Search Results - interval valued intuitionistic fuzzy multi-objective linear programming problems
-
1
Authors:
Source: Soft Computing - A Fusion of Foundations, Methodologies & Applications. Feb2025, Vol. 29 Issue 3, p1627-1657. 31p.
Subject Terms: *MULTI-objective optimization, *FUZZY numbers, *TOURISM, *GOAL programming, *HESITATION, *TOPOGRAPHY
-
2
Authors:
Source: Soft Computing. 23:77-84
Subject Terms: positive deal solution, 2. Zero hunger, Linear programming, 0202 electrical engineering, electronic engineering, information engineering, multiobjective programming, Fuzzy and other nonstochastic uncertainty mathematical programming, interval-valued intuitionistic fuzzy sets, Pareto optimal solution, 02 engineering and technology, Multi-objective and goal programming
File Description: application/xml
-
3
Authors:
Source: International Journal of Fuzzy Systems.
-
4
Authors:
Source: International Journal of Applied Mathematics and Computer Science, Vol 27, Iss 3, Pp 563-573 (2017)
Subject Terms: interval valued intuitionistic fuzzy multi-objective linear programming problem, interval valued intuitionistic fuzzy number, pentagonal intuitionistic fuzzy number, Electronic computers. Computer science, QA1-939, 0202 electrical engineering, electronic engineering, information engineering, interval valued intuitionistic fuzzy arithmetic, modified interval valued intuitionistic fuzzy arithmetic, QA75.5-76.95, 02 engineering and technology, 16. Peace & justice, Mathematics
-
5
Authors:
Source: International Journal of Fuzzy Systems. 18:864-874
Subject Terms: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
Access URL: https://link.springer.com/article/10.1007%2Fs40815-016-0201-1
https://link.springer.com/content/pdf/10.1007%2Fs40815-016-0201-1.pdf
https://doi.org/10.1007/s40815-016-0201-1
https://link.springer.com/article/10.1007/s40815-016-0201-1/fulltext.html
https://dblp.uni-trier.de/db/journals/ijfs/ijfs18.html#AfzaliRS16 -
6
Authors:
Source: Computational & Applied Mathematics; Sep2023, Vol. 42 Issue 6, p1-55, 55p
Subject Terms: FUZZY numbers, INTERVAL analysis, LINEAR programming, ALGORITHMS, MATHEMATICAL programming, LINEAR orderings
-
7
Authors:
Source: International Journal of Fuzzy Systems. Oct2016, Vol. 18 Issue 5, p864-874. 11p.
-
8
Authors:
Source: Soft Computing - A Fusion of Foundations, Methodologies & Applications; Jan2019, Vol. 23 Issue 1, p77-84, 8p
Subject Terms: LINEAR programming, FUZZY logic, COMPUTATIONAL mathematics, FUZZY algorithms, NUMERICAL analysis
-
9
Authors: et al.
Source: International Journal of Industrial Engineering; 2023, Vol. 30 Issue 3, p750-762, 13p
-
10
Authors:
Source: International Journal of Applied Mathematics & Computer Science; 2017, Vol. 27 Issue 4, p563-573, 11p
-
11
Authors:
Source: New Mathematics & Natural Computation; Mar2020, Vol. 16 Issue 1, p53-71, 19p
Subject Terms: LINEAR programming, FUZZY sets, COVER crops, FUZZY numbers, FIVE year plans, URBAN planning, PETROLEUM products
-
12
Authors:
Source: Soft Computing - A Fusion of Foundations, Methodologies & Applications. Sep2020, Vol. 24 Issue 18, p13955-13977. 23p.
Subject Terms: *GOAL programming, *FUZZY numbers, *MEMBERSHIP functions (Fuzzy logic), *ALGORITHMS, *REAL numbers, *HYPERBOLIC functions
-
13
Authors:
Subject Terms: keyword:multi-objective linear programming, keyword:intuitionistic fuzzy set, keyword:accuracy function, keyword:membership function, keyword:non-membership function, keyword:supplier selection, msc:03F55, msc:90B06, msc:90C08, msc:90C70
File Description: application/pdf
Relation: mr:MR4586122; zbl:Zbl 07729497; reference:[1] Ahmadini, A. A. H., Ahmad, F.: Solving intuitionistic fuzzy multiobjective linear programming problem under neutrosophic environment.AIMS Math. 6 (2021), 4556-4580. MR 4220424, 10.3934/math.2021269; reference:[2] Amid, A., Ghodsypour, S. H., O'Brien, C.: A weighted max-min model for fuzzy multi-objective supplier selection in a supply chain.Int. J. Prod. Econ. 131 (2011), 139-145. 10.1016/j.ijpe.2010.04.044; reference:[3] Angelov, P. P.: Optimization in an intuitionistic fuzzy environment.Fuzzy Sets Syst. 86 (1997), 299-306. Zbl 0915.90258, MR 1454190, 10.1016/S0165-0114(96)00009-7; reference:[4] Atanassov, K. T.: Intuitionistic fuzzy sets.Fuzzy Sets Syst. 20 (1986), 87-96. Zbl 0631.03040, MR 0852871, 10.1016/S0165-0114(86)80034-3; reference:[5] Bharati, S. K., Singh, S. R.: Solution of multiobjective linear programming problems in interval-valued intuitionistic fuzzy environment.Soft Comput. 23 (2019), 77-84. Zbl 1415.90115, 10.1007/s00500-018-3100-6; reference:[6] Chang, K.-H.: A novel supplier selection method that integrates the intuitionistic fuzzy weighted averaging method and a soft set with imprecise data.Ann. Oper. Res. 272 (2019), 139-157. Zbl 1434.90018, MR 3895140, 10.1007/s10479-017-2718-6; reference:[7] Ehrgott, M.: Multicriteria Optimization.Springer, Berlin (2005). Zbl 1132.90001, MR 2143243, 10.1007/3-540-27659-9; reference:[8] Garg, H.: A new generalized improved score function of interval-valued intuitionistic fuzzy sets and applications in expert systems.Appl. Soft Comput. 38 (2016), 988-999. 10.1016/j.asoc.2015.10.040; reference:[9] Kabiraj, A., Nayak, P. K., Raha, S.: Solving intuitionistic fuzzy linear programming problem.Int. J. Intelligence Sci. 9 (2019), 44-58. 10.4236/ijis.2019.91003; reference:[10] Li, D.-F.: A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems.Comput. Math. Appl. 60 (2010), 1557-1570. Zbl 1202.91054, MR 2679124, 10.1016/j.camwa.2010.06.039; reference:[11] Li, D.-F.: Linear programming method for MADM with interval-valued intuitionistic fuzzy sets.Expert Syst. Appl. 37 (2010), 5939-5945. 10.1016/j.eswa.2010.02.011; reference:[12] Malhotra, R., Bharati, S. K.: Intuitionistic fuzzy two stage multiobjective transportation problems.Adv. Theor. Appl. Math. 11 (2016), 305-316.; reference:[13] Mohan, S., Kannusamy, A. P., Sidhu, S. K.: Solution of intuitionistic fuzzy linear programming problem by dual simplex algorithm and sensitivity analysis.Comput. Intell. 37 (2021), 852-872. MR 4270699, 10.1111/coin.12435; reference:[14] Qu, G., Qu, W., Zhang, Z., Wang, J.: Choquet integral correlation coefficient of intuitionistic fuzzy sets and its applications.J. Intell. Fuzzy Syst. 33 (2017), 543-553. Zbl 1376.68134, 10.3233/JIFS-162131; reference:[15] Sakawa, M.: Fuzzy Sets and Interactive Multiobjective Optimization.Springer, New York (1993). Zbl 0842.90070, MR 1216139, 10.1007/978-1-4899-1633-4; reference:[16] Singh, S. K., Yadav, S. P.: Modeling and optimization of multi objective non-linear programming problem in intuitionistic fuzzy environment.Appl. Math. Modelling 39 (2015), 4617-4629. Zbl 1443.90067, MR 3354856, 10.1016/j.apm.2015.03.064; reference:[17] Singh, S. K., Yadav, S. P.: A new approach for solving intuitionistic fuzzy transportation problem of type-2.Ann. Oper. Res. 243 (2016), 349-363. Zbl 1348.90658, MR 3529807, 10.1007/s10479-014-1724-1; reference:[18] Tooranloo, H. S., Iranpour, A.: Supplier selection and evaluation using interval-valued intuitionistic fuzzy AHP method.Int. J. Procurement Management 10 (2017), 539-554. 10.1504/IJPM.2017.086399; reference:[19] Wan, S., Dong, J.: A possibility degree method for interval-valued intuitionistic fuzzy multi-attribute group decision making.J. Comput. Syst. Sci. 80 (2014), 237-256. Zbl 1311.68156, MR 3105919, 10.1016/j.jcss.2013.07.007; reference:[20] Wan, S., Dong, J.: A novel extension of best-worst method with intuitionistic fuzzy reference comparisons.IEEE Trans. Fuzzy Syst. 30 (2022), 1698-1711. 10.1109/TFUZZ.2021.3064695; reference:[21] Wan, S.-P., Li, D.-F.: Atanassov's intuitionistic fuzzy programming method for heterogeneous multiattribute group decision making with Atanassov's intuitionistic fuzzy truth degrees.IEEE Trans. Fuzzy Syst. 22 (2013), 300-312. 10.1109/TFUZZ.2013.2253107; reference:[22] Wan, S.-P., Li, D.-F.: Fuzzy mathematical programming approach to heterogeneous multiattribute decision-making with interval-valued intuitionistic fuzzy truth degrees.Inf. Sci. 325 (2015), 484-503. Zbl 1390.91119, MR 3392316, 10.1016/j.ins.2015.07.014; reference:[23] Wan, S.-P., Wang, F., Dong, J.-Y.: A novel group decision making method with intuitionistic fuzzy preference relations for RFID technology selection.Appl. Soft Comput. 38 (2016), 405-422. 10.1016/j.asoc.2015.09.039; reference:[24] Wan, S.-P., Wang, F., Lin, L.-L., Dong, J.-Y.: An intuitionistic fuzzy linear programming method for logistics outsourcing provider selection.Knowledge-Based Syst. 82 (2015), 80-94. 10.1016/j.knosys.2015.02.027; reference:[25] Wan, S.-P., Wang, F., Xu, G.-L., Dong, J.-Y., Tang, J.: An intuitionistic fuzzy programming method for group decision making with interval-valued fuzzy preference relations.Fuzzy Optim. Decis. Mak. 16 (2017), 269-295. Zbl 1428.90090, MR 3682924, 10.1007/s10700-016-9250-z; reference:[26] Wei, A.-P., Li, D.-F., Lin, P.-P., Jiang, B.-Q.: An information-based score function of interval-valued intuitionistic fuzzy sets and its application in multiattribute decision making.Soft Comput. 25 (2021), 1913-1923. Zbl 7560958, 10.1007/s00500-020-05265-0; reference:[27] Ye, J.: Expected value method for intuitionistic trapezoidal fuzzy multicriteria decision-making problems.Expert Syst. Appl. 38 (2011), 11730-11734. 10.1016/j.eswa.2011.03.059
Availability: http://hdl.handle.net/10338.dmlcz/151654
-
14
Authors: et al.
Source: Soft Computing - A Fusion of Foundations, Methodologies & Applications; Jan2023, Vol. 27 Issue 2, p783-808, 26p
Subject Terms: FUZZY sets, LINEAR programming, NONLINEAR programming, FUZZY numbers, FORM perception, GAME theory
-
15
Authors:
Source: International Journal of Applied Mathematics and Computer Science.
Subject Terms: fuzzy number, fuzzy arithmetic, linear programming problem, liczba rozmyta, arytmetyka rozmyta, programowanie liniowe
-
16
Authors:
Source: Soft Computing - A Fusion of Foundations, Methodologies & Applications; Dec2022, Vol. 26 Issue 24, p13527-13541, 15p
-
17
Authors:
Source: Life Cycle Reliability and Safety Engineering. 7:81-88
-
18
Authors: et al.
Source: AIMS Mathematics, Vol 7, Iss 9, Pp 17327-17348 (2022)
Subject Terms: Statistics and Probability, Intuitionistic Fuzzy Sets, Artificial intelligence, Interval (graph theory), Social Sciences, Fuzzy Differential Equations and Uncertainty Modeling, 02 engineering and technology, Multi-Criteria Decision Making, Management Science and Operations Research, Operations research, Multi-Objective Transportation Problem Optimization, Decision Sciences, Engineering, interval-valued fermatean fuzzy sets, QA1-939, FOS: Mathematics, 0202 electrical engineering, electronic engineering, information engineering, Fuzzy number, fractional linear programming, Extension (predicate logic), Mathematical optimization, Computer science, Programming language, Fuzzy logic, Fixed Charge Transportation Problem, fractional transportation problem, Fuzzy Sets, Control and Systems Engineering, Combinatorics, Physical Sciences, Fuzzy set, Fractional Calculus, Linear Fractional Programming, Fuzzy transportation, Mathematics
-
19
Authors: et al.
Source: Cognitive Computation; Feb2025, Vol. 17 Issue 1, p1-25, 25p
-
20
Authors: et al.
Source: Information Sciences. Sep2015, Vol. 316, p329-347. 19p.
Full Text Finder
Nájsť tento článok vo Web of Science