Suchergebnisse - deep deterministic policy gradient algorithm, Ant Colony Optimization
-
1
-
2
Autoren: et al.
Quelle: Electronics (2079-9292); Oct2024, Vol. 13 Issue 20, p4071, 22p
Schlagwörter: ANT algorithms, ROBOTIC path planning, MACHINE learning, DEEP learning, MOBILE learning, MOBILE robots
-
3
Autoren: et al.
Quelle: Robotics and Computer-Integrated Manufacturing. 76:102323
Schlagwörter: Cloud manufacturing, service composition, deep reinforcement learning, deep deterministic policy gradient algorithm, Ant Colony Optimization
Dateibeschreibung: print
-
4
Autoren: et al.
Quelle: Computer Networks. Aug2024, Vol. 250, pN.PAG-N.PAG. 1p.
Schlagwörter: *MOBILE computing, *RESOURCE allocation, *NONLINEAR programming, EDGE computing, ANT algorithms
-
5
Autoren:
Quelle: Mathematics (2227-7390); Aug2023, Vol. 11 Issue 15, p3324, 25p
-
6
Autoren:
Quelle: International Journal of Machine Learning & Cybernetics; Dec2024, Vol. 15 Issue 12, p5823-5837, 15p
-
7
Autoren:
Quelle: Electronics (2079-9292); Jan2024, Vol. 13 Issue 2, p433, 22p
-
8
Autoren:
Quelle: International Journal of Advanced Computer Science & Applications; Jul2024, Vol. 15 Issue 7, p387-395, 9p
-
9
Autoren: et al.
Quelle: Machines; Jan2023, Vol. 11 Issue 1, p108, 18p
Schlagwörter: REINFORCEMENT learning, DRONE aircraft, AUTOMOBILE speed
-
10
Autoren:
Quelle: Scientific Reports; 9/12/2025, Vol. 14 Issue 1, p1-11, 11p
-
11
Autoren: et al.
Quelle: Computers, Materials & Continua; 2023, Vol. 76 Issue 3, p3499-3522, 24p
-
12
Alternate Title: Design of the experimental platform for path planning of mine carrier robots based on KP-DDPG. (English)
Autoren: et al.
Quelle: Experimental Technology & Management; Jan2025, Vol. 42 Issue 1, p143-151, 9p
-
13
Autoren: et al.
Quelle: Computers & Electrical Engineering. Oct2023:Part A, Vol. 111, pN.PAG-N.PAG. 1p.
-
14
Autoren: et al.
Quelle: IEEE Sensors Journal; 12/15/2021, Vol. 21 Issue 24, p27441-27449, 9p
-
15
Autoren: et al.
Quelle: Biomimetics (2313-7673); Feb2024, Vol. 9 Issue 2, p105, 18p
-
16
Autoren: et al.
Quelle: Journal of Marine Science & Engineering; Sep2023, Vol. 11 Issue 9, p1796, 32p
-
17
Autoren: et al.
Quelle: Cognitive Computation & Systems; Dec2022, Vol. 4 Issue 4, p351-361, 11p
Schlagwörter: REINFORCEMENT learning, HYBRID power systems, PHOTOVOLTAIC power systems, ENERGY consumption, WIND power, RENEWABLE energy sources, CONTROL (Psychology)
Geografische Kategorien: NEW England
-
18
Autoren: et al.
Quelle: Frontiers in Neurorobotics; 2023, p1-16, 16p
Schlagwörter: DEEP reinforcement learning, ENTROPY (Information theory)
-
19
Autoren:
Quelle: Water (20734441); May2023, Vol. 15 Issue 9, p1712, 19p
-
20
Autoren: et al.
Quelle: Cluster Computing; Apr2023, Vol. 26 Issue 2, p1319-1335, 17p
Schlagwörter: MOBILE learning, MOBILE computing, EDGE computing, REINFORCEMENT learning, MARKOV processes
Full Text Finder
Nájsť tento článok vo Web of Science