Výsledky vyhledávání - linear-time gradient algorithm
-
1
Autoři: a další
Zdroj: Molecular Biology and Evolution. 37(10)
Témata: Infectious Diseases, Bioengineering, Networking and Information Technology R&D (NITRD), Good Health and Well Being, Algorithms, Evolution, Molecular, Flavivirus, Lassa virus, Models, Genetic, Phylogeny, linear-time gradient algorithm, random-effects molecular clock model, Bayesian inference, maximum likelihood, Biochemistry and Cell Biology, Evolutionary Biology, Genetics
Popis souboru: application/pdf
-
2
Autoři:
Přispěvatelé:
Zdroj: Proceedings of the 36th IEEE Conference on Decision and Control. 5:4549-4553
Témata: 0209 industrial biotechnology, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
Popis souboru: application/pdf; 359822 bytes
-
3
Autoři: a další
Zdroj: Res Sq
Témata: FOS: Computer and information sciences, Populations and Evolution, linear-time gradient algorithm, FOS: Biological sciences, Bayesian inference, Computation, Populations and Evolution (q-bio.PE), natural selection, branch-specific substitution model, maximum likelihood, Article, Computation (stat.CO)
-
4
Autoři: a další
Zdroj: 2023 62nd IEEE Conference on Decision and Control (CDC)
Témata: 0209 industrial biotechnology, Optimization and Control (math.OC), 0211 other engineering and technologies, FOS: Mathematics, 02 engineering and technology, Mathematics - Optimization and Control
Popis souboru: application/application/pdf
Přístupová URL adresa: http://arxiv.org/abs/2303.17889
http://hdl.handle.net/20.500.11850/644726 -
5
Autoři:
Zdroj: Mukherjee, A & Karmakar, S 2022, ' Provable training of a ReLU gate with an iterative non-gradient algorithm ', Neural Networks, vol. 151, pp. 264-275 . https://doi.org/10.1016/j.neunet.2022.03.040
Témata: FOS: Computer and information sciences, Computer Science - Machine Learning, non-gradient iterative algorithms, Computer Science - Information Theory, Information Theory (cs.IT), Neural nets, Learning and adaptive systems in artificial intelligence, Machine Learning (stat.ML), Nonconvex programming, global optimization, Non-smooth non-convex optimization, Machine Learning (cs.LG), neural nets, stochastic algorithms, Stochastic algorithms, Statistics - Machine Learning, 90C15 68W40 68T05, Computer Simulation, Non-gradient iterative algorithms, non-smooth nonconvex optimization, stochastic optimisation, Algorithms
Popis souboru: application/xml
Přístupová URL adresa: https://pubmed.ncbi.nlm.nih.gov/35452894
http://arxiv.org/abs/2005.04211
https://zbmath.org/7751320
https://doi.org/10.1016/j.neunet.2022.03.040
https://research.manchester.ac.uk/en/publications/a4916933-2661-45bd-8486-535ced443d0d
https://doi.org/10.1016/j.neunet.2022.03.040
https://arxiv.org/abs/2005.04211
https://research.manchester.ac.uk/en/publications/a4916933-2661-45bd-8486-535ced443d0d
https://doi.org/10.1016/j.neunet.2022.03.040 -
6
Autoři: a další
Zdroj: PLoS Computational Biology. 20(3)
Témata: Humans, Influenza A Virus, H3N2 Subtype, Algorithms, Influenza, Human, Epidemics, Hemorrhagic Fever, Ebola, Monte Carlo Method
Popis souboru: application/pdf
-
7
Autoři:
Zdroj: Journal of Applied Mathematics & Computing; 2025 Suppl 1, Vol. 71, p1289-1315, 27p
-
8
-
9
-
10
Autoři:
Zdroj: Nonlinear Dynamics; May2025, Vol. 113 Issue 9, p9685-9707, 23p
-
11
Autoři:
Zdroj: Molecular & Cellular Biomechanics; 2024, Vol. 21 Issue 3, p1-9, 10p
-
12
-
13
Autoři:
Zdroj: IEEE Access, Vol 7, Pp 12658-12672 (2019)
Témata: Optimization, graphical models, numerical algorithms, Electrical engineering. Electronics. Nuclear engineering, 0101 mathematics, 01 natural sciences, TK1-9971
-
14
Autoři: a další
Zdroj: SIAM Journal on Optimization; 2024, Vol. 34 Issue 1, p278-305, 28p
-
15
Autoři:
Zdroj: 2019 IEEE 23rd International Conference on Intelligent Engineering Systems (INES). :000201-000206
-
16
Autoři: a další
Zdroj: Scientific Reports; 11/18/2025, Vol. 15 Issue 1, p1-12, 12p
-
17
Autoři: a další
Zdroj: Leibniz International Proceedings in Informatics, LIPIcs.
Témata: Deep learning theory, Nonconvex optimization, Backpropagation, Convex optimization, Curve fitting, Deep learning, Deep neural networks, Gradient methods, Jacobian matrices, Machinery, Network layers, Approximate solution, Computational overheads, Dimension reduction, Gauss-Newton iteration, Generalization Error, Second order optimization, Second-order algorithms, Slow convergences, Multilayer neural networks
Popis souboru: print
Přístupová URL adresa: https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-309947
-
18
-
19
Autoři: Jing, Shaoxue
Zdroj: Optimal Control - Applications & Methods; May2023, Vol. 44 Issue 3, p1510-1522, 13p
-
20
Autoři:
Zdroj: Optimal Control - Applications & Methods; Sep2023, Vol. 44 Issue 5, p2693-2707, 15p
Nájsť tento článok vo Web of Science
Full Text Finder