Výsledky vyhľadávania - dynamical system autoencoder~
-
1
Autori:
Zdroj: Symmetry and Geometry in Neural Representations workshop, NeurIPS 2025, San Diego, United States - California [US-CA], Tuesday Dec 2nd through Sunday Dec 7th
Predmety: Nonlinear dimensionality reduction, Neuromodulation, Context-dependent learning, Constrained autoencoder, Engineering, computing & technology, Ingénierie, informatique & technologie
Prístupová URL adresa: https://orbi.uliege.be/handle/2268/336469
-
2
Autori: a ďalší
Zdroj: Sensors. 25(16)
Predmety: Autoencoders, Control Of Dynamical Systems, Cyber-physical Systems, Deep Reinforcement Learning, Long Short-term Memory, Sensor-driven Modeling, Circular Cylinders, Computer Control Systems, Convolution, Dynamical Systems, Dynamics, Embedded Systems, Flow Control, Fuel Additives, Nonlinear Dynamical Systems, Real Time Control, Robust Control, Auto Encoders, Control Of Dynamical System, Cybe-physical Systems, High-dimensional, Higher-dimensional, Reinforcement Learning Agent, Reinforcement Learnings, Short Term Memory
Popis súboru: print
Prístupová URL adresa: https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-73172
https://doi.org/10.3390/s25165149 -
3
Autori: a ďalší
Zdroj: Energy and AI, Vol 21, Iss , Pp 100567- (2025)
Predmety: Neural ODE, Autoencoders, Information bottleneck theory, Dynamical systems, Disentanglement, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Computer software, QA76.75-76.765
Popis súboru: electronic resource
Relation: http://www.sciencedirect.com/science/article/pii/S2666546825000990; https://doaj.org/toc/2666-5468
Prístupová URL adresa: https://doaj.org/article/0078f652db91496fbf58605196636ba7
-
4
Autori: a ďalší
Zdroj: 2024 International Conference on Machine Learning and Applications (ICMLA). :1496-1503
-
5
Autori: a ďalší
-
6
Autori: a ďalší
Zdroj: APL Machine Learning, Vol 3, Iss 1, Pp 016112-016112-15 (2025)
Predmety: FOS: Computer and information sciences, Computer Science - Machine Learning, Physics, QC1-999, Electronic computers. Computer science, Fluid Dynamics (physics.flu-dyn), FOS: Physical sciences, QA75.5-76.95, Physics - Fluid Dynamics, Machine Learning (cs.LG)
Prístupová URL adresa: http://arxiv.org/abs/2501.03070
https://doaj.org/article/236f8e1f2be64001a1d9c1d7b38ae1f2 -
7
Autori: a ďalší
Zdroj: Journal of Machine Learning for Modeling and Computing. 5:87-112
Predmety: FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, FOS: Mathematics, Machine Learning (stat.ML), Mathematics - Numerical Analysis, Numerical Analysis (math.NA), 60H10, 60H35, 62M45, 65C30, Machine Learning (cs.LG)
Prístupová URL adresa: http://arxiv.org/abs/2312.10001
-
8
Autori:
Zdroj: Seventh International Conference on Image, Video Processing, and Artificial Intelligence (IVPAI 2025). :24
-
9
Autori:
Prispievatelia:
Predmety: [MATH] Mathematics [math]
Prístupová URL adresa: https://hal.science/hal-04398549v1
-
10
Autori:
Prispievatelia:
Predmety: [MATH] Mathematics [math]
Prístupová URL adresa: https://hal.science/hal-04398536v1
-
11
Echo state network and variational autoencoder for efficient one-class learning on dynamical systems
Autori: a ďalší
Zdroj: Journal of Intelligent & Fuzzy Systems. 34:3799-3809
Predmety: 0202 electrical engineering, electronic engineering, information engineering, Deep learning, 02 engineering and technology, 0101 mathematics, Dynamical system modeling, Variational inference, 01 natural sciences, Reservoir computing
Popis súboru: application/pdf
-
12
-
13
-
14
Autori: a ďalší
Zdroj: Physica D. Dec2025, Vol. 483, pN.PAG-N.PAG. 1p.
-
15
Autori:
Zdroj: Analysis & Applications. Aug2024, Vol. 22 Issue 6, p965-980. 16p.
Predmety: *TOPOLOGICAL property, *DYNAMICAL systems
-
16
-
17
Autori: a ďalší
-
18
Autori: a ďalší
Predmety: Machine Learning, FOS: Computer and information sciences, FOS: Biological sciences, Quantitative Methods, Quantitative Methods (q-bio.QM), Machine Learning (cs.LG)
Prístupová URL adresa: http://arxiv.org/abs/2510.01089
-
19
Autori:
Zdroj: AIMS Mathematics, Vol 9, Iss 1, Pp 998-1022 (2024)
Predmety: FOS: Computer and information sciences, reduced order modelling, deep learning, data driven science, Computer Science - Neural and Evolutionary Computing, Dynamical Systems (math.DS), 37B05, autoencoders, koopman analysis, QA1-939, FOS: Mathematics, Neural and Evolutionary Computing (cs.NE), Mathematics - Dynamical Systems, Mathematics
Prístupová URL adresa: http://arxiv.org/abs/2306.05224
https://doaj.org/article/bebaebe20ace4bf6877d9adf089505c4 -
20
Autori:
Zdroj: International Journal of Numerical Methods for Heat & Fluid Flow. 2024, Vol. 34 Issue 8, p3253-3277. 25p.
Predmety: *FLOW velocity, *LINEAR dynamical systems, *FLUID control, *LINEAR control systems, *FLUID flow
Full Text Finder
Nájsť tento článok vo Web of Science