Výsledky vyhledávání - polynomial kernel method
-
1
Autoři:
Zdroj: Wasit Journal for Pure Sciences, Vol 1, Iss 3 (2022)
Témata: Science, 0502 economics and business, 05 social sciences, 0101 mathematics, 01 natural sciences
Přístupová URL adresa: https://doaj.org/article/87022f6862ae43c981f7c5af23f0a0a5
-
2
Autoři:
Zdroj: SIAM Journal on Optimization. 33:513-537
Témata: Optimization and Control (math.OC), FOS: Mathematics, 0211 other engineering and technologies, polynomial kernel method, 02 engineering and technology, semidefinite programming, 0101 mathematics, Mathematics - Optimization and Control, 01 natural sciences, symmetry reduction
Přístupová URL adresa: http://arxiv.org/abs/2203.05892
-
3
Autoři:
Přispěvatelé:
Zdroj: SIAM Journal on Optimization. 32:2612-2635
Témata: Positivstellensatz, 0211 other engineering and technologies, [MATH] Mathematics [math], 02 engineering and technology, 01 natural sciences, polynomial optimization Positivstellensatz sum-of-squares hierarchy Christoffel-Darboux kernel polynomial kernel method, Optimization and Control (math.OC), polynomial optimization, Christoffel-Darboux kernel, FOS: Mathematics, sum-of-squares hierarchy, polynomial kernel method, 90C22, 90C23, 90C26, 0101 mathematics, Mathematics - Optimization and Control
Popis souboru: application/pdf
-
4
Autoři:
Zdroj: Procedia Computer Science. 2025, Vol. 270, p495-504. 10p.
-
5
Autoři:
Zdroj: 2009 International Conference on Natural Language Processing and Knowledge Engineering. :1-7
Témata: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
6
Autoři: Müller, Hans-Georg
Zdroj: Scandinavian Journal of Statistics, 1993 Jan 01. 20(4), 313-328.
Přístupová URL adresa: https://www.jstor.org/stable/4616287
-
7
Autoři: Fujita, Tatsuya1 fujita_tatsuya_o5v@nra.go.jp
Zdroj: Journal of Nuclear Science & Technology. May2024, Vol. 61 Issue 5, p679-692. 14p.
-
8
-
9
Autoři: Muller, Hans-Georg
Zdroj: Journal of the American Statistical Association, 1987 Mar 01. 82(397), 231-238.
Přístupová URL adresa: https://www.jstor.org/stable/2289159
-
10
Autoři:
Zdroj: Sankhyā: The Indian Journal of Statistics, Series A (1961-2002), 1992 Feb 01. 54(1), 80-96.
Přístupová URL adresa: https://www.jstor.org/stable/25050860
-
11
Autoři:
Zdroj: Chaos, Solitons & Fractals. Oct2025:Part 1, Vol. 199, pN.PAG-N.PAG. 1p.
-
12
Autoři:
Zdroj: The Canadian Journal of Statistics / La Revue Canadienne de Statistique, 2005 Jun 01. 33(2), 259-278.
Přístupová URL adresa: https://www.jstor.org/stable/25046176
-
13
Autoři: 張, 士勛
Popis souboru: application/pdf
Přístupová URL adresa: https://ndlsearch.ndl.go.jp/books/R100000039-I8951317
Degree: 博士(工学) -- 筑波大学, University of Tsukuba
-
14
Autoři:
Zdroj: Journal of the Royal Statistical Society. Series B (Statistical Methodology), 2002 Jan 01. 64(3), 537-547.
Přístupová URL adresa: https://www.jstor.org/stable/3088787
-
15
Autoři: Vieu, Philippe
Zdroj: Scandinavian Journal of Statistics, 1999 Mar 01. 26(1), 61-72.
Přístupová URL adresa: https://www.jstor.org/stable/4616541
-
16
Autoři:
Přispěvatelé:
Zdroj: Optimization Letters. 17:515-530
Témata: 0211 other engineering and technologies, Schmüdgen's Positivstellensatz, Polynomial kernel method, [MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC], 02 engineering and technology, Sum-of-squares polynomials, Optimization and Control (math.OC), FOS: Mathematics, Jackson kernel, Semidefinite programming, 90C22, 90C23, 90C26, Schmudgen's Positivstellensatz, Lasserre hierarchy, Mathematics - Optimization and Control
Popis souboru: application/pdf
Přístupová URL adresa: http://arxiv.org/abs/2109.09528
-
17
Autoři: Ikeda, Kazushi1
Zdroj: Systems & Computers in Japan. 6/30/2004, Vol. 35 Issue 7, p41-48. 8p.
-
18
Autoři: a další
Zdroj: Wind Engineering, 2018 Jun 01. 42(3), 252-264.
Přístupová URL adresa: https://www.jstor.org/stable/90021358
-
19
Autoři:
Zdroj: UNCECOMP 2019 3rd ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering
3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering
Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019)Témata: FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, 0202 electrical engineering, electronic engineering, information engineering, Machine Learning (stat.ML), 02 engineering and technology, 0101 mathematics, QA, 16. Peace & justice, 01 natural sciences, Machine Learning (cs.LG)
Popis souboru: application/pdf
Přístupová URL adresa: http://wrap.warwick.ac.uk/116511/7/WRAP-model-inference-ordinary-differential-equations-parametric-
polynomial -kernel -regression-Rindler-2019.pdf
http://arxiv.org/abs/1908.02105
https://arxiv.org/abs/1908.02105
https://dblp.uni-trier.de/db/journals/corr/corr1908.html#abs-1908-02105 -
20
Autoři:
Zdroj: Journal of the Royal Statistical Society. Series B (Methodological), 1994 Jan 01. 56(4), 653-671.
Přístupová URL adresa: https://www.jstor.org/stable/2346189
Nájsť tento článok vo Web of Science
Full Text Finder