Výsledky vyhledávání - automatización machinery learning algorithm based on genetic algorithms*

  1. 1

    Alternate Title: Arquitectura de un Framework de ciberseguridad inteligente basado en tecnología Blockchain para IIoT. (Spanish)

    Zdroj: Ingeniería y Competitividad; jul-dic2022, Vol. 24 Issue 2, p1-13, 13p

  2. 2
  3. 3

    Alternate Title: Artificial intelligence for the advancement of health systems. Possible contributions and challenges. (English)

    Zdroj: Revista de Derecho de la Seguridad Social, Laborum; 2022 n4 extraordinario, p401-414, 14p

  4. 4
  5. 5
  6. 6

    Popis souboru: xxiii, 206 páginas; application/pdf

    Relation: [1] J. S. Restrepo Mendoza and E. Cordoba Nieto, “DISEÑO PARAMÉTRICO PARA CLASIFICACIÓN DE FAMILIAS DE PRODUCTOS EN MANUFACTURA DISCRETA EN EL LABFABEXUN,” in CONGRESO INTERNACIONAL DE INGENIERÍA MECÁNICA, MECATRÓNICA Y AUTOMATIZACIÓN - Memorias 2021, pp. 21–21, 2021.; Martin Hankel, “RAMI4.0 – Reference Architecture Model Industry 4.0.,” 11 2016.; TheOPCFoundation, “RAMI4.0 by Martin Hankel (Bosch-Rexroth) at OPC Day Europe 2016,” 2 2017.; Gonz´alez, “Measurement of Areas on a Sphere Using Fibonacci and Latitude-Longitude Lattices,” Mathematical Geosciences, vol. 42, pp. 49–64, 1 2010.; Departamento Nacional de Planeaci´on (DNP), Superintendencia de Industria y Comercio (SIC), Direcci´on Nacional de Derecho de Autor (DNDA), Instituto Colombiano Agropecuario (ICA), Organizaci´on Mundial de la Propiedad Intelectual (OMPI), and Misi´on permanente de Colombia ante las naciones Unidas, “Reporte sobre la informaci ´on en materia de Propiedad Intelectual en Colombia,” tech. rep., 2017.; J. Mountstephens and J. Teo, “Progress and challenges in generative product design: A review of systems,” 12 2020.; Z. Jiang, H. Wen, F. Han, Y. Tang, and Y. Xiong, “Data-driven generative design for mass customization: A case study,” Advanced Engineering Informatics, vol. 54, 10 2022.; P. Wolniak, B. Sauthoff, D. Kloock-Schreiber, and R. Lachmayer, “AUTOMATED PRODUCT FUNCTIONALITY and DESIGN OPTIMIZATION INSTANCING A PRODUCT-SERVICE SYSTEM,” in Proceedings of the Design Society: DESIGN Conference, vol. 1, pp. 1405–1414, Cambridge University Press, 2020.; M. A. S. Al-Shamsi, “Review of Korean Imitation and Innovation in the Last 60 Years,” 3 2022.; B. Bartikowski, F. Fastoso, and H. Gierl, “Luxury cars Made-in-China: Consequences for brand positioning,” Journal of Business Research, vol. 102, pp. 288–297, 9 2019; K. D. Thoben, S. A. Wiesner, and T. Wuest, “Industrie 4.0 and smart manufacturing-a review of research issues and application examples,” 2017.; D. G. Ullman, The Mechanical Design Process, vol. 1. 2010.; A. M. Farid and N. P. Suh, Axiomatic Design in Large Systems. 2016.; R. L. Norton, Dise˜no de m´aquinas. Un enfoque integrado. Pearson Educaci´on, cuarta edi ed., 2011.; S. BuHamdan, A. Alwisy, and A. Bouferguene, “Generative systems in the architecture, engineering and construction industry: A systematic review and analysis,” International Journal of Architectural Computing, 2020.; D. Nagaraj and D. Werth, “Towards a Generalized System for Generative Engineering,” in ACM International Conference Proceeding Series, Association for Computing Machinery, 1 2020.; S. Fox, “A preliminary methodology for generative production systems,” Journal of Manufacturing Technology Management, vol. 22, no. 3, pp. 348–364, 2011.; A. N. Pilagatti, G. Vecchi, E. Atzeni, L. Iuliano, and A. Salmi, “Generative Design and new designers’ role in the manufacturing industry,” in Procedia CIRP, vol. 112, pp. 364–369, Elsevier B.V., 2022.; C. Hyunjin, “A Study on Application of Generative Design System in Manufacturing Process,” in IOP Conference Series: Materials Science and Engineering, vol. 727, Institute of Physics Publishing, 1 2020.; J.Wu, M. Li, Z. Chen, W. Chen, X.Wu, and Y. Xi, “Generative Design of the Roller Seat of the Wind Turbine Blade Turnover Machine Based on Cloud Computing,” ICMAE 2020 - 2020 11th International Conference on Mechanical and Aerospace Engineering, pp. 212–217, 2020.; H. Li and R. Lachmayer, “Automated exploration of design solution space applying the generative design approach,” in Proceedings of the International Conference on Engineering Design, ICED, vol. 2019-August, pp. 1085–1094, Cambridge University Press, 2019.; S. Khan and M. J. Awan, “A generative design technique for exploring shape variations,” Advanced Engineering Informatics, vol. 38, no. October, pp. 712–724, 2018.; S. Khan, E. Gunpinar, and B. Sener, “GenYacht: An interactive generative design system for computer-aided yacht hull design,” Ocean Engineering, vol. 191, no. August, p. 106462, 2019.; E. Gunpinar and S. Gunpinar, “A shape sampling technique via particle tracing for CAD models,” Graphical Models, vol. 96, no. January, pp. 11–29, 2018; S. Oh, Y. Jung, S. Kim, I. Lee, and N. Kang, “Deep generative design: Integration of topology optimization and generative models,” Journal of Mechanical Design, Transactions of the ASME, vol. 141, 11 2019; P. Ghannad and Y. C. Lee, “Automated modular housing design using a module configuration algorithm and a coupled generative adversarial network (CoGAN),” Automation in Construction, vol. 139, 7 2022; N. A. Kallioras and N. D. Lagaros, “DzAI: Deep learning based generative design,” Procedia Manufacturing, vol. 44, pp. 591–598, 2020; N. A. Kallioras and N. D. Lagaros, “Mlgen: Generative design framework based on machine learning and topology optimization,” Applied Sciences (Switzerland), vol. 11, 12 2021; J. C. Garc´ıa Carrero, Planeaci´on de trayectorias en vuelo de un manipulador industrial para el Laboratorio F´abrica Experimental UN. PhD thesis, Universidad Nacional de Colombia, Bogot´a D.C, 2017; C. Sarmiento Fautoque, Desarrollo Te´orico- Experimental en la Geometr´ıa de Maquinado M´ulti-ejes aplicando Ingenier´ıa Inversa Mixta. PhD thesis, Universidad Nacional de Colombia, Bogot´a D.C., 2014; V. Granadeiro, L. Pina, J. P. Duarte, J. R. Correia, and V. M. Leal, “A general indirect representation for optimization of generative design systems by genetic algorithms: Application to a shape grammar-based design system,” Automation in Construction, vol. 35, pp. 374–382, 2013; H. Li and R. Lachmayer, “Generative Design Approach for Modeling Creative Designs,” IOP Conference Series: Materials Science and Engineering, vol. 408, no. 1, 2018; S. S. Pibal, K. Khoss, and I. Kovacic, “Framework of an algorithm-aided BIM approach for modular residential building information models,” International Journal of Architectural Computing, vol. 20, pp. 777–800, 12 2022; M. Younus, C. Peiyong, L. Hu, and F. Yuqing, “MES development and significant applications in manufacturing -A review,” in ICETC 2010 - 2010 2nd International Conference on Education Technology and Computer, vol. 5, 2010; T. A. Jauhar, M. Safdar, I. Kim, and S. Han, “Web-based Product Data Visualization and Feedback between PLM and MES,” in Proceedings - Web3D 2020: 25th ACM Conference on 3D Web Technology, Association for Computing Machinery, Inc, 11 2020; G. Bruno, A. Faveto, and E. Traini, “An open source framework for the storage and reuse of industrial knowledge through the integration of plm and mes,” Management and Production Engineering Review, vol. 11, pp. 62–73, 6 2020; E. Traini, G. Bruno, A. Awouda, P. Chiabert, and F. Lombardi, “Integration Between PLM and MES for One-of-a-Kind Production,” in IFIP Advances in Information and Communication Technology, vol. 565 IFIP, pp. 356–365, Springer, 2019; M. I. Mahmoud, H. H. Ammar, M. M. Hamdy, and M. H. Eissa, “Production operation management using Manufacturing Execution Systems (MES),” in 2015 11th International Computer Engineering Conference: Today Information Society What’s Next?, ICENCO 2015, pp. 111–116, Institute of Electrical and Electronics Engineers Inc., 2 2016; W. Qifeng and W. Zhangjian, “Web services-based system integration approach for manufacturing execution system,” in Proceedings - 2011 International Conference on Internet Computing and Information Services, ICICIS 2011, pp. 469–472, 2011; S.-H. Jing, Q.-J. Meng, and W.-Q. Cao, “Cement Enterprise MES Key Technology Research and Application,” in 2007 International Conference on Machine Learning and Cybernetics, pp. 277–282, IEEE, 8 2007; W. Qu, W. Cao, and Y. C. Su, “Design and implementation of smart manufacturing execution system in solar industry,” Journal of Ambient Intelligence and Humanized Computing, 2020; Y. Yue-Xina and R. Gong-Chang, “Design of Real Time Data Acquisition System Framework for Production Workshop Based on OPC Technology,” in MATEC Web of Conferences, vol. 128, EDP Sciences, 10 2017; X. Zeng, “Design and implementation of production management system in aviation machining workshop based on MES,” in Proceedings - International Conference on Control Science and Electric Power Systems, CSEPS 2021, pp. 385–388, Institute of Electrical and Electronics Engineers Inc., 5 2021; S. Mantravadi, C. Møller, C. LI, and R. Schnyder, “Design choices for next-generation IIoT-connected MES/MOM: An empirical study on smart factories,” Robotics and Computer-Integrated Manufacturing, vol. 73, 2 2022; J. Barata, P. R. da Cunha, A. S. Gonnagar, and M. Mendes, “Product traceability in ceramic industry 4.0: A design approach and cloud-based MES prototype,” in Lecture Notes in Information Systems and Organisation, vol. 26, pp. 187–204, Springer Heidelberg, 2018; M. Ko, C. Lee, and Y. Cho, “Design and Implementation of Cloud-Based Collaborative Manufacturing Execution System in the Korean Fashion Industry,” Applied Sciences (Switzerland), vol. 12, 9 2022; X. Han, M. Li, and X. Zhang, “Design and key technology of MES for spacecraft assembly,” in Proceedings - 2016 6th International Conference on Instrumentation and Measurement, Computer, Communication and Control, IMCCC 2016, pp. 844–847, Institute of Electrical and Electronics Engineers Inc., 12 2016; D. F. Tosse, S. Araujo, and E. C´ordoba, “Plataforma para integraci´on de m´aquinas en laboratorio f´abrica experimental con enfoque de Industria 4.0,” in Innovar para educar (Corporaci´on Cimted© 2020, ed.), vol. 1, pp. 125–146, Medell´ın, Antioquia – Colombia: Corporaci´on Centro Internacional de Marketing Territorial para la Educaci´on y el Desarrollo, primera ed., 2020; R. Y. Zhong, G. Q. Huang, Q. Y. Dai, K. Zhou, T. Qu, and G. J. Hu, “RFID-enabled real-time manufacturing execution system for discrete manufacturing: Software design and implementation,” in 2011 International Conference on Networking, Sensing and Control, ICNSC 2011, pp. 311–316, 2011; Y. Wang, M. Wang, J. Wang, and Y. Zhou, “Design and implementation of device integration framework based on agent technology in MES,” in Procedia CIRP, vol. 83, pp. 485–489, Elsevier B.V., 2019; G. D’Antonio, F. Segonds, J. S. Bedolla, P. Chiabert, and N. Anwer, “A proposal of manufacturing execution system integration in design for additive manufacturing,” in IFIP Advances in Information and Communication Technology, vol. 467, pp. 761–770, Springer New York LLC, 2016; M. Naedele, H. M. Chen, R. Kazman, Y. Cai, L. Xiao, and C. V. Silva, “Manufacturing execution systems: A vision for managing software development,” Journal of Systems and Software, vol. 101, pp. 59–68, 3 2015; T. Masood and R. H. Weston, “Modelling framework to support decision-making in manufacturing enterprises,” Advances in Decision Sciences, vol. 2013, 2013; H. Habib, R. Menhas, and O. McDermott, “Managing Engineering Change within the Paradigm of Product Lifecycle Management,” Processes, vol. 10, 9 2022; M. Hayat and H. Winkler, “Exploring the Basic Features and Challenges of Traditional Product Lifecycle Management Systems,” in IEEE International Conference on Industrial Engineering and Engineering Management, vol. 2022-December, pp. 762–766, IEEE Computer Society, 2022; S. R¨adler and E. Rigger, “A Survey on the Challenges Hindering the Application of Data Science, Digital Twins and Design Automation in Engineering Practice,” in Proceedings of the Design Society, vol. 2, pp. 1699–1708, Cambridge University Press, 5 2022; S. Nzetchou, A. Durupt, S. Remy, and B. Eynard, “Semantic enrichment approach for low-level CAD models managed in PLM context: Literature review and research prospect,” Computers in Industry, vol. 135, 2 2022; M. Lennartsson, S. Andr´e, and F. Elgh, “PLM support for design platforms in industrialized house-building,” Construction Innovation, 2 2021; V. Kopei, O. Onysko, C. Barz, P. Daˇsi´c, and V. Panchuk, “Designing a Multi-Agent PLM System for Threaded Connections Using the Principle of Isomorphism of Regularities of Complex Systems,” Machines, vol. 11, 2 2023; Y. Liao, F. Deschamps, E. d. F. R. Loures, and L. F. P. Ramos, “Past, present and future of Industry 4.0 - a systematic literature review and research agenda proposal,” International Journal of Production Research, vol. 55, no. 12, pp. 3609–3629, 2017; J. W. Veile, D. Kiel, J. M. M¨uller, and K. I. Voigt, “Lessons learned from Industry 4.0 implementation in the German manufacturing industry,” Journal of Manufacturing Technology Management, 2019; “Status Report Reference Architecture Model Industrie 4.0 (RAMI4.0),” tech. rep., 2015; A. F. Cifuentes G´omez, Implementaci´on de sistemas de gesti´on de informaci´on del ciclo de vida de producto basado en el desarrollo de un molde de inyecci´on. PhD thesis, Universidad Nacional de Colombia, Bogot´a, Colombia, 2021; P. Andr´es and C. Parra, “Modelo e-Manufacturing bajo la arquitectura Cloud Manufacturing para el Laboratorio F´abrica Experimental UN,” tech. rep., 2015; M. K. Mohanty, P. Gahan, and S. Choudhury, “Why most of the supplier development programs fail in discrete manufacturing – findings from selected Indian discrete manufacturing industries,” 2014; T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, and K. H. Johansson, “A survey of distributed optimization,” Annual Reviews in Control, vol. 47, pp. 278–305, 2019; A. K. Sethi and S. P. Sethi, “Flexibility in manufacturing: A survey,” International Journal of Flexible Manufacturing Systems, vol. 2, no. 4, pp. 289–328, 1990.; S. K. Saren and V. Tiberiu, “Review of Flexible Manufacturing System Based on Modeling and Simulation,” ANNALS OF THE ORADEA UNIVERSITY. Fascicle of Management and Technological Engineering., vol. Volume XXV, no. 1, 2016.; G. Kim, Y. Kwon, E. S. Suh, and J. Ahn, “Analysis of Architectural Complexity for Product Family and Platform,” Journal of Mechanical Design, Transactions of the ASME, vol. 138, no. 7, pp. 1–11, 2016; O. Asikoglu and T. W. Simpson, “A new method for evaluating design dependencies in product architectures,” 12th AIAA Aviation Technology, Integration and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, no. September, pp. 1–11, 2012; M. Lafou, L. Mathieu, S. Pois, and M. Alochet, “Manufacturing System Flexibility: Product Flexibility Assessment,” Procedia CIRP, vol. 41, pp. 99–104, 2016.; F. M. Kasie, G. Bright, and A. Walker, “Decision support systems in manufacturing: a survey and future trends,” Journal of Modelling in Management, vol. 12, no. 3, pp. 432– 454, 2017.; J. Igba, K. Alemzadeh, P. M. Gibbons, and K. Henningsen, “A framework for optimising product performance through feedback and reuse of in-service experience,” Robotics and Computer-Integrated Manufacturing, vol. 36, pp. 2–12, 2015; M. von Stietencron, K. A. Hribernik, C. C. Røstad, B. Henriksen, and K. D. Thoben, “Applying closed-loop product lifecycle management to enable fact based design of boats,” in IFIP Advances in Information and Communication Technology, vol. 517, pp. 522–531, Springer New York LLC, 2017; C. a. Coello Coello and G. B. Lamont, Applications Of Multi-Objective Evolutionary Algorithms. 2004; H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-objective optimization: A short review,” in 2008 IEEE Congress on Evolutionary Computation, CEC 2008, 2008.; G. Chiandussi, M. Codegone, S. Ferrero, and F. E. Varesio, “Comparison of multiobjective optimization methodologies for engineering applications,” Computers and Mathematics with Applications, vol. 63, no. 5, pp. 912–942, 2012.; G. Ortega, E. Filatovas, E. M. Garz´on, and L. G. Casado, “Non-dominated sorting procedure for Pareto dominance ranking on multicore CPU and/or GPU,” Journal of Global Optimization, vol. 69, pp. 607–627, 11 2017; L. B. De Oliveira, C. G. Marcelino, A. Milanes, P. E. Almeida, and L. M. Carvalho, “A successful parallel implementation of NSGA-II on GPU for the energy dispatch problem on hydroelectric power plants,” in 2016 IEEE Congress on Evolutionary Computation, CEC 2016, pp. 4305–4312, Institute of Electrical and Electronics Engineers Inc., 11 2016.; K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.; E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the Strength Pareto Evolutionary Algorithm,” Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp. 95–100, 2001; P. K. Tripathi, S. Bandyopadhyay, and S. K. Pal, “Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients,” Information Sciences, vol. 177, pp. 5033–5049, 11 2007.; X. Li, “A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization,” Genetic and Evolutionary Computation — GECCO 2003, vol. 2723, pp. 37–48, 6 2003; R. Sedgewick and K. Wayne, “Algorithms,” tech. rep; J. J. Craig, P. Prentice, and P. P. Hall, “Introduction to Robotics Mechanics and Control Third Edition,” tech. rep., 2005.; I. Viana, J.-J. Orteu, N. Cornille, and F. Bugarin, “Inspection of aeronautical mechanical parts with a pan-tilt-zoom camera: an approach guided by the computer-aided design model,” Journal of Electronic Imaging, vol. 24, no. 6, p. 061118, 2015; H. Huang, J. Liu, S. Liu, T. Wu, and P. Jin, “A method for classifying tube structures based on shape descriptors and a random forest classifier,” Measurement: Journal of the International Measurement Confederation, vol. 158, p. 107705, 2020; F. Hui, P. Payeur, and A. M. Cretu, “Visual tracking of deformation and classification of non-rigid objects with robot hand probing,” Robotics, vol. 6, no. 1, 2017.; J. K. Oh, S. Lee, and C. H. Lee, “Stereo vision based automation for a bin-picking solution,” International Journal of Control, Automation and Systems, vol. 10, no. 2, pp. 362–373, 2012; E. Gunpinar and S. Khan, A multi-criteria based selection method using non-dominated sorting for genetic algorithm based design. No. 65, Springer US, 2019; https://repositorio.unal.edu.co/handle/unal/85019; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  7. 7

    Alternate Title: Impact of large language models on quality and efficiency of code generation: Systematic Literature Review. (English)

    Zdroj: Revista Novasinergia; Jan-Jun2025, Vol. 8 Issue 1, p52-66, 15p

  8. 8

    Geografické téma: Colombia

    Popis souboru: application/pdf

    Relation: Teik-Cheng Lim. (2011) Nanosensors Theory and Applications in Industry, Healthcare and Defense. Boca Raton: Taylor and Francis Group, LLC. T. Pradeep. (2008) Nano: The Essentials Understanding Nanoscience and Nanotechnology. New York: McGraw-Hill.; Ahmed Busnaina. (2007) Nanomanfacturing Handbook. Boca Raton: Taylor and Francis Group, LLC.; Renzo Tomellini (2004) La nanotecnología. Innovaciones para el mundo del mañana. Luxemburgo: Comisión Europea; http://www.ijitee.org/attachments/File/v3i4/D1199093413.pdf; http://www.nano.gov/you/nanotechnology-benefits; http://blogs.creamoselfuturo.com/nano-tecnologia/; http://www.ehu.eus/sgi/software-de-calculo/siesta#informacingeneral; Fundación Española para la Ciencia y la Tecnología, FECYT (2009) NANOCIENCIA Y NANOTECNOLOGÍA Entre la ciencia ficción del presente y la tecnología del futuro. España: Fundación Española para la Ciencia y la Tecnología.; http://www.idepa.es/sites/web/idepaweb/Repositorios/galeria_descargas_idepa/AplicacionesIndustriales_Nanotecnologia.pdf; http://www.euroresidentes.com/futuro/nanotecnologia/diccionario/nanomateriales.htm; http://catarina.udlap.mx/u_dl_a/tales/documentos/leip/vega_m_d/indice.html PABLO R. HERNÁNDEZ RODRÍGUEZ Bioelectrónica, Departamento de Ingeniería Eléctrica, CINVESTAV IPN, México; Martinez, Pau & Marín, Pedro. “Diseño y estudio de una máquina de electrospinning”. Tomado de la red en Abril de 2017. Disponible en Internet: https://upcommons.upc.edu/pfc/bitstream/2099.1/7123/4/03_Mem%C3%B2ria.pdf; Jaimes Moreno, Edgar Mauricio. “Electroestimulador inteligente y sistema de clonación artificial de sensores de movimiento y control adaptativo-predictivo, por 143 143 acupuntura con agujas-electrodos y transmisión inalámbrica, evaluado en un diseño de prototipo construido”. Universidad Autónoma de Bucaramanga. 2009.; Siti Fatimah Abd Rahman, Nor Azah Yusof, Uda Hashim, M. Nuzaihan Md Nor. “Design and Fabrication of Silicon Nanowire based Sensor”. Institute of Advanced Technology, Universiti Putra Malaysia. 2013.; Rodriguez Pacheco, Jorge Humberto. “Prototipo automatizado para la implementacion de la técnica “electrospinning” en aplicaciones farmacológicas”. Universidad Autónoma de Bucaramanga. 2010.; Asgar, Z., Kodakara, S., & Lilja, D. (2005). Fault-tolerant image processing using stochastic logic (Tech. Rep.). Retrieved from http://www.zasgar.net/zain/publications/publications.php; Bryant, R., & Chen, Y. (1995). Verification of arithmetic circuits with binary moment diagrams. In Proceedings of the 32nd Design Automation Conference (DAC ’95), San Francisco (pp.535-541).; DeHon, A. (2005). Nanowire-based programmable architectures. ACM Journal on Emerging Technologies in Computing Systems, 1(2), 109–162. doi:10.1145/1084748.1084750; FENA. (2006). Mission statement. Retrieved from http://www.fena.org; Qian, W, Backes, J, Riedel, M. (2009). The synthesis of stochastic Circuits for Nanoscale Computation; [ADAM 94] ADAMI, C., Learning and complexity in genetic auto¬adaptive systems. California Institute of Technology, 1994.; [ADEL 95] ADELI, H., Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems. John Wiley and Sons, Inc, 1995; S. A. Pérez. 2002. “Diseño de Sistemas Digitales con VHDL”. Ed. Thomson. Neil H. E. Weste and Kamran Eshraghian. Principles of CMOS VLSI Design. Addison-Wesley, 2nd edition, 1994; Xilinx Inc., 2100 Logic Drive, San Jose, CA 95124. The Programmable Gate ArrayData Book, 1991.; National Acdemy of Science. Panel on Scientific and Medical Aspects of Human Cloning. August 7, 2001; Vera, F. (2006). “Sistema Electrónico de clonación Artificial de un Sensor de Viscocidad Basado en Hardware Evolutivo.” Universidad de Pamplona; WINTER, D. A. Biomechanics and Motor Control of Human Movement. Warterloo: Warterloo Press, 1991.; Pedro Carlos Russi. Estudo De Um Modelo Dinâmico Para Avaliação Física Do Corpo Humano. Faculdade de Engenharia de Guaratinguetá da Universidade Estadual Paulista. Sao Paulo. Brasil; Sistema electrónico de clonacion artificial de un sensor de viscosidad basado en hardware evolutivo. Fredy Vera Perez trabajo de grado para optar por el título de ingeniero electrónico. Universidad de Pamplona. 2006; Muñoz Antonio F. Sensorica e instrumentación, Mecánica de Alta precisión. . Pueblo y educación. 1997; Maneiro Malavé Ninoska. Algoritmos genéticos aplicados al problema cuadrático de asignación de facilidades. Departamento de Investigación Operativa, Escuela de Ingeniería Industrial, Universidad de Carabobo, Valencia. Venezuela. Febrero 2002; Faustino, A, Muñoz, Mariela. (2010). “Algoritmos y Sistemas Genéticos Aplicados en sistema de control en Tiempo Real Obtenido por Clonación Artificial para Prótesis Mecatrónica de Piel Artificial con Nanopartículas.”. Universidad Autónoma de Bucaramanga y Universidad del Cauca, Colombia; Beneficios de la Nanotecnología: Presentación. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/nanotecnologia_benecios.html; Caro Bejarano, José (2012). Los riesgos mundiales en el 2012 según el foro económico mundial. ieee.es. Tomado de la red en Abril de 2015. URL: http://www.ieee.es/Galerias/chero/docs_informativos/2012/DIEEEI06-2012_ForoEconomicoMundial_RiesgosGlobales2012_MJCaro_v2.pdf; García Díaz, J. (2006). Normalización sobre Nanotecnologías. AENOR, p. 26-28. Tomado de la red en Abril de 2015. URL: http://www.nanospain.org/les/Working%20Groups/NanoSpain_WGIndustrial_Normalizacion.pdf; José Luis Carrillo Aguado. Cómo es la Nanotecnología según la FDA. Perdiositasenlinea.org. Tomado de la red en Abril de 2015. URL: 145 145 http://www.periodistasenlinea.org/modules.php?op=modload&name=News&le=article&sid=23516; Marquez, J. (2008). Nanobioética, nanobiopolítica y nanotecnología. Revista Salud Uninorte. 24 (1), 140-157. Tomado de la red en Abril de 2015. URL: http://rcienticas.uninorte.edu.co/index.php/salud/article/view/3824/2435; Organización de las Naciones Unidas para la Agricultura y la Alimentación y Organización mundial de la salud. Reunión Conjunta FAO/OMS de Expertos acerca de la aplicación de la nanotecnología en los sectores alimentario y agropecuario: posibles consecuencias para la inocuidad de los alimentos. Informe. Consultado en http://www.fao.org/docrep/015/i1434s/i1434s00.pdf; Panorama y perspectivas de la nanotecnología. Revista Virtual Pro, Agosto 2009 (91), pp17-18. Tomado de la red en Abril de 2015. URL: http://www.revistavirtualpro.com/revista/index.php?ed=2009-08-01&pag=17; Riesgos de la Nanotecnología. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/riesgos_nanotecnologia.htm; Creus Sole, A. “Instrumentación Industrial”. 7 ed., México: Alfaomega, 2005; Delgado, A. Inteligencia Artificial y Minirobots. Ecoe Ediciones, 1998; Ghosh, A. N. R. Pal, and S. K. Pal, "Self-organization for object extraction using a multilayer neural network and fuzziness measures," IEEE Transactions on Fuzzy Systems, vol. 1, pp. 54-58, 1993.; CARDENAS, J., Diseño Geométrico de Carreteras, Primera Edición, Ecoe Ediciones, 2011.; CARREÑO, Y., Investigación de Sistemas de Control Inteligente del Tráfico Vehicular y Desarrollo de Instrumentación de Alta Precisión de Parámetros Asociados al Monitoreo, Mando y Control Automáticos de Carreteras Urbanas. Programa Jóvenes Investigadores e Innovadores "Virginia Gutiérrez de Pineda Colciencias, Colombia 2011; MONTEJO, A., Ingeniería de Pavimentos. Fundamentos, Estudios Básicos y Diseño, Tercera Edición, Tomo 1, Universidad Católica de Colombia, 2010; C. J. Lin, C. H. Chen, and C. T. Lin, "Efficient self-evolving evolutionary learning for neurofuzzy inference systems," IEEE Transactions on Fuzzy Systems, vol. 16, pp. 1476- 1490, 2008.; D. Goldberg. Genetics Algorithms in Search, Optimization and Machine Learning. Massachusetts: Addison-Wesley Reading, 1983; D. Nauck, F. Klawonn, and R. Kruse, "Foundations of neuro-fuzzy systems," Chichester,U.K.: Wiley, 1997.; D. Valdez, “Automatización en el área de bodega en una empresa de correo y mensajería para lograr una mayor productividad”. M.S. tesis, Universidad De San Carlos De Guatemala, Guatemala, 2005; F. E. Cellier, Continuous System Modeling. New York, 1991; F. Munoz, “Sistemas de control inteligentes de la planta de viscorreduccion basados en la clonacion artificial de un sensor de viscosidad y parámetros asociados”; G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B. Rosen, "Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps," IEEE Transactions on Neural Networks, vol. 3, pp. 698-713, 1992; H. Boudouda, H. Seridi H. Akdag. “The Fuzzy Possibilistic C-Means Classifier”, Asian Journal of Infomation Technology, Vol. 4, no 11, pp. 981-985, 2005.; H. Ishibuchi, M. Nii, and T. Murata, "Linguistic rule extraction from neural networks and genetic-algorithm-based rule selection," in IEEE International Conference on Neural Networks - Conference Proceedings, Houston, TX, USA, 1997, pp. 2390-2395.; H. R. Berenji and P. Khedkar, "Learning and tuning fuzzy logic controllers through reinforcements," IEEE Transactions on Neural Networks, vol. 3, pp. 724-740, 1992.; H. Takagi, N. Suzuki, T. Koda, and Y. Kojima, "Neural networks designed on approximate reasoning architecture and their applications," IEEE Transactions on Neural http://www.unipamplona.edu.co/unipamplona/hermesoft/portalIG/home_2/recursos/investigacion/contenidos/01102007/sistemas_control_inteligente.jsp. [Consultado 20 Marzo 2013].; I. Lache, F. Muñoz, “Investigación de nuevos prototipos de sensores y sistema de control por clonación artificial, basados en técnicas de inteligencia artificial” [En línea]. Disponible: http://ivanovichlache.googlepages.com/PaperPamILS.doc [Consultado 3 Febrero 2013; J. Castro, J. Padilla y E. Romero, “Metodología para realizar una automatización utilizando PLC,” Impulso, Revista De Electrónica, Eléctrica Y Sistemas Computacionales, Departamento de Eléctrica y Electrónica del Instituto Tecnológico de Sonora, vol. 1, nro. 1, pp. 18-21, 2005; J. J. Buckley and Y. Hayashi, "Fuzzy neural networks: A survey," Fuzzy Sets andSystems, vol. 66, pp. 1-13, 1994.; J. J. Hopfield and D. W. Tank, "'Neural' computation of decisions in optimization problems," Biological Cybernetics, vol. 52, pp. 141-152, 1985.; J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities," Proceedings of the National Academy of Sciences of the United States of America, vol. 79, pp. 2554-2558, 1982.; J. M. Keller and D. J. Hunt, "Incorporating fuzzy membership functions into the perceptron algorithm," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-7, pp. 693-699, 1985; J. M. Keller and H. Tahani, "Implementation of conjunctive and disjunctive fuzzy logic rules with neural networks," International Journal of Approximate Reasoning, vol. 6, pp.221-240, 1992.; J. M. Keller, R. Krishnapuram, and F. C.-H. Rhee, "Evidence aggregation networks for fuzzy logic inference," IEEE Transactions on Neural Networks, vol. 3, pp. 761-769,1992; J. Rissanen, "Modeling by shortest data description," Automatica, vol. 14, pp. 465-471, 1978; J.-S. R. Jang, "ANFIS: adaptive-network-based fuzzy inference system," IEEE Transactions on Systems, Man and Cybernetics, vol. 23, pp. 665-685, 1993; J.S.R. Jang, N. Gulley, Natick. Fuzzy Logic Toolbox. MS, Mathworks, 2000; K. J. Aström and P. Eykhoff, "System identification-A survey," Automatica, vol. 7, pp. 123-162, 1971; K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop, "Neural networks for control systems - A survey," Automatica, vol. 28, pp. 1083-1112, 1992; K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks," IEEE Transactions on Neural Networks, vol. 1, pp. 4-27, 1990.; L. Ljung and Z.-D. Yuan, "Asymptotic Properties of Black-Box Identification of Transfer Functions," IEEE Transactions on Automatic Control, vol. AC-30, pp. 514-530, 1985.; L. Ljung, "System Identification: Theory for the User.," New Jersey: Prentice-Hall, 1999.; L.-X. Wang and J. M. Mendel, "Fuzzy basis functions, universal approximation, and orthogonal least-squares learning," IEEE Transactions on Neural Networks, vol. 3, pp. 807-814, 1992; Muñoz Mariela, Muñoz F, (2010). Diseño De Un Sistema De Control Basado en Clonación Artificial, ISSN: 1692-7257 Revista Tecnologías Avanzada Universidad de Pamplona, Colombia; N. K. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction," IEEE Transactions on Fuzzy Systems, vol. 10, pp. 144-154, 2002; N. K. Sinha and B. Kuszta, Modeling and identification of dynamic systems: Springer,1983. Networks, vol. 3, pp. 752-760, 1992; P. Angelov P. Filev, “An approach to online identification of Takagi-Sugeno fuzzy models”, IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(1), pp. 484-498, 2004.; P. Eykhoff, "System Identification," John Wiley, 1974; Q. Song and N. K. Kasabov, "NFI: A neuro-fuzzy inference method for transductive reasoning," IEEE Transactions on Fuzzy Systems, vol. 13, pp. 799-808, 2005; Q. Song and N. Kasabov, "TWNFI - a transductive neuro-fuzzy inference system with weighted data normalization for personalized modeling," Neural Networks, vol. 19, pp. 1591-1596, 2006; R. Babuska, Fuzzy Modeling for Control: Kluwer Academic Publishers, 1998; R. Haber and H. Unbehauen, "Structure identification of nonlinear dynamic systems - Asurvey on input/output approaches," Automatica, vol. 26, pp. 651-677, 1990.; R. J. Oentaryo, M. Pasquier, and C. Quek, "GenSoFNN-Yager: A novel brain-inspired generic self-organizing neuro-fuzzy system realizing Yager inference," Expert Systems with Applications, vol. 35, pp. 1825-1840; R. Johansson, "System Modeling and Identification," in Information and System Sciences New Jersey: Prentice Hall, 1993; S. C. Lee and E. T. Lee, "Fuzzy neural networks," Mathematical Biosciences, vol. 23, pp. 151-177, 1975; S. K. Pal and S. Mitra, "Multilayer perceptron, fuzzy sets, and classification," IEEE Transactions on Neural Networks, vol. 3, pp. 683-697, 1992; S. Mitra and S. K. Pal, "Fuzzy multi-layer perceptron, inferencing and rule generation," IEEE Transactions on Neural Networks, vol. 6, pp. 51-63, 19; S. Mitra and Y. Hayashi, "Neuro-fuzzy rule generation: survey in soft computing framework," IEEE Transactions on Neural Networks, vol. 11, pp. 748-768, 2000.; S. Mitra, "Fuzzy MLP based expert system for medical diagnosis," Fuzzy Sets and Systems, vol. 65, pp. 285-296, 1994; S.J. Derby, “Design of Automatic Machinery”, New York: Marcel Dekker, 2005; T. Calonge, L. Alonso, and R. Ralha, "Transputer implementations of a multilayer perceptron used for speech-recognition task," Microcomputer Applications, vol. 16, pp.64-69, 1997.; T. Kohonen, "The self-organizing map," Proceedings of the IEEE, vol. 78, pp. 1464-1480, 1990; T. Söderström and P. Stoica, "System Identification," New York: Prentice Hall, 1989.; U.K.: Wiley, 1997.; W. A. Farag, V. H. Quintana, and G. Lambert-Torres, "A genetic-based neuro-fuzzy approach for modeling and control of dynamical systems," IEEE Transactions on Neural Networks, vol. 9, pp. 756-767, 1998; W. L. Tung and C. Quek, "eFSM - A novel online neural-fuzzy semantic memory model," IEEE Transactions on Neural Networks, vol. 21, pp. 136-157, 2010.; Y. Hayashi, J. J. Buckley, and E. Czogala, "Fuzzy neural network with fuzzy signals and weights," International Journal of Intelligent Systems, vol. 8, pp. 527-537, 1993; Automatización de las vías, carreteras e inteligencia de automoviles – Pölliita Fänii http://pollitafannimecatronica.wordpress.com/2011/12/08/automatizacion-de-las-vias-carreteras-e-inteligencia-de-automoviles; Carreteras, Análisis de Tráfico – Vaisala http://es.vaisala.com/sp/roads/applications/trafficanalysis/Pages/default.as; La DGT trabaja en un proyecto para instaurar en España sistemas inteligentes de comunicación entre el vehículo y la vía – Lukor 150 150 http://www.lukor.com/ordenadores/11012301.htm; Sistemas inteligentes de transporte ¿Realidad o Ficción? – Circula Seguro http://www.circulaseguro.com/vehiculos-y-tecnologia/sistemas-inteligentes-de-transporte-ficcion-o-realidad; Sistemas inteligentes de transporte http://www.google.com.co/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&ved=0CFEQFjAH&url=http%3A%2F%2Fwww.iies.es%2Fattachment%2F115765%2F&ei=yS5GUfTzLIrW0gGF3YDIBw&usg=AFQjCNF2RLjXUUjDjor9B-xqi5tlblePbw&bvm=bv.43828540,d.eWU&cad=rja; CICNetwork – Ciencia y Tecnología http://www.cicnetwork.es/upload/pdf/revistas/CN1.p; BARROSO OLIVEIA, Luis Manuel. Automatização e controlo de um sistema de electrospinning [en línea]. Universidade do Minho, Escola de Engenharia. Octubre de 2011. Disponible en Internet: https://repositorium.sdum.uminho.pt/bitstream/1822/16498/1/pg16155_TESE_MEM.pdf; DUQUE SÁNCHEZ, Lina Marcela; RODRÍGUEZ, Leonardo y LÓPEZ, Marcos. Electrospinning: La Era de las Nanofibras [en línea]. En: Revista Iberoamericana de Polímeros Volumen 14(1), Enero de 2013; Siti Fatimah Abd Rahman, Nor Azah Yusof, Uda Hashim, M. Nuzaihan Md Nor. “Design and Fabrication of Silicon Nanowire based Sensor”. Institute of Advanced Technology, Universiti Putra Malaysia. 2013; Qian, W, Backes, J, Riedel, M. (2009). The synthesis of stochastic Circuits for Nanoscale Computation.; Rodríguez Pacheco, Jorge Humberto. “Prototipo automatizado para la implementacion de la técnica “electrospinning” en aplicaciones farmacológicas”. Universidad Autónoma de Bucaramanga. 2010.; MANTILLA, Oscar Alberto. Diseño y Construcción de un Prototipo Electro-mecánico para la Implementación de la Técnica " Electrospinning " en Aplicaciones Farmacológicas. Junio de 2006.; Jie Chen y Hua Li, “Design Methodology for Hardware-efficient Fault-tolerant Nanoscale Circuits”, en IEEE International Symposium on Circuits and Systems’ 2006; USERO, Rafael y SUÁREZ, Natalia. Electrospinning de poliesteramidas Biodegradables [en línea]. 2010. [Citado 3 feb 2016] Disponible en Internet; MUÑOZ, A.F., Aplicación de los algoritmos genéticos en la identificación y control de bioprocesos por clonación artificial. IEEE Transactions on Systems, Man, and Cybernetic V 19 No. 2 58-76, 1998; MUÑOZ, A.F., Tecnología de clonación artificial on-line de sensores y controladores. Oficina Internacional de Invenciones, Patentes y Marcas, República de Cuba. Registros No. 7-789735, 2000; ADAMI, C., Learning and complexity in genetic auto¬adaptive systems. California Institute of Technology, 1994; ADELI, H., Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems. John Wiley and Sons, Inc, 1995.; Vera, F. “Sistema Electrónico de clonación Artificial de un Sensor de Viscocidad Basado en Hardware Evolutivo.” Universidad de Pamplona. 2006; Faustino, A, Muñoz, Mariela. (2010). “Algoritmos y Sistemas Genéticos Aplicados en sistema de control en Tiempo Real Obtenido por Clonación Artificial para Prótesis Mecatrónica de Piel Artificial con Nanopartículas.”. Universidad Autónoma de Bucaramanga y Universidad del Cauca, Colombia.; Beneficios de la Nanotecnología: Presentación. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/nanotecnologia_bene¬cios.htm; Caro Bejarano, José (2012). Los riesgos mundiales en el 2012 según el foro económico mundial. ieee.es. Tomado de la red en abril de 2015. URL: http://www.ieee.es/Galerias/-chero/docs_informativos/2012/DIEEEI06-2012_ForoEconomicoMundial_RiesgosGlobales2012_MJCaro_v2.pdf; García Díaz, J. (2006). Normalización sobre Nanotecnologías. AENOR, p. 26-28. Tomado de la red en Abril de 2015. URL: http://www.nanospain.org/-les/Working%20Groups/NanoSpain_WGIndustrial_Normalizacion.pdf; José Luis Carrillo Aguado. Cómo es la Nanotecnología según la FDA. Perdiositasenlinea.org. Tomado de la red en abril de 2015. URL: http://www.periodistasenlinea.org/modules.php?op=modload&name=News&-le=article&sid=23516; Marquez, J. (2008). Nanobioética, nanobiopolítica y nanotecnología. Revista Salud Uninorte. 24 (1), 140-157. Tomado de la red en Abril de 2015. URL: http://rcienti-cas.uninorte.edu.co/index.php/salud/article/view/3824/2435; Ingeniería en Nanotecnología. Upb. Tomado de la red en Mayo 17 de 2015. URL: http://www.upb.edu.co/portal/page?_pageid=1054,53529575&_dad=portal&_schema=PORTAL; GALVIS, Dalya Julieth. Sistema de electroestimulación por tecnología de fabricación de electrohilado. Noviembre de 2014; GAMBOA, Wilsón., MANTILLA, O., CASTILLO, V., Producción de micro y nano fibras a partir de la técnica “Electrospinning” para aplicaciones farmacológicas. Agosto, 2007, vol. 053, 1-4; J. Chen, J. Mundy, Y. Bai, S. Chan, P. Petrica, y R. I. Bahar, “A probabilistic approach to nano-computing,” En Proceedings of the Second Workshop on Non-Silicon Computing, San Diego, CA, Junio 2003.; K. N. Patel, I. L. Markov, y J. P. Hayes, “Evaluating circuit reliability under probabilistic gate-level fault models,” en IEEE International Workshop on Logic and Synthesis, 2003.; MODELAJE Y SIMULACION MULTIFISICA DE UN SENSOR DE GAS DE Sno2 EN COVENTORWARE™. Andrés Felipe Méndez Jiménez, Alba Ávila Bernal. Departamento de Ingeniería Eléctrica y Electrónica, Universidad de los Andes. Bogota, Colombia. Noviembre de 2005; MEMORIAS I SEMINARIO INTERNACIONAL DE NANOTECNOLOGÍA UDES 2011.; HERSEL U., DAHMEN C., KESSLER H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. Vol. 24, 2003, p. 4385-4415; DOSHI, Jayesh., RENEKER, Darrell H. Electrospinning process and applications of electrospun fibers: Journal of Electrostatic. Agosto, 1995, vol. 35. 151-160.; J.S.R Jang y Sun C.T(1993) Funcional Equivalence Berween Radial Basis Funtion Networks and Fuzzy Inference Systems. IEEE Transactions on Neuronal Networks.; K.F. Man and K.S. Tang Genetic Algorithms for Control and Signal Processing Department of Electronic Engineering City University of Hong Kong; Haber and H. Unbehauen, "Structure identification of nonlinear dynamic systems – A survey on input/output approaches," Automatica, vol. 26, pp. 651-677, 1990; Delgado Alberto Rule Based System with DNA Chip Proceedings of the 2003 IEEE International Symposium on Intelligent Control Houston, Texas October 5-8, 2003; D. Frenkel, B. Smit, Understanding Molecular Simulations software SIESTA: from algorithms to applications, Academic Press (1996; Huifei Rao, Jie Chen, Changhong Yu, Woon Tiong and others Ensemble Dependent Matrix Methodology for Probabilistic-Based Fault-tolerant Nanoscale Circuit Design; Muñoz Antonio F NUEVOS MÉTODOS Y PROCEDIMIENTOS DE ALTA PRECISIÓN APLICADO A PAVIMENTOS Y VÍA CERTIFICADO DE REGISTRO DE SOPORTE LÓGICO – SOFTWARE TÉCNICAS DE INTELIGENCIA ARTIFICIAL BASADOS EN ALGORITMOS GEN ÉTICOS PARA DETERMINAR EL DESEMPEÑO A PARTIR DE LOS PARÁMETROS DE COMPORTAMIENTO Libro - Tomo – Partida 13-40-467 Fecha Registro 03-Feb-2014; Durakbasa et PUC Río Brasil CERTIFICADO DE DERECHO DE AUTOR Registro 0410263/CA Fuzzy Logic Measurement Nanosystems d; Entrenamientos. “Fitness y electroestimulación”. Tomado de la red en Agosto de 2014. URL: http://www.entrenamientos.org/entrenamiento-fisico/item/70-fitness-y-electroestimulacion; Entrenamientos. “Entrenamiento físico y electroestimulación”. Tomado de la red en Agosto de 2014. URL: http://www.entrenamientos.org/entrenamiento-fisico/item/47-electroestimulacion; Martinez, Pau & Marín, Pedro. “Diseño y estudio de una máquina de electrospinning”. Tomado de la red en Agosto Septiembre de 2014. URL: https://upcommons.upc.edu/pfc/bitstream/2099.1/7123/4/03_Mem%C3%B2ria.pdf; Jaimes Moreno, Edgar Mauricio. “Electroestimulador inteligente y sistema de clonación artificial de sensores de movimiento y control adaptativo-predictivo, por acupuntura con agujas-electrodos y transmisión inalámbrica, evaluado en un diseño de prototipo construido”. Universidad Autónoma de Bucaramanga. 2009; Rodriguez Pacheco, Jorge Humberto. “Prototipo automatizado para la implementacion de la técnica “electrospinning” en aplicaciones farmacológicas”. Universidad Autónoma de Bucaramanga. 2010; FENA. (2006). Mission statement. Retrieved from http://www.fena.org Qian, W, Backes, J, Riedel, M. (2009). The synthesis of stochastic Circuits for Nanoscale Computation.; MUÑOZ, A.F., Aplicación de los algoritmos genéticos en la identificación y control de bioprocesos por clonación artificial. IEEE Transactions on Systems, Man, and Cybernetic V 19 No. 2 58-76, 19; MUÑOZ, A.F., Equipo de control genético de la composición en medios continuos on-line. Oficina Internacional de Invenciones, Patentes y Marcas, República de Cuba. Registros No. 7-789734, 2001; ADELI, H., Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems. John Wiley and Sons, Inc, 1995; Vera, F. (2006). “Sistema Electrónico de clonación Artificial de un Sensor de Viscocidad Basado en Hardware Evolutivo.” Universidad de Pamplona. WINTER, D. A. Biomechanics and Motor Control of Human Movement. Warterloo: Warterloo Press, 1991.; Maneiro Malavé Ninoska. Algoritmos genéticos aplicados al problema cuadrático de asignación de facilidades. Departamento de Investigación Operativa, Escuela de Ingeniería Industrial, Universidad de Carabobo, Valencia. Venezuela. Febrero 2; Faustino, A, Muñoz, Mariela. (2010). “Algoritmos y Sistemas Genéticos Aplicados en sistema de control en Tiempo Real Obtenido por Clonación Artificial para Prótesis Mecatrónica de Piel Artificial con Nanopartículas.”. Universidad Autónoma de Bucaramanga y Universidad del Cauca, Colomb; Beneficios de la Nanotecnología: Presentación. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/nanotecnologia_benecios.htm; García Díaz, J. (2006). Normalización sobre Nanotecnologías. AENOR, p. 26-28. Tomado de la red en Abril de 2015. URL: 157 157 http://www.nanospain.org/les/Working%20Groups/NanoSpain_WGIndustrial_Normalizacion.pdf; José Luis Carrillo Aguado. Cómo es la Nanotecnología según la FDA. Perdiositasenlinea.org. Tomado de la red en Abril de 2015. URL: http://www.periodistasenlinea.org/modules.php?op=modload&name=News&le=article&sid=23516; Panorama y perspectivas de la nanotecnología. Revista Virtual Pro, Agosto 2009 (91), pp17-18. Tomado de la red en Abril de 2015. URL: http://www.revistavirtualpro.com/revista/index.php?ed=2009-08-01&pag=17 Riesgos de la Nanotecnología. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/riesgos_nanotecnologia.htm; D. Olea, S.S. Alexandre, P. Amo-Ochoa, A. Guijarro, F. de Jesús, J.M. Soler, P.J. de Pablo, F. Zamora, J. Gómez Herrero, Advanced Materials 2005, 17, 1761-176; “Assembling of Dimeric Entities of Cd(II) with 6-Mercaptopurine to Afford One dimensional Coordination Polymers: Synthesis and Scanning Probe Microscopy Characterization”. P. Amo-Ochoa, M.I. Rodríguez-Tapiador, O. Castillo, D. Olea, A. Guijarro, S.S. Alexandre, J. Gómez-Herrero, F. Zamora, Inorganic Chemistry 2006, 45, 7642-7650.; “Electrical Conductivity in Platinum-Dimer Columns”. A. Guijarro, O. Castillo, A. Calzolari, P. J. Sanz Miguel, C. J. Gómez-García, R. di Felice, F. Zamora, Inorganic Chemistry 2008, 47, 9736-9738.; “Organization of Cordination Polymers on Surfaces by Direct Sublimation”. L. Welte, U. García-Couceiro, O. Castillo, D. Olea, C. Polop, A. Guijarro, A. Luque, J.; M. Gómez-Rodríguez, J. Gómez Herrero, F. Zamora, Advanced Materials 2009, 21, 2025-2028.; “Nanofibers generated by spontaneous self-assembly on surfaces of individual bimetallic building blocks”. R. Mas-Ballesté, R. Gonzalez-Prieto, A. Guijarro, M. A. Fernández, F. Zamora, Dalton Transactions 2009, Submitted; “MMX as conductors from single crystals to nanostructures”. A. Guijarro, O. Castillo, L. Welte, A. Calzolari, P. J. Sanz Miguel, C. J. Gómez-García, D. Olea, R. di Felice, J. Gómez-Herrero, F. Zamora, Journal of the American Chemical Society 2009, Subm; Ozin, G.; Arsenault, A. C. “Nanochemistry, A Chemical Aproach to Nanomaterials” RSC Publishing, 2005; página web http://www.intel.com, marzo 2009. 3 (a) Gates, B. D. Chem. Rev. 2005, 105, 1171-1196 (b) Barth, J. V. Nature 2005, 437,671-679.; Bibliografía Software Molecular workbench Charles Xie. SPORE, Science Prize for Online Resources in Education; http://www.sciencemag.org/site/special/spore/; Pryor. R. W. Multiphysics Modeling Using COMSOL: A First Principles Approach (Jones and Bartlett Publishers, Sudbury, MA, 2009).; Bridson, C. R. Batty, Science 330, 1756 (2010). Abstract/FREE Full Text; Finkelstein N. D. et al., Phys. Rev. Spec. Top. Phys. Educ. Res. 1, 010103 (2005). CrossRef; Klahr,L. M. Triona, C. Williams, J. Res. Sci. Teach. 44, 183 (2007). CrossRefWeb of Scie; Leach A. R., Molecular Modeling: Principles and Applications (Pearson Education, Upper Saddle River, NJ, ed.2, 2001). D. C. Rappaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, Cambridge,1997; N. Watanabe, M. Tsukada, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62, (2 Pt B), 2914 (2000). CrossRefPubMed; R. Feynman, J. Microelectromech. Syst. 1, 60 (1992). CrossRef; W. H. Schmidt, C. C. McKnight, S. A. Raizen , A Splintered Vision: An Investigation of U.S. Science and Mathematics Education (Kluwer Academic Press, Boston, MA, 1997).; National Research Council, Conceptual Framework for New Science Education Standards, update 7,March 2011; http://www7.nationalacademies.org/bose/Standards_Framework_Homepage.html. Y. B. Kafai, Games Cult. 1, 36 (2006).; William Humphrey, Andrew Dalke, and Klaus Schulten. VMD - Visual Molecular Dynamics. J. Mol. Graphics, 14:33-38, 199; Rajeev Sharma, Michael Zeller, Vladimir I. Pavlovic, Thomas S. Huang, Zion Lo, Stephen Chu, Yunxin Zhao, James C. Phillips, and Klaus Schulten. Speech/gesture interface to a visual-computing environment. IEEE Comp. Graph. App., 20:29-37, 2000.; Simon Cross, Michelle M. Kuttell, John E. Stone, and James E. Gain. Visualization of cyclic and multi-branched molecules with VMD. J. Mol. Graph. Model., 28:131-139, 2009.; John E. Stone, Axel Kohlmeyer, Kirby L. Vandivort, and Klaus Schulten. Immersive molecular visualization and interactive modeling with commodity hardware. Lect. Notes in Comp. Sci., 6454:382-393, 2010.; John E. Stone, Kirby L. Vandivort, and Klaus Schulten. Immersive out-of-core visualization of large-size and long-timescale molecular dynamics trajectories. Lect. Notes in Comp. Sci., 6939:1-12, 2011.; John E. Stone, William R. Sherman, and Klaus Schulten. Immersive molecular visualization with omnidirectional stereoscopic ray tracing and remote rendering. 2016 IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW), pages 1048-1057, 2016; Michael Zeller, James C. Phillips, Andrew Dalke, William Humphrey, Klaus Schulten, Rajeev Sharma, T. S. Huang, V. I. Pavlovic, Y. Zhao, Z. Lo, and S. Chu. A visual computing environment for very large scale biomolecular modeling. In Proceedings of the 1997 IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), pages 3-12. IEEE Computer Society Press, 1997; John E. Stone, Justin Gullingsrud, Paul Grayson, and Klaus Schulten. A system for interactive molecular dynamics simulation. In John F. Hughes and Carlo H. Séquin, editors, 2001 ACM Symposium on Interactive 3D Graphics, pages 191-194, New York, 2001. ACM SIGGRAPH.; Matthieu Chavent, Tyler Reddy, Joseph Goose, Anna Caroline E. Dahl, John E. Stone, Bruno Jobard, and Mark S.P. Sansom. Methodologies for the analysis of instantaneous lipid diffusion in MD simulations of 161 161 large membrane systems. Faraday Discuss., 169:455-475, 2014.; Benjamin G. Levine, John E. Stone, and Axel Kohlmeyer. Fast analysis of molecular dynamics trajectories with graphics processing units-radial distribution function histogramming. J. Comp. Phys., 230:3556-3569, 2011.; John Stone and Mark Underwood. Rendering of numerical flow simulations using MPI. In Second MPI Developer's Conference, pages 138-141. IEEE Computer Society Technical Committee on Distributed Processing, IEEE Computer Society Press, 1996.; John E. Stone. An Efficient Library for Parallel Ray Tracing and Animation. Master's thesis, Computer Science Department, University of Missouri-Rolla, April 1998.; John E. Stone, Barry Isralewitz, and Klaus Schulten. Early experiences scaling VMD molecular visualization and analysis jobs on Blue Waters. In Extreme Scaling Workshop (XSW), 2013, pages 43-50, Aug. 2013; I. Wald, G. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers, J. Gunther, and P. Navratil. OSPRay - a CPU ray tracing framework for scientific visualization. IEEE Transactions on Visualization and Computer Graphics, 23(1):1-1, 20; John E. Stone, James C. Phillips, Peter L. Freddolino, David J. Hardy, Leonardo G. Trabuco, and Klaus Schulten. Accelerating molecular modeling applications with graphics processors. J. Comp. Chem., 28:2618-2640, 2007.; John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone, and James C. Phillips. GPU computing. Proc. IEEE, 96:879-899, 2008; Christopher I. Rodrigues, David J. Hardy, John E. Stone, Klaus Schulten, and Wen-mei W. Hwu. GPU acceleration of cutoff pair potentials for molecular modeling applications. In CF'08: Proceedings of the 2008 conference on Computing Frontiers, pages 273-282, New York, NY, USA, 2008. AC; David J. Hardy, John E. Stone, and Klaus Schulten. Multilevel summation of electrostatic potentials using graphics processing units. J. Paral. Comp., 35:164-177, 2009.; Volodymyr Kindratenko, Jeremy Enos, Guochun Shi, Michael Showerman, Galen Arnold, John E. Stone, James Phillips, and Wen-mei Hwu. GPU clusters for high performance computing. In Cluster Computing and Workshops, 2009. CLUSTER '09. IEEE International Conference on, pages 1-8, 2009; John E. Stone, David J. Hardy, Ivan S. Ufimtsev, and Klaus Schulten. GPU-accelerated molecular modeling coming of age. J. Mol. Graph. Model., 29:116-125, 2010; John E. Stone, David Gohara, and Guochun Shi. OpenCL: A parallel programming standard for heterogeneous computing systems. Comput. in Sci. and Eng., 12:66-73, 2010.; Jeremy Enos, Craig Steffen, Joshi Fullop, Michael Showerman, Guochun Shi, Kenneth Esler, Volodymyr Kindratenko, John E. Stone, and James C. Phillips. Quantifying the impact of GPUs on performance and energy efficiency in HPC clusters. In International Conference on Green Computing, pages 317-324, 2010.; John E. Stone, David J. Hardy, Barry Isralewitz, and Klaus Schulten. GPU algorithms for molecular modeling. In Jack Dongarra, David A. Bader, and Jakub Kurzak, editors, Scientific Computing with Multicore and Accelerators, chapter 16, pages 351-371. Chapman & Hall/CRC Press, 2011; David J. Hardy, Zhe Wu, James C. Phillips, John E. Stone, Robert D. Skeel, and Klaus Schulten. Multilevel summation method for electrostatic force evaluation. J. Chem. Theor. Comp., 11:766-779, 201; John E. Stone, Ryan McGreevy, Barry Isralewitz, and Klaus Schulten. GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting. Faraday Discuss., 169:265-283, 2014; Abhishek Singharoy, Ivan Teo, Ryan McGreevy, John E. Stone, Jianhua Zhao, and Klaus Schulten. Molecular dynamics-based refinement and validation with Resolution Exchange MDFF for sub-5 Å cryo-electron microscopy maps. eLife, 10.7554/eLife.16105, 2016. (66 pages).; John E. Stone, Juan R. Perilla, C. Keith Cassidy, and Klaus Schulten. GPU-accelerated molecular dynamics clustering analysis with OpenACC. In Robert Farber, editor, Parallel Programming with OpenACC, pages 215-240. Morgan Kaufmann, Cambridge, MA, 2016; John E. Stone, Jan Saam, David J. Hardy, Kirby L. Vandivort, Wen-mei W. Hwu, and Klaus Schulten. High performance computation and interactive display of molecular orbitals on GPUs and multi-core CPUs. In Proceedings of the 2nd Workshop on General-Purpose Processing on Graphics Processing Units, ACM International Conference Proceeding Series, volume 383, pages 9-18, New York, NY, USA, 2009. ACM.; John E. Stone, David J. Hardy, Jan Saam, Kirby L. Vandivort, and Klaus Schulten. GPU-accelerated computation and interactive display of molecular orbitals. In Wen-mei Hwu, editor, GPU Computing Gems, chapter 1, pages 5-18. Morgan Kaufmann Publishers, 2011; John E. Stone, Michael J. Hallock, James C. Phillips, Joseph R. Peterson, Zaida Luthey-Schulten, and Klaus Schulten. Evaluation of emerging energy-efficient heterogeneous computing platforms for biomolecular and cellular simulation workloads. 2016 IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW), pages 89-100, 2016.; John E. Stone, Antti-Pekka Hynninen, James C. Phillips, and Klaus Schulten. Early experiences porting the NAMD and VMD molecular simulation and analysis software to GPU-accelerated OpenPOWER platforms. Lect. Notes in Comp. Sci., 9945:188-206, 2016; Michael Krone, John E. Stone, Thomas Ertl, and Klaus Schulten. Fast visualization of Gaussian density surfaces for molecular dynamics and particle system trajectories. In EuroVis - Short Papers 2012, pages 67-71, 2012; Elijah Roberts, John E. Stone, and Zaida Luthey-Schulten. Lattice microbes: High-performance stochastic simulation method for the reaction-diffusion master equation. J. Comp. Chem., 34:245-255, 2013.; Structures et fonctions des molécules biologiques. Utilisations pédagogiques des visualisations tridimensionnelles avec Rasmol. J. Barrère, J-Y Dupont and N. Salamé. INRP, 1997, 128 pages.; Surprising similarities in structure comparison. Jean-François Gilbrat, Thomas Madej, and Stephen H. Bryant. Current Opinion in Structural Biology 6:377-385, 1996. A review of early results of searcing for similarities in structure, regardless of sequence similarities. Describes the Vector Alignment Search Tool (VAST) provided by the US National Center for Biotechnology Information; GlaxoWellcome and MDL become entangled in the Web, by John Hodgson, Nature Biotechnology 14:690, June 1996. This article concerning RasMol and Chime is full of errors. See the editorial comment; A Dynamic Look at Structures: WWW-Entrez and the Molecular Modeling Database, by Christopher W. V. Hogue, Hitomi Ohkawa and Stephen H. Bryant. Trends in Biochemical Sciences, 21:226-9, 1996. All PDB files have been converted to the WWW-Entrez format ASN.1. This format can handle a broader range of 3D structural information, including for example models from electron microscopy. WWW-Entrez links 3D structural information with GenBank sequences and MEDLINE abstracts. Related structures can be identified. Kinemage animations are generated automatically to reveal information buried in PDB files, such as thermal factors, disordered zones, and multiple NMR models.; RasMol: Biomolecular graphics for all, by Roger A. Sayle and E. James Milner-White, Trends in Biochemical Sciences 20(Sept):374-376, 1995. RasMol was first widely distributed via the Internet in June, 1993, but this is the original paper publication describing RasMol; Hyperactive Molecules and the World-Wide-Web Information System, by Omer Casher, Gudge K. Chandramohan, Martin J. Hargreaves, Christopher Leach, Peter Murray-Rust, Henry S. Rzepa, Roger A. Sayle and Benjamin J. Whitaker. J. Chem. Soc., Perkin Trans. 2, 1995, 7. This paper proposes sharing chemical data too bulky for journal publication via World Wide Web. To accomplish this, it introduces various new chemical MIME (Multipurpose Internet Mail Extension) types, including chemical/x-csml for the Chemical Structure Markup Language which can be understood by RasMol; Software for viewing biomolecules in three dimensions on the Internet, by Alvaro Sanchez-Ferrer, Estrella Nunez-Delicado, and Roque Bru, Trends in Biochemical Sciences 20(July):286-288, 1995.Compares RasMol 2.5, pdVwin, Pkin_2_4/Mage_2_4, Hyperchem 3; Utilisations pédagogiques des visualisations tridimensionelles de molécules en biologie, by J. Barrère, J.-Y. Dupont, and N. Salamé, in Images numériques dan l'enseignement des sciences, Journées d'études CNAM, June 1995, J. C. Le Touzé and N. Salamé, eds., Institut Nationale de Recherche Pédagogique, pp. 87-93. A brief introduction to the use of RasMol for educational molecular visualization of DNA and proteins, touching on hemoglobin and the active site of carboxypeptidase. Illustrated.; Kinemages: make your own molecules for teaching, by Charles W. Sokolik, Trends in Biochemical Sciences 20(March):122-4, 1995; Kinemages -- simple macromolecular graphics for interactive teaching and publication, by David C. Richardson and Jane S. Richardson, Trends in Biochemical Sciences 19(March):135-8, 1994.; CPK models are very informative during the process of putting them together, but the completed models all look alike. Computer versions of CPK models have successfully imitated their appearance and most of their disadvantages (the fact that the inside is completely hidden, and the difficulty of identifying an atom or group), without, so far, imitating the real virtue of CPK's, which is the physical "feel" for the bumps, constraints, and degrees of freedom one obtains by manipulating them.; The Kinemage: A tool for scientific communication, by David C. Richardson, and Jane S. Richardson, Protein Science 1:3-9, 1992; Feynman. R, There’s Plenty of Room at the Bottom, American Physical Society, 1959. H.D. Gilbert, Miniaturization Reinhold Publishing Corp, N.Y, 1961,282. http://www.zyvex.com/nanotech/feynman.html. 2 N. Taniguchi, “On the Basic Concept of Nanotechnology”, Proc.Intl.Conf.Prod.Eng, Tokyo 1974, 18. 3 T. Theis, D. Parr, P. Binks, J. Ying, K. E.; Drexler, E. Schepers, K. Mullis, C. Bai, J. J. Boland, R. Langer, P. Dobson, C. N. R. Rao, M. Ferrari, , Nat.Nanotech. 2006,1,8. 4 J. J. Ramsden, Nanotechnology: An Introduction, Elsevier, Amsterdam, 2011. 5 (a) G. Binnig, H. Rohrer, IBM Journal of Research and Development 1986,30,355. (b) G.; Binnig, H. Rohrer, Rev. Mod. Phys. 1987, 59,615. 6 D. Eigler, E. Schweizer, Nature 1990,344,.524. 7 167 167 http://researcher.watson.ibm.com/researcher/view_group.php?id=4245 8 (a) C. P. Poole Jr., F. J.; Owens, Introduction To Nanotechnology, John Wiley & Sons, New Yersey, 2003. (b) R. Kelsall, I. W. Hamley, M. Geoghegan, Nanoscale Science and Technology, John Wiley & Sons, UK, 2005. 9 (a) M. Pagliaro, Nano-Age: How Nanotechnology Changes our Future, Wiley-VCH, Weinheim 2010 (b) J. J. Ramsden, Applied Nanotechnology. The Conversion of Research Results to Products, Elsevier, Amsterdam, 2014; V.V. Pokropivny, V.V. Skorokhod, Mater.Sci.Eng.C 2007,27,990. (b) K. Ariga, M. Li, G. J. Richards, J. P. Hill, J. Nanosci.Nanotechnol.2011,11,1. 11 (a) M. Wautelet, Eur. J. Phys. 2001; E. Roduner, Chem. Soc. Rev. 2006, 35, 583. (c) G. Hodes, Adv. Mater. 2007, 19, 639. 12 C. Baia, M. Liub, Nano Today 2012,7,258. 13 (a) B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, Chem. Rev. 2005, 105, 1171. (b) M. J. Köhler, W. Fritzsche, Nanotechnology: An Introduction to Nanostructuring Techniques, 2nd Ed., Wiley-VCH, Weinheim, 2007.; The Royal Society & The Royal Academy of Engineering, Nanoscience and nanotechnologies: opportunities and uncertainties, London, 2004 (http://www.nanotec.org.uk/finalReport.htm).; T. Ito, S. Okazaki, Nature 2000,406,1027.; Basnar, I. Willner, Small 2009,5,28; G. Cao, Nanostructures and nanomaterials, Imperial College Press, London, UK, 2009.; Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, J. N. Coleman, Science 2013,340,1420; http://hdl.handle.net/20.500.12749/7272; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co

  9. 9

    Popis souboru: 94 páginas; application/pdf

    Relation: Adebiyi, Ayodele A., Aderemi O. Adewumi, and Charles K. Ayo. 2014a. “Stock Price Prediction Using the ARIMA Model.” Pp. 106–12 in Proceedings - UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, UKSim 2014. Institute of Electrical and Electronics Engineers Inc.; Adebiyi, Ayodele A., Aderemi O. Adewumi, and Charles K. Ayo. 2014b. “Stock Price Prediction Using the ARIMA Model.” Proceedings - UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, UKSim 2014 106–12. doi:10.1109/UKSIM.2014.67.; Amin Naseri, Mohamad Reza, Farimah Mokhatab Rafiee, and Shadi Khalil Moghadam. 2020. “Modeling Portfolio Optimization Based on Fundamental Analysis Using an Expert System in the Real Estate Industry.” International Journal of Supply and Operations Management 7(1):39–50. doi:10.22034/IJSOM.2020.1.3.; Andrés Arévalo, Jaime Niño, German Hernández, and Javier Sandoval. 2016. “High-Frequency Trading Strategy Based on Deep Neural Networks.” Lecture Notes in Computer Science.; Angarita-Zapata, Juan S., Antonio D. Masegosa, and Isaac Triguero. 2020. “General-Purpose Automated Machine Learning for Transportation: A Case Study of Auto-Sklearn for Traffic Forecasting.” Pp. 728–44 in Communications in Computer and Information Science. Vol. 1238 CCIS. Springer.; Anon. n.d. “Sklearn.Preprocessing.MinMaxScaler — Scikit-Learn 1.2.0 Documentation.” Retrieved December 22, 2022 (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html).; Arce, Paola, Jonathan Antognini, Werner Kristjanpoller, and Luis Salinas. 2017. “Fast and Adaptive Cointegration Based Model for Forecasting High Frequency Financial Time Series.” Computational Economics 2017 54:1 54(1):99–112. doi:10.1007/S10614-017-9691-7.; Arlt, Josef, and Markéta Arltová. 2001. “Financial Time Series and Their Features.” Acta Oeconomica Pragensia 9(4).; Atehortúa Granados, Johm Alexánder. 2012. Mercado de Capitales y Portafolios de Inversión. Vol. 1. Ediciones de la U. edited by L. D. López Escobar. Medellín.; Bansal, Alok, Yogeshwari Phatak, and Raj Kishore Sharma. 2015. Quality Management Practices for Global Excellence. Vol. 1. 1st ed. New Delhi: Prestige Institute of Management and Research, Indore.; Bendraou, Youssef, Nathan Ramoly, and Baba Seydou Bamba. 2020. “Toward a Generic Automl-Based Assistant for Contracts Negotiation.” Pp. 2877–78 in Frontiers in Artificial Intelligence and Applications. Vol. 325. IOS Press BV.; Bis. 2022a. Triennial Central Bank Survey OTC Foreign Exchange Turnover in April 2022.; Bis. 2022b. Triennial Central Bank Survey OTC Foreign Exchange Turnover in April 2022.; CFI Team. 2022. “Momentum - Overview, How to Calculate, Absolute vs. Relative.” Retrieved January 21, 2023 (https://corporatefinanceinstitute.com/resources/wealth-management/momentum/).; Chakraborty, Uday Kumar. 1995. “A Branching Process Model for Genetic Algorithms.” Information Processing Letters 56:281–92.; Chande, Tushar S. 1997. Beyond Technical Analysis : How to Develop and Implement a Winning Trading System. Wiley.; Coggins, R., B. Flower, D. Dersch, M. A. Jabri, and Bai-Ling Zhang. 2002. “Multiresolution Forecasting for Futures Trading Using Wavelet Decompositions.” IEEE Transactions on Neural Networks 12(4):765–75. doi:10.1109/72.935090.; Conway, Mark R., and Aaron N. Behle. 2002. Professional Stock Trading System Design and Automation. San Diego.; Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002a. “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation 6(2):182–97. doi:10.1109/4235.996017.; Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002b. “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation 6(2):182–97. doi:10.1109/4235.996017.; Durán Herrera, Juan José. 2011. Diccionario de Finanzas. edited by L. Perdices de Blas. Madrid: Ecobook - Editorial del Economista.; Edwards, Robert D., John Magee, and W. H. C. Bassetti. 2021. Análisis Técnico de Las Tendencias de Los Valores . Vol. 1. 10th ed. Profit Editorial I.; Elearnmarkets by StockEdge. 2022. “Best 25 Technical Indicators Every Trader Should Know.” Elearnmarkets . Retrieved December 16, 2022 (https://www.elearnmarkets.com/blog/best-25-technical-indicators/).; Evans, Benjamin Patrick. 2019. Population-Based Ensemble Learning with Tree Structures for Classification.; Fama, Eugene F. 1970. “Efficient Capital Markets: A Rewiew of Theory and Empirical Work.” The Journal of Finance 25(2):383–417.; Fama, Eugene F. 1970. “Session Topic: Stock Market Price Behavior Session Chairman: Burton G. Malkiel Efficient Capital Markets: A Review Of Theory And Empirical Work.” The Journal of Finance 25(2):383–417. doi:10.1684/bdc.2014.1986.; Feurer, Matthias, Aaron Klein, Katharina Eggensperger Jost, Tobias Springenberg, Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine Learning.; Fikri, Noussair, Khalid Moussaid, Mohamed Rida, Amina el Omri, and Noureddine Abghour. 2022. A Channeled Multilayer Perceptron as Multi-Modal Approach for Two Time-Frames Algo-Trading Strategy. Vol. 13.; Fitschen, Keith. 2013. Building Reliable Trading Systems. Wiley. New Jersey: John Wiley & Sons, Inc.; Fortin, Félix-Antoine, Ulavalca Marc-André Gardner, Marc Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algorithms Made Easy François-Michel De Rainville. Vol. 13.; Friedhoff, Jerry M., and Mo Mansouri. 2017. “A Framework for Assessing Technology Risks in Transaction-Based Extended Enterprises: U.S. Capital Market Case.” IEEE Systems Journal 11(3):1505–15. doi:10.1109/JSYST.2015.2495282.; Gerlein, Eduardo A., Martin McGinnity, Ammar Belatreche, and Sonya Coleman. 2016. “Evaluating Machine Learning Classification for Financial Trading: An Empirical Approach.” Expert Systems with Applications 54:193–207. doi:10.1016/j.eswa.2016.01.018.; Gijsbers, Pieter, Erin LeDell, Janek Thomas, Sébastien Poirier, Bernd Bischl, and Joaquin Vanschoren. 2019. “An Open Source AutoML Benchmark.”; H20.ia. 2023. “H2O AutoML.” Retrieved January 8, 2023 (https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html).; Halls-Moore, Michael L. 2016. Advanced Algorithmic Trading. Vol. 1. QuantStar.; Han, Xiao, Alexander Belyakov, Ben Sila, Tao Shu, Yu Wang, and Wei Xiong. 2020. Risks versus Mispricing: Decomposing Asset Pricing Anomalies via Classification *.; Heffetz, Yuval, Roman Vainshtein, Gilad Katz, and Lior Rokach. 2020. “DeepLine: AutoML Tool for Pipelines Generation Using Deep Reinforcement Learning and Hierarchical Actions Filtering.” Pp. 2103–13 in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery.; Henrique, Bruno Miranda, Vinicius Amorim Sobreiro, and Herbert Kimura. 2019. “Literature Review: Machine Learning Techniques Applied to Financial Market Prediction.” Expert Systems with Applications 124:226–51. doi:10.1016/j.eswa.2019.01.012.; Holland, John. 1975. “Adaptation in Natural And Artificial Systems.” MIT Press.; Hsu, Chih-Wei, Chih-Chung Chang, and Chih-Jen Lin. 2003. “A Practical Guide to Support Vector Classification.”; Hsu, Yushan, Ming Fu Hsu, and Sin Jin Lin. 2016. “Corporate Risk Estimation by Combining Machine Learning Technique and Risk Measure.” in 2016 IEEE/ACIS 15th International Conference on Computer and Information Science, ICIS 2016 - Proceedings. Institute of Electrical and Electronics Engineers Inc.; Huang, Haiying, Wuyi Zhang, Gaochao Deng, and James Chen. 2015. “Predicting Stock Trend Using Fourier Transform and Support Vector Regression.” Proceedings - 17th IEEE International Conference on Computational Science and Engineering, CSE 2014, Jointly with 13th IEEE International Conference on Ubiquitous Computing and Communications, IUCC 2014, 13th International Symposium on Pervasive Systems, 213–16. doi:10.1109/CSE.2014.70.; J. Welles Wilder Jr. 1978a. NEW CONCEPTS IN TECHNICAL TRADING SYSTEMS.; J. Welles Wilder Jr. 1978b. New Concepts in Technical Trading Systems.; Jin, Haifeng, Qingquan Song, and Xia Hu. 2019. “Auto-Keras: An Efficient Neural Architecture Search System.” doi:10.1145/3292500.; Johnson, Barry. 2010. Algorithmic Trading and DMA. 4Myeloma Press. Londres.; Kaufman, Perry J. 1995. Smarter Trading Improving Performance in Changing Markets. edited by McGraw-Hill.; Laadan, Doron, Roman Vainshtein, Yarden Curiel, Gilad Katz, and Lior Rokach. 2019. “RankML: A Meta Learning-Based Approach for Pre-Ranking Machine Learning Pipelines.”; Larraga, Pablo. 2008. Mercado Monetario y Mercado de Renta Fija Conocimiento de Los Dos Grandes Mercados Para Entender Las Valoraciones Del Resto de Mercados Financieros. PROFIT.; Leles, Michel Carlo Rodrigues, Leonardo Amaral Mozelli, Elton Felipe Sbruzzi, Cairo Lucio Nascimento Junior, and Homero Nogueira Guimaraes. 2020. “A Multicriteria Trading System Based on Singular Spectrum Analysis Trading Rules.” IEEE Systems Journal 14(1):1468–78. doi:10.1109/JSYST.2019.2924390.; López, José Francisco. 2018. “Sistema de Trading - Qué Es, Definición y Concepto.” Economipedia.Com. Retrieved January 21, 2023 (https://economipedia.com/definiciones/sistema-de-trading.html).; Maini, Sahaj Singh, and K. Govinda. 2017. “Stock Market Prediction Using Data Mining Techniques.”; Mauricio, José Alberto. 2007. “Series Temporales.” Pp. 1–1 in Introducción al Análisis de Series Temporales . Vol. 1. Madrid : Universidad Complutense de Madrid.; MetaQuotes. n.d. “MetaTrader5.” Retrieved January 30, 2023 (https://www.metatrader5.com/es).; Microsoft. n.d. “¿Qué Es El Aprendizaje Automático Automatizado (AutoML).” Retrieved January 7, 2023 (https://learn.microsoft.com/es-es/azure/machine-learning/concept-automated-ml#how-does-automl-work).; Mohr, Felix, Marcel Wever, and Eyke Hüllermeier. 2018. “ML-Plan: Automated Machine Learning via Hierarchical Planning.” Machine Learning 107(8–10):1495–1515. doi:10.1007/s10994-018-5735-z.; Molina Valdivieso, Ignacio. 2015. “Mercado de Derivados Financieros: Futuros y Opciones.” Universidad Miguel Hernández, España.; Morin, Michael, Frederik Paradis, Amelie Rolland, Jean Wery, Jonathan Gaudreault, and Francois Laviolette. 2016. “Machine Learning-Based Metamodels for Sawing Simulation.” Pp. 2160–71 in Proceedings - Winter Simulation Conference. Vols. 2016-February. Institute of Electrical and Electronics Engineers Inc.; Ms Management Solutions. 2020. Auto Machine Learning, Hacia La Automatización de Los Modelos.; Mustapa, Farah Hayati, and Mohd Tahir Ismail. 2019. “Modelling and Forecasting S&P 500 Stock Prices Using Hybrid Arima-Garch Model.” in Journal of Physics: Conference Series. Vol. 1366. Institute of Physics Publishing.; Nuti, Giuseppe, Mahnoosh Mirghaemi, Philip Treleaven, and Chaiyakorn Yingsaeree. 2011. Algorithmic Trading RE SE A RCH FE ATURE.; Olson, Randal S., Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore. 2016a. “Evaluation of a Tree-Based Pipeline Optimization Tool for Automating Data Science.”; Olson, Randal S., Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore. 2016b. “Evaluation of a Tree-Based Pipeline Optimization Tool for Automating Data Science.”; Park, Cheol-Ho, and Scott H. Irwin. 2004. “The Profitability of Technical Analysis: A Review.” SSRN Electronic Journal. doi:10.2139/SSRN.603481.; Patel, Jigar, Sahil Shah, Priyank Thakkar, and K. Kotecha. 2015. “Predicting Stock and Stock Price Index Movement Using Trend Deterministic Data Preparation and Machine Learning Techniques.” Expert Systems with Applications 42(1):259–68. doi:10.1016/j.eswa.2014.07.040.; Pedregosa, Fabian, Vincent Michel, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Jake Vanderplas, David Cournapeau, Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Bertrand Thirion, Olivier Grisel, Vincent Dubourg, Alexandre Passos, Matthieu Brucher, Matthieu Perrot andÉdouardand, andÉdouard Duchesnay, and Frédouard Duchesnay. 2011. Scikit-Learn: Machine Learning in Python. Vol. 12.; Picek, Stjepan, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco Regazzoni. 2019. “The Curse of Class Imbalance and Conflicting Metrics with Machine Learning for Side-Channel Evaluations.” IACR Transactions on Cryptographic Hardware and Embedded Systems 2019(1):209–37. doi:10.13154/tches.v2019.i1.209-237.; Pring, Martin J. 2002. “Technical Analysis Explained : The Successful Investor’s Guide to Spotting Investment Trends and Turning Points.” 641.; Sandoval Archila, Javier H. 2016. High Frequency Exchange Rate Prediction Using Dynamic Bayesian Networks Over The Limit Order Book Information.; Sharma, Ashish, Dinesh Bhuriya, and Upendra Singh. 2017. “Survey of Stock Market Prediction Using Machine Learning Approach.” Proceedings of the International Conference on Electronics, Communication and Aerospace Technology, ICECA 2017 2017-Janua:506–9. doi:10.1109/ICECA.2017.8212715.; Slapák, Martin, and Roman Neruda. 2017. Matching Subtrees in Genetic ProgrammingCrossover Operator.; Tellechea, Manuel, and Alexander Ramírez M. 2017. “Retorno de Un Activo Financiero.” Synergy Vision. Retrieved January 21, 2023 (https://synergy.vision/corpus/inversion/2017-08-06-retornos.html).; Tharp, Van K. 2006. Tener Éxito En Trading. Vol. 1.; Tharp, Van K. 2013. Van Tharp on Systems & Trading Fundamentals.; Thornto, Chris, Frank Hutte, Hoos Holger H., and Kevin Leyton-Brown. 2013. Auto-WEKA: Combined Selection and HyperparameterOptimization of Classification Algorithms.; Tomasini, Emilio., and Urban. Jaekle. 2009. Trading Systems : A New Approach to System Development and Portfolio Optimisation. Harriman House.; Wang, John, and Grace Wang. 2010. AbleTrend. Identifying and Analyzing Market Trends for Trading Success. Canada: John Wiley & Sons, Inc.; Wang, Zhaoxia, Seng Beng Ho, and Zhiping Lin. 2019. “Stock Market Prediction Analysis by Incorporating Social and News Opinion and Sentiment.” IEEE International Conference on Data Mining Workshops, ICDMW 2018-Novem:1375–80. doi:10.1109/ICDMW.2018.00195.; Williams, Bill M. 1998. New Trading Dimensions: How to Profit from Chaos in Stocks, Bonds, and Commodities. John Wiley & Sons.; Williams, Larry. 1985. “The Ultimate Oscillator.” Stocks & Commodities 3(4):140–41.; Williams, Larry R. 1973. Larry R. Williams - How I Made One Million Dollars . Last Year . Trading Commodities.; Xiong, Li, and Yue Lu. 2017. “Hybrid ARIMA-BPNN Model for Time Series Prediction of the Chinese Stock Market.” 2017 3rd International Conference on Information Management, ICIM 2017 93–97. doi:10.1109/INFOMAN.2017.7950353.; Zöller, Marc-André, and Marco F. Huber. 2019. “Benchmark and Survey of Automated Machine Learning Frameworks.”; https://repositorio.unal.edu.co/handle/unal/84201; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  10. 10
  11. 11

    Popis souboru: 146 Páginas; application/pdf

    Relation: Adith, N. T. (2021, septiembre). Single shot detector (SSD) + architecture of SSD. https:// iq.opengenus.org/single-shot-detector/.; Agilemanifesto.org. (2021). Manifiesto por el desarrollo ágil de software. https:// agilemanifesto.org/; Ahlgren, P., y Grönqvist, L. (2006). Retrieval evaluation with incomplete relevance data: A comparative study of three measures. En [proceedings of the 15th acm international con ference on information and knowledge management]. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/1183614.1183773; Alshangiti, M., Sapkota, H., Murukannaiah, P. K., Liu, X., y Yu, Q. (2019). Why is developing machine learning applications challenging? a study on stack overflow posts. En 2019 acm/ieee international symposium on empirical software engineering and measurement (esem) (p. 1-11). doi:10.1109/ESEM.2019.8870187; Alvarez-Rodríguez, J., Zuñiga, R., Moreno, V., y Llorens, J. (2019, julio). Challenges and opportunities in the integration of the systems engineering process and the ai/ml model lifecycle. INCOSE International Symposium, 29, 560-575. doi:10.1002/j.2334-5837.2019 .00621.x; Amazon Inc. (s.f.-a). Amazon rekognition image. https://aws.amazon.com/es/ rekognition/image-features/.; Amazon Inc. (s.f.-b). Preguntas frecuentes sobre amazon rekognition. https://aws.amazon .com/es/rekognition/faqs/.; Amazon Inc. (s.f.-c). Rekognition. https://aws.amazon.com/es/rekognition/?nc= sn&loc=0.; Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., . . . Zimmermann, T. (2019). Software engineering for machine learning: A case study. En 2019 ieee/acm 41st interna tional conference on software engineering: Software engineering in practice (icse-seip) (p. 291-300). doi:10.1109/ICSE-SEIP.2019.00042; Amos, B., Ludwiczuk, B., y Satyanarayanan, M. (2016). Openface: A general-purpose face 135 Capítulo 8 Universidad Tecnológica de Pereira recognition library with mobile applications.; An, X., Zhu, X., Gao, Y., Xiao, Y., Zhao, Y., Feng, Z., . . . Fu, Y. (2021, octubre). Partial fc: Training 10 million identities on a single machine. En [ICCV es el principal evento internacional de visión por computadora que comprende la conferencia principal y varios talleres y tutoriales ubicados en el mismo lugar.]. https://iccv2021.thecvf.com/.; Anderson, K. M. (2015). Embrace the challenges: Software engineering in a big data world. En 2015 ieee/acm 1st international workshop on big data software engineering (p. 19-25). doi:10.1109/BIGDSE.2015.12; Avance Jurídico Casa Editorial Ltda. (2022, abril). Normograma del SENA Acuerdo 0007 2012. https://normograma.sena.edu.co/normograma/docs/acuerdo_sena_0007 _2012.htm.; Baier, L., Jöhren, F., y Seebacher, S. (2019, mayo). Challenges in the deployment and ope ration of machine learning in practice. En [ECIS 2019 - 27th European Conference on Information Systems]. Kista, Sweden. http://ecis2019.eu/.; Bazarevsky, V., Kartynnik, Y., Vakunov, A., Raveendran, K., y Grundmann, M. (2019). Blazeface: Sub-millisecond neural face detection on mobile gpus. arXiv. https://arxiv.org/ abs/1907.05047. doi:10.48550/ARXIV.1907.05047; Belani, H., Vukovic, M., y Car, Z. (2019). Requirements engineering challenges in building ai based complex systems. https://arxiv.org/abs/1908.11791. arXiv. doi:10.48550/ ARXIV.1908.11791; Berkeleyvision. (s.f.). Caffe. https://caffe.berkeleyvision.org/.; Bertrand, S. (2020). Retinaface-tf2. https://github.com/StanislasBertrand/ RetinaFace-tf2.; Bukar, A., y Ugail, H. (2017, julio). Convnet features for age estimation. En [Presented at: The 11th International Conference on Computer Graphics, Visualization, Computer Vision and Image Processing]. Lisbon, Portugal. https://bradscholars.brad.ac.uk/ handle/10454/12860.; Catal, C. (2012, enero). Performance evaluation metrics for software fault prediction studies. Acta Polytechnica Hungarica, 9. http://hdl.handle.net/11413/1662.; Centeno, I. D. P. (2021). MTCNN face detection implementation for TensorFlow, as a pip package. https://github.com/ipazc/mtcnn.; Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., . . . Zhang, Z. (2015). MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv [cs.DC].; CIMEC. (2021, febrero). Coeficiente correlación de pearson. https://www.cimec.es/ coeficiente-correlacion-pearson/.; Congreso de la república de Colombia. (1994, febrero). Ley 119. http://www .secretariasenado.gov.co/senado/basedoc/ley_0119_1994.html.; Dalal, N., y Triggs, B. (2005). Histograms of oriented gradients for human detection. En 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05). IEEE.; Danilo Sato, C. W., Arif Wider. (2019). Continuous delivery for machine learning. https:// martinfowler.com/articles/cd4ml.html.; Deepinsight. (2021). Scrfd an efficient high accuracy face detection. https://github.com/ deepinsight/insightface/tree/master/detection/scrfd.; Deepinsight. (2022a). Insightface: 2d and 3d face analysis project. https://github.com/ deepinsight/insightface; Deepinsight. (2022b, mayo). Insightface: State-of-the-art 2D and 3D face analysis project. https://github.com/deepinsight/insightface.; Deepinsight. (2022c). Mode zoo insightface. https://github.com/deepinsight/ insightface/tree/master/model_zoo.; Deng, J., Guo, J., Xue, N., y Zafeiriou, S. (2019). Arcface: Additive angular margin loss for deep face recognition. En 2019 ieee/cvf conference on computer vision and pattern recognition (cvpr) (p. 4685-4694). doi:10.1109/CVPR.2019.00482; Deng, J., Guo, J., Zhou, Y., Yu, J., Kotsia, I., y Zafeiriou, S. (2019). Retinaface: Single-stage dense face localisation in the wild. arXiv. https://arxiv.org/abs/1905.00641. doi:10.48550/ARXIV.1905.00641; Deriche, M. (2008). Trends and challenges in mono and multi biometrics. En 2008 first workshops on image processing theory, tools and applications (p. 1-9). doi:10.1109/ IPTA.2008.4743801; Du, H., Shi, H., Zeng, D., y Mei, T. (2020). The elements of end-to-end deep face recognition: A survey of recent advances. CoRR, abs/2009.13290. https://arxiv.org/abs/2009 .13290.; Dubuisson, M.-P., y Jain, A. (1994). A modified hausdorff distance for object matching. En Proceedings of 12th International Conference on Pattern Recognition (Vol. 1, p. 566-568 vol.1). doi:10.1109/ICPR.1994.576361; Face-benchmark.org. (s.f.). WebFace260M. https://www.face-benchmark.org/ challenge.html; García, N., Castro, V. G., Gutiérrez, E. A., y Fernández, E. F. (2017). Comparación de métodos de detección de rostros en imágenes digitales. En [Actas de las XXXVIII Jornadas de Au tomática]. https://dialnet.unirioja.es/servlet/articulo?codigo=6591683.; Geitgey, A. (s.f.). face_recognition: The world’s simplest facial recognition api for python and the command line.; Ghosh, S. (2019, septiembre). DeepFace. https://github.com/swghosh/DeepFace/ releases.; Giray, G. (2020). A software engineering perspective on engineering machine learning systems: State of the art and challenges. CoRR, abs/2012.07919. https://arxiv.org/ abs/2012.07919.; Google. (s.f.). Mediapipe. https://mediapipe.dev/.; Google. (2015, noviembre). TensorFlow: Open source machine learning. https://www .tensorflow.org/.; Guo, J., Deng, J., Lattas, A., y Zafeiriou, S. (2021). Sample and computation redistribution for efficient face detection. arXiv. https://arxiv.org/abs/2105.04714. doi:10.48550/ ARXIV.2105.04714; Guo, Q., Chen, S., Xie, X., Ma, L., Hu, Q., Liu, H., . . . Li, X. (2019). An empirical study towards characterizing deep learning development and platforms. arXiv. https://arxiv.org/abs/1909.06727. doi:10.48550/ARXIV .1909.06727and deployment across different frameworks; Gustavo Mendoza Olguín, M. P. d. C. H., Yadira Laureano de Jesús. (2019). Métri cas de similaridad y evaluación para sistemas de recomendación de filtrado co laborativo. Revista de Investigación en Tecnologías de la Información, 7(14), 224– 240. Descargado de https://www.riti.es/ojs2018/inicio/index.php/riti/ article/view/175 doi:10.36825/RITI.07.14.019; Haykin, S. (2009). Neural Networks and Learning Machines. (3rd ed.). Pearson Education. https://lps.ufrj.br/~caloba/Livros/Haykin2009.pdf.; Heikkilä, M., Pietikäinen, M., y Schmid, C. (2009). Description of interest regions with local binary patterns. Pattern Recognition, 42(3), 425-436. Descargado de https:// www.sciencedirect.com/science/article/pii/S0031320308003282 doi: https:// doi.org/10.1016/j.patcog.2008.08.014; Huang, G. B., Mattar, M., Berg, T., y Learned-Miller, E. (2008, octubre). Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments. En Workshop on Faces in ’Real-Life’ Images: Detection, Alignment, and Recognition. Marseille, France. https://hal.inria.fr/inria-00321923.; InsightFace. (s.f.). State of the art deep face analysis library. https://insightface.ai/. Jolliffe, I., y Springer-Verlag. (2002). Principal component analysis. (2a ed.). Springer. https://books.google.com.co/books?id=TtVF-ao4fI8C.; Josh Patterson, A. G. (2017). Deep learning: The definitive guide. O’Reilly UK Ltd. https:// www.oreilly.com/library/view/deep-learning/9781491924570/.; Kaspersky. (2021, agosto). Reconocimiento facial: definición y explicación. https://latam.kaspersky.com/resource-center/definitions/what-is -facial-recognition.; Kaur, N., Nazir, N., y Manik. (2021). A review of local binary pattern based texture feature extraction. En 2021 9th international conference on reliability, infocom technologies and optimization (trends and future directions) (icrito) (p. 1-4). doi:10.1109/ICRITO51393 .2021.9596485; Keras Team. (s.f.). Keras: the python deep learning API. https://keras.io/.; Kim, M., Zimmermann, T., DeLine, R., y Begel, A. (2018). Data scientists in software teams: State of the art and challenges. IEEE Transactions on Software Engineering, 44(11), 1024-1038. doi:10.1109/TSE.2017.2754374; Kirchberg, K. J., Jesorsky, O., y Frischholz, R. (2002). Genetic model optimization for hausdorff distance-based face localization. En M. Tistarelli, J. Bigün, y A. K. Jain (Eds.), Biometric 139 Capítulo 8 Universidad Tecnológica de Pereira authentication, international ECCV 2002 workshop copenhagen, denmark, june 1, 2002, proceedings (Vol. 2359, p. 103-111). Springer. Descargado de https://doi.org/10 .1007/3-540-47917-1_11 doi:10.1007/3-540-47917-1\_11; Kruchten, P. (2003). The rational unified process: An introduction (3.a ed.). USA: Addison Wesley Longman Publishing Co., Inc; Larman, C., y Basili, V. R. (2003, jun). Iterative and incremental development: A brief history. Computer, 36(6), 47–56. Descargado de https://doi.org/10.1109/MC.2003 .1204375 doi:10.1109/MC.2003.1204375; Larman, C., y Kruchten, P. (2002). Applying uml and patterns: An introduction to object oriented analysis and design and the unified process. Prentice Hall PTR. https:// books.google.com.co/books?id=r8i-4En_aa4C.; Legarda, D. Loaiza, O. (2020, abril). Encuesta a instructores del Centro Atención Sector Agropecuario SENA Risaralda. Registro de asistencia a clases presenciales. https:// docs.google.com/forms/d/1cAyj98V24LQ0MpuawVZ3kKNQTINFoz3v8Yxp9VVD3TM/ viewanalytics.; Leondgarse. (2022). Insightface keras. https://github.com/leondgarse/Keras _insightface#current-accuracy.; Lin, S.-H., Kung, S.-Y., y Lin, L.-J. (1997). Face recognition/detection by probabilistic decision based neural network. IEEE Transactions on Neural Networks, 8(1), 114-132. doi:10.1109/72.554196; Ling, C. X., Huang, J., y Zhang, H. (2003). Auc: A better measure than accuracy in comparing learning algorithms. En Y. Xiang y B. Chaib-draa (Eds.), Advances in artificial intelligence (pp. 329–341). Berlin, Heidelberg: Springer Berlin Heidelberg; Lwakatare, L. E., Raj, A., Bosch, J., Olsson, H. H., y Crnkovic, I. (2019). A taxonomy of software engineering challenges for machine learning systems: An empirical investigation. En P. Kruchten, S. Fraser, y F. Coallier (Eds.), Agile processes in software engineering and extreme programming (pp. 227–243). Cham: Springer International Publishing; Mahto, S., y Yadav, Y. (2014). A survey on various facial expressionrecognition techniques. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Energy, 3; Maida E. G., P. J. (2015). Metodologías de desarrollo de software. [Facultad de Quími ca e Ingeniería “Fray Rogelio Bacon”, Universidad Católica Argentina]. https:// repositorio.uca.edu.ar/handle/123456789/522; Microsoft. (s.f.). Reconocimiento facial azure. https://azure.microsoft.com/es-es/ services/cognitive-services/face/.; Migdał, P. (2017, abril). Learning deep learning with keras. https://p.migdal.pl/2017/ 04/30/teaching-deep-learning.html; Mikolov, T., Chen, K., Corrado, G., y Dean, J. (2013). Efficient estimation of word re presentations in vector space. arXiv. https://arxiv.org/abs/1301.3781. doi:10.48550/ARXIV.1301.3781; Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., y Zafeiriou, S. (2017, julio). Agedb: The first manually collected, in-the-wild age database. En (p. 1997-2005). doi:10.1109/CVPRW.2017.250; Mozilla Developer Network. (s.f.). Http: Hypertext transfer protocol. https://developer .mozilla.org/es/docs/Web/HTTP.; Mozilla Developer Network. (2021a, julio). Acerca de JavaScript. https://developer .mozilla.org/es/docs/Web/JavaScript/About_JavaScript.; Mozilla Developer Network. (2021b, julio). CSS. https://developer.mozilla.org/es/ docs/Web/CSS.; Mozilla Developer Network. (2021c, abril). Html: Lenguaje de etiquetas de hipertexto. https://developer.mozilla.org/es/docs/Web/HTML.; Nascimento, E. d. S., Ahmed, I., Oliveira, E., Palheta, M. P., Steinmacher, I., y Conte, T. (2019). Understanding development process of machine learning systems: Challenges and solutions. En 2019 acm/ieee international symposium on empirical software engineering and measurement (esem) (p. 1-6). doi:10.1109/ESEM.2019.8870157; NumPy Developers. (s.f.). NumPy documentation - v1.22. https://numpy.org/doc/ stable.; Oasis Open. (2019, marzo). MQTT Version 5.0. https://docs.oasis-open.org/mqtt/ mqtt/v5.0/mqtt-v5.0.html.; Ojala, T., Pietikainen, M., y Harwood, D. (1994). Performance evaluation of texture measures with classification based on kullback discrimination of distributions. En Proceedings of 12th international conference on pattern recognition (Vol. 1, p. 582-585); ONNX. (s.f.-a). ONNX runtime (ORT). https://onnxruntime.ai/docs/.; ONNX. (s.f.-b). Open Neural Network Exchange. https://onnx.ai/.; OpenCV. (s.f.). Introduction to OpenCV-Python tutorials. https://docs.opencv.org/4.x/ d0/de3/tutorial_py_intro.html.; Ordieres-Meré, J., Limas, M., Ascacibar, F. J., Alba-Elías, F., González-Marcos, A., Pernía Espinoza, A., y Vergara, E. (2006). Técnicas y algoritmos básicos de visión artificial recurso electrónico - en línea; Ortiz, N., Hernandez Beleño, R., Moreno, R., Mauledoux, M., y Avilés Sánchez, O. (2018, enero).; Otto, M., Thornton, J., y Bootstrap contributors. (s.f.). Bootstrap. https://getbootstrap .com/.; Pham, H. V., Qian, S., Wang, J., Lutellier, T., Rosenthal, J., Tan, L., . . . Nagappan, N. (2020). Problems and opportunities in training deep learning software systems: An analysis of variance. En [Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering]. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3324884.3416545.; Python Software Foundation. (2021, mayo). base64 – codificaciones de datos base16, base32, base64, y base85. https://docs.python.org/es/3/library/base64.html.; Ramírez, S. (s.f.). FastAPI. https://fastapi.tiangolo.com.; Rath, S. R. (2021, junio). Face detection with dlib using HOG and linear SVM. https:// debuggercafe.com/face-detection-with-dlib-using-hog-and-linear-svm/; Ravichandran, T., y Rothenberger, M. A. (2003, agosto). Software reuse strategies and component markets. Commun. ACM, 46(8), 109–114. https://doi.org/10.1145/ 859670.859678. doi:10.1145/859670.859678; Revelo, J. (2015, febrero). Volley: Librería de android para realizar peticiones http. https:// www.develou.com/android-volley-peticiones-http; RFC 7519 - JSON web token (JWT). (s.f.). https://datatracker.ietf.org/doc/html/ rfc7519.; Royce, W. W. (1987). Managing the development of large software systems: Concepts and techniques. En Proceedings of the 9th international conference on software engineering (p. 328–338). Washington, DC, USA: IEEE Computer Society Press; Sandberg, D. (2018, abril). Facenet: Face recognition using TensorFlow. https://github .com/davidsandberg/facenet.; Sapp, C. E. (2017). Preparing and architecting for machine learning. https://dl.icdst.org/ pdfs/files3/c8d6cb6df517f1d7d89f4eb475389530.pdf.; Schroff, F., Kalenichenko, D., y Philbin, J. (2015, junio). FaceNet: A unified embedding for face recognition and clustering. IEEE. https://doi.org/10.1109%2Fcvpr.2015 .7298682. doi:10.1109/cvpr.2015.7298682; Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., . . . Dennison, D. (2015). Hidden technical debt in machine learning systems. En C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, y R. Garnett (Eds.), Advances in neural information processing systems (Vol. 28). Curran Associates, Inc. https://proceedings.neurips.cc/paper/2015/ file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf.; Sengupta, S., Chen, J.-C., Castillo, C., Patel, V. M., Chellappa, R., y Jacobs, D. W. (2016). Frontal to profile face verification in the wild. En 2016 ieee winter conference on applications of computer vision (wacv) (p. 1-9). doi:10.1109/WACV.2016.7477558; Serengil, S. I. (2019, julio). Matlab Model to Keras. https://github.com/serengil/ tensorflow-101/blob/master/python/Matlab-Model-to-Keras.ipynb.; Serengil, S. I. (2022). Deepface. https://github.com/serengil/deepface.; Serengil, S. I., y Ozpinar, A. (2020). Lightface: A hybrid deep face recognition frame work. En 2020 innovations in intelligent systems and applications conference (as yu) (p. 23-27). https://doi.org/10.1109/ASYU50717.2020.9259802. doi:10.1109/ ASYU50717.2020.9259802; Silva, I. J. (2018). Reconocimiento facial basado en redes neuronales convolucionales. [In geniería de las Tecnologías de Telecomunicación, Universidad de Sevilla]. https:// idus.us.es/bitstream/handle/11441/85086/TFG-1975-JIMENEZ.pdf; Sommerville I., M. A. B., Galipienso M. I. A. (2005). Ingenieria del software. (7a ed.). Pearson Addison Wesley; Sotaquira, M. (s.f.). Detección de rostros con machine learning. https://www .codificandobits.com/blog/deteccion-de-rostros-machine-learning/; Sotaquira, M. (2018, junio). Reconocimiento facial con machine learning: FaceNet y one shot learning. https://www.codificandobits.com/blog/reconocimiento-facial -machine-learning/; Sotaquira, M. (2019). ¿qué son las redes convolucionales? https://www.codificandobits .com/blog/redes-convolucionales-introduccion/.; Stanford-Clark, A., y Truong, H. L. (2013). MQTT for sensor networks (MQTT-SN) protocol spe cification version 1.2. https://www.oasis-open.org/committees/download.php/ 66091/MQTT-SN_spec_v1.2.pdf.; SthPhoenix. (2021). InsightFace-REST. https://github.com/SthPhoenix/InsightFace -REST.; Sufyanu, Z., Mohamad, F., Yusuf, A., y Nuhu, A. (2016, octubre). Feature extraction methods for face recognition. International journal of applied engineering research (IRAER), 5, 5658-5668.; Sun, Y., Wang, X., y Tang, X. (2014a). Deep learning face representation by joint identification verification. arXiv. https://arxiv.org/abs/1406.4773. doi:10.48550/ARXIV.1406 .4773; Sun, Y., Wang, X., y Tang, X. (2014b). Deep learning face representation from predicting 10,000 classes. En 2014 IEEE Conference on Computer Vision and Pattern Recognition (p. 1891-1898). doi:10.1109/CVPR.2014.244; Taigman, Y., Yang, M., Ranzato, M., y Wolf, L. (2014). Deepface: Closing the gap to human level performance in face verification. En 2014 ieee conference on computer vision and pattern recognition (p. 1701-1708). doi:10.1109/CVPR.2014.220; The PostgreSQL Global Development Group. (s.f.). Postgresql. https://www.postgresql .org/.; Uvicorn.org. (s.f.). Uvicorn: An asgi web server, for python. https://www.uvicorn.org. Victor Iwantooxxoox. (2021, marzo). Keras OpenFace. https://github.com/ iwantooxxoox/Keras-OpenFace.; Viola, P., y Jones, M. (2005). Rapid object detection using a boosted cascade of simple features. En Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001. IEEE Comput. Soc.; Wan, Z., Xia, X., Lo, D., y Murphy, G. C. (2021). How does machine learning change software development practices? IEEE Transactions on Software Engineering, 47(9), 1857-1871. doi:10.1109/TSE.2019.2937083; Wu, X., He, R., Sun, Z., y Tan, T. (2015). A light cnn for deep face representation with noisy labels. https://arxiv.org/abs/1511.02683. arXiv. doi:10.48550/ARXIV.1511.02683; Yang, M.-H., Kriegman, D., y Ahuja, N. (2002). Detecting faces in images: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1), 34-58. doi:10.1109/ 34.982883; Yi, D., Lei, Z., Liao, S., y Li, S. Z. (2014). Learning face representation from scratch. arXiv. https://arxiv.org/abs/1411.7923. doi:10.48550/ARXIV.1411.7923; Zhang, K., Zhang, Z., Li, Z., y Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10), 1499-1503. doi:10.1109/LSP.2016.2603342; Zhang, R., Xiao, W., Zhang, H., Liu, Y., Lin, H., y Yang, M. (2020, junio). An empirical study on program failures of deep learning jobs. En [Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, Association for Computing Machinery]. Seoul South Korea. https://doi.org/10.1145/3377811.3380362; Zhang, T., Gao, C., Ma, L., Lyu, M., y Kim, M. (2019, octubre). An empirical study of common challenges in developing deep learning applications. En [2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE)]. Berlin, Germany. https:// ieeexplore.ieee.org/document/8987482.; Zheng, T., y Deng, W. (2018, febrero). Cross-pose lfw: A database for studying cross-pose face recognition in unconstrained environments (Inf. Téc. n.o 18-01). Beijing University of Posts and Telecommunications. doi: null; Zheng, T., Deng, W., y Hu, J. (2017). Cross-age lfw: A database for studying cross-age face recognition in unconstrained environments. arXiv. https://arxiv.org/abs/1708 .08197. doi:10.48550/ARXIV.1708.08197; Zhu, Z., Huang, G., Deng, J., Ye, Y., Huang, J., Chen, X., . . . Zhou, J. (2021). Webface260m: A benchmark unveiling the power of million-scale deep face recognition. arXiv. https:// arxiv.org/abs/2103.04098. doi:10.48550/ARXIV.2103.04098; https://hdl.handle.net/11059/14172; Universidad Tecnológica de Pereira; Repositorio Institucional Universidad Tecnológica de Pereira; https://repositorio.utp.edu.co/home

  12. 12

    Alternate Title: Revisión de las diferentes metodologías de cálculo y modelado de eficiencia en calderas. (Spanish)

    Zdroj: Informador Técnico; ene-jun2022, Vol. 86 Issue 1, p69-93, 25p

  13. 13
  14. 14
  15. 15

    Zdroj: CISTI (Iberian Conference on Information Systems & Technologies / Conferência Ibérica de Sistemas e Tecnologias de Informação) Proceedings; 2014, Vol. 1, p1007-1012, 6p

  16. 16
  17. 17

    Time: 2008-11

    Popis souboru: application/pdf

    Relation: [Gol92] Goldberg David E. Genetic algorithms in search, optimization and machine learning, Addisson-Wesley. 1992.; [Lahoz04] Bioinformática, simulación, vida artificial e inteligencia artificial. Lahoz-Beltrá Rafael. Diaz de Santos. 2004; [Loy02] Loyo De Sardi Jaqueline Algoritmos Genéticos y Optimización en la Investigación de Operaciones. Caso: Problema de Optimización con Objetivos Múltiples ExXpresado como Un Modelo de Programación No — Lineal por Metas. Departamento de Computación, Facultad de Ciencias y Tecnología, Universidad de Carabobo, Valencia, Venezuela. Febrero 2002.; Maneiro Malavé Ninoska. Algoritmos genéticos aplicados al problema cuadrático de asignación de facilidades. Departamento de Investigación Operativa, Escuela de Ingeniería Industrial, Universidad de Carabobo, Valencia. Venezuela. Febrero 2002.; [{Martín02] Martín del Brio, Bonifacio. Redes neuronales y Ssistemas difusos.Alfaomega Grupo Editor.2002.; [Max97]Maxfield, Clive. Genetic algorithms: Programs that boggle the mind. EDN. Boston. Vol. 42. Mar 3, 1997.; [Moro2] Moro Sancho Quiliano Isaac . Aplicación de las redes neuronales a la predicción meteorológica. Tesis de Maestría, Departamento de Ingeniería de Sistemas y Automática. Universidad de Valladolid - España, julio 1992.; [Muñ04] Muñoz, A.F., [he technology of advanced control of applied artificial cloning to highly precise Mechatronic Systems. WSEAS, 2004.; [Muñoz97] gSensórica e insfrumentación, Mecánica de Alta precisión. Muñoz Antonio F. Pueblo y educación.; [Ort04] Ortiz Jr Francisco; Simpson James R; Pignatiello Jr Joseph J; Hered Alejandro. A Genetic Algorithm Approach to Multiple-Response Optimization Journal of Quality Technology; Oct 2004; 36, 4; ABI/INFORM Global pg. 432; [Par03]Parnell Karen, Mehta Nick, Programmable Logic Design Quick Start Hand Book. 4 edicion. Xilinx. 2003.; [Pas97] Passino, k.m, Fuzzy Control. Addison Wesley. USA. 1997. 475p.; [Sag04] Saggiani G M, G Caligiana; F Persiani. Multiobjective wing design using genetic algorithms and fuzzy logic. Proceedings of the Institution of Mechanical Engineers; Apr 2004.; [Sahni03] Sahni Vishal. Pyara V.Prem. An Embryonic Approach to Reliable Digital Instrumentation Based on Evolvable Hardware. IEEE Transactions on instrumentation and measurement. Diciembre 2003 .; [{San05] Santos José, Duro Richard. Evolución Artificial y Robótica Autónoma. Alfaomega 2005.; [{Sim87] Simons G.L. Introducción a la inteligencia artificial. Ediciones Santos. 1987.; [Teno03] Teng. T.K., J.S. Shieh, C.S. Chen. Genetic algorithms applied in online autotuning PID parameters of a liquid-level control system. Transactions of the Institute of Measurement and Control. London: Dec 2003. Vol. 25.; {Wil05] Williams Sam. Unnatural selection. Technology Review. Cambridge: Feb 2005. Tomo 1068, N° 2.; [Wal89] Walbridge Charles T. Genetic Algorithms: What Computers Can Learn from Darwin Technology Review: Jan 1989; 92, 4; ABVINFORM Global pg. 46; [2101] Zilouchian Ali, Jamshidi Mo. intelligent Control Systems Using Soft Comuting Methodologies. CRCPress. 2001. ISBN 0-8493-1875-0.; Gralla, Preston (2007). Como Funcionan Las Redes Inalámbricas. Anaya Multimedia. ISBN 978-34-415-2068-4.; Engst, Adam (2005). Introduccion a Las Redes Inalambricas. Anaya Multimedia. ISBN 978-84-415-1561-1.; http://hdl.handle.net/20.500.12749/18597; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co

  18. 18
  19. 19

    Zdroj: Geophysical Research Abstracts; 2017, Vol. 19, p1-6903, 6903p

  20. 20

    Zdroj: Geophysical Research Abstracts; 2016, Vol. 18, p1-16028, 16028p