Suchergebnisse - stacked variational autoencoder
-
1
Autoren:
Quelle: 2022 International Conference on Intelligent Innovations in Engineering and Technology (ICIIET). :222-226
-
2
Autoren:
Quelle: SN Computer Science. 5
Schlagwörter: 0301 basic medicine, 0303 health sciences, 03 medical and health sciences
-
3
Autoren: Ha, Jihwan1 (AUTHOR) jhha@pknu.ac.kr
Quelle: Neurocomputing. Jan2026, Vol. 661, pN.PAG-N.PAG. 1p.
Schlagwörter: *DRUG discovery, *PREDICTION models, *MATRIX decomposition, *DRUG receptors, *PREDICTIVE tests, *CHEMICAL formulas, *RECURRENT neural networks
-
4
Autoren: et al.
Quelle: Scientific Reports, Vol 15, Iss 1, Pp 1-16 (2025)
Schlagwörter: 3D indoor positioning, Stacked variational autoencoder, Wasserstein generative adversarial network, Attention mechanism, Denoising autoencoder, Medicine, Science
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2045-2322
-
5
Autoren:
Quelle: Microprocessors and Microsystems. 76:103063
Schlagwörter: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
6
Autoren:
Quelle: Journal of Physics: Conference Series. 1631:012007
Schlagwörter: 03 medical and health sciences, 0302 clinical medicine
-
7
Autoren: et al.
-
8
Autoren: et al.
Quelle: IEEE Access, Vol 9, Pp 58838-58851 (2021)
Schlagwörter: Fault diagnosis, imbalanced samples, logistic regression, rotating machinery, sparse autoencoders, variational autoencoder, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
Dateibeschreibung: electronic resource
-
9
Autoren:
Weitere Verfasser:
Quelle: SN Computer Science ; volume 5, issue 7 ; ISSN 2661-8907
-
10
Autoren: et al.
Quelle: Results in Engineering, Vol 23, Iss , Pp 102504- (2024)
Schlagwörter: Wind power forecasting, Data-driven, Deep learning, Self-attentive VAE, RNN, Technology
Dateibeschreibung: electronic resource
-
11
Autoren: et al.
Quelle: Journal of Cheminformatics, Vol 14, Iss 1, Pp 1-12 (2022)
Schlagwörter: De novo drug design, Reinforcement learning, Conditional Variational AutoEencoder, Sorafenib, Raf kinases, Information technology, T58.5-58.64, Chemistry, QD1-999
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/1758-2946
-
12
Autoren: et al.
Quelle: Results in Engineering, Vol 27, Iss , Pp 106132- (2025)
Schlagwörter: Daily global solar radiation, Long-short term memory, Gated recurrent units, Variational AutoEncoder, Convolutional neural network, Transformer, Technology
Dateibeschreibung: electronic resource
-
13
Autoren: et al.
Quelle: International Journal of Applied Earth Observations and Geoinformation, Vol 102, Iss , Pp 102459- (2021)
Schlagwörter: Deep learning, Hyperspectral remote sensing, Residual network, 3D convolutional neural network, Spectral-spatial features, Stacked autoencoder, Physical geography, GB3-5030, Environmental sciences, GE1-350
Dateibeschreibung: electronic resource
-
14
-
15
Autoren: et al.
Quelle: Entropy, Vol 24, Iss 1, p 36 (2021)
Schlagwörter: stacked variational denoising auto-encoder, seagull optimization algorithm, rolling bearing, fault diagnosis, Science, Astrophysics, QB460-466, Physics, QC1-999
Dateibeschreibung: electronic resource
-
16
Autoren:
Quelle: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLII-5, Pp 613-620 (2018)
Schlagwörter: Technology, Engineering (General). Civil engineering (General), TA1-2040, Applied optics. Photonics, TA1501-1820
Dateibeschreibung: electronic resource
-
17
Autoren: et al.
Quelle: Scientific Reports; 9/26/2025, Vol. 15 Issue 1, p1-16, 16p
-
18
Autoren: et al.
Quelle: Frontiers in Neurorobotics; 2024, p1-13, 13p
Schlagwörter: DEEP learning, IMAGE representation, HANDICRAFT
-
19
Autoren: et al.
Quelle: Water Resources Research; Apr2025, Vol. 61 Issue 4, p1-24, 24p
Schlagwörter: STANDARD deviations, SPRING, PRECIPITATION variability, DATA augmentation, AUTOENCODERS, DEEP learning
-
20
Autoren: et al.
Quelle: Biomedical Signal Processing & Control. Feb2024:Part A, Vol. 88, pN.PAG-N.PAG. 1p.
Schlagwörter: Heart diseases, Support vector machines, Video coding, Deep learning, Cardiovascular diseases, Machine learning
Geografische Kategorien: Cleveland (Ohio)
Nájsť tento článok vo Web of Science
Full Text Finder