Výsledky vyhledávání - convolutional denoising autoencoder~
-
1
Autoři: a další
Zdroj: Neural Computing & Applications. 37(17):10491-10505
Témata: Non-intrusive Load Monitoring, Energy Efficiency, Deep Convolutional Neural Networks, Interpretability, Multi-target NILM models, data- och systemvetenskap, Computer and Systems Sciences
Popis souboru: print
-
2
Autoři: a další
Zdroj: 2024 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE). :207-212
Popis souboru: application/pdf
-
3
Autoři: a další
Zdroj: Journal of Mechatronics, Electrical Power, and Vehicular Technology, Vol 15, Iss 1, Pp 93-104 (2024)
Témata: neural network, remaining useful life (rul), denoising autoencoder (dae), lithium-ion (li-ion) battery, TJ1-1570, system robustness, Electrical engineering. Electronics. Nuclear engineering, Mechanical engineering and machinery, 7. Clean energy, TK1-9971
Přístupová URL adresa: https://doaj.org/article/045065a2412848b69e82bedb7c7174af
-
4
Autoři: a další
Zdroj: journal of test and measurement technology. 39:475-482
-
5
Autoři: a další
Zdroj: IEEE Internet of Things Journal. 12:5233-5244
-
6
Autoři:
Zdroj: IET Image Processing, Vol 18, Iss 1, Pp 233-246 (2024)
Témata: QA76.75-76.765, convolutional neural nets, signal denoising, graph theory, Photography, 0202 electrical engineering, electronic engineering, information engineering, Computer software, 02 engineering and technology, TR1-1050, computer vision
Přístupová URL adresa: https://doaj.org/article/00b9628a0619472cb07d01a0acb202f8
-
7
Autoři: a další
Zdroj: IEEE Journal of Biomedical and Health Informatics. 28:1993-2004
Témata: Electrocardiography, Exercise Test, Humans, Signal Processing, Computer-Assisted, Signal-To-Noise Ratio, Artifacts, Algorithms
Přístupová URL adresa: https://pubmed.ncbi.nlm.nih.gov/38241105
-
8
Autoři:
Zdroj: 2024 IEEE Far East NDT New Technology & Application Forum (FENDT). :214-218
-
9
Autoři: a další
Zdroj: IEEE Internet of Things Journal. 11:15633-15641
-
10
Autoři: a další
Zdroj: IEEE Transactions on Biomedical Engineering. 71:456-466
Témata: Motion, Heart Rate, Atrial Fibrillation, Humans, Signal Processing, Computer-Assisted, Photoplethysmography, Artifacts, Algorithms, Monitoring, Physiologic
Přístupová URL adresa: https://pubmed.ncbi.nlm.nih.gov/37682653
-
11
Autoři: a další
Zdroj: International Journal of Information Technology.
-
12
-
13
Autoři:
Zdroj: 2024 International Conference on Computer, Electrical & Communication Engineering (ICCECE). :1-7
-
14
Autoři: a další
Přispěvatelé: a další
Témata: 3D shape completion, Computer-aided design (CAD), Cranial implant, Deep learning, Denoising autoencoder, Medical imaging
Popis souboru: application/pdf
Relation: 978-3-030-16186-6; 2194-5357
Dostupnost: https://hdl.handle.net/1822/71391
-
15
-
16
Autoři:
Zdroj: 2023 6th International Conference on Artificial Intelligence and Pattern Recognition (AIPR). :714-719
-
17
Autoři:
Zdroj: Multimedia Tools and Applications. 83:22099-22117
-
18
Autoři: a další
Zdroj: IEEE Access, Vol 9, Pp 115700-115709 (2021)
Témata: Artificial intelligence, Biomedical Engineering, Gait Recognition, Health Professions, Physical Therapy, Sports Therapy and Rehabilitation, 02 engineering and technology, unsupervised learning, FOS: Medical engineering, Pattern recognition (psychology), freezing of gait, Engineering, denoising autoencoder, Health Sciences, Machine learning, Image (mathematics), 0202 electrical engineering, electronic engineering, information engineering, Embedded system, Gait, Sensory Feedback, Gait Analysis and Fall Prevention in Elderly, Deep learning, Wearable computer, Autoencoder, Computer science, Dimensionality reduction, TK1-9971, 3. Good health, Gait Recognition for Human Identification, Thresholding, Physical medicine and rehabilitation, Analysis of Electromyography Signal Processing, Physical Sciences, Parkinson's disease, Medicine, Electrical engineering. Electronics. Nuclear engineering, Gait Analysis
Přístupová URL adresa: https://ieeexplore.ieee.org/ielx7/6287639/6514899/09514558.pdf
https://doaj.org/article/34fba6708ae448288f041a3d55b928c7
https://zuscholars.zu.ac.ae/cgi/viewcontent.cgi?article=5464&context=works
https://zuscholars.zu.ac.ae/works/4465/
https://dblp.uni-trier.de/db/journals/access/access9.html#NoorNWO21 -
19
Autoři: a další
Zdroj: Multimedia Tools and Applications. 83:22295-22326
-
20
Autoři: a další
Zdroj: IEEE Access, Vol 7, Pp 112339-112347 (2019)
Témata: Cohen class time frequency distribution, deep convolutional neural network, 0202 electrical engineering, electronic engineering, information engineering, Electrical engineering. Electronics. Nuclear engineering, 02 engineering and technology, Radar signal recognition, convolutional denoising autoencoder, TK1-9971
Přístupová URL adresa: https://ieeexplore.ieee.org/ielx7/6287639/8600701/08798607.pdf
https://doaj.org/article/fa33e26e05ce42fbade007ceabff40d1
https://ieeexplore.ieee.org/document/8798607
https://dblp.uni-trier.de/db/journals/access/access7.html#QuWHH19
https://doaj.org/article/fa33e26e05ce42fbade007ceabff40d1
https://doi.org/10.1109/ACCESS.2019.2935247
Full Text Finder
Nájsť tento článok vo Web of Science