Search Results - modeling error in evolving Bochner spaces
-
1
Authors: et al.
Source: arXiv
Subject Terms: Physiological flow, 0301 basic medicine, Smoothness and regularity of solutions to PDEs, Flows in porous media, filtration, seepage, Numerical Analysis (math.NA), PDEs in connection with fluid mechanics, Physiological flows, A priori estimates in context of PDEs, modeling error in evolving Bochner spaces, Diffusion, solute transport models, Second-order elliptic equations, 03 medical and health sciences, Error bounds for initial value and initial-boundary value problems involving PDEs, Mathematics - Analysis of PDEs, 0302 clinical medicine, 35K45, 65G99, 65J08, 65M15, 92-10, FOS: Mathematics, time dependent convection-diffusion, Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs, multi-dimensional modeling, Mathematics - Numerical Analysis, Computational methods for problems pertaining to biology, Finite element methods applied to problems in fluid mechanics, Analysis of PDEs (math.AP)
File Description: application/xml
-
2
Authors: et al.
-
3
Authors:
Source: ESAIM: Mathematical Modelling & Numerical Analysis (ESAIM: M2AN); Sep/Oct2023, Vol. 57 Issue 5, p3113-3138, 26p
Subject Terms: HILBERT space, EQUATIONS, LINEAR equations, FINITE differences
-
4
Authors: et al.
Source: Optimal Control - Applications & Methods; Mar2024, Vol. 45 Issue 2, p594-622, 29p
-
5
Authors:
Source: Numerische Mathematik; Apr2025, Vol. 157 Issue 2, p663-715, 53p
Subject Terms: FINITE element method, POLYNOMIALS, EQUATIONS
-
6
Authors: et al.
Source: Electronics (2079-9292); Nov2025, Vol. 14 Issue 21, p4241, 35p
Subject Terms: ELECTRIC power systems, GRAPH neural networks, SCIENTIFIC computing, DATA extraction, DATA modeling
-
7
Authors: et al.
Source: Scientific Reports; 8/16/2025, Vol. 15 Issue 1, p1-13, 13p
-
8
Authors: et al.
Contributors: et al.
Subject Terms: 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación, Functional connectivity, Deep learning, Kernel methods, Renyi’s entropy, BCI inefficiency, cross-spectral density, Bochner’s theorem, Conectividad funcional, Aprendizaje profundo, Métodos de kernel, Entropía de Renyi, Ineficiencia de BCI, Densidad espectral cruzada, Teorema de Bochner, Interfaces cerebro-computadora (BCI)
File Description: 134 páginas; application/pdf
Relation: [Abdulkarim & Al-Faiz, 2021] Abdulkarim, H. & Al-Faiz, M. Z.: , 2021; Online multiclass EEG feature extraction and recognition using modified convolutional neural network method; International Journal of Electrical and Computer Engineering (IJECE); 11 (5): 4016–4026.; [Abhang et al., 2016] Abhang, P. A.; Gawali, B. W. & Mehrotra, S. C.: , 2016; Chapter 3 - technical aspects of brain rhythms and speech parameters; en Introduction to EEG- and Speech-Based Emotion Recognition (Editado por Abhang, P. A.; Gawali, B. W. & Mehrotra, S. C.); Academic Press; ISBN 978-0-12-804490-2; págs. 51–79; doi:https://doi.org/10.1016/ B978-0-12-804490-2.00003-8; URL https://www.sciencedirect.com/science/article/pii/B9780128044902000038.; [Abiri et al., 2019] Abiri, R.; Borhani, S.; Sellers, E. W.; Jiang, Y. & Zhao, X.: , 2019; A comprehensive review of EEG-based brain–computer interface paradigms; Journal of Neural Engineering; 16 (1): 011001.; [Ahani et al., 2014] Ahani, A.; Wahbeh, H.; Nezamfar, H.; Miller, M.; Erdogmus, D. & Oken, B.: , 2014; Quantitative change of EEG and respiration signals during mindfulness meditation; Journal of neuroengineering and rehabilitation; 11 (1): 1–11.; [Ahirwal et al., 2014] Ahirwal, M. K.; Kumar, A. & Singh, G. K.: , 2014; Adaptive filtering of EEG/ERP through bounded range artificial bee colony (BR-ABC) algorithm; Digital Signal Processing; 25: 164–172.; [Ahn et al., 2014] Ahn, M.; Lee, M.; Choi, J. & Jun, S. C.: , 2014; A review of brain-computer interface games and an opinion survey from researchers, developers and users; Sensors; 14 (8): 14601–14633.; [Ai et al., 2019] Ai, Q.; Chen, A.; Chen, K.; Liu, Q.; Zhou, T.; Xin, S. & Ji, Z.: , 2019; Feature extraction of four-class motor imagery EEG signals based on functional brain network; Journal of Neural Engineering; 16 (2): 026032.; [Akella et al., 2021] Akella, A.; Singh, A. K.; Leong, D.; Lal, S.; Newton, P.; Clifton-Bligh, R.; Mclachlan, C. S.; Gustin, S. M.; Maharaj, S.; Lees, T. et al.: , 2021; Classifying multi-level stress responses from brain cortical EEG in nurses and non-health professionals using machine learning auto encoder; IEEE Journal of Translational Engineering in Health and Medicine; 9: 1–9.; [Akuthota et al., 2023] Akuthota, S.; Rajkumar, K. & Ravichander, J.: , 2023; Eeg based motor imagery bci using four class iterative filtering & four class filter bank common spatial pattern; en 2023 International Conference on Advances in Electronics, Communication, Computing and Intelligent Information Systems (ICAECIS); IEEE; págs. 429–434.; [Al-Fahad et al., 2020] Al-Fahad, R.; Yeasin, M. & Bidelman, G. M.: , 2020; Decoding of single-trial EEG reveals unique states of functional brain connectivity that drive rapid speech categorization decisions; Journal of Neural Engineering; 17 (1): 016045.; [Al-Nafjan et al., 2017] Al-Nafjan, A.; Hosny, M.; Al-Ohali, Y. & Al-Wabil, A.: , 2017; Review and classification of emotion recognition based on EEG brain-computer interface system research: a systematic review; Applied Sciences; 7 (12): 1239.; [Al Nazi et al., 2021] Al Nazi, Z.; Hossain, A. A. & Islam, M. M.: , 2021; Motor imagery EEG classification using random subspace ensemble network with variable length features; International Journal Bioautomation; 25 (1): 13.; [Al-Saegh et al., 2021] Al-Saegh, A.; Dawwd, S. A. & Abdul-Jabbar, J. M.: , 2021; Deep learning for motor imagery EEG-based classification: A review; Biomedical Signal Processing and Control; 63: 102172.; [Al-Shargie et al., 2020] Al-Shargie, F. M.; Hassanin, O.; Tariq, U. & Al-Nashash, H.: , 2020; EEG-based semantic vigilance level classification using directed connectivity patterns and graph theory analysis; IEEE Access; 8: 115941–115956.; [Alazrai et al., 2019] Alazrai, R.; Abuhijleh, M.; Alwanni, H. & Daoud, M. I.: , 2019; A deep learning framework for decoding motor imagery tasks of the same hand using eeg signals; IEEE Access; 7: 109612–109627.; [Aldayel et al., 2020] Aldayel, M.; Ykhlef, M. & Al-Nafjan, A.: , 2020; Deep learning for EEG-based preference classification in neuromarketing; Applied Sciences; 10 (4): 1525.; [Ali et al., 2018] Ali, H. T.; Kammoun, A. & Couillet, R.: , 2018; Random matrix-improved kernels for large dimensional spectral clustering; en 2018 IEEE Statistical Signal Processing Workshop (SSP); IEEE; págs. 453–457.; [Alizadeh et al., 2023] Alizadeh, N.; Afrakhteh, S. & Mosavi, M.: , 2023; Multi-task eeg signal classification using correlation-based imf selection and multi-class csp; IEEE Access.; [Alsharif et al., 2020] Alsharif, A.; Salleh, N.; Baharun, R. & Safaei, M.: , 2020; Neuromarketing approach: An overview and future research directions; Journal of Theoretical and Applied Information Technology; 98 (7): 991–1001.; [Altaheri et al., 2023] Altaheri, H.; Muhammad, G.; Alsulaiman, M.; Amin, S. U.; Altuwaijri, G. A.; Abdul, W.; Bencherif, M. A. & Faisal, M.: , 2023; Deep learning techniques for classification of electroencephalogram (eeg) motor imagery (mi) signals: A review; Neural Computing and Applications; 35 (20): 14681–14722.; [Álvarez-Meza et al., 2014a] Álvarez-Meza, A.; Cárdenas-Peña, D. & Castellanos-Dominguez, G.: , 2014a; Unsupervised kernel function building using maximization of information potential variability; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 335–342.; [Alvarez-Meza et al., 2017] Alvarez-Meza, A.; Orozco-Gutierrez, A. & Castellanos-Dominguez, G.: , 2017; Kernel-based relevance analysis with enhanced interpretability for detection of brain activity patterns; Frontiers in neuroscience; 11: 550.; [Álvarez-Meza et al., 2014b] Álvarez-Meza, A. M.; Cárdenas-Pena, D. & Castellanos-Dominguez, G.: , 2014b; Unsupervised kernel function building using maximization of information potential variability; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 335–342.; [Alwasiti et al., 2020] Alwasiti, H.; Yusoff, M. Z. & Raza, K.: , 2020; Motor imagery classification for brain computer interface using deep metric learning; IEEE Access; 8: 109949–109963.; [Amin et al., 2019] Amin, S. U.; Alsulaiman, M.; Muhammad, G.; Mekhtiche, M. A. & Hossain, M. S.: , 2019; Deep learning for eeg motor imagery classification based on multi-layer cnns feature fusion; Future Generation computer systems; 101: 542–554.; [Amir et al., 2020] Amir, J.; Amir, R.; Ednaldo Birgante, P. & Md Kafiul, I.: , 2020; Classification of emotions induced by horror and relaxing movies using single-channel EEG recordings.; [Ang et al., 2008] Ang, K. K.; Chin, Z. Y.; Zhang, H. & Guan, C.: , 2008; Filter bank common spatial pattern (fbcsp) in brain- computer interface; en 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence); IEEE; págs. 2390–2397.; [Anowar et al., 2021] Anowar, F.; Sadaoui, S. & Selim, B.: , 2021; Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE); Computer Science Review; 40: 100378.; [Antonakakis et al., 2020] Antonakakis, M.; Schrader, S.; Aydin, Ü.; Khan, A.; Gross, J.; Zervakis, M.; Rampp, S. & Wolters, C. H.: , 2020; Inter-subject variability of skull conductivity and thickness in calibrated realistic head models; Neuroimage; 223: 117353.; [Anupallavi & MohanBabu, 2020] Anupallavi, S. & MohanBabu, G.: , 2020; A novel approach based on BSPCI for quantifying functional connectivity pattern of the brain’s region for the classification of epileptic seizure; Journal of Ambient Intelligence and Humanized Computing: 1–11.; [Apicella et al., 2021] Apicella, A.; Arpaia, P.; Frosolone, M. & Moccaldi, N.: , 2021; High-wearable EEG-based distraction detection in motor rehabilitation; Scientific Reports; 11 (1): 1–9.; [Apicella et al., 2022] Apicella, A.; Isgrò, F.; Pollastro, A. & Prevete, R.: , 2022; Toward the application of xai methods in eeg-based systems; arXiv preprint arXiv:2210.06554.; [Arrieta et al., 2020] Arrieta, A. B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R. et al.: , 2020; Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai; Information fusion; 58: 82–115.; [Arvaneh et al., 2011] Arvaneh, M.; Guan, C.; Ang, K. K. & Quek, C.: , 2011; Optimizing the channel selection and classification accuracy in EEG-based BCI; IEEE Transactions on Biomedical Engineering; 58 (6): 1865–1873.; [Bakhshali et al., 2020] Bakhshali, M.; Khademi, M.; Ebrahimi, A. & Moghimi, S.: , 2020; Eeg signal classification of imagined speech based on riemannian distance of correntropy spectral density; Biomedical Signal Processing and Control; 59: 101899.; [Bakhshayesh et al., 2019] Bakhshayesh, H.; Fitzgibbon, S. P.; Janani, A. S.; Grummett, T. S. & Pope, K. J.: , 2019; Detecting synchrony in eeg: A comparative study of functional connectivity measures; Computers in biology and medicine; 105: 1–15; [Bang & Lee, 2022] Bang, J.-S. & Lee, S.-W.: , 2022; Interpretable convolutional neural networks for subject-independent motor imagery classification; en 2022 10th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–5.; [Baniqued et al., 2021] Baniqued, P. D. E.; Stanyer, E. C.; Awais, M.; Alazmani, A.; Jackson, A. E.; Mon-Williams, M. A.; Mushtaq, F. & Holt, R. J.: , 2021; Brain–computer interface robotics for hand rehabilitation after stroke: a systematic review; Journal of NeuroEngineering and Rehabilitation; 18 (1): 1–25.; [Barachant et al., 2013] Barachant, A.; Bonnet, S.; Congedo, M. & Jutten, C.: , 2013; Classification of covariance matrices using a riemannian-based kernel for BCI applications; Neurocomputing; 112: 172–178.; [Barios et al., 2019] Barios, J. A.; Ezquerro, S.; Bertomeu-Motos, A.; Nann, M.; Badesa, F. J.; Fernandez, E.; Soekadar, S. R. & Garcia-Aracil, N.: , 2019; Synchronization of slow cortical rhythms during motor imagery-based brain–machine interface control; International journal of neural systems; 29 (05): 1850045.; [Bastos & Schoffelen, 2016] Bastos, A. M. & Schoffelen, J.-M.: , 2016; A tutorial review of functional connectivity analysis methods and their interpretational pitfalls; Frontiers in systems neuroscience; 9: 175.; [Batres-Mendoza et al., 2016] Batres-Mendoza, P.; Montoro-Sanjose, C. R.; Guerra-Hernandez, E. I.; Almanza-Ojeda, D. L.; Rostro-Gonzalez, H.; Romero-Troncoso, R. J. & Ibarra-Manzano, M. A.: , 2016; Quaternion-based signal analysis for motor imagery classification from electroencephalographic signals; Sensors; 16 (3): 336.; [Battaglia & Brovelli, 2020] Battaglia, D. & Brovelli, A.: , 2020; Functional connectivity and neuronal dynamics: insights from computational methods; The Cognitive Neurosciences.; [Belwafi et al., 2020] Belwafi, K.; Gannouni, S. & Aboalsamh, H.: , 2020; An effective zeros-time windowing strategy to detect sensorimotor rhythms related to motor imagery eeg signals; IEEE Access; 8: 152669–152679.; [Benzy et al., 2020] Benzy, V.; Vinod, A.; Subasree, R.; Alladi, S. & Raghavendra, K.: , 2020; Motor imagery hand movement direction decoding using brain computer interface to aid stroke recovery and rehabilitation; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (12): 3051–3062.; [Betzel et al., 2019] Betzel, R. F.; Bertolero, M. A.; Gordon, E. M.; Gratton, C.; Dosenbach, N. U. & Bassett, D. S.: , 2019; The community structure of functional brain networks exhibits scale-specific patterns of inter-and intra-subject variability; Neuroimage; 202: 115990.; [Billinger et al., 2013] Billinger, M.; Brunner, C. & Müller-Putz, G. R.: , 2013; Single-trial connectivity estimation for classification of motor imagery data; Journal of neural engineering; 10 (4): 046006.; [Bishop, 2006] Bishop, C. M.: , 2006; Pattern recognition and machine learning; springer.; [Bochner, 2020] Bochner, S.: , 2020; Harmonic analysis and the theory of probability; University of California press.; [Bonci et al., 2021] Bonci, A.; Fiori, S.; Higashi, H.; Tanaka, T. & Verdini, F.: , 2021; An introductory tutorial on brain–computer interfaces and their applications; Electronics; 10 (5): 560.; [Borra et al., 2019] Borra, D.; Fantozzi, S. & Magosso, E.: , 2019; Eeg motor execution decoding via interpretable sinc-convolutional neural networks; en Mediterranean Conference on Medical and Biological Engineering and Computing; Springer; págs. 1113– 1122.; [Borra et al., 2020] Borra, D.; Fantozzi, S. & Magosso, E.: , 2020; Interpretable and lightweight convolutional neural network for EEG decoding: application to movement execution and imagination; Neural Networks; 129: 55–74.; [Braga-Neto & Dougherty, 2004] Braga-Neto, U. M. & Dougherty, E. R.: , 2004; Is cross-validation valid for small-sample microarray classification?; Bioinformatics; 20 (3): 374–380.; [Bramhall et al., 2020] Bramhall, S.; Horn, H.; Tieu, M. & Lohia, N.: , 2020; Qlime-a quadratic local interpretable model-agnostic explanation approach; SMU Data Science Review; 3 (1): 4.; [Brockmeier et al., 2014] Brockmeier, A.; Choi, J.; Kriminger, E.; Francis, J. & Principe, J.: , 2014; Neural decoding with kernel-based metric learning; Neural computation; 26 (6): 1080–1107.; [Bromiley et al., 2004] Bromiley, P.; Thacker, N. & Bouhova-Thacker, E.: , 2004; Shannon entropy, renyi entropy, and information; statistics and inf; Series (2004-004).; [Brunner et al., 2008] Brunner, C.; Leeb, R.; Müller-Putz, G.; Schlögl, A. & Pfurtscheller, G.: , 2008; Bci competition 2008–graz data set a; Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology; 16: 1–6.; [Brunner et al., 2015] Brunner, C.; Birbaumer, N.; Blankertz, B.; Guger, C.; Kübler, A.; Mattia, D.; Millán, J. d. R.; Miralles, F.; Nijholt, A.; Opisso, E. et al.: , 2015; Bnci horizon 2020: towards a roadmap for the bci community; Brain- computer interfaces; 2 (1): 1–10.; [Brusini et al., 2021] Brusini, L.; Stival, F.; Setti, F.; Menegatti, E.; Menegaz, G. & Storti, S. F.: , 2021; A systematic review on motor-imagery brain-connectivity-based computer interfaces; IEEE Transactions on Human-Machine Systems; 51 (6): 725–733.; [Buchanan et al., 2021] Buchanan, D. M.; Ros, T. & Nahas, R.: , 2021; Elevated and slowed EEG oscillations in patients with post-concussive syndrome and chronic pain following a motor vehicle collision; Brain Sciences; 11 (5): 537.; [Bullmore & Sporns, 2009] Bullmore, E. & Sporns, O.: , 2009; Complex brain networks: graph theoretical analysis of structural and functional systems; Nature reviews neuroscience; 10 (3): 186–198.; [Cai et al., 2021] Cai, Q.; Gong, W.; Deng, Y. & Wang, H.: , 2021; Single-trial EEG classification via common spatial patterns with mixed lp-and lq-norms; Mathematical Problems in Engineering; 2021.; [Caicedo-Acosta et al., 2021] Caicedo-Acosta, J.; Castaño, G. A.; Acosta-Medina, C.; Alvarez-Meza, A. & Castellanos- Dominguez, G.: , 2021; Deep neural regression prediction of motor imagery skills using EEG functional connectivity indicators; Sensors; 21 (6): 1932.; [Cao et al., 2022a] Cao, J.; Zhao, Y.; Shan, X.; Wei, H.-l.; Guo, Y.; Chen, L.; Erkoyuncu, J. A. & Sarrigiannis, P. G.: , 2022a; Brain functional and effective connectivity based on electroencephalography recordings: A review; Human brain mapping; 43 (2): 860–879.; [Cao et al., 2022b] Cao, L.; Wang, W.; Huang, C.; Xu, Z.; Wang, H.; Jia, J.; Chen, S.; Dong, Y.; Fan, C. & de Albuquerque, V. H. C.: , 2022b; An effective fusing approach by combining connectivity network pattern and temporal-spatial analysis for eeg-based bci rehabilitation; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 30: 2264–2274.; [Cárdenas-Peña et al., 2017] Cárdenas-Peña, D.; Collazos-Huertas, D. & Castellanos-Dominguez, G.: , 2017; Enhanced data representation by kernel metric learning for dementia diagnosis; Frontiers in neuroscience; 11: 413.; [Carrara & Papadopoulo, 2023] Carrara, I. & Papadopoulo, T.: , 2023; Classification of bci-eeg based on augmented covariance matrix; arXiv preprint arXiv:2302.04508.; [Casimo et al., 2017] Casimo, K.; Weaver, K. E.; Wander, J. & Ojemann, J. G.: , 2017; Bci use and its relation to adaptation in cortical networks; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 25 (10): 1697–1704.; [Cattai et al., 2021] Cattai, T.; Colonnese, S.; Corsi, M.-C.; Bassett, D. S.; Scarano, G. & Fallani, F. D. V.: , 2021; Phase/amplitude synchronization of brain signals during motor imagery bci tasks; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 1168–1177.; [Cattan et al., 2018] Cattan, G.; Mendoza, C.; Andreev, A. & Congedo, M.: , 2018; Recommendations for integrating a p300-based brain computer interface in virtual reality environments for gaming; Computers; 7 (2): 34.; [Chaddad et al., 2023] Chaddad, A.; Peng, J.; Xu, J. & Bouridane, A.: , 2023; Survey of explainable ai techniques in healthcare; Sensors; 23 (2): 634.; [Chakraborty et al., 2017] Chakraborty, S.; Tomsett, R.; Raghavendra, R.; Harborne, D.; Alzantot, M.; Cerutti, F.; Srivastava, M.; Preece, A.; Julier, S.; Rao, R. M. et al.: , 2017; Interpretability of deep learning models: A sur- vey of results; en 2017 IEEE smartworld, ubiquitous intelligence & computing, advanced & trusted computed, scalable computing & communications, cloud & big data computing, Internet of people and smart city innovation (smartworld/SCAL- COM/UIC/ATC/CBDcom/IOP/SCI); IEEE; págs. 1–6.; [Chamola et al., 2020] Chamola, V.; Vineet, A.; Nayyar, A. & Hossain, E.: , 2020; Brain-computer interface-based humanoid control: A review; Sensors; 20 (13): 3620.; [Chao & Liu, 2020] Chao, H. & Liu, Y.: , 2020; Emotion recognition from multi-channel EEG signals by exploiting the deep belief-conditional random field framework; IEEE Access; 8: 33002–33012.; [Chattopadhay et al., 2018] Chattopadhay, A.; Sarkar, A.; Howlader, P. & Balasubramanian, V. N.: , 2018; Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks; en 2018 IEEE winter conference on applications of computer vision (WACV); IEEE; págs. 839–847.; [Chen et al., 2020] Chen, Y.; Hang, W.; Liang, S.; Liu, X.; Li, G.; Wang, Q.; Qin, J. & Choi, K.-S.: , 2020; A novel transfer support matrix machine for motor imagery-based brain computer interface; Frontiers in Neuroscience; 14.; [Chen et al., 2021] Chen, Y. Y.; Lambert, K. J.; Madan, C. R. & Singhal, A.: , 2021; Mu oscillations and motor imagery performance: A reflection of intra-individual success, not inter-individual ability; Human Movement Science; 78: 102819.; [Chen et al., 2019] Chen, Z.; Ji, J. & Liang, Y.: , 2019; Convolutional neural network with an element-wise filter to classify dynamic functional connectivity; en 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 643–646.; [Chevallier et al., 2024] Chevallier, S.; Carrara, I.; Aristimunha, B.; Guetschel, P.; Sedlar, S.; Lopes, B.; Velut, S.; Khazem, S. & Moreau, T.: , 2024; The largest eeg-based bci reproducibility study for open science: the moabb benchmark; arXiv preprint arXiv:2404.15319.; [Chiarion et al., 2023] Chiarion, G.; Sparacino, L.; Antonacci, Y.; Faes, L. & Mesin, L.: , 2023; Connectivity analysis in eeg data: A tutorial review of the state of the art and emerging trends; Bioengineering; 10 (3): 372.; [Cho et al., 2017] Cho, H.; Ahn, M.; Ahn, S.; Kwon, M. & Jun, S.: , 2017; EEG datasets for motor imagery brain–computer interface; GigaScience; 6 (7): gix034.; [Choi & Kim, 2021] Choi, I. & Kim, W. C.: , 2021; Detecting and analyzing politically-themed stocks using text mining techniques and transfer entropy—focus on the republic of korea’s case; Entropy; 23 (6): 734.; [Clark et al., 2020] Clark, S. V.; King, T. Z. & Turner, J. A.: , 2020; Cerebellar contributions to proactive and reactive control in the stop signal task: A systematic review and meta-analysis of functional magnetic resonance imaging studies; Neuropsychology review : 1–24.; [Coelho et al., 2012] Coelho, G. P.; Barbante, C. C.; Boccato, L.; Attux, R. R.; Oliveira, J. R. & Von Zuben, F. J.: , 2012; Automatic feature selection for BCI: an analysis using the davies-bouldin index and extreme learning machines; en The 2012 International Joint Conference on Neural Networks (IJCNN); IEEE; págs. 1–8.; [Cohen, 1998] Cohen, L.: , 1998; The generalization of the wiener-khinchin theorem; en Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), tomo 3; IEEE; págs. 1577–1580.; [Collazos-Huertas et al., 2020] Collazos-Huertas, D.; Álvarez-Meza, A.; Acosta-Medina, C.; Castaño-Duque, G. & Castellanos-Dominguez, G.: , 2020; CNN-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification; Brain Informatics; 7 (1): 1–13.; [Collazos-Huertas et al., 2021] Collazos-Huertas, D. F.; Velasquez-Martinez, L. F.; Perez-Nastar, H. D.; Alvarez-Meza, A. M. & Castellanos-Dominguez, G.: , 2021; Deep and wide transfer learning with kernel matching for pooling data from electroencephalography and psychological questionnaires; Sensors; 21 (15): 5105.; [Collazos-Huertas et al., 2023] Collazos-Huertas, D. F.; Álvarez-Meza, A. M.; Cárdenas-Peña, D. A.; Castaño-Duque, G. A. & Castellanos-Domínguez, C. G.: , 2023; Posthoc interpretability of neural responses by grouping subject motor imagery skills using cnn-based connectivity; Sensors; 23 (5): 2750.; [Congedo et al., 2017a] Congedo, M.; Barachant, A. & Bhatia, R.: , 2017a; Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review; Brain-Computer Interfaces; 4 (3): 155–174.; [Congedo et al., 2017b] Congedo, M.; Barachant, A. & Koopaei, E. K.: , 2017b; Fixed point algorithms for estimating power means of positive definite matrices; IEEE Transactions on Signal Processing; 65 (9): 2211–2220.; [Congedo et al., 2017c] Congedo, M.; Rodrigues, P. L. C.; Bouchard, F.; Barachant, A. & Jutten, C.: , 2017c; A closed-form unsupervised geometry-aware dimensionality reduction method in the riemannian manifold of SPD matrices; en 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); IEEE; págs. 3198–3201.; [Craik et al., 2019] Craik, A.; He, Y. & Contreras-Vidal, J. L.: , 2019; Deep learning for electroencephalogram (EEG) classification tasks: a review; Journal of Neural Engineering; 16 (3): 031001.; [Dai et al., 2020] Dai, H.; Su, S.; Zhang, Y. & Jian, W.: , 2020; Effect of spatial filtering and channel selection on motor imagery BCI; en Proceedings of the 2020 Conference on Artificial Intelligence and Healthcare; págs. 270–274.; [Dai et al., 2019] Dai, M.; Zheng, D.; Na, R.; Wang, S. & Zhang, S.: , 2019; Eeg classification of motor imagery using a novel deep learning framework; Sensors; 19 (3): 551.; [Daly et al., 2012] Daly, I.; Nasuto, S. J. & Warwick, K.: , 2012; Brain computer interface control via functional connectivity dynamics; Pattern recognition; 45 (6): 2123–2136.; [Darvish Ghanbar et al., 2021] Darvish Ghanbar, K.; Yousefi Rezaii, T.; Farzamnia, A. & Saad, I.: , 2021; Correlation-based common spatial pattern (ccsp): A novel extension of csp for classification of motor imagery signal; Plos one; 16 (3): e0248511.; [De La Pava Panche et al., 2019] De La Pava Panche, I.; Alvarez-Meza, A. & Orozco-Gutierrez, A.: , 2019; A data-driven measure of effective connectivity based on renyi’s α-entropy; Frontiers in neuroscience; 13: 1277.; [Demir et al., 2022] Demir, A.; Koike-Akino, T.; Wang, Y. & Erdoğmuş, D.: , 2022; Eeg-gat: graph attention networks for classification of electroencephalogram (eeg) signals; en 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 30–35.; [Deng et al., 2020] Deng, Y.; Li, Z.; Wang, H.; Lu, X. & Fan, H.: , 2020; Local temporal joint recurrence common spatial patterns for MI-based BCI; en 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), tomo 1; IEEE; págs. 813–816.; [Desbois et al., 2021] Desbois, A.; Cattai, T.; Corsi, M.-C. & de Vico Fallani, F.: , 2021; Functional connectivity for bci: Openvibe implementation; en JJC-ICON’2021-Journée Jeunes Chercheurs en Interfaces Cerveau-Ordinateur et Neurofeedback.; [Ding et al., 2023] Ding, X.; Yang, L. & Li, C.: , 2023; Study of mi-bci classification method based on the riemannian transform of personalized eeg spatiotemporal features; Mathematical Biosciences and Engineering; 20 (7): 12454–12471.; [Dose et al., 2018] Dose, H.; Møller, J. S.; Iversen, H. K. & Puthusserypady, S.: , 2018; An end-to-end deep learning approach to mi-eeg signal classification for bcis; Expert Systems with Applications; 114: 532–542.; [Duan et al., 2014] Duan, L.; Zhong, H.; Miao, J.; Yang, Z.; Ma, W. & Zhang, X.: , 2014; A voting optimized strategy based on ELM for improving classification of motor imagery BCI data; Cognitive Computation; 6 (3): 477–483.; [Duan et al., 2020] Duan, L.; Duan, H.; Qiao, Y.; Sha, S.; Qi, S.; Zhang, X.; Huang, J.; Huang, X. & Wang, C.: , 2020; Machine learning approaches for MDD detection and emotion decoding using EEG signals; Frontiers in Human Neuroscience; 14.; [Duan et al., 2021] Duan, S.; Yu, S. & Príncipe, J. C.: , 2021; Modularizing deep learning via pairwise learning with kernels; IEEE Transactions on Neural Networks and Learning Systems.; [Duclos et al., 2021] Duclos, C.; Maschke, C.; Mahdid, Y.; Berkun, K.; da Silva Castanheira, J.; Tarnal, V.; Picton, P.; Vanini, G.; Golmirzaie, G.; Janke, E. et al.: , 2021; Differential classification of states of consciousness using envelope-and phase-based functional connectivity; NeuroImage; 237: 118171.; [Eichert et al., 2021] Eichert, N.; Watkins, K. E.; Mars, R. B. & Petrides, M.: , 2021; Morphological and functional variability in central and subcentral motor cortex of the human brain; Brain Structure and Function; 226 (1): 263–279.; [EPMoghaddam et al., 2022] EPMoghaddam, D.; Sheth, S. A.; Haneef, Z.; Gavvala, J. & Aazhang, B.: , 2022; Epileptic seizure prediction using spectral width of the covariance matrix; Journal of Neural Engineering; 19 (2): 026029.; [Fagerholm et al., 2020] Fagerholm, E. D.; Moran, R. J.; Violante, I. R.; Leech, R. & Friston, K. J.: , 2020; Dynamic causal modelling of phase-amplitude interactions; NeuroImage; 208: 116452.; [Fahimi et al., 2020] Fahimi, F.; Dosen, S.; Ang, K. K.; Mrachacz-Kersting, N. & Guan, C.: , 2020; Generative adversarial networks-based data augmentation for brain–computer interface; IEEE transactions on neural networks and learning systems; 32 (9): 4039–4051.; [Fan et al., 2021] Fan, F.-L.; Xiong, J.; Li, M. & Wang, G.: , 2021; On interpretability of artificial neural networks: A survey; IEEE Transactions on Radiation and Plasma Medical Sciences; 5 (6): 741–760.; [Fauzi et al., 2019] Fauzi, H.; Azzam, M. A.; Shapiai, M. I.; Kyoso, M.; Khairuddin, U. & Komura, T.: , 2019; Energy extraction method for EEG channel selection; Telkomnika; 17 (5): 2561–2571.; [Feng et al., 2020] Feng, Z.; Qian, L.; Hu, H. & Sun, Y.: , 2020; Functional connectivity for motor imaginary recognition in brain-computer interface; en 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 3678–3682.; [Fine & Scheinberg, 2001] Fine, S. & Scheinberg, K.: , 2001; Efficient SVM training using low-rank kernel representations; Journal of Machine Learning Research; 2 (Dec): 243–264.; [Fogelson et al., 2013] Fogelson, N.; Li, L.; Li, Y.; Fernandez-del Olmo, M.; Santos-Garcia, D. & Peled, A.: , 2013; Functional connectivity abnormalities during contextual processing in schizophrenia and in parkinson’s disease; Brain and cognition; 82 (3): 243–253.; [Fong & Vedaldi, 2017] Fong, R. C. & Vedaldi, A.: , 2017; Interpretable explanations of black boxes by meaningful perturbation; en Proceedings of the IEEE international conference on computer vision; págs. 3429–3437.; [Frau-Pascual et al., 2019] Frau-Pascual, A.; Fogarty, M.; Fischl, B.; Yendiki, A.; Aganj, I.; Initiative, A. D. N. et al.: , 2019; Quantification of structural brain connectivity via a conductance model; NeuroImage; 189: 485–496.; [Freer et al., 2019] Freer, D.; Deligianni, F. & Yang, G.-Z.: , 2019; Adaptive riemannian bci for enhanced motor imagery training protocols; en 2019 IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN); IEEE; págs. 1–4.; [Friston, 2002] Friston, K.: , 2002; Functional integration and inference in the brain; Progress in neurobiology; 68 (2): 113–143.; [Friston et al., 2013] Friston, K.; Moran, R. & Seth, A. K.: , 2013; Analysing connectivity with granger causality and dynamic causal modelling; Current opinion in neurobiology; 23 (2): 172–178.; [Friston, 2011] Friston, K. J.: , 2011; Functional and effective connectivity: a review; Brain connectivity; 1 (1): 13–36.; [Frolov et al., 2019] Frolov, N.; Maksimenko, V.; Lüttjohann, A.; Koronovskii, A. & Hramov, A.: , 2019; Feed-forward artificial neural network provides data-driven inference of functional connectivity; Chaos: An Interdisciplinary Journal of Nonlinear Science; 29 (9): 091101.; [Fu et al., 2020] Fu, R.; Han, M.; Tian, Y. & Shi, P.: , 2020; Improvement motor imagery EEG classification based on sparse common spatial pattern and regularized discriminant analysis; Journal of Neuroscience Methods; 343: 108833.; [Ganin et al., 2013] Ganin, I. P.; Shishkin, S. L. & Kaplan, A. Y.: , 2013; A p300-based brain-computer interface with stimuli on moving objects: four-session single-trial and triple-trial tests with a game-like task design; PloS one; 8 (10): e77755.; [Gao et al., 2024] Gao, H.; Wang, X.; Chen, Z.; Wu, M.; Cai, Z.; Zhao, L.; Li, J. & Liu, C.: , 2024; Graph convolutional network with connectivity uncertainty for eeg-based emotion recognition; IEEE Journal of Biomedical and Health Informatics.; [Gao et al., 2022] Gao, S.; Yang, J.; Shen, T. & Jiang, W.: , 2022; A parallel feature fusion network combining gru and cnn for motor imagery eeg decoding; Brain Sciences; 12 (9): 1233.; [Gao et al., 2021] Gao, Z.; Dang, W.; Wang, X.; Hong, X.; Hou, L.; Ma, K. & Perc, M.: , 2021; Complex networks and deep learning for EEG signal analysis; Cognitive Neurodynamics; 15 (3): 369–388.; [García-Murillo et al., 2021] García-Murillo, D. G.; Alvarez-Meza, A. & Castellanos-Dominguez, G.: , 2021; Single-trial kernel-based functional connectivity for enhanced feature extraction in motor-related tasks; Sensors; 21 (8): 2750.; [Garg et al., 2023] Garg, D.; Verma, G. K. & Singh, A. K.: , 2023; A review of deep learning based methods for affect analysis using physiological signals; Multimedia Tools and Applications: 1–46.; [Gaur et al., 2021a] Gaur, P.; Gupta, H.; Chowdhury, A.; McCreadie, K.; Pachori, R. & Wang, H.: , 2021a; A sliding window common spatial pattern for enhancing motor imagery classification in eeg-bci; IEEE Transactions on Instrumentation and Measurement; 70: 1–9.; [Gaur et al., 2021b] Gaur, P.; Gupta, H.; Chowdhury, A.; McCreadie, K.; Pachori, R. B. & Wang, H.: , 2021b; A sliding window common spatial pattern for enhancing motor imagery classification in eeg-bci; IEEE Transactions on Instrumentation and Measurement; 70: 1–9.; [Gaur et al., 2021c] Gaur, P.; McCreadie, K.; Pachori, R. B.; Wang, H. & Prasad, G.: , 2021c; An automatic subject specific channel selection method for enhancing motor imagery classification in EEG-BCI using correlation; Biomedical Signal Processing and Control; 68: 102574.; [Gaxiola-Tirado et al., 2017] Gaxiola-Tirado, J. A.; Salazar-Varas, R. & Gutiérrez, D.: , 2017; Using the partial directed coherence to assess functional connectivity in electroencephalography data for brain–computer interfaces; IEEE Transactions on Cognitive and Developmental Systems; 10 (3): 776–783.; [Georgiadis et al., 2018] Georgiadis, K.; Laskaris, N.; Nikolopoulos, S. & Kompatsiaris, I.: , 2018; Exploiting the heightened phase synchrony in patients with neuromuscular disease for the establishment of efficient motor imagery bcis; Journal of neuroengineering and rehabilitation; 15 (1): 1–18.; [Georgiadis et al., 2019] Georgiadis, K.; Laskaris, N.; Nikolopoulos, S. & Kompatsiaris, I.: , 2019; Connectivity steered graph fourier transform for motor imagery bci decoding; Journal of neural engineering; 16 (5): 056021.; [Géron, 2022] Géron, A.: , 2022; Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow; " O’Reilly Media, Inc.".; [Ghanbar et al., 2021] Ghanbar, K. D.; Rezaii, T. Y.; Farzamnia, A. & Saad, I.: , 2021; Correlation-based common spatial pattern (ccsp): A novel extension of csp for classification of motor imagery signal; PLoS One; 16 (3): 1–18.; [Ghane & Hossain, 2020] Ghane, P. & Hossain, G.: , 2020; Learning patterns in imaginary vowels for an intelligent brain computer interface (BCI) design; arXiv preprint arXiv:2010.12066.; [Giraldo et al., 2014] Giraldo, L. G. S.; Rao, M. & Principe, J. C.: , 2014; Measures of entropy from data using infinitely divisible kernels; IEEE Transactions on Information Theory; 61 (1): 535–548.; [Golugula et al., 2011] Golugula, A.; Lee, G. & Madabhushi, A.: , 2011; Evaluating feature selection strategies for high dimensional, small sample size datasets; en 2011 Annual International conference of the IEEE engineering in medicine and biology society; IEEE; págs. 949–952.; [Gonuguntla et al., 2016] Gonuguntla, V.; Wang, Y. & Veluvolu, K. C.: , 2016; Event-related functional network identification: application to EEG classification; IEEE journal of selected topics in signal processing; 10 (7): 1284–1294.; [Gonzalez-Astudillo et al., 2020] Gonzalez-Astudillo, J.; Cattai, T.; Bassignana, G.; Corsi, M.-C. & Fallani, F. D. V.: , 2020; Network-based brain computer interfaces: principles and applications; Journal of Neural Engineering.; [Gonzalez-Astudillo et al., 2021] Gonzalez-Astudillo, J.; Cattai, T.; Bassignana, G.; Corsi, M.-C. & Fallani, F. D. V.: , 2021; Network-based brain–computer interfaces: principles and applications; Journal of neural engineering; 18 (1): 011001.; [Gramfort & Clerc, 2007] Gramfort, A. & Clerc, M.: , 2007; Low dimensional representations of MEG/EEG data using laplacian eigenmaps; en 2007 Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging; IEEE; págs. 169–172.; [Graña & Morais-Quilez, 2023] Graña, M. & Morais-Quilez, I.: , 2023; A review of graph neural networks for electroencephalography data analysis; Neurocomputing: 126901.; [Grigorev et al., 2021] Grigorev, N. A.; Savosenkov, A. O.; Lukoyanov, M. V.; Udoratina, A.; Shusharina, N. N.; Kaplan, A. Y.; Hramov, A. E.; Kazantsev, V. B. & Gordleeva, S.: , 2021; A bci-based vibrotactile neurofeedback training improves motor cortical excitability during motor imagery; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 1583–1592.; [Grilo et al., 2019] Grilo, M.; Ribeiro, L.; Moraes, C.; Melo, C.; Fantinato, D.; Sampaio, L.; Neves, A. & Ramos, R.: , 2019; Artifact removal in EEG based emotional signals through linear and nonlinear methods; en 2019 E-Health and Bioengineering Conference (EHB); IEEE; págs. 1–4.; [Gu et al., 2023] Gu, H.; Wang, J. & Han, Y.: , 2023; Decoding of brain functional connections underlying natural grasp task using time-frequency cross mutual information; IEEE Access.; [Gu et al., 2021a] Gu, J.; Wei, M.; Guo, Y. & Wang, H.: , 2021a; Common spatial pattern with l21-norm; Neural Processing Letters: 1–20.; [Gu et al., 2020a] Gu, L.; Yu, Z.; Ma, T.; Wang, H.; Li, Z. & Fan, H.: , 2020a; EEG-based classification of lower limb motor imagery with brain network analysis; Neuroscience; 436: 93–109.; [Gu et al., 2020b] Gu, L.; Yu, Z.; Ma, T.; Wang, H.; Li, Z. & Fan, H.: , 2020b; Random matrix theory for analysing the brain functional network in lower limb motor imagery; en 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 506–509.; [Gu et al., 2021b] Gu, X.; Cao, Z.; Jolfaei, A.; Xu, P.; Wu, D.; Jung, T.-P. & Lin, C.-T.: , 2021b; Eeg-based brain-computer interfaces (bcis): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications; IEEE/ACM transactions on computational biology and bioinformatics; 18 (5): 1645–1666.; [Guillot & Debarnot, 2019] Guillot, A. & Debarnot, U.: , 2019; Benefits of motor imagery for human space flight: a brief review of current knowledge and future applications; Frontiers in Physiology; 10: 396.; [Gunawardena et al., 2023] Gunawardena, R.; Sarrigiannis, P. G.; Blackburn, D. J. & He, F.: , 2023; Kernel-based nonlinear manifold learning for eeg-based functional connectivity analysis and channel selection with application to alzheimer’s disease; Neuroscience.; [Guo et al., 2020] Guo, Y.; Zhang, Y.; Chen, Z.; Liu, Y. & Chen, W.: , 2020; Eeg classification by filter band component regularized common spatial pattern for motor imagery; Biomedical Signal Processing and Control; 59: 101917.; [Gupta et al., 2015] Gupta, A.; Agrawal, R. & Kaur, B.: , 2015; Performance enhancement of mental task classification using EEG signal: a study of multivariate feature selection methods; Soft Computing; 19 (10): 2799–2812.; [Haddad et al., 2019] Haddad, A.; Shamsi, F.; Ghovanloo, M. & Najafizadeh, L.: , 2019; Early decoding of tongue-hand movement from EEG recordings using dynamic functional connectivity graphs; en 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER); IEEE; págs. 373–376.; [Haghanifar et al., 2022] Haghanifar, A.; Majdabadi, M. M.; Choi, Y.; Deivalakshmi, S. & Ko, S.: , 2022; Covid-cxnet: Detecting covid-19 in frontal chest x-ray images using deep learning; Multimedia Tools and Applications; 81 (21): 30615–30645.; [Hamedi et al., 2014] Hamedi, M.; Salleh, S.-H.; Noor, A. M. & Mohammad-Rezazadeh, I.: , 2014; Neural network-based three-class motor imagery classification using time-domain features for bci applications; en 2014 IEEE region 10 symposium; IEEE; págs. 204–207.; [Hamedi et al., 2016] Hamedi, M.; Salleh, S.-H. & Noor, A. M.: , 2016; Electroencephalographic motor imagery brain connectivity analysis for BCI: a review; Neural computation; 28 (6): 999–1041.; [Han et al., 2023] Han, S.; Zhang, C.; Lei, J.; Han, Q.; Du, Y.; Wang, A.; Bai, S. & Zhang, M.: , 2023; Cepstral analysis based artifact detection, recognition and removal for prefrontal eeg; IEEE Transactions on Circuits and Systems II: Express Briefs.; [Hang et al., 2020] Hang, W.; Feng, W.; Liang, S.; Wang, Q.; Liu, X. & Choi, K.-S.: , 2020; Deep stacked support matrix machine based representation learning for motor imagery EEG classification; Computer methods and programs in biomedicine; 193: 105466.; [Hassanpour et al., 2019] Hassanpour, A.; Moradikia, M.; Adeli, H.; Khayami, S. R. & Shamsinejadbabaki, P.: , 2019; A novel end-to-end deep learning scheme for classifying multi-class motor imagery electroencephalography signals; Expert Systems; 36 (6): e12494.; [Hassija et al., 2023] Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M. & Hussain, A.: , 2023; Interpreting black-box models: a review on explainable artificial intelligence; Cognitive Computation: 1–30.; [Hata et al., 2016] Hata, M.; Kazui, H.; Tanaka, T.; Ishii, R.; Canuet, L.; Pascual-Marqui, R. D.; Aoki, Y.; Ikeda, S.; Kanemoto, H.; Yoshiyama, K. et al.: , 2016; Functional connectivity assessed by resting state eeg correlates with cognitive decline of alzheimer’s disease–an eloreta study; Clinical Neurophysiology; 127 (2): 1269–1278.; [He et al., 2019] He, B.; Astolfi, L.; Valdés-Sosa, P. A.; Marinazzo, D.; Palva, S. O.; Bénar, C.-G.; Michel, C. M. & Koenig, T.: , 2019; Electrophysiological brain connectivity: theory and implementation; IEEE Transactions on Biomedical Engineering; 66 (7): 2115–2137.; [He et al., 2013] He, L.; Hu, Y.; Li, Y. & Li, D.: , 2013; Channel selection by rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG; Neurocomputing; 121: 423–433.; [Hejazi & Motie Nasrabadi, 2019] Hejazi, M. & Motie Nasrabadi, A.: , 2019; Prediction of epilepsy seizure from multi-channel electroencephalogram by effective connectivity analysis using granger causality and directed transfer function methods; Cognitive neurodynamics; 13: 461–473.; [Herranz-Gómez et al., 2020] Herranz-Gómez, A.; Gaudiosi, C.; Angulo-Díaz-Parreño, S.; Suso-Martí, L.; La Touche, R. & Cuenca-Martínez, F.: , 2020; Effectiveness of motor imagery and action observation on functional variables: An umbrella and mapping review with meta-meta-analysis; Neuroscience & Biobehavioral Reviews.; [Hobson & Bishop, 2017] Hobson, H. M. & Bishop, D. V.: , 2017; The interpretation of mu suppression as an index of mirror neuron activity: past, present and future; Royal Society Open Science; 4 (3): 160662.; [Hochberg et al., 2012] Hochberg, L. R.; Bacher, D.; Jarosiewicz, B.; Masse, N. Y.; Simeral, J. D.; Vogel, J.; Haddadin, S.; Liu, J.; Cash, S. S.; Van Der Smagt, P. et al.: , 2012; Reach and grasp by people with tetraplegia using a neurally controlled robotic arm; Nature; 485 (7398): 372–375.; [Hossain et al., 2023] Hossain, K. M.; Islam, M. A.; Hossain, S.; Nijholt, A. & Ahad, M. A. R.: , 2023; Status of deep learning for eeg-based brain–computer interface applications; Frontiers in computational neuroscience; 16: 1006763.; [Hosseini et al., 2020a] Hosseini, M.; Powell, M.; Collins, J.; Callahan-Flintoft, C.; Jones, W.; Bowman, H. & Wyble, B.: , 2020a; I tried a bunch of things: The dangers of unexpected overfitting in classification of brain data; Neuroscience & Biobehavioral Reviews.; [Hosseini et al., 2020b] Hosseini, M.-P.; Hosseini, A. & Ahi, K.: , 2020b; A review on machine learning for EEG signal processing in bioengineering; IEEE reviews in biomedical engineering.; [Hrisca-Eva & Lazar, 2021] Hrisca-Eva, O.-D. & Lazar, A. M.: , 2021; Multi-sessions outcome for EEG feature extraction and classification methods in a motor imagery task.; Traitement du Signal; 38 (2).; [Hsu & Chen, 2020] Hsu, L. & Chen, Y.-J.: , 2020; Neuromarketing, subliminal advertising, and hotel selection: An EEG study; Australasian Marketing Journal (AMJ); 28 (4): 200–208.; [Huang et al., 2023] Huang, G.; Zhao, Z.; Zhang, S.; Hu, Z.; Fan, J.; Fu, M.; Chen, J.; Xiao, Y.; Wang, J. & Dan, G.: , 2023; Discrepancy between inter-and intra-subject variability in eeg-based motor imagery brain-computer interface: Evidence from multiple perspectives; Frontiers in Neuroscience; 17: 1122661.; [Huang et al., 2022] Huang, Q.; Yamada, M.; Tian, Y.; Singh, D. & Chang, Y.: , 2022; Graphlime: Local interpretable model explanations for graph neural networks; IEEE Transactions on Knowledge and Data Engineering.; [Hurtado-Rincón et al., 2016] Hurtado-Rincón, J. V.; Martínez-Vargas, J. D.; Rojas-Jaramillo, S.; Giraldo, E. & Castellanos-Dominguez, G.: , 2016; Identification of relevant inter-channel EEG connectivity patterns: a kernel-based supervised approach; en International Conference on Brain Informatics; Springer; págs. 14–23.; [Idowu et al., 2021] Idowu, O. P.; Ilesanmi, A. E.; Li, X.; Samuel, O. W.; Fang, P. & Li, G.: , 2021; An integrated deep learning model for motor intention recognition of multi-class EEG signals in upper limb amputees; Computer Methods and Programs in Biomedicine; 206: 106121.; [Ismail & Karwowski, 2020] Ismail, L. E. & Karwowski, W.: , 2020; A graph theory-based modeling of functional brain connectivity based on EEG: A systematic review in the context of neuroergonomics; IEEE Access; 8: 155103–155135.; [Iturralde et al., 2012] Iturralde, P. A.; Patrone, M.; Lecumberry, F. & Fernández, A.: , 2012; Motor intention recognition in EEG: In pursuit of a relevant feature set; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 551–558.; [Jahromy et al., 2019] Jahromy, F. Z.; Bajoulvand, A. & Daliri, M. R.: , 2019; Statistical algorithms for emo- tion classification via functional connectivity.; Journal of Integrative Neuroscience; 18 (3): 293–297; doi:10.31083/j. jin.2019.03.601; URL https://app.dimensions.ai/details/publication/pub.1121421951andhttps://jin.imrpress.com/EN/article/ downloadArticleFile.do?attachType=PDF&id=1604.; [Jain & Zongker, 1997] Jain, A. & Zongker, D.: , 1997; Feature selection: Evaluation, application, and small sample performance; IEEE transactions on pattern analysis and machine intelligence; 19 (2): 153–158.; [Janapati et al., 2023] Janapati, R.; Dalal, V. & Sengupta, R.: , 2023; Advances in modern eeg-bci signal processing: A review; Materials Today: Proceedings; 80: 2563–2566.; [Jiang et al., 2021a] Jiang, P.-T.; Zhang, C.-B.; Hou, Q.; Cheng, M.-M. & Wei, Y.: , 2021a; Layercam: Exploring hierarchical class activation maps for localization; IEEE Transactions on Image Processing; 30: 5875–5888.; [Jiang et al., 2021b] Jiang, Y.; Chen, W.; Li, M.; Zhang, T. & You, Y.: , 2021b; Synchroextracting chirplet transform-based epileptic seizures detection using EEG; Biomedical Signal Processing and Control; 68: 102699.; [Jin et al., 2021] Jin, J.; Sun, H.; Daly, I.; Li, S.; Liu, C.; Wang, X. & Cichocki, A.: , 2021; A novel classification framework using the graph representations of electroencephalogram for motor imagery based brain-computer interface; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 30: 20–29.; [Johnson et al., 2018] Johnson, N. N.; Carey, J.; Edelman, B. J.; Doud, A.; Grande, A.; Lakshminarayan, K. & He, B.: , 2018; Combined rtms and virtual reality brain–computer interface training for motor recovery after stroke; Journal of neural engineering; 15 (1): 016009.; [Ju & Guan, 2023] Ju, C. & Guan, C.: , 2023; Graph neural networks on spd manifolds for motor imagery classification: A perspective from the time–frequency analysis; IEEE Transactions on Neural Networks and Learning Systems.; [Kant et al., 2020] Kant, P.; Laskar, S. H.; Hazarika, J. & Mahamune, R.: , 2020; Cwt based transfer learning for motor imagery classification for brain computer interfaces; Journal of Neuroscience Methods; 345: 108886.; [Kaper et al., 2004] Kaper, M.; Meinicke, P.; Grossekathoefer, U.; Lingner, T. & Ritter, H.: , 2004; BCI competition 2003-data set IIb: support vector machines for the p300 speller paradigm; IEEE Transactions on biomedical Engineering; 51 (6): 1073–1076.; [Kawanabe et al., 2006] Kawanabe, M.; Krauledat, M. & Blankertz, B.: , 2006; A bayesian approach for adaptive BCI classification; Citeseer.; [Khademi et al., 2023] Khademi, Z.; Ebrahimi, F. & Kordy, H. M.: , 2023; A review of critical challenges in mi-bci: From conventional to deep learning methods; Journal of Neuroscience Methods; 383: 109736.; [Khan et al., 2021] Khan, D. M.; Yahya, N.; Kamel, N. & Faye, I.: , 2021; Effective connectivity in default mode network for alcoholism diagnosis; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 796–808.; [Khan et al., 2020] Khan, M. A.; Das, R.; Iversen, H. K. & Puthusserypady, S.: , 2020; Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application; Computers in Biology and Medicine: 103843.; [Khosla et al., 2020] Khosla, A.; Khandnor, P. & Chand, T.: , 2020; A comparative analysis of signal processing and classification methods for different applications based on EEG signals; Biocybernetics and Biomedical Engineering; 40 (2): 649–690.; [Kim et al., 2022] Kim, S.-J.; Lee, D.-H. & Lee, S.-W.: , 2022; Rethinking cnn architecture for enhancing decoding performance of motor imagery-based eeg signals; IEEE Access; 10: 96984–96996.; [Kim et al., 2019] Kim, Y.; Lee, S.; Kim, H.; Lee, S.; Lee, S. & Kim, D.: , 2019; Reduced burden of individual calibration process in brain-computer interface by clustering the subjects based on brain activation; en 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC); IEEE; págs. 2139–2143.; [Kingma, 2014] Kingma, D. P.: , 2014; Adam: A method for stochastic optimization; arXiv preprint arXiv:1412.6980.; [Knapen, 2021] Knapen, T.: , 2021; Topographic connectivity reveals task-dependent retinotopic processing throughout the human brain; Proceedings of the National Academy of Sciences; 118 (2).; [Köllőd et al., 2023] Köllőd, C. M.; Adolf, A.; Iván, K.; Márton, G. & Ulbert, I.: , 2023; Deep comparisons of neural networks from the eegnet family; Electronics; 12 (12): 2743.; [Kondratyev et al., 2020] Kondratyev, A.; Schwarz, C. & Horvath, B.: , 2020; Data anonymisation, outlier detection and fighting overfitting with restricted boltzmann machines; Outlier Detection and Fighting Overfitting with Restricted Boltzmann Machines (January 27, 2020).; [Kostiukevych et al., 2021] Kostiukevych, K.; Stirenko, S.; Gordienko, N.; Rokovyi, O.; Alienin, O. & Gordienko, Y.: , 2021; Convolutional and recurrent neural networks for physical action forecasting by brain-computer interface; en 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), tomo 2; IEEE; págs. 973–978.; [Kotte & Dabbakuti, 2020] Kotte, S. & Dabbakuti, J. K.: , 2020; Methods for removal of artifacts from eeg signal: A review; en Journal of Physics: Conference Series, tomo 1706; IOP Publishing; pág. 012093.; [Kraeutner et al., 2016] Kraeutner, S. N.; MacKenzie, L. A.; Westwood, D. A. & Boe, S. G.: , 2016; Characterizing skill acquisition through motor imagery with no prior physical practice.; Journal of Experimental Psychology: Human Perception and Performance; 42 (2): 257.; [Kuang, 2021] Kuang, P.-C.: , 2021; Measuring information flow among international stock markets: An approach of entropy-based networks on multi time-scales; Physica A: Statistical Mechanics and its Applications; 577: 126068.; [Kübler, 2020] Kübler, A.: , 2020; The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome; Neuroethics; 13 (2): 163–180.; [Kulatilleke, 2023] Kulatilleke, G.: , 2023; Towards efficient graph neural networks for optimizing illicit dark web interventions.; [Kulkarni et al., 2019] Kulkarni, P. M.; Xiao, Z.; Robinson, E. J.; Jami, A. S.; Zhang, J.; Zhou, H.; Henin, S. E.; Liu, A. A.; Osorio, R. S.; Wang, J. et al.: , 2019; A deep learning approach for real-time detection of sleep spindles; Journal of neural engineering; 16 (3): 036004.; [Kumar et al., 2018] Kumar, S.; Reddy, T. & Behera, L.: , 2018; Eeg based motor imagery classification using instantaneous phase difference sequence; en 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 499–504.; [Kumar et al., 2019] Kumar, S.; Sharma, A. & Tsunoda, T.: , 2019; Brain wave classification using long short-term memory network based OPTICAL predictor; Scientific reports; 9 (1): 1–13.; [Kumar et al., 2021] Kumar, S.; Sharma, R. & Sharma, A.: , 2021; Optical+: a frequency-based deep learning scheme for recognizing brain wave signals; Peerj Computer Science; 7: e375.; [Kwon et al., 2021] Kwon, B.-H.; Jeong, J.-H. & Lee, S.-W.: , 2021; Visual motion imagery classification with deep neural network based on functional connectivity; arXiv preprint arXiv:2103.02851.; [Kwon et al., 2019] Kwon, O.-Y.; Lee, M.-H.; Guan, C. & Lee, S.-W.: , 2019; Subject-independent brain–computer interfaces based on deep convolutional neural networks; IEEE transactions on neural networks and learning systems; 31 (10): 3839–3852.; [Ladda et al., 2021] Ladda, A. M.; Lebon, F. & Lotze, M.: , 2021; Using motor imagery practice for improving motor performance–a review; Brain and cognition; 150: 105705.; [Lahane et al., 2019] Lahane, P.; Jagtap, J.; Inamdar, A.; Karne, N. & Dev, R.: , 2019; A review of recent trends in eeg based brain-computer interface; en 2019 International Conference on Computational Intelligence in Data Science (ICCIDS); IEEE; págs. 1–6.; [Lakshmi et al., 2014] Lakshmi, M. R.; Prasad, T. & Prakash, D. V. C.: , 2014; Survey on EEG signal processing methods; International Journal of Advanced Research in Computer Science and Software Engineering; 4 (1).; [Lawhern et al., 2018] Lawhern, V. J.; Solon, A. J.; Waytowich, N. R.; Gordon, S. M.; Hung, C. P. & Lance, B. J.: , 2018; Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces; Journal of neural engineering; 15 (5): 056013.; [Le et al., 2021] Le, N. Q. K.; Kha, Q. H.; Nguyen, V. H.; Chen, Y.-C.; Cheng, S.-J. & Chen, C.-Y.: , 2021; Machine learning-based radiomics signatures for egfr and kras mutations prediction in non-small-cell lung cancer; International journal of molecular sciences; 22 (17): 9254.; [Lebedev & Nicolelis, 2006] Lebedev, M. A. & Nicolelis, M. A.: , 2006; Brain–machine interfaces: past, present and future; TRENDS in Neurosciences; 29 (9): 536–546.; [Ledoit & Wolf, 2004] Ledoit, O. & Wolf, M.: , 2004; A well-conditioned estimator for large-dimensional covariance matrices; Journal of multivariate analysis; 88 (2): 365–411.; [Lee et al., 2004] Lee, F.; Scherer, R.; Leeb, R.; Schlögl, A.; Bischof, H. & Pfurtscheller, G.: , 2004; Feature mapping using PCA, locally linear embedding and isometric feature mapping for EEG-based brain computer interface; Citeseer.; [Lee & Choi, 2019] Lee, H. K. & Choi, Y.-S.: , 2019; Application of continuous wavelet transform and convolutional neural network in decoding motor imagery brain-computer interface; Entropy; 21 (12): 1199.; [Lee et al., 2020] Lee, M.; Yoon, J.-G. & Lee, S.-W.: , 2020; Predicting motor imagery performance from resting-state eeg using dynamic causal modeling; Frontiers in human neuroscience; 14: 321.; [Leeuwis et al., 2021] Leeuwis, N.; Yoon, S. & Alimardani, M.: , 2021; Functional connectivity analysis in motor-imagery brain computer interfaces; Frontiers in Human Neuroscience; 15: 732946.; [Li et al., 2021a] Li, B.; Cheng, T. & Guo, Z.: , 2021a; A review of eeg acquisition, processing and application; en Journal of Physics: Conference Series, tomo 1907; IOP Publishing; pág. 012045.; [Li et al., 2015] Li, J.; Struzik, Z.; Zhang, L. & Cichocki, A.: , 2015; Feature learning from incomplete eeg with denoising autoencoder; Neurocomputing; 165: 23–31.; [Li et al., 2019a] Li, J. W.; Barma, S.; Mak, P. U.; Pun, S. H. & Vai, M. I.: , 2019a; Brain rhythm sequencing using eeg signals: A case study on seizure detection; IEEE Access; 7: 160112–160124.; [Li & Principe, 2020] Li, K. & Principe, J. C.: , 2020; Fast estimation of information theoretic learning descriptors using explicit inner product spaces; arXiv preprint arXiv:2001.00265.; [Li & Chen, 2021] Li, M. & Chen, W.: , 2021; FFT-based deep feature learning method for EEG classification; Biomedical Signal Processing and Control; 66: 102492.; [Li et al., 2016] Li, M.; Luo, X.; Yang, J. & Sun, Y.: , 2016; Applying a locally linear embedding algorithm for feature extraction and visualization of MI-EEG; Journal of Sensors; 2016.; [Li et al., 2019b] Li, M.-A.; Han, J.-F. & Duan, L.-J.: , 2019b; A novel mi-eeg imaging with the location information of electrodes; IEEE Access; 8: 3197–3211.; [Li, 2022] Li, P.: , 2022; Bayesian networks for brain-computer interfaces: A survey; arXiv preprint arXiv:2206.07487.; [Li et al., 2019c] Li, S.; Xie, X.; Gu, Z.; Yu, Z. L. & Li, Y.: , 2019c; Motor imagery classification based on local isometric embedding of riemannian manifold; en 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA); IEEE; págs. 2368–2372.; [Li et al., 2019d] Li, Y.; Zhang, X.-R.; Zhang, B.; Lei, M.-Y.; Cui, W.-G. & Guo, Y.-Z.: , 2019d; A channel-projection mixed- scale convolutional neural network for motor imagery EEG decoding; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 27 (6): 1170–1180.; [Li et al., 2020] Li, Y.; Liu, Y.; Cui, W.-G.; Guo, Y.-Z.; Huang, H. & Hu, Z.-Y.: , 2020; Epileptic seizure detection in EEG signals using a unified temporal-spectral squeeze-and-excitation network; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (4): 782–794.; [Li et al., 2021b] Li, Y.; Fu, B.; Li, F.; Shi, G. & Zheng, W.: , 2021b; A novel transferability attention neural network model for EEG emotion recognition; Neurocomputing; 447: 92–101.; [Lim et al., 2021] Lim, J.-S.; Lee, J.-J. & Woo, C.-W.: , 2021; Post-stroke cognitive impairment: pathophysiological insights into brain disconnectome from advanced neuroimaging analysis techniques; Journal of Stroke; 23 (3): 297–311.; [Lin et al., 2021] Lin, Y.-S.; Lee, W.-C. & Celik, Z. B.: , 2021; What do you see? evaluation of explainable artificial intelligence (xai) interpretability through neural backdoors; en Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining; págs. 1027–1035.; [Linderman & Steinerberger, 2019] Linderman, G. & Steinerberger, S.: , 2019; Clustering with t-sne, provably; SIAM Journal on Mathematics of Data Science; 1 (2): 313–332.; [Liu & Gillies, 2016] Liu, R. & Gillies, D. F.: , 2016; Overfitting in linear feature extraction for classification of high-dimensional image data; Pattern Recognition; 53: 73–86.; [Liu & Yang, 2021] Liu, T. & Yang, D.: , 2021; A densely connected multi-branch 3d convolutional neural network for motor imagery eeg decoding; Brain Sciences; 11 (2): 197.; [Liu et al., 2024] Liu, W.; Guo, C. & Gao, C.: , 2024; A cross-session motor imagery classification method based on riemannian geometry and deep domain adaptation; Expert Systems with Applications; 237: 121612.; [Llanos et al., 2013] Llanos, C.; Rodriguez, M.; Rodriguez-Sabate, C.; Morales, I. & Sabate, M.: , 2013; Mu-rhythm changes during the planning of motor and motor imagery actions; Neuropsychologia; 51 (6): 1019–1026.; [Lopez et al., 2020] Lopez, C. A. F.; Li, G. & Zhang, D.: , 2020; Beyond technologies of electroencephalography-based brain- computer interfaces: A systematic review from commercial and ethical aspects; Frontiers in Neuroscience; 14.; [Lotte et al., 2018] Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A. & Yger, F.: , 2018; A review of classification algorithms for eeg-based brain–computer interfaces: a 10 year update; Journal of neural engineering; 15 (3): 031005.; [Lu et al., 2011] Lu, C.-F.; Teng, S.; Hung, C.-I.; Tseng, P.-J.; Lin, L.-T.; Lee, P.-L. & Wu, Y.-T.: , 2011; Reorganiza- tion of functional connectivity during the motor task using EEG time–frequency cross mutual information analysis; Clinical Neurophysiology; 122 (8): 1569–1579.; [Luo et al., 2019] Luo, J.; Wang, J.; Xu, R. & Xu, K.: , 2019; Class discrepancy-guided sub-band filter-based common spatial pattern for motor imagery classification; Journal of neuroscience methods; 323: 98–107.; [Luo et al., 2020] Luo, J.; Gao, X.; Zhu, X.; Wang, B.; Lu, N. & Wang, J.: , 2020; Motor imagery eeg classification based on ensemble support vector learning; Computer methods and programs in biomedicine; 193: 105464.; [Luo et al., 2018] Luo, T.-j.; Zhou, C.-l. & Chao, F.: , 2018; Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network; BMC bioinformatics; 19 (1): 1–18.; [Luo et al., 2021] Luo, Z.; Jin, R.; Shi, H. & Lu, X.: , 2021; Research on recognition of motor imagination based on connectivity features of brain functional network; Neural plasticity; 2021.; [Ma et al., 2023] Ma, W.; Wang, C.; Sun, X.; Lin, X. & Wang, Y.: , 2023; A double-branch graph convolutional network based on individual differences weakening for motor imagery eeg classification; Biomedical Signal Processing and Control; 84: 104684.; [Ma et al., 2020] Ma, X.; Wang, D.; Liu, D. & Yang, J.: , 2020; Dwt and cnn based multi-class motor imagery electroencephalo- graphic signal recognition; Journal of neural engineering; 17 (1): 016073.; [Maiseli et al., 2023] Maiseli, B.; Abdalla, A. T.; Massawe, L. V.; Mbise, M.; Mkocha, K.; Nassor, N. A.; Ismail, M.; Michael, J. & Kimambo, S.: , 2023; Brain–computer interface: trend, challenges, and threats; Brain Informatics; 10 (1): 20.; [Maksimenko et al., 2017] Maksimenko, V. A.; Lüttjohann, A.; Makarov, V. V.; Goremyko, M. V.; Koronovskii, A. A.; Nedaivozov, V.; Runnova, A. E.; van Luijtelaar, G.; Hramov, A. E. & Boccaletti, S.: , 2017; Macroscopic and microscopic spectral properties of brain networks during local and global synchronization; Physical Review E; 96 (1): 012316.; [Mammone et al., 2023] Mammone, N.; Ieracitano, C.; Adeli, H. & Morabito, F. C.: , 2023; Autoencoder filter bank common spatial patterns to decode motor imagery from eeg; IEEE Journal of Biomedical and Health Informatics.; [Martínez-Cancino et al., 2020] Martínez-Cancino, R.; Delorme, A.; Wagner, J.; Kreutz-Delgado, K.; Sotero, R. C. & Makeig, S.: , 2020; What can local transfer entropy tell us about phase-amplitude coupling in electrophysiological signals?; Entropy; 22 (11): 1262.; [Matemba et al., 2020] Matemba, E. D.; Li, G.; Gogan, I. C. W. & Maiseli, B. J.: , 2020; Technology acceptance model: recent developments, future directions, and proposal for hypothetical extensions; International Journal of Technology Intelligence and Planning; 12 (4): 315–348.; [McFarland & Wolpaw, 2011] McFarland, D. J. & Wolpaw, J. R.: , 2011; Brain-computer interfaces for communication and control; Communications of the ACM; 54 (5): 60–66.; [Meanti et al., 2020] Meanti, G.; Carratino, L.; Rosasco, L. & Rudi, A.: , 2020; Kernel methods through the roof: handling billions of points efficiently; arXiv preprint arXiv:2006.10350.; [Meers et al., 2020] Meers, R.; Nuttall, H. E. & Vogt, S.: , 2020; Motor imagery alone drives corticospinal excitability during concurrent action observation and motor imagery; Cortex; 126: 322–333.; [Meng et al., 2023] Meng, J.; Zhao, Y.; Wang, K.; Sun, J.; Yi, W.; Xu, F.; Xu, M. & Ming, D.: , 2023; Rhythmic temporal prediction enhances neural representations of movement intention for brain–computer interface; Journal of Neural Engineering; 20 (6): 066004.; [Miah et al., 2020] Miah, A. S. M.; Rahim, M. A. & Shin, J.: , 2020; Motor-imagery classification using riemannian geometry with median absolute deviation; Electronics; 9 (10): 1584.; [Miao et al., 2020] Miao, M.; Hu, W.; Yin, H. & Zhang, K.: , 2020; Spatial-frequency feature learning and classification of motor imagery eeg based on deep convolution neural network; Computational and mathematical methods in medicine; 2020.; [Midha et al., 2021] Midha, S.; Maior, H. A.; Wilson, M. L. & Sharples, S.: , 2021; Measuring mental workload variations in office work tasks using fnirs; International Journal of Human-Computer Studies; 147: 102580.; [Miladinović et al., 2021] Miladinović, A.; Ajčević, M.; Jarmolowska, J.; Marusic, U.; Colussi, M.; Silveri, G.; Battaglini, P. P. & Accardo, A.: , 2021; Effect of power feature covariance shift on BCI spatial-filtering techniques: A comparative study; Computer Methods and Programs in Biomedicine; 198: 105808.; [Miljevic et al., 2022] Miljevic, A.; Bailey, N. W.; Vila-Rodriguez, F.; Herring, S. E. & Fitzgerald, P. B.: , 2022; Electroen- cephalographic connectivity: a fundamental guide and checklist for optimal study design and evaluation; Biological Psychiatry: Cognitive Neuroscience and Neuroimaging; 7 (6): 546–554.; [Millan & Mouriño, 2003] Millan, J. R. & Mouriño, J.: , 2003; Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project; IEEE transactions on neural systems and rehabilitation engineering; 11 (2): 159–161.; [Miotto et al., 2018] Miotto, R.; Wang, F.; Wang, S.; Jiang, X. & Dudley, J. T.: , 2018; Deep learning for healthcare: review, opportunities and challenges; Briefings in bioinformatics; 19 (6): 1236–1246.; [Mirzaei & Ghasemi, 2021] Mirzaei, S. & Ghasemi, P.: , 2021; EEG motor imagery classification using dynamic connectivity patterns and convolutional autoencoder; Biomedical Signal Processing and Control; 68: 102584.; [Modares-Haghighi et al., 2021] Modares-Haghighi, P.; Boostani, R.; Nami, M. & Sanei, S.: , 2021; Quantification of pain severity using EEG-based functional connectivity; Biomedical Signal Processing and Control; 69: 102840.; [Mohammadi et al., 2021] Mohammadi, L.; Einalou, Z.; Hosseinzadeh, H. & Dadgostar, M.: , 2021; Cursor movement detection in brain-computer-interface systems using the k-means clustering method and LSVM; Journal of Big Data; 8 (1): 1–15.; [Molina-Giraldo et al., 2015] Molina-Giraldo, S.; Carvajal-González, J.; Álvarez-Meza, A. M. & Castellanos-Domínguez, G.: , 2015; Video segmentation framework based on multi-kernel representations and feature relevance analysis for object classification; en Pattern recognition applications and methods; Springer; págs. 273–283.; [Molnar et al., 2020] Molnar, C.; Casalicchio, G. & Bischl, B.: , 2020; Interpretable machine learning–a brief history, state-of-the- art and challenges; en Joint European conference on machine learning and knowledge discovery in databases; Springer; págs. 417–431.; [Moran et al., 2012] Moran, A.; Guillot, A.; MacIntyre, T. & Collet, C.: , 2012; Re-imagining motor imagery: Building bridges between cognitive neuroscience and sport psychology; British Journal of Psychology; 103 (2): 224–247.; [Mridha et al., 2021] Mridha, M. F.; Das, S. C.; Kabir, M. M.; Lima, A. A.; Islam, M. R. & Watanobe, Y.: , 2021; Brain-computer interface: Advancement and challenges; Sensors; 21 (17): 5746.; [Mumtaz et al., 2018] Mumtaz, W.; Kamel, N.; Ali, S. S. A.; Malik, A. S. et al.: , 2018; An EEG-based functional connectivity measure for automatic detection of alcohol use disorder; Artificial intelligence in medicine; 84: 79–89.; [Musallam et al., 2021] Musallam, Y. K.; AlFassam, N. I.; Muhammad, G.; Amin, S. U.; Alsulaiman, M.; Abdul, W.; Altaheri, H.; Bencherif, M. A. & Algabri, M.: , 2021; Electroencephalography-based motor imagery classification using temporal convolutional network fusion; Biomedical Signal Processing and Control; 69: 102826.; [Naidu et al., 2020] Naidu, R.; Ghosh, A.; Maurya, Y.; Kundu, S. S. et al.: , 2020; Is-cam: Integrated score-cam for axiomatic- based explanations; arXiv preprint arXiv:2010.03023.; [Nentwich et al., 2020] Nentwich, M.; Ai, L.; Madsen, J.; Telesford, Q. K.; Haufe, S.; Milham, M. P. & Parra, L. C.: , 2020; Functional connectivity of eeg is subject-specific, associated with phenotype, and different from fmri; NeuroImage; 218: 117001.; [Nguyen et al., 2021] Nguyen, H. T. T.; Cao, H. Q.; Nguyen, K. V. T. & Pham, N. D. K.: , 2021; Evaluation of explainable artificial intelligence: Shap, lime, and cam; en Proceedings of the FPT AI Conference; págs. 1–6.; [Nicolini et al., 2020] Nicolini, C.; Forcellini, G.; Minati, L. & Bifone, A.: , 2020; Scale-resolved analysis of brain functional connectivity networks with spectral entropy; NeuroImage; 211: 116603.; [Nisar et al., 2018] Nisar, H.; Thee, K. W.; Lim, S. H.; Yap, V. V.; Teh, P. C.; Nor, N. M. & Chow, C. M.: , 2018; Brain functional connectivity analysis using single trial EEG for understanding individual mechanisms; en 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA); IEEE; págs. 209–214.; [Nkengfack et al., 2020] Nkengfack, L. C. D.; Tchiotsop, D.; Atangana, R.; Louis-Door, V. & Wolf, D.: , 2020; EEG signals analysis for epileptic seizures detection using polynomial transforms, linear discriminant analysis and support vector machines; Biomedical Signal Processing and Control; 62: 102141.; [Noshadi et al., 2014] Noshadi, S.; Abootalebi, V.; Sadeghi, M. T. & Shahvazian, M. S.: , 2014; Selection of an efficient feature space for EEG-based mental task discrimination; Biocybernetics and Biomedical Engineering; 34 (3): 159–168.; [Nunnari et al., 2021] Nunnari, F.; Kadir, M. A. & Sonntag, D.: , 2021; On the overlap between grad-cam saliency maps and explainable visual features in skin cancer images; en International Cross-Domain Conference for Machine Learning and Knowledge Extraction; Springer; págs. 241–253.; [Oikonomou et al., 2017] Oikonomou, V. P.; Georgiadis, K.; Liaros, G.; Nikolopoulos, S. & Kompatsiaris, I.: , 2017; A comparison study on eeg signal processing techniques using motor imagery eeg data; en 2017 IEEE 30th international symposium on computer-based medical systems (CBMS); IEEE; págs. 781–786.; [Omeiza et al., 2019] Omeiza, D.; Speakman, S.; Cintas, C. & Weldermariam, K.: , 2019; Smooth grad-CAM++: An enhanced inference level visualization technique for deep convolutional neural network models; arXiv preprint arXiv:1908.01224.; [O’Reilly & Chanmittakul, 2021] O’Reilly, J. A. & Chanmittakul, W.: , 2021; L1 regularization-based selection of EEG spectral power and ECG features for classification of cognitive state; en 2021 9th International Electrical Engineering Congress (iEECON); IEEE; págs. 365–368.; [Ortiz-Echeverri et al., 2019] Ortiz-Echeverri, C. J.; Salazar-Colores, S.; Rodríguez-Reséndiz, J. & Gómez-Loenzo, R. A.: , 2019; A new approach for motor imagery classification based on sorted blind source separation, continuous wavelet transform, and convolutional neural network; Sensors; 19 (20): 4541.; [Özdenizci et al., 2019] Özdenizci, O.; Wang, Y.; Koike-Akino, T. & Erdoğmuş, D.: , 2019; Adversarial deep learning in EEG biometrics; IEEE signal processing letters; 26 (5): 710–714.; [Padfield et al., 2019] Padfield, N.; Zabalza, J.; Zhao, H.; Masero, V. & Ren, J.: , 2019; Eeg-based brain-computer interfaces using motor-imagery: Techniques and challenges; Sensors; 19 (6): 1423.; [Pandey & Miyapuram, 2021] Pandey, P. & Miyapuram, K. P.: , 2021; BRAIN2DEPTH: Lightweight CNN model for classification of cognitive states from EEG recordings; arXiv preprint arXiv:2106.06688.; [Parhi & Tewfik, 2021] Parhi, M. & Tewfik, A. H.: , 2021; Classifying imaginary vowels from frontal lobe EEG via deep learning; en 2020 28th European Signal Processing Conference (EUSIPCO); IEEE; págs. 1195–1199.; [Park et al., 2023] Park, S.; Ha, J. & Kim, L.: , 2023; Improving performance of motor imagery-based brain–computer interface in poorly performing subjects using a hybrid-imagery method utilizing combined motor and somatosensory activity; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 31: 1064–1074.; [Park et al., 2017] Park, S.-H.; Lee, D. & Lee, S.-G.: , 2017; Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 26 (2): 498–505.; [Paz-Linares et al., 2017] Paz-Linares, D.; Vega-Hernandez, M.; Rojas-Lopez, P. A.; Valdes-Hernandez, P. A.; Martinez- Montes, E. & Valdes-Sosa, P. A.: , 2017; Spatio temporal EEG source imaging with the hierarchical bayesian elastic net and elitist lasso models; Frontiers in neuroscience; 11: 635.; [Perdikis et al., 2018] Perdikis, S.; Tonin, L.; Saeedi, S.; Schneider, C. & Millán, J. d. R.: , 2018; The cybathlon bci race: Successful longitudinal mutual learning with two tetraplegic users; PLoS biology; 16 (5): e2003787.; [Peterson et al., 2019] Peterson, V.; Wyser, D.; Lambercy, O.; Spies, R. & Gassert, R.: , 2019; A penalized time-frequency band feature selection and classification procedure for improved motor intention decoding in multichannel EEG; Journal of Neural Engineering; 16 (1): 016019.; [Philip et al., 2022] Philip, B. S.; Prasad, G. & Hemanth, D. J.: , 2022; Non-stationarity removal techniques in meg data: A review; Procedia Computer Science; 215: 824–833.; [Phunruangsakao et al., 2023] Phunruangsakao, C.; Achanccaray, D.; Bhattacharyya, S.; Izumi, S.-I. & Hayashibe, M.: , 2023; Effects of visual-electrotactile stimulation feedback on brain functional connectivity during motor imagery practice; Scientific Reports; 13 (1): 17752.; [Pope et al., 2019] Pope, P. E.; Kolouri, S.; Rostami, M.; Martin, C. E. & Hoffmann, H.: , 2019; Explainability methods for graph convolutional neural networks; en Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; págs. 10772–10781.; [Prakash et al., ] Prakash, E. I.; Shrikumar, A. & Kundaje, A.:; Towards more realistic simulated datasets for benchmarking deep learning models in regulatory genomics; en Machine Learning in Computational Biology; PMLR; págs. 58–77.; [Principe, 2010] Principe, J. C.: , 2010; Information theoretic learning: Renyi’s entropy and kernel perspectives; Springer Science & Business Media.; [Pulgarin-Giraldo et al., 2017] Pulgarin-Giraldo, J. D.; Ruales-Torres, A.; Álvarez-Meza, A. M. & Castellanos-Dominguez, G.: , 2017; Relevant kinematic feature selection to support human action recognition in MoCap data; en International Work-Conference on the Interplay Between Natural and Artificial Computation; Springer; págs. 501–509.; [Purves, 2001] Purves, W. K.: , c 2001.; Life, the science of biology /; Sinauer Associates„ Sunderland, MA :; 6a edición; includes index.; [Qian et al., 2018] Qian, X.; Loo, B. R. Y.; Castellanos, F. X.; Liu, S.; Koh, H. L.; Poh, X. W. W.; Krishnan, R.; Fung, D.; Chee, M. W.; Guan, C. et al.: , 2018; Brain-computer-interface-based intervention re-normalizes brain functional network topology in children with attention deficit/hyperactivity disorder; Translational psychiatry; 8 (1): 149.; [Qiao et al., 2023] Qiao, R.; Zhang, H. & Tian, Y.: , 2023; Eeg cortical network reveals the temporo-spatial mechanism of visual search; Brain Research Bulletin; 203: 110758.; [Qiumei et al., 2019] Qiumei, Z.; Dan, T. & Fenghua, W.: , 2019; Improved convolutional neural network based on fast exponentially linear unit activation function; Ieee Access; 7: 151359–151367.; [Raeisi et al., 2020] Raeisi, K.; Mohebbi, M.; Khazaei, M.; Seraji, M. & Yoonessi, A.: , 2020; Phase-synchrony evaluation of EEG signals for multiple sclerosis diagnosis based on bivariate empirical mode decomposition during a visual task; Computers in biology and medicine; 117: 103596.; [Raeisi et al., 2022] Raeisi, K.; Khazaei, M.; Croce, P.; Tamburro, G.; Comani, S. & Zappasodi, F.: , 2022; A graph convolutional neural network for the automated detection of seizures in the neonatal eeg; Computer methods and programs in biomedicine; 222: 106950.; [Rahate et al., 2022] Rahate, A.; Walambe, R.; Ramanna, S. & Kotecha, K.: , 2022; Multimodal co-learning: challenges, applications with datasets, recent advances and future directions; Information Fusion; 81: 203–239.; [Rahimi et al., 2007] Rahimi, A.; Recht, B. et al.: , 2007; Random features for large-scale kernel machines.; en NIPS, tomo 3; Citeseer; pág. 5.; [Ramadan & Vasilakos, 2017] Ramadan, R. A. & Vasilakos, A. V.: , 2017; Brain computer interface: control signals review; Neurocomputing; 223: 26–44.; [Ramadan et al., 2015] Ramadan, R. A.; Refat, S.; Elshahed, M. A. & Ali, R. A.: , 2015; Basics of brain computer interface; en Brain-Computer Interfaces; Springer; págs. 31–50.; [Ras et al., 2018] Ras, G.; van Gerven, M. & Haselager, P.: , 2018; Explanation methods in deep learning: Users, values, concerns and challenges; Explainable and interpretable models in computer vision and machine learning: 19–36.; [Rashed-Al-Mahfuz et al., 2021] Rashed-Al-Mahfuz, M.; Moni, M. A.; Uddin, S.; Alyami, S. A.; Summers, M. A. & Eapen, V.: , 2021; A deep convolutional neural network method to detect seizures and characteristic frequencies using epileptic electroencephalogram (eeg) data; IEEE journal of translational engineering in health and medicine; 9: 1–12.; [Rasheed et al., 2021] Rasheed, M. A.; Chand, P.; Ahmed, S.; Sharif, H.; Hoodbhoy, Z.; Siddiqui, A. & Hasan, B. S.: , 2021; Use of artificial intelligence on electroencephalogram (EEG) waveforms to predict failure in early school grades in children from a rural cohort in pakistan; Plos one; 16 (2): e0246236.; [Rashid et al., 2020] Rashid, M.; Sulaiman, N.; PP Abdul Majeed, A.; Musa, R. M.; Ab Nasir, A. F.; Bari, B. S. & Khatun, S.: , 2020; Current status, challenges, and possible solutions of eeg-based brain-computer interface: a comprehensive review; Frontiers in neurorobotics: 25.; [Rashkov et al., 2019] Rashkov, G.; Bobe, A.; Fastovets, D. & Komarova, M.: , 2019; Natural image reconstruction from brain waves: a novel visual bci system with native feedback; BioRxiv : 787101.; [Rathee et al., 2017] Rathee, D.; Cecotti, H. & Prasad, G.: , 2017; Single-trial effective brain connectivity patterns enhance discriminability of mental imagery tasks; Journal of neural engineering; 14 (5): 056005.; [Ravaioli et al., 2023] Ravaioli, G.; Domingos, T. & Teixeira, R. F.: , 2023; A framework for data-driven agent-based modelling of agricultural land use; Land; 12 (4): 756.; [Rejer & Lorenz, 2013] Rejer, I. & Lorenz, K.: , 2013; Genetic algorithm and forward method for feature selection in EEG feature space; Journal of Theoretical and Applied Computer Science; 7 (2): 72–82.; [Rényi, 1961] Rényi, A.: , 1961; On measures of entropy and information; en Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, tomo 4; University of California Press; págs. 547–562.; [Reuderink et al., 2011] Reuderink, B.; Farquhar, J.; Poel, M. & Nijholt, A.: , 2011; A subject-independent brain-computer interface based on smoothed, second-order baselining; en 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; IEEE; págs. 4600–4604.; [Rezaei & Shalbaf, 2023] Rezaei, E. & Shalbaf, A.: , 2023; Classification of right/left hand motor imagery by effective connectivity based on transfer entropy in electroencephalogram signal; Basic and Clinical Neuroscience; 14 (2): 213.; [Riahi et al., 2020] Riahi, N.; Vakorin, V. A. & Menon, C.: , 2020; Estimating fugl-meyer upper extremity motor score from functional-connectivity measures; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (4): 860–868.; [Rimbert et al., 2020] Rimbert, S.; Bougrain, L. & Fleck, S.: , 2020; Learning how to generate kinesthetic motor imagery using a bci-based learning environment: A comparative study based on guided or trial-and-error approaches; en 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 2483–2498.; [Rodrigues et al., 2019a] Rodrigues, P.; Stefano, C.; Attux, R.; Castellano, G. & Soriano, D.: , 2019a; Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces; Medical & biological engineering & computing; 57 (8): 1709–1725.; [Rodrigues et al., 2020] Rodrigues, P.; Fim-Neto, A.; Sato, J.; Soriano, D. & Nasuto, S.: , 2020; Single-trial functional connectivity dynamics of event-related desynchronization for motor imagery eeg-based brain-computer interfaces; en Brazilian Congress on Biomedical Engineering; Springer; págs. 1887–1893.; [Rodrigues et al., 2019b] Rodrigues, P. G.; Stefano Filho, C. A.; Attux, R.; Castellano, G. & Soriano, D. C.: , 2019b; Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces; Medical & biological engineering & computing; 57 (8): 1709–1725.; [Rodrigues et al., 2022] Rodrigues, P. G.; Filho, C. A. S.; Takahata, A. K.; Suyama, R.; Attux, R.; Castellano, G.; Sato, J. R.; Nasuto, S. J. & Soriano, D. C.: , 2022; Can dynamic functional connectivity be used to distinguish between resting-state and motor imagery in eeg-bcis?; en Complex Networks & Their Applications X: Volume 2, Proceedings of the Tenth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2021 10; Springer; págs. 688–699.; [Rongrong et al., 2020] Rongrong, F.; Mengmeng, H.; Yongsheng, T. & Peiming, S.: , 2020; Improvement motor imagery eeg classification based on sparse common spatial pattern and regularized discriminant analysis; Journal of Neuroscience Methods; 343: 108833.; [Roweis & Ghahramani, 1999] Roweis, S. & Ghahramani, Z.: , 1999; A unifying review of linear gaussian models; Neural computation; 11 (2): 305–345.; [Roy et al., 2022] Roy, G.; Bhoi, A. & Bhaumik, S.: , 2022; A comparative approach for mi-based eeg signals classification using energy, power and entropy; IRBM; 43 (5): 434–446.; [Rubinov & Sporns, 2010] Rubinov, M. & Sporns, O.: , 2010; Complex network measures of brain connectivity: uses and interpre- tations; Neuroimage; 52 (3): 1059–1069.; [Ruffino et al., 2017] Ruffino, C.; Papaxanthis, C. & Lebon, F.: , 2017; Neural plasticity during motor learning with motor imagery practice: Review and perspectives; Neuroscience; 341: 61–78.; [Ruiz-Gómez et al., 2020] Ruiz-Gómez, S. J.; Gómez, C.; Poza, J.; Revilla-Vallejo, M.; Gutiérrez-de Pablo, V.; Rodríguez- González, V.; Maturana-Candelas, A. & Hornero, R.: , 2020; Volume conduction effects on connectivity metrics: Application of network parameters to characterize alzheimer’s disease continuum; en 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 30–33.; [Saha & Baumert, 2020] Saha, S. & Baumert, M.: , 2020; Intra-and inter-subject variability in EEG-based sensorimotor brain computer interface: a review; Frontiers in computational neuroscience; 13: 87.; [Said et al., 2017] Said, S.; Bombrun, L.; Berthoumieu, Y. & Manton, J. H.: , 2017; Riemannian gaussian distributions on the space of symmetric positive definite matrices; IEEE Transactions on Information Theory; 63 (4): 2153–2170.; [Sakkalis, 2011] Sakkalis, V.: , 2011; Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG; Computers in biology and medicine; 41 (12): 1110–1117.; [Samuel et al., 2017] Samuel, O. W.; Geng, Y.; Li, X. & Li, G.: , 2017; Towards efficient decoding of multiple classes of motor imagery limb movements based on eeg spectral and time domain descriptors; Journal of medical systems; 41: 1–13.; [Sannelli et al., 2019] Sannelli, C.; Vidaurre, C.; Müller, K. & Blankertz, B.: , 2019; A large scale screening study with a smr-based bci: Categorization of bci users and differences in their smr activity; PLoS One; 14 (1): e0207351.; [Sarin et al., 2020] Sarin, M.; Verma, A.; Mehta, D. H.; Shukla, P. K. & Verma, S.: , 2020; Automated ocular artifacts identification and removal from EEG data using hybrid machine learning methods; en 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN); IEEE; págs. 1054–1059.; [Sarraf, 2017] Sarraf, S.: , 2017; Eeg-based movement imagery classification using machine learning techniques and welch’s power spectral density estimation; American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS); 33 (1): 124–145.; [Schirrmeister et al., 2017] Schirrmeister, R. T.; Springenberg, J. T.; Fiederer, L. D. J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W. & Ball, T.: , 2017; Deep learning with convolutional neural networks for EEG decoding and visualization; Human brain mapping; 38 (11): 5391–5420.; [Seghier & Price, 2018] Seghier, M. L. & Price, C. J.: , 2018; Interpreting and utilising intersubject variability in brain function; Trends in cognitive sciences; 22 (6): 517–530.; [Selvaraju et al., 2016] Selvaraju, R. R.; Das, A.; Vedantam, R.; Cogswell, M.; Parikh, D. & Batra, D.: , 2016; Grad-CAM: Why did you say that?; arXiv preprint arXiv:1611.07450.; [Selvaraju et al., 2017] Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D. & Batra, D.: , 2017; Grad-cam: Visual explanations from deep networks via gradient-based localization; en Proceedings of the IEEE international conference on computer vision; págs. 618–626.; [Shali & Setarehdan, 2020] Shali, R. K. & Setarehdan, S. K.: , 2020; The impact of electrode reduction in the diagnosis of dyslexia; en 2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME); IEEE; págs. 118–125.; [Shamsi et al., 2020a] Shamsi, F.; Haddad, A. & Najafizadeh, L.: , 2020a; Early classification of motor tasks using dynamic functional connectivity graphs from eeg; Journal of Neural Engineering.; [Shamsi et al., 2020b] Shamsi, F.; Haddad, A. et al.: , 2020b; Recognizing pain in motor imagery EEG recordings using dynamic functional connectivity graphs; en 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 2869–2872.; [Shamsi et al., 2021] Shamsi, F.; Haddad, A. & Najafizadeh, L.: , 2021; Early classification of motor tasks using dynamic functional connectivity graphs from EEG; Journal of Neural Engineering; 18 (1): 016015.; [Shao et al., 2020] Shao, L.; Zhang, L.; Belkacem, A. N.; Zhang, Y.; Chen, X.; Li, J. & Liu, H.: , 2020; EEG-controlled wall-crawling cleaning robot using SSVEP-based brain-computer interface; Journal of healthcare engineering; 2020.; [Sharma et al., 2023] Sharma, N.; Sharma, M.; Singhal, A.; Vyas, R.; Malik, H.; Afthanorhan, A. & Hossaini, M. A.: , 2023; Recent trends in eeg based motor imagery signal analysis and recognition: A comprehensive review.; IEEE Access.; [Shrikumar et al., 2017] Shrikumar, A.; Greenside, P. & Kundaje, A.: , 2017; Learning important features through propagating activation differences; en International conference on machine learning; PMLR; págs. 3145–3153.; [Si et al., 2020] Si, Y.; Li, F.; Duan, K.; Tao, Q.; Li, C.; Cao, Z.; Zhang, Y.; Biswal, B.; Li, P.; Yao, D. et al.: , 2020; Predicting individual decision-making responses based on single-trial eeg; NeuroImage; 206: 116333.; [Simon et al., 2013] Simon, N.; Friedman, J.; Hastie, T. & Tibshirani, R.: , 2013; A sparse-group lasso; Journal of computational and graphical statistics; 22 (2): 231–245.; [Simonyan et al., 2013] Simonyan, K.; Vedaldi, A. & Zisserman, A.: , 2013; Deep inside convolutional networks: Visualising image classification models and saliency maps; arXiv preprint arXiv:1312.6034.; [Singh et al., 2021] Singh, A.; Hussain, A. A.; Lal, S. & Guesgen, H. W.: , 2021; A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface; Sensors; 21 (6): 2173.; [Sisti et al., 2022] Sisti, H. M.; Beebe, A.; Bishop, M. & Gabrielsson, E.: , 2022; A brief review of motor imagery and bimanual coordination; Frontiers in Human Neuroscience; 16: 1037410.; [Sitaram et al., 2017] Sitaram, R.; Ros, T.; Stoeckel, L.; Haller, S.; Scharnowski, F.; Lewis-Peacock, J.; Weiskopf, N.; Blefari, M. L.; Rana, M.; Oblak, E. et al.: , 2017; Closed-loop brain training: the science of neurofeedback; Nature Reviews Neuroscience; 18 (2): 86–100.; [Siviero et al., 2023] Siviero, I.; Menegaz, G. & Storti, S. F.: , 2023; Functional connectivity and feature fusion enhance multiclass motor-imagery brain–computer interface performance; Sensors; 23 (17): 7520.; [Smith et al., 2011] Smith, S. M.; Miller, K. L.; Salimi-Khorshidi, G.; Webster, M.; Beckmann, C. F.; Nichols, T. E.; Ramsey, J. D. & Woolrich, M. W.: , 2011; Network modelling methods for fmri; Neuroimage; 54 (2): 875–891.; [Smola & Schölkopf, 2000] Smola, A. J. & Schölkopf, B.: , 2000; Sparse greedy matrix approximation for machine learning.; [Smuha, 2019] Smuha, N. A.: , 2019; The eu approach to ethics guidelines for trustworthy artificial intelligence; Computer Law Review International; 20 (4): 97–106.; [Somers et al., 2018] Somers, B.; Francart, T. & Bertrand, A.: , 2018; A generic eeg artifact removal algorithm based on the multi-channel wiener filter; Journal of neural engineering; 15 (3): 036007.; [Sorger & Goebel, 2020] Sorger, B. & Goebel, R.: , 2020; Real-time fmri for brain-computer interfacing; Handbook of clinical neurology; 168: 289–302.; [Souto et al., 2020] Souto, D. O.; Cruz, T. K. F.; Coutinho, K.; Julio-Costa, A.; Fontes, P. L. B. & Haase, V. G.: , 2020; Effect of motor imagery combined with physical practice on upper limb rehabilitation in children with hemiplegic cerebral palsy; NeuroRehabilitation; 46 (1): 53–63.; [Speith, 2022] Speith, T.: , 2022; A review of taxonomies of explainable artificial intelligence (xai) methods; en 2022 ACM Conference on Fairness, Accountability, and Transparency; págs. 2239–2250.; [Springenberg et al., 2014] Springenberg, J. T.; Dosovitskiy, A.; Brox, T. & Riedmiller, M.: , 2014; Striving for simplicity: The all convolutional net; arXiv preprint arXiv:1412.6806.; [Stefano Filho et al., 2018] Stefano Filho, C. A.; Attux, R. & Castellano, G.: , 2018; Can graph metrics be used for EEG-BCIs based on hand motor imagery?; Biomedical Signal Processing and Control; 40: 359–365.; [Stefano Filho et al., 2021] Stefano Filho, C. A.; Ignacio Serrano, J.; Attux, R.; Castellano, G.; Rocon, E. & del Castillo, M. D.: , 2021; Reorganization of resting-state EEG functional connectivity patterns in children with cerebral palsy following a motor imagery virtual-reality intervention; Applied Sciences; 11 (5): 2372.; [Stephan et al., 2009] Stephan, K.; Friston, K. & Squire, L.: , 2009; Functional connectivity.; [Stergiadis et al., 2022] Stergiadis, C.; Kostaridou, V.-D. & Klados, M. A.: , 2022; Which bss method separates better the eeg signals? a comparison of five different algorithms; Biomedical Signal Processing and Control; 72: 103292.; [Sturm et al., 2016] Sturm, I.; Lapuschkin, S.; Samek, W. & Müller, K.-R.: , 2016; Interpretable deep neural networks for single-trial EEG classification; Journal of neuroscience methods; 274: 141–145.; [Subasi & Gursoy, 2010] Subasi, A. & Gursoy, M. I.: , 2010; EEG signal classification using PCA, ICA, LDA and support vector machines; Expert systems with applications; 37 (12): 8659–8666.; [Subasi et al., 2021] Subasi, A.; Tuncer, T.; Dogan, S.; Tanko, D. & Sakoglu, U.: , 2021; EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier; Biomedical Signal Processing and Control; 68: 102648.; [Sujatha Ravindran & Contreras-Vidal, 2023] Sujatha Ravindran, A. & Contreras-Vidal, J.: , 2023; An empirical comparison of deep learning explainability approaches for eeg using simulated ground truth; Scientific Reports; 13 (1): 17709.; [Sun et al., 2020a] Sun, C.; Lin, K.; Huang, Y.-T.; Ching, E. S.; Lai, P.-Y. & Chan, C.: , 2020a; Directed effective connectivity and synaptic weights of in vitro neuronal cultures revealed from high-density multielectrode array recordings; bioRxiv.; [Sun et al., 2020b] Sun, X.; Hu, B.; Zheng, X.; Yin, Y. & Ji, C.: , 2020b; Emotion classification based on brain functional connectivity network; en 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 2082–2089.; [Suto & Oniga, 2018] Suto, J. & Oniga, S.: , 2018; Music stimuli recognition in electroencephalogram signal; Elektronika ir Elektrotechnika; 24 (4): 68–71.; [Šverko et al., 2022] Šverko, Z.; Vrankić, M.; Vlahinić, S. & Rogelj, P.: , 2022; Complex pearson correlation coefficient for eeg connectivity analysis; Sensors; 22 (4): 1477.; [Tabar & Halici, 2016] Tabar, Y. R. & Halici, U.: , 2016; A novel deep learning approach for classification of eeg motor imagery signals; Journal of neural engineering; 14 (1): 016003.; [Tafreshi et al., 2019] Tafreshi, T. F.; Daliri, M. R. & Ghodousi, M.: , 2019; Functional and effective connectivity based features of eeg signals for object recognition; Cognitive neurodynamics; 13: 555–566.; [Talukdar et al., 2019] Talukdar, U.; Hazarika, S. M. & Gan, J. Q.: , 2019; Motor imagery and mental fatigue: inter-relationship and eeg based estimation; Journal of computational neuroscience; 46: 55–76.; [Tang et al., 2014] Tang, Q.; Wang, J. & Wang, H.: , 2014; L1-norm based discriminative spatial pattern for single-trial EEG classification; Biomedical Signal Processing and Control; 10: 313–321.; [Tang et al., 2020] Tang, X.; Li, W.; Li, X.; Ma, W. & Dang, X.: , 2020; Motor imagery eeg recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network; Expert Systems with Applications; 149: 113285.; [Tang et al., 2023] Tang, X.; Wang, S.; Deng, X.; Liu, K.; Tian, Y.; Wang, H. & Gao, X.: , 2023; Graph-based information separator and area convolutional network for eeg-based intention decoding; IEEE Transactions on Cognitive and Developmental Systems.; [Tay et al., 2023] Tay, J. K.; Narasimhan, B. & Hastie, T.: , 2023; Elastic net regularization paths for all generalized linear models; Journal of statistical software; 106.; [Tayeb et al., 2019] Tayeb, Z.; Fedjaev, J.; Ghaboosi, N.; Richter, C.; Everding, L.; Qu, X.; Wu, Y.; Cheng, G. & Conradt, J.: , 2019; Validating deep neural networks for online decoding of motor imagery movements from eeg signals; Sensors; 19 (1): 210.; [Teo & Chew, 2014] Teo, W.-P. & Chew, E.: , 2014; Is motor-imagery brain-computer interface feasible in stroke rehabilitation?; PM&R; 6 (8): 723–728.; [Thakur et al., 2016] Thakur, K. T.; Albanese, E.; Giannakopoulos, P.; Jette, N.; Linde, M.; Prince, M. J.; Steiner, T. J. & Dua, T.: , 2016; Neurological disorders.; [Thiebaut de Schotten et al., 2020] Thiebaut de Schotten, M.; Foulon, C. & Nachev, P.: , 2020; Brain disconnections link structural connectivity with function and behaviour; Nature communications; 11 (1): 5094.; [Tibrewal et al., 2022] Tibrewal, N.; Leeuwis, N. & Alimardani, M.: , 2022; Classification of motor imagery eeg using deep learning increases performance in inefficient bci users; Plos one; 17 (7): e0268880.; [Tibshirani, 1996] Tibshirani, R.: , 1996; Regression shrinkage and selection via the lasso; Journal of the Royal Statistical Society: Series B (Methodological); 58 (1): 267–288.; [Tjoa & Guan, 2020] Tjoa, E. & Guan, C.: , 2020; A survey on explainable artificial intelligence (xai): Toward medical xai; IEEE transactions on neural networks and learning systems; 32 (11): 4793–4813.; [Tjoa & Guan, 2022] Tjoa, E. & Guan, C.: , 2022; Evaluating weakly supervised object localization methods right? a study on heatmap-based xai and neural backed decision tree; A Study on Heatmap-Based Xai and Neural Backed Decision Tree (November 27, 2022).; [Tortora et al., 2020] Tortora, S.; Ghidoni, S.; Chisari, C.; Micera, S. & Artoni, F.: , 2020; Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network; Journal of Neural Engineering; 17 (4): 046011.; [Tuncer et al., 2021] Tuncer, T.; Dogan, S. & Acharya, U. R.: , 2021; Automated EEG signal classification using chaotic local binary pattern; Expert Systems with Applications; 182: 115175.; [Uribe et al., 2019] Uribe, L. F. S.; Stefano Filho, C. A.; de Oliveira, V. A.; da Silva Costa, T. B.; Rodrigues, P. G.; Soriano, D. C.; Boccato, L.; Castellano, G. & Attux, R.: , 2019; A correntropy-based classifier for motor imagery brain-computer interfaces; Biomedical Physics & Engineering Express; 5 (6): 065026.; [Van der Lubbe et al., 2021] Van der Lubbe, R. H.; Sobierajewicz, J.; Jongsma, M. L.; Verwey, W. B. & Przekoracka- Krawczyk, A.: , 2021; Frontal brain areas are more involved during motor imagery than during motor execution/preparation of a response sequence; International journal of psychophysiology; 164: 71–86.; [Van der Maaten & Hinton, 2008] Van der Maaten, L. & Hinton, G.: , 2008; Visualizing data using t-sne.; Journal of machine learning research; 9 (11).; [Van Der Maaten et al., 2009] Van Der Maaten, L.; Postma, E. & Van den Herik, J.: , 2009; Dimensionality reduction: a comparative; J Mach Learn Res; 10 (66-71): 13.; [Van Mierlo et al., 2014] Van Mierlo, P.; Papadopoulou, M.; Carrette, E.; Boon, P.; Vandenberghe, S.; Vonck, K. & Marinazzo, D.: , 2014; Functional brain connectivity from eeg in epilepsy: Seizure prediction and epileptogenic focus localization; Progress in neurobiology; 121: 19–35.; [Vaquerizo-Villar et al., 2023] Vaquerizo-Villar, F.; Gutiérrez-Tobal, G. C.; Calvo, E.; Álvarez, D.; Kheirandish-Gozal, L.; Del Campo, F.; Gozal, D. & Hornero, R.: , 2023; An explainable deep-learning model to stage sleep states in children and propose novel eeg-related patterns in sleep apnea; Computers in Biology and Medicine; 165: 107419.; [Värbu et al., 2022] Värbu, K.; Muhammad, N. & Muhammad, Y.: , 2022; Past, present, and future of eeg-based bci applications; Sensors; 22 (9): 3331.; [Varone et al., 2021] Varone, G.; Boulila, W.; Lo Giudice, M.; Benjdira, B.; Mammone, N.; Ieracitano, C.; Dashtipour, K.; Neri, S.; Gasparini, S.; Morabito, F. C. et al.: , 2021; A machine learning approach involving functional connectivity features to classify rest-eeg psychogenic non-epileptic seizures from healthy controls; Sensors; 22 (1): 129.; [Varoquaux, 2018] Varoquaux, G.: , 2018; Cross-validation failure: small sample sizes lead to large error bars; Neuroimage; 180: 68–77.; [Varsehi & Firoozabadi, 2021] Varsehi, H. & Firoozabadi, S. M. P.: , 2021; An EEG channel selection method for motor imagery based brain–computer interface and neurofeedback using granger causality; Neural Networks; 133: 193–206.; [Veena & Anitha, 2020] Veena, N. & Anitha, N.: , 2020; A review of non-invasive bci devices; Int. J. Biomed. Eng. Technol; 34 (3): 205–233.; [Velasquez-Martinez et al., 2020a] Velasquez-Martinez, L.; Caicedo-Acosta, J. & Castellanos-Dominguez, G.: , 2020a; Entropy-based estimation of event-related de/synchronization in motor imagery using vector-quantized patterns; Entropy; 22 (6): 703.; [Velasquez-Martinez et al., 2020b] Velasquez-Martinez, L.; Zapata-Castano, F. & Castellanos-Dominguez, G.: , 2020b; Dynamic modeling of common brain neural activity in motor imagery tasks; Frontiers in Neuroscience; 14: 714.; [Velásquez-Martínez et al., 2013] Velásquez-Martínez, L. F.; Álvarez-Meza, A. M. & Castellanos-Domínguez, C. G.: , 2013; Motor imagery classification for BCI using common spatial patterns and feature relevance analysis; en International Work-Conference on the Interplay Between Natural and Artificial Computation; Springer; págs. 365–374.; [Velasquez-Martinez et al., 2020c] Velasquez-Martinez, L. F.; Zapata-Castano, F. & Castellanos-Dominguez, G.: , 2020c; Dynamic modeling of common brain neural activity in motor imagery tasks; Frontiers in Neuroscience; 14.; [Verleysen & François, 2005] Verleysen, M. & François, D.: , 2005; The curse of dimensionality in data mining and time series prediction; en International work-conference on artificial neural networks; Springer; págs. 758–770.; [Vidaurre et al., 2020] Vidaurre, C.; Haufe, S.; Jorajuría, T.; Müller, K.-R. & Nikulin, V. V.: , 2020; Sensorimotor functional connectivity: a neurophysiological factor related to BCI performance; Frontiers in Neuroscience; 14: 1278.; [Vidaurre et al., 2021] Vidaurre, C.; Jorajuría, T.; Ramos-Murguialday, A.; Müller, K. R.; Gómez, M. & Nikulin, V. V.: , 2021; Improving motor imagery classification during induced motor perturbations; Journal of neural engineering; 18 (4): 0460b1.; [Vidaurre et al., 2023] Vidaurre, C.; Gurunandan, K.; Idaji, M. J.; Nolte, G.; Gómez, M.; Villringer, A.; Müller, K.-R. & Nikulin, V. V.: , 2023; Novel multivariate methods to track frequency shifts of neural oscillations in eeg/meg recordings; NeuroImage; 276: 120178.; [Vilela & Hochberg, 2020] Vilela, M. & Hochberg, L. R.: , 2020; Applications of brain-computer interfaces to the control of robotic and prosthetic arms; en Handbook of clinical neurology, tomo 168; Elsevier; págs. 87–99.; [Volosyak et al., 2020] Volosyak, I.; Rezeika, A.; Benda, M.; Gembler, F. & Stawicki, P.: , 2020; Towards solving of the illiteracy phenomenon for vep-based brain-computer interfaces; Biomedical Physics & Engineering Express; 6 (3): 035034.; [Wackernagel, 2003] Wackernagel, H.: , 2003; Multivariate geostatistics: an introduction with applications; Springer Science & Business Media.; [Wackernagel, 2013] Wackernagel, H.: , 2013; Multivariate geostatistics: an introduction with applications; Springer Science & Business Media.; [Wang et al., 2020a] Wang, H.; Wang, Z.; Du, M.; Yang, F.; Zhang, Z.; Ding, S.; Mardziel, P. & Hu, X.: , 2020a; Score-CAM: Score-weighted visual explanations for convolutional neural networks; en Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops; págs. 24–25.; [Wang et al., 2020b] Wang, H.; Xu, T.; Tang, C.; Yue, H.; Chen, C.; Xu, L.; Pei, Z.; Dong, J.; Bezerianos, A. & Li, J.: , 2020b; Diverse feature blend based on filter-bank common spatial pattern and brain functional connectivity for multiple motor imagery detection; IEEE Access; 8: 155590–155601.; [Wang et al., 2021a] Wang, J.-G.; Shao, H.-M.; Yao, Y.; Liu, J.-L. & Ma, S.-W.: , 2021a; A personalized feature extraction and classification method for motor imagery recognition; Mobile Networks and Applications: 1–13.; [Wang et al., 2019a] Wang, K.; Zhai, D.-H. & Xia, Y.: , 2019a; Motor imagination eeg recognition algorithm based on dwt, csp and extreme learning machine; en 2019 Chinese control conference (CCC); IEEE; págs. 4590–4595.; [Wang et al., 2020c] Wang, K.; Xu, M.; Wang, Y.; Zhang, S.; Chen, L. & Ming, D.: , 2020c; Enhance decoding of pre-movement EEG patterns for brain–computer interfaces; Journal of Neural Engineering; 17 (1): 016033.; [Wang et al., 2019b] Wang, M.; Hu, J. & Abbass, H. A.: , 2019b; Stable eeg biometrics using convolutional neural networks and functional connectivity.; Aust. J. Intell. Inf. Process. Syst.; 15 (3): 19–26.; [Wang et al., 2014] Wang, X.; Wang, A.; Zheng, S.; Lin, Y. & Yu, M.: , 2014; A multiple autocorrelation analysis method for motor imagery EEG feature extraction; en The 26th Chinese Control and Decision Conference (2014 CCDC); IEEE; págs. 3000–3004.; [Wang et al., 2021b] Wang, Z.; Wang, F.; Liang, C. & Zhang, J.: , 2021b; A time-varying method for brain effective connectivity analysis of emotional EEG data; en 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA); IEEE; págs. 131–139.; [Warrens, 2015] Warrens, M. J.: , 2015; Five ways to look at cohen’s kappa; Journal of Psychology & Psychotherapy; 5 (4): 1.; [Wei & Luo, 2010] Wei, G. & Luo, J.: , 2010; Sport expert’s motor imagery: Functional imaging of professional motor skills and simple motor skills; Brain research; 1341: 52–62.; [Wei et al., 2023] Wei, M.; Yang, R.; Huang, M.; Ni, J.; Wang, Z. & Liu, X.: , 2023; Sub-band cascaded csp-based deep transfer learning for cross-subject lower limb motor imagery classification; IEEE Transactions on Cognitive and Developmental Systems.; [Willett et al., 2021] Willett, F. R.; Avansino, D. T.; Hochberg, L. R.; Henderson, J. M. & Shenoy, K. V.: , 2021; High-performance brain-to-text communication via handwriting; Nature; 593 (7858): 249–254.; [Williams & Seeger, 2001] Williams, C. & Seeger, M.: , 2001; Using the nyström method to speed up kernel machines; en Proceedings of the 14th annual conference on neural information processing systems; CONF; págs. 682–688.; [Wilroth et al., 2023] Wilroth, J.; Bernhardsson, B.; Heskebeck, F.; Skoglund, M. A.; Bergeling, C. & Alickovic, E.: , 2023; Improving eeg-based decoding of the locus of auditory attention through domain adaptation; Journal of Neural Engineering; 20 (6): 066022.; [Wriessnegger et al., 2020] Wriessnegger, S. C.; Müller-Putz, G. R.; Brunner, C. & Sburlea, A. I.: , 2020; Inter-and intra-individual variability in brain oscillations during sports motor imagery; Frontiers in human neuroscience; 14: 576241.; [Wu & Mooney, 2018] Wu, J. & Mooney, R. J.: , 2018; Faithful multimodal explanation for visual question answering; arXiv preprint arXiv:1809.02805.; [Wu et al., 2020a] Wu, J.; Zhou, T. & Li, T.: , 2020a; Detecting epileptic seizures in EEG signals with complementary ensemble empirical mode decomposition and extreme gradient boosting; Entropy; 22 (2): 140.; [Wu et al., 2019] Wu, X.; Zheng, W.-L. & Lu, B.-L.: , 2019; Identifying functional brain connectivity patterns for EEG-based emotion recognition; en 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER); IEEE; págs. 235–238.; [Wu et al., 2020b] Wu, X.; Zheng, W.-L. & Lu, B.-L.: , 2020b; Investigating EEG-based functional connectivity patterns for multimodal emotion recognition; arXiv preprint arXiv:2004.01973.; [Xiao et al., 2018] Xiao, C.; Choi, E. & Sun, J.: , 2018; Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review; Journal of the American Medical Informatics Association; 25 (10): 1419–1428.; [Xie et al., 2019] Xie, J.; Liu, F.; Wang, K. & Huang, X.: , 2019; Deep kernel learning via random fourier features; arXiv preprint arXiv:1910.02660.; [Xie et al., 2018] Xie, X.; Yu, Z. L.; Gu, Z.; Zhang, J.; Cen, L. & Li, Y.: , 2018; Bilinear regularized locality preserving learning on riemannian graph for motor imagery BCI; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 26 (3): 698–708.; [Xie & Oniga, 2020] Xie, Y. & Oniga, S.: , 2020; A review of processing methods and classification algorithm for EEG signal.; Carpathian Journal of Electronic & Computer Engineering; 12 (3).; [Xiong et al., 2020] Xiong, X.; Yu, Z.; Ma, T.; Luo, N.; Wang, H.; Lu, X. & Fan, H.: , 2020; Weighted brain network metrics for decoding action intention understanding based on EEG; Frontiers in Human Neuroscience; 14: 232.; [Xu et al., 2018] Xu, B.; Zhang, L.; Song, A.; Wu, C.; Li, W.; Zhang, D.; Xu, G.; Li, H. & Zeng, H.: , 2018; Wavelet transform time-frequency image and convolutional network-based motor imagery eeg classification; Ieee Access; 7: 6084–6093.; [Xu et al., 2020a] Xu, J.; Grosse-Wentrup, M. & Jayaram, V.: , 2020a; Tangent space spatial filters for interpretable and efficient riemannian classification; Journal of Neural Engineering; 17 (2): 026043.; [Xu et al., 2020b] Xu, J.; Zheng, H.; Wang, J.; Li, D. & Fang, X.: , 2020b; Recognition of eeg signal motor imagery intention based on deep multi-view feature learning; Sensors; 20 (12): 3496.; [Xu et al., 2020c] Xu, M.; Yao, J.; Zhang, Z.; Li, R.; Yang, B.; Li, C.; Li, J. & Zhang, J.: , 2020c; Learning eeg topographical representation for classification via convolutional neural network; Pattern Recognition; 105: 107390.; [Yang et al., 2021a] Yang, J.; Ma, Z. & Shen, T.: , 2021a; Multi-time and multi-band csp motor imagery eeg feature classification algorithm; Applied Sciences; 11 (21): 10294.; [Yang et al., 2021b] Yang, J.; Yu, H.; Shen, T.; Song, Y. & Chen, Z.: , 2021b; 4-class mi-eeg signal generation and recognition with cvae-gan; Applied Sciences; 11 (4): 1798.; [Yang et al., 2021c] Yang, L.; Song, Y.; Ma, K.; Su, E. & Xie, L.: , 2021c; A novel motor imagery eeg decoding method based on feature separation; Journal of Neural Engineering; 18 (3): 036022.; [Yao et al., 2020] Yao, Y.; Ding, Y.; Zhong, S. & Cui, Z.: , 2020; EEG-based epilepsy recognition via multiple kernel learning; Computational and Mathematical Methods in Medicine; 2020.; [Yeh et al., 2021] Yeh, C.-H.; Jones, D. K.; Liang, X.; Descoteaux, M. & Connelly, A.: , 2021; Mapping structural connectivity using diffusion MRI: Challenges and opportunities; Journal of Magnetic Resonance Imaging; 53 (6): 1666–1682.; [Yeh et al., 2012] Yeh, Y.-R.; Lin, T.-C.; Chung, Y.-Y. & Wang, Y.-C. F.: , 2012; A novel multiple kernel learning framework for heterogeneous feature fusion and variable selection; IEEE Transactions on multimedia; 14 (3): 563–574.; [Yen et al., 2023] Yen, C.; Lin, C.-L. & Chiang, M.-C.: , 2023; Exploring the frontiers of neuroimaging: a review of recent advances in understanding brain functioning and disorders; Life; 13 (7): 1472.; [Yilmaz et al., 2018] Yilmaz, C. M.; Kose, C. & Hatipoglu, B.: , 2018; A quasi-probabilistic distribution model for eeg signal classification by using 2-d signal representation; Computer methods and programs in biomedicine; 162: 187–196.; [Yu & Yu, 2021] Yu, J. & Yu, Z. L.: , 2021; Cross-correlation based discriminant criterion for channel selection in motor imagery BCI systems; Journal of Neural Engineering.; [Yu et al., 2019] Yu, S.; Giraldo, L. G. S.; Jenssen, R. & Principe, J. C.: , 2019; Multivariate extension of matrix-based rényi’s α-order entropy functional; IEEE transactions on pattern analysis and machine intelligence; 42 (11): 2960–2966.; [Yu et al., 2020] Yu, Z.; Ma, T.; Fang, N.; Wang, H.; Li, Z. & Fan, H.: , 2020; Local temporal common spatial patterns modulated with phase locking value; Biomedical Signal Processing and Control; 59: 101882.; [Yuan et al., 2021] Yuan, K.; Chen, C.; Wang, X.; Chu, W. C.-w. & Tong, R. K.-y.: , 2021; Bci training effects on chronic stroke correlate with functional reorganization in motor-related regions: A concurrent eeg and fmri study; Brain sciences; 11 (1): 56.; [Yuksel & Olmez, 2015] Yuksel, A. & Olmez, T.: , 2015; A neural network-based optimal spatial filter design method for motor imagery classification; PloS one; 10 (5): e0125039.; [Zapała et al., 2020] Zapała, D.; Zabielska-Mendyk, E.; Augustynowicz, P.; Cudo, A.; Jaśkiewicz, M.; Szewczyk, M.; Kopiś, N. & Francuz, P.: , 2020; The effects of handedness on sensorimotor rhythm desynchronization and motor-imagery bci control; Scientific reports; 10 (1): 2087.; [Zeiler & Fergus, 2014] Zeiler, M. D. & Fergus, R.: , 2014; Visualizing and understanding convolutional networks; en Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13; Springer; págs. 818–833.; [Zhang et al., 2021a] Zhang, A.; Lipton, Z. C.; Li, M. & Smola, A. J.: , 2021a; Dive into deep learning; arXiv preprint arXiv:2106.11342.; [Zhang et al., 2020a] Zhang, B.; Yan, G.; Yang, Z.; Su, Y.; Wang, J. & Lei, T.: , 2020a; Brain functional networks based on resting-state EEG data for major depressive disorder analysis and classification; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 215–229.; [Zhang et al., 2021b] Zhang, C.; Kim, Y.-K. & Eskandarian, A.: , 2021b; Eeg-inception: an accurate and robust end-to-end neural network for eeg-based motor imagery classification; Journal of Neural Engineering; 18 (4): 046014.; [Zhang et al., 2020b] Zhang, D.; Chen, K.; Jian, D. & Yao, L.: , 2020b; Motor imagery classification via temporal attention cues of graph embedded eeg signals; IEEE journal of biomedical and health informatics; 24 (9): 2570–2579.; [Zhang et al., 2020c] Zhang, K.; Xu, G.; Han, Z.; Ma, K.; Zheng, X.; Chen, L.; Duan, N. & Zhang, S.: , 2020c; Data augmentation for motor imagery signal classification based on a hybrid neural network; Sensors; 20 (16): 4485.; [Zhang et al., 2021c] Zhang, K.; Robinson, N.; Lee, S.-W. & Guan, C.: , 2021c; Adaptive transfer learning for eeg motor imagery classification with deep convolutional neural network; Neural Networks; 136: 1–10.; [Zhang et al., 2017] Zhang, L.; Chen, Y.; Tan, X.; He, C. & Zhang, L.: , 2017; An improved self-training algorithm for classifying motor imagery electroencephalography in brain-computer interface; Journal of Medical Imaging and Health Informatics; 7 (2): 330–337.; [Zhang et al., 2018a] Zhang, R.; Xiao, X.; Liu, Z.; Jiang, W.; Li, J.; Cao, Y.; Ren, J.; Jiang, D. & Cui, L.: , 2018a; A new motor imagery EEG classification method FB-TRCSP+ RF based on CSP and random forest; IEEE Access; 6: 44944–44950.; [Zhang et al., 2019] Zhang, R.; Li, X.; Wang, Y.; Liu, B.; Shi, L.; Chen, M.; Zhang, L. & Hu, Y.: , 2019; Using brain network features to increase the classification accuracy of MI-BCI inefficiency subject; IEEE Access; 7: 74490–74499.; [Zhang et al., 2021d] Zhang, R.; Zong, Q.; Dou, L.; Zhao, X.; Tang, Y. & Li, Z.: , 2021d; Hybrid deep neural network using transfer learning for eeg motor imagery decoding; Biomedical Signal Processing and Control; 63: 102144.; [Zhang et al., 2021e] Zhang, T.; Han, Z.; Chen, X. & Chen, W.: , 2021e; Subbands and cumulative sum of subbands based nonlinear features enhance the performance of epileptic seizure detection; Biomedical Signal Processing and Control; 69: 102827.; [Zhang et al., 2018b] Zhang, W.; Tan, C.; Sun, F.; Wu, H. & Zhang, B.: , 2018b; A review of EEG-based brain-computer interface systems design; Brain Science Advances; 4 (2): 156–167.; [Zhang et al., 2021f] Zhang, W.; Liang, Z. & Liu, Z.: , 2021f; Combination of variational mode decomposition for feature extraction and deep belief network for feature classification in motor imagery electroencephalogram recognition.; Sensors & Materials; 33.; [Zhang et al., 2020d] Zhang, X.; Lu, D.; Shen, J.; Gao, J.; Huang, X. & Wu, M.: , 2020d; Spatial-temporal joint optimization network on covariance manifolds of electroencephalography for fatigue detection; en 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 893–900.; [Zhang et al., 2021g] Zhang, X.; Yao, L.; Wang, X.; Monaghan, J.; Mcalpine, D. & Zhang, Y.: , 2021g; A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers; Journal of neural engineering; 18 (3): 031002.; [Zhang et al., 2018c] Zhang, Y.; Nam, C.; Zhou, G.; Jin, J.; Wang, X. & Cichocki, A.: , 2018c; Temporally constrained sparse group spatial patterns for motor imagery BCI; IEEE transactions on cybernetics; 49 (9): 3322–3332.; [Zhao et al., 2021a] Zhao, N.; Zhang, H.; Liu, T.; Liu, J.; Xiang, Y.; Shu, G.; Li, C.; Xie, J. & Chen, L.: , 2021a; Neuromodulatory effect of sensorimotor network functional connectivity of temporal three-needle therapy for ischemic stroke patients with motor dysfunction: Study protocol for a randomized, patient-assessor blind, controlled, neuroimaging trial; Evidence-Based Complementary and Alternative Medicine; 2021.; [Zhao et al., 2019a] Zhao, X.; Zhang, H.; Zhu, G.; You, F.; Kuang, S. & Sun, L.: , 2019a; A multi-branch 3d convolutional neural network for eeg-based motor imagery classification; IEEE transactions on neural systems and rehabilitation engineering; 27 (10): 2164–2177.; [Zhao et al., 2019b] Zhao, Y.; Zhao, Y.; Durongbhan, P.; Chen, L.; Liu, J.; Billings, S.; Zis, P.; Unwin, Z. C.; De Marco, M.; Venneri, A. et al.: , 2019b; Imaging of nonlinear and dynamic functional brain connectivity based on EEG recordings with the application on the diagnosis of alzheimer’s disease; IEEE transactions on medical imaging; 39 (5): 1571–1581.; [Zhao et al., 2020] Zhao, Z.; Zhao, P. & Zhou, Q.: , 2020; A hierarchical stacking extreme learning machine for multi-classification; en 2020 Chinese Automation Congress (CAC); IEEE; págs. 4176–4181.; [Zhao et al., 2021b] Zhao, Z.; Li, J.; Niu, Y.; Wang, C.; Zhao, J.; Yuan, Q.; Ren, Q.; Xu, Y. & Yu, Y.: , 2021b; Classification of schizophrenia by combination of brain effective and functional connectivity; Frontiers in Neuroscience; 15: 552.; [Zhu et al., 2020] Zhu, L.; Su, C.; Zhang, J.; Cui, G.; Cichocki, A.; Zhou, C. & Li, J.: , 2020; EEG-based approach for recognizing human social emotion perception; Advanced Engineering Informatics; 46: 101191.; [Zhuang et al., 2020] Zhuang, M.; Wu, Q.; Wan, F. & Hu, Y.: , 2020; State-of-the-art non-invasive brain–computer interface for neural rehabilitation: A review; Journal of Neurorestoratology; 8 (1): 12–25.; [Zoumpourlis & Patras, 2022] Zoumpourlis, G. & Patras, I.: , 2022; Covmix: Covariance mixing regularization for motor imagery decoding; en 2022 10th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–7.; [Zuk et al., 2020] Zuk, N. J.; Teoh, E. S. & Lalor, E. C.: , 2020; Eeg-based classification of natural sounds reveals specialized responses to speech and music; NeuroImage; 210: 116558.; https://repositorio.unal.edu.co/handle/unal/86921; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
9
Source: Oberwolfach Reports; 2024, Vol. 21 Issue 4, p3255-3299, 45p
Subject Terms: DYNAMICAL systems, MACHINE learning, POWER resources, MATHEMATICAL models
-
10
Authors:
Source: Mathematische Semesterberichte; Oct2025, Vol. 72 Issue 2, p89-115, 27p
Subject Terms: SCIENCE education, ARTIFICIAL intelligence, MACHINE learning, SCIENTIFIC computing, FLUID dynamics
-
11
Authors: et al.
Source: Computational Mechanics; Oct2024, Vol. 74 Issue 4, p889-912, 24p
Subject Terms: FINITE element method, POROELASTICITY, POROUS materials, ENERGY consumption, SPACETIME
-
12
Authors: et al.
Source: European Journal of Applied Mathematics; Apr2025, Vol. 36 Issue 2, p464-489, 26p
Subject Terms: MACHINE learning, DYNAMICAL systems, ENGINEERING, PHYSICS, BIOLOGY
-
13
Authors:
Source: Computational Mechanics; Feb2024, Vol. 73 Issue 2, p365-402, 38p
-
14
Authors: et al.
Source: Symmetry (20738994); Aug2025, Vol. 17 Issue 8, p1173, 27p
Subject Terms: HILBERT space, STOCHASTIC partial differential equations, CONTROL theory (Engineering), QUANTUM mechanics, FRACTIONAL calculus, NUMERICAL analysis, EXPONENTIAL stability
People: SCHROEDINGER, Erwin, 1887-1961
-
15
Authors:
Source: Electronics (2079-9292); Nov2025, Vol. 14 Issue 22, p4443, 29p
Subject Terms: SOFTWARE maintenance, GRAPH neural networks, DATA analytics, COMPUTER software development
-
16
Authors:
Source: IMA Journal of Numerical Analysis; Jul2023, Vol. 43 Issue 4, p1937-1969, 33p
Subject Terms: NONLINEAR equations, LINEAR equations
-
17
Authors:
Source: IMA Journal of Numerical Analysis; Jul2021, Vol. 41 Issue 3, p1696-1845, 150p
Subject Terms: PARTIAL differential equations, FUNCTION spaces, SET functions, BILINEAR forms
-
18
Authors:
Source: SIAM Review; 2024, Vol. 66 Issue 3, p535-571, 37p
Subject Terms: SCIENTIFIC computing, RANDOM operators, PARTIAL differential equations, KRIGING, SUPERVISED learning
-
19
Authors:
Source: Multiscale Modeling & Simulation; 2025, Vol. 23 Issue 1, p374-396, 23p
Subject Terms: RANDOM fields
-
20
Authors:
Source: Journal of Geophysical Research. Solid Earth; Nov2022, Vol. 127 Issue 11, p1-26, 26p
Subject Terms: METHANE hydrates, GAS migration, GAS hydrates, CARBON cycle, WASTE recycling, MATERIALS handling, NATURAL gas, CHIMNEYS
Nájsť tento článok vo Web of Science
Full Text Finder