Suchergebnisse - convolutional LSTM autoencoder*
-
1
Autoren: Young Jun Park
Quelle: Journal of Machine and Computing. :914-923
-
2
Autoren:
Quelle: 2023 International Conference on Communication, Circuits, and Systems (IC3S). :1-5
-
3
Autoren:
Quelle: Sensors (Basel)
Sensors, Vol 24, Iss 8, p 2382 (2024)Schlagwörter: health index analysis, convolutional LSTM autoencoder, Chemical technology, Communication, remaining useful life, 0202 electrical engineering, electronic engineering, information engineering, TP1-1185, 02 engineering and technology, 0210 nano-technology, 3. Good health
-
4
Enhancing Video Anomaly Detection Using Spatio-Temporal Autoencoders and Convolutional LSTM Networks
Autoren: et al.
Quelle: SN Computer Science. 5
-
5
Autoren:
Quelle: 2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA). :1-6
Schlagwörter: 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
Zugangs-URL: https://cronfa.swan.ac.uk/Record/cronfa51622/Download/0051622-29082019102938.pdf
https://cronfa.swan.ac.uk/Record/cronfa51622/Download/0051622-29082019102938.pdf
https://ieeexplore.ieee.org/document/8778417/
https://cronfa.swansea.ac.uk/Record/cronfa51622/Details
https://cronfa.swansea.ac.uk/Record/cronfa51622/Download/0051622-29082019102938.pdf
https://dblp.uni-trier.de/db/conf/inista/inista2019.html#EssienG19
https://doi.org/10.1109/INISTA.2019.8778417 -
6
Autoren:
Quelle: IEEE Transactions on Industrial Informatics. 16:6069-6078
Schlagwörter: 0209 industrial biotechnology, 9. Industry and infrastructure, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
Zugangs-URL: https://ieeexplore.ieee.org/ielx7/9424/9106618/08967003.pdf
https://cronfa.swan.ac.uk/Record/cronfa53318
https://dblp.uni-trier.de/db/journals/tii/tii16.html#EssienG20
https://cronfa.swan.ac.uk/Record/cronfa53318/Download/53318__17414__2da379d11c2f437aa113e87ad1ed306b.pdf
https://ieeexplore.ieee.org/iel7/9424/9106618/08967003.pdf
https://ieeexplore.ieee.org/abstract/document/8967003/
https://cronfa.swan.ac.uk/Record/cronfa53318/Download/53318__17414__2da379d11c2f437aa113e87ad1ed306b.pdf -
7
Quelle: International Journal of Advanced Trends in Computer Science and Engineering. 9:8585-8589
-
8
Autoren: et al.
Quelle: 2019 International Joint Conference on Neural Networks (IJCNN). :1-8
-
9
-
10
-
11
Autoren: et al.
Quelle: Journal of Marine Science and Engineering
Volume 8
Issue 10Schlagwörter: ocean weather, 13. Climate action, 9. Industry and infrastructure, deep learning, 14. Life underwater, denoising AutoEncoder, convolutional LSTM, 01 natural sciences, 0105 earth and related environmental sciences
Dateibeschreibung: application/pdf
-
12
Autoren: et al.
Schlagwörter: Supervised learning, neural networks, coast detection, ship detection, oil spills, side-looking airborne radar
Relation: https://zenodo.org/records/12783380; oai:zenodo.org:12783380; https://doi.org/10.3390/rs11121402
-
13
-
14
Autoren:
Index Begriffe: Journal Article, PeerReviewed
-
15
Autoren:
Quelle: Aerospace, Vol 8, Iss 10, p 301 (2021)
Schlagwörter: air traffic prediction, trajectory prediction, deep learning, video prediction, Motor vehicles. Aeronautics. Astronautics, TL1-4050
Dateibeschreibung: electronic resource
-
16
Autoren:
Quelle: Sensors (14248220); Apr2024, Vol. 24 Issue 8, p2382, 13p
-
17
Autoren:
Quelle: IEEE Transactions on Geoscience and Remote Sensing. 63:1-16
Dateibeschreibung: text
Zugangs-URL: https://eprints.lancs.ac.uk/id/eprint/230718/
-
18
Autoren:
Quelle: EasyChair Preprints.
-
19
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: Variational Autoencoder, Anomaly Detection, Unsupervised Learning, Depthwise Convolutional, Traffic Surveillance
Dateibeschreibung: application/pdf
Zugangs-URL: https://hdl.handle.net/11511/116183
-
20
Autoren:
Quelle: The University of Danang - Journal of Science and Technology
Schlagwörter: Indonesia, Convolutional LSTM, convolutional autoencoder, prediction error, reconstruction error, anomaly detection
Dateibeschreibung: application/pdf
Verfügbarkeit: https://www.neliti.com/publications/453677/anomaly-detection-using-prediction-error-with-spatio-temporal-convolutional-lstm
Nájsť tento článok vo Web of Science
Full Text Finder