. 19 Issue 4, p1-17. 17p. |
| Schlagwörter: | *QUANTUM cryptography, *ERROR probability, *DECODING algorithms, *HARDNESS, *DEFINITIONS |
| Abstract: | We classify the time complexities of three decoding problems for quantum stabilizer codes: quantum bounded distance decoding (QBDD), quantum maximum likelihood decoding (QMLD), and quantum minimum error probability decoding (QMEPD). For QBDD, we show that it is NP-hard based on Fujita's result, and cover the gap of full row rank of check matrices, like what Berlekamp, McEliece, and Tilborg suggested in 1978. Then, we give some insight into the quantum decoding problems to clarify that the degeneracy property is implicitly embedded in any decoding algorithm, independent of the typical definition of degenerate codes. Then, over the depolarizing channel model, we show that QMLD and QMEPD are NP-hard. The NP-hardnesses of these decoding problems indicate that decoding general stabilizer codes is extremely difficult, strengthening the foundation of quantum code-based cryptography. [ABSTRACT FROM AUTHOR] |
| Datenbank: | Academic Search Index |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:asx&genre=article&issn=15700755&ISBN=&volume=19&issue=4&date=20200401&spage=1&pages=1-17&title=Quantum Information Processing&atitle=On%20the%20hardnesses%20of%20several%20quantum%20decoding%20problems.&aulast=Kuo%2C%20Kao-Yueh&id=DOI:10.1007/s11128-020-02622-8 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Kuo%20K Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: asx DbLabel: Academic Search Index An: 142452811 RelevancyScore: 1270 AccessLevel: 6 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1269.60205078125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: On the hardnesses of several quantum decoding problems. – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Kuo%2C+Kao-Yueh%22">Kuo, Kao-Yueh</searchLink><relatesTo>1</relatesTo> (AUTHOR)<i> d9761808@oz.nthu.edu.tw</i><br /><searchLink fieldCode="AR" term="%22Lu%2C+Chung-Chin%22">Lu, Chung-Chin</searchLink><relatesTo>1</relatesTo> (AUTHOR) – Name: TitleSource Label: Source Group: Src Data: <searchLink fieldCode="JN" term="%22Quantum+Information+Processing%22">Quantum Information Processing</searchLink>. Apr2020, Vol. 19 Issue 4, p1-17. 17p. – Name: Subject Label: Subject Terms Group: Su Data: *<searchLink fieldCode="DE" term="%22QUANTUM+cryptography%22">QUANTUM cryptography</searchLink><br />*<searchLink fieldCode="DE" term="%22ERROR+probability%22">ERROR probability</searchLink><br />*<searchLink fieldCode="DE" term="%22DECODING+algorithms%22">DECODING algorithms</searchLink><br />*<searchLink fieldCode="DE" term="%22HARDNESS%22">HARDNESS</searchLink><br />*<searchLink fieldCode="DE" term="%22DEFINITIONS%22">DEFINITIONS</searchLink> – Name: Abstract Label: Abstract Group: Ab Data: We classify the time complexities of three decoding problems for quantum stabilizer codes: quantum bounded distance decoding (QBDD), quantum maximum likelihood decoding (QMLD), and quantum minimum error probability decoding (QMEPD). For QBDD, we show that it is NP-hard based on Fujita's result, and cover the gap of full row rank of check matrices, like what Berlekamp, McEliece, and Tilborg suggested in 1978. Then, we give some insight into the quantum decoding problems to clarify that the degeneracy property is implicitly embedded in any decoding algorithm, independent of the typical definition of degenerate codes. Then, over the depolarizing channel model, we show that QMLD and QMEPD are NP-hard. The NP-hardnesses of these decoding problems indicate that decoding general stabilizer codes is extremely difficult, strengthening the foundation of quantum code-based cryptography. [ABSTRACT FROM AUTHOR] |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=asx&AN=142452811 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1007/s11128-020-02622-8 Languages: – Code: eng Text: English PhysicalDescription: Pagination: PageCount: 17 StartPage: 1 Subjects: – SubjectFull: QUANTUM cryptography Type: general – SubjectFull: ERROR probability Type: general – SubjectFull: DECODING algorithms Type: general – SubjectFull: HARDNESS Type: general – SubjectFull: DEFINITIONS Type: general Titles: – TitleFull: On the hardnesses of several quantum decoding problems. Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Kuo, Kao-Yueh – PersonEntity: Name: NameFull: Lu, Chung-Chin IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 04 Text: Apr2020 Type: published Y: 2020 Identifiers: – Type: issn-print Value: 15700755 Numbering: – Type: volume Value: 19 – Type: issue Value: 4 Titles: – TitleFull: Quantum Information Processing Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science