Suchergebnisse - bounded distance decoding problems*
-
1
Autoren:
Quelle: IEEE Transactions on Communications. Jun2010, Vol. 58 Issue 6, p1601-1604. 4p.
-
2
Autoren:
Quelle: SIAM Journal on Computing. 37(1)
Schlagwörter: list decoding algorithm, bounded distance decoding algorithm, Reed-Solomon codes, discrete logarithm problem, math.NT, cs.IT, math.IT, 11Y16, 68Q25, Pure Mathematics, Computation Theory and Mathematics, Computation Theory & Mathematics
Dateibeschreibung: application/pdf
-
3
Autoren: et al.
Quelle: SIAM Journal on Computing; 2025, Vol. 54 Issue 2, p233-278, 46p
Schlagwörter: TIME complexity, RANDOM access memory, QUANTUM computing, ISOMORPHISM (Mathematics), ALGORITHMS
-
4
Autoren:
Quelle: Lecture Notes in Computer Science ISBN: 9783642033551
CRYPTO -
5
Autoren:
Quelle: Eurasian Mathematical Journal; 2025, Vol. 16 Issue 2, p23-29, 7p
Schlagwörter: CRYPTOGRAPHY, LATTICE theory, QUANTUM computing, GAUSSIAN elimination, NP-hard problems, ALGORITHMS
-
6
Autoren:
Quelle: SIAM Journal on Computing, vol 37, iss 1
Schlagwörter: discrete logarithm problem, Reed-Solomon codes, 68Q25, Computation Theory and Mathematics, 0102 computer and information sciences, 02 engineering and technology, 11Y16, Pure Mathematics, 01 natural sciences, bounded distance decoding algorithm, Computation Theory & Mathematics, math.NT, cs.IT, 0202 electrical engineering, electronic engineering, information engineering, math.IT, list decoding algorithm
Dateibeschreibung: application/pdf
Zugangs-URL: http://cr.yp.to/bib/2004/cheng-codes.pdf
https://epubs.siam.org/doi/10.1137/S0097539705447335
https://escholarship.org/uc/item/8wc6425s.pdf
https://doi.org/10.1137/S0097539705447335
https://dblp.uni-trier.de/db/journals/siamcomp/siamcomp37.html#ChengW07
https://locus.siam.org/doi/abs/10.1137/S0097539705447335
https://escholarship.org/uc/item/8wc6425s
http://www.math.uci.edu/~dwan/code.pdf
https://www.math.uci.edu/~dwan/listcode.pdf
https://ieeexplore.ieee.org/document/1366253/
https://www.cs.ou.edu/~qcheng/paper/ld.pdf
http://ieeexplore.ieee.org/document/1366253/
https://dblp.uni-trier.de/db/conf/focs/focs2004.html#ChengW04
https://escholarship.org/uc/item/8wc6425s -
7
Autoren: et al.
Quelle: IEEE Transactions on Information Theory; Apr2020, Vol. 66 Issue 4, p2588-2598, 11p
Schlagwörter: DISTANCES, POLYNOMIALS
-
8
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: ill-posed inverse problems, decoding as inverse problem, convex optimization, gaussian random variables, Ingeniería
Dateibeschreibung: 14 páginas; application/pdf
Relation: 4152; 4139; 10; AIMS Mathematics; 1. F. L. Bauer, Decrypted secrets: Methods and maxims on cryptography, Berlin: Springer-Verlag, 1997. 2. J. M. Borwein, A. S. Lewis, Convex analysis and nonlinear optimization, 2nd Edition, Berlin: CMS-Springer, 2006. 3. D. Burshtein, I. Goldenberg, Improved linear programming decoding and bounds on the minimum distance of LDPC codes, IEEE Inf. Theory Work., 2010. Available from: https://ieeexplore. ieee.org/document/5592887. 4. E. Candes, T. Tao, Decoding by linear programming, IEEE Tran. Inf. Theory, 51 (2005), 4203– 4215. http://dx.doi.org/10.1109/TIT.2005.858979 5. E. Candes, T. Tao, Near optimal signal recovery from random projections: Universal encoding strategies, IEEE Tran. Inf. Theory, 52 (2006), 5406–5425. http://dx.doi.org/10.1109/TIT.2006.885507 6. C. Daskalakis, G. Alexandros, A. G. Dimakis, R. M. Karp, M. J. Wainwright, Probabilistic analysis of linear programming decoding, IEEE Tran. Inf. Theory, 54 (2008), 3565–3578. http://dx.doi.org/10.1109/TIT.2008.926452 7. S. El Rouayyheb, C. N. Georghiades, Graph theoretic methods in coding theory, Classical, Semiclass. Quant. Noise, 2012, 53–62. https://doi.org/10.1007/978-1-4419-6624-7 5 8. J. Feldman, M. J. Wainwright, D. R. Karger, Using linear programming to decode binary linear codes, IEEE Tran. Inf. Theory, 51 (2005), 954–972. https://doi.org/10.1109/TIT.2004.842696 9. F. Gamboa, H. Gzyl, Linear programming with maximum entropy, Math. Comput. Modeling, 13 (1990), 49–52. 10. Y. S. Han, A new treatment of priority-first search maximum-likelihood soft-decision decoding of linear block codes, IEEE Tran. Inf. Theory, 44 (1998), 3091–3096. https://doi.org/10.1109/18.737538 11. M. Helmiling, Advances in mathematical programming-based error-correction decoding, OPUS Koblen., 2015. Available from: https://kola.opus.hbz-nrw.de/frontdoor/index/ index/year/2015/docId/948. 12. M. Helmling, S. Ruzika, A. Tanatmis, Mathematical programming decoding of binary linear codes: Theory and algorithms, IEEE Tran. Inf. Theory, 58 (2012), 4753–4769. https://doi.org/10.1109/TIT.2012.2191697 13. M. R. Islam, Linear programming decoding: The ultimate decoding technique for low density parity check codes, Radioel. Commun. Syst., 56 (2013), 57–72. https://doi.org/10.3103/S0735272713020015 14. T. Kaneko, T. Nishijima, S. Hirasawa, An improvement of soft-decision maximum-likelihood decoding algorithm using hard-decision bounded-distance decoding, IEEE Tran. Inf. Theory, 43 (1997), 1314–1319. https://doi.org/10.1109/18.605601 15. S. B. McGrayne, The theory that would not die. How Bayes’ rule cracked the enigma code, hunted down Russian submarines, & emerged triumphant from two centuries of controversy, New Haven: Yale University Press, 2011. 16. R. J. McEliece, A public-key cryptosystem based on algebraic, Coding Th., 4244 (1978), 114–116. 17. H. Mohammad, N. Taghavi, P. H. Siegel, Adaptive methods for linear programming decoding, IEEE Tran. Inf. Theory, 54 (2008), 5396–5410. https://doi.org/10.1109/TIT.2008.2006384 18. G. Xie, F. Fu, H. Li, W. Du, Y. Zhong, L. Wang, et al, A gradient-enhanced physicsinformed neural networks method for the wave equation, Eng. Anal. Bound. Ele., 166 (2024). https://doi.org/10.1016/j.enganabound.2024.105802 19. Q. Yin, X. B. Shu, Y. Guo, Z. Y. Wang, Optimal control of stochastic differential equations with random impulses and the Hamilton-Jacobi-Bellman equation, Optimal Control Appl. Methods, 45 (2024), 2113–2135. https://doi.org/10.1002/oca.3139 20. B. Zolfaghani, K. Bibak, T. Koshiba, The odyssey of entropy: Cryptography, Entropy, 24 (2022), 266–292. https://doi.org/10.3390/e24020266; https://hdl.handle.net/1992/76128; https://doi.org/10.3934/math.2025192; instname:Universidad de los Andes; reponame:Repositorio Institucional Séneca; repourl:https://repositorio.uniandes.edu.co/
-
9
Autoren:
Weitere Verfasser:
Quelle: Laarhoven, T & Walter, M 2021, Dual Lattice Attacks for Closest Vector Problems (with Preprocessing). in K G Paterson (ed.), Topics in Cryptology-CT-RSA 2021 : Cryptographers’ Track at the RSA Conference 2021, Virtual Event, May 17–20, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12704 LNCS, Springer, pp. 478-502. https://doi.org/10.1007/978-3-030-75539-3_20
Schlagwörter: Bounded distance decoding (BDD), Closest vector problem (CVP), Lattice algorithms, Lattice-based cryptography, Primal/dual attacks
Relation: info:eu-repo/semantics/altIdentifier/isbn/9783030755386; urn:ISBN:9783030755386
-
10
-
11
Autoren: Çalkavur, Selda
Quelle: Entropy; Apr2022, Vol. 24 Issue 4, p498-498, 9p
Schlagwörter: LINEAR codes, PUBLIC key cryptography, CRYPTOSYSTEMS, ERROR-correcting codes, INFORMATION theory
-
12
Autoren:
Quelle: Advances in Cryptology - CRYPTO 2009; 2009, p577-594, 18p
-
13
Autoren:
Quelle: Designs, Codes & Cryptography; Aug2019, Vol. 87 Issue 8, p1737-1748, 12p
Schlagwörter: POLYNOMIAL time algorithms, RADIUS (Geometry), TARDINESS, DECODING algorithms, LOGARITHMS, BUILDING design & construction, DISTANCES
Firma/Körperschaft: INSTITUTE of Electrical & Electronics Engineers
-
14
Autoren:
Weitere Verfasser:
Dateibeschreibung: application/pdf
-
15
Autoren:
Quelle: Quantum Information Processing; Apr2020, Vol. 19 Issue 4, p1-17, 17p
Schlagwörter: QUANTUM cryptography, ERROR probability, DECODING algorithms, HARDNESS, DEFINITIONS
-
16
-
17
Autoren: et al.
Weitere Verfasser: et al.
Schlagwörter: FOS: Computer and information sciences, Computational Complexity, Shortest Vector Problem, Data Structures and Algorithms, Cryptography and Security, lattice-based cryptography, 0102 computer and information sciences, Computational Complexity (cs.CC), 01 natural sciences, lattices, Bounded Distance Decoding, fine-grained complexity, Data Structures and Algorithms (cs.DS), ddc:004, 0101 mathematics, Cryptography and Security (cs.CR)
Dateibeschreibung: application/pdf
-
18
Autoren:
Quelle: International Journal of Computer Mathematics; Jan2017, Vol. 94 Issue 1, p107-114, 8p
Schlagwörter: ERROR-correcting codes, CRYPTOGRAPHY, LINEAR codes, DECODING algorithms, COALITIONS
-
19
Autoren: et al.
Quelle: Approximation, Randomization & Combinatorial Optimization. Algorithms & Techniques (9783540380443); 2006, p450-461, 12p
-
20
Full Text Finder
Nájsť tento článok vo Web of Science