Výsledky vyhľadávania - finite element methods applied to problems in fluid ((technicke OR technice) OR technischen)
-
1
Autori: RAWIN YOUNGNOI
Zdroj: SIAM Journal on Scientific Computing; 2025, Vol. 47 Issue 3, pA1937-A1963, 27p
-
2
Autori:
Zdroj: Medical Devices: Evidence & Research; Jun2025, Vol. 18, p337-351, 15p
-
3
Additional Titles: Multiphysik-Simulationen mit Smoothed Particle Hydrodynamics und der Methode der Finiten Elemente
Autori: a ďalší
-
4
Autori: Kopecz, Stefan
Typ zdroja: eBook.
Kategórie: MATHEMATICS / Numerical Analysis
Plný text ve formátu PDF -
5
Autori:
Zdroj: Computational Mechanics. 31:179-191
Predmety: ddc:510, Finite element methods applied to problems in solid mechanics, Model reduction, Karhunen-Loève expansion, Numerical approximation of solutions of dynamical problems in solid mechanics, dual-weighted-residual-methods, 01 natural sciences, Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.), Non-linear dynamics, non-linear dynamics, error estimates, model reduction, Veröffentlichung der TU Braunschweig, Error estimates, 0101 mathematics, ScholarlyArticle, Dual-weighted-residual methods
Popis súboru: application/xml
-
6
Autori:
Zdroj: International Journal for Numerical Methods in Engineering; 6/15/2020, Vol. 121 Issue 11, p2503-2533, 31p
Predmety: INCOMPRESSIBLE flow, FINITE element method, GALERKIN methods
-
7
Autori: a ďalší
Zdroj: Diagnostics (2075-4418); Oct2024, Vol. 14 Issue 19, p2204, 17p
-
8
Additional Titles: Vertex Morphing für die restringierte Formoptimierung dreidimensionaler Strukturbauteile
Autori: a ďalší
-
9
Additional Titles: Vertex Morphing für die restringierte Formoptimierung dreidimensionaler Strukturbauteile
Autori:
Témy: info:eu-repo/classification/ddc/620, Ingenieurwissenschaften, Vertex Morphing, parameter-free, gradient-based, shape optimization, constrained, Vertex Morphing, parameterfrei, gradientenbasiert, Formoptimierung, Nebenbedingungen, thesis, doc-type:doctoralThesis
-
10
Autori:
Zdroj: Mathematical Methods in the Applied Sciences; Jul2017, Vol. 40 Issue 10, p3741-3774, 34p
-
11
Autori: a ďalší
Zdroj: Journal of Extracellular Vesicles; Feb2024, Vol. 13 Issue 2, p1-84, 84p
-
12
Zdroj: Clinical Epileptology / Zertifizierte Fortbildung; 2025 Suppl 1, Vol. 38, p1-85, 85p
-
13
Autori:
Zdroj: Geotechnical & Geological Engineering; Aug2021, Vol. 39 Issue 6, p4563-4580, 18p
Predmety: WATER pressure, TUNNELS, PORE water pressure, TUNNEL lining, CLAY, FINITE difference method
Geografický termín: EGYPT
-
14
Alternate Title: MTA matrix technique: Restoration of teeth with deep subgingival defects extending down to the osseous crest. (English)
Autori: a ďalší
Zdroj: Quintessenz Zahnmedizin; Jan2023, Vol. 74 Issue 1, p10-20, 11p
Predmety: MINERAL aggregates, TEETH, FLUIDS, TOOTH fractures
-
15
Autori: Zöschg, Hannes
Zdroj: Water (20734441); Jan2024, Vol. 16 Issue 2, p347, 29p
-
16
Additional Titles: Modeling and Simulation of the Electro-fluid-mechanically Coupled Behavior of Microsystems on the System-level
Autori:
-
17
Autori: Sieber, Galina
Popis súboru: application/pdf
Dostupnosť: https://tuprints.ulb.tu-darmstadt.de/254/1/thesis1.pdf
https://tuprints.ulb.tu-darmstadt.de/254/2/thesis2.pdf
https://tuprints.ulb.tu-darmstadt.de/254/3/thesis3.pdf
https://tuprints.ulb.tu-darmstadt.de/254/4/thesis4.pdf
https://tuprints.ulb.tu-darmstadt.de/254/5/thesis5.pdf
https://tuprints.ulb.tu-darmstadt.de/254/6/thesis6.pdf -
18
Autori:
Predmety: keyword:flow-induced vibration, keyword:2D incompressible Navier-Stokes equations, keyword:linear elasticity, keyword:inlet boundary conditions, keyword:flutter instability, msc:65N12, msc:65N30, msc:76D05
Popis súboru: application/pdf
Relation: mr:MR3936969; zbl:Zbl 07088738; reference:[1] Babuška, I.: The finite element method with penalty.Math. Comput. 27 (1973), 221-228. Zbl 0299.65057, MR 0351118, 10.2307/2005611; reference:[2] Bodnár, T., Galdi, G. P., Nečasová, Š., (eds.): Fluid-Structure Interaction and Biomedical Applications.Advances in Mathematical Fluid Mechanics, Birkhäuser/Springer, Basel (2014). Zbl 1300.76003, MR 3223031, 10.1007/978-3-0348-0822-4; reference:[3] Braack, M., Mucha, P. B.: Directional do-nothing condition for the Navier-Stokes equations.J. Comput. Math. 32 (2014), 507-521. Zbl 1324.76015, MR 3258025, 10.4208/jcm.1405-4347; reference:[4] Curnier, A.: Computational Methods in Solid Mechanics.Solid Mechanics and Its Applications 29 Kluwer Academic Publishers Group, Dordrecht (1994). Zbl 0815.73003, MR 1311022, 10.1007/978-94-011-1112-6; reference:[5] Daily, D. J., Thomson, S. L.: Acoustically-coupled flow-induced vibration of a computational vocal fold model.Comput. Struct. 116 (2013), 50-58. 10.1016/j.compstruc.2012.10.022; reference:[6] Davis, T. A.: Direct Methods for Sparse Linear Systems.Fundamentals of Algorithms 2, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2006). Zbl 1119.65021, MR 2270673, 10.1137/1.9780898718881; reference:[7] Diez, N. G., Belfroid, S., Golliard, J., (eds.): Flow-Induced Vibration & Noise. Proceedings of 11th International Conference on Flow Induced Vibration & Noise.TNO, Delft, The Hague, The Netherlands (2016).; reference:[8] Dowell, E. H.: A Modern Course in Aeroelasticity.Solid Mechanics and Its Applications 217, Springer, Cham (2004). Zbl 1297.74001, MR 3306893, 10.1007/978-3-319-09453-3; reference:[9] Feistauer, M., Hasnedlová-Prokopová, J., Horáček, J., Kosík, A., Kučera, V.: DGFEM for dynamical systems describing interaction of compressible fluid and structures.J. Comput. Appl. Math. 254 (2013), 17-30. Zbl 1290.65089, MR 3061063, 10.1016/j.cam.2013.03.028; reference:[10] Feistauer, M., Sváček, P., Horáček, J.: Numerical simulation of fluid-structure interaction problems with applications to flow in vocal folds.Fluid-Structure Interaction and Biomedical Applications T. Bodnár et al. Advances in Mathematical Fluid Mechanics, Birkhäuser/Springer, Basel (2014), 321-393. Zbl 06482614, MR 3329021, 10.1007/978-3-0348-0822-4_5; reference:[11] Formaggia, L., Parolini, N., Pischedda, M., Riccobene, C.: Geometrical multi-scale modeling of liquid packaging system: an example of scientific cross-fertilization.19th European Conference on Mathematics for Industry 6 pages (2016). 10.15304/cc.2016.968; reference:[12] Gelhard, T., Lube, G., Olshanskii, M. A., Starcke, J.-H.: Stabilized finite element schemes with LBB-stable elements for incompressible flows.J. Comput. Appl. Math. 177 (2005), 243-267. Zbl 1063.76054, MR 2125317, 10.1016/j.cam.2004.09.017; reference:[13] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms.Springer Series in Computational Mathematics 5, Springer, Cham (1986),\99999DOI99999 10.1007/978-3-642-61623-5 \goodbreak. Zbl 0585.65077, MR 0851383; reference:[14] Horáček, J., Radolf, V. V., Bula, V., Košina, J.: Experimental modelling of phonation using artificial models of human vocal folds and vocal tracts.V. Fuis Engineering Mechanics 2017 Brno University of Technology, Faculty of Mechanical Engineering (2017), 382-385.; reference:[15] Horáček, J., Šidlof, P., Švec, J. G.: Numerical simulation of self-oscillations of human vocal folds with Hertz model of impact forces.J. Fluids Struct. 20 (2005), 853-869. 10.1016/j.jfluidstructs.2005.05.003; reference:[16] Horáček, J., Švec, J. G.: Aeroelastic model of vocal-fold-shaped vibrating element for studying the phonation threshold.J. Fluids Struct. 16 (2002), 931-955. 10.1006/jfls.2002.0454; reference:[17] Horáček, J., Švec, J. G.: Instability boundaries of a vocal fold modelled as a flexibly supported rigid body vibrating in a channel conveying fluid.ASME 2002 International Mechanical Engineering Congress and Exposition American Society of Mechanical Engineers (2002), 1043-1054. 10.1115/imece2002-32199; reference:[18] Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method.Cambridge University Press, Cambridge (1987). Zbl 0628.65098, MR 0925005; reference:[19] Kaltenbacher, M., Zörner, S., Hüppe, A.: On the importance of strong fluid-solid coupling with application to human phonation.Prog. Comput. Fluid Dyn. 14 (2014), 2-13. Zbl 1400.76041, 10.1504/PCFD.2014.059195; reference:[20] Link, G., Kaltenbacher, M., Breuer, M., Döllinger, M.: A 2D finite-element scheme for fluid-solid-acoustic interactions and its application to human phonation.Comput. Methods Appl. Mech. Eng. 198 (2009), 3321-3334. Zbl 1230.74188, MR 2571347, 10.1016/j.cma.2009.06.009; reference:[21] Sadeghi, H., Kniesburges, S., Kaltenbacher, M., Schützenberger, A., Döllinger, M.: Computational models of laryngeal aerodynamics: Potentials and numerical costs.Journal of Voice (2018). 10.1016/j.jvoice.2018.01.001; reference:[22] Seo, J. H., Mittal, R.: A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries.J. Comput. Phys. 230 (2011), 1000-1019. Zbl 1391.76698, MR 2753346, 10.1016/j.jcp.2010.10.017; reference:[23] Šidlof, P., Kolář, J., Peukert, P.: Flow-induced vibration of a long flexible sheet in tangential flow.D. Šimurda, T. Bodnár Topical Problems of Fluid Mechanics 2018 Institute of Thermomechanics, The Czech Academy of Sciences, Praha (2018), 251-256. 10.14311/tpfm.2018.034; reference:[24] Slaughter, W. S.: The Linearized Theory of Elasticity.Birkhäuser, Boston (2002). Zbl 0999.74002, MR 1902598, 10.1007/978-1-4612-0093-2; reference:[25] Sváček, P., Horáček, J.: Numerical simulation of glottal flow in interaction with self oscillating vocal folds: comparison of finite element approximation with a simplified model.Commun. Comput. Phys. 12 (2012), 789-806. 10.4208/cicp.011010.280611s; reference:[26] Sváček, P., Horáček, J.: Finite element approximation of flow induced vibrations of human vocal folds model: effects of inflow boundary conditions and the length of subglottal and supraglottal channel on phonation onset.Appl. Math. Comput. 319 (2018), 178-194. MR 3717682, 10.1016/j.amc.2017.02.026; reference:[27] Takashi, N., Hughes, T. J. R.: An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body.Comput. Methods Appl. Mech. Eng. 95 (1992), 115-138. Zbl 0756.76047, 10.1016/0045-7825(92)90085-X; reference:[28] Valášek, J., Kaltenbacher, M., Sváček, P.: On the application of acoustic analogies in the numerical simulation of human phonation process.Flow, Turbul. Combust. (2018), 1-15. 10.1007/s10494-018-9900-z; reference:[29] Valášek, J., Sváček, P., Horáček, J.: Numerical solution of fluid-structure interaction represented by human vocal folds in airflow.EPJ Web of Conferences 114 (2016), Article No. 02130, 6 pages. 10.1051/epjconf/201611402130; reference:[30] Valášek, J., Sváček, P., Horáček, J.: On finite element approximation of flow induced vibration of elastic structure.Programs and Algorithms of Numerical Mathematics 18. Proceedings of the 18th Seminar (PANM), 2016 Institute of Mathematics, Czech Academy of Sciences, Praha (2017), 144-153. Zbl 06994472, MR 3791877, 10.21136/panm.2016.17; reference:[31] Venkatramani, J., Nair, V., Sujith, R. I., Gupta, S., Sarkar, S.: Multi-fractality in aeroelastic response as a precursor to flutter.J. Sound Vib. 386 (2017), 390-406. 10.1016/j.jsv.2016.10.004; reference:[32] Zorner, S.: Numerical Simulation Method for a Precise Calculation of the Human Phonation Under Realistic Conditions.Ph.D. Thesis, Technische Uuniversität Wien (2013).
Dostupnosť: http://hdl.handle.net/10338.dmlcz/147662
-
19
Alternate Title: OpenWorkFlow – Entwicklung einer Open-Source-Synthese-Plattform für Sicherheitsuntersuchungen im Standortauswahlverfahren. (German)
Autori: a ďalší
Zdroj: Grundwasser; Mar2024, Vol. 29 Issue 1, p31-47, 17p
-
20
Alternate Title: 20-year Results of a 3D Titanium Mesh Coating Stability of 31 Artificial Cups. (English)
Autori: a ďalší
Zdroj: Zeitschrift für Orthopädie und Unfallchirurgie; Jun2024, Vol. 162 Issue 3, p263-271, 9p
Nájsť tento článok vo Web of Science
Full Text Finder