Suchergebnisse - encoder–decoder framework
-
1
Autoren: et al.
Quelle: Information Sciences. 661
Schlagwörter: Partial multi-label learning, Label correlation, Label disambiguation, Encoder-Decoder framework, Conditional layer normalization
Dateibeschreibung: electronic
-
2
Autoren: et al.
Quelle: Journal of Big Data, Vol 12, Iss 1, Pp 1-21 (2025)
Schlagwörter: Encoder-decoder framework, Attention mechanism, Time embeddings, Latent states, Irregularly-sampled multivariate time series, Interpolation, Computer engineering. Computer hardware, TK7885-7895, Information technology, T58.5-58.64, Electronic computers. Computer science, QA75.5-76.95
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2196-1115
-
3
Quelle: International Journal of Applied Mathematics. 38:743-769
-
4
Autoren: et al.
Quelle: IEEE Transactions on Mobile Computing. 24:7866-7879
-
5
Autoren: et al.
Quelle: IEEE Transactions on Intelligent Transportation Systems. 26:10850-10864
-
6
Autoren: et al.
Quelle: IEEE Transactions on Cybernetics. 55:2705-2718
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/40215142
-
7
Autoren:
Quelle: Computer-Aided Civil and Infrastructure Engineering. 40:2190-2208
-
8
Autoren: et al.
Quelle: Water Resources Management. 39:4509-4538
-
9
Autoren: et al.
Quelle: IEEE Transactions on Computational Biology and Bioinformatics. :1-14
-
10
Autoren:
Quelle: Computers, Materials & Continua. 84:1567-1580
-
11
Autoren:
Quelle: Advanced Photonics Research, Vol 6, Iss 11, Pp n/a-n/a (2025)
Schlagwörter: deep learning, encoder–decoder architecture, nonlinear pulse evolution, optical fibers, supercontinuum generation, transformer neural networks, Applied optics. Photonics, TA1501-1820, Optics. Light, QC350-467
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2699-9293
-
12
Autoren: et al.
Quelle: Smart Agricultural Technology, Vol 12, Iss , Pp 101472- (2025)
Schlagwörter: Crop and weed semantic segmentation, Soybean, Encoder-decoder architecture, RepViT, Precision agriculture, Agriculture (General), S1-972, Agricultural industries, HD9000-9495
Dateibeschreibung: electronic resource
-
13
-
14
Autoren: et al.
Quelle: Radiotherapy and Oncology. 206:S2708-S2710
-
15
Autoren: et al.
Quelle: IET Image Processing, Vol 18, Iss 14, Pp 4778-4798 (2024)
Schlagwörter: Pre‐trained VGG‐19 Model, QA76.75-76.765, 0209 industrial biotechnology, Deep Learning, Image Feature Extractor, Photography, 0202 electrical engineering, electronic engineering, information engineering, Image Captioning, Computer software, 02 engineering and technology, LSTM Decoder, TR1-1050, CNN Encoder
-
16
Autoren: et al.
Quelle: 2024 2nd International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES). :1-5
-
17
Autoren: et al.
Quelle: Proceedings of the 6th ACM International Conference on Multimedia in Asia Workshops. :1-7
-
18
A novel hybrid layer-based encoder–decoder framework for 3D segmentation in congenital heart disease
Autoren: et al.
Quelle: Sci Rep
Scientific Reports, Vol 15, Iss 1, Pp 1-10 (2025)Schlagwörter: Heart Defects, Congenital, Science, Deep learning, Heart, Hybrid architectures, Article, Imaging, Three-Dimensional, Deep Learning, 3D CT image, Image Processing, Computer-Assisted, Medicine, Humans, Algorithms, Congenital heart disease, Cardiac segmentation
-
19
Autoren:
Quelle: Deep Learning Architectures for Natural Language Understanding and Computer Vision Applications in Cybersecurity ISBN: 9789349552319
-
20
Autoren: et al.
Quelle: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers). :2454-2472
Schlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Computation and Language, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, Computation and Language (cs.CL), Machine Learning (cs.LG)
Full Text Finder
Nájsť tento článok vo Web of Science