Výsledky vyhledávání - modified variational iteration algorithm-i

Upřesnit hledání
  1. 1
  2. 2
  3. 3
  4. 4

    Alternate Title: حل نظام معادلات برجر ثنائية الأبعاد المزدوجة باستخدام طريقة التكرار المتغاير المعدلة مع الخوارزمية الجينية. (Arabic)

    Zdroj: Iraqi Journal of Science; 2024, Vol. 65 Issue 6, p3233-3248, 16p

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

    Popis souboru: application/pdf

    Relation: mr:MR4811982; zbl:Zbl 07953738; reference:[1] Auslender, A., Correa, R.: Primal and dual stability results for variational inequalities.Comput. Optim. Appl. 17 (2000), 117-130. MR 1806249; reference:[2] Auslender, A., Teboulle, M.: Projected subgradient methods with non-Euclidean distances for non-differentiable convex minimization and variational inequalities.Math. Program. 120 (2009), 27-48. MR 2496425; reference:[3] Bertsekas, D. P., Tsitsiklis, J. N.: Parallel and Distributed Computation: Numerical Methods.Prentice hall Englewood Cliffs, NJ 1989. MR 0896902; reference:[4] Borwein, J. M., Zhu, Q. J.: Techniques of Variational Analysis.Springer Science and Business Media, New York 2004. Zbl 1076.49001, MR 2144010; reference:[5] Chang, T. H., Nedić, A., Scaglione, A.: Distributed constrained optimization by consensus-based primal-dual perturbation method.IEEE Trans. Automat. Control 59 (2014), 1524-1538. MR 3225227; reference:[6] Chen, G., Xu, G., Li, W., Hong, Y.: Distributed mirror descent algorithm with Bregman damping for nonsmooth constrained optimization.IEEE Trans. Automat. Control (2023), 1-8. MR 4664160; reference:[7] Cherukuri, A., Cortés, J.: Distributed generator coordination for initialization and anytime optimization in economic dispatch.IEEE Trans. Control Network Syst. 2 (2015), 226-237. MR 3401184; reference:[8] Duchi, J. C., Agarwal, A., Wainwright, M. J.: Dual averaging for distributed optimization: Convergence analysis and network scaling.IEEE Trans. Automat. Control 57 (2011), 592-606. MR 2932818; reference:[9] Facchinei, F., Pang, J. S.: Finite-dimensional Variational Inequalities and Complementarity Problems.Springer Science and Business Media, 2007. MR 1955648; reference:[10] Gutman, I., Xiao, W.: Generalized inverse of the Laplacian matrix and some applications.Bulletin (Académie serbe des sciences et des arts. Classe des sciences mathématiques et naturelles. Sciences mathématiques) (2004), 15-23. MR 2099614; reference:[11] Hiriart-Urruty, J. B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I: Fundamentals.Springer Science and Business Media, 2013. MR 1261420; reference:[12] Johansson, B., Keviczky, T., Johansson, M., Johansson, K. H.: Subgradient methods and consensus algorithms for solving convex optimization problems.In: 47th IEEE Conference on Decision and Control, IEEE 2008, pp. 4185-4190.; reference:[13] Koshal, J., Nedić, A., Shanbhag, U. V.: Multiuser optimization: Distributed algorithms and error analysis.SIAM J. Optim. 21 (2011), 1046-1081. MR 2837563; reference:[14] Liang, S., Zeng, X., Hong, Y.: Distributed nonsmooth optimization with coupled inequality constraints via modified Lagrangian function.IEEE Trans. Automat. Control 63 (2017), 1753-1759. MR 3807659; reference:[15] Liang, S., Wang, L., Yin, G.: Distributed smooth convex optimization with coupled constraints.IEEE Trans. Automat. Control 65 (2019), 347-353. MR 4052883; reference:[16] Liang, S., Wang, L., Yin, G.: Distributed dual subgradient algorithms with iterate-averaging feedback for convex optimization with coupled constraint.IEEE Trans. Cybernetics 51 (2019), 2529-2539.; reference:[17] Liu, Q., Wang, J.: A second-order multi-agent network for bound-constrained distributed optimization.IEEE Trans. Automat. Control 60 (2015), 3310-3315. MR 3432700; reference:[18] Lou, Y., Hong, Y., Wang, S.: Distributed continuous-time approximate projection protocols for shortest distance optimization problems.Automatica 69 (2016), 289-297. Zbl 1338.93026, MR 3500113; reference:[19] Nedić, A., Ozdaglar, A.: Approximate primal solutions and rate analysis for dual subgradient methods.SIAM J. Optim. 19 (2009), 1757-1780. MR 2486049; reference:[20] Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course.Springer Science and Business Media, 2003. MR 2142598; reference:[21] Nesterov, Y.: Dual extrapolation and its applications to solving variational inequalities and related problems.Math. Program. 109.2-3 (2007), 319-344. MR 2295146; reference:[22] Nesterov, Y.: Primal-dual subgradient methods for convex problems.Math. Program. 120 (2009), 221-259. MR 2496434; reference:[23] Nesterov, Y., Shikhman, V.: Dual subgradient method with averaging for optimal resource allocation.Europ. J. Oper. Res. 270 (2018), 907-916. MR 3814538; reference:[24] Rabbat, M., Nowak, R.: Distributed optimization in sensor networks.In: Proc. 3rd International Symposium on Information Processing in Sensor Networks, 2004, pp. 20-27.; reference:[25] Regina, S. B., Iusem, A.: Set-Valued Mappings and Enlargements of Monotone Operators.Springer, New York 2003.; reference:[26] Rockafellar, R. T.: Characterization of the subdifferentials of convex functions.Pacific J. Math. 17 (1966), 497-510. MR 0193549; reference:[27] Rockafellar, R. T.: On the maximality of sums of nonlinear monotone operators.Trans. Amer. Math. Soc. 149 (1970), 75-88. MR 0282272; reference:[28] Ruszczynski, A.: Nonlinear Optimization.Princeton University Press, 2011. MR 2199043; reference:[29] Shafarevich, I. R., Remizov, A. O.: Linear Algebra and Geometry.Springer Science and Business Media, 2012. MR 2963561; reference:[30] Tu, Z., Li, W.: Multi-agent solver for non-negative matrix factorization based on optimization.Kybernetika 57 (2021), 60-77. MR 4231857; reference:[31] Xiao, L., Boyd, S.: Optimal scaling of a gradient method for distributed resource allocation.J. Optim. Theory Appl. 129 (2006), 469-488. MR 2281152; reference:[32] Xiao, L., Boyd, S., Kim, S. J.: Distributed average consensus with least-mean-square deviation.J. Parallel Distributed Comput. 67 (2007), 33-46.; reference:[33] Yao, J. C.: Variational inequalities with generalized monotone operators.Math. Oper. Res. 19 (1994), 691-705. MR 1288894; reference:[34] Yi, P., Hong, Y., Liu, F.: Distributed gradient algorithm for constrained optimization with application to load sharing in power systems.Systems Control Lett. 83 (2015), 45-52. Zbl 1327.93033, MR 3373270; reference:[35] Yi, P., Hong, Y., Liu, F.: Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and application to economic dispatch of power systems.Automatica 74 (2016), 259-269. MR 3569392; reference:[36] Yi, P., Pavel, L.: A distributed primal-dual algorithm for computation of generalized Nash equilibria via operator splitting methods.In: 2017 IEEE 56th Annual Conference on Decision and Control, IEEE 2017, pp. 3841-3846.; reference:[37] Zeng, X., Liang, S., Hong, Y., Chen, J.: Distributed computation of linear matrix equations: An optimization perspective.IEEE Trans. Automat. Control 64 (2018), 1858-1873. MR 3951032; reference:[38] Zeng, X., Yi, P., Hong, Y.: Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach.IEEE Trans. Automat. Control 62 (2016), 5227-5233. MR 3708893; reference:[39] Zhang, Y., Zavlanos, M.: A consensus-based distributed augmented Lagrangian method.In: 2018 Conference on Decision and Control, IEEE 2018, pp. 1763-1768.; reference:[40] Zhu, M., Martínez, S.: On distributed convex optimization under inequality and equality constraints.IEEE Trans. Automat. Control 57 (2011), 151-164. MR 2917654

  16. 16
  17. 17

    Autoři: Haifeng Li Weihong Guo Jun Liu a další

    Zdroj: SIAM Journal on Imaging Sciences; 2022, Vol. 15 Issue 3, p1314-1344, 31p

  18. 18
  19. 19
  20. 20