Suchergebnisse - stack sparse autoencoder deep learning model ((ssae OR sae))
-
1
Autoren: et al.
Quelle: Maintenance & Reliability / Eksploatacja i Niezawodność; 2024, Vol. 26 Issue 4, p1-14, 14p
-
2
Autoren:
Quelle: Journal of Physics: Conference Series; Nov2023, Vol. 2674 Issue 1, p1-8, 8p
-
3
Autoren: et al.
Quelle: Microscopy Research & Technique; Jan2022, Vol. 85 Issue 1, p385-397, 13p
-
4
Autoren: et al.
Quelle: International Journal of Advanced Manufacturing Technology; Sep2023, Vol. 128 Issue 3/4, p1063-1076, 14p
Schlagwörter: SURFACE roughness, PREDICTION models, CLASSIFICATION
-
5
Alternate Title: Research and Application of an Optimization Method for Power Grid Error Prevention and Control. (English)
Autoren: et al.
Quelle: Control Engineering of China; Nov2025, Vol. 32 Issue 11, p2073-2080, 8p
-
6
A Deep Learning Model to Predict the ncRNA-Protein Interactions Based on Sequences Information Only.
Autoren:
Quelle: Bioinformatics & Biology Insights; 11/10/2025, Vol. 19, p1-12, 12p
-
7
Autoren: et al.
Quelle: Medical Physics. Dec2023, Vol. 50 Issue 12, p7955-7966. 12p.
-
8
Autoren:
Quelle: Brain Informatics; 3/21/2025, Vol. 12 Issue 1, p1-27, 27p
-
9
Autoren: HE Xiping,ZHANG Qionghua,LIU Bo
Quelle: Jisuanji gongcheng, Vol 42, Iss 12, Pp 176-180,187 (2016)
Schlagwörter: computer vision, object classification, histogram of oriented gradients(hog) feature, stacked autoencoder(sae), deep learning, Computer engineering. Computer hardware, TK7885-7895, Computer software, QA76.75-76.765
Dateibeschreibung: electronic resource
-
10
Autoren: et al.
Quelle: Water (20734441); Oct2025, Vol. 17 Issue 20, p2957, 49p
-
11
Autoren:
Quelle: Biomedical Engineering Letters; Aug2023, Vol. 13 Issue 3, p293-312, 20p
-
12
Autoren: et al.
Quelle: Frontiers in Neuroinformatics; 2023, p1-13, 13p
-
13
Autoren: et al.
Quelle: Scientific Reports; 4/21/2022, Vol. 12 Issue 1, p1-14, 14p
Schlagwörter: TURBOFAN engines, FEATURE extraction, REMAINING useful life
-
14
Autoren: et al.
Quelle: Scientific Reports; 10/21/2025, Vol. 15 Issue 1, p1-22, 22p
-
15
Autoren: et al.
Quelle: Engineering Reports; Sep2025, Vol. 7 Issue 9, p1-17, 17p
-
16
Autoren: et al.
Quelle: Oil Shale; 2025, Vol. 42 Issue 1, p79-114, 36p
Schlagwörter: SHALE oils, SUPERVISED learning, PETROLEUM prospecting, AUTOENCODERS, MACHINE learning
-
17
Autoren:
Quelle: Iran Journal of Computer Science; Dec2025, Vol. 8 Issue 4, p2175-2198, 24p
-
18
Autoren: et al.
Quelle: Concurrency & Computation: Practice & Experience; 9/10/2021, Vol. 33 Issue 17, p1-15, 15p
-
19
Autoren:
Quelle: Neural Computing & Applications; Aug2023, Vol. 35 Issue 24, p17883-17898, 16p
Schlagwörter: BLOGS, ROBOTS, DEEP learning, COMPUTER software, RANDOM forest algorithms, DECISION trees, SUPERVISED learning
-
20
Autoren: et al.
Quelle: Canadian Journal of Chemical Engineering; Oct2023, Vol. 101 Issue 10, p5858-5873, 16p
Schlagwörter: LEAST squares, FEATURE extraction, MANUFACTURING processes, PRODUCT quality
Nájsť tento článok vo Web of Science
Full Text Finder