Suchergebnisse - stacked sparse autoencoder~
-
1
Autoren:
Quelle: Engineering, Technology & Applied Science Research. 15:24436-24441
-
2
Autoren: et al.
Quelle: Scientific Reports, Vol 15, Iss 1, Pp 1-22 (2025)
Schlagwörter: Autoencoder, Deep learning, Diabetes prediction, Feature selection, Machine learning, Sparse data, Medicine, Science
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2045-2322
-
3
Autoren: et al.
Quelle: Oil Shale, Vol 42, Iss 1, Pp 79-114 (2025)
Schlagwörter: autoencoder, semi-supervised learning, Technology, Q1-390, Science (General), batch normalization, shale oil, favorable area
-
4
Autoren: et al.
Quelle: The Canadian Journal of Chemical Engineering. 103:3767-3785
-
5
Autoren: et al.
Quelle: Journal of System and Computer Engineering (JSCE). 6:117-123
-
6
Autoren:
Quelle: Journal of Intelligent Systems and Internet of Things. 14:115-126
-
7
Autoren:
Quelle: IEEE Access, Vol 12, Pp 24014-24026 (2024)
-
8
Autoren: et al.
Quelle: 2025 4th International Conference on Sentiment Analysis and Deep Learning (ICSADL). :256-262
-
9
Autoren: et al.
Quelle: Engineering Reports. 7
-
10
Autoren: et al.
Quelle: Transactions on Emerging Telecommunications Technologies. 36
-
11
Autoren:
Quelle: World Electric Vehicle Journal, Vol 16, Iss 10, p 581 (2025)
Schlagwörter: concrete truck mixers, stacked sparse autoencoder, deep features extraction, adaptive clustering algorithm, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Transportation engineering, TA1001-1280
Dateibeschreibung: electronic resource
-
12
Autoren:
Quelle: Iran Journal of Computer Science.
-
13
Autoren: et al.
Quelle: IECON 2024 - 50th Annual Conference of the IEEE Industrial Electronics Society. :1-6
-
14
Autoren: et al.
Quelle: JOIV: International Journal on Informatics Visualization, Vol 9, Iss 4, Pp 1469-1475 (2025)
Schlagwörter: classification, har, smartphones, svm, ssae, Computer software, QA76.75-76.765
Dateibeschreibung: electronic resource
-
15
Autoren:
Quelle: Transactions on Emerging Telecommunications Technologies. 36
-
16
Autoren: et al.
Quelle: Comput Struct Biotechnol J
Digibug. Repositorio Institucional de la Universidad de Granada
Universidad de Granada (UGR)
Computational and Structural Biotechnology Journal, Vol 21, Iss, Pp 284-298 (2023)Schlagwörter: 0301 basic medicine, 0303 health sciences, 03 medical and health sciences, SARS-CoV-2, Viral classification, COVID-19, Deep learning, TP248.13-248.65, Biotechnology, Sparse autoencoder, Research Article, 3. Good health
-
17
Autoren: et al.
Weitere Verfasser: et al.
Quelle: Vehicle System Dynamics. 63:232-257
Dateibeschreibung: application/pdf
Zugangs-URL: https://hdl.handle.net/10216/166712
-
18
-
19
Autoren:
Quelle: Journal of the Franklin Institute. 361:234-247
-
20
Autoren:
Quelle: 2023 International Conference on Emerging Research in Computational Science (ICERCS). :1-6
Nájsť tento článok vo Web of Science
Full Text Finder