Suchergebnisse - bounded distance decoding problems*

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    Dateibeschreibung: 14 páginas; application/pdf

    Relation: 4152; 4139; 10; AIMS Mathematics; 1. F. L. Bauer, Decrypted secrets: Methods and maxims on cryptography, Berlin: Springer-Verlag, 1997. 2. J. M. Borwein, A. S. Lewis, Convex analysis and nonlinear optimization, 2nd Edition, Berlin: CMS-Springer, 2006. 3. D. Burshtein, I. Goldenberg, Improved linear programming decoding and bounds on the minimum distance of LDPC codes, IEEE Inf. Theory Work., 2010. Available from: https://ieeexplore. ieee.org/document/5592887. 4. E. Candes, T. Tao, Decoding by linear programming, IEEE Tran. Inf. Theory, 51 (2005), 4203– 4215. http://dx.doi.org/10.1109/TIT.2005.858979 5. E. Candes, T. Tao, Near optimal signal recovery from random projections: Universal encoding strategies, IEEE Tran. Inf. Theory, 52 (2006), 5406–5425. http://dx.doi.org/10.1109/TIT.2006.885507 6. C. Daskalakis, G. Alexandros, A. G. Dimakis, R. M. Karp, M. J. Wainwright, Probabilistic analysis of linear programming decoding, IEEE Tran. Inf. Theory, 54 (2008), 3565–3578. http://dx.doi.org/10.1109/TIT.2008.926452 7. S. El Rouayyheb, C. N. Georghiades, Graph theoretic methods in coding theory, Classical, Semiclass. Quant. Noise, 2012, 53–62. https://doi.org/10.1007/978-1-4419-6624-7 5 8. J. Feldman, M. J. Wainwright, D. R. Karger, Using linear programming to decode binary linear codes, IEEE Tran. Inf. Theory, 51 (2005), 954–972. https://doi.org/10.1109/TIT.2004.842696 9. F. Gamboa, H. Gzyl, Linear programming with maximum entropy, Math. Comput. Modeling, 13 (1990), 49–52. 10. Y. S. Han, A new treatment of priority-first search maximum-likelihood soft-decision decoding of linear block codes, IEEE Tran. Inf. Theory, 44 (1998), 3091–3096. https://doi.org/10.1109/18.737538 11. M. Helmiling, Advances in mathematical programming-based error-correction decoding, OPUS Koblen., 2015. Available from: https://kola.opus.hbz-nrw.de/frontdoor/index/ index/year/2015/docId/948. 12. M. Helmling, S. Ruzika, A. Tanatmis, Mathematical programming decoding of binary linear codes: Theory and algorithms, IEEE Tran. Inf. Theory, 58 (2012), 4753–4769. https://doi.org/10.1109/TIT.2012.2191697 13. M. R. Islam, Linear programming decoding: The ultimate decoding technique for low density parity check codes, Radioel. Commun. Syst., 56 (2013), 57–72. https://doi.org/10.3103/S0735272713020015 14. T. Kaneko, T. Nishijima, S. Hirasawa, An improvement of soft-decision maximum-likelihood decoding algorithm using hard-decision bounded-distance decoding, IEEE Tran. Inf. Theory, 43 (1997), 1314–1319. https://doi.org/10.1109/18.605601 15. S. B. McGrayne, The theory that would not die. How Bayes’ rule cracked the enigma code, hunted down Russian submarines, & emerged triumphant from two centuries of controversy, New Haven: Yale University Press, 2011. 16. R. J. McEliece, A public-key cryptosystem based on algebraic, Coding Th., 4244 (1978), 114–116. 17. H. Mohammad, N. Taghavi, P. H. Siegel, Adaptive methods for linear programming decoding, IEEE Tran. Inf. Theory, 54 (2008), 5396–5410. https://doi.org/10.1109/TIT.2008.2006384 18. G. Xie, F. Fu, H. Li, W. Du, Y. Zhong, L. Wang, et al, A gradient-enhanced physicsinformed neural networks method for the wave equation, Eng. Anal. Bound. Ele., 166 (2024). https://doi.org/10.1016/j.enganabound.2024.105802 19. Q. Yin, X. B. Shu, Y. Guo, Z. Y. Wang, Optimal control of stochastic differential equations with random impulses and the Hamilton-Jacobi-Bellman equation, Optimal Control Appl. Methods, 45 (2024), 2113–2135. https://doi.org/10.1002/oca.3139 20. B. Zolfaghani, K. Bibak, T. Koshiba, The odyssey of entropy: Cryptography, Entropy, 24 (2022), 266–292. https://doi.org/10.3390/e24020266; https://hdl.handle.net/1992/76128; https://doi.org/10.3934/math.2025192; instname:Universidad de los Andes; reponame:Repositorio Institucional Séneca; repourl:https://repositorio.uniandes.edu.co/

  9. 9

    Quelle: Laarhoven, T & Walter, M 2021, Dual Lattice Attacks for Closest Vector Problems (with Preprocessing). in K G Paterson (ed.), Topics in Cryptology-CT-RSA 2021 : Cryptographers’ Track at the RSA Conference 2021, Virtual Event, May 17–20, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12704 LNCS, Springer, pp. 478-502. https://doi.org/10.1007/978-3-030-75539-3_20

    Relation: info:eu-repo/semantics/altIdentifier/isbn/9783030755386; urn:ISBN:9783030755386

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19

    Quelle: Approximation, Randomization & Combinatorial Optimization. Algorithms & Techniques (9783540380443); 2006, p450-461, 12p

  20. 20