Suchergebnisse - sparse convolutional autoencoder ((sage OR space))
-
1
Autoren:
Quelle: Soft Computing - A Fusion of Foundations, Methodologies & Applications. Feb2025, Vol. 29 Issue 3, p1419-1435. 17p.
Schlagwörter: *DATA augmentation, *AUTOENCODERS
-
2
Autoren: et al.
Quelle: IEEE Internet of Things Journal. 11:12419-12434
-
3
Autoren: et al.
Quelle: Physics of Fluids. Sep2025, Vol. 37 Issue 9, p1-12. 12p.
Schlagwörter: *AUTOENCODERS, *MACHINE learning, *AERODYNAMIC measurements, *ATMOSPHERIC models, *DETECTORS
-
4
Autoren: et al.
Quelle: Journal of Electrocardiology. Nov2025, Vol. 93, pN.PAG-N.PAG. 1p.
-
5
Autoren: et al.
Quelle: Digital Signal Processing. Jan2026:Part D, Vol. 168, pN.PAG-N.PAG. 1p.
-
6
Autoren: et al.
Quelle: Frontiers in Neuroinformatics, Vol 15 (2021)
Schlagwörter: perivascular space, deep learning, U-net, MRI, brain cohort, segmentation, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
Dateibeschreibung: electronic resource
-
7
Autoren: et al.
Quelle: Physics of Fluids. Feb2025, Vol. 37 Issue 2, p1-28. 28p.
Schlagwörter: *PROPER orthogonal decomposition, *WATER levels, *AUTOENCODERS, *FREE surfaces, *FLOOD control
-
8
-
9
Autoren:
Quelle: 2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR). :48-53
Schlagwörter: 2. Zero hunger, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, 3. Good health
-
10
Autoren: et al.
Quelle: International Journal of Applied Earth Observations and Geoinformation, Vol 129, Iss , Pp 103864- (2024)
Schlagwörter: Hyperspectral unmixing, Convolutional autoencoder, Sparsity constraint, Temperature scaling, Equal-frequency binning, Physical geography, GB3-5030, Environmental sciences, GE1-350
Dateibeschreibung: electronic resource
-
11
Autoren: et al.
Quelle: Frontiers in Neuroinformatics
Dateibeschreibung: application/pdf
-
12
Autoren: et al.
Quelle: Nutrients. Oct2025, Vol. 17 Issue 20, p3223. 33p.
HTML Volltext PDF-Volltext -
13
Autoren: Graham, Benjamin
-
14
Autoren: et al.
Quelle: Front Neuroinform
Frontiers in Neuroinformatics, Vol 15 (2021)Schlagwörter: 03 medical and health sciences, 0302 clinical medicine, segmentation, deep learning, Neurosciences. Biological psychiatry. Neuropsychiatry, perivascular space, U-net, brain cohort, MRI, RC321-571, Neuroscience
Zugangs-URL: https://oskar-bordeaux.fr/bitstream/20.500.12278/110227/1/BPH_FN_2021_Boutinaud.pdf
https://www.frontiersin.org/articles/10.3389/fninf.2021.641600/pdf
https://pubmed.ncbi.nlm.nih.gov/34262443
https://doaj.org/article/ed3360c8420941b78108600cebb4efc3
https://biorxiv.org/content/10.1101/2020.11.25.397364v1.full.pdf
https://www.biorxiv.org/content/10.1101/2020.11.25.397364v1 -
15
Autoren: et al.
Quelle: Journal of medical systems [J Med Syst] 2025 Oct 20; Vol. 49 (1), pp. 142. Date of Electronic Publication: 2025 Oct 20.
Publikationsart: Journal Article; Review
Info zur Zeitschrift: Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 7806056 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-689X (Electronic) Linking ISSN: 01485598 NLM ISO Abbreviation: J Med Syst Subsets: MEDLINE
MeSH-Schlagworte: Electroencephalography*/methods , Epilepsy*/diagnosis , Epilepsy*/physiopathology , Video Recording*/methods, Humans ; Machine Learning
-
16
Autoren:
Quelle: IEEE Transactions on Neural Networks and Learning Systems, vol 32, iss 6
Schlagwörter: FOS: Computer and information sciences, Artificial intelligence, Computer Science - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), cs.LG, Computer Science - Computer Vision and Pattern Recognition, ego motion, 02 engineering and technology, Computer Vision and Multimedia Computation, Optical imaging, Machine Learning (cs.LG), Information and Computing Sciences, 0202 electrical engineering, electronic engineering, information engineering, Training, Artificial Intelligence & Image Processing, object motion, sparse representation, cs.CV, overcomplete basis, Cameras, 16. Peace & justice, Dynamics, Convolutional autoencoder, Motion segmentation, Estimation, Adaptive optics
Dateibeschreibung: application/pdf
Zugangs-URL: https://escholarship.org/content/qt7p53p8zv/qt7p53p8zv.pdf?t=qgb7mw
https://pubmed.ncbi.nlm.nih.gov/32687472
http://arxiv.org/abs/1903.03731
https://europepmc.org/article/MED/32687472
https://arxiv.org/pdf/1903.03731.pdf
https://arxiv.org/abs/1903.03731
https://par.nsf.gov/biblio/10191836-sparse -representations-object-ego-motion-estimations-dynamic-scenes
https://pubmed.ncbi.nlm.nih.gov/32687472/
https://ui.adsabs.harvard.edu/abs/2019arXiv190303731K/abstract
https://escholarship.org/uc/item/7p53p8zv -
17
Autoren: et al.
Quelle: Rius, F P, Philipsen, M P, Tur, J M M, Moeslund, T B, Bahón, C A & Casas, M 2022, 'Autoencoders for Semi-Supervised Water Level Modeling in Sewer Pipes with Sparse Labeled Data', Water (Switzerland), vol. 14, no. 3, 333. https://doi.org/10.3390/w14030333
Schlagwörter: Autoencoders and latent space, Data distribution, Self-supervised, Semi-supervised, Sparse data, Supervised, Water
Dateibeschreibung: application/pdf
Relation: info:eu-repo/semantics/altIdentifier/pissn/2073-4441
-
18
Autoren:
Quelle: 2015 8th International Congress on Image and Signal Processing (CISP). :351-355
Schlagwörter: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, 10. No inequality
Zugangs-URL: https://ieeexplore.ieee.org/document/7407903/
-
19
Autoren: et al.
Quelle: Monthly Weather Review. 150:1977-1991
-
20
Autoren: et al.
Quelle: Neural Networks. Jul2024, Vol. 175, pN.PAG-N.PAG. 1p.
Full Text Finder
Nájsť tento článok vo Web of Science