Suchergebnisse - denoising autoencoder optical images
-
1
Quelle: Jisuanji gongcheng, Vol 51, Iss 5, Pp 288-304 (2025)
Schlagwörter: occluded micro-expression recognition, feature reconstruction, optical flow, dynamic image, denoising autoencoder, Computer engineering. Computer hardware, TK7885-7895, Computer software, QA76.75-76.765
Dateibeschreibung: electronic resource
-
2
Autoren: et al.
Quelle: Electronics (2079-9292); Nov2025, Vol. 14 Issue 22, p4384, 46p
-
3
Autoren:
Quelle: Computers, Materials & Continua; 2021, Vol. 71 Issue 1, p1371-1386, 16p
Schlagwörter: IMAGE denoising, SIGNAL-to-noise ratio, OPTICAL character recognition, DEEP learning, INVOICES
-
4
Autoren: et al.
Index Begriffe: Computer-aided diagnosis, Image classication, Image enhancement, Machine learning, BookPart, Text
URL:
https://www.repo.uni-hannover.de/handle/123456789/10347 https://doi.org/10.1117/12.2526936
Optical Coherence Imaging Techniques and Imaging in Scattering Media III : 23-27 June 2019, Munich, Germany
Proceedings of SPIE 11078 (2019)
1996-756X
978-1-5106-2850-2
978-1-5106-2849-6
0277-786Xhttps://doi.org/10.1117/12.2526936 -
5
Autoren:
Quelle: Optical Engineering; Oct2025, Vol. 64 Issue 10, p108103-108103, 1p
-
6
Autoren: et al.
Quelle: Remote Sensing; Aug2025, Vol. 7 Issue 15, p2717, 28p
-
7
Autoren: et al.
Quelle: Nature Communications; 11/26/2024, Vol. 15 Issue 1, p1-12, 12p
Schlagwörter: SIGNAL-to-noise ratio, SPECTROMETERS, PHOTONICS, SILICON, INTERFEROMETERS, IMAGE denoising
-
8
Autoren: et al.
Quelle: Sensors (14248220); Jul2024, Vol. 24 Issue 14, p4574, 22p
-
9
Autoren: et al.
Quelle: Monthly notices of the Royal Astronomical Society, 2020, Vol.493(1), pp.651-660 [Peer Reviewed Journal]
Schlagwörter: FOS: Computer and information sciences, Computer Science - Machine Learning, Image and Video Processing (eess.IV), 0103 physical sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Physical sciences, Electrical Engineering and Systems Science - Image and Video Processing, Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM), 01 natural sciences, Machine Learning (cs.LG)
Dateibeschreibung: application/pdf
Zugangs-URL: http://dro.dur.ac.uk/30503/1/30503.pdf
http://arxiv.org/abs/2001.11716
http://export.arxiv.org/pdf/2001.11716
https://academic.oup.com/mnras/article/493/1/651/5739828
https://dro.dur.ac.uk/30503/
http://ui.adsabs.harvard.edu/abs/2020MNRAS.493..651J/abstract
https://arxiv.org/abs/2001.11716v1
https://arxiv.org/pdf/2001.11716.pdf -
10
Autoren: et al.
Quelle: China Communications. 14:146-157
Schlagwörter: 13. Climate action, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
11
Autoren:
Quelle: 2017 International Conference on Soft Computing, Intelligent System and Information Technology (ICSIIT). :72-77
Schlagwörter: 0301 basic medicine, 03 medical and health sciences, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
12
Autoren: et al.
Quelle: Remote Sensing; Apr2024, Vol. 16 Issue 7, p1134, 24p
-
13
Autoren: et al.
Quelle: Remote Sensing; Apr2025, Vol. 17 Issue 8, p1396, 18p
-
14
Autoren: et al.
Quelle: Remote Sensing; Jul2025, Vol. 17 Issue 13, p2287, 19p
Schlagwörter: SYNTHETIC aperture radar, TRANSFORMER models, FEATURE extraction
-
15
Autoren: et al.
Quelle: Visual Computer; Aug2025, Vol. 41 Issue 10, p7855-7865, 11p
-
16
Autoren:
Quelle: Electrica; May2024, Vol. 24 Issue 2, p425-435, 11p
-
17
Autoren: et al.
Quelle: Indonesian Journal of Electrical Engineering & Computer Science; Apr2024, Vol. 34 Issue 1, p276-289, 14p
Schlagwörter: FACIAL expression, RESEARCH personnel, ROAD safety measures, MOTION
-
18
Autoren: et al.
Quelle: Journal of Raman Spectroscopy; Apr2021, Vol. 52 Issue 4, p890-900, 11p
Schlagwörter: RAMAN spectroscopy, SIGNAL-to-noise ratio, IMAGE denoising, RAMAN lasers, SPECTROMETERS
-
19
Autoren:
Quelle: Sensors (14248220); May2024, Vol. 24 Issue 10, p3161, 15p
-
20
Autoren: et al.
Quelle: Arabian Journal for Science & Engineering (Springer Science & Business Media B.V. ); Mar2024, Vol. 49 Issue 3, p4287-4306, 20p
Schlagwörter: IMAGE denoising, IMAGE reconstruction, NOISE, DEEP learning
Nájsť tento článok vo Web of Science
Full Text Finder