Search Results - boundary element methods for initial value AND initial-boundary value problems involving press

Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9

    Authors: Romano D Pettanice G Stumpf M et al.

    Source: Scientific reports [Sci Rep] 2025 Nov 28. Date of Electronic Publication: 2025 Nov 28.

    Publication Type: Journal Article

    Journal Info: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE

  10. 10
  11. 11
  12. 12
  13. 13

    File Description: application/pdf

    Relation: N. Matthew and O. Sadiku, “Elementos de electromagnetismo,” España, Crítica, 2003.; W. Cai, “Numerical methods for Maxwell’s equations in inhomogeneous media with material interfaces,” Journal of Computational Mathematics, pp. 156–167, 2004.; K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Transactions on antennas and propagation, vol. 14, no. 3, pp. 302–307, 1966; J. C. Nédélec, “A new family of mixed finite elements in Rˆ3,” Numerische Mat- hematik, vol. 50, no. 1, pp. 57–81, 1986.; M. Olm, S. Badia, and A. Martín, “On a general implementation of h- and p-adaptive curl-conforming finite elements,” Advances in Engineering Software, vol. 132, pp. 74–91, 06 2019.; P. Monk et al., Finite element methods for Maxwell’s equations. Oxford University Press, 2003.; G. Gatica, Introducción al análisis funcional: teoría y aplicaciones. Reverté.; R. Kress, Linear integral equations. Applied Mathematical Sciences 82, Springer New York, 2 ed., 1999.; W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge University Press, 1 ed., 2000.; V. Girault and P. A. Raviart, Finite element methods for Navier - Stokes equations: theory and algorithms. Springer Series in Computational Mathematics, Springer - Verlag, 1986.; J. Necas, “Les méthodes directes en théorie des équations elliptiques,” 1967.; S. Brenner and R. Scott, The mathematical theory of finite element methods, vol. 3. Springer Science & Business Media, 1994.; P. G. Ciarlet, The finite element method for elliptic problems, vol. 4. North - Holland, 1978.; L. Chen, “Finite element methods for Maxwell equations,” Lecture Notes, 2016.; J. C. Nédélec, “Mixed finite elements in rˆ3,” Numerische Mathematik, vol. 35, no. 3, pp. 315–341, 1980.; C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, “Vector potentials in three- dimensional non-smooth domains,” Mathematical Methods in the Applied Sciences, vol. 21, no. 9, pp. 823–864, 1998.; Z. Chen, Q. Du, and J. Zou, “Finite element methods with matching and nonmat- ching meshes for Maxwell equations with discontinuous coefficients,” SIAM Journal on Numerical Analysis, vol. 37, no. 5, pp. 1542–1570, 2000.; P. Jacobsson, “Nédélec elements for computational electromagnetics,” 2007.; J. H. Bramble, J. E. Pasciak, and J. Xu, “The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms,” Mathematics of Computation, vol. 56, no. 193, pp. 1–34, 1991.; A. Kirsch and P. Monk, “A finite element/spectral method for approximating the time-harmonic Maxwell system in Rˆ3,” SIAM Journal on Applied Mathematics, vol. 55, no. 5, pp. 1324–1344, 1995.; S. Caorsi, P. Fernandes, and M. Raffetto, “On the convergence of Galerkin fini- te element approximations of electromagnetic eigenproblems,” SIAM Journal on Numerical Analysis, vol. 38, no. 2, pp. 580–607, 2000.; D. Colton and R. Kress, “Inverse acoustic and electromagnetic scattering theory,”; R. Leis, “Initial boundary value problems in mathematical physics,” Tubner, 1986.; G. Hsiao, P. Monk, and N. Nigam, “Error analysis of a finite element - Integral equation scheme for approximating the time - harmonic Maxwell system,” SIAM journal on numerical analysis, vol. 40, no. 1, pp. 198–219, 2002.; B. López Rodríguez and M. Osorio, “Seminario sobre elementos finitos,” Lecture Notes, 2018.; C. Bahriawati and C. Carstensen, “Three MATLAB implementations of the lowest- order Raviart - Thomas MFEM with a posteriori error control,” Computational Methods in Applied Mathematics Comput. Methods Appl. Math., vol. 5, no. 4, pp. 333–361, 2005.; O. C. Zienkiewicz and R. L. Taylor, The finite element method: solid mechanics, vol. 2. Butterworth - Heinemann, 2000.; S. Nicaise, “Edge elements on anisotropic meshes and approximation of the Maxwell equations,” SIAM Journal on Numerical Analysis, vol. 39, no. 3, pp. 784–816, 2001.; L. Camargo, B. López-Rodrıguez, M. Osorio, and M. Solano, “An HDG method for Maxwell’s equations in heterogeneous media,”; D. Boffi, “A note on the de-Rham complex and a discrete compactness property,” Applied mathematics letters, vol. 14, no. 1, pp. 33–38, 2001.; D. Boffi, F. Brezzi, and L. Gastaldi, “On the convergence of eigenvalues for mixed formulations,” Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, vol. 25, no. 1-2, pp. 131–154, 1997.; D. Boffi, F. Brezzi, and L. Gastaldi, “On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form,” Mathematics of compu- tation, vol. 69, no. 229, pp. 121–140, 2000.; https://repositorio.unal.edu.co/handle/unal/78407

  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20