Suchergebnisse - sparse convolutional autoencoder (sae)
-
1
Autoren: et al.
Quelle: Applied Sciences ; Volume 15 ; Issue 5 ; Pages: 2662
Schlagwörter: structural health monitoring, railways, damage detection, out of roundness, sparse autoencoder, convolutional autoencoder, variational autoencoder
Geographisches Schlagwort: agris
Dateibeschreibung: application/pdf
Relation: Civil Engineering; https://dx.doi.org/10.3390/app15052662
Verfügbarkeit: https://doi.org/10.3390/app15052662
-
2
Autoren: et al.
Quelle: Transactions on Emerging Telecommunications Technologies. 36
-
3
Autoren: et al.
Quelle: Frontiers in Systems Neuroscience, Vol 14 (2020)
Schlagwörter: EEG, emotion recognition, convolutional neural network, sparse autoencoder, deep neural network, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
Dateibeschreibung: electronic resource
-
4
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: Monitoramento de integridade estrutural, Ferrovias, Detecção de danos, Ovalização, Autocodificador esparso, Autocodificador convolucional, Autocodificador variacional, Structural health monitoring, Railways, Damage detection, Out-of-roundness, Sparse autoencoder, Convolutional autoencoder, Variational autoencoder, CNPQ::ENGENHARIAS
Dateibeschreibung: application/pdf
Verfügbarkeit: https://repositorio.ufjf.br/jspui/handle/ufjf/18552
-
5
Autoren: et al.
Quelle: Scientific Reports. 1/2/2025, Vol. 15 Issue 1, p1-15. 15p.
Schlagwörter: *CONVOLUTIONAL neural networks, *TYPE 2 diabetes, *AUTOENCODERS, *MEDICAL care costs, *DIABETES
-
6
Autoren: et al.
Quelle: Quality & Reliability Engineering International; Mar2024, Vol. 40 Issue 2, p819-837, 19p
-
7
Autoren: et al.
Quelle: IEEE Access, Vol 10, Pp 120013-120022 (2022)
-
8
Autoren:
Quelle: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). :5051-5054
Schlagwörter: 03 medical and health sciences, Skin Neoplasms, 0302 clinical medicine, 0202 electrical engineering, electronic engineering, information engineering, Humans, Neural Networks, Computer, 02 engineering and technology, Melanoma, Skin
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/36085953
-
9
Autoren: et al.
Quelle: Neural Computing & Applications. Jul2025, Vol. 37 Issue 19, p13447-13467. 21p.
-
10
Alternate Title: Bearing fault diagnosis based on improved generative adversarial network and Swin Transformer under imbalanced sample conditions.
Autoren: et al.
Quelle: Journal of Nanjing University of Information Science & Technology (Natural Science Edition) / Nanjing Xinxi Gongcheng Daxue Xuebao (ziran kexue ban). Jul2025, Vol. 17 Issue 4, p528-537. 10p.
Schlagwörter: *CONVOLUTIONAL neural networks, *GENERATIVE adversarial networks, *TRANSFORMER models, *FAULT diagnosis, *DEEP learning
-
11
Autoren:
Quelle: International Journal of Image & Graphics. May2025, Vol. 25 Issue 3, p1-17. 17p.
-
12
Autoren:
Quelle: Diagnostics (2075-4418); Jul2023, Vol. 13 Issue 13, p2199, 14p
-
13
Autoren:
Quelle: Applied Sciences, Vol 12, Iss 633, p 633 (2022)
Schlagwörter: convolutional neural network, convolution kernel, local binary patterns, sparse autoencoder, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
Relation: https://www.mdpi.com/2076-3417/12/2/633; https://doaj.org/toc/2076-3417; https://doaj.org/article/2284785b658a4daa810370cf9e55fc6e
-
14
Autoren: et al.
Quelle: International Journal of Image & Graphics. Jun2025, p1. 28p.
-
15
Autoren: et al.
Schlagwörter: Electrocardiograph, myocardial infarction, sparse autoencoder, bagged decision tree, deep learning networks, CONVOLUTIONAL NEURAL-NETWORK, ECG SIGNALS, CLASSIFICATION, SELECTION, Computer Science, Engineering, Telecommunications, Information Systems, Electrical & Electronic
Relation: IEEE ACCESS; http://ir.ia.ac.cn/handle/173211/26039; http://ir.ia.ac.cn/handle/173211/26040
-
16
Autoren:
Quelle: IEEE Access, Vol 7, Pp 169899-169907 (2019)
Schlagwörter: autoencoder, 0202 electrical engineering, electronic engineering, information engineering, Fully convolutional neural network, Electrical engineering. Electronics. Nuclear engineering, 02 engineering and technology, object identification, shelf regulation, TK1-9971
-
17
Autoren:
Quelle: Frontiers in Computational Neuroscience; 4/8/2021, Vol. 15, pN.PAG-N.PAG, 10p
-
18
Autoren: et al.
Quelle: Frontiers in Computational Neuroscience; 10/18/2021, Vol. 15, p1-13, 13p
-
19
Autoren: et al.
Quelle: Alexandria Engineering Journal. Aug2024, Vol. 101, p136-146. 11p.
-
20
Autoren: et al.
Quelle: IEEE Transactions on Neural Networks & Learning Systems; Aug2019, Vol. 30 Issue 8, p2295-2309, 15p
Schlagwörter: PARTICLE swarm optimization, CLASSIFICATION, COMPUTER architecture
Nájsť tento článok vo Web of Science
Full Text Finder