Search Results - convolutional denoising autoencoder-convolutional neural network
-
1
Authors: et al.
Source: IET Software (Wiley-Blackwell). Jun2020, Vol. 14 Issue 3, p185-195. 11p.
-
2
Authors:
Source: Applied Intelligence; Oct2023, Vol. 53 Issue 19, p22682-22699, 18p
-
3
Authors:
Source: Minerals, Vol 11, Iss 10, p 1089 (2021)
Subject Terms: autoencoder convolutional neural network, noise suppression, seismic data, tied weights, self-supervised learning, Mineralogy, QE351-399.2
Relation: https://www.mdpi.com/2075-163X/11/10/1089; https://doaj.org/toc/2075-163X; https://doaj.org/article/cbdef19ae3d04a5c823f633e54853862
-
4
Authors:
Source: 2017 8th International Conference on Information Technology (ICIT). :971-979
Subject Terms: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
-
5
Authors: et al.
Source: Analog Integrated Circuits and Signal Processing. 100:501-512
Subject Terms: 03 medical and health sciences, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, 0305 other medical science
-
6
Authors:
Source: Imaging Science Journal. Feb2024, Vol. 72 Issue 1, p76-91. 16p.
Subject Terms: *HYBRID systems, *MOTION, *OPTIMIZATION algorithms, *MAGNETIC resonance imaging, *MEDICAL artifacts, *SIGNAL-to-noise ratio
-
7
Authors: et al.
Source: Analog Integrated Circuits & Signal Processing; Sep2019, Vol. 100 Issue 3, p501-512, 12p
Subject Terms: DEEP learning, AUTOMATIC speech recognition, SIGNAL reconstruction
-
8
Authors:
Contributors:
Subject Terms: neuronová síť autoencoderu, konvoluční neuronová síť, detekce defektů, detekce anomálií bez dozoru, autoencoder neural network, convolutional neural network, defect detection, unsupervised anomaly detection
File Description: 8 s.; application/pdf
Relation: 2464–4625(CD/DVD); http://hdl.handle.net/11025/45023; https://doi.org/10.24132/CSRN.2021.3101.20
Availability: http://hdl.handle.net/11025/45023
https://doi.org/10.24132/CSRN.2021.3101.20 -
9
Authors: et al.
Source: Sensors (14248220); 2/15/2021, Vol. 21 Issue 4, p1114-1114, 1p
-
10
Alternate Title: ВИЯВЛЕННЯ НЕСПРАВНОСТІ ПІДШИПНИКА ЗА ДОПОМОГОЮ ЗГОРТКОВОЇ НЕЙРОННОЇ МЕРЕЖІ АВТОКОДУВАЛЬНИКА. (Ukrainian)
Authors: K., Kysarin M.
Source: Radio Electronics, Computer Science, Control; 2025, Issue 2, p116-125, 10p
-
11
Authors:
Source: Journal of Cybersecurity & Information Management; 2025, Vol. 16 Issue 1, p243-251, 9p
Subject Terms: CONVOLUTIONAL neural networks, MARKETING software, DEEP learning, AUTOENCODERS, BINARY codes
-
12
Authors:
Source: Journal of Computer Science & Technology (10009000); Mar2025, Vol. 40 Issue 2, p588-604, 17p
Subject Terms: CONVOLUTIONAL neural networks, AUTOENCODERS, GRAPH algorithms, NERVOUS system, BIPOLAR disorder
-
13
Authors:
Resource Type: eBook.
Subjects: Computer vision, Neural networks (Computer science), Machine learning, Python (Computer program language)
Categories: COMPUTERS / Image Processing, COMPUTERS / Artificial Intelligence / General, COMPUTERS / Information Technology
-
14
Authors:
Source: Sensors (14248220); Nov2025, Vol. 25 Issue 21, p6705, 20p
-
15
Authors:
Source: Sensors (14248220); May2024, Vol. 24 Issue 10, p3161, 15p
Subject Terms: RAMAN spectroscopy, CONVOLUTIONAL neural networks, IMAGE denoising, NOISE control, SIGNAL processing
-
16
Authors:
Source: International Journal of Systems Assurance Engineering & Management; Dec2022, Vol. 13 Issue 6, p3002-3016, 15p
-
17
Authors:
Source: Software: Practice & Experience; Oct2024, Vol. 54 Issue 10, p1957-1971, 15p
-
18
Authors: et al.
Source: Journal of Sensor & Actuator Networks; Apr2025, Vol. 14 Issue 2, p42, 22p
-
19
Authors: et al.
Source: AIP Conference Proceedings; 2023, Vol. 2715 Issue 1, p1-12, 12p
-
20
Authors: et al.
Source: Multimedia Tools & Applications; Jan2022, Vol. 81 Issue 3, p3483-3514, 32p
Full Text Finder
Nájsť tento článok vo Web of Science