Suchergebnisse - stack autoencoder (SAE)
-
1
Autoren: et al.
-
2
Autoren: et al.
Quelle: Processes; Feb2025, Vol. 13 Issue 2, p584, 9p
Schlagwörter: DEEP learning, AUTOENCODERS, TIME series analysis, FORECASTING, STEEL
-
3
Autoren:
Quelle: Mathematics (2227-7390); Dec2024, Vol. 12 Issue 23, p3778, 25p
Schlagwörter: STOCK price forecasting, STOCK price indexes, STANDARD deviations, KRIGING, AUTOENCODERS
-
4
Autoren: et al.
Quelle: Remote Sensing, Vol 13, Iss 3, p 371 (2021)
Schlagwörter: semi-supervised learning, deep learning, stack autoencoders, building detection, remote sensing, semantic segmentation, Science
Relation: https://www.mdpi.com/2072-4292/13/3/371; https://doaj.org/toc/2072-4292; https://doaj.org/article/cd15bfe4145a455bbb00617947fb93f9
-
5
Autoren:
Quelle: Mathematics, Vol 12, Iss 23, p 3778 (2024)
Schlagwörter: stock index forecasting, recursive feature elimination with cross-validation, stack autoencoder, interval prediction, Mathematics, QA1-939
Dateibeschreibung: electronic resource
-
6
Autoren: et al.
Quelle: Water Resources Management. 33:4783-4797
Schlagwörter: dolgotrajni kratkoročni spomin, hidrotehnika, forecast, 0208 environmental biotechnology, 0207 environmental engineering, stack autoencoder, 02 engineering and technology, feature enhanced, daily reservoir inflow, napovedi, 6. Clean water, avtoenkoder, 13. Climate action, dnevni vtok v rezervoar, vhodna spremenljivka, long short-term memory
Dateibeschreibung: application/pdf; text/url
-
7
Alternate Title: BOLT LOOSENING STATE MONITORING BASED ON INNER PRODUCT MATRIX AND CONVOLUTIONAL AUTOENCODER. (English)
Autoren:
Quelle: Engineering Mechanics / Gongcheng Lixue; 2022, Vol. 39 Issue 12, p222-231, 10p
-
8
Autoren: et al.
Quelle: Advances in Materials Science & Engineering; 12/28/2020, p1-12, 12p
-
9
Alternate Title: Prediction of short-time passenger flow on multi-station urban rail based on SAE-ConvLSTM deep learning model.
Autoren: et al.
Quelle: Application Research of Computers / Jisuanji Yingyong Yanjiu. Jul2022, Vol. 39 Issue 7, p2025-2031. 7p.
-
10
Autoren:
Quelle: Mathematical Problems in Engineering. 2022:1-17
Schlagwörter: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, 01 natural sciences, 0104 chemical sciences
Dateibeschreibung: text/xhtml
-
11
Autoren: et al.
Quelle: Frontiers in Neurorobotics, Vol 13 (2019)
Schlagwörter: EEG, emotion recognition, neural network, Stack AutoEncoder, LSTM, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
Dateibeschreibung: electronic resource
-
12
Autoren: et al.
Quelle: IEEE Transactions on Industrial Electronics; Aug2021, Vol. 68 Issue 8, p7400-7411, 12p
Schlagwörter: PRIOR learning, SINTERING, FEATURE extraction, KERNEL functions
-
13
Autoren:
Quelle: 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :1192-1197
-
14
Autoren:
Quelle: Water Resources Management; Nov2016, Vol. 30 Issue 14, p5145-5161, 17p
-
15
Autoren: et al.
Quelle: Water resources management, vol. 33, no. nov., pp. 4783-4797, 2019. ; ISSN: 0920-4741
Schlagwörter: long short-term memory, stack autoencoder, feature enhanced, daily reservoir inflow, forecast, hidrotehnika, dolgotrajni kratkoročni spomin, avtoenkoder, vhodna spremenljivka, dnevni vtok v rezervoar, napovedi, info:eu-repo/classification/udc/626/627
Dateibeschreibung: application/pdf; text/url
Relation: info:eu-repo/grantAgreement/ARRS//P2-0180; https://plus.cobiss.net/cobiss/si/sl/bib/8969057
-
16
Autoren: et al.
Quelle: Remote Sensing; Feb2021, Vol. 13 Issue 3, p371, 1p
Schlagwörter: REMOTE sensing, OPTICAL radar, LIDAR, INFRARED imaging, SUPERVISED learning, ESTIMATION theory, SECURE Sockets Layer (Computer network protocol)
Geografische Kategorien: GERMANY
-
17
Autoren: et al.
Quelle: Applied Soft Computing. Sep2024, Vol. 162, pN.PAG-N.PAG. 1p.
-
18
Autoren: et al.
Quelle: Frontiers in Neurorobotics; 6/12/2019, pN.PAG-N.PAG, 14p
-
19
Autoren:
Quelle: Sensors (14248220); May2022, Vol. 22 Issue 10, p3687-3687, 14p
Schlagwörter: DETERIORATION of concrete, ACOUSTIC emission, CONCRETE beams, CONCRETE, REMAINING useful life
-
20
Autoren:
Quelle: Ultrasonics. Feb2022, Vol. 119, pN.PAG-N.PAG. 1p.
Schlagwörter: *LAMB waves, *DEEP learning, *FEATURE extraction, *STRUCTURAL health monitoring, *CONVOLUTIONAL neural networks, *MACHINE learning
Nájsť tento článok vo Web of Science
Full Text Finder