Suchergebnisse - graph convolutional autoencoder
-
1
Autoren:
Quelle: Reliability Engineering and System Safety. 267
Schlagwörter: Graph convolutional network, Trajectory prediction, Cooperative intention constructor, Intelligent situational awareness systems, Conditional variational autoencoder, Multi-modal interaction extractor
Zugangs-URL: https://research.chalmers.se/publication/549377
-
2
Autoren: et al.
Quelle: IEEE Transactions on Artificial Intelligence. 6:2448-2463
-
3
Autoren: et al.
Quelle: BMC Bioinformatics, Vol 26, Iss 1, Pp 1-29 (2025)
Schlagwörter: Drug-target interaction, Dynamic weighting convolutional residual connection, Dual self-supervised joint training mechanism, Graph convolutional autoencoder, Generative adversarial network, Computer applications to medicine. Medical informatics, R858-859.7, Biology (General), QH301-705.5
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/1471-2105
-
4
Autoren: et al.
Quelle: IEEE Access, Vol 13, Pp 24736-24748 (2025)
-
5
Autoren: et al.
Quelle: 2024 6th International Conference on Industrial Artificial Intelligence (IAI). :1-6
-
6
Autoren:
Schlagwörter: Machine Learning, FOS: Computer and information sciences, Numerical Analysis, FOS: Mathematics, Numerical Analysis (math.NA), Machine Learning (cs.LG)
Zugangs-URL: http://arxiv.org/abs/2509.11293
-
7
Autoren:
Quelle: 2024 IEEE 7th International Conference on Industrial Cyber-Physical Systems (ICPS). :1-6
-
8
Autoren: et al.
Quelle: AIAA SCITECH 2025 Forum.
-
9
Autoren:
Quelle: Earthquake Engineering & Structural Dynamics. 53:815-837
-
10
Autoren: et al.
Quelle: IEEE Journal of Biomedical and Health Informatics. 27:3686-3694
Schlagwörter: Humans, Reproducibility of Results, Algorithms
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/37163398
-
11
Autoren:
Quelle: Proceedings of the 2023 7th International Conference on Computational Biology and Bioinformatics. :48-52
-
12
Autoren:
Quelle: BMC Bioinformatics, Vol 24, Iss 1, Pp 1-21 (2023)
Schlagwörter: Drug-target interaction, Spatial consistency constraint, Graph convolutional autoencoder, Deep learning, Computer applications to medicine. Medical informatics, R858-859.7, Biology (General), QH301-705.5
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/1471-2105
-
13
Autoren: et al.
Quelle: 2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). :346-351
-
14
Autoren: et al.
Quelle: 2023 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD). :1378-1383
-
15
Autoren:
Index Begriffe: info:eu-repo/semantics/article, info:eu-repo/semantics/publishedVersion
URL:
http://zaguan.unizar.es/record/132810
info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-113463RB-C31/AEI/10.13039/501100011033
info:eu-repo/grantAgreement/ES/UZ-IBERCAJA-CAI/IT1-21 -
16
Autoren: et al.
Quelle: Lecture Notes in Computer Science ISBN: 9789819756889
-
17
Autoren: Lippincott, Tom
-
18
Autoren: et al.
Quelle: Lecture Notes in Computer Science ISBN: 9789819751273
-
19
Autoren: et al.
Quelle: Information Sciences. 608:1464-1479
-
20
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: nanophotonique, nanophotonics électromagnétisme computationnel, réseaux de neurones, nonlinear phenomena, graph neural networks, computational electromagnetics, [MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA], phénomènes non linéaires, modélisation d'ordre réduit, reduced order modeling
Dateibeschreibung: application/pdf
Zugangs-URL: https://hal.science/hal-04867474v1
Full Text Finder
Nájsť tento článok vo Web of Science