Suchergebnisse - stack denoising autoencoder~
-
1
Autoren: et al.
Quelle: Structural Health Monitoring. 23:3084-3104
-
2
Autoren: et al.
Quelle: 2022 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD). :1-6
-
3
Autoren: et al.
Quelle: Lecture Notes in Electrical Engineering ISBN: 9789819938872
-
4
Autoren:
Quelle: Lecture Notes in Computer Science ISBN: 9783031159305
-
5
Autoren:
Quelle: Lecture Notes in Computer Science ISBN: 9783031159305
-
6
Autoren: et al.
Quelle: Structural Health Monitoring; Sep2024, Vol. 23 Issue 5, p3084-3104, 21p
Schlagwörter: AUTOENCODERS, DEEP learning, ROLLER bearings, DIAGNOSIS, ALGORITHMS, FEATURE extraction
-
7
Autoren: et al.
Quelle: Journal of Physics: Conference Series. 1646:012151
-
8
Autoren: et al.
Quelle: IEEE Access, Vol 10, Pp 123595-123604 (2022)
Schlagwörter: bat optimization algorithm, Stack denoising autoencoder, 0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, Electrical engineering. Electronics. Nuclear engineering, 02 engineering and technology, 7. Clean energy, wind power prediction, TK1-9971
-
9
Autoren: et al.
Quelle: 2021 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). :1-6
-
10
Autoren: et al.
Quelle: Machines, Vol 9, Iss 12, p 360 (2021)
Schlagwörter: intelligent fault diagnosis, stacked pruning sparse denoising autoencoder, convolutional neural network, anti-noise, Mechanical engineering and machinery, TJ1-1570
Dateibeschreibung: electronic resource
-
11
Autoren:
Quelle: IET Image Processing (Wiley-Blackwell); Dec2019, Vol. 13 Issue 14, p2778-2789, 12p
-
12
Autoren: et al.
Quelle: Applied Soft Computing. Jan2019, Vol. 74, p693-708. 16p.
-
13
Autoren:
Quelle: International Journal of High Speed Electronics & Systems; Dec2025, Vol. 34 Issue 4, p1-21, 21p
-
14
Autoren:
Quelle: Journal of Computer Science & Technology Studies; Mar/Apr2025, Vol. 7 Issue 2, p284-293, 10p
-
15
Autoren: et al.
Quelle: Sensors, Vol 19, Iss 5, p 1041 (2019)
Schlagwörter: reciprocating compressor, deep learning, stack denoising autoencoder, local mean decomposition, fault diagnosis, Chemical technology, TP1-1185
Relation: http://www.mdpi.com/1424-8220/19/5/1041; https://doaj.org/toc/1424-8220; https://doaj.org/article/581b77e33d6b4e1ebc7b1007ec176339
-
16
A Deep Learning Model to Predict the ncRNA-Protein Interactions Based on Sequences Information Only.
Autoren:
Quelle: Bioinformatics & Biology Insights; 11/10/2025, Vol. 19, p1-12, 12p
-
17
Autoren:
Quelle: Digital Signal Processing. Sep2025, Vol. 164, pN.PAG-N.PAG. 1p.
Schlagwörter: *LEAST squares, *AUTOENCODERS, *FEATURE extraction, *LOCATION analysis, *CLUSTER analysis (Statistics)
-
18
Autoren: et al.
Quelle: Journal of Big Data, Vol 7, Iss 1, Pp 1-28 (2020)
Schlagwörter: Deep learning, Stacked denoising autoencoders, Flight delay prediction, Big data, Computer engineering. Computer hardware, TK7885-7895, Information technology, T58.5-58.64, Electronic computers. Computer science, QA75.5-76.95
Dateibeschreibung: electronic resource
-
19
Autoren:
Quelle: Journal of Vibroengineering. Feb2024, Vol. 26 Issue 1, p193-208. 16p.
Schlagwörter: *ARTIFICIAL neural networks, *FEATURE extraction, *AUTOENCODERS, *PRINCIPAL components analysis, *LINEAR network coding
-
20
Autoren: et al.
Quelle: Machines; Dec2021, Vol. 9 Issue 12, p360-360, 1p
Nájsť tento článok vo Web of Science
Full Text Finder