Search Results - multiobjective discrete particles swart optimisation algorithm~
-
1
Authors:
Source: ACM Transactions on the Web; May2025, Vol. 19 Issue 2, p1-34, 34p
-
2
Authors:
Source: Water (20734441); Sep2025, Vol. 17 Issue 18, p2786, 22p
-
3
Authors: et al.
Source: Expert Systems; May2022, Vol. 39 Issue 4, p1-21, 21p
-
4
Authors: et al.
Source: Applied Intelligence; Nov2023, Vol. 53 Issue 21, p25752-25770, 19p
-
5
Authors: et al.
Source: Energies (19961073); May2025, Vol. 18 Issue 10, p2465, 47p
Subject Terms: CLEAN energy, RENEWABLE energy sources, WIND power, ENERGY industries, INDUSTRIAL districts, MICROGRIDS
-
6
Authors: et al.
Source: Materials (1996-1944); Feb2023, Vol. 16 Issue 3, p1050, 11p
Subject Terms: MATHEMATICAL optimization, GAUSSIAN processes, HARDNESS, POROSITY, POWDERS
-
7
Authors: et al.
Source: Tecnura; Vol. 26 No. 74 (2022): October - December ; 87-129 ; Tecnura; Vol. 26 Núm. 74 (2022): Octubre - Diciembre ; 2248-7638 ; 0123-921X
Subject Terms: Optimal power flow problem, metaheuristic optimization, second-order cone programming, convex optimization, distributed generation, branch power flow, flujo de potencia óptimo, optimización metaheurística, programación cónica de segundo orden, optimización convexa, generación distribuida, flujo de potencia
File Description: application/pdf; text/xml
Relation: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/18342/18512; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/18342/18586; Abido, M. A. (2002). Optimal power flow using particle swarm optimization. International Journal of Electrical Power & Energy Systems, 24(7), 563-571. https://doi.org/10.1016/S0142-0615(01)00067-9; Abou El Ela, A. A., Abido, M. A., & Spea, S. R. (2010). Optimal power flow using differential evolution algorithm. Electric Power Systems Research, 80(7), 878-885. https://doi.org/10.1016/j.epsr.2009.12.018; Abo-Elnaga, Y., & El-Shorbagy, M. A. (2020). Multi-sine cosine algorithm for solving nonlinear bilevel programming problems. International Journal of Computational Intelligence Systems, 13(1), 421-432. https://doi.org/10.2991/ijcis.d.200411.001; Akbar, N. S., & Nadeem, S. (2014). Carreau fluid model for blood flow through a tapered artery with a stenosis. Ain Shams Engineering Journal, 5(4), 1307-1316. https://doi.org/10.1016/j.asej.2014.05.010; Andersen, M. S., Hansson, A., & Vandenberghe, L. (2013). Reduced-complexity semidefinite relaxations of optimal power flow problems. IEEE Transactions on Power Systems, 29(4), 1855-1863. https://doi.org/10.1109/TPWRS.2013.2294479; Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Computers & structures, 169, 1-12. https://doi.org/10.1016/j.compstruc.2016.03.001; Attia, A. F., El Sehiemy, R. A., & Hasanien, H. M. (2018). Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. International Journal of Electrical Power & Energy Systems, 99, 331-343. https://doi.org/10.1016/j.ijepes.2018.01.024; Bai, X., Wei, H., Fujisawa, K., & Wang, Y. (2008). Semidefinite programming for optimal power flow problems. International Journal of Electrical Power & Energy Systems, 30(6-7), 383-392. https://doi.org/10.1016/j.ijepes.2007.12.003; Baradar, M., Hesamzadeh, M. R., & Ghandhari, M. (2013). Second-order cone programming for optimal power flow in VSC-type AC-DC grids. IEEE Transactions on Power Systems, 28(4), 4282-4291. https://doi.org/10.1109/TPWRS.2013.2271871; Bayat, A., & Bagheri, A. (2019). Optimal active and reactive power allocation in distribution networks using a novel heuristic approach. Applied Energy, 233, 71-85. https://doi.org/10.1016/j.apenergy.2018.10.030; Ben Oualid Medani, K., Sayah, S., & Bekrar, A. (2018). Whale optimization algorithm based optimal reactive power 620 dispatch: A case study of the Algerian power system. Electrical Power Systems Research, 163, 696-705. https://doi.org/10.1016/j.epsr.2017.09.001; Benson, H. Y., & Sağlam, Ü. (2013). Mixed-integer second-order cone programming: A survey. Theory Driven by Influential Applications, 2013, 13-36. https://doi.org/10.1287/educ.2013.0115; Bocanegra, S. Y., & Montoya, O. D. (2019). Heuristic approach for optimal location and sizing of distributed generators in AC distribution networks. https://hdl.handle.net/20.500.12585/9176; Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press. https://doi.org/10.1017/CBO9780511804441; Bouchekara, H. R. E. H. (2013). Optimal design of electromagnetic devices using a black-hole-based optimization technique. IEEE Transactions on Magnetics, 49(12), 5709-5714. https://doi.org/10.1109/TMAG.2013.2277694; Bouchekara, H. R. E. H., Abido, M. A., & Boucherma, M. (2014). Optimal power flow using teaching-learning-based optimization technique. Electric Power Systems Research, 114, 49-59. https://doi.org/10.1016/j.epsr.2014.03.032; Cawley, J., & Ruhm, C. J. (2011). The economics of risky health behaviors. In M. V. Pauly, T. G. Mcguire, & P. P. Barros (Eds.), Handbook of Health Economics (vol. 2, pp. 95-199). Elsevier. https://doi.org/10.3386/w17081; Chen, G., Yi, X., Zhang, Z., & Lei, H. (2018). Solving the multi-objective optimal power flow problem using the multi-objective firefly algorithm with a constraints-prior Pareto-domination approach. Energies, 11(12), 3438. https://doi.org/10.3390/en11123438; Davoodi, E., Babaei, E., Mohammadi-Ivatloo, B., Shafie-Khah, M., & Catalão, J. P. (2020). Multiobjective optimal power flow using a semidefinite programming-based model. IEEE Systems Journal, 15(1), 158-169. https://doi.org/10.1109/JSYST.2020.2971838; Deshmukh, R., & Kalage, A. (2018, November 23-24). Optimal placement and sizing of distributed generator in distribution system using artificial bee colony algorithm [Conference presentation]. 2018 IEEE Global Conference on Wireless Computing and Networking, Lonavala, India. https://doi.org/10.1109/GCWCN.2018.8668633 Devabalaji, K. R., Imran, A. M., Yuvaraj, T., & Ravi, K. J. E. P. (2015). Power loss minimization in radial distribution system. Energy Procedia, 79, 917-923. https://doi.org/10.1016/j.egypro.2015.11.587; Doğan, B., & Ölmez, T. (2015). A new metaheuristic for numerical function optimization: Vortex Search algorithm. Information Sciences, 293, 125-145. https://doi.org/10.1016/j.ins.2014.08.053; El-Fergany, A. A., & Hasanien, H. M. (2015). Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms. Electric Power Components and Systems, 43(13), 1548-1559. https://doi.org/10.1080/15325008.2015.1041625; Ebeed, M., Kamel, S., & Jurado, F. (2018). Optimal power flow using recent optimization techniques. In Classical and recent aspects of power system optimization (pp. 157-183). Academic Press. https://doi.org/10.1016/B978-0-12-812441-3.00007-0; El-Khattam, W., & Salama, M. M. (2004). Distributed generation technologies, definitions, and benefits.E lectric Power Systems Research, 71(2), 119-128. https://doi.org/10.1016/j.epsr.2004.01.006; Farivar, M., & Low, S. H. (2013). Branch flow model: Relaxations and convexification – Part I. IEEE Transactions on Power Systems, 28(3), 2554-2564. https://doi.org/10.1109/TPWRS.2013.2255317; Garcés, A. (2016). A quadratic approximation for the optimal power flow in power distribution systems. Electric Power Systems Research, 130, 222-229. https://doi.org/10.1016/j.epsr.2015.09.006; Gharehchopogh, F. S., Maleki, I., & Dizaji, Z. A. (2021). Chaotic vortex search algorithm: Metaheuristic algorithm for feature selection. Evolutionary Intelligence, 15, 1777-1808. https://doi.org/10.1007/s12065-021-00590-1; Gholami, K., & Parvaneh, M. H. (2019). A mutated salp swarm algorithm for optimum allocation of active and reactive power sources in radial distribution systems. Applied Soft Computing, 85, 105833. https://doi.org/10.1016/j.asoc.2019.105833; Gil-González, W., Montoya, O. D., Rajagopalan, A., Grisales-Noreña, L. F., & Hernández, J. C. (2020). Optimal selection and location of fixed-step capacitor banks in distribution networks using a discrete version of the vortex search algorithm. Energies, 13(18), 4914. https://doi.org/10.3390/en13184914; Grisales-Noreña, L. F., González-Montoya, D., & Ramos-Paja, C. A. (2018). Optimal sizing and location of distributed generators based on PBIL and PSO techniques. Energies, 11(4), 1018. https://doi.org/10.3390/en11041018; Grisales-Noreña, L. F., Garzón-Rivera, O. D., Ocampo-Toro, J. A., Ramos-Paja, C. A., & Rodríguez-Cabal, M. A. (2020). Metaheuristic optimization methods for optimal power flow analysis in DC distribution networks. Transactions on Energy Systems and Engineering Applications, 1(1), 13-31. https://doi.org/10.32397/tesea.vol1.n1.2; Gupta, S., Saxena, A., & Soni, B. P. (2015). Optimal placement strategy of distributed generators based on radial basis function neural network in distribution networks. Procedia Computer Science, 57, 249-257. https://doi.org/10.1016/j.procs.2015.07.478; Hasan, Z., & El-Hawary, M. E. (2014, November 12-14). Optimal power flow by black hole optimization algorithm [Conference presentation]. 2014 IEEE Electrical Power and Energy Conference, Calgary, AB, Canada. https://doi.org/10.1109/EPEC.2014.43; Gutiérrez, D., Villa, W. M., & López-Lezama, J. M. (2017). Flujo óptimo reactivo mediante optimización por enjambre de partículas. Información Tecnológica, 28(5), 215-224. https://doi.org/10.4067/S0718-07642017000500020; Hariharan, T., & Sundaram, K. M. (2016). Optimal power flow using firefly algorithm with unified power flow controller. Circuits and Systems, 7(08), 1934. https://doi.org/10.4236/cs.2016.78168; Herbadji, O., Nadhir, K., Slimani, L., & Bouktir, T. (2013, April 28-30). Optimal power flow with emission controlled using firefly algorithm [Conference presentation]. 2013 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), Hammamet, Tunisia. https://doi.org/10.1109/ICMSAO.2013.6552559; Hernández, C., Sánchez-Huertas, W., & Gómez, V. (2021). Optimal power flow through artificial intelligence techniques. Tecnura, 25(69), 150-170. https://doi.org/10.14483/22487638.18245; Home-Ortiz, J. M., Pourakbari-Kasmaei, M., Lehtonen, M., & Mantovani, J. R. S. (2019). Optimal location-allocation of storage devices and renewable-based DG in distribution systems. Electric Power Systems Research, 172, 11-21. https://doi.org/10.1016/j.epsr.2019.02.013; Hudaib, A. A., & Fakhouri, H. N. (2018). Supernova optimizer: A novel natural inspired meta-heuristic. Modern Applied Science, 12(1), 32-50. https://doi.org/10.5539/mas.v12n1p32; Injeti, S. K., & Kumar, N. P. (2013). A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large scale radial distribution systems. International Journal of Electrical Power & Energy Systems, 45(1), 142-151. https://doi.org/10.1016/j.ijepes.2012.08.043; Kaur, S., Kumbhar, G., & Sharma, J. (2014). A MINLP technique for optimal placement of multiple DG units in distribution systems. International Journal of Electrical Power & Energy Systems, 63, 609-617. https://doi.org/10.1016/j.ijepes.2014.06.023; Khan, B., & Singh, P. (2017). Optimal power flow techniques under characterization of conventional and renewable energy sources: A comprehensive analysis. Journal of Engineering, 2017, 9539506. https://doi.org/10.1155/2017/9539506; Khan, A., Hizam, H., Abdul-Wahab, N. I., & Othman, M. L. (2020). Solution of optimal power flow using non-dominated sorting multi objective based hybrid firefly and particle swarm optimization algorithm. Energies, 13(16), 4265. https://doi.org/10.3390/en13164265; Kronqvist, J., Bernal, D. E., Lundell, A., & Grossmann, I. E. (2019). A review and comparison of solvers for convex MINLP. Optimization and Engineering, 20(2), 397-455. https://doi.org/10.1007/s11081-018-9411-8; Mitchell, M. (1998). An introduction to genetic algorithms. MIT press. https://doi.org/9780262133166; Lakshmi, P., Rao, B. V., Devarapalli, R., & Rai, P. (2020, July 10-11). Optimal power flow with BAT algorithm for a power system to reduce transmission line losses using SVC [Conference presentation]. 2020 International Conference on Emerging Frontiers in Electrical and Electronic Technologies, Patna, India. https://doi.org/10.1109/ICEFEET49149.2020.9186964; Lavaei, J., & Low, S. H. (2011). Zero duality gap in optimal power flow problem. IEEE Transactions on Power Systems, 27(1), 92-107. https://doi.org/10.1109/TPWRS.2011.2160974; Lavorato, M., Franco, J. F., Rider, M. J., & Romero, R. (2011). Imposing radiality constraints in distribution system optimization problems. IEEE Transactions on Power Systems, 27(1), 172-180. https://doi.org/10.1109/TPWRS.2011.2161349; Lima, J. Q., & Barán, B. (2006). Optimización de enjambre de partículas aplicada al problema del cajero viajante bi-objetivo. Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial, 10(32), 67-76.; Manrique, M. L., Montoya, O. D., Garrido, V. M., Grisales-Noreña, L. F., & Gil-González, W. (2019). Sine-cosine algorithm for OPF analysis in distribution systems to size distributed generators. In J. C. Figueroa-García, M. Duarte-González, S. Jaramillo-Isaza, Á. D. Orjuela-Cañón, & Y. Díaz-Gutierrez (Eds.), WEA 2019: Applied Computer Sciences in Engineering (pp. 28-39). Springer. https://doi.org/10.1007/978-3-030-31019-6_3; Marini, A., Mortazavi, S. S., Piegari, L., & Ghazizadeh, M. S. (2019). An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations. Electric Power Systems Research, 170, 229-243. https://doi.org/10.1016/j.epsr.2018.12.026; Mirjalili, S. M., Mirjalili, S. Z., Saremi, S., & Mirjalili, S. (2020). Sine cosine algorithm: theory, literature review, and application in designing bend photonic crystal waveguides. In S. Mirijalili, J. Song Dong, & A. Lewis (Eds.), Nature-Inspired Optimizers. Studies in Computational Intelligence (vol. 811, pp. 201-217). Springer. https://doi.org/10.1007/978-3-030-12127-3_12; Mohagheghi, E., Alramlawi, M., Gabash, A., & Li, P. (2018). A survey of real-time optimal power flow. Energies, 11(11), 3142. https://doi.org/10.3390/en11113142; Molzahn, D. K., & Hiskens, I. A. (2016). Convex relaxations of optimal power flow problems: An illustrative example. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(5), 650-660. https://doi.org/10.1109/TCSI.2016.2529281; Montoya-Giraldo, O. D., Gil-González, W. J., & Garcés-Ruíz, A. (2017). Flujo de potencia óptimo para redes radiales y enmalladas empleando programación semidefinida. TecnoLógicas, 20(40), 29-42. https://doi.org/10.22430/22565337.703; Montoya, O. D., Grisales-Noreña, L. F., Amin, W. T., Rojas, L. A., & Campillo, J. (2019). Vortex search algorithm for optimal sizing of distributed generators in AC distribution networks with radial topology. In J. C. Figueroa-García, M. Duarte-González, S. Jaramillo-Isaza, Á. D. Orjuela-Cañón, & Y. Díaz-Gutierrez (Eds.), WEA 2019: Applied Computer Sciences in Engineering (pp. 235-249). Springer. https://doi.org/10.1007/978-3-030-31019-6_21; Montoya, O. D., Gil-González, W., & Giral, D. A. (2020a). On the matricial formulation of iterative sweep power flow for radial and meshed distribution networks with guarantee of convergence. Applied Sciences, 10(17), 5802. https://doi.org/10.3390/app10175802; Montoya, O. D., Gil-González, W., & Orozco-Henao, C. (2020b). Vortex search and Chu-Beasley genetic algorithms for optimal location and sizing of distributed generators in distribution networks: A novel hybrid approach. Engineering Science and Technology, an International Journal, 23(6), 1351-1363. https://doi.org/10.1016/j.jestch.2020.08.002; Montoya, O. D., Gil-González, W., Serra, F. M., Hernández, J. C., & Molina-Cabrera, A. (2020c). A second-order cone programming reformulation of the economic dispatch problem of BESS for apparent power compensation in ac distribution networks. Electronics, 9(10), 1677. https://doi.org/10.3390/electronics9101677; Montoya, O. D., & Gil-González, W. (2020). On the numerical analysis based on successive approximations for power flow problems in AC distribution systems. Electric Power Systems Research, 187, 106454. https://doi.org/10.1016/j.epsr.2020.106454; Montoya, O. D., Arias-Londoño, A., & Molina-Cabrera, A. (2022). Branch optimal power flow model for DC networks with radial structure: A conic relaxation. Tecnura, 26(71), 30-42. https://doi.org/10.14483/22487638.18635; Moradi, M. H., & Abedini, M. (2012). A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. International Journal of Electrical Power & Energy Systems, 34(1), 66-74. https://doi.org/10.1016/j.ijepes.2011.08.023; Moradi, M. H., & Abedini, M. (2016). A novel method for optimal DG units’ capacity and location in Microgrids. International Journal of Electrical Power & Energy Systems, 75, 236-244. https://doi.org/10.1016/j.ijepes.2015.09.013; Mouassa, S., Bouktir, T., & Salhi, A. (2017). Ant lion optimizer for solving optimal reactive power dispatch problem in power systems. Engineering Science and Technology, an International Journal, 20(3), 885-895. https://doi.org/10.1016/j.jestch.2017.03.006; Mukherjee, A., & Mukherjee, V. (2015). Solution of optimal power flow using chaotic krill herd algorithm. Chaos, Solitons & Fractals, 78, 10-21. https://doi.org/10.1016/j.chaos.2015.06.020; Muthukumar, K., & Jayalalitha, S. (2016). Optimal placement and sizing of distributed generators and shunt capacitors for power loss minimization in radial distribution networks using hybrid heuristic search optimization technique. International Journal of Electrical Power & Energy Systems, 78, 299-319. https://doi.org/10.1016/j.ijepes.2015.11.019; Nowdeh, S. A., Davoudkhani, I. F., Moghaddam, M. H., Najmi, E. S., Abdelaziz, A. Y., Ahmadi, A., & Gandoman, F. H. (2019). Fuzzy multi-objective placement of renewable energy sources in distribution system with objective of loss reduction and reliability improvement using a novel hybrid method. Applied Soft Computing, 77, 761-779. https://doi.org/10.1016/j.asoc.2019.02.003; Ou, T. C. (2012). A novel unsymmetrical faults analysis for microgrid distribution systems. International Journal of Electrical Power & Energy Systems, 43(1), 1017-1024. https://doi.org/10.1016/j.ijepes.2012.05.012; Prior, H., Schwarz, A., & Güntürkün, O. (2008). Mirror-induced behavior in the magpie (Pica pica): Evidence of self-recognition. PLoS biology, 6(8), e202. https://doi.org/10.1371/journal.pbio.0060202; Radziukynas, V., & Radziukyniene, I. (2009). Optimization methods application to optimal power flow in electric power systems. In J. Kallrath, P. M. Pardalos, S. Rebennack & M. Scheidt (Eds.) Optimization in the Energy Industry. Energy Systems (pp. 409-436). Springer. https://doi.org/10.1007/978-3-540-88965-6_18; Raviprabhakaran, V., & Ravichandran, C. S. (2016). Enriched biogeography-based optimization algorithm to solve economic power dispatch problem. In M. Pant, K. Deep, J. Bansal, A. Nagar & K. Das (Eds.), Proceedings of Fifth International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing (vol. 437, pp. 875-888). Springer. https://doi.org/10.1007/978-981-10-0451-3_78; Raviprabakaran, V., & Subramanian, R. C. (2018). Enhanced ant colony optimization to solve the optimal power flow with ecological emission. International Journal of System Assurance Engineering and Management, 9(1), 58-65. https://doi.org/10.1007/s13198-016-0471-x; Rbouh, I., & El Imrani, A. A. (2014). Hurricane-based optimization algorithm. AASRI Procedia, 6, 26-33. https://doi.org/10.1016/j.aasri.2014.05.005; Rosli, S. J., Rahim, H. A., Abdul Rani, K. N., Ngadiran, R., Ahmad, R. B., Yahaya, N. Z., & Andrew, A. M. (2020). A hybrid modified method of the sine cosine algorithm using latin hypercube sampling with the cuckoo search algorithm for optimization problems. Electronics, 9(11), 1786. https://doi.org/10.3390/electronics9111786; Rupolo, D., Mantovani, J. R. S., & Junior, B. R. P. (2019, June 23-27). Medium- and low-voltage planning of electric power distribution systems with distributed generation, energy storage sources, and electric vehicles [Conference presentation]. 2019 IEEE Milan PowerTech Milan, Italy. https://doi.org/10.1109/PTC.2019.8810573; Rupolo, D., Pereira Junior, B. R., Contreras, J., & Mantovani, J. R. S. (2020). Multiobjective approach for medium- and low-voltage planning of power distribution systems considering renewable energy and robustness. Energies, 13(10), 2517. https://doi.org/10.1109/PTC.2019.8810573; Salkuti, S. R. (2019). Optimal power flow using multi-objective glowworm swarm optimization algorithm in a wind energy integrated power system. International Journal of Green Energy, 16(15), 1547-1561. https://doi.org/10.1080/15435075.2019.1677234; Scoble, M. J. (2005). Book review. Systematic Entomology, 30(3), 497-498. https://doi.org/10.1111/j.1365-3113.2005.00311.x; Shen, T., Li, Y., & Xiang, J. (2018). A graph-based power flow method for balanced distribution systems. Energies, 11(3), 511. https://doi.org/10.3390/en11030511; Siavash, M., Pfeifer, C., Rahiminejad, A., & Vahidi, B. (2017, May 17-19). An application of grey wolf optimizer for optimal power flow of wind integrated power systems [Conference presentation]. 2017 18th International Scientific Conference on Electric Power Engineering, Kouty nad Desnou, Czech Republic. https://doi.org/10.1109/EPE.2017.7967230; Simiyu, P., Xin, A., Wang, K., Adwek, G., & Salman, S. (2020). Multiterminal medium voltage DC distribution network hierarchical control. Electronics, 9(3), 506. https://doi.org/10.3390/electronics9030506; Sultana, S., & Roy, P. K. (2014). Multi-objective quasi-oppositional teaching learning-based optimization for optimal location of distributed generator in radial distribution systems. International Journal of Electrical Power & Energy Systems, 63, 534-545. https://doi.org/10.1016/j.ijepes.2014.06.031; Sultana, S., & Roy, P. K. (2016). Krill herd algorithm for optimal location of distributed generator in radial distribution system. Applied Soft Computing, 40, 391-404. https://doi.org/10.1016/j.asoc.2015.11.036; Taher, M. A., Kamel, S., Jurado, F., & Ebeed, M. (2019). Modified grasshopper optimization framework for optimal power flow solution. Electrical Engineering, 101(1), 121-148. https://doi.org/10.1007/s00202-019-00762-4; Tamilselvan, V., Jayabarathi, T., Raghunathan, T., & Yang, X. S. (2018). Optimal capacitor placement in radial distribution systems using flower pollination algorithm. Alexandria Engineering Journal, 57(4), 2775-2786. https://doi.org/10.1016/j.aej.2018.01.004; Tang, Y., Dvijotham, K., & Low, S. (2017). Real-time optimal power flow. IEEE Transactions on Smart Grid, 8(6), 2963-2973. https://doi.org/10.1109/TSG.2017.2704922; Topaloglu, H., Smith, J. C., & Greenberg, H. J. (Eds.) (2013). Theory driven by influential applications. Informs. https://doi.org/10.1287/educ.2013; Trivedi, I. N., Jangir, P., & Parmar, S. A. (2016). Optimal power flow with enhancement of voltage stability and reduction of power loss using ant-lion optimizer. Cogent Engineering, 3(1), 1208942. https://doi.org/10.1080/23311916.2016.1208942; Velásquez, O. S., Montoya-Giraldo, O. D., Garrido-Arévalo, V. M., & Grisales-Noreña, L. F. (2019). Optimal power flow in direct-current power grids via black hole optimization. Advances in Electrical and Electronic Engineering, 17(1), 24-32. https://doi.org/10.15598/aeee.v17i1.3069; Vélez, V. M., Hincapié, R. A., & Gallego, R. A. (2014). Low voltage distribution system planning using diversified demand curves. Electrical Power & Energy Systems, 61, 691-700. https://doi.org/10.1016/j.ijepes.2014.04.019; Winter, G. (2005). Origin of the species. Nursing Standard, 19(34), 24-26. https://doi.org/10.7748/ns.19.34.24.s28; Yadav, R., & Mahara, T. (2018). An exploratory study to investigate value chain of Saharanpur wooden carving handicraft cluster. International Journal of System Assurance Engineering and Management, 9(1), 147-154. https://doi.org/10.1007/s13198-016-0492-5; Yuan, Y., Wu, X., Wang, P., & Yuan, X. (2018). Application of improved bat algorithm in optimal power flow problem. Applied Intelligence, 48(8), 2304-2314. https://doi.org/10.1007/s10489-017-1081-2; Yuan, Z., & Hesamzadeh, M. R. (2019). Second-order cone AC optimal power flow: Convex relaxations and feasible solutions. Journal of Modern Power Systems and Clean Energy, 7(2), 268-280. https://doi.org/10.1007/s40565-018-0456-7; Zohrizadeh, F., Josz, C., Jin, M., Madani, R., Lavaei, J., & Sojoudi, S. (2020). Conic relaxations of power system optimization: Theory and algorithms. European Journal of Operational Research, 287(2), 391-409. https://doi.org/10.1016/j.ejor.2020.01.034; Zuluaga-Ríos, C. D., Florián-Ceballos, D. F., Rojo-Yepes, M. Á., & Saldarriaga-Zuluaga, S. D. (2021). Review of charging load modeling strategies for electric vehicles: A comparison of grid-to-vehicle probabilistic approaches. Tecnura, 25(70), 51-60. https://doi.org/10.14483/22487638.18657; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/18342
-
8
Authors: et al.
Source: Reports on Progress in Physics; Oct2022, Vol. 85 Issue 10, p1-27, 27p
-
9
Authors: et al.
Resource Type: eBook.
Categories: COMPUTERS / Artificial Intelligence / General, COMPUTERS / Programming / Algorithms, TECHNOLOGY & ENGINEERING / Engineering (General), MATHEMATICS / Optimization
PDF Full Text ePub Full Text -
10
Authors:
Source: International Journal of Combinatorics; 2011, Vol. 2011, p1-23, 23p, 5 Charts, 6 Graphs
-
11
Authors: et al.
Contributors: et al.
Subject Terms: 620 - Ingeniería y operaciones afines::625 - Ingeniería de ferrocarriles y de carretera, Pavimento -- Diseño y construcción, Pavimento asfáltico, Diseño, Cálculo inverso, Metaheurística, Asphalt pavement, Design, Backcalculation, Metaheuristic
File Description: xxx, 259 páginas; application/pdf
Relation: AASHTO. (1993). AASHTO Guide for Design of Pavement Structures. Washington, D.C.: American Association of State Highway and Transportation Officials.; AASHTO. (2008). Mechanistic-Empirical Pavement Design Guide. A Manual of Practice - Interim Edition. Washington D.C.: American Association of State Highway and Transportation Officials.; Abu-Lebdeh, G., Chen, H., & Ghanim, M. (2014). Improving Performance of Genetic Algorithms for Transportation Systems: Case of Parallel Genetic Algorithms. Journal of Infrastructure Systems, 1-8.; Ahlborn, G. (1972). ELSYM5, Computer Program for Determining Stresses and Deformations in Five Layer Elastic Systems. Berkeley: University of California.; Ahlvin, R. G., & Ulery, H. H. (1962). Tabulated Values for Determining the Complete Pattern of Stresses, Strains, and Deflections Beneath a Uniform Circular Load on a Homogeneous Half-Space. Highway Research Board Bulletin, 342, 1-13. Retrieved from http://onlinepubs.trb.org/onlinepubs/hrbbulletin/342/342-001.pdf; Ahmed, K., Al-Khateeb, B., & Mahmood, M. (2018). A Chaos with Discrete Multiobjective Particle Swarm Optimization for Pavement Maintenance. Journal of Theoretical and Applied Information Technology, 96(8), 2317-2326.; Alae, M., Yanqing, Z., Zarei, S., Fu, G., & Cao, D. (2018). Effects of layer interface conditions on top-down fatigue cracking of asphalt pavements. International Journal of Pavement Engineering, 1-9.; Alarcón-Guzmán, A. (2004). The geotechnical problem (In Spanish). Class notes of the "Soil Behavior" course in the Master of Geotechnical Engineering. Bogotá, Cundinamarca, Colombia.; Ali, H. A., & Shiraz, D. T. (1998). Mechanistic Evaluation of Test Data from LTPP Flexible Pavement Test Sections Publication No. FHWA-RD-98-012. McLean, VA: Federal Highway Administration.; Alkasawneh, W. (2007). Backcalculation of Pavement Moduli Using Genetic Algorithms. Akron, Ohio, USA: The University of Akron.; Al-Omari, B., & Darter, M. (1994). Relationships Between International Roughness Index and Present Serviceability Rating. Transportation Research Record 1435, 130-136.; Al-Qadi, I. L., & Wang, H. (2009). Evaluation of Pavement Damage due to New Tire Designs Research Report ICT-09-048. Illinois Center for Transportation.; Al-Rumahiti, A. (2021, November 21). Multi-layer Elastic Analysis. Retrieved from Mathworks: https://la.mathworks.com/matlabcentral/fileexchange/69465-multi-layer-elastic-analysis; AMADEUS. (2000). AMADEUS - Advanced Models for Analytical Design of European Pavement Structures.; Anderson, M. (1990). Backcalculation of Composite Pavement Layer Moduli - Technical Report GL-90-15. Vicksburg, Mississippi: US Army Corps of Engineers.; Asphalt Institute. (1981). Thickness Design—Asphalt Pavements for Highways and Streets. Manual Series No. 1 (Ninth ed.). Lexington, Kentucky, USA: Asphalt Institute.; Asphalt Institute. (1982). Research and Development of the Asphalt Institute´s Thickness Design Manual (MS-1) Ninth Edition. Lexington, Kentucky, USA: Asphalt Institute.; Asphalt Institute. (2000). Asphalt Overlays for Highway and Street Rehabilitation Manual MS-17. Lexington, Kentucky: Asphalt Institute.; Asphalt Institute. (2005). SW-1 Asphalt Pavement Thickness Design Software for Highways, Airports, Heavy Wheel Loads and Other Applications User´s Guide. Lexington, Kentucky, USA: Asphalt Institute.; Austroads. (1992). Pavement Design - A Guide to the Structural Design of Road Pavements (Vols. AP-17/92). Sydney, Australia: Australian Road Research Board.; Austroads. (1994). Pavement Design - A Guide to the Structural Design of Road Pavements. Interim Version of Revised Overlay Design Procedures. Sydney, Australia: Austroads Pavement Research Group.; Babkov, V., & Zamakhayev, M. (1967). Highway Engineering. Moscow, USSR: Mir publishers.; Baus, R. L., & Stires, N. R. (2010). Mechanistic-Empirical Pavement Design Guide Implementation. Columbia, South Carolina: Department of Civil and Environmental Engineering - The University of South Carolina.; Bosurgi, G., & Trifirò, F. (2005). A Model Based on Artificial Neural Networks and Genetic Algorithms for Pavement Maintenance Management. The International Journal of Pavement Engineering, 6(3), 201-209.; Brown, S. F. (1967). Stresses and deformations in flexible layered pavement systems subjected to dynamic loads, Ph.D. Thesis. Nottingham, UK: The University of Nottingham. Retrieved from http://eprints.nottingham.ac.uk/11667/1/520241.pdf; Brown, S. F. (1973). Determination of Young's modulus for Bituminous Materials in Pavement Design. Highway Research Record 431. 52nd Annual Meeting of the Highway Research Board (pp. 38-49). Washington D.C.: Highway Research Board.; Brown, S. F. (1993). Soil Mechanics in Pavement Engineering. Géotechnique, 46(3), 383-426.; Brown, S. F., & Pappin, J. W. (1981). Analysis of Pavements with Granular Bases. Transportation Research Record 810, 17-22.; Brown, S. F., Bunton, J. M., & Pell, P. S. (1982). The Development and Implementation of Analytical Pavement Design for British Conditions. Proceedings Fifth International Conference on the Structural Design of Asphalt Pavements (pp. 17-44). University of Michigan and Delft University of Technology.; Brunton, J. M., & D'Almeida, J. R. (1992). Modeling Material Non-Linearity in a Pavement Back-Calculation Procedure. Transportation Research Record 1377, 99-106.; Burmister, D. M. (1943). The Theory of Stresses and Displacements in Layered Systems and Application to Design of Airport Runways. Proc. HRB (pp. 120-125). Washington D.C.: Highway Research Board.; Cai, Y., Sangghaleh, A., & Pan, E. (2015). Effect of anisotropic base/interlayer on the mechanistic responses of layered pavements. Computer and Geotechnics, 65, 250-257.; Cao, W., Norouzi, A., & Kim, Y. R. (2016). Application of Viscoelastic Continuum Damage Approach to Predict Fatigue Performance of Binzhou Perpetual Pavements. Journal of Traffic and Transportation Engineering (English Edition), 3(2), 104-115. doi:http://dx.doi.org/10.1016/j.jtte.2016.03.002; CDKN. (2012). Critical Climate Change Concerns for the Road Sector in Colombia. Bogotá: Climate Development and Knowledge Network.; Central Intelligence Agency. (2013). The World Factbook 2013-2014. Retrieved March 24, 2016, from https://www.cia.gov/library/publications/the-world-factbook/index.html; Cercevik, A. E., Bozkurt, H., & Toklu, Y. C. (2014). Applications of meta-heuristic algorithms to civil engineering problems, a survey. In Y. C. Toklu, & G. Bekdas (Ed.), Metaheuristics and Engineering - 14th Workshop of the EURO Working Group (pp. 63-65). Istambul: The Association of European Operational Research Societies.; Ceylan, H., Kim, S., Gopalakrishnan, K., & Ma, D. (2013). Iowa Calibration of MEPDG Performance Prediction Models - Final Report. Iowa State University. Ames, Iowa: Institute for Transportation.; Chan, W. T., Fwa, T. F., & Hoque, K. Z. (2001). Constraint Handling Methods in Pavement Maintenance Programming. Transportation Research Part C, 9, 175-190.; Chan, W. T., Fwa, T. F., & Tan, C. Y. (1994). Road-Maintenance Planning Using Genetic Algorithms. I: Formulation. Journal of Transportation Engineering, 120(5), 693-709.; Chang, J.-R. (2013). Particle Swarm Optimization Method for Optimal Prioritization of Pavement Sections for Maintenance and Rehabilitation Activities. Applied Mechanics and Materials, 343, 43-49.; Chang, J.-R., & Chao, S.-J. (2010). Pavement Maintenance and Rehabilitation Decisions Derived by Genetic Programming. 2010 Sixth International Conference on Natural Computation ICNC (pp. 2439-2443). IEEE.; Charyulu, M. K. (1964). Theoretical stress distribution in an elastic multi-layered medium. Iowa State University. Ames, Iowa: Retrospective Theses and Dissertations 2730.; Chatti, K., & Yun, K. K. (1996). SAPSI-M: A Computer Program for Analyzing Asphalt Concrete Pavements under Moving Arbitrary Loads. (T. R. Board, Ed.) Transportation Research Record 1539.; Chatti, K., & Zaabar, I. (2012). NCHRP Report 720 Estimating the Effects of Pavement Condition on Vehicle Operating Costs. Washington D.C.: Transportation Research Board.; Chen, D.-H., Zaman, M., Laguros, J., & Soltani, A. (1985). Assessment of Computer Programs for Analysis of Flexible Pavement Structure. Transportation Research Record 1482, 123-133.; Chen, W. T. (1971). Computation of Stresses and Displacements in a Layered Elastic Medium. International Journal of Engineering Science, 775-800.; Cheu, R. L., Wang, Y., & Fwa, T. F. (2004). Genetic Algorithm-Simulation Methodology for Pavement Maintenance Scheduling. Computer-Aided Civil and Infrastructure Engineering, 19, 446-455.; Cho, Y. H., McCullough, B. F., & Weismann, J. (1996). Considerations on Finite-Element Method Application in Pavement Structural Analysis. Transportation Research Record: Journal of the Transportation Research Board, 1539(1), 96-101.; Choi, J. W., Wu, R., Pestana, J. M., & Harvey, J. (2010). New Layer-Moduli Back-Calculation Method Based on the Constrained Extended Kalman Filter. Journal of Transportation Engineering, 136(1), 20-30.; Chong, D., Wang, Y., Dai, Z., Chen, X., Wang, D., & Oeser, M. (2018). Multiobjective Optimization of Asphalt Pavement Design and Maintenance Decisions Based on Sustainability Principles and Mechanistic-Empirical Pavement Analysis. International Journal of Sustainable Transportation, 12(6), 461-472.; Chootinan, P., Chen, A., Horrocks, M. R., & Bolling, D. (2006). A Multi-Year Pavement Maintenance Program Using a Stochastic Simulation-Based Genetic Algorithm Approach. Transportation Research Part A, 40, 725-743.; Christensen, P. W., & Klarbring, A. (2009). An Introduction to Structural Optimization. Linköping, Sweden: Springer Science + Bussiness Media B. V.; Clerc, M. (1999). The Swarm and the Queen: Towards a Deterministic and Adaptative Particle Swarm Optimization. Proceedings of the Congress on Evolutionary Computing, III, pp. 1951-1957.; Climate Analytics. (2022). PROVIDE climate risk dashboard. Retrieved from https://climate-risk-dashboard.climateanalytics.org/; Coleri, E., Guler, M., Gungor, A. G., & Harvey, J. T. (2010). Prediction of Subgrade Resilient Modulus Using Genetic Algorithm and Curve-Shifting Methodology. Transportation Research Record: Journal of the Transportation Research Board, 2170, 67-73.; Corté, J.-F., & Goux, M.-T. (1996, January). Design of Pavements Structures: The French Technical Guide. Transportation Research Record: Journal of the Transportation Research Board(1539), 116-124. doi:10.3141/1539-16; Croney, D., & Croney, P. (1998). The design and performance of road pavements (Third ed.). London, UK: McGraw-Hill.; Cunha Coelho, N. F. (2016). Calibration of MEPDG Performance Models for Flexible Pavement Distresses to Local Conditions of Ontario - M.Sc. Thesis. The University of Texas at Arlington. Arlington, Texas: The University of Texas at Arlington.; Dalla Valle, P., & Thom, N. (2016a). Improvement of method of equivalent thicknesses (MET) for calculation of critical strains for flexible pavements. International Journal of Pavement Engineering, 1-8.; Dalla Valle, P., & Thom, N. (2016b). Reliability in pavement design. E & E Congress 6th Eurasphalt & Eurobitume Congress. Prague, Czech Republic.; Darter, M. I., & Hudson, W. R. (1973). Probabilistic Design Concepts Applied to Flexible Pavement System Design - Research Report 123-18. Texas Highway Department. Austin, Texas: Center for Highway Research - The University of Texas at Austin.; Dauzats, M., & Rampal, A. (1988). Mécanismes de fissuration de surface des couches de roulement. Bulletin de Liaison des Laboratoires des Ponts et Chaussés, 154, 57-72.; De Jong, D., Peutz, M. G., & Korswagen, A. R. (1979). Computer program BISAR, layered systems under normal and tangential surface loads. Amsterdam: Koninklijke/Shell Laboratorium, Shell Research B.V.; Dede, T., Kripka, M., Togan, V., Yepes, V., & Rao, R. V. (2019). Usage of Optimization Techniques in Civil Engineering During the Last Two Decades. Current Trends in Civil & Structural Engineering, 2(1), 1-17.; Deshpande, V. P., Damnjanovic, I. D., & Gardoni, P. (2010). Reliability-Based Optimization Models for Scheduling Pavement Rehabilitation. Computer-Aided Civil and Infrastructure Engineering, 25, 227-237.; Di Mino, G., De Blasiis, M. R., Di Noto, F., & Noto, S. (2013). An Advanced Pavement Management System based on a Genetic Algorithm for a Motorway Network. In Y. Tsompanakis (Ed.), Proceedings of the Third International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering (pp. 1-17). Stirlingshire, Scotland: Civil-Comp Press.; Dilip, D. M., & Sivakumar Babu, G. L. (2013). Methodology for Pavement Design Reliability and Back Analysis Using Markov Chain Monte Carlo Simulation. ASCE Journal of Transportation Engineering, 139(1), 65-74.; Dilip, D. M., & Sivakumar Babu, G. L. (2021). Reliability-Based Design Optimization of Flexible Pavements Using Kriging Models. Journal of Transportation Engineering. Part B: Pavements, 04021046 1-14.; Dilip, D. M., Ravi, P., & Sivakumar Babu, G. L. (2013). System Reliability Analysis of Flexible Pavements. ASCE Journal of Transportation Engineering, 139(10), 1001-1009.; Dinegdae, Y. H., & Birgisson, B. (2016). Reliability-Based Design Procedure for Fatigue Cracking in Asphalt Pavements. Transportation Research Record: Journal of the Transportation Research Board, 2583(1), 127-133.; Dinegdae, Y., Onifade, I., Birgisson, B., Lytton, R., & Little, D. (2018). Towards a Reliability-Based Pavement Design using Response Surface Methods. Transportation Research Record, 2672(40), 97-107.; Diwekar, U. (2008). Introduction to Applied Optimization. Clarendon Hils, IL: Springer Science + Business Media, LLC.; Duncan, J. M., Monismith, C. L., & L., W. E. (1968). Finite Element Analyses of Pavements. Highway Research Record, 228, 18-33.; Duong, N. S., Blanc, J., & Hornych, P. (2017). Analysis of the behavior of pavement layers interfaces from in situ measurements. In A. Loizos, I. L. Al-Qadi, & T. Scarpas (Ed.), 10th International Conference on the Bearing Capacity of Roads, Railways, and Airfields (BCRRA 2017). Athens, Greece: CRC Press.; Elhadidy, A. A., Elbeltagi, E. E., & Ammar, M. A. (2015). Optimum Analysis of Pavement Maintenance Using Multi-Objective Genetic Algorithms. Housing and Building National Research Center HBRC Journal, 107-113.; ERDC. (2002). WinLEA ERDC Developed Software WinJULEA Windows Layered Elastic Analysis. GSL - Airfields & Pavements Branch. Vicksburg, Mississippi: Engineering Research & Development Center.; Erlingsson, S., & Ahmed, A. (2013). Fast layered elastic response program for the analysis of flexible pavement structures. Road Materials and Pavement Design, 14(1), 196-210. doi:10.1080/14680629.2012.757558; Farhan, J., & Fwa, T. F. (2012). Incorporating Priority Preferences into Pavement Maintenance Programming. Journal of Transportation Engineering, 138(6), 714-722.; Federal Aviation Administration. (1995). Airport Pavement and Evaluation - Advisory Circular AC 150/5320-6D (Cancelled). Washington, D.C.: U.S. Department of Transportation - Federal Aviation Administration.; Ferreira, A., Antunes, A., & Picado-Santos, L. (2002). Probabilistic Segment-linked Pavement Management Optimization Model. Journal of Transportation Engineering, 128(6), 568-577.; Figueroa, A., Reyes, F., Hernández, D., Jiménez, C., & Bohórquez, N. (2007). Análisis de un asfalto modificado con icopor y su incidencia en una mezcla asfáltica densa en caliente. Ingeniería e Investigación, 27(3), 5-15.; Finn, F. N., Saraf, C., Kulkarni, R., Nair, K., Smith, W., & Abdullah, A. (1977). The Use of Distress Prediction Subsystems in the Design of Pavement Structures. Proceedings Fourth International Conference on the Structural Design of Asphalt Pavements. 1, pp. 3-38. Michigan: The University of Michigan.; Flintsch, G. W., & Chen, C. (2004). Soft Computing Applications in Infrastructure Management. Journal of Infrastructure Systems, 10(4), 157-165.; Freeman, R. B., & Harr, M. E. (2004). Stress Predictions for Flexible Pavement Systems. Journal of Transportation Engineering, 130(495-502).; Fwa, T. F., Chan, T. Y., & Hoque, K. Z. (1998). Analysis of Pavement Management Activities Programming by Genetic Algorithms. Transportation Research Record: Journal of the Transportation Research Board, 1643, 1-6.; Fwa, T. F., Chan, W. T., & Hoque, K. Z. (2000). Multiobjective Optimization for Pavement Maintenance Programming. Journal of Transportation Engineering, 126(5), 367-374.; Fwa, T. F., Chan, W. T., & Tan, C. Y. (1994). Optimal Programming by Genetic Algorithm for Pavement Management. Transportation Research Record: Journal of the Transportation Research Board, 1455, 31-41.; Fwa, T. F., Chan, W. T., & Tan, C. Y. (1996). Genetic-Algorithm Programming of Road Maintenance and Rehabilitation. Journal of Transportation Engineering, 122(3), 246-253.; Fwa, T. F., Tan, C. Y., & Chan, W. T. (1997). Backcalculation Analysis of Pavement-Layer Moduli Using Genetic Algorithms. Transportation Research Record: Journal of the Transportation Research Board, 1570, 134-142.; Gallego, R., Toro, E., & Escobar, A. (2015). Técnicas Heurísticas y Metaheurísticas. Pereira, Colombia: Universidad Tecnológica de Pereira.; Gandomi, A. H., Yang, X.-S., Talatahari, S., & Alavi, A. H. (2013). Metaheuristic Algorithms in Modeling and Optimization. In A. H. Gandomi, X.-S. Yang, S. Talatahari, & A. H. Alavi, Metaheuristics Applications in Structures and Infrastructures (pp. 1-24). Elsevier Science & Technology.; Gao, L., Xie, C., Zhang, Z., & Waller, S. T. (2012). Network-Level Road Pavement Maintenance and Rehabilitation Scheduling for Optimal Performance Improvement and Budget Utilization. Computer-Aided Civil and Infrastructure Engineering, 27, 276-287.; Garnica Anguas, P., & Hernández Domínguez, R. (2013). Manual de Usuario IMT-PAVE 1.1 Documento Técnico No. 53. Sanfandila, Qro: Instituto Mexicano del Transporte.; Ghanizadeh, A. R. (2016). An Optimization Model for Design of Asphalt Pavements Based on IHAP Code Number 234. Advances in Civil Engineering, 1-8.; Ghanizadeh, A. R. (2017). Application of support vector machine regression for predicting critical responses of flexible pavements. International Journal of Transportation Engineering, 4(4), 305-315.; Ghanizadeh, A. R., & Ziaie, A. (2015). NonPAS: A Program for Nonlinear Analysis of Flexible Pavements. International Journal of Integrated Engineering, 7(1), 21-28.; Ghanizedeh, A. R., & Ahadi, M. R. (2015). Application of Artificial Neural Networks for Analysis of Flexible Pavements under Static Loading of Standard Axle. International Journal of Transportation Engineering, 3(1), 31-43.; Golroo, A., & Tighe, S. L. (2012). Optimum Genetic Algorithm Structure Selection in Pavement Management. Asian Journal of Applied Sciences, 5(6), 327-341.; Gonzales, C. R., Barker, W. R., & Bianchini, A. (2012). Reformulation of the CBR procedure. Report I: Basic report. U.S. Army Corps of Engineers, Geotechnical and Structures Laboratory. Vicksburg: U.S. Army Engineer Research and Development Center.; Gonzalez, C. R. (2015). Development and Validation of a Stress-Based Procedure for the Design of Military Flexible Pavements (Ph.D. Thesis). The University of Illinois at Urbana-Champaign. Urbana, Ilinois: The University of Illinois at Urbana-Champaign.; Gopalakrishnan, K. (2009). Backcalculation of Pavement Moduli Using Bio-Inspired Hybrid Metaheuristics and Cooperative Strategies. Proceedings of the 2009 Mid-Continent Transportation Research Symposium (pp. 1-5). Ames, Iowa: Iowa State University.; Gopalakrishnan, K. (2010). Neural Network-Swarm Intelligence Hybrid Nonlinear Optimization Algorithm for Pavement Moduli Back-Calculation. Journal of Transportation Engineering, 136(6), 528-536.; Granada Echeverri, M. (2009). Algoritmos Evolutivos y Técnicas Bioinspiradas. De la Teoría a la Práctica. Pereira, Colombia: Universidad Tecnológica de Pereira.; Gudipudi, P. P., Underwood, B. S., & Zalghout, A. (2017). Impact of climate change on pavement structural performance in the United States. Transportation Research Part D: Transport and Environment, 57, 172-184. doi:https://doi.org/10.1016/j.trd.2017.09.022; Haas, R., Tighe, S., Dore, G., & Hein, D. (2007). Mechanistic-Empirical Pavement Design: Evolution and Future Challenges. 2007 Annual Conference Transportation Association of Canada, (pp. 1-23). Saskatoon, Saskatchewan.; Hadi, M. N., & Arfiadi, Y. (2001). Optimum rigid pavement design by genetic algorithms. Computers and Structures, 79, 1317-1624.; Harr, M. E., & Lovell, Jr., C. W. (1963). Vertical Stresses Under Certain Axisymmetrical Loadings. Highway Research Record, 39, 68-81.; Hasan, M. M., Rahman, A. A., & Tarefder, R. A. (2018). Investigation of Accuracy of Pavement Mechanistic Empirical Prediction Performance by Incorporating Level 1 Inputs. Journal of Traffic and Transportation Engineering (English Edition), 1-10. doi: https://doi.org/10.1016/j.jtte.2018.06.006; Hayhoe, G. F. (2002). LEAF - A New Layered Elastic Computational Program for FAA Pavement Design and Evaluation Procedures. In F. A. Administration (Ed.), The 2002 Federal Aviation Administration Airport Technology Transfer Conference, (pp. 1-15).; He, Z., Cai, Y., & Haas, R. (1996). OPAC 2000 Engineering document. Ontario: Ministry of Transportation of Ontario.; Herabat, P., & Tangphaisankun, A. (2005). Multi-Objective Optimization Model using Constraint-Based Genetic Algorithms for Thailand Pavement Management. Journal of the Eastern Asia Society for Transportation Studies, 6, 1137-1152.; Horak, E., Maree, J. H., & van Wijk, A. J. (1989). Procedures for Using Impulse Deflectometer (IDM) Measurements in the Structural Evaluation of Pavements. Proceedings of the Annual Transportation Convention, 5A. Pretoria, South Africa.; Hu, K.-F., Jiang, K.-P., & Chang, D.-W. (2007). Study of Dynamic Backcalculation Program with Genetic Algorithms for FWD on Pavements. Tamkang Journal of Science and Engineering, 10(4), 297-305.; Huang, Y. H. (1969). Computation of Equivalent Single-Wheel Loads Using Layered Theory. Highway Research Record(291), 144-155.; Huang, Y. H. (1993). Pavement Analysis and Design (First ed.). Englewood Cliffs, NJ, USA: Prentice Hall.; Huang, Y. H. (2004). Pavement Analysis and Design (Second ed.). Upper Saddle River, NJ, USA: Pearson Prentice Hall.; Hunaidi, O. (1998). Evolution-Based Genetic Algorithms for Analysis of Non-Destructive Surface Wave Tests on Pavements. NDT&E International, 31(4), 273-280.; IDEAM. (23 de 01 de 2021). Consulta y Descarga de Datos Hidrometeorológicos. Obtenido de Consulta y Descarga de Datos Hidrometeorológicos: http://dhime.ideam.gov.co/atencionciudadano/; INVÍAS. (2003). Operativo Móvil de Pesaje Carretera Manizales - Chinchiná en el sitio Cenicafé. Bogotá D.C.: Instituto Nacional de Vías. Subdirección de Conservación.; INVÍAS. (2007). Manual de diseño de pavimentos asfálticos para vías con bajos volumenes de tránsito. Bogotá: Instituto Nacional de Vías.; INVÍAS. (2011). Volumenes de Tránsito . Bogotá DC: Instituto Nacional de Vías de Colombia.; Ioannides, A. M., & Khazanovich, L. (1998). General Formulation for Multilayered Pavement Systems. Journal of Transportation Engineering, 124(1), 82-90.; IPCC. (2014). Climate Change 2014-Impacts, Adaptation and Vulnerability: Regional Aspects. Intergovernmental Panel on Climate Change. Cambridge University Press. doi:https://doi.org/10.1017/CBO9781107415379; Jameson, G. W. (1996). Origins of AUSTROADS Design Procedures for Granular Pavements. Research Report ARR 292. Vermont South, Australia: ARRB Transport Research Ltd.; Javed, F. (2011). Integrated Prioritization and Optimization Approach for Pavement Management. Ph.D. Thesis, Singapore.; Joint Departments of the Army and Air Force. (1994). TM 5-822-13/AFJMAN 32-1018 Pavement Design for Roads, Streets and Open Storage Areas, Elastic Layered Method. Washington D.C.; Jooste, F. (2016, 07 12). Automated Backcalculation: How the backcalculation error is calculated. Retrieved 06 04, 2019, from Rubicon Toolbox: Rubicon forum: http://forum.rubicontoolbox.com/pages/topic7-how-the-backcalculation-error-is-calculated.aspx; Kai, W. (1987). Analysis and Calculation of Stresses and Displacements in Layered Elastic Systems. Acta Mechanica Sinica, 3(3), 252-260.; Kameyama, S., Himeno, K., Kasahara, K., & Maruyama, T. (1998). Backcalculation of Pavement Layer Moduli using Genetic Algorithms. 8th International Conference on Asphalt Pavements (pp. 1375-1385). Seattle, Washington: University of Washington.; Kasperick, T., & Ksabaiti, K. (2015). Calibration of the Mechanistic-Empirical Pavement Design Guide for Local Paved Roads in Wyoming. Department of Civil and Architectural Engineering - The University of Wyoming. Laramie, Wyoming: The Mountain Plains Consortium.; Kenis, W. J., Sherwood, J. A., & McMahon, R. F. (1982). Verification and Application of the VESYS Structural Subsystem. Proceedings Fifth International Conference on the Structural Design of Asphalt Pavements. 1, pp. 333-348. University of Michigan and Delft University of Technology.; Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. Proceedings of ICNN'95 - International Conference on Neural Networks (pp. 1942-1948). Perth, WA, Australia, Australia: IEEE. doi:10.1109/ICNN.1995.488968; Khazanovich, L., & Wang, Q. (2007). MnLayer – A high performance layered elastic analysis program. Transportation Research Record: Journal of the Transportation Research Board(2037), 63-75.; Kim, H. B., & Lee, S. H. (2002). Reliability-Based Design Model Applied to Mechanistic Empirical Pavement Design. KSCE Journal of Civil Engineering, 6(3), 263-272.; Kim, M. (2007). Three-Dimensional Finite Element Analysis of Flexible Pavements Considering Nonlinear Pavement Foundation Behavior. The University of Illinois at Urbana - Champaign. Urbana, Illinois: The University of Illinois at Urbana - Champaign.; Kim, S. H., Little, D. N., & Masad, E. (2005). Simple methods to estimate inherent and stress-induced anisotropy of aggregate base. Transportation Research Record 1913, 24-31.; Kim, S., Ceylan, H., Ma, D., & Gopalakrishnan, K. (2014). Calibration of Pavement ME Design and Mechanistic-Empirical Pavement Design Guide Performance Prediction Models for Iowa Pavement Systems. (A. S. Engineers, Ed.) Journal of Transportation Engineering, 140(10).; Kim, Y. R., Jadoun, F. M., Hou, T., & Muthadi, N. (2011). Local Calibration of the MEPDG for Flexible Pavement Design - Report FHWA\NC\2007-07. Raleigh, NC: North Carolina Department of Transportation.; Kimura, T. (2014). Studies on Stress Distribution in Pavements Subjected to Surface Shear Loads. Proceedings of the Japanese Academy, 90(2), 47-55.; Kosasih, D. (2011). Back-Calculation of Pavement Modulus Values Using Genetic Algorithms. Proceedings of the Eastern Asia Society for Transportation Studies, 8.; Kruntcheva, M. R., Collop, A. C., & Thom, N. H. (2005). Effect of Bond Condition on Flexible Pavement Performance. Journal of Transportation Engineering, 131(11), 880-888.; Kuyu, Y. C., & Vatansever, F. (2021). Advanced Metaheuristic Algorithms on Solving Multimodal Functions: Experimental Analyses and Performance Evaluations. Archives of Computational Methods in Engineering.; Lamboll, R., Rogelj, J., & Schleussner, C. F. (2022). A guide to scenarios for the PROVIDE project. Earth and Space Science Open Archive.; Laurent-Matamoros, P., Loría-Salazar, L.-G., Leiva-Padilla, P., & Trejos-Castillo, C. (2018). PITRA-BACK Herramienta de Cálculo para el Diseño de Sobrecapas Asfálticas de Pavimentos Flexibles en Costa Rica. Software version Beta 1.0.1. Costa Rica: Universidad de Costa Rica - Laboratorio Nacional de Materiales y Modelos Estructurales.; LCPC - SETRA. (1994). Conception et dimensionnement des structures de chaussée - Guide technique. Paris, France: Laboratoire Central des Ponts et Chaussées - Service d'études sur les Transports, les Routes et leurs Aménagements.; Lea, J. (2014). About OpenPave.org. Retrieved 05 29, 2018, from OpenPave.org Open Source Pavement Engineering: http://www.openpave.org/; Li, J., Uhlmeyer, J. S., Mahoney, J. P., & Muench, S. T. (2011). Use of the 1993 AASHTO Guide, MEPDG and Historical Performance to Update the WSDOT Pavement Design Catalog. Seattle, Washington: The University of Washington.; Li, M., & Wang, H. (2017). Development of ANN-GA Program for Backcalculation of Pavement Moduli under FWD Testing with Viscoelastic and Nonlinear Parameters. International Journal of Pavement Engineering, 1-9.; Li, Q., Xiao, D. X., Wang, K. C., Hall, K. D., & Qiu, Y. (2011). Mechanistic-Empirical Pavement Design Guide (MEPDG): A Bird's Eye Review. Journal of Modern Transportation, 19, 114-133.; Li, T., & Chen, Y. (2018). Multiple Improvements to the Particle Swarm Optimization Algorithm. IOP Conference Series: Materials Science and Engineering, 435, pp. 1-10.; Li, X., Li, X., Zhong, Y., & Wang, F. (2012). Modulus Back Analysis of Pavement Structure Based on PSO. Applied Mechanics and Materials, 178-181, 1222-1225.; Liu, H., Pan, E., & Cai, Y. (2018). General surface loading over layered transversely isotropic pavements with imperfect interfaces. Advances in Engineering Software, 115, 268-282. doi:10.1016/j.advengsoft.2017.09.009; Liu, P., Wang, D., & Oeser, M. (2015). Application of Semi-Analytical Finite Element Method Coupled with Infinite Element for Analysis of Asphalt Pavement Structural Response. Journal of Traffic and Transportation Engineering (English Version), 2(1), 45-48. doi:http://dx.doi.org/10.1016/j.jtte.2015.01.005; Liu, W., & Scullion, T. (2011). Flexible Pavement Design Manual System FPS 21: User´s Manual. Texas Department of Transportation. College Station, TX: Texas Transportation Institute - The Texas A&M University System.; Loulizi, A., Al-Qadi, I. L., & Elseifi, M. (2006). Difference between In Situ Flexible Pavement Measured and Calculated Stresses and Strains. Journal of Transportation Engineering, 132(7), 574-579.; Lu, Q., Ullidtz, P., Basheer, I., Ghuzlan, K., & Signore, J. M. (2009). CalBack: Enhancing Caltrans Mechanistic-Empirical Pavement Design Process with New Back-Calculation Software. Journal of Transportation Engineering, 135(7), 479-488.; Lui, M.-y., & Wang, S.-y. (2003). Genetic Optimization Method of Asphalt Pavement Based on Rutting and Cracking Control. Journal of Wuhan University of Technology, 18(1), 72-75.; Luo, Z., Hu, B., & Pan, E. (2019). Robust design approach for flexible pavements to minimize the influence of material property uncertainty. Construction and Building Materials, 332-339.; Luo, Z., Karki, A., Pan, E., Abbas, A. R., Arefin, M. S., & Hu, B. (2018). Effect of uncertain material property on system reliability in mechanistic-empirical pavement design. Construction and Building Materials, 172, 488-498.; Lytton, R. L. (1989). Backcalculation of Pavement Layer Properties. In A. J. Bush, & G. Y. Baladi (Ed.), Nondestructive Testing of Pavements and Backcalculation of Moduli ASTM STP1026 (pp. 7-38). Philadelphia: American Society for Testing and Materials.; Maina, J. W., & Matsui, K. (2004). Developing software for elastic analysis of pavement structure responses. Transportation Research Records, 1896, 107-118.; Maina, J. W., Ozawa, Y., & Matsui, K. (2012). Linear Elastic Analysis of Pavement Structure Under Non-circular Loading. Road Materials and Pavement Design, 13(3), 403-421. doi:10.1080/14680629.2012.705419; Maji, A., & Das, A. (2008). Reliability considerations of bituminous pavement design by mechanistic-empirical approach. International Journal of Pavement Engineering, 9(1), 1-31.; Maji, A., & Jha, M. K. (2007). Modeling Highway Infrastructure Maintenance Schedules with Budget Constraints. Transportation Research Record: Journal of the Transportation Research Board, 1991, 19-26.; Mallela, J., Glover, L. T., Liang, R. Y., & Chou, E. Y. (2009). Guidelines for Implementing NCHRP 1-37A M-E Design Procedures in Ohio. Volume 2 - Literature Review. Columbus, Ohio: Applied Research Associates, Inc. - Ohio Department of Transportation.; Mallick, R. B., & El-Korchi, T. (2009). Pavement engineering. Principles and practices (First ed.). Boca Raton, Florida, USA: CRC Press Taylor & Francis Group.; Mamlouk, M. S., Zaniewski, J. P., & He, W. (2000). Analysis and Design Optimization of Flexible Pavement. (A. S. Engineers, Ed.) ASCE Journal of Transportation Engineering, 126(2), 161.; Marini, F., & Walczak, B. (2015). Particle Swarm Optimization (PSO). A tutorial. Chemometrics and Intelligent Laboratory Systems, 149, 153-165.; Matin, A. G., Nezafat, R. V., & Golroo, A. (2017). A Comparative Study on Using Metaheuristic Algorithms for Road Maintenance Planning: Insights from Field Study in a Developing Country. Journal of Traffic and Transportation Engineering (English Edition), 4(5), 477-486.; Mendoza, C., & Caicedo, B. (2018). Elastoplastic Framework of Relationships between CBR and Young’s Modulus for Granular Material. Road Materials and Pavement Design, 19(8), 1796-1815. doi:10.1080/14680629.2017.1347517; Meneses, S. (2013). Multi-Objective Decision-Aid Tool for Pavement Management. Ph.D. Thesis, University of Coimbra.; Meneses, S., & Ferreira, A. (2012). Pavement Maintenance Programming Considering Two Objectives: Maintenance Costs And User Costs. International Journal of Pavement Engineering, 14(2), 206-221.; Michelow, J. (1963). Analysis of stresses and displacements in N-layered elastic systems under a load uniformly distributed in a circular area. Richmond, CA, USA: California Research Corporation.; Ministerio de Transporte - Oficina Asesora de Planeación. (2014). Transporte en Cifras - Estadísticas 2014. Bogotá: MinTransporte. Recuperado el 27 de Marzo de 2016, de https://www.mintransporte.gov.co/descargar.php?idFile=12621; Monismith, C. L. (2004). Evolution of Long-Lasting Asphalt Pavement Design. Distinguished Lecture International Society for Asphalt Pavements. International Symposium on Design and Construction of Long-Lasting Asphalt Pavements (pp. 1-77). USA: Auburn University.; Montoya-Rodriguez, C. (2015). Predicting Pavement Performance Under Traffic Loading Using Genetic Algorithms and Artificial Neural Networks to Obtain Resilient Modulus Values. Ph.D. Thesis, Ohio State University. Retrieved from https://etd.ohiolink.edu/; Morcous, G., & Lounis, Z. (2005). Maintenance Optimization of Infrastructure Networks using Genetic Algorithms. Automation in Construction, 14, 129-142.; Nabhan, P. (2015). Calibration of the AASHTO MEPDG for Flexible Pavements to Fit Nevada's Conditions - M.Sc. Thesis. The University of Nevada. Reno, Nevada: The University of Nevada.; Naseri, H., Shokoohi, M., Jahanbakhsh, H., Golroo, A., & Gandomi, A. H. (2021). Evolutionary and swarm intelligence algorithms on pavement maintenance and rehabilitation planning. International Journal of Pavement Engineering. doi:10.1080/10298436.2021.1969019; National Academies of Sciences, Engineering, and Medicine. (2012). Estimating the Effects of Pavement Condition on Vehicle Operating Costos. Washington, DC: The National Academies Press. doi:10.17226/22808; Nazzal, M. D., & Tatari, O. (2013). Evaluating the Use of Neural Networks and Genetic Algorithms for Prediction of Subgrade Resilient Modulus. International Journal of Pavement Engineering, 14(4), 364-373.; NCHRP. (2004). Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures. National Cooperative Highway Research Program NCHRP Project 1-37A. Washington D.C.: National Research Council.; Newcomb, D. E., Buncher, M., & Huddleston, B. W. (2001). Concepts of Perpetual Pavements. Transportation Research Board Circular No. 503, 4-11.; Nguyen, L. H. (2017, September). Research on the Correlation Between International Roughness Index (IRI) and Present Serviceability Index (PSI), Recommendations on Evaluation Rates in Vietnam's Conditions. International Journal of Engineering Research & Technology (IJERT), 6(09), 266-271. Retrieved from http://www.ijert.org; Nik, A. A., Nejad, F. M., & Zakeri, H. (2016). Hybrid PSO and GA Approach for Optimizing Surveyed Asphalt Pavement Inspection Units in Massive Network. Automation in Construction, 71, 325-345.; Nilsson, R. N., Oost, I., & Hopman, P. C. (1996). Viscoelastic Analysis of Full-Scale Pavements: Validation of VEROAD. (T. R. Board, Ed.) Transportation Research Record 1539, 81-87.; Novak, M., Birgisson, B., & Roque, R. (2003). Near-surface stress states in flexible pavements using measured radial tire contact stresses and ADINA. Computers and Structures, 81, 859-870.; Oppenlander, J. J., Heal, S. S., & Burns, L. D. (1971). Optimization of the Structural Design of Asphalt Pavements JHRP C-36-52I. Lafayette, Indiana: Purdue University.; Panda, T. R., & Swamy, A. K. (2018). An Improved Artificial Bee Colony Algorithm for Pavement Resurfacing Problem. International Journal of Pavement Research and Technology, 11, 509-16.; Papagiannakis, A. T., & Masad, E. A. (2008). Pavement design and materials (First ed.). Hoboken, NJ, USA: John Wiley & Sons.; Park, S.-W., Park, H. M., & Hwang, J.-J. (2010). Application of Genetic Algorithm and Finite Element Method for Backcalculating Layer Moduli of Flexible Pavements. KSCE Journal of Civil Engineering, 14(2), 183-190.; Peddinti, P. T., Basha, B. M., & Saride, S. (2020). System Reliability Framework for Design of Flexible Pavements. Journal of Transportation Engineering. Part B: Pavements, 146(3).; Pekcan, O., Tutumluer, E., & Ghaboussi, J. (2010). Soft Computing Methodology to Determine Pavement Thickness from Falling Weight Deflectometer Testing. GeoFlorida 2010: Advances in Analysis, Modeling & Design (GSP 199) (pp. 2621-2630). West Palm Beach, Florida: American Society of Civil Engineers.; Pereira, P., & Pais, J. (2017). Main flexible pavement and mix design methods in Europe and challenges for the development of a European method. Journal of Traffic and Transportation Engineering, 4, 316-346.; Peutz, M., Van Kempen, H., & Jones, A. (1968). Layered Systems Under Normal Surface Loads. Highway Research Record, 228, 33-45.; Pierce, L. M., & McGovern, G. (2014). Implementation of the AASHTO Mechanistic-Empirical Pavement Design Guide and Software - NCHRP Synthesis 457. Washington, D.C.: Transportation Research Board.; Pijarski, P., & Kacejko, P. (2019). A New Metaheuristic Optimization Method: The Algorithm of the Innovative Gunner (AIG). Engineering Optimization, 1-20. doi:10.1080/0305215X.2019.1565282; Pilson, C., Hudson, W. R., & Anderson, V. (1999). Multiobjective Optimization in Pavement Management by Using Genetic Algorithms and Efficient Surfaces. Transportation Research Record: Journal of the Transportation Research Board, 1655, 42-48.; Porter, O. J. (1942). Foundations for Flexible Pavements. Proceedings of the Highway Research Board (pp. 10-36). Washington, D.C.: HRB.; Poulos, H. G., & Davis, E. H. (1974). Elastic Solutions for Soil and Rock Mechanics. New York, USA: John Wiley & Sons, Inc. Retrieved 03 24, 2016, from http://research.engr.oregonstate.edu/usucger/PandD/PandD.htm; Powell, M. J. (2004). The NEWUOA Software for Unconstrained Optimization Without Derivatives. The 40th Workshop on Large Scale Nonlinear Optimization. Erice, Italy.; Pryke, A., Evdorides, H., & Ermaileh, R. A. (2006). Optimization of Pavement Design Using a Genetic Algorithm. 2006 IEEE Congress on Evolutionary Computation (pp. 1095-1098). Vancouver: IEEE.; Qian, W.-d. (2010). Road Pavement Performance Evaluation Model Based on Hybrid Genetic Algorithm Neural Network. 2010 Second International Conference on Computational Intelligence and Natural Computing CINC (pp. 209-212). IEEE.; Quijano-Bernal, C. A. (2016). Aplicación de Redes Neuronales en el Cálculo Inverso de Pavimentos Flexibles - Trabajo de grado en modalidad de monografía. Ingeniería Civil. Manizales: Universidad Nacional de Colombia.; Rabinovitz, P. (1990). Numerical integration based on approximating splines. (E. S. B.V., Ed.) Journal of Computational and Applied Mathematics, 33, 73-83.; Rajbongshi, P. (2014). Reliability Based Cost Effective Design of Asphalt Pavements Considering Fatigue and Rutting. International Journal of Pavement Research and Technology, 7(2), 153-158.; Rajbongshi, P., & Das, A. (2008). Optimal Asphalt Pavement Design Considering Cost and Reliability. ASCE Journal of Transportation Engineering, 134(6), 255-261.; Rakesh, N., Jain, A. K., Reddy, M. A., & Reddy, K. S. (2006). Artificial Neural Networks - Genetic Algorithm Based Model for Backcalculation of Pavement Layer Moduli. International Journal of Pavement Engineering, 7(3), 221-230.; Reddy, M. A., Reddy, K. S., & Pandey, B. B. (2004). Selection of Genetic Algorithm Parameters for Backcalculation of Pavement Moduli. The International Journal of Pavement Engineering, 5(2), 81-90.; Reyes Lizcano, F., Caicedo, B., & Yamin, L. (1997). Manual de diseño de pavimentos para Bogotá D.C. Bogotá D.C.: Instituto de Desarrollo Urbano - IDU - Universidad de Los Andes.; Rifai, A. I., Hadiwardoyo, S. P., Comes Correia, A., & Pereira, P. (2016). Genetic Algorithm Applied for Optimization of Pavement Maintenance under Overload Traffic: Case Study Indonesia National Highway. Applied Mechanics and Materials, 369-378.; Rojas-Pérez, F., Aguiar-Moya, J.-P., & Loría-Salazar, L.-G. (2015). PITRAPAVE - Software de multicapa elástica. (U. d.-L. (LANAMME), Ed.) San José de Costa Rica, Costa Rica: Laboratorio Nacional de Materiales y Modelos Estructurales.; Romanoschi, S., Lewis, P., Gedafa, D., & Hossain, M. (2014). Verification of Mechanistic-Empirical Design Models for Flexible Pavements through Accelerated Pavement Testing - Report FHWA-KS-14-02. Topeka, Kansas: Kansas State University Transportation Center.; Rouphail, N. M. (1985). Minimum-Cost Design of Flexible Pavements. Journal of Transportation Engineering, 111(3), 196-207.; Salari, E., & Yu, X. (2011). Pavement Distress Detection and Classification Using a Genetic Algorithm. IEEE Applied Imagery Pattern Recognition Workshop 41PR (pp. 1-5). IEEE.; Sánchez-Silva, M., Arroyo, O., Junca, M., Caro, S., & Caicedo, B. (2005). Reliability-Based Design Optimization of Asphalt Pavements. The International Journal of Pavement Engineering, 6(4), 281-294.; Santos, J., & Ferreira, A. (2012a). Pavement Design Optimization Considering Costs and Preventive Interventions. Journal of Transportation Engineering, 138(7), 911 - 923.; Santos, J., & Ferreira, A. (2012b). Pavement design optimization considering costs and M&R interventions. Procedia - Social and Behavioral Sciences, 53, 1184 - 1193.; Santos, J., & Ferreira, A. (2013). Life-Cycle Cost Analysis System for Pavement Management at Project Level. International Journal of Pavement Engineering, 14(1), 71-84.; Santos, J., Fereira, A., & Flintsch, G. (2017). An Adaptive Hybrid Genetic Algorithm for Pavement Management. International Journal of Pavement Engineering, 20(3), 266-286.; Saride, S., Peddinti, P. R., & Basha, M. B. (2019). Reliability Perspective on Optimum Design of Flexible Pavements for Fatigue and Rutting Performance. Journal of Transportation Engineering, Part B: Pavements, 145(2).; Sawyers, M. W., Gillespie, T. D., & Paterson, W. D. (1986). Guidelines for conducting and calibrating road roughness measurements (No. Technical Paper 46). Washington, DC: The World Bank.; Schwartz, C. W., & Carvalho, R. L. (2007). Implementation of the NCHRP 1-37A Design Guide. Final Report. Volume 2: Evaluation of Mechanistic-Empirical Design Procedure (Vol. 2). College Park, Maryland, USA: University of Maryland.; Schwartz, C. W., Kim, S. H., Ceylan, H., & Gopalakrishnan, K. (2011). Sensitivity Evaluation of MEPDG Performance Prediction. College Park, Maryland: University of Maryland - Iowa State University.; Scimemi, G. F., Turetta, T., & Celauro, C. (2016). Backcalculation of airport pavement moduli and thickness using the Lévy Ant Colony Optimization Algorithm. Construction and Building Materials, 288-295.; Senseney, C. T., Krahenbuhl, R. A., & Mooney, M. A. (2013). Genetic Algorithm to Optimize Layer Parameters in Light Weight Deflectometer Backcalculation. International Journal of Geomechanics, 13(4), 473-476.; Shahin, M. Y. (2006). Pavement Management for Airports, Roads, and Parking Lots (Second ed.). Springer.; Shahnazari, H., Tutunchian, M. A., Mashayekhi, M., & Amini, A. A. (2012). Application of Soft Computing for Prediction of Pavement Condition Index. Journal of Transportation Engineering, 138(12), 1495-1506.; Sharma, L. K., Singh, R., Umrao, R. K., Sahrma, K., & Singh, T. N. (2017). Evaluating the modulus of elasticity of soil using soft computing system. Engineering with Computers, 33, 497-507. doi:10.1007/s00366-016-0486-6; Shekharan, A. R. (2000). Solution of Pavement Deterioration Equations by Genetic Algorithms. Transportation Research Record: Journal of the Transportation Research Board, 1699, 101-106.; Shell Oil. (1978). Shell Pavement Design Manual: Asphalt Pavements and Overlays for Road Traffic. London, UK: Shell International Petroleum Company, Ltd.; Shen, Y., Bu, Y., & Yuan, M. (2009). A Novel Chaos Particle Swarm Optimization (PSO) and Its Application in Pavement Maintenance Decision. ICIEA 2019 (pp. 3521-3526). IEEE.; Shi, Y. E., & Berhart, R. C. (1998). A Modified Particle Swarm Optimizer. Proceedings of the IEEE Congress on Evolutionary Computation. 6, pp. 69-73. IEEE.; Sidess, A., & Uzan, J. (2009). A design method of perpetual flexible pavement in Israel. International Journal of Pavement Engineering, 241-249.; Southgate, H. F., Deen, R. C., Cain, D., & Mayes, J. G. (1987). Modifications to CHEVRON N-Layer program Research Report UKTRP-87-28. Lexington, KY: Kentucky Transportation Center Research.; Strickland, D. (2000). Shell Pavement Design Software for Windows. London: Shell International Petroleum Company.; Sufian, A. A. (2016). Local Calibration of the Mechanistic Empirical Pavement Design Guide for Kansas - M.Sc. Thesis. Kansas State University. Manhattan, Kansas: Kansas State University.; Suh, Y., Mun, S., & Yeo, I. (2010). Fatigue Life Prediction of Asphalt Concrete Pavement Using a Harmony Search Algorithm. KSCE Journal of Civil Engineering, 14(5), 725-730.; Sundin, S., & Braban-Ledoux, C. (2001). Artificial Intelligence-Based Decision Support Technologies in Pavement Management. Computer-Aided Civil And Infrastructure Engineering, 16, 143-157.; Tack, J. N., & Chou, E. Y. (2002). Multiyear Pavement Repair Scheduling Optimization by Preconstrained Genetic Algorithm. Transportation Research Record: Journal of the Transportation Research Board, 1816, 3-9.; Taha, M. A., & Hanna, A. S. (1995). Evolutionary Neural Network Model for the Selection of Pavement Maintenance Strategy. Transportation Research Record: Journal of the Transportation Research Board, 1497, 70-76.; Tao, X., Huang, J., & Cai, Y. (2013). Inverse Analysis for Inhomogeneous Dielectric Coefficient of Pavement Material Based on Genetic Algorithm. Applied Mechanics and Materials, 438-439, 430-435.; Tarefder, R. A., & Bateman, D. (2012). Design of Optimal Perpetual Pavement Structure. Journal of Transportation Engineering, 138(2), 157-175.; Tarefder, R., & Rodriguez-Ruiz, J. I. (2013). Local Calibration of MEPDG for Flexible Pavements in New Mexico. Journal of Transportation Engineering, 139(10), 981-991.; Tayebi, N. R. (2010). Analysis of Pavement Management Activities Programming by Particle Swarm Optimization. Proceedings of the International Conference on Advances in Electrical & Electronics (pp. 149-154). ACEEE.; Tayebi, N. R., Nejad, F. M., & Mola, M. (2014). Comparison between GA and PSO in Analyzing Pavement Management Activities. Journal of Transportation Engineering, 140(1), 99-104.; Teodorovic, D. (2008). Swarm Intelligence Systems for Transportation Engineering: Principles and Applications. Transportation Research Part C, 16, 651-667.; Terzi, S. (2005). Modeling the Deflection Basin of Flexible Highway Pavements by Gene Expression Programming. Journal of Applied Sciences, 5(2), 309-314.; Terzi, S., & Serin, S. (2014). Planning Maintenance Works on Pavements Through Ant Colony Optimization. Neural Computing & Applications, 25(143), 143-153.; Terzi, S., Saltan, M., & Yildirim, T. (2003). Optimization of the Deflection Basin by Genetic Algorithm and Neural Network Approach. In O. Kaynak (Ed.), ICANN/ICONIP 2003 (pp. 662-669). Springer-Verlag Berlin Heidelberg.; The South African National Roads Agency. (2014). South African Pavement Engineering Manual - Introduction. Johannesburg: The South African National Roads Agency.; Thom, N. (2008). Principles of pavement engineering. London, UK: Thomas Telford Publishing Ltd.; Thompson, M. R., & Barenberg, E. J. (1989). Calibrated Mechanistic Structural Analysis Procedures for Pavements: Phase I—Final Report, NCHRP Project 1-26. Washington, D.C.: Transportation Research Board, National Research Council.; Thompson, M. R., & Elliot, R. P. (1988). “ILLI-PAVE Based Response Algorithms for Design of Conventional Flexible Pavements. Transportation Research Record 1207, 145-168.; Timm, D. H., Newcomb, D. E., & Galambos, T. V. (2000). Incorporation of Reliability into Mechanistic-Empirical Pavement Design. Transportation Research Record: Journal of the Transportation Research Board, 1730, 73-80.; Timm, D. H., Robbins, M. M., Tran, N., & Rodezno, C. (2014). Flexible Pavement Design - State of the Practice NCAT Report 14-04. Auburn, AL: National Center for Asphalt Technology - NCAT.; Timoshenko, S., & Goodier, J. N. (1951). Theory of Elasticity. New York, USA: McGraw-Hill Book Company Inc.; Toklu, Y. C. (2014). An Overview of Metaheuristic Algorithms. In Y. C. Toklu, & G. Bekdas (Ed.), Metaheuristics and Engineering Proceedings of the 15th EU/ME Workshop (pp. 13-16). Istambul, Turkey: Bilecik Seyh Edebali University.; Tran, N., Robbins, M. M., Rodezno, C., & Timm, D. H. (2017). Pavement ME Design - Impact of Local Calibration, Foundation Support, and Design and Reliability Thresholds - NCAT Report 17-08. Auburn University. Auburn, Alabama: National Center for Asphalt Technology.; Transport Research Laboratory. (1993). Overseas Road Note 31 A Guide to the Structural Design of Bitumen-Surfaced Roads in Tropical and Sub-Tropical Countries. Crowthorne, Berkshire: Transport Research Laboratory.; Transport Research Laboratory. (2002). Overseas Road Note 19 A guide to the design of hot mix asphalt in tropical and sub-tropical countries. London, UK: TRL Limited.; Trejos Castillo, C., Leiva Padilla, P., & Loría Salazar, G. (2014). Interfaz Gráfica para Diseño Mecanístico-Empírico de Pavimentos en Costa Rica CR-ME Versión 1 Guía del Usuario. San José: Laboratorio Nacional de Materiales y Modelos Estructurales - Universidad de Costa Rica.; Tsai, B.-W., Harvey, J. T., & Monismith, C. L. (2009). Case Studies of Asphalt Pavement Analysis/Design with Application of the Genetic Algorithm. (K. Gopalakrishnan, & N. O. Attoh-Okine, Eds.) Studies in Computational Intelligence 259. Intelligent and Soft Computing in Infrastructure Systems Engineering. Recent Advances, 205-238. doi:10.1007/978-3-642-04586-8; Tsai, B.-W., Kannekanti, V. N., & Harvey, J. T. (2004). Transportation Research Record: Journal of the Transportation Research Board, 1891, 112-120.; Tsunokawa, K., Van Hiep, D., & Ul-Islam, R. (2006). True Optimization of Pavement Maintenance Options with What-If Models. Computer-Aided Civil and Infrastructure Engineering, 21, 193-204.; Tutumluer, E., & Barksdale, R. D. (1995). Behaviour of pavements with granular bases - prediction and performance. Unbound aggregates in roads, 173-183.; Tutumluer, E., & Sarker, P. (2015). Development of Improved Pavement Rehabilitation Procedures Based on FWD Backcalculation - NEXTRANS Project No. 094/Y04. Urbana-Champaign, Illinois: NEXTRANS USDOT V Regional University Transportation Center.; Ullidtz, P. (1987). Pavement analysis. Amsterdam: Elsevier.; Ullidtz, P., Harvey, J., Basheer, I., Jones, D., Wu, R., Jeremy, L., & Lu, Q. (2010). CalME, a Mechanistic-Empirical Program to Analyze and Design Flexible Pavement Rehabilitation. Transportation Research Record: Journal of the Transportation Research Board, 2153, 143-152.; Universidad Nacional de Colombia. (2013). Cartilla guía de diseño de pavimentos con bajos volúmenes de tránsito y vías locales para la ciudad de Bogotá D.C. Bogotá: Universidad Nacional de Colombia - Instituto de Desarrollo Urbano - Banco de Desarrollo para América Latina.; Unnikrishnan, A., Valsaraj, V., Damnjanovic, I., & Waller, S. T. (2009). Design and Management Strategies for Mixed Public Private Transportation Networks: A Meta-Heuristic Approach. Computer-Aided Civil and Infrastructure Engineering, 24, 266-279.; Uzan, J. (1994). Advanced back-calculation techniques. Second International Symposium on NDT of Pavements and Backcalculation (pp. 3-37). Philadelphia, Pa, USA: ASTM Special Technical Publications.; Van Cauwelaert, F. J., & Lequeux, D. (1986). Computer Programs for the Determination of Stresses and Displacements in Four Layered Structures. Waterways Experiment Station. Vicksburg, Miss.: U.S. Army Corps of Engineers.; Van den Bergh, F., & Engelbrecht, A. (2002). A New Locally Convergent Particle Swarm Optimizer. International Conference on Systems, Man and Cybernetics. 3. IEEE.; Van Hiep, D. (2009). Optimization of Pavement Designs and / or Maintenance Strategies Using Gradient Search with Option Evaluation Systems. Ph.D. Thesis, Saitama University.; Varma, S., Kutay, M. E., & Levenberg, E. (2013). Viscoelastic Genetic Algorithm for Inverse Analysis of Asphalt Layer Properties from Falling Weight Deflections. Transportation Research Record: Journal of the Transportation Research Board, 2369, 38-46.; Vásquez Varela, L. R. (14 de Mayo de 2015). Aplicación de la Mecánica de Sólidos en Ingeniería de Pavimentos. Recuperado el 24 de Marzo de 2016, de Ingepav - Ingeniería de pavimentos por Luis Ricardo Vásquez Varela: https://sites.google.com/site/ingepav/diseno-y-analisis/mecanicadesolidoisaplicadaapavimentos; Vásquez-Varela, L. R., & García-Orozco, F. J. (2019). UNLEA A Multilayer Elastic Program Script in Scilab. International Airfield and Highway Pavements Conference 2019. Chicago, IL: American Society of Civil Engineers. doi:https://doi.org/10.1061/9780784482452.010; Vásquez-Varela, L. R., & García-Orozco, F. J. (2020). An overview of asphalt pavement design for streets and roads. Revista Facultad De Ingeniería Universidad De Antioquia(98), 10-26. doi:https://doi.org/10.17533/udea.redin.20200367; Vásquez-Varela, L. R., & García-Orozco, F. J. (2021). Applied Metaheuristic Optimization in Asphalt Pavement Management. Ciencia e Ingeniería Neogranadina, 75-92. doi:https://doi.org/10.18359/rcin.4371; Velasquez, R., Hoegh, K., Yut, I., Funk, N., Cochran, G., Marasteanu, M., & Khazanovich, L. (2009). Implementation of the MEPDG for New and Rehabilitated Pavement Structures for Design of Concrete and Asphalt Pavements in Minnesota. Saint Paul, Minnesota: Minnesota Department of Transportation.; Verstraeten, J., Veverka, V., & Francken, L. (1982). Rational and Practical Designs of Asphalt Pavements to Avoid Cracking and Rutting. Proceedings Fifth International Conference on the Structural Design of Asphalt Pavements (pp. 42-58). University of Michigan and Delft University of Technology.; Von Quintus, H. L., & Simpson, A. L. (2002). Back-Calculation of Layer Parameters for LTPP Test Sections, Volume II: Layered Elastic Analysis for Flexible and Rigid Pavements - FHWA-RD-01-113. McLean, Virginia: Federal Highway Administration.; Von Quintus, H. L., Mallela, J., Bonaquist, R., Schwartz, C. W., & Carvalho, R. L. (2012). Calibration of Rutting Models for Structural and Mix Design - NCHRP Report 719. Washington, D.C.: Transportation Research Board.; Walker, R. N., Patterson, W. D., Freeme, C. R., & Marias, C. P. (1977). The South African Mechanistic Pavement Design Procedure. Proceedings, Fourth International Conference on the Structural Design of Asphalt Pavements. 2. The University of Michigan.; Walls, I. J., & Smith, M. R. (1998). Life-Cycle Cost Analysis in Pavement Design - Interim Technical Bulletin Report No. FHWA-SA-98-079. Washington D.C., USA: Federal Highway Administration.; Wang, D., Roesler, J. R., & Guo, D.-Z. (2011). Innovative Algorithm to Solve Axisymmetric Displacement and Stress Fields in Multilayered Pavement Systems. ASCE Journal of Transportation Engineering, 137(4), 287-295. doi:10.1061/(ASCE)TE.1943-5436.0000208; Wang, K. C., Nguyen, V., & Zaniewski, J. P. (2007). Genetic Algorithms-Based Network Optimization System with Multiple Objectives. Transportation Research Record: Journal of the Transportation Research Board, 2016, 85-95.; Wardle, L. J. (1977). Program CIRCLY. A Computer Program for the Analysis of Multiple Complex Loads on Layered Anisotropic Media. Victoria, Australia: Division of Applied Geomechanics and Commonwealth Scientific and Industrial Research Organisation.; Warren, H., & Dieckmann, W. L. (1963). Numerical Computation of Stresses and Strains in a Multiple-Layered Asphalt Pavement System. Richmond, California: California Research Corporation.; Watanatada, T., Harral, C. G., Paterson, W. D., Dhareshwar, A. M., Bhandari, A., & Tsunokawa, K. (1987). The Highway Design And Maintenance Standards Model Volume 1: Description of the HDM-III Model.The Highway Design and Maintenance Standards Series. The World Bank. Baltimore, USA: Johns Hopkins Press. Retrieved from http://www.worldbank.org/transport/roads/rd_tools/hdm-iii%20_vol-1.pdf; Whiteoak, D. (1991). The Shell Bitumen Handbook. Surrey, UK: Shell Bitumen UK.; Williams, R. C., & Shaidur, R. (2013). Mechanistic-Empirical Pavement Design Guide Calibration for Pavement Rehabilitation - Final report SPR 718. Salem, Oregon: Oregon Department of Transportation - Federal Highway Administration.; Wu, Z., Flintsch, G., Ferreira, A., & de Picado-Santos, L. (2012). Framework for Multiobjective Optimization of Physical Highway Assets Investments. Journal of Transportation Engineering, 138(12), 1411-1421.; Xinchao, Z. (2010). A Perturbed Particle Swarm Algorithm for Numerical Optimization. Applied Soft Computing, 10, 119-124.; Yang, C., Remenyte-Prescott, R., & Andrews, J. D. (2015). Pavement Maintenance Scheduling Using Genetic Algorithms. International Journal of Performability Engineering, 11(2), 135-152.; Yang, N. C. (1972). Design of functional pavements. (W. G. Salo Jr., J. Ely, & D. A. Douglas, Eds.) New York, NY, USA: McGraw-Hill.; Yang, X. -S. (2011). Metaheuristic Optimization: Algorithm Analysis and Open Problems. National Physics Laboratory.; Yang, X. S. (2013). Optimization and Metaheuristic Algorithms in Engineering. Metaheuristics in Water, Geotechnical and Transport Engineering, 1-23.; Yang, X.-S., Koziel, S., & Leifsson, L. (2014). Computational Optimization, Modelling and Simulation: Past, Present and Future. Procedia Computer Science ICCS 2014 14th International Conference on Computational Science. Volume 29, pp. 754-758. Cairns, Australia: Elsevier. doi:10.1016/j.procs.2014.05.067; Yepes, V., Torres-Machi, C., Chamorro, A., & Pellicer, E. (2016). Optimal Pavement Maintenance Programs based on a Hybrid Greedy Randomized Adaptative Search Procedure Algorithm. Journal of Civil Engineering and Management, 22(4), 540-550.; Yoder, E. J., & Witczak, M. W. (1975). Principles of Pavement Design (Second ed.). New York, USA: John Wiley & Sons, Inc.; Yoshimura, J., Ushio, S., & Sugawara, T. (1972). Stresses in Multi Layered Systems. Memoirs of the Faculty of Engineering, Hokkaido University, 03, 75-89.; Zaabar, I., Chatti, K., Suk-Lee, H., & Lajnef, N. (2014). Backcalculation of Asphalt Concrete Modulus Master Curve from Field-Measured Falling Weight Deflectometer Data - Using a New Time Domain VIscoelastic Dynamic Solution and Genetic Algorithm. Transportation Research Record: Journal of the Transportation Research Board, 2457, 80-92.; Zhao, Y., Liu, W., & Tan, Y. (2012). Analysis of Critical Structure Responses for Flexible Pavements in NCHRP 1-37A Mechanistic-Empirical Pavement Design Guide. Journal of Transportation Engineering, 138(8), 983-990.; Zhao, Y., Zhou, C., Zeng, W., & Ni, Y. (2015). Accurate determination of near-surface responses of asphalt pavements. Road Materials and Pavement Design, 16(1), 186-199. doi:10.1080/14680629.2014.979221; Ziari, H., & Khabiri, M. M. (2007). Interface condition influence on prediction of flexible pavement life. Journal of Civil Engineering and Management, 71-76.; https://repositorio.unal.edu.co/handle/unal/82943; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
12
Authors: et al.
Source: INFORMS Journal on Applied Analytics; Nov/Dec2024, Vol. 54 Issue 6, p537-552, 16p
-
13
Authors:
Source: Applied Network Science; 9/30/2021, Vol. 6 Issue 1, p1-37, 37p
-
14
Source: International Journal of Quantum Chemistry; 12/5/2022, Vol. 122 Issue 23, p1-22, 22p
Subject Terms: QUANTUM computing, CHEMISTS, QUANTUM chemistry, QUANTUM computers, COMPUTER simulation
-
15
Authors:
Resource Type: eBook.
Subjects: Data structures (Computer science), Computer logic, Computers, Computer science, Computer system failures, Software engineering, Electronic data processing, Electronic digital computers
Categories: COMPUTERS / Computer Science, COMPUTERS / General, COMPUTERS / Computer Architecture, COMPUTERS / Database Administration & Management, COMPUTERS / Information Theory, COMPUTERS / Software Development & Engineering / General
PDF Full Text ePub Full Text -
16
Authors: et al.
Resource Type: eBook.
Subjects: Sustainable development--Technological innovations, Artificial intelligence--Environmental aspects, Computational intelligence
Categories: COMPUTERS / Artificial Intelligence / General, BUSINESS & ECONOMICS / Development / Sustainable Development, COMPUTERS / Distributed Systems / General, COMPUTERS / Software Development & Engineering / Systems Analysis & Design, COMPUTERS / Software Development & Engineering / Quality Assurance & Testing, COMPUTERS / Software Development & Engineering / Project Management, COMPUTERS / Software Development & Engineering / Tools, COMPUTERS / Internet / Application Development, COMPUTERS / Business & Productivity Software / Collaboration, COMPUTERS / Data Science / Machine Learning
PDF Full Text ePub Full Text -
17
Authors:
Source: Sensors (14248220); Jul2020, Vol. 20 Issue 13, p3733-3733, 1p
Subject Terms: ALGORITHMS, DETECTORS, BAT sounds, BATS, PROBABILISTIC number theory
-
18
Authors:
Source: Analytical & Bioanalytical Chemistry; Jan2012, Vol. 401 Issue 8, p2373-2386, 14p
-
19
Authors: et al.
Resource Type: eBook.
Subjects: Engineering mathematics, Mathematical optimization
PDF Full Text -
20
Authors:
Resource Type: eBook.
Subjects: System analysis--Congresses, Artificial intelligence, System design--Congresses, Computer software--Verification--Congresses
Categories: COMPUTERS / Computer Science, COMPUTERS / Artificial Intelligence / General, COMPUTERS / Hardware / General
PDF Full Text
Full Text Finder
Nájsť tento článok vo Web of Science