Výsledky vyhledávání - automatización programming— program synthesis general terms algorithms*

  1. 1
  2. 2

    Alternate Title: Perspectivas sobre la automatización y la creatividad en el montaje cinematográfico con Inteligencia Artificial (IA): una visión desde el sector profesional del documental. (Spanish)

    Zdroj: Communication & Society; 2024, Vol. 37 Issue 3, p201-219, 37p

    Geografický termín: SPAIN

  3. 3
  4. 4

    Alternate Title: Desarrollo Low-Code y No-Code en la Era de la Inteligencia Artificial: Una Revisión Sistemática. (Spanish)

    Zdroj: Data & Metadata; 2025, Vol. 4, p1-12, 12p

  5. 5
  6. 6
  7. 7
  8. 8

    Zdroj: Revista Colombiana de Computación; Vol. 4 Núm. 2 (2003): Revista Colombiana de Computación; 1-20

    Popis souboru: application/pdf

    Relation: https://revistas.unab.edu.co/index.php/rcc/article/view/1088/1060; https://revistas.unab.edu.co/index.php/rcc/article/view/1088; T. Arts and J. Giesl. Automatically proving termination where simplification orderings fail. In Proceedings of Theory and Practice of Software Development TAPSOFT’97, volume 1214 of LNCS, pages 261–272, 1997.; J. Giesl. Termination of nested and mutually recursive algorithms. J. of Automated Reasoning, 19:1–29, 1997.; W. A. Howard. The formulæ-as types notion of construction. In J. Hindley and J. Seldin, editors, To H.B. Curry: Essays on combinatory logic, lambda-calculus and formalism, pages 479–490. Academic Press, 1980.; F. Kamareddine and F. Monin. On automating inductive and non-inductive termination methods. In Proceedings of the 5th Asian Computing Science Conference, volume 1742 of LNCS, pages 177–189, 1999.; F. Kamareddine and F. Monin. On formalised proofs of termination of recursive functions. In Proceedings of the Int. Conf. on Principles and Practice of Declarative Programming, volume 1702 of LNCS, pages 29–46, 1999.; F. Kamareddine, F. Monin and M. Ayala-Rinc´on. On automating the extraction of programs from proofs using product types. In Proceedings of the 9th Workshop on Logic, Language, Information and Computation, WoLLIC’2002, Volume 67 of ENTCS, 20 pages, 2002.; J. L. Krivine. Lambda-calculus, Types and Models. Computers and Their Applications. Ellis Horwood, 1993.; J. L. Krivine and M. Parigot. Programming with proofs. J. Inf. Process Cybern, 26(3):149–167, 1990.; D. Leivant. Typing and computational properties of lambda expression. Theoretical Computer Science, 44:51–68, 1986.; P. Manoury. A user’s friendly syntax to define recursive functions as typed lambdaterms. In Proceedings of Type for Proofs and Programs TYPES’94, volume 996 of LNCS, pages 83–100, 1994.; P. Manoury, M. Parigot, and M. Simonot. ProPre, a programming language with proofs. In Proceedings of Logic Programming and Automated Reasoning, volume 624 of LNCS, pages 484–486, 1992.; P. Manoury and M. Simonot. Des preuves de totalit´e de fonctions comme synth`ese de programmes. PhD thesis, University Paris 7, 1992.; P. Manoury and M. Simonot. Automatizing termination proofs of recursively defined functions. Theoretical Computer Science, 135(2):319–343, 1994.; F. Monin and M. Simonot. An ordinal measure based procedure for termination of functions. Theoretical Computer Science, 254(1-2):63–94, 2001.; M. Parigot. Recursive programming with proofs: a second type theory. In Proceedings of the European Symposium on Programming ESOP’88, volume 300 of LNCS, pages 145–159, 1988.; M. Parigot. Recursive programming with proofs. Theoretical Computer Science, 94(2):335–356, 1992.; http://hdl.handle.net/20.500.12749/9046; instname:Universidad Autónoma de Bucaramanga UNAB; repourl:https://repository.unab.edu.co

  9. 9
  10. 10

    Alternate Title: Automatización de textos periodísticos en la televisión brasileña: estudio de caso del sistema AIDA (Globo-Brasil). (Spanish)

    Zdroj: Doxa Comunicación; Jul-Dec2019, Issue 29, p255-274, 20p

  11. 11
  12. 12
  13. 13

    Zdroj: Geophysical Research Abstracts; 2016, Vol. 18, p1-16028, 16028p

  14. 14
  15. 15
  16. 16
  17. 17

    Zdroj: Geophysical Research Abstracts; 2017, Vol. 19, p1-6903, 6903p

  18. 18
  19. 19
  20. 20