Search Results - extremal problems for analytic functions of several variables

Refine Results
  1. 1
  2. 2
  3. 3

    Authors: Akopyan, R. R.

    Source: Proceedings of the Steklov Institute of Mathematics; Dec2021 Supplement 1, Vol. 315 Issue 1, pS13-S26, 14p

  4. 4
  5. 5
  6. 6
  7. 7

    Source: Chebyshevskii Sbornik; Том 15, № 3 (2014); 114-130 ; Чебышевский сборник; Том 15, № 3 (2014); 114-130 ; 2226-8383 ; 10.22405/2226-8383-2014-15-3

    File Description: application/pdf

    Relation: https://www.chebsbornik.ru/jour/article/view/55/51; H. R. Cho, E. G. Kwon, Growth rate of the functions in the Bergman type spaces // J. Math. Anal Appl, 285, 2003, no1. P. 275–281.; Cho H. R., Kwon E. G. Embedding of Hardy spaces in bounded domains with C2 boundary // Illinois J.Math, 48, 2004, no 3, P. 747–757.; H. R. Cho, J. Lee, Inequalities for integral means for holomorphic functions in the strictly pseudoconvex domains // Communication of Korean Mathematical. Society, 20, 2005, 2, 339–350.; H. R. Cho, Estimate on the mean growth of Hp functions in convex domains of finite type // Proc. Amer. Math. Society, 131, 8, 2393–2398.; W. Cohn, Weighted Bergman projections and tangential area integrals // Studia Mathematica 1993. 106.1 P. 59–76.; S. Krantz, S. Y. Li ,Duality theorems for Hardy and Bergman spaces on convex domains of finite type in Cn // Annales de I"nstitute Fourier 1995. Vol. 45, №5. P. 1305–1327.; L. Lanzani, E. Stein, The Bergman projection in Lp for domains with minimal smoothness, preprint, arxiv, 2011.; W. Cohn, Tangential characterizations of BMOA on strictly pseudoconvex domains, Mathematica Scandinavica 1993. 73.2 P. 259–273.; M. Arsenovic; R. Shamoyan On an extremal problem in Bergman spaces // Communication of Korean Mathematical Society, 2012.; J. Ortega, J. Fabrega, Mixed norm spaces and interpolation // Studia Math., 1995. Vol. 109, (3), P. 234–254.; S.-Y.Li, W. Luo, Analysis on Besov spaces II Embedding and Duality theorems, 2007, preprint; S. Krantz, S. Li ,A note on Hardy space and functions of Bounded Mean Oscillation on Domains of Cn // Michigan Math. Journal, 41, 1994; S. Krants and S. Li, On decomposition theorems for Hardy spaces on domains in Cn and applications // The Journal Functional analysis and applications 1995. Vol. 2 N. 1; F. Beatrous, Jr. Lp estimates for extensions of holomorphic functions // Michigan Math. Jour. 1985 Vol. 32, P. 361–380.; R. Shamoyan, O. Mihi´c, On new estimates for distances in analytic function spaces in higher dimension // Siberian Electronic Mathematical Reports 2009. №6. P. 514–517.; R. Shamoyan, O. Mihi´c, On new estimates for distances in analytic function spaces in the unit disk, polydisk and unit ball // Bolletin Asociacion Mathematica Venezolana, 2010. Vol. 17, (2), 89–103.; R. Shamoyan, On extremal problems in Bergman spaces in tubular domains over symmetric cones, 2012, preprint; R. Shamoyan, On extremal problems in analytic spaces in two Siegel domains // ROMAI Journal, 2012. Vol. 2, 167–180.; S. Yamaji, Essential norm estimates for positive Toeplitz operators on the weighted Bergman space of a minimal bounded homogeneous domain, preprint, arxiv, 2011.; S. Yamaji, Some estimates of Bergman kernel in minimal bounded homogeneous domains, arxiv, 2012, preprint.; P. Jakobczak, The boundary regularity of the solution of the df equation in the products of strictly pseudoconevx domains // Pacific Journal of Mathematics 1986. Vol. 121, 2; T. Jimb, A. Sakai, Interpolation manifolds for products of strictly pseudoconvex domains, Complex Variables 1987. Vol. 8. P. 222–341.; https://www.chebsbornik.ru/jour/article/view/55

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16

    Authors: Zając, Sylwester1 (AUTHOR) sylwester.a.zajac@gmail.com

    Source: Complex Variables & Elliptic Equations. Jan2024, Vol. 69 Issue 1, p35-46. 12p.

  17. 17
  18. 18
  19. 19
  20. 20

    Authors: Aslanyan, L.

    Source: Pattern Recognition & Image Analysis; Dec2023, Vol. 33 Issue 4, p902-936, 35p