Výsledky vyhľadávania - semi-supervised convolutional variational autoencoder
-
1
Autori: a ďalší
Zdroj: Mathematics (2227-7390). Dec2024, Vol. 12 Issue 23, p3750. 16p.
-
2
Autori:
Zdroj: International Journal of Pattern Recognition & Artificial Intelligence. Aug2022, Vol. 36 Issue 10, p1-21. 21p.
Predmety: *SUPERVISED learning, *CONVOLUTIONAL neural networks, *DEEP learning
-
3
Autori:
Zdroj: Electrical Engineering. Apr2025, Vol. 107 Issue 4, p4939-4957. 19p.
-
4
Deep Residual Learning-Based Convolutional Variational Autoencoder For Driver Fatigue Classification
Autori:
Zdroj: Advances in Technology. :277-290
-
5
Autori: a ďalší
Zdroj: 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE). :313-318
Predmety: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
6
Autori:
Zdroj: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :1249-1253
Predmety: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, 3. Good health
-
7
Autori: a ďalší
Zdroj: Advances in Intelligent Systems and Computing ISBN: 9783030002138
Prístupová URL adresa: https://link.springer.com/chapter/10.1007/978-3-030-00214-5_148
-
8
Autori: a ďalší
Zdroj: International Journal of Network Management; Nov/Dec2024, Vol. 34 Issue 6, p1-17, 17p
-
9
Autori:
Zdroj: Methods. Aug2019, Vol. 166, p112-119. 8p.
-
10
Autori: a ďalší
Zdroj: Medical Physics. Dec2023, Vol. 50 Issue 12, p7548-7557. 10p.
-
11
Autori: a ďalší
Zdroj: Structural Health Monitoring; Jan2025, Vol. 24 Issue 1, p3-33, 31p
-
12
Autori:
Zdroj: Neurocomputing. May2021, Vol. 435, p228-238. 11p.
-
13
Autori: a ďalší
Zdroj: Frontiers in Neurology; 2025, p1-11, 11p
-
14
Autori: a ďalší
Zdroj: Analytical Methods; 10/21/2022, Vol. 14 Issue 39, p3898-3910, 13p
-
15
Autori:
Zdroj: Journal of Process Control. Aug2025, Vol. 152, pN.PAG-N.PAG. 1p.
-
16
Autori: a ďalší
Zdroj: Journal of Rock Mechanics and Geotechnical Engineering, Vol 17, Iss 5, Pp 2633-2649 (2025)
Predmety: Semi-supervised learning, Measurement while drilling (MWD), TA703-712, Engineering geology. Rock mechanics. Soil mechanics. Underground construction, Over/under excavation, Tunnel blasting quality
Prístupová URL adresa: https://doaj.org/article/36306ea7c4f34e8283f27b96db764e1a
-
17
Autori:
Zdroj: Computer Methods & Programs in Biomedicine. Sep2021, Vol. 209, pN.PAG-N.PAG. 1p.
-
18
-
19
Autori: a ďalší
Zdroj: Frontiers in Plant Science; 6/1/2022, Vol. 13, p1-11, 11p
Predmety: GRAPES, CROP quality, PLANT performance, MACHINE learning, DECISION making, VITIS vinifera, BERRIES
-
20
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: convolutional auxiliary deep generative model▼amultivariate time series, semi-supervised convolutional variational autoencoder▼aTennessee Eastman process▼aunlabeled data, 합성곱 보조변수 심층 생성 모델▼a다변수 시계열▼a준지도학습 합성곱 변분 오토인코더▼a테네시 이스트만 공정▼a레이블이 없는 데이터
Relation: 843192; http://library.kaist.ac.kr/search/detail/view.do?bibCtrlNo=843192&flag=dissertation; http://hdl.handle.net/10203/266236; 325007; 1935
Full Text Finder
Nájsť tento článok vo Web of Science