Suchergebnisse - denoising autoencoder*
-
1
Autoren: et al.
Quelle: Neural Computing & Applications. 37(17):10491-10505
Schlagwörter: Non-intrusive Load Monitoring, Energy Efficiency, Deep Convolutional Neural Networks, Interpretability, Multi-target NILM models, data- och systemvetenskap, Computer and Systems Sciences
Dateibeschreibung: print
-
2
Autoren:
Quelle: IEEE Access, Vol 13, Pp 86333-86343 (2025)
-
3
Autoren: et al.
Weitere Verfasser: et al.
Quelle: IEEE Access, Vol 13, Pp 77317-77333 (2025)
Schlagwörter: denoising auto-encoder, [SPI] Engineering Sciences [physics], convolutional neural network, deep learning, Autoencoder, Electrical engineering. Electronics. Nuclear engineering, [INFO] Computer Science [cs], technology classification, time-frequency analysis, channel attention, low-power wireless area network, TK1-9971
-
4
Autoren: et al.
Quelle: IEEE Access, Vol 13, Pp 54407-54422 (2025)
-
5
Autoren: et al.
Quelle: Current Radiopharmaceuticals. 18:224-243
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/40237056
-
6
Autoren:
Quelle: Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.2. :2478-2489
Zugangs-URL: http://arxiv.org/abs/2508.00758
-
7
Autoren: et al.
Quelle: IEEE Transactions on Neural Networks and Learning Systems. 36:13913-13926
Zugangs-URL: https://pubmed.ncbi.nlm.nih.gov/40126953
-
8
Autoren: et al.
Quelle: IEEE Communications Letters. 29:1659-1663
Schlagwörter: Computer Science - Machine Learning
Zugangs-URL: http://arxiv.org/abs/2501.11538
-
9
Autoren: et al.
Quelle: IEEE Transactions on Neural Networks and Learning Systems. 36:16279-16293
Schlagwörter: FOS: Computer and information sciences, 03 medical and health sciences, 0302 clinical medicine, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
10
Electromagnetic signal denoising method based on inverse autoencoder and channel attention mechanism
Autoren:
Quelle: 地球与行星物理论评, Vol 56, Iss 6, Pp 665-673 (2025)
Schlagwörter: magnetotelluric signal denoising, deep learning, inverse autoencoder, channel attention mechanism, Geophysics. Cosmic physics, QC801-809, Astrophysics, QB460-466
Dateibeschreibung: electronic resource
Relation: https://doaj.org/toc/2097-1893
-
11
Autoren:
Quelle: Results in Engineering, Vol 27, Iss, Pp 105900-(2025)
-
12
Autoren: et al.
Quelle: IET Conference Proceedings. 2025:1760-1764
-
13
Autoren:
Quelle: Journal of Power Electronics. 25:1745-1760
-
14
Autoren:
Quelle: 2025 IEEE Symposium on Industrial Electronics & Applications (ISIEA). :1-7
-
15
Autoren:
Quelle: 2025 IEEE 26th China Conference on System Simulation Technology and its Applications (CCSSTA). :942-947
-
16
Autoren:
Quelle: 2025 6th International Conference on Data Intelligence and Cognitive Informatics (ICDICI). :1470-1474
-
17
Autoren: et al.
Quelle: Imaging Science Journal. Nov2025, p1-18. 18p. 10 Illustrations.
Schlagwörter: *IMAGE denoising, *AUTOENCODERS, *RANDOM noise theory, *IMAGE analysis, *COMPUTER-aided diagnosis, *ARTIFICIAL neural networks, *SIGNAL denoising
-
18
Autoren: et al.
Quelle: 2024 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE). :207-212
Dateibeschreibung: application/pdf
-
19
Effect of noise reduction on PLSR modeling in near infrared spectroscopy using denoising autoencoder
Autoren: Özcan Çataltaş
Quelle: New Trends in Computer Sciences. 3:38-48
-
20
Autoren:
Quelle: Proceedings of the 16th International Conference on Agents and Artificial Intelligence. :1237-1244
Full Text Finder
Nájsť tento článok vo Web of Science