Search Results - genetic algorithm‐based chaotic ant swart algorithm*

Refine Results
  1. 1
  2. 2
  3. 3

    Source: Tecnura; Vol. 26 No. 74 (2022): October - December ; 87-129 ; Tecnura; Vol. 26 Núm. 74 (2022): Octubre - Diciembre ; 2248-7638 ; 0123-921X

    File Description: application/pdf; text/xml

    Relation: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/18342/18512; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/18342/18586; Abido, M. A. (2002). Optimal power flow using particle swarm optimization. International Journal of Electrical Power & Energy Systems, 24(7), 563-571. https://doi.org/10.1016/S0142-0615(01)00067-9; Abou El Ela, A. A., Abido, M. A., & Spea, S. R. (2010). Optimal power flow using differential evolution algorithm. Electric Power Systems Research, 80(7), 878-885. https://doi.org/10.1016/j.epsr.2009.12.018; Abo-Elnaga, Y., & El-Shorbagy, M. A. (2020). Multi-sine cosine algorithm for solving nonlinear bilevel programming problems. International Journal of Computational Intelligence Systems, 13(1), 421-432. https://doi.org/10.2991/ijcis.d.200411.001; Akbar, N. S., & Nadeem, S. (2014). Carreau fluid model for blood flow through a tapered artery with a stenosis. Ain Shams Engineering Journal, 5(4), 1307-1316. https://doi.org/10.1016/j.asej.2014.05.010; Andersen, M. S., Hansson, A., & Vandenberghe, L. (2013). Reduced-complexity semidefinite relaxations of optimal power flow problems. IEEE Transactions on Power Systems, 29(4), 1855-1863. https://doi.org/10.1109/TPWRS.2013.2294479; Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Computers & structures, 169, 1-12. https://doi.org/10.1016/j.compstruc.2016.03.001; Attia, A. F., El Sehiemy, R. A., & Hasanien, H. M. (2018). Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. International Journal of Electrical Power & Energy Systems, 99, 331-343. https://doi.org/10.1016/j.ijepes.2018.01.024; Bai, X., Wei, H., Fujisawa, K., & Wang, Y. (2008). Semidefinite programming for optimal power flow problems. International Journal of Electrical Power & Energy Systems, 30(6-7), 383-392. https://doi.org/10.1016/j.ijepes.2007.12.003; Baradar, M., Hesamzadeh, M. R., & Ghandhari, M. (2013). Second-order cone programming for optimal power flow in VSC-type AC-DC grids. IEEE Transactions on Power Systems, 28(4), 4282-4291. https://doi.org/10.1109/TPWRS.2013.2271871; Bayat, A., & Bagheri, A. (2019). Optimal active and reactive power allocation in distribution networks using a novel heuristic approach. Applied Energy, 233, 71-85. https://doi.org/10.1016/j.apenergy.2018.10.030; Ben Oualid Medani, K., Sayah, S., & Bekrar, A. (2018). Whale optimization algorithm based optimal reactive power 620 dispatch: A case study of the Algerian power system. Electrical Power Systems Research, 163, 696-705. https://doi.org/10.1016/j.epsr.2017.09.001; Benson, H. Y., & Sağlam, Ü. (2013). Mixed-integer second-order cone programming: A survey. Theory Driven by Influential Applications, 2013, 13-36. https://doi.org/10.1287/educ.2013.0115; Bocanegra, S. Y., & Montoya, O. D. (2019). Heuristic approach for optimal location and sizing of distributed generators in AC distribution networks. https://hdl.handle.net/20.500.12585/9176; Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press. https://doi.org/10.1017/CBO9780511804441; Bouchekara, H. R. E. H. (2013). Optimal design of electromagnetic devices using a black-hole-based optimization technique. IEEE Transactions on Magnetics, 49(12), 5709-5714. https://doi.org/10.1109/TMAG.2013.2277694; Bouchekara, H. R. E. H., Abido, M. A., & Boucherma, M. (2014). Optimal power flow using teaching-learning-based optimization technique. Electric Power Systems Research, 114, 49-59. https://doi.org/10.1016/j.epsr.2014.03.032; Cawley, J., & Ruhm, C. J. (2011). The economics of risky health behaviors. In M. V. Pauly, T. G. Mcguire, & P. P. Barros (Eds.), Handbook of Health Economics (vol. 2, pp. 95-199). Elsevier. https://doi.org/10.3386/w17081; Chen, G., Yi, X., Zhang, Z., & Lei, H. (2018). Solving the multi-objective optimal power flow problem using the multi-objective firefly algorithm with a constraints-prior Pareto-domination approach. Energies, 11(12), 3438. https://doi.org/10.3390/en11123438; Davoodi, E., Babaei, E., Mohammadi-Ivatloo, B., Shafie-Khah, M., & Catalão, J. P. (2020). Multiobjective optimal power flow using a semidefinite programming-based model. IEEE Systems Journal, 15(1), 158-169. https://doi.org/10.1109/JSYST.2020.2971838; Deshmukh, R., & Kalage, A. (2018, November 23-24). Optimal placement and sizing of distributed generator in distribution system using artificial bee colony algorithm [Conference presentation]. 2018 IEEE Global Conference on Wireless Computing and Networking, Lonavala, India. https://doi.org/10.1109/GCWCN.2018.8668633 Devabalaji, K. R., Imran, A. M., Yuvaraj, T., & Ravi, K. J. E. P. (2015). Power loss minimization in radial distribution system. Energy Procedia, 79, 917-923. https://doi.org/10.1016/j.egypro.2015.11.587; Doğan, B., & Ölmez, T. (2015). A new metaheuristic for numerical function optimization: Vortex Search algorithm. Information Sciences, 293, 125-145. https://doi.org/10.1016/j.ins.2014.08.053; El-Fergany, A. A., & Hasanien, H. M. (2015). Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms. Electric Power Components and Systems, 43(13), 1548-1559. https://doi.org/10.1080/15325008.2015.1041625; Ebeed, M., Kamel, S., & Jurado, F. (2018). Optimal power flow using recent optimization techniques. In Classical and recent aspects of power system optimization (pp. 157-183). Academic Press. https://doi.org/10.1016/B978-0-12-812441-3.00007-0; El-Khattam, W., & Salama, M. M. (2004). Distributed generation technologies, definitions, and benefits.E lectric Power Systems Research, 71(2), 119-128. https://doi.org/10.1016/j.epsr.2004.01.006; Farivar, M., & Low, S. H. (2013). Branch flow model: Relaxations and convexification – Part I. IEEE Transactions on Power Systems, 28(3), 2554-2564. https://doi.org/10.1109/TPWRS.2013.2255317; Garcés, A. (2016). A quadratic approximation for the optimal power flow in power distribution systems. Electric Power Systems Research, 130, 222-229. https://doi.org/10.1016/j.epsr.2015.09.006; Gharehchopogh, F. S., Maleki, I., & Dizaji, Z. A. (2021). Chaotic vortex search algorithm: Metaheuristic algorithm for feature selection. Evolutionary Intelligence, 15, 1777-1808. https://doi.org/10.1007/s12065-021-00590-1; Gholami, K., & Parvaneh, M. H. (2019). A mutated salp swarm algorithm for optimum allocation of active and reactive power sources in radial distribution systems. Applied Soft Computing, 85, 105833. https://doi.org/10.1016/j.asoc.2019.105833; Gil-González, W., Montoya, O. D., Rajagopalan, A., Grisales-Noreña, L. F., & Hernández, J. C. (2020). Optimal selection and location of fixed-step capacitor banks in distribution networks using a discrete version of the vortex search algorithm. Energies, 13(18), 4914. https://doi.org/10.3390/en13184914; Grisales-Noreña, L. F., González-Montoya, D., & Ramos-Paja, C. A. (2018). Optimal sizing and location of distributed generators based on PBIL and PSO techniques. Energies, 11(4), 1018. https://doi.org/10.3390/en11041018; Grisales-Noreña, L. F., Garzón-Rivera, O. D., Ocampo-Toro, J. A., Ramos-Paja, C. A., & Rodríguez-Cabal, M. A. (2020). Metaheuristic optimization methods for optimal power flow analysis in DC distribution networks. Transactions on Energy Systems and Engineering Applications, 1(1), 13-31. https://doi.org/10.32397/tesea.vol1.n1.2; Gupta, S., Saxena, A., & Soni, B. P. (2015). Optimal placement strategy of distributed generators based on radial basis function neural network in distribution networks. Procedia Computer Science, 57, 249-257. https://doi.org/10.1016/j.procs.2015.07.478; Hasan, Z., & El-Hawary, M. E. (2014, November 12-14). Optimal power flow by black hole optimization algorithm [Conference presentation]. 2014 IEEE Electrical Power and Energy Conference, Calgary, AB, Canada. https://doi.org/10.1109/EPEC.2014.43; Gutiérrez, D., Villa, W. M., & López-Lezama, J. M. (2017). Flujo óptimo reactivo mediante optimización por enjambre de partículas. Información Tecnológica, 28(5), 215-224. https://doi.org/10.4067/S0718-07642017000500020; Hariharan, T., & Sundaram, K. M. (2016). Optimal power flow using firefly algorithm with unified power flow controller. Circuits and Systems, 7(08), 1934. https://doi.org/10.4236/cs.2016.78168; Herbadji, O., Nadhir, K., Slimani, L., & Bouktir, T. (2013, April 28-30). Optimal power flow with emission controlled using firefly algorithm [Conference presentation]. 2013 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), Hammamet, Tunisia. https://doi.org/10.1109/ICMSAO.2013.6552559; Hernández, C., Sánchez-Huertas, W., & Gómez, V. (2021). Optimal power flow through artificial intelligence techniques. Tecnura, 25(69), 150-170. https://doi.org/10.14483/22487638.18245; Home-Ortiz, J. M., Pourakbari-Kasmaei, M., Lehtonen, M., & Mantovani, J. R. S. (2019). Optimal location-allocation of storage devices and renewable-based DG in distribution systems. Electric Power Systems Research, 172, 11-21. https://doi.org/10.1016/j.epsr.2019.02.013; Hudaib, A. A., & Fakhouri, H. N. (2018). Supernova optimizer: A novel natural inspired meta-heuristic. Modern Applied Science, 12(1), 32-50. https://doi.org/10.5539/mas.v12n1p32; Injeti, S. K., & Kumar, N. P. (2013). A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large scale radial distribution systems. International Journal of Electrical Power & Energy Systems, 45(1), 142-151. https://doi.org/10.1016/j.ijepes.2012.08.043; Kaur, S., Kumbhar, G., & Sharma, J. (2014). A MINLP technique for optimal placement of multiple DG units in distribution systems. International Journal of Electrical Power & Energy Systems, 63, 609-617. https://doi.org/10.1016/j.ijepes.2014.06.023; Khan, B., & Singh, P. (2017). Optimal power flow techniques under characterization of conventional and renewable energy sources: A comprehensive analysis. Journal of Engineering, 2017, 9539506. https://doi.org/10.1155/2017/9539506; Khan, A., Hizam, H., Abdul-Wahab, N. I., & Othman, M. L. (2020). Solution of optimal power flow using non-dominated sorting multi objective based hybrid firefly and particle swarm optimization algorithm. Energies, 13(16), 4265. https://doi.org/10.3390/en13164265; Kronqvist, J., Bernal, D. E., Lundell, A., & Grossmann, I. E. (2019). A review and comparison of solvers for convex MINLP. Optimization and Engineering, 20(2), 397-455. https://doi.org/10.1007/s11081-018-9411-8; Mitchell, M. (1998). An introduction to genetic algorithms. MIT press. https://doi.org/9780262133166; Lakshmi, P., Rao, B. V., Devarapalli, R., & Rai, P. (2020, July 10-11). Optimal power flow with BAT algorithm for a power system to reduce transmission line losses using SVC [Conference presentation]. 2020 International Conference on Emerging Frontiers in Electrical and Electronic Technologies, Patna, India. https://doi.org/10.1109/ICEFEET49149.2020.9186964; Lavaei, J., & Low, S. H. (2011). Zero duality gap in optimal power flow problem. IEEE Transactions on Power Systems, 27(1), 92-107. https://doi.org/10.1109/TPWRS.2011.2160974; Lavorato, M., Franco, J. F., Rider, M. J., & Romero, R. (2011). Imposing radiality constraints in distribution system optimization problems. IEEE Transactions on Power Systems, 27(1), 172-180. https://doi.org/10.1109/TPWRS.2011.2161349; Lima, J. Q., & Barán, B. (2006). Optimización de enjambre de partículas aplicada al problema del cajero viajante bi-objetivo. Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial, 10(32), 67-76.; Manrique, M. L., Montoya, O. D., Garrido, V. M., Grisales-Noreña, L. F., & Gil-González, W. (2019). Sine-cosine algorithm for OPF analysis in distribution systems to size distributed generators. In J. C. Figueroa-García, M. Duarte-González, S. Jaramillo-Isaza, Á. D. Orjuela-Cañón, & Y. Díaz-Gutierrez (Eds.), WEA 2019: Applied Computer Sciences in Engineering (pp. 28-39). Springer. https://doi.org/10.1007/978-3-030-31019-6_3; Marini, A., Mortazavi, S. S., Piegari, L., & Ghazizadeh, M. S. (2019). An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations. Electric Power Systems Research, 170, 229-243. https://doi.org/10.1016/j.epsr.2018.12.026; Mirjalili, S. M., Mirjalili, S. Z., Saremi, S., & Mirjalili, S. (2020). Sine cosine algorithm: theory, literature review, and application in designing bend photonic crystal waveguides. In S. Mirijalili, J. Song Dong, & A. Lewis (Eds.), Nature-Inspired Optimizers. Studies in Computational Intelligence (vol. 811, pp. 201-217). Springer. https://doi.org/10.1007/978-3-030-12127-3_12; Mohagheghi, E., Alramlawi, M., Gabash, A., & Li, P. (2018). A survey of real-time optimal power flow. Energies, 11(11), 3142. https://doi.org/10.3390/en11113142; Molzahn, D. K., & Hiskens, I. A. (2016). Convex relaxations of optimal power flow problems: An illustrative example. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(5), 650-660. https://doi.org/10.1109/TCSI.2016.2529281; Montoya-Giraldo, O. D., Gil-González, W. J., & Garcés-Ruíz, A. (2017). Flujo de potencia óptimo para redes radiales y enmalladas empleando programación semidefinida. TecnoLógicas, 20(40), 29-42. https://doi.org/10.22430/22565337.703; Montoya, O. D., Grisales-Noreña, L. F., Amin, W. T., Rojas, L. A., & Campillo, J. (2019). Vortex search algorithm for optimal sizing of distributed generators in AC distribution networks with radial topology. In J. C. Figueroa-García, M. Duarte-González, S. Jaramillo-Isaza, Á. D. Orjuela-Cañón, & Y. Díaz-Gutierrez (Eds.), WEA 2019: Applied Computer Sciences in Engineering (pp. 235-249). Springer. https://doi.org/10.1007/978-3-030-31019-6_21; Montoya, O. D., Gil-González, W., & Giral, D. A. (2020a). On the matricial formulation of iterative sweep power flow for radial and meshed distribution networks with guarantee of convergence. Applied Sciences, 10(17), 5802. https://doi.org/10.3390/app10175802; Montoya, O. D., Gil-González, W., & Orozco-Henao, C. (2020b). Vortex search and Chu-Beasley genetic algorithms for optimal location and sizing of distributed generators in distribution networks: A novel hybrid approach. Engineering Science and Technology, an International Journal, 23(6), 1351-1363. https://doi.org/10.1016/j.jestch.2020.08.002; Montoya, O. D., Gil-González, W., Serra, F. M., Hernández, J. C., & Molina-Cabrera, A. (2020c). A second-order cone programming reformulation of the economic dispatch problem of BESS for apparent power compensation in ac distribution networks. Electronics, 9(10), 1677. https://doi.org/10.3390/electronics9101677; Montoya, O. D., & Gil-González, W. (2020). On the numerical analysis based on successive approximations for power flow problems in AC distribution systems. Electric Power Systems Research, 187, 106454. https://doi.org/10.1016/j.epsr.2020.106454; Montoya, O. D., Arias-Londoño, A., & Molina-Cabrera, A. (2022). Branch optimal power flow model for DC networks with radial structure: A conic relaxation. Tecnura, 26(71), 30-42. https://doi.org/10.14483/22487638.18635; Moradi, M. H., & Abedini, M. (2012). A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. International Journal of Electrical Power & Energy Systems, 34(1), 66-74. https://doi.org/10.1016/j.ijepes.2011.08.023; Moradi, M. H., & Abedini, M. (2016). A novel method for optimal DG units’ capacity and location in Microgrids. International Journal of Electrical Power & Energy Systems, 75, 236-244. https://doi.org/10.1016/j.ijepes.2015.09.013; Mouassa, S., Bouktir, T., & Salhi, A. (2017). Ant lion optimizer for solving optimal reactive power dispatch problem in power systems. Engineering Science and Technology, an International Journal, 20(3), 885-895. https://doi.org/10.1016/j.jestch.2017.03.006; Mukherjee, A., & Mukherjee, V. (2015). Solution of optimal power flow using chaotic krill herd algorithm. Chaos, Solitons & Fractals, 78, 10-21. https://doi.org/10.1016/j.chaos.2015.06.020; Muthukumar, K., & Jayalalitha, S. (2016). Optimal placement and sizing of distributed generators and shunt capacitors for power loss minimization in radial distribution networks using hybrid heuristic search optimization technique. International Journal of Electrical Power & Energy Systems, 78, 299-319. https://doi.org/10.1016/j.ijepes.2015.11.019; Nowdeh, S. A., Davoudkhani, I. F., Moghaddam, M. H., Najmi, E. S., Abdelaziz, A. Y., Ahmadi, A., & Gandoman, F. H. (2019). Fuzzy multi-objective placement of renewable energy sources in distribution system with objective of loss reduction and reliability improvement using a novel hybrid method. Applied Soft Computing, 77, 761-779. https://doi.org/10.1016/j.asoc.2019.02.003; Ou, T. C. (2012). A novel unsymmetrical faults analysis for microgrid distribution systems. International Journal of Electrical Power & Energy Systems, 43(1), 1017-1024. https://doi.org/10.1016/j.ijepes.2012.05.012; Prior, H., Schwarz, A., & Güntürkün, O. (2008). Mirror-induced behavior in the magpie (Pica pica): Evidence of self-recognition. PLoS biology, 6(8), e202. https://doi.org/10.1371/journal.pbio.0060202; Radziukynas, V., & Radziukyniene, I. (2009). Optimization methods application to optimal power flow in electric power systems. In J. Kallrath, P. M. Pardalos, S. Rebennack & M. Scheidt (Eds.) Optimization in the Energy Industry. Energy Systems (pp. 409-436). Springer. https://doi.org/10.1007/978-3-540-88965-6_18; Raviprabhakaran, V., & Ravichandran, C. S. (2016). Enriched biogeography-based optimization algorithm to solve economic power dispatch problem. In M. Pant, K. Deep, J. Bansal, A. Nagar & K. Das (Eds.), Proceedings of Fifth International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing (vol. 437, pp. 875-888). Springer. https://doi.org/10.1007/978-981-10-0451-3_78; Raviprabakaran, V., & Subramanian, R. C. (2018). Enhanced ant colony optimization to solve the optimal power flow with ecological emission. International Journal of System Assurance Engineering and Management, 9(1), 58-65. https://doi.org/10.1007/s13198-016-0471-x; Rbouh, I., & El Imrani, A. A. (2014). Hurricane-based optimization algorithm. AASRI Procedia, 6, 26-33. https://doi.org/10.1016/j.aasri.2014.05.005; Rosli, S. J., Rahim, H. A., Abdul Rani, K. N., Ngadiran, R., Ahmad, R. B., Yahaya, N. Z., & Andrew, A. M. (2020). A hybrid modified method of the sine cosine algorithm using latin hypercube sampling with the cuckoo search algorithm for optimization problems. Electronics, 9(11), 1786. https://doi.org/10.3390/electronics9111786; Rupolo, D., Mantovani, J. R. S., & Junior, B. R. P. (2019, June 23-27). Medium- and low-voltage planning of electric power distribution systems with distributed generation, energy storage sources, and electric vehicles [Conference presentation]. 2019 IEEE Milan PowerTech Milan, Italy. https://doi.org/10.1109/PTC.2019.8810573; Rupolo, D., Pereira Junior, B. R., Contreras, J., & Mantovani, J. R. S. (2020). Multiobjective approach for medium- and low-voltage planning of power distribution systems considering renewable energy and robustness. Energies, 13(10), 2517. https://doi.org/10.1109/PTC.2019.8810573; Salkuti, S. R. (2019). Optimal power flow using multi-objective glowworm swarm optimization algorithm in a wind energy integrated power system. International Journal of Green Energy, 16(15), 1547-1561. https://doi.org/10.1080/15435075.2019.1677234; Scoble, M. J. (2005). Book review. Systematic Entomology, 30(3), 497-498. https://doi.org/10.1111/j.1365-3113.2005.00311.x; Shen, T., Li, Y., & Xiang, J. (2018). A graph-based power flow method for balanced distribution systems. Energies, 11(3), 511. https://doi.org/10.3390/en11030511; Siavash, M., Pfeifer, C., Rahiminejad, A., & Vahidi, B. (2017, May 17-19). An application of grey wolf optimizer for optimal power flow of wind integrated power systems [Conference presentation]. 2017 18th International Scientific Conference on Electric Power Engineering, Kouty nad Desnou, Czech Republic. https://doi.org/10.1109/EPE.2017.7967230; Simiyu, P., Xin, A., Wang, K., Adwek, G., & Salman, S. (2020). Multiterminal medium voltage DC distribution network hierarchical control. Electronics, 9(3), 506. https://doi.org/10.3390/electronics9030506; Sultana, S., & Roy, P. K. (2014). Multi-objective quasi-oppositional teaching learning-based optimization for optimal location of distributed generator in radial distribution systems. International Journal of Electrical Power & Energy Systems, 63, 534-545. https://doi.org/10.1016/j.ijepes.2014.06.031; Sultana, S., & Roy, P. K. (2016). Krill herd algorithm for optimal location of distributed generator in radial distribution system. Applied Soft Computing, 40, 391-404. https://doi.org/10.1016/j.asoc.2015.11.036; Taher, M. A., Kamel, S., Jurado, F., & Ebeed, M. (2019). Modified grasshopper optimization framework for optimal power flow solution. Electrical Engineering, 101(1), 121-148. https://doi.org/10.1007/s00202-019-00762-4; Tamilselvan, V., Jayabarathi, T., Raghunathan, T., & Yang, X. S. (2018). Optimal capacitor placement in radial distribution systems using flower pollination algorithm. Alexandria Engineering Journal, 57(4), 2775-2786. https://doi.org/10.1016/j.aej.2018.01.004; Tang, Y., Dvijotham, K., & Low, S. (2017). Real-time optimal power flow. IEEE Transactions on Smart Grid, 8(6), 2963-2973. https://doi.org/10.1109/TSG.2017.2704922; Topaloglu, H., Smith, J. C., & Greenberg, H. J. (Eds.) (2013). Theory driven by influential applications. Informs. https://doi.org/10.1287/educ.2013; Trivedi, I. N., Jangir, P., & Parmar, S. A. (2016). Optimal power flow with enhancement of voltage stability and reduction of power loss using ant-lion optimizer. Cogent Engineering, 3(1), 1208942. https://doi.org/10.1080/23311916.2016.1208942; Velásquez, O. S., Montoya-Giraldo, O. D., Garrido-Arévalo, V. M., & Grisales-Noreña, L. F. (2019). Optimal power flow in direct-current power grids via black hole optimization. Advances in Electrical and Electronic Engineering, 17(1), 24-32. https://doi.org/10.15598/aeee.v17i1.3069; Vélez, V. M., Hincapié, R. A., & Gallego, R. A. (2014). Low voltage distribution system planning using diversified demand curves. Electrical Power & Energy Systems, 61, 691-700. https://doi.org/10.1016/j.ijepes.2014.04.019; Winter, G. (2005). Origin of the species. Nursing Standard, 19(34), 24-26. https://doi.org/10.7748/ns.19.34.24.s28; Yadav, R., & Mahara, T. (2018). An exploratory study to investigate value chain of Saharanpur wooden carving handicraft cluster. International Journal of System Assurance Engineering and Management, 9(1), 147-154. https://doi.org/10.1007/s13198-016-0492-5; Yuan, Y., Wu, X., Wang, P., & Yuan, X. (2018). Application of improved bat algorithm in optimal power flow problem. Applied Intelligence, 48(8), 2304-2314. https://doi.org/10.1007/s10489-017-1081-2; Yuan, Z., & Hesamzadeh, M. R. (2019). Second-order cone AC optimal power flow: Convex relaxations and feasible solutions. Journal of Modern Power Systems and Clean Energy, 7(2), 268-280. https://doi.org/10.1007/s40565-018-0456-7; Zohrizadeh, F., Josz, C., Jin, M., Madani, R., Lavaei, J., & Sojoudi, S. (2020). Conic relaxations of power system optimization: Theory and algorithms. European Journal of Operational Research, 287(2), 391-409. https://doi.org/10.1016/j.ejor.2020.01.034; Zuluaga-Ríos, C. D., Florián-Ceballos, D. F., Rojo-Yepes, M. Á., & Saldarriaga-Zuluaga, S. D. (2021). Review of charging load modeling strategies for electric vehicles: A comparison of grid-to-vehicle probabilistic approaches. Tecnura, 25(70), 51-60. https://doi.org/10.14483/22487638.18657; https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/18342

  4. 4
  5. 5

    File Description: pdf; application/pdf

    Relation: Abarca, F. J., Campos, F. S., & Reinoso, R. (2017). Methodology of Decision Support through GIS and Artificial Intelligence: Implementation for Demographic Characterization of Andalusia based on Dwelling. Estoa, 6(11), 33-51. https://doi.org/10.18537/est.v006.n011.a03; Aghasafari, H., Karbasi, A., Mohammadi, H., & Calisti, R. (2020). Determination of the best strategies for development of organic farming: A SWOT – Fuzzy Analytic Network Process approach. Journal of Cleaner Production, 277. https://doi.org/10.1016/j.jclepro.2020.124039; Aghmashhadi, A. H., Cirella, G. T., Zahedi, S., & Kazemi, A. (2019). Water resource policy support sys- tem of the Caspian Basin. AIMS Environmental Science, 6(4), 242-261. https://doi.org/10.3934/ environsci.2019.4.242; Ahmad, I., Saeed, U., Fahad, M., Ullah, A., Habib ur Rahman, M., Ahmad, A., & Judge, J. (2018). Yield Forecasting of Spring Maize Using Remote Sensing and Crop Modeling in Faisalabad-Punjab Pa- kistan. Journal of the Indian Society of Remote Sensing, 46(10), 1701-1711. https://doi.org/10.1007/ s12524-018-0825-8; Air, P., & Pokhariya, H. S. (2023). Detecting Changes in Land Use and Land Cover using GIS and Re- mote Sensing Methods in Pauri District of Uttarakhand State, India. En S. J., S. P., C. Y., A. K.U., A. P.K., M. N., 4. U. K. M. Universiti Kebangsaan Malaysia Bangi Selangor, T. G. & S. S. (Eds.), 14th International Conference on Advances in Computing, Control, and Telecommuni- cation Technologies, ACT 2023 (pp. 811-817, Vol. 2023-June). Grenze Scientific Society. https : / / www . scopus . com / inward / record . uri ? eid = 2 - s2 . 0 - 85174244240 & partnerID = 40 & md5 = 54daf606899561835e7212f72f888739; Al-Amin, S., Berglund, E. Z., & Larson, K. (2014). Complex Adaptive System Framework to Simulate Adaptations of Human-Environmental Systems to Climate Change and Urbanization: The Verde River Basin. World Environmental and Water Resources Congress 2014: Water Without Borders - Proceedings of the 2014 World Environmental and Water Resources Congress; Albornoz, M., Albornoz Barriga, M. B., Machado, M. A., & Albornoz, M. (2016). Transformaciones en la pol´ıtica de tierras y redistribuci´on agraria del Ecuador. Una visi´on desde las redes de pol´ıtica p´ublica. Mundo Agrario: Revista de estudios rurales, 17(36), 036; Alfonso, O. A., & Malaver, C. E. (2012). Estudio sobre los efectos de la variabilidad clim´atica sobre la dimensi´on de la disponibilidad de alimentos en la seguridad alimentaria en Colombia e iniciativas de pol´ıtica; Ali, M., Deo, R. C., Downs, N. J., & Maraseni, T. (2018). Cotton yield prediction with Markov Chain Monte Carlo-based simulation model integrated with genetic programing algorithm: A new hybrid copula- driven approach. Agricultural and Forest Meteorology, 263(January), 428-448. https://doi.org/10. 1016/j.agrformet.2018.09.002; Alvarado-Quiroa, H. O., & Araya-Rodr´ıguez, F. (2014). Cambios de uso del suelo y crecimiento urbano. Es- tudio de caso en los municipios conurbados de la Mancomunidad Metr´opoli de Los Altos, Quetzalte- nango, Guatemala. Tecnolog´ıa en Marcha, 27(1), 104-113. https://doi.org/10.18845/tm.v27i1.1701; Amani, M., Kakooei, M., Moghimi, A., Ghorbanian, A., Ranjgar, B., Mahdavi, S., Davidson, A., Fisette, T., Rollin, P., Brisco, B., & Mohammadzadeh, A. (2020). Application of google earth engine cloud computing platform, sentinel imagery, and neural networks for crop mapping in Canada. Remote Sensing, 12(21), 1-18. https://doi.org/10.3390/rs12213561; Amayri, M., Ngo, Q. D., Safadi, E. A. E., & Ploix, S. (2017). Bayesian network and Hidden Markov Model for estimating occupancy from measurements and knowledge. Proceedings of the 2017 IEEE 9th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Tech- nology and Applications, IDAACS 2017, 2(October), 690-695. https://doi.org/10.1109/IDAACS. 2017.8095179; Amini, A., & Nikraz, N. (2016). Proposing two defuzzification methods based on output fuzzy set weights. International Journal of Intelligent Systems and Applications, 8(2), 1-12. https://doi.org/10.5815/ ijisa.2016.02.01; Amorós López, J., Izquierdo Verdiguier, E., Gómez Chova, L., Muñoz Marí, J., Rodríguez Barreiro, J. Z., Camps Valls, G., & Calpe Maravilla, J. (2011). Land cover classification of VHR airborne images for citrus grove identification. ISPRS Journal of Photogrammetry and Remote Sensing, 66(1), 115-123. https://doi.org/10.1016/j.isprsjprs.2010.09.008; Arasteh, R., Ali Abbaspour, R., & Salmanmahiny, A. (2019). A modeling approach to path dependent and non-path dependent urban allocation in a rapidly growing region. Sustainable Cities and Society, 44(October 2018), 378-394. https://doi.org/10.1016/j.scs.2018.10.029; Avella, A. P., Sosa, M. D., Avella O., A. P., & Sosa R., M. D. (2015). Family agriculture in colombia: a case study of the trinidad county, casanare department/agricultura familiar en colombia: analisis de caso del municipio de trinidad, departamento de casanare. Direito da Cidade, 7(1), 30-40. https : //doi.org/10.12957/rdc.2015.15198; Awad, M. (2016). New mathematical models to estimate wheat Leaf Chlorophyll Content based on Artificial Neural Network and remote sensing data. 2016 IEEE International Multidisciplinary Conference on Engineering Technology, IMCET 2016, 86-91. https://doi.org/10.1109/IMCET.2016.7777432; Babaee, M., Maroufpoor, S., Jalali, M., Zarei, M., & Elbeltagi, A. (2021). Artificial intelligence approach to estimating rice yield*. Irrigation and Drainage, 70(4), 732-742. https://doi.org/10.1002/ird.2566; Babar, Z., Ewers, M., & Khattab, N. (2019). Im/mobile highly skilled migrants in Qatar*. Journal of Ethnic and Migration Studies, 45(9), 1553-1570. https://doi.org/10.1080/1369183X.2018.1492372; Badiani, B., Barontini, S., Bettoni, B., Bonati, S., Peli, M., Pietta, A., Scala, B., Tononi, M., Vitale, N., Barbara, B. B., Stefano, B., Barbara, B. B., Sara, B., Marco, P., Antonella, P., Barbara, S., Marco, T., & Nicola, V. (2017). Lake Garda lemon houses (Italy): Opportunities of a sensitive, marginal area in urban planning. Change and Adaptation in Socio-Ecological Systems, 3(1), 111-118. https: //doi.org/10.1515/cass-2017-0010; Bagaria, P., Nandy, S., Mitra, D., & Sivakumar, K. (2021). Monitoring and predicting regional land use and land cover changes in an estuarine landscape of India. Environmental Monitoring and Assessment, 193(3). https://doi.org/10.1007/s10661-021-08915-4; Bahar, D., Ibáñez, A. M., & Rozo, S. V. (2021). Give me your tired and your poor: Impact of a large- scale amnesty program for undocumented refugees. Journal of Development Economics, 151. https: //doi.org/10.1016/j.jdeveco.2021.102652; Baker, J. (2012). Migration and mobility in a rapidly changing small town in northeastern Ethiopia. Environ- ment and Urbanization, 24(1), 345-367. https://doi.org/10.1177/0956247811435890; Bali, N., & Singla, A. (2021). Deep Learning Based Wheat Crop Yield Prediction Model in Punjab Region of North India. Applied Artificial Intelligence, 35(15), 1304-1328. https://doi.org/10.1080/08839514. 2021.1976091; Banik, S., & Huq, M. R. (2020). Geolocation based decision making for appropriate land use using machine learning model. International Journal of Scientific and Technology Research, 9(2), 3084-3090. https://www.scopus.com/inward/record.uri?eid=2- s2.0- 85079484091&partnerID=40&md5= fac27a7e3887ff46566bef80993d823e; Baudasse, T. T., Calderón, C., & Calderón V., C. (2009). Integración comercial del sector agrícola y desigualdad económica en los países en vías de desarrollo. Investigacion Economica, 68(269), 37-72; Baysan, C., Dar, M. H., Emerick, K., Li, Z., & Sadoulet, E. (2024). The agricultural wage gap within rural villages. Journal of Development Economics, 168. https://doi.org/10.1016/j.jdeveco.2024.10327; Beilin, R., Lindborg, R., Stenseke, M., Pereira, H. M., Llaus`as, A., Sl¨atmo, E., Cerqueira, Y., Navarro, L., Rodrigues, P., Reichelt, N., Munro, N., & Queiroz, C. (2014). Analysing how drivers of agricultural land abandonment affect biodiversity and cultural landscapes using case studies from Scandinavia, Iberia and Oceania. Land Use Policy, 36, 60-72. https://doi.org/https://doi.org/10.1016/j.landusepol. 2013.07.003; Beltrán, J. A., & Piñeros, A. (2013). Sector agropecuario colombiano: realidad y perspectiva [Tesis doctoral, UNIVERSIDAD EAN FACULTAD]. http://repository.ean.edu.co/bitstream/handle/10882/4629/ BeltranJorge2013.pdf?sequence=1; Benites, G. V. (2023). Natures of concern: The criminalization of artisanal and small-scale mining in Colom- bia and Peru. Extractive Industries and Society, 13. https://doi.org/10.1016/j.exis.2022.101105; Berger, T., Schilling, C., Troost, C., & Latynskiy, E. (2010). Knowledge-brokering with agent-based models: Some experiences from irrigation-related research in Chile. Modelling for Environment’s Sake: Pro- ceedings of the 5th Biennial Conference of the International Environmental Modelling and Software Society, iEMSs 2010, 1(December 2015), 791-800; Bernal Villamarin, S. C., Morales, D. A. C., Reyes, C. A. A., & Sanchez, C. A. (2016). Application design sign language colombian for mobile devices: VLSCApp (Voice Colombian sign language app) 1.0. Proceedings of 2016 Technologies Applied to Electronics Teaching, TAEE 2016. https://doi.org/10. 1109/TAEE.2016.7528378; Bessière, J. (2013). Quand le patrimoine alimentaire innove Analyse sociologique des processus d'innovation patrimoniale alimentaire au service des territoires. Mondes du Tourisme, (7), 37-51. https: //doi.org/10.4000/tourisme.182; Betancur, F. R., Espinosa, H. R., & Sierra, M. M. (2016). Dynamics of agricultural area cultivated in Colom- bia , 1960- 2010. UGCiencia 22, (22), 85-98; Bhatt, A., & Bhatt, V. T. (2023). Dcrff-Lhrf: an improvised methodology for efficient land-cover classifica- tion on eurosat dataset. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-023- 17612-y; Bhatt, V., Chandrasekhar, S., & Sharma, A. (2020). Regional Patterns and Determinants of Commuting Between Rural and Urban India. Indian Journal of Labour Economics, 63(4), 1041-1063. https : //doi.org/10.1007/s41027-020-00276-9; Bhavsar, P., Safro, I., Bouaynaya, N., Polikar, R., & Dera, D. (2017). Machine Learning in Transportation Data Analytics (1st Editio). Elsevier. https://doi.org/10.1016/B978-0-12-809715-1.00012-2; Binsar, F., & Mauritsius, T. (2020). Mining of Social Media on Covid-19 Big Data Infodemic in Indonesia. Journal of Computer Science, 16(11), 1598-1609. https://doi.org/10.3844/JCSSP.2020.1598.1609; Bizimana, C., Nieuwoudt, W. L., & Ferrer, S. R. D. (2004). Farm size, land fragmentation and economic efficiency in southern rwanda. Agrekon, 43(2), 244-262. https://doi.org/10.1080/03031853.2004. 9523648; Bjarnason, T., & Edvardsson, I. R. (2017). University pathways of urban and rural migration in Iceland. Journal of Rural Studies, 54, 244-254. https://doi.org/10.1016/j.jrurstud.2017.07.001; Boateng, E. N. K., & Mensah, C. A. (2021). Land use/land cover dynamics and urban agriculture in tarkwa- nsuaem municipality, Ghana. Theoretical and Empirical Researches in Urban Management, 16(2), 5-20. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115622602&partnerID=40&md5= f4193ca9d620750c2767579b2dd43104; Bostian, M. B., Barnhart, B. L., Kurkalova, L. A., Jha, M. K., & Whittaker, G. W. (2021). Bilevel optimi- zation of conservation practices for agricultural production. Journal of Cleaner Production, 300. https://doi.org/10.1016/j.jclepro.2021.126874; Bourceret, A., Amblard, L., & Mathias, J.-D. (2023). How do farmers’ environmental preferences influence the efficiency of information instruments for water quality management? Evidence from a social-ecological agent-based model. Ecological Modelling, 478. https://doi.org/10.1016/j.ecolmodel. 2023.110300; Bouwens, L., van Zon, S. K. R., Peijen, R., & Vooijs, M. (2024). Vulnerability profiles of workers and the relation with burnout symptoms: results from the Netherlands working conditions survey. Interna- tional Archives of Occupational and Environmental Health, 97(6), 651-660. https://doi.org/10.1007/ s00420-024-02071-1; Boza, S. (2013). Evolución del sector agrícola-ecológico : el caso de Andalucía , España *. Cuadernos de Desarrollo Rural, 10(72), 291-310. http://web.a.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=1& sid=a8d4348e-3680-428d-a77d-48de2a8405ce%40sessionmgr4010; Cadavid, H., Garz´on, W., Pérez, A., López, G., Mendivelso, C., & Ramírez, C. (2018). Towards a smart farming platform: From IoT-based crop sensing to data analytics. En S. C. J.E. & M.-S. J.C. (Eds.), Advances in Computing. CCC 2018. Communications in Computer and Information Science, vol 885 (pp. 237-251, Vol. 885). Springer Verlag. https://doi.org/10.1007/978-3-319-98998-3 19; Campos, L. V. (2018). Análisis De Política Pública Desde El Enfoque De Corrientes Múltiples: El Posicionamiento De La Discapacidad En La Agenda Política Del Municipio De Mercaderes, Cauca [Tesis doctoral, Universidad del Valle]. https://medium.com/@arifwicaksanaa/pengertian-use-case- a7e576e1b6bf; Cano, L. P., & Contreras, J. H. (2006). La Economía Colombiana en el Contexto Mundial. Principales Ele- mentos de la Apertura Económica y la Globalizacion. Revista Mundo Economico Y Empresarial, (4), 83-88; Cao, J., Wang, H., Li, J., Tian, Q., & Niyogi, D. (2022). Improving the Forecasting of Winter Wheat Yields in Northern China with Machine Learning–Dynamical Hybrid Subseasonal-to-Seasonal Ensemble Prediction. Remote Sensing, 14(7). https://doi.org/10.3390/rs14071707; Cárdenas, J. I., & Vallejo, L. E. (2016). Agricultura y desarrollo rural en Colombia 2011-2013: una aproximación. Apuntes Del Cenes, 35(62), 87-123; Cardozo, O. (2011). Incidencia de poderes exógenos en las políticas públicas y en el sector rural en Colombia. Apuntes del CENES, 30, 103-116. http://virtual.uptc.edu.co/revistas2013f/index.php/cenes/article/ view/27; Carmona, E. (2016). Tutorial sobre M´aquinas de Vectores Soporte (SVM). (November), 1-27. https://www. researchgate.net/publication/263817587 Tutorial sobre Maquinas de Vectores Soporte SVM; Carrillo, M. M. (2015). Efectos de la capacidad de uso en la calidad de los suelos en la denominaci´on de origen montilla-moriles [Tesis doctoral]; Castañeda, A., Doan, D., Newhouse, D., Nguyen, M. C., Uematsu, H., & Azevedo, J. P. (2018). A New Profile of the Global Poor. World Development, 101, 250-267. https://doi.org/10.1016/j.worlddev. 2017.08.002; Cervantes-Astorga, E., Aguilar-Juárez, O., Carrillo-Nieves, D., & Gradilla-Hernández, M. S. (2021). A gis methodology to determine the critical regions for mitigating eutrophication in large territories: The case of jalisco, mexico. Sustainability (Switzerland), 13(14). https://doi.org/10.3390/su13148029; Chang, X., & Liu, L. (2018). Characterizing Rural Household Differentiation from the Perspective of Farm- land Transfer in Eastern China Using an Agent Based Model. Human Ecology, 46(6), 875-886. https://doi.org/10.1007/s10745-018-0035-6; Cohen, M. D., March, J. G., & Olsen, J. P. (1972). A Garbage Can Model of Organizational Choice. Admi- nistrative Science Quarterly, 17(1), 1-25; Contraloria General de la Rep´ublica. (2020). Observatorio de control y vigilancia de las finanzas y las pol´ıti- cas p´ublicas. Consultado el 31 de octubre de 2022, desde https://observatoriofiscal.contraloria.gov. co/Pages/Glosario.aspx?FilterField1=FL&FilterValue1=C%20https://observatoriofiscal.contraloria. gov.co/PaginasReportes/Dependencia%20Fiscal.asp; Coraggio, J. L. (2019). Education policy and human development in the Latin American City. https://doi. org/10.4324/9780429037054-3; Cortez, L. A. (2014). El Sector Agr´ıcola En Colombia: Un Marginado Del Comercio Internacional; Cozman, F. G. (2013). Independence for full conditional probabilities: Structure, factorization, non-uniqueness, and Bayesian networks. International Journal of Approximate Reasoning, 54(9), 1261-1278. https: //doi.org/10.1016/j.ijar.2013.08.001; Craviotti, C. (2014). Agricultura familiar-Agronegocios: disputas, interrelaciones y proyectos. Territorios, 16(30), 17-38. https://doi.org/10.12804/territ30.2014.01; Creswell, J. W. (2014, junio). Research design; qualitative, quantitative, and mixed methods approaches, 4th ed (Vol. 28). Ringgold, Inc. https://doi.org/10.1192/bjp.112.483.211-a; Cuchumbé Holgu´ın, N. J., & Giraldo Chavarriaga, J. A. (2013). Aproximación a la democracia deliberativa de Habermas. Discusiones Filosóficas, 14, 141-159; DANE. (2023a). Empleo y desempleo. Consultado el 30 de octubre de 2023, desde https://www.dane.gov.co/ index.php/estadisticas-por-tema/mercado-laboral/empleo-y-desempleo%20https://www.dane.gov. co/index.php/estadisticas-por-tema/mercado-laboral/empleo-y-desempleo#empleo-y-desocupacion; DANE. (2023b). Inseguridad Alimentaria en Colombia (inf. t´ec.). https://doi.org/10.25062/9786287602588. 06; DANE. (2023c). Pobreza Multidimensional. Consultado el 19 de febrero de 2024, desde https://www.dane. gov.co/index.php/estadisticas-por-tema/pobreza-y-condiciones-de-vida/pobreza-multidimensional; Dauby, J. P., & Upholzer, S. (2011). Exploring behavioral dynamics in systems of systems. Procedia Com- puter Science, 6, 34-39. https://doi.org/10.1016/j.procs.2011.08.009; Dawoe, E. K., Quashie-Sam, J., Isaac, M. E., & Oppong, S. K. (2012). Exploring farmers’ local knowledge and perceptions of soil fertility and management in the Ashanti Region of Ghana. Geoderma, 179- 180, 96-103. https://doi.org/https://doi.org/10.1016/j.geoderma.2012.02.015; De Breij, S., Qvist, J. Y., Holman, D., M¨acken, J., Seitsamo, J., Huisman, M., & Deeg, D. J. H. (2019). Educational inequalities in health after work exit: The role of work characteristics. BMC Public Health, 19(1). https://doi.org/10.1186/s12889-019-7872-0; de Brites Figueiredo, A. G., & Gremaud, A. P. (2022). Agrarism and industrialism in the Constituent As- sembly of 1823: a debate about the future of Brazil. Topoi (Brazil), 23(51), 847-869. https://doi.org/ 10.1590/2237-101X02305109; de Oliveira, M., & Pena, I. A. D. (2021). Rural’s Reinvention in Rio de Janeiro: Cafe na Roca Experien- ce in Campo Grande Neighborhood. ROSA DOS VENTOS-TURISMO E HOSPITALIDADE, 13(2), 389-408. https://doi.org/10.18226/21789061.v13i2p389; Deep, S., & Saklani, A. (2014). Urban sprawl modeling using cellular automata. Egyptian Journal of Remote Sensing and Space Science, 17(2), 179-187. https://doi.org/10.1016/j.ejrs.2014.07.001; del Castillo, A. F., Garibay, M. V., D´ıaz-V´azquez, D., Yebra-Montes, C., Brown, L. E., Johnson, A., Garcia- Gonzalez, A., & Gradilla-Hern´andez, M. S. (2024). Improving river water quality prediction with hybrid machine learning and temporal analysis. Ecological Informatics, 82(June). https://doi.org/ 10.1016/j.ecoinf.2024.102655; Denrell, J., & March, J. G. (2001). Adaptation as Information Restriction: The Hot Stove Effect. Organiza- tion Science, 12(5), 523-538. http://www.jstor.org/stable/3085997; Dhanya, C. T., & Kumar, D. N. (2009). Data mining for evolution of association rules for droughts and floods in India using climate inputs. Journal of Geophysical Research Atmospheres, 114(2), 1-15. https://doi.org/10.1029/2008JD010485; Diack, M., Loum, M., Diop, C. T., & Holloway, A. (2017). Quantitative risk analysis using vulnerability in- dicators to assess food insecurity in the Niayes agricultural region of West Senegal. J`amb´a : Journal of Disaster Risk Studies, 9(1), 1-8. https://doi.org/10.4102/jamba.v9i1.379; Ding, T., & Achten, W. M. J. (2022). Coupling agent-based modeling with territorial LCA to support agri- cultural land-use planning. Journal of Cleaner Production, 380. https://doi.org/10.1016/j.jclepro. 2022.134914; Dinler, D. S¸ . (2016). New forms of wage labour and struggle in the informal sector: the case of waste pickers in Turkey. Third World Quarterly, 37(10), 1834-1854. https://doi.org/10.1080/01436597.2016. 1175934; Dix-Carneiro, R., & Kovak, B. K. (2019). Margins of labor market adjustment to trade. Journal of Interna- tional Economics, 117, 125-142. https://doi.org/10.1016/j.jinteco.2019.01.005; DNP. (2007a). Plan Nacional de Desarrollo 2006-2010 (Tomo II). https://colaboracion.dnp.gov.co/CDT/ PND/PND Tomo 2.pdf; DNP. (2007b). Plan Nacional de Desarrollo 2006-2010. Estado Comunitario (Tomo I). https://colaboracion. dnp.gov.co/CDT/PND/PND Tomo 1.pdf; DNP. (2007c). Política de estado para el pacífico colombiano. https://colaboracion.dnp.gov.co/CDT/Conpes/ Econ%7B%5C’%7Bo%7D%7Dmicos/3491.pdf; DNP. (2007d). Política para el mejoramiento de la gestión vial departamental a través de la implementación del ”Plan vial regional”; DNP. (2008a). Lineamientos de política para promover la producción sostenible de biocombustibles en Colombia. https://hdl.handle.net/20.500.12324/13036; DNP. (2008b). Política de Promoción Social y Económica Para El Departamento De Chocó; DNP. (2008c). Politica Nacional de Seguridad Alimentaria y Nutricional. https://www.minagricultura.gov. co/Normatividad/Conpes/Conpes%20113%20de%202008.pdf; DNP. (2008d). Pol´ıtica Nacional Fitosanitaria y de Inocuidad para las Cadenas de Frutas y de otros Vegetales; DNP. (2009). Política Nacional para la Racionalización del Componente de Costos de Producción Asociado a los Fertilizantes en el Sector Agropecuario; DNP. (2010a). Política Nacional de Erradicación Manual de Cultivos Ilícitos y Desarrollo Alternativo para la Consolidación Territorial. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%7B%5C’%7Bo% 7D%7Dmicos/3669.pdf; DNP. (2010b). Política Nacional para el Fortalecimiento de los Organismos de Acción Comuna; DNP. (2011a). Plan Nacional de Desarrollo 2010-2014 (Tomo I); DNP. (2011b). Plan Nacional de Desarrollo 2010-2014 (Tomo II). https://colaboracion.dnp.gov.co/CDT/ PND/PND2010-2014%20Tomo%20II%20CD.pdf; DNP. (2011c). Política para el desarrollo comercial de la biotecnología a partir del uso sostenible de la biodiversidad. https://minciencias.gov.co/sites/default/files/conpes 3697 de 2011 politia desarrollo comercial de la biotecnologia a partir uso biodiversidad.pdf; DNP. (2013). Estrategia de Desarrollo Integral de la Región del Catatumbo; DNP. (2014a). Plan Nacional de Desarrollo 2014 - 2018 (Tomo 1); DNP. (2014b). Plan Nacional de Desarrollo 2014-2018 (Tomo 2). https://doi.org/10.1787/9789264190375- 13-es; DNP. (2014c). Política para el desarrollo integral de la Orinoquia; DNP. (2014d). Política para el Suministro de Agua Potable y Saneamiento Básico en la Zona Rural; DNP. (2014e). Política para la preservación del paisaje cultural cafetero de Colombia; DNP. (2014f). Política y estrategias para el desarrollo agropecuario del departamento de Nariño; DNP. (2015a). Importancia Estratégica del Programa Vías para la Equidad; DNP. (2015b). Importancia estrategica del proyecto Corredor Santa Fe de Antioquia- Cañas gordas: Tunel del Toyo y vias de acceso ( Autopista de la Prosperidad). Documento Conpes 3836; DNP. (2016). Política nacional de desarrollo productivo. https://hdl.handle.net/20.500.12324/12021; DNP. (2017a). Declaración de importancia estratégica del proyecto vías para el Chocó: Transversal Quibdó - Medellín y Transversal Central del Pacífico; DNP. (2017b). Declaratoria importancia estratégica del proyecto Mejoramiento y mantenimiento de vías para la conectividad regional. Nación - para la ejecución del proyecto de infraestructura vial con impacto regional financiado con recursos de la enajenación de Isagén; DNP. (2018a). Declaración de importancia estratégica de la continuación de las obras de la Autopista Ruta de Sol, sector II a través de los siguientes proyectos: Construcción, mejoramiento y mantenimiento. Documento Conpes 3924. %7C; DNP. (2018b). Declaraci´on de importancia estratégica del proyecto Mejoramiento y mantenimiento carretera Santafé de Bogotá-Chiquinquirá-Bucaramanga-San Alberto de la Troncal Central. Cundinamarca- Santander-Norte de Santander - Construcción variante San Gil; DNP. (2018c). Estrategias de actuación y coordinaci´on para reducir las afectaciones ante la eventual ocurrencia de un fenómeno de variabilidad climática el niño 2018 - 2019; DNP. (2018d). Lineamientos de política y estrategías para el desarrollo regional sostenible del Macizo Colombiano. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%7B%5C’%7Bo%7D%7Dmicos/ 3915.pdf; DNP. (2018e). Plan Nacional de Desarrollo 2018-2022. https://colaboracion.dnp.gov.co/CDT/Prensa/PND- 2018-2022.pdf; DNP. (2019). Declaración de importancia estratégica del proyecto de desarrollo, masificación y acceso a internet nacional, a través de la fase II de la iniciativa de incentivos a la demanda de acceso a Internet; DNP. (2020a). Declaración de importancia estratégica del compromiso por Colombia: programa vías para la legalidad y la reactivación, visión 2030. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%7B% 5C’%7Bo%7D%7Dmicos/3836.pdf; DNP. (2020b). Declaración de importancia estratégica del Proyecto nacional acceso universal a las tecnologías de la información y las comunicaciones en zonas rurales o apartadas. Documento Conpes 4001; DNP. (2021a). Declaración de importancia estratégica del proyecto apoyo al desarrollo de proyectos a través del fondo regional para los contratos plan, ahora fondo regional para los pactos territoriales; DNP. (2021b). Declaración de importancia estratégica del proyecto del Programa Vías para conectar territorios, el crecimiento sostenible y la reactivación 2.0; DNP. (2021c). Pol´ıtica nacional de ciencia, tecnolog´ıa e innovaci´on 2022-2031. https://colaboracion.dnp. gov.co/CDT/Conpes/Econ%7B%5C’%7Bo%7D%7Dmicos/3582.pdf; DNP. (2021d). Política para el Desarrollo de Proyectos de Infraestructura de Transporte Sostenible: Quinta Generación de Concesiones Bajo el Esquema de Asociación Público Privada – Concesiones del Bicentenario; DNP. (2021e). Política para la reactivación, la repotenciación y el crecimiento sostenible e incluyente: nuevo compromiso por el futuro de Colombia. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%7B% 5C’%7Bo%7D%7Dmicos/3582.pdf; DNP. (2021f). Política para la Sostenibilidad de la Caficultura Colombiana; DNP. (2021g). Política P´ublica para el Desarrollo de la Economía Solidaria; DNP. (2022). Documentos CONPES. Revista Juridica, (1), 1-14. https://colaboracion.dnp.gov.co/CDT/ DNP/SIG/M-CA-; dos Reis, J. C., Rodrigues, G. S., de Barros, I., de Arag˜ao Ribeiro Rodrigues, R., Garrett, R. D., Valen- tim, J. F., Kamoi, M. Y. T., Michetti, M., Wruck, F. J., & Rodrigues-Filho, S. (2023). Fuzzy logic indicators for the assessment of farming sustainability strategies in a tropical agricultural frontier. Agronomy for Sustainable Development, 43(1). https://doi.org/10.1007/s13593-022-00858-5; dos Santos, D. A., & Marta, J. M. C. (2014). The Kandir Law and the development of Mato Grosso: Analysis of the period 1990-2009. Revista Brasileira de Gestao e Desenvolvimento Regional, 10(1), 206-228. https://www.scopus.com/inward/record.uri?eid=2- s2.0- 84893608777&partnerID=40&md5= 0e3101bee352426dcf97c412635b3949; Du, E., Cai, X., Wu, F., Foster, T., & Zheng, C. (2021). Exploring the impacts of the inequality of water permit allocation and farmers’ behaviors on the performance of an agricultural water market. Journal of Hydrology, 599. https://doi.org/10.1016/j.jhydrol.2021.126303; Duan, Y., Zhou, S., He, J., & Bai, M. (2022). Effects of Permanent and Temporary Water-Right Payments on Balancing Agricultural and Ecological Interests: A Case Study of Hami Prefecture in Northwestern China. Journal of Water Resources Planning and Management, 148(11). https://doi.org/10.1061/ (ASCE)WR.1943-5452.0001620; Edeme, R. K., Nkalu, N. C., Idenyi, J. C., & Arazu, W. O. (2020). Infrastructural Development, Sustaina- ble Agricultural Output and Employment in ECOWAS Countries. Sustainable Futures, 2(January), 100010. https://doi.org/10.1016/j.sftr.2020.100010; El Benni, N., Grovermann, C., & Finger, R. (2023). Towards more evidence-based agricultural and food policies. Q Open, 3(3). https://doi.org/10.1093/qopen/qoad003; Emadi, A., Sobhani, R., Ahmadi, H., Boroomandnia, A., Zamanzad-Ghavidel, S., & Mohammad Azamathu- lla, H. (2022). Multivariate modeling of river water withdrawal using a hybrid evolutionary data- driven method. Water Supply, 22(1), 957-980. https://doi.org/10.2166/ws.2021.224; Emami, M., Ahmadi, A., Daccache, A., Nazif, S., Mousavi, S.-F., & Karami, H. (2022). County-Level Irriga- tion Water Demand Estimation Using Machine Learning: Case Study of California. Water (Switzer- land), 14(12). https://doi.org/10.3390/w14121937; Emami, S., Dehghanisanij, H., & Hajimirzajan, A. (2024). Agent-based simulation model to evaluate govern- ment policies for farmers’ adoption and synergy in improving irrigation systems: A case study of La- ke Urmia basin. Agricultural Water Management, 294. https://doi.org/10.1016/j.agwat.2024.108730; Escalante, R., Catal´an, H., & Basurto, S. (2013). Determinantes del cr´edito en el sector agropecuario mexi- cano : un an´alisis mediante un modelo Probit. Cuadernos de Desarrollo Rural, 10(71), 101-124; Esteve Selma, M.'A.'A., del Riquelme, M., Martínez Gallur, C., Lloréns, M., del Riquelme, P., & Martínez Gallur, C. (2003). Los recursos naturales de la región de Murcia : un análisis interdisciplinar. Universidad de Murcia; Etienne, M., Bourgeois, M., & Souch`ereb, V. (2008). Participatory modelling of fire prevention and urbani- sation in southern France: From coconstructing to playing with the model. Proc. iEMSs 4th Biennial Meeting - Int. Congress on Environmental Modelling and Software: Integrating Sciences and Infor- mation Technology for Environmental Assessment and Decision Making, iEMSs 2008, 2, 972-979; Fang, J., & Tang, L. (2023). Developing policy-making for maximizing the water productivity in agricultural lands. Water Supply, 23(5), 2188-2196. https://doi.org/10.2166/ws.2023.091; Fei, S.-W., Miao, Y.-B., & Liu, C.-L. (2009). Chinese Grain Production Forecasting Method Based on Parti- cle Swarm Optimization-based Support Vector Machine. Recent Patents on Engineering, 3(1), 8-12. https://doi.org/10.2174/187221209787259947; Feng, Y. J., Liu, Y., & Han, Z. (2011). Land use simulation and landscape assessment by using genetic algorithm based on cellular automata under different sampling schemes. Chinese Journal of Applied Ecology, 22(4), 957-963; Ferrans, C. E. (1990). Development of a quality of life index for patients with cancer. Oncology nursing forum, 17(3 Suppl), 11-15; Firbank, L. G., Petit Sandrine, S. S., Blain, A., & Fuller, R. J. (2008). Assessing the impacts of agricultural intensification on biodiversity: a British perspective. Trans. R. Soc. B, 363(1492), 777-787. https: //doi.org/https://doi.org/10.1098/rstb.2007.2183; Food and Agriculture Organization (FAO), Fondo Internacional de Desarrollo Agrícola (FIDA), United Na- tions Children’s Fund (UNICEF), Programa Mundial de Alimentos (PMA) & Organización Mundial de la Salud (OMS). (2018). El Estado de la Seguridad Alimentaria y Nutricional en el Mundo. FAO. http://www.fao.org/3/a-I7695s.pdf; Forrester, J. W. (2007). System Dynamics: the Next Fifty Years. System Dynamics Review, 23(August), 1-15; Fowler, K. R., Jenkins, E. W., Ostrove, C., Chrispell, J. C., Farthing, M. W., & Parno, M. (2015). A decision making framework with MODFLOW-FMP2 via optimization: Determining trade-offs in crop selec- tion. Environmental Modelling and Software, 69, 280-291. https://doi.org/10.1016/j.envsoft.2014. 11.031; Francesconi, W., Pérez Miñana, E., Willcock, S. P., Villa, F., & Quintero, M. (2015). Linking ecosystem services to food security in a changing planet: assessing Peruvian Amazon deforestation using the ARtificial Intelligence for Ecosystem Services (ARIES) framework. ASABE 1st Climate Change Symposium: Adaptation and Mitigation Proceedings of the 3-5 May 2015 Conference; Frank, R. H. (1997). Microeconomics and Behavior. McGraw-Hill.; Fürst, C., Volk, M., Pietzsch, K., & Makeschin, F. (2010). Pimp your landscape: A tool for qualitative evalua- tion of the effects of regional planning measures on ecosystem services. Environmental Management, 46(6), 953-968. https://doi.org/10.1007/s00267-010-9570-7; Gandhi, F. R., & Patel, J. N. (2022). Combined Standardized Precipitation Index and ANFIS Approach for Predicting Rainfall in the Tropical Savanna Region. Journal of Soft Computing in Civil Engineering, 6(3), 63-77. https://doi.org/10.22115/scce.2022.333365.1412; Gao, C., Wu, Q., Dyck, M., Lv, J., & He, H. (2022). Greenhouse area detection in Guanzhong Plain, Shaanxi, China: spatio-temporal change and suitability classification. International Journal of Digital Earth, 15(1), 226-248. https://doi.org/10.1080/17538947.2021.2023667; Gao, Y., Zhao, T., Xu, X., & Ndidiamaka, A. P. (2023). Can agricultural protectionist policies help achieve food security in Nigeria? Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs. 2023.1095914; Garcia-Diaz, N., Lopez-Martin, C., & Chavoya, A. (2013). A Comparative Study of Two Fuzzy Logic Mo- dels for Software Development Effort Estimation. Procedia Technology, 7, 305-314. https://doi.org/ https://doi.org/10.1016/j.protcy.2013.04.038; Gauriau, O., Gal´arraga, L., Brun, F., Termier, A., Davadan, L., & Joudelat, F. (2024). Comparing machine- learning models of different levels of complexity for crop protection: A look into the complexity- accuracy tradeoff. Smart Agricultural Technology, 7. https://doi.org/10.1016/j.atech.2023.100380; Gellrich, M., & Zimmermann, N. E. (2007). Investigating the regional-scale pattern of agricultural land abandonment in the Swiss mountains: A spatial statistical modelling approach. Landscape and Ur- ban Planning, 79(1), 65-76. https://doi.org/https://doi.org/10.1016/j.landurbplan.2006.03.004; Ghahramani, Z. (2001). An Introduction to Hidden Markov Models and Bayesian Networks. Int. J. Pattern Recognit. Artif. Intell., 15, 9-42; Gimona, A., & Polhill, J. G. (2011). Exploring robustness of biodiversity policy with a coupled meta com- munity and agent-based model. Journal of Land Use Science, 6(2-3), 175-193. https://doi.org/10. 1080/1747423X.2011.558601; Gimona, A., Polhill, J. G., & Davies, B. (2011). Sinks, sustainability, and conservation incentives. En J. Liu, V. Hull, A. T. Morzillo & J. A. Wiens (Eds.), Sources, Sinks and Sustainability (pp. 155-178). Cambridge University Press. https://doi.org/10.1017/CBO9780511842399.010; Golosov, V. N., Collins, A. L., Dobrovolskaya, N. G., Bazhenova, O. I., Ryzhov, Y. V., & Sidorchuk, A. Y. (2021). Soil loss on the arable lands of the forest-steppe and steppe zones of European Russia and Siberia during the period of intensive agriculture. Geoderma, 381. https : / / doi . org / 10 . 1016 / j . geoderma.2020.114678; Gómez, P. P. (2016). Evaluación de la política pública de reforma agraria en Colombia (1991 – 2010): Estudios de caso en seis municipios del país [Tesis doctoral, Universidad Nacional de Colombia Facultad]. http://www.bdigital.unal.edu.co/53481/; Gómez R., D. T., Barbosa P., E. M., & Rojas V., W. E. (2016). Pol´ıtica agraria y posconflicto en Colombia. Inclusi´on & Desarrollo, 2(2), 74-82. https://doi.org/10.26620/uniminuto.inclusion.3.1.2016.74-84; Gopinath, M., Batarseh, F. A., & Beckman, J. (2020). Machine learning in gravity models : an application to agricultural trade, NATIONAL BUREAU OF ECONOMIC RESEARCH. http://www.nber.org/ papers/w27151; Gottero, E. (2019). Identifying vulnerable farmland: An index to capture high urbanisation risk areas. Eco- logical Indicators, 98(October 2018), 61-67. https://doi.org/https://doi.org/10.1016/j.ecolind.2018. 10.037; Gottlieb, C., & Grobovˇsek, J. (2019). Communal land and agricultural productivity. Journal of Development Economics, 138(July 2018), 135-152. https://doi.org/10.1016/j.jdeveco.2018.11.001; Granco, G., Caldas, M., Bergtold, J., Heier Stamm, J. L., Mather, M., Sanderson, M., Daniels, M., Sheshu- kov, A., Haukos, D., & Ramsey, S. (2022). Local environment and individuals’ beliefs: The dynamics shaping public support for sustainability policy in an agricultural landscape. Journal of Environmen- tal Management, 301. https://doi.org/10.1016/j.jenvman.2021.113776; Guanziroli, C. E. (2014). Evoluci´on de la Pol´ıtica Agr´ıcola Brasile˜na: 1980-2010. Mundo Agr´ario, 15(29), 1-33. http://www.mundoagrario.unlp.edu.ar/; Guida, G. (2022). Manufactured in the Peri-Urban: Regenerative Strategies for Critical Lands. En GeoJour- nal Library (pp. 247-254, Vol. 128). Springer Science; Business Media B.V. https://doi.org/10.1007/ 978-3-030-78536-9 15; Guresen, E., & Kayakutlu, G. (2011). Definition of Artificial Neural Networks with comparison to other networks. Procedia Computer Science, 3, 426-433. https://doi.org/10.1016/j.procs.2010.12.071; Gutiérrez García, G. A., Gutiérrez-Montes, I., Hernández Núñez, H. E., Suárez Salazar, J. C., & Casanoves, F. (2020). Relevance of local knowledge in decision-making and rural innovation: A methodologi- cal proposal for leveraging participation of Colombian cocoa producers. Journal of Rural Studies, 75(January), 119-124. https://doi.org/https://doi.org/10.1016/j.jrurstud.2020.01.012; Haas, B. K. (1999). Clarification and integration of similar quality of life concepts. Image–the journal of nursing scholarship, 31(3), 215-220. https://doi.org/10.1111/j.1547-5069.1999.tb00483.x; Habermas, J. (1992). Tres modelos de democrácia: Sobre el concepto de una política deliberativa. Debats, (39), 18-21; Han, S. S. (2018). Agricultural surplus labor transfer. https://doi.org/10.4324/9780429501760; Helfand, S. M. (2003). The Impact of Agricultural Policy Reforms on the Agricultural Sector in Brazil in the 1990s: Implications for Pro-Poor Agricul. Oecd Global Forum on Agriculture: Designing and Implementing Pro-Poor Agricultural Policies, 56; Helmsing, A. H. J. B. (2016). Innovative local and regional economic development initiatives in Latin Ame- rica: a review. Interac¸ ˜oes (Campo Grande), 7(12). https : / / www. interacoes . ucdb. br / interacoes / article/view/475; Hernández Sampieri, R., Fernández Collado, C., Baptista Lucio, M. d. P., & Baptista Lucio, P. (2014). Meto- dología de la Investigación (Sexta). McGRAW-HILL / INTERAMERICANA EDITORES, S.A. DE C.V.; Hernández-Flores, J.A. A., Martínez-Corona, B., Méndez-Espinoza, J. A., Pérez-Avilés, R., Ramirez-Juárez, J., & Navarro-Garza, H. (2009). Rurales y periurbanos: Una aproximación al proceso de conformación de la periferia poblana. Papeles de población, 15(61), 275-295.; Hidayat, A. R. T., Onitsuka, K., Sianipar, C. P. M., Basu, M., & Hoshino, S. (2023). To migrate or not to migrate: Internet use and migration intention among rural youth in developing countries (case of Malang, Indonesia). Digital Geography and Society, 4.; Hossain, M., & Muromachi, Y. (2012). A Bayesian network based framework for real-time crash predic- tion on the basic freeway segments of urban expressways. Accident Analysis and Prevention, 45, 373-381. https://doi.org/10.1016/j.aap.2011.08.004; Huang, J., Zhang, F., Song, J., & Li, W. (2022). An Agent-based Simulation Model of Wheat Market Ope- ration: The Benefit of Support Price. Journal of Systems Science and Systems Engineering, 31(4), 437-456. https://doi.org/10.1007/s11518-022-5527-7; Huang, K., Cao, S., Qing, C., Xu, D., & Liu, S. (2023). Does labour migration necessarily promote farmers’ land transfer-in? - Empirical evidence from China’s rural panel data. Journal of Rural Studies, 97, 534-549. https://doi.org/10.1016/j.jrurstud.2022.12.027; IBGE. (2023). Indicadores IBGE: Levantamento Sistemático da Producao Agrícola (inf. t'ec.). INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTAT´íSTICA - IBGE. https://ftp.ibge.gov.br/Producao Agricola/Levantamento Sistematico da Producao Agricola %5Bmensal%5D/Fasciculo Indicadores IBGE/2023/estProdAgri 202311.pdf; IGAC, I. G. A. C. (2015). Solo el 16 por ciento de los suelos de Colombia está blindado contra la “depredación ambiental” del hombre — Noticias.; Ijaz, M., Zafar, Q., Khan, A. A., & Hassan, S. S. (2023). Assessing drought and its impacts on wheat yield using remotely sensed observations in rainfed Potohar region of Pakistan. Environment, Develop- ment and Sustainability, 25(4), 3699-3721. https://doi.org/10.1007/s10668-022-02200-1; Illán-Fernández, E. J., Pérez-Morales, A., & Romero-Díaz, A. (2022). Reliability of sealed surfaces detection using Copernicus data. Boletin de la Asociacion de Geografos Espanoles, (93). https://doi.org/10. 21138/bage.3288; Intergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 2014 Synthesis Report Sum- mary Chapter for Policymakers. Ipcc, 31. https://doi.org/10.1017/CBO9781107415324; Inza, I., Larrañaga, P., Etxeberria, R., & Sierra, B. (2000). Feature Subset Selection by Bayesian network- based optimization. Artificial Intelligence, 123(1-2), 157-184.; Jäckering, L., Meemken, E.-M., Sellare, J., & Qaim, M. (2021). Promoting written employment contracts: Evidence from a randomised awareness campaign. European Review of Agricultural Economics, 48(4), 1007-1030. https://doi.org/10.1093/erae/jbaa035; Jaiswal, R. S., & Sarode, M. V. (2015). An Overview on Fuzzy Logic and Fuzzy Elements. International Research Journal of Computer Science, 3(2), 29-34. http://www.irjcs.com/volumes/vol2/iss3/05. MACS10088.pdf; Jamroga, W. (2008). A Temporal Logic for Markov Chains. Proceedings of the 7th International Joint Con- ference on Autonomous Agents and Multiagent Systems - Volume 2, (January), 697-704. https://doi. org/10.1145/1402298.1402321; Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing-A Computational Ap- proach to Learning and Machine Intelligence. IEEE Transactions on Automatic Control, 42(10), 1482-1484. https://doi.org/10.1109/TAC.1997.633847; Jang, J. S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685. https://doi.org/10.1109/21.256541; Jang, S. H., Roh, J. H., Kim, W., Sherpa, T., Kim, J. H., & Park, J. B. (2011). A novel binary ant colony optimization: Application to the unit commitment problem of power systems. Journal of Electrical Engineering and Technology, 6(2), 174-181. https://doi.org/10.5370/JEET.2011.6.2.174; Jiménez-Taracido, L., Martinez, A. I. M., & Chauvie, D. G. B. (2019). Reading education literacy centre and metacognition in a spanish adult education centre. European Journal for Research on the Education and Learning of Adults, 10(1), 29-46. https://doi.org/10.3384/rela.2000-7426.OJS169; J.Ross, T. (2010). Fuzzy Logic With Engineering Application.; Kadri, N., Jebari, S., Augusseau, X., Mahdhi, N., Lestrelin, G., & Berndtsson, R. (2023). Analysis of Four Decades of Land Use and Land Cover Change in Semiarid Tunisia Using Google Earth Engine. Remote Sensing, 15(13). https://doi.org/10.3390/rs15133257; Kalantari, K., & Abdollahzadeh, G. (2008). Factors affecting agricultural land fragmentation in Iran: A case study of Ramjerd sub district in Fars province. American Journal of Agricultural and Biological Science, 3(1), 358-363. https://doi.org/10.3844/ajabssp.2008.358.363; Kanigel, R., & Porter, G. (1997, enero). The One Best Way: Frederick Winslow Taylor and the Enigma of Efficiency (Vol. 278).; Karamian, F., Mirakzadeh, A. A., & Azari, A. (2023). Application of multi-objective genetic algorithm for optimal combination of resources to achieve sustainable agriculture based on the water-energy-food nexus framework. Science of the Total Environment, 860. https://doi.org/10.1016/j.scitotenv.2022. 160419; Khalid, B., & Urbánski, M. (2021). APPROACHES TO UNDERSTANDING MIGRATION: A MULT-COUNTRY ANALYSIS OF THE PUSH AND PULL MIGRATION TREND. Economics and Sociology, 14(4), 242-267. https://doi.org/10.14254/2071-789X.2021/14-4/14; Khalmirzayeva, S. (2023). Evaluation of global experience of state support for the agribusiness and agricul- tural sections. En P. D., N. K. B. & K. V. (Eds.), E3S Web of Conferences (Vol. 389). EDP Sciences. https://doi.org/10.1051/e3sconf/202338903071; Kingdon, J. W., & Thurber, J. A. (2011). Agendas, Alternatives, and Public Policies. Longman.; Kinra, A., Hald, K. S., Mukkamala, R. R., & Vatrapu, R. (2020). An unstructured big data approach for country logistics performance assessment in global supply chains. International Journal of Opera- tions and Production Management, 40(4), 439-458. https://doi.org/10.1108/IJOPM-07-2019-0544; Kochar, A. (2004). Urban influences on rural schooling in India. Journal of Development Economics, 74(1), 113-136. https://doi.org/10.1016/j.jdeveco.2003.12.006; Koulouri, M., & Giourga, C. (2007). Land abandonment and slope gradient as key factors of soil erosion in Mediterranean terraced lands. CATENA, 69(3), 274-281. https://doi.org/https://doi.org/10.1016/j. catena.2006.07.001; Krumbiegel, K., Maertens, M., & Wollni, M. (2018). The Role of Fairtrade Certification for Wages and Job Satisfaction of Plantation Workers. World Development, 102, 195-212. https://doi.org/10.1016/j. worlddev.2017.09.020; Kulisz, M., Duisenbekova, A., Kujawska, J., Kaldybayeva, D., Issayeva, B., Lichograj, P., & Cel, W. (2023). Implications of neural network as a decision-making tool in managing kazakhstan’s agricultural economy. Applied Computer Science, 19(4), 121-135. https://doi.org/10.35784/acs-2023-39; Lai, Y. R., Orton, T. G., Pringle, M. J., Menzies, N. W., & Dang, Y. P. (2020). Increment-averaged kriging: a comparison with depth-harmonized mapping of soil exchangeable sodium percentage in a cropping region of eastern Australia. Geoderma, 363. https://doi.org/10.1016/j.geoderma.2019.114151; Lamino Jaramillo, P., & Boren-Alp´ızar, A. E. (2023). Agricultural identity of Indigenous Salasacas in Ecua- dor. AlterNative, 19(4), 882-891. https://doi.org/10.1177/11771801231197979; Larrubia Vargas, R. (2017). La pol´ıtica agraria com´un y sus reformas : reflexiones en torno a la reforma de 2014-2020. Cuadernos Geogr´afico, 56(1), 124-147; Lawton, M. P. (1999). Quality of life in chronic illness. Gerontology, 45(4), 181-183. https://doi.org/10. 1159/000022083; Lerner, J. S., Li, Y., Valdesolo, P., & Kassam, K. S. (2015). Emotion and decision making. Annual Review of Psychology, 66, 799-823. https://doi.org/10.1146/annurev-psych-010213-115043; Li, C., Will, M., Gruji´c, N., Ge, J., M¨uller, B., Gosal, A., & Ziv, G. (2023). An Agent-Based Model of UK Farmers’ Decision-Making on Adoption of Agri-environment Schemes. En S. F. (Ed.), Springer Proceedings in Complexity (pp. 463-475). Springer Science; Business Media B.V. https://doi.org/ 10.1007/978-3-031-34920-1 37; Li, J., Rodriguez, D., & Tang, X. (2017). Effects of land lease policy on changes in land use, mechanization and agricultural pollution. Land Use Policy, 64(1), 405-413. https://doi.org/10.1016/j.landusepol. 2017.03.008; Li, J., & Wang, M. (2010). Chaotic Genetic Algorithm-Based Forest Harvest Adjustment. Journal of Donghua University, 27(2); Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine, 6(7). https://doi.org/10.1371/journal.pmed.1000100; Lichtenstein, S., Fischhoff, B., & Phillips, L. D. (1982). Calibration of probabilities: The state of the art to 1980. En A. Tversky, D. Kahneman & P. Slovic (Eds.), Judgment under Uncertainty: Heu- ristics and Biases (pp. 306-334). Cambridge University Press. https : / / doi . org / DOI : 10 . 1017 / CBO9780511809477.023; Lindblom, C. E. (1959). The Science of ”Muddling Through”. Public Administration Review, 19(2), 79-88; Link, A., Montes, A., Andrade, J. C., Bonell, W., Acevedo, L. D., & de Luna, A. G. (2022). Primate Diversity and Population Status in the Serranía de San Lucas, Colombia: A Priority Area for Primate Conservation in Northern South America. Primate Conservation, 2022(36), 63-73.; López, O. L., & Herrera, L. M. (2017). Tendencia de la producción y el consumo del café en Colombia. Apuntes del Cenes, 36(64), 139-165. https://doi.org/10.19053/01203053.v36.n64.2017.5419; Lozada Ordóñez, L., Dias da Cruz, D., & Oliveira de Andrade, M. (2018). Ecosystem services and use of Afro-descendant land in the Colombian North Pacific: Transformations in the traditional production system. Land Use Policy, 75(January), 631-641. https://doi.org/https://doi.org/10.1016/j.landusepol. 2018.01.043; Lytos, A., Lagkas, T., Sarigiannidis, P., Zervakis, M., & Livanos, G. (2020). Towards smart farming: Systems, frameworks and exploitation of multiple sources. Computer Networks, 172. https://doi.org/10.1016/ j.comnet.2020.107147; Ma, S., Wu, K., Lao, C., Zhong, Y., Zhang, T., & Huang, T. (2017). Establishment and application of iZone system for intelligently identifying preserved zones of permanent prime farmland. Transactions of the Chinese Society of Agricultural Engineering, 33(2), 276-282; Maarif, S., Hardjomidjojo, H., & Adrianto, L. (2020). A design of optimization based logistic strategy for seaweed agroindustry: A case study in South Sulawesi Indonesia. IOP Conference Series: Earth and Environmental Science, 454(1). https://doi.org/10.1088/1755-1315/454/1/012033; Maitra, S., Hossain, A., Brestic, M., Skalicky, M., Ondrisik, P., Gitari, H., Brahmachari, K., Shankar, T., Bha- dra, P., Palai, J. B., Jena, J., Bhattacharya, U., Duvvada, S. K., Lalichetti, S., & Sairam, M. (2021). Intercropping - A low input agricultural strategy for food and environmental security. Agronomy, 11(2). https://doi.org/10.3390/agronomy11020343; Man, K. F., Tang, K. S., & Kwong, S. (1996). Genetic algorithms: Concepts and applications. IEEE Transac- tions on Industrial Electronics, 43(5), 519-534. https://doi.org/10.1109/41.538609; Manyika, J., Chui, M., Miremadi, M., Bughin, J., George, K., Willmott, K., Willmott, P., & Dewhurst, M. (2017). Un futuro que funciona: automatizaci´on, empleo y productividad. McKinsey Global Institu- te; Mardani Najafabadi, M., Mirzaei, A., Azarm, H., & Nikmehr, S. (2022). Managing Water Supply and Demand to Achieve Economic and Environmental Objectives: Application of Mathematical Program- ming and ANFIS Models. Water Resources Management, 36(9), 3007-3027. https : / / doi . org / 10 . 1007/s11269-022-03178-1; Martin, B. (2007). Damage spreading and µ-sensitivity on cellular automata. Ergodic Theory and Dynamical Systems, 27(2), 545-565. https://doi.org/10.1017/S0143385706000782; Martin, D. A. (2018). U-shaped wage curve and the internet: The colombian case; [Internet y curva salarial en forma de U: El caso colombiano]. Estudios de Economia, 45(2), 173-202. https://doi.org/10. 4067/S0718-52862018000200173; Martín del Brío, B., Sanz Molina, A., Martín-del-Brío, B., & Sanz, A. (2006, enero). Redes neuronales y sistemas borrosos; Martínez Hernández, C. (2017). El abandono de campos de cultivo en la Región de Murcia : causas y con- secuencias medioambientales y socioeconómicas [Tesis doctoral, UNIVERSIDAD DE MURCIA]. Universidad de Murcia, 2017. http://bd.univalle.edu.co/login?url=https://search.ebscohost.com/ login.aspx?direct=true&db=edstdx&AN=edstdx.10803.405714&lang=es&site=eds-live; Matlab. (2023). Support Vector Machine (SVM) Explained - MATLAB & Simulink. Consultado el 23 de septiembre de 2023, desde https://www.mathworks.com/discovery/support-vector-machine.html; Mazzocchi, C., Sali, G., & Corsi, S. (2013). Land use conversion in metropolitan areas and the permanence of agriculture: Sensitivity Index of Agricultural Land (SIAL), a tool for territorial analysis. Land Use Policy, 35, 155-162. https://doi.org/https://doi.org/10.1016/j.landusepol.2013.05.019; Mehraban, N., Kubitza, C., Alamsyah, Z., & Qaim, M. (2021). Oil palm cultivation, household welfare, and exposure to economic risk in the Indonesian small farm sector. Journal of Agricultural Economics, 72(3), 901-915. https://doi.org/10.1111/1477-9552.12433; Mehryar, S., Sliuzas, R., Schwarz, N., Sharifi, A., & van Maarseveen, M. (2019). From individual Fuzzy Cognitive Maps to Agent Based Models: Modeling multi-factorial and multi-stakeholder decision- making for water scarcity. Journal of Environmental Management, 250(September), 109482. https: //doi.org/10.1016/j.jenvman.2019.109482; MeiFang, W., & JinMing, L. (2008). Adaptive genetic algorithm-based forest harvest adjustment. Procee- dings of 2008 3rd International Conference on Intelligent System and Knowledge Engineering, ISKE 2008, 1, 541-544. https://doi.org/10.1109/ISKE.2008.4730990; Meisner, M. H., Rosenheim, J. A., Tagkopoulos, I., & Peters, D. P. (2016). A data-driven, machine learning framework for optimal pest management in cotton. Ecosphere, 7(3), 1-13. https://doi.org/10.1002/ ecs2.1263; Mejía Jímenez, J. (2011). Modelos de implementación de las políticas públicas en Colombia y su impacto en el bienestar social. Analecta política, 2(3 Jul-Dic), 141-164. https://revistas.upb.edu.co/index. php/analecta/article/view/1392; Mena Report. (2017, septiembre). Colombia: MinAgriculture provides livestock and fish farming projects to boost educational centers with agricultural vocation in Magdalena. http://bd.univalle.edu.co/login? url=https://search.ebscohost.com/login.aspx?direct=true&db=edsinc&AN=edsinc.A502735518& lang=es&site=eds-live; Méndez-Puga, A. M., Vargas-Garduño, M. d. L., & Vargas-Silva, A. D. (2022). Jornaleras y jornaleros agrícolas migrantes: colectivo de resistencia decolonial por la justicia social. Canadian Journal of Latin American and Caribbean Studies, 47(3), 479-498. https://doi.org/10.1080/08263663.2022. 2110787; Meng, B., Kuang, H., Niu, E., Li, J., & Li, Z. (2020). Research on the transformation path of the green intelligent port: Outlining the perspective of the evolutionary game “government–port–third-party organization”. Sustainability (Switzerland), 12(19), 1-25. https://doi.org/10.3390/su12198072; Ministerio de Hacienda de la Republica de Colombia. (1993). Por el cual se reglamenta la contabilidad en general y se expiden los principios o normas de contabilidad generalmente aceptados en Colombia; Mirzaei, A., Ashktorab, N., & Noshad, M. (2023). Evaluation of the policy options to adopt a water-energy- food nexus pattern by farmers: Application of optimization and agent-based models. Frontiers in Environmental Science, 11. https://doi.org/10.3389/fenvs.2023.1139565; Molajou, A., Pouladi, P., & Afshar, A. (2021). Incorporating Social System into Water-Food-Energy Nexus. WATER RESOURCES MANAGEMENT, 35(13), 4561-4580. https://doi.org/10.1007/s11269-021- 02967-4; Molina, J.-L., Pulido-Velázquez, M., Llopis-Albert, C., & Peña-Haro, S. (2013). Stochastic hydro-economic model for groundwater quality management using Bayesian networks. Water science and technology : a journal of the International Association on Water Pollution Research, 67(3), 579-586. https : //doi.org/10.2166/wst.2012.598; Mora Pacheco, K. G. (2015). Monotonía, aislamiento y atraso agrícola. Descripciones de viajeros del siglo XIX e historia agraria de la Sabana de Bogotá (Colombia) / Monotony, Isolation and Backward Agriculture. Travel Accounts of 19th Century and Agrarian History of Bogota Plateau (. HiSTOReLo. Re- vista de Historia Regional y Local, 7(14), 180-213. https://doi.org/10.15446/historelo.v7n14.48625; Morales, S. L., Morales, M. R., & Rizo, R. (2017). Metodología para Procesos de Inteligencia de Negocios con mejoras en la extracción y transformación de fuentes de Datos. Revista Publicando, 4(11), 107-119. http://rmlconsultores.com/revista/index.php/crv/article/view/553/pdf 364; Motamed, M. K., Irannejad, F., Rezaei, M., & Rousta, K. (2011). An investigation of educational needs of Guilan- Iran’s tea-planters. African Journal of Agricultural Research, 6(16), 3646-3653. https: / / www . scopus . com / inward / record . uri ? eid = 2 - s2 . 0 - 80052953290 & partnerID = 40 & md5 = 7cc90f9418a9dfe7989b7c896ae5b11e; Mtetwa, E. (2018). Disability and the challenge of employment in Zimbabwe: A social protection perspecti- ve. African Journal of Social Work, 8(2), 78-84. https://www.scopus.com/inward/record.uri?eid=2- s2.0-85064388331&partnerID=40&md5=d4a1e7b69f7c2378596e4d237d13567c; Munthali, M. G., Mustak, S., Adeola, A., Botai, J., Singh, S. K., & Davis, N. (2020). Modelling land use and land cover dynamics of Dedza district of Malawi using hybrid Cellular Automata and Markov model. Remote Sensing Applications: Society and Environment, 17. https://doi.org/10.1016/j.rsase. 2019.100276; Muñoz-Rios, L. A., Vargas-Villegas, J., & Suarez, A. (2020). Local perceptions about rural abandonment drivers in the Colombian coffee region: Insights from the city of Manizales. Land Use Policy, 91(November 2019), 104361. https://doi.org/https://doi.org/10.1016/j.landusepol.2019.104361; Nawroski, A. (2019). Education in rural society and the agricultura course for Brazilian boys in Poland (1918-1938). Tempo e Argumento, 11(28), 67-97. https://doi.org/10.5965/2175180311282019067; Nehaï, S. A., & Guettouche, M. S. (2020). Soil loss estimation using the revised universal soil loss equation and a GIS-based model: a case study of Jijel Wilaya, Algeria. Arabian Journal of Geosciences, 13(4). https://doi.org/10.1007/s12517-020-5160-z; Nikolenko, L., Jurakovskiy, E., Ivanyuta, N., Andronik, O., & Sharkovska, S. (2018). Investment policy of governance of economic security of agrarian sector of Ukraine on the basis of theory of fuzzy logics. Montenegrin Journal of Economics, 14(4), 125-140. https://doi.org/10.14254/1800-5845/2018.14- 4.9; Niu, L. (2023). Design of intelligent agricultural environmental big data collection system based on ZigBee and NB-IoT. 2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms, EEBDA 2023, 1299-1304. https://doi.org/10.1109/EEBDA56825.2023.10090649; Nogales, R., & Oldiges, C. (2021). International labour migration and the many forms of poverty. Migration Studies, 9(1), 115-141. https://doi.org/10.1093/migration/mnaa022; Nouiri, I., Yitayew, M., Maßmann, J., & Tarhouni, J. (2015). Multi-objective Optimization Tool for Integra- ted Groundwater Management. Water Resources Management, 29(14), 5353-5375. https://doi.org/ 10.1007/s11269-015-1122-8; Núñez, S. R., & Osses, G. T. (2014). El sector agropecuario en la región de Los Lagos y el paradigma “Chile potencia alimentaria”: desafíos para la política agraria nacional. Mundo Agrario, 15(29), 1-15; OECD & Commission, E. (2008). Handbook on Constructing Composite Indicators: Methodology and User Guide; Olivares, B. O., Pitti, J., & Montenegro, E. (2020). Socioeconomic characterization of bocas del toro in panama: An application of multivariate techniques. Revista Brasileira de Gestao e Desenvolvimento Regional, 16(3), 59-71. https://www.scopus.com/inward/record.uri?eid=2- s2.0- 85095814175& partnerID=40&md5=c7a14398987cddd02150d123be774bd2; Oliveira, A., Renato, N. D. S., Martins, M. A., Mendonc¸a, I. M. D., Moraes, C. A., & Lago, L. F. R. (2023). Renewable energy solutions based on artificial intelligence for farms in the state of Minas Gerais, Brazil: Analysis and proposition. Renewable Energy, 204, 24-38. https://doi.org/10.1016/j.renene. 2022.12.101; Oliveira, A., & Nero, M. (2013). Application of fuzzy logic in prediction of fire in Jo˜ao Pessoa City - Brazil. Communications in Computer and Information Science, 399 PART I, 323-334. https://doi.org/10. 1007/978-3-642-41908-9 33; ONU. (2015). Portada - Desarrollo Sostenible. Consultado el 20 de octubre de 2023, desde https://www.un. org/sustainabledevelopment/es; ONU. (2023). Alimentaci´on — Naciones Unidas. Consultado el 4 de marzo de 2024, desde https://www.un. org/es/global-issues/food; Ordonez-Eraso, H. A., Pardo-Calvache, C.-J. J., Cobos-Lozada, C.-A. A., Ordoñez-Eraso, H.-A., Pardo- Calvache, C.-J. J., & Cobos-Lozada, C.-A. A. (2020). Detection of Homicide Trends in Colombia Using Machine Learning. Revista Facultad de Ingeniería, Universidad Pedagógica y Tecnológica de Colombia, 29(54). https://doi.org/10.19053/01211129.v29.n54.2020.11740; Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2013). Brasil, granero del mundo.; Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2021). Organización de las Naciones Unidas para la Alimentación y la Agricultura: Colombia en una mirada.; Organización para la Cooperación y el Desarrollo Económicos (OCDE). (2015). Revisión de la OCDE de las polóticas Agrícolas: Colombia 2015; Organización para la Cooperación y el Desarrollo Económicos (OCDE) & Oficina de Estadística de las Comunidades Europeas (EUROSTAT). (2004). Manual de Oslo (Tercera ed); Orhan, I., & Kocak, H. S. (2024). An Evaluation of Living Conditions and Dietary Habits of Seasonal Migrant Agricultural Workers: The Example of Turkey. Journal of Agromedicine. https://doi.org/ 10.1080/1059924X.2024.2388849; Ospina, D. M. (2017). Reivindicando al campesinado en Colombia: Análisis de las fallas de redistribución y de reconocimiento en la implementación de las Política Agrarias de los Siglos XX - XXI, y en la Política Pública de Víctimas y Restitución de Tierras; Pandey, B. K., & Khare, D. (2017). Analyzing and modeling of a large river basin dynamics applying in- tegrated cellular automata and Markov model. Environmental Earth Sciences, 76(22), 1-12. https: //doi.org/10.1007/s12665-017-7133-4; Pantoja Narvaez, G., & Rodriguez Escobar, F. R. (2017). La educaci´on para la vocaci´on agraria en la po- blaci´on infantil de las zonas de conflicto armado del departamento de Nari˜no. (Spanish). Revista Jur´ıdica Pi´elagus, 16(2), 25. http://bd.univalle.edu.co/login?url=https://search.ebscohost.com/ login.aspx?direct=true&db=edo&AN=129429460&lang=es&site=eds-live; Paquette, S., & Domon, G. (2003). Changing ruralities, changing landscapes: Exploring social recomposition using a multi-scale approach. Journal of Rural Studies, 19(4), 425-444. https : / / doi . org / https : //doi.org/10.1016/S0743-0167(03)00006-8; Partridge, M. D., Ali, M., & Rose Olfert, M. (2010). Rural-to-Urban commuting: Three degrees of integra- tion. Growth and Change, 41(2), 303-335. https://doi.org/10.1111/j.1468-2257.2010.00528.x; Patel, P., Chaudhary, S., & Parmar, H. (2022). Analyze the Impact of Weather Parameters for Crop Yield Prediction Using Deep Learning. En R. P.P., A. A., L. T., K. R. P. & U. K. R. (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 249-259, Vol. 13773 LNCS). Springer Science; Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-24094-2 17; Pavlidis, N. G., Parsopoulos, K. E., & Vrahatis, M. N. (2005). Computing Nash equilibria through compu- tational intelligence methods. Journal of Computational and Applied Mathematics, 175(1 SPEC. ISS.), 113-136. https://doi.org/10.1016/j.cam.2004.06.005; Pérez-Belmont, P., Lerner, A. M., Mazari-Hiriart, M., & Valiente, E. (2021). The survival of agriculture on the edge: Perceptions of push and pull factors for the persistence of the ancient chinampas of Xochimilco, Mexico City. Journal of Rural Studies, 86(July), 452-462. https://doi.org/https://doi. org/10.1016/j.jrurstud.2021.07.01; Perfetti, J. J., Botero, J., Oviedo, S., Foreo, D., Higuera, S., Correa, M., & Garc´ıa, J. (2017). Política comercial agrícola: nivel, costos y efectos de la protección en Colombia (J. J. Perfetti & J. Botero, Eds.). Fedesarrollo; Peter, B., Sanghvi, S., & Narendran, V. (2020). Inclusion of Interstate Migrant Workers in Kerala and Lessons for India. Indian Journal of Labour Economics, 63(4), 1065-1086. https://doi.org/10.1007/s41027- 020-00292-9; Picuno, P., Cillis, G., & Statuto, D. (2019). Investigating the time evolution of a rural landscape: How histo- rical maps may provide environmental information when processed using a GIS. Ecological Engi- neering, 139(February), 105580. https://doi.org/https://doi.org/10.1016/j.ecoleng.2019.08.010; Plan Unico de Cuentas Colombia. (2022). Cuenta 7 Costos de producci´on o de operaci´on.; PNUD. (2023). Veinticinco países redujeron a la mitad la pobreza multidimensional en un periodo de 15 años, aunque todav´ıa hay 1,100 millones de personas en situación de pobreza.; Polhill, J. G., Gimona, A., & Gotts, N. M. (2013). Nonlinearities in biodiversity incentive schemes: A study using an integrated agent-based and metacommunity model. Environmental Modelling and Software, 45, 74-91. https://doi.org/10.1016/j.envsoft.2012.11.011; Portafolio. (2021). Dane: 2,4 millones de hogares ya no comen tres veces al d´ıa en Colombia. Consultado el 16 de febrero de 2022, desde https://www.portafolio.co/economia/dane-2-4-millones-de-hogares- ya-no-comen-tres-veces-al-dia-en-colombia-550416; Portoghese, I., D’Agostino, D., Giordano, R., Scardigno, A., Apollonio, C., & Vurro, M. (2013). An inte- grated modelling tool to evaluate the acceptability of irrigation constraint measures for groundwater protection. Environmental Modelling and Software, 46, 90-103. https://doi.org/10.1016/j.envsoft. 2013.03.001; Pouladi, P., Afshar, A., Molajou, A., & Afshar, M. H. (2020). Socio-hydrological framework for investiga- ting farmers’ activities affecting the shrinkage of Urmia Lake; hybrid data mining and agent-based modelling. Hydrological Sciences Journal, 65(8), 1249-1261. https://doi.org/10.1080/02626667. 2020.1749763; Praveen, B., Mustak, S., & Sharma, P. (2019). Assessing the transferability of machine learning algorithms using cloud computing and earth observation datasets for agricultural land use/cover mapping. Inter- national Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(3/W6), 585-592. https://doi.org/10.5194/isprs-archives-XLII-3-W6-585-2019; Purohit, S. K., Panigrahi, S., Sethy, P. K., & Behera, S. K. (2021). Time Series Forecasting of Price of Agricultural Products Using Hybrid Methods. Applied Artificial Intelligence, 35(15), 1388-1406. https://doi.org/10.1080/08839514.2021.1981659; Qiu, T., Shi, X., He, Q., & Luo, B. (2021). The paradox of developing agricultural mechanization services in China: Supporting or kicking out smallholder farmers? China Economic Review, 69. https://doi.org/ 10.1016/j.chieco.2021.101680; RAE. (2021a). Definici´on agr´ıcola. Consultado el 13 de mayo de 2022, desde https://dle.rae.es/agr%7B% 5C’%7Bi%7D%7Dcola?m=form; RAE. (2021b). Definici´on vocaci´on. Consultado el 13 de mayo de 2022, desde https://dle.rae.es/vocaci% 7B%5C’%7Bo%7D%7Dn?m=form; Rajkhowa, P., & Qaim, M. (2022). Mobile phones, off-farm employment and household income in rural India. Journal of Agricultural Economics, 73(3), 789-805. https://doi.org/10.1111/1477-9552.12480; Ramoni-Perazzi, J., & Orlandoni-Merli, G. (2019). Labor elasticity of growth by sector and department in Colombia: the importance of the agricultural employment elasticity. Agroalimentaria, 25(48), 19-34; Raza, F., Tamoor, M., Miran, S., Arif, W., Kiren, T., Amjad, W., Hussain, M. I., & Lee, G.-H. (2022). The Socio-Economic Impact of Using Photovoltaic (PV) Energy for High-Efficiency Irrigation Systems: A Case Study. Energies, 15(3). https://doi.org/10.3390/en15031198; Reilly, J. A., Dawson, T. P., Matthews, R. B., Smith, P., Musk, C. C., Potts, J. M., & Polhill, J. G. (2021). Projecting the effect of crop yield increases, dietary change and different price scenarios on land use under two different state security regimes. International Journal of Agricultural Sustainability, 19(3-4), 288-304. https://doi.org/10.1080/14735903.2021.1907991; Ribeiro, W. R., dos Santos, A. R., Pinheiro, A. A., Gonc¸alves, M. S., da Costa Gonc¸alves, D., da Silva, S. F., Moreira, T. R., Senhorelo, A. P., Billo, D. F., Ara´ujo, E. F., Heitor, F. D., Nascimento, G. S. P., Berude, L. C., Barros, Q. S., Silva, R. F., Gandine, S., de Carvalho, J. R., Santos, G., dos Reis, E. F., & Filho, P. A. G. (2022). Multicriteria analysis applied to prospection of potential areas for center pivots installation in a tropical ecosystem. European Journal of Agronomy, 140. https://doi.org/10. 1016/j.eja.2022.126595; Rijnks, R. H., Crowley, F., & Doran, J. (2022). Regional variations in automation job risk and labour market thickness to agricultural employment. Journal of Rural Studies, 91(December 2021), 10-23. https: //doi.org/10.1016/j.jrurstud.2021.12.012; Rodrigues, F. D. A., & Mosso, F. (2018). ICT, Data and Rural Youth: challenges of the current context. RECoDAF - Revista Eletrˆonica Competˆencias Digitais para Agricultura Familiar, 4(2), 15-25; Rodríguez, E., Martínez, G., & Mora, J. (2015). La Crisis Del Sector Agropecuario Colombiano : ¿ Cuál Es La Responsabilidad De Las Políticas Públicas ? Tendencias, 16(1), 159-174; Rodríguez Araújo, E. (2005). Perfiles de la Economía Boyacense. CENES Apuntes, 25(39), 95-124; Rodríguez Espinosa, H., Ramírez Gómez, C. J., & Restrepo-Betancur, L. F. (2016). Análisis Comparativo De La Dinámica De Desarrollo Agrícola En Suramérica En El Período 1980-2010. Luna Azul, (42), 15-29. https://doi.org/10.17151/luaz.2016.42.3; Rodríguez Sperat, R. (2014). ¿Representa el capital un limitante para la productividad en la Agricultura Familiar? Un estudio de caso en Santiago del Estero, Argentina. Revista Venezolana de Economía Social, 14(27), 9-34; Ruiz, B. D. A., Bañuelos-Torrontegui, K. A., & Pleite, F. M.-C. (2021). Labor conditions and social responsibility assessment at agricultural companies in the municipality of elota, sinaloa, México. Agrociencia, 55(2), 177-194. https://doi.org/10.47163/agrociencia.v55i2.2394; Rungmanee, S. (2016). Unravelling the Dynamics of Border Crossing and Rural-to-Rural-to-Urban Mobility in the Northeastern Thai–Lao Borderlands. Population, Space and Place, 22(7), 693-704. https : //doi.org/10.1002/psp.1989; Saavedra, S., & Romero, M. (2021). Local incentives and national tax evasion: The response of illegal mining to a tax reform in Colombia. European Economic Review, 138. https://doi.org/10.1016/j.euroecorev. 2021.103843; Salam, A., Pratomo, D. S., & Saputra, P. M. A. (2020). Sosio-economic determinants of multidimensional poverty in the rural and urban areas of East Java. International Journal of Scientific and Technology Research, 9(4), 1445-1449. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083510744& partnerID=40&md5=dfb43078fa23556dcd7d4039c6ecb08f; Salvini, G., Ligtenberg, A., van Paassen, A., Bregt, A. K., Avitabile, V., & Herold, M. (2016). REDD+ and climate smart agriculture in landscapes: A case study in Vietnam using companion modelling. Journal of Environmental Management, 172, 58-70. https://doi.org/10.1016/j.jenvman.2015.11.060; Sánchez, J. M., Rodríguez, J. P., & Espitia, H. E. (2020). Review of Artificial Intelligence Applied in Decision-Making Processes in Agricultural Public Policy. Processes, 8(11), 1374. https://doi.org/ 10.3390/pr8111374; Sánchez, J., Rodríguez, J., & Espitia, H. (2024). Design of a neuro-fuzzy model for agricultural employment in Colombia using fuzzy clustering. AIMS Environmental Science, 11(5), 759-775. https://doi.org/ 10.3934/environsci.2024038; Sánchez, J. M., García, C. A., & Narvaez, E. (2020). Problematic Of The Decision-Making Process In The Formulation Of Public Agricultural Policies In Colombia : Review Article. International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), 10(6), 139-146; Sánchez, J. M., Rodriguez, J. P., & Amaya, D. (2020). Análisis Bibliométrico de la producción científica relacionada con la aplicación de inteligencia artificial en el proceso de formulación de políticas públicas agrarias. Revista Espacios, 41(28), 113-127. http://www.revistaespacios.com/a20v41n28/ a20v41n28p09.pdf%0Ahttps://www.revistaespacios.com; Sánchez, J. M., Rodríguez, J. P., & Espitia, H. E. (2022). Bibliometric analysis of publications discussing the use of the artificial intelligence technique agent-based models in sustainable agriculture. Heliyon, 8(12). https://doi.org/10.1016/j.heliyon.2022.e12005; Sánchez, J. M., Rodríguez, J. P., & Rivas, E. (2020). An´alisis estadístico de las precipitaciones en la cuenca del río de Bogotá ( Colombia ) incluyendo las variables del fenómeno El Niño y La Niña. Revista ESPACIOS, 41(38), 125-134. https://www.revistaespacios.com/a20v41n38/20413813.html; Sánchez, J. M., Rodríguez, J. P., & Ramos, O. L. (2020). Decision Support Systems (DSS) Applied to the Formulation of Agricultural Public Policies. Tecnura, 24(66), 95-108. https://doi.org/10.14483/ 22487638.15768; Sánchez, J. M. C., Pedraza, L. F. M., & Rodríguez, J. P. M. (2017). La influencia del nivel de inseguridad de una región y la presencia de meso-organizaciones favorecen la prevalencia de híbridos-organizativos en el sector agrícola de Colombia. Espacios, 38(18), 1-14; Sánchez C., J. M., Rodriguez M., J. P., & Montenegro M., C. E. (2020). La relevancia de la variabilidad climática en la formulación de políticas públicas agrarias en los países tropicales. Revista ESPACIOS, 41(8), 11; Sánchez Jiménez, W., Nieto Gómez, L. E., & Giraldo Díaz, R. (2018). Cambio estructural de la vocación agrícola y pecuaria en el municipio de Purificación, Tolima, Colombia. Libre Empresa, 15(2), 137-148. https://doi.org/10.18041/1657-2815/libreempresa.2018v15n2.5361; Sánchez-Céspedes, J. M., Rodríguez-Miranda, J. P., & Ramos-Sandoval, O. L. (2020). Artificial intelligence, an alternative for generating agricultural public policies in colombia – a review. International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), 10(3), 15677-15692; Sánchez-Céspedes, J. M., Rodríguez-Miranda, J. P., & Salcedo-Parra, O. J. (2020). Análisis de la producción de publicaciones científicas en inteligencia artificial aplicada a la formulación de Políticas Públicas. Revista Científica, 39(3), 353-368. https://doi.org/10.14483/23448350.16301; Sánchez-Céspedes, J. M., Rodríguez-Miranda, Pablo, J., & Salcedo-Parra, O. J. (2022). Aplicación de la inteligencia artificial en la formulación de políticas públicas relacionadas con la vocación agrícola de las regiones. Revista Científica, 44(2), 172-187; Saraf, S. A., Ali, J., Bahar, F. A., & Mahdi, S. S. (2022). Marketing of Agricultural Produce in India: Problems and Prospects. En Secondary Agriculture: Sustainability and Livelihood in India (pp. 85-95). Springer Singapore. https://doi.org/10.1007/978-3-031-09218-3 8; Sen, B., Dorosh, P., & Ahmed, M. (2021). Moving out of agriculture in Bangladesh: The role of farm, non- farm and mixed households. World Development, 144, 105479. https://doi.org/10.1016/j.worlddev. 2021.105479; Senge, P. M. (1991). The fifth discipline, the art and practice of the learning organization. Performance + Instruction, 30(5), 37. https://doi.org/10.1002/pfi.4170300510; Sgroi, F. (2022). The circular economy for resilience of the agricultural landscape and promotion of the sustainable agriculture and food systems. Journal of Agriculture and Food Research, 8. https://doi. org/10.1016/j.jafr.2022.100307; Shah, H., Tairan, N., Garg, H., & Ghazali, R. (2018). A Quick Gbest Guided Artificial Bee Colony algorithm for stock market prices prediction. Symmetry, 10(7). https://doi.org/10.3390/sym10070292; Shaharum, N. S. N., Shafri, H. Z. M., Gambo, J., & Abidin, F. A. Z. (2018). Mapping of Krau Wildlife Reserve (KWR) protected area using Landsat 8 and supervised classification algorithms. Remote Sensing Applications: Society and Environment, 10(January), 24-35. https://doi.org/10.1016/j.rsase. 2018.01.002; Sihi, D., Dari, B., Kuruvila, A. P., Jha, G., & Basu, K. (2022). Explainable Machine Learning Approach Quantified the Long-Term (1981–2015) Impact of Climate and Soil Properties on Yields of Major Agricultural Crops Across CONUS. Frontiers in Sustainable Food Systems, 6. https://doi.org/10. 3389/fsufs.2022.847892; Silva, R. P. (2023). Current State and Transformations of Rural Employment in Latin America. an Analysis of the Case of Chile. Chilean Journal of Agricultural and Animal Sciences, 39(1), 121-132. https: //doi.org/10.29393/CHJAA39-10EARP10010; Simelton, E., Duong, T. M., & Houzer, E. (2021). When the “strong arms” leave the farms—migration, gender roles and risk reduction in Vietnam. Sustainability (Switzerland), 13(7). https://doi.org/10. 3390/su13074081; Simon, H. A. (1979). Rational Decision Making in Business Organizations. The American Economic Review, 69(4), 493-513; Singh, S. K., Mustak, S., Srivastava, P. K., Szab´o, S., & Islam, T. (2015). Predicting Spatial and Decadal LULC Changes Through Cellular Automata Markov Chain Models Using Earth Observation Data- sets and Geo-information. Environmental Processes, 2(1), 61-78. https://doi.org/10.1007/s40710- 015-0062-x; Sivaranjani, T., & Vimal, S. P. (2023). AI Method for Improving Crop Yield Prediction Accuracy Using ANN. Computer Systems Science and Engineering, 47(1), 154-170. https://doi.org/10.32604/csse. 2023.036724; Soares, D. L., Polivanov, H., Barroso, E. V., Maria, L., & Souza, C. C. D. (2018). Erodibilidade de Solos em Taludes de Corte de Estrada Nao Pavimentada Soil Erodibility on Cutting Slopes of Unpaved Roads. Anuário do Instituto de Geociencias - UFRJ, 41(1), 179-193; Sofer, M. (2001). Pluriactivity in the Moshav: Family farming in Israel. Journal of Rural Studies, 17(3), 363-375. https://doi.org/https://doi.org/10.1016/S0743-0167(01)00012-2; Sogandi, F., & Shiri, M. (2023). Metaheuristic algorithms for a sustainable saffron supply chain network considering government policies and product quality under uncertainty. Journal of Computational Design and Engineering, 10(5), 1892-1929. https://doi.org/10.1093/jcde/qwad079; Solomon, M. R. (2017). Consumer Behavior: Buying, Having, and Being. Pearson; Soto, C. (2003). La agricultura comercial de los distritos de riego en M´exico y su impacto en el desarrollo agr´ıcola. Investigaciones Geogr´aficas, (50), 173-195. https://doi.org/10.14350/rig.30439; Su, X. F., Asseng, S., Campbell, P., Cook, F., Schilizzi, S., Nancarrow, B., Poole, M., Carlin, G., & Brockman, H. (2005). A conceptual model for simulating farmer decisions and land use change. MODSIM05 - International Congress on Modelling and Simulation: Advances and Applications for Management and Decision Making, Proceedings, 156-161; Suárez, J. (2015). Producción integrada de alimentos y energía a escala local en Cuba: bases para un desarrollo sostenible. Pastos y Forrajes, 38(1), 3-10; Suresh, K. R., & Mujumdar, P. P. (2004). A fuzzy risk approach for performance evaluation of an irrigation reservoir system. Agricultural Water Management, 69(3), 159-177. https://doi.org/10.1016/j.agwat. 2004.05.001; Suwanlee, S. R., Pinasu, D., Som-ard, J., Borgogno-Mondino, E., & Sarvia, F. (2024). Estimating Sugarcane Aboveground Biomass and Carbon Stock Using the Combined Time Series of Sentinel Data with Machine Learning Algorithms. Remote Sensing, 16(5). https://doi.org/10.3390/rs16050750; Szegedy, I. (2017). Políticas Públicas Agrícolas En Colombia Desde Los Años 1970 Hasta Los Gobiernos Uribe - La Historia De Recurrentes Cuestiones Políticas Sin Resolver. Vniversitas, 66(134), 363-398. https://doi.org/10.11144/Javeriana.vj134.appc; Tabayashi, A., & Fujinaga, G. (2002). Characteristics of agriculture in the Hokuriku district. Tsukuba Dai- gaku Jinbun Chirigaku Kenkyu, 26, 1-23.; Tamayo y Tamayo, M. (2011). El proceso de la investigación científica (5a Ed.). Limusa; Tartibu, L. K. (2018). A predictive approach for effective management and planning within the energy sec- tor of South Africa. Proceedings of the International Conference on Industrial Engineering and Operations Management, 2018(NOV), 195-202; Tatis Diaz, R., Pinto Osorio, D., Medina Hernández, E., Moreno Pallares, M., Canales, F. A., Corrales Paternina, A., & Echeverría-González, A. (2022). Socioeconomic determinants that influence the agricultural practices of small farm families in northern Colombia. Journal of the Saudi Society of Agricultural Sciences, 21(7), 440-451. https://doi.org/10.1016/j.jssas.2021.12.001; Téllez, D. C. (2017). La incidencia de la política agraria en el Gobierno Santos en el desarrollo del sector papero del departamento de Boyacá [Tesis doctoral, Universidad Colegio Mayor de Nuestra Señora del Rosario; Temprano, A. G. (2013). Política agraria común y la de cohesión frente a la Estrategia Europa 2020. Problemas del Desarrollo, 173(44), 105-132.; Thoradeniya, B., Pinto, U., & Maheshwari, B. (2019). Perspectives on impacts of water quality on agriculture and community well-being—a key informant study from Sri Lanka. Environmental Science and Pollution Research, 26(3), 2047-2061. https://doi.org/10.1007/s11356-017-0493-1; Tian, G., & Qiao, Z. (2014). Modeling urban expansion policy scenarios using an agent-based approach for Guangzhou Metropolitan Region of China. Ecology and Society, 19(3). https://doi.org/10.5751/ES- 06909-190352; Tinbergen, J. (1981). The Use of Models: Experience and Prospects. The American Economic Review, 71(6), 17-22. http://www.jstor.org/stable/1914388; Tixier, P., Peyrard, N., Aubertot, J. N., Gaba, S., Radoszycki, J., Caron-Lormier, G., Vinatier, F., Mollot, G., & Sabbadin, R. (2013). Modelling interaction networks for enhanced ecosystem services in agro- ecosystems (Vol. 49). https://doi.org/10.1016/B978-0-12-420002-9.00007-X; Tsekeris, T. (2019). Rank-size distribution of urban employment in labour market areas. Cities, 95. https: //doi.org/10.1016/j.cities.2019.102472; Tulla, P. S., Kumar, P., Vishwakarma, D. K., Kumar, R., Kuriqi, A., Kushwaha, N. L., Rajput, J., Srivas- tava, A., Pham, Q. B., Panda, K. C., & Kisi, O. (2024). Daily suspended sediment yield estima- tion using soft-computing algorithms for hilly watersheds in a data-scarce situation: a case study of Bino watershed, Uttarakhand. Theoretical and Applied Climatology, 155(5), 4023-4047. https: //doi.org/10.1007/s00704-024-04862-5; Tung, W. L., & Quek, C. (2009). A Mamdani-Takagi-Sugeno based linguistic neural-fuzzy inference sys- tem for improved interpretability-accuracy representation. IEEE International Conference on Fuzzy Systems, (September), 367-372. https://doi.org/10.1109/FUZZY.2009.5277194; Urrutia, G., & Bonfill, X. (2010). Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistematicas y metaanálisis. https://doi.org/10.1016/j.medcli.2010.01.015; Uzcanga Pérez, N. G., Chanatásig-Vaca, C. I., & Cano-González, A. (2020). Sustentabilidad socioeconómica y ambiental de los sistemas de producción de maíz de temporal. Revista Mexicana de Ciencias Agrícolas, 11(5), 993-1004. https://doi.org/10.29312/remexca.v11i5.2117; Van Delden, H. (2009). Integration of socio-economic and bio-physical models to support sustainable development. 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Proceedings, (July), 2457-2463; Vargas, C., Téllez, G., Cubillos, A., Gómez, P., & Garzón, L. (2016). Análisis de los beneficiarios de la Política Pública de Reforma Agraria en el marco del desarrollo rural en Colombia (1994–2010). Pampa, (13), 31-53; Vázquez García, V. (2020). Venta de tierras y transformación del waterscape en San Salvador Atenco, Estado de México. Cuicuilco Revista de Ciencias Antropológicas, 27(77), 185-206; Velásquez, J. D., Olaya, Y., & Franco, C. J. (2010). Predicción de series temporales usando máquinas de vectores de soporte. Ingeniare, 18(1), 64-75. https://doi.org/10.4067/s0718-33052010000100008; Vergel Cabrales, G. (1997). Metodología un manual para la elaboración de diseños y proyectos de investigación (Cuarta); Wang, Q., Yu, L., & Yang, Y. (2022). From Fragmentation to Intensification: Land Reform in China’s “New Era”. International Journal of Environmental Research and Public Health, 19(18). https://doi.org/ 10.3390/ijerph191811223; Win, N. N., & Naing, A. (2023). Tolerant Tea Shops: The Social Construction of Forbearance in Child Labor. Journal of Burma Studies, 27(2), 261-289. https://doi.org/10.1353/jbs.2023.a902622; Xiao, L., Wang, G., Zhou, H., Jin, X., & Luo, Z. (2022). Coupling agricultural system models with machine learning to facilitate regional predictions of management practices and crop production. Environ- mental Research Letters, 17(11). https://doi.org/10.1088/1748-9326/ac9c71; Xie, Y., & Jiang, Q. (2016). Land arrangements for rural-urban migrant workers in China: Findings from Jiangsu Province. Land Use Policy, 50, 262-267. https://doi.org/10.1016/j.landusepol.2015.10.010; Yazici, I., Shayea, I., & Din, J. (2023). A survey of applications of artificial intelligence and machine learning in future mobile networks-enabled systems. Engineering Science and Technology, an International Journal, 44, 101455. https://doi.org/https://doi.org/10.1016/j.jestch.2023.101455; Yet, B., Lamanna, C., Shepherd, K. D., & Rosenstock, T. S. (2020). Evidence-based investment selection: Prioritizing agricultural development investments under climatic and socio-political risk using Ba- yesian networks. PLoS ONE, 15(6), 1-22. https://doi.org/10.1371/journal.pone.0234213; Yin, Z., Feng, Q., Yang, L., Deo, R. C., Wen, X., Si, J., & Xiao, S. (2017). Future projection with an extreme- learning machine and support vector regression of reference evapotranspiration in a mountainous in- land watershed in north-west China. Water (Switzerland), 9(11). https://doi.org/10.3390/w9110880; Yousefi, M., Khoshnevisan, B., Shamshirband, S., Motamedi, S., Mohd Hairul, M. H. N., Arif, M., & Ahmad, R. (2015). Support vector regression methodology for prediction of output energy in rice production. Stochastic Environmental Research and Risk Assessment, 29(8), 2115-2126. https://doi.org/10.1007/ s00477-015-1055-z; Yu, C., Xu, G., Cai, M., Li, Y., Wang, L., Zhang, Y., & Lin, H. (2024). Predicting environmental impacts of smallholder wheat production by coupling life cycle assessment and machine learning. Science of the Total Environment, 921. https://doi.org/10.1016/j.scitotenv.2024.171097; Yu, H., Wen, X., Li, B., Yang, Z., Wu, M., & Ma, Y. (2020). Uncertainty analysis of artificial intelligence modeling daily reference evapotranspiration in the northwest end of China. Computers and Electronics in Agriculture, 176(August). https://doi.org/10.1016/j.compag.2020.105653; Yuan, S., Li, X., & Du, E. (2021). Effects of farmers’ behavioral characteristics on crop choices and responses to water management policies. Agricultural Water Management, 247. https://doi.org/10.1016/j. agwat.2020.106693; Zambon, I., Monarca, D., Cecchini, M., Bedini, R., Longo, L., Romagnoli, M., & Marucci, A. (2016). Al- ternative energy and the development of local rural contexts: An Approach to improve the degree of smart cities in the central-southern Italy. Contemporary Engineering Sciences, 9(28), 1371-1386. https://doi.org/10.12988/ces.2016.68143; Zeman, K. R., & Rodríguez, L. F. (2019). Quantifying farmer decision-making in an agent-based model. 2019 ASABE Annual International Meeting; Zhang, J., Zuo, F., Zhou, Y., Zhai, M., Mei, L., Fu, Y., & Cheng, Y. (2018). Analyzing Influencing Factors of Rural Poverty in Typical Poverty Areas of Hainan Province: A Case Study of Lingao County. Chinese Geographical Science, 28(6), 1061-1076. https://doi.org/10.1007/s11769-018-1008-9; Zhang, W., & Huang, B. (2015). Soil erosion evaluation in a rapidly urbanizing city (Shenzhen, China) and implementation of spatial land-use optimization. Environmental Science and Pollution Research, 22(6), 4475-4490. https://doi.org/10.1007/s11356-014-3454-y; Zhang, Y. (2020). Can the Employability of Rural Migrant Workers Promote Their Employment Quality?- An Empirical Study Based on Intergenerational and Urban-Rural Comparison. Modern Economic Science, 42(2), 16-31. https://www.scopus.com/inward/record.uri?eid=2- s2.0- 85099854171& partnerID=40&md5=e6bb5f25db5c04b2dd521ccb1fed35eb; Zhang, Y., & Diao, X. (2020). The changing role of agriculture with economic structural change – The case of China. China Economic Review, 62(May), 101504. https://doi.org/10.1016/j.chieco.2020.101504; https://hdl.handle.net/11349/94447

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

    Source: Movement Disorders; 2019 Supplement2, Vol. 34, pS1-S930, 930p

  11. 11
  12. 12

    File Description: xx, 178 páginas; application/pdf

    Relation: Abdel-Basset, M., Manogaran, G., El-Shahat, D., & Mirjalili, S. (2018), Integrating the whale algorithm with tabu search for quadratic assignment problem: a new approach for locating hospital departments. Applied soft computing, 73, pp. 530-546.; Accorsi, R., Baruffaldi, G., & Manzini, R. (2018), Picking efficiency and stock safety: A bi-objective storage assignment policy for temperature-sensitive products. Computers & Industrial Engineering, 115, pp. 240-252.; Accorsi, R., Bortolini, M., Ferrari, E., Gamberi, M., & Pilati, F. (2018), Class-based storage warehouse design with diagonal cross-aisle. LogForum, 14(1), pp. 101-112.; Accorsi, R., Manzini, R., & Maranesi, F. (2014), A decision-support system for the design and management of warehousing systems. Computers in Industry, 65(1), pp. 175-186.; Adarme, W., Otero, M.A., Rodríguez, T.A. & Tejeda, L. (2012), Optimization of a warehouse layout used for storage of materials used in ship construction and repair. Ship Science and Technology, 5(10), pp. 59-70.; Ahmed, M., Seraj, R., & Islam, S. M. S. (2020), The k-means algorithm: A comprehensive survey and performance evaluation. Electronics, 9(8), 1295.; Ahmed Bouh, M., & Riopel, D. (2015), Material handling equipment selection: new classifications of equipments and attributes. Proceedings of the 6th International Conference on Industrial Engineering and Systems Management (IESM), 21-23 Oct. 2015, IEEE, Seville, Spain, pp. 1-8.; Altarazi, S.A., & Ammouri, M.M. (2018), Concurrent manual-order-picking warehouse design: a simulation-based design of experiments approach. International Journal of Production Research, 56(23), pp. 7103-7121.; Ang, M., & Lim, Y.F. (2019), How to optimize storage classes in a unit-load warehouse. European Journal of Operational Research, 278(1), pp. 186-201.; Ardila-Gamboa, C.D. & Ballesteros-Riveros, F.A. (2018), Data Envelopment Analysis to measure relative performance based on key indicators from a supply network with Reverse Logistics. INGE CUC, 14(2), pp. 137-146.; Audy, J. F., Lehoux, N., D'Amours, S., & Rönnqvist, M. (2012), A framework for an efficient implementation of logistics collaborations. International transactions in operational research, 19(5), pp. 633-657.; Autry, C. W., Griffis, S. E., Goldsby, T. J., & Bobbitt, L. M. (2005), Warehouse management systems: resource commitment, capabilities, and organizational performance. Journal of Business Logistics, 26(2), pp. 165-183.; Avendano, R., Melguizo, A., & Miner, S. (2017), Chinese FDI in Latin America: new trends with global implications. Washington: Atlantic Council.; Aylak, B. L., Noche, B., Cantepe, M. B., & Karakaya, A. (2013), Simulation Model of an Ultra-Light Overhead Conveyor System; Analysis of the Process in the Warehouse. World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 7(10), pp. 1931-1935.; Aytaç, E. (2020), Unsupervised learning approach in defining the similarity of catchments: Hydrological response unit based k-means clustering, a demonstration on Western Black Sea Region of Turkey. International Soil and Water Conservation Research.; Baker, P., Canessa, M. (2009), Warehouse design: a structured approach. European Journal of Operational Research 193, pp. 425–436.; Ballesteros-Riveros, F.A., Arango-Serna, M.D., Adarme-Jaimes, W. & Zapata-Cortes, J.A. (2019), Storage allocation optimization model in a Colombian company. DYNA, 86(209), pp. 255-260.; Ballestín, F., Pérez, Á, & Quintanilla, S. (2020), A multistage heuristic for storage and retrieval problems in a warehouse with random storage. International Transactions in Operational Research, 27(3), pp. 1699-1728.; Banco Mundial (2018), Índice de Desempeño Logístico. Último acceso el 19 de octubre de 2020. Base de datos disponible en la página web oficial: http://lpi.worldbank.org/; Banks, J., Carson, J.S., Nelson, B.L., & Nicol, D.M. (2013), Discrete-event system simulation: Pearson new international edition. 5th Edition, Pearson Higher Education, New Jersey, NJ.; Bartholdi, J.J. & Hackman, S.T. (2019), Warehouse & Distribution Science, Release 0.98.1. The Supply Chain & Logistics Institute, Atlanta, GA.; Bartholdi, J.J., & Gue, K. R. (2004), The best shape for a crossdock. Transportation Science, 38(2), pp. 235-244.; Baruffaldi, G., Accorsi, R., & Manzini, R. (2019), Warehouse management system customization and information availability in 3pl companies: a decision-support tool. Industrial Management & Data Systems, 119(2), pp. 251-273.; Battini D., Calzavara M., Persona A. & Sgarbossa, F. (2015), A comparative analysis of different paperless picking systems, Industrial Management & Data Systems, 115(3), pp. 483-503.; Beckman, M. (2007), Training needs assessment for warehouse employees (Master of Science Thesis). University of Wisconsin-Stout, Menomonie, WI.; Behnamian, J., & Eghtedari, B. (2009), Storage System Layout. In Facility Location (pp. 419-450). Physica-Verlag HD.; Belle, J., Valckenaers, P., & Cattrysse, D. (2012), Cross-docking: State of the art. Omega, 40(6), pp. 827-846.; Berry, J. R. (1968), Elements of warehouse layout. The International Journal of Production Research, 7(2), pp. 105-121.; Bisenieks, J., & Ozols, E. (2010), The problem of warehouse operation, its improvement and development in company's logistics system. Human Resources: The Main Factor of Regional Development, 3, pp. 206-213.; Blömer, J., Lammersen, C., Schmidt, M., & Sohler, C. (2016), Theoretical analysis of the k-means algorithm–a survey. In Algorithm Engineering (pp. 81-116). Springer, Cham.; Bortolini, M., Faccio, M., Gamberi, M., & Manzini, R. (2015), Diagonal cross-aisles in unit load warehouses to increase handling performance. International Journal of Production Economics, 170, pp. 838-849.; Bortolini, M., Faccio, M., Ferrari, E., Gamberi, M., & Pilati, F. (2019), Design of diagonal cross-aisle warehouses with class-based storage assignment strategy. The International Journal of Advanced Manufacturing Technology, 100(9), pp. 2521-2536.; Bottani, E., Cecconi, M., Vignali, G., Montanari, R. (2012), Optimisation of storage allocation in order picking operations through a genetic algorithm, International Journal of Logistics Research and Applications: A Leading Journal of Supply Chain Management 15 (2), pp. 127-146.; Brinkø, R., Nielsen, S.B. and van Meel, J. (2015), Access over ownership – a typology of shared space, Facilities, 33(11/12), pp. 736-751.; Cahn, A.S. (1948), The Warehouse Problem. Bulletin of the American Mathematical Society, 54(11), pp. 1073.; Cano, J.A. (2020), Order Picking Optimization Based on a Picker Routing Heuristic: Minimizing Total Traveled Distance in Warehouses. In Handbook of Research on the Applications of International Transportation and Logistics for World Trade (pp. 74-96). IGI Global.; Cano, J.A., Campo, E.A., Correa-Espinal, A.A., & Gómez-Montoya, R.A. (2021), Optimización por colonia de hormigas para el ruteo de la preparación de pedidos en almacenes de múltiples bloques. Información tecnológica, 32(3), pp.121-130.; Cano, J.A., Correa-Espinal, A.A., & Gómez-Montoya, R.A. (2017), An evaluation of picking routing policies to improve warehouse efficiency. International Journal of Industrial Engineering and Management, 8(4), pp. 229-238.; Cano, J.A., Correa-Espinal, A.A., Gómez-Montoya, R.A., & Cortés, P. (2019), Genetic algorithms for the picker routing problem in multi-block warehouses. In International Conference on Business Information Systems. Ed. Springer, Cham, pp. 313-322.; Cao, W., & Jiang, P. (2013), Modelling on service capability maturity and resource configuration for public warehouse product service systems. International Journal of Production Research, 51(6), pp. 1898-1921.; Capó, M., Pérez, A., & Lozano, J. A. (2017), An efficient approximation to the K-means clustering for massive data. Knowledge-Based Systems, 117, pp. 56-69.; Cardona, L. F., Soto, D. F., Rivera, L., & Martínez, H. J. (2015), Detailed design of fishbone warehouse layouts with vertical travel. International Journal of Production Economics, 170, pp. 825-837.; Cardona, L.F., Rivera, L., Martínez, H.J. (2012), Analytical study of the Fishbone warehouse layout. International Journal of Logistics Research and Applications: A leading journal of Supply Chain Management 15 (6), pp. 365-388.; Caserta, M., Voss, S., Sniedovich, M. (2011), Applying the corridor method to a blocks relocation problem. OR Spectrum 33, pp. 915-929.; Çelik, M., & Süral, H. (2016), Order picking in a parallel-aisle warehouse with turn penalties. International Journal of Production Research, 54(14), pp. 4340-4355.; Chabot, T., Lahyani, R., Coelho, L.C., & Renaud, J. (2017), Order picking problems underweight, fragility and category constraints. International Journal of Production Research, 55(21), pp. 6361-6379.; Chain, P., & Arunyanart, S. (2019), Using cluster analysis for location decision problem. In IOP Conference Series: Materials Science and Engineering, IOP Publishing, Vol. 673, No. 1, pp. 1-6, DOI:10.1088/1757-899X/673/1/012086; Chen, F., Wang, H., Qi, C., & Xie, Y. (2013), An ant colony optimization routing algorithm for two order pickers with congestion consideration. Computers & Industrial Engineering, 66(1), pp. 77-85.; Chen, L., Riopel, D., & Langevin, A. (2008), Minimising the peak load in a shared storage system based on the duration-of-stay of unit loads. International Journal of Shipping and Transport Logistics, 1(1), pp. 20-36.; Chinello, E., Herbert-Hansen, Z. N. L., & Khalid, W. (2020), Assessment of the impact of inventory optimization drivers in a multi-echelon supply chain: Case of a toy manufacturer. Computers & Industrial Engineering, 141, 106232.; Coindreau, M. A., Gallay, O., Zufferey, N., & Laporte, G. (2021), Inbound and Outbound Flow Integration for Cross-Docking Operations. European Journal of Operational Research, in press, DOI:10.1016/j.ejor.2021.02.031.; Correa-Espinal, A.A., Gómez-Montoya, R.A., & Cano-Arenas, J.A. (2010), Gestión de almacenes y tecnologías de la información y comunicación (TIC). Estudios gerenciales, 26(117), pp.145-171.; Cristóbal, L.A., Ascencio, E.G., & Robles, M.L. (2017), The Inventory as a determinant in the profitability of pharmaceutical distributors. Retos: Revista de Ciencias de la Administración y Economía, 13(7), pp. 251-269.; Cunha Reis, A., de Souza, C.G., da Costa, N.N., Stender, G.H.C., Vieira, P.S., & Pizzolato, N.D. (2017), Warehouse design: a systematic literature review. Brazilian Journal of Operations & Production Management, 14(4), pp. 542-555.; DANE [Departamento Administrativo Nacional de Estadística] (2021), Cuentas Nacionales, Colombia. Último acceso el 31 de marzo de 2021. Disponible en: https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-anuales; Davarzani, H., & Norrman, A. (2015), Toward a relevant agenda for warehousing research: literature review and practitioners’ input. Logistics Research, 8(1), pp. 1-18.; De Azevedo, R. C., Ensslin, L., & Jungles, A. E. (2014), A review of risk management in construction: opportunities for improvement. Modern Economy, 5(04), pp. 367.; De Koster, R., Le Luc, T., Roodbergen, K.J. (2007), Design and control of warehouse order picking: A literature review. European Journal of Operational Research 182, pp. 481–501.; De Koster, R.B.M. (2008), Warehouse assessment in a single tour. In: Facility Logistics: Approaches and Solutions to Next Generation Challenges. Editor: Lahmar, M. Boca Raton, FL: Taylor & Francis Group.; De Koster, R.B.M. (2012), Warehouse assessment in a single tour. In: Warehousing in the Global Supply Chain: Advanced Models, Tools and Applications for Storage Systems. Editor: Manzini, R. Springer-Verlag, London, pp. 457-473.; De Koster, R.B.M., Johnson, A.L. & Roy, D. (2017), Warehouse design and management, International Journal of Production Research, 55(21), pp. 6327-6330.; De Leeuw, S., & Wiers, V. C. (2015), Warehouse manpower planning strategies in times of financial crisis: evidence from logistics service providers and retailers in the Netherlands. Production Planning & Control, 26(4), pp. 328-337.; De Sousa Junior, W. T., Montevechi, J. A. B., de Carvalho Miranda, R., & Campos, A. T. (2019), Discrete simulation-based optimization methods for industrial engineering problems: A systematic literature review. Computers & Industrial Engineering, 128, pp. 526-540.; De Vries, J., de Koster, R., & Stam, D. (2016), Exploring the role of picker personality in predicting picking performance with pick by voice, pick to light and RF-terminal picking. International Journal of Production Research, 54(8), pp. 2260-2274.; Departamento Administrativo Nacional de Estadística [DANE] (2018), Encuesta Anual Manufacturera (EAM) 2017, Bogotá.; Derhami, S., Smith, J.S., & Gue, K.R. (2017), Optimising space utilisation in block stacking warehouses. International Journal of Production Research, 55(21), pp. 6436-6452.; Derhami, S., Smith, J. S., & Gue, K. R. (2020), A simulation-based optimization approach to design optimal layouts for block stacking warehouses. International Journal of Production Economics, 223, 107525.; Dirección Nacional de Planeación (2018), Encuesta Nacional de Logística: Resultados Nacionales, Colombia. Disponible en: https://onl.dnp.gov.co/es/enl/Paginas/2018.aspx; Dey, B., Bairagi, B., Sarkar, B., & Sanyal, S. K. (2016), Warehouse location selection by fuzzy multi-criteria decision making methodologies based on subjective and objective criteria. International Journal of Management Science and Engineer, 11(4), pp. 262-278.; Duan, Y., Yao, Y. O., Zhang, X., & Huo, J. (2016), An Empirical Analysis of Cross Docking: Performance and Learning Spillover. Working paper SSRN.; Duba, M.G., Das, D.P., Ghadai, S.K., & Bajpai, A. (2019), The Effect of Integrated Warehouse Operation Efficiency on Organizations Performance. International Journal of Recent Technology and Engineering, 8(2), pp. 1664-1668.; Dubey, A., & Choubey, A. (2017), A Systematic Review on K-Means Clustering Techniques. International Journal of Scientific Research Engineering & Technology 6 (6), pp. 624-627.; Duro, D.C., Franklin, S.E., & Dubé, M.G. (2012), A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote sensing of environment, 118, pp. 259-272.; Dutra, A., Ripoll-Feliu, V. M., Fillol, A. G., Ensslin, S. R., & Ensslin, L. (2015), The construction of knowledge from the scientific literature about the theme seaport performance evaluation. International Journal of Productivity and Performance Management, 64(2), pp. 243-269.; Elbert, R., & Knigge, J. K. (2018), How order placement influences resource allocation and order processing times inside a multi-user warehouse. In 2018 Winter Simulation Conference (WSC). IEEE, pp. 2921-2932.; Ensslin, L., Ensslin, S. R., Lacerda, R. T. D. O., & Tasca, J. E. (2010), ProKnow-C, knowledge development process-constructivist. Processo técnico com patente de registro pendente junto ao INPI. Brasil, 10(4), pp. 2015.; Ensslin, S. R., Ensslin, L., Imlau, J. M., & Chaves, L. C. (2014), Processo de mapeamento das publicações científicas de um tema: portfólio bibliográfico e análise bibliométrica sobre avaliação de desempenho de cooperativas de produção agropecuária. Revista de Economia e Sociologia Rural, 52(3), pp. 587-608.; Faber, N., De Koster, R.B.M. & Smidts, A. (2013), Organizing warehouse management, International Journal of Operations & Production Management, 33(9), pp. 1230-1256.; Faber, N., De Koster, R.B.M., & Van de Velde, S.L. (2002), Linking warehouse complexity to warehouse planning and control structure: an exploratory study of the use of warehouse management information systems. International Journal of Physical Distribution & Logistics Management, 32(5), pp. 381-395.; Feng, Z.K., Niu, W. J., Zhang, R., Wang, S., & Cheng, C.T. (2019), Operation rule derivation of hydropower reservoir by k-means clustering method and extreme learning machine based on particle swarm optimization. Journal of Hydrology, 576, pp. 229-238.; Foro Económico Mundial (2019), Reporte de Competitividad Mundial 2019. Disponible en la página web oficial: http://reports.weforum.org/global-competitiveness-report-2019; Fränti, P., & Sieranoja, S. (2019), How much can k-means be improved by using better initialization and repeats?. Pattern Recognition, 93, pp. 95-112.; Gan, G., & Ng, M. K. P. (2017), K-means clustering with outlier removal. Pattern Recognition Letters, 90, pp. 8-14.; Giannikas, V., Lu, W., Robertson, B., & McFarlane, D. (2017), An interventionist strategy for warehouse order picking: evidence from two case studies. International Journal of Production Economics, 189, pp. 63-76.; Godet, M. (1995), De la anticipación a la acción: manual de prospectiva y estrategia. México: Alfaomega.; Gómez-Montoya, R. A., Correa-Espinal, A. A., & Hernández-Vahos, J. D. (2016), Picking Routing Problem with K homogenous material handling equipment for a refrigerated warehouse. Revista Facultad de Ingeniería Universidad de Antioquia, 80, pp.9-20.; Goodson, R.E. (2002), Read a Plant – Fast. Harvard Business Review, 80(5), pp. 105-121.; Goswami, M. (2019), Modeling M Warehouse N Manpower-Team Allocation Problem Using Dynamic Programming Approach. International Journal of Strategic Decision Sciences (IJSDS), 10(4), pp. 100-112.; Govender, P., & Sivakumar, V. (2020), Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980-2019). Atmospheric Pollution Research, 11(1), pp. 40-56.; Grosse, E.H., Glock, C.H., & Neumann, W. P. (2017), Human factors in order picking: a content analysis of the literature. International Journal of Production Research, 55(5), pp. 1260-1276.; Gu, J., Goetschalckx, M., & McGinnis, L. F. (2007), Research on warehouse operation: A comprehensive review. European journal of operational research, 177(1), pp.1-21.; Gu, J., Goetschalckx, M., & McGinnis, L. F. (2010), Research on warehouse design and performance evaluation: A comprehensive review. European Journal of Operational Research, 203(3), pp. 539-549.; Gue, K. R., & Meller, R. D. (2009), Aisle configurations for unit-load warehouses. IIE Transactions, 41(3), pp. 171-182.; Guerriero, F., Musmanno, R., Pisacane, O. & Rende, F. (2013), A mathematical model for the multi-levels product allocation problem in a warehouse with compatibility constraints. Applied Mathematical Modelling 37, pp. 4385-4398.; Guerriero, F., Pisacane, O., & Rende, F. (2015), Comparing heuristics for the product allocation problem in multi-level warehouses under compatibility constraints. Applied Mathematical Modelling, 39(23-24), pp. 7375-7389.; Guo, X., Yu, Y., & De Koster, R. B. (2016), Impact of required storage space on storage policy performance in a unit-load warehouse. International Journal of Production Research, 54(8), pp. 2405-2418.; Haase, J., & Beimborn, D. (2017), Acceptance of Warehouse Picking Systems: A Literature Review. In Proceedings of the 2017 ACM SIGMIS Conference on Computers and People Research, pp. 53-60.; Heragu, S.S., Du, L., Mantel, R.J., & Schuur, P.C. (2005), Mathematical model for warehouse design and product allocation. International Journal of Production Research, 43(2), pp. 327-338.; Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la investigación (6th ed.). McGraw-Hill Education.; Hertog, M. L., Uysal, I., McCarthy, U., Verlinden, B. M., & Nicolaï, B. M. (2014), Shelf life modelling for first-expired-first-out warehouse management. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372 (2017), ID: 20130306, pp. 1-15.; Hong, S., Kim, Y. (2017), A route-selecting order batching model with the S-shape routes in a parallel-aisle order picking system. European Journal of Operational Research 257 (16), pp. 185-197.; Horta, M., Coelho, F., & Relvas, S. (2016), Layout design modelling for a real world just-in-time warehouse. Computers & Industrial Engineering, 101, pp. 1-9.; Hoseini Shekarabi, S. A., Gharaei, A., & Karimi, M. (2019), Modelling and optimal lot-sizing of integrated multi-level multi-wholesaler supply chains under the shortage and limited warehouse space: generalised outer approximation. International Journal of Systems Science: Operations & Logistics, 6(3), pp. 237-257.; Huihui, S., Xiaoxia, M., & Xiangguo, M. (2016), Simulation and optimization of warehouse operation based on Flexsim. Journal of Applied Science and Engineering Innovation, 3(4), pp.125-128.; Isler, C. A., Righetto, G. M., & Morabito, R. (2016), Optimizing the order picking of a scholar and office supplies warehouse. The International Journal of Advanced Manufacturing Technology, 87(5-8), pp. 2327-2336.; Ito, Y., & Kato, S. (2016), Dynamic product placement method in order picking using correlation between products. In Consumer Electronics, October 2016, IEEE 5th Global Conference on (pp. 1-3). IEEE.; Jachimowski, R., Gołębiowski, P., Izdebski, M., Pyza, D., & Szczepański, E. (2017), Designing and efficiency of database for simulation of processes in systems. Case study for the simulation of warehouse processes. Archives of Transport, 41 (1), pp. 31-42.; Jahangiri, A., & Rakha, H.A. (2015), Applying machine learning techniques to transportation mode recognition using mobile phone sensor data. IEEE transactions on intelligent transportation systems, 16(5), pp. 2406-2417.; Jami, N., & Schröder, M. (2016), Tactical and Operational Models for the Management of a Warehouse. In Dynamics in Logistics (pp. 655-665). Springer International Publishing.; Jang, D. W., Kim, S. W., & Kim, K. H. (2013), The optimization of mixed block stacking requiring relocations. International Journal of Production Economics, 143(2), pp. 256-262.; Jha, M.K., Raut, R.D., Gardas, B.B., & Raut, V. (2018), A sustainable warehouse selection: an interpretive structural modelling approach. International Journal of Procurement Management, 11(2), pp. 201-232.; Johnson, A. & McGinnis, L. (2011), Performance measurement in the warehousing industry, IIE Transactions, 43(3), pp. 220-230.; Jung, S.H., Kim, K.J., Lim, E.C., & Sim, C.B. (2017), A Novel on Automatic K Value for Efficiency Improvement of K-means Clustering. Advanced Multimedia and Ubiquitous Engineering, pp. 181–186.; Kan, A. (2017), Machine learning applications in cell image analysis. Immunology and Cell Biology, 95(6), pp. 525-530.; Karakis, I., Baskak, M., & Tanyaş, M. (2015), Analytical Model for Optimum Warehouse Dimensions. Research in Logistics & Production, 5(3), pp. 255-269.; Karia, N. & Wong, C.Y. (2013), The impact of logistics resources on the performance of Malaysian logistics service providers. Production Planning & Control: The Management of Operations, 24(7), pp. 589-606.; Karim, N.H., Rahman, N.S.F.A., & Shah, S.F.S.S.J. (2018), Empirical evidence on failure factors of warehouse productivity in Malaysian logistic service sector. The Asian Journal of Shipping and Logistics, 34(2), pp. 151-160.; Kassambara, A. (2017), Practical Guide to Cluster Analysis in R: Unsupervised Machine Learning. Volumen 1 de Multivariate Analysis. STHDA.; Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N., Vlahavas, I., & Chouvarda, I. (2017), Machine learning and data mining methods in diabetes research. Computational and structural biotechnology journal, 15, pp. 104-116.; Kembro, J.H. and Norrman, A. (2020), Warehouse configuration in omni-channel retailing: a multiple case study, International Journal of Physical Distribution & Logistics Management, 50(5), pp. 509-533.; Khanmohammadi, S., Adibeig, N., & Shanehbandy, S. (2017), An improved overlapping k-means clustering method for medical applications. Expert Systems with Applications, 67, pp. 12-18.; Khemavuk, P., & Hasan, M. (2014), A Qualitative Study for Measuring Warehouse Performance Using Triangulation Approach. Journal of Modern Accounting and Auditing, 10(6), pp. 701-707.; Klausnitzer, A., & Lasch, R. (2019), Optimal facility layout and material handling network design. Computers & Operations Research, 103, pp. 237-251.; Kłodawski, M., Lewczuk, K., Jacyna-Gołda, I. & Żak, J. (2017), Decision making strategies for warehouse operations. Archives of Transport, 41(1), pp. 43-53.; Kostrzewski, M. (2012), Mathematical Models of an Order-Picking Process Time Computing and its Relevance to Real Warehousing Processes. In Carpathian Logistics Congress.; Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., & Fotiadis, D.I. (2015), Machine learning applications in cancer prognosis and prediction. Computational and structural biotechnology journal, 13, pp. 8-17.; Krosnick, J. A., Presser, S. (2010), Question and questionnaire design. In Marsden, P. V., Wright, J. D. (Eds.), Handbook of survey research. Bingley, UK: Emerald Group, pp. 263–314.; Kumar, S., Narkhede, B. E., & Jain, K. (2021), Revisiting the warehouse research through an evolutionary lens: a review from 1990 to 2019. International Journal of Production Research, pp. 1-23.; Kumar, R., & Singh, S. P. (2017), Designing robust stochastic bi-objective cellular layout in manufacturing systems. International Journal of Management Concepts and Philosophy, 10(2), pp. 147-164.; Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2017), A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews, 69, pp. 596-609.; Ladier, A. L., & Alpan, G. (2016), Cross-docking operations: Current research versus industry practice. Omega, 62, pp.145-162.; Laosirihongthong, T., Adebanjo, D., Samaranayake, P., Subramanian, N. & Boon-itt, S. (2018), Prioritizing warehouse performance measures in contemporary supply chains, International Journal of Productivity and Performance Management, 67(9), pp. 1703-1726.; Larco, J.A., De Koster, M.B.M., Roodbergen, K.J. & Dul, J. (2017), Managing warehouse efficiency and worker discomfort through enhanced storage assignment decisions, International Journal of Production Research, 55(21), pp. 6407-6422.; Lee, I.G., Chung, S.H., & Yoon, S.W. (2020), Two-stage storage assignment to minimize travel time and congestion for warehouse order picking operations. Computers & Industrial Engineering, 139, pp. 106-129.; Lee, J.A., Chang, Y.S., Shim, H.J., & Cho, S.J. (2015), A study on the picking process time. Procedia Manufacturing, 3, pp. 731-738.; Lewczuk K., Kłodawski M. & Jacyna-Gołda I. (2018), Selected Aspects of Warehouse Process Control and the Quality of Warehouse Services. In: Mikulski J. (eds) Management Perspective for Transport Telematics. Communications in Computer and Information Science, vol. 897. Springer, Cham, pp. 445-459.; Li, J., Moghaddam, M., & Nof, S. Y. (2016), Dynamic storage assignment with product affinity and ABC classification—a case study. The International Journal of Advanced Manufacturing Technology, 84(9-12), pp. 2179-2194.; Li, S., Sari, Y.A., & Kumral, M. (2020), Optimization of Mining–Mineral Processing Integration Using Unsupervised Machine Learning Algorithms, Natural Resources Research, pp. 1-12.; Li, M. L., Wolf, E., & Wintz, D. (2019), Application of Duration-of-Stay Storage Assignment with Deep Neural Networks under Uncertainty. International Conference on Learning Representations.; Libbrecht, M.W., & Noble, W.S. (2015), Machine learning applications in genetics and genomics. Nature Reviews Genetics, 16(6), pp. 321–332.; Liu, J., Zhang, H., He, K., & Jiang, S. (2018), Multi-objective particle swarm optimization algorithm based on objective space division for the unequal-area facility layout problem. Expert Systems with Applications, 102, pp. 179-192.; Liu, T., Duan, Y., & Liu, Y. (2016), Simulation and optimization of the AS/RS based on Flexsim. In Frontier Computing. Springer, Singapore. pp. 855-863.; Loos, M. J., Merino, E., & Rodriguez, C. M. T. (2016), Mapping the state of the art of ergonomics within logistics. Scientometrics, 109(1), pp. 85-101.; Lu, W., McFarlane, D., Giannikas, V., & Zhang, Q. (2016), An algorithm for dynamic order-picking in warehouse operations. European Journal of Operational Research, 248(1), pp. 107-122.; Ma, Y., Zhang, Z., Ihler, A., & Pan, B. (2018), Estimating warehouse rental price using machine learning techniques. International Journal of Computers Communications & Control, 13(2), pp. 235-250.; Maciel, J. N., Junior, O. H. A., & Ledesma, J. J. G. (2020), The Forecasting Solar Power Output Generation: A Systematic Review with the Proknow-C. IEEE Latin America Transactions, 19(4), pp. 612-624.; Macro, J. G., & Salmi, R. E. (2002), Warehousing and inventory management: a simulation tool to determine warehouse efficiencies and storage allocations. In Proceedings of the 34th conference on Winter simulation: exploring new frontiers (pp. 1274-1281). Winter Simulation Conference.; Makaci, M., Reaidy, P., Evrard-Samuel, K., Botta-Genoulaz, V., & Monteiro, T. (2017), Pooled warehouse management: An empirical study. Computers & Industrial Engineering, 112, pp. 526-536.; Manzini, R., Accorsi, R., Gamberi, M., & Penazzi, S. (2015), Modeling class-based storage assignment over life cycle picking patterns. International Journal of Production Economics, 170, 790-800.; Masae, M., Glock, C.H., & Vichitkunakorn, P. (2020), Optimal order picker routing in the chevron warehouse. IISE Transactions, 52(6), pp, 665-687.; Mathlouthi, W., Saoud, N. B. B., & Sboui, S. (2015), Agent-based modeling and simulation of pooled warehouse intelligent management. In Proceedings of the Conference on Summer Computer Simulation, pp. 1-8.; Matson, J.O., Sonnentag, J.J., White, J.A., & Imhoff, R.C. (2014), An Analysis of Block Stacking with Lot Splitting. In IIE Annual Conference. Proceedings. Institute of Industrial Engineers-Publisher, pp. 497.; McKinnon, A., Flöthmann, C., Hoberg, K., & Busch, C. (2017), Logistics Competencies, Skills, and Training: A Global Overview. The World Bank. Washington, DC.; Meller, R.D., Gue, K.R. (2009), The application of new aisle design for unit-load warehouses. Proceedings of 2009 NSF Engineering Research and Innovation Conference, Honolulu, Hawaii, pp. 1-8.; Melnykov, I., & Melnykov, V. (2014), On K-means algorithm with the use of Mahalanobis distances. Statistics & Probability Letters, 84, pp. 88-95.; Montgomery, D.C. (2017), Design and analysis of experiments. 9th Edition, Hoboken, NJ: John Wiley & Sons.; Muha, R. (2019). An Overview of the Problematic Issues in Logistics Cost Management. Pomorstvo, 33(1), pp. 102-109.; Muhalia, E. J., Ngugi, P. K., & Moronge, M. (2021), Effect of warehouse management systems on supply chain performance of fast-moving consumer goods manufacturers in Kenya. International Journal of Supply Chain Management, 6(1), pp. 1-11.; Müller, A.C., & Guido, S. (2017), Introduction to machine learning with Python: a guide for data scientists, O'Reilly Media, Inc. Sebastopol. ISBN: 978-1449369415.; Muchanga, M. (2020), Reflexive Debate on Use of Philosophy in Scientific Research. International Journal of Humanities, Social Sciences and Education, 7(6), pp. 208-2013.; Na, S., Xumin, L., & Yong, G. (2010), Research on k-means clustering algorithm: An improved k-means clustering algorithm. In 2010 Third International Symposium on intelligent information technology and security informatics. IEEE, pp. 63-67.; Nikolopoulou, A. I., Repoussis, P. P., Tarantilis, C. D., & Zachariadis, E. E. (2017), Moving products between location pairs: Cross-docking versus direct-shipping. European Journal of Operational Research, 256(3), pp. 803-819.; Ocicka, B., & Wieteska, G. (2017), Sharing economy in logistics and supply chain management. LogForum, 13(2), pp. 183-193.; Ogbuabor, G., & Ugwoke, F. N. (2018), Clustering algorithm for a healthcare dataset using silhouette score value. International Journal of Computer Science & Information Technology, 10(2), pp. 27-37.; Osorio, M. A., & Suárez, A. B. (2014), Importancia de la probabilidad y la estadística en la formación del Ingeniero. I3+ 1(2), pp. 26-37.; Öztürkoğlu, Ö., Gue, K. R., & Meller, R. D. (2014), A constructive aisle design model for unit-load warehouses with multiple pickup and deposit points. European Journal of Operational Research, 236(1), pp. 382-394.; Özyer, T., & Alhajj, R. (2018), Machine Learning Techniques for Online Social Networks. Editorial Springer. Cham.; Pan, F., Zhou, W., Fan, T., Li, S., & Zhang, C. (2021), Deterioration rate variation risk for sustainable cross-docking service operations. International Journal of Production Economics, 232, in press, 107932.; Pan, J.C.H., Shih, P.H., Wu, M.H. (2012), Storage assignment problem with travel distance and blocking considerations for a picker-to-part order picking system. Computers & Industrial Engineering 62, pp. 527–535.; Pan, L., Liu, G., Lin, F., Zhong, S., Xia, H., Sun, X., & Liang, H. (2017), Machine learning applications for prediction of relapse in childhood acute lymphoblastic leukemia. Scientific reports, 7(1), pp. 1-9.; Pang, K.W., & Chan, H.L. (2017), Data mining-based algorithm for storage location assignment in a randomized warehouse. International Journal of Production Research, 55(14), pp. 4035-4052.; Panhwar, A.H., Ansari, S., & Shah, A.A. (2017), Post-positivism: An effective paradigm for social and educational research. International Research Journal of Arts & Humanities, 45(45), pp. 253-260.; Patten, M. L. (2017), Questionnaire research: A practical guide. 4ᵃ edición. Routledge.; Pohl, L.M., Meller, R.D., Gue, K.R. (2009), An analysis of dual-command operations in common warehouse designs. Transportation Research Part E 45, pp. 367–379.; Prause, M. (2019), Challenges of Industry 4.0 technology adoption for SMEs: The case of Japan. Sustainability, 11(20), 5807.; Pyza, D., Jachimowski, R., Jacyna-Gołda, I., & Lewczuk, K. (2017), Performance of equipment and means of internal transport and efficiency of implementation of warehouse processes. Procedia Engineering, 187, pp. 706-711.; Quintanilla, S., Pérez, Á., Ballestín, F., & Lino, P. (2015), Heuristic algorithms for a storage location assignment problem in a chaotic warehouse. Engineering Optimization, 47(10), pp. 1405-1422.; Rachad, S., El Idrissi Larabi, Z., Nsiri, B., & Bensassi, B. (2017), Inventory management in closed loop structure using KPIs. International Journal of Applied Engineering Research, 12(15), pp. 4864-4869.; Rahman, M. S. (2020), The advantages and disadvantages of using qualitative and quantitative approaches and methods in language “testing and assessment” research: A literature review. Journal of Education and Learning, 6 (1), pp. 102-112.; Rai, P., & Singh, S. (2010), A survey of clustering techniques. International Journal of Computer Applications, 7(12), pp. 1-5.; Ramaa, A., Subramanya, K. N., & Rangaswamy, T. M. (2012), Impact of warehouse management system in a supply chain. International Journal of Computer Applications, 54(1), pp. 14-20.; Ramírez, T.J. (2014), Recuperación de zonas industriales: una oportunidad de desarrollo. El caso de Puente Aranda. Tesis de Maestría en Urbanismo, Universidad Nacional de Colombia. Bogotá.; Ramli, A., Bakar, M.S., Pulka, B.M., & Ibrahim, N.A. (2017), Linking Human Capital, Information Technology and Material Handling Equipment to Warehouse Operations Performance. International Journal of Supply Chain Management, 6(4), pp. 254-259.; Rao, S.S., & Adil, G.K. (2017), Analytical models for a new turnover-based hybrid storage policy in unit-load warehouses. International Journal of Production Research, 55(2), pp. 327-346.; Raschka, S., & Mirjalili, V. (2019), Python Machine Learning: Aprendizaje automático y aprendizaje profundo con Python, scikit-learn y TensorFlow 2. Segunda edición, Bogotá, Marcombo S.A. ISBN: 978-84-267-2720-6.; Raut, R.D., Narkhede, B.E., Gardas, B.B., & Raut, V. (2017), Multi-criteria decision making approach: a sustainable warehouse location selection problem. International Journal of Management Concepts and Philosophy, 10(3), pp. 260-281.; Richards, G. (2018), Warehouse management: a complete guide to improving efficiency and minimizing costs in the modern warehouse. 3rd. edition, Kogan Page Publishers.; Rodríguez, J.J. (2013), Diseño prospectivo de escenarios para la ciencia, tecnología e innovación al 2040. Industrial Data, 16(2), pp. 92-105.; Roodbergen, K. J., & De Koster, R. (2001b), Routing order pickers in a warehouse with a middle aisle. European Journal of Operational Research, 133(1), pp. 32-43.; Roodbergen, K. J., & De Koster, R. (2001a), Routing methods for warehouses with multiple cross aisles. International Journal of Production Research, 39(9), pp. 1865-1883.; Roodbergen, K. J., Sharp, G. P., & Vis, I. F. (2008), Designing the layout structure of manual order picking areas in warehouses. IIE Transactions, 40(11), pp. 1032-1045.; Rosa, F. S., & Silva, L. C. (2017), Environmental sustainability in hotels, theoretical and methodological contribution. Revista Brasileira de Pesquisa em Turismo, 11(1), pp. 39-60.; Rouwenhorst, B., Reuter, B., Stockrahm, V., van Houtum, G.J., Mantel, R.J., & Zijm, W.H. (2000), Warehouse design and control: Framework and literature review. European journal of operational research, 122(3), pp. 515-533.; Rybakov, A.A., & Shumilin, S.S. (2019), Outliers detection by voting method during hierarchical data clustering. Software Journal: Theory and Applications, 3, pp. 1-7.; Sajana, T., Rani, C. S., & Narayana, K. V. (2016), A survey on clustering techniques for big data mining. Indian journal of Science and Technology, 9(3), pp. 1-12.; Saleheen, F., Miraz, M. H., Habib, M. M., & Hanafi, Z. (2014), Challenges of Warehouse Operations: A Case Study in Retail Supermarket. International Journal of Supply Chain Management, 3(4), pp. 63-67.; Schwarz, L.B., Graves, S.C. & Hausman, W.H. (1978), Scheduling Policies for Automatic Warehousing Systems: Simulation Results, AIIE Transactions, 10 (3), pp. 260-270.; Shah, B., & Khanzode, V. (2015), A comprehensive review and proposed framework to design lean storage and handling systems. International Journal of Advanced Operations Management, 7(4), pp. 274-299.; Sharma, P. (2015), Discrete-event simulation. International journal of scientific & technology research, 4(4), pp. 136-140.; Sharma, S., Abouee‐Mehrizi, H., & Sartor, G. (2020), Inventory management under storage and order restrictions. Production and Operations Management, 29(1), pp. 101-117.; Shi, Y., Guo, X., & Yu, Y. (2018), Dynamic warehouse size planning with demand forecast and contract flexibility. International Journal of Production Research, 56(3), pp. 1313-1325.; Shin, E. J., & Kim, K. H. (2015), Hierarchical remarshaling operations in block stacking storage systems considering duration of stay. Computers & Industrial Engineering, 89, pp. 43-52.; Shteren, H., & Avrahami, A. (2017), The Value of Inventory Accuracy in Supply Chain Management: Case Study of the Yedioth Communication Press. Journal of theoretical and applied electronic commerce research, 12(2), pp. 71-86.; Silva, A., Coelho, L. C., Darvish, M., & Renaud, J. (2020), Integrating storage location and order picking problems in warehouse planning. Transportation Research Part E: Logistics and Transportation Review, 140, pp. 1-22.; Schweidtmann, A. M., Clayton, A. D., Holmes, N., Bradford, E., Bourne, R. A., & Lapkin, A. A. (2018), Machine learning meets continuous flow chemistry: Automated optimization towards the Pareto front of multiple objectives. Chemical Engineering Journal, 352, pp. 277-282.; Singh, S. (2017), Survey of Literature on Various Factors Affecting Inventory Management. Universal Journal of Materials Science, 5(1), pp. 1-6.; Sohail, A., & Arif, F. (2020), Supervised and unsupervised algorithms for bioinformatics and data science. Progress in Biophysics and Molecular Biology, 151, pp. 14-22.; Sohn, S.Y., Han, H.K., & Jeon, H.J. (2007), Development of an Air Force Warehouse Logistics Index to continuously improve logistics capabilities. European Journal of Operational Research, 183(1), pp. 148-161.; Sprock, T., Murrenhoff, A., & McGinnis, L.F. (2017), A hierarchical approach to warehouse design. International Journal of Production Research, 55(21), pp. 6331-6343.; Staudt, F.H., Alpan, G., Di Mascolo, M., & Rodriguez, C.M.T. (2015), Warehouse performance measurement: a literature review. International Journal of Production Research, 53(18), pp. 5524-5544.; Tan, K.S., Ahmed, M.D., & Sundaram, D. (2009), Sustainable warehouse management. In Proceedings of the International Workshop on Enterprises & Organizational Modeling and Simulation, 8, pp. 1-15.; Tarczyński, G. (2017), The impact of COI-based storage on order-picking times. LogForum, 13(3), pp. 313-326.; Theys, C., Bräysy, O., Dullaert, W., & Raa, B. (2010), Using a TSP heuristic for routing order pickers in warehouses. European Journal of Operational Research, 200(3), 755-763.; Tompkins, J.A., White, J.A., Bozer, Y.A., Tanchoco, J.M.A. (2010), Facilities planning (4th Ed.) New York: John Wiley & Sons.; Tutam, M., & White, J.A. (2019), Multi-dock unit-load warehouse designs with a cross-aisle. Transportation Research Part E: Logistics and Transportation Review, 129, pp. 247-262.; Uday S.V., Hamritha, C.G. (2021), Linear Programming in Market Management Using Artificial Intelligence. In: Vijayan S., Subramanian N., Sankaranarayanasamy K. (eds) Trends in Manufacturing and Engineering Management. Lecture Notes in Mechanical Engineering. Springer, Singapore, in press.; Van den Berg, J.P., & Zijm, W.H. (1999), Models for warehouse management: Classification and examples. International Journal of Production Economics, 59(1-3), pp. 519-528.; Van Gils, T., Caris, A., Ramaekers, K., Braekers, K., & de Koster, R. B. (2019), Designing efficient order picking systems: The effect of real-life features on the relationship among planning problems. Transportation Research Part E: Logistics and Transportation Review, 125, pp. 47-73.; Van Gils, T., Ramaekers, K., Caris, A., & Cools, M. (2017), The use of time series forecasting in zone order picking systems to predict order pickers’ workload. International Journal of Production Research, 55(21), pp. 6380-6393.; Van Gils, T., Ramaekers, K., Caris, A., & de Koster, R. B. (2018), Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review. European Journal of Operational Research, 267(1), pp. 1-15.; Venkitasubramony, R., & Adil, G. K. (2016), Analytical models for pick distances in fishbone warehouse based on exact distance contour. International Journal of Production Research, 54(14), pp. 4305-4326.; Venkitasubramony, R., & Adil, G. K. (2017), Design of an order-picking warehouse factoring vertical travel and space sharing. The International Journal of Advanced Manufacturing Technology, 91(5-8), pp. 1921-1934.; Walter, R., Boysen, N., & Scholl, A. (2013), The discrete forward–reserve problem–Allocating space, selecting products, and area sizing in forward order picking. European Journal of Operational Research, 229(3), pp. 585-594.; Wang, Y., Geng, X., Zhang, F., & Ruan, J. (2018), An immune genetic algorithm for multi-echelon inventory cost control of IOT based supply chains. IEEE Access, 6, pp. 8547-8555.; Yang, Y., & Wang, H. (2018), Multi-view clustering: A survey. Big Data Mining and Analytics, 1(2), pp. 83-107.; Yee, O.S., Sagadevan, S., & Malim, N.H.A.H. (2018), Credit card fraud detection using machine learning as data mining technique. Journal of Telecommunication, Electronic and Computer Engineering, 10(1-4), pp. 23-27.; Yener, F., & Yazgan, H.R. (2019), Optimal warehouse design: Literature review and case study application. Computers & Industrial Engineering, 129, pp. 1-13.; Yu, Y., Koster, R., & Guo, X. (2015), Class‐Based Storage with a Finite Number of Items: Using More Classes is not Always Better. Production and operations management, 24(8), pp. 1235-1247.; Yuan, X. (2017), An improved Apriori algorithm for mining association rules. In AIP conference proceedings (Vol. 1820, No. 1, p. 080005). AIP Publishing LLC.; Zaerpour, N., de Koster, R. B., & Yu, Y. (2013), Storage policies and optimal shape of a storage system. International Journal of Production Research, 51(23-24), pp. 6891-6899.; Zhang, G., Shang, X., Alawneh, F., Yang, Y., & Nishi, T. (2021), Integrated production planning and warehouse storage assignment problem: An IoT assisted case. International Journal of Production Economics, in press, 108058.; Zhang, G., Nishi, T., Turner, S. D., Oga, K., & Li, X. (2017), An integrated strategy for a production planning and warehouse layout problem: Modeling and solution approaches. Omega, 68, pp. 85-94.; Zhu, Y. (2017), Application of Information System in Warehouse Management. DEStech Transactions on Computer Science and Engineering, 2nd International Conference on Computer Engineering, Information Science and Internet Technology.; Zunic, E., Besirevic, A., Skrobo, R., Hasic, H., Hodzic, K., & Djedovic, A. (2017), Design of optimization system for warehouse order picking in real environment. In 2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT). IEEE, pp. 1-6.; https://repositorio.unal.edu.co/handle/unal/80606; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  13. 13
  14. 14

    Source: Geophysical Research Abstracts; 2017, Vol. 19, p1-6903, 6903p

  15. 15
  16. 16

    Source: Geophysical Research Abstracts; 2016, Vol. 18, p1-16028, 16028p

  17. 17

    Source: Geophysical Research Abstracts; 2015, Vol. 17, p1-14302, 14302p

  18. 18
  19. 19
  20. 20

    Source: Geophysical Research Abstracts; 2014, Vol. 16, p1-15054, 15054p