Suchergebnisse - sparse convolutional autoencoder ((sae OR space))
-
1
Autoren:
Quelle: Soft Computing - A Fusion of Foundations, Methodologies & Applications. Feb2025, Vol. 29 Issue 3, p1419-1435. 17p.
Schlagwörter: *DATA augmentation, *AUTOENCODERS
-
2
Autoren: et al.
Quelle: IEEE Internet of Things Journal. 11:12419-12434
-
3
Autoren: et al.
Quelle: Physics of Fluids. Sep2025, Vol. 37 Issue 9, p1-12. 12p.
Schlagwörter: *AUTOENCODERS, *MACHINE learning, *AERODYNAMIC measurements, *ATMOSPHERIC models, *DETECTORS
-
4
Autoren: et al.
Quelle: Journal of Electrocardiology. Nov2025, Vol. 93, pN.PAG-N.PAG. 1p.
-
5
Autoren: et al.
Quelle: Applied Sciences ; Volume 15 ; Issue 5 ; Pages: 2662
Schlagwörter: structural health monitoring, railways, damage detection, out of roundness, sparse autoencoder, convolutional autoencoder, variational autoencoder
Geographisches Schlagwort: agris
Dateibeschreibung: application/pdf
Relation: Civil Engineering; https://dx.doi.org/10.3390/app15052662
Verfügbarkeit: https://doi.org/10.3390/app15052662
-
6
Autoren: et al.
Quelle: International Journal of Image & Graphics. Jun2025, p1. 28p.
-
7
Autoren: et al.
Quelle: Transactions on Emerging Telecommunications Technologies. 36
-
8
Autoren: et al.
Quelle: Digital Signal Processing. Jan2026:Part D, Vol. 168, pN.PAG-N.PAG. 1p.
-
9
Autoren: et al.
Quelle: Frontiers in Neuroinformatics, Vol 15 (2021)
Schlagwörter: perivascular space, deep learning, U-net, MRI, brain cohort, segmentation, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
Dateibeschreibung: electronic resource
-
10
Autoren: et al.
Quelle: Physics of Fluids. Feb2025, Vol. 37 Issue 2, p1-28. 28p.
Schlagwörter: *PROPER orthogonal decomposition, *WATER levels, *AUTOENCODERS, *FREE surfaces, *FLOOD control
-
11
-
12
Autoren:
Quelle: 2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR). :48-53
Schlagwörter: 2. Zero hunger, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, 3. Good health
-
13
Autoren:
Quelle: Diagnostics (2075-4418); Jul2023, Vol. 13 Issue 13, p2199, 14p
-
14
Autoren: et al.
Quelle: Frontiers in Systems Neuroscience, Vol 14 (2020)
Schlagwörter: EEG, emotion recognition, convolutional neural network, sparse autoencoder, deep neural network, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
Dateibeschreibung: electronic resource
-
15
Autoren: et al.
Quelle: Scientific Reports. 1/2/2025, Vol. 15 Issue 1, p1-15. 15p.
Schlagwörter: *CONVOLUTIONAL neural networks, *TYPE 2 diabetes, *AUTOENCODERS, *MEDICAL care costs, *DIABETES
-
16
Autoren: et al.
Quelle: International Journal of Applied Earth Observations and Geoinformation, Vol 129, Iss , Pp 103864- (2024)
Schlagwörter: Hyperspectral unmixing, Convolutional autoencoder, Sparsity constraint, Temperature scaling, Equal-frequency binning, Physical geography, GB3-5030, Environmental sciences, GE1-350
Dateibeschreibung: electronic resource
-
17
Autoren: et al.
Quelle: Frontiers in Neuroinformatics
Dateibeschreibung: application/pdf
-
18
Autoren: Graham, Benjamin
-
19
Autoren: et al.
Quelle: Neural Computing & Applications. Jul2025, Vol. 37 Issue 19, p13447-13467. 21p.
-
20
Autoren: et al.
Quelle: Front Neuroinform
Frontiers in Neuroinformatics, Vol 15 (2021)Schlagwörter: 03 medical and health sciences, 0302 clinical medicine, segmentation, deep learning, Neurosciences. Biological psychiatry. Neuropsychiatry, perivascular space, U-net, brain cohort, MRI, RC321-571, Neuroscience
Zugangs-URL: https://oskar-bordeaux.fr/bitstream/20.500.12278/110227/1/BPH_FN_2021_Boutinaud.pdf
https://www.frontiersin.org/articles/10.3389/fninf.2021.641600/pdf
https://pubmed.ncbi.nlm.nih.gov/34262443
https://doaj.org/article/ed3360c8420941b78108600cebb4efc3
https://biorxiv.org/content/10.1101/2020.11.25.397364v1.full.pdf
https://www.biorxiv.org/content/10.1101/2020.11.25.397364v1
Full Text Finder
Nájsť tento článok vo Web of Science