Suchergebnisse - convolutional network recommendation algorithm
-
1
Alternate Title: Software Vulnerability Recommendation Algorithm Based on Feature Fusion Lightweight Graph Convolutional Networks.
Autoren:
Quelle: Journal of Hubei Minzu University (Natural Science Edition). Dec2024, Vol. 42 Issue 4, p494-499. 6p.
-
2
Autoren: et al.
Quelle: Connection Science. Dec2024, Vol. 36 Issue 1, p1-23. 23p.
Schlagwörter: *KNOWLEDGE graphs, *GRAPH algorithms, *RECOMMENDER systems, *MULTISENSOR data fusion, *ALGORITHMS
-
3
Autoren: et al.
Quelle: Taiyuan Ligong Daxue xuebao, Vol 56, Iss 3, Pp 485-494 (2025)
-
4
Autoren: et al.
Quelle: Complex & Intelligent Systems, Vol 10, Iss 3, Pp 4493-4506 (2024)
Schlagwörter: Recommender system, Collaborative filtering, Graph convolutional networks, Attention mechanism, Electronic computers. Computer science, QA75.5-76.95, Information technology, T58.5-58.64
Dateibeschreibung: electronic resource
-
5
Quelle: Jisuanji gongcheng, Vol 50, Iss 9, Pp 153-160 (2024)
Schlagwörter: knowledge graph(kg), graph convolutional network(gcn), graph sampling, recommendation algorithm, learning resource, Computer engineering. Computer hardware, TK7885-7895, Computer software, QA76.75-76.765
Dateibeschreibung: electronic resource
-
6
Autoren: et al.
Quelle: Applied Sciences, Vol 15, Iss 4, p 1898 (2025)
Schlagwörter: recommendation system, spreading-based recommendation, graph convolutional network, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
Dateibeschreibung: electronic resource
-
7
Autoren: et al.
Quelle: Applied Sciences, Vol 12, Iss 18, p 8956 (2022)
Schlagwörter: recommendation algorithm, directed graph convolutional network, soft attention mechanism, multi-task learning, knowledge graph embedding, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
Dateibeschreibung: electronic resource
-
8
Alternate Title: Adaptive graph convolutional recommendation algorithm integrating user social relationships.
Autoren:
Quelle: Application Research of Computers / Jisuanji Yingyong Yanjiu. Feb2024, Vol. 41 Issue 2, p482-487. 6p.
Schlagwörter: *CONVOLUTIONAL neural networks, *RECOMMENDER systems
-
9
Autoren: et al.
Quelle: IEEE Access, Vol 12, Pp 81527-81540 (2024)
Schlagwörter: Knowledge concept recommendation, graph convolutional networks, recurrent neural networks, online learning, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
Dateibeschreibung: electronic resource
-
10
Autoren:
Quelle: Future Internet. Oct2023, Vol. 15 Issue 10, p323. 13p.
Schlagwörter: *Recommender systems, *Machine learning, Knowledge graphs, Matrix decomposition, Graph algorithms
-
11
Quelle: Jisuanji gongcheng, Vol 51, Iss 7, Pp 100-110 (2025)
Schlagwörter: deep learning, recommendation algorithm, bipartite graph, contrastive learning (cl), graph convolution network (gcn), Computer engineering. Computer hardware, TK7885-7895, Computer software, QA76.75-76.765
Dateibeschreibung: electronic resource
-
12
Alternate Title: Knowledge Graph Convolutional Network Recommendation Algorithm Based on Distance Strategy. (English)
Autoren: et al.
Quelle: Journal of Computer Engineering & Applications; Nov2023, Vol. 59 Issue 21, p102-111, 10p
-
13
Quelle: Jisuanji gongcheng, Vol 48, Iss 8, Pp 121-128 (2022)
Schlagwörter: recommendation algorithm, deep learning, collaborative filtering, graph convolutional network(gcn), vector embedding, Computer engineering. Computer hardware, TK7885-7895, Computer software, QA76.75-76.765
Dateibeschreibung: electronic resource
-
14
Autoren: et al.
Quelle: Complex & Intelligent Systems; Jun2024, Vol. 10 Issue 3, p4493-4506, 14p
-
15
Autoren:
Quelle: Computers, Materials & Continua; 2023, Vol. 75 Issue 2, p4047-4063, 17p
Schlagwörter: DATA extraction, CONVOLUTIONAL neural networks, ALGORITHMS, FEATURE extraction
-
16
Autoren: et al.
Quelle: Applied Sciences (2076-3417); Feb2025, Vol. 15 Issue 4, p1898, 16p
Schlagwörter: RECOMMENDER systems, ALGORITHMS, INTERNET, MATRICES (Mathematics)
-
17
Autoren:
Quelle: Journal of Information & Knowledge Management. Jun2025, Vol. 24 Issue 3, p1-44. 44p.
-
18
Autoren: et al.
Quelle: Applied Intelligence; Apr2025, Vol. 55 Issue 6, p1-17, 17p
-
19
Autoren: et al.
Quelle: Education and Information Technologies. 2025 30(9):13041-13071.
Peer Reviewed: Y
Page Count: 31
-
20
Autoren: Cepeda Pacheco, Juan Carlos
Weitere Verfasser: University/Department: Universitat Politècnica de Catalunya. Departament d'Enginyeria Telemàtica
Thesis Advisors: Domingo Aladrén, Mari Carmen
Quelle: TDX (Tesis Doctorals en Xarxa)
Schlagwörter: Àrees temàtiques de la UPC::Enginyeria de la telecomunicació, Àrees temàtiques de la UPC::Informàtica
Time: 621.3
Dateibeschreibung: application/pdf
Zugangs-URL: http://hdl.handle.
net /10803/693321
https://dx.doi.org/10.5821/dissertation-2117-422056
Nájsť tento článok vo Web of Science
Full Text Finder