Search Results - domain decomposition for initial value and initial-boundary value problems involving pre*

Refine Results
  1. 1

    Source: Journal of Computational Physics; 227; 16; Other Information: DOI: 10.1016/j.jcp.2008.04.033; PII: S0021-9991(08)00243-X; Copyright (c) 2008 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA)

    File Description: Medium: X; Size: page(s) 7469-7502

  2. 2
  3. 3

    Contributors: Schwendeman, D

    Source: Journal of Computational Physics, vol. 227, no. 16, August 1, 2008, pp. 7469-7502; 227; 16

    File Description: Medium: ED; Size: PDF-file: 35 pages; size: 19.8 Mbytes

  4. 4

    Source: Advances in experimental medicine and biology [Adv Exp Med Biol] 2022; Vol. 1364, pp. 119-143.

    Publication Type: Journal Article

    Journal Info: Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 0121103 Publication Model: Print Cited Medium: Print ISSN: 0065-2598 (Print) Linking ISSN: 00652598 NLM ISO Abbreviation: Adv Exp Med Biol Subsets: MEDLINE

  5. 5

    Contributors: 許惠貞 Hsu, Chei-Chen 楊照彥 et al.

    File Description: 3551858 bytes; application/pdf

    Relation: Bibliography [1] Abarbanel, S. and Gottlib, D., “A Mathematical Analysis of the PML Method,” J. Comput. Phys., 134, pp. 357-363, 1997. [2] Abarbanel, S. and Gottlib, D., “On The Construction and Analysis of Absorbing Layers in CEM,” Appl. Numer. Math., Vol. 27, pp. 331-340, 1998. [3] Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley and Sons, 1989. [4] Britt, C. L., “Solution of Electromagnetics Scattering Problems Using Time Domain Techniques,” IEEE Trans. Antennas and Propagat., Vol. 37, No. 9, pp. 1181- 1192, Sep., 1989. [5] Burali, D. A., Morris G. M., and Rogers, J. R., “Optical Performance of Holographic Kinoforms,” Appl. Opt., Vol. 28, No. 5, pp. 976-983, March, 1989. [6] Bowman,J. J., Senior, T. B. A., and Uslenghi, P. L. E., Electromagnetic and Acoustic Scattering by Simple Shapes, Hemisphere Publishing Corporation, 1987. [7] Bladel, J. V., Electromagnetic Fields, McGRAW-HILL ,1968. [8] Berenger, J. P., “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys., Vol. 114, pp. 185-200,1994. [9] Barber,P. W. and Yeh, C., “Scattering of Electromagnetic Waves by Arbitrarily Shaped Dielectric Bodies,”, Appl. Opt., Vol. 39 , No. 4 , pp. 429-433 , 1991. [10] Canuto, C., Hussiani, M. Y., Quarteroni, A. and Zang, T. A., Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics (Springer-Verlag, New York, 1988). [11] Cindrich, I. and Lee, S. H., Diffractive and Holographic Optics Technology, SPIEThe International Society for Optical Engineering, 1994. [12] Carpenter, M. H. and Kennedy, C. A., “Fourth Order 2N-storage Runge-Kutta Scheme,” Technical Report, NASA-TM-109112, 1994. [13] Ditkowski, A., Dridi, K. and Hesthaven, J.S., “Convergent Cartesian Grid Methods for Maxwell’s Equation in Complex Geometries,” J. Comput. Phys., Vol. 170, pp. 39-80, 2001. [14] Dridi, K. H. and Bjarklev, A., “Optical Electromagnetic Vector-Field Modeling for the Accurate Analysis of Finite Diffractive Structures of High Complexity,” Applied Optics , Vol. 38, No.9, pp. 1668-1676, March, 1999. [15] Dridi, K. H., Hesthaven, J. S. and Ditkowski, A., “Finite-Difference Time Domain Formulation for General Materials in Complex Geometries,” IEEE Trans. Antennas and Propagat., Vol. 49, No. 5, pp. 749-756, Sep., 2001. [16] Dinesen, P. G., Hesthaven, J. S. and Lynov, J. P., “A Pseudospectral Collocation Time-Domain Method for Diffractive Optics,” Appl. Numer. Math., Vol. 33, pp. 199-206, 2000. [17] Dinesen, P. G., Hesthaven, J. S. and Lynov, J. P. and Lading, L., “Pseudospectral Method for the Analysis of Diffractive Optical Elements,” J. OPt. Soc. Am. A, Vol. 16, No. 5, pp. 1124-1130, May, 1999. [18] Dinesen, P. G. and Hesthaven, J. S., “Fast And Accurate Modeling of Waveguide Grating Couplers,” J. OPt. Soc. Am. A, Vol. 17, No. 9, pp. 1565-1573, Sep., 2000. [19] Dinesen, P. G., Hesthaven, J. S. and Lynov, J. P., “Pseudospectral Method for the Analysis of Diffractive Optical Elements,” Appl. Numer. Math., Vol. 33, pp. 199-206, 2000. [20] Funaro, D. and Gottlieb, D., “A New Method of Imposing Boundary Conditions in Pseudospectral Approximations of Hyperbolic Equations,” Mathematics of Computation, Vol. 51, No. 184, pp. 599-613, Oct., 1988. [21] Feng, D., Yan, Y., Jin, G. and Fan, S., “Beam Focusing Characteristics of Diffractive Lenses with Binary Subwavelength Structure,” Opt. Commun., Vol. 239, pp. 345-352, 2004. [22] Feng, D., Yan, Y., Jin G. and Fan, S., “Designing Diffractive Optical Elements for Special Functions Using Rigorous Method,” J. Opt. A: Pure Appl. Opt., Vol. 6, pp. 429-432, 2004. [23] Farn, M. W., “Binary Gratings with Increased Efficiency,” Appl. Opt., Vol.31, No. 22, pp. 4453-4458, Aug., 1992. [24] Gustaffson, B., Keriss, H.O. and Oliger, J., Time Dependent Problems and Difference Methods, John Wiley and Sons, INC., 1995. [25] Gottlieb D. and Orszag, S. A., Numerical Analysis of Spectral Methods: Theory and Applications CBMS-NSF,Vol.26, Soc. Indus. Appl. Math. Philadephia, 1997. [26] Glytsis, E. N., Harrigan, M. E., Gaylord, T. K. and Hirayama, K., “Effects of Fabrication Errors On The Performance of Cylindrical Diffractive Lenses: Rigorous Boundary Element Method And Scalar Approximation,” Appl. Opt., Vol. 37, No. 28, pp. 6591-6602, Oct., 1998. [27] Goodman, J. W., Introduction to Fourier Optics, The McGRAW-HILL Companies, INC., 1996. [28] Gaylord, T. K. and Moharam, M. G., “Analysis and Applications of Optical Diffraction by Gratings,” Pro. IEEE, 73, pp. 894-937, 1985. [29] Gedney, S. D., “The Use of the FFT for the Efficient Solution of the Problem of Electromagnetic Scattering by a Body of Revolution,” IEEE Trans. Antennas and Propagat., Vol. 38, No. 3, Jan. 1990. [31] Gordon, W. J. and Hall, C. A., “Transfinite Element Methods: Blending-Function Interpolation over Arbitrary Curved Element Domains,” Numer. Math., 21, pp. 109-129, 1973. [31] Gordon, W. J. and Hall, C. A., “Construction of Curvilinear Co-ordinate Systems and Application to Mesh Generation,” Meth. Engrg., 7, pp. 461-477, 1973. [32] Gao, X., Mirotznik, M. S., Shi, S. S. and Prather, D. W., “Applying a Mapped Pseudospectral Time-domain Method in Simulating Diffractive Optical Elements,” J. Opt. Soc. Am. A, Vol. 21, No. 5, pp. 777-785 , May, 2004. [33] Huang, C. C., Huang, C. C. and Yang, J. Y., “An Efficient Method for Computing Optical Waveguides with Discontinuous Refractive Index Profiles Using Spectral Collocation Method with Domain Decomposition,” J. Lightwave Technol., Vol. 21, No. 10, Oct., 2003. [34] Haus, H. A., Wave and Fields in Optoelectronics, Prentice-Hall, Inc., 1984. [35] Hesthaven, J. S. and Gottlieb, D., “A Stable Penalty Method for the Compressible Navier-Stokes Equations. I. Open Boundary Conditions,” SIAM J. Sci. Comput., Vol. 17, pp. 579-612,1996. [36] Hesthaven, J. S. and Gottlieb, D., “A Stable Penalty Method for the Compressible Navier-Stokes Equations. II. One Dimensional Domain Decomposition Schemes,” SIAM J. Sci. Comput., Vol. 18, pp. 658-685,1997. [37] Hesthaven, J. S. and Gottlieb, D., “A Stable Penalty Method for the Compressible Navier-Stokes Equations. III. Multidimensional Domain Decomposition Schemes,” SIAM J. Sci. Comput., Vol. 20, pp. 62-93,1998. [38] Hesthaven, J. S., Dinesen, P. G. and Lynov,J. P., “SpectralCollocation Time- Domain Modeling of Diffractive Optical Elements,” J. Comput. Phys, 155, pp. 287-306, 1999. [39] Hesthaven, J. S.,“Spectral Penalty Method”, Applied Numerical Mathematics, 33, pp. 23-14, 2000. [40] Hunsperger, R. G., Integrated Optics : Theory and Technology, Springer-Verlag, Edition, 1992. [41] Ishimaru, A., Electromagnetic Wave Propagation, Radiation and Scattering, Prentice-Hall, Inc., 1991. [42] Jaren, J. M. and Banerjee, P. P., Computational Methods for Electromagnetic and Optical System, Marcel Dekker, Inc., 2000. [43] Kennedy, C. A., Carpenter, M. H. and Lewis, R. M., “Low-Storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stoke Equations,” Appl. Numer. Math., Vol. 27, pp. 331-340, 1998. [44] Luebbers, R. J., Kunz, K. S., Schneider, M., and Hunsberger, F., “A Finite- Difference Time-domain Near Zone to Far Zone Transformation,” IEEE Trans. Antennas and Propagat., Vol. 37, No. 9, pp. 1181-1192, Sep., 1989. [45] Liu, Y., Lu, Z., Ren, Z., Li, F. and Cao, Z., “Perfectly Matched Layer Absorbing Boundary Conditions in Rigorous Vector Analysis of Axially Symmetric Diffractive Optical Elements,” Opt. Commun., Vol. 223, pp. 9-45, 2003. [46] Medgyesi-Mitschang, L. N., “Hybrid Solution for Scattering from Perfectly Conducting Bodies of Revolution,” IEEE Trans. Antennas and Propagat., Vol. AP-31, No. 4, pp. 570-583, July, 1983. [47] Moharam, M. G., Gaylord, T. K., Sincerbox, G. T., Werlin, H. and Yung, B., “Diffraction Characteristics of Photoresist Surface-Relief Gratings,” Appl. Opt., Vol. 23, No. 18, Sep., 1984. [48] Moharam, M. G., Gaylord, T. K., Sincerbox, G. T., Werlin, H. and Yung, B., “Diffraction Characteristics of Photoresist Surface-Relief Gratings,” Appl. Opt., Vol. 23, No. 18, Sep., 1984. [49] Mait, J. N., Prather, D. W., and Mirotznik, M. S., “Binary Subwavelength Diffractive-Lens Design,” Opt. Lett., Vol. 23, No. 17, pp. 1343-1345, Sep., 1998. [50] Miller, S. E., “Integrated Optics: An Introduction”. Bell. Syst. Tech. J., Vol. 48, pp. 2059-2069, 1969. [51] Okamoto, K., Foundamentals of Optical Waveguides, Academic Press, 2000. [52] Peterson, A. F. and Castillo, S. P., “A Frequency-Domain Differential Equation Formulation for Electromagnetic Scattering from Inhomogeneous Cylinders,” IEEE Trans. Antennas and Propagat., Vol. 37, No. 5, pp. 601-607, Jan. 1989. [53] Pommet, D. A., Moharam, M. G. and Grann, E. B., “Limits of Scalar Diffraction Theory for Diffractive Phase Elements,” J. Opt. Soc. Am. A, Vol. 11, No. 6, pp. 1827-1834, June, 1994. [54] Prather, D. W., Mirotznik, M. S. and Mait, J. N., “Boundary Integral Methods Applied to the Analysis of Diffractive Optical Elements,” J. Opt. Soc. Am. A, Vol. 14, No. 1, pp. 34-43, Jan. 1997. [55] Prather, D. W., Mait, J. N. and Collins, J. P., “Vector-based Synthesis of Finite Aperiodic Subwavelength Diffractive Optical Elements,” J. Opt. Soc. Am. A, Vol. 15, No. 6, pp. 1599-1607, June, 1998. [56] Prather, D. W., “Design and Application of Subwavelength Diffractive Lenses for Integration with Infrared Photodetectors,” Opt. Eng., 38 (5), pp. 870-878, May, 1999. [57] Prather, D. W., Shi, S. Y. and Sonstroen, J., “Electromagnetic Analysis of Finite- Thickness Diffractive Elements,” Opt. Eng., Vol. 41, pp. 1792-1796, 2002. [58] Peng, S. T., Tamir, T. and Bertoni, H. L., “Theory of Periodic dielectric Waveguides,” IEEE Trans. Microwave Theory Tech., Vol.MTT-23, No. 1, Jan., 1975. [59] Rao, S. M., Time Domain Electromagnetics, Academic Press, 1999. [60] Ren, Z., Li, F. and Cao, Z., “Perfectly Matched Layer Absorbing Boundadry Conditions in rigorous Vector Analysis of Axially Symmetric Diffractive Optical Elements,” Opt. Commun., 223, pp. 39-45, 2003. [61] Schmitz, M., Brauer, R. and Bryngdahl, O., “Phase Grating with Subwavelength Structures,” J. OPt. Soc. Am. A, Vol. 12, No. 11, pp. 2458-2462, Nov., 1995. [62] Taflove, A., Computational Electrodynamics- The Finite-Difference Time-Domain Method, Aztech House, Boston, 1995. [63] Taflove, A., “Why Study Electromagnetics: the First Unit in an Undergraduate Electromagnetics Course,” IEEE Trans. Antennas and Propagat., Vol. 44, No. 2, pp. 132-138, April, 2002. [64] Taflove, A. and Brodwin, M. E., “Numerical Solution of Steady-State Electromagnetic Scattering Problems Using The Time-dependent Maxwell’s equation,” IEEE Trans. Microwave Theory Tech., Vol. 23, No. 8, pp. 623-630, Aug., 1975. [65] Teng, C. T. and Chang, H. C., “Pseudospectral Method for Maxwell’s Equations Characteristic Variable Representations for Physical Boundary Counditions for Electromagnetic Waves,” manuscript in preparation, 2003. [66] Tamir, T., Guides-Wave Optoelectronics, springer-Verlag, 1998. [67] Tsoy, V., Belyaev, V., Misnik, V., Litovchenko, D. and Tarasishin, A., “Simulation of Light Propagation Through Birefringent Substrates with Periodical Surface Microrelief,” Opt. Commun., 246, pp. 57-66, 2005. [68] Umashankar, K. and Taflove, A., Computational Electromagnetics, Artech House, 1993. [69] Ura, S., Furukawa, Y., Suhara, T., and Nishihara, H., “Linearly Focusing Grating Coupler for Integrated-Optic Parallel Pickup,” J. Opt. Soc. Am. A, Vol. 7, No. 9, pp. 1759-1769, Sep., 1990. [70] Ura, S., Suhara, T., and Nishihara, H., “Aberration Characterizactions of a Focusing Greating Coupling in an Integrated-Optic Disk Pickup Device,” Appl. Opt., Vol. 26, No. 22, pp. 4777-4782, Nov., 1987. [71] Valencia, C. I., Mendez, E. R. and Mendoza, B. S., “Second-Harmonic Generation in the Scattering of Light by an Infinite Cylinder,” J. Opt. Soc. Am. B, Vol. 21, No. 1, pp. 36-44, 2004. [72] Wang, Z. J., Przekwas, A. J., and Liu, Y., “A FV-TD Electromagnetic Solver Using Adaptive Cartesian Grids,” Comput. Phys. Commun., 148, pp. 17-29, 2002. [73] Yang, B. and Hesthaven, J. S., “A Pseudospectral Method for Time-Domain Computation of Electromagnetic Scattering by Bodies of Revolution,” IEEE Trans. Antennas and Propagat., Vol. 47, No. 1, pp. 132-141, Jan. 1999. [74] Yang, B., Gottlieb, D. and Hesthaven, J. S., “Spectral Simulations of Electromagnetics Wave Scattering,” J. Comput. Phys., 134, pp. 216-230, 1997. [75] Yee, K. S., “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antennas and Propagat., Vol. 3, pp. 302-307, 1966. [76] Zhou, Z. and Drabik, J., “Optimized Binary, Phase Only, Diffractive Optical Element with Subwavelength Features for 1.55 µm,” J. Opt. Soc. Am. A, Vol. 12, No. 5, pp. 1104-1112, May, 1995. [77] Diffractive Optics: Design, Fabrication and Application, Technical Digest Series. Vol. 9, 1992.

  6. 6
  7. 7

    Contributors: 張峻嘉 Chang, Chin-Chia 楊照彥 et al.

    Relation: [1]K. L. Kelly, A. A. Lazarides and G. C. Schatz, “Computational electromagnetics of metal nanoparti¬cles and their aggre¬gates,” IEEE Comp. Scie. Engi. 67 (2001). [2]J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger and G. C. Schatz, “What Controls the Optical Properties of DNA-Linked Gold Nanoparticle Assembiles?” J. Am. Chen. Soc. 120, 1959 (1998). [3]S. J. Park, T. A. Taton, C. A. Mirkin, “Array-Based Electrical Detection of DNA with Nanoparticles Probes,” Science 295, 1503 (2002). [4]J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen and R. P. van Duyne, “Nanosphere Lithography: Size- Tunable Silver Nanoparticle and Surface Cluster Arrays,” J. Phys, Chem. B. 103, 3854 (1999). [5]J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin and R. L. Letsinger, “One-pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes,” J. Am. Chem. Soc. 120, 1959 (1998) [6]J. P. Kottmann, O. J. F. Martin, D. R. Smith and S. Schultz, “Spectral Response of Plasmon Resonant Nanoparticles with a non-regular shape,” Opti. Expr. 6, 213 (2000) [7]E. Moreno, D. Eni, C. Hafner and R. Vahldieck, “Multiple Multipole Method with Automatic Multipole Setting Applied to the Simulation of Surface Plasmons in Metal Nanostruc¬tures,” J. Opt. Soc. Am. A. 19, 101 (2002). [8]H. Xu, J. Aizpurua, M. Kall and P. Apell, “Electromagnetic Contributions to Single-Molecule Sensitivity in Surface-En- hanced Raman Scattering,” Phys. Rev. E. 62, 1 (2000). [9]K. Kneipp, H. Kneipp, R. Manoharan, I. Itzkan, R. R. Dasari and M. S. Feld,“Surface-Enhanced Raman Scattering (SERS)-A New Tool for Songle Molecule Detection and Identification,” Bioimaging 6, 104 (2004). [10]L. Aigouy, M. Mortier, G. Jirak, E. Bourhis, Y. De. Wilde, P. Corstjens, and J. H. Tanke, “Field distribution on me¬tallic and dielectric nanoparticles observed with a fluo¬rescent near-field optical probe,” J. Appl. Phys. 97, 104322 (2005). [11]J. A. Stratton, Electromagnetic Theory, McGraw Hill, New York (1941). [12]C. F. Bohern and D. R. Huffman, Absorption and Scattering of Light by small Particles, Wiley, New York (1983). [13]P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phy. Rev.B.6,4370 (1972). [14]U. Kreibig and M. Vollmer, “Optical Properties of Metal Cluster,” Sprin. Mater. Sci. 25, Springer Verlag, Berlin (1995). [15]M. Abramowitz and I. A. Stegun, Handbook of mathematical Functions: With Formulas, Graphs, and Mathematical Table- s, Dover, New York (1965). [16]I. N. Vekua, “New Methods for Solving Elliptic Equations,” North-Holland Chichester (1993). [17]C. Hafner, “Beitrage zur Berechnung der Ausberitung electromagneitscher Wellen in Zylindrischen Struckturen mit Hilife des point-matching Ver fahrens,” Ph.D. disserta¬tion Swiss Polytechnical Institude of Technology, Zurich, Switerland (1980). [18]C. Hafner and N. Kuster, “Computation of Electromagnetic Fields by Multiple Multipole Method(Generalized Multipole Technique),” Radio. Sci. 26. 658-661 (1990). [19]F. M. Kahnert, “Numerical Methods in Electromagnetic Scattering Theory,” J. Quan. Spac & Radi. Tran. 79-80, 775 (2003). [20]施于駿, “二維金屬奈米粒子於電磁場中之電漿子現象,”國立台 灣大學應用力學研究所碩士論文 (2004). [21]陳卓昌, “二維金屬奈米粒子的表面電漿子現象研究,”國立台灣大學應用力學研究所碩士論文 (2005). [22]H. William, A. T. Saul, T. V. William and F. P. Brian, Nu¬merical Recipes in C++: the Art of Scientific Computing, Cambridge University Press, New York(2002). [23]P. F. Goldsmith, Quasioptical systems: Gaussian beam quasioptical propagation and applications, IEEE Press, Piscataway, NJ (1998). [24]K. Shogo, “Scattering of a Gaussian beam by a homogeneous dielectric cylinder,”J. Appl. Phys. 53(11), November 7195-7200 (1982). [25]T. Kojima, Y.Yanagiuchi, “Scattering of an offset two-dimensional Gau- ssian beam wave by a cylinder ,” J. Appl. Phys. 50(1),January, 41-46 (1979). [26]M. R. Spiegal, Mathematical Handbook (McGraw-Hill, New York,),”p.98 (1968). [27]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic me¬dia,” IEEE Trans. Antennas and Propagation, 14, 302 (1966). [28]A. Taflove, Computational Electrodynamics: The Fi¬nite-Difference Time Domain, Boston: Artech House (1995). [29]D. F. P. Pile, “Compact-2D FDTD for waveguides including ma¬terials with negative dielectric permittivity, magnetic permeability and refractive index” Appl. Phys. B B 81, 607-613 (2005). [30]A. Asi, L. Shafai, “Dispersion analysis of Anisotropic inhomogeneous waveguides using compact 2D-FDTD,” Electron. Lett. 28, 1451 (1992). [31]M. Qui, “Analysis of guided Modes in Photonic crystal fibers using the Finite-Difference Time-Domain Method,” Micro¬wave and Opt. Tech. 30, 327 (2001). [32]C. A. Pfeiffer, E. N. Economou, K. L. Ngai. “Numerical stability and numerical dispersion of a compact 2D-/FDTD method used for the dispersion analysis of waveguides,” Phys. Rev. B. 10, 3038 (1974). [33]D. M. Sullivan, “A simplified PML for use with the FDTD method,” IEEE Microwave and Guided Wave Letters, 6, 97 (1996). [34]D. M. Sullivan, Electromagnetic simulation using the FDTD method, IEEE Press, New York (2000). [35]R. Harrington, Time-Harmonic Electromagnetic Fields, New york: McGraw-Hill (1961). [36]K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC Press, Boca Raton (1993). [37] 高本慶, 時域有限差分法,國防工業出版社,1995.

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20