Výsledky vyhledávání - multiobjective programming ((problems OR problemas) OR problemsas) with uncertain data*

Upřesnit hledání
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13

    Zdroj: Ingeniería; Vol. 20 No. 1 (2015): January - June; 129-138 ; Ingeniería; Vol. 20 Núm. 1 (2015): Enero - Junio; 129-138 ; 2344-8393 ; 0121-750X

    Popis souboru: application/pdf; text/html

    Relation: https://revistas.udistrital.edu.co/index.php/reving/article/view/8198/10153; https://revistas.udistrital.edu.co/index.php/reving/article/view/8198/10316; R. E. Bellman and Lofti A. Zadeh. Decision-making in a fuzzy environment. Management Science, 17(1):141– 164, 1970. [2] Juan Carlos Figueroa-García. An approximation method for type reduction of an interval Type-2 fuzzy set based on α-cuts. In IEEE, editor, Proceedings of FEDCSIS 2012, pages 1–6. IEEE, 2012. [3] Juan Carlos Figueroa-García. A general model for linear programming with interval type-2 fuzzy technological coefficients. In 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), pages 1–6. IEEE, 2012. [4] Juan Carlos Figueroa-García, Yurilev Chalco-Cano, and Heriberto Roma ́n-Flores. Distance measures for in- terval type-2 fuzzy numbers. Discrete Applied Mathematics, To appear(1), 2015. [5] Rafail N. Gasimov and Kursat Yenilmez. Solving fuzzy linear programming problems with linear membership functions. Turk J Math, 26(2):375–396, 2002. [6] George J. Klir and Tina A. Folger. Fuzzy Sets, Uncertainty and Information. Prentice Hall, 1992. [7] George J. Klir and Bo Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, 1995. [8] Jerry Mendel. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice Hall, 1994. [9] Jerry M. Mendel, Robert I. John, and Feilong Liu. Interval type-2 fuzzy logic systems made simple. IEEE Transactions on Fuzzy Systems, 14(6):808–821, 2006. [10] Jaroslav Ramík. Soft computing: overview and recent developments in fuzzy optimization. Technical report, Institute for Research and Applications of Fuzzy Modeling, 2001. [11] Jaroslav Ramík. Optimal solutions in optimization problem with objective function depending on fuzzy pa- rameters. Fuzzy Sets and Systems, 158(17):1873–1881, 2007. [12] Jaroslav Ramík and Josef Rimánek. Inequality relation between fuzzy numbers and its use in fuzzy optimiza- tion. Fuzzy Sets and Systems, 16:123–138, 1985. [13] Heinrich Rommelfanger. FULPAL - An interactive method for solving multiobjective fuzzy linear programming problems, pages 279–299. Reidel, Dordrecht, 1990. [14] Heinrich Rommelfanger. FULP - A PC-supported procedure for solving multicriteria linear programming problems with fuzzy data, pages 154–167. Springer-Verlag, 1991. [15] Heinrich Rommelfanger. Entscheiden bei UnschSrfe - Fuzzy Decision Support-Systeme 2nd ed. Springer-Verlag, Berlin/Heidelberg, 1994. [16] Heinrich Rommelfanger. A general concept for solving linear multicriteria programming problems with crisp, fuzzy or stochastic values. Fuzzy Sets and Systems, 158(17):1892–1904, 2007.; https://revistas.udistrital.edu.co/index.php/reving/article/view/8198

  14. 14

    Relation: Lucas, Solange Maria Fortuna - Gestão da incerteza em problemas de programação linear multi-objectivo com coeficientes intervalares. Coimbra, 2007.

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20