Suchergebnisse - numerical comparison with Runge-Kutta algorithm AND symplectic geometric algorithm*
-
1
Autoren:
Quelle: Science in China Series G: Physics, Mechanics and Astronomy. 50:53-69
-
2
Autoren:
Quelle: Science in China. Series G: Physics & Astronomy; Feb2007, Vol. 50 Issue 1, p53-69, 17p
-
3
Autoren: et al.
Quelle: International Journal of Modeling, Simulation & Scientific Computing; Oct2024, Vol. 15 Issue 5, p1-51, 51p
-
4
Autoren:
Quelle: SIAM Journal on Numerical Analysis. 39:128-145
Schlagwörter: Hamilton's equations, Discretization methods and integrators (symplectic, variational, geometric, etc.) for dynamical systems, Geometric methods in ordinary differential equations, orbits, Numerical methods for Hamiltonian systems including symplectic integrators, 01 natural sciences, Casimirs, sin-Euler equations, Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations, Fixed points and periodic points of dynamical systems, fixed-point index theory, local dynamics, Relations of dynamical systems with symplectic geometry and topology, Lie-Poisson systems, geometric integration, energy preserving algorithms, Newton iteration, 0101 mathematics, numerical experiments, rigid body
Dateibeschreibung: application/xml
-
5
Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations
Autoren:
Schlagwörter: Geometric numerical integration, Differential equations on manifolds, Hamiltonian and reversible systems, Symplectic and symmetric methods, ddc:510
Zugangs-URL: https://archive-ouverte.unige.ch/unige:12343
-
6
Autoren:
Quelle: Science in China. Series G: Physics & Astronomy; Apr2007, Vol. 50 Issue 2, p133-143, 11p
-
7
Autoren:
Quelle: Universitext ISBN: 9783540443193
Frontiers in Numerical Analysis pp. 199-240Schlagwörter: Geometric numerical integration, Reversible systems, Symmetric integrators, Runge-Kutta methods, Backward error analysis, Composition methods, Linear multistep methods, Matlab codes, ddc:510, Hamiltonian systems, Symplectic integrators
Zugangs-URL: https://archive-ouverte.unige.ch/unige:12569
-
8
Autoren:
Resource Type: eBook.
Schlagworte: Geometry, Differential, Algebraic topology, Mathematics—Data processing, Geometry, Quantum physics, Fluid mechanics
Categories: MATHEMATICS / Geometry / Differential, MATHEMATICS / Geometry / General, MATHEMATICS / Topology, SCIENCE / Physics / Quantum Theory, SCIENCE / Mechanics / Fluids, TECHNOLOGY & ENGINEERING / Mechanical, MATHEMATICS / Numerical Analysis
-
9
Autoren: et al.
Quelle: BIT: Numerical Mathematics; Jun2022, Vol. 62 Issue 2, p493-520, 28p
-
10
Autoren:
Quelle: Science in China. Series G: Physics & Astronomy; Dec2006, Vol. 49 Issue 6, p716-728, 13p
-
11
Autoren:
Quelle: AIP Conference Proceedings; Sep2012, Vol. 1479 Issue 1, p1276-1279, 4p, 2 Graphs
-
12
Autoren:
Quelle: Computational Methods in Applied Mathematics; Oct2025, Vol. 25 Issue 4, p1003-1016, 14p
Schlagwörter: NONLINEAR Schrodinger equation, MESHFREE methods, SYMPLECTIC spaces, NUMERICAL integration, NUMERICAL grid generation (Numerical analysis), COMPUTER simulation, INTERPOLATION algorithms, HAMILTONIAN systems
People: SCHROEDINGER, Erwin, 1887-1961
-
13
Autoren:
Quelle: Journal of Geophysics & Engineering; Oct2025, Vol. 22 Issue 5, p1315-1332, 18p
-
14
Autoren:
Quelle: International Journal of Bifurcation & Chaos in Applied Sciences & Engineering; Dec2024, Vol. 34 Issue 15, p1-20, 20p
Schlagwörter: NUMERICAL integration, NONLINEAR systems, NONLINEAR analysis, ALGORITHMS
-
15
Autoren:
Quelle: Optimization Methods & Software; Dec2023, Vol. 38 Issue 6, p1230-1268, 39p
-
16
Autoren: et al.
Quelle: Scientific Reports; 12/15/2025, Vol. 15 Issue 1, p1-13, 13p
-
17
Autoren: et al.
Quelle: European Journal of Pure & Applied Mathematics; Oct2025, Vol. 18 Issue 4, p1-45, 45p
-
18
Autoren:
Quelle: Journal of Chemical Physics; 9/7/2023, Vol. 159 Issue 9, p1-17, 17p
-
19
Autoren: et al.
Quelle: Applied Sciences (2076-3417); Oct2025, Vol. 15 Issue 20, p10943, 12p
Schlagwörter: CLUSTERING algorithms, MATHEMATICAL optimization, NEAR-Earth objects
-
20
Autoren: et al.
Quelle: Multibody System Dynamics; Dec2025, Vol. 65 Issue 4, p593-620, 28p
Nájsť tento článok vo Web of Science
Full Text Finder