Suchergebnisse - vector quantized variational autoencoder
-
1
Autoren: et al.
Quelle: MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer. 24:423-438
-
2
Autoren:
Quelle: 2025 IEEE International Conference on Image Processing (ICIP). :2402-2407
-
3
Autoren: et al.
Quelle: 2025 IEEE International Conference on Robotics and Automation (ICRA). :16854-16860
Schlagwörter: FOS: Computer and information sciences, Computer Science - Robotics, Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control, Robotics (cs.RO)
Zugangs-URL: http://arxiv.org/abs/2409.16011
-
4
Autoren: et al.
Quelle: IEEE Transactions on Multimedia. 27:4321-4332
Schlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, I.2.10, I.4.2, Computer Science - Artificial Intelligence, I.2.6, I.4.5, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, I.4.10, Machine Learning (cs.LG), Hierarchical Modeling, Video Prediction, Artificial Intelligence (cs.AI), Autoregressive Modeling, Settore IINF-05/A - Sistemi di elaborazione delle informazioni
Dateibeschreibung: application/pdf
-
5
Autoren: et al.
Quelle: Lecture Notes in Computer Science ISBN: 9783032049261
-
6
Autoren: et al.
Quelle: IEEE Signal Processing Letters. 32:151-155
-
7
Autoren:
Quelle: Journal of Circuits, Systems and Computers.
-
8
Autoren: et al.
Quelle: Medical Physics. 52
-
9
Autoren: et al.
Quelle: MILCOM 2024 - 2024 IEEE Military Communications Conference (MILCOM). :1-6
Schlagwörter: Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Machine Learning, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Signal Processing, Machine Learning (cs.LG)
Zugangs-URL: http://arxiv.org/abs/2410.18283
-
10
Autoren: et al.
Quelle: Proceedings of the 32nd ACM International Conference on Multimedia. :6113-6122
-
11
Autoren:
Quelle: Lecture Notes in Computer Science ISBN: 9783031733963
Zugangs-URL: http://arxiv.org/abs/2407.14062
-
12
Autoren: et al.
Weitere Verfasser: et al.
Quelle: IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium. :5559-5562
Schlagwörter: FOS: Computer and information sciences, aerial remote sensing, weakly-supervised learning, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, 14. Life underwater, Anomaly detection, marine animal monitoring, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
Dateibeschreibung: application/pdf
Zugangs-URL: http://arxiv.org/abs/2307.06720
-
13
Autoren: et al.
Quelle: International Journal of Remote Sensing. 44:6329-6349
-
14
Autoren:
Weitere Verfasser:
Quelle: 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW). :1-5
Schlagwörter: Self-supervised learning, [INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], FOS: Computer and information sciences, Computer Science - Machine Learning, Sound (cs.SD), masked autoencoder, [INFO.INFO-SD] Computer Science [cs]/Sound [cs.SD], [STAT.ML] Statistics [stat]/Machine Learning [stat.ML], Computer Science - Sound, Machine Learning (cs.LG), vector-quantized variational autoencoder, speech emotion recognition, Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing, Electrical Engineering and Systems Science - Audio and Speech Processing
Dateibeschreibung: application/pdf
-
15
Autoren: et al.
Quelle: Pattern Recognition. 164:111500
-
16
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Digital.CSIC. Repositorio Institucional del CSIC
Consejo Superior de Investigaciones Científicas (CSIC)Schlagwörter: Video prediction, Wound healing, Deep learning, 3. Good health
Zugangs-URL: http://hdl.handle.net/10261/352620
-
17
Autoren: et al.
Weitere Verfasser: et al.
Quelle: 2022 26th International Conference on Pattern Recognition (ICPR). :435-441
-
18
Autoren: et al.
Schlagwörter: Settore ING-INF/05 - Sistemi Di Elaborazione Delle Informazioni, I.2, FOS: Computer and information sciences, Computer Science - Machine Learning, I.4, Computer Sciences, namely VQVAE and VQVAE-2. HR-VQVAE can also generate high-quality and diverse images that outper- form state-of-the-art generative models, Computer Vision and Pattern Recognition (cs.CV), the representations at each layer are hierarchically linked to those at previous layers. We evaluate our method on the tasks of image reconstruction and generation. Experimental results demonstrate that the discrete representations learned by HR-VQVAE enable the decoder to reconstruct high-quality images with less distortion than the baseline methods, Computer Science - Computer Vision and Pattern Recognition, 02 engineering and technology, each layer in HR-VQVAE learns a discrete representation of the residual from previous layers through a vector quantized encoder. Furthermore, We propose a multi-layer variational autoencoder method, we call HR-VQVAE, that learns hierarchical discrete representations of the data. By utilizing a novel objective function, each layer in HR-VQVAE learns a discrete representation of the residual from previous layers through a vector quantized encoder. Furthermore, the representations at each layer are hierarchically linked to those at previous layers. We evaluate our method on the tasks of image reconstruction and generation. Experimental results demonstrate that the discrete representations learned by HR-VQVAE enable the decoder to reconstruct high-quality images with less distortion than the baseline methods, namely VQVAE and VQVAE-2. HR-VQVAE can also generate high-quality and diverse images that outper- form state-of-the-art generative models, providing further verification of the efficiency of the learned representations. The hierarchical nature of HR-VQVAE i) reduces the decoing search time, making the method particularly suitable for high-load tasks and ii) allows to increase the codebook size without incurring the codebook collapse problem, that learns hierarchical discrete representations of the data. By utilizing a novel objective function, Machine Learning (cs.LG), 03 medical and health sciences, Datavetenskap (datalogi), 0302 clinical medicine, We propose a multi-layer variational autoencoder method, providing further verification of the efficiency of the learned representations. The hierarchical nature of HR-VQVAE i) reduces the decoing search time, making the method particularly suitable for high-load tasks and ii) allows to increase the codebook size without incurring the codebook collapse problem, 0202 electrical engineering, electronic engineering, information engineering, we call HR-VQVAE
Dateibeschreibung: application/pdf
-
19
Autoren:
Quelle: Knowledge-Based Systems. 318:113460
-
20
Autoren:
Quelle: Lecture Notes in Computer Science ISBN: 9783031705656
Nájsť tento článok vo Web of Science
Full Text Finder