Výsledky vyhledávání - numerical algorithms and problems - computation on (matice OR matica)~

Upřesnit hledání
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16

    Témata: msc:65F10, msc:65Fxx

    Popis souboru: application/pdf

    Relation: zbl:Zbl 07675633; reference:[1] Arioli, M., Pták, V., Strakoš, Z.: Krylov sequences of maximal length and convergence of GMRES. BIT 38 (1998), 636–643. MR 1670196, 10.1007/BF02510405; reference:[2] Axelsson, O., Barker, V. A.: Finite element solution of boundary value problems, theory and computations. Academic Press, Orlando, FL, 1984. MR 0758437; reference:[3] Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182 (2002), 418–477. MR 1941848, 10.1006/jcph.2002.7176; reference:[4] Benzi, M., Tůma, M.: A comparative study of sparse approximate inverse preconditioners. Appl. Numer. Math. 30 (1999), 305–340. MR 1688632, 10.1016/S0168-9274(98)00118-4; reference:[5] Brandts, J., Křížek, M.: Padesát let metody konjugovaných gradienů aneb zvládnou počítače soustavy miliónů rovnic o miliónech neznámých?. Pokroky Mat. Fyz. Astronom. 47 (2002), 103–113.; reference:[6] Brezinski, C.: History of continued fractions and Padé approximants. Springer Series in Computational Mathematics, vol. 12. Springer-Verlag, Berlin, 1991. MR 1083352; reference:[7] Carson, E., Rozložník, M., Strakoš, Z., Tichý, P., Tůma, M.: The numerical stability analysis of pipelined conjugate gradient methods: historical context and methodology. SIAM J. Sci. Comput. 40 (2018), A3549–A3580. MR 3866570, 10.1137/16M1103361; reference:[8] Carson, E., Strakoš, Z.: On the cost of iterative computations. Philos. Trans. Roy. Soc. A 378 (2020). MR 4072455; reference:[9] Concus, P., Golub, G. H., O'Leary, D. P.: A generalized conjugate gradient method for the numerical solution of elliptic partial differential equations. In: Bunch, J. R., Rose, D. J.: Sparse Matrix Computations, Academic Press, New York, 2018, 309–332. MR 0501821; reference:[10] Daniel, J. W.: The conjugate gradient method for linear and nonlinear operator equations. SIAM J. Numer. Anal. 4 (1967), 10–26. Zbl 0154.40302, MR 0217987, 10.1137/0704002; reference:[11] Duintjer Tebbens, J., Hnětynková, I., Plešinger, M., Strakoš, Z., Tichý, P.: Analýza metod pro maticové výpočty – základní metody. MatfyzPress, Praha, 2012.; reference:[12] Engeli, M., Ginsburg, T., Rutishauser, H., Stiefel, E.: Refined iterative methods for computation of the solution and the eigenvalues of self-adjoint boundary value problems. Mitt. Inst. Angew. Math. Zürich 8, Birkhäuser, Basel, 1959. MR 0145689; reference:[13] Fischer, B.: Polynomial based iteration methods for symmetric linear systems. Wiley-Teubner Series Advances in Numerical Mathematics, John Wiley and Sons, Chichester, 1996. MR 1449136; reference:[14] Gergelits, T., Mardal, K.-A., Nielsen, B. F., Strakoš, Z.: Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of the discretized operator. SIAM J. Numer. Anal. 57 (2019), 1369–1394. MR 3961990, 10.1137/18M1212458; reference:[15] Gergelits, T., Nielsen, B. F., Strakoš, Z.: Generalized spectrum of second order differential operators. SIAM J. Numer. Anal. 58 (2020), 2193–2211. MR 4128499, 10.1137/20M1316159; reference:[16] Gergelits, T., Strakoš, Z.: Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations. Numer. Algorithms 65 (2014), 759–782. MR 3187962, 10.1007/s11075-013-9713-z; reference:[17] Greenbaum, A.: Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences. Linear Algebra Appl. 113 (1989), 7–63. MR 0978581, 10.1016/0024-3795(89)90285-1; reference:[18] Greenbaum, A.: Iterative methods for solving linear systems. Frontiers in Applied Mathematics, vol. 17. SIAM, Philadelphia, PA, 1997. MR 1474725; reference:[19] Greenbaum, A., Pták, V., Strakoš, Z.: Any nonincreasing convergence curve is possible for GMRES. SIAM J. Matrix Anal. Appl. 17 (1996), 465–469. MR 1397238, 10.1137/S0895479894275030; reference:[20] Greenbaum, A., Strakoš, Z.: Predicting the behavior of finite precision Lanczos and conjugate gradient computations. SIAM J. Matrix Anal. Appl. 13 (1992), 121–137. MR 1146656, 10.1137/0613011; reference:[21] Greenbaum, A., Strakoš, Z.: Matrices that generate the same Krylov residual spaces. In: Recent advances in iterative methods. IMA Vol. Math. Appl., vol. 60. Springer, New York, 1994, 95–118. MR 1332745; reference:[22] Hayes, R. M.: Iterative methods for solving linear problems in Hilbert space. PhD. Thesis. Univ. of California at Los Angeles, 1954.; reference:[23] Hestenes, M. R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Research Nat. Bur. Standards 49 (1952), 409–436. Zbl 0048.09901, MR 0060307, 10.6028/jres.049.044; reference:[24] Karush, W.: Convergence of a method for solving linear problems. Proc. Amer. Math. Soc. 3 (1952), 839–851. MR 0055794, 10.1090/S0002-9939-1952-0055794-4; reference:[25] Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Research Nat. Bur. Standards 45 (1950), 255–282. MR 0042791, 10.6028/jres.045.026; reference:[26] Lanczos, C.: Solution of systems of linear equations by minimized iterations. J. Research Nat. Bur. Standards 49 (1952), 33–53. MR 0051583, 10.6028/jres.049.006; reference:[27] Lanczos, C.: Chebyshev polynomials in the solution of large-scale linear systems. In: Proceedings of the Association for Computing Machinery, Toronto, 1952, Sauls Lithograph Co., Washington, DC, 1953, 124–133. MR 0067580; reference:[28] Lanczos, C.: Why Mathematics?. Lecture given at the Annual Meeting of the Irish Mathematical Association on October 31, 1966, at Belfield, Dublin.; reference:[29] Liesen, J., Strakoš, Z.: Krylov subspace methods: Principles and analysis. Oxford University Press, Oxford, 2013. MR 3024841; reference:[30] Ljusternik, L. A.: Solution of problems in linear algebra by the method of continued fractions. Trudy Voronezh. Gos. Inst., Voronezh 2 (1956), 85–90. MR 0084856; reference:[31] Málek, J., Strakoš, Z.: Preconditioning and the conjugate gradient method in the context of solving PDEs. SIAM Spotlights, vol. 1. SIAM, Philadelphia, PA, 2015. MR 3307335; reference:[32] Meurant, G., Strakoš, Z.: The Lanczos and conjugate gradient algorithms in finite precision arithmetic. Acta Numer. 15 (2006), 471–542. MR 2269746, 10.1017/S096249290626001X; reference:[33] Murphy, M. F., Golub, G. H., Wathen, A. J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21 (2000), 1969–1972. MR 1762024, 10.1137/S1064827599355153; reference:[34] Paige, C. C.: Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem. Linear Algebra Appl. 34 (1980), 235–258. MR 0591433, 10.1016/0024-3795(80)90167-6; reference:[35] Pearson, J. W., Pestana, J.: Preconditioned iterative methods for scientific applications. GAMM-Mitt., to appear (2020).; reference:[36] Pozza, S., Strakoš, Z.: Algebraic description of the finite Stieltjes moment problem. Linear Algebra Appl. 561 (2019), 207–227. MR 3868647, 10.1016/j.laa.2018.09.026; reference:[37] Reid, J. K.: On the method of conjugate gradients for the solution of large sparse systems of linear equations. In: Large sparse sets of linear equations, Proc. Conf., St. Catherine’s Coll., Oxford, 1970, Academic Press, London, 1971, 231–254. MR 0341836; reference:[38] Rektorys, K.: Variační metody v inženýrských problémech a v problémech matematické fyziky. SNTL, Praha, 1974. MR 0487652; reference:[39] Saad, Y.: Iterative methods for sparse linear systems. 2nd ed., SIAM, Philadelphia, PA, 2003. MR 1990645; reference:[40] Stieltjes, T. J.: Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 8 (1894), J. 1–122. Reprinted in Oeuvres II (P. Noordhoff, Groningen, 1918), 402–566. English translation Investigations on continued fractions. in Thomas Jan Stieltjes, Collected Papers, Vol. II, Springer-Verlag, Berlin, 1993, 609–745. MR 1508159; reference:[41] Strakoš, Z., Tichý, P.: On error estimation in the conjugate gradient method and why it works in finite precision computations. Electron. Trans. Numer. Anal. 13 (2002), 56–80. MR 1943611; reference:[42] Thurston, W.: On proof and progress in Mathematics. Bull. Amer. Math. Soc. 30 (1994), 161–177. MR 1249357, 10.1090/S0273-0979-1994-00502-6; reference:[43] Vorobyev, Yu. V.: Methods of moments in applied mathematics. Translated from the Russian original published in 1958 by Bernard Seckler, Gordon and Breach Science Publishers, New York, 1965. MR 0184400; reference:[44] van der Vorst, H. A.: Preconditioning by incomplete decompositions. PhD Thesis. University of Utrecht, 1982.; reference:[45] Wathen, A.: Preconditioning. Acta Numer. 24 (2015), 329–376. MR 3349311, 10.1017/S0962492915000021; reference:[46] Zeidler, E.: Oxford users' guide to mathematics. Oxford University Press, Oxford, 2004. Translated from the 1996 German original by Bruce Hunt. MR 3157455

  17. 17
  18. 18

    Autoři: FENG WU KAILING ZHANG LI ZHU a další

    Zdroj: SIAM Journal on Matrix Analysis & Applications; 2021, Vol. 42 Issue 4, p1636-1655, 20p

    Témata: SPARSE matrices

  19. 19
  20. 20