Výsledky vyhľadávania - multi objective mixed internet programming considering uncertainty in design variables*

Upresniť hľadanie
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

    Popis súboru: 25 páginas; application/pdf

    Relation: 25; 16; 17; Energies; 1. Judge, M.A.; Khan, A.; Manzoor, A.; Khattak, H.A. Overview of smart grid implementation: Frameworks, impact, performance and challenges. J. Energy Storage 2022, 49, 104056. [CrossRef]; 2. Chicco, G.; Ciocia, A.; Colella, P.; Di Leo, P.; Mazza, A.; Musumeci, S.; Spertino, F. Introduction—Advances and Challenges in Active Distribution Systems. In Planning and Operation of Active Distribution Networks; Lecture Notes in Electrical Engineering; Springer Science and Business Media Deutschland GmbH: Cham, Switzerland, 2022; Volume 826, pp. 1–42.; 3. Sahoo, S.K.; Sinha, A.K.; Kishore, N.K. Control Techniques in AC, DC, and Hybrid AC-DC Microgrid: A Review. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 738–759. [CrossRef]; 4. Debouza, M.; Al-Durra, A.; EL-Fouly, T.H.M.; Zeineldin, H.H. Survey on microgrids with flexible boundaries: Strategies, applications, and future trends. Electr. Power Syst. Res. 2022, 205, 107765. [CrossRef]; 5. Jia, L.; Zhu, Y.; Wang, Y. Architecture design for new AC-DC hybrid micro-grid. In Proceedings of the 2015 IEEE 1st International Conference on Direct Current Microgrids, ICDCM, Atlanta, GA, USA, 7–10 June 2015; pp. 113–118. [CrossRef]; 6. Zhu, R.; Liserre, M.; Langwasser, M.; Kumar, C. Operation and Control of Smart Transformer in Meshed and Hybrid Grids. IEEE Ind. Electron. Mag. 2020, 15, 43–57. [CrossRef]; 7. Kumar, C.; Gao, X.; Liserre, M. Smart Transformer Based Loop Power Controller in Radial Power Distribution Grid. In Proceedings of the 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Sarajevo, Bosnia and Herzegovina, 21–25 October 2018. [CrossRef]; 8. Das, D.; Hrishikesan, V.M.; Kumar, C.; Liserre, M. Smart Transformer-Enabled Meshed Hybrid Distribution Grid. IEEE Trans. Ind. Electron. 2021, 68, 282–292. [CrossRef]; 9. Zhu, R.; de Carne, G.; Andresen, M.; Liserre, M. Control of Smart Transformer in Different Electric Grid Configurations. In Proceedings of the 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019-ECCE Asia), Busan, Republic of Korea, 27–30 May 2019; pp. 1668–1675.; 11. Guo, H.;Wang, F.; Luo, J.; Zhang, L. Review of energy routers applied for the energy internet integrating renewable energy. In Proceedings of the 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China, 22–26 May 2016; pp. 1997–2003. [CrossRef]; 12. Gao, H.; Wang, R.; Liu, Y.; Wang, L.; Xiang, Y.; Liu, J. Data-driven distributionally robust joint planning of distributed energy resources in active distribution network. IET Gener. Transm. Distrib. 2020, 14, 1653–1662. [CrossRef]; 13. Wang, X.; Yang, W.; Liang, D. Multi-Objective Robust Optimization of Hybrid AC/DC Distribution Networks Considering Flexible Interconnection Devices. IEEE Access 2021, 9, 166048–166057. [CrossRef]; 14. Rangu, S.K.; Lolla, P.R.; Dhenuvakonda, K.R.; Singh, A.R. Recent trends in power management strategies for optimal operation of distributed energy resources in microgrids: A comprehensive review. Int. J. Energy Res. 2020, 44, 9889–9911. [CrossRef]; 15. Qiu, H.; Gu, W.; Liu, P.; Sun, Q.; Wu, Z.; Lu, X. Application of two-stage robust optimization theory in power system scheduling under uncertainties: A review and perspective. Energy 2022, 251, 123942. [CrossRef]; 16. Yang, J.; Su, C. Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty. Energy 2021, 223, 120043. [CrossRef]; 17. Claeys, S.; Vanin, M.; Geth, F.; Deconinck, G. Applications of optimization models for electricity distribution networks. Wiley Interdiscip. Rev. Energy Environ. 2021, 10, e401. [CrossRef]; 18. Zhang, Y.; Le, J.; Zheng, F.; Zhang, Y.; Liu, K. Two-stage distributionally robust coordinated scheduling for gas-electricity integrated energy system considering wind power uncertainty and reserve capacity configuration. Renew. Energy 2019, 135, 122–135. [CrossRef]; 19. Zhang, Y.; Liu, Y.; Shu, S.; Zheng, F.; Huang, Z. A data-driven distributionally robust optimization model for multi-energy coupled system considering the temporal-spatial correlation and distribution uncertainty of renewable energy sources. Energy 2021, 216, 119171. [CrossRef]; 20. Zhao, C.; Guan, Y. Data-Driven Stochastic Unit Commitment for Integrating Wind Generation. IEEE Trans. Power Syst. 2016, 31, 2587–2596. [CrossRef]; 21. Li, P.; Song, L.; Qu, J.; Huang, Y.; Wu, X.; Lu, X.; Xia, S. A Two-Stage Distributionally Robust Optimization Model for Wind Farms and Storage Units Jointly Operated Power Systems. IEEE Access 2021, 9, 111132–111142. [CrossRef]; 22. Pinto, R.S.; Unsihuay-Vila, C.; Tabarro, F.H. Coordinated operation and expansion planning for multiple microgrids and active distribution networks under uncertainties. Appl. Energy 2021, 297, 117108. [CrossRef]; 23. Mieth, R.; Dvorkin, Y. Data-Driven Distributionally Robust Optimal Power Flow for Distribution Systems. IEEE Control. Syst. Lett. 2018, 2, 363–368. [CrossRef]; 24. Zeng, B.; Zhao, L. Solving two-stage robust optimization problems using a column-and-constraint generation method. Oper. Res. Lett. 2013, 41, 457–461. [CrossRef]; 25. Paredes, M.; Martins, L.S.A.; Soares, S.; Ye, H. Benders’ decomposition of the unit commitment problem with semidefinite relaxation of AC power flow constraints. Electr. Power Syst. Res. 2021, 192, 106965. [CrossRef]; 26. Wu, T.; Xie, K.; Hu, B.; Lu, H.; Ding, J.; Shen, W. Data-Driven Approach based Tri-Level Generation and Transmission Expansion Planning Model with High Wind Penetration. In Proceedings of the iSPEC 2019—2019 IEEE Sustainable Power and Energy Conference, Beijing, China, 21–23 November 2019; Volume 58, pp. 2607–2618. [CrossRef]; 27. Ding, T.; Yang, Q.; Liu, X.; Huang, C.; Yang, Y.; Wang, M.; Blaabjerg, F. Duality-Free Decomposition Based Data-Driven Stochastic Security-Constrained Unit Commitment. IEEE Trans. Sustain. Energy 2019, 10, 82–93. [CrossRef]; 28. Wang, L.; Jiang, C.; Gong, K.; Si, R.; Shao, H.; Liu, W. Data-driven distributionally robust economic dispatch for distribution network with multiple microgrids. IET Gener. Transm. Distrib. 2020, 14, 5816–5822. [CrossRef]; 29. Ning, C.; You, F. Data-driven adaptive robust unit commitment under wind power uncertainty: A Bayesian nonparametric approach. IEEE Trans. Power Syst. 2019, 34, 2409–2418. [CrossRef]; 30. Shi, Z.; Zhang, T.; Liu, Y.; Feng, Y.;Wang, R.; Huang, S. Optimal design and operation of islanded multi-microgrid system with distributionally robust optimization. Electr. Power Syst. Res. 2023, 221, 109437. [CrossRef]; 31. Qiu, H.; Gu, W.; Pan, J.; Xu, B.; Xu, Y.; Fan, M.; Wu, Z. Multi-interval-uncertainty constrained robust dispatch for AC/DC hybrid microgrids with dynamic energy storage degradation. Appl. Energy 2018, 228, 205–214. [CrossRef]; 32. Syed, I.; Khadkikar, V.; Zeineldin, H.H. Loss Reduction in Radial Distribution Networks Using a Solid-State Transformer. IEEE Trans. Ind. Appl. 2018, 54, 5474–5482. [CrossRef]; 33. de Carne, G.; Buticchi, G.; Zou, Z.; Liserre, M. Reverse Power Flow Control in a ST-Fed Distribution Grid. IEEE Trans. Smart Grid 2018, 9, 3811–3819. [CrossRef]; 34. Zhang, Z.; Chen, Y.; Ma, J.; Liu, X.; Wang, W. Two-Stage Robust Security Constrained Unit Commitment Considering the Spatiotemporal Correlation of Uncertainty Prediction Error. IEEE Access 2019, 7, 22891–22901. [CrossRef]; 35. Zhang, Z.; Chen, Y.; Liu, X.; Wang, W. Two-Stage Robust Security-Constrained Unit Commitment Model Considering Time Autocorrelation of Wind/Load Prediction Error and Outage Contingency Probability of Units. IEEE Access 2019, 7, 25398–25408. [CrossRef]; 36. Qiu, H.; Gu, W.; Xu, Y.; Wu, Z.; Zhou, S.; Wang, J. Interval-Partitioned Uncertainty Constrained Robust Dispatch for AC/DC Hybrid Microgrids with Uncontrollable Renewable Generators. IEEE Trans. Smart Grid 2019, 10, 4603–4614. [CrossRef]; 37. Yuan, S.; Dai, C.; Guo, A.; Chen,W. A novel multi-objective robust optimization model for unit commitment considering peak load regulation ability and temporal correlation of wind powers. Electr. Power Syst. Res. 2019, 169, 115–123. [CrossRef]; 38. Dehghan, S.; Nakiganda, A.; Aristidou, P. A data-driven two-stage distributionally robust planning tool for sustainable Microgrids. In Proceedings of the 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020. [CrossRef]; 39. Kumar, C.; Manojkumar, R.; Ganguly, S.; Liserre, M. Power Loss Minimization in Smart Transformer Based Meshed Hybrid Distribution Network. In Proceedings of the IECON 2020—The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020; pp. 1670–1675. [CrossRef]; 40. Le, L.; Fang, J.; Zhang, M.; Zeng, K.; Ai, X.; Wu, Q.; Wen, J. Data-driven stochastic unit commitment considering commercial air conditioning aggregators to provide multi-function demand response. Int. J. Electr. Power Energy Syst. 2021, 129, 106790. [CrossRef]; 41. Zhang, C.; Liu, L.; Cheng, H.; Liu, D.; Zhang, J.; Li, G. Data-driven distributionally robust transmission expansion planning considering contingency-constrained generation reserve optimization. Int. J. Electr. Power Energy Syst. 2021, 131, 106973. [CrossRef]; 42. Wang, C.; Gong, Z.; He, C.; Gao, H.; Bi, T. Data-Driven Adjustable Robust Unit Commitment of Integrated Electric-Heat Systems. IEEE Trans. Power Syst. 2021, 36, 1385–1398. [CrossRef]; 43. Hrishikesan, V.M.; Kumar, C. Operation of Meshed Hybrid Microgrid During Adverse Grid Conditions with Storage Integrated Smart Transformer. IEEE Open J. Ind. Electron. Soc. 2021, 2, 315–325. [CrossRef]; 44. Kumar, C.; Manojkumar, R.; Ganguly, S.; Liserre, M. Impact of Optimal Control of Distributed Generation Converters in Smart Transformer Based Meshed Hybrid Distribution Network. IEEE Access 2021, 9, 140268–140280. [CrossRef]; 45. Hrishikesan, V.M.; Kumar, C.; Liserre, M. An MVDC Based Meshed Hybrid Microgrid Enabled Using Smart Transformers. IEEE Trans. Ind. Electron. 2021, 69, 3722–3731. [CrossRef]; 46. Das, D.; Manojkumar, R.; Kumar, C.; Ganguly, S. Optimal Power Management for Islanded Operation of ST-based Meshed Hybrid LV Microgrid. In Proceedings of the 2021 IEEE 12th Energy Conversion Congress & Exposition—Asia (ECCE-Asia), Singapore, 24–27 May 2021; pp. 183–188. [CrossRef]; 47. Kumar, C.; Manojkumar, R.; Ganguly, S. Optimal Placement of Smart Transformer Low Voltage Converter in Meshed Hybrid Distribution Network. In Proceedings of the 2021 IEEE 12th Energy Conversion Congress & Exposition—Asia (ECCE-Asia), Singapore, 24–27 May 2021; pp. 1795–1800. [CrossRef]; 48. De Lara Filho, M.O.; Pinto, R.S.; De Campos, A.C.; Vila, C.U.; Tabarro, F.H. Day-ahead robust operation planning of microgrids under uncertainties considering DERs and demand response. In Proceedings of the 2021 IEEE PES Innovative Smart Grid Technologies Conference—Latin America, ISGT Latin America 2021, Lima, Peru, 15–17 September 2021; Volume 15, pp. 1–5. [CrossRef]; 49. Feizi, M.R.; Khodayar, M.E.; Li, J. Data-driven distributionally robust unbalanced operation of distribution networks with high penetration of photovoltaic generation and electric vehicles. Electr. Power Syst. Res. 2022, 210, 108001. [CrossRef]; 50. Gupta, S.; Maulik, A.; Das, D.; Singh, A. Coordinated stochastic optimal energy management of grid-connected microgrids considering demand response, plug-in hybrid electric vehicles, and smart transformers. Renew. Sustain. Energy Rev. 2022, 155, 111861. [CrossRef]; 51. Huang, Z.; Zhang, Y.; Xie, S. Data-adaptive robust coordinated optimization of dynamic active and reactive power flow in active distribution networks. Renew. Energy 2022, 188, 164–183. [CrossRef]; 52. Das, D.; Kumar, C. Partial Startup Scheme for Smart Transformer in Meshed Hybrid Islanded Grid Operation. IEEE Trans. Ind. Appl. 2022, 58, 142–151. [CrossRef]; 53. Singh, A.; Maulik, A. Energy Management of an Active Distribution Network Considering Correlation Between Uncertain Input Variables. Arab. J. Sci. Eng. 2023, 48, 6377–6398. [CrossRef]; 54. Zhao, Q.; García-González, J.; Gomis-Bellmunt, O.; Prieto-Araujo, E.; Echavarren, F.M. Impact of converter losses on the optimal power flow solution of hybrid networks based on VSC-MTDC. Electr. Power Syst. Res. 2017, 151, 395–403. [CrossRef]; 55. Mohammadi, F.; Nazri, G.-A.; Saif, M. An Improved Mixed AC/DC Power Flow Algorithm in Hybrid AC/DC Grids with MT-HVDC Systems. Appl. Sci. 2019, 10, 297. [CrossRef]; 56. Núñez-Rodríguez, R.A.; Unsihuay-Vila, C.; Posada, J.; Pinzón-Ardila, O.; Aoki, A.R.; Bueno-Otto, R. Real-Time Testing Optimal Power Flow in Smart-Transformer-Based Meshed Hybrid Microgrids: Design and Validation. Energies 2024, 17, 1950. [CrossRef]; 57. Lachovicz, F.J.; Fernandes, T.S.P.; Junior, J.A.V. Impacts of PV-STATCOM Reactive Power Dispatch in the Allocation of Capacitors Bank and Voltage Regulators on Active Distribution Networks. J. Control. Autom. Electr. Syst. 2023, 34, 796–807. [CrossRef]; 58. Jeyapradha, R.B.; Rajini, V. Investigations on Service Extensions of Solid State Transformer. In Proceedings of the 2019 Fifth International Conference on Electrical Energy Systems (ICEES), Chennai, India, 21–22 February 2019; pp. 1–6. [CrossRef]; 59. Jakka, V.N.; Acharya, S.; Anurag, A.; Prabowo, Y.; Kumar, A.; Parashar, S.; Bhattacharya, S. Protection design considerations of a 10 kV SiC MOSFET enabled mobile utilities support equipment based solid state transformer (muse-SST). In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; pp. 5559–5565. [CrossRef]; 60. Zhu, R.; Andresen, M.; Langwasser, M.; Liserre, M.; Lopes, J.P.; Moreira, C.; Rodrigues, J.; Couto, M. Smart transformer/large flexible transformer. CES Trans. Electr. Mach. Syst. 2021, 4, 264–274. [CrossRef]; 61. Zhu, R.; Buticchi, G.; Liserre, M. Investigation on Common-Mode Voltage Suppression in Smart Transformer-Fed Distributed Hybrid Grids. IEEE Trans. Power Electron. 2018, 33, 8438–8448. [CrossRef]; 62. González-Castellanos, A.; Pozo, D.; Bischi, A. Distribution System Operation with Energy Storage and Renewable Generation Uncertainty. In Handbook of Optimization in Electric Power Distribution Systems; Resener, M., Rebennack, S., Pardalos, P.M., Haffner, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 69–120.; 63. Pinto, R.S. Computational Models for Expansion Planning of Electric Power Distribution Systems Containing Multiple Microgrids and Distributed Energy Resources under Uncertainties. Ph.D. Thesis, Universidade Federal do Paraná, Curitiba, Brazil, 2022.; 64. Bernal, D.E.; Chen, Q.; Gong, F.; Grossmann, I.E. Mixed-Integer Nonlinear Decomposition Toolbox for Pyomo (MindtPy). Comput. Aided Chem. Eng. 2018, 44, 895–900. [CrossRef]; 65. XM. Curva de Demanda Promedio en Colombia. 2019. Available online: https://sinergox.xm.com.co/dmnd/Paginas/Informes/ DemandaRealPerdidas.aspx (accessed on 15 April 2023).; 66. SolarCast Historical and TMY. Time Series. 2022. Available online: https://toolkit.solcast.com.au/historical (accessed on 15 April 2023).; 67. Strunz, K.; Abbey, C.; Andrieu, C.; Campbell, R.C.; Fletcher, R. Benchmark Systems for Network Integration of Renewable and Distributed Energy Resources—TF C6.04.02. 2014. Available online: https://www.e-cigre.org/publications/detail/575- benchmark-systems-for-network-integration-of-renewable-and-distributed-energy-resources.html (accessed on 15 April 2023).; 68. Zhang, M.; Ai, X.; Fang, J.; Yao, W.; Zuo, W.; Chen, Z.; Wen, J. A systematic approach for the joint dispatch of energy and reserve incorporating demand response. Appl. Energy 2018, 230, 1279–1291. [CrossRef]; 69. Goerigk, M.; Khosravi, M. Optimal scenario reduction for one- and two-stage robust optimization with discrete uncertainty in the objective. Eur. J. Oper. Res. 2023, 310, 529–551. [CrossRef]; https://hdl.handle.net/10614/16206; https://doi.org/10.3390/en17164036; Universidad Autónoma de Occidente; Respositorio Educativo Digital UAO; https://red.uao.edu.co/

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11

    Zdroj: Journal of Veterinary Internal Medicine. Sep/Oct2024, Vol. 38 Issue 5, p2840-2970. 131p.

    Plný text vo formáte HTML Plný text ve formátu PDF
  12. 12
  13. 13

    Zdroj: Urogynecology; 2025Supplement, Vol. 31, pS1-S542, 542p

  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20