Výsledky vyhledávání - automatización algorithm configuration parameter technical automatización algorithm design*

  1. 1
  2. 2

    Popis souboru: pdf; application/pdf

    Relation: U. Nations, "ECLAC - United Nations," 2015. [Online]. Available: https://www.cepal.org/es/temas/objetivos-de-desarrollo-del-milenio-odm/.; E. A. Alfonso, A. D. Arcila and M. L. Latorre, "Atlas de Variaciones Geográficas en Salud de Colombia 2015- Estudio," Ministerio de Salud y Protección Social, 2015.; DANE, "DIRECCIÓN DE CENSOS Y DEMOGRAFÍA - ESTADÍSTICAS VITALES EEVV," DANE, Bogotá, 2021.; E. a. M. J. a. H. M. Nodelman, "Using artificial intelligence to predict spontaneous preterm delivery," American Journal of Obstetrics and Gynecology, ISSN 00029378, vol. 222, no. 1, p. 1, 2020.; M. Tahir and T. Badriyah, "Neural Networks Algorithm to Inquire Previous Preeclampsia Factors in Women with Chronic Hypertension During Pregnancy in Childbirth Process," International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), pp. pp. 51-55, 2018.; A. a. R. C. W. G. a. P. A. T. a. J. I. a. G. A. Petrozziello, "Multimodal Convolutional Neural Networks to Detect Fetal Compromise During Labor and Delivery," IEEE Access, ISSN 2169-3536, vol. 7, no. 1, pp. 112026--112036, 2019.; K. M. M. N. P. T. P. M. Mcdonnell NJ, "Analgesia after Caesarean Delivery," Anaesthesia and Intensive Care, pp. 539-551, 2009.; S. YASUI, "Cesarean section," Japanese journal of medical science and biology, vol. 49, no. 6, pp. 1036-1040.; G. E.-A. Escalante-Gaytán J, "Utilidad de la electrohisterografía como técnica de monitorización uterina en el ámbito clínico: revisión bibliográfica," Ginecologia y Obstetricia de Mexico, vol. 87, no. 1, pp. 280-285, 2019.; A. Moujahid, I. Inza and P. Larranaga, "Universidad del País Vasco," 14 07 2022. [Online]. Available: http://www.sc.ehu.es/ccwbayes/docencia/mmcc/docs/t9knn.pdf.; D. Morariu, R. G. Cretulescu and M. Breazu, "THE WEKA MULTILAYER," International Journal of Advanced Statistics and IT&C for Economics and Life Sciences, pp. 1-9, 2017.; A. Kowalczyk, "Support Vector Machines Succinctly," Succinctly free ebooks, p. 114, 2017.; J.-H. Wang and S.-J. Lou, "Predicting the success rate of natural spontaneous delivery through deep learning," 2019 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-TW), 2019.; D. L. Guzmán, M. Carreno and L. H. Camargo, "Identifying Sleep Apnoea and Hypopnoea Episodes From Respiratory Polygraphy Signals," Revista Colombiana de Psiquiatría, vol. 46, no. 2, pp. 88-94, 2017.; A. Goldberger, L. Amaral and L. Glass, "Components of a new research resource for complex physiologic signals," PhysioNet, p. 101, 2000.; T. M. Nair, "Statistical and artificial neural network-based analysis to understand complexity and heterogeneity in preeclampsia," Computational Biology and Chemistry, vol. 75, pp. 222-230, 2018.; R. E. Behrman and A. Stith Butler, "Preterm Birth: Causes, Consequences, and Prevention," the National Academies Press, p. 790, 2007.; C. D.-B. Manuel Gómez-Gómez and M. Aceves-Gómez, "Classification of the newborns," Revista Mexicana de pediatría, vol. 79, no. 1, pp. 32-39, 2012.; J. Panduro-Barón, E. Panduro-Moore and J. Pérez-Molina, "Changes in fetal static and their predisposition to risk factors throughout of pregnancy," Ginecología y obstetricia de México, vol. 85, no. 8, 2017.; K. Kammerer, R. Pryss and B. Hoppenstedt, "Process-Driven and Flow-Based Processing of Industrial Sensor Data," Sensors (Basel), vol. 20, no. 18, p. 5245, 2020.; Q. Q. a. X. Z. b. Y. A. a. J. P. a. L. Y. a. D. Z. c. Dongmei Hao a, "Application of decision tree in determining the importance of surface electrohysterography," Biocybernetics and Biomedical Engineering, vol. 39, no. 3, pp. 806-813, 2019.; A. A. L. G. L. Goldberger, "physionet," 09 05 2015. [Online]. Available: https://physionet.org/content/ehgdb/1.0.0/. [Accessed 20 05 2022].; K. H. R. F. Muhammad Ehsan Ul Haq, "Use of Machine learning models for predicting and improving maternal and child health indicators," IEEE-SEM, vol. 9, no. 8, pp. 1-12, 2021.; M. B. M. S. a. P. A. Somayeh Mohammadi Far, "Prediction of Preterm Delivery from Unbalanced EHG Database," Sensors (Basel), vol. 22, no. 4, p. 1507, 2022.; Y. Y.-L. J. G.-C., J. A.-R. A. P. a. G. P.-B. Carlos Benalcazar-Parra, "Prediction of Labor Induction Success from the Uterine Electrohysterogram," Journal of Sensors, vol. 2019, no. 1, p. 12, 2019.; E. L. A. Rodríguez, "Early Prediction of Extreme Maternal Morbidity Using Machine Learning," TECHNOLOGICAL UNIVERSITY OF BOLIVAR, Cartagena, 2017.; S. de Miguel Manso, "CLINICAL VALIDATION OF AN EXPERIMENTAL MODEL FOR PREDICTING THE MODE OF LABOR AFTER INDUCTION," Universidad de Valladolid, 2020.; R. M. G. L. V. A. D. Sebastian Z., "Prediction model for primary cesarean delivery in patients with gestational diabetes mellitus," American Journal of Obstetrics and Gynecology, vol. 226, no. 1, p. S44, 2022.; C. V. A. A. G. C. G.-B. Anne H. Mardy, "A prediction model of vaginal birth after cesarean in the preterm period," American Journal of Obstetrics and Gynecology, vol. 215, no. 4, p. 513, 2016.; Mitsouras, D., Liacouras, P. C., Wake, N., and Rybicki, F. J., “Radiographics update: medical 3d printing for the radiologist,” Radiographics 40 (4), E21–E23 (2020).; Pensieri, C. and Pennacchini, M., “Virtual reality in medicine,” in [Handbook on 3D3C Platforms], 353–401, Springer (2016).; Heilig, M. L., “Stereoscopic-television apparatus for individual use,” (oct. 4 1960). US Patent 2,955,156.; Sutherland, J., Belec, J., Sheikh, A., Chepelev, L., Althobaity, W., Chow, B. J., Mitsouras, D., Christensen, A., Rybicki, F. J., and La Russa, D. J., “Applying modern virtual and augmented reality technologies to medical images and models,” Journal of digital imaging 32 (1), 38–53 (2019).; Vinas-Diz, S. and Sobrido-Prieto, M., “Realidad virtual con fines terapéuticos en pacientes con ictus: revisión sistemática,” Neurolog ́ıa 31 (4), 255–277 (2016).; Riva, G., Banos, R. M., Botella, C., Mantovani, F., and Gaggioli, A., “Transforming experience: the potential of augmented reality and virtual reality for enhancing personal and clinical change,” Frontiers in psychiatry 7, 164 (2016).; Weiss, P. L., Kizony, R., Feintuch, U., Katz, N., et al., “Virtual reality in neurorehabilitation,” Textbook of neural repair and rehabilitation 51 (8), 182–97 (2006).; Torres, J. C., Cano, P., Melero, J., Espana, M., and Moreno, J., “Aplicaciones de la digitalizacion 3d del patrimonio,” Virtual Archaeology Review 1 (1), 51–54 (2010).; Pereira Barzaga, O., Reconstruccion Tridimensional de Modelos Anatomicos a partir de Imagenes Medicas Digitales., Master’s thesis (2012).; Solvetic, how to connect Oculus Quest 2 to PC with or without cable, Master’s thesis (2022).; H. García, et al. "Análisis costo beneficio de energías renovables no convencionales en Colombia." (2013), https://repository.fedesarrollo.org.co/handle/11445/331.; S. Botero, and J. Cano. "Estado del arte en la estimación de los precios de la energía en el mercado spot." Energética 37 (2007), https://revistas.unal.edu.co/index.php/energetica/article/view/9661.; A. F. Galindo Ortiz. "Modelamiento de los precios de la energía en bolsa en Colombia incorporando el efecto del ENSO." (2017), https://repositorioslatinoamericanos.uchile.cl/handle/2250/2759111.; ELÉCTRICO, SPOT EN EL MERCADO. "ANÁLISIS DE LA CORRELACIÓN DE LARGO PLAZO DEL PRECIO SPOT EN EL MERCADO ELÉCTRICO COLOMBIANO.", https://www.researchgate.net/profile/Santiago-Medina-; Y. Castillo, et al. "Rol de las Fuentes No Convencionales de Energía en el sector eléctrico colombiano." Prospectiva 13.1 (2015): 39-51.; Autores, V. Xm. https://www.xm.com.co/Paginas/Home.aspx, 2021.; P. Medina, et al. "Energía Sostenible en Colombia: retos y beneficios de implementación.", https://repository.usta.edu.co/handle/11634/27479.; A. J. Conejo. "Day-ahead electricity price forecasting using the wavelet transform and ARIMA models." IEEE transactions on power systems 20.2 (2005): 1035-1042, https://ieeexplore.ieee.org/abstract/document/1425601.; S. Tsay, R. Analysis of financial time series. John wiley & sons, 2005, https://books.google.es/books?hl=es&lr=&id=ddL4tTLb_08C&oi=fnd&pg=PR7&dq=Tsay,+Ru ey+S.+Analysis+of+financial+time+series.+John+wiley+%26+sons,+2005.&ots=bxBtI6Lm68& sig=S2sbP47tNKD5OlsJ7zf7tP04GNE#v=onepage&q=Tsay,%20Ruey%20S.%20Analysi s%20of%20financial%20time%20series.%20John%20wiley%20%26%20sons,%202005. &f=false.; J. D. Palacio-Ortiz, “Trastornos psiquiátricos en los niños y adolescentes en tiempo de la pandemia por COVID-19”. Revista Colombiana de Psiquiatría, vol. 49, pp. 279-288, octubre-diciembre 2020. https://doi.org/10.1016/j.rcp.2020.05.006.; M. Irrazabal y F. Prieto, “Prevención e intervenciones tempranas en salud mental: una perspectiva internacional”, Acta Bioethica. vol .22, no. 1, pp. 37-50, junio 2016. http://dx.doi.org/10.4067/S1726-569X2016000100005.; D. D. Luxton. “Artificial Intelligence in Behavioral and Mental Health Care”. San Diego, CA: Elsevier Inc, 2016.; U Rajendra Acharya, “Automated EEG-based Screening of Depression Using Deep Convolutional Neural Network”. Computer Methods and Programs in Biomedicine, vol. 161, pp. 103-113, July 2018. https://doi.org/10.1016/j.cmpb.2018.04.012.; M. Helbich, “Using deep learning to examine street view green and blue spaces and their associations with geriatric depression in Beijing, China”, Environment International. vol. 126, pp. 107-117, may 2019. https://doi.org/10.1016/j.envint.2019.02.013.; A. Jan, “Artificial Intelligent System for Automatic Depression Level Analysis through Visual and Vocal Expressions”. IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS. vol. 10, no. 3, pp. 668-680, September 2018. 10.1109/TCDS.2017.2721552.; B Ay, “Automated Depression Detection Using Deep Representation and Sequence Learning with EEG Signals”. Journal of Medical Systems. vol. 43, pp. 1-12, June 2019. https://doi.org/10.1007/s10916-019-1345-y.; S. Graham, “Artificial Intelligence for Mental Health and Mental Illnesses: An Overview”. Current Psychiatry Reports. vol 21, pp. 21-116, November 2019. https://doi.org/10.1007/s11920-019-1094-0.; W. Mumtaza, “A deep learning framework for automatic diagnosis of unipolar depression”. International Journal of Medical Informatics. vol. 132, December 2019. https://doi.org/10.1016/j.ijmedinf.2019.103983.; J. Oh, “Identifying depression in the National Health and Nutrition Examination Survey data using a deep learning algorithm”. Journal of Affective Disorders. vol. 257, pp. 623- 631, October 2019. 10.1016/j.jad.2019.06.034.; Nisha P. “Predicting depression using deep learning and ensemble algorithms on raw twitter data”. International Journal of Electrical and Computer Engineering (IJECE). vol. 10, pp. 3751-3756, August 2020. 10.11591/ijece.v10i4.pp3751-3756.; S Li. “The Impact of COVID-19 Epidemic Declaration on Psychological Consequences: A Study on Active Weibo Users”. International Journal of Enviroment Research and Public Health. vol 17, pp. 1-9, March 2020. https://doi.org/10.3390/ijerph17062032.; Tracy A. “Identifying Predictors of Psychological Distress During COVID-19: A Machine Learning Approach”. frontiers in Psychology. Vol 11, pp. 3063, November 2020. 10.3389/fpsyg.2020.586202.; Sanitas, 2020. [Online]. Available at: https://www.sanitas.es/sanitas/seguros/es/particulares/biblioteca-desalud/prevencion-salud/san041826wr.html.; H. Rothana. “The epidemiology and pathogenesis of coronavirus disease (COVID-19)”. Journal of Autoimmunity. vol 109, May 2020. https://doi.org/10.1016/j.jaut.2020.102433.; DANE. (2005). Insor. Recuperado el 2017, de http://www.insor.gov.co/observatorio/estadisticasbasicas-poblacion-sorda-colombiana/; Llano, J. G., & Adrián, M. (2003). La informatica educativa en la escuela. Caracas, Venezuela: Federación Internacional de Fe y Alegría. Obtenido de http://www.feyalegria.org/images/acrobat/Folleto%2014%20La%20Inform%C3%A1tica%20Ed ucativa%20en%20la%20Escuela_4479.pdf; Roca, C. Ñ., & Suarez, W. H. (Julio de 2008). La informatica y sus aplicaciones en el proceso de enseñanza-aprendizaje. Cajamarca, Perú. Obtenido de: http://www.pensamientocomplejo.com.ar/docs/files/Cesar%20%D1uflo%20Roca,%20La%20i nformatica%20y%20sus%20aplicaciones%20en%20el%20proceso%20de%20ense%F1anza %20aprendizaje.pdf; Ledo, M. V., Martínez, F. G., & Piedra, A. R. (2010). Software educativos. Obtenido de http://scielo.sld.cu/pdf/ems/v24n1/ems12110.pdf; Ferrer, S. (s.f.). Software educativo y multimedia.; Drews, O. M. (1988). Informatica educativa: tendencias y vision prospectiva. Revista informatica educativa, 1(1), 11-32.; Marqués, P. (1996). Laboratorio de medios interactivos. Obtenido de El software educativo: http://www.lmi.ub.es/te/any96/marques_software/; Carracedo, J. d., & Mendez, C. L. (2012). Realidad Aumentada: Una Alternativa Metodológica en la Educación Primaria Nicaragüense. IEEE-RITA, 7(2), 102-108 [9] Fundación Telefónica. (2011). Realidad aumentada: una nueva lente para ver el mundo. Barcelona: Editorial Ariel, S.A. Obtenido de http://www.realidadaumentadafundaciontelefonica.com/realidad-aumentada.pdf; Sandoval, F. J. (2006). Realidad aumentada aplicada a herramientas didácticas musicales. Universidad de Málaga.; ] Solís, A. d., & Garzon, R. (2015). El software educativo en el aprendizaje del lenguaje de señas mexicano. Mexico.; Mendez, A., & Ramirez, J. E. (2011). DESARROLLO DE UN PROTOTIPO DE SOFTWARE COMO HERRAMIENTA. Bogotá.; https://repository.unab.edu.co/bitstream/handle/20.500.12749/12047/2020_Tesis_Carmen_Lu cia_Prada_Beltran.pdf?sequence=1&isAllowed=y; https://repository.ucatolica.edu.co/bitstream/10983/26989/1/Proyecto%20de%20Grado%20TL SC.pdf; https://repositorio.uptc.edu.co/bitstream/001/3762/1/Aplicacion_movil_descripcion_sitios.pdf; S. C. Bernal V. et Al. “Application Design Sign Language Colombian for Mobile Devices: VLSCApp (Voice Colombian Sign Language App) 1.0”, in Proceedings of 2016 Technologies Applied to Electronics Teaching, TAEE 2016 (Institute of Electrical and Electronics Engineers Inc., 2016). https://doi.org/10.1109/TAEE.2016.7528378.; arvin Daniel et Al. Aplicación móvil para la práctica de la lengua de señas colombiana http://pegasus.javeriana.edu.co/~CIS1730CP06/. https://repository.javeriana.edu.co/bitstream/handle/10554/40940/CelyBaezMarvinDaniel2018 .pdf?sequence=2&isAllowed=y; L. P. Pichón P. et Al. “Aplicación Integrada a La Tecnología Kinect Para El Reconocimiento e Interpretación de La Lengua de Señas Colombianas”, Escenarios, 14.2 (2016), 7. https://doi.org/10.15665/esc.v14i2.928.; https://www.revistaespacios.com/a20v41n06/a20v41n06p21.pdf; http://repositorio.uan.edu.co/bitstream/123456789/4811/1/2021CristianJohanRodriguezBernal .pdf; https://repository.usta.edu.co/bitstream/handle/11634/29292/2020camilavallejo.pdf?sequence =1&isAllowed=y; Joy, J., Balakrishnan, K., & Sreeraj, M. “SignQuiz: A quiz based tool for learning fingerspelled signs in indian sign language using ASLR”. IEEE Access, 7 (8657686), 28363- 28371, 2019.; C. Hernández, J. Pulido & J. Arias. “Information technology in learning sign language”. Revista de Salud Pública, 17 (1), 61-73, 2015.; Joy, J., Balakrishnan, K., & Sreeraj, M. “SiLearn: an intelligent sign vocabulary learning Tool”. Journal of Enabling Technologies, 13 (3), 173-187, 2019.; Cuji, B., Gavilanes, W., & Silva, A. “Use of ICT for sign language learning”. Revista Espacios, 39 (29), Pág. 24, 2018. Recuperado de: https://www.revistaespacios.com/a18v39n29/18392924.html; P. Escudeiro, N.F. Escudeiro, R.M. Reis, M. Barbosa, J. Bidarra, J. & B. Gouveia, B. “Automatic sign language translator model”. Advanced Science Letters, 20 (2), 531-533, 2014.; Ming Jin Cheok and others. “A Mobile Application of American Sign Language Translation via Image Processing Algorithms Adaptive Chebyshev Fusion of Vegetation Imagery Based on SVM Classifier View Project Sign Language Recognition View Project A Mobile Application of American Sign Language”.; https://www.researchgate.net/profile/Ming-JinCheok/publication/305649273_A_mobile_application_of_American_sign_language_translatio n_via_image_processing_algorithms/lin ks/5a27882caca2727dd883bb4b/A-mobileapplication-of-American-sign-language-translation-via-image-processing-algorithms.pdf; https://ieeexplore.ieee.org/abstract/document/8035336; Teranai Vichyaloetsiri and Pongpisit Wuttidittachotti, ‘Web Service Framework to Translate Text into Sign Language’, in IEEE CITS 2017 - 2017 International Conference on Computer, Information and Telecommunication Systems (Institute of Electrical and Electronics Engineers Inc., 2017), pp. 180–84. https://doi.org/10.1109/CITS.2017.8035336; E. F. Franco S., H. Salgado Y. “Prototipo de App Tutorial para el Apoyo del Aprendizaje de Lengua de Señas Colombiana (LSC) en Nivel Básico para Personas Oyentes, Bajo el Sistema Operativo Android Implementado Realidad Aumentada”. Trabajo de grado, Facultad tecnológica, Universidad Distrital Francisco José de Caldas. Disponible en: https://repository.udistrital.edu.co/bitstream/handle/11349/13480/FrancoSastreErikaFernanda 2018.pdf?sequence=7&isAllowed=y; Openxcell, O. (2010). Android Application Development: www.openxcell.com [Data set]. In SciVee. SciVee, Inc. https://doi.org/10.4016/24250.01; Hoog, A. (2011). Android software development kit and android debug bridge. In Android Forensics (pp. 65-103). Elsevier. https://doi.org/10.1016/b978-1-59749-651-3.10003-2 [33] Holly, R. (2012). Why Android? Which Android? In Taking Your Android Tablets to the Max (pp. 1-23). Apress. https://doi.org/10.1007/978-1-4302-3690-0_1; Hagos, T. (2020). Android Overview. In Learn Android Studio 4 (pp. 1–5). Apress. https://doi.org/10.1007/978-1-4842-5937-5_1; Hagos, T. (2020). Android Studio. In Learn Android Studio 4 (pp. 7–16). Apress. https://doi.org/10.1007/978-1-4842-5937-5_2; Hagos, T. (2020). Android Studio IDE. In Learn Android Studio 4 (pp. 31–45). Apress. https://doi.org/10.1007/978-1-4842-5937-5_4; Leguizamón Páez, M. Ángel, Sosa Suarez, J. C., & Herrera Clavijo, L. M. (2016). Implementaciones móviles sobre JVM: Lenguajes dinámicos versus lenguajes estáticos. Visión electrónica, 10(1), 76–82. https://doi.org/10.14483/22484728.1161 https://revistas.udistrital.edu.co/index.php/visele/article/view/11614; Wanumen S, L. F., Cavanzo N, G. A., & Guevara B, J. C. (2017). Simulador educativo para partituras usando escala temperada y no temperada. Visión electrónica, 11(1), 20–29. https://doi.org/10.14483/22484728.12384 https://revistas.udistrital.edu.co/index.php/visele/article/view/12384; Arévalo Ortega, Y. A., Corredor Vargas, S. R., & Higuera Castro, G. A. (2019). Forensic analysis with hacking tools on android devices. Visión electrónica, 13(1), 162–177. https://doi.org/10.14483/22484728.14405 https://revistas.udistrital.edu.co/index.php/visele/article/view/14405; Castang Montiel, G. A., Betancourt Duque, F., & Peña Salazar, L. A. (2020). BlueLock a tool to prevent Bluetooth attacks. Visión electrónica, 14(1), 128–133. https://doi.org/10.14483/22484728.16496 https://revistas.udistrital.edu.co/index.php/visele/article/view/16496; Garzón-Ramírez, D. S., Sanabria-Guio, M. S., & Cely-Fajardo, J. D. (2019). Geolocation system and vehicular analysis for motorcyclists. Visión electrónica, 2(1), 95–106. https://doi.org/10.14483/22484728.18416 https://revistas.udistrital.edu.co/index.php/visele/article/view/18416; Favre, L., Martinez, L., & Pereira, C. (n.d.). Forward Engineering and UML. In UML and the Unified Process (pp. 199-216). IGI Global. https://doi.org/10.4018/978-1-93177-744- 5.ch009. http://dx.doi.org/10.4018/978-1-93177-744-5.ch009; Balzert, H. (2010). UML-Notationselemente. In UML 2 kompakt (pp. 2–27). Spektrum Akademischer Verlag. https://doi.org/10.1007/978-3-8274-2507-2_2 http://dx.doi.org/10.1007/978-3-8274-2507-2_2; Balzert, H. (2010). UML-Diagramme. In UML 2 kompakt (pp. 28-47). Spektrum Akademischer Verlag. https://doi.org/10.1007/978-3-8274-2507-2_3 http://dx.doi.org/10.1007/978-3-8274-2507-2_3; Selic, B. (n.d.). Models, Software Models and UML. In UML for Real (pp. 1–16). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-48738-1_1 http://dx.doi.org/10.1007/0-306-48738-1_1; Herrera-Cubides, J. F., Gaona-García, P. A., Montenegro-Marín, C. E., Sánchez-Alonso, S., & Martin-Moncunill, D. (2019). Abstraction of linked data’s world. Visión electrónica, 13(1), 57–74. https://doi.org/10.14483/22484728.14397 https://revistas.udistrital.edu.co/index.php/visele/article/view/14397; Stamp, R., & Jaraisy, M. (2021). Language Contact between Israeli Sign Language and Kufr Qassem Sign Language. In Sign Language Studies (Vol. 21, Issue 4, pp. 455–491). Project Muse. https://doi.org/10.1353/sls.2021.0007 http://dx.doi.org/10.1353/sls.2021.0007; Green, K. (1984). Sign Boundaries in American Sign Language. In Sign Language Studies (Vol. 1042, Issue 1, pp. 65–91). Project Muse. https://doi.org/10.1353/sls.1984.0009 http://dx.doi.org/10.1353/sls.1984.0009; Rosenstock, R. (2010). Sign Bilingualism: Language Development, Interaction, and Maintenance in Sign Language Contact Situations. In Sign Language Studies (Vol. 11, Issue 2, pp. 283-289). Project Muse. https://doi.org/10.1353/sls.2010.0010; Hansen, B. (1975). Varieties in Danish Sign Language and Grammatical Features of the Original Sign Language. In Sign Language Studies (Vol. 1008, Issue 1, pp. 249-256). Project Muse. https://doi.org/10.1353/sls.1975.0018; Stokoe, W. C. (1978). Sign Language versus Spoken Language. In Sign Language Studies (Vol. 1018, Issue 1, pp. 69-90). Project Muse. https://doi.org/10.1353/sls.1978.0001 [52] Arnaud, S. (2019). From Gesture to Sign: Sign Language Dictionaries and the Invention of a Language. In Sign Language Studies (Vol. 20, Issue 1, pp. 41-82). Project Muse. https://doi.org/10.1353/sls.2019.0014; Stokoe, W. C. (2001). Sign Language versus Spoken Language. In Sign Language Studies (Vol. 1, Issue 4, pp. 407-425). Project Muse. https://doi.org/10.1353/sls.2001.0017; Krentz, C. (2001). Sign Mind: Studies in American Sign Language Poetics. In Sign Language Studies (Vol. 1, Issue 3, pp. 316-323). Project Muse. https://doi.org/10.1353/sls.2001.0010; Daniels, M. (2001). Sign Language Advantage. In Sign Language Studies (Vol. 2, Issue 1, pp. 5-19). Project Muse. https://doi.org/10.1353/sls.2001.0023; Cross, J. W. (1977). Sign Language and Second-Language Teaching. In Sign Language Studies (Vol. 1016, Issue 1, pp. 269-282). Project Muse. https://doi.org/10.1353/sls.1977.0001; Armstrong, D. F. (1983). Sign Language & Language Suppression. In Sign Language Studies (Vol. 1041, Issue 1, pp. 355-364). Project Muse. https://doi.org/10.1353/sls.1983.0011 [58] Massone, M. I., & Curiel, M. (2004). Sign Order in Argentine Sign Language. In Sign Language Studies (Vol. 5, Issue 1, pp. 63-93). Project Muse. https://doi.org/10.1353/sls.2004.0023; Pichler, D. C. (2011). Sign Language Acquisition. In Sign Language Studies (Vol. 11, Issue 4, pp. 637-646). Project Muse. https://doi.org/10.1353/sls.2011.0005; Tamene, E. H. (2016). Language Use in Ethiopian Sign Language. In Sign Language Studies (Vol. 16, Issue 3, pp. 307-329). Project Muse. https://doi.org/10.1353/sls.2016.0005; Kipper, G. (2013). What Is Augmented Reality? In Augmented Reality (pp. 1-27). Elsevier. https://doi.org/10.1016/b978-1-59-749733-6.00001-2; Madsen, & Lal. (2010). Probeless Illumination Estimation for Outdoor Augmented Reality. In Augmented Reality. InTech. https://doi.org/10.5772/7125; Craig, A. B. (2013). Augmented Reality Software. In Understanding Augmented Reality (pp. 125-149). Elsevier. https://doi.org/10.1016/b978-0-240-82408-6.00004-7; Craig, A. B. (2013). Mobile Augmented Reality. In Understanding Augmented Reality (pp. 209-220). Elsevier. https://doi.org/10.1016/b978-0-240-82408-6.00007-2; Craig, A. B. (2013). Augmented Reality Hardware. In Understanding Augmented Reality (pp. 69-124). Elsevier. https://doi.org/10.1016/b978-0-240-82408-6.00003-5; Craig, A. B. (2013). Augmented Reality Applications. In Understanding Augmented Reality (pp. 221-254). Elsevier. https://doi.org/10.1016/b978-0-240-82408-6.00008-4; Craig, A. B. (2013). Augmented Reality Concepts. In Understanding Augmented Reality (pp. 39-67). Elsevier. https://doi.org/10.1016/b978-0-240-82408-6.00002-3; Kipper, G. (2013). The Types of Augmented Reality. In Augmented Reality (pp. 29-50). Elsevier. https://doi.org/10.1016/b978-1-59-749733-6.00002-4; Asai, K. (2010). Visualization Based on Geographic Information in Augmented Reality. In Augmented Reality. InTech. https://doi.org/10.5772/7134; Uluyol, Ç. (2019). Augmented Reality in Education. In Education. Oxford University Press. https://doi.org/10.1093/obo/9780199756810-0216; Rekimoto, J. (2013). From augmented reality to augmented human. In 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE. https://doi.org/10.1109/ismar.2013.6671755; Chen, R., & Wang, X. (2010). Augmented Reality for Multi-disciplinary Collaboration. In Augmented Reality. InTech. https://doi.org/10.5772/7136; Okada, H., & Arakaw, H. (2010). Augmented Reality Applied to Card Games. In Augmented Reality. InTech. https://doi.org/10.5772/7133; Kipper, G. (2013). The Value of Augmented Reality. In Augmented Reality (pp. 51-95). Elsevier. https://doi.org/10.1016/b978-1-59-749733-6.00003-6[70]; Pankratz, F., & Klinker, G. (2015). [POSTER] AR4AR: Using Augmented Reality for guidance in Augmented Reality Systems Setup. In 2015 IEEE International Symposium on Mixed and Augmented Reality. 2015 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE. https://doi.org/10.1109/ismar.2015.41; Peddie, J. (2017). Types of Augmented Reality. In Augmented Reality (pp. 29–46). Springer International Publishing. https://doi.org/10.1007/978-3-319-54502-8_2; Correa-Pinzón, E. S. (2019). Recognition of objects with feature matching and RANSAC algorithm. Visión electrónica, 2(1), 7–14. https://doi.org/10.14483/22484728.18406 https://revistas.udistrital.edu.co/index.php/visele/article/view/18406; Balzert, H. (2010). UML-Notationselemente. In UML 2 kompakt (pp. 2-27). Spektrum Akademischer Verlag. https://doi.org/10.1007/978-3-8274-2507-2_2; Balzert, H. (2010). UML-Diagramme. In UML 2 kompakt (pp. 28-47). Spektrum Akademischer Verlag. https://doi.org/10.1007/978-3-8274-2507-2_3; Rittgen, P. (n.d.). Business Processes in UML. In UML and the Unified Process (pp. 315- 331). IGI Global. https://doi.org/10.4018/978-1-93177-744-5.ch016; Holstein, M. (2019). App Video. In iPhone App Design for Entrepreneurs (pp. 185-191). Apress. https://doi.org/10.1007/978-1-4842-4285-8_22; Li, Y., Kwon, W.-S., & Byun, S.-E. (2013). Effects of App Name Suffixes and App Information Quality on Consumers’ Perceived App Value. Iowa State University, Digital Repository. https://doi.org/10.31274/itaa_proceedings-180814-657; Sheppard, D. (2017). Adding your App to the Home Screen with Web App Manifest. In Beginning Progressive Web App Development (pp.95–107). Apress. https://doi.org/10.1007/978-1-4842-3090-9_6; Holstein, M. (2019). Planning Your App. In iPhone App Design for Entrepreneurs (pp. 47- 57). Apress. https://doi.org/10.1007/978-1-4842-4285-8_6; Holstein, M. (2019). App Store Listing. In iPhone App Design for Entrepreneurs (pp. 143- 151). Apress. https://doi.org/10.1007/978-1-4842-4285-8_17; Chacón García, A., Bustos Rodríguez, S., & Velásquez Velásquez, Ángela M. (2009). Control y monitoreo de sistemas de iluminación aeroportuaria: simulación computacional para la pista norte del aeropuerto el dorado. Visión electrónica, 3(1), 31–45. https://doi.org/10.14483/22484728.689 https://revistas.udistrital.edu.co/index.php/visele/article/view/689; Eslava, H. J., Cruz López, E. J., & Ramos Buitrago, J. C. (2008). Software para gestión y administración de imágenes utillizando tecnología multimedia GSM. Visión electrónica, 2(2), 40–51. https://doi.org/10.14483/22484728.795 https://revistas.udistrital.edu.co/index.php/visele/article/view/795; Herrera, H. G., & Guzman, J. A. (2013). Sistema piloto de información en línea para instituciones rurales. Visión electrónica, 7(1), 77–86. https://doi.org/10.14483/22484728.4395 https://revistas.udistrital.edu.co/index.php/visele/article/view/4395; Manrique Suarez, F. A., Velásquez Rodríguez, L. C., & Tarazona Bermúdez, G. M. (2017). State of the art on mobile apps: case study focused on university students in Bogotá, Colombia. Visión electrónica, 11(2), 279–288. https://doi.org/10.14483/22484728.12920 https://revistas.udistrital.edu.co/index.php/visele/article/view/12920; Arias Barragán, L. A., Rivas Trujillo, E., & Santamaría, F. (2018). Respuesta de la demanda en el mercado eléctrico Colombiano: modelado e implementación web. Visión electrónica, 12(2), 243–251. https://doi.org/10.14483/22484728.13995 https://revistas.udistrital.edu.co/index.php/visele/article/view/13995; Moreno, W. F., Tangarife, H. I., & Escobar Díaz, A. (2017). Image analysis aplications in precision agriculture. Visión electrónica, 11(2), 200–210. https://doi.org/10.14483/22484728.14628 https://revistas.udistrital.edu.co/index.php/visele/article/view/14628; Tovar-Martínez, Y. T., Bejarano-Martínez, A., & Calvo-Salcedo, A. F. (2020). Mobile application for the detection of black Sigatoka. Visión electrónica, 14(1), 111–118. https://doi.org/10.14483/22484728.15906; Gómez-Cuarán, F. N., & Higuera-Castro, G. A. (2019). State of the art at mobile applications for facial paralysis: information, diagnostic and rehabilitation. Visión electrónica, 2(1), 169–182. https://doi.org/10.14483/22484728.18423 https://revistas.udistrital.edu.co/index.php/visele/article/view/18423; Roth T. L. (2013). Epigenetic mechanisms in the development of behavior: advances, challenges, and future promises of a new field. Development and psychopathology, 25(4 Pt 2), 1279–1291. https://doi.org/10.1017/S0954579413000618; Labonte, B., & Turecki, G. (2010). The epigenetics of suicide: explaining the biological effects of early life environmental adversity. Archives of suicide research : official journal of the International Academy for Suicide Research, 14(4), 291–310. https://doi.org/10.1080/13811118.2010.524025; Avery, S. N., Clauss, J. A., & Blackford, J. U. (2016). The Human BNST: Functional Role in Anxiety and Addiction. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 41(1), 126–141. https://doi.org/10.1038/npp.2015.185; Hayase T. (2016). Putative Epigenetic Involvement of the Endocannabinoid System in Anxiety- and Depression-Related Behaviors Caused by Nicotine as a Stressor. PloS one, 11(7), e0158950. https://doi.org/10.1371/journal.pone.0158950; Konstantopoulou, G., Iliou, T., Karaivazoglou, K., Iconomou, G., Assimakopoulos, K., & Alexopoulos, P. (2020). Associations between (sub) clinical stress- and anxiety symptoms in mentally healthy individuals and in major depression: across-sectional clinical study. BMC psychiatry, 20(1), 428. https://doi.org/10.1186/s12888-020-02836- 1; Wohleb, E. S., Franklin, T., Iwata, M., & Duman, R. S. (2016). Integrating neuroimmune systems in the neurobiology of depression. Nature reviews. Neuroscience, 17(8), 497– 11. https://doi.org/10.1038/nrn.2016.69; Javier Gilabert-Juan, Clara Bueno-Fernandez, Esther Castillo-Gomez, Juan Nacher , Reduced interneuronal dendritic arborization in CA1 but not in CA3 region of mice subjected to chronic mild stress, February 2017. https://doi.org/10.1002/brb3.534; Malyshev AV, Sukhanova IA, Zlobin AS, Gedzun VR, Pavshintsev VV, Vasileva EV, Zalevsky AO, Doronin II, Mitkin NA, Golovin AV, Lovat ML, Kovalev GI, Zolotarev YA, Kuchumov AR, Babkin GA, Luscher B. In silico Screening and Behavioral Validation of a Novel Peptide, LCGA-17, With Anxiolytic-Like Properties. Front Neurosci. 2021 Aug 2;15:705590. doi: https://doi.org/10.3389/fnins.2021.705590; Neyder Contreras, Antistio Alviz-Amador, Isabella Manzur-Villalobos, “In silico study of dimethyltryptamine analogues against 5-HT1B receptor: Molecular docking, dynamic simulations and ADMET prediction”, Journal of Herbmed Pharmacology, vol. 11, no. 2, pp. 214-212, April 2022.; Beatriz Pontes, Domingo S. Rodríguez-Baena, Norberto Díaz-Díaz, “Análisis de datos de expresión genética” Escuela Politécnica Superior, Universidad Pablo de Olavide, [Online]. Available at: http://www.lsi.us.es/~bepontes/papers/JA06_ExpGen.pdf; LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539; Pagadala NS, Syed K, Tuszynski J. Software for molecular docking: a review. Biophys Rev. 2017 Apr;9(2):91-102. https://doi.org/10.1007/s12551-016-0247-1 . Epub 2017 Jan 16.; Fox, B.W., Schroeder, F.C. Toward spatially resolved metabolomics. Nat Chem Biol 16, 1039–1040 (2020). https://doi.org/10.1038/s41589-020-00650-0; Megan Chesnut, Pablo E. Paredes, Yasser Khan, et al. Stress Markers for Mental States and Biotypes of Depression and Anxiety: A Scoping Review and Preliminary Illustrative Analysis https://doi.org/10.1177/24705470211000338; Varenicline Interactions at the 5HT3 Receptor Ligand Binding Site are Revealed by 5HTBP. [Online]. Available at https://www.rcsb.org/structure/5AIN; Salud mental: fortalecer nuestra respuesta [Online] https://www.who.int/es/newsroom/fact-sheets/detail/mental-health-strengthening-our-response; Política nacional de salud mental [Online] https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/politicanacional-salud-mental.pdf; National Institute of Health [Online] https://commonfund.nih.gov/metabolomics/overview; M. Costa, A. L. Goldberger, and C.-K. Peng, “Multiscale entropy analysis of complex physiologic time series.,” Phys Rev Lett, vol. 89, no. 6, p. 068102, Aug. 2002, doi:10.1103/PhysRevLett.89.068102.; C. K. Peng, M. Costa, and A. L. Goldberger, “Adaptive data analysis of complex fluctuations in physiologic time series,” Adv Adapt Data Anal, vol. 1, no. 1, pp. 61–70, Jan. 2009, doi:10.1142/S1793536909000035.; R. Hornero, D. Álvarez, D. Abásolo, F. del Campo, and C. Zamarrón, “Utility of approximate entropy from overnight pulse oximetry data in the diagnosis of the obstructive sleep apnea syndrome,” IEEE Trans Biomed Eng, vol. 54, no. 1, pp. 107–113, Jan. 2007, doi:10.1109/TBME.2006.883821.; A. Howedi, A. Lotfi, and A. Pourabdollah, “Exploring Entropy Measurements to Identify MultiOccupancy in Activities of Daily Living,” Entropy, vol. 21, no. 4, p. 416, Apr. 2019, doi:10.3390/e21040416.; D. E. Lake, J. S. Richman, M. Pamela Griffin, and J. Randall Moorman, “Sample entropy analysis of neonatal heart rate variability,” Am J Physiol Regul Integr Comp Physiol, vol. 283, no. 3 52-3, pp. 789–797, 2002, doi:10.1152/ajpregu.00069.2002.; W. Li, X. Shen, and Y. Li, “A Comparative Study of Multiscale Sample Entropy and Hierarchical Entropy and Its Application in Feature Extraction for Ship-Radiated Noise,” Entropy, vol. 21, no. 8, p. 793, Aug. 2019, doi:10.3390/e21080793.; N. Nicolaou and J. Georgiou, “The use of permutation entropy to characterize sleep electroencephalograms.,” Clin EEG Neurosci, vol. 42, no. 1, pp. 24–8, Jan. 2011, doi:10.1177/155005941104200107.; B. Gow, C.-K. Peng, P. Wayne, and A. Ahn, “Multiscale Entropy Analysis of Center-of-Pressure Dynamics in Human Postural Control: Methodological Considerations,” Entropy, vol. 17, no. 12, pp. 7926–7947, nov. 2015, doi:10.3390/e17127849.; B. C. Jiang, W. H. Yang, J. S. Shieh, J. S. Z. Fan, and C. K. Peng, “Entropy-based method for COP data analysis,” Theor Issues Ergon Sci, vol. 14, no. 3, pp. 227–246, May 2013, doi:10.1080/1463922X.2011.617109.; C. K. Rhea, A. W. Kiefer, F. J. Haran, S. M. Glass, and W. H. Warren, “A new measure of the CoP trajectory in postural sway: Dynamics of heading change,” Med Eng Phys, vol. 36, no. 11, pp. 1473–1479, 2014, doi:10.1016/j.medengphy.2014.07.021.; L. A. Lipsitz and A. L. Goldberger, “Loss of ‘Complexity’ and Aging: Potential Applications of Fractals and Chaos Theory to Senescence,” JAMA: The Journal of the American Medical Association, vol. 267, no. 13, pp. 1806–1809, Apr. 1992, doi:10.1001/jama.1992.03480130122036.; L. A. Lipsitz, “Dynamics of stability: The physiologic basis of functional health and frailty,” Journals of Gerontology - Series A Biological Sciences and Medical Sciences, vol. 57, no. 3, 2002, doi:10.1093/gerona/57.3. B115.; M. A. Busa and R. E. A. van Emmerik, “Multiscale entropy: A tool for understanding the complexity of postural control,” Journal of Sport and Health Science, vol. 5, no. 1. Elsevier B.V., pp. 44–51, Mar. 01, 2016. doi:10.1016/j.jshs.2016.01.018.; S. M. Pincus, “Approximate entropy as a measure of system complexity.,” Proc Natl Acad Sci U S A, vol. 88, no. 6, pp. 2297–301, Mar. 1991.; J. S. Richman and J. R. Moorman, “Physiological time-series analysis using approximate and sample entropy,” Am J Physiol Heart Circ Physiol, vol. 278, no. 6 47-6, 2000, doi:10.1152/ajpheart.2000.278.6.h2039.; J. S. Richman and J. R. Moorman, “Physiological time-series analysis using approximate entropy and sample entropy maturity in premature infants Physiological time-series analysis using approximate entropy and sample entropy,” Americal Journal of Physiology Heart and Circulatory Physiology, vol. 278, pp. H2039–H2049, 2000.; J. M. Yentes, N. Hunt, K. K. Schmid, J. P. Kaipust, D. McGrath, and N. Stergiou, “The appropriate use of approximate entropy and sample entropy with short data sets,” Ann Biomed Eng, vol. 41, no. 2, pp. 349–365, oct. 2013, doi:10.1007/s10439-012-0668-3.; M. Costa, A. L. Goldberger, and C.-K. Peng, “Multiscale entropy analysis of complex physiologic time series.,” Phys Rev Lett, vol. 89, no. 6, pp. 68–102, Aug. 2002, doi:10.1103/PhysRevLett.89.068102.; Y. Yamamoto and R. L. Hughson, “Coarse-graining spectral analysis: New method for studying heart rate variability,” J Appl Physiol, vol. 71, no. 3, pp. 1143–1150, 1991, doi:10.1152/jappl.1991.71.3.1143.; Novel.de, “The pedar® system,” Novel GmbH, 2019. http://www.novel.de/novelcontent/pedar (accessed May 10, 2014).; L. Luengas and D. Toloza, Estabilidad en amputados transtibiales unilaterales. UD Editorial, 2019.; L. A. Luengas, M. A. Gutierrez, and E. Camargo, “Study of forces during bipedal standing,” Visión electrónica, vol. 8, no. 2, pp. 75–79, Dec. 2014, doi:10.14483/22484728.9874.; E. A. F. Ihlen, N. Skjæret, and B. Vereijken, “The influence of center-of-mass movements on the variation in the structure of human postural sway,” J Biomech, vol. 46, no. 3, pp. 484–490, 2013, doi:10.1016/j.jbiomech.2012.10.016.; M. Costa, A. L. Goldberger, and C. K. Peng, “Multiscale entropy analysis of biological signals,” Phys Rev E Stat Nonlin Soft Matter Phys, vol. 71, no. 2, Feb. 2005, doi:10.1103/PhysRevE.71.021906.; S. M. Pincus, “Assessing serial irregularity and its implications for health,” in Annals of the New York Academy of Sciences, 2001, vol. 954, pp. 245–267. doi:10.1111/j.1749- 6632.2001.tb02755.x.; M. Ferrario, M. G. Signorini, G. Magenes, and S. Cerutti, “Comparison of entropy-based regularity estimators: Application to the fetal heart rate signal for the identification of fetal distress,” IEEE Trans Biomed Eng, vol. 53, no. 1, pp. 119–125, Jan. 2006, doi:10.1109/TBME.2005.859809.; H. M. Al-Angari and A. v. Sahakian, “Use of sample entropy approach to study heart rate variability in obstructive sleep apnea syndrome,” IEEE Trans Biomed Eng, vol. 54, no. 10, pp. 1900–1904, oct. 2007, doi:10.1109/TBME.2006.889772.; R. Alcaraz and J. J. Rieta, “Surface ECG organization analysis to predict paroxysmal atrial fibrillation termination,” Comput Biol Med, vol. 39, no. 8, pp. 697–706, Aug. 2009, doi:10.1016/j.compbiomed.2009.05.004.; A. Catarino, O. Churches, S. Baron-Cohen, A. Andrade, and H. Ring, “Atypical EEG complexity in autism spectrum conditions: A multiscale entropy analysis,” Clinical Neurophysiology, vol. 122, no. 12, pp. 2375–2383, Dec. 2011, doi:10.1016/j.clinph.2011.05.004.; T. Takahashi et al., “Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia: A multiscale entropy analysis,” Neuroimage, vol. 51, no. 1, pp. 173–182, May 2010, doi:10.1016/j.neuroimage.2010.02.009.; A. L. Goldberger, L. A. N. Amaral, J. M. Hausdorff, P. C. Ivanov, C. K. Peng, and H. E. Stanley, “Fractal dynamics in physiology: Alterations with disease and aging,” Proc Natl Acad Sci U S A, vol. 99, no. SUPPL. 1, pp. 2466–2472, Feb. 2002, doi:10.1073/pnas.012579499.; M. S. Chen and B. C. Jiang, “Resistance training exercise program for intervention to enhance gait function in elderly chronically ill patients: Multivariate multiscale entropy for center of pressure signal analysis,” Comput Math Methods Med, vol. 2014, 2014, doi:10.1155/2014/471356.; T. Haid and P. Federolf, “Human Postural Control: Assessment of Two Alternative Interpretations of Center of Pressure Sample Entropy through a Principal Component Factorization of Whole-Body Kinematics,” Entropy, vol. 20, no. 1, p. 30, Jan. 2018, doi:10.3390/e20010030.; L. Montesinos, R. Castaldo, and L. Pecchia, “On the use of approximate entropy and sample entropy with centre of pressure time-series,” J Neuroeng Rehabil, vol. 15, no. 1, p. 116, Dec. 2018, doi:10.1186/s12984-018-0465-9.; A. M. Sabatini, “Analysis of postural sway using entropy measures of signal complexity,” Med Biol Eng Comput, vol. 38, no. 6, pp. 617–624, 2000, doi:10.1007/BF02344866.; Y. Yang, H. Leung, L. Yue, and L. Deng, “Evaluating human motion complexity based on uncorrelation and non-smoothness,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2010, vol. 6298 LNCS, no. PART 2, pp. 538–548. doi:10.1007/978-3-642-15696-0_50.; J. T. Cavanaugh, V. S. Mercer, and N. Stergiou, “Approximate entropy detects the effect of a secondary cognitive task on postural control in healthy young adults: a methodological report,” J Neuroeng Rehabil, vol. 4, no. 42, 2007, doi:10.1186/1743-0003-4-42.; S. Ramdani, B. Seigle, J. Lagarde, F. Bouchara, and P. L. Bernard, “On the use of sample entropy to analyze human postural sway data,” Med Eng Phys, vol. 31, no. 8, pp. 1023–1031, 2009, doi:10.1016/j.medengphy.2009.06.004.; S. Ramdani, B. Seigle, D. Varoqui, F. Bouchara, H. Blain, and P. L. Bernard, “Characterizing the dynamics of postural sway in humans using smoothness and regularity measures,” Ann Biomed Eng, vol. 39, no. 1, pp. 161–171, Jan. 2011, doi:10.1007/s10439-010-0137-9.; F. G. Borg and G. Laxåback, “Entropy of balance--some recent results.,” J Neuroeng Rehabil, vol. 7, no. 38, p. 38, 2010, doi:10.1186/1743-0003-7-38.; S. Donker, M. Roerdink, A. Greven, and P. Beek, “Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control,” Exp Brain Res, vol. 181, no. 1, pp. 1–11, jul. 2007, doi:10.1007/s00221-007-0905-4.; N. Vuillerme and G. Nafati, “How attentional focus on body sway affects postural control during quiet standing,” Psychol Res, vol. 71, no. 2, pp. 192–200, Mar. 2007, doi:10.1007/s00426-005- 0018-2.; R. Schniepp et al., “Nonlinear Variability of Body Sway in Patients with Phobic Postural Vertigo,” Front Neurol, vol. 4, p. 115, Aug. 2013, doi:10.3389/fneur.2013.00115.; Suhaimi, N. S., Mountstephens, J., & Teo, J. (2020). EEG-Based Emotion Recognition: A Stateof-the-Art Review of Current Trends and Opportunities. Computational Intelligence and Neuroscience, 2020. HTTPS://DOI.ORG/10.1155/2020/8875426.; Li, Y., Cai, J., Dong, Q., Wu, L., & Chen, Q. (2020). Psychophysiological responses of young people to soundscapes in actual rural and city environments. AES: Journal of the Audio Engineering Society, 68(12), 910–925. https://doi.org/10.17743/JAES.2020.0060.; Subramanian, R., Wache, J., Abadi, M. K., Vieriu, R. L., Winkler, S., & Sebe, N. (2018). ASCERTAIN: Emotion and personality recognition using commercial sensors. IEEE Transactions on Affective Computing, 9(2), 147–160. https://doi.org/10.1109/TAFFC.2016.2625250.; Katsigiannis, S., & Ramzan, N. (2018). DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices. IEEE Journal of Biomedical and Health Informatics, 22(1), 98–107. https://doi.org/10.1109/JBHI.2017.2688239.; Sarno, R., Munawar, M. N., & Nugraha, B. T. (2016). Real- time electroencephalographybased emotion recognition system. International Review on Computers and Software, 11(5), 456– 465. https://doi.org/10.15866/irecos.v11i5.9334.; Zor, J. de. (2010). Informe “Las Frecuencias Cerebrales o la puerta del espacio”. Recuperado el 15 de noviembre de 2021, de https://www.hispamap.net/ondas.html.; NeuroSky. (s/f). EEG: The Ultimate Guide. Recuperado el 12 de noviembre de 2021, de http://neurosky.com/biosensors/eeg-sensor/ultimate-guide-to- eeg/.; Cohen, M. X. (2014). Analyzing Neural Time Series Data: Theory and Practice (J. Grafman, Ed.). Cambridge, Massachusetts; London, England: The MIT Press.; Lan, Z., Sourina, O., Wang, L., & Liu, Y. (2016). Real-time EEG-based emotion monitoring using stable features. Visual Computer, 32(3), 347–358. https://doi.org/10.1007/s00371-015-1183- y.; https://www.mathworks.com/help/signal/ref/bandpower.html.; ] Kim et. Al. Kim, J., Kim, W., & Kim, J.-T. (2015). Psycho-physiological responses of drivers to road section types and elapsed driving time on a freeway. Can. J. Civ. Eng., 42, 881–888. https://doi.org/https://doi.org/10.1139/cjce-2014-0392.; Notas de "Filtros de Segundo Orden" de Transductores Electroacústicos; classes notes for 9843-03B – 0150 – 4534; Facultad de Ingeniería, Ingeniería de Sonido, Universidad de San Buenaventura, Semestre académico 2021-1.; B. Pueo and M. Romá, “Electroacústica, Altavoces y Micrófonos”. Madrid, España: Pearson Educación, S.A.; Notas de "Micrófonos" de Electroacústica; classes notes for 7973-03B – 0333 – 7252; Facultad de Ingeniería, Ingeniería de Sonido, Universidad de San Buenaventura, Semestre académico 2020-2.; Jfetronic: Electrónica y Más (2017): “El mejor preamplificador para micrófono Electret. muy Fácil”, [On Line] Avaible: https://m.youtube.com/watch?v=W6rgCptYbLQ&ab_channel =Jfetronic%3AElectrónicayMás.; L. A. Luengas-C., D. C. Toloza, “Análisis frecuencial y de la densidad espectral de potencia de la estabilidad de sujetos amputados”, Tecnológicas, vol. 23, no. 48, pp. 1-16, 2020.; ] M. Energía, “Plan de expansión de referencia generación transmisión”, 2020. [Online]. Available in: http://www.upme.gov.co/Docs/Plan_Expansion/2020/Volumen1_Plan_Expansion_Generacion_Trans mision_2020_2034_Final.pdf; UPME, “Proyección demanda energía eléctrica y gas rural”, 2022. [Online]. Available in: https://www1.upme.gov.co/DemandayEficiencia/Documents/Informe_proyeccion_demanda_energetic os.pdf; MINMINAS, “Transición energética: un legado para el presente y el futuro de Colombia”, pp. 126, 2021. [Online]. Available in: https://www.conte.org.co/libro-transicion-energetica-un-legado-para-el-presente-y-el-futuro-decolombia/; C. Montes, “La incertidumbre climática y el dilema energético colombiano”, Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, pp. 165-392; junio 2018. [Online]. Available in:DOI: https://doi.org/10.18257/raccefyn.664; M. López, S. Carlos & S. Jissette, “Análisis de costos de la generación de energía eléctrica mediante fuentes renovables en el sistema eléctrico colombiano”, Ingeniería y Desarrollo UNAM, pp. 397–419, 2016. [Online]. Available in: DOI: https://doi.org/10.14482/inde.33.2.6368; J. C. B. M. Ramírez, “Estudio correlacional entre la energía eléctrica convencional y la energía solar fotovoltaica en hogares residenciales de la ciudad de Bogotá”. Journal of Chemical Information and Modeling, 2019. [Online]. Available in: https://repository.universidadean.edu.co/bitstream/handle/10882/9696/ManriquePaula2019?sequence =1; CREG, “Resolución No. 30 de mayo de 2018”, In MME, p. 13, 2018 [Online]. Available in: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/83b41035c2c4474f05258 243005a1191/$FILE/Creg030-2018.pdf; Congreso de Colombia,” Ley 1715 de 2014 Utilización de FNCER”, mayo 2014. [Online]. Available in: http://www.upme.gov.co/Normatividad/Nacional/2014/LEY_1715_2014.pdf; UPME, & MINMINAS, “Informe de Gestión UPME”, pp. 1–105, 2018. [Online]. Available in: http://www1.upme.gov.co/InformesGestion/Informe_de_gestion_2018_19092018.pdf; Ó. Díaz, “Energía fotovoltaica, una solución para la población del municipio de Cumarimbo, carente del servicio de energía eléctrica”, 2014. [Online]. Available in: http://repository.unipiloto.edu.co/handle/20.500.12277/443?show=full; UPME, “Informe de Registro de Proyectos de Generación octubre 2020”, Ministerio de Minas y Energía MME, 2020. [Online]. Available in: http://www.siel.gov.co/Inicio/Generaci%C3%B3n/Inscripci%C3%B3ndeproyectosdeGeneraci%C3%B3 n/tabid/113/Default.aspx; Banco de la república, “Tasa de cambio representativa del mercado (TRM)”, 2020. [Online]. Available in: https://www.banrep.gov.co/es/estadisticas/trm; UPME, “Informe de Registro de Proyectos de Generación enero 2020”, Ministerio de Minas y Energía MME, 2020. [Online]. Available in: http://www.siel.gov.co/Inicio/Generaci%C3%B3n/Inscripci%C3%B3ndeproyectosdeGeneraci%C3%B3 n/tabid/113/Default.aspx; UPME, “Informe de Registro de Proyectos de Generación”, Ministerio de Minas y Energía MME, pp. 42, March 2020. [Online]. Available in: http://www.siel.gov.co/Generacion_sz/Inscripcion/2021/Registro_marzo_2021.pdf; A. Castaño, P. Giraldo & L. Marin, “Comportamientos y cambios que trajo consigo el Covid-19 en la Ciudad de Medellín en el mes de septiembre del año 2020”, Journal of Chemical Information and Modeling, pp. 15–18, 2020. [Online]. Available in: https://repository.ucc.edu.co/bitstream/20.500.12494/20460/1/2020-Casta%C3%B1oGiraldoyMarincomportamientos_cambios_covid.pdf; Congreso de Colombia, “Ley 855. Definición de las Zonas No Interconectadas”, 2003. [Online]. Available in: https://www.suin-juriscol.gov.co/viewDocument.asp?id=1669722; Minambiente, “Decreto 1076 de mayo 26 de 2015”, Diario Oficial, pp. 654, 2015. [Online]. Available in: http://www.parquesnacionales.gov.co/portal/wp-content/uploads/2013/08/Decreto-UnicoReglamentario-Sector-Ambiental-1076-Mayo-2015.pdf; Autoridad Nacional del Servicio Civil, “Instalación de sistemas solares fotovoltaicos individuales en zonas no interconectadas”, Angewandte Chemie International Edition, pp. 951–952, 2021. [Online].; Gobierno de Colombia, “Informe de rendición de cuentas”, pp. 89–107, 2019. [Online]. Available in: https://www.funcionpublica.gov.co/informes-de-rendicion-de-cuentas; Gobierno de Colombia, “Informe de rendición de cuentas”, pp. 99-117, 2020. [Online]. Available in: https://www.funcionpublica.gov.co/informes-de-rendicion-de-cuentas; Rayén Quiroga M, “Indicadores de sostenibilidad ambiental y de desarrollo sostenible: estado del arte y perspectivas”, Naciones Unidas, 2001. [Online]. Available in: https://repositorio.cepal.org/bitstream/handle/11362/5570/S0110817_es.pdf; F. Ortega Mohedano, “El método Delphi, prospectiva en Ciencias Sociales a través del análisis de un caso práctico”, Revista Escuela de Administración de Negocios, pp. 31–54, 2008, [Online]. Available in: DOI: https://doi.org/10.21158/01208160.n64.2008.452 [23] J. Acevedo, “Modelo para planeación de abastecimientos a proyectos en Ecopetrol basado en simulación de procesos y método Delphi”, Pontificia Universidad Javeriana, pp. 5–9. 2017. [Online]. Available in: https://repository.javeriana.edu.co/handle/10554/40754; M. Torrado fonseca & M. Reguant álvarez, “El método Delphi”, REIRE. Revista de Innovación y Educación, pp.0–2, 2016. [Online]. Available in: DOI: https://doi.org/10.1344/reire2016.9.1916; C. Okoli & S. D. Pawlowski, “The Delphi method as a research tool: An example, design considerations and applications”, Information and Management, pp. 15–29, 2004. [Online]. Available in: DOI: https://doi.org/10.1016/j.im.2003.11.002; J. Cabrero & A. Infante, “Empleo del método Delphi y su empleo en la investigación en comunicación y educación”, EDUTEC Revista Electrónica de Tecnología Educativa, pp. 1–16, 2014. [Online]. Available in: https://instituciones.sld.cu/socecs/files/2014/07/Metodo-Delphi_Cabero.pd; M. E. García & F. Lena, “Aplicación del método Delphi en el diseño de una investigación cuantitativa sobre el fenómeno FABLAB”, Empiria. Revista de Metodología de Ciencias Sociales, pp. 129–166, 2018. [Online] Available in: DOI: https://doi.org/10.5944/empiria.40.2018.22014; J. C. Almenara & J. B. Osuna “La utilización del juicio de experto para la evaluación de TIC: el coeficiente de competencia experta”. Bordon. Revista de Pedagogía, pp. 25–38, 2013. [Online] Available in: DOI: https://doi.org/10.13042/brp.2013.65202.; F. Hasson & S. Keeney, “Enhancing rigour in the Delphi technique research”, Technological Forecasting and Social Change, pp. 1695–1704, 2011. [Online] Available in: DOI: https://doi.org/10.1016/j.techfore.2011.04.005; Y. Pérez Martinez, M. Guerrero García & J. González Ferrer, “Procedimiento para obtener información y caracterizar comportamientos y determinantes individuales de elección de opciones turísticas”, pp. 139, 2010. [Online] Available in: http://www.eumed.net/librosgratis/2010a/655/indice.htm; W. Palacios, M.Ortiz & F. Miryam, “Aplicación del Modelo Torgerson en la selección de indicadores del desempeño asociativo con enfoque en el Buen Vivir”, pp. 66–68, 1995, [Online] Available in: DOI: https://doi.org/10.11216/kokusaijosei1988.9.66; R. Gene & G. Wright, “The Delphi technique as a forecasting tool: Issues and analysis”, International Journal of Forecasting, pp. 380–381, 1999. [Online] Available in: DOI: https://doi.org/10.1016/s0169-2070(99)00019-9; XM SA ESP, “Tendencias y oportunidades del mercado eléctrico desde la operación del SIN”, XM, 2018. [Online] Available in: http://www.asocodis.org.co/docs/XV-jornada/Dia1Tarde/1.12.PresentacionXM.pdf; E. Cantillo & J. Daza, “El Sector Solar Fotovoltaico en el Caribe Colombiano: Análisis Técnico y de Mercado”, Universidad Tecnológica de Pereira, pp. 87–91, 2012, [Online] Available in: DOI: https://doi.org/10.22517/23447214.7895.; B. E. Tarazona-Romero, A. Campos-Celador, Y. A. Muñoz-Maldonado, C. L Sandoval-Rodríguez, J. G. Ascanio-Villabona. Prototype of lineal solar collector Fresnel: Artesanal system for the production of hot water and/or water vapor. Visión electrónica, 14(1), 35–42, 2020. https://doi.org/10.14483/22484728.16013 "; C. Edwards. Delphi Method. In The Bloomsbury Encyclopedia of Design. Bloomsbury Publishing Plc, 2016. https://doi.org/10.5040/9781472596178-bed-d130; J. Ameen. Review for “Gastroenterology nurse prescribing in China: A Delphi method.”, Wiley, 2020. https://doi.org/10.1111/jan.14645/v2/review1; G. Wheat. Developing a Competency Model for Highway Safety Engineers: A Delphi Method. Louisiana State University Libraries. https://doi.org/10.31390/gradschool_dissertations.5379; Z. Ma, C. Shao, S. Ma & Z. Ye. Constructing road safety performance indicators using Fuzzy Delphi Method and Grey Delphi Method. In Expert Systems with Applications (Vol. 38, Issue 3, pp. 1509-1514), 2011. Elsevier BV. https://doi.org/10.1016/j.eswa.2010.07.062; T. Sablatzky. Delphi Method. In Hypothesis (Vol. 34, Issue 1), 2022. IUPUI University Library. https://doi.org/10.18060/26224; J. Ameen. Review for “Gastroenterology nurse prescribing in China: A Delphi method.” Wiley, 2020. https://doi.org/10.1111/jan.14645/v1/review2; A. Ishikawa, M. Amagasa, T. Shiga, G. Tomizawa, R. Tatsuta & H. Mieno. The max-min Delphi method and fuzzy Delphi method via fuzzy integration. In Fuzzy Sets and Systems (Vol. 55, Issue 3, pp. 241-253). Elsevier BV, 1993. https://doi.org/10.1016/0165-0114(93)90251-c; W. Bai, P. X Liu & H. Wang. Adaptive fixed-time fault-tolerant control of interconnected non-affine systems with full-state constraints. Research Square Platform LLC, 2022. https://doi.org/10.21203/rs.3.rs-1689542/v1; Devashish & K. Verma. Optimal Load Frequency Control of Interconnected Two Area Non-Reheat Thermal-Thermal Power System, 2022. In 2022 3rd International Conference for Emerging Technology (INCET). 2022 3rd International Conference for Emerging Technology (INCET). IEEE. https://doi.org/10.1109/incet54531.2022.9825289; H. Ito. Chamfering Max-Separable Lyapunov Functions to Accept Non-ISS in Interconnected Systems. In 2019 American Control Conference (ACC). 2019 American Control Conference (ACC). IEEE. https://doi.org/10.23919/acc.2019.8815086; W. A., Apaza-Perez, C. Combastel, & A. Zolghadri. Abstraction-based low complexity controller synthesis for interconnected non-deterministic systems, 2019. In 2019 18th European Control Conference (ECC). 2019 18th European Control Conference (ECC). IEEE. https://doi.org/10.23919/ecc.2019.8795653; G. N., Psarros, S. P. Kokkolios, & S. A. Papathanassiou. Centrally Managed Storage Facilities in Small Non-Interconnected Island Systems. In 2018 53rd International Universities Power Engineering Conference (UPEC), 2018. 2018 53rd International Universities Power Engineering Conference (UPEC). IEEE. https://doi.org/10.1109/upec.2018.8542102; E. Mele, A. Natsis, A. Ktena, C. Manasis & N. Assimakis. Electromobility and Flexibility Management on a Non-Interconnected Island, 2021. In Energies (Vol. 14, Issue 5, p. 1337). MDPI AG. https://doi.org/10.3390/en14051337; I. Kougias, S. Szabó, A. Nikitas, & N. Theodossiou. Sustainable energy modelling of noninterconnected Mediterranean islands, 2019. In Renewable Energy (Vol. 133, pp. 930–940). Elsevier BV. https://doi.org/10.1016/j.renene.2018.10.090; M. Bueno-Lopez, P. Rodriguez-Sanchez & M. Molinas. Sustainable model for rural electrification projects in Non-Interconnected Areas in Colombia. In 2019 IEEE Global HumanitarianTechnologyConference (GHTC), 2019. 2019 IEEE Global Humanitarian Technology Conference (GHTC). IEEE. https://doi.org/10.1109/ghtc46095.2019.9033104; S. Prieto Jula y J. C. Escobar Loaiza, «Diseño De Un Sistema De Energía Solar Fotovoltaico Para El Abastecimiento Eléctrico De Un Refrigerador Situado En UribiaLaGuajira,»2022.https://drive.google.com/file/d/18mN2AiwvHlT_xLZSo9F_qbEsE_2Nc0EI/view ?usp=sharing.; DANE, «GOV.CO,» 2020.https://www.dane.gov.co/index.php/estadisticas-por-tema/pobreza-ycondiciones-de-vida/pobreza-y-desigualdad/medida-de-pobreza-multidimensional-de-fuentecensal.4; Noticias Caracol, «Niños en Uribia estudian en condiciones deplorables: sin sillas ni pupitres y tomando agua caliente,» 4 marzo 2022. https://noticias.caracoltv.com/caribe/ninos-en-uribiaestudian-en-condiciones deplorables-sin-sillas-ni-pupitres-y-tomando-agua-caliente.; EL TIEMPO, «El TIEMPO,» 11 Julio 2022. https://www.eltiempo.com/colombia/otrasciudades/alerta-en-la-guajira-y-magdalena-por-muerte-de-ninos-con-desnutricion-686382.; L. J. Espinal, «Factibilidad financiera de un proyecto de energía solar fotovoltaica financiado mediante un acuerdo de compra PPA,» 2020. https://repository.eafit.edu.co/bitstream/handle/10784/24825/LeidyJohana_EspinalZapata_Mayr aAlejandra_VillegasMachado_2020.pdf?sequence=2&isAllowed=y.; O. G. Ahumada, «EL TIEMPO,» Prensa EL TIEMPO, 2022 Junio 2022: https://www.eltiempo.com/economia/sectores/tarifas-de-la-luz-donde-suben-mas-y-cuanto-sepaga-por-kilovatio-676249. [Último acceso: Septiembre 2022].; O. Ruiz, «Sistema de costos por actividad ABC aplicado en la empresa social del estado,»2020.:https://repositoryinst.uniguajira.edu.co/xmlui/bitstream/handle/uniguajira/340/PR OYECTO%20ORLANDO%20RUIZ%20%281%29.pdf?sequence=1&isAllowed=y. [Último acceso: 14 septiembre 2022].; P. Goldmark. The new rural society. Paper presented at the National Cable Television Association Annual Convention (Chicago, Illinois, May 17-20, 1972).; S. Grabow. Frank Lloyd Wright and the American City: The Broadacres Debate, Journal of the American Institute of Planners, 43:2, pp. 115-124, 1977. DOI:10.1080/01944367708977768; J. Watson. The Suburbanity of Frank Lloyd Wright’s Boadacre City. Journal of Urban History, 45(5), pp. 1006-1029, 2018; R. Fishman. Urban utopias in the twentieth century. Ebenezer Howard, Frank Lloyd Wright and Le Corbusier. Cambridge Massachusetts, MIT press. 1982; J, Jacobs. Muerte y vida de las grandes ciudades. Capitán Swing Libros S.l., 2011.; M. McLuhan. La Galaxia Gutenberg. Génesis del “Homo Typographicus” Barcelona: Planeta- De Agostini S.A. 1985; M. Angelidou. Smart cities: A conjuncture of four forces. Cities 47, 95–106, 2015 http://dx.doi.org/10.1016/j.cities.2015.05.004; A. Townsend. Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia. New York: W.W. Norton and Company. 2013; R.G. Hollands. CriTICal interventions into the corporate smart city. Cambridge Journal of Regions, Economy and Society, Volume 8, Issue 1, March 2015, Pages 61–77, 2015 https://doi.org/10.1093/cjres/rsu011; D. Sikora. (Factores de desarrollo de las ciudades inteligentes Revista Universitaria de Geografía, vol. 26, núm. 1, junio, 2017, pp. 135-152 Universidad Nacional del Sur Bahía Blanca, Argentina, 2017; S. Sassen. La Ciudad global: Nueva York, Londres, Tokio. Buenos Aires: Eudeba. 1999; J.A. Montejano. El impacto de las nuevas tecnologías en la “explosión” de la ciudad. URBS. Revista de Estudios Urbanos y Ciencias Sociales, 3(1), pp. 45-67, 2013; Internet de las cosas: análisis de oferta educativa y la demanda empresarial en España. (n.d.). Recuperado de: http://informecotec.es/media/informeIOTCotec2017.pdf.pdf; F. Cirillo, D. Gómez, L. Diez, I. Elicegui Maestro, T. B. J. Gilbert and R. Akhavan, "Smart City IoT Services Creation Through Large-SCale Collaboration," in IEEE Internet of Things Journal, vol. 7, no. 6, pp. 5267-5275, (2020). https://doi:10.1109/JIOT.2020.2978770; K. Sharma; L.M. Saini, Performance analysis of smart metering for smart grid: An overview. Renew. Sustain. Energy Rev, pp 720–735, 2015.; Telefonica, The Smart Meter Revolution Towards a Smarter Future; London, UK, 2014.; D. Alahakoon; X. Yu, Smart electricity meter data intelligence for future energy systems: A survey. IEEE Transactions. Ind. Inform, pp 425–436, 2016.; A. Zoha; A. Gluhak; M.A. Imran; S. Rajasegarar, Non-intrusive load monitoring approaches for disaggregated energy sensing: A survey. Sensors 2012, v12, 16838–16866, 2012; M. Castells & P. Hall. Tecnópolis del mundo: la formación de los complejos industriales del S. XXI. Madrid: Alianza, 1994; J. Echeverría. Los señores del aire: telépolis y el tercer entorno. Barcelona: Destino, 1999; F. Ascher. Metapolis ou l'avenir des villes. Paris: Editions Odile Jacob, 1995; G. Améndola. La ciudad postmoderna: magia y miedo de la metrópolis contemporánea. Madrid: Celeste, 2000; ] S. Aragona. La citta virtuale: trasformazioni urbane e nuove tecnologie dell'informazione. Roma: Gangemi, 1993; E.W. Soja. Postmetropolis. CriTICal Studies of cities and regions. Oxford: Blackwell of World Affairs, 2001; G. Dematteis, G. Suburbanización y periurbanización. Ciudades anglosajonas y ciudades latinas. En F. J. Monclús (ed.), La ciudad dispersa. Suburbanización y nuevas periferias, 17-33. Barcelona, España: CCCB, 1998; P.H. Harris. The technopolis phenomenon - smart cities, fast systems, global networks, Behavioral SCience, 38: 2, 1992.; A. Glasmeiera & S. Christopherson. Thinking about smart cities. Cambridge Journal of Regions, Economy and Society, 8, pp. 3–12, 2015 doi:10.1093/cjres/rsu034; M. Batty. Intelligent cities: Using information networks to gain competitive advantage. Environment and Planning B: Planning and Design, 17(3), pp, 47–256, 1990 http://dx.doi.org/10.1068/b170247.; J. Laterasse. The intelligent city. In F. Rowe & P. Veltz (Eds.), Telecom, companies, territories. Paris: Presses de L’ENPC, 1992; R. Moyser. Defining and Benchmarking SMART Cities. Available online at: http://www. burohappold.com/blog/arTICle/defining-andbenchmarking-smart-cities-1771/ 2013; T. Shelton, M. Zook & A. Wiig. Thinking about smart cities. Cambridge Journal of Regions, Economy and Society 2015, 8, 13–25. doi:10.1093/cjres/rsu026; W. J. Mitchell. Ciudades inteligentes. UOC Papers: Revista sobre la Sociedad del Conocimiento, 5:1, 2007; A.T. Zona, C.H. Fajardo & C.M. Aguilar. Propuesta De Un Marco General Para El Despliegue De Ciudades Inteligentes Apoyado En El Desarrollo De IoT En Colombia. Revista Ibérica de Sistemas e Tecnologias de Informaçión. 28(4) pp. 894-907, 2020; M. Batty, K.W. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani, M. Wachowicz, G. Ouzounis & Y. Portugali, Y. Smart cities of the future. The Europen physical journal, 214, pp. 481-518, 2012; J. Parysek & L. Mierzejewska. Spatial structure of a city and the mobility of its residents: functional and planning aspects. Bulletin of Geography. Socioeconomic Series, 34(34), 91-102. 2016; T. Soyata, H. Habibzadeh, C. Ekenna, B. Nussbaum & J. Lozano. Smart city in crisis: Technology and policy concerns. Sustainable Cities and Society, 50 (April) 2019. https://doi.org/10.1016/j.SCs.2019.101566; L.H. Roller & L. Waverman. Telecomunication Infrastructure and Economic Development: A Simultaneous Approach, American Economic Review, 91(4), 909-923, 2001; R. Florida. 2002. The rise of the creative class. Basic Books.Fondation Le Corbusier, 2014. http://www.fondationlecorbusier.fr; M.V. Alderete. ¿Qué factores influyen en la construcción de ciudades inteligentes? Un modelo multinivel con datos a nivel ciudades y países. CTS, 14(41) pp. 71-89, 2020; A.V. Anttiroiko, P. Valkama & S.J. Bailey. Smart cities in the new service economy: building platforms for smart services. AI & Soc, 29, pp. 323-334, 2014; T. Beatley & P. Newman. Green Urbanism Down Under: Learning from Sustainable Communities in Australia. Washington, DC: Island Press, 2008; R. Sánchez, A. Nuñez, J. Sesma, A. Bilbao, R. Mulero, U. Zulaika, G. Azkune & A. Almeida. Smart cities survey: Technologies, application domains and challenges for the cities of the future. International Journal of Distributed Sensor Networks, 15(6), pp. 1-36, 2019 https://doi.org/10.1177/1550147719853984; S. Hodgkinson, S. Is Your City Smart Enough? Digitally enabled cities and societies will enhance economic, social, and environmental sustainability in the urban century. OVUM report. 2011; A. Townsend, R. Maguire, M. Liebhold & M. Crawford, M. The future of cities, information, and inclusion: A planet of civic laboratories. Institute for the Future, 2010.; Economic Commission for Europe ECE. Summary of activities on smart sustainable cities (SSC) of ECE Committee on Housing and Land Management. Geneva, 2-4 October 2019 https://unece.org/fileadmin/DAM/hlm/documents/2019/ECE_HBP_2019_4-ENG.pdf; Sosa, E. O. (n.d.). Internet del Futuro y Ciudades Inteligentes. Recuperado de: http://sedici.unlp.edu.ar/bitstream/handle/10915/27086/03-Internet+del+Futuro.pdf?sequence=1; C. Shen, K. Zhang and K. Long, "Research on Hainan Trusted Digital Infrastructure Construction Framework," 2020 29th Wireless and OpTICal Communications Conference (WOCC), Newark, NJ, USA, 2020, pp. 1-5. https://doi:10.1109/WOCC48579.2020.9114945; Patra, M. K. (2017). An architecture model for smart city using Cognitive Internet of Things (CIoT). 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), 1–6. https://doi.org/10.1109/ICECCT.2017.8117893; C. Shen, K. Zhang and K. Long, "Research on Hainan Trusted Digital Infrastructure Construction Framework," 2020 29th Wireless and OpTICal Communications Conference (WOCC), Newark, NJ, USA, 2020, pp. 1-5. https://doi:10.1109/WOCC48579.2020.9114945.; Ferro-Escobar, R., Vacca-González, H., Gómez-Castillo, H. (2022). Smart and Sustainable Cities in Collaboration with IoT: The Singapore Success Case. In: Marques, G., González-Briones, A., Molina López, J.M. (eds) Machine Learning for Smart Environments/Cities. Intelligent Systems Reference Library, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-030-97516-6_12 [52] F. Alkhabbas, R. Spalazzese and P. Davidsson, "Architecting Emergent Configurations in the Internet of Things," 2017 IEEE International Conference on Software Architecture (ICSA), Gothenburg, 2017, pp. 221-224. https://doi:10.1109/ICSA.2017.37; Merry, H. (2017). Population increase and the smart city - Internet of Things blog, 187–193. Retrieved from https://www.ibm.com/blogs/internet-of-things/increased-population-smart-city/; J. Hribar and L. DaSilva, "Utilising Correlated Information to Improve the Sustainability of Internet of Things Devices," 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 2019, pp. 805-808. https://doi:10.1109/WF-IoT.2019.8767256; Igder, S., Bhattacharya, S., & Elmirghani, J. M. H. (2016). Energy efficient fog servers for Internet of Things Information Piece Delivery (IoTIPD) in a smart city vehicular environment. International Conference on Next Generation Mobile Applications, Services, and Technologies, 99–104. https://doi.org/10.1109/NGMAST.2016.17; S. Yaqoob, A. Ullah, M. Akbar, M. Imran and M. Guizani, "Fog-assisted Congestion Avoidance SCheme for Internet of Vehicles," 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), Limassol, 2018, pp. 618-622. https://doi:10.1109/IWCMC.2018.8450402; Bogatinoska, D. C., Malekian, R., Trengoska, J., & Nyako, W. A. (2016). Advanced sensing and internet of things in smart cities. 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2016 - Proceedings, 632–637. https://doi.org/10.1109/MIPRO.2016.7522218; Rizwan, P., Suresh, K., & Babu, M. R. (2016). Real-time smart traffic management system for smart cities by using Internet of Things and big data. 2016 International Conference on Emerging Technological Trends (ICETT), 1–7. https://doi.org/10.1109/ICETT.2016.7873660; Enerlis, Ernst and Young, F. and M. N. (2012). Libro Blanco Smart Cities (1st ed.). España. Retrieved from: http://www.innopro.es/pdfs/libro_blanco_smart_cities.pdf; Cantones Sostenibles para la Costa Rica del siglo XXI San José, Costa Rica 9‐10 agosto 2016. (n.d.). Retrieved from https://www.itu.int/en/ITU-D/RegionalPresence/Americas/Documents/EVENTS/2016/15557-CR/15557-4-1.pdf; Lanfor, O. G. F., & Pérez, J. F. P. (2017). Implementación de un sistema de seguridad independiente y automatización de una residencia por medio del internet de las cosas. Student Conference (CONESCAPAN), 2017 IEEE Central America and Panama, 1–5.; O. B. Mora, R. Rivera, V. M. Larios, J. R. Beltrán-Ramírez, R. Maciel and A. Ochoa, "A Use Case in Cybersecurity based in Blockchain to deal with the security and privacy of citizens and Smart Cities Cyberinfrastructures," 2018 IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA, 2018, pp. 1-4. https://doi:10.1109/ISC2.2018.8656694; MINISTERIO DE TECNOLOGÍAS DE LA INFORMACIÓN Y LAS COMUNICACIONES Y EL DEPARTAMENTO NACIONAL DE CIENCIA TECNOLOGÍA E INNOVACIÓN – COLCIENCIAS. CONVOCATORIA VIVE DIGITAL REGIONAL 2015. (n.d.). Retrieved from http://www.colciencias.gov.co/sites/default/files/upload/convocatoria/Anexo1_2.pdf; J. C. Najar-Pacheco, J. A. Bohada-Jaime, y W. Y. Rojas-Moreno, “Vulnerabilidades en el internet de las cosas", Visión Electrónica, vol. 13, no. 2, pp. 312-321, 2019 https://doi.org/10.14483/22484728.15163; Ahlgren, B., Hidell, M., & Ngai, E. C. H. E. C.-H. (2016). Internet of Things for Smart Cities: Interoperability and Open Data. IEEE Internet Computing, 20(6), 52–56. https://doi.org/10.1109/MIC.2016.124; J. An et al., "Toward Global IoT-Enabled Smart Cities Interworking Using Adaptive SemanTIC Adapter," in IEEE Internet of Things Journal, vol. 6, no. 3, pp. 5753-5765, June 2019.https:// doi:10.1109/JIOT.2019.2905275; M. Ángel Barrera Pérez, N. Y. Serrato Losada, E. Rojas Sánchez, y G. Mancilla Gaona, “Estado del arte en redes definidas por software (SDN)”, Visión Electrónica, vol. 13, no. 1, pp. 178-194, 2019. https://doi.org/10.14483/22484728.14424; 5 CLAVES PARA DISEÑAR LAS SMART CITIES. (n.d.). Retrieved from https://www.tecnalia.com/images/stories/Eventos/Informe_Futuro_Ciudades_TECNALIA.pdf.; S. Ghosh, "Smart homes: Architectural and engineering design imperatives for smart city building codes," 2018 Technologies for Smart-City Energy Security and Power (ICSESP), Bhubaneswar, 2018, pp. 1-4. https://doi:10.1109/ICSESP.2018.8376676N.; Villanueva-Rosales, L. Garnica-Chavira, V. M. Larios, L. Gómez and E. Aceves, "SemanTICenhanced living labs for better interoperability of smart cities solutions," 2016 IEEE International Smart Cities Conference (ISC2), Trento, 2016, pp. 1-2. https://doi:10.1109/ISC2.2016.7580775; SMART CITY What is a smart city? What is a smart city? (n.d.). Retrieved from https://www.wien.gv.at/stadtentwicklung/studien/pdf/b008403j.pdf; Ejaz, W., Naeem, M., Shahid, A., Anpalagan, A., & Jo, M. (2017). Efficient Energy Management for Internet of Things in Smart Cities. IEEE Communications Magazine, (January), 84–91. https://doi.org/10.1109/MCOM.2017.1600218CM; Ramirez, J. (2013). Performance analysis of communication protocols for Internet of Things platforms. https://doi.org/10.1109/ColComCon.2017.8088198; Rose, K., Eldridge, S., & Chapin, L. (n.d.). LA INTERNET DE LAS COSAS— UNA BREVE RESEÑA. Retrieved from https://www.internetsociety.org/wp-content/uploads/2017/09/reportInternetOfThings-20160817-es-1.pdf; C. Moreno, “Desarrollo De Un Modelo De Evaluación De Ciudades Basado En El Concepto De Ciudad Inteligente (Smart City),” p. 411, 2015.; Índice IESE Cities in Motion 2020. DOI: https://dx.doi.org/10.15581/018.ST-542; Málaga innovadora: Propuesta para medir la Ciudad Inteligente. Editora: Fundación CIEDES. Málaga: 17 cuadernos II Plan Estratégico de Málaga, 2018.; Agencia Vasca de Internacionalización, Basque Trade and Investment S.A. Informe País Singapur, p 1-33, junio 2020.; M. Y. W. Chia, S. Krishnan, and J. Zhou, “Challenges and opportunities in infrastructure support for electric vehicles and smart grid in a dense urban Environment-Singapore,” 2012 IEEE Int. Electr. Veh. Conf. IEVC 2012, 2012.; B. T. Lokesh, J. Tay, and H. Min, “A Framework for Electric Vehicle (EV) Charging in Singapore the 15th International Symposium on District Heating and Cooling Assessing,” Energy Procedia, vol. 143, pp. 15–20, 2017.; K. N. Kumar and K. J. Tseng, “Impact of demand response management on chargeability of electric vehicles,” Energy, vol. 111, pp. 190–196, 2016.; F. Leurent, “Modeling Transportation Systems involving Autonomous Vehicles: A State of the Art,” Transp. Res. Procedia, vol. 27, pp. 215–221, 2017.; C. Krishnasamy, C. Unsworth, and L. Howie, “The patterns of activity, and transport to activities among older adults in singapore,” Hong Kong J. Occup. Ther., vol. 21, no. 2, pp. 80–87, 2011.; N. Khansari, A. Mostashari, and M. Mansouri, “Conceptual modeling of the impact of smart cities on household energy consumption,” Procedia Comput. Sci., vol. 28, no. Cser, pp. 81–86, 2014.; P. Alvina, X. Bai, Y. Chang, D. Liang, and K. Lee, “Smart Community Based Solution for Energy Management: An Experimental Setup for Encouraging Residential and Commercial Consumers Participation in Demand Response Program,” Energy Procedia, vol. 143, pp. 635–640, 2017.; L. Chuan, A. Ukil, and S. Member, “Modeling and Validation of Electrical Load Pro fi ling in Residential Buildings in Singapore,” IEEE Trans. Power Syst., vol. 30, no. 5, pp. 1–10, 2014.; C. Wouters, “Towards a regulatory framework for microgrids — The Singapore experience,” Sustain. Cities Soc., vol. 15, pp. 22–32, 2015.; A. Kumar, P. Kar, R. Warrier, A. Kajale, and S. K. Panda, “Implementation of Smart LED Lighting and Efficient Data Management System for Buildings,” Energy Procedia, vol. 143, pp. 173–178, 2017.; R. F. Fernandes, C. C. Fonseca, D. Brandão, and S. Carlos, “Flexible Wireless Sensor Network for smart lighting applications.” 2014.; H. Kazmi, F. Mehmood, and M. Amayri, “Smart Home Futures: Algorithmic Challenges and Opportunities,” 2017 14th International Symposium on Pervasive Systems, Algorithms and Networks & 2017 11th International Conference on Frontier of Computer Science and Technology & 2017 Third International Symposium of Creative Computing (ISPAN-FCST-ISCC). pp. 441–448, 2017.; A. Bhati, M. Hansen, and C. M. Chan, “Energy conservation through smart homes in a smart city: A lesson for Singapore households,” Energy Policy, vol. 104, no. February, pp. 230–239, 2017.; L. G. H. Brenda, “Grid Code Compliance for Grid-Connecting a PV System to an Existing Facility in Singapore,” pp. 530–533, 2016.; S. D. Yadav, B. Kumar, and S. S. Thipse, “Biogas purification: Producing natural gas quality fuel from biomass for automotive applications,” 2013 International Conference on Energy Efficient Technologies for Sustainability, ICEETS 2013. pp. 450–452, 2013.; X. Xi and K. Leng, “Using system dynamics for sustainable water resources management in Singapore,” vol. 16, pp. 157–166, 2013.; Zhao, M.; Zhou, Y.; Li, X.; Zhou, C.; Cheng, W.; Li, M.; Huang, K. Building a Series of Consistent Night-Time Light Data. (1992–2018) in Southeast Asia by Integrating DMSP-OLS and NPP-VIIRS. IEEE Trans. Geosci. Remote Sens.pp. 1843–1856, 2019.; Tu, Z.; Kong, J.; Shen, R. Smart City Projects Boost Urban Energy Efficiency in China. Sustainability 2022, 14, 1814. https://doi.org/10.3390/su14031814; Ferro-Escobar, R., Vacca-González, H., Gómez-Castillo, H. (2022). Smart and Sustainable Cities in Collaboration with IoT: The Singapore Success Case. In: Marques, G., González-Briones, A., Molina López, J.M. (eds) Machine Learning for Smart Environments/Cities. Intelligent Systems Reference Library, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-030-97516-6_12; Worldometers, W. (2022). Population. www.worldmeter.com [12/09/2022]; Depenbusch, L., & Klasen, S. (2019). The effect of bigger human bodies on the future global calorie requirements. PloS one, 14(12), e0223188.; Stipanuk, M. H., & Caudill, M. A. (2018). Biochemical, physiological, and molecular aspects of human nutrition-E-book. Elsevier health sciences.; Nadathur, S. R., Wanasundara, J. P. D., & Scanlin, L. (2017). Proteins in the diet: Challenges in feeding the global population. In Sustainable protein sources (pp. 1-19). Academic Press.; Sharopatova, A. V., Pyzhikova, N. I., & Olentsova, J. A. (2020). The current situation of the poultry industry and the formation of a strategy for its sustainable development in the region. In IOP Conference Series: Earth and Environmental Science (Vol. 421, No. 2, p. 022061). IOP Publishing.; Stiborova, H., Kronusova, O., Kastanek, P., Brazdova, L., Lovecka, P., Jiru, M., . & Demnerova, K. (2020). Waste products from the poultry industry: a source of high‐value dietary supplements. Journal of Chemical Technology & Biotechnology, 95(4), 985-992.; Rao, R. S. (2015). Trends and challenges of poultry industry. International Journal of Engineering Technologies and Management Research, 1(1), 8-13.; Rosas-Martínez, V., & Aguilar-Rivera, N. (2022). Compostaje para la reducción de excretas de aves (Gallus gallus domesticus). Agronomía Mesoamericana, 44815-44815.; James, K., Millington, A., & Randall, N. (2022). Food and feed safety vulnerabilities in the circular economy. EFSA Supporting Publications, 19(3), 7226E.; Malovanyy, M., Kanda, M., Paraniak, R., Odnorih, Z., & Tymchuk, I. (2021). The strategy of environmental danger minimization from poultry farms waste. Journal of Ecological Engineering, 22(5).; Alzate Rodriguez, L. V. (2022). Análisis de la deforestación en Colombia desde la Curva Ambiental de Kuznets (Doctoral dissertation, Universidad Nacional de Colombia).; Ruiz, L. S., & Peralta, D. A. J. (2022). Manejo Sostenible de la ganadería en Latinoamérica: Revisión Sistemática 2018-2021. Ambiente, Comportamiento y Sociedad, 5(1), 1-18.; Marin-Batista, J., Salazar, L., Castro, L., & Escalante, H. (2016). Co-digestión anaerobia de vinaza y gallinaza de jaula: alternativa para el manejo de residuos agrícolas colombianos. Revista Colombiana de Biotecnología, 18(2), 6-12.; UPME, «Atlas Potencial Hidroenergético de Colombia,» 2015, pp. 26 - 28, 46, 74.; Ipse, «Reporte de Localidades ZNI,» 31 agosto 2021. [En línea]. Available: https://ipse.gov.co/cnm/caracterizacion-de-las-zni/.; Universidad Distrital Francisco Jose de Caldas, Grupo de Investigación XUÉ, Semillero Barión, «Region Rape,» 2020. [En línea]. Available: https://regioncentralrape.gov.co/wpcontent/uploads/2020/04/Pequen%CC%83as-Centrales-Hidroele%CC%81ctricas.pdf.; EnelGreen, «Tipos de turbina hidroeléctrica: Francis, Pelton y Kaplan,» 10 04 2019. [En línea]. Available: https://www.enelgreenpower.com/es/learning-hub/energiasrenovables/energia-hidroelectrica/turbina-hidroelectrica. [Último acceso: 06 08 2021].; «Wikipedia,» agosto 2021. [En línea]. Available: https://es.wikipedia.org/wiki/Factor_de_planta.; J. M. Guerrero, J. C. Vasquez, and J. Matas, “Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization,” New Zeal. J. Educ. Stud., vol. 58, no. 1, pp. 35–51, 2016.; J. S. Patiño Abella, J. S. Tello Reyes, and J. A. Hernández Mora, “Diseño e implementación de un sistema fotovoltaico híbrido y desarrollo de su regulador de carga aplicando instrumentación virtual,” Elementos, vol. 2, no. 2, 2013.; Ministerio de Minas y Energía, “Resolución 182138 de 2007 - Porcedimientos subsidios ZNI.” p. 4, 2007.; N. Gómez, “Energización de las ZNI de Colombia a partir de las energias solar y eólica,” Univ. Javeriana, p. 99, 2011.; “Tarifas de energía %7C Enel Colombia”. https://www.enel.com.co/es/personas/tarifas-energiaenel-distribucion.html (consultado nov. 11, 2022).; “¿Cómo calcular el consumo eléctrico de tu casa? %7C Endesa”. https://www.endesa.com/es/blog/blog-de-endesa/luz/calcular-consumo-electrico-casa (consultado nov. 11, 2022).; “Calculadora de Consumo Eléctrico - Solartex Colombia”. https://www.solartex.co/calculadorade-consumo-electrico/ (consultado nov. 11, 2022).; “HelioScope: Advanced Solar Design Software”. https://www.helioscope.com/?gclid=Cj0KCQiApb2bBhDYARIsAChHC9t3TSk_S3U7WXIqNNt FYl5E8hTl8vr1flr3bVqRQu3TrCeIJ0icZ4UaAuHdEALw_wcB (consultado nov. 11, 2022).; “JRC Photovoltaic Geographical Information System (PVGIS) - European Commission”. https://re.jrc.ec.europa.eu/pvg_tools/en/ (consultado nov. 11, 2022).; “Cálculo y dimensionado de pequeña instalación aislada FOTOVOLTAICA - YouTube”. https://www.youtube.com/watch?v=Y8fB_rls5Jw (consultado jul. 26, 2022).; “PVGIS - Guía rápida y ejemplo de cálculo en Español SunFields”. https://www.sfesolar.com/noticias/articulos/pvgis-guia-rapida-y-ejemplo-calculo-espanol/ (consultado oct. 05, 2022).; “¿Cómo saber el consumo de energía en mi casa? %7C Hipotecario Seguros”. https://hipotecarioseguros.com.ar/blog/nota/cual-es-el-consumo-electrico-promedio-de-unacasa (consultado sep. 03, 2022).; “▷ 7 Tips para Calcular el Consumo Eléctrico de tu Casa %7C Svea Solar”. https://sveasolar.com/es/blog/calcular-consumo-electrico/ (consultado ago. 27, 2022).; “Demanda de consumo de energía en Colombia en 2021 fue histórico %7C Infraestructura %7C Economía %7C Portafolio”, 2022. https://www.portafolio.co/economia/infraestructura/demanda-deconsumo-de-energia-en-colombia-en-2021-fue-historico-560714 (consultado jul. 17, 2022).; “Qué es el payback o plazo de recuperación y cómo calcularlo”. https://hablemosdeempresas.com/empresa/que-es-payback/# (consultado nov. 13, 2022).; “Fundamentos de negocio”, 2004.; “Tasa interna de retorno (TIR) %7C 2022 %7C Economipedia”. https://economipedia.com/definiciones/tasa-interna-de-retorno-tir.html (consultado nov. 13, 2022).; república de Colombia unidad de plantación minero energética, “resolución No 0355 08 Jul 2004”, jul. 08, 2004. https://www.energuaviare.com/sites/default/files/RESOLUCION_UPME_0355_2004.pdf (consultado nov. 13, 2022).; Fabric, H. (2020). Hyperledger Fabric. Obtenido de https://hyperledger fabric.readthedocs.io/en/latest/whatis.html#smart-contracts; Lara, W. (2015). Platzi. Obtenido de https://platzi.com/blog/metodologia-scrum fases; López Allende, M., & Colina Unda, V. (Jun de 2018). Blockchain: How to Develop Trust in Complex Surroundings to Generate Social Impact Value. doi:http://dx.doi.org/10.18235/0001139; Maya Villazón, E., & Kolumbien Contraloría General de la República. (2018). Grandes Hallazgos. (C. G. República, Ed.) Bogota, Colombia.; Müller-Bloch, C., & Beck, R. (2017). Blockchain as Radical Innovation: A Framework for Engaging with Distributed Ledgers as Incumbent Organization. Proceedings of the 50th Hawaii International Conference on System Sciences, 5390-5399. doi: https://doi.org/10.24251/hicss.2017.653; Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Obtenido de https://bitcoin.org/bitcoin.pdf; Pachero Jiménez, M. N. (2019). De la tecnología blockchain a la economía del token. Derecho PUCP, (83), 61 - 87. doi: https://doi.org/10.18800/derechopucp.201902.003; PORTAFOLIO. (25 de agosto de 2018). Lo que nos roba la corrupción. Obtenido de Portafolio: https://www.portafolio.co/economia/lo-que-nos-roba-la-corrupcion-encolombia-520437; REDACCIÓN JUSTICIA. (01 de Julio de 2021). Colombia, segundo país del mundo en tasa de muertes en protestas: JEP. Obtenido de EL TIEMPO: https://www.eltiempo.com/justicia/jep-colombia/protestas-en-colombia-segundo-paiscon-mas-muertes-jep-600162; Serale, F., Redl, C., & Muente, K. (2019). Blockchain en la Administración Pública ¿Mucho ruido y pocos bloques? BID.; Transparency International. (2021). ÍNDICE DE PERCEPCIÓN DE LA CORRUPCIÓN 2020. Berlín, Alemania.; UJAEN. (2016). Universidad de Jaén. Obtenido de http://www.ujaen.es/investiga/tics_tfg/dise_documental.html; Wright, A., & De Filippi, P. (2015). Decentralized Blockchain Technology and the Rise of Lex Cryptographia. 58. doi: http://dx.doi.org/10.2139/ssrn.2580664; Zheng, Z., Xie, S., Dai, H.-N., Chen, X., & Wang, H. (2017). An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends. IEEE International Congress on Big Data (BigData Congress), 557 - 564. doi:10.1109/BigDataCongress.2017.85; M. Abramowicz. Blockchain-Based Insurance. In Regulating Blockchain, pp. 195-212, 2019. Oxford University Press. https://doi.org/10.1093/oso/9780198842187.003.0011 http://dx.doi.org/10.1093/oso/9780198842187.003.0011; I.A. Seres. “On Blockchain Metatransactions”. In 2020 IEEE International Conference on Blockchain (Blockchain). 2020 IEEE International Conference on Blockchain (Blockchain). IEEE. https://doi.org/10.1109/blockchain50366.2020.00029 http://dx.doi.org/10.1109/blockchain50366.2020.00029; P. Tasca, P. & R. Piselli, R. “The Blockchain Paradox”. In Regulating Blockchain, pp. 27-42, 2019. Oxford University Press. https://doi.org/10.1093/oso/9780198842187.003.0002; B. Putz, B., & G. Pernul. “Detecting Blockchain Security Threats”. In 2020 IEEE International Conference on Blockchain (Blockchain). 2020 IEEE International Conference on Blockchain (Blockchain). IEEE. https://doi.org/10.1109/blockchain50366.2020.00046; C. Faria & M. Correia. BlockSim: Blockchain Simulator. In 2019 IEEE International Conference on Blockchain (Blockchain). 2019 IEEE International Conference on Blockchain (Blockchain). IEEE. https://doi.org/10.1109/blockchain.2019.00067 http://dx.doi.org/10.1109/blockchain.2019.00067; L. Alashaikh. “Blockchain-Based Software Systems: Taxonomy Development”. In 2021 IEEE International Conference on Blockchain (Blockchain). 2021 IEEE International Conference on Blockchain (Blockchain). IEEE. https://doi.org/10.1109/blockchain53845.2021.00075; T. Mitani & A. Otsuka. Traceability in Permissioned Blockchain. In 2019 IEEE International Conference on Blockchain (Blockchain). 2019 IEEE International Conference on Blockchain (Blockchain). IEEE. https://doi.org/10.1109/blockchain.2019.00045; P. Ortolani, P. “The Judicialization of the Blockchain. In Regulating Blockchain, pp. 289- 310, 2019. Oxford University Press. https://doi.org/10.1093/oso/9780198842187.003.0017; Martínez-Quintero, J. C., Estupiñán-Cuesta, E. P., Rodríguez-Ortega, V. D. (2019). Raspberry PI 3 RF signal generation system. Visión electrónica, 13(2), 294–299. https://doi.org/10.14483/22484728.15160 https://revistas.udistrital.edu.co/index.php/visele/article/view/15160; Najar-Pacheco, J. C., Bohada-Jaime, J. A., Rojas-Moreno, W. Y. (2019). Vulnerabilities in the internet of things. Visión electrónica, 13(2), 312–321. https://doi.org/10.14483/22484728.15163 https://revistas.udistrital.edu.co/index.php/visele/article/view/15163; Barrera Pérez, M. Ángel, Serrato Losada, N. Y., Rojas Sánchez, E., Mancilla Gaona, G. (2019). State of the art in software defined networking (SDN). Visión electrónica, 13(1), 178–194. https://doi.org/10.14483/22484728.14424 https://revistas.udistrital.edu.co/index.php/visele/article/view/14424; Salamanca, T. (2018). Prototipo para monitorización de signos vitales en espacios confinados. Visión electrónica, 12(1), 83–88. https://doi.org/10.14483/22484728.13401 https://revistas.udistrital.edu.co/index.php/visele/article/view/13401; Pérez, M., Cavanzo Nisso, G. A., Villavisán Buitrago, F. (2018). Sistema embebido de detección de movimiento mediante visión artificial. Visión electrónica, 12(1), 97–101. https://doi.org/10.14483/22484728.15087 https://revistas.udistrital.edu.co/index.php/visele/article/view/15087; Nieto Duran, J. D., Santos Quintero, L. F., Vargas Escobar, L. J., Salinas, S. A. (2017). Geolocalización para pacientes con alzhéimer: una propuesta. Visión electrónica, 11(1), 40–44. https://doi.org/10.14483/22484728.12791 https://revistas.udistrital.edu.co/index.php/visele/article/view/12791; S. W., Tsang, C. Y, Jim. “Applying artificial intelligence modeling to optimize green roof irrigation”. Elsevier, Energy and Buildings, 127: 360-369, 2016.; R., Salazar, J. C., Rangel, C., Pinzón, A., Rodríguez. “Irrigation System through Intelligent Agents Implemented with Arduino Technology”. Advances in Distributed Computing and Artificial Intelligence Journal, 2(3): 29-36, 2013.; C., Kamienski, J. P., Soininen, M., Taumberger, R., Dantas, A., Toscano, T., Salmon Cinotti, A., Torre Neto. “Smart water management platform: Iot-based precision irrigation for agriculture”. Sensors,19(2): 276, 2019.; R., Kulmatov, J., Mirzaev, J., Abuduwaili, B., Karimov. “Challenges for the sustainable use of water and land resources under a changing climate and increasing salinization in the Jizzakh irrigation zone of Uzbekistan”. Journal of Arid Land, 12: 90-103, 2020.; H., Navarro Hellín, J., Martínez del Rincon, R., Domingo Miguel, F., Soto Valles, R., Torres Sánchez. “A decision support system for managing irrigation in agriculture”. Elsevier, Computers and Electronics in Agriculture, 124: 121-131, 2016.; R., Togneri, D. F., dos Santos, G., Camponogara, H., Nagano, G., Custódio, R., Prati. & C. Kamienski. “Soil Moisture Forecast for Smart Irrigation: The Primetime for Machine Learning”. Expert Systems with Applications, 117653, 2022.; B., Keswani, A., Mohapatra, A., Mohanty, A., Khanna, J., Rodrigues, D., Gupta, V., De Albuquerque. “Adapting weather conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms”. Neural Comput. Appl. 31: 277–292, 2019.; B. V., Ashwini. “A study on smart irrigation system using IoT for surveillance of crop-feld”. International Journal of Engineering and Technology (UAE), 7: 370–373, 2018.; M., Jirapond, B., Nathaphon, K., Siriwan, L., Narongsak, W., Apirat, N., Pichetwut. “IoT and agriculture data analysis for smart farm”. Computers and Electronics in Agriculture, 156: 467–474, 2019.; M., Karunakanth, R., Venkatesan, W., Jaspher, G., Kathrine. “IOT based smart irrigation system for home based organic garden”. International Journal of Pure and Applied Mathematics, 119(12): 16193–16199, 2018.; I., Mohanraj, A., Kirthika, J., Naren. “Field monitoring and automation using IOT in agriculture domain”. International Conference on Advances in Computing & Communications, 93: 931–939, 2016.; K. J., Vanaja, A., Suresh, S., Srilatha, K., Vijay Kumar, M., Bharath. “IOT based agriculture system using node MCU”. International Research Journal of Engineering and Technology, 5(3): 3025–3028, 2018.; Y., Shekhar, D., Ekta, M., Sourabh, S., Suresh. “Intelligent IoT based automated irrigation system”. International Journal of Applied Engineering Research, 12(18): 7306–7320, 2017.; S., Rajeswari, K., Suthendran, K., Rajakumar. “A smart agricultural model by integrating IoT, mobile and cloud-based big data analytics”. In 2017 international conference on intelligent computing and control (I2C2) IEEE, pp. 1–5, 2017.; A. F., Jimenez, B. V., Ortiz, L., Bondesan, G., Morata, & D., Damianidis. “Long Short-Term Memory Neural Network for irrigation management: a case study from Southern Alabama, USA”. Precision Agriculture, 22(2), 475-492, 2021.; R., Togneri, C., Kamienski, R., Dantas, R., Prati, A., Toscano, J. P., Soininen, T. S., Conic, “Advancing IoT-Based Smart Irrigation”. IEEE Internet of Things Magazine, 2(4): 20-25, 2019.; A. F., Jiménez, P. F., Cárdenas, & F. Jiménez. “Intelligent IoT-multiagent precision irrigation approach for improving water use efficiency in irrigation systems at farm and district scales”. Computers and Electronics in Agriculture, 192, 106635, 2022.; L., Gong, J., Yan, Y., Chen, J., An, L., He, L., Zheng & Z., Zou. “An IoT-based intelligent irrigation system with data fusion and a self-powered wide-area network”. Journal of Industrial Information Integration, 100367, 2022.; Y., Tace, M., Tabaa, S., Elfilali, C., Leghris, H., Bensag, & E., Renault. “Smart irrigation system based on IoT and machine learning”. Energy Reports, 8, 1025-1036, 2022.; L., Doron. “Flexible and Precise Irrigation Platform to Improve Farm Scale Water Productivity”. Impact, 77–79, 2017.; T., Popovic, N., Latinovic, A., Pešic, Ž., Zecevic, B., Krstajic, S., Djukanovic. “Architecting an IoT-enabled platform for precision agriculture and ecological monitoring: A case study”. Comput. Electron. Agric. 140: 255–265, 2017.; Kamilaris A., F., Gao, F.X., Prenafeta-Boldu, M.I., Ali. “Agri-IoT: A semantic framework for Internet of Things-enabled smart farming applications”. In Proceedings of the 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 12–14, 2016.; M., Rodriguez, L., Cuenca, A., Ortiz. “FIWARE Open-Source Standard Platform in Smart Farming—A Review”. In Working Conference on Virtual Enterprises; Springer: Cham, Switzerland, 2018.; M., Roopaei, P., Rad, K. K. R., Choo. “Cloud of things in smart agriculture: Intelligent irrigation monitoring by thermal imaging”. IEEE Cloud computing, 4(1): 10-15, 2017.; S. R., Evett, S. A., O’Shaughnessy, M. A., Andrade, W. P., Kustas, M. C., Anderson, H. S., Schomberg, A., Thompson. “Precision agriculture and irrigation: Current US perspectives”. Trans. ASABE, 63(1): 57-67, 2020.; F., Viani, M., Bertolli, M., Salucci, A., Polo. “Low-cost wireless monitoring and decision support for water saving in agriculture”. IEEE Sens. J. 17, 2017; 4299–4309. https://doi.org/10.1109/JSEN.2017.2705043.; J., Gutierrez, J.F., Villa-medina, A., Nieto-Garibay, M.A., Porta-Gandara. “Automated irrigation system using a wireless sensor network and GPRS module”. IEEE Trans. Instrum. Meas, 63: 166–176, 2014. https://doi.org/10.1109/TIM.2013.2276487.; H. G., Jones. “Irrigation scheduling–comparison of soil, plant and atmosphere monitoring approaches”. In V International Symposium on Irrigation of Horticultural Crops, 792: 391- 403, 2006.; O., Adeyemi, I., Grove, S., Peets, T, Norton. “Advanced monitoring and management systems for improving sustainability in precision irrigation”. J. Sustain, 9(3): 353, 2017. https://doi.org/10.3390/su9030353; C., Kamienski, M., Jentsch, M., Eisenhauer, J., Kiljander, E., Ferrera, P., Rosengren, J., Thestrup, E., Souto, W., Andrade, D., Sadok. “Application Development for the Internet of Things: A Context-Aware Mixed Criticality Systems Development Platform”. Comput. Commun. 104: 1–16, 2017.; A. F., Jiménez, P. F., Cárdenas, F., Jiménez, A., Ruiz-Canales, & A., López. (2020). “A cyber-physical intelligent agent for irrigation scheduling in horticultural crops”. Computers and Electronics in Agriculture, 178, 105777. https://doi.org/10.1016/j.compag.2020.105777; S. Z., Shirazi, X., Mei, B., Liu, & Y. Liu. “Assessment of the AquaCrop Model under different irrigation scenarios in the North China Plain”. Agricultural Water Management, 257, 107120, 2021.; C., Shock, J., Barnum, M., Seddigh. “Calibration of watermark soil moisture sensors for irrigation management”. Proc. Int. Irrig. Show, San Diego California USA, pp 139–146, 1988.; W. F., Moreno, H. I., Tangarife & A., Escobar Díaz. “Image analysis aplications in precision agriculture”. Visión electrónica, 11(2), 200–210, 2017. https://doi.org/10.14483/22484728.14628; A. A. Sánchez Martin, S. A., Gutiérrez Duarte, J. C., Martínez Ballesteros, F. J., Gutiérrez Bernal, S. E., Villanueva Navarro, J. J., Ochoa Ortiz, & D. S. Pachón Robayo. “Functional analysis for PIICO IoT platform”. Visión electrónica, 15(1), 2020. Recuperado a partir de https://revistas.udistrital.edu.co/index.php/visele/article/view/17418; J. A., Parra Plaza, D., Ramos Zapata & A. Tigreros Tascón. “Implementación de redes neuronales utilizando dispositivos lógicos programables”. Visión electrónica, 1(1), 48–55, 2008. https://doi.org/10.14483/22484728.250; L. F., Pedraza Martínez, O.F., Corredor Camargo & J. E. Roa. “Estudio comparativo de técnicas artificiales para la predicción de una serie de tiempo caótica”. Visión electrónica, 2(2), 11–17, 2008. https://doi.org/10.14483/22484728.792; G. M., Tarazona B., J. S., Chávez L. & R., Ferro Escobar. “Modelacion de sistemas de recomendacion aplicando redes neuronales artificiales”. Visión electrónica, 7(2), 45–56, 2013. https://doi.org/10.14483/22484728.5508; C. L., González Pinzón, H. E., Espitia Cuchango & G., Avendaño Prieto. “Marco de desarrollo algorítmico de inteligencia de enjambres aplicada en almacenes”. Visión electrónica, 9(2), 194–205, 2015. https://doi.org/10.14483/22484728.11028; O. L., Ramos, D. A., Rojas, & L. A. Góngora. “Reconocimiento de patrones de habla usando MFCC y RNA”. Visión electrónica, 10(1), 5–11, 2016. https://doi.org/10.14483/22484728.11712; C., Jiménez Moreno, J. K., Aristizábal Nieto & O. L., Giraldo Salazar. “Classification of Facial Expression of Post-Surgical Pain in Children: Evaluation of Convolutional Neural Networks”. Visión electrónica, 15(1), 2020. Recuperado a partir de https://revistas.udistrital.edu.co/index.php/visele/article/view/17425; J. A., Rosero García, & J. A., Caballero Peña. “Distributed Fault Diagnosis System based on Wireless Sensor Networks”. Visión electrónica, 14(2), 207–221, 2020. https://doi.org/10.14483/22484728.17058; A. C. Tyagi. “WORLD IRRIGATION FORUM: RESURRECTING IRRIGATION AND DRAINAGE”. In Irrigation and Drainage, Vol. 62, Issue 2, pp. 239-241, 2013. Wiley. https://doi.org/10.1002/ird.1755; G. A., Alzate-Acuña, R., Ferro-Escobar & O., Salcedo-Parra. Smart irrigation: data capture process based on knowledge management. Visión electrónica, 2(1), 40–47, 2019. https://doi.org/10.14483/22484728.1840; P. F., Martín-Gómez, J. E., Rangel-Díaz, J. O., Montoya-Gómez, & J. L., RubianoFernández. “Automation of greenhouse pesticide application: design and construction”. Visión electrónica, 2(1), 129–133, 2019. https://doi.org/10.14483/22484728.18419; A. M. Wyglinski, M. Nekovee, and Y. T. Hou, Cognitive Radio Communications and Networks: Principles and Practice. 2009.; J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios more personal,” IEEE Pers. Commun., vol. 6, no. 4, pp. 13–18, 1999, doi:10.1109/98.788210.; J. H. Aguilar Rentería and A. Navarro Cadavid, “Cognitive radio – State of the Art,” Sist. y Telemática, vol. 9, no. 16, p. 31, 2011, doi:10.18046/syt.v9i16.1028.; G. Arulampalam, V. Ramakonar, A. Bouzerdoum, and D. Habibi, “Classification of digital modulation schemes using neural networks,” ISSPA 1999 - Proc. 5th Int. Symp. Signal Process. Its Appl., vol. 2, pp. 649–652, 1999, doi:10.1109/ISSPA.1999.815756.; A. K. Nandi and E. E. Azzouz, “Modulation recognition using artificial neural networks,” Signal Processing, vol. 56, no. 2, pp. 165–175, 1997, doi:10.1016/s0165-1684(96)00165-x.; O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, “Survey of automatic modulation classification techniques: Classical approaches and new trends,” IET Commun., vol. 1, no. 2, pp. 137–156, 2007, doi:10.1049/iet-com:20050176.; A. Ali, F. Yangyu, and S. Liu, “Automatic modulation classification of digital modulation signals with stacked autoencoders,” Digit. Signal Process. A Rev. J., vol. 71, pp. 108–116, 2017, doi:10.1016/j.dsp.2017.09.005.; Y. Tevfik and A. Huseyin, “A survey of spectrum sensing algorithms for cognitive radio applications,” IEEE Commun. Surv. Tutorials, vol. 11, no. 1, pp. 116–130, 2009, doi:10.1109/SURV.2009.090109.; T. J. O’Shea, J. Corgan, and T. C. Clancy, “Convolutional radio modulation recognition networks,” Commun. Comput. Inf. Sci., vol. 629, pp. 213–226, 2016, doi:10.1007/978-3-319- 44188-7_16.; S. Ramjee, S. Ju, D. Yang, X. Liu, A. El Gamal, and Y. C. Eldar, “Fast Deep Learning for Automatic Modulation Classification,” no. 108818, 2019, [Online]. Available: http://arxiv.org/abs/1901.05850.; T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-Air Deep Learning Based Radio Signal Classification,” IEEE J. Sel. Top. Signal Process., vol. 12, no. 1, pp. 168–179, 2018, doi:10.1109/JSTSP.2018.2797022.; T. Huynh-The, C. H. Hua, J. W. Kim, S. H. Kim, and D. S. Kim, “Exploiting a low-cost CNN with skip connection for robust automatic modulation classification,” IEEE Wirel. Commun. Netw. Conf. WCNC, vol. 2020-May, 2020, doi:10.1109/WCNC45663.2020.9120667.; S. H. Kim, J. W. Kim, W. P. Nwadiugwu, and D. S. Kim, “Deep Learning-Based Robust Automatic Modulation Classification for Cognitive Radio Networks,” IEEE Access, vol. 9, pp. 92386–92393, 2021, doi:10.1109/ACCESS.2021.3091421.; P. Ghasemzadeh, S. Banerjee, M. Hempel, and H. Sharif, “A Novel Deep Learning and Polar Transformation Framework for an Adaptive Automatic Modulation Classification,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 13243–13258, 2020, doi:10.1109/TVT.2020.3022394.; S. Peng et al., “Modulation Classification Based on Signal Constellation Diagrams and Deep Learning,” IEEE Trans. Neural Networks Learn. Syst., vol. 30, no. 3, pp. 718–727, 2019, doi:10.1109/TNNLS.2018.2850703.; K. Jiang, J. Zhang, H. Wu, and A. Wang, “applied sciences Based on Deep Convolutional Neural Network,” pp. 1–14, 2020.; N. Daldal, Z. Cömert, and K. Polat, “Automatic determination of digital modulation types with different noises using Convolutional Neural Network based on time–frequency information,” Appl. Soft Comput. J., vol. 86, no. xxxx, p. 105834, 2020, doi:10.1016/j.asoc.2019.105834.; W. Wang, “A Brief Survey on Cognitive Radio,” in Cognitive Radio Systems, China: InTech, 2009.; Y. Arjoune and N. Kaabouch, “A comprehensive survey on spectrum sensing in cognitive radio networks: Recent advances, new challenges, and future research directions,” Sensors (Switzerland), vol. 19, no. 1, Jan. 2019, doi:10.3390/s19010126.; S. Haykin and P. Setoodeh, “Cognitive Radio Networks: The Spectrum Supply Chain Paradigm,” IEEE Trans. Cogn. Commun. Netw., vol. 1, no. 1, pp. 3–28, 2015, doi:10.1109/TCCN.2015.2488627.; R. G. Nair and K. Narayanan, “Cooperative spectrum sensing in cognitive radio networks using machine learning techniques,” Appl. Nanosci., vol. 31, no. 11, pp. 2209–2221, 2022, doi:10.1007/s13204-021-02261-0.; “About GNU Radio · GNU Radio.” https://www.gnuradio.org/about/ (accessed Aug. 08, 2022).; What Is MATLAB? - MATLAB & Simulink.” https://www.mathworks.com/discovery/what-ismatlab.html (accessed Aug. 08, 2022).; camilo ballesteros, E. P. Estupinan Cuesta, and J. C. Martinez Quintero, “Digital Modulation Constellation Images,” vol. 1, 2022, doi:10.17632/WG2GN8D5G9.1.; C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-ResNet and the impact of residual connections on learning,” 31st AAAI Conf. Artif. Intell. AAAI 2017, pp. 4278–4284, 2017, doi:10.1609/aaai.v31i1.11231.; A. Alemi, “Improving Inception and Image Classification in TensorFlow – Google AI Blog,” 2016. https://ai.googleblog.com/2016/08/improving-inception-and-image.html (accessed Nov. 03, 2022).; “tf.keras.losses.SparseCategoricalCrossentropy %7C TensorFlow Core v2.9.1.” https://www.tensorflow.org/api_docs/python/tf/keras/losses/SparseCategoricalCrossentropy (accessed Aug. 07, 2022).; Nugroho, Hedriyanto, Tisamawi. (2018). Application for Marketplace Agricultural Product. International Journal of Applied Information Technology. No. 2. https://www.researchgate.net/publication/330907674_Application_for_Marketplace_Ag ricultural_Product#read.; Salcedo, Pinzón, Duarte. (2013). EL PARO NACIONAL AGRARIO: UN ANÁLISIS DE LOS ACTORES AGRARIOS Y LOS PROCESOS ORGANIZATIVOS DEL CAMPESINADO COLOMBIANO. https://cedins.org/dmdocuments/paro_agrario_actores.pdf; Agnes Andersson Djurfeldt, Ellen Hillbom. (2016). ¿Pro-poor agricultural growth – Inclusion or differentiation? Village level perspectives from Zambia. Geoforum. No. 75. https://www.sciencedirect.com/science/article/abs/pii/S0016718516300537; Xiaoxu Chen, Congyan Cai, Shiyan Guan. (2020). Supply chain coordination of fresh agricultural products based on consumer behavior. Computers & Operations Research. No. 123. https://www.sciencedirect.com/science/article/abs/pii/S0305054820301556; Xueli Ma, Shuyun Wang, Sardar M.N. Islam, Xiaobing Liu. (2018). Coordinating a threeechelon fresh agricultural products supply chain considering freshness-keeping effort with asymmetric information. https://www-sciencedirectcom.ezproxy.ucaldas.edu.co/science/article/pii/S0307904X18305201; Zhao, Sun, Deng, Li, Wu. (2018). Visual Analysis System for Market Sales Data of Agricultural Products. IFAC-PapersOnLine. No. 57. https://reader.elsevier.com/reader/sd/pii/S2405896318312242?token=3B48A79BFDAB A1135572BAD3FEAF54C387FBB54BB9D9D31AC11615A7FFF55D06B4C658C6578 9C5CCB756B9C07E8B5127; Esteban R. Brenes, Luciano Ciravegna, Patrick Marcotte. (2016). Assessing agri-business firms' performances: Organizational and marketing business models of high/low sales and ROE outcomes. Journal of business Research. No. 115. https://www.sciencedirect.com/science/article/abs/pii/S0148296316000618; Feng Jianying, Yuan Bianyu, Li Xin, Tian Dong, Mu Weigson. (2021). Evaluation on risks of sustainable supply chain based on optimized BP neural networks in fresh grape industry. Volume 183. https://www-sciencedirectcom.ezproxy.ucaldas.edu.co/science/article/pii/S0168169921000065; S. Fountas a, G. Carli b , C.G. Sørensen c , Z. Tsiropoulos d , C. Cavalaris d , A. Vatsanidou d , B. Liakos d , M. Canavari e , J. Wiebensohn f , B. Tisserye g. (2015). Farm management information systems: Current situation and future perspectives. https://www-sciencedirectcom.ezproxy.ucaldas.edu.co/science/article/pii/S0168169915001337; Lieve de cock, Joost Dessein, Michiel P. de krom. (2020).Risk assessment of agricultural supermarket supply chain in big data environment. Sustainable Computing: Informatics and Systems. No. 28. https://www.sciencedirect.com/science/article/abs/pii/S2210537920301475; La niña que creó una aplicación para ayudar a vender a los campesinos El tiempo. Recuperado de: https://www.eltiempo.com/colombia/otras-ciudades/comproagro-la-pagina-web-paraque-campesinos-vendan-mejor-sus-productos-379176 (2021).; Hyeyoung Eun, Hyunsuk Kim, Sungmin Hong. (2011). ¿Qué marca la diferencia en las ventas de aplicaciones móviles en los países? Springer-Verlag. https://link-springer-com.ezproxy.ucaldas.edu.co/chapter/10.1007/978-3-642-22098- 2_42; Gerrit Heinemann, Christian Gaiser. (2014). Comercio móvil como factor base No.3. https://link-springer-com.ezproxy.ucaldas.edu.co/chapter/10.1007/978-3-662-43964- 7_4; E. Prieger. (2015). La brecha digital de la banda ancha y los beneficios de la banda ancha móvil para las minorías. https://link-springercom.ezproxy.ucaldas.edu.co/article/10.1007/s10888-015-9296-0; Aplicación móvil. Wikipedia. (2016). Recuperado de: https://es.wikipedia.org/wiki/Aplicaci%C3%B3n_m%C3%B3vil; Bases de datos. gurenet. https://www.gurenet.es/bases-de-datos/; Joint Applicaion Desing. (2014). Recuperado de: https://es.wikipedia.org/wiki/Joint_Application_Design; Hurtado Gil. (2019). ÁgilUC: Proceso de desarrollo de software para equipos pequeños y una estrategia para su enseñanza. https://educacioneningenieria.org/index.php/edi/article/download/1026/967/; L. Olivé, «La apropiación social de la ciencia y la tecnología.,» CienCia, teCnologÍa y demoCraCia, p. 113., 2011.; H. I. N. Chingaté, «Democratización del conocimiento científico tecnológico en Colombia.,» Papel político, pp. 14(2), 393-408., 2009.; C. N. d. A. CNA, «Acuerdo 02 de 2020, Por el cual se actualiza el modelo de acreditación en alta calidad,» Consejo Nacional de Acreditación, Bogotá, 2020.; L. Valladares y L. Olivé, «¿Qué son los conocimientos tradicionales? Apuntes epistemológicos para la interculturalidad.,» Cultura y representaciones sociales, pp. 10(19), 61-101., 2015.; I. M. del Pilar Pinzón, G. Fischer y G. Corredor, «Determinación de los estados de madurez del fruto de la gulupa (Passiflora edulis Sims.),» Agronomía Colombiana, 2007.; F. F. Chaves, «El análisis de contenido como ayuda metodológica para la investigación.,» Revista de Ciencias Sociales, pp. (Cr), 2(96)., 2002.; M. Á. Quintanilla, «Tecnología: un enfoque filosófico y otros ensayos de filosofía de la tecnología.,» Fondo de Cultura Económica., 2017.; J. A. V. García, «Usos y perspectivas sociológicas de la entrevista como técnica de investigación social. Saberes.,» Revista de estudios jurídicos, económicos y sociales, pp. (2003-2014), 3, 10., 2005.; F. Pérez, «La entrevista como técnica de investigación social. Fundamentos teóricos, técnicos y metodológicos.,» Extramuros, pp. 8(22), 187-210., 2005.; P. M. Vallejo, «Tamaño necesario de la muestra: ¿Cuántos sujetos necesitamos?,» Estadística aplicada, pp. 24(1), 22-39., 2012.; C. M. C. Blanco y A. B. S. Castro, «El muestreo en la investigación cualitativa,» NURE investigación: Revista Científica de enfermería, pp. (27), 10., 2007.; El abc del CPI: cómo se calcula el índice de percepción de la corrupción (IPC). Transparency International, 2021. Recuperado de: https://www.transparency.org/es/news/how-cpi-scores-are-calculated; Índice Nacional Anticorrupción "El cambio es cero corrupciones" Resultados generales. Recuperado de: tariatransparencia.gov.co/observatorioanticorrupcion/Paginas/mediciones.aspx; An Assessment of the Impact of Legal Regulation on Financial Security in OECD Countries.; Benefits of using big data sentiment analysis and soft computing techniques in Egovernance.; Dwivedi A, Pant R, Pandey S, Pande M, Mittal A. International Journal of Recent Technology and Engineering, (2019), 3038-3044, 8(3); Compendio de Notas ALA/CFT volumen III. Unidad de Inteligencia y Análisis Financiero. Febrero 2017. Recuperado de: https://www.uiaf.gov.co/sala_prensa/publicaciones/notas_ala_cft/compendio_notas_ala_cft_v olumen_iii; Continuous auditing and data mining for strategic risk control and anticorruption: Creating “fair” value in the digital age. Cardoni A, Kiseleva E, De Luca F. Business Strategy and the Environment, (2020), 3072-3085, 29(8); Corruption and money laundering: You scratch my back, i’ll scratch yours. Barone R. Masciandaro D, Schneider F. Metroeconomica, (2022), 318-342, 73(1); Corruption red flags in public procurement: new evidence from Italian calls for tenders. Decarolis F, Giorgiantonio C. EPJ Data Science, (2022), 16, 11(1); Countering money laundering and terrorist financing: A case for bitcoin regulation. Fletcher E, Larkin C, Corbet S. Research in International Business and Finance, (2021), 56; Data Analysis for Corruption Indications on Procurement of Goods and Services. Purwanto A, Emanuel A. 2020 3rd International Conference on Information and Communications Technology, ICOIACT 2020, (2020), 56-60; Governance Matters IV: Indicadores de Gobernabilidad para 1996–2004. D. Kaufmann A. Kraay, y M. Mastruzzi (2005). Draft, Mayo 9, 2005. Recuperado de: http://web.worldbank.org/archive/website00818/WEB/GOVMAT-2.HTM; Indicadores de Transparencia y Anticorrupción. Secretaria de Transparencia y Anticorrupción. 2020. Recuperado de: http://2020.anticorrupcion.gov.co/Paginas/Indicadores-de-Transparencia-old.aspx; Prediction of public procurement corruption indices using machine learning methods. Rabuzin K, Modrušan N. IC3K 2019 - Proceedings of the 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, (2019), 333- 340; Craenen B., Eiben A. (2003): Computational Intelligence. In: Encyclopedia of Life Support Sciences, EOLSS Publishers Co; Wilmott, P. (2019). Machine Learning: An Applied Mathematics Introduction. Panda Ohana Publishing.; Müller, A.; Guido, S. (2017). Introduction to Machine Learning with Python: A Guide for Data Scientists. O´Reilly Media.; Kaplan, J. (2016). Artificial Intelligence. What everyone needs to know. Editorial Teell. • Kruse, R.; Borgelt, C.; Braune, C.; Mostaghim, S.; Steinbrecher, M. (2016).; Craenen B., Eiben A. (2003): Computational Intelligence. In: Encyclopedia of Life Support Sciences, EOLSS Publishers Co.; Engelbrecht A. (2007). Computational Intelligence: An Introduction (2nd ed.), John Willey & Sons; ] Russell S., Norwig P. (2003). Artificial Intelligence: A Modern Approach, (2nd ed.), Prentice Hall.; Gonzalez, R.; Woods, R. (2018). Digital Image Processing. 4th Edition. Pearson Education Limited.; Kaplan, J. (2016). Artificial Intelligence. What everyone needs to know. Editorial Teell.; X. Li, J. Li, and J. Tang, “A deep learning method for recognizing elevated mature strawberries,” in 2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), May 2018, pp. 1072–1077, doi:10.1109/YAC.2018.8406530.; M. Campos et al., “Detección de variedad y estado de maduración del ciruelo japonés utilizando imágenes hiperespectrales y aprendizaje profundo,” XVIII Conf. la Asoc. Española para la Intel. Artif. (CAEPIA 2018) Av. en Intel. Artif. 23-26 oct. 2018 Granada, España, 2018, ISBN 978-84-09-05643-9, págs. 139-144, pp. 139–144, 2018, Accessed: Sep. 23, 2022. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=7373768.; L. M. Azizah, S. F. Umayah, S. Riyadi, C. Damarjati, and N. A. Utama, “Deep learning implementation using convolutional neural network in mangosteen surface defect detection,” in 2017 7th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), nov. 2017, pp. 242–246, doi:10.1109/ICCSCE.2017.8284412.; L. Zhang, J. Jia, G. Gui, X. Hao, W. Gao, and M. Wang, “Deep Learning Based Improved Classification System for Designing Tomato Harvesting Robot,” IEEE Access, vol. 6, pp. 67940–67950, 2018, doi:10.1109/ACCESS.2018.2879324.; J. P. Bonilla-González and F. A. Prieto-Ortiz, “Determinación del estado de maduración de frutos de feijoa mediante un sistema de visión por computador utilizando información de color,” Rev. Investig. Desarro. e Innovación, vol. 7, no. 1, pp. 111–126, Dec. 2016, doi:10.19053/20278306.V7. N1.2016.5603.; ICONTEC, Frutas frescas. Mora de castilla. Especificaciones - NTC 4106. Colombia: Instituto Colombiano de Normas Técnicas y Certificación, 1997.; S. Tewari, “CNN Architecture Series — VGG-16 with implementation (Part I),” Medium, 2019. https://medium.com/datadriveninvestor/cnn-architecture-series-vgg-16-withimplementation-part-i-bca79e7db415.; H. González y R. Malagón, “Elementos para pensar la formación Pedagógica y didáctica de los profesores en la Universidad”, Colomb. Appl. Linguist. J., vol. 17, núm. 2, p. 290, 2015. [En línea]. Disponible en: http://www.scielo.org.co/pdf/calj/v17n2/v17n2a09.pdf. [Consultado: 03-jul-2022].; H. González y H. Ospina, “ El Saber Pedagógico de los docentes universitarios", Rev. virtual Univ. Catól. Norte, núm. 39, pp. 98–109, 2013. [En línea]. Disponible en: https://revistavirtual.ucn.edu.co/index.php/RevistaUCN/article/view/429 [Consultado: 03-jul-2022].; C. Parra. I. Encima. M. Gómez y F. Almenárez, “Vista de La formación de los profesores universitarios : una asignatura pendiente de la universidad colombiana”, [En línea]. Disponible en: https://educacionyeducadores.unisabana.edu.co/index.php/eye/article/view/1733/2335. [Consultado: 03-jul-2022].; J. C. L. Tan y A. Chapman, "Project-based learning for academically-able students : Hwa Chong institution in Singapore", 1a ed. Brill, 2019. [En línea]. Disponible en: http://196.190.117.157:8080/jspui/bitstream/123456789/67037/1/379.pdf. [Consultado: 03-jul-2022].; R. M. Capraro, M. M. Capraro, y J. R. Morgan, "STEM project-based learning : An integrated science, technology, engineering, and mathematics (STEM) approach", 2013a ed. Rotterdam, Netherlands: Sense, 2013. [En línea]. Disponible en: https://books.google.com.co/books?id=PS5KAAAAQBAJ&printsec=frontcover&hl=es&s ource=gbs_ge_summary_r&cad=0#v=onepage&q&f=false. [Consultado: 03-jul-2022].; Y. A. Alqudah y E. Al-Qaralleh, “Project based learning to enhance teaching digital signal processing”, en Proceedings of 2012 International Conference on Interactive Mobile and Computer Aided Learning (IMCL), 2012, pp. 32–35. [En línea]. Disponible en: https://ieeexplore.ieee.org/document/6396446, [Consultado: 03-jul-2022].; Z. Zhang, C. T. Hansen, y M. A. E. Andersen, “Teaching power electronics with a designoriented, project-based learning method at the technical university of Denmark”, IEEE trans. educ., vol. 59, núm. 1, pp. 32–38, 2016. [En línea]. Disponible en: https://backend.orbit.dtu.dk/ws/portalfiles/portal/107881270/Teaching_Power_Electroni cs_revised_R3_v2_DTU_orbit.pdf. [Consultado: 03-jul-2022].; N. Aliane, “A project-based learning experience in a robotics course”, Inartech.org. [En línea]. Disponible en: https://inartech.org/assets/pdf/Una_Experiencia_de_Aprendizaje_Basado_en_Proyect os.pdf. [Consultado: 04-jul-2022].; Congreso de Colombia, "Ley 30 de 1992". [En línea]. Disponible en: https://snies.mineducacion.gov.co/1778/articles-391237_Ley_30.pdf. [Consultado: 04- jul-2022].; Constitución Política de Colombia (1991). Artículo 27. [En línea]. Disponible en: http://wsp.presidencia.gov.co/Normativa/Documents/Constitucion-PoliticaColombia.pdf. [Consultado: 04-jul-2022].; Corte Constitucional de Colombia. “Sentencia No. T-493/92”. [En línea]. Disponible en: https://www.corteconstitucional.gov.co/relatoria/1992/T-493-92.htm. [Consultado: 04- jul-2022].; Corte Constitucional de Colombia. “Sentencia No. T-092/94”. [En línea]. Disponible en: https://www.corteconstitucional.gov.co/relatoria/1994/T-092-94.htm. [Consultado: 04- jul-2022].; Corte Constitucional de Colombia. “Sentencia No. T-535/03”. [En línea]. Disponible en: https://www.corteconstitucional.gov.co/relatoria/2003/T-535-03.htm. [Consultado: 04- jul-2022].; R. B. Westbrook, “John Dewey : 1859-1952”, Prospects (Paris), vol. 23, núm. 1–2, pp. 277–291, 1993. [En línea]. Disponible en: https://pedagogia.mx/john-dewey/. [Consultado: 04-jul-2022].; D. Gillard, “Kilpatrick - the Project Method (1918)”, Org.uk. [En línea]. Disponible en: http://www.educationengland.org.uk/documents/kilpatrick1918/index.html. [Consultado: 04-jul-2022].; J. Sánchez, “Qué dicen los estudios sobre el Aprendizaje Basado en Proyectos”, actualidadpedagogica.com. [En línea]. Disponible en: https://www.estuaria.es/wp- content/uploads/2016/04/estudios_aprendizaje_basado_en_proyectos1.pdf. [Consultado: 23-jul-2022].; J. C. Martínez-Quintero, E. P. Estupiñán-Cuesta, V. D. Rodríguez-Ortega, “Raspberry PI 3 RF signal generation system”, Visión electrónica, vol. 13, no. 2, pp. 294–299, 2019. Disponible en: https://doi.org/10.14483/22484728.15160 . [Consultado: 23-jul-2022].; S. G. Moctezuma Gutiérrez, A. Cruz Pazarán, R. Galicia Mejía, L. N. Oliva Moreno, “Desarrollo de plataforma para implementación de robots colaborativos”, Visión electrónica, vol. 12, no. 1, pp. 22–31, 2018. Disponible en: https://doi.org/10.14483/22484728.13308 [Consultado: 23-jul-2022].; A. Neori et al., “Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture,” Aquaculture, vol. 231, no. 1, pp. 361–391, 2004, doi: https://doi.org/10.1016/j.aquaculture.2003.11.015.; H. Monsees, J. Suhl, M. Paul, W. Kloas, D. Dannehl, and S. Würtz, “Lettuce (Lactuca sativa, variety Salanova) production in decoupled aquaponic systems: Same yield and similar quality as in conventional hydroponic systems but drastically reduced greenhouse gas emissions by saving inorganic fertilizer,” PLoS One, 2019, doi:10.1371/journal.pone.0218368.; S. Wongkiew, Z. Hu, K. Chandran, J. W. Lee, and S. K. Khanal, “Nitrogen transformations in aquaponic systems: A review,” Aquacultural Engineering. 2017, doi:10.1016/j.aquaeng.2017.01.004.; H. W. Palm et al., “Towards commercial aquaponics: a review of systems, designs, scales and nomenclature,” Aquaculture International. 2018, doi:10.1007/s10499-018-0249-z.; A. R. Yanes, P. Martinez, and R. Ahmad, “Towards automated aquaponics: A review on monitoring, IoT, and smart systems,” Journal of Cleaner Production. 2020, doi:10.1016/j.jclepro.2020.121571.; Z. M. Gichana, D. Liti, H. Waidbacher, W. Zollitsch, S. Drexler, and J. Waikibia, “Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation,” Aquaculture International. 2018, doi:10.1007/s10499-018-0303-x.; B. König, J. Janker, T. Reinhardt, M. Villarroel, and R. Junge, “Analysis of aquaponics as an emerging technological innovation system,” J. Clean. Prod., 2018, doi:10.1016/j.jclepro.2018.01.037.; H. Monsees, W. Kloas, and S. Wuertz, “Decoupled systems on trial: Eliminating bottlenecks to improve aquaponic processes,” PLoS One, 2017, doi:10.1371/journal.pone.0183056.; K. H. Dijkgraaf, S. Goddek, and K. J. Keesman, “Modeling innovative aquaponics farming in Kenya,” Aquac. Int., 2019, doi:10.1007/s10499-019-00397-z.; S. Goddek and O. Körner, “A fully integrated simulation model of multi-loop aquaponics: A case study for system sizing in different environments,” Agric. Syst., vol. 171, pp. 143– 154, 2019, doi: https://doi.org/10.1016/j.agsy.2019.01.010.; D. Karimanzira, K. J. Keesman, W. Kloas, D. Baganz, and T. Rauschenbach, “Dynamic modeling of the INAPRO aquaponic system,” Aquac. Eng., 2016, doi:10.1016/j.aquaeng.2016.10.004.; P. A. Schwartz, T. S. Anderson, and M. B. Timmons, “Predictive equations for butterhead lettuce (Lactuca sativa, cv. flandria) root surface area grown in aquaponic conditions,” Horticulturae, 2019, doi:10.3390/horticulturae5020039.; S. Pedersen and T. Wik, “A comparison of topologies in recirculating aquaculture systems using simulation and optimization,” Aquac. Eng., vol. 89, p. 102059, 2020, doi: https://doi.org/10.1016/j.aquaeng.2020.102059.; M. Manju, V. Karthik, S. Hariharan, and B. Sreekar, “Real time monitoring of the environmental parameters of an aquaponic system based on internet of things,” 2017, doi:10.1109/ICONSTEM.2017.8261342.; R. Lefers, A. Alam, F. Scarlett, and T. Leiknes, “Aquaponics water use and nutrient cycling in a seawater-cooled controlled environment agriculture system,” 2020, doi:10.17660/ActaHortic.2020.1271.54.; Y. Wei, W. Li, D. An, D. Li, Y. Jiao, and Q. Wei, “Equipment and Intelligent Control System in Aquaponics: A Review,” IEEE Access. 2019, doi:10.1109/ACCESS.2019.2953491.; R. Calone et al., “Improving water management in European catfish recirculating aquaculture systems through catfish-lettuce aquaponics,” Sci. Total Environ., 2019, doi:10.1016/j.scitotenv.2019.06.167.; J. P. Mandap et al., “Oxygen Monitoring and Control System Using Raspberry Pi as Network Backbone,” TENCON 2018 - 2018 IEEE Reg. 10 Conf., no. October, pp. 1381– 1386, 2018.; S. E. Wortman, “Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system,” Sci. Hortic. (Amsterdam)., vol. 194, pp. 34–42, 2015, doi: https://doi.org/10.1016/j.scienta.2015.07.045.; S. Y. Choi and A. M. Kim, “Development of indoor aquaponics control system using a computational thinking-based convergence instructional model,” Univers. J. Educ. Res., 2019, doi:10.13189/ujer.2019.071509.; W. Vernandhes, N. S. Salahuddin, A. Kowanda, and S. P. Sari, “Smart aquaponic with monitoring and control system based on IoT,” 2018, doi:10.1109/IAC.2017.8280590.; D. Karimanzira and T. Rauschenbach, “Enhancing aquaponics management with IoTbased Predictive Analytics for efficient information utilization,” Inf. Process. Agric., vol. 6, no. 3, pp. 375–385, 2019, doi: https://doi.org/10.1016/j.inpa.2018.12.003.; A. M. Nagayo, C. Mendoza, E. Vega, R. K. S. Al Izki, and R. S. Jamisola, “An automated solar-powered aquaponics system towards agricultural sustainability in the Sultanate of Oman,” 2017 IEEE Int. Conf. Smart Grid Smart Cities, ICSGSC 2017, pp. 42–49, 2017, doi:10.1109/ICSGSC.2017.8038547.; L. F. Hernández, “Diseño, construcción y evaluación de un sistema acuapónico automatizado de tipo tradicional y doble recirculación en el cultivo de Tilapia Roja (Oreochromis Mossambicus) y Lechuga Crespa (Lactuca Sativa),” p. 127, 2017, [Online]. Available: http://bdigital.unal.edu.co/62310/1/1057592154.2018.pdf.; U. Knaus and H. W. Palm, “Effects of the fish species choice on vegetables in aquaponics under spring-summer conditions in northern Germany (Mecklenburg Western Pomerania),” Aquaculture, 2017, doi:10.1016/j.aquaculture.2017.01.020.; M. Colorado and M. Ospina, Acuaponia, Herramienta de formación en tiempos de paz. 2019.; H. Wu, Y. Zou, J. Lv, and Z. Hu, “Impacts of aeration management and polylactic acid addition on dissolved organic matter characteristics in intensified aquaponic systems,” Chemosphere, vol. 205, pp. 579–586, 2018, doi: https://doi.org/10.1016/j.chemosphere.2018.04.089.; B. Marques, R. Calado, and A. I. Lillebø, “New species for the biomitigation of a superintensive marine fish farm effluent: Combined use of polychaete-assisted sand filters and halophyte aquaponics,” Sci. Total Environ., vol. 599–600, pp. 1922–1928, 2017, doi: https://doi.org/10.1016/j.scitotenv.2017.05.121.; S. Khalil, “Growth performance, nutrients and microbial dynamic in aquaponics systems as affected by water temperature,” Eur. J. Hortic. Sci., 2018, doi:10.17660/eJHS.2018/83.6.7.; C. Maucieri, C. Nicoletto, R. Junge, Z. Schmautz, P. Sambo, and M. Borin, “Hydroponic systems and water management in aquaponics: A review,” Italian Journal of Agronomy. 2018, doi:10.4081/ija.2017.1012.; W. Lennard and J. Ward, “A comparison of plant growth rates between an NFT hydroponic system and an NFT aquaponic system,” Horticulturae, 2019, doi:10.3390/horticulturae5020027.; D. Tanikawa, Y. Nakamura, H. Tokuzawa, Y. Hirakata, M. Hatamoto, and T. Yamaguchi, “Effluent treatment in an aquaponics-based closed aquaculture system with single-stage nitrification–denitrification using a down-flow hanging sponge reactor,” Int. Biodeterior. Biodegradation, vol. 132, pp. 268–273, 2018, doi: https://doi.org/10.1016/j.ibiod.2018.04.016.; S. M. Pinho, D. Molinari, G. L. de Mello, K. M. Fitzsimmons, and M. G. Coelho Emerenciano, “Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties,” Ecol. Eng., vol. 103, pp. 146–153, 2017, doi:10.1016/j.ecoleng.2017.03.009.; E. G. Durigon et al., “Biofloc technology (BFT): Adjusting the levels of digestible protein and digestible energy in diets of Nile tilapia juveniles raised in brackish water,” Aquac. Fish., vol. 5, no. 1, pp. 42–51, 2020, doi: https://doi.org/10.1016/j.aaf.2019.07.001.; L. Collazos and J. Arias., “Fundamentals of bioflocs technology (BFT). An alternative for fish farming in Colombia. A review.,” Orinoquia, vol. 19, pp. 77–86, 2015.; Y. Zou, Z. Hu, J. Zhang, H. Xie, C. Guimbaud, and Y. Fang, “Effects of pH on nitrogen transformations in media-based aquaponics,” Bioresour. Technol., 2016, doi:10.1016/j.biortech.2015.12.079.; J. Suhl, B. Oppedijk, D. Baganz, W. Kloas, U. Schmidt, and B. van Duijn, “Oxygen consumption in recirculating nutrient film technique in aquaponics,” Sci. Hortic. (Amsterdam)., vol. 255, pp. 281–291, 2019, doi:10.1016/j.scienta.2019.05.033.; F. Li et al., “Effects of Rice-Fish Co-culture on Oxygen Consumption in Intensive Aquaculture Pond,” Rice Sci., vol. 26, no. 1, pp. 50–59, 2019, doi: https://doi.org/10.1016/j.rsci.2018.12.004.; Z. Khiari, K. Alka, S. Kelloway, B. Mason, and N. Savidov, “Integration of Biochar Filtration into Aquaponics: Effects on Particle Size Distribution and Turbidity Removal,” Agric. Water Manag., vol. 229, p. 105874, 2020, doi: https://doi.org/10.1016/j.agwat.2019.105874.; Beel, J., Gipp, B., Langer, S., & Breitinger, C. (2016). A survey of recommender systems applied to research paper recommendation. Proceedings of the International Conference on Electronic Publishing, 1-8. DOI:10.4000/proceedings.elpub.2016.8; Zeng, X., Shen, H., & Zhou, X. (2019). Research paper recommender system evaluation: a quantitative literature survey. Information Processing & Management, 56(6), 102082. DOI:10.1016/j.ipm.2019.102082.; Sun, Y., Han, J., & Zhao, W. (2019). A Machine Learning Approach for Article Recommendation. Proceedings of the IEEE; Liu, Y., & Zhang, J. (2012). A review on the development of cross-language information retrieval. International Journal of Digital Content Technology and its Applications, 6(16), 5-12.; Niu, Y., & Lu, Y. (2019). A new hybrid recommendation algorithm based on text classification and collaborative filtering. Journal of Ambient Intelligence and Humanized Computing, 10(5), 1773-1783.; Chen, H., Chiang, R.H., & Storey, V.C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165-1188.; Jansen, B.J., & Spink, A. (2006). How are we searching the World Wide Web? A comparison of nine search engine transaction logs. Information Processing & Management, 42(1), 248-263.; Diao, Q., Jiang, W., & Zhu, F. (2019). A review on deep learning approaches for natural language processing. Neurocomputing, 338, 28-42.; Wang, H., & Gao, L. (2020). Overview of natural language processing in medical science. Bioengineering, 7(3), 79.; Wu, Y., Liu, L., Liu, C., & Du, J. (2019). A survey of deep learning-based natural language processing. Journal of Artificial Intelligence and Soft Computing Research, 9(4), 253-263.; “Visión electrónica.” [Online]. Available: https://revistas.udistrital.edu.co/index.php/visele.; “CrossCite.” [Online]. Available: https://citation.crosscite.org/.; H. Baba, T. Tojo, S. Yasukawa, and Y. Okazaki, “Soft-isolated network slicing evaluation for 5G low-latency services with real application micro-burst,” in IEEE 5G World Forum, 5GWF 2019 - Conference Proceedings, 2019, pp. 528–531, doi:10.1109/5GWF.2019.8911695.; 5GAmericas, “5G Network Transformation Final.” p. 38, 2017.; Miguel Ángel Barrera Pérez, Neider Yampol Serrato Losada, Elisa Rojas Sánchez, & Giovani Mancilla Gaona. (2018). “Vista de Estado del arte en redes definidas por software (SDN)”. Visión Electrónica Mas Que Un Estado Sólido. https://revistas.udistrital.edu.co/index.php/visele/article/view/14424/14577; Jose Custodio Najar-Pacheco, John Alexander Bohada-Jaime, & Wilmar Yovany RojasMoreno. (2019). “Vista de Vulnerabilidades en el internet de las cosas”. Visión Electrónica Más Que Un Estado Sólido. https://revistas.udistrital.edu.co/index.php/visele/article/view/15163/15018; Sebastián Gael Moctezuma Gutiérrez, Arturo Cruz Pasaran, Rubén Galicia Mejía, & Luz Noe Oliva. (2018). Vista de Desarrollo de plataforma para implementación de robots colaborativos. Visión Electrónica Más Que Un Estado Sólido. https://revistas.udistrital.edu.co/index.php/visele/article/view/13308/13765; Tatiana Salamanca. (2018). Vista de Prototipo para monitorización de signos vitales en espacios confinados. Visión Electrónica Más Que Un Estado Sólido. https://revistas.udistrital.edu.co/index.php/visele/article/view/13401/13868; Miguel Pérez, Gloria Andrea Cavanzo Nisso, & Fabian Villavisan Buitrago. (2018). Vista de Sistema embebido de detección de movimiento mediante visión artificial. Visión Electrónica Más Que Un Estado Sólido. https://revistas.udistrital.edu.co/index.php/visele/article/view/15087/14935; Jose Custodio Najar-Pacheco, John Alexander Bohada-Jaime, & Wilmar Yovany RojasMoreno. (2019). Vista de Geolocalización para pacientes con alzhéimer: una propuesta. Visión Electrónica Más Que Un Estado Sólido. https://revistas.udistrital.edu.co/index.php/visele/article/view/12791/13246; 5G Americas, “Analysis of ITU Spectrum Recommendations in Latin America,” voided 5G LTE Am., pp. 1–40, 2018.; S. Sicari, A. Rizzardi, and A. Coen-Porisini, “5G in the internet of things era: An overview on security and privacy challenges,” Comput. Networks, vol. 179, p. 107345, Oct. 2020, doi:10.1016/j.comnet.2020.107345.; R. Zhang, J. Wang, Z. Zhong, C. Li, X. Du, and M. Guizani, “Energy-Efficient Beamforming for 3.5 GHz 5G Cellular Networks based on 3D Spatial Channel Characteristics,” Comput. Commun., vol. 121, pp. 59–70, May 2018, doi:10.1016/j.comcom.2018.02.019.; C. Kalogiros et al., “The potential of 5G experimentation-as-a-service paradigm for operators and vertical industries: The case of 5G-VINNI facility,” in IEEE 5G World Forum, 5GWF 2019 - Conference Proceedings, 2019, pp. 347–352, doi:10.1109/5GWF.2019.8911696.; ITU, “Sentando las bases para la 5G: Oportunidades y desafíos,” 2018. [Online]. Available: https://www.itu.int/dms_pub/itu-d/opb/pref/D-PREF-BB.5G_01-2018-PDF-S.pdf. [Accessed: 18-Mar-2020].; GSMA, “Espectro 5G Posición de política pública de la GSMA,” 2019. [Online]. Available: https://www.gsma.com/spectrum/wp-content/uploads/2019/10/5G-Spectrum-PositionsSPA.pdf. [Accessed: 10-Mar-2020].; A. A. Alabdullah, N. Ali, H. Obeidat, R. A. Abd-Alhmeed, and S. Jones, “Indoor millimetrewave propagation channel simulations at 28, 39, 60 and 73 GHz for 5G wireless networks,” in 2017 Internet Technologies and Applications, ITA 2017 - Proceedings of the 7th International Conference, 2017, pp. 235–239, doi:10.1109/ITECHA.2017.8101945.; A. M. Al-Samman, T. A. Rahman, M. H. Azmi, and M. N. Hindia, “Large-scale path loss models and time dispersion in an outdoor line-of-sight environment for 5G wireless communications,” AEU - Int. J. Electron. Commun., vol. 70, no. 11, pp. 1515–1521, nov. 2016, doi:10.1016/j.aeue.2016.09.009; E. Yesid, C. Cerón, M. Camila, V. Sandoval, M. Claudia, and M. H. Bonilla, “Análisis de la capacidad de una red celular 5G haciendo uso de mmWave” Universidad del Cauca, 2018.; H. Asplund et al., “Performance of Multi-antenna Features and Configurations,” in Advanced Antenna Systems for 5G Network Deployments, Elsevier, 2020, pp. 561–637. [19] A. C. L. Constantino Pérez Vega, José María Zamanillo Sáinz de la Maza, “Sistemas de telecomunicación,” 2007. [Online]. Available: https://books.google.com.co/books?id=y5s3XIaE46UC&pg=PA438&dq=que+son+modelos+d e+propagacion&hl=es-419&sa=X&ved=0ahUKEwitzb7XrM3nAhXBo1kKHeiSATIQ6AEIKDAA#v=onepage&q=que son modelos de propagación&f=false. [Accessed: 10-Mar-2020].; R. Alonso Quintana, R. Bordón López, and S. Montejo Sánchez, “Estudio comparativo de los modelos de propagación de canal inalámbrico” Universidad Central de las Villas.; L. F. H. S. C. A. S. P. Pedraza Martinez and Octavio José, “Modelo de propagación de interiores para la Facultad Tecnológica de la Universidad Distrital,” Ingeniería, vol. 13, 2008.; J. Beltrán, J. Fermín, and M. Hernández, “Comparación de los modelos de propagación electromagnética implementados en la telefonía móvil Transferencia Tecnológica,” No Extraordin., vol. 12, pp. 305–310, 2012.; F. Javier, G. Rueda, R. Herradón Díez, and E. secretario, “Modelos de propagación para comunicaciones móviles 4G y 5G,” Escuela Técnica Superior de ingeniería y Sistemas de Telecomunicación, 2016.; S. Hur et al., “Proposal on millimeter-wave channel modeling for 5G cellular system,” in IEEE Journal on Selected Topics in Signal Processing, 2016, vol. 10, no. 3, pp. 454–469, doi:10.1109/JSTSP.2016.2527364.; T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, “Wideband millimeterwave propagation measurements and channel models for future wireless communication system design,” IEEE Trans. Commun., vol. 63, no. 9, pp. 3029–3056, Sep. 2015, doi:10.1109/TCOMM.2015.2434384.; P. Zhang, B. Yang, C. Yi, H. Wang, and X. You, “Measurement-Based 5G MillimeterWave Propagation Characterization in Vegetated Suburban Macrocell Environments,” IEEE Trans. Antennas Propag., pp. 1–1, Feb. 2020, doi:10.1109/tap.2020.2975365.; C. Briso, C. Calvo, Z. Cui, L. Zhang, and Y. Xu, “Propagation Measurements and Modeling for Low Altitude UAVs from 1 to 24 GHz,” IEEE Trans. Veh. Technol., vol. 69, no. 3, pp. 3439–3443, Mar. 2020, doi:10.1109/TVT.2020.2968136.; A. Karttunen, A. F. Molisch, S. Hur, J. Park, and C. J. Zhang, “Spatially Consistent Streetby-Street Path Loss Model for 28-GHz Channels in Micro Cell Urban Environments,” IEEE Trans. Wirel. Commun., vol. 16, no. 11, pp. 7538–7550, nov. 2017, doi:10.1109/TWC.2017.2749570.; K. Zhang, R. Zhang, J. Wu, Y. Jiang, and X. Tang, “Measurement and Modeling of Path Loss and Channel Capacity Analysis for 5G UMa Scenario,” in 2019 11th International Conference on Wireless Communications and Signal Processing, WCSP 2019, 2019, doi:10.1109/WCSP.2019.8928031.; A. M. Al-Samman, T. A. Rahman, M. H. Azmi, N. R. Zulkefly, and A. M. S. Mataria, “Path loss model for outdoor environment at 17 GHz mm-wave band,” in Proceeding - 2016 IEEE 12th International Colloquium on Signal Processing and its Applications, CSPA 2016, 2016, pp. 179–182, doi:10.1109/CSPA.2016.7515827.; A. M. Al-Samman, M. N. Hindia, and T. A. Rahman, “Path loss model in outdoor environment at 32 GHz for 5G system,” in 2016 IEEE 3rd International Symposium on Telecommunication Technologies, ISTT 2016, 2017, pp. 9–13, doi:10.1109/ISTT.2016.7918076.; K. Kitao et al., “Path loss prediction model for 800 MHz to 37 GHz in NLOS microcell environment,” in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 2015, vol. 2015-December, pp. 414–418, doi:10.1109/PIMRC.2015.7343334.; S. Salous, X. Raimundo, and A. Cheema, “Path loss model in typical outdoor environments in the 50-73 GHz band,” in 2017 11th European Conference on Antennas and Propagation, EUCAP 2017, 2017, pp. 721–724, doi:10.23919/EuCAP.2017.7928157.; A. Ghosh and I. S. Misra, “Effect of propagation path loss in designing two–tier 5G HetNets for coverage and rate,” in 2019 URSI Asia-Pacific Radio Science Conference, AP-RASC 2019, 2019, doi:10.23919/URSIAP-RASC.2019.8738431.; G. R. Maccartney, T. S. Rappaport, M. K. Samimi, and S. Sun, “Millimeter-Wave Omnidirectional Path Loss Data for Small Cell 5G Channel Modeling,” IEEE Access, vol. 3, pp. 1573–1580, 2015, doi:10.1109/ACCESS.2015.2465848.; S. Sun et al., “Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications,” IEEE Trans. Veh. Technol., vol. 65, no. 5, pp. 2843–2860, May 2016, doi:10.1109/TVT.2016.2543139.; M. Khalily, M. Ghoraishi, S. Taheri, S. Payami, and R. Tafazolli, “Millimeter-wave directional path loss models in the 26 GHz, 32 GHz, and 39 GHz bands for small cell 5G cellular system,” in IET Conference Publications, 2018, vol. 2018, no. CP741, doi:10.1049/cp.2018.0376; A. I. Sulyman, A. Alwarafy, G. R. MacCartney, T. S. Rappaport, and A. Alsanie, “Directional Radio Propagation Path Loss Models for Millimeter-Wave Wireless Networks in the 28-, 60-, and 73-GHz Bands,” IEEE Trans. Wirel. Commun., vol. 15, no. 10, pp. 6939–6947, oct. 2016, doi:10.1109/TWC.2016.2594067.; Z. Zhang and R. Q. Hu, “Dense cellular network analysis with LoS/NLoS propagation and bounded path loss model,” IEEE Commun. Lett., vol. 22, no. 11, pp. 2386–2389, Nov. 2018, doi:10.1109/LCOMM.2018.2850815.; S. Sun, T. A. Thomas, T. S. Rappaport, H. Nguyen, I. Z. Kovacs, and I. Rodriguez, “Path loss, shadow fading, and line-of-sight probability models for 5G urban macro-cellular scenarios,” in 2015 IEEE Globecom Workshops, GC Wkshps 2015 - Proceedings, 2015, doi:10.1109/GLOCOMW.2015.7414036.; G. R. Maccartney, J. Zhang, S. Nie, and T. S. Rappaport, “Path loss models for 5G millimeter wave propagation channels in urban microcells,” in GLOBECOM - IEEE Global Telecommunications Conference, 2013, pp. 3948–3953, doi:10.1109/GLOCOM.2013.6831690.; G. R. Maccartney, S. Deng, and T. S. Rappaport, “Indoor office plan environment and layout-based mmWave path loss models for 28 GHz and 73 GHz,” in IEEE Vehicular Technology Conference, 2016, vol. 2016-July, pp. 1–6, doi:10.1109/VTCSpring.2016.7504287.; S. Kaddouri, M. El Hajj, G. Zaharia, G. El Zein, and G. El Zein, “Indoor Path Loss Measurements and Modeling in an Open-Space Office at 2.4 GHz and 5.8 GHz in the Presence of People,” 2018.; A. M. Al-Samman, T. A. Rahman, M. H. Azmi, M. N. Hindia, I. Khan, and E. Hanafi, “Statistical Modelling and Characterization of Experimental Mm-Wave Indoor Channels for Future 5G Wireless Communication Networks,” PLoS One, vol. 11, no. 9, p. e0163034, Sep. 2016, doi:10.1371/journal.pone.0163034.; S. Sun, G. R. MacCartney, and T. S. Rappaport, “Millimeter-wave distance-dependent large-scale propagation measurements and path loss models for outdoor and indoor 5G systems,” in 2016 10th European Conference on Antennas and Propagation, EuCAP 2016, 2016, doi:10.1109/EuCAP.2016.7481506.; M. K. Samimi, T. S. Rappaport, and G. R. Maccartney, “Probabilistic Omnidirectional Path Loss Models for Millimeter-Wave Outdoor Communications,” IEEE Wirel. Commun. Lett., vol. 4, no. 4, pp. 357–360, Aug. 2015, doi:10.1109/LWC.2015.2417559.; A. M. Al-Samman, T. A. Rahman, N. Hindia, and J. Nasir, “Path loss model for indoor emergency stairwell environment at millimeter wave band for 5G network,” Turkish J. Electr. Eng. Comput. Sci., vol. 26, no. 6, pp. 3024–3032, 2018, doi:10.3906/elk-1710-248.; A. M. Al-Samman, T. A. Rahman, M. H. D. N. Hindia, A. Daho, and E. Hanafi, “Path loss model for outdoor parking environments at 28 GHz and 38 GHz for 5G wireless networks,” Symmetry (Basel)., vol. 10, no. 12, Dec. 2018, doi:10.3390/sym10120672.; H. K. Rath, S. Timmadasari, B. Panigrahi, and A. Simha, “Realistic indoor path loss modeling for regular WiFi operations in India,” 2017 23rd Natl. Conf. Commun. NCC 2017, 2017, doi:10.1109/NCC.2017.8077107.; P. K. S. et. Al., “Comparative Analysis of Propagation Path loss Models with Field Measured Data,” 2013. [Online]. Available: https://www.researchgate.net/publication/50281818_Comparative_Analysis_of_Propagation_ Path_loss_Models_with_Field_Measured_Data. [Accessed: 03-Aug-2020].; C. C. Pu, P. C. Ooi, B. G. Lee, and W. Y. Chung, “Analysis of path loss exponent error in ranging and localization of wireless sensor network,” in IET Seminar Digest, 2014, vol. 2014, no. CP655, doi:10.1049/cp.2014.1416.; J. Fernández, M. Quispe, G. Kemper, J. Samaniego, and D. Díaz, “Adjustments of LogDistance Path Loss Model for Digital Television in Lima,” 2012, doi:10.14209/sbrt.2012.109.; A. I. Sulyman, A. Alwarafy, H. E. Seleem, K. Humadi, and A. Alsanie, “Path loss channel models for 5G cellular communications in Riyadh city at 60 GHz,” in 2016 IEEE International Conference on Communications, ICC 2016, 2016, doi:10.1109/ICC.2016.7510953; V. V. Diaz and D. Marcano Aviles, “A Path Loss Simulator for the 3GPP 5G Channel Models,” in Proceedings of the 2018 IEEE 25th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2018, 2018, doi:10.1109/INTERCON.2018.8526374.; I. D. S. Batalha et al., “Indoor Corridor and Office Propagation Measurements and Channel Models at 8, 9, 10 and 11 GHz,” IEEE Access, vol. 7, pp. 55005–55021, 2019, doi:10.1109/ACCESS.2019.2911866.; H. A. Obeidat et al., “An Indoor Path Loss Prediction Model Using Wall Correction Factors for Wireless Local Area Network and 5G Indoor Networks,” Radio Sci., vol. 53, no. 4, pp. 544–564, Apr. 2018, doi:10.1002/2018RS006536.; T. Imai, K. Kitao, N. Tran, N. Omaki, Y. Okumura, and K. Nishimori, “Outdoor-to-Indoor path loss modeling for 0.8 to 37 GHz band,” in 2016 10th European Conference on Antennas and Propagation, EuCAP 2016, 2016, doi:10.1109/EuCAP.2016.7481469.; A. M. Al-Samman, T. A. Rahman, M. H. Azmi, A. Sharaf, Y. Yamada, and A. Alhammadi, “Path loss model in indoor environment at 40 GHz for 5G wireless network,” in Proceedings - 2018 IEEE 14th International Colloquium on Signal Processing and its Application, CSPA 2018, 2018, pp. 7–12, doi:10.1109/CSPA.2018.8368676.; Z. Gao et al., “Wireless channel propagation characteristics and modeling research in rice field sensor networks,” Sensors (Switzerland), vol. 18, no. 9, p. 3116, Sep. 2018, doi:10.3390/s18093116.; W. Tang, X. Ma, J. Wei, and Z. Wang, “Measurement and analysis of near-ground propagation models under different terrains for wireless sensor networks,” Sensors (Switzerland), vol. 19, no. 8, p. 1901, Apr. 2019, doi:10.3390/s19081901.; G. Maurya et al., “Investigation of Three-Dimensional Empirical Indoor Path Loss Models for Femtocell Networks,” doi:10.1088/1757-899X/53/1/012021.; Y. F. Solahuddin and R. Mardeni, “Indoor empirical path loss prediction model for 2.4 GHz 802.11n network,” in Proceedings - 2011 IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2011, 2011, pp. 12–17, doi:10.1109/ICCSCE.2011.6190487.; J. M. Torres, Á. Pinto-Mangones, M. R. Macea A, N. A. Pérez-García, and L. Marian Rujano, “PATH LOSS PREDICTION MODEL FOR WLAN OPERATING AT 2.4 GHZ AND 5.8 GHZ, IN INDOOR ENVIRONMENTS OF COMMERCIAL BUILDINGS,” No, vol. 20, pp. 42–53, 2016.; M. Morocho-Yaguana, P. Ludeña-González, F. Sandoval, B. Poma-Vélez, and A. Erreyes-Dota, “An Optimized Propagation Model based on Measurement Data for Indoor Environments,” doi:10.26636/jtit.2018.117217.; TU, “RECOMMENDATION ITU-R P.1238-10 - Propagation data and prediction methods for the planning of indoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 450 GHz*,” 2019. [Online]. Available: http://www.itu.int/ITUR/go/patents/en. [Accessed: 06-Mayo-2020].; A. G. Sreedevi, T. R. Rao, and M. Susila, “Device-to-Device Radio Link Analysis at 2.4, 3.4, 5.2, 28 and 60GHz in Indoor Communication Environments,” Frequenz, vol. 73, no. 3–4, pp. 131–141, Mar. 2019, doi:10.1515/freq-2018-0158.; C. Sommer and F. Dressler, “Using the Right Two-Ray Model? A Measurement-based Evaluation of PHY Models in VANETs,” doi:10.1007/s11235-010-9396-x.; J. A. Kirkup, D. D. Rowlands, and D. V. Thiel, “Indoor propagation investigation from a 2.4 GHz waist mounted beacon,” in Procedia Engineering, 2013, vol. 60, pp. 188–194, doi:10.1016/j.proeng.2013.07.041.; C. Sommer, S. Joerer, and F. Dressler, “On the applicability of Two-Ray path loss models for vehicular network simulation,” in IEEE Vehicular Networking Conference, VNC, 2012, pp. 64–69, doi:10.1109/VNC.2012.6407446.; R. He, Z. Zhong, B. Ai, J. Ding, and K. Guan, “Analysis of the relation between Fresnel zone and path loss exponent based on two-ray model,” IEEE Antennas Wirel. Propag. Lett., vol. 11, pp. 208–211, 2012, doi:10.1109/LAWP.2012.2187270.; K. Haneda et al., “Indoor 5G 3GPP-like channel models for office and shopping mall environments,” in 2016 IEEE International Conference on Communications Workshops, ICC 2016, 2016, pp. 694–699, doi:10.1109/ICCW.2016.7503868.; Mohamed K. Elmezughi, S. M., & Nicholas O. Oyie, M. (2021). Performance Study of Path Loss Models at 14, 18, and 22 GHz in an Indoor Corridor Environment for Wireless Communications. SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS, 32–45. http://www.scielo.org.za/pdf/arj/v112n1/04.pdf; Nordin, M. A. M., & Ramli, H. A. M. (2020). Performance analysis of 5G path loss models for rural macrocell environment. IIUM Engineering Journal, 21(1), 85–99. https://doi.org/10.31436/iiumej.v21i1.1247; J. E. A. Peña and R. A. G. Bustamante, “Radiopropagation Simulations in 28 GHz, 38 GHz and 60 GHz with 128 Elements Massive MIMO Array for 5G Networks,” in 2018 IEEE MTT-S Latin America Microwave Conference, LAMC 2018 - Proceedings, 2018, doi:10.1109/LAMC.2018.8699011.; M. U. Sheikh, J. Säe, and J. Lempiäinen, “Multipath Propagation Analysis of 5G Systems at Higher Frequencies in Courtyard (Small Cell) Environment,” in IEEE 5G World Forum, 5GWF 2018 - Conference Proceedings, 2018, pp. 239–243, doi:10.1109/5GWF.2018.8516716.; S. Li, Y. Liu, L. Lin, D. Sun, S. Yang, and X. Sun, “Simulation and Modeling of MillimeterWave Channel at 60 GHz in Indoor Environment for 5G Wireless Communication System,” in 2018 IEEE International Conference on Computational Electromagnetics, ICCEM 2018, 2018, doi:10.1109/COMPEM.2018.8496691.; 8891181Liu, J., Matolak, D. W., Mohsen, M., & Chen, J. (2019). Path loss modeling and ray-tracing verification for 5/31/90 GHz indoor channels. IEEE Vehicular Technology Conference, 2019-September. https://doi.org/10.1109/VTCFall.2019.8891181; K. Khaled and L. Talbi, “Case study of radio coverage in complex indoor environments for 5G communications,” in 7th IEEE International Conference on Wireless for Space and Extreme Environments, WiSEE 2019 - Conference Proceedings, 2019, pp. 105–110, doi:10.1109/WiSEE.2019.8920388.; F. Hossain et al., “An Efficient 3-D Ray Tracing Method: Prediction of Indoor Radio Propagation at 28 GHz in 5G Network,” Electronics, vol. 8, no. 3, p. 286, Mar. 2019, doi:10.3390/electronics8030286.; S. Sun, T. S. Rappaport, M. Shafi, P. Tang, J. Zhang, and P. J. Smith, “Propagation Models and Performance Evaluation for 5G Millimeter-Wave Bands,” IEEE Trans. Veh. Technol., vol. 67, no. 9, pp. 8422–8439, Sep. 2018, doi:10.1109/TVT.2018.2848208.; A. Y. Hsiao, C. F. Yang, T. S. Wang, I. Lin, and W. J. Liao, “Ray tracing simulations for millimeter wave propagation in 5G wireless communications,” in 2017 IEEE Antennas and Propagation Society International Symposium, Proceedings, 2017, vol. 2017-January, pp. 1901–1902, doi:10.1109/APUSNCURSINRSM.2017.8072993.; A. D. Barrado, “Estudio y caracterización del canal y de la propagación en ondas milimétricas, orientada a su utilización en redes de comunicaciones móviles 5G,” universidad politécnica de Madrid.; N. Omaki, T. Imai, K. Kitao, and Y. Okumura, “Improvement of ray tracing in urban street cell environment of non-line-of-site (NLOS) with consideration of building corner and its surface roughness,” in 2016 10th European Conference on Antennas and Propagation, EuCAP 2016, 2016, pp. 1–5, doi:10.1109/EuCAP.2016.7481419.; J. Hejselbaek, A. Karstensen, and G. F. Pedersen, “Angular power distribution measurements and modelling of outdoor urban environment using ray-tracing at 2 and 18 GHz,” in 2016 10th European Conference on Antennas and Propagation, EuCAP 2016, 2016, pp. 1– 5, doi:10.1109/EuCAP.2016.7481354.; M. Almarashli and S. Lindenmeier, “Evaluation of Vehicular 4G/5G-MIMO Antennas via Data-Rate Measurement in an Emulated Urban Test Drive,” in 2018 48th European Microwave Conference, EuMC 2018, 2018, pp. 300–303, doi:10.23919/EuMC.2018.8541757.; S. Hussain and C. Brennan, “Efficient Preprocessed Ray Tracing for 5G Mobile Transmitter Scenarios in Urban Microcellular Environments,” IEEE Trans. Antennas Propag., vol. 67, no. 5, pp. 3323–3333, May 2019, doi:10.1109/TAP.2019.2896706.; Remcom Inc., “Wireless InSite Reference Manual,” Version 3.3.3, pp. 1–500, 2019., pp. 1–500, 2019.; “Manual XIRIO.” [Online]. Available: https://www.xirioonline.com/help/es/index.htm. [Accessed: 28-Jul-2020].; E. J., Rincón. Sistema de Detección Electrónica de Infractores (DEI) de Bogotá D.C: Desarrollo y desafíos de un proyecto estratégico para la movilidad y la seguridad vial de la ciudad”. REAPS, 2021. Bogotá.; J. Galindo, J. Signo y pensamiento: ciudadanía digital, 2012. Recuperado de http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0120-48232009000100011 en 12-07-2022; M. Castells. La galaxia internet, 2012. Oxford Universitty Press. Oxford.; J. Butler. Mecanismos psíquicos del poder, 2014. Editorial Cátedra. Madrid.; M. McLuhan and B.R. Powers. La aldea global. Barcelona: Gedisa Editorial, 1995.; J.J. Linz. Totalitäre und autoritäre Regime [Regímenes totalitarios y autoritarios]. Berlín: Akademie-Verlag, 2000.; E. Zuleta. Elogio de la dificultad y otros ensayos. Editorial: Ariel. Bogotá, 2012.; H. Arendt. Los orígenes del totalitarismo. Editorial: Ariel. México, 2012.; G. Cardona, G. Plan Vive Digital (2014-2018). Ministerio de las Tecnologías de la Información y las Comunicaciones República de Colombia.; D. Kessler, D. Velocity Partners, 2016. Recuperado de https://velocitypartners.com/team/doug-kessler/ en 4-07-2022; J. Meynaud. Problemas ideológicos del siglo XX. Editorial: Ariel. Buenos Aires, 2012.; M. Prensky. Enseñar a nativos digitales. Ediciones SyM. Madrid, 2001.; J. Pulizzi, J. Content INC. Editorial: McGraw-Hill Professional. Barcelona, 2012; A. Vanolo. Is there anybody out there? The place and role of citizens in tomorrow’s smart cities. Futures, 82, 26-36, 2016.; R. A. González Bustamante, R. Ferro Escobar, H. Vacca González, “Smart cities in collaboration with the internet of things”, Visión Electrónica, vol. 14, no. 2, pp. 185-195, July 2020. https://doi.org/10.14483/22484728.16995; Javaid, S., Sufian, A., Pervaiz, S., & Tanveer, M. Smart Traffic Management System Using Internet of Things, pp. 393–398, (2018).; F. Montori, L. Bedogni and L. Bononi, "A Collaborative Internet of Things Architecture for Smart Cities and Environmental Monitoring," in IEEE Internet of Things Journal, vol. 5, no. 2, pp. 592-605, (2018). https://doi:10.1109/JIOT.2017.2720855; IMD-SUTD. Smart City Index 2020. A tool for action, an instrument for better lives for all citizen. [On line]. https://www.imd.org/smart-city-observatory/home/; C.J. Orgaz. Cómo es Songdo, la ciudad inteligente creada desde cero en Corea del Sur. BBC News Mundo, 2021. [On line]. https://www.bbc.com/mundo/noticias-57030345; S.K. Lee. H.R. Kwon. H.A Cho, J. Kim & D. Lee. International Case Studies of Smart Cities: Songdo, Republic of Korea. Inter-American Developmen Bank IDB, 2016.; P. Peiro. Un paseo por la desértica Masdar, la ciudad que estaba llamada a ser la primera con emisiones cero. El País, febrero 2020. [On line]. https://elpais.com/elpais/2020/02/17/planeta_futuro/1581935999_454411.html; T. Shelton, M. Zook & A. Wiig. “Thinking about smart cities”, Cambridge Journal of Regions, Economy and Society, 8, 13–25, 2015. https://doi:10.1093/cjres/rsu026; A. Cipolla. Masdar City, la ciudad ecológica del futuro que casi nadie visita. latinamerican post. Julio 26 2020. [On line]. https://latinamericanpost.com/es/33760-masdar-city-la-ciudad-ecologica-del-futuro-que-casinadie-visita; F. Cugurullo,” Urban eco-modernisation and the policy context of new eco-city projects: Where Masdar City fails and why”, Urban Studies, pp. 2417-2433, 2015. https://doi.org/10.1177/0042098015588727; R. Arturo & A. López, Ciudad inteligente y sostenible: hacia un modelo de innovación inclusiva, pp. 2007–3607, 2007. [On line]. https://doi.org/10.18381/Pk.a7n13.299; Consulta sobre el Internet de las Cosas (" IoT "). (n.d.). [On line]. https://www.crcom.gov.co/es/pagina/revisi-n-del-marco-regulatorio-para-la-provisi-n-decontenidos-y-aplicaciones-pca-y-condiciones-normativas-para-la-adopci-n-del-internet-de-lascosas-iot; nnovation Center, Innovation-Trends-Internet-de-las-cosas-BBVA-Innovation-Center, (n.d). [On line]. https://www.bbva.com/wp-content/uploads/2017/10/ebook-cibbva-trends-internet-de-lascosas.pdf; “Internet de las cosas: retos para su desarrollo”, (n.d.).[On line]. http://www.ift.org.mx/sites/default/files/conocenos/pleno/presentaciones/maria-elena-estavilloflores/comenoriotmeef160523.pdf; B. N. Silva et al., “Urban planning and smart city decision management empowered by real-time data processing using big data analytics,” Sensors (Switzerland), vol. 18, no. 9, pp. 6–12, 2018.; J. Jeffin., Smart City, Structuring a Smarter India, 2016. [On line]. https://www.cronj.com/blog/smart-city-structuring-a-smarter-india/amp/; C. Millahual, Arduino de cero a Experto. Buenos Aires, Argentina Six ediciones, ISBN 978-987-46518-7-7, página 29, 2017.; A. Monteiro, M. de Oliveira, R. de Oliveira and T. da Silva, "Embedded application of convolutional neural networks on Raspberry Pi for SHM," Electronics Letters, vol. 54, no.11, pp.680-682, 2018. https://doi:10.1049/el.2018.0877; R. S. Rosli, M. H. Habaebi and M. R. Islam, "Characteristic Analysis of Received Signal Strength Indicator from ESP8266 WiFi Transceiver Module," 7th International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, pp.504-507. 2018. https://doi:10.1109/ICCCE.2018.8539338; K. Gayathri, "Implementation of Environment Parameters Monitoring in a Manufacturing Industry using IOT," 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, pp. 858-862, 2019. https://doi:10.1109/ICACCS.2019.8728365; M. Simić, G. M. Stojanović, L. Manjakkal and K. Zaraska, "Multi-sensor system for remote environmental (air and water) quality monitoring," 24th Telecommunications Forum (TELFOR), Belgrade, pp.1-4, 2016. https://doi:10.1109/TELFOR.2016.7818711; D. Meyer, P. Kunz, and K. Cox, “Waveguide-Coupled Rydberg Spectrum Analyzer from 0 to 20 GHz”, Phys. Rev. Applied 15, 014053, 2021. https://doi.org/10.1103/PhysRevApplied.15.014053; Research Innovation Enterprise 2020 Plan. Winning the Future through Science and Technology. www.mti.gov.sg/RIE2020; Índice IESE Cities in Motion 2020. https://dx.doi.org/10.15581/018.ST-542; W. Yang, N. H. Wong, and Y. Lin, “Thermal Comfort in High-rise Urban Environments in Singapore,” Procedia Eng., vol. 121, pp. 2125–2131, 2015.; C. Deb, L. Eang, J. Yang, and M. Santamouris, “Forecasting Energy Consumption of Institutional Buildings in Singapore,” Procedia Eng., vol. 121, pp. 1734–1740, 2015.; T. Chaudhuri, Y. C. Soh, H. Li, and L. Xie, “Machine Learning Based Prediction of Thermal Comfort in Buildings of Equatorial Singapore,” pp. 72–77, 2017.; P. H. Chiu et al., “CFD Methodology Development for Singapore Green Mark Building Application,” Procedia Eng., vol. 180, pp. 1596–1602, 2017.; N. H. Wong, E. Tan, O. Gabriela, and S. K. Jusuf, “Indoor Thermal Comfort Assessment of Industrial Buildings in Singapore,” Procedia Eng., vol. 169, pp. 158–165, 2016.; G. Happle, E. Wilhelm, J. A. Fonseca, and A. Schlueter, “Determining air-conditioning usage patterns in Singapore from distributed, portable sensors,” Energy Procedia, vol. 122, pp. 313–318, 2017.; Y. Liu and Y. Wu, “Smart Maintenance via Dynamic Fault Tree Analysis: A Case Study on Singapore MRT System,” 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2017.; X. Kong et al., “Mobility Dataset Generation for Vehicular Social Networks Based on Floating Car Data,” IEEE Transactions on Vehicular Technology. 2017.; E. Al Nuaimi, H. Al Neyadi, N. Mohamed, and J. Al-jaroodi, “Applications of big data to smart cities,” J. Internet Serv. Appl., 2015.; A. J. Jara, D. Genoud, and Y. Bocchi, “Big Data in Smart Cities: From Poisson to Human Dynamics,” 28th International Conference on Advanced Information Networking and Applications Workshops, 2014.; K. Laohalidanond, P. Chaiyawong, and S. Kerdsuwan, Municipal Solid Waste Characteristics and Green and Clean Energy Recovery in Asian Megacities, vol. 79. Elsevier B.V., 2015. https://doi.org/10.1016/j.egypro.2015.11.508; S. Bin, Y. Zhiquan, L. Sze, C. Jonathan, D. Koh, and D. Kurle, “A Big-Data analytics approach to develop industrial symbioses in large cities,” Procedia CIRP, vol. 29, pp. 450–455, 2015.; B. Song, Z. Yeo, P. Kohls, and C. Herrmann, “Industrial Symbiosis: Exploring Big-data Approach for Waste Stream Discovery,” Procedia CIRP, vol. 61, pp. 353–358, 2017.; D. Estrin, “Participatory sensing: applications and architecture [Internet Predictions],” IEEE Internet Comput., vol. 14, no. 1, pp. 12–42, 2010.; Z. Xiao, H. Lim, and L. Ponnambalam, “Participatory Sensing for Smart Cities: A Case Study on Transport Trip Quality Measurement,” IEEE Transactions on Industrial Informatics, vol. 13, no. 2, pp. 759–770, 2017.; S. T. Ng, F. J. Xu, Y. Yang, and M. Lu, “A Master Data Management Solution to Unlock the Value of Big Infrastructure Data for Smart, Sustainable and Resilient City Planning,” Procedia Eng., vol. 196, no. June, pp. 939–947, 2017.; J. Wan, D. Li, C. Zou, and K. Zhou, “M2M communications for smart city: An event-based architecture,” Proc. - 2012 IEEE 12th Int. Conf. Comput. Inf. Technol. CIT, pp. 895–900, 2012.; A. Schmitt, “Dynamic bridge generation for IoT data exchange via the MQTT protocol,” Procedia Computer Science, vol. 130, pp. 90–97, 2018. https://doi.org/10.1016/j.procs.2018.04.016; E. Wilhelm et al., “Wearable Environmental Sensors and Infrastructure for Mobile LargeScale Urban Deployment,” IEEE Sensors Journal, vol. 16, no. 22, pp. 8111–8123, 2016.; C. Houghton, J., Reiners, J. & Lim, “Transporte inteligente,” Transp. Intel. Cómo Mejorar la Movilidad en las Ciudades, p. 24, 2009.; J. Gutiérrez B., “International Case Studies of Smart Cities: Santander, Spain,” Washington, D.C., jun. 2016.; C. E. Seng, “Singapore’s smart nation program — Enablers and challenges,” 11th Syst. Syst. Eng. Conf., pp. 1–5, 2016.; C. Harrison, B. Eckman, R. Hamilton, and P. Hartswick, “Foundations for Smarter Cities,” vol. 54, no. 4, pp. 1–16, 2010.; FUNDACIÓN TELEFÓNICA, “Smart Cities: un primer paso hacia la internet de las cosas,” Editor. Ariel, pp. 13–16, 2011.; M. Kamargianni, W. Li, M. Matyas, and A. Schäfer, “A critical review of new mobility services for urban transport,” Transp. Res. Procedia, vol. 14, no. 0, pp. 3294–3303, 2016.; G. Li, L. Yu, W. S. Ng, W. Wu, and S. T. Goh, “Predicting Home and Work Locations Using Public Transport Smart Card Data by Spectral Analysis,” IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, vol. 2015–Octob. pp. 2788–2793, 2015.; N. Bin Othman, E. F. Legara, V. Selvam, and C. Monterola, “Simulating Congestion Dynamics of Train Rapid Transit using Smart Card Data,” Procedia Comput. Sci., vol. 29, pp. 1610–1620, 2014.; S. P. Sebhatu and B. Enquist, “Sustainable Public Transit Service Value Network for Building Living Cities in Emerging Economies: Multiple Case Studies from Public Transit Services,” Procedia - Soc. Behav. Sci., vol. 224, pp. 263–268, 2016.; G. Di Pasquale, A. S. Dos Santos, A. G. Leal, and M. Tozzi, “Innovative Public Transport in Europe, Asia and Latin America: A Survey of Recent Implementations,” Transp. Res. Procedia, vol. 14, pp. 3284–3293, 2016.; G. regional metropolitano de Santiago, “Revisión y Actualización del Plan Maestro de Ciclovías y Plan de Obras,” 2012.; M. Goletz, I. Feige, and D. Heinrichs, “What Drives Mobility Trends: Results from Case Studies in Paris, Santiago de Chile, Singapore and Vienna,” Transp. Res. Procedia, vol. 13, no. Pucher 2010, pp. 49–60, 2016.; Y. Xiao et al., “Transportation activity analysis using smartphones,” IEEE Consumer Communications and Networking. pp. 60–61, 2012.; S. Nazir and Y. S. Wong, “Energy and pollutant damage costs of operating electric, hybrid, and conventional vehicles in Singapore,” Energy Procedia, vol. 14, pp. 1099–1104, 2012.; V. Nian, M. P. Hari, and J. Yuan, “The prospects of electric vehicles in cities without policy support,” Energy Procedia, vol. 143, pp. 33–38, 2017.; M. Y. W. Chia, S. Krishnan, and J. Zhou, “Challenges and opportunities in infrastructure support for electric vehicles and smart grid in a dense urban Environment-Singapore,” IEEE Int. Electr. Veh. Conf. IEVC 2012, 2012.; C. Krishnasamy, C. Unsworth, and L. Howie, “The patterns of activity, and transport to activities among older adults in singapore,” Hong Kong J. Occup. Ther., vol. 21, no. 2, pp. 80– 87, 2011.; H. Li et al., “Performance and inorganic fume emission reduction of desulfurized rubber powder/styrene–butadiene–styrene composite modified asphalt and its mixture,” J. Clean. Prod., vol. 364, p. 132690, Sep. 2022, doi:10.1016/J.JCLEPRO.2022.132690.; W. Xia, X. Zhou, and X. Yang, “Suppressive effects of composite flame retardant on smoke release, combustion soot and residue constituents of asphalt mixture,” J. Energy Inst., vol. 103, pp. 60–71, Aug. 2022, doi:10.1016/J.JOEI.2022.05.008.; L. Gao, H. Kong, X. Deng, and Z. Wang, “Multi-scale finite element simulation of asphalt mixture anti-cracking performance,” Theor. Appl. Fract. Mech., vol. 121, p. 103490, oct. 2022, doi:10.1016/J.TAFMEC.2022.103490.; Q. Yu, J. Liu, and H. Xia, “Analysis of influence of surfactant on the properties of diluted asphalt mixtures,” Case Stud. Constr. Mater., p. e01335, Jul. 2022, doi:10.1016/J.CSCM.2022.E01335.; R. Guo, H. Zhang, and Y. Tan, “Influence of salt dissolution on durable performance of asphalt and Self-ice-melting asphalt mixture,” Constr. Build. Mater., vol. 346, p. 128329, Sep. 2022, doi:10.1016/J.CONBUILDMAT.2022.128329.; Z. Sun, H. Qi, S. Li, Y. Tan, Z. Yue, and H. Lv, “Estimating the effect of coarse aggregate meso-structure on the thermal contraction of asphalt mixture by a hierarchical prediction approach,” Constr. Build. Mater., vol. 342, Aug. 2022, doi:10.1016/J.CONBUILDMAT.2022.128048.; D. Liu, H. Zhang, T. Yu, J. Sun, Z. Shan, and D. He, “Meso-structural characteristics of porous asphalt mixture based on temperature-stress coupling and its influence on aggregate damage,” Constr. Build. Mater., vol. 342, p. 128064, Aug. 2022, doi:10.1016/J.CONBUILDMAT.2022.128064.; L. Shi, X. Xiao, X. Wang, H. Liang, and D. Wang, “Mesostructural characteristics and evaluation of asphalt mixture contact chain complex networks,” Constr. Build. Mater., vol. 340, p. 127753, jul. 2022, doi:10.1016/J.CONBUILDMAT.2022.127753.; J. Tang, Y. Fu, T. Ma, B. Zheng, Y. Zhang, and X. Huang, “Investigation on lowtemperature cracking characteristics of asphalt mixtures: A virtual thermal stress restrained specimen test approach,” Constr. Build. Mater., vol. 347, p. 128541, Sep. 2022, doi:10.1016/J.CONBUILDMAT.2022.128541.; INVIAS, “Especificaciones de construcción de carreteras y normas de ensayos para materiales de carreteras,” Inst. Nac. Vías – Minist. Transp., 2013.; F. Castellanos, “Evaluación de la respuesta mecánica y dinámica de mezclas asfálticas con diferentes llenantes minerales y tasas de aporte,” Universidad Militar Nueva Granada, 2016.; N. Mejia, “Comportamiento mecánico y dinámico de mezclas abiertas modificadas con fibras,” Universidad Militar Nueva Granada, 2016.; J. Martinez, “Evaluación de mezclas asfálticas fabricadas con rap en diferentes porcentajes y aceite quemado como rejuvenecedor,” Universidad Militar Nueva Granada, 2016.; G. Mojica-Leyva, “Evaluación de la respuesta mecánica y dinámica de mezclas asfálticas fabricadas con asfaltita,” Universidad Militar Nueva Granada, 2016.; O. J. Reyes-Ortiz, M. Mejia, and J. S. Useche-Castelblanco, “Aggregate segmentation of asphaltic mixes using digital image processing,” Bull. POLISH Acad. Sci. Tech. Sci., vol. 67, no. 2, pp. 1–9, 2019, doi:10.24425/bpas.2019.12428.; S. M. E. Harb, N. Ashidi, M. Isa, and S. A. Salamah, “Improved image magnification algorithm based on Otsu,” Comput. Electr. Eng. J., vol. 46, pp. 338–355, 2015.; X. Bai, “Morphological center operator based infrared and visible image fusion through correlation coefficient,” Infrared Phys. Technol., vol. 76, pp. 546–554, 2016, doi:10.1016/j.infrared.2016.04.015.; V. C. Janoo, “Quantification of shape, angularity, and surface texture of base course materials,” 1998.; T. M. Al Rousan, “Characterization of aggregate shape properties using a computer automated system,” Texas A&M University, 2004. [Online]. Available: http://txspace.di.tamu.edu/bitstream/handle/1969.1/1485/etd-tamu-2004C-ENGRAL.pdf?sequence=1; E. Masad, T. M. Al Rousan, J. Button, and D. Little, Test Methods for Characterizing Aggregate Shape, Texture, and Angularity. United States of America, 2007. doi:10.17226/14017.; Y. Kim and L. T. Souza, Effects of Aggregate Angularity on Mix Design Characteristics and Pavement Performance. Nebraska: Nebraska Department of Roads Research Reports, 2009.; P. Thiran, P. "Kohonen Self-Organizing Map with quantized weights". In Kohonen Maps pp. 145-156, 1999. https://doi.org/10.1016/b978-044450270-4/50011-5; T. Kohonen, and T. Honkela. "Kohonen network". In Scholarpedia., Vol. 2, Issue 1, p. 1568, 2007. https://doi.org/10.4249/scholarpedia.1568; J. Jela-nek. "Kohonen Map Modification for Classification Tasks". In Proceedings of the 11th International Conference on Agents and Artificial Intelligence. 11th International Conference on Agents and Artificial Intelligence. SCITEPRESS - Science and Technology Publications, 2019. https://doi.org/10.5220/0007361405840591; T. Kohonen, S. Kaski, K. Lagus, J. Salojärvi, Honkela J., V. Paatero, and A. Saarela. Selforganization of a massive text document collection. In Kohonen Maps., pp. 171–182, 1999. https://doi.org/10.1016/b978-044450270-4/50013-9; L. Monteiro, L. Zerbinatti, and J. Chaui-Berlinck. Is Kohonen under Nyquist rules? In Anais do 7. Congresso Brasileiro de Redes Neurais. 7. Congresso Brasileiro de Redes Neurais. SBRN, 2016. https://doi.org/10.21528/cbrn2005-070; E. Oja, and S. Kaski. "Preface. In Kohonen Maps", p. V-VI, 1999. https://doi.org/10.1016/b978-044450270-4/50000-0; A. Scherer. "Kohonen-Netze". In Neuronale Netze, pp. 93-107, 1997. https://doi.org/10.1007/978-3-322-86830-5_7; T. Kohonen, T. "THE HYPERMAP ARCHITECTURE". In Artificial Neural Networks, pp. 1357-1360, 1991. https://doi.org/10.1016/b978-0-444-89178-5.50088-9; T. Liu, X. Zhang, Z. Li, and Z. Chen, “Research on the homogeneity of asphalt pavement quality using X-ray computed tomography (CT) and fractal theory,” Constr. Build. Mater., vol. 68, pp. 587–598, 2014.; J. T. Starczewski, “Centroid of triangular and Gaussian type-2 fuzzy sets,” Inf. Sci. (Ny)., vol. 280, pp. 289–306, 2014.; ASTM_International, Standard Test Method for Mechanical Size Analysis of Extracted Aggregate. 2008. doi:10.1520/D5444-08.; O. J. Reyes-Ortiz, M. Mejia, and J. S. Useche-Castelblanco, “Digital image analysis applied in asphalt mixtures for sieve size curve reconstruction and aggregate distribution homogeneity,” Int. J. Pavement Res. Technol., 2020, doi:10.1007/s42947-020-0315-6.; J. Homepage, D.-D. Leal-Lara, J. Barón-Velandia, and C.-E. Rocha-Calderón, “Revista Facultad de Ingeniería Interpretability in the Field of Plant Disease Detection: A Review,” Revista Facultad de Ingeniería (Rev. Fac. Ing, vol. 30, no. 58, p. 2021, 2021, doi:10.19053/01211129.v30. n58.2021.13495.; M. Massaro, K. Handley, C. Bagnoli, and J. Dumay, “Knowledge management in small and medium enterprises: a structured literature review,” Journal of Knowledge Management, vol. 20, no. 2. Emerald Group Publishing Ltd., pp. 258–291, Apr. 04, 2016. doi:10.1108/JKM-08- 2015-0320.; C. Jackulin and S. Murugavalli, “A comprehensive review on detection of plant disease using machine learning and deep learning approaches,” Measurement: Sensors, vol. 24, Dec. 2022, doi:10.1016/j.measen.2022.100441.; J. G. A. Barbedo, “Factors influencing the use of deep learning for plant disease recognition,” Biosyst Eng, vol. 172, pp. 84–91, Aug. 2018, doi:10.1016/j.biosystemseng.2018.05.013.; X. Zhao, K. Li, Y. Li, J. Ma, and L. Zhang, “Identification method of vegetable diseases based on transfer learning and attention mechanism,” Comput Electron Agric, vol. 193, Feb. 2022, doi:10.1016/j.compag.2022.106703.; S. Xing and H. J. Lee, “Crop pests and diseases recognition using DANet with TLDP,” Comput Electron Agric, vol. 199, Aug. 2022, doi:10.1016/j.compag.2022.107144.; K. P. Ferentinos, “Deep learning models for plant disease detection and diagnosis,” Comput Electron Agric, vol. 145, pp. 311–318, Feb. 2018, doi:10.1016/j.compag.2018.01.009.; D. Argüeso et al., “Few-Shot Learning approach for plant disease classification using images taken in the field,” Comput Electron Agric, vol. 175, Aug. 2020, doi:10.1016/j.compag.2020.105542.; U. Barman, R. D. Choudhury, D. Sahu, and G. G. Barman, “Comparison of convolution neural networks for smartphone image based real time classification of citrus leaf disease,” Comput Electron Agric, vol. 177, oct. 2020, doi:10.1016/j.compag.2020.105661.; S. Khan and M. Narvekar, “Novel fusion of color balancing and superpixel based approach for detection of tomato plant diseases in natural complex environment,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 6, pp. 3506–3516, jun. 2022, doi:10.1016/j.jksuci.2020.09.006.; T. U. Rehman, M. S. Mahmud, Y. K. Chang, J. Jin, and J. Shin, “Current and future applications of statistical machine learning algorithms for agricultural machine vision systems,” Computers and Electronics in Agriculture, vol. 156. Elsevier B.V., pp. 585–605, Jan. 01, 2019. doi:10.1016/j.compag.2018.12.006.; Producción Mundial de Duraznos y de Nectarinas por País. URL: https://www.atlasbig.com/eses/paises-por-produccion-de-duraznos-ynectarinas#:~:text=En%20todo%20el%20mundo%20se,anual%20de%201.529.919%20tonel adas.; AFRICANO, KL, ALMANZA-MERCHÁN, PJ, CRIOLLO, H., HERRERA, A. & BALAGUERALÓPEZ, HE (2016). Caracterización poscosecha del fruto de durazno [Prunus persica (L.) Batsch] cv. Dorado producido bajo condiciones de trópico alto. Revista Colombiana de Ciencias Hortícolas, 10 (2), 232-240.; Zhang, X. y Xu, S. (julio de 2020). Investigación sobre la tecnología de procesamiento de imágenes del algoritmo de visión por computadora. En 2020 Congreso Internacional de Visión por Computador, Imagen y Aprendizaje Profundo (CVIDL) (págs. 122-124). IEEE.; Mateus, PA y Nino, CL (2016, octubre). Algoritmo adaptativo para identificar anomalías en objetos en movimiento usando visión artificial. En 2016 IEEE ANDESCON (págs. 1-4). IEEE.; K. Barrios, J. Lopez, S. Mendieta, R. Benavides y Y. Saez, «Portal de Revistas Academica UTP,» 2018. [En línea]. Available: https://revistas.utp.ac.pa/index.php/ric/article/view/1827. pp 93-94. DOI: https://doi.org/10.33412/rev-ric.v4.0.1827; J. Camargo, «Universidad Pontificia Bolivariana,» 2010. [En línea]. Available: https://www.upb.edu.co/es/home. pp 23-28.; M. Atibi, A. Issam, M. Boussaa y A. Bennis, «ResearchGate,» 2016. [En línea]. Available: https://www.researchgate.net/publication/306925691_Comparison_between_the_M FCC_and_DWT_applied_to_the_roadway_classification. pp 1-3. DOI:10.1109/CSIT.2016.7549469; O. Ramos, D. Rojas y L. Góngora, «Gale OneFile,» 2016. [En línea]. Available: https://go.gale.com/ps/i.do?id=GALE%7CA569114467&sid=googleScholar&v=2.1&i t=r&linkaccess=abs&issn=19099746&p=IFME&sw=w&userGroupName=anon~bc36 35e2. pp 2-4. DOI: https://doi.org/10.14483/22484728.11712; O. Pérez, F. Poceros y A. Villalobos, «DSpace Tesis IPN,» 2013. [En línea]. Available: https://tesis.ipn.mx/jspui/bitstream/123456789/12309/1/Sistema%20de%20Segurida d%20por%20Reconocimiento%20de%20Voz%20%28Tesis%20de%20Ingenieria% 20ESIME%29.pdf.; J. Pérez y A. Araujo, «Academia,» noviembre 2018. [En línea]. Available: https://www.academia.edu/38038688/Aplicaci%C3%B3n_de_una_Red_Neuronal_C onvolucional_para_el_Reconocimiento_de_Personas_a_Trav%C3%A9s_de_la_Vo z. pp 22-27; S. H. Y. Kido y N. Hashimoto, «IEEEXplore,» 2018. [En línea]. Available: https://ieeexplore.ieee.org/document/8369798. DOI:10.1109/IWAIT.2018.8369798; M. Cruz, F. Lozano y C. Higuera, «Repositorio Uniandes,» 2021. [En línea]. Available: https://repositorio.uniandes.edu.co/handle/1992/50650. pp 2-3; P. Freeman, V. Kashyap, R. Rosner y Q. Lamb, «IOPSience,» 2002. [En línea]. Available: https://iopscience.iop.org/article/10.1086/324017/pdf. pp 187-188.; J. Bernal, P. Gomez y J. Bobadilla, «ResearchGate,» enero 2009. [En línea]. Available: https://www.researchgate.net/publication/239813705_Una_vision_practica_en_el_u so_de_la_Transformada_de_Fourier_como_herramienta_para_el_analisis_espectr al_de_la_voz. pp 79-81.; E. Villca y S. Carmina, «DDIGITAL-UMSS,» 2020. [En línea]. Available: http://ddigital.umss.edu.bo:8080/jspui/handle/123456789/20216. [Último acceso: 2021]. pp 5-7.; Apple, «appleinsider,» [En línea]. Available: https://appleinsider.com/inside/siri. [Último acceso: 2022].; Microsoft, «Microsoft,» 2022. [En línea]. Available: https://support.microsoft.com/eses/topic/-qu%C3%A9-es-cortana-953e648d-5668-e017-1341-7f26f7d0f825.; S.Geek, «Social Geek,» 2022. [En línea]. Available: https://socialgeek.co/tech/googleassistant-google-now-te-contamos-diferencias/.; Amazon, «Amazon,» 2022. [En línea]. Available: https://developer.amazon.com/esES/alexa.; Samsung, «Samsung,» 2022. [En línea]. Available: https://www.samsung.com/co/support/mobile-devices/how-can-i-use-the-bixbyapplication/.; Marketing XXI, «Marketing XXI,» 2018. [En línea]. Available: https://www.marketingxxi.com/voice-search-asistentes-voz-altavoces-inteligentes-seo-sem/asistentesvirtuales-voz.; I. Villamil, «Pontificia Universidad Javeriana de Colombia,» mayo 2005. [En línea]. Available: https://www.javeriana.edu.co/biblos/tesis/ingenieria/tesis95.pdf. [Último acceso: 2020].; R. Fatmi, S. Rashad y R. Integlia, «Mendeley,» 2019. [En línea]. Available: https://www.mendeley.com/catalogue/c9a7990a-551e-3840-a9df627d6b3b094d/?utm_source=desktop&utm_medium=1.19.8&utm_campaign=open_ catalog&userDocumentId=%7Bd99dbd6c-1a25-39a5-b1cc-dd9ac50ea1fe%7D. DOI:10.1109/CCWC.2019.8666491; J. Guo, N. Xu, X. Chen, Y. Shi, K. Xu y A. Alwan, «Isca-Speech,» 2018. [En línea]. Available: https://www.iscaspeech.org/archive/interspeech_2018/guo18_interspeech.html. DOI:10.21437/Interspeech.2018-1370; M. Orozco-Álvarez, «JSTOR,» 2021. [En línea]. Available: https://www.jstor.org/stable/j.ctv2cmr9dz.; Instituto Colombiano de Cultura Hispánica, Geografía Humana de Colombia. Región Andina Central, vol. Tomo IV Volumen II, Bogotá, 2008.; T. Rojas, «DOCERO,» 2006. [En línea]. Available: https://docero.mx/doc/por-loscaminos-de-la-recuperacion-de-la-lengua-paez-4krn88zr31. [Último acceso: 2022].; Universidad del Cauca, CRIC-PEBIl-Comisión General de Lenguas, «Estudio Sociolingüistico Fase preliminar. Base de datos - CRIC 01/2007 Lengua Nasa Yuwe y Namtrik. Popayàn, Cauca, Colombia,» CRIC, Popayán - Colombia, 2008.; M. Farfán Martínez y T. Rojas Curieux, Zuy Luuçxkwe kwe'kwe’sx ipx kwetuy piyaaka. Cartilla de aprendizaje de nasa yuwe como segunda lengua., Buenos Aires, 2010.; G. Alvarez, «ResearchGate,» agosto 2012. [En línea]. Available: https://www.researchgate.net/publication/262753111_A_classifier_model_for_detect ing_pronunciation_errors_regarding_the_Nasa_Yuwe_language%27s_32_vowels. [Último acceso: 2020].; Cabildos Nasa., «Scribd,» diciembre 2005. [En línea]. Available: https://es.scribd.com/doc/143624645/Diccionario-Nasa-Yuwe-Castellano.; T. Rojas, «Utexas,» 2001. [En línea]. Available: http://lanic.utexas.edu/project/etext/llilas/cilla/rojas.html.; ] R. Jiménez Moreno, J. Martínez Baquero y L. Rodríguez Umaña, «Vision Electronica,» 2018. [En línea]. Available: https://revistas.udistrital.edu.co/index.php/visele/article/view/14265. DOI: https://doi.org/10.14483/22484728.14265; W. Rivas y B. Mazón, «ResearchGate,» 2018. [En línea]. Available: https://www.researchgate.net/profile/Bertha-MazonOlivo/publication/327703478_Capitulo_1_Generalidades_de_las_redes_neuronales _artificiales/links/5b9fe3c0299bf13e6038a1d8/Capitulo-1-Generalidades-de-lasredes-neuronales-artificiales.pdf.; E. Acevedo, A. Serna y E. Serna, «academia.edu,» 2017. [En línea]. Available: https://d1wqtxts1xzle7.cloudfront.net/59788956/2017Desarrolloeinnovacineningenie ria220190618-76386-og5bni.pdf?1560906550=&response-contentdisposition=inline%3B+filename%3DDESARROLLO_E_INNOVACION_EN_INGENI ERIA_Ed.pdf&Expires=1619017989&Signature=Emf4rcyVO.; S. Pattanayak, «Springer,» 2017. [En línea]. Available: https://link.springer.com/book/10.1007/978-1-4842-3096-1.; A. Anwar, «Towards Data Science,» 2019. [En línea]. Available: https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception7baaaecccc96. [Último acceso: 2021].; O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, L. Deng, G. Penn y D. Yu, «IEEEXplore,» octubre 2014. [En línea]. Available: https://ieeexplore.ieee.org/document/6857341.; C. Rincon, «Universidad Politecnica de Madrid,» 2007. [En línea]. Available: http://lorien.die.upm.es/barra/pfcs/2007-carmenr/docs/proyecto.pdf. [Último acceso: 2022]. pp 45-47; A. Nogueira, «Universidad Federal do Amazonas,» 2008. [En línea]. Available: https://tede.ufam.edu.br/bitstream/tede/2959/1/DISSERTACAO%20ADRIANO%20N OGUEIRA.pdf. [Último acceso: 2021]. pp 10-13.; L. Valente, «Universidad de Castilla - La Mancha,» 2017. [En línea]. Available: https://ruidera.uclm.es/xmlui/bitstream/handle/10578/15422/TFG_LUISALBERTOV ALENTE.pdf?sequence=1. [Último acceso: 2022]. pp 15-17.; C. Luna, I. Bevacqua y N. Salvay, «Universidad Tecnologica Nacional,» 2011. [En línea]. Available: https://www.profesores.frc.utn.edu.ar/electronica/fundamentosdeacusticayelectroac ustica/pub/file/FAyE0711E1-Luna-Bevacqua-Salvay.pdf. [Último acceso: 2022]. pp 2-3.; D. Ginestar, «Universitat Politecnica de Valencia,» 2022. [En línea]. Available: http://personales.upv.es/dginesta/docencia/posgrado/sparse.pdf. pp 15-21.; P. Wittek, «ScinceDirect,» 2014. [En línea]. Available: https://www.sciencedirect.com/science/article/pii/B9780128009536000025?via%3Di hub.; J. Rodríguez y J. P. Ortiz Pimiento, «Vision Electronica,» 2017. [En línea]. Available: https://revistas.udistrital.edu.co/index.php/visele/article/view/14626.; J. Herrera-Cubides, P. Gaona-García, C. Montenegro-Marín y Á. Varón-Capera, «Vision Electronica,» 2019. [En línea]. Available: https://revistas.udistrital.edu.co/index.php/visele/article/view/15158. DOI: https://doi.org/10.14483/22484728.15158; V. Roman, «Ciencia & Datos,» 2019. [En línea]. Available: https://medium.com/datos-yciencia/introduccion-al-machine-learning-una-gu%C3%ADa-desde-cerob696a2ead359.; R. Hernández, E. Pérez-Perdomo, D. Orozco y L. Sánchez, «ResearchGate,» 2018. [En línea]. Available: https://www.researchgate.net/publication/323858502_Deep_Learning_Una_revision; S. Uddin, A. Khan, E. Hossain y A. Moni, «ResearchGate,» 2019. [En línea]. Available: https://www.researchgate.net/publication/338110532_Comparing_different_supervis ed_machine_learning_algorithms_for_disease_prediction.; N. Ramírez-Pérez, L. Aparicio-Pico y C. Pérez-Triana, «Vision Electronica,» [En línea]. Available: https://revistas.udistrital.edu.co/index.php/visele/article/view/17965. https://doi.org/10.14483/22484728.17965; J. Martinez, «IArtificial.net,» 2020. [En línea]. Available: https://www.iartificial.net/precision-recall-f1-accuracy-en-clasificacion/. [Último acceso: 2021].; A. A. Ali, J. Nursuriati y M. D. N, «IEEE Xplore,» 2017. [En línea]. Available: https://ieeexplore.ieee.org/abstract/document/8464769. [Último acceso: 2022].; K. Wang, C. Gou, Y. Duan, Y. Lin, X. Zheng, and F. Y. Wang, “Generative adversarial networks: Introduction and outlook,” IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 4, pp. 588–598, 2017, doi:10.1109/JAS.2017.7510583.; K.K. Babu, S.R. Dubey, “Csgan: Cyclic-synthesized generative adversarial networks for image-to-image transformation”. Expert Systems with Applications p.114431 (2020).; J. Valverde-Rebaza, “Detección de bordes mediante el algoritmo de Canny,” oct. 2007.; “GitHub - geraldma1998/deep-weather-cleaner: Este proyecto ha sido desarrollado utilizando modelos de deeplearning con el fin de participar en el concurso organizado por el canal de youtube Dot CSV.”; A. S. Shamsaldin, P. Fattah, T. A. Rashid, and N. K. Al-Salihi, “A Study of the Applications of Convolutional Neural,” UKH Journal of Science and Engineering, vol. 3, no. 2, pp. 31–40, 2019, doi:10.25079/ukhjse.v3n2y2019. pp31-40.; T. Grzywalski and S. Drgas, “Application of recurrent U-Net architecture to speech enhancement,” Signal Processing - Algorithms, Architectures, Arrangements, and Applications Conference Proceedings, SPA, vol. 2018-September, pp. 82–87, 2018, doi:10.23919/SPA.2018.8563364.; I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, “Generative adversarial nets”. In: Advances in neural information processing systems. pp. 2672–2680, 2014.; K.K. Babu, S.R. Dubey, “Csgan: Cyclic-synthesized generative adversarial networks for image-to-image transformation”. Expert Systems with Applications p.114431 (2020); P. Patil, A. Dudhane, S. Murala, “End-to-end recurrent generative adversarial network for traffic and surveillance applications”. IEEE Transactions on Vehicular Technology (2020); K.K. Babu, S.R Dubey, “Pcsgan: Perceptual cyclic-synthesized generative adversarial networks for thermal and nir to visible image transformation”. Neurocomputing 413, 41–50 (2020); S. Nema, A. Dudhane, S. Murala, S. Naidu, “Rescuenet: An unpaired gan for brain tumor segmentation”. Biomedical Signal Processing and Control 55, 101641 (2020); P. Isola, A. A. Efros, B. Ai, and U. C. Berkeley, “Image-to-Image Translation with Conditional Adversarial Networks”.; D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context encoders: Feature learning by inpainting. In CVPR, 2016. 2, 3, 13, 17.; X. Wang and A. Gupta, “Generative image modeling using style and structure adversarial networks,” In ECCV, 2016. 2, 3, 5.; “¿Cómo funciona Pix2Pix? %7C Preguntadores.net.” https://preguntadores.net/q/como-funciona-Pix2Pix (accessed Feb. 24, 2021).; J. J. S. S and J. F. A. D, “Detección y análisis de movimiento usando visión artificial,” Detección y análisis de movimiento usando visión artificial, vol. 3, no. 49, pp. 180– 188, 2011, doi:10.22517/23447214.1513.; “GitHub - hmartelb/Pix2Pix-Timbre-Transfer: Musical Timbre Transfer using the Pix2Pix architecture.”; N. F. Conde, L. F. Mahecha y H. Vacca-González. Algoritmo de reconstrucción e identificación de bordes en imágenes utilizando PIX2PIX. Ponencia presentada en video al SOMI XXXVI Congreso de Instrumentación, CDMX, México, 26 al 29 de octubre de 2022.; G. Niezen, P. Eslambolchilar, y H. Thimbleby, “Open-source hardware for medical devices”, BMJ Innovations, vol. 2, n.o 2, pp. 78-83, 2016, doi:10.1136/bmjinnov-2015- 000080.; S. Bitzer y P. van der Smagt, “Learning EMG control of a robotic hand: towards active prostheses”, en Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., 2006, pp. 2819-2823, doi:10.1109/ROBOT.2006.1642128.; P. Slade, A. Akhtar, M. Nguyen, y T. Bretl, “Tact: Design and performance of an opensource, affordable, myoelectric prosthetic hand”, en 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 6451-6456, doi:10.1109/ICRA.2015.7140105.; R. Tarvirdilu-Asl y J. Bauman, “Efficiency Analysis of Induction Motor Control Strategies Using a System-Level EV Model”, en 2019 IEEE Transportation Electrification Conference and Expo (ITEC), 2019, pp. 1-6, doi:10.1109/ITEC.2019.8790636.; B. P. Reddy y A. Murali, “SoC FPGA-based field oriented control of BLDC motor using low resolution Hall sensor”, en IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016, pp. 2941-2945, doi:10.1109/IECON.2016.7793092.; C. Melear, “Brushless DC motor positioning system”, en Southcon/96 Conference Record, 1996, pp. 466-472, doi:10.1109/SOUTHC.1996.535111.; S. J. Chapman, Máquinas Eléctricas. New York: Mc Graw Hill., 2012.; H.-C. Wu, M.-Y. Wen, y C.-C. Wong, “Speed control of BLDC motors using hall effect sensors based on DSP”, en 2016 International Conference on System Science and Engineering (ICSSE), 2016, pp. 1-4, doi:10.1109/ICSSE.2016.7551633.; I. Janpan, R. Chaisricharoen, y P. Boonyanant, “Control of the Brushless DC Motor in Combine Mode”, Procedia Engineering, vol. 32, pp. 279-285, 2012, doi: https://doi.org/10.1016/j.proeng.2012.01.1268.; M. Rao, “Energy efficient Ceiling fans using BLDC motors- A practical implementation”, Proc. pof the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering, n.o June, pp. 978-981, 2018, doi:10.3850/978-981-07-1847-3.; R. M. Pindoriya, A. K. Mishra, B. S. Rajpurohit, y R. Kumar, “An Analysis of Vibration and Acoustic Noise of BLDC Motor Drive”, en 2018 IEEE Power & Energy Society General Meeting (PESGM), 2018, pp. 1-5, doi:10.1109/PESGM.2018.8585750.; K. Kudelina, B. Asad, T. Vaimann, A. Rassõlkin, A. Kallaste, y D. V Lukichev, “Main Faults and Diagnostic Possibilities of BLDC Motors”, en 2020 27th International Workshop on Electric Drives: MPEI Department of Electric Drives 90th Anniversary (IWED), 2020, pp. 1-6, doi:10.1109/IWED48848.2020.9069553.; F. Blohmke y P. H. Näder, Ottobock prosthetic compendium upper extremety prostheses. Duderstadt: Shiele & Schoen, 2011.; Simplefoc, “Simplefoc theory”, 2020. [En línea]. Disponible en: https://docs.simplefoc.com/foc_theory .; L. A. Bermeo Varon, J. Gonzalo Álvarez, y W. M. Arenas, “Comparación del desempeño de un controlador PID sobre el proceso de nivel usando un controlador lógico programable y un sistema embebido”, Ingeniare. Revista chilena de ingeniería, vol. 29, n.o 4, pp. 622-632, 2021, doi: http://dx.doi.org/10.4067/S0718-33052021000400622.; S. Thomsen, N. Hoffmann, y F. W. Fuchs, “Comparative study of conventional PI-control, PI-based state space control and model based predictive control for drive systems with elastic coupling”, en 2010 IEEE Energy Conversion Congress and Exposition, 2010, pp. 2827-2835, doi:10.1109/ECCE.2010.5617756.; J. D. Rivera, J. C. Castro, y J. H. Sandoval, “Control de un motor de corriente continua de 900 hp”, Visión Electrónica, vol. 10, n.o 1, pp. 1-7, 2016, doi: https://doi.org/10.14483/22484728.11643.; P. Dobra, “Robust PI control for servo DC motor”, en Proceedings of the International Conference on Control Applications, 2002, vol. 1, pp. 100-101 vol.1, doi:10.1109/CCA.2002.1040168.; L. Zhou, W. Gruber, y D. L. Trumper, “Position Control for Hysteresis Motors: TransientTime Model and Field-Oriented Control”, IEEE Transactions on Industry Applications, vol. 54, n.o 4, pp. 3197-3207, 2018, doi:10.1109/TIA.2018.2812143.; J. P. John, S. S. Kumar, y B. Jaya, “Space Vector Modulation based Field Oriented Control scheme for Brushless DC motors”, en 2011 International Conference on Emerging Trends in Electrical and Computer Technology, 2011, pp. 346-351, doi:10.1109/ICETECT.2011.5760141.; C.-L. Huang, G.-R. Chen, S.-C. Yang, y Y.-L. Hsu, “Comparison of High Speed Permanent Magnet Machine Sensorless Drive using Trapezoidal BLDC and Sinusoidal FOC under Insufficient PWM Frequency”, en 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019, pp. 321-325, doi:10.1109/ECCE.2019.8912495.; P. K. Sharma y A. S. Sindekar, “Performance analysis and comparison of BLDC motor drive using PI and FOC”, en 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), 2016, pp. 485- 492, doi:10.1109/ICGTSPICC.2016.7955350.; D. – M. Stănică, N. Bizon, y M. – C. Arva, “A brief review of sensorless motors position control”, en 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 2021, pp. 1-6, doi:10.1109/ECAI52376.2021.9515050.; A. Skuric, H. S. Bank, R. Unger, O. Williams, y D. González-Reyes, “SimpleFOC: A Field Oriented Control (FOC) Library for Controlling Brushless Direct Current (BLDC) and Stepper Motors”, Journal of Open Source Software, vol. 7, n.o 74, p. 4232, 2022, doi:10.21105/joss.04232.; S. S. Muñoz Lucas and R. Sánchez García, El agua en la industria alimentaria. Madrid, 2016.; Y. Garc, C. Hidrogr, and O. Garc, “Manuscrito aceptado Manuscrito aceptado,” vol. 24, no. 1, pp. 1–23, 2021.; C. Wong-arguelles, Calidad del agua de los manantiales del humedal natural “ Ciénega de Tamasopo ” en San Luis Potosí , México Water quality of the wellsprings from the natural wetland “ Cienega de Tamasopo ” in San Luis Potosí , Mexico, vol. 0, no. 6. 2021.; M. Basterrechea, “Concentración de nutrientes: TDS, EC y PPM, ¿Cuál es la diferencia?,” 2017. https://www.hidroponiacasera.net/tds-ec-ppm/.; L. S. Torres-valenzuela, A. Sanín-villarrea, A. Arango-ramírez, and J. A. Serna-jiménez, “Caracterización fisicoquímica y microbiológica de aguas mieles del beneficio del café,” Ion, vol. 32, no. 2, pp. 59–66, 2019, doi:10.18273/revion.v32n2-2019006.; Y. Marca, R. Agudelo-Valencia, S. Garcés-Polo, and M. Peña, “Evaluación de la electrocoagulación con electrodos de grafito como alternativa para el tratamiento de aguas residuales,” Inventum, vol. 16, no. 31, pp. 61–70, 2021, doi:10.26620/uniminuto.inventum.16.31.2021.61-70.; D. Rairán Antolines, Y. Olarte, and C. Peñuela, “Diseño y construcción económica de sensores, un aporte a la industria y a la academia,” Ingeniería, vol. 8, no. 1, pp. 50–57, 2003.; J. A. Flórez, D. Márquez Méndez, S. Burgos Núñez, G. Enamorado Montes, and J. Marrugo Negrete, “Productos farmacéuticos y de cuidado personal presentes en aguas superficiales, de consumo córdoba, Colombia.,” Investig. Agrar. y Ambient., vol. 12, no. 2, pp. 179–197, 2021.; S. E. Campaña Bastidas and J. M. Londoño Pelaéz, “Estudio de redes de sensores y aplicaciones orientadas a la recolección y análisis de señales biomédicas,” Gerenc. Tecnol. e Informática, vol. 12, no. 2, pp. 85–99, 2013.; A. Rojas Lucero, “Diseño y Fabricación del Sensor Para Medición de la Conductividad Eléctrica en Aguas Superficiales,” Universidad Militar Nueva Granada, 2019.; C. Rodrigo Herrera, P. Pacheco Mollinedo, M. E. Orihuela, M. L. Piñeros, and E. Cobo, Guía de monitoreo participativo de la calidad de agua, 1st ed. Quito: Unión Internacional para la Conservación de la Naturaleza, 2018.; R. Ríos Hernández, “La Agricultura de Precisión. Una necesidad actual,” Ing. Agrícola, vol. 11, no. 1, 2021, [Online]. Available: https://www.redalyc.org/journal/5862/586269368010/html/.; M. Hayashi, Temperature-Electrical Conductivity Relation of Water for Environmental Monitoring and Geophysical Data Inversion, 1st ed. Alberta, Canada: University of Calgary, 2004.; T. S. Light, S. Licht, A. C. Bevilacqua, and K. R. Morash, “The Fundamental Conductivity and Resistivity of Water The Fundamental Conductivity and Resistivity of Water,” no. January, pp. 1–5, 2019, doi:10.1149/1.1836121.; N. F. Junior, A. A. A. Silva, A. E. Guelfi, and S. T. Kofuji, “Performance evaluation of publish subscribe systems in IoT using energy efficient and context-aware secure messages,” J. Cloud Comput. Adv. Syst. Appl., vol. 11, no. 6, pp. 2–17, 2022.; Conductivity, E. (n.d.). “Electrical Conductivity. In OHMIC HEATING IN FOOD PROCESSING” (pp. 36-37). CRC Press. https://doi.org/10.1201/b16605-8; Y. Xu, Y. “Unsaturated Hydraulic Conductivity of Fractal-Textured Soils. In Hydraulic Conductivity. InTech. https://doi.org/10.5772/56716; S Ak. Hydraulic Conductivity of Layered Anisotropic Media. In Developments in Hydraulic Conductivity Research, 2011. InTech. https://doi.org/10.5772/15378; C. Doussan, C. & S. Ruy. Prediction of unsaturated soil hydraulic conductivity with electrical conductivity. In Water Resources Research (Vol. 45, Issue 10), 2009. American Geophysical Union (AGU). https://doi.org/10.1029/2008wr007309; A. Rasoulzadeh. Estimating Hydraulic Conductivity Using Pedotransfer Functions. In Hydraulic Conductivity - Issues, Determination and Applications, 2011. InTech. https://doi.org/10.5772/22753; D. Tomida. Thermal Conductivity of Ionic Liquids. In Impact of Thermal Conductivity on Energy Technologies, 2018. InTech. https://doi.org/10.5772/intechopen.76559; K. S. Perkins. “Measurement and Modeling of Unsaturated Hydraulic Conductivity”. In Hydraulic Conductivity - Issues, Determination and Applications, 2011. InTech. https://doi.org/10.5772/20017; Powers, A. E. (1953). “APPLICATION OF THE EWING EQUATION FOR CALCULATING THERMAL CONDUCTIVITY FROM ELECTRICAL CONDUCTIVITY”. Office of Scientific and Technical Information (OSTI). https://doi.org/10.2172/4020433; W. Stpniewski, & R. Hor. “Hydraulic Conductivity and Landfill Construction”. In Developments in Hydraulic Conductivity Research, 2011. InTech. https://doi.org/10.5772/16079; W. R. López-Sánchez, C.A. Perdomo-Charry & J.E. Rodríguez-Rodríguez. Estimation of conductivity in hydraulic affluents through self-organizing maps (SOM). Visión electrónica, 1(2), 274–281, 2018. https://doi.org/10.14483/22484728.18391; S. Piper, S. Impact of water quality on municipal water price and residential water demand and implications for water supply benefits. In Water Resources Research (Vol. 39, Issue 5), 2003. American Geophysical Union (AGU). https://doi.org/10.1029/2002wr001592; J.E. Martinez Baquero. “Design and construction of automated equipment for separating mixtures”. Visión electrónica, 8(2), 87–93, 2014. https://doi.org/10.14483/22484728.9880; M. Amador-Nava, J.E. Magadán-Godínez, J. Martínez-Díaz, R. Galicia-Mejía, R. & L.N. Oliva-Moreno. Robots colaborativos para el apoyo de limpieza en piscinas. Visión electrónica, 14(2), 228–235, 2020. https://doi.org/10.14483/22484728.17966; INGENIERÍA Y TECNOLOGÍA. "Robótica industrial: concepto, objetivo y principales aplicaciones". unir Revista. https://www.unir.net/ingenieria/revista/roboticaindustrial/; A. D. Shakibjoo and M. D. Shakibjoo, "2-DOF PID with reset controller for 4-DOF robot arm manipulator," 2015 International Conference on Advanced Robotics and Intelligent Systems (ARIS), 2015, pp. 1-6, doi:10.1109/ARIS.2015.7158355.; R. K. Megalingam, S. Boddupalli and K. G. S. Apuroop, "Robotic arm control through mimicking of miniature robotic arm," 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), 2017, pp. 1-7, doi:10.1109/ICACCS.2017.8014622.; L. Ruiz Mitjana. "Las 3 leyes de la robótica, explicadas". Psicología y mente. https://psicologiaymente.com/cultura/leyes-de-robotica; R. Iñigo Madrigal y E. Vidal Idiarte, Robots industriales manipuladores. Univ. Politèc. de Catalunya, 2002: Edicion UPC, 2002.; Pérez López, C. (2014). Introducing MATLAB and the MATLAB Working Environment. MATLAB Differential Equations, 1–31. doi:10.1007/978-1-4842-0310- 1_1.; Corke, P. I. (1996). A robotics toolbox for MATLAB. IEEE Robotics and Automation Magazine, 3(1), 24–32. https://doi.org/10.1109/100.486658; B. R. Hunt, R. L. Lipsman y J. M. Rosenberg. "A Guide to MATLAB for Beginners and Experienced Users". Cambridge. http://www.uop.edu.pk/ocontents/A%20Guide%20to%20MATALB.pdf; F. I. Tiberiu Petrescu y R. V. Petrescu. "Direct and inverse kinematics to the anthropomorphic robots". Engevista. https://www.researchgate.net/publication/305701095_Direct_and_inverse_kinemat ics_to_the_anthropomorphic_robots; A. D. Joya Barón, J. A. Martínez Guevara y D. A. Pardo Murcia. "Metodo DH en MATLAB Robot Fanuc". Stuvia. https://www.stuvia.com/doc/570269/metodo-dh-enmatlab-robot-fanuc; Swartz, N. M. (2007). Arm Dynamics Simulation. Journal of Robotic Systems, 1(1), 83–100. doi:10.1002/rob.4620010106; Ibrahim, D. (2010). Microcontroller Systems. SD Card Projects Using the PIC Microcontroller, 1–40. doi:10.1016/b978-1-85617-719-1.00005-1; P. Pedamkar. "Microcontroller Architecture %7C Features and Advantages with Disadvantages". EDUCBA. https://www.educba.com/microcontroller-architecture/; A. García Fernández. "DISEÑO, CONSTRUCCIÓN Y CONTROL DE UN ROBOT MANIPULADOR DE 3 GRADOS DE LIBERTAD DE BAJO COSTE PARA EL DESARROLLO DE UN MANIPULADOR MÓVIL". Escuela Técnica Superior Ingenieros Industriales de Valencia. https://riunet.upv.es/bitstream/handle/10251/69124/48677778_TFG_14676142097 487592249101401106903.pdf?sequence=3; E. R. Ramos, H. M. Maldonado-Del Toro y R. Silva-Ortigoza. "Modelado y simulación de un robot rígido de dos grados de libertad". CIDETEC-IPN, Departamento de Posgrado, Área de Mecatrónica. https://www.researchgate.net/publication/228347870_Modelado_y_simulacion_de _un_robot_rigido_de_dos_grados_de_libertad; F. Vurchio, 2016 “Diseño e implementación de un cuadrúpedo con funcionalidades de bípedo,”. Accessed: Feb. 22, 2022. [Online]. Available: https://riunet.upv.es/handle/10251/76059; V. Ortega, “La Evolución de la Locomoción Animal,” Comunicaciones libres, pp. 60– 67, junio. 2011; Kimura, H. Tsuchiya, K. Ishiguro, A. Witte, H. 2006 “Adaptive Motion of Animals and Machine”. Hirakawa Kogyosha, Japan: Springer Tokyo; J. M. Robles, “Diseño y Prototipado del Mecanismo de Locomoción para un Robot Cuadrúpedo,” Universidad de los Andes, Bogotá, 2020. Accessed: Feb. 22, 2022. [Online]. Available: https://repositorio.uniandes.edu.co/handle/1992/45035; M. Raibert, K. Blankespoor, G. Nelson, R. Playter, and B. Team, “BigDog, the RoughTerrain Quaduped Robot.” [Online]. Available: www.BostonDynamics.com/dist/BigDog.wmv.; Á. M. Uribe Becerra, “Representación de la locomoción animal terrestre como estrategia de análisis del movimiento para el desarrollo de simuladores biomiméticos,” Revista Nexus Comunicación, no. 10, Dec. 2011, doi:10.25100/nc.v0i10.819.; Horse Art - Eadweard Muybridge, Leland Stanford and the Hobby Horse. Eadweard Muybridge and His Influence on Horse Art A. consultado junio 2022. [Online]. Available: https://www.your-guide-to-gifts-for-horse-lovers.com/muybridge.html; S. A. Escobar A., “Análisis cinético de la locomoción en perros como metodología diagnóstica de enfermedades ortopédicas,” Bogotá, 2015. [Online]. Available: https://ciencia.lasalle.edu.co/medicina_veterinaria; Andy Math897, “center of gravity,” Jan. 02, 2022. https://www.tiktok.com/@andymath.com/video/7048765015314173231?is_from_w e bapp=1&sender_device=pc&web_id6994645878498444806 (accessed Jan. 01, 2022); J. Shigley y J. Uiker, Teoría de Máquinas y Mecanismos, 1ra ed., México D.F.: McGrawHill, 2001.; B. Baykus, E. Anli, and I. Ozkol, “Design and kinematics analysis of a parallel mechanism to be utilized as a luggage door by an analogy to a fourbar mechanism,” Engineering, vol. 3, no. 4, pp. 411-421, Apr. 2011.; N. Farhat, V. Mata, D. Rosa, and J. Fayos, “A procedure for estimating the relevant forces in the human knee using a four-bar mechanism,” Comput. Methods Biomech. and Biomed. Engin., vol. 13, no. 5, pp. 577-587, Mar. 2010.; H. Pinto, “Diseño óptimo de mecanismos de cuatro barras para generación de movimiento con restricciones de montaje y ángulo de transmisión”, Tesis de Maestría, Universidad Nacional de Colombia, Manizales, Colombia, 2007.; C. Galeano, C. Duque, y D. Garzón, “Aplicación de diseño óptimo dimensional a la síntesis de posición y velocidad en mecanismos de cuatro barras,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 47, pp. 129-144, Mar. 2009.; R. Vásquez, J. Ramirez y G. Hernandez, “Software de simulación para mecanismos planos de cuatro barras,” en XV Muestra de Trabajos de Ingeniería-Ingeniar Internacional, Editorial Universidad Pontificia Bolivariana, vol. 6, pp. 25-36, 4-6 may. 2005.; R. Norton, “Software FOURBAR Student Edition v. 8.2,” en Diseño de Maquinaria: Síntesis y Análisis de Máquinas y Mecanismos, 4ta ed. México: McGraw-Hill, 2009.; M. Pucheta, y A. Cardona, “Software para síntesis de mecanismo planos,” Mecánica Computacional, vol. 23, pp. 3369-3389, nov. 2004.; V. Ruiz, y N. Valencia, “Razonamiento cinemático en mecanismos eslabonados a través de ambientes computacionales,” Tecné, Episteme y Didaxis, no. 23, pp. 16-30, abr. 2008.; D. Machado, G. Herrera, J. Roldán, y J. Díaz, “Una herramienta computacional didáctica para el análisis cinemático de mecanismos planos de cuatro barras,” Revista UIS Ingenierías, vol. 14, no. 1, pp. 59-69, Ene./jun. 2015.; D. González, E. Estrada y J. Roldán Aplicación Android para el estudio de mecanismos planos de cuatro barras1. Entre Ciencia e Ingeniería, ISSN 1909-8367 Año 10 No. 20 - Segundo Semestre de 2016, página 41 – 51. Disponible en http://www.scielo.org.co/pdf/ecei/v10n20/v10n20a07.pdf; Boring Drafters, “Android Application Four Bar Link Mechanism,” agosto 2014. [En linea]. Disponible en: https://play.google.com/store/apps/details?id=rayud.fir.fourbarlinkmechanism_ ZeroBeat, “Android Application 4 Bar Linkage Formula,” septiembre 2012. [En linea]. Disponible en: https://play.google.com/store/ apps/details?id=appinventor.ai_ZeroBeatPro.CRDCDR; D. Machado M., G. Herrera M., J. Roldán M., & J. Díaz G. “Una herramienta computacional didáctica para el análisis”, 2015.; Portilla Flores, É., Avilés Sánchez, O., Piña Quintero, R., Niño Suárez, P., Moya Sánchez, E., & Molina Vilchis, M. (2010). Análisis cinemático y diseño de un mecanismo de cuatro barras para falange proximal de dedo antropomórfico. Ciencia e Ingeniería Neogranadina.; J. Arias G. “Cálculo y diseño de mecanismo de barras. Escuela Técnica Superior de Ingeniería”, 2013.; V. Torres R. “Desarrollo de un mecanismo de cuatro barras para su uso en la enseñanza”, 2009.; J. Hurel, J. Amaya, F. Flores, C. Calderón & N. Suárez. “Análisis Cinemático y Dinámico del Mecanismo de Cuatro Barras de una Máquina de Ejercicios”, 2018.; H. Vacca-González, J. Ramos Fernández & N. Conde González. La desigualdad de Hlawka: exploración geométrica para construcción de cuadriláteros. Matanzas, Matecompu 2021.; R. Rincón D., J. A. Niño V., F. H. Fernández M. Robot hexápodo para la enseñanza de mecanismos para la transformación de movimientos. Revista Interamericana de Investigación Educación y Pedagogía RIIEP, 2021. https://doi.org/10.15332/25005421.5876; S. M. Cohant H., D. C., Yang. Mobility analysis of planar four-bar mechanisms through the parallel coordinate system (vol. 21, issue 1), 1986.; A. Espinosa B., J. Cañón R. aplicación de modelos híbridos en la síntesis óptima de mecanismos de cuatro barras. Universidad Nacional de Colombia – facultad de minas, 2004.; P. Escalante, M. Gamboa, V. López, P. (2009). Síntesis Dimensional Óptima de un Mecanismo Planar RRRR Usando Algoritmos Genéticos Optimal Dimensional Synthesis of a Planar Mechanism RRRR Using Genetic Algorithms. In (Vol. 13, Issue 3).; D. González, E. Estrada, & J. Roldán. (2016). Aplicación Android para el estudio de mecanismos planos de cuatro barras1.; S. Doering. Quadrilateral Inequality Exploration – GeoGebra Retrieved September 6, 2022, from https://www.geogebra.org/m/t7GTsNv9; A. Schardl. A. Quadrilateral Inequality – GeoGebra. Retrieved September 6, 2022, from https://www.geogebra.org/m/q3gq5nnc; K. Ray (n.d.). Properties of Quadrilaterals – GeoGebra. Retrieved September 6, 2022, from https://www.geogebra.org/m/cdpwsyjg; C. Chiusa (n.d.). Existence of quadrilateral of given side lengths – GeoGebra. Retrieved September 6, 2022, from https://www.geogebra.org/m/F9xS7ZcW#material/tv9Js2s6; A, Guillor (n.d.). Grashof's law – GeoGebra. Retrieved September 6, 2022, from https://www.geogebra.org/m/xsptdbws; E. A. Favret, “Biomimética, tecnología inspirada en la naturaleza”, CORE academy, pp. 1- 5. Avaliable at: https://core.ac.uk/download/pdf/301072853.pdf; M. Diaz, “Cartilla educativa”, Fundación programa de conservación de los murciélagos de Argentina. [online]. Avaliable at: https://www.relcomlatinoamerica.net/images/PDFs/Cartilla-Educativa-PCMA.pdf; J. Muñoz, C. A. Cuartas y M. Gonzales, “Murciélagos del área de jurisdicción de Corantioquia”, Corporación autónoma regional del centro de Antioquia, pp.13-26, 2003. Avaliable at: https://www.corantioquia.gov.co/ciadoc/FAUNA/AIRNR_CN_4751_2003.pdf; I. E. Lira, C. M. Ziehl y R. E. Mora, “La historia del vuelo entre animales: Los murciélagos últimos exploradores del espacio aéreo”, universidad autónoma metropolitana, pp. 64-67, 2003. Avaliable at: http://www2.izt.uam.mx/newpage/contactos/anterior/n49ne/vuelobat.pdf; “¿Como vuelan los murciélagos?”, Consejo de educación del gobierno de Canarias, 2019. [online]. Avaliable at: https://www3.gobiernodecanarias.org/medusa/ecoescuela/recursosdigitales/files/for mi dable/6/cd-09_0000011_murci_vuelo_h.pdf; “Estudio del murciélago: repliegue al descanso”, 2017. [online]. Avaliable at: https://wiki.ead.pucv.cl/Bastian_Maluenda_/_Estudio_del_Murciélago; F. Lisón, “Datos biométricos de cinco especies de murciélagos (Mammalia: Chiroptera) de la región de Murcia (SE España)”, Universidad de Murcia, 2012. Avaliable at: https://www.um.es/analesdebiologia/numeros/34/PDF/34_2012_06.pdf; M. Canals, J. Iriarte, R. Olivares y F. F. Novoa, “Comparación de la morfología alar de Tadarida brasiliensis (Chiroptera: Molossidae) y Myotis chiloensis (Chiroptera: Vespertilionidae), representantes de dos diferentes patrones de vuelo Comparison of the wing morphology of Tadarida brasiliensis (Chiroptera: Molossidae) and Myotis chiloensis (Chiroptera: Vespertilionidae) as representatives of two flight patterns at: https://www.scielo.cl/scielo.php/script=sci_arttext&pid=S0716-078X2001000300015.; ] R. Von, A. Hendenstrom, Y. Winter y L. C. Johansson, “Kinematics and wing shape across flight speed in the bat, Leptonycteris yerbabuenae”, Biology Open, pp. 2-5, 2012. Avaliable at: https://www.researchgate.net/publication/233965134_Kinematics_and_wing_shap e_across_flight_speed_in_the_bat_Leptonycteris_yerbabuenae; T. Y. Hubel, N. I. Hristov, S. M. Swartz y K. S. Breuer, “Changes in kinematics and aerodynamics over a range of speeds in Tadarida Brasiliensis, the Brazilian free-tailed bat”, Journal of the royal society interface, 2011. Avaliable at: https://www.researchgate.net/publication/221760270_Changes_in_kinematics_and_ aerodynamics_over_a_range_of_speeds_in_Tadarida_brasiliensis_the_Brazilian_fre e-tailed_bat; S. Sekhar, P. Windes, X. Fan y D. K. Tafti, “Canonical description of wing kinematics and dynamics for a straight flying insectivorous bat (Hipposideros pratti)”, department of mechanical engineering, Virginia Tech, 2019. Avaliable at: https://www.researchgate.net/publication/334008068_Canonical_description_of_win g_kinematics_and_dynamics_for_a_straight_flying_insectivorous_bat_Hipposideros _pr atti; F. T. Muijres, L. C. Johansson, Y. Winter y A. Hedenstrom, “Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization”, Journal of the royal society interface, 2011. Avaliable at: https://www.researchgate.net/publication/287400063_Highspeed_stereo_DPIV_measurement_of_wakes_of_two_bat_species_flying_freely_in _ a_wind_tunnel; J. Hoff, NM. Jeon, P. Li y J. Kim, “Bat Bot 2.0: bio-inspired anisotropic skin, passive wrist joints, and redesigned flapping mechanism”, IEEE explore, 2021. Avaliable at: https://jonathanhoffcom.files.wordpress.com/2022/01/iros-2021-hoff-v5.pdf; A. Ramezani, X. Shi, S. J. Chung y S. Hutchinson, “Bat bot (B2), A biologically inspired flying machine”, IEEE explore, 2016. Avaliable at: https://secemu.org/wpcontent/uploads/2017/02/13-Bat-Box-B2.pdf; https://hdl.handle.net/11349/31074

  3. 3

    Alternate Title: Automatización y Control Inteligente en el Secado y Curado de Pinturas y Barnices: Aplicación de la Industria 4.0. (Spanish)
    Automação e Controle Inteligente na Secagem e Cura de Tintas e Vernizes: Aplicação da Indústria 4.0. (Portuguese)

    Zdroj: GeSec: Revista de Gestao e Secretariado; 2025, Vol. 16 Issue 5, p1-17, 17p

  4. 4

    Alternate Title: Estudios Preliminares sobre la Automatización del Sistema de Producción: Inspección de Matrices, Alambres y Filamentos en una Trefiladora. (Spanish)
    Estudos Preliminares sobre a Automação do Sistema de Produção: Inspeção de Matrizes, Fios e Filamentos em uma Máquina de Trefilação. (Portuguese)

    Zdroj: GeSec: Revista de Gestao e Secretariado; 2025, Vol. 16 Issue 8, p1-25, 25p

  5. 5

    Popis souboru: pdf; application/pdf

    Relation: L. Coffey, P. Gallager, O. Horgan, D. Desmond, and M. MacLachlan. “Psychosocial adjustment to diabetes‐related lower limb amputation”. Oxford, Diabetic Medicine, 2009, pp.1063–1067.; DANE. “Censo de Población y Viviendas 2018”. Bogotá, D.C, Departamento Administrativo Nacional de Estadística, 2018.; D. Silverthorn, “Fisiología humana: un enfoque integrado” , 4ta ed, reimp- Bogotá - Panamericána, 2009.; K.J. Zuo, and J. L. Olson. “The evolution of functional hand replacement”: From iron prostheses to hand transplantation. Plastic Surgery, 22(1), 44-51, 2014.; D. Foord. “CHANGES IN TECHNOLOGIES AND MEANINGS OF UPPER LIMB PROSTHETICS: PART I-FROM ANCIENT EGYPT TO EARLY MODERN EUROPE”. In MEC Symposium Conference, July 2020.; K. Ashmore, S. Cialdella, A. Giuffrida, E. Kon, M. Marcacci, and B. Di Matteo. “ArtiFacts: Gottfried “Götz” von Berlichingen—The “Iron Hand” of the Renaissance”. Clinical Orthopaedics and Related Research®, 477(9), 2002-2004, 2019.; K. Moore, and A. Dalley. “Clinically oriented anatomy”. 7ª ed, UK, Wolters Klawer, 2013.; Àngels. (2017, Jan 16). “Cómo se llaman los huesos de la mano” [Online]. Available at:https://www.mundodeportivo.com/uncomo/educacion/articulo/como-se-llaman-los-huesos-de-la-mano-40009.html.; B. Maat, G. Smit, D. Plettenburg, and P. Breedveld. “Passive prosthetic hands and tools: A literature review”. Prosthetics and orthotics international, 42(1), 66-74, 2018.; A. Chadwell, L. Kenney, S. Thies, A. Galpin, and J. Head. “The reality of myoelectric prostheses: understanding what makes these devices difficult for some users to control”. Frontiers in neurorobotics, 10, 7, 2016.; T. Fujimaki et al., “Prevalence of floating toe and its relationship with static postural stability in children: The Yamanashi adjunct study of the Japan Environment and Children’s Study (JECS-Y),” PLoS One, vol. 16, no. 3 March, pp. 1–8, 2021, doi:10.1371/journal.pone.0246010.; L. A. Luengas-C, D. C. Toloza, and L. F. Wanumen, “Utilización de la Teoría de la Información para evaluar el comportamiento de la estabilidad estática en amputaciones transtibiales,” RISTI - Rev. Ibérica Sist. e Tecnol. Informação, vol. 40, no. 12, pp. 15–30, 2020, doi:10.17013/risti.40.15–30.; B. Olsen et al., “The Relationship Between Hip Strength and Postural Stability in Collegiate Athletes Who Participate in Lower Extremity Dominant Sports,” Int. J. Sports Phys. Ther., vol. 16, no. 1, pp. 64–71, 2021, doi:10.26603/001c.18817.; L. A. Luengas C. and D. C. Toloza, Análisis de estabilidad en amputados transtibiales unilaterales. Bogota: UD Editorial, 2019.; M. F. Peydro de Moya, J. M. Baydal, and M. J. Vivas, “Evaluación y rehabilitación del equilibrio mediante posturografía,” Rehabilitación, vol. 39, no. 6, pp. 315–323, 2005.; L. A. Luengas-C, J. López, and G. Sánchez Prieto, “Comportamiento de rangos articulares con alineación en amputados transtibiales,” Visión Electrónica Más que un estado sólido, vol. 1, no. 1, pp. 48–52, 2018.; A. Ruhe, R. Fejer, and B. Walker, “The test-retest reliability of centre of pressure measures in bipedal static task conditions - A systematic review of the literature,” Gait and Posture, vol. 32, no. 4. pp. 436–445, Oct. 2010, doi:10.1016/j.gaitpost.2010.09.012.; P. Schubert, M. Kirchner, S. Dietmar, and C. T. Haas, “About the structure of posturography: Sampling duration, parametrization, focus of attention (part I),” J. Biomed. Sci. Eng., vol. 5, pp. 496–507, 2012, doi: http://dx.doi.org/10.4236/jbise.2012.59062.; F. Martínez-Solís et al., “Algorithm to estimate the knee angle in normal gait: trajectory generation approach to intelligent transfemoral prosthesis,” Rev. Mex. Ing. Biomédica, vol. 37, no. 3, pp. 221–233, Sep. 2016, doi:10.17488/RMIB.37.3.7.; S. A. Ahmadi et al., “Towards computerized diagnosis of neurological stance disorders: data mining and machine learning of posturography and sway,” J. Neurol., vol. 266, no. s1, pp. 108–117, 2019, doi:10.1007/s00415-019-09458-y.; L. A. Luengas-C, “Computational Method to Verify Static Alignment of Transtibial Prosthesis,” Biomed. J. Sci. Tech. Res., vol. 31, no. 2, Oct. 2020, doi:10.26717/bjstr.2020.31.005074.; J. R. Chagdes, S. Rietdyk, M. H. Jeffrey, N. Z. Howard, and A. Raman, “Dynamic stability of a human standing on a balance board,” J. Biomech., vol. 46, no. 15, 2013, doi:10.1016/j.jbiomech.2013.08.012.; L. A. Luengas-C. and D. C. Toloza, “Frequency and Spectral Power Density Analysis of the Stability of Amputees Subjects,” TecnoLógicas, vol. 23, no. 48, pp. 1–16, 2020, doi: https://doi.org/10.22430/22565337.1453.; L. Verdichio, “Equilibrio y dominancia,” Universidad FASTA, 2016.; J. C. Segovia Martínez and J. C. Legido Arce, “Valores podoestabilométricos en la población deportiva infantil,” UNIVERSIDAD COMPLUTENSE DE MADRID, 2009.; B. Ristevski and M. Chen, “Big Data Analytics in Medicine and Healthcare,” J. Integr. Bioinform., vol. 15, no. 3, pp. 1–5, 2018, doi:10.1515/jib-2017-0030.; P. Schubert and M. Kirchner, “Ellipse area calculations and their applicability in posturography,” Gait Posture, vol. 39, no. 1, pp. 518–522, 2014, doi:10.1016/j.gaitpost.2013.09.001.; M. Duarte and S. M. Freitas, “Revision of posturography based on force plate for balance evaluation,” Rev. Bras. Fisioter., vol. 14, no. 3, pp. 183–192, 2010, doi: S1413-35552010000300003 [pii].; M. Duarte, “Comments on ‘ellipse area calculations and their applicability in posturography’ (schubert and kirchner, vol.39, pages 518-522, 2014),” Gait Posture, vol. 41, no. 1, pp. 44–45, 2015, doi:10.1016/j.gaitpost.2014.08.008.; M. Gómez, J. Serna, and L. Vélez, “Diagnosis of bearing with mechanical vibrations and virtual instruments,” Visión Electrónica Más que un estado sólido, vol. 8, no. 2, pp. 107–113, 2014.; Novel.de, “The pedar® system,” Novel GmbH, 2019. http://www.novel.de/novelcontent/pedar (accessed May 11, 2014).; D. A. Winter, Biomechanics and motor control of human movement, 4th ed. New Jersey: John Wiley & sons, Inc, 2009.; A. Bottaro, M. Casadio, P. G. Morasso, and V. Sanguineti, “Body sway during quiet standing: Is it the residual chattering of an intermittent stabilization process?,” in Human Movement Science, 2005, vol. 24, no. 4, pp. 588–615, doi:10.1016/j.humov.2005.07.006.; R. T. Disler et al., “Factors impairing the postural balance in COPD patients and its influence upon activities of daily living,” Eur. Respir. J., vol. 15, no. 1, 2019.; Bomberos Colombia. (2016). Guía para Certificar Equipos de Búsqueda y Rescate Urbano en los Cuerpos de Bomberos de Colombia. Disponible en: https://bomberos.mininterior.gov.co/sites/default/files/guia_final_bomberos_colombia_2017_.pdf.; Brigham and Women’s Hospital. (2019). Signos vitales (temperatura corporal, pulso, frecuencia respiratoria y presión arterial). Disponible en: https://healthlibrary.brighamandwomens.org/spanish/diseasesconditions/adult/NonTraumatic/85,P03963.; Catalogo de la Salud. (s.f). Monitoreo de signos vitales. Disponible en: https://www.catalogodelasalud.com/ficha-producto/Monitores-de-pacientes+102363.; CNN. (2012). Un dispositivo inalámbrico para monitorear signos vitales. Disponible en: https://cnnespanol.cnn.com/2012/05/25/un-dispositivo-inalambrico-para-monitorear-signos-vitales/.; OMS. (s.f). Terremotos. Disponible en: https://www.who.int/hac/techguidance/ems/earthquakes/es/.; OMS. (2017). 10 datos sobre la seguridad vial en el mundo – Organización Mundial de la Salud (OMS). Disponible en: https://www.who.int/features/factfiles/roadsafety/es/.; Ramírez López, L. J., Marín López, A. F., & Cifuentes Sanabria, Y. P. (2015). Aplicación de la biotelemetría para tres signos vitales. Ciencia Y Poder Aéreo, 10(1), 179-186. https://doi.org/10.18667/cienciaypoderaereo.428.; Rosenberg D. (2009). ICONIX Process for Embedded Systems - A roadmap for embedded system development using SysML. Tomado de: https://community.sparxsystems.com/white-papers/616-88iconix-process-for-embedded-systems-a-roadmap-for-embedded-system-development-using-sysml.; Salazar-Arbelaez, Gabriel. (2018). Terremotos y salud: lecciones y recomendaciones. Salud Pública de México, 60(Supl. 1), 6-15. https://doi.org/10.21149/9445.; SUMMA 112. (s.f). Módulo 7 Actuación ante Accidentes con Múltiples Víctimas y Catástrofes. Incidentes NBQR. Rescate sanitario. Manuel de enfermería. Disponible en: http://www.madrid.org/cs/Satellite?blobcol=urldata&blobheader=application%2Fpdf&blobheadername1=Content-Disposition&blobheadervalue1=filename%3DModulo+7.pdf&blobkey=id&blobtable=MungoBlobs&blobwhere=1352868957600&ssbinary=true.; Tecnológico de Monterrey. (2011). Sistema para la visualización de signos vitales con dispositivos móviles utilizando tecnología Bluetooth. Disponible en: https://repositorio.tec.mx/bitstream/handle/11285/632321/33068001111800.pdf?sequence=1&isAllowed=y.; UdeA. (2016). Monitor de signos vitales vestible. UdeA – Universidad de Antioquía, Medellín, Colombia. Disponible en: http://www.udea.edu.co/wps/portal/udea/web/inicio/extension/portafoliotecnologico/articulos/Monitor_de_signos_vitales_vestible.; Udistrital. (2018). Monitoreo remoto de signos corporales y transmisión de datos y alertas a una aplicación instalada en un smartphone. Udistrital – Universidad Distrital Francisco José de Caldas. Disponible en: https://repository.udistrital.edu.co/bitstream/handle/11349/13383/SarmientoG%C3%B3mezOscar2018.pdf?sequence=2&isAllowed=y.; Volcano Discovery. (2021). Informe de terremotos en todo el mundo por enero 2021. Disponible en: https://www.volcanodiscovery.com/es/earthquakes/monthly/news/118160/Informe-de-terremotos-en-todo-el-mundo-por-enero-2021.html.; A. F. Calvo Salcedo, A. Bejarano Martínez, y A. Castillo González, “Diseño prototipo de una red de sensores inalámbricos", Visión Electrónica, vol. 12, no. 1, pp. 43-50, 2018. https://doi.org/10.14483/22484728.13405.; E. Y. Rodríguez, L. F. Pedraza Martínez, y D. A. López Sarmiento, “Desarrollo y evaluación de un sistema de comunicación remota para el monitoreo de una máquina sopladora de botellas", Visión Electrónica, vol. 5, no. 1, pp. 89-102, 2011. https://doi.org/10.14483/22484728.3517.; T. Salamanca, “Prototipo para monitorización de signos vitales en espacios confinados", Visión Electrónica, vol. 12, no. 1, pp. 83-88, 2018. https://doi.org/10.14483/22484728.13401 [18] Volcano Discovery. (2021). Informe de terremotos en todo el mundo por enero 2021. Disponible en: https://www.volcanodiscovery.com/es/earthquakes/monthly/news/118160/Informe-de-terremotos-en-todo-el-mundo-por-enero-2021.html.; W. Enríquez, P. Nazate, y O. Marcillo, “Prototipo DAS basado en FPGA de 12 canales para monitoreo geodinámico", Visión Electrónica, vol. 12, no. 1, pp. 73-82, 2018. https://doi.org/10.14483/22484728.13782.; Y. Baquero, Z. Alezones Campos, y H. Borrero Guerrero, “Robot móvil controlado por comandos de voz LPC-DTW”, Visión Electrónica, vol. 5, no. 1, pp. 15-25, 2011. https://doi.org/10.14483/22484728.3524.; Cardona, O. (2007). La gestión del riesgo colectivo. Un marco conceptual que encuentra sustento en una ciudad laboratorio. Red de Estudios Sociales en Prevención de Desastres en América Latina.; Cardona, O. D., García, A. C., Mattingly, S., Trujillo, E. G. C., & Vega, D. F. P. (2003). Plan de emergencias de Manizales. Alcaldía de Manizales–Oficina Municipal para la Prevención y Atención de Desastres-OMPAD. Manizales.; Castro, F.D. (2008). Metodología de projeto centrada na casa da qualidade. Tesis de maestría, universidade federal rio grande do sul, Porto Alegre, Brasil.; Chowdhury, T. J., Elkin, C., Devabhaktuni, V., Rawat, D. B., & Oluoch, J. (2016). Advances on localization techniques for wireless sensor networks: A survey. Computer Networks, 110, 284-305.; Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., & Mankodiya, K. (2017). Towards fog-driven IoT eHealth: promises and challenges of IoT in medicine and healthcare. Future Generation Computer Systems.; García, A. M., & Castaño Dávila, A. C. (2013). SIG de deslizamientos para el departamento de Caldas.; Keipi, K., Mora-Castro, S., & Bastidas, P. (2005). Gestión de riesgo de amenazas naturales en proyectos de desarrollo: Lista de preguntas de verificación (" Checklist"). Inter-American Development Bank.; Kim, T., Ramos, C., & Mohammed, S. (2017). Smart City and IoT. Elsevier.; Lavell, A. (2001). Sobre la gestión del riesgo: apuntes hacia una definición. Biblioteca Virtual en Salud de Desastres-OPS. Consultado el, 4.; Liu, L., Guo, C., Li, J., Xu, H., Zhang, J., & Wang, B. (2016). Simultaneous life detection and localization using a wideband chaotic signal with an embedded tone. Sensors, 16(11), 1866.; Lomotey, R. K., Pry, J., & Sriramoju, S. (2017). Wearable IoT data stream traceability in a distributed health information system. Pervasive and Mobile Computing.; Morral, G., & Bianchi, P. (2016). Distributed on-line multidimensional scaling for self-localization in wireless sensor networks. Signal Processing, 120, 88-98.; Novák, D., Švecová, M., & Kocur, D. (2017). Multiple Person Localization Based on Their Vital Sign Detection Using UWB Sensor. In Microwave Systems and Applications. InTech.; Pahl, G., & Beitz, W. (2013). Engineering design: a systematic approach. Springer Science & Business Media.; Rising, L., & Janoff, N. S. (2000). The Scrum software development process for small teams. IEEE software, (4), 26-32.; Schwaber, K., & Sutherland, J. (2013). The definitive guide to Scrum: The rules of the game. online], Scrum. org, http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf. [Visitada en agosto de 2015].; Shalloway A, Bain S, Pugh K and Kolsky A. 2011. Essential Skills for the agile developer. A guide to better programming and desing. Ed. Addison-Wesley.; UNGRD (2017). Boletín de prensa 131, Unidad atención de riesgos y desastres. Tras avalancha en manizales, continúan los trabajos de recuperación.; J. Hartvigsen et al., “What low back pain is and why we need to pay attention,” Lancet, vol. 391, no. 10137, pp. 2356–2367, 2018, doi:10.1016/S0140-6736(18)30480-X.; A. Cieza, K. Causey, K. Kamenov, S. W. Hanson, S. Chatterji, and T. Vos, “Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019,” Lancet, vol. 396, no. 10267, pp. 2006–2017, 2020, doi:10.1016/S0140-6736(20)32340-0.; A. M. Briggs et al., “Musculoskeletal Health Conditions Represent a Global Threat to Healthy Aging: A Report for the 2015 World Health Organization World Report on Ageing and Health,” Gerontologist, vol. 56, pp. S243–S255, 2016, doi:10.1093/geront/gnw002.; (OMS) Organizacion Mundial de la Salud, “Rehabilitación,” 2020. https://www.who.int/es/news-room/fact-sheets/detail/rehabilitation.; (OMS) Organizacion Mundial de la Salud, “Rehabilitation 2030 Initiative.” https://www.who.int/initiatives/rehabilitation-2030.; F. A. Abdulla, S. Alsaadi, M. I. R. Sadat-Ali, F. Alkhamis, H. Alkawaja, and S. Lo, “Effects of pulsed low-frequency magnetic field therapy on pain intensity in patients with musculoskeletal chronic low back pain: Study protocol for a randomised double-blind placebo-controlled trial,” BMJ Open, vol. 9, no. 6, pp. 1–9, 2019, doi:10.1136/bmjopen-2018-024650.; H. Hu et al., “Promising application of Pulsed Electromagnetic Fields (PEMFs) in musculoskeletal disorders,” Biomed. Pharmacother., vol. 131, p. 110767, 2020, doi:10.1016/j.biopha.2020.110767.; J. D. Z. Guillot, “La magnetoterapia y su aplicación en la medicina,” Rev. Cuba. Med. Gen. Integr., vol. 18, no. 1, pp. 60–72, 2002.; (OMS) Organización Mundial de la Salud, “Campos electromagnéticos (CEM).” https://www.who.int/peh-emf/about/WhatisEMF/es/ (accessed Apr. 10, 2021).; E. Alonso Fustel, R. Garcia Vázquez, and C. Onaindia Olalde, “Campos electromagnéticos y efectos en salud.” Bizkaia, Vasco, 2012.; M. O. Mattsson and M. Simkó, “Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz,” Medical Devices: Evidence and Research, vol. 12. Dove Medical Press Ltd, pp. 347–368, 2019, doi:10.2147/MDER.S214152.; N. Bachl, G. Ruoff, B. Wessner, and H. Tschan, “Electromagnetic Interventions in Musculoskeletal Disorders,” Clinics in Sports Medicine, vol. 27, no. 1. pp. 87–105, Jan. 2008, doi:10.1016/j.csm.2007.10.006.; T. Paolucci, L. Pezzi, A. M. Centra, N. Giannandrea, R. G. Bellomo, and R. Saggini, “Electromagnetic field therapy: A rehabilitative perspective in the management of musculoskeletal pain – A systematic review,” J. Pain Res., vol. 13, pp. 1385–1400, 2020, doi:10.2147/JPR.S231778.; J. Multanen, A. Häkkinen, P. Heikkinen, H. Kautiainen, S. Mustalampi, and J. Ylinen, “Pulsed electromagnetic field therapy in the treatment of pain and other symptoms in fibromyalgia: A randomized controlled study,” Bioelectromagnetics, vol. 39, no. 5, pp. 405–413, 2018, doi:10.1002/bem.22127.; H. Mohajerani, F. Tabeie, F. Vossoughi, E. Jafari, and M. Assadi, “Effect of pulsed electromagnetic field on mandibular fracture healing: A randomized control trial, (RCT),” J. Stomatol. Oral Maxillofac. Surg., vol. 120, no. 5, pp. 390–396, Nov. 2019, doi:10.1016/j.jormas.2019.02.022.; A. M. Elshiwi, H. A. Hamada, D. Mosaad, I. M. A. Ragab, G. M. Koura, and S. M. Alrawaili, “Effect of pulsed electromagnetic field on nonspecific low back pain patients: a randomized controlled trial,” Brazilian J. Phys. Ther., vol. 23, no. 3, pp. 244–249, 2019, doi:10.1016/j.bjpt.2018.08.004.; H. L. Casalechi et al., “Acute effects of photobiomodulation therapy and magnetic field on functional mobility in stroke survivors: a randomized, sham-controlled, triple-blind, crossover, clinical trial,” Lasers Med. Sci., vol. 35, no. 6, pp. 1253–1262, 2020, doi:10.1007/s10103-019-02898-y.; L. Kopacz, Z. Ciosek, H. Gronwald, P. Skomro, R. Ardan, and D. Lietz-Kijak, “Comparative Analysis of the Influence of Selected Physical Factors on the Level of Pain in the Course of Temporomandibular Joint Disorders,” Pain Res. Manag., vol. 2020, 2020, doi:10.1155/2020/1036306.; E. Hattapoğlu, İ. Batmaz, B. Dilek, M. Karakoç, S. Em, and R. Çevik, “Efficiency of pulsed electromagnetic fields on pain, disability, anxiety, depression, and quality of life in patients with cervical disc herniation: A randomized controlled study,” Turkish J. Med. Sci., vol. 49, no. 4, pp. 1095–1101, 2019, doi:10.3906/sag-1901-65.; G. L. Bagnato, G. Miceli, N. Marino, D. Sciortino, and G. F. Bagnato, “Pulsed electromagnetic fields in knee osteoarthritis: A double blind, placebo-controlled, randomized clinical trial,” Rheumatol. (United Kingdom), vol. 55, no. 4, pp. 755–762, 2016, doi:10.1093/rheumatology/kev426.; L. Chen et al., “Effects of pulsed electromagnetic field therapy on pain, stiffness and physical function in patients with knee osteoarthritis: A systematic review and meta-analysis of randomized controlled trials,” J. Rehabil. Med., vol. 51, no. 11, pp. 821–827, 2019, doi:10.2340/16501977-2613.; T. Paolucci et al., “Efficacy of extremely low-frequency magnetic field in fibromyalgia pain: A pilot study,” J. Rehabil. Res. Dev., vol. 53, no. 6, pp. 1023–1034, 2016, doi:10.1682/JRRD.2015.04.0061.; A. El Zohiery, Y. El Miedany, T. Elserry, O. El Shazly, and S. Galal, “Impact of electromagnetic field exposure on pain, severity, functional status and depression in patients with primary fibromyalgia syndrome,” Egypt. Rheumatol., no. xxxx, pp. 0–4, 2020, doi:10.1016/j.ejr.2020.10.001.; C. L. Ross, I. Syed, T. L. Smith, and B. S. Harrison, “The regenerative effects of electromagnetic field on spinal cord injury,” Electromagn. Biol. Med., vol. 36, no. 1, pp. 74–87, 2017, doi:10.3109/15368378.2016.1160408.; T. Pesqueira, R. Costa-Almeida, and M. E. Gomes, “Magnetotherapy: The quest for tendon regeneration,” J. Cell. Physiol., vol. 233, no. 10, pp. 6395–6405, 2018, doi:10.1002/jcp.26637.; G. Vicenti et al., “Biophysical stimulation of the knee with PEMFs: from bench to bedside,” J. Biol. Regul. Homeost. Agents, vol. 32, no. 6, pp. 23–28, 2018.; K. Iwasa and A. H. Reddi, “Pulsed Electromagnetic Fields and Tissue Engineering of the Joints,” Tissue Engineering - Part B: Reviews, vol. 24, no. 2. Mary Ann Liebert Inc., pp. 144–154, Apr. 01, 2018, doi:10.1089/ten.teb.2017.0294.; A. Madroñero De La Cal, “Importancia de los aplicadores de campo magnético en los tratamientos electroterapéuticos en las personas mayores,” Rev. Esp. Geriatr. Gerontol., vol. 38, no. 6, pp. 355–368, 2003, doi:10.1016/s0211-139x(03)74917-8.; T. Wang et al., “Pulsed electromagnetic fields: promising treatment for osteoporosis,” Osteoporos. Int., vol. 30, no. 2, pp. 267–276, 2019, doi:10.1007/s00198-018-04822-6.; X. sheng Qiu, X. gang Li, and Y. xin Chen, “Pulsed electromagnetic field (PEMF): A potential adjuvant treatment for infected nonunion,” Med. Hypotheses, vol. 136, Mar. 2020, doi:10.1016/j.mehy.2019.109506.; J. Taradaj, M. Ozon, R. Dymarek, B. Bolach, K. Walewicz, and J. Rosinczuk, “Impact of selected magnetic fields on the therapeutic effect in patients with lumbar discopathy: A prospective, randomized, single-blinded, and placebo-controlled clinical trial,” Adv. Clin. Exp. Med., vol. 27, no. 5, pp. 649–666, 2018, doi:10.17219/acem/68690.; J. Zwolińska, M. Gąsior, E. Śniezek, and A. Kwolek, “The use of magnetic fields in treatment of patients with rheumatoid arthritis. Review of the literature,” Reumatologia, vol. 54, no. 4, pp. 201–206, 2016, doi:10.5114/reum.2016.62475.; Z. Wu et al., “Efficacy and safety of the pulsed electromagnetic field in osteoarthritis: A meta-analysis,” BMJ Open, vol. 8, no. 12, Dec. 2018, doi:10.1136/bmjopen-2018-022879.; L. Mori, “EFICACIA DE LA MAGNETOTERAPIA EN LA DISMINUCION DEL DOLOR EN ADULTOS MAYORES CON OSTEOARTROSIS CENTRO DE MEDICINA COMPLEMENTARIA ESSALUD TRUJILLO,” Tesis - Universidad Cesar Vallejo - Trujillo Perú, vol. 0, no. 12. p. Pág. 89-95-95, 2019, doi:10.5354/0717-8883.1986.23781.; K. Marycz, K. Kornicka, and M. Röcken, “Static Magnetic Field (SMF) as a Regulator of Stem Cell Fate – New Perspectives in Regenerative Medicine Arising from an Underestimated Tool,” Stem Cell Rev. Reports, vol. 14, no. 6, pp. 785–792, 2018, doi:10.1007/s12015-018-9847-4.; N. Kamei, N. Adachi, and M. Ochi, “Magnetic cell delivery for the regeneration of musculoskeletal and neural tissues,” Regen. Ther., vol. 9, pp. 116–119, 2018, doi:10.1016/j.reth.2018.10.001.; A. Catalano, S. Loddo, F. Bellone, C. Pecora, A. Lasco, and N. Morabito, “Pulsed electromagnetic fields modulate bone metabolism via RANKL/OPG and Wnt/β-catenin pathways in women with postmenopausal osteoporosis: A pilot study,” Bone, vol. 116. pp. 42–46, 2018, doi:10.1016/j.bone.2018.07.010.; H. Okano, H. Ishiwatari, A. Fujimura, and K. Watanuki, “The physiological influence of alternating current electromagnetic field exposure on human subjects,” 2017 IEEE Int. Conf. Syst. Man, Cybern. SMC 2017, vol. 2017-Janua, pp. 2442–2447, 2017, doi:10.1109/SMC.2017.8122989.; A. Maziarz et al., “How electromagnetic fields can influence adult stem cells: Positive and negative impacts,” Stem Cell Res. Ther., vol. 7, no. 1, 2016, doi:10.1186/s13287-016-0312-5.; E. I. Waldorff, N. Zhang, and J. T. Ryaby, “Pulsed electromagnetic field applications: A corporate perspective,” J. Orthop. Transl., vol. 9, pp. 60–68, 2017, doi:10.1016/j.jot.2017.02.006.; A. M. Nayback-Beebe, L. H. Yoder, B. J. Goff, S. Arzola, and C. Weidlich, “The effect of pulsed electromagnetic frequency therapy on health-related quality of life in military service members with chronic low back pain,” Nurs. Outlook, vol. 65, no. 5, pp. S26–S33, 2017, doi:10.1016/j.outlook.2017.07.012.; T. Klüter et al., “Electromagnetic transduction therapy and shockwave therapy in 86 patients with rotator cuff tendinopathy: A prospective randomized controlled trial,” Electromagn. Biol. Med., vol. 37, no. 4, pp. 175–183, 2018, doi:10.1080/15368378.2018.1499030.; J. Pasek, T. Pasek, K. Sieroń-Stołtny, G. Cieślar, and A. Sieroń, “Electromagnetic fields in medicine – The state of art,” Electromagn. Biol. Med., vol. 35, no. 2, pp. 170–175, Apr. 2016, doi:10.3109/15368378.2015.1048549.; A. Hochsprung, S. Escudero-Uribe, A. J. Ibáñez-Vera, and G. Izquierdo-Ayuso, “Effectiveness of monopolar dielectric transmission of pulsed electromagnetic fields for multiple sclerosis–related pain: A pilot study,” Neurologia, 2018, doi:10.1016/j.nrl.2018.03.003.; A. B. Camacho, Y. A. P. Borrego, M. J. R. Matas, V. S. León, L. M. Mateos, and A. Oliviero, “Protocolo terapéutico del dolor con técnicas de estimulación no invasiva,” Med., vol. 12, no. 75, pp. 4451–4454, 2019, doi:10.1016/j.med.2019.03.026.; J. Arabloo et al., “Health technology assessment of magnet therapy for relieving pain,” Med. J. Islam. Repub. Iran, vol. 31, no. 1, pp. 184–188, 2017, doi:10.18869/mjiri.31.31.; J. Chudorlinski and L. Ksiazek, “Medical device for physical therapy with a magnetic field and light,” 2019 Appl. Electromagn. Mod. Eng. Med. PTZE 2019, pp. 22–25, 2019, doi:10.23919/PTZE.2019.8781742.; J. Chudorlinski and L. Ksiazek, “Signals for magnetic field therapy and a method for their preparation,” 2018 Appl. Electromagn. Mod. Tech. Med. PTZE 2018, pp. 29–32, 2018, doi:10.1109/PTZE.2018.8503080.; A. Krawczyk, P. Murawski, and E. Korzeniewska, “New Magnetotherapeutical Device,” pp. 2–5, 2017.; Samuel K Au, Jeff Weber, and Hugh Herr. Biomechanical design of a powered ankle-foot prosthesis. In Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on, pages 298–303. IEEE, 2007.; Rouse, Elliott Jay; Mooney, Luke M.; Martinez-Villalpando, Ernesto C.; Herr, Hugh M. "Clutchable Series-Elastic Actuator: Design of a Robotic Knee Prosthesis for Minimum Energy Consumption". 13th International Conference on Rehabilitation Robotics, ICORR 2013.; Samuel K Au and Hugh M Herr. Powered ankle-foot prosthesis. IEEE Robotics & Automation Magazine, 15(3), 2008.; Dong, D., Ge, W., Liu, S., Xia, F., & Sun, Y. (2017). Design and optimization of a powered ankle-foot prosthesis using a geared five-bar spring mechanism. International Journal of Advanced Robotic Systems, 14(3), 1729881417704545.; Andrew K LaPre, Ryan D Wedge, Brian R Umberger, and Frank C Sup. Preliminary study of a robotic foot-ankle prosthesis with active alignment. In Rehabilitation Robotics (ICORR), 2017 International Conference on, pages 1299–1304. IEEE, 2017.; Maurice LeBlanc. Give hope-give a hand. The LN-4 Prosthetic Hand, 2014, 2008.; Dianbiao Dong, Wenjie Ge, Shumin Liu, Fan Xia, and Yuanxi Sun. Design and optimization of a powered ankle-foot prosthesis using a geared five-bar spring mechanism. International Journal of Advanced Robotic Systems, 14(3):1729881417704545, 2017.; Samuel K Au, Jeff Weber, and Hugh Herr. Powered ankle–foot prosthesis improves walking metabolic economy. IEEE Transactions on Robotics, 25(1):51–66, 2009.; Arthur D Kuo. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective. Human movement science, 26(4):617–656, 2007.; Mary M Rodgers. Dynamic biomechanics of the normal foot and ankle during walking and running. Physical therapy, 68(12):1822–1830, 1988.; Tan Thang Nguyen, Thanh-Phong Dao, and Shyh-Chour Huang. Bio- mechanical design of a novel six dof compliant prosthetic ankle-foot 2.0 for rehabilitation of amputee. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pages V05AT08A013–V05AT08A013. Ameri- can Society of Mechanical Engineers, 2017.; Joana Alves, Eurico Seabra, César Ferreira, Cristina P Santos, and Luís Paulo Reis. Design and dynamic modelling of an ankle-foot prosthesis for humanoid robot. In Autonomous Robot Systems and Competitions (ICARSC), 2017 IEEE International Conference on, pages 128–133. IEEE, 2017.; Lei Ren, Richard K Jones, and David Howard. Predictive modelling of human walking over a complete gait cycle. Journal of biomechanics, 40(7):1567–1574, 2007.; SK Au and H Herr. Initial experimental study on dynamic interaction between an amputee and a powered ankle-foot prosthesis. In Workshop on dynamic walking: Mechanics and control of human and robot locomotion, page 1, 2006.; Samuel K Au, Hugh Herr, Jeff Weber, and Ernesto C Martinez- Villalpando. Powered ankle-foot prosthesis for the improvement of amputee ambulation. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, pages 3020–3026. IEEE, 2007.; Grimmer, M., Eslamy, M., Gliech, S., & Seyfarth, A. (2012, May). A comparison of parallel-and series elastic elements in an actuator for mimicking human ankle joint in walking and running. In 2012 IEEE International Conference on Robotics and Automation (pp. 2463-2470). IEEE.; Soren Shashikant, 2017. Mechanical Leg. https://grabcad.com/library/mechanical-leg-2.; Guy Rouleau, 2014. From SolidWorks to SimMechanics Posted in July 10, 2014. Simulink & Model-Based Design. https://blogs.mathworks.com/simulink/2014/07/10/from-solidworks-to-simmechanics/.; Eilenberg, M. F., Geyer, H., & Herr, H. (2010). Control of a powered ankle–foot prosthesis based on a neuromuscular model. IEEE transactions on neural systems and rehabilitation engineering, 18(2), 164-173.; L. Agudelo, “La discapacidad en Colombia: una mirada global,” Revista Colombiana de Medicina Física y Rehabilitación, p. 16, 2012.; D. A. N. de E. (DANE), “Boletín Censo General 2005 DISCAPACIDAD-COLOMBIA,” 2005. Accessed: Oct. 08, 2020. [Online]. Available: https://www.dane.gov.co/files/censos/libroCenso2005nacional.pdf.; Ministerio de Salud y Protección Social, “Sala situacional de las Personas con Discapacidad,” 2019. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/MET/sala-situacional-discapacidad2019-2-vf.pdf (accessed Feb. 25, 2021).; MINISTERIO DE SALUD Y PROTECCIÓN SOCIAL, Resolución 2968 DE 2015. República de Colombia: Ministerio de Salud y Protección Social, 2015, pp. 1–16.; Ministerio de Salud y Protección Social, Decreto Número 4725 DE 2005. República de Colombia: Ministerio de Protección Social, 2005, pp. 1–31.; N. Dechev, W. L. Cleghorn, and S. Naumann, “Multiple finger, passive adaptive grasp prosthetic hand,” Mech. Mach. Theory, vol. 36, no. 10, pp. 1157–1173, Oct. 2001, doi:10.1016/S0094-114X(01)00035-0.; R. I. Flores Luna, “Repositorio de Tesis DGBSDI: Diseño de protesis mecatronica de mano,” Universidad Nacional Autónoma de México, 2007.; S. R. Kashef, S. Amini, and A. Akbarzadeh, “Robotic hand: A review on linkage-driven finger mechanisms of prosthetic hands and evaluation of the performance criteria,” Mechanism and Machine Theory, vol. 145. Elsevier Ltd, p. 103677, Mar. 01, 2020, doi:10.1016/j.mechmachtheory.2019.103677.; L. Roselia, P. León, and E. Luz González Muñoz, Rosalío Ávila Chaurand Dimensiones antropométricas de población latinoamericana. 2007.; M. Monar and L. Murillo, “DISEÑO Y CONSTRUCCIÓN DE UNA PRÓTESIS BIÓNICA DE MANO DE 7 GRADOS DE LIBERTAD UTILIZANDO MATERIALES INTELIGENTES Y CONTROL MIOELÉCTRICO ADAPTADA PARA VARIOS PATRONES DE SUJECIÓN,” Universidad de las Fuerzas Armadas, Latacunga, 2015.; J. Zhang, B. Wang, C. Zhang, Y. Xiao, and M. Y. Wang, “An EEG/EMG/EOG-Based Multimodal Human-Machine Interface to Real-Time Control of a Soft Robot Hand,” Front. Neurorobot., vol. 13, no. 7, p. 7, Mar. 2019, doi:10.3389/fnbot.2019.00007.; K. P. Biswajeet Champaty, Suraj Nayak, “Development of an Electrooculogram-based Human-Computer Interface for Hands-Free Control of Assistive Devices,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 4S, p. 11, 2019.; E. Camargo Casallas, L. A. Luengas C., y M. Balaguera, “Respuesta a carga de una prótesis transtibial con elementos infinitos durante el apoyo y balanceo", Visión Electrónica, vol. 6, no. 2, pp. 82-92, 2012.; Q. Huang et al., “An EOG-based wheelchair robotic arm system for assisting patients with severe spinal cord injuries,” J. Neural Eng, vol. 16, 2019, doi:10.1088/1741-2552/aafc88.; S. D and R. R. M, “A high performance asynchronous EOG speller system,” Biomed. Signal Process. Control, vol. 59, p. 101898, May 2020, doi:10.1016/j.bspc.2020.101898.; A. López, M. Fernández, H. Rodríguez, F. Ferrero, and O. Postolache, “Development of an EOG-based system to control a serious game,” Meas. J. Int. Meas. Confed., vol. 127, pp. 481–488, Oct. 2018, doi:10.1016/j.measurement.2018.06.017.; O. F. Avilés, R. D. Hernández, J. L. Loaiza, and J. M. Rosário, “Simulation model of an anthropomorphic hand,” Int. J. Appl. Eng. Res., vol. 11, no. 23, pp. 11114–11120, 2016, Accessed: Oct. 11, 2020. [Online]. Available: https://www.researchgate.net/publication/312979011_Simulation_Model_of_an_Anthropomorphic_Hand.; O. F. A. Sánchez, R. Gutiérrez, A. J. U. Quevedo, and J. M. Rosario, “(PDF) Antrohopomorphic Grippers - Modelling, Analysis and Implementation,” 2015. https://www.researchgate.net/publication/228090516_Antrhopomorphic_Grippers_-_Modelling_Analysis_and_Implementation (accessed Oct. 11, 2020).; A. Sharma, W. Niu, C. L. Hunt, G. Lévay, R. R. Kaliki, and N. Thakor, “Augmented Reality Prosthesis Training Setup for Motor Skill Enhancement,” 2019.; Y. Tsepkovskiy, L. Antonov, C. Kocev, F. Palis, and N. Shoylev, “DEVELOPMENT OF A 3D AND VRML VIRTUAL HAND MODELS FOR DIFFERENT MECHANICAL GRIPPER,” 2008.; S. T. Vite, C. F. Domínguez Velasco, J. B. Reséndiz Rodríguez, A. Hernández Valencia, y M. Ángel Padilla Castañeda, “Simulador de reparación de aneurismas cerebrales para entrenamiento médico Visión Electrónica, vol. 12, no. 1, pp. 51-57, 2018. https://doi.org/10.14483/22484728.13399.; F. J. Badesa et al., “Physiological responses during hybrid BNCI control of an upper-limb exoskeleton,” Sensors (Switzerland), vol. 19, no. 22, Nov. 2019, doi:10.3390/s19224931.; M. R. Cutkosky, “On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks,” IEEE Trans. Robot. Autom., vol. 5, no. 3, pp. 269–279, 1989, doi:10.1109/70.34763.; “Anexo A Norma DIN 33 402.”; J. F. Guerrero Martínez, “INGENIERÍA BIOMÉDICA Tema 2 Bioseñales 2.1. Introducción,” 2010.; L. Atanelov, S. A. Stiens, and M. A. Young, “History of physical medicine and rehabilitation and its ethical dimensions”, AMA journal of ethics, vol. 17, no. 6, pp. 568–574, 2015. DOI:10.1001/journalofethics.2015.17.6.mhst1-1506 URL: https://journalofethics.ama-assn.org/article/history-physical-medicine-and-rehabilitation-and-its-ethical-dimensions/2015-06.; M. C. Garcia and T. Vieira, “Surface electromyography: Why, when and how to use it”, Revista andaluza de medicina del deporte, vol. 4, no. 1, pp.17–28, 2011. URL: https://www.elsevier.es/es-revista-revista-andaluza-medicina-del-deporte-284-articulo-surface-electromyography-why-when-how-X1888754611201253.; J. C. Guerrero Pupo, I. Amell Muñoz, and R. Cañedo Andalia, “Tecnología, tecnología médica y tecnología de la salud: algunas consideraciones básicas”, Acimed, vol. 12, no. 4, pp. 1–1, 2004. URL: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1024-94352004000400007.; J. A. A. Londoño, E. C. Bravo, and J. F. C. García, “Aplicación de tecnologías de rehabilitación robótica en niños con lesión del miembro superior”, Revista Salud UIS, vol. 49, no. 1, pp. 103–114, 2017. DOI: http://dx.doi.org/10.18273/revsal.v49n1-2017010 URL: http://www.scielo.org.co/scielo.php?pid=S0121-08072017000100103&script=sci_abstract&tlng=es.; F. Salvuci and R. Kohanoff, Tecnologías de rehabilitación. Wiley-Interscience, 2016.; A. Merlo and I. Campanini, “Technical aspects of surface electromyography for clinicians”, The open rehabilitation journal, vol. 3, no. 1, 2010. DOI:10.2174/1874943701003010098 URL: https://benthamopen.com/ABSTRACT/TOREHJ-3-98 [7]. F. J. Juan, “Utilidad de la electromiografía de superficie en rehabilitación” URL: https://www.researchgate.net/profile/Francisco_Juan-Garcia/publication/316588275_UTILIDAD_DE_LA_ELECTROMIOGRAFIA_DE_SUPERFICIE_EN_REHABILITACION/links/5905b86c4585152d2e957860/UTILIDAD-DE-LA-ELECTROMIOGRAFIA-DE-SUPERFICIE-EN-REHABILITACION.pdf.; J. W. Meklenburg, S. K. Patrick, and S. D. Jung, “Surface electromyogram simulator for myoelectric prosthesis testing,” 2010. URL: https://digitalcommons.wpi.edu/mqp-all/1402/.; Merletti Roberto, and Dario Farina. Surface electromyography: physiology, engineering, and applications. Piscataway, NJ: IEEE Press, 2016, online. ISBN: 9781119082934, DOI:10.1002/9781119082934.; E. Guzmán, G. Méndez, “Electromiografía en las Ciencias de la Rehabilitación”, Salud Uninorte, Vol 3, no. 3, pp 753-765, 2018.; WOLFRAM S., y PACKARD N. H. Two-dimensional Cellular Autómata. J. Statist. Phys. 38, 1985.; MUÑOZ CASTAÑO, J. D., Artículo: Autómatas Celulares y Física Digital, en: Memorias del Primer Congreso Colombiano de Neuro Computación. Santa fe de Bogotá, D. C.: Academia Colombiana de Ciencias Exactas, Físicas y Naturales, p 28. ISBN 958-9205- 17-8. 1996.; HERNÁNDEZ, J. C., Algunas Generalizaciones en Autómatas Celulares. México: Consejo Nacional de Ciencia y Tecnología – CONACYT, 2008.; JUÁREZ, G. Teoría del Campo Promedio En Autómatas Celulares Similares a "The Game Of Life". México: Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 2000.; CUEVAS, E., ZALDÍVAR, D., & PÉREZ, M., Procesamiento digital de imágenes con MATLAB y Simulink. México: Alfaomega Grupo Editor; RA-MA Editorial. 2010.; MUÑOZ, M. A., Privacidad y ocultación de información digital ESTEGANOGRAFÍA protegiendo y atacando redes informáticas. Madrid, Bogotá., España, Colombia: Ra-ma, Ediciones de la U. 2017; PONCE, C., P. Inteligencia Artificial con aplicaciones a la ingeniería. México: Alfa Omega Grupo Editor. 2010.; WOLFRAM S., Cellular automata as simple self-organizing systems. Pasadena: Caltech prepint CAL-68-938. 1982.; ESPÍNOLA, M. Clasificación de Imágenes de Satélite mediante Autómatas Celulares. Almería: Universidad de Almería. 2011.; MOORE, E. F. Machine Models Of Self-Reproduction. U.S.A.: Proceedings of Symposia in Applied Mathematics. 1963.; GUERRERO, C. Á. “RapaNui – Isla de Pascua”. RapaNui, Chile. 20/06/2018.; CHEDDAD, A., CONDELL, J., CURRAN, K., & MCKEVITT, P. Digital image steganography: Survey and analysis of current methods. Northern Ireland: School of Computing and Intelligent Systems, University of Ulster at Magee. Signal Processing, 90 (3), 26. Obtenido de EL SEVIER, 2010.; DE LA CRUZ FRANCO, A. Implementación de un Algoritmo Computacional para Esteganografía basado en técnicas del bit menos significativo. Chetumal, México: Universidad de Quintana Roo. 2017.; VÁZQUEZ, J. I., & OLIVER, J. Evolución de Autómatas Celulares utilizando Algoritmos Genéticos. Bilbao, España: Universidad de Deusto. 2008.; MIRI, A., FAEZ, K. Adaptive Image Steganography based on transform domain via Genetic Algorithm. Tehran, Iran: Department of Electrical Engineering, Amirkabir University of Technology. Optika, 145, 10. Obtenido de EL SEVIER, 2017.; MUKJERJEE, S., ROY, S., & SANYAL, G. Image Steganography Using Mid Position Value Technique. Durgapur, India: National Institute of Technology Durgapur. Procedia Computer Science, 132, 7. Obtenido de EL SEVIER, 2018.; WESTFELD, A., PFIZMANN, A. Attacks on Steganographic System. Dresden, Germany: Department of Computer Science, Dresden University of Technology. Information Hiding, 15. 1999.; CABALLERO, H. Cálculo de la dispersión de pixels en imágenes RGB para Esteganografía con base en la teoría fractal. Toluca de Lerdo, México: Facultad de Ingeniería, Universidad Autónoma de México. 2020.; FRIDRICH, J., GOLJAN, M., & DU, R. Reliable Detection of LSB steganography in color and grayscale images. Binghamton, U.S.A.: Department of Electrical and Computer Engineering, Binghamton University, 7. 2002.; D. Galeano and I. Electr, “Robótica Médica,” p. 21.; J. Cornejo, J. A. Cornejo Aguilar, and J. P. Perales Villarroel, “Innovaciones Internacionales En Robótica Médica Para Mejorar El Manejo Del Paciente En Perú,” Rev. la Fac. Med. Humana, vol. 19, no. 4, pp. 105–113, 2019, doi:10.25176/rfmh.v19i4.2349.; E. Saraee, A. Joshi, and M. Betke, “A therapeutic robotic system for the upper body based on the Proficio robotic arm,” Int. Conf. Virtual Rehabil. ICVR, vol. 2017-June, 2017, doi:10.1109/ICVR.2017.8007498.; M. A. Soleimani, H. Zohoor, A. R. F. Yakhdani, M. Heravi, and E. Mohammadi, “Designing, Prototyping, and Controlling a Portable Rehabilitation Robot for the Shoulder Physiotherapy and Training,” ICRoM 2019 - 7th Int. Conf. Robot. Mechatronics, no. ICRoM, pp. 281–284, 2019, doi:10.1109/ICRoM48714.2019.9071844.; M. R. Sarder, F. Ahmed, and B. A. Shakhar, “Design and implementation of a lightweight telepresence robot for medical assistance,” ECCE 2017 - Int. Conf. Electr. Comput. Commun. Eng., pp. 779–783, 2017, doi:10.1109/ECACE.2017.7913008.; R. R. Murphy, D. Riddle, and E. Rasmussen, “Robot-assisted medical reachback: A survey of how medical personnel expect to interact with rescue robots,” Proc. - IEEE Int. Work. Robot Hum. Interact. Commun., pp. 301–306, 2004, doi:10.1109/roman.2004.1374777.; M. Cardona, F. Cortez, A. Palacios, and K. Cerros, “Mobile robots application against covid-19 pandemic,” 2020 Ieee Andescon, Andescon 2020, 2020, doi:10.1109/ANDESCON50619.2020.9272072.; R. M. Nope-Giraldo et al., “Mechatronic Systems Design of ROHNI-1: Hybrid Cyber-Human Medical Robot for COVID-19 Health Surveillance at Wholesale-Supermarket Entrances,” Pan Am. Heal. Care Exch. PAHCE, vol. 2021-May, 2021, doi:10.1109/GMEPE/PAHCE50215.2021.9434874.; P. Manikandan, G. Ramesh, G. Likith, D. Sreekanth, and G. Durga Prasad, “Smart Nursing Robot for COVID-19 Patients,” 2021 Int. Conf. Adv. Comput. Innov. Technol. Eng. ICACITE 2021, vol. 7, pp. 839–842, 2021, doi:10.1109/ICACITE51222.2021.9404698.; Coronavirus: 12 aspectos en los que cambiará radicalmente nuestras vidas”: BBC News, mayo 2020. https://www.bbc.com/mundo/noticias-52512680.; UN. “La enfermedad del coronavirus, una emergencia de salud mundial”. Naciones Unidas. https://www.un.org/es/coronavirus.; “Medidas tomadas por el gobierno.” GOV.CO. Fronteras, marzo 2020. https://coronaviruscolombia.gov.co/Covid19/acciones/acciones-de-fronteras.html.; “Cómo se propaga el COVID-19”. Centros para el Control y la Prevención de Enfermedades, julio 2021. https://espanol.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html.; OMS. “Protéjase a sí mismo y a los demás contra la COVID-19”. Organización Mundial de la Salud. Octubre 2020. https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019/advice-for-public.; M. A. Vivas. “Medidas para la reactivación económica en Colombia-Decreto 580 de 2021. Consultor Salud, junio 2021. https://consultorsalud.com/medidas-para-la-reactivacion-economica/.; C.R. Colombiana. “Consejos de autocuidado y prevención COVID-19”. Cruz Roja Colombiana. https://www.cruzrojacolombiana.org/consejos-de-autocuidado-y-prevencion/.; Cinco protocolos que se usan a diario y que no sirven contra el Covid”. Portafolio, febrero de 2021. https://www.portafolio.co/economia/cinco-protocolos-covid-19-que-no-sirven-contra-el-coronavirus-549048.; “Empresas deberán adaptar protocolo de bioseguridad de Minsalud a sus actividades”. Minsalud, abril 2020. https://www.minsalud.gov.co/Paginas/Empresas-deberan-adaptar-protocolo-de-bioseguridad-de-Minsalud-a-sus-actividades.aspx.; I. J. Molina Pineda. “¿Por qué el coronavirus se propaga ahora con tanta velocidad?”. BBC News, noviembre 2020. https://www.bbc.com/mundo/noticias-54794713.; “COVID-19: novedades científicas”. Instituto de Salud Global Barcelona, noviembre 2021. https://www.isglobal.org/covid-19-novedades-cientificas.; Lionex. “Proximiti-i”. Lionex. 2020. https://lionex.co/proximiti-i.; “La solución digital más confiable del mundo para mitigar la propagación de COVID-19”. KINEXON, 2020. https://kinexon.com/technology/safetag/.; “Coronavirus: el plan de Apple y Google para rastrear el covid-19 desde tu teléfono”. BBC News, abril 2020. https://www.bbc.com/mundo/noticias-52251843.; “Nissan incorporó un nuevo Dispositivo de Distanciamiento Físico para toda su red de concesionarios”. La Nación, marzo 2021. https://www.lanacion.com.ar/lifestyle/nissan-incorporo-un-nuevo-dispositivo-de-distanciamiento-fisico-para-toda-su-red-de-concesionarios-nid11032021/.; “Analítica de detección de tapabocas, para una reapertura segura”. SAC Seguridad, 2020. https://sacseguridad.com/iss-analitica-deteccion-tapabocas-termica/.; W. Yan. “¿Llevas puesta la mascarilla? Un software de reconocimiento está listo para checar si las personas cumplen con el correcto uso”. National Geographic, septiembre 2020. https://www.nationalgeographicla.com/ciencia/2020/09/software-reconocimiento-mascarillas.; K1T671TM-3XF”. HIKVISION, 2020. https://www.hikvision.com/es-la/products/Access-Control-Products/Face-Recognition-Terminals/Ultra-Series/ds-k1t671tm-3xf-/?q=ds-k1t671tm-3xf&position=5.; “SOLIDWORKS. Qué es y para qué sirve”. SolidBi. https://solid-bi.es/solidworks/.; “Sensor de distancia SHARP GP2Y0A02YK0F”. Naylamp Mechatronics. https://naylampmechatronics.com/sensores-proximidad/204-sensor-de-distancia-infrarrojo-sharp-gp2y0a02.html.; “Sensor ultrasónico HC-SR04”. Naylamp Mechatronics. https://naylampmechatronics.com/sensores-proximidad/10-sensor-ultrasonido-hc-sr04.html.; “Sensor de temperatura TMP36”. Prometec. https://www.prometec.net/sensor-tmp36/.; “Comprensión del reconocimiento facial mediante el algoritmo LBPH”. Analytics Vidhya, julio 2021. https://www.analyticsvidhya.com/blog/2021/07/understanding-face-recognition-using-lbph-algorithm/.; Y. M. Shum. “Situación Global Mobile 2020”. YS social media, 2020. https://yiminshum.com/mobile-movil-app-2020/.; F. Cortez, J. Cercado Mancero, A. Vera Lorenti, and E. Valle Flores, “Un panorama de las energías renovables en el Mundo, Latinoamérica y Colombia,” Espacios, vol. 39, p. 10, 2018.; G. A. Zapata and J. A. Valencia, “Guía práctica para la aplicación de los incentivos tributarios de la Ley 1715 de 2014,” Colombia.; J. Faiz and A. Nematsaberi, “Linear electrical generator topologies for direct-drive marine wave energy conversion- an overview,” IET Renew. Power Gener., vol. 11, no. 9, pp. 1163–1176, 2017.; X. Wang, F. Chen, R. Zhu, G. Yang, and C. Zhang, “A Review of the Design and Control of Free-Piston Linear Generator,” Energies, vol. 11, no. 8, p. 2179, 2018.; H. Chen, S. Zhao, H. Wang, and R. Nie, “A Novel Single-Phase Tubular Permanent Magnet Linear Generator,” IEEE Trans. Appl. Supercond., vol. 30, no. 4, pp. 2–6, 2020.; R. Guo, H. Yu, T. A. O. Xia, Z. Shi, W. Zhong, and X. Liu, “A Simplified Subdomain Analytical Model for the Design and Analysis of a Tubular Linear Permanent Magnet Oscillation Generator,” IEEE Access, vol. 6, pp. 42355–42367, 2018.; H. M. Zapata, F. A. Cabrera, M. A. Perez, C. A. Silva, and W. Jara, “Model of a permanent magnet linear generator,” IECON Proc. (Industrial Electron. Conf., vol. 2019-Octob, pp. 6992–6997, 2019.; H. Jing, N. Maki, T. Ida, and M. Izumi, “Electrical design of large-scale tubular PM linear generators for wave energy conversion,” IEEJ Trans. Electr. Electron. Eng., vol. 12, pp. S113–S119, 2017.; R. M. Korbekandi, N. J. Baker, and D. Wu, “A study of translator length in a tubular linear electrical machine designed for use in alinear combustion joule engine,” 2019 12th Int. Symp. Linear Drives Ind. Appl. LDIA 2019, pp. 1–6, 2019.; Y. Sun, Z. Xu, Q. Zhang, J. Lu, and L. Liu, “A Tubular Single-Phase Linear Generator with an Axially Magnetized PM Mover for Free-Piston Engines,” IEEJ Trans. Electr. Electron. Eng., vol. 16, no. 1, pp. 139–146, 2021.; J. Kim, J. Y. Kim, and J. B. Park, “Design and optimization of a 8kW linear generator for a direct-drive point absorber,” Ocean. 2013 MTS/IEEE - San Diego An Ocean Common, pp. 1–6, 2013.; S. Arslan and S. A. Oy, “Design and optimization of tube type interior permanent magnets generator for free piston applications,” TEM J., vol. 6, no. 2, pp. 214–221, 2017.; H. J.R. and T. J. E. Miller, Design of brushless permanetn magnet machines, vol. 732, no. 1. USA: Magna physycs publishing & Oxford University Press, 2010.; J. Zhang, H. Yu, and Z. Shi, “Analysis of a PM linear generator with double translators for complementary energy generation platform,” Energies, vol. 12, no. 24, 2019.; A. Musolino, R. Rizzo, and M. Raugi, “A semi-analytical model for the analysis of a Permanent Magnet tubular linear generator,” 2015 Int. Conf. Renew. Energy Res. Appl. ICRERA 2015, vol. 54, no. 1, pp. 1513–1517, 2015.; S. A. Nasar, “Permanent-Magnet Linear Alternators Part II: Design Guidelines,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-23, no. 1, pp. 79–82, 1987.; H. M. Quintero, E. R. Trujillo, and G. M. Tarazona Bermudez, “EVOLUTION OF WIND POWER TECHNOLOGY.” [Online]. Available: www.tjprc.org.; H. Montaña Quintero, E. Rivas Trujillo, and G. M. Tarazona, “TRENDS ON WIND POWER ELECTRIC GENERATORS,” vol. 15, no. 17, 2020, [Online]. Available: www.arpnjournals.com.; M. Abril Martínez, L. Carolina, R. Rodríguez, U. Militar, N. Granada, and D. P. Cuero, “Estado Del Arte Sobre Materiales Utilizados Para La Fabricación De Las Palas De Turbinas Eólicas Offshore.”; N. Javahiraly, A. Chakari, L. Calegari, and P. Meyrueis, “Determination of solid materials rigidity modulus by a new nondestructive optical method,” Optics & Laser Technology, vol. 36, no. 3, pp. 239–243, Apr. 2004, doi:10.1016/J.OPTLASTEC.2003.09.002.; I. M. Bragado, “Física General,” 2013.; H. A. Gonzáles - D. H. Meza, “LA IMPORTANCIA DEL MÉTODO EN LA SELECCION DE MATERIALES,” vol. 4, no. ISSN 0122-1701, 2004.; “Colección: LAS CIENCIAS NATURALES Y LA MATEMATICAS,” 2010.; Y. Jiang, B. Song, J. Hu, H. Liang, and S. Rao, “Time-dependent reliability of corroded circular steel tube structures: Characterization of statistical models for material properties,” Structures, vol. 33, pp. 792–803, Oct. 2021, doi:10.1016/J.ISTRUC.2021.04.091.; H. Zhang, B. Zhang, Q. Gao, J. Song, and G. Han, “A review on microstructures and properties of graphene-reinforced aluminum matrix composites fabricated by friction stir processing,” Journal of Manufacturing Processes, vol. 68, pp. 126–135, Aug. 2021, doi:10.1016/J.JMAPRO.2021.07.023.; W. Zhang, X. Zhang, Z. Qin, W. Zhang, and R. Yang, “Mechanical and flame retardant performance of fiberglass-reinforced polysilsesquioxane interpenetrated with poly(ethylene glycol)-urethane,” Composites Part A: Applied Science and Manufacturing, vol. 149, p. 106490, Oct. 2021, doi:10.1016/J.COMPOSITESA.2021.106490.; A. Zavdoveev et al., “Effect of heat treatment on the mechanical properties and microstructure of HSLA steels processed by various technologies,” Materials Today Communications, vol. 28, p. 102598, Sep. 2021, doi:10.1016/J.MTCOMM.2021.102598.; G. Kumar Sharma and B. Nidhi Vats, “A comparative study on mechanical and tribological properties of different grades of tool steels,” Materials Today: Proceedings, Mar. 2021, doi:10.1016/J.MATPR.2021.02.275.; F. Tariq and P. Bhargava, “Stress–strain curves and mechanical properties of corrosion damaged super ductile reinforcing steel,” Structures, vol. 33, pp. 1532–1543, Oct. 2021, doi:10.1016/J.ISTRUC.2021.05.039.; B. Nie, S. Xu, Z. Zhang, and A. Li, “Surface morphology characteristics and mechanical properties of corroded cold-formed steel channel sections,” Journal of Building Engineering, vol. 42, p. 102786, Oct. 2021, doi:10.1016/J.JOBE.2021.102786.; I. J. Delfin, F. Madrid, and R. Martínez Sánchez, “Tesis: EFECTO DE LA CERIA (CeO 2 ) EN LA MICROESTRUCTURA Y PROPIEDADES MECÁNICAS DE UNA ALEACIÓN DE ALUMINIO 2024 Que como requisito presenta.”; A. Baradeswaran and A. E. Perumal, “Wear and mechanical characteristics of Al 7075/graphite composites,” Composites Part B: Engineering, vol. 56, pp. 472–476, Jan. 2014, doi:10.1016/J.COMPOSITESB.2013.08.073.; P. Chakrapani and T. S. A. Suryakumari, “Mechanical properties of aluminium metal matrix composites-A review,” Materials Today: Proceedings, vol. 45, pp. 5960–5964, Jan. 2021, doi:10.1016/J.MATPR.2020.09.247.; N. Kumar, A. Bharti, and K. K. Saxena, “A re-investigation: Effect of powder metallurgy parameters on the physical and mechanical properties of aluminium matrix composites,” Materials Today: Proceedings, vol. 44, pp. 2188–2193, Jan. 2021, doi:10.1016/J.MATPR.2020.12.351.; B. Zhou, B. Liu, S. Zhang, R. Lin, Y. Jiang, and X. Lan, “Microstructure evolution of recycled 7075 aluminum alloy and its mechanical and corrosion properties,” Journal of Alloys and Compounds, vol. 879, p. 160407, Oct. 2021, doi:10.1016/J.JALLCOM.2021.160407.; M. Barhoumi, N. Sfina, M. Said, and S. Znaidia, “Elastic and mechanical properties of aluminium and silicon carbide using density functional theory and beyond,” Solid State Communications, vol. 334–335, p. 114369, Aug. 2021, doi:10.1016/J.SSC.2021.114369.; E. M. Ruiz Navas and B. Ruiz Palenzuela, “Sintering of Aluminum Alloys. Processing and Properties,” Encyclopedia of Materials: Metals and Allloys, pp. 343–352, Jan. 2022, doi:10.1016/B978-0-12-819726-4.00114-9.; Ankur, A. Bharti, D. Prasad, N. Kumar, and K. K. Saxena, “A Re-investigation: Effect of various parameter on mechanical properties of copper matrix composite fabricated by powder metallurgy,” Materials Today: Proceedings, vol. 45, pp. 4595–4600, Jan. 2021, doi:10.1016/J.MATPR.2021.01.009.; A. Agrawal and R. Mirzaeifar, “Copper-graphene composites; developing the MEAM potential and investigating their mechanical properties,” Computational Materials Science, vol. 188, p. 110204, Feb. 2021, doi:10.1016/J.COMMATSCI.2020.110204.; S. Thapliyal and A. Mishra, “Machine learning classification-based approach for mechanical properties of friction stir welding of copper,” Manufacturing Letters, vol. 29, pp. 52–55, Aug. 2021, doi:10.1016/J.MFGLET.2021.05.010.; J. Chi et al., “Titanium alloy components fabrication by laser depositing TA15 powders on TC17 forged plate: Microstructure and mechanical properties,” Materials Science and Engineering: A, vol. 818, p. 141382, Jun. 2021, doi:10.1016/J.MSEA.2021.141382.; D. Liović, M. Franulović, and D. Kozak, “Material models and mechanical properties of titanium alloys produced by selective laser melting,” Procedia Structural Integrity, vol. 31, pp. 86–91, Jan. 2021, doi:10.1016/J.PROSTR.2021.03.014.; J. Aguilar Pozzer and E. Guzowski, “Guía didáctica Materiales y materias primas.”; M. Z. R. Khan, S. K. Srivastava, and M. K. Gupta, “A state-of-the-art review on particulate wood polymer composites: Processing, properties and applications,” Polymer Testing, vol. 89, p. 106721, Sep. 2020, doi:10.1016/J.POLYMERTESTING.2020.106721.; C. Wu, N. Vahedi, A. P. Vassilopoulos, and T. Keller, “Mechanical properties of a balsa wood veneer structural sandwich core material,” Construction and Building Materials, vol. 265, p. 120193, Dec. 2020, doi:10.1016/J.CONBUILDMAT.2020.120193.; F. Tian, L. Chen, and X. Xu, “Dynamical mechanical properties of wood-high density polyethylene composites filled with recycled rubber,” Journal of Bioresources and Bioproducts, vol. 6, no. 2, pp. 152–159, May 2021, doi:10.1016/J.JOBAB.2021.02.007.; J. F. Shackelford, “Introducción a la ciencia de materiales para ingenieros 6a edición.”; S. Velu, J. K. Joseph, M. Sivakumar, V. K. Bupesh Raja, K. Palanikumar, and N. Lenin, “Experimental investigation on the mechanical properties of carbon-glass-jute fiber reinforced epoxy hybrid composites,” Materials Today: Proceedings, vol. 46, pp. 3566–3571, Jan. 2021, doi:10.1016/J.MATPR.2021.01.333.; W. Chen, Q. Meng, H. Hao, J. Cui, and Y. Shi, “Quasi-static and dynamic tensile properties of fiberglass/epoxy laminate sheet,” Construction and Building Materials, vol. 143, pp. 247–258, Jul. 2017, doi:10.1016/J.CONBUILDMAT.2017.03.074.; S. Y. Voronina, T. A. Shalygina, V. D. Voronchikhin, A. Y. Vlasov, A. N. Ovchinnikov, and N. N. Grotskaya, “Data for determining the surface properties of carbon fiber in contact interaction with polymeric binders,” Data in Brief, vol. 35, p. 106847, Apr. 2021, doi:10.1016/J.DIB.2021.106847.; C. Colombo and L. Vergani, “Influence of delamination on fatigue properties of a fibreglass composite,” Composite Structures, vol. 107, no. 1, pp. 325–333, Jan. 2014, doi:10.1016/J.COMPSTRUCT.2013.07.028.; L. Wang, J. Zhang, X. Yang, C. Zhang, W. Gong, and J. Yu, “Flexural properties of epoxy syntactic foams reinforced by fiberglass mesh and/or short glass fiber,” Materials & Design, vol. 55, pp. 929–936, Mar. 2014, doi:10.1016/J.MATDES.2013.10.065.; J. Viña, J. Bonhomme, V. Mollón, I. Viña, and A. Argüelles, “Mechanical properties of fibreglass and carbon-fibre reinforced polyetherimide after twenty years of outdoor environmental aging in the city of Gijón (Spain),” Composites Communications, vol. 22, p. 100522, Dec. 2020, doi:10.1016/J.COCO.2020.100522.; A. Armanfard and G. W. Melenka, “Experimental evaluation of carbon fibre, fibreglass and aramid tubular braided composites under combined tension–torsion loading,” Composite Structures, vol. 269, p. 114049, Aug. 2021, doi:10.1016/J.COMPSTRUCT.2021.114049.; Z. Sun et al., “Temperature-dependent mechanical properties of polyetherimide composites reinforced by graphene oxide-coated short carbon fibers,” Composite Structures, vol. 270, p. 114075, Aug. 2021, doi:10.1016/J.COMPSTRUCT.2021.114075.; V. Amigó, J. J. Payá, M. D. Salvador, J. M. Monzó, F. Segovia, and V. Borrachero, “MATERIALES COMPUESTOS 05.”; S. C. Das et al., “On the use of wood charcoal filler to improve the properties of natural fiber reinforced polymer composites,” Materials Today: Proceedings, vol. 44, pp. 926–929, Jan. 2021, doi:10.1016/J.MATPR.2020.10.808.; S. Yousef, S. P. Subadra, P. Griškevičius, S. Varnagiris, D. Milcius, and V. Makarevicius, “Superhydrophilic functionalized graphene/fiberglass/epoxy laminates with high mechanical, impact and thermal performance and treated by plasma,” Polymer Testing, vol. 90, p. 106701, Oct. 2020, doi:10.1016/J.POLYMERTESTING.2020.106701.; P. Karthick, A. A. E. Andrews, K. Subbareddy, K. Basha, V. Harshavardhan, and S. G. S. K. Reddy, “Investigation of mandatory properties of NaOH – KMnO4 Treated Banana/Fiberglass Hybrid Composite,” Materials Today: Proceedings, vol. 37, no. Part 2, pp. 63–66, Jan. 2021, doi:10.1016/J.MATPR.2020.03.072.; S. Saroj, S. Nayak, and D. Kumar Jesthi, “Effect of hybridization of carbon/glass/flax/kenaf fibre composite on flexural and impact properties,” Materials Today: Proceedings, Apr. 2021, doi:10.1016/J.MATPR.2021.03.094.; H. A. S. y. M. A. P., «ANÁLISIS DE TECNOLOGÍAS DE MEDICIÓN DE NIVEL DE TANQUES DE PRODUCTOS USADOS EN LA INDUSTRIA PETROLERA,» 5 Diciembre 2003. [En línea]. Available: https://repositorio.utb.edu.co/bitstream/handle/20.500.12585/3407/0024835.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; C. A. V. AGUILAR, «DISEÑO DE UN SISTEMA DE MONITOREO DE NIVEL DE LOS TANQUES DE EMERGENCIA DE EMCALI TELECOMUNICACIONES,» 9 Diciembre 2013. [En línea]. Available: https://red.uao.edu.co/bitstream/handle/10614/5683/T03722.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; A. A. Naranjo, «Diseño de control de nivel por medio de una medición continua en los tanques de almacenamiento de ACPM en la empresa de Colcafe S.A.,» 7 Marzo 2018. [En línea]. Available: https://repositorio.itm.edu.co/bitstream/handle/20.500.12622/3975/Rep_Itm_pre_Arbelaez.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; P. R. Martín, «¿Qué es una central de generación eléctrica diésel?,» 11 Junio 2020. [En línea]. Available: https://www.tecnatom.es/blog/que-es-una-central-de-generacion-electrica-diesel/. [Último acceso: 26 Septiembre 2021].; F. O. C. GUERRERO, «GENERACIÓN DE ENERGÍA ELÉCTRICA CON UN MOTOR DE COMBUSTIÓN INTERNA USANDO BIODIESEL DE ACEITE DE PIÑÓN (Jatropha curcas),» 2015. [En línea]. Available: https://repositorio.lamolina.edu.pe/bitstream/handle/UNALM/2152/P06-C118-T.pdf?sequence=1&isAllowed=y. [Último acceso: 26 Septiembre 2021].; El pensante.com , «¿Qué es el ACPM?,» E-Cultura Group, 7 Abril 2016. [En línea]. Available: https://elpensante.com/que-es-el-acpm/. [Último acceso: 25 Septiembre 2021].; D. Plaza, «El gasóleo o gasoil: propiedades y tipos,» motor.es, s.f. [En línea]. Available: https://www.motor.es/que-es/gasoil#:~:text=Es%20un%20hidrocarburo%20l%C3%ADquido%20que,carbono%20por%2026%20de%20hidr%C3%B3geno). [Último acceso: 25 Septiembre 2021].; C. Ribeiro, «Cómo funciona la medición automática de combustible en los tanques y cómo su estación puede beneficiarse,» 9 Agosto 2017. [En línea]. Available: https://blog.gilbarco.com/latam/como-funciona-la-medicion-automatica-de-combustible-en-los-tanques. [Último acceso: 25 Septiembre 2021].; Nation Unies, «Prescriptions uniformes relatives à l’homologation des véhicules en ce qui concerne,» 16 Octubre 1995. [En línea]. Available: https://unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/r083r4f.pdf. [Último acceso: 25 Septiembre 2021].; U.S. Environmental Protection Agency, «Code Of Federal Regulations Part 1065—Engine-Testing Procedures.,» 17 Septiembre 2021. [En línea]. Available: https://www.ecfr.gov/recent-changes?search%5Bhierarchy%5D%5Btitle%5D=16&search%5Blast_modified_after%5D=2021-09-10. [Último acceso: 25 Septirmbre 2021].; Code Of Federal Regulations, «VEHICLE-TESTING PROCEDURES,» 28 Abril 2014. [En línea]. Available: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-U/part-1066. [Último acceso: 25 Septiembre 2021].; L. B. M. y. H. C. F. Melissa Ávila Dávila, «Análisis gravimétrico y volumétrico,» 26 Agosto 2011. [En línea]. Available: https://www.monografias.com/trabajos89/analisis-gravimetrico-y-volumetrico/analisis-gravimetrico-y-volumetrico.shtml. [Último acceso: 27 Septienbre 2021].; C. B. ,. J. G. H. Richard D Burke, «Critical evaluation of on-engine fuel consumption measurement,» Automobile Engineering, vol. 225, nº 6, p. 829–844, Junio 2011.; O. NUNIGE, «EVALUACION Y COMPARACION DE METODOS DE MEDICION CONSUMO DE COMBUSTIBLE PARA LABORATORIO Y RUTA EN UN VEHICULO LIVIANO,» 2018. [En línea]. Available: http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/9465/T629.2538%20N972.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; W. E. L. C. F. d. R. Cesar V. Vargas, «Sistemas de Comunicación Inalámbrica MIMO - OFDM,» RevActaNova, vol. 3, nº 4, pp. 750-760, 2007.; F. E. Vargas Silva, «Sistema Digital De Medición De Nivel De Combustible En El Tanque Del Generador Para El Radar De ESUFA.,» 7 Noviembre 2019. [En línea]. Available: https://catalogosibfa.hosted.exlibrisgroup.com/exlibris/aleph/a23_1/apache_media/NIK8N7VLBTRRSKEGTLYUM76FF5BIB8.pdf. [Último acceso: 26 Septiembre 2021].; Quonty, «Tecnología inalámbrica, ¿cuáles son las redes y los dispositivos que más la utilizan?,» 21 Febrero 2018. [En línea]. Available: https://www.quonty.com/blog/tecnologia-inalambrica/. [Último acceso: 27 Septiembre 2021].; Morales, «Qué es la transmisión Wifi,» 11 Octubre 2019. [En línea]. Available: https://www.ticarte.com/contenido/que-es-la-transmision-wifi. [Último acceso: 27 Septiembre 2021].; J. Borlongan, «Cómo funciona la tecnología WiFi,» s.f. [En línea]. Available: https://techlandia.com/funciona-tecnologia-wifi-como_10752/. [Último acceso: 27 Septiembre 2021].; runestone.academy, «¿Qué es programación?,» s.f. [En línea]. Available: https://runestone.academy/runestone/static/pythoned/Introduction/QueEsProgramacion.html. [Último acceso: 28 Septiembre 2021].; aprendiendoarduino.wordpress.com, «Programación Arduino,» 23 Enero 2017. [En línea]. Available: https://aprendiendoarduino.wordpress.com/2017/01/23/programacion-arduino-5/. [Último acceso: 28 Septiembre 2021].; Arduino.cl, «Software de Arduino,» Enero 2019. [En línea]. Available: https://arduino.cl/programacion/. [Último acceso: 28 Septiembre 2021].; Arduino, «Arduino UNO,» s.f. [En línea]. Available: https://arduino.cl/arduino-uno/. [Último acceso: 27 Septiembre 2021].; L. LLAMAS, «MEDIR DISTANCIA CON ARDUINO Y SENSOR DE ULTRASONIDOS HC-SR04,» 16 Junio 2015. [En línea]. Available: https://www.luisllamas.es/medir-distancia-con-arduino-y-sensor-de-ultrasonidos-hc-sr04/. [Último acceso: 27 Septiembre 2021].; naylampmechatronics.com, «SENSOR ULTRASONIDO HC-SR04,» s.f. [En línea]. Available: https://naylampmechatronics.com/sensores-proximidad/10-sensor-ultrasonido-hc-sr04.html. [Último acceso: 27 Septiembre 2021].; L. Llamas, «COMUNICACIÓN INALÁMBRICA A 2.4GHZ CON ARDUINO Y NRF24L01,» 8 Diciembre 2016. [En línea]. Available: https://www.luisllamas.es/comunicacion-inalambrica-a-2-4ghz-con-arduino-y-nrf24l01/. [Último acceso: 28 Septiembre 2021].; robots-argentina.com.ar, «Arduino: Comunicación inalámbrica con NRF24L01,» 25 Diciembre 2019. [En línea]. Available: http://robots-argentina.com.ar/didactica/arduino-comunicacion-inalambrica-con-nrf24l01/. [Último acceso: 28 Septiembre 2021].; the Secretary of the Air Force, «TECHNICAL AND MANAGERIAL REFERENCE FOR MOTOR VEHICLE MAINTENANCE,» Published Under Authority, USA, 2004.; B. R. Serra, «VOLUMEN DE UN PRISMA RECTANGULAR,» 2014. [En línea]. Available: https://www.universoformulas.com/matematicas/geometria/volumen-prisma-rectangular/. [Último acceso: 28 Septiembre 2021].; extraconversion.com, «Metros Cúbicos a US Galones Líquidos Calculadora de Conversión,» s.f. [En línea]. Available: http://extraconversion.com/es/volumen/metros-cubicos/metros-cubicos-a-us-galones-liquidos.html. [Último acceso: 28 Septiembre 2021].; J. C. Najar Pacheco, «Exposición del activo más valioso de la organización, la “información", Visión Electrónica, vol. 11, no. 1, pp. 107-115, 2017. https://doi.org/10.14483/22484728.12345.; Clincy, V., & Shahriar, H., Web Application Firewall: Network Security Models and Configuration. Proceedings - International Computer Software and Applications Conference, 1, 835–836. https://doi.org/10.1109/COMPSAC.2018.00144, 2018.; C. Ping. "A second-order SQL injection detection method". Digital Object Identifier System. https://doi.org/10.1109/ITNEC.2017.8285104, 2018.; Tovar Valencia, O. (s. f.). INYECCIÓN DE SQL, TIPOS DE ATAQUES Y PREVENCION EN ASP.NET-C#. Universidad Piloto de Colombia. http://polux.unipiloto.edu.co:8080/00002026.pdf.; Rajashree, A. K., Sherekar, S. S., & Thakare, V. M. Detection of SQL injection attacks by removing the parameter values of SQL query. IEEE Conference Publication %7C IEEE Xplore. https://ieeexplore.ieee.org/document/8398896, 2018.; Gestión, Tecnología. Uso de apps y visitas a sitios web de alto riesgo subieron 161% debido a COVID. Gestión Tecnología. https://gestion.pe/tecnologia/uso-de-apps-y- visitas-a-sitios-web-de-alto-riesgo-subieron-161-debido-a-covid-noticia/, 2020.; Castillo, A., OWASP Top 1 - Ataques por Inyección SQL. Seguridad Ofensiva. https://seguridad-ofensiva.com/blog/owasp-top-10/owasp-top-1/, 2020.; A7:2017-Cross-Site Scripting (XSS) %7C OWASP, https://owasp.org/www-project-top-ten/2017/A7_2017-Cross-Site_Scripting_(XSS), 2017.; Vulnerabilidades OWASP - Ciberseguridad informática - Seguridad informática para Empresas. (n.d.). https://antimalwares.es/tecnologias/vulnerabilidades-owasp.; W. A. Barbosa y D. A. Buelvas Peñarredonda, “Implementación de redes privadas virtuales en la mediana empresa", Visión Electrónica, vol. 4, no. 2, pp. 106-121, 2010. https://revistas.udistrital.edu.co/index.php/visele/article/view/282/5573.; N. A. Gómez-Cruz and C. E. Maldonado, “Sistemas bio-inspirados: un marco teórico para la ingeniería de sistemas complejos,” Ing. Sist. complejos. Compil. las Conf. Present. en la Cuarta Asam. la Red Cart. Ing., p., 2011.; Y. Leidy, O. López, D. Guillermo, and B. Benavides, “Plataformas Bionpiradas Tipo Lego En Un Ambiente Conocido.”; Y. Jian and Y. Li, “Research on intelligent cognitive function enhancement of intelligent robot based on ant colony algorithm,” Cogn. Syst. Res., vol. 56, pp. 203–212, 2019, doi:10.1016/j.cogsys.2018.12.014.; L. M. Layos, E. L. Mundo, and D. E. L. A. S. Hormigas, “HORMIGAS,” 2006.; J. Rolando, C. López, N. Johanna Hernández Suárez, A. Del Pilar, and R. Tibaduiza, “Sistema de transporte y embalaje utilizando robótica cooperativa basada en teoría de colonias de hormigas mediante plataforma Mindstorm de LEGO® Transportation and Packaging System Using Cooperative Robotics Based on Theory of Ants Colonies Using Platform,” vol. 6, no. 1, pp. 60–71, 2015, doi:10.14483/udistrital.jour.redes.2015.1.a04.; Jaffe, “Evolucion de Sistemas de Comunicacion Quimico en Hormigas (Hymenoptera: Formicidae),” Folia Entomológica Mexicana, vol. 61. pp. 189–203, 1984.; Y. Leidy, O. López, G. Duvan, and B. Benavides, “Implementación de un sistema multirobot basado en el comportamiento de las hormigas.”; M. Dc and G. Motor, “Tank Mobile Platform Instrution Manual,” no. 112.; Alibaba.com. (2021). Professional Outdoor Solar Powered Automatic Weather Station. Tomado de: https://www.alibaba.com/product-detail/Professional-Outdoor-Solar-Powered-Automatic-Weather_60492093064.html.; BBC. (2021). River flooding - causes and management. Tomado de: https://www.bbc.co.uk/bitesize/guides/zx9kfrd/revision/1#:~:text=Flooding%20occurs%20when%20a%20river,interactions%20can%20increase%20the%20risk.; Bourdeau-Brien, M., & Kryzanowski, L. (2020). Natural disasters and risk aversion. Journal of Economic Behavior & Organization, 177, 818–835. Tomado de: https://doi.org/https://doi.org/10.1016/j.jebo.2020.07.007.; Boustan, L. P., Kahn, M. E., Rhode, P. W., & Yanguas, M. L. (2020). The effect of natural disasters on economic activity in US counties: A century of data. Journal of Urban Economics, 118, 103257. Tomado de: https://doi.org/https://doi.org/10.1016/j.jue.2020.103257.; Campo, P. A., Zafra K. (2013). SISTEMA ELECTRÓNICO INALÁMBRICO DE ALERTA TEMPRANA Y MONITOREO DEL COMPORTAMIENTO DEL NIVEL DE LOS RÍOS DE BAJO COSTO (Tesis de grado). Universidad San Buenaventura de Cali. Tomado de: http://bibliotecadigital.usbcali.edu.co/bitstream/10819/2144/1/Sistema_Electronico_Inalambrico_Monitoreo_Campo_2013.pdf.; Cao, H., & Wachowicz, M. (2019). The design of an IoT-GIS platform for performing automated analytical tasks. Computers, Environment and Urban Systems, 74, 23–40. Tomado de: https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2018.11.004.; CEPAL. (2018). Situación de las estadísticas e indicadores de eventos extremos y desastres. Tomado de: https://www.cepal.org/sites/default/files/presentations/2018-06-2areu-expertos-ea-4_2-cepal-pleonard.pdf.; Colombia Reports. (2020). Fatal landslide blocks road between Colombia’s capital and Medellin. Tomado de: https://colombiareports.com/fatal-landslide-blocks-road-between-colombias-capital-and-medellin/.; Confluence. (2021). Sensor T/H/CE de suelo CERES - IoT. Tomado de: https://nazaries.atlassian.net/wiki/spaces/IOT/pages/4654272/Sensor+T+H+CE+de+suelo+CERES.; CORTOLIMA. (s.f). Pérdida de suelos. Corporación Autónoma Regional del Tolima. Tomado de: https://www.cortolima.gov.co/sites/default/files/images/stories/centro_documentos/pom_totare/diagnostico/m_212perdida_de_suelos_totare.pdf.; Datos abiertos. (2021). Gov.co - Datos abiertos. Tomado de: https://www.datos.gov.co/.; Dorado, J.E. (2020). SISTEMA DE MONITOREO Y CONTROL DE ALERTA TEMPRANA DEL DESBORDAMIENTO DE UN RÍO (Tesis de grado). Universidad Piloto de Colombia. Tomado de: http://repository.unipiloto.edu.co/bitstream/handle/20.500.12277/7475/TESIS%20DE%20GRADO.pdf?sequence=1&isAllowed=y.; Duan, X., Bai, Z., Rong, L., Li, Y., Ding, J., Tao, Y., Li, J., Li, J., & Wang, W. (2020). Investigation method for regional soil erosion based on the Chinese Soil Loss Equation and high-resolution spatial data: Case study on the mountainous Yunnan Province, China. CATENA, 184, 104237. Tomado de: https://doi.org/https://doi.org/10.1016/j.catena.2019.104237.; FAO (Food and Agriculture Organization of the United Nations). (s.f). Lang & Water. Universal Soil Loss Equation. Tomado de: http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1236441/.; FloodList. (2017). Colombia – 11 Departments Hit by Heavy Rain, Floods and Landslides. Tomado de: http://floodlist.com/america/colombia-11-departments-floods-march-2017.; FloodList. (2020). Colombia – Rains Trigger Deadly Landslide in Antioquia. Tomado de: http://floodlist.com/america/colombia-landslide-floods-antioquia-november-2020.; Humanitarian RESPONSE. (2018). Colombia: Snapshot Desastres Naturales 2017 - OCHA Services. Tomado de: https://www.humanitarianresponse.info/en/operations/colombia/infographic/colombia-snapshot-desastres-naturales-2017.; IDEAM. S.f. Datos IDEAM. IDEAM: Instituto de Hidrología, Meteorología y Estudios Ambientales. Tomado de: http://www.ideam.gov.co/.; Insurance Information Institute (iii). (2019). Current graph - World Natural Catastrophes, 2019. Tomado de: https://www.iii.org/graph-archive/96134.; Jimenez N, A. (2005). LA INVESTIGACIÓN DE SUELOS EROSIONADOS: MÉTODOS E ÍNDICES DE DIAGNÓSTICO. Minería y Geología, vol. 21, num 2, 2005, pp. 1-18. Tomado de: https://www.redalyc.org/pdf/2235/223516049002.pdf.; Kamatchi Sundari, V., Nithyashri, J., Kuzhaloli, S., Subburaj, J., Vijayakumar, P., & Subha Hency Jose, P. (2021). Comparison analysis of IoT based industrial automation and improvement of different processes – review. Materials Today: Proceedings. Tomado de: https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.338.; Kong, D., Lin, Z., Wang, Y., & Xiang, J. (2021). Natural disasters and analysts’ earnings forecasts. Journal of Corporate Finance, 66, 101860. Tomado de: https://doi.org/https://doi.org/10.1016/j.jcorpfin.2020.101860.; Local Government Association. (s.f). Flood risk and flood risk management. Tomado de: https://www.local.gov.uk/topics/severe-weather/flooding/flood-and-coastal-erosion-risk-management/flood-risk-and-flood-risk.; McIvor, I., Youjun, H., Daoping, L., Eyles, G., & Pu, Z. (2014). Agroforestry: Conservation Trees and Erosion Prevention (N. K. B. T.-E. of A. and F. S. Van Alfen (ed.); pp. 208–221). Academic Press. Tomado de: https://doi.org/https://doi.org/10.1016/B978-0-444-52512-3.00247-3.; NETWORKWORLD. (2020). What is IoT? The internet of things explained. Tomado de: https://www.networkworld.com/article/3207535/what-is-iot-the-internet-of-things-explained.html.; Newark. (2014). A Brief History of Single Board Computers - electronicdesign. Tomado de: https://www.newark.com/wcsstore/ExtendedSitesCatalogAssetStore/cms/asset/pdf/americas/common/NE14-ElectronicDesignUncovered-Dec14.pdf.; OCHA. (2018). COLOMBIA Desastres Naturales 2017. Tomado de: https://www.humanitarianresponse.info/sites/www.humanitarianresponse.info/files/documents/files/20180420_snapshot_desastres_naturales_2017_-_v2.pdf.; OMM. (2016). Laboratorio virtual de la OMM para la enseñanza y formación en meteorología satelital. OMM - Organización Meteorológica Mundial. Tomado de: https://public.wmo.int/es/resources/bulletin/laboratorio-virtual-de-la-omm-para-la-ense%C3%B1anza-y-formaci%C3%B3n-en-meteorolog%C3%ADa.; Organización Mundial de la Salud (OMS). (s.f). Acción sanitaria en las crisis humanitarias - Inundaciones. Tomado de: https://www.who.int/hac/techguidance/ems/floods/es/.; Organización Mundial de la Salud (OMS). (s.f). Acción sanitaria en las crisis humanitarias - Corrimientos de tierra. Tomado de: https://www.who.int/hac/techguidance/ems/landslides/es/.; Organization of American States (OAS). (s.f). La erosión hídrica y las crecidas. Tomado de: https://www.oas.org/dsd/publications/Unit/oea23s/ch16.htm.; Osenga, E. C., Arnott, J. C., Endsley, K. A., & Katzenberger, J. W. (2019). Bioclimatic and Soil Moisture Monitoring Across Elevation in a Mountain Watershed: Opportunities for Research and Resource Management. Water Resources Research, 55(3), 2493–2503. Tomado de: https://doi.org/https://doi.org/10.1029/2018WR023653.; Paulino, Â., Guimarães, L., & Shiguemori, E. (2019). Hybrid Adaptive Computational Intelligence-based Multisensor Data Fusion applied to real-time UAV autonomous navigation. INTELIGENCIA ARTIFICIAL, 22, 162–195. Tomado de: https://doi.org/10.4114/intartif.vol22iss63pp162-195.; Pellet, C. and Hauck, C. (2017) Monitoring soil moisture from middle to high elevation in Switzerland: set-up and first results from the SOMOMOUNT network, Hydrol. Tomado de: Earth Syst. Sci., 21, 3199–3220, https://doi.org/10.5194/hess-21-3199-2017.; PreventivoWeb. (s.f). Disaster Data & statistics. Tomado de: https://www.preventionweb.net/knowledgebase/disaster-statistics.; R2D3. (s.f). A visual introduction to machine learning. Tomado de: http://www.r2d3.us/visual-intro-to-machine-learning-part-1/.; Raspberrypi. (s.f). Raspberry Pi 3 Model B+. Tomado de: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/.; Reggio, G., Leotta, M., Cerioli, M., Spalazzese, R., & Alkhabbas, F. (2020). What are IoT systems for real? An experts’ survey on software engineering aspects. Internet of Things, 12, 100313. Tomado de: https://doi.org/https://doi.org/10.1016/j.iot.2020.100313.; Scikit-learn.org. (2021). Scikit-learn machine learning in python. Tomado de: https://scikit-learn.org/stable/index.html.; sdxcentral. (s.f). IoT Definitions & Basics. Tomado de: https://www.sdxcentral.com/5g/iot/definitions/.; Thangamani, T., Prabha, R., Prasad, M., Kumari, U., KV, R., & Abidin, S. (2021). IoT Defense Machine Learning: Emerging Solutions and Future Problems. Microprocessors and Microsystems, 104043. Tomado de: https://doi.org/https://doi.org/10.1016/j.micpro.2021.104043.; Thibaud, M., Chi, H., Zhou, W., & Piramuthu, S. (2018). Internet of Things (IoT) in high-risk Environment, Health and Safety (EHS) industries: A comprehensive review. Decision Support Systems, 108, 79–95. Tomado de: https://doi.org/https://doi.org/10.1016/j.dss.2018.02.005.; towards data science. (2017). Types of Machine Learning Algorithms You Should Know. Tomado de: https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861.; UNGRD. 2018. Implementación del Sistema Nacional de información para la gestión del riesgo de desastres. Tomado de: http://portal.gestiondelriesgo.gov.co/Documents/Proyectos-Inversion/2015/proyecto_sistema_integrado_informacion_2015_2018.pdf.; Universidad de Chile. (s.f). Laboratorio de Meteorología (LM - DGF). Tomado de: http://uchile.cl/i91300.; University, C. for H. and R. R.-C.-C., University, C. for I. E. S. I. N.-C.-C., & Bank, I. B. for R. and D.-T. W. (2005). Global Multihazard Mortality Risks and Distribution. NASA Socioeconomic Data and Applications Center (SEDAC). Tomado de: https://doi.org/10.7927/H41J97NM.; University, C. for H. and R. R.-C.-C., University, C. for I. E. S. I. N.-C.-C., & Bank, I. B. for R. and D.-T. W. (2005). Global Landslide Mortality Risks and Distribution. NASA Socioeconomic Data and Applications Center (SEDAC). Tomado de: https://doi.org/10.7927/H4JH3J4N.; Waze. (2021). Acerca de Waze: Mapas con datos de tráfico en tiempo real. Tomado de: https://www.waze.com/es/about.; World Health Organization. (s.f). Lanslides. Tomado de: https://www.who.int/health-topics/landslides#tab=tab_2.; Zhang, H., Zhang, R., Qi, F., Liu, X., Niu, Y., Fan, Z., Zhang, Q., Li, J., Yuan, L., Song, Y., Yang, S., & Yao, X. (2018). The CSLE model based soil erosion prediction: Comparisons of sampling density and extrapolation method at the county level. CATENA, 165, 465–472. Tomado de: https://doi.org/https://doi.org/10.1016/j.catena.2018.02.007.; E. A. Avila Gomez, A. M. Martinez Daza, y S. A. Pinzon, “Estado de arte sobre infraestructura telemática para el teletrabajo", Visión Electrónica, vol. 11, no. 2, pp. 261-278, 2017.; F. E. Pineda Torres y A. de J. Chica Leal, “Propuesta de un estimador de fallas usando fracciones coprimas", Visión Electrónica, vol. 9, no. 2, pp. 172-181, 2015. https://doi.org/10.14483/22484728.11025.; F. N. Giraldo Ramos, F. Gonzalez, y E. Camargo Casallas, “Algoritmos de procesamiento de imágenes satelitales con tranformada Hough", Visión Electrónica, vol. 5, no. 2, pp. 26-41, 2011. https://doi.org/10.14483/22484728.3568.; H. J. Eslava Blanco, N. Serrano P., y F. A. Castro, “Sistema de alerta de riesgos en hogares mediante SMS”, Visión Electrónica, vol. 6, no. 2, pp. 15-30, 2012. https://doi.org/10.14483/22484728.3883.; J. O. Castellanos Millán, V. H. Amarillo Calvo, y R. M. Poveda Chaves, “Problema de asignación quadrática (pac) sobre gpu a través de una pga maestro-esclavo”, Visión Electrónica, vol. 10, no. 2, pp. 179-183, 2016.; J. C. Najar-Pacheco, J. A. Bohada-Jaime, y W. Y. Rojas-Moreno, “Vulnerabilidades en el internet de las cosas", Visión Electrónica, vol. 13, no. 2, pp. 312-321, 2019.; J. A. Londoño Alzate, A. Fonseca Velásquez, y E. A. Delgadillo, “Laboratorios remotos: estudio de caso con una planta térmica didáctica", Visión Electrónica, vol. 12, no. 2, pp. 265-277, 2018. https://doi.org/10.14483/22484728.14263.; J. Cortina, J. López-Lezama, And N. Muñoz-Galeano, “Metaheurísticas Aplicadas Al Problema De Interdicción En Sistemas De Potencia,” Inf. Tecnológica, Vol. 29, No. 2, Pp. 73–88, Mar. 2018, Doi:10.4067/S0718-07642018000200073.; C. A. Mora, “Problema De Interdicción De La Red Eléctrica.” Universidad Distrital Francisco José De Caldas, Bogotá, D. C., P. 16, 2020, [Online]. Available: Https://Drive.Google.Com/File/D/1qxg7pvhy1dndz9sgr0qug4ldnyzmpi5-/View?Usp=Sharing.; B. Mundial And Colombia, Análisis De La Gestión Del Riesgo De Desastres En Colombia, Primera. Bogotá, D. C.: Equilatero, 2012.; V. A. Gómez, R. A. Peña, And C. Hernández, “Identificación Y Localización De Fallas En Sistemas De Distribución Con Medidores De Calidad Del Servicio De Energía Eléctrica,” Inf. Tecnol., Vol. 23, No. 2, Pp. 109–116, 2012, Doi:10.4067/S0718-07642012000200013.; F. Olivari, “Diseño, Construcción Y Prueba De Un Sensor Sísmico Para Edificaciones.” Valparaiso, Nov. 2017, Accessed: Nov. 11, 2020. [Online]. Available: Http://Opac.Pucv.Cl/Pucv_Txt/Txt-2500/Ucc2795_01.Pdf.; C. Bonilla And Y. Gonzales, “Dispositivo De Adquisición De Señales Sísmicas”, Visión Electrónica, 2019, Accessed: Nov. 11, 2020. [Online]. Available: Http://Repository.Udistrital.Edu.Co/Bitstream/11349/22441/1/Bonillaseguracamilaalejandra2019.Pdf.; F. Torres And K. Chaca, “Diseño E Implementación De Un Digitalizador Sísmico De 4 Canales Con Acceso Ip,” Universidad De Cuenca, 2015.; D. García, J. Rio, D. Toma, And M. Blanco, “Array Sísmico Inalámbrico Y De Parámetros Ambientales Para La Caracterización De Precursores De Actividad Volcánica,” Universitat Politecnica De Catalunya, 2017.; Á. Herrera, “Prototipo Hardware De Bajo Coste Para La Alerta Sísmica Temprana Local,” 2016.; G. Martinez, “Diseño Y Construcción De Un Prototipo De Detección De Fallas Serie Para Disminuir El Tiempo De Interrupciones En El Sistema Eléctrico De Distribución,” Escuela Politécnica Nacional, 2019.; V. A. Gómez, R. A. Peña, And C. Hernández, “Identificación Y Localización De Fallas En Sistemas De Distribución Con Medidores De Calidad Del Servicio De Energía Eléctrica,” Inf. Tecnol., Vol. 23, No. 2, Pp. 109–116, 2012, Doi:10.4067/S0718-07642012000200013.; "Redes Sin", Xm, 2020, Accessed: Dic. 9, 2020. [En línea]. Available: Https://Www.Xm.Com.Co/Paginas/Transmision/Redes-Sistema-Interconectado-Nacional.Aspx.; R. Chokshi, “MPU-6000 and MPU-6050 Register Map and Descriptions Revision 4.0 MPU-6000/MPU-6050 Register Map and Descriptions,” MPU-6000 MPU-6050 Regist. Map Descr., vol. 1, no. 408, p. 48, 2012.N. Wolfberg, “Storage and retrieval for image and video databases”, SPIE Proceedings, pp. 27-32, 1993.; InvenSense Inc., “MPU-9150 Register Map and Descriptions,” vol. 1, no. 408, pp. 1–52, 2013.; “Raspberry pi foundation", Raspberrypi.org, 2020. [En linea]. Disponible en: https://www.raspberrypi.org.; VMware, “¿Qué son las redes definidas por software (SDN)? %7C Glosario de VMware %7C ES.” https://www.vmware.com/es/topics/glossary/content/software-defined-networking.html (accessed Sep. 22, 2021).; Citrix, “¿Qué son las redes definidas por software (SDN)? - Citrix Mexico.” https://www.citrix.com/es-mx/solutions/app-delivery-and-security/what-is-software-defined-networking.html (accessed Sep. 22, 2021).; M. Marchetti, “The road to riches,” Sales Mark. Manag., vol. 150, no. 10, p. 128, 2013, doi:10.2307/j.ctvc77cz1.22.; M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Software-Defined Networking Security: Pros and Cons,” IEEE Commun. Mag., vol. 53, no. September, pp. 48–54, 2015, doi:10.1109/MCOM.2015.7120048.; A. Feghali, R. Kilany, and M. Chamoun, “SDN security problems and solutions analysis,” Int. Conf. Protoc. Eng. ICPE 2015 Int. Conf. New Technol. Distrib. Syst. NTDS 2015 - Proc., 2015, doi:10.1109/NOTERE.2015.7293514.; S. Sidhu and H. Gupta, “A Security Mechanism for Software Defined Vulnerabilities,” 2019 4th International Conference on Information Systems and Computer Networks, ISCON 2019, pp. 59–62, 2019, doi:10.1109/ISCON47742.2019.9036247.; A. Pradhan and R. Mathew, “Solutions to Vulnerabilities and Threats in Software Defined Networking (SDN),” Procedia Comput. Sci., vol. 171, no. 2019, pp. 2581–2589, 2020, doi:10.1016/j.procs.2020.04.280.; F. W. Sanabria Navarro, J. G. Bustos, and W. E. Castellanos Hernández, “Adaptive video transmission over software defined networks,” Visión electrónica, vol. 13, no. 1, pp. 152–161, Feb. 2019, doi:10.14483/22484728.14398.; J. C. Najar Pacheco, “Exposición del activo más valioso de la organización, la ‘información,’” Visión electrónica, vol. 11, no. 1, pp. 107–115, Jun. 2017, doi:10.14483/22484728.12345.; A. M. Felicísimo, «Conceptos básicos, modelos y simulación.,» 2009. [En línea]. Available: http://www6. uniovi. es/~ feli/CursoMDT/Tema_1. pdf. [Último acceso: 10 Agosto 2021].; N. M. Chirinos y S. R. González, «Consideraciones teórico-epistémicas acerca del concepto de modelo,» Telos, vol. 13, nº 1, pp. 51-64, 2011.; E. López Moreno, Construcción de ciudades más equitativas. Políticas públicas para la inclusión en América Latina., Bogotá: CAF, 2014.; J. Linares-García, A. Hernández-Quirama y H. M. Rojas-Betancur, «Accesibilidad espacial e inclusión social: experiencias de ciudades incluyentes en Europa y Latinoamérica,» Civilizar: Ciencias Sociales y Humanas, vol. 18, nº 35, pp. 115-128, 2018.; É. A. López López y É. L. Álvarez-Aros, «Estrategia en ciudades inteligentes e inclusión social del adulto mayor,» Paakat: Revista de Tecnología y Sociedad, vol. 11, nº 20, pp. 1-29, 2021.; J. A. IREGUI DUARTE, «INCLUSIÓN DIGITAL: UN ANÁLISIS DE LA ESTRATEGIA DE TELETRABAJO EN BOGOTÁ,» PONTIFICIA UNIVERSIDAD JAVERIANA, BOGOTÁ D.C., 2018.; CMSI, «Declaración de Principios. Construir la Sociedad de la Información: un desafío global para el nuevo milenio,» CMSI, Ginebra, 2004.; K. Frey, «Gobernanza electrónica urbana e inclusión digital: experiencias en ciudades europeas y brasileñas,» Nueva Sociedad, nº 196, pp. 109-124, 2005.; D. Dávila, «Inclusión digital en colombia: Un análisis del plan vive digital I,» Pontificia Universidad Javeriana, Bogotá D.C., 2017.; F. Duarte y H. F. Pires, «INCLUSIÓN DIGITAL, TRES CONCEPTOS CLAVE: CONECTIVIDAD, ACCESIBILIDAD, COMUNICABILIDAD,» REVISTA ELECTRÓNICA DE RECURSOS EN INTERNET SOBRE GEOGRAFÍA Y CIENCIAS SOCIALES, nº 150, 2011.; E. Van der Klift y N. Kunc, «Beyond benevolence: Friendship and the politics of help,» de Creativity and collaborative learning: A practical guide to empowering students and teachers, Baltimore, Paul Brookes, 1994, pp. 391-401.; M. Sapon-Shevin, «La inclusión real: Una perspectiva de justicia social,» Revista de Investigación en Educación, vol. 3, nº 11, pp. 71-85, 2013.; G. A. Toledo, «Accesibilidad digital para usuarios con limitaciones visuales,» Universidad Nacional de la Plata, 2012.; Comisión Europea, «Aprovechar las TIC para la acción social: un programa de voluntariado digital,» Unión Europea, Luxemburgo, 2014.; E. M. Tapia, E. Munguia, «Activity recognition in the home setting using simple and ubiquitous sensors,» de international conference on pervasive computing, Berlin, Heidelberg, Springer Berlin Heidelberg, 2004, pp. 158--175.; C. Liming et al, «Sensor-based activity recognition,» IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, nº 6, pp. 790 - 808, 2012.; N. Wei et al, «Human activity detection and recognition for video surveillance,» de 2004 IEEE International Conference on Multimedia and Expo (ICME), IEEE, 2004, pp. 719--722.; M. S. Ryoo, «Human activity prediction: Early recognition of ongoing activities from streaming videos,» de 2011 International Conference on Computer Vision, IEEE, 2011, pp.; M. S. Ryoo, «Human activity prediction: Early recognition of ongoing activities from streaming videos,» de 2011 International Conference on Computer Vision, IEEE, 2011, pp. 1036--1043.; R. Nishkam, D. Nikhil et al., «Activity recognition from accelerometer data,» de Aaai, 2005, pp. 1541--1546.; Intille, L. Bao and S. S., «Activity recognition from user-annotated acceleration data,» de International conference on pervasive computing, 2004.; N. Belapurkar, S. Sagar and A. Baris, «The Case for Ambient Sensing for Human Activity Detection,» de Proceedings of the 8th International Conference on the Internet of Things, New, York, 2018.; D. Anguita et al, International workshop on ambient assisted living, Springer, 2012.; E. Kim, S. Helal and D. Cook, «Human activity recognition and pattern discovery,» IEEE Pervasive Computing/IEEE Computer Society [and] IEEE Communications Society, vol. 9, nº1, p. 48, 2010.; B. P. Clarkson, Life patterns: structure from wearable sensors, Massachusetts Institute of Technology, 2002.; J. Shotton, T. Sharp et al., «Real-time Human Pose Recognition in Parts from Single Depth Images,» Commun. ACM, vol. 56, nº 1, pp. 116--124, 2013.; R. Poppe, «A survey on vision-based human action recognition,» Image and vision computing, vol. 28, nº 6, pp. 976--990, 2010.; J. K Aggarwal and M. S. Ryoo, «Human activity analysis: A review,» ACM Computing Surveys (CSUR), vol. 43, nº 3, p. 16, 2011.; D. Weinland, R. Ronfard and Ed Boyer, «A survey of vision-based methods for actionrepresentation, segmentation and recognition,» Computer vision and image understanding, vol. 115, nº 2, pp. 224 -- 241, 2011.; V. Argyriou, M. Petrou and S. Barsky, «Photometric stereo with an arbitrary number of illuminants,» Computer Vision and Image Understanding, vol. 14, nº 8, pp. 887--900, 2010.; R. Chavarriaga, H. Sagha et al, «The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition,» Pattern Recognition Letters, vol. 34, nº 15, pp. 2033--2042, 2013.; T. Plötz, N. Y. Hammerla and P. Oliver, «Feature Learning for Activity Recognition in Ubiquitous Computing» de Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, AAAI Press, 2011, pp. 1729--1734.; A. Ferscha and F. Mattern, Pervasive Computing: Second International Conference, PERVASIVE 2004, Linz, Vienna: Springer, 2004.; N. Ravi, D. Nikhil et al, «Activity recognition from accelerometer data,» de Aaai, 2005, pp. 1541--1546.; L. B. a. S. Intille, «Activity recognition from user-annotated acceleration data,» de International conference on pervasive computing, 2004.; G. Z. Yang, and M. Yacoub, Body Sensor Networks. 2006, London: Springer, 2006.[22]. D. Anguita, A. Ghio et al, «A Public Domain Dataset for Human Activity Recognition using Smartphones,» de 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), 2013.; D. Roggen, K. Forster at al, «OPPORTUNITY: Towards opportunistic activity and context recognition systems,» de 2009 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks \& Workshops, 2009.; A. M. Khan, Y-K. Lee et al, «Human activity recognition via an accelerometer-enabled smartphone using kernel discriminant analysis,» de 2010 5th international conference on future information technology, 2010.; J. Reyes-Ortiz, L. Oneto et al, «Transition-aware human activity recognition using smartphones,» Transition-aware human activity recognition using smartphones, vol. 171, pp. 754--767, 2016.; S. I. Yang and S. B. Cho, «Recognizing human activities from accelerometer and physiological sensors,» de 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008.; R. Poovandran, «Human activity recognition for video surveillance,» de 2008 IEEE International Symposium on Circuits and Systems, 2008.; C. T. a. V. Hlavac, «Pose primitive based human action recognition in videos or still images,» de 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.; J. S. Caros, O. Chetelat, P. Celka et al, «Very low complexity algorithm for ambulatory activity classification,» de EMBEC, 2005.; M. F. Bin Abdullah et al, «Classification Algorithms in Human Activity Recognition using Smartphones,» World Academy of Science, Engineering and Technology International Journal of Biomedical and Biological Engineering, vol. 6, nº 1, 2012.; O. D. Lara and M. A. Labrador, «A survey on human activity recognition using wearable sensors,» pp. 1192-1209, 2013.; N. Robertson and I. Reid, «A general method for human activity recognition in video,» Computer Vision and Image Understanding, vol. 104, nº 2-3, pp. 232--248, 2006.; C. Thurau and V Hlavac, «Pose primitive based human action recognition in videos or still images,» de 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.; R. Poovsndran, «Human activity recognition for video surveillance,» de 2008 IEEE International Symposium on Circuits and Systems, 2008.; W. Niu, J. Long, D. Han and W. Yuan-Fang , «Human Activity Detection and Recognition for Video Surveillance,» 2004 IEEE International Conference on Multimedia and Expo (ICME), vol. 1, pp. 719-722, 2004.; J. M. Ermes, J. Parkka, J. Mantyjarvi, and I. Korhonen, «Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions,» TITB, vol. 12, nº 1, pp. 20--26, 2008.; X. Long, B. Yin and R. M. Aarts, «Singleaccelerometer-based daily physical activity classification,» de EMBS, 2009.; D. Karantonis, M. Narayanan, M. Mathier, et al, «Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring,» TITB, vol. 10, nº 1, pp. 156-167, 2006.; E. Heinz, K. Kunze, M. Gruber et al, «Using wearable sensors for Real-Time recognition tasks in games of martial arts - an initial experiment,» de GIC´06, 2006.; H. Markus, H. Takafumi, et al, «Chi-ball, an interactive device assisting martial arts,» de CHI´03, 2003.; J. Liao,Y. Bi and C. Nugent , «Activity recognition for smart Homes using Dempster-Shafer theory of evidence based on a revised lattice structure,» de 2010 Sixth International Conference on Intelligent Environments, 2010.; F. Cicirelli,G. Fortino, A. giordano et al, «On the design of smar homes framework for activyty recpgnition in home environment,» journal of medical systems, vol. 40, nº 9, p. 200, 2016.; S. C. Mukhopadhyay, «Wearable sensors for human activity monitoring: A review,» IEEE Sensors Journal, vol. 15, p. 1321–1330, 2015.; A. Reiss and D. Stricker, «Introducing a new benchmarked dataset for activity monitoring,» de International Symposium on Wearable Computers, 2012.; W. H. Wu, A. A. Bui, M.A. Batalin et al, «MEDIC: medical embedded device for individualized care,» Artificial Intelligence in Medicine, vol. 42, nº 2, pp. 137-152, 2008.; E. V. Someren, B. Vonk, W. Thijssen, J. Speelman et al, «A new actigraph for long-term registration of the duration and intensity of tremor and movement,» Biomedical Engineering, vol. 45, nº 3, pp. 386395, 1998.; D. J. Walker, P. S. Heslop, C. J. Plummer, et al, «A continuous patient activity,» Physiological Measurement, vol. 18, nº 1, pp. 49-59, 1997.; N. Hu, Z. Lou, G. Englebienne and B. Kröse, B., «Learning to Recognize Human Activities from Soft Labeled Data,» de Robotics: Science and Systems X, Berkeley, 2014.; G. Wu and S. Xue, «Portable preimpact fall detector with inertial sensors,» Neural Systems and Rehabilitation Engineering IEEE Transactions on,, vol. 16, nº 2, p. 178–183, 2008.; H. J. Busser, J. Ott, R. C. van Lummel et al, «Ambulatory monitoring of children’s activity,» Medical Engineering & Physics, vol. 19, nº 5, pp. 440-445, 1997.; B. G. Steele, B. Belza, K. Cain, C. Warms,, «Bodies in motion: Monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease,» Rehabilitation Research and Development, vol. 40, nº 5, 2003.; S. Bosch, M. Marin-Perianu, et al, «Keep on moving! activity monitoring and stimulation using wireless sensor networks,» de European Conference on Smart Sensing and Context, 2009.; F. Chen, Q. Zhong and F. Cannella, «Hand gesture modeling and recognition for human and robot interactive assembly using hidden markov models,» International Journal of Advanced Robotic Systems, vol. 12, nº 4, p. 48, 2015.; Ministerio de Minas y Energía, [En línea]. Available: https://www.minenergia.gov.co/ [Ultimo acceso: 24 agosto 2021].; Instituto de Planificación y Promoción de Soluciones Energéticas para Zonas no Interconectadas IPSE, [En línea]. Available: https://ipse.gov.co/ [Último acceso: 24 08 2021].; Unidad de Planeación Minero-Energética, [En línea]. Available: https://www1.upme.gov.co/Paginas/default.aspx [Último acceso: 24 08 2021].; Comisión de Regulación de Energía y Gas, [En línea]. Available: https://www.creg.gov.co/ [Último acceso: 6 septiembre 2021].; La Cámara Colombiana de Energía, [En línea]. Available: https://www.ccenergia.org.co/ [Ultimo acceso: 08 septiembre 2021].; Fondo de Energías No Convencionales y Gestión Eficiente de la Energía [En línea]. Available: https://fenoge.com/ [Último acceso: 7 septiembre 2021].; A. M. M. H. A. Al Hasib, «A Comparative Study of the Performance and Security Issues of AES and RSA Cryptography,» de Convergence Information Technology, International Conference, Finlandia, 2008.; Shamir R.L. Rivest and L. Adleman, (1978). A Method for Obtaining Digital Signatures and PublicKey Cryptosystems, Magazine Communications of the ACM, 1978.Volumen 21 págs. 120–126. https://doi.org/10.1145/359340.359342.; Castro Lechtaler, A., Cipriano, M., García, E., Liporace, J., Maiorano, A., Malvacio, E. and Tapia, N., (2021). Estudio de técnicas de criptoanálisis.XXI Workshop de Investigadores en Ciencias de la Computación. [online] Sedici.unlp.edu.ar. Available at: http://sedici.unlp.edu.ar/handle/10915/77269.; J. C. Mendoza T, «Universidad Politecnica Salesiana de Ecuador,» [En línea]. Available: https://dspace.ups.edu.ec/bitstream/123456789/8185/1/Demostraci%C3%B3n%20de%20cifrado%2 0sim%C3%A9trico%20y%20asim%C3%A9trico.pdf.; W. Dent, «Hybrid Cryptography,» 3 Junio 2009. [En línea]. Available: https://eprint.iacr.org/2004/210.ps.; Escobar Molero Gabriel. (2011). Clúster de alto rendimiento en un cloud: ejemplo de aplicación en criptoanálisis de funciones hash. Universidad de Almería. pg 60. http://repositorio.ual.es/bitstream/handle/10835/1202/PFC.pdf?sequence=1.; A. Pousa, «Universidad Nacional de la Plata,» Diciembre 2011. [En línea]. Available: https://postgrado.info.unlp.edu.ar/wp-content/uploads/2014/07/Pousa_Adrian.pdf.; A. Lenstra, «Key Lengths,» [En línea]. Available: https://infoscience.epfl.ch/record/164539/files/NPDF-32.pdf.; R. Avinash, A. Potnis, S. Kumar, P. Dwivedy y S. Soofi, «Internation Journal Of Engineering Research and Applications,» Agosto 2017. [En línea]. Available: http://www.ijera.com/papers/Vol7_issue8/Part-1/O0708019094.pdf.; A. Faget, «What are Cryptographic Signatures? %7C Introduction to the Most Common Schemes,» 14 Noviembre 2018. [En línea]. Available: https://coindoo.com/what-are-cryptographic-signaturesintroduction-to-the-most-common-schemes/.; Goldreich, O. (2000). Modern Cryptography, Probabilistic Proofs and Pseudorandomness (Second Edition - author's copy). Springer.pag 1-2, consultado en http://www.wisdom.weizmann.ac.il/~oded/PDF/mcppp-v2.pdf.; Muñoz, R., Muñoz, R., & completo, V. (2021). Algoritmo RSA en aplicación web. Retrieved 12 July 2021, from http://criptografiaverm1.blogspot.com/2013/07/tarea-5-algoritmo-rsa-en-aplicacionweb.html.; Eslava Blanco, H. J., Rocha, J. F., & Morales, J. I. (2011). Estudio de tráfico sobre una plataforma de virtualización. Visión electrónica, 5(2), 78-94. https://doi.org/10.14483/22484728.3572.; Congreso de Colombia. ley 1636 de 2013.; Lei Chen and Nansheng Yao, "Publishing Linked Data from relational databases using traditional views," 2010 3rd International Conference on Computer Science and Information Technology, 2010, pp. 9-12, doi:10.1109/ICCSIT.2010.5563576.; Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M. A., Saggion, H., Petrak, J., Li, Y., y Peters, W. (2017). Text Processing with GATE (Version 6).; C. Gardent and S. Narayan Multiple Adjunction in Feature-Based Tree-Adjoining Grammar In Computational Linguistics, Volume 41, Issue 1 - March 2015.; LM Vilches-Blázquez, B Villazón-Terrazas, O Corcho, A Gómez-Pérez. International Journal of Digital Earth 7 (7), 554-575, 2014.; R. Jessop, “El Futuro del Estado Capitalista”, Madrid: Ed. Catarata, Pag.124,2007.; M. Castells e Himanen, “Modelos de Desarrollo en la Era Global de la Información: Construcción de un Marco Analítico” en Castells e Himanen “reconceptualización del desarrollo en la era global de la información”. Santiago de Chile: FCE, Pag. 27, 2017.; C. H. Caicedo y A. Smida, “Intensidad informacional para la longitudinalidad asistencial en sistemas de salud", Visión Electrónica, vol. 10, no. 1, pp. 83-95, 2016. https://doi.org/10.14483/22484728.11612.; J. Van Dijck, “La Cultura de la Conectividad”, Siglo XXI. Bs. A. Pag 268, 2016.; S. Zuboff, “Atrapados en la era del capitalismo de Vigilancia y la Economía Predictiva”, El Espectador, p. 20, enero 10, 2020.; P. Virno, “Cuando el Verbo se hace Carne”. Madrid: Mapas, p.20, 2005.; E. Sadin, “La Siliconización del Mundo”, Bs As: Caja Negra, p.108, 2018.; M. Doueihi, “La Gran Conversión Digital”, Bs. As.: F.C.E. p. 21, 2010.; R. Echeverría. “Ontología del Lenguaje”, Chile: JC Sáez editor, Pag. 24 1997.; J.F. Lyotard, “La condition postmoderne: rapport sur le savoir”. París: Minuit, 1979.; O. Dallera, “La sociedad como sistema de comunicación. La teoría sociológica de Niklas Luhmann en 30 lecciones”, Buenos Aires: editorial Biblos, 2012.; S. Rozas,” Lenguaje y performatividad”, Psicología, Conocimiento y Sociedad, vol 6, no.2, pp. 280-298, 2016.; J. L. Austin, “Cómo hacer cosas con palabras”, Barcelona: Paidós, 1982.; S. Belli, R. Harré, L. Íñiguez, “Emociones en la tecnociencia: la performance de la velocidad”, Prisma Social, 3, pp. 1-41, 2009.; A. Heller, “Sociología de la vida cotidiana”, J. F. Yvars y E. Pérez Nadal (trads.). Barcelona: Península, 1977.; L. F. Aguilar, “En torno del concepto de racionalidad de Max Weber”, en l. Olivé, “Racionalidad Ensayos sobre la racionalidad en ética y política, ciencia y tecnología”, México: Siglo XXI Editores, Coediciones Temas: Ética, Filosofía política, Instituto de Investigaciones Filosóficas, 1988.; M. Weber, “El problema de la irracionalidad en las ciencias sociales”, Madrid: Tecnos, 192 p. 1985.; N. Luhmann, “Organización y decisión. Autopoiesis, acción y entendimiento comunicativo”, Rubí (Barcelona): Anthropos, 2005.; C.H., Caicedo E, “Fortalecimiento de la Gestión de la Investigación y la Extensión, condición para el avance del Sistema Nacional de Innovación”. Documento presentado como requisito para cambio de categoría de Profesor Asistente a Profesor Asociado, Bogotá: Facultad de Ingeniería de la Universidad Nacional de Colombia, 2006.; J. March, H. A. Simon, “Teoría de la organización”, Barcelona: Ariel Economía, 1980.; Joffre, Aurégan, Chédotel y Tellier, “Le Management Stratégique per le Projet”, París: Economica, P.45, 2006.; J. Neré, “Le Management de Projet”, Paris: Puf, p.4, 2015.; Garel, Giard y Midler, “Faire de la Recherche en Management de Projet”, París: FNEGE, Vuibert, p.1, 2004.; AMBROSE, W., Parallel translation of Riemannian curvature. Ann. of Math., 64, 337363. 1956.; APOSTOL TOM, Calculus vol. 1 y 2. Segunda edición. Reverté. 1982.; BERGER - GAUDUCHON - MAZET, Le Spectre d′une Varieté Rie- mannianne. Springer - Verlag. New York. 1971.; DO CARMO, M., Differential Geometry of Curves and Super- faces. Printece - Hall, New Jersy. 1976.; DO CARMO, M., Geometría Riemanniana. 2a Ed. Rio de Janeiro. Brasil. 1988.; CARTAN, E., Lecons sur la Géométrie des Espaces de Riemann (2‘eme édition). Paris, Gauthier-Villard. 1951.; FOMENKO, A. T., Symplectic Geometry. Moscuw. 1998.; FRANKEL, T., The Geometry of Physics. Cambrige University. 2001.; GALLOT-HULLIN-LAFONTAINE, Riemannian Geometry. 2a ed., Springer. 1990.; GUILLEMIN & POLLACK, Differential Topology. Prentice - Hall. 1974.; LIPSCHUTS MARTIN, Differential Geometry. Mc Graw-Hill. 1969. (Hay versión en Español).; HOWARDS H., HUTCHINGS M., MORGAN F., The isoperimetric Problem on surfaces. Monthly, vol. 106, Number 5, (1999) 430 - 439.; LIMA, ELON LARGE, Curso de Análise. Vol. 1 y 2. Terceira Ed. IMPA-Brasil. 1981.; MUNKRES JAMES, TOPOLOGY a first course. Prentice-Hall.New Jersey. 1975. (Hay versión en Español).; MUNKRES JAMES, Elements of Algebraic Topology. Addison- Wesley. 1984.; MYERS, S. B., Riemannian manifolds with positive mean cur- vatura. Duke Math. J., 8, 401-404. 1941.; NASH, J. F., The imbedding problem for Riemannian manifolds. Ann. of. Math., 63, 2063. 1956.; O’NEILL, B., Semi-Riemannianan Geometry: Aplication to Rela- tivity. University of California. Los Angeles California. Academic Press. 1983. 468 páginas.; POOR, W., Differential Geometric Structures. Dover Publications. New York. 1981.; RIEMANN, B.,Über die Hypothesen, welche der Geometrie zu Grunde liegen. Nature, 8 (183-184), 14-17, 36, 37. 1854.; SPIVAK, M., A comprehensive Introduction to DIFFERENTIAL GEOMETRY. Publish or Perish. 1990. 2.785 páginas en 5 volumenes.; SPIVAK, M., Cálculo en Variedades. Reverté. 1975.; WARNER F. W., Foundations of Differentiable Manifolds and Lie Groups. Springer. 1983.; A. Mouthon, “Los Beneficios de la Inteligencia Artificial,” 2017. https://www.eleconomista.es/firmas/noticias/8716667/11/17/Beneficios-de-la-inteligencia-artificial.html (accessed May 06, 2021).; A. Garcia-Serrano and S. Ossowski, “Inteligencia Artificial Distribuida y Sistemas Multiagentes,” Inteligencia Artificial, vol. 2, no. 6, pp. 1–6, 1998, doi:10.4114/ia.v2i6.614.; A. Turing, “Mind a Quarterly Review of Psychology and Philosophy,” Mind, vol. 8, no. 2, pp. 145– 166, 1899, doi:10.1093/mind/VIII.2.145.; M. A. Salichs, M. Malfaz, and J. F. Gorostiza, “Toma de Decisiones en Robótica,” Revista Iberoamericana de Automática e Informática Industrial RIAI, vol. 7, no. 4, pp. 5–16, 2010, doi:10.1016/s1697-7912(10)70055-8.; M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “Describing textures in the wild,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3606–3613, 2014, doi:10.1109/CVPR.2014.461.; Tensorflow, “TensorFlow 2 Detection Model Zoo.” https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo. md (accessed May 05, 2021).; L. F. Mahecha, N. F. Conde, H. Vacca-González, “Implementación de Redes Neuronales y Procesamiento de Imágenes en el Movimiento de Robots Modulares Tipo Cadena. SOMI XXXV Congreso de Instrumentación CDMX, México, 27 al 29 de octubre de 2021.; R. A. Valdesueiro, “Muestreo digital”, p. 12.; A. Hashemi Fath, F. Madanifar, y M. Abbasi, “Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems”, Petroleum, vol. 6, núm. 1, pp. 80–91, mar. 2020, doi:10.1016/j.petlm.2018.12.002.; L. O. González Salcedo, A. P. Guerrero Zúñiga, S. Delvasto Arjona, y A. L. E. Will, “Artificial Neural Model based on radial basis function networks used for prediction of compressive strength of fiber-reinforced concrete mixes”, Cien.Ing.Neogranadina, vol. 29, núm. 2, pp. 37–52, jun. 2019, doi:10.18359/rcin.3737.; A. Sudou, P. Hartono, R. Saegusa, y S. Hashimoto, “Signal reconstruction from sampled data using neural network”, en Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing, Martigny, Switzerland, 2002, pp. 707–715, doi:10.1109/NNSP.2002.1030082.; A. Ugena, “THE NEWTON NEURAL NET: A NEW APPROXIMATING NETWORK”, Int. J. of Pure and Appl. Math., vol. 82, núm. 4, feb. 2013, doi:10.12732/ijpam.v82i4.13.; N. M. Khan, “Audio Signal Reconstruction Using Cartesian Genetic Programming Evolved Artificial Neural Network (CGPANN)”, p. 6.; L. H. C. Casallas, E. H. M. Alfonso, y M. L. C. Martínez, “Clasificación de Plasmodium Falciparum por estadio en cultivos sincrónicos de eritrocitos”, Visión electrónica, vol. 5, núm. 1, Art. núm. 1, may 2011, doi:10.14483/22484728.3519.; J. A. P. Plaza, D. R. Zapata, y A. T. Tascón, “Implementación de redes neuronales utilizando dispositivos lógicos programables”, Visión electrónica, vol. 1, núm. 1, Art. núm. 1, jun. 2008, doi:10.14483/22484728.250.; O. L. Ramos, D. A. Rojas, y L. A. Góngora, “Reconocimiento de patrones de habla usando MFCC y RNA”, Visión electrónica, vol. 10, núm. 1, Art. núm. 1, jun. 2016, doi:10.14483/22484728.11712.; E. J. G. Monterroza, “Reconocimiento de primitivas 3D, usando autocorrelación y ANFIS”, Visión electrónica, vol. 1, núm. 1, Art. núm. 1, 2008, doi:10.14483/22484728.251.; L. F. P. Martínez, Ó. F. C. Camargo, y J. E. Roa, “Estudio comparativo de técnicas artificiales para la predicción de una serie de tiempo caótica”, Visión electrónica, vol. 2, núm. 2, Art. núm. 2, dic. 2008, doi:10.14483/22484728.792.; A. E. Díaz y L. A. Calderón, “Modelo tridimensional de extremidad inferior basado en imágenes de resonancia magnética”, Visión electrónica, vol. 3, núm. 1, Art. núm. 1, jun. 2009, doi:10.14483/22484728.686.; Ahl´en, J., Sundgren, D., Bengtsson, E.: Application of underwater hyperspectraldata for color correction purposes. Pattern Recognition and Image Analysis 17 (3 2007). https://doi.org/10.1134/S105466180701021X .; Arnold-Bos, A., Malkasse, J.P., Kervern, G.: A preprocessing framework for auto- matic underwater images denoising (3 2005), https://hal.archives-ouvertes.fr/hal- 00494314.; Bazeille, S., Quidu, I., Jaulin, L., Malkasse, J.P.: Automatic underwater image preprocessing. Proceedings of CMM’06 (4 2006).; Cetto, A.M.: La luz: en la naturaleza y en el laboratorio. Fondo de Cultura Econ´omica (2019).; Chambah, M., Semani, D., Renouf, A., Coutellemont, P., Rizzi, A.: Underwa- ter color constancy: Enhancement of automatic live fish recognition (2004), https://hal.archivesouvertes.fr/hal-00263734.; Iqbal, K., Odetayo, M., James, A., Salam, R.A., Talib, A.Z.H.: Enhancing the low quality images using unsupervised colour correction method. IEEE (10 2010). https://doi.org/10.1109/ICSMC.2010.5642311.; Jaffe, J.: Computer modeling and the design of optimal underwater imaging systems. IEEE Journal of Oceanic Engineering 15 (4 1990). https://doi.org/10.1109/48.50695.; McGlamery, B.L.: A computer model for underwater camera systems (3 1980). https://doi.org/10.1117/12.958279.; Schechner, Y., Karpel, N.: Recovery of underwater visibility and structure by polarization analysis. IEEE Journal of Oceanic Engineering 30 (7 2005). https://doi.org/10.1109/JOE.2005.850871.; Sears, F.W., Zemansky, M.W., Young, H.D., Freedman, R.A., Flores Flores, V.A., Rubio Ponce, A.: Fisica universitaria. Addison-Wesley; Pearson Educacion, Mexico (2009), oCLC: 991818413.; Serway, R.A.: Física para ciencias e ingenieria. McGraw-Hill, Mexico (2002), oCLC: 807250137.; Trucco, E., Olmos-Antillon, A.: Self-tuning underwater image restoration. IEEE Journal of Oceanic Engineering 31 (4 2006). https://doi.org/10.1109/JOE.2004.836395.; Wikipedia: Patron de muar´e — wikipedia, la enciclopedia libre (2020).; Pérez, M. A. A. (2009). Espacios De Color RGB, HSI Y Sus Generalizaciones A NDimensiones. PhD thesis, InstitutoNacional de Astrofísica, Óptica y Electrónica.; O. Ronneberger, P. Fischer, y T. Brox, «U-Net: Convolutional Networks for Biomedical Image Segmentation», CoRR, vol. abs/1505.04597, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1505.04597.; V. Badrinarayanan, A. Kendall, y R. Cipolla, «SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation», CoRR, vol. abs/1511.00561, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1511.00561.; S. Liu y W. Deng, «Very deep convolutional neural network based image classification using small training sample size», en 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), 2015, pp. 730-734. doi:10.1109/ACPR.2015.7486599.; J. Long, E. Shelhamer, y T. Darrell, «Fully Convolutional Networks for Semantic Segmentation», CoRR, vol. abs/1411.4038, 2014, [En línea]. Disponible en: http://arxiv.org/abs/1411.4038.; C. Szegedy et al., «Going Deeper with Convolutions», CoRR, vol. abs/1409.4842, 2014, [En línea]. Disponible en: http://arxiv.org/abs/1409.4842.; H. Zhao, J. Shi, X. Qi, X. Wang, y J. Jia, «Pyramid Scene Parsing Network», CoRR, vol. abs/1612.01105, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1612.01105.; K. He, X. Zhang, S. Ren, y J. Sun, «Deep Residual Learning for Image Recognition», CoRR, vol. abs/1512.03385, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1512.03385.; L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, y A. L. Yuille, «DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs», IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, n.o 4, pp. 834-848, 2018, doi:10.1109/TPAMI.2017.2699184.; L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, y A. L. Yuille, «DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs», CoRR, vol. abs/1606.00915, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1606.00915.; L.-C. Chen, G. Papandreou, F. Schroff, y H. Adam, «Rethinking Atrous Convolution for Semantic Image Segmentation», CoRR, vol. abs/1706.05587, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1706.05587.; R. Girshick, J. Donahue, T. Darrell, y J. Malik, «Rich feature hierarchies for accurate object detection and semantic segmentation». 2014.; R. Girshick, «Fast R-CNN». 2015.; S. Ren, K. He, R. Girshick, y J. Sun, «Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks». 2016.; T.-Y. Lin, P. Goyal, R. Girshick, K. He, y P. Dollor, «Focal Loss for Dense Object Detection». 2018.; W. Liu et al., «SSD: Single Shot MultiBox Detector», Lect. Notes Comput. Sci., p. 21-37, 2016, doi:10.1007/978-3-319-46448-0_2.; J. Redmon y A. Farhadi, «YOLO: Real-Time Object Detection». 2018.; J. Redmon y A. Farhadi, «YOLO9000: Better, Faster, Stronger». 2016.; J. Redmon y A. Farhadi, «YOLOv3: An Incremental Improvement». 2018.; F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, y K. Keutzer, «SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \textless1MB model size», CoRR, vol. abs/1602.07360, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1602.07360.; A. G. Howard et al., «MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications», CoRR, vol. abs/1704.04861, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1704.04861.; M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, y L.-C. Chen, «Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation», CoRR, vol. abs/1801.04381, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1801.04381.; G. Huang, S. Liu, L. van der Maaten, y K. Q. Weinberger, «CondenseNet: An Efficient DenseNet using Learned Group Convolutions», CoRR, vol. abs/1711.09224, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1711.09224.; X. Zhang, X. Zhou, M. Lin, y J. Sun, «ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices», CoRR, vol. abs/1707.01083, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1707.01083.; N. Ma, X. Zhang, H.-T. Zheng, y J. Sun, «ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design», CoRR, vol. abs/1807.11164, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1807.11164.; M. Tan, B. Chen, R. Pang, V. Vasudevan, y Q. V. Le, «MnasNet: Platform-Aware Neural Architecture Search for Mobile», CoRR, vol. abs/1807.11626, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1807.11626.; M. Tan y Q. V. Le, «EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks», CoRR, vol. abs/1905.11946, 2019, [En línea]. Disponible en: http://arxiv.org/abs/1905.11946.; M. Cordts et al., «The Cityscapes Dataset for Semantic Urban Scene Understanding». 2016.; J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, y L. Fei-Fei, «ImageNet: A Large-Scale Hierarchical Image Database», 2009.; K. C. L. Wong, M. Moradi, H. Tang, y T. F. Syeda-Mahmood, «3D Segmentation with Exponential Logarithmic Loss for Highly Unbalanced Object Sizes», CoRR, vol. abs/1809.00076, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1809.00076.; M. Willett, “Lessons of the SolarWinds Hack,” Survival (Lond)., vol. 63, no. 2, 2021, doi:10.1080/00396338.2021.1906001.; H. S. Lallie et al., “Cyber security in the age of COVID-19: A timeline and analysis of cyber-crime and cyber-attacks during the pandemic,” Comput. Secur., vol. 105, 2021, doi:10.1016/j.cose.2021.102248.; J. Aguirre, CURSO DE SEGURIDAD INFORMÁTICA Y CRIPTOGRAFÍA, vol. 3.1. 2003.; E. Biham and A. Shamir, “Differential cryptanalysis of DES-like cryptosystems,” J. Cryptol., vol. 4, no. 1, 1991, doi:10.1007/BF00630563.; J. Daemen and V. Rijmen, “AES proposal: Rijndael,” no. December, 1999.; N. Velasquez and N. Pineda, “Diseño e Implementacion de un Prototipo Criptoprocesador AES-Rijndael en FPGA,” Universidad de Los Llanos, 2007.; A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, and A. Poschmann, “PRESENT: An Ultra-Lightweight Block Cipher.; J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw, “The LED block cipher,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2011, vol. 6917 LNCS, doi:10.1007/978-3-642-23951-9_22.; F. Velásquez and J. F. Castaño, “Cryptographic Implementations for Fpga,” Rev. Visión Electron., vol. 5, no. 1, pp. 26–37, 2011.; F. Velásquez and J. A. Castaño, “Implementation of binary finite fields towers of extension 2,” Rev. Visión Electrónica, vol. 7, no. 2, pp. 89–96, 2013.; W. Enríquez, P. Nazate, and O. Marcillo, “Prototipo DAS basado en FPGA de 12 canales para monitoreo geodinámico,” Visión electrónica, vol. 12, no. 1, pp. 73–82, 2018, doi:10.14483/22484728.13782.; C. A. HERNANDEZ and E. JACINTO, “a New Methodology in the Design of Digital Filters Fir on Fpga,” Rev. Visión Electron., vol. 3, no. 2, pp. 40–47, 2009.; L. W. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, “THE SIMON AND SPECK FAMILIES OF LIGHTWEIGHT BLOCK CIPHERS,” Natl. Secur. Agency, p. 42, 2013.; P. Maene and I. Verbauwhede, “Single-cycle implementations of block ciphers,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9542, pp. 131–147, 2016, doi:10.1007/978-3-319-29078-2_8.; S. Abed, R. Jaffal, B. J. Mohd, and M. Alshayeji, “FPGA modeling and optimization of a SIMON lightweight block cipher,” Sensors (Switzerland), vol. 19, no. 4, 2019, doi:10.3390/s19040913.; A. Shahverdi, M. Taha, and T. Eisenbarth, “Lightweight Side Channel Resistance: Threshold Implementations of Simon,” IEEE Trans. Comput., vol. 66, no. 4, pp. 661–671, 2017, doi:10.1109/TC.2016.2614504.; S. B. Basturk, C. E. J. Dancer, and T. McNally, “High-throughput Configurable SIMON Architecture for Flexible Security,” Pharmacol. Res., p. 104743, 2020, doi:10.1016/j.mejo.2021.105085.; A. Muthumari et al., “High security for de-duplicated big data using optimal SIMON Cipher,” Comput. Mater. Contin., vol. 67, no. 2, pp. 1863–1879, 2021, doi:10.32604/cmc.2021.013614.; W. Diehl, A. Abdulgadir, J. P. Kaps, and K. Gaj, “Comparing the cost of protecting selected lightweight block ciphers against differential power analysis in low-cost FPGAs,” Computers, vol. 7, no. 2, pp. 128–135, 2018, doi:10.3390/computers7020028.; FAO, «Objetivos de Desarrollo Sostenible», Agenda 2030 para el desarrollo sostenible, 2021. http://www.fao.org/sustainable-development-goals/overview/fao-and-post-2015/sustainableagriculture/es/.; G. Spencer, Fundamentos de Acuaponía. 2018.; R. Adhikari, S. Rauniyar, N. Pokhrel, A. Wagle, T. Komai, y S. R. Paudel, «Nitrogen recovery via aquaponics in Nepal: current status, prospects, and challenges», SN Appl. Sci., vol. 2, n.o 7, 2020, doi:10.1007/s42452-020-2996-5.; P. Carneiro, A. Maria, M. Nunes, y R. Ujimoto, «Aquaponia: produção sustentável de peixes e vegetais», en Embrapa Tabuleiros Costeiros, 2015.; A. Caldas, I. Castillo, S. Prado, L. Rosales, y L. Vargas, «Diseño y construcción de sistemas acuapónicos a pequeña escala para familias de la región Piura», Pirhua, p. 205, 2019, [En línea]. Disponible en: https://pirhua.udep.edu.pe/handle/11042/4285.; C. M. Correa y J. F. Valencia, «Configuración de un control de temperatura en un sistema embebido de bajo costo, usando herramientas de inteligencia artificial y el internet de las cosas», Rev. Iber. Sist. y Tecnol. Inf., n.o 34, pp. 68-84, 2019, doi:10.17013/risti.34.68-84.; V. Jahnavi y S. Ahamed, «Red inteligente de sensores inalámbricos para invernaderos automatizados», IETE J. Res., vol. 61, n.o 2, pp. 180-185, 2015.; I. Lee y K. Lee, «The Internet of Things (IoT): Applications, investments, and challenges for enterprises», Bus. Horiz., vol. 58, n.o 4, pp. 431-440, 2015, doi:10.1016/j.bushor.2015.03.008.; E. Barrientos, D. Rico, L. A. Coronel, y F. R. Cuesta, «Granja inteligente: Definición de infraestructura basada en internet de las cosas, IpV6 y redes definidas por software», Rev. Ibérica Sist. e Tecnol. Informação, vol. E17, pp. 183-197, 2019.; F. Simanca, J. Paez, J. Cortés, E. Díaz, y J. Palacio, «Sistema de riego para cultivos controlado mediante una aplicación de IoT», Rev. Ibérica Sist. e Tecnol. Inf., pp. 410-424, 2020, [En línea]. Disponible en: www.estudioscualitativos.ec.; E. A. Q. Montoya, S. F. J. Colorado, W. Y. C. Muñoz, y G. E. C. Golondrino, «Propuesta de una Arquitectura para Agricultura de Precisión Soportada en IoT», RISTI - Rev. Iber. Sist. e Tecnol. Inf., n.o 24, pp. 39-56, 2017, doi:10.17013/risti.24.39-56.; S. M. A. Aguirre, D. R. M. Rivadeneira, L. R. G. Torrealba, L. D. N. Erazo, F. I. Rivas-Echeverría, y D. M. R. Albarran, «Metodología para el almacenamiento y visualización de datos masivos en invernadero basado en el Internet de las Cosas IoT.», Rev. Ibérica Sist. e Tecnol. Informação, n.o E15, pp. 1-12, 2018, [En línea]. Disponible en: https://search.proquest.com/docview/2041143320?accountid=134127%0Ahttp://link.periodicos.capes. gov.br/sfxlcl41?url_ver=Z39.882004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&genre=unknown&sid=ProQ:ProQ%3Ahightechjournals& atitle=Metodología+para+el+almacenam; G. E. Chanchí, L. M. Sierra, y W. Y. Campo, «Propuesta de una plataforma académica portable para la construcción de microservicios en entornos de IoT», Rev. Ibérica Sist. e Tecnol. Informação, n.o E27, pp. 1-13, 2020.; J. A. Brenes Carranza, A. Martínez Porras, C. U. Quesada López, y M. Jenkins Coronas, «Sistemas de apoyo a la toma de decisiones que usan inteligencia artificial en la agricultura de precisión», Rev. Ibérica Sist. y Tecnol. la Inf. núm E28, pp. 217-229, n.o 28, pp. 217-230, 2020.; A. Bárta, P. Soucek, V. Bozhynov, y P. Urbanová, «Automatic Multiparameter Acuisition in Aquaponics Systems», en 5th International Work-Conference, IWBBIO 2017 Granada, Spain, April 26– 28, 2017, Proceedings, Part II, 1.a ed., Springer, Ed. Granada, 2017, pp. 712-725.; O. A. O. Valero, P. A. R. Trujillo, N. L. M. Valderrama, M. E. de Oliveira, y A. R. B. Tech, «Monitoreo remoto automatizado de calidad del agua en sistemas acuapónicos en Sao Paulo, Brasil», Rev. Ibérica Sist. e Tecnol. Informação, n.o E31, pp. 223-235, 2020, [En línea]. Disponible en: http://ezproxy.unal.edu.co/scholarly-journals/monitoreo-remoto-automatizado-de-calidad-delagua/docview/2468684076/se-2?accountid=137090.; K. J. Keesman, O. Körner, K. Wagner, J. U. Urban, D. Karimanzira, y S. Rauschenbach, Thomas , Goddek, «Aquaponics Systems Modelling», en Aquaponics Food Production Systems, 1.a ed., Springer, Ed. Cham, 2019, pp. 273-299.; A. Ahmed, S. Zulfiqar, A. Ghandar, Y. Chen, M. Hanai, y G. Theodoropoulos, «Digital Twin Technology for Aquaponics: Towards Optimizing Food Production with Dynamic Data Driven Application Systems», en Methods and Applications for Modeling and Simulation of Complex Systems. 19th Asia Simulation Conference, AsiaSim 2019 Singapore, October 30 – November 1, 2019 Proceedings, Singapur: Springer, 2019, pp. 3-14.; Haryanto, M. Ulum, A. F. Ibadillah, R. Alfita, K. Aji, y R. Rizkyandi, «Smart aquaponic system based Internet of Things (IoT)», J. Phys. Conf. Ser., vol. 1211, n.o 1, 2019, doi:10.1088/17426596/1211/1/012047.; M. Dayahna Caro M., E. Romero-Riaño, M. Alexandra Espinosa C, y C. D. Guerrero, «Evaluando contribuciones de usabilidad en soluciones TIC-IOT para la agricultura: Una perspectiva desde la bibliometría», RISTI - Rev. Iber. Sist. e Tecnol. Inf., vol. 2020, n.o E28, pp. 681-692, 2020, [En línea]. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.085081040306&partnerID=40&md5=f59611d7803425f519635fe4470fdaca.; P. Rituay Trujillo, N. L. Murga Valderrama, M. D. P. Bustos Chavéz, P. Chauca Valqui, y J.-A. Campos Trigoso, «Evolución y tendencias investigativas de tecnologías aplicadas en los agronegocios : una revisión sistemática de la literatura», Iber. J. Inf. Syst. Technol., vol. 39, pp. 189-199, 2021.; S. F. Mejía S., L. Y. Flóres G., y C. D. Guerrero S., «Desarrollo tecnológico del IoT en el sector de la agricultura : una visión desde el análisis de patentes», Rev. Ibérica Sist. e Tecnol. Informação, n.o 28, pp. 375-386, 2020.; L. A. Rodríguez-umaña, «efectos de la variación de caudal sobre los niveles de amonio , nitrato y pH de un prototipo de cultivo acuapónico Evaluation of the effects of varying water flow on the levels of Ammonium , Nitrate and Ph of a prototype aquaponic system . Avaliação dos e», vol. 7, n.o 2, pp. 126-138, 2016.; M. Eck, K. Oliver, y M. H. Jijakli, «Nutrient Cycling in Aquaponics Systems», en Aquaponics Food Production Systems, 1ra ed., S. Goddek, A. Joyce, B. Kotzen, y G. Burnell M., Eds. Switzerland: Springer Nature Switzerland, 2020, pp. 231-246.; M. Á. Barrera Pérez, N. Y. Serrato Losada, E. Rojas Sánchez, y G. Mancilla Gaona, «Estado del arte en redes definidas por software (SDN)», Visión Electrónica, vol. 13, n.o 1, pp. 178-194, 2019, doi: https://doi.org/10.14483/22484728.14424.; J. C. Najar-Pacheco, J. A. Bohada-Jaime, y W. Y. Rojas-Moreno, «Vulnerabilidades en el internet de las cosas», Visión Electrónica, vol. 13, n.o 2, pp. 312-321, 2019, doi: https://doi.org/10.14483/22484728.14424.; J. A. Londoño Alzate, A. Fonseca Velásquez, y E. A. Delgadillo, «Laboratorios remotos: estudio de caso con una planta térmica didáctica», Visión Electrónica, vol. 12, n.o 2, pp. 265-277, 2018, doi: https://doi.org/10.14483/22484728.14263.; I. J. Donado Romero y J. C. Villamizar Rincón, «“Metodología para estandarización de componentes SCADA bajo normas ISA», Visión Electrónica, vol. 12, n.o 1, pp. 14-21, 2018, doi: https://doi.org/10.14483/22484728.13402.; O. L. Quintero, H. Medina, y E. A. Pineda Muñoz, «Automatización para dosificación de reactivos en clasificación de carbón», Visión Electrónica, vol. 11, n.o 1, pp. 45-54, 2017, doi: https://doi.org/10.14483/22484728.10995.; C. González, D. Zamara, S. R. González B, I. F. Mondragón B, y M. Moreno, «Inspección no invasiva de Physalis peruviana usando técnicas (Vir/Nir)», Visión Electrónica, vol. 10, n.o 1, pp. 22-28, 2016, doi: https://doi.org/10.14483/22484728.11702.; L. E. Galindo C, A. A. Aguilera, y L. A. Rojas Castellar, «Automatización en la industria de bolígrafos: El caso del estampado», Visión Electrónica, vol. 5, n.o 1, pp. 103-113, 2011, doi: https://doi.org/10.14483/22484728.3512.; A. Garcia Chacon, J. L. Martínez Rodríguez, y E. Y. Torres Castro, «Automatización de procesos en el sector plásticos: el caso de una inyectora», Visión Electrónica, vol. 2, n.o 2, pp. 52-63, 2008, [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/796.; Zamora Musa, Ronald, y “Laboratorios Remotos: Actualidad y Tendencias Futuras." Scientia Et Technica XVII, no. 51 (2012):113-118. Redalyc, https://www.redalyc.org/articulo.oa?id=84923910017.; C. I. Jiménez, «Propuesta pedagógica para el uso de laboratorios virtuales como actividad complementaria en las asignaturas teórico-prácticas,» Revista Mexicana De Investigación Educativa, 2014.; Nacional, M. d. (2 de septiembre de 2020). Ministerio de Educación Nacional. Obtenido de https://www.mineducacion.gov.co/1759/w3-article-400640.html?_noredirect=1.; Ramírez, E. A. (2014). Una Mirada Crítica al Papel de las TIC en la Educación Superior. Ibagué: Universidad del Tolima; A. F. Reinoso López y J. C. Forero Jiménez, «Diseño e implementación de un laboratorio con características de acceso remoto orientado hacia el calentamiento de agua» Universidad Distrital Francisco José de Caldas, Bogotá, 2021.; N. LabVIEW, «NI home,» [En línea]. Available: https://www.ni.com/academic/students/learnlabview/esa/environment.htm.; S. C. Giselle, «Laboratorio virtual y remoto, aprendiendo a través de la experimentación, » Universidad Tecnológica Nacional, 2017.; Heradio, R. et al. Virtual and remote labs in education: A bibliometric analysis. Computers & Education, Volume 98, 2016, Pages 14-3.; Unai H.J.; Javier G. Zubia. Remote measurement and instrumentation laboratory for training in real analog electronic experiments. Measurement, Volume 82, 2016, Pages 123-134.; B.R. Poorna chandra, K.P. Geevarghese, K.V. Gangadharan. Design and Implementation of Remote Mechatronics Laboratory for e-Learning Using LabVIEW and Smartphone and Cross-platform Communication Toolkit (SCCT), Procedia Technology, Volume 14, 2014, Pages 108-115.; Van Wylen, G. J.; Sonntag, R. E. Fundamentals of Classical Thermodynamics. Ed. John Wiley & Sons: Singapore, 3ra. edición, 1985.; Petrescu, R. V. V., Aversa, R., Apicella, A., Mirsayar, M., Kozaitis, S., Abu-Lebdeh, T. y Tiberiu Petrescu, F. I. (2017). The Inverse Kinematics of the Plane System 2-3 in a Mechatronic MP2R System, by a Trigonometric Method. Journal of Mechatronics and Robotics, 1(2), 75–87. https://doi.org/10.3844/jmrsp.2017.75.87.; Y Sethi, S. P., Sriskandarajah, C., Sorger, G., Blazewicz, J. y Kubiak, W. (1992). Sequencing of parts and robot moves in a robotic cell. International Journal of Flexible Manufacturing Systems, 4(3-4), 331–358. https://doi.org/10.1007/bf01324886.; Blazewicz, J., Eiselt, H.A., Finke, G., Laporte, G., Weglarz, J., 1991. Scheduling tasks and vehicles in a flexible manufacturing system. International Journal of Flexible Manufacturing Systems 4, 5–16.; Deuerlein, C., Müller, F., Seßner, J., Heß, P., & Franke, J. (2021). Improved design flexibility of open robot cells through tool-center-point monitoring. Procedia CIRP, 100, 295–300. https://doi.org/10.1016/j.procir.2021.05.069.; Veiga, G., Pires, J. N. y Nilsson, K. (2009). Experiments with service-oriented architectures for industrial robotic cells programming. Robotics and Computer-Integrated Manufacturing, 25(4-5), 746– 755. https://doi.org/10.1016/j.rcim.2008.09.001.; Zhao, Q., Sun, M., Cui, M., Yu, J., Qin, Y., & Zhao, X. (2015). Robotic Cell Rotation Based on the Minimum Rotation Force. IEEE Transactions on Automation Science and Engineering, 12(4), 1504– 1515. https://doi.org/10.1109/tase.2014.2360220.; G. Michalos, S. Makris, P. Tsarouchi, T. Guasch, D. Kontovrakis, G. Chryssolouris, Design Considerations for Safe Human-robot Collaborative Workplaces, in: Understanding the life cycle implications of manufacturing, 2015, pp. 248–253.; E. Magrini, F. Ferraguti, A.J. Ronga, F. Pini, A. de Luca, F. Leali, Human-robot coexistence and interaction in open industrial cells, in: Journal of Robotics and Computer-Integrated Manufacturing, 2019, p. 101846.; datasheet PCA9685PW. (2009, 16 de julio). DigChip IC database.; Zamora Navarro, F. J., & Valiente Cristancho, A. (2015). Tasa de muestreo ADC en microcontroladores avanzados de 8 bits. Visión electrónica, 9(1), 128-138. https://doi.org/10.14483/22484728.11022.; García-Guerrero, E., Inzunza-González, E., López-Bonilla, O., Cárdenas-Valdez, J., & TleloCuautle, E. (2020). Randomness improvement of chaotic maps for image encryption in a wireless communication scheme using PIC-microcontroller via Zigbee channels. Chaos, Solitons & Fractals, 133, 109646. https://doi.org/10.1016/j.chaos.2020.109646.; I2C - Puerto, Introducción, trama y protocolo - HETPRO/TUTORIALES. (s. f.). HETPRO/TUTORIALES. https://hetpro-store.com/TUTORIALES/i2c/.; Z. Boric and B. Markovic, "The talking thermometer simulator based on the DS1820 sensor and PIC18F45K22 microcontroller," 2012 20th Telecommunications Forum (TELFOR), 2012, pp. 544-547, doi:10.1109/TELFOR.2012.6419268.; Corke, P. I. (1996). A robotics toolbox for MATLAB. IEEE Robotics and Automation Magazine, 3(1), 24–32. https://doi.org/10.1109/100.486658.; Y. Fang and X. Chen, "Design and Simulation of UART Serial Communication Module Based on VHDL," 2011 3rd International Workshop on Intelligent Systems and Applications, 2011, pp. 1-4, doi:10.1109/ISA.2011.5873448.; Calderón Acero, J., & Parra Garzón, I. V. (2010). Controladores difusos en microcontroladores: software para diseño e implementación. Visión electrónica, 4(2), 64-76. https://doi.org/10.14483/22484728.273.; D’Souza, A., Vijayakumar, S., & Schaal, S. (2001). Learning inverse kinematics. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium (Cat. No.01CH37180). Published. https://doi.org/10.1109/iros.2001.973374.; R. Junge, B. König, M. Villarroel, T. Komives, and M. H. Jijakli, “Strategic points in aquaponics,” Water (Switzerland). 2017, doi:10.3390/w9030182.; C. Maucieri et al., “Life cycle assessment of a micro aquaponic system for educational purposes built using recovered material,” J. Clean. Prod., vol. 172, pp. 3119–3127, 2018, doi: https://doi.org/10.1016/j.jclepro.2017.11.097.; B. König, J. Janker, T. Reinhardt, M. Villarroel, and R. Junge, “Analysis of aquaponics as an emerging technological innovation system,” J. Clean. Prod., 2018, doi:10.1016/j.jclepro.2018.01.037.; Z. Hu, J. W. Lee, K. Chandran, S. Kim, A. C. Brotto, and S. K. Khanal, “Effect of plant species on nitrogen recovery in aquaponics,” Bioresour. Technol., vol. 188, pp. 92–98, 2015, doi: https://doi.org/10.1016/j.biortech.2015.01.013.; W. Kloas et al., “A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts,” Aquac. Environ. Interact., 2015, doi:10.3354/aei00146.; C. Maucieri et al., “Life cycle assessment of a micro aquaponic system for educational purposes built using recovered material,” J. Clean. Prod., 2018, doi:10.1016/j.jclepro.2017.11.097.; Y. Wei, W. Li, D. An, D. Li, Y. Jiao, and Q. Wei, “Equipment and Intelligent Control System in Aquaponics: A Review,” IEEE Access. 2019, doi:10.1109/ACCESS.2019.2953491.; Z. M. Gichana, D. Liti, H. Waidbacher, W. Zollitsch, S. Drexler, and J. Waikibia, “Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation,” Aquaculture International. 2018, doi:10.1007/s10499-018-0303-x.; W. A. Lennard and B. V. Leonard, “A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic test system,” Aquac. Int., 2006, doi:10.1007/s10499-006-9053-2.; I. Pinheiro et al., “Aquaponic production of Sarcocornia ambigua and Pacific white shrimp in biofloc system at different salinities,” Aquaculture, 2020, doi:10.1016/j.aquaculture.2019.734918.; Z. Schmautz et al., “Tomato productivity and quality in aquaponics: Comparison of three hydroponic methods,” Water (Switzerland), 2016, doi:10.3390/w8110533.; J. Dalsgaard, I. Lund, R. Thorarinsdottir, A. Drengstig, K. Arvonen, and P. B. Pedersen, “Farming different species in RAS in Nordic countries: Current status and future perspectives,” Aquac. Eng., vol. 53, pp. 2–13, 2013, doi: https://doi.org/10.1016/j.aquaeng.2012.11.008.; J. Suhl et al., Prospects and challenges of double recirculating aquaponic systems (DRAPS) for intensive plant production, vol. 1227. 2018.; H. R. Roosta and M. Hamidpour, “Effects of foliar application of some macro- and micronutrients on tomato plants in aquaponic and hydroponic systems,” Sci. Hortic. (Amsterdam)., vol. 129, no. 3, pp. 396–402, 2011, doi: https://doi.org/10.1016/j.scienta.2011.04.006.; Y. Fang et al., “Improving nitrogen utilization efficiency of aquaponics by introducing algalbacterial consortia,” Bioresour. Technol., vol. 245, pp. 358–364, 2017, doi: https://doi.org/10.1016/j.biortech.2017.08.116.; B. S. Cerozi and K. Fitzsimmons, “Phosphorus dynamics modeling and mass balance in an aquaponics system,” Agric. Syst., vol. 153, pp. 94–100, 2017, doi: https://doi.org/10.1016/j.agsy.2017.01.020.; D. Karimanzira, K. J. Keesman, W. Kloas, D. Baganz, and T. Rauschenbach, “Dynamic modeling of the INAPRO aquaponic system,” Aquac. Eng., vol. 75, pp. 29–45, 2016, doi: https://doi.org/10.1016/j.aquaeng.2016.10.004.; C. Lee and Y.-J. Wang, “Development of a cloud-based IoT monitoring system for Fish metabolism and activity in aquaponics,” Aquac. Eng., vol. 90, p. 102067, 2020, doi: https://doi.org/10.1016/j.aquaeng.2020.102067.; M. Manju, V. Karthik, S. Hariharan, and B. Sreekar, “Real time monitoring of the environmental parameters of an aquaponic system based on internet of things,” 2017, doi:10.1109/ICONSTEM.2017.8261342.; A. R. Yanes, P. Martinez, and R. Ahmad, “Towards automated aquaponics: A review on monitoring, IoT, and smart systems,” Journal of Cleaner Production. 2020, doi:10.1016/j.jclepro.2020.121571.; K. S. Khan, R. Kunz, J. Kleijnen, and G. Antes, “Five steps to conducting a systematic review,” J. R. Soc. Med., vol. 96, no. 3, pp. 118–121, 2003, doi:10.1258/jrsm.96.3.118.; M. Petticrew, “Petticrew_2001_Myths_Misconceptions,” vol. 322, no. January, 2001.; J. Mori and R. Smith, “Transmission of waterborne fish and plant pathogens in aquaponics and their control with physical disinfection and filtration: A systematized review,” Aquaculture. 2019, doi:10.1016/j.aquaculture.2019.02.009.; A. S. Oladimeji, S. O. Olufeagba, V. O. Ayuba, S. G. Sololmon, and V. T. Okomoda, “Effects of different growth media on water quality and plant yield in a catfish-pumpkin aquaponics system,” J. King Saud Univ. - Sci., vol. 32, no. 1, pp. 60–66, 2020, doi:10.1016/j.jksus.2018.02.001.; M. N. Mamatha and S. N. Namratha, “Design & implementation of indoor farming using automated aquaponics system,” 2017, doi:10.1109/ICSTM.2017.8089192.; P. Boonrawd, S. Nuchitprasitchai, and Y. Nilsiam, “Aquaponics Systems Using Internet of Things,” 2020, doi:10.1007/978-3-030-44044-2_5.; R. Calone et al., “Improving water management in European catfish recirculating aquaculture systems through catfish-lettuce aquaponics,” Sci. Total Environ., vol. 687, pp. 759–767, 2019, doi: https://doi.org/10.1016/j.scitotenv.2019.06.167.; J. P. Mandap et al., “Oxygen Monitoring and Control System Using Raspberry Pi as Network Backbone,” TENCON 2018 - 2018 IEEE Reg. 10 Conf., no. October, pp. 1381–1386, 2018.; S. E. Wortman, “Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system,” Sci. Hortic. (Amsterdam)., vol. 194, pp. 34–42, 2015, doi: https://doi.org/10.1016/j.scienta.2015.07.045.; S. Y. Choi and A. M. Kim, “Development of indoor aquaponics control system using a computational thinking-based convergence instructional model,” Univers. J. Educ. Res., 2019, doi:10.13189/ujer.2019.071509.; S. Goddek and O. Körner, “A fully integrated simulation model of multi-loop aquaponics: A case study for system sizing in different environments,” Agric. Syst., 2019, doi:10.1016/j.agsy.2019.01.010.; W. Vernandhes, N. S. Salahuddin, A. Kowanda, and S. P. Sari, “Smart aquaponic with monitoring and control system based on IoT,” Proc. 2nd Int. Conf. Informatics Comput. ICIC 2017, vol. 2018-Janua, pp. 1–6, 2018, doi:10.1109/IAC.2017.8280590.; D. Karimanzira and T. Rauschenbach, “Enhancing aquaponics management with IoT-based Predictive Analytics for efficient information utilization,” Inf. Process. Agric., vol. 6, no. 3, pp. 375– 385, 2019, doi: https://doi.org/10.1016/j.inpa.2018.12.003.; A. M. Nagayo, C. Mendoza, E. Vega, R. K. S. Al Izki, and R. S. Jamisola, “An automated solar-powered aquaponics system towards agricultural sustainability in the Sultanate of Oman,” 2017 IEEE Int. Conf. Smart Grid Smart Cities, ICSGSC 2017, pp. 42–49, 2017, doi:10.1109/ICSGSC.2017.8038547.; D. Pantazi, S. Dinu, and S. Voinea, “The smart aquaponics greenhouse – an interdisciplinary educational laboratory,” Rom. Reports Phys., 2019.; A. Tumbaco y B. Daniela, «Optimización del proceso productivo para incrementar la Utilidad en Mundo Verde, » Universidad de Guayaquil Facultad de Ciencias Administrativas, Guayaquil, Ecuador, 2017.; J. Montero y S. Cecilia, «Invernadero para la, » Institut de Recerca i Tecnología Agroalimentaries de Cabrils, España, 2008.; G. Ramón y F. Rodríguez, «Algoritmo De Navegación Reactiva De Robots, » Universidad de Almería, España, 2015.; K. Yingchun y S. Yue, «A Greenhouse Temperature and Humidity Controller Based on MIMO Fuzzy System, » International Conference on Intelligent System Design and Engineering Application, nº 1, pp. 35-39, 2010.; S. A. Giraldo, R. C. Castaño, C. Flesch y J. E. Normey-Rico, «Multivariable Greenhouse Control Using the Filtered Smith Predictor, » Journal of Control, Automation and Electrical Systems, vol. 27, nº 4, pp. 349-358, 2016.; M. Heidari, «Climate Control of An Agricultural Greenhouse by Using Fuzzy Logic SelfTuning PID Approach, » Proceedings of the 23rd International Conference on Automation & Computing, University of Huddersfield, 2017.; J. G. Jurado, «diseño de sistemas de control multivariable por desacoplo con controladores PID, » madrid, 2012.; M. Ajit K, Introduction to Control Engineering Modeling, Analysis and Desing, NEW AGE INTERNATIONAL PUBLISHERS, 2006.; M. G. Martínez, «Síntesis de controladores robustos mediante el análisis de la compatibilidad de especificaciones e incertidumbre, » Tesis de Grado- Universidad Pública de Navarra, 2001.; C. H. Houpis, S. N. Sheldon y J. J. D’Azzo, Linear Control System Analysis and Design: Fifth Edition, London: Revised and Expanded., 2003.; J. Elso, M. G. Martínez y M. Garcia-Sanz, «Quantitative Feedback Control for Multivariable Model Matching and Disturbance Rejection, » International Journal of Robust and Nonlinear Control, vol. 1, nº 27, pp. 121-134, 2017.; M. Gil-Martínez y M. García-Sanz, «Simultaneous meeting of robust control specifications in QFT, » International Journal of Robust and Nonlinear Control, vol. 7, nº 13, p. 643–656., 2003.; Y. Chait y O. Yaniv, «Multi-Input/Single-Output Computer-Aided Control Design Using the Quantitative Feedback Theory, » International Journal of Robust and Nonlinear Control, vol. 1, nº 3, pp. 47-54, 1993; Z. Hu, W. Wan and K. Harada, "Designing a Mechanical Tool for Robots With Two-Finger Parallel Grippers," in IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2981-2988, July 2019, doi:10.1109/LRA.2019.2924129.; L. Berscheid, T. Rühr and T. Kröger, "Improving Data Efficiency of Self-supervised Learning for Robotic Grasping," 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 2125-2131, doi:10.1109/ICRA.2019.8793952.; Y. Domae, A. Noda, T. Nagatani and W. Wan, "Robotic General Parts Feeder: Bin-picking, Regrasping, and Kitting," 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 5004-5010, doi:10.1109/ICRA40945.2020.9197056.; J. H. Sanchez, W. Amanhoud, A. Billard and M. Bouri, "Foot Control of a Surgical Laparoscopic Gripper via 5DoF Haptic Robotic Platform: Design, Dynamics and Haptic Shared Control," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 1255912566, doi:10.1109/ICRA48506.2021.9561887.; S. Ainetter and F. Fraundorfer, "End-to-end Trainable Deep Neural Network for Robotic Grasp Detection and Semantic Segmentation from RGB," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 13452-13458, doi:10.1109/ICRA48506.2021.9561398.; S. K. Rajput, A. Kaushal, R. K. Singh and A. K. Sharma, "A Study and Fabrication of SMA based 3D Printed Adaptive Gripper," 2021 Smart Technologies, Communication and Robotics (STCR), 2021, pp. 1-5, doi:10.1109/STCR51658.2021.9588838.; C. Son and S. Kim, "A Shape Memory Polymer Adhesive Gripper For Pick-and-Place Applications," 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 10010-10016, doi:10.1109/ICRA40945.2020.9197511.; S. D. Liyanage, A. M. Mazid and P. Dzitac, "An Innovative Whisker Tactile Sensor for Intelligent Robotic Grasping," IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, 2021, pp. 1-6, doi:10.1109/IECON48115.2021.9589765.; T. V. Prabhu, P. V. Manivannan, D. Roy and Yathishkumar, "A robust tactile sensor matrix for intelligent grasping of objects using robotic grippers," 2021 International Symposium of Asian Control Association on Intelligent Robotics and Industrial Automation (IRIA), 2021, pp. 400-405, doi:10.1109/IRIA53009.2021.9588669.; G. Hwang, J. Park, D. S. D. Cortes, K. Hyeon and K. -U. Kyung, "Electroadhesion-Based High-Payload Soft Gripper With Mechanically Strengthened Structure," in IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 642-651, Jan. 2022, doi:10.1109/TIE.2021.3053887.; J. Guo, J. -H. Low, X. Liang, J. S. Lee, Y. -R. Wong and R. C. H. Yeow, "A Hybrid Soft Robotic Surgical Gripper System for Delicate Nerve Manipulation in Digital Nerve Repair Surgery," in IEEE/ASME Transactions on Mechatronics, vol. 24, no. 4, pp. 1440-1451, Aug. 2019, doi:10.1109/TMECH.2019.2924518.; C.I. Basson, G. Bright y A.J. Walker. “Testing flexible grippers for geometric and surface grasping conformity in reconfigurable assembly systems.” En: South African Journal of Industrial Engineering 29.1 (2018), pags. 128 -142. ISSN: 2224-7890.; Festo AG & Co.KG. “MultiChoiceGripper”. En: Variable gripping based on human hand (2018).; https://ultimaker.com/es/software/ultimaker-cura, consultado Noviembre de 2021.; IFR, “Definition of Industrial Robot.” [Online]. Available: https://ifr.org/industrial-robots. [Accessed: 15-Sep-2021].; A. A. Malik and A. Bilberg, “Collaborative robots in assembly: A practical approach for tasks distribution,” Procedia CIRP, vol. 81, pp. 665–670, Jan. 2019.; P. Andhare and S. Rawat, “Pick and place industrial robot controller with computer vision,” Proc. - 2nd Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2016, Feb. 2017.; J. Iqbal, Z. H. Khan, and A. Khalid, “Prospects of robotics in food industry,” Food Sci. Technol., vol. 37, no. 2, pp. 159–165, May 2017.; K. H. Tantawi, A. Sokolov, and O. Tantawi, “Advances in Industrial Robotics: From Industry 3.0 Automation to Industry 4.0 Collaboration,” TIMES-iCON 2019 - 2019 4th Technol. Innov. Manag. Eng. Sci. Int. Conf., Dec. 2019.; J. J. Vaca González, C. A. Peña Caro, and H. Vacca González, “Cinemática inversa de robot serial utilizando algoritmo genético basado en MCDS,” Rev. Tecnura, vol. 19, no. 44, p. 33, Apr. 2015.; O. A. Vivas Alban, M. F. Piamba Mamián, and Y. E. Otaya Bravo, “Diseño y construcción de una interfaz háptica de seis grados de libertad,” Tecnura, vol. 21, no. 54, pp. 33–40, Oct. 2017.; C. Ma, Y. Zhang, J. Cheng, B. Wang, and Q. Zhao, “Inverse kinematics solution for 6R serial manipulator based on RBF neural network,” Int. Conf. Adv. Mechatron. Syst. ICAMechS, vol. 0, pp. 350–355, Jul. 2016.; V. Noppeney, T. Boaventura, and A. Siqueira, “Task-space impedance control of a parallel Delta robot using dual quaternions and a neural network,” J. Brazilian Soc. Mech. Sci. Eng. 2021 439, vol. 43, no. 9, pp. 1–11, Aug. 2021.; M. Meghana et al., “Hand gesture recognition and voice-controlled robot,” Mater. Today Proc., vol. 33, pp. 4121–4123, Jan. 2020.; P. M. Reddy, S. P. Kalyan Reddy, G. R. Sai Karthik, and B. K. Priya, “Intuitive Voice Controlled Robot for Obstacle, Smoke and Fire Detection for Physically Challenged People,” Proc. 4th Int. Conf. Trends Electron. Informatics, ICOEI 2020, pp. 763–767, Jun. 2020.; G. Y. Luo, M. Y. Cheng, and C. L. Chiang, “Vision-based 3-D object pick-And-place tasks of industrial manipulator,” 2017 Int. Autom. Control Conf. CACS 2017, vol. 2017-November, pp. 1–7, Feb. 2018.; M. Zhao, Y. Peng, L. Li, and X. Qiao, “Detection and classification manipulator system for apple based on machine vision and optical technology,” ASABE 2020 Annu. Int. Meet., pp. 1-, 2020.; Annoni, Federico. 2000. “Sistemas de Sujecion y Soporte.” Journal of Petrology 369(1): 1689– 99. http://dx.doi.org/10.1016/j.jsames.2011.03.003%0Ahttps://doi.org/10.1016/j.gr.2017.08.001%0Ahtt p://dx.doi.org/10.1016/j.precamres.2014.12.018%0Ahttp://dx.doi.org/10.1016/j.precamres.2011.08. 005%0Ahttp://dx.doi.org/10.1080/00206814.2014.902757%0Ahttp://dx.“FT-TMH06.Pdf.”; Garzón, Yamid. 2020. “Sensores y Actuadores Introducción:” (2014): 1–32.; Hidai-go, Alfonso. 1987. “Construccion de Un Dinamometro Para Medir Fuerzas de Corte En La Operacion de Taladro.” Corporacion universitaria autonoma de occidente, programa de ingenieria.; Karabay, Sedat. 2007. “Analysis of Drill Dynamometer with Octagonal Ring Type Transducers for Monitoring of Cutting Forces in Drilling and Allied Process.” Materials and Design 28(2): 673–85.; Mohanraj, T., S. Shankar, R. Rajasekar, and M. S. Uddin. 2020. “Design, Development, Calibration, and Testing of Indigenously Developed Strain Gauge Based Dynamometer for Cutting Force Measurement in the Milling Process.” Journal of Mechanical Engineering and Sciences 14(2): 6594–6609.; Norton, Robert L. 2006. Diseño de Máquinas.; Ramírez, Luis Pablo. 2011. “Diseño De Un Dinamómetro Mediante El Método De Los Elementos Finitos.” Tendencias en Tecnología de Medición de Fuerza (6360).; Schmid, S Kalpakjian S R. 2002. ManufacturA, INGENIERÍA Y TecNOLOGÍA.; Setiyawan. 2013. 53 Journal of Chemical Information and Modeling Fundamentos de Manufactura Moderna 3edi Groover.; Morral, P. Metalurgía General, p. 1163, en Google Libros 2004.; Metalurgia general. II - F. R. Morral, P. Molera - Google Libros; Tecnitool. 2020. “DIFERENCIAS ENTRE LAS BROCAS DE TITANIO Y LAS DE COBALTO”. Diferencias entre broca acero rápido HSS con titanio y/o cobalto (tecnitool.es) demaquinasyherramientas1. 2010. “Partes de la broca”. De máquinas y herramientas. USAPartes Broca %7C De Máquinas y Herramientas (demaquinasyherramientas.com).; Esquivel R. 2017. “DISTINTOS TIPOS DE BROCAS PARA DISTINTOS TIPOS DE PROFESIONALES”. Revista Ferrepat. Distintos tipos de brocas para distintos tipos de profesionales (ferrepat.com).; Ingenieria mecánica y automotriz. 2020. “Qué es el Coeficiente de Poisson y cómo se calcula?”; ] Estudiantes metalografia. 2010. “Diagramas esfuerzo-deformación unitaria, convencional y real, para un material dúctil (acero) (no de escala)”. Universidad Tecnológica de Pereira.; Diagramas esfuerzo-deformación unitaria, convencional y real, para un material dúctil (acero) (no de escala) %7C METALOGRAFÍA – UNIVERSIDAD TECNOLÓGICA DE PEREIRA (utp.edu.co).; O. Herrera, A. Quino, B. Cabrera, “Control de cortinas”, noviembre 2021. [En línea]. Disponible en http://micro2verano2012.blogspot.com/2012/03/control-de-cortinas.html.; Fuenteelectronica.es, “Fotocelda – Control de dispositivos con la luz”, noviembre 2017. [En línea]. Disponible en: https://tuelectronica.es/fotocelda-control-de-dispositivos-con-la-luz/ [3] Electronicathidos, “Fotoresistencia LDR 5mm, 2 Mohms”, noviembre 2021. [En línea]. Disponible en: https://electronicathido.com/detallesProducto.php?id=MkxldEdPZ3AwbjNMUEV3aWdXb0pSdz09.; Real Academia Española,”Relé”, noviembre 2021.[En línea]. Disponible en: https://dle.rae.es/rel%C3%A9.; A.Perez-Paris,”RELÉS ELECTROMAGNÉTICOS Y ELECTRÓNICOS”, noviembre 2021 En línea]. Disponible en: http://www.vivatacademia.net/index.php/vivat/article/view/373/689.; Electro Club Didactic,”Potenciómetros (teoría y practica)”, noviembre 2021.[En línea]. Disponible en: http://www.electroclub.com.mx/2015/08/potenciometros-teoria-y-practica.html.; Chabonnier,”Potenciómetros”, noviembre 2021.[En línea]. Disponible en: https://deresistencias.com/wp-content/uploads/2020/08/Diagrama-en-blanco-64-1.png.; Pascual,J ,”Este gadget convierte tus viejas cortinas en cortinas inteligentes controladas con el móvil”,noviembre 2021 .[En línea]. Disponible en: https://computerhoy.com/noticias/life/gadgetconvierte-viejas-cortinas-cortinas-inteligentes-controladas-movil-516887.; Tecnología a tu alcance ,”¿Cómo hacer un circuito de apertura y cierre de cortinas?”,noviembre de 2021 .[En línea]. Disponible en: https://latecnologiaatualcance.com/como-hacer-un-circuito-deapertura-y-cierre-de-cortinas/.; Ruales.A ,”Diseño de puente Wheatstone para una fotoresistencia.”,noviembre de 2021.[En línea]. Disponible en: https://www.youtube.com/watch?v=Vz_6vPjn4Bo.; Figueiras.T ,”Cómo convertir el MOVIMIENTO ROTATORIO de un Motor en un MOVIMIENTO LINEAL”,noviembre de 2021 .[En línea]. Disponible en: https://youtu.be/WynJqz-hibA.; OMS, “Inocuidad de los alimentos”, 30/04 de 2020, [online]. Available at: https://www.who.int/es/news-room/fact-sheets/detail/food-safety.; Minsalud,” Enfermedades transmitidas por alimentos disminuyeron en 2020”,14/08/2020, [online]. Available at: https://www.minsalud.gov.co/Paginas/Enfermedades%20transmitidas%20por%20alimento s%20disminuyeron%20en%202020.aspx.; BES (Boletín Epidemiológico Semanal), “Vigilancia de brotes de enfermedades transmitidas por alimentos, Colombia, semana epidemiológica 31 de 2020”, 26/07 de 2020, [online]. Available at: https://www.ins.gov.co/buscador eventos/BoletinEpidemiologico/2020_Boletin_epidemiologico_semana_31.pdf.; BES (Boletín Epidemiológico Semanal),” Las enfermedades transmitidas por Alimentos-ETA”,23/12 de 2018, [online]. Available at: https://www.ins.gov.co/buscador eventos/boletinepidemiologico/2018%20bolet%C3%ADn%20epidemiol%C3%B3gico%20s emana%2052.pdf.; FAO, FIDA y PMA, Seguimiento de la seguridad alimentaria y la nutrición en apoyo de la Agenda 2030 para el Desarrollo Sostenible: Balance y perspectivas, 2016. [Online]. Available at: https://www.fao.org/3/i6188s/i6188s.pdf.; Ministerio de salud, Calidad e inocuidad de alimentos,15 de noviembre de 2021. [Online]. Available at: www.minsalud.gov.co/salud/Paginas/inocuidad-alimentos.aspx.; David K. Lewis,Method and apparatus for washing fruits and vegetables,2009. [Online]. Available at: patents.google.com/patent/US8293025B2/en?q=A23N12%2f02&oq=A23N12%2f02.; Garcia Portillo, M., 2015. Google Patents. [online] Patents.google.com. Available at: patents.google.com/patent/ES2544005A1/es?assignee=TECNIDEX&oq=TECNIDEX.; Di Pannini, H., 2011. Google Patents. [online] Patents.google.com. Available at:; J Goodale, R., 1975. US3880068A - Apparatus for washing and blanching of vegetables - Google Patents. [online] Patents.google.com. Available at: .; A Tiby, G., 1969. US3456659A - Apparatus for treating food articles - Google Patents. [online] Patents.google.com. Available at: .; Who.int, 2020.-"Inocuidad de los alimentos"-, [Online]. Available: .; Ministerio de salud, ABECÉ de la inocuidad de alimentos, 2017. [Online]. Available at: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/abc inocuidad.pdf.; E. I. Alimentos, Inocuidad alimentaria en América Latina, 2015. [Online]. Available: www.revistaialimentos.com/ediciones/edicion-19/inocuidad-alimentaria-en-america latina/>; Fao.org, CODEXALIMENTARIUS FAO-WHO, 1994 [online] Available at: www.fao.org/fao-who-codexalimentarius/es/> [Accessed 8 July 2021].; Fao.org. n.d. ,“Acerca del Codex %7C CODEXALIMENTARIUS FAO-WHO” ,not date, [online]. Available at: .; AJ Avances,” Normograma del Instituto Nacional de Vigilancia de Medicamentos y Alimentos, INVIMA”, 13 /12 de 2020, [online]. Available at: .; Miquel Mor,”¿aplicas biocidas? Descubre nueva formacion necesaria”, 29/10/2014, [online] Available at: .; LA VERDAD MULTIMEDIA, S.A,”Descontaminación superficial de alimentos que aumenta su vida útil”, 16/01 /2017,[online] Available at: .; Dirección Regional de Inocuidad de los Alimentos,”Guía para uso de cloro en desinfección de frutas y hortalizas de consumo fresco, equipos y superficies en establecimientos ”, 15/05/2019, [online] Available at:; Equipos, M., n.d. TRANSPORTADOR DE TORNILLO SIN FIN CHILE – MYP EQUIPOS. [online] Mypequipos.com. Available at: [Accessed 16 November 2021].; Intralogistica, I., 2018. Qué son las bandas transportadoras. [online] Irp intralogistica.com. Available at: [Accessed 16 November 2021].; Motorex. n.d. El uso de la faja transportadora en las industrias - Motorex. [online] Available at: [Accessed 16 November 2021].; Nittacorporation.com. n.d. Bandas transportadoras para alimentos. [online] Available at: .; Indomaxve.com. 2019. Conoce los tipos de Mangueras industriales que existen. [online] Available at: .; Blog de Ventageneradores. 2016. Tipos de Motobombas o Bombas de Agua: según tipos de aguas, caudal o presión. [online] Available at: .; GTE. n.d. Apuntes SEC. UIB. [online] Available at: .; Gecousb.com.ve. n.d. Motores 1LA7. [online] Available at: .; Appinventor.mit.edu. 2012. About Us. [online] Available at: .; Irdmailp.com. n.d. 37mm DC 12V Motor de Reducción de Velocidad Caja de Engranajes de Alta Fuerza de Tensión Motor Reductor de Velocidad 3.5/15/30/70RPM(70RPM). [online] Available at: .; López, S., 2020. Qué es Firebase: funcionalidades, ventajas y conclusiones. [online] DIGITAL55. Available at: .; Y. Rojas, K. Aguado, and I. González, “La nanomedicina y los sistemas de liberación de fármacos: ¿la (r)evolución de la terapia contra el cáncer?,” Educ. Quim., vol. 27, no. 4, pp. 286–291, 2016.; R. R. Wakaskar, “General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes,” J. Drug Target., vol. 26, no. 4, pp. 311–318, 2018.; B. Alfonso and C. Casado, “DENDRÍMEROS: MACROMOLÉCULAS VERSÁTILES CON INTERÉS INTERDISCIPLINAR,” J. Chem. Inf. Model., vol. 01, no. 01, pp. 1689–1699, 2016.; B. Haley and E. Frenkel, “Nanoparticles for drug delivery in cancer treatment,” Urol. Oncol. Semin. Orig. Investig., vol. 26, no. 1, pp. 57–64, 2008.; M. C. Urrejola et al., “Sistemas de Np Poliméricas II: Estructura, Métodos de Elaboración, Características, Propiedades, Biofuncionalización y Tecnologías de Auto-Ensamblaje Capa por Capa (Layer-by-Layer Self-Assembly),” Int. J. Morphol., vol. 36, no. 4, pp. 1463–1471, 2018.; F. Chávez, B. I. Olvera, A. Ganem, and D. Quintanar, “Liberación de sustancias lipofílicas a partir de nanocápsulas poliméricas,” J. Mex. Chem. Soc., vol. 46, no. 4, pp. 349–356, 2002.; Z. M. Avval et al., “Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application,” Drug Metab. Rev., vol. 52, no. 1, pp. 157–184, 2020.; L. Mohammed, H. G. Gomaa, D. Ragab, and J. Zhu, “Magnetic nanoparticles for environmental and biomedical applications: A review,” Particuology, vol. 30, pp. 1–14, 2017.; A. S. Lübbe et al., “Clinical experiences with magnetic drug targeting: A phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors,” Cancer Res., vol. 56, no. 20, pp. 4686– 4693, 1996.; H. D. Liu, W. Xu, S. G. Wang, and Z. J. Ke, “Hydrodynamic modeling of ferrofluid flow in magnetic targeting drug delivery,” Appl. Math. Mech. (English Ed., vol. 29, no. 10, pp. 1341–1349, 2008.; G. Zhang et al., “Oxygen-enriched Fe3O4/Gd2O3 nanopeanuts for tumor-targeting MRI and ROS-triggered dual-modal cancer therapy through platinum (IV) prodrugs delivery,” Chem. Eng. J., vol. 388, no. February, p. 124269, 2020.; S. Tong, H. Zhu, and G. Bao, “Magnetic iron oxide nanoparticles for disease detection and therapy,” Mater. Today, vol. 31, no. December, pp. 86–99, 2019.; M. Sosa, J. J. B. Alvarado, and J. L. Gonz, “Tecnicas biomagneticas y su comparacion con los metodos bioelectricos,” vol. 48, no. 5, pp. 490–500, 2002.; S. Bose and M. Banerjee, “Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling,” J. Magn. Magn. Mater., vol. 385, pp. 32–46, 2015.; M. Bartoszek and Z. Drzazga; “A study of magnetic anisotropy of blood cells,” vol. 197, pp. 573–575, 1999.; Y. Haik, V. Pai, and C. J. Chen, “Development of magnetic device for cell separation,” J. Magn. Magn. Mater., vol. 194, no. 1, pp. 254–261, 1999.; Z. Liu, Y. Zhu, R. R. Rao, J. R. Clausen, and C. K. Aidun, “Nanoparticle transport in cellular blood flow,” Comput. Fluids, vol. 172, pp. 609–620, 2018.; S. Y. Lee, M. Ferrari, and P. Decuzzi, “Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows,” Nanotechnology, vol. 20, no. 49, 2009.; G. A. Duncan and M. A. Bevan, “Computational design of nanoparticle drug delivery systems for selective targeting,” Nanoscale, vol. 7, no. 37, pp. 15332–15340, 2015.; K. Müller, D. A. Fedosov, and G. Gompper, “Margination of micro- and nano-particles in blood flow and its effect on drug delivery,” Sci. Rep., vol. 4, pp. 1–8, 2014.; Y. Haik, V. Pai, and C. J. Chen, “Apparent viscosity of human blood in a high static magnetic field,” J. Magn. Magn. Mater., vol. 225, no. 1–2, pp. 180–186, 2001.; S. Afkhami and Y. Renardy, “Ferrofluids and magnetically guided superparamagnetic particles in flows: a review of simulations and modeling,” J. Eng. Math., vol. 107, no. 1, pp. 231–251, 2017.; I. Rukshin, J. Mohrenweiser, P. Yue, and S. Afkhami, “Modeling superparamagnetic particles in blood flow for applications in magnetic drug targeting,” Fluids, vol. 2, no. 2, pp. 1–12, 2017.; M. O. Avilés, A. D. Ebner, H. Chen, A. J. Rosengart, M. D. Kaminski, and J. A. Ritter, “Theoretical analysis of a transdermal ferromagnetic implant for retention of magnetic drug carrier particles,” J. Magn. Magn. Mater., vol. 293, no. 1, pp. 605–615, 2005.; A. Hajiaghajani, S. Hashemi, and A. Abdolali, “Adaptable setups for magnetic drug targeting in human muscular arteries: Design and implementation,” J. Magn. Magn. Mater., vol. 438, pp. 173– 180, 2017.; V. R. Sharma, A. K. Sharma, V. Punj, and P. Priya, “Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: A focus on breast cancer,” Semin. Cancer Biol., vol. 59, no. July 2019, pp. 133–146, 2019.; M. E. Miller, Human Diseases and Yeast.Pdf, First edit. New York: Momentum Press Health, 2018.; A. S. Lübbe, C. Bergemann, W. Huhnt, T. Fricke, and H. Riess, “Lübbe1996_Preclinical,” pp. 4694–4701, 1996.; Lübbe., C. Bergemann, J. Brock, and D. G. McClure, “Physiological aspects in magnetic drug-targeting,” J. Magn. Magn. Mater., vol. 194, no. 1, pp. 149–155, 1999.; C. Alexiou et al., “Locoregional cancer treatment with magnetic drug targeting,” Cancer Res., vol. 60, no. 23, pp. 6641–6648, 2000.; C. Alexiou, A. Schmidt, R. Klein, P. Hulin, C. Bergemann, and W. Arnold, “Magnetic drug targeting: Biodistribution and dependency on magnetic field strength,” J. Magn. Magn. Mater., vol. 252, no. 1-3 SPEC. ISS., pp. 363–366, 2002.; K. Gitter and S. Odenbach, “Experimental investigations on a branched tube model in magnetic drug targeting,” J. Magn. Magn. Mater., vol. 323, no. 10, pp. 1413–1416, 2011.; M. G. Krukemeyer, V. Krenn, M. Jakobs, and W. Wagner, “Mitoxantrone-iron oxide biodistribution in blood, tumor, spleen, and liver - Magnetic nanoparticles in cancer treatment,” J. Surg. Res., vol. 175, no. 1, pp. 35–43, 2012.; M. M. Attar et al., “Thermal analysis of magnetic nanoparticle in alternating magnetic field on human HCT-116 colon cancer cell line,” Int. J. Hyperth., vol. 32, no. 8, pp. 858–867, 2016.; R. Eivazzadeh-Keihan, F. Radinekiyan, A. Maleki, M. Salimi Bani, Z. Hajizadeh, and S. Asgharnasl, “A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy,” Int. J. Biol. Macromol., vol. 140, pp. 407–414, 2019.; S. Shabestari Khiabani, M. Farshbaf, A. Akbarzadeh, and S. Davaran, “Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy,” Artif. Cells, Nanomedicine Biotechnol., vol. 45, no. 1, pp. 6–17, 2017.; K. T. Al-Jamal et al., “Magnetic Drug Targeting: Preclinical in Vivo Studies, Mathematical Modeling, and Extrapolation to Humans,” Nano Lett., vol. 16, no. 9, pp. 5652–5660, 2018.; M. Minbashi, A. A. Kordbacheh, A. Ghobadi, and V. V. Tuchin, “Optimization of power used in liver cancer microwave therapy by injection of Magnetic Nanoparticles (MNPs),” Comput. Biol. Med., vol. 120, no. February, p. 103741, 2020.; A. Nan, M. Suciu, I. Ardelean, M. Şenilă, and R. Turcu, “Characterization of the Nuclear Magnetic Resonance Relaxivity of Gadolinium Functionalized Magnetic Nanoparticles,” Anal. Lett., vol. 0, no. 0, pp. 1–16, 2020.; I. Cicha, S. Lyer, C. Alexiou, and C. D. Garlichs, “Nanomedicine in diagnostics and therapy of cardiovascular diseases: Beyond atherosclerotic plaque imaging,” Nanotechnol. Rev., vol. 2, no. 4, pp. 449–472, 2013.; M. Nahrendorf et al., “Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis,” Circulation, vol. 117, no. 3, pp. 379–387, 2008.; S. Jaimes, A. Gonzáles, C. Granados, D. Álvarez, and E. Espitia, “Redalyc.Nanotecnología: avances y expectativas en cirugía,” Rev. Colomb. Cirugía, vol. 27, pp. 158–166, 2012.; B. Méndez and C. Muñoz, “Nanochips y nanosensores para eldiagnóstico temprano de cáncer oral: una revisión,” no. 67, pp. 131–147, 2012.; D. Rodriguez, J. Moyano, and L. Roa, “Estudio por dinámica molecular browniana de np bajo efectos de Bs externos,” Ing. Mil., vol. 13, no. 9, pp. 90–98, 2018.; J. Gallo and C. Ossa, “Fabricación y caracterización de np de plata con potencial uso en el tratamiento del cáncer de piel,” Ing. y Desarro., vol. 37, no. 1, pp. 88–104, 2019.; J. Pantoja, “np magnéticas en flujo sanguíneo para tratamiento de cáncer,” Universidad Distrital Francisco José de Caldas, 2020.; https://hdl.handle.net/11349/31171; Universidad Distrital Francisco José de Caldas

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11

    Popis souboru: pdf; application/pdf

    Relation: H. Y. Vivian-Ip, A. Abrishami, P. W. H. Peng, J. Wong, and F. Chung, “Predictors of Postoperative Pain and Analgesic Consumption: A Qualitative Systematic review”, Anesthesiology, vol. 111, no. 3, pp. 657–677, september 2009. https://doi.org/10.1097/ALN.0b013e3181aae87a.; O. L. Elvir-Lazo and P. F. White, “Postoperative pain management after ambulatory surgery: role of multimodal analgesia”, Anesthesiology Clinics, vol. 28, no. 2, pp. 217–224, june 2010. https://doi.org/10.1016/j.anclin.2010.02.011.; American Academy of Pain Medicine, “Get the facts on pain”. [Online]. Available at:http://www.painmed.org/patientcenter/facts-on-pain/.; P. J. Mathew and J. L. Mathew, “Assessment and management of pain in infants”,Postgraduate Medical Journal, vol. 79, no. 934, pp. 438–43, august 2003. http://dx.doi.org/10.1136/pmj.79.934.438.; M. Clarett, “Escalas de evaluación de dolor y protocolo de analgesia en terapia intensiva”,Clínica y Maternidad Suizo Argentina Instituto Argentino de Diagnóstico y Tratamiento, Buenos Aires, Argentina, 2012.; L. J. Duhn and J. M. Medves, “A systematic integrative review of infant pain assessmenttools”, Advance in Neonatal Care, vol. 4, no. 3, pp. 126–140, june 2004. 10.1016/j.adnc.2004.04.005.; R. Slater, A. Cantarella, L. Franck, J. Meek, and M. Fitzgerald, “How Well Do Clinical PainAssessment Tools Reflect Pain in Infants?” PLoS Medicine, vol. 5, no. 6, p. e129, june 2008. https://doi.org/10.1371/journal.pmed.0050129.; N. C. de Knegt. et al., “Behavioral Pain Indicators in People With Intellectual Disabilities: ASystematic Review”, The Journal of Pain, vol. 14, no. 9, pp. 885–896, september 2013. https://doi.org/10.1016/j.jpain.2013.04.016.; G. Zamzmi. et al., “An approach for automated multimodal analysis of infants’ pain”, in 201623rd International Conference on Pattern Recognition (ICPR), pp. 4148–4153, 2016.; V. Guruswamy, “Assessment of pain in nonverbal children”, Association of PaediatricAnaesthetists of Great Britain and Ireland, vol. APA Leeds, no. 41st Annual Scientific Meeting in Leeds, p. 33, 2014.; Registered Nurses’ Association of Ontario, Assessment and management of pain, vol. 3.Toronto, Canada, 2013.; R. Srouji, S. Ratnapalan, and S. Schneeweiss, “Pain in Children: Assessment andNonpharmacological Management”, International Journal of Pediatrics, july 2010. https://doi.org/10.1155/2010/474838.; K. Brand and A. Al-Rais, “Pain assessment in children”, Anaesthesia and Intensive CareMedicine, vol. 20, no. 6, pp. 314–317, june 2019. https://doi.org/10.1016/j.mpaic.2019.03.003.; D. Freund and B. N. Bolick, “Assessing a Child’s Pain”, AJN, American Journal of Nursing,vol. 119, no. 5, pp. 34–41, may 2019. 10.1097/01.NAJ.0000557888.65961.c6.; M. Pérez, G. A. Cavanzo Nisso, and F. Villavisán Buitrago, “Sistema embebido de detecciónde movimiento mediante visión artificial ", Visión Electrónica, vol. 12, no. 1, pp. 97-101, 2018. https://doi.org/10.14483/22484728.15087.; J. F. Pantoja Benavides, F. N. Giraldo Ramos, Y. S. Rubio Valderrama, and V. M. RojasLara, “Segmentación de imágenes utilizando campos aleatorios de Markov", Visión Electrónica, vol. 4, no. 2, pp. 5-16, 2010. https://doi.org/10.14483/22484728.432.; J. Forero C., C. Bohórquez, and V. H. Ruiz, “Medición automatizada de piezas torneadasusando visión artificial", Visión Electrónica, vol. 7, no. 2, pp. 36-44, 2013. https://doi.org/10.14483/22484728.5507.; S. Brahnam, C.-F. Chuang, R. S. Sexton, and F. Y. Shih, “Machine assessment of neonatalfacial expressions of acute pain”, Decision Support System, vol. 43, no. 4, pp. 1242–1254, august 2007. https://doi.org/10.1016/j.dss.2006.02.004.; A. Beltramini, K. Milojevic, and D. Pateron, “Pain Assessment in Newborns, Infants, andChildren”, Pediatric. Annals, vol. 46, no. 10, pp. e387–e395, october 2017. https://doi.org/10.3928/19382359-20170921-03.; X. Cong, J. M. McGrath, R. M. Cusson, and D. Zhang, “Pain Assessment and Measurementin Neonates: An Ipdated Review”, Advances in Neonatal Care, vol. 13, no. 6, pp. 379–395, december 2013. 10.1097/ANC.0b013e3182a41452.; C. L. von Baeyer and L. J. Spagrud, “Systematic review of observational (behavioral)measures of pain for children and adolescents aged 3 to 18 years”, Pain, vol. 127, no. 1–2, pp. 140–150, january 2007. https://doi.org/10.1016/j.pain.2006.08.014.; J. Zieliński, M. Morawska-Kochman, and T. Zatoński, “Pain assessment and managementin children in the postoperative period: A review of the most commonly used postoperative pain assessment tools, new diagnostic methods and the latest guidelines for postoperative pain therapy in children”, Advances in Clinical and Experimental Medicine, vol. 29, no. 3, pp. 365–374, febrary 2020. 10.17219/acem/112600.; C. Greco and C. Berde, “Pain Management in Children”, Gregory’s Pediatric Anesthesia,Wiley, pp. 929–954, 2020. https://doi.org/10.1002/9781119371533.ch37.; G. Zamzmi, R. Kasturi, D. Goldgof, R. Zhi, T. Ashmeade, and Y. Sun, “A Review ofAutomated Pain Assessment in Infants: Features, Classification Tasks, and Databases,” IEEE Reviews in Biomedical. Engineering, vol. 11, pp. 77–96, noviembre 2017. 10.1109/RBME.2017.2777907.; T. Voepel-Lewis, J. Zanotti, J. A. Dammeyer, and S. Merkel, “Reliability and Validity of theFace, Legs, Activity, Cry, Consolability Behavioral Tool in Assessing Acute Pain in Critically Ill Patients”, American Journal of Critical Care, vol. 19, no. 1, pp. 55–61, january 2010. https://doi.org/10.4037/ajcc2010624.; G. Guillen, “Digital Image Processing with Python and OpenCV”, Sensor Projects withRaspberry Pi, Springer, pp. 97–140, 2019. https://doi.org/10.1007/978-1-4842-5299-4_5.; Momtahina, R. Hossain, M. M. Rahman, and O. A. Tania, “Image Capturing and AutomaticFace Recognition”, Dhaka, Bangladesh, 2019.; O. Subea and G. Suciu, “Facial Analysis Method for Pain Detection”, InternationalConference on Future Access Enablers of Ubiquitous and Intelligent Infrastructures, pp. 167–180, 2019. https://doi.org/10.1007/978-3-030-23976-3_17.; D. E. King, “Dlib-ml: A Machine Learning Toolkit”, The Journal of Machine LearningResearch, vol. 10, pp. 1755–1758, december 2009. 10.1145/1577069.1755843.; K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”,Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. [Online]. Available at: https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html.; O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition”, Proceedings of theBritish Machine Vision Conference (BMVC), vol. 1, no. 3, p. 6, september 2015. https://dx.doi.org/10.5244/C.29.41.; S. J. Pan and Q. Yang, “A Survey on Transfer Learning”, IEEE Transactions on knowledgeand data engineering, vol. 22, no. 10, pp. 1345-1359, october 2010. 10.1109/TKDE.2009.191.; F. Zhuang. et al., “A Comprehensive Survey on Transfer Learning”, Proceedings of theIEEE, pp. 1-34, july 2019. 10.1109/JPROC.2020.3004555.; H.-W. Ng, V. D. Nguyen, V. Vonikakis, and S. Winkler, “Deep Learning for EmotionRecognition on Small Datasets using Transfer Learning”, Proceedings of the 2015 ACM on International Conference on Multimodal Interaction (ICMI ’15), pp. 443–449, november 2015. https://doi.org/10.1145/2818346.2830593.; W. Ding et al., “Audio and face video emotion recognition in the wild using deep neuralnetworks and small datasets”, Proceedings of the 18th ACM International Conference on Multimodal Interaction (ICMI ’1), pp. 506–513, october 2016. https://doi.org/10.1145/2993148.2997637.; K. Zhang, L. Tan, Z. Li, and Y. Qiao, “Gender and smile classification using deepconvolutional neural networks”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. [Online]. Available at: https://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/html/Zhang_Gender_and_Smile_CVPR_2016_paper.html.; V. Campos, A. Salvador, B. Jou, X. Giró-i-Nieto and B. Jou, “Diving Deep into Sentiment:Understanding Fine-tuned CNNs for Visual Sentiment Prediction”, Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia (ASM '15), pp. 57-62, october 2015. https://doi.org/10.1145/2813524.2813530.; H. Ding, S. K. Zhou, and R. Chellappa, “FaceNet2ExpNet: Regularizing a Deep FaceRecognition Net for Expression Recognition”, 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 118–126, june 2017. 10.1109/FG.2017.23.; F. Wang et al., “Regularizing face verification nets for pain intensity regression,” in 2017IEEE International Conference on Image Processing (ICIP), pp. 1087–1091, september 2017. 10.1109/ICIP.2017.8296449.; M. S. Hossain and G. Muhammad, “Emotion recognition using deep learning approach fromaudio–visual emotional big data,” Information Fusion, vol. 49, pp. 69–78, september 2019. https://doi.org/10.1016/j.inffus.2018.09.008.; “Una herramienta nueva de aprendizaje automático predice con exactitud el cáncer depróstataIndustriaMedimaging.es.”[Online].Available:https://www.medimaging.es/industria/articles/294777132/una-herramienta-nueva-de-aprendizaje-automatico-predice-con-exactitud-el-cancer-de-prostata.html. [Accessed: 06-Nov-2020].; N. A. Ram, “Clasificadores supervisados del cáncer de próstata a partir de imágenes deresonancia magnética en magnetic resonance images in T2 sequences .,” no. June, pp. 19–22, 2019.; Ramírez; N, Aparicio; E, Gómez; E, “SUPERVISED CLASSIFIERS OF PROSTATECANCER. A GEOMETRIC STUDY ON MAGNETIC RESONANCE IMAGES T2 WEIGHTED (T2W), BY DIFFUSION (DWI-ADC),” Congr. Int. electrónica, Control y telecomunicaciones, vol. 51, no. 1, p. 51, 2018.; J. C. Batlle et al., “Diagnóstico del cáncer de próstata mediante espectroscopia deresonancia magnetica endorectal,” Arch. Esp. Urol., vol. 59, no. 10, pp. 953–963, 2006.; "Diferenciación entre prostatitis y cáncer de próstata utilizando el sistema PI-RADS %7C.”[Online]. Available: https://cbseram.com/2016/06/22/diferenciacion-entre-prostatitis-y-cancer-de-prostata-utilizando-el-sistema-pi-rads/. [Accessed: 06-Nov-2020]; T. Hambrock et al., “Prospective assessment of prostate cancer aggressiveness using 3-Tdiffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort,” Eur. Urol., vol. 61, no. 1, pp. 177–184, 2012.; 7]“Cáncer de Próstata - SEOM: Sociedad Española de Oncología Médica © 2019.” [Online].Available: https://seom.org/info-sobre-el-cancer/prostata?showall=1. [Accessed: 06-Nov-2020].; A. B. Rosenkrantz and S. S. Taneja, “Radiologist, be aware: Ten pitfalls that confound theinterpretation of multiparametric prostate MRI,” American Journal of Roentgenology, vol. 202, no. 1. pp. 109–120, Jan-2014.; "The Radiology Assistant : Prostate Cancer - PI-RADS v2.” [Online]. Available:https://radiologyassistant.nl/abdomen/prostate/prostate-cancer-pi-rads-v2. [Accessed: 05-Nov-2020].; P. Guzmán F and A. Messina, “Cáncer de próstata, el problema del diagnóstico ¿Es laresonancia multiparamétrica de próstata la solución?,” Rev. Chil. Radiol., vol. 25, no. 2, pp. 60–66, 2019.; I. Robles, Identificacion de Biomarcadores Predictivos ,Pronosticos y de Respuesta alCancer de Prostata. 2018.; J. I. Díaz, “Matemáticas y Ciencias de la Salud,” pp. 65–67, 2005.; R. Cuocolo et al., “Machine learning applications in prostate cancer magnetic resonanceimaging,” Eur. Radiol. Exp., vol. 3, no. 1, 2019.; S. L. Goldenberg, G. Nir, and S. E. Salcudean, “A new era: artificial intelligence andmachine learning in prostate cancer,” Nat. Rev. Urol., vol. 16, no. 7, pp. 391–403, 2019.; S. Yoo, I. Gujrathi, M. A. Haider, and F. Khalvati, “Prostate Cancer Detection using DeepConvolutional Neural Networks,” Sci. Rep., vol. 9, no. 1, pp. 1–10, 2019.; I. Simon, C. R. Pound, A. W. Partin, J. Q. Clemens, and W. A. Christens-Barry, “Automatedimage analysis system for detecting boundaries of live prostate cancer cells,” Cytometry, vol. 31, no. 4, pp. 287–294, 1998.; S. Sarkar and S. Das, “A Review of Imaging Methods for Prostate Cancer Detection,”Biomed. Eng. Comput. Biol., vol. 7s1, p. BECB.S34255, 2016.; Christian, R., Juan, F. O., y-Alejandro, M. C. (2018). Detección precoz de cáncer depróstata: Controversias y recomendaciones actuales. Revista Médica Clínica Las Condes, 29(2), 128–135. https://doi.org/10.1016/j.rmclc.2018.02.013.; Hambrock, T., Hoeks, C., Hulsbergen-Van De Kaa, C., Scheenen, T., Futterer, J.,Bouwense, S., . Barentsz, J. (2012). Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. European Urology, 61(1), 177–184. https://doi.org/10.1016/j.eururo.2011.08.042.; Nguyen, K., Sabata, B., Jain, A. K. (2012). Prostate cancer grading: Gland segmentationand structural features. Pattern Recognition Letters, 33(7), 951–961. https://doi.org/10.1016/j.patrec.2011.10.001.; Ng, Y.-M. H. Diagnosis of sheet metal stamping processes base on 3-D thermal energydistribution. IEEE Transactions on automation science and engineering. Pp, 22-30. Jan. 2007.; Prakash Surya. 3D mapping of surface temperature using thermal stereo. 9th InternationalConference on Control, Automation, Robotics and Vision. ICARCV 2006. Pp, 1- 4. 5-8 Dec. 2006.; Fan, Y., X. Li, et al. (2009). "3D numerical simulation on temperature field and flow field inthe tuyere of blast furnace (BF) based on the fluent software." Tezhong Zhuzao Ji Youse Hejin/Special Casting and Nonferrous Alloys 29(4): 324-326.; Cornacchia, T. P. M., E. B. Las Casas, et al. (2010). "3D finite element analysis on estheticindirect dental restorations under thermal and mechanical loading." Medical and Biological Engineering and Computing: 1-7.; Chethan, Y. D., Ravindra, H. V., gowda, Y. T., & Bharath Kumar, S. (2015). Machine Visionfor Tool Status Monitoring in Turning Inconel 718 using Blob Analysis. In Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2015.07.124.; Siddhpura, A., & Paurobally, R. (2013). A review of flank wear prediction methods for toolcondition monitoring in a turning process. International Journal of Advanced Manufacturing Technology, 65(1–4), 371–393. https://doi.org/10.1007/s00170-012-4177-1.; Azimi, S. M., Britz, D., Engstler, M., & Fritz, M. (2018). Advanced Steel MicrostructureClassification by Deep Learning Methods. Scientifics Reports, 8, 1–14.; Kesireddy, A., & Mccaslin, S. (2015). Using Mathematica to Accurately Approximate thePercent Area of Grains and Phases in Digital Metallographic Images. Lecture Notes in Electrical Engineering, 313. https://doi.org/10.1007/978-3-319-06773-5.; Kesireddy, A., & McCaslin, S. (2015). Application of Image Processing Techniques to theIdentification of Phases in Steel Metallographich Specimens. Lecture Notes in Electrical Engineering, 312. https://doi.org/10.1007/978-3-319-06764-3.; E. J. Guerra Monterroza, “Reconocimiento de primitivas 3D, usando autocorrelación yANFIS", Visión Electrónica, vol. 1, no. 1, pp. 56-61,2008. https://revistas.udistrital.edu.co/index.php/visele/article/view/251.; Forero C., J., Bohórquez, C., & Ruiz, V. H. (2013). Medición automatizada de piezastorneadas usando visión artificial. Visión electrónica, 7(2), 36-44.https://doi.org/10.14483/22484728.5507.; Forero C., J., Gaitán, D., & Martínez, H. (2018). Recolector autónomo de bolas de tenismediante vision artificial. Visión electrónica, 7(2), 36-44. https://doi.org/10.14483/issn.2248-4728.; S. Andreo, «Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water,» Iaea Trs, Austria, 2000.; Sociedad Española de Oncología Médica SEOM, 2020. [En línea]. Available: https://seom.org/. [Último acceso: 03 2020].; Instituto Nacional de Salud, Observatorio Nacional de Salud, «Primer Informe ONS, aspectos relacionados con la frecuencia de uso de los servicios de salud, mortalidad y discapacidad en Colombia,» Imprenta Nacional de Colombia, Bogotá D.C., 2011.; F. SALVAT, J. M. FERNÁNDEZ-VAREA y J. SEMPAU, PENELOPE-2006: A code system for Monte Carlo simulation of electron and photon transport, Barcelona: OECD, 2006.; Computerized Imaging Reference Systems CIRS, Manual Tissue Simulation & Phantom Technology, Norfolk, Virginia, 2017.; A. Brosed, Fundamentos de física médica, vol. 1, Madrid: ADI, 2011.; H. Andreo, Fundamentals of ionizing radiation dosimetry, 2017.; Agostinelli, «Simulation toolkit, Nuclear instruments and methods in physics,» sciencedirect, vol. 506, nº 3, pp. 250- 303, 2003.; Ministerio de Salud y Protección Social, «https://www.minsalud.gov.co,» 25 Marzo 2020. [En línea]. Available: https://www.minsalud.gov.co/salud/publica/PET/Documents/Circular%2019.pdf.pdf. [Último acceso: 8 11 2020].; Asociación Colombiana de Infectologia, «Consenso colombiano de atención, diagnóstico y manejo de la infección,» Revista de la Asociación Colombiana de Infectologia, vol. 24, nº 3, pp. 20-21, 2020.; L. Gamboa O, «Atlas de mortalidad por cancer en Colombia,» Instituto Nacional de Cancerologia, vol. 1, nº 4, 2017.; G. de Fernicola, «Arsénico en el agua de bebida: un problema de salud pública,» Revista Brasileira de Ciências Farmacêuticas, vol. 39, nº 4, pp. 365-372, 2003.; J. C. Ramirez, «Tomografía computarizada por rayos X: fundamentos y actualidad,» Revista Ingeniería Biomédica, vol. 2, nº 4, 2008.; l.R.Raudales Díaz, «IMÁGENES DIAGNÓSTICAS: CONCEPTOS Y GENERALIDADES,» Revista Facultad Ciencias Médicas, vol. 1, nº 1, pp. 35-43, 2014.; A. P. Montenegro, «Repositorio Pontificia Universidad Javeriana,» 19 07 2019. [En línea]. Available: https://repository.javeriana.edu.co/handle/10554/44080. [Último acceso: 14 11 2020].; A. Amer, T. Marchant, J. Sykes, J. Czajka y C. Moore,, «Imaging doses from the Elekta Synergy X-ray cone beam CT system,» The British Journal of Radiology, vol. 80, nº 954, p.476–482, 2007.; CSN, «Interaccion de la radiación con la materia,» 2013. [En línea]. Available:http://csn.ciemat.es/MDCSN/recursos/ficheros_md/133100241_2411200913036.pdf.; A. Brosed, Fundamentos De Fisica Medica, vol. 2, ADI, 2012.; E. B. Podgorsak, Radiaton Physics for Medical Physicists, 2 ed., Springer, 2010.; CIRS, «IMRT Thorax Phantom,» [En línea]. Available: www.cirsinc.com. [Último acceso: 22 02 2020].; A. Castillo, «Caracteristicas del sistema de IGRT de ELEKTA,» Grupo CROASA, Granada.; Elekta AB, «Elekta Synergy Digital accelerator for advanced IGRT,» 2017. [En línea]. Available: https://www.elekta.com/radiotherapy/treatment-delivery-systems/elekta- synergy/. [Último acceso: 14 11 2020].; C. David, «Estudio de la viabilidad de las imágenes de CBCT para planeación de tratamientos,» Pontificia Universidad Javeriana, Bogotá, 2020.; J. Allison, «Geant4 Developments and Applications,» IEEE TRANSACTIONS ON NUCLEAR SCIENCE, vol. 53, 2006.; J DeMarco, «A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms,» PHYSICS IN MEDICINE ANDBIOLOGY, nº 50, p. 3989–4004, 2005.; O. Apostolakis, «The Geant4 Simulation Toolkit and Applications For the Geant4 Collaboration,» NATO Science for Peace and Security Series B: Physics and Biophysics, 2008.; C. Giraldo, «Desarrollo y aplicaciones de GEANT4 para radioterapia y microdosimetria en detectores y circuitos integrados,» 04 2011. [En línea]. Available: https://idus.us.es/handle/11441/15762. [Último acceso: 14 11 2020].; Geant4 Collaboration, Book For Application Developers, Geant4 Collaboration, 2017.; P. Montenegro, «Repositorio Pontificia Universidad Javeriana,» 19 07 2019. [En línea].Available: https://repository.javeriana.edu.co/handle/10554/44080. [Último acceso: 14 10 2020].; M. Mostazo Caro, «Interacción Radiación-Materia Conceptos B ásico,» de Técnicas Experimentales Avanzadas, 2013, pp. 4-6.; C. Vidal Silva and L. Pavesi Farriol, “Desarrollo De Un Sistema De Adquisición Y TratamientoDe Señales Electrocardiográficas,” Rev. Fac. Ing. - Univ. Tarapacá, vol. 13, no. 1, pp. 39–46, 2005, doi:10.4067/s0718-13372005000100005.; C. Correa Flórez, R. Bolaños Ocampo, and A. Escobar, “Análisis de esquemas de filtradoanálogo para señales ecg.,” Sci. Tech., vol. 5, no. 37, pp. 103–108, 2007.; Tortora, Gerald. Derrickson, Bryan. 2006. Principios de Anatomía y Fisiología. 11ª. Edición.Editorial Médica Panamericana. México DF. México. Cap 20.; M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep learning for cybersecurity intrusion detection: Approaches, datasets, and comparative study,” J. Inf. Secur. Appl., vol. 50, p. 102419, 2020, doi:10.1016/j.jisa.2019.102419.; G. Zeng, Y. He, Z. Yu, X. Yang, R. Yang, and L. Zhang, “Preparation of novel high copperions removal membranes by embedding organosilane-functionalized multi-walled carbon nanotube,” J. Chem. Technol. Biotechnol., vol. 91, no. 8, pp. 2322–2330, 2016, doi:10.1002/jctb.4820.; T. Park, Introduction to digital signal processing. Singapore: World Scientific, 2010.; M. O. Alzate, “Clasificación de Arritmias Cardíacas usando Transformada Waveleth - tesispregrado.pdf,” 2003.; A. D. E. Maquina and C. O. N. Interfaz, “Mediante Aprendizaje De Máquina Con Interfaz aUsuario Model of Dynamic Classification of Arrhythmias Cardiac By,” Leonardo, vol. 16, pp. 86–95, 2006.; A. Behrad and K. Faez, “New method for QRS-wave recognition in ECG using MART neuralnetwork,” ANZIIS 2001 - Proc. 7th Aust. New Zeal. Intell. Inf. Syst. Conf., no. November, pp. 291–296, 2001, doi:10.1109/ANZIIS.2001.974093.; M. Mitrokhin, A. Kuzmin, N. Mitrokhina, S. Zakharov, and M. Rovnyagin, “Deep learningapproach for QRS wave detection in ECG monitoring,” 11th IEEE Int. Conf. Appl. Inf. Commun. Technol. AICT 2017 - Proc., pp. 1–3, 2019, doi:10.1109/ICAICT.2017.8687235.; I. A. Tarmizi, S. S. N. A. S. Hassan, U. K. Ngah, and W. P. W. Ibrahim, “A journal of realpeak recognition of electrocardiogram (ECG) signals using neural network,” 2012 2nd Int. Conf. Digit. Inf. Commun. Technol. its Appl. DICTAP 2012, pp. 504–510, 2012, doi:10.1109/DICTAP.2012.6215429.; M. Llamedo and J. P. Martínez, “Clasificación de ECG basada en Características de Escala, Dirección y Ritmo,” Caseib 2009, pp. 2–5, 2009.; E. D. A. Botter, C. L. Nascimento, and T. Yoneyama, “A neural network with asymmetricbasis functions for feature extraction of ECG P waves,” IEEE Trans. Neural Networks, vol. 12, no. 5, pp. 1252–1255, 2001, doi:10.1109/72.950154.; S. H. El-Khafif and M. A. El-Brawany, “Artificial Neural Network-Based Automated ECGSignal Classifier,” ISRN Biomed. Eng., vol. 2013, pp. 1–6, 2013, doi:10.1155/2013/261917.; N. Maglaveras, T. Stamkopoulos, K. Diamantaras, C. Pappas, and M. Strintzis, “ECGpattern recognition and classification using non-linear transformations and neural networks: A review,” Int. J. Med. Inform., vol. 52, no. 1–3, pp. 191–208, 1998, doi:10.1016/S1386-5056(98)00138-5.; C. Rose-Gómez and M. Serna-Encinas, “Procesamiento del Electrocardiograma para laDetección de Cardiopatías,” Researchgate.Net, no. May, pp. 3–6, 2015, [Online]. Available: http://enc2014.cicese.mx/Memorias/paper_19.pdf%5Cnhttps://www.researchgate.net/profile/Cesar_Rose/publication/277324231_Procesamiento_del_Electrocardiograma_para_la_Deteccion_de_Cardiopatias/links/5567b77d08aeab77721eac2b.pdf.; S. Jiménez Serrano, “Clasificación automática de registros ECG para la detección deFibrilación Auricular y otros ritmos cardíacos,” 2018, [Online]. Available: https://riunet.upv.es:443/handle/10251/111113.; S. G. Artis, R. G. Mark, and G. B. Moody, “Detection of atrial fibrillation using artificial neuralnetworks,” Comput. Cardiol., pp. 173–176, 1992, doi:10.1109/cic.1991.169073.; J. Wang and W. Lu, “A method of electrocardiogram classification based on neural network,”Chinese J. Biomed. Eng., vol. 14, no. 4, pp. 306–311, 1995.; M. Hammad, A. Maher, K. Wang, F. Jiang, and M. Amrani, “Detection of abnormal heartconditions based on characteristics of ECG signals,” Meas. J. Int. Meas. Confed., vol. 125, pp. 634–644, 2018, doi:10.1016/j.measurement.2018.05.033.; T. H. Chen, Z. Yu, L. Q. Han, P. Y. Guo, and X. Y. He, “The sorting method of ECG signalsbased on neural network,” 2nd Int. Conf. Bioinforma. Biomed. Eng. iCBBE 2008, pp. 543–546, 2008, doi:10.1109/ICBBE.2008.132.; Taylor GJ. 150 Practice ECGs: Interpretation and Review. Blackwell Science, 2002. ISBN0-632-04623-6.; Committee on Engineering Education, "Educating the Engineer of 2020: AdaptingEngineering Education to New the Century", NAE, pp. 1-209, 2010. Available at: http://www.nap.edu/catalog/11338.html.; World Health Organization, “World health statistics overview 2019: monitoring health for theSDGs, sustainable development goals”, Geneva: World Health Organization; pp. 1-28, 2019 (WHO/DAD/2019.1). License: CC BY-NC-SA 3.0 IGO.; World Health Organization, “Human resources for medical devices, the role of biomedicalengineers”. Geneva: World Health Organization; pp.: 1-240, 2017. License: CCBY-NC- SA 3.0 IGO.; J. Sappey and S. Relf, “Digital Technology Education and its Impact on Traditional AcademicLists and Practice”. J. Univ. Teach. & Lear. Pract. 7(1), 7(3), 2007.; J. Candle-Valdés, “The challenges of the Cuban new university”. Paper presented at thePedagogy 2007, Havana, Cuba, pp. 1-14, feb. 2007.; K. M. Galotti, et al., “To New Way of Assessing Ways of Knowing: The Attitudes TowardsThinking and Learning Survey (ATTLS)”. Sex Lists, 40(9/10), 745-766, 1999.; Ministerio de Educación Superior, Documento Ejecutivo Plan de Estudio: IngenieríaBiomédica, MES, La Habana, Cuba, págs. 1-10, 15 julio, 2017.; T. T. Bekele, “Motivation and Satisfaction in Internet-Supported Learning Environments: ToReview”. Educ. Tech. & Soc., 13(2), 116-127, 2009.; S. N. Karagiannis, “The Conflicts Between Science Research and Teaching in HigherEducation: An Academic's Perspective”. J. Teach. and Lear. Higher Educ., 21(1), 75-83, 2010.; R. Garrote and T. Pettersson. “The use of learning management systems: A LongitudinalCase Study”. Eleed, 8. 2011.; R. Hernández-Sampieri y otros, “Metodología de la Investigación. 6ta Ed., Ed. McGraw-HillEducation. México D. F., págs. 1- 634, 2014.; R. N. Strickland, Image-Processing Techniques for Tumor Detection, Boca Raton, Florida: CRC Press, 2002.; J. Thirumaran y S. Shylaja, «Medical Image Processing – An Introduction,» International Journal of Science and Research (IJSR), vol. 4, nº 11, pp. 1197-1199., 2015.; F. Ballester y J. M. Udías, «Física Nuclear y Medicina,» Rev Esp Fís, vol. 22, nº 1, pp. 29- 36, 2008.; P. Mildenberger, M. Eichelberg y E. Martin, «Introduction to the DICOM standard,» European Radiology, vol. 12, p. 920–927, 2002.; C. E. J. Kahn, J. A. Carrino, M. J. Flynn, D. J. Peck y S. C. Horii, «DICOM and Radiology: Past, Present, and Future,» TECHNOLOGY TALK, vol. 4, nº 9, pp. 652-657, 2007.; A. P. Bhagat y M. Atique, «Medical images: Formats, compression techniques and DICOM image retrieval a survey,» 2012 International Conference on Devices, Circuits and Systems (ICDCS), pp. 172-176, 2012.; D. P. Hanson y R. A. Robb, «Chapter 45 - Three-Dimensional Visualization in Medicine and Biology,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 755-784.; El Hospital, Reconstrucción 3D de la anatomía humana a partir de imágenes médicas obtenidas por ayuda diagnóstica, 2016.; J. M. Selman R., «Aplicaciones clínicas del procesamiento digital,» Revista Médica Clínica Las Condes, vol. 15, nº 2, 2004.; M. Solaiyappan, «Chapter 44 - Visualization Pathways in Biomedicine,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 729-753.; J. Rogowska, «Chapter 5 - Overview and Fundamentals of Medical Image Segmentation,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 73- 90.; A. Escobar Díaz y L. A. Calderón, «Modelo tridimensional de extremidad inferior basado en imágenes de resonancia magnética,» Visión electrónica, vol. 3, nº 1, pp. 4-15, 2009.; DICOM Library & medDream, «Dicom Library (Modality CT),» 2011. [En línea]. Available: https://www.dicomlibrary.com/.; L. Atanelov, S. A. Stiens, and M. A. Young, “History of physical medicine and rehabilitationand its ethical dimensions”, AMA journal of ethics, vol. 17, no. 6, pp. 568–574, 2015. DOI:10.1001/journalofethics.2015.17.6.mhst1-1506 URL: https://journalofethics.ama-assn.org/article/history-physical-medicine-and-rehabilitation-and-its-ethical-dimensions/2015-06; M. C. Garcia and T. Vieira, “Surface electromyography: Why, when and how to use it”,Revista andaluza de medicina del deporte, vol. 4, no. 1, pp.17–28, 2011. URL: https://www.elsevier.es/es-revista-revista-andaluza-medicina-del-deporte-284-articulo-surface-electromyography-why-when-how-X1888754611201253.; J. C. Guerrero Pupo, I. Amell Muñoz, and R. Cañedo Andalia, “Tecnología, tecnologíamédica y tecnología de la salud: algunas consideraciones básicas”, Acimed, vol. 12, no. 4, pp. 1–1, 2004. URL: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1024-94352004000400007.; J. A. A. Londoño, E. C. Bravo, and J. F. C. García, “Aplicación de tecnologías derehabilitación robótica en niños con lesión del miembro superior”, Revista Salud UIS, vol. 49, no. 1, pp. 103–114, 2017. DOI: http://dx.doi.org/10.18273/revsal.v49n1-2017010 URL: http://www.scielo.org.co/scielo.php?pid=S012108072017000100103&script=sci_abstract&tlng=es.; F. Salvuci and R. Kohanoff, Tecnologías de rehabilitación. Wiley-Interscience, 2016.; A. Merlo and I. Campanini, “Technical aspects of surface electromyography for clinicians”,The open rehabilitation journal, vol. 3, no. 1, 2010. DOI:10.2174/1874943701003010098 URL: https://benthamopen.com/ABSTRACT/TOREHJ-3-98.; F. J. Juan, “Utilidad de la electromiografía de superficie en rehabilitación” URL:https://www.researchgate.net/profile/Francisco_Juan-Garcia/publication/316588275_UTILIDAD_DE_LA_ELECTROMIOGRAFIA_DE_SUPERFICIE_EN_REHABILITACION/links/5905b86c4585152d2e957860/UTILIDAD-DE-LA-ELECTROMIOGRAFIA-DE-SUPERFICIE-EN-REHABILITACION.pdf.; J. W. Meklenburg, S. K. Patrick, and S. D. Jung, “Surface electromyogram simulator formyoelectric prosthesis testing,” 2010. URL: https://digitalcommons.wpi.edu/mqp-all/1402/.; Merletti Roberto, and Dario Farina. Surface electromyography: physiology, engineering, andapplications. Piscataway, NJ: IEEE Press, 2016, online. ISBN: 9781119082934, DOI:10.1002/9781119082934.; E. Guzmán, G. Méndez, “Electromiografía en las Ciencias de la Rehabilitación”, SaludUninorte, Vol 3, no. 3, pp 753-765, 2018.; W. A. Marrison, “Apparatus for converting radiant energy to electromechanical energy”, U.S.,Patent 2919358, Dec. 29, 1959. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/e7/ce/c2/f8074398301da9/US2919358.pdf.; D. M. Chapin, C. S. Fuller and G. L. Pearson, “Solar energy converting apparatus”, U.S.,Patent US2780765, Feb. 5, 1957. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/36/ee/af/d21dacd3884160/US2780765.pdf.; H. E. Hall, “Solar motor”, U.S., Patent US3296469, Ene. 3, 1967. [En línea]. Disponible en:https://patentimages.storage.googleapis.com/7e/58/b3/09cf657161e51f/US3296469.pdf.; B. Sepp, “Rotating advertising device”, U.S., Patent US3325930, Ene. 20, 1967. [En línea].Disponible en: https://patentimages.storage.googleapis.com/2e/14/de/57d7f191d20af2/US3325930.pdf.; Y. Nakamats, “Apparatus for converting radiant energy such as light or heat directly intoturning force”, Japón, Patent US4634343, Ene. 6, 1987. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/78/4e/a0/414270d9bad0e0/US4634343.pdf.; H. Izawa, “Solar Energy Motor”, Japan. Patent 4751413, Jun. 14, 1988. [En línea]. Disponibleen: https://patentimages.storage.googleapis.com/3f/8b/a3/9e59494a100d1e/US4751413.pdf.; G. J. Shea, “Solar energy magnetic resonance motor”, U.S., Patent US5408167, Abr. 18,1995. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/77/c4/f7/c12b523e12bfdc/US5408167.pdf.; A. Coty, “Automatically switched photovoltaic motor”, Francia, Patent WO2010082007A3,Jul. 22, 2010. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/36/8f/25/4c5399bdb634a4/WO2010082007A3.pdf.; W. Amrhein, H. Mitterhofer, E. Marth, G. Bramerdorfer, “Aufbau eines Mendocino-Motors”,Ene 2018 [En línea]. Disponible en: http://www.bis0uhr.de/projekte/magnet/projektseminar.pdf.; T. Kornher, M. Noebels, J. Roeller, S. Schwieger, F. Weller, “Mendocino-Motor”, Feb 2018[En línea]. Disponible en: https://ap.physik.uni-konstanz.de/projektpraktikum/PP2011/Bericht_Mendocinomotor.pdf.; Z. Novák, M. Hofreiter. “Mendocino motor and a different approaches to its control”,Proceedings of 15th International Conference MECHATRONIKA, Prague, pp. 1-6, 2012. [En línea]. Disponible en: https://ieeexplore.ieee.org/document/6415075.; C.M. Estupiñán, J.P. Puerto-Reyes, M. A. Beltrán, “Desarrollo de un motor mendocinocomo herramienta de enseñanza en la aplicación de energías renovables y generación de alternativas energéticas”, Revista Loggin, vol. 1, no. 1, pp. 78-89, 2017.; K. Berger, et al, “Solar Electric Motor on Superconducting Bearings: Design and Tests inLiquid Nitrogen" en IEEE sobre aplicaciones de superconductividad, vol. 27, no. 4, pp. 1-5, Jun. 2017, https://doi.org/10.1109/TASC.2016.2642140.; Fawzi Boufatah. “Réalisation d’un moteur à énergie solaire sur paliers supraconducteurs”,2016, hal-01824246. [En línea]. Disponible en: https://hal.univ-lorraine.fr/hal-01824246/document.; W. K. Lane, “Light emitting unit for continuous light production”, U.S., PatentUS20130141900A1, Jun. 6, 2013. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/f6/89/60/242f9861427fb1/US20130141900A1.pdf.; Supermagnete, “Anillo imán”, Nov, 2019. [En línea]. Disponible en: https://www.supermagnete.de/eng/ring-magnets-neodymium/ring-magnet-25mm-4.2mm-5mm_R-25-04-05-N.; Supermagnete, “Disco magnético autoadhesivo” noviembre de 2019. [En línea]. Disponibleen: https://www.supermagnete.de/eng/adhesive-magnets-neodymium/disc-magnet-self-adhesive-25mm-2mm_S-25-02-FOAM?group=discs.; Supermagnete, “Bloque imán” diciembre de 2019. [En línea]. Disponible en: https://www.supermagnete.de/eng/block-magnets-neodymium/block-magnet-40mm-20mm-10mm_Q-40-20-10-N.; H. Polo, A. Valencia, J. Roldan, J.Diaz, “Evaluación de la seguridad estructural de unsistema de seguimiento solar en Colombia”, Colombia, Universidad Distrital Francisco José de Caldas, Oct. 06, 2013. [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/5522.; D. Gomez, J. Leal, H. Montaña, A. Sanchez, “Detección de posición a partir de la mediciónde un campo magnético”, Colombia, Universidad Distrital Francisco José de Caldas, Ene. 01, 2013. [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/4397.; A. Nataraj and B. Ramasamy, "Modeling and FEA analysis of axial flux PMG for low speedwind turbine applications," 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), pp. 1-5, Kollam, 2017. doi:10.1109/TAPENERGY.2017.8397290.; M. Carrillo, C. Claudio y A. Mayorga, “Caracterización de un generador de flujo axial paraaplicaciones en energía eólica,” Revista de Ciencia y Tecnología, INGENIUS, N°19, pp. 19-28, 2018. https://doi.org/10.17163/ings.n19.2018.02.; S. S. Laxminarayan, M. Singh, A. H. Saifee and A. Mital, “Design, Modeling and Simulationof Variable Speed Axial Flux Permanent Magnet Wind Generator”, ELSEVIER, Sustainable Energy Technologies and Assessments, India, 2017. https://doi.org/10.1016/j.seta.2017.01.004.; G. Ahmad and U. Amin, “Design, Construction and Study of Small-Scale Vertical Axis WindTurbine based on a Magnetically Levitated Axial Flux Permanent Magnet Generator”, ELSEVIER, Renewable Energy, 2016. https://doi.org/10.1016/j.renene.2016.08.027.; M. Castillo García, “Diseño Electromagnético de un Generador Eléctrico para Turbina Eólicade 100 kW”, trabajo de fin de grado, Universidad Politécnica de Madrid, Madrid, España, 2017. http://oa.upm.es/49261/1/TFG_MONTANA_CASTILLO_GARCIA.pdf.; C. F. González Velázquez, “Optimización de Banco de Pruebas y Sistema de Monitoreo deAerogenerador de Baja Potencia”, trabajo de fin de tecnólogo, Centro de Ingeniería y Desarrollo Industrial, Santiago de Querétaro, 2017. http://cidesi.repositorioinstitucional.mx/jspui/handle/1024/269.; J. Kappatou, G. Zalokostas and D. Spytatos, “3-D FEM Analysis, Prototyping and Tests ofan Axial Flux Permanent-Magnet Wind Generator,” Energies, Greece, 2017. https://doi.org/10.3390/en10091269.; R. D. Chavan and V. N. Bapat, "The study of different topologies of Axial Flux PermanentMagnet generator," IEEE, 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), pp. 202-206, Pune, 2016. doi:10.1109/ICACDOT.2016.7877579.; T. Asefi, J. Faiz and M. A. Khan, “Design of Dual Rotor Axial Flux Permanent MagnetGenerators with Ferrite and Rare-Earth Magnets”, IEEE, 18th International Power Electronics and Motion Control Conference (PEMC), Budapest, 2018. doi:10.1109/EPEPEMC.2018.8522004.; Yicheng Chen, Pragasen Pillay and A. Khan, "PM wind generator comparison of differenttopologies," IEEE; Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting., pp. 1405-1412 vol.3, Seattle, WA, USA, 2004. doi:10.1109/IAS.2004.1348606.; R. Rusmana, A. A. Melkias, N. Nurrohman and I. M. W. Kastawan, “Voltage GenerationCharacteristics of an Axial Flux Permanent Magnet (AFPM) Generator”, IOP Conference Series: Materials Science and Engineering, ICIEVE, Indonesia, 2019. doi:10.1088/1757-899X/830/4/042019; I. M. W. Kastawan and Rusmana, “Voltage Generation of Three-Phase Double SidedInternal Stator Axial Flux Permanent Magnet (AFPM) Generator”, IOP Conference Series: Materials Science and Engineering, 1st Annual Applied Science and Engineering Conference, Indonesia, 2017, doi:10.1088/1757-899X/180/1/012105.; H. Gör and E. Kurt, “Preliminary Studies of a New Permanent Magnet Generator (PMG)with the Axial and Radial Flux Morphology”, ELSEVIER, ScienceDirect, Turkey, 2016. https://doi.org/10.1016/j.ijhydene.2015.12.195.; H. Gor and E. Kurt, “Waveform Characteristics and Losses of a New Double Sided Axialand Radial Flux Generator”, ELSEVIER, ScienceDirect, Turkey, 2015. https://doi.org/10.1016/j.ijhydene.2015.12.172.; A. Habib, H. Che, N. Rahim, M. Tousizadeh and E. Sulaiman, “A fully coreless Multi-StatorMulti-Rotor (MSMR) AFPM generator with combination of conventional and Halbach magnet arrays,” Alexandria Engineering Journal, vol n. 59, Issue 2, pp 589-600, April 2020. https://doi.org/10.1016/j.aej.2020.01.039.; N. Georgiev, “Study of Three-Phase Axial Flux Generators”, IEEE, 20th InternationalSymposium on Electrical Apparatus and Technologies (SIELA), Bourgas, 2018. doi:10.1109/SIELA.2018.8447093.; E. Celik, H. Gör, N. Öztürk and E. Kurt, “Application of Artificial Neural Network to EstimatePower Generation and Efficiency of a New Axial Flux Permanent Magnet Synchronous Generator”, ELSEVIER, ScienceDirect, Turkey, 2017. https://doi.org/10.1016/j.ijhydene.2017.01.168.; M. R. Minaz and M. Celebi, “Design and Analysis of a New Axial Flux Coreless PMSG withThree Rotors and Double Stators”, ELSEVIER, Results in Physics, Turkey, 2016. https://doi.org/10.1016/j.rinp.2016.10.026.; M. Dranca, M. Chirca and S. Breban, “Comparative Design Analysis of Axial FluxPermanent Magnet Direct-Drive Wind Generators”, IEEE, The 11st International Symposium on Advanced Topics in Electrical Engineering, Technical University of Cluj-Napoca, Romania, 2019. doi:10.1109/ATEE.2019.8724928.; N. E. Lastra, “Diseño y Construcción de un Generador de Flujo Axial con ImanesPermanentes de Bajo Costo para Aplicaciones Eólicas”, ResearchGate, 2019, https://www.researchgate.net/publication/336071436_Diseno_y_Construccion_de_un_Generador_de_Flujo_Axial_con_Imanes_Permanentes_de_Bajo_Costo_para_Aplicaciones_Eolicas.; A. Rasekh, P. Sergeant and L. Vierendeels, “Fully Predictive Heat Transfer CoefficientModeling of an Axial Flux Permanent Magnet Synchronous Machine with Geometrical Parameters of the Magnets”, ELSEVIER, Applied Thermal Engineering, Ghent University, Belgium, 2016. https://doi.org/10.1016/j.applthermaleng.2016.09.019.; M. Irfan, R. F. Ariyanto, L. Syafaah, A. Faruq and N. Subeki, “Stator Slotted Design of AxialFlux Permanent Magnet Generator for Low-Speed Turbine”, IOP Conference Series: Materials Science and Engineering, ICEAT, Indonesia, 2020. doi:10.1088/1757-899X/821/1/012027.; H. Polinder, “2 - Principles of electrical design of permanent magnet generators for directdrive renewable energy systems,” Woodhead Publishing Limited, Delft University of Technology, pp. 30-50, The Netherlands, 2013. doi:10.1533/9780857097491.1.30.; V. N. Antipov, A. D. Grozov and A. V. Ivanova, “Design and Analysis of a New Axial FluxPermanent Magnet Synchronous Generator for Wind”, IOP Conference Series: Materials Science and Engineering, International Scientific Electric Power Conference, Russia, 2019. doi:10.1016/j.rinp.2016.10.026.; M.M. Radulescu, S. Breban and M. Chirca, “Novel topologies of low-speed axial-fluxpermanent- magnet micro-wind generator,” The 18 th National Conference on Electrical Drives, CNAE 2016, Acta Electrotechnica, vol. 57, n° 3-4, Special Issue, 2016. doi:10.4283/JMAG.2014.19.3.273.; B. J. Chalmers and E. Spooner, "An axial-flux permanent-magnet generator for a gearlesswind energy system," in IEEE Transactions on Energy Conversion, vol. 14, no. 2, pp. 251-257, June 1999. doi:10.1109/60.766991.; A. R. Dehghanzadeh, V. Behjat and M. R. Banaei, “Dynamic Modeling of Wind TurbineBased Axial Flux Permanent Magnetic Synchronous Generator Connected to the Grid with Switch Reduced Converter”, ELSEVIER, Ain Shams Engineering Journal, Azarbaijan Shahid Madani University, Iran, 2015. https://doi.org/10.1016/j.asej.2015.11.002.; N. Radwan-Praglowska, D. Borkowski and T. Wegiel, "Model of coreless axial fluxpermanent magnet generator," 2017 International Symposium on Electrical Machines (SME), pp. 1-6, Naleczow, 2017. doi:10.1109/ISEM.2017.7993568.; S. Khan, S. Amin and S. S. Hussain Bukhari, “Design and Comparative PerformanceAnalysis of Inner Rotor and Inner Stator Axial Flux Permanent Magnet Synchronous Generator for Wind Turbine Applications”, IEEE, International Conference on Computing-iCoMET, Sukkur IBA University, Pakistan, 2019. doi:10.1109/ICOMET.2019.8673537.; L. Wei, T. Nakamura and K. Imai, “Development and Optimization of Low-Speed and High-Efficiency Permanent Magnet Generator for Micro Hydro-Electrical Generation System”, ELSEVIER, Renewable Energy, Kyoto University, Japan, 2019. https://doi.org/10.1016/j.renene.2019.09.049.; M. Ardestani, N. Arish and H. Yaghobi, “A New HTS Dual Stator Linear Permanent MagnetVernier Machine with Halbach Array for Wave Energy Conversion”, ELSEVIER, Physyca C: Superconductivity and its Applications, Semman University, Iran, 2019. https://doi.org/10.1016/j.physc.2019.1353593.; P. Khatri and X. Wang, “Comprehensive Review of a Linear electrical Generator for OceanWave Energy Conversion”, IET Renewable Power Generation, IET, Vol. 14, Lss. 6, pp. 949-958, February, 2020. doi:10.1049/iet-rpg.2019.0624.; O. S. Muñoz Muñoz, “Dimensionamiento electromagnético de un Generador Lineal para laConversión de Energía Undimotriz de Acuerdo a las Características del Océano Pacífico Colombiano”, trabajo de fin de grado, Universidad del Valle, Colombia, 2020.; C. García Saiz, “Diseño, Dimensionado y Simulación de un Generador Lineal para elDesarrollo de una Boya de Generación de Energía Undimotriz”, trabajo de fin de grado, Universidad de Cantabria, España, 2015. https://repositorio.unican.es/xmlui/handle/10902/7332.; A. García Villalmanzo, “Diseño de un Motor Lineal de Reluctancia Autoconmutado conImanes Permanentes”, trabajo de fin de grado, Universidad Rovira I Virgili, Tarragona, 2017. http://deeea.urv.cat/public/PROPOSTES/pub/pdf/2459pub.pdf.; A. Shiri and A. Shoulaie, “End Effect Braking Force Reduction in High-Speed Single-SidedLinear Induction Machine”, ELSEVIER, Energy Conversion and Management, Iran University of Science and Technology, Iran, 2012. https://doi.org/10.1016/j.enconman.2011.11.014.; X. Chen, S. Zheng, J. Li, G. T. Ma and F. Yen, “A Linear Induction Motor with a CoatedConductor Superconducting Secondary”, ELSEVIER, Physyca C: Superconductivity and its Applications, Southwest Jiaotong University, China, 2017. https://doi.org/10.1016/j.physc.2018.04.002.; SS. Rathore, S. Mishra, M. K. Paswan and Sanjay, “A Review on Design and Developmentof Free Piston Linear Generators in Hybrid Vehicles”, IOP Conference Series: Materials Science and Engineering, ICCEMME, India, 2019. doi:10.1088/1757-899X/691/1/012053.; Y. Gao, S. Shao, H. Zou, M. Tang, H. Xu and C. Tian, “A Fully Floating System for WaveEnergy Converter with Direct-Driven Linear Generator”, ELSEVIER, Energy, Beijing, China, 2015. https://doi.org/10.1016/j.energy.2015.11.072.; J. F. Fortes, L. M. Ferraz and I. E. Chabu, “Optimized Double Sided Linear Generator forWave Energy in Sao Paulo’s Coast”, 7th International Conference on Ocean Energy (ICOE), Polytechnic School of University of Sao Paulo, France, 2018. https://www.icoe-conference.com/publication/optimized-double-sided-linear-generator-for-wave-energy-in-sao-paulo-s-coast/.; V. Boscaino, G. Cipriani, V. Di Dio, V. Franzitta and M. Trapanense, “Experimental Testand Simulations on a Linear Generator-Based Prototype of a Wave Energy Conversion System Designed with a Reliability-Oriented Approach”, MDPI, Sustainability, University or Palermo, 2017. doi:10.3390/su9010098.; O. Farrok, M. R. Islam, Y. G. Guo and J. G. Zhu, “Design and Analysis of a NovelLightweight Translator Permanent Magnet Linear Generator for Oceanic Wave Energy Conversion”, IEEE, 2015. doi:10.1109/TMAG.2017.2713770.; K. Cruz, F. Dator, J. Ong, N. Bumanlag and M. C. Pacis, “Harnessing of Wave Energy usingAxially Magnetized Linear Generator with Data Logger using Gizduino Microcontroller”, IOP Conference Series: Journal of Physics: Conference Series, CEEPE, Mapua University, Philippines, 2019. doi:10.1088/1742-6596/1304/1/012013.; A. Tapia-Hernández, M. Ponce-Silva, N. Mondragón-Escamilla y L. Hernández-González,“Impacto de la Geometría en el Efecto Fin de Generadores Lineales”, Información Tecnológica, Vol.27, No. 4, pp. 133-138, México, Agosto, 2016. http://dx.doi.org/10.4067/S0718-07642016000400014.; P. Naderi, M. Heidary and M. Vahedi, “Performance Analysis of Ladder-Secondary-LinearInduction Motor with Two Different Secondary Types using Magnetic Equivalent Circuit”, ELSEVIER, ISA Transactions, Shahid Beheshti University, Iran, 2020. https://doi.org/10.1016/j.isatra.2020.03.013.; Y. Xu, X. Xue, Y. Wang and M. Ai, “Performance Characteristics of Compressed Air-Driven-Free-Piston Linear Generator (FPLG) System – A Simulation Study”, ELSEVIER, Applied Thermal Engineering, 2019. https://doi.org/10.1016/j.applthermaleng.2019.114013.; J. Xi, Z. Dong, P. Liu and H. Ding, “Modeling and Identification of Iron-less PMLSM EndEffects for Reducing Ultra-Low-Velocity Fluctuations of Ultra-precision Air Bearing Linear Motion Stage”, ELSEVIER, Precision Engineering, Shanghai Jiaotong University, China, 2017. https://doi.org/10.1016/j.precisioneng.2017.01.016.; X. Luo, C. Zhang, S. Wang, E. Zio and X. Wang, “Modeling and Analysis of Mover Gaps inTubular Moving-Magnet Linear Oscillating Motors”, ELSEVIER, Chinese Journal of Aeronautics, Chinese Society of Aeronautics ans Astronautics & Beihang University, China, 2017. https://doi.org/10.1016/j.cja.2017.11.008; K. S. Rama Rao, T. Sunderan and M. Ref’at Adiris, “Performance and Design Optimizationof Two Model Based Wave Energy Permanent Magnet Linear Generators”, ELSEVIER, Renewable Energy, 2016. https://doi.org/10.1016/j.renene.2016.07.019.; M. F. M Naafi, T. Ibrahim, N. M. Nor and M. A. Firdaus bin M. Hamim, “Design and Modellingof a Portable Pico Linear Generator for Wave Energy Conversion System”, Applied Mechanics and Materials, Vol. 785, pp. 300-304, Malaysia, 2015. https://doi.org/10.4028/www.scientific.net/AMM.785.300.; W. Rentería Palacios, “Diseño y Evaluación Electromagnética de un Motor Síncrono Linealde Imanes Permanentes en Disposición Halbach”, trabajo de fin de máster, Universidad Autónoma de Occidente, Colombia, 2018. https://hdl.handle.net/10614/10454.; J. Kim, J. Y. Kim and J. B. Park, “Design and Optimization of a 8kW Linear Generator for aDirect-Drive Point Absorber”, IEEE, Yonsei University, Seoul, Korea, 2013. doi:10.23919/OCEANS.2013.6741125.; W. Li, T.W. Ching and K.T. Chau, “Design and Analysis of a New Parallel-Hybrid-ExcitedLinear Vernier Machine for Oceanic Wave Power Generation”, ELSEVIER, Applied Energy, China, 2017. https://doi.org/10.1016/j.apenergy.2017.09.061.; L. Huang, J. Liu, H. Yu, R. Qu, H. Chen and H. Fang, “Winding Configuration andPerformance Investigation of a Tubular Superconducting Flux-Switching Linear Generator”, IEEE, Transactions on Applied Superconductivity, Vol. 25, No. 3, 2015. doi:10.1109/TASC.2014.2382877.; X. Liu, H. Yu, Z. Shi, T. Xia and M. Hu, “Electromagnetic-Fluid-Thermal Field Calculationand Analysis of a Permanent Magnet Linear Motor”, ELSEVIER, Applied Thermal engineering, Southeast University, China, 2017. https://doi.org/10.1016/j.applthermaleng.2017.10.066.; 288; CREG - Comisión de Regulación de Energía y Gas, «Regulación Aplicable al Biogás,» Comisión de Regulación de Energía y Gas, 2009.; O. Harker, «Presentación del proyecto - Prototipo de Sistema de generación de energía eléctrica a partir de residuos sólidos,» Colciencias, Fusagasugá, 2019.; I. Vera, J. Martínez, M. Estrada y A. Ortiz, «Potencial de generación de biogás y energía eléctrica Parte I: excretas de ganado bovino y porcino,» Ingeniería Investigación y Tecnología, vol. 15, nº 3, pp. 429-436, 2014. Doi: https://doi.org/10.1016/S1405- 7743(14)70352-X.; I. D. B. Sierra, «Actualización del Plan de Gestión Integral de Residuos Sólidos PGIRS de Fusagasugá,» Alcaldía de Fusagasugá, Fusagasugá, 2017.; L. D. Romero, «EL ESPECTADOR,» Tratar las basuras, lucha contrarreloj, 18 Junio 2015. [En línea]. Available: https://www.elespectador.com/noticias/bogota/tratar-basuras-lucha- contrarreloj-articulo-567135. [Último acceso: 13 abril 2020].; J. Niemczewska y G. Kolodziejak, «Landfill Gas Energy Technologies,» Instytut Nafty I Gazu, Cracovia, 2010. Disponible: https://www.globalmethane.org/Data/1022_LFG-Handbook.pdf.; R. Bove y P. Lunghi, «Electric power generation from landfill gas using traditional,» Energy Conversion and Management, vol. 47, p. 11, 2006. Doi: https://doi.org/10.1016/j.enconman.2005.08.017.; G. Blanco, E. Santalla, V. Córdoba y A. Levy, «Generación de electricidad a partir de biogás capturado de residuos sólidos urbanos: Un análisis teórico-práctico,» División de Energía: Banco Interamericano de Desarrollo, Buenos Aires, 2017. Disponible: https://publications.iadb.org/publications/spanish/document/Generación-de-electricidad- a-partir-de-biogás-capturado-de-residuos-sólidos-urbanos-Un-análisis-teórico- práctico.pdf.; Cogenera Mexico, «COGENERA MEXICO,» 2012. [En línea]. Available: http://www.cogeneramexico.org.mx/menu.php?m=77. [Último acceso: 5 Junio 2020].; ICONTEC, «Norma Técnica Colombiana GTC-24 "Gestión Ambiental. Residuos Sólidos. Guía para la separación en la fuente".,» Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), 2009.; Universidad de Cundinamarca, «Anexo 1. Protocolo para el manejo y pretratamiento de los RSO de la Plaza de Mercado del municipio de Fusagasugá.,» Anexos convocatoria Colciencias 829 - 2018 , Fusagasugá , 2020.; A. Andrade, A. Restrepo y J. Tibaquirá, «Estimación de biogás de relleno sanitario, caso de estudio: Colombia,» Entre ciencia e ingeniería, vol. 12, pp. 40-47, 2018. Doi: http://dx.doi.org/10.31908/19098367.3701.; Aqualimpia Engineering , «Aqualimpia,» [En línea]. Available:https://www.aqualimpia.com/biodigestores/biogas-purificacion/. [Último acceso: 22 05 2020].; W. Lema, «DESOTEC Actived Carbon,» 14 05 2014. [En línea]. Available: https://www.desotec.com/es/carbonologia/casos/eliminaci-n-del-sulfuro-de-hidr-geno-en- el-biog-s-parte-1. [Último acceso: 2020].; COLCIENCIAS, «Presentación del proyecto - Prototipo de Sistema de generación de energía eléctrica a partir de residuos sólidos,» Fusagasugá, 2019.; “El papel de la ciencia y la tecnología en la sociedad de conocimiento,” OCyT. https://www.ocyt.org.co/el-papel-de-la-ciencia-y-la-tecnologia-en-la-sociedad-de conocimiento/ (accessed Oct. 27, 2020).; A. Kapoor, S. I. Bhat, S. Shidnal, and A. Mehra, “Implementation of IoT (Internet of Things) and Image processing in smart agriculture,” in 2016 International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), Bengaluru, India, Oct. 2016, pp. 21–26, doi:10.1109/CSITSS.2016.7779434.; J. Zhou, D. Xiao, and M. Zhang, “Feature Correlation Loss in Convolutional Neural Networks for Image Classification,” in 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, Mar. 2019, pp. 219–223, doi:10.1109/ITNEC.2019.8729534.; T. Treebupachatsakul and S. Poomrittigul, “Bacteria Classification using Image Processing and Deep learning,” in 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), JeJu, Korea (South), Jun. 2019, pp. 1–3, doi:10.1109/ITC-CSCC.2019.8793320.; S. Dutta Gupta and A. K. Pattanayak, “Intelligent image analysis (IIA) using artificial neural network (ANN) for non-invasive estimation of chlorophyll content in micropropagated plants of potato,” Vitro Cell. Dev. Biol. - Plant, vol. 53, no. 6, pp. 520–526, Dec. 2017, doi:10.1007/s11627-017-9825-6.; A. M. Moreno-Jiménez, S. Loza-Cornejo, and M. Ortiz-Morales, “Efecto de luz LED sobresemillas de Capsicum annuum L. var. serrano,” vol. 17, no. 3, p. 7, 2017.; A. Rojas, “Flora Urbana Del Área Metropolitana De Bucaramanga,” Innovaciencia Fac.Cienc. Exactas Físicas Nat., vol. 5, no. 1 S1, Dec. 2017, doi:10.15649/2346075X.454.; A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with DeepConvolutional Neural Networks,” in Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–1105.; Y. A. Arévalo Ortega, S. R. Corredor Vargas y G. A. Higuera Castro, «Análisis forense con herramientas de hacking en dispositivos android,» Visión Electrónica, vol. 13, nº 1, pp. 162-177, 2019.; L. iyuan y H. Wenfeng, «Development of Puzzle Game for IOS Platform Based on Unity3D,» de 3rd International Conference on Applied Computing and Information Technology/2nd International Conference on Computational Science and Intelligence (ACIT-CSI), 2015.; A. Lima y E. A. da Costa, «Experimental Approach of the Asymptotic Computational Complexity of Shaders for Mobile Devices with OpenGL ES,» de Brazilian Symposium on Computer Games and Digital Entertainment, 2014.; B. J. Cox, The objective-C environment: past, present, and future, 1987.; G. Bournoutian y A. Orailoglu, «On-device objective-C application optimization framework for high-performance mobile processors,» de Design, Automation & Test in Europe Conference & Exhibition (DATE), 2014.; R. Rawlings, «bjective-C: an object-oriented language for pragmatists,» de Colloquium on Applications of Object-Oriented Programming, 1989.; G. Song, S. Ren, D. Zhang, K. Liu, Y. Sun y X. A. Wang, «Research on War Strategy Games on Mobile Phone based on Cocos2d-JS,» de 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2015.; S. Guozhi, R. Shuxia, Z. Dakun, L. Kunliang, S. Yumeng y A. W. Xu, «Research on War Strategy Games on Mobile Phone,» 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 151-155, 2015.; B. A. Brady, A. K. Jones y I. S. Kourtev, «Efficient CAD development for emerging technologies using Objective-C and Cocoa,» de International Conference on Electronics, Circuits and Systems, 2004, 2004.; C. W. Cho, C. P. Hong, J. C. Piao, Y. K. Lim y S. D. Kim, «Performance optimization of 3D applications by OpenGL ES library hooking in mobile devices,» de 13th International Conference Computer and Information Science (ICIS), 2014 IEEE/ACIS , 2014.; J. C. Piao, C. W. Cho, C. G. Kim, B. Burgstaller y S. D. Kim, «An Adaptive LOD Setting Methodology with OpenGL ES Library on Mobile Devices,» de International Conference on Convergence and Security (ICITCS), 2014.; F. A. Manrique Suarez, L. C. Velásquez Rodríguez y G. M. Tarazona Bermúdez, «Estado del arte sobre aplicaciones móviles: caso de estudio enfocado a estudiantes universitarios en Bogotá, Colombia,» Visión Electrónica, vol. 11, nº 2, pp. 279-288, 2017.; R. Besas, R. O. Atienza, T. Tai y R. Cruz, «An implementation of a structured and highly engaging learning environment on educational games for elementary education,» de IT in Medicine and Education (ITME), 2011.; C. Carter, Q. Mehdi y T. Hartley, «Navigational techniques to improve usability and user experience in RPG games,» de 17th International Conference on Computer Games (CGAMES), 2012.; C. Le Marc, J. P. Mathieu, M. Pallot y S. Richir, «Serious gaming: From learning experience towards User Experience,» de International Technology Management Conference (ICE), 2010.; S. F. Hsiao, S. Y. Li y K. H. Tsao, «Low-power and high-performance design of OpenGL ES 2.0 graphics processing unit for mobile applications,» de International Conference on Digital Signal Processing (DSP) , 2015.; S. F. Hsiao, P. H. Wu, C. S. Wen y L. Y. Chen, «Design of a programmable vertex processor in OpenGL ES 2.0 mobile graphics processing units,» de International Symposium on VLSI Design, Automation, and Test (VLSI-DAT), 2013.; X. Zhao y X. Huang, «A general solution of script-based fragment animation,» de 6th IEEE International ConferenceSoftware Engineering and Service Science (ICSESS), 2015.; L. Wang, «Design and Implementation of Four Arithmetic Operations Learning Games in Primary Mathematics Based on cocos2d-js,» 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE), pp. 595-598, 2018.; M. P. A. Balayan, V. V. B. Conoza, J. M. M. Tolentino, R. C. Solamo y R. P. Feria, «On evaluating skillville: An educational mobile game on visual perception skills. In Information, Intelligence, Systems and Applications,» de The 5th International Conference IISA 2014,, 2014.; B. Cassidy, G. Stringer y M. H. Yap, «Mobile Framework for Cognitive Assessment: Trail Making Test and Reaction Time Test,» de Computer and Information Technology (CIT), 2014.; Y. Lu, W. Gao y F. Wu, «Efficient background video coding with static sprite generation and arbitrary-shape spatial prediction techniques,» Transactions on Circuits and Systems for Video Technology, vol. 13, nº 5, pp. 394-405, 2013.; Cocos2D-x, «ARCHITECTURE OVERVIEW,» [En línea]. Available: http://www.cocos2d-x.org/wiki/Engine_Architecture. [Último acceso: 14 02 2016].; Y. Lu, Y. Liu y S. Dey, «loud mobile 3D display gaming user experience modeling and optimization by asymmetric graphics rendering,» IEEE Journal of Selected Topics in Signal Processing, vol. 9, nº 3, pp. 517-532, 2015.; S. Arefin Riffat, F. Harun y T. Hassan, «An Interactive Tele-Medicine System via Android Application,» Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA), pp. 148-152, 2020.; Y. Liu, H. Dar y R. Sharp, «Mobile Gamer Modelling and Game Performance Preference Measurement,» IEEE Conference on Games (CoG), pp. 632-635, 2020.; J. C. Piao, C. W. Cho, C. G. Kim, B. Burgstaller y S. D. Kim, «An adaptive LOD setting methodology with OpenGL ES library on mobile devices,» de IT Convergence and Security (ICITCS), 2014.; E. C. Chan y B. G. , «Appendix B: Introduction to Objective-C Programming in iPhone,» de Introduction to Wireless Localization: With iPhone SDK Examples, pp. 261-304.; Simulation Study on Duoplasmatron With Optimization of Ion Beam Extraction System S.Park and Y. Kim. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 45, NO. 6, JUNE 2017 955.; Aceleradores de partículas: Modelos para su diseño y la dinámica del haz MODELIZACIÓNAPLICADA A LA INGENIERÍA. R. Strangis. CYCLOTOPE, Houston, Texas, Estados Unidos. Junio 2011.; Presente y futuro de la implantación iónica: se describe la naturaleza, características,ventajas y desventajas de los tratamientos de superficie por implantación iónica; además el actual estado de desarrollo de esta tecnología, sus aplicaciones y las previsiones de su evolución en los próximos años. T. Rodríguez. 1998.; Modificación superficial de un acero AISI SAE 1045 mediante la implantación de iones denitrógeno y titanio. D. V. Salinas, D. Y. Peña y L. F. Chinchilla. Universidad Industrial de Santander UIS. Universidad Pontificia Bolivariana UPB. Julio 2011.; Microcavity engineering by plasma immersion ion implantation, Materials Chemistry andPhysics. P. K. Chu and N. W. Cheung. 57, 1998, 1-16.; A review of recent developments in ion implantation for metallurgical application. Se realizaeste trabajo o proyecto con el objetivo de identificar oportunidades para la aplicación industrial de la implantación iónica. R. Hutchings. 1994.; Experimental investigation on corrosion and hardness of ion implanted AISI 316L stainlesssteel. Materials & design technology. V. Muthukumaran. 2010.; Una mirada a los medios para diagnóstico por imágenes desde la educación médica. L.Esquivel Sosa, Y. Fleites García y Y. Jiménez González. EDUMECENTRO 2018;10(1): ISSN 2077-2874 RNPS 2234 Santa Clara ene.-mar.; La revolución científico-técnica y su impacto en las ciencias médicas. M. Hernández Pino.La Habana: Universidad Virtual de Salud Manuel Fajardo. 6 Sep 2016.; Imágenes Médicas: adquisición, análisis, procesamiento e interpretación. G. Passariello yF.Mora. Eds. Venezuela: Equinoccio, Ediciones de la Universidad Simón Bolívar;1995.; IMÁGENES DIAGNÓSTICAS: CONCEPTOS Y GENERALIDADES DIAGNOSTICIMAGES: CONCEPTS AND GENERALITIES I. R. Raudales Díaz. Rev. Fac. Cienc. Méd. Enero -Junio 2014.; Getting started in clinical radiology from image to diagnosis. G. W. Eastman, C. Wald andJ.Crossin. Germany: Thieme; 2005.; «Organización Mundial de la Salud,» 1 febrero 2018. [En línea]. Available:http://www.who.int/es/newsroom/fact-sheets/detail/cancer.; El Cáncer. J. G. de la Garza Salazar y P. Juárez Sánchez. Universidad Autónoma de NuevoLeón. Centro, Monterrey, Nuevo León, México, C.P. 64000 Primera edición, 2014.; Hadronterapia. J. L. Herranz, E. Herraiz, S. Vicente, J. España, J. L. Cal-Gonzalez y J. M.Udías. Primer Encuentro Complutense para la Divulgación en Física Nuclear y de Partículas [Internet]. gfn; 2008.; Proton Therapy: state of the art and clinical applications. I. López Moranchel and P. I.Maurelos Castell, 1). Centro de Formación Profesional San Juan de Dios, GENUD Toledo Research Group. (Universidad de Castilla-La Mancha). REVISTA OFICIAL DE LA SOCIEDAD ESPAÑOLA DE ENFERMERÍA ONCOLÓGICA. 2019.; Proton Therapy. A. R. Smith. Med Phys. 26 de enero de 2009 [citado 20 de abril de2019];36(2):556-68.; The risk of radiation-induced second cancers in the high to medium dose region: acomparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors. M. Moteabbed, T. I. Yock, H. Paganetti. Phys Medicina Biol [Internet]. 21 de junio de 2014 [citado 20 de abril de 2019];59(12):2883-99. D.; A Sealed-Accelerator-Tube Neutron Generator for Boron Neutron Capture TherapyApplication. K. N. Leung, Y. Lee, J. M. Verbeke, J. Vujic, M. D. Williams, L. K. Wu, N. Zahir. Lawrence Berkeley National Laboratory University of California Berkeley Berkeley USA Nuclear Engineering Department. La jolla, CA septiembre 1998.; Evaluación Preliminar de la Aceleración de D en un Generador de Neutrones D-DCompacto de Alto Flujo. J. A. Cifuentes Parada, Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Física Bogotá D.C., Colombia 2019.; Physics. D. Halliday and R. Resnick. Wiley; Part 2 edition, 1978.; Educational Applets: https://www.falstad.com/vector2de, https://www.falstad.com/vector3de.; M. Sereday, M. Damiano, and S. Lapertosa, “Amputaciones de Miembros Inferiores endiabéticos y no diabéti-cos en el ámbito hospitalario,” Alad(Asociación Larinoamericana de Diabetes), pp. 9–15, 2009, [Online]. Available: http://www.revistaalad.com.ar/pdfs/0905_Amp_de_Miem.pdf.; C. Quintero Quiroz, A. Jaramillo Zapata, M. T. De Ossa Jiménez, and P. A. Villegas Bolaños,“Estudio descriptivo de condiciones del muñón en personas usuarias de prótesis de miembros inferiores,” Rev. Colomb. Médicina Física y Rehabil., vol. 25, no. 2, pp. 94–103, 2018, doi:10.28957/rcmfr.v25n2a1.; L. H. Lugo and G. Desarrollador, “Guía de Práctica Clínica.”; O. Horgan and M. M. A. C. Lachlan, “Psychosocial adjustment to lower-limb amputation : Areview,” 2004, doi:10.1080/09638280410001708869.; B. L. Martín, M. Jesús, and P. Hernández-Rico, “Amputación.”; "Convocatoria para proyectos de Ciencia, Tecnología e Innovación y su contribución a losretos de país- 2018 %7C Convocatoria 808 %7C COLCIENCIAS.” https://www.colciencias.gov.co/convocatorias/investigacion/convocatoria-para-proyectos-ciencia-tecnologia-e-innovacion-y-su-0 (accessed Aug. 04, 2019).; W. L. Childers, R. S. Kistenberg, and R. J. Gregor, “The Biomechanics of Cycling with aTranstibial Amputation: Recommendations for Prosthetic Design and Direction for Future Research,” Prosthet. Orthot. Int., vol. 33, no. 3, pp. 256–271, Sep. 2009, doi:10.1080/03093640903067234.; I. Pinilla Giménez, “Juego serio para terapias de rehabilitación motora y cognitiva conrealidad virtual,” 2017, Accessed: Aug. 29, 2019. [Online]. Available: http://uvadoc.uva.es/handle/10324/23073.; G. Fiedler, J. Akins, R. Cooper, S. Munoz, and R. A. Cooper, “Rehabilitation of People withLower-Limb Amputations,” Curr. Phys. Med. Rehabil. Reports, vol. 2, no. 4, pp. 263–272, Dec. 2014, doi:10.1007/s40141-014-0068-8.; Prodalca, “Rodillo personal trainer con regulador de esfuerzo,” 2019. https://prodalca.com.co/producto/rodillo-personal-trainer-con-regulador-de-esfuerzo/.; C. Sun and Z. Qing, “Design and Construction of a Virtual Bicycle Simulator for EvaluatingSustainable Facilities Design,” Adv. Civ. Eng., vol. 2018, 2018, doi:10.1155/2018/5735820.; T. Instruments and I. Sloa, “Chapter 16 Active Filter Design Techniques Excerpted from OpAmps for Everyone Literature Number: SLOD006A.”; L. Xiong et al., “IMU-based automated vehicle slip angle and attitude estimation aided byvehicle dynamics,” Sensors (Switzerland), vol. 19, no. 8, 2019, doi:10.3390/s19081930.; Arduino Uno Rev3 %7C Arduino Official Store.” https://store.arduino.cc/usa/arduino-uno-rev3.; S. Sanghani, Stumps and Cranks: An Introduction to Amputee Cycling.; M. Ambrož, “Raspberry Pi as a low-cost data acquisition system for human poweredvehicles,” Meas. J. Int. Meas. Confed., vol. 100, pp. 7–18, 2017, doi:10.1016/j.measurement.2016.12.037.; F. Villarreal, “Introducción a los modelos de pronósticos,” Univ. Nac. del Sur, pp. 1–121,2016.; “pySerial 3.0 documentation.” https://pythonhosted.org/pyserial/.; “python-drawnow: MATLAB-like drawnow to easily update a figure.” https://github.com/stsievert/python-drawnow.; J. D. Rairan-Antolines and J. M. Fonseca-Gómez, “Algoritmo para la aproximación de lavelocidad de giro de un eje mediante un encoder incremental,” Ing. y Univ., vol. 17, no. 2, pp. 293–309, 2013.; MinSalud, “33 mil personas al año mueren de Cáncer en Colombia.” https://www.minsalud.gov.co/Paginas/33-mil-personas-al-año-mueren-de-Cáncer-en-Colombia.aspx.; D. Raúl Pefaur, “Imaginología actual del cáncer pulmonar,” Rev. Médica Clínica Las Condes, vol. 24, no. 1, pp. 44–53, 2013, doi: https://doi.org/10.1016/S0716-8640(13)70128-7.; C. R. José Miguel, “Estado actual del tratamiento del cáncer pulmonar,” Rev. Médica Clínica Las Condes, vol. 24, no. 4, pp. 611–625, 2013, doi: https://doi.org/10.1016/S0716-8640(13)70200-1.; Society American Cancer, “Cancer Statistics Center,” 2020. https://cancerstatisticscenter.cancer.org/?_ga=2.68534866.2102841857.1593652002-2027832360.1593652002#!/.; Diariopresente.mx, “Google desarrolla algoritmo que detecta el cáncer de pulmón,” 2018. [Online]. Available: https://www.diariopresente.mx/actualidad/google-desarrolla-algoritmo-que-detecta-el-cancer-de-pulmon/218050.; M. F. Abbod, J. W. F. Catto, D. A. Linkens, and F. C. Hamdy, “Application of ArtificialIntelligence to the Management of Urological Cancer,” J. Urol., vol. 178, no. 4, pp. 1150–1156, 2007, doi: https://doi.org/10.1016/j.juro.2007.05.122.; J. M. Purswani, A. P. Dicker, C. E. Champ, M. Cantor, and N. Ohri, “Big Data From SmallDevices: The Future of Smartphones in Oncology,” Semin. Radiat. Oncol., vol. 29, no. 4, pp. 338–347, 2019, doi: https://doi.org/10.1016/j.semradonc.2019.05.008.; K. Cieślak, “Professional psychological support and psychotherapy methods for oncologypatients. Basic concepts and issues,” Reports Pract. Oncol. Radiother., vol. 18, no. 3, pp. 121–126, 2013, doi: https://doi.org/10.1016/j.rpor.2012.08.002.; H. Contreras, “Teoria de la Computacion para Ingeniería de Sistemas: Un enfoque practico.”Caracas: Saber, Ula. V, 2012, [Online]. Available: https://d1wqtxts1xzle7.cloudfront.net/39872592/tema1.pdf?1447177931=&response-content-disposition=inline%3B+filename%3DTema1.pdf&Expires=1594305464&Signature=Fe86rqeud4Y7osvWzUUhOYTIZCaL-k~pJaar2XxVbujlot-4xV9wYpduKdxkZ5zHaSPhUOCcpH1v0k7Y5shbONvWqbXmdTzdO.; A. GALIPIENSO, M. ISABEL, M. A. CAZORLA QUEVEDO, O. Colomina Pardo, F.ESCOLANO RUIZ, and M. A. LOZANO ORTEGA, Inteligencia artificial: modelos, técnicas y áreas de aplicación. Editorial Paraninfo, 2003.; J. V. González, O. A. V. Arenas, and V. V. González, “Semiología de los signos vitales:Una mirada novedosa a un problema vigente,” Arch. Med., vol. 12, no. 2, pp. 221–240, 2012, [Online]. Available: https://www.redalyc.org/pdf/2738/273825390009.pdf.; Liip.care, “Liip Smart Monitor,” 2019. https://liip.care/es/.; Welchallyn.com, “Equipos de signos vitales,” 2018.; Welchallyn.com, “Equipos de signos vitales,” 2018. https://www.welchallyn.com/content/welchallyn/latam/es/products/categories/patient-monitoring/vital-signs-devices.html#.; Scikit-learn.org, “Scikit-learn machine learning in python,” 2019. https://scikit-learn.org/stable/index.html.; Cancer Treatment Centers of America, “Lung cancer stages,” 2020. https://www.cancercenter.com/cancer-types/lung-cancer/stages.; NIH (Instituto Nacional del Cáncer), “¿Qué es el cancer?,” 2015. https://www.cancer.gov/espanol/cancer/naturaleza/que-es%0A.; Roger S. Pressman. (2010). Ingeniería del Software Un enfoque práctico. Vol. 3, SéptimaEdición. pp. 70.; Castro, F.D. (2008). Metodologia de projeto centrada na casa da qualidade. Tesis deMaestría, universidade federal rio grande do sul, Porto Alegre, Brasil.; Pahl, G., & Beits, W. (2013). Engineering design: a systematic approach. Springer ScienceBusiness Media.; R. De Armas, A. Alfonso, y L. Rojas, “Tomografía local con bases daubechies", VisiónElectrónica, vol. 9, no. 2, pp. 300-311, 2015.; C. H. Caicedo y A. Smida, “Intensidad informacional para la longitudinalidad asistencial ensistemas de salud", Visión Electrónica, vol. 10, no. 1, pp. 83-95, 2016. https://doi.org/10.14483/22484728.11612.; J. R. Torres Castillo, J. S. Pérez Lomelí, E. Camargo Casallas, y M. Ángel PadillaCastañeda, “Dispositivo háptico vibrotáctil inalámbrico para asistencia de actividades motoras", Visión Electrónica, vol. 12, no. 1, pp. 58-64, 2018. https://doi.org/10.14483/22484728.13310.; N. W. S. US Department of Commerce, NOAA, “Your National Weather Service: Evolvingto Build a Weather-Ready Nation,” 2017. https://www.weather.gov/about/wrn (accessed Oct. 17, 2020).; NOAA,“AboutOur Agency %7C National Oceanic and AtmosphericAdministration.” https://www.noaa.gov/about-our-agency (accessed Oct. 17, 2020).; NOAA, “Marina y aviación %7C Administración Nacional Oceánica y Atmosférica,” 2020.https://www.noaa.gov/marine-aviation (accessed Oct. 25, 2020).; N. NESDIS, “About %7C NOAA National Environmental Satellite, Data, and Information Service(NESDIS),” 2019. https://www.nesdis.noaa.gov/content/about (accessed Oct. 25, 2020).; NOAA,“Gráficos %7C Administración Nacional Oceánica yAtmosférica,”2020. https://www.noaa.gov/charting (accessed Oct. 25, 2020).; NOAA,“Educación Administración Nacional Oceánica y Atmosférica,”2019. https://www.noaa.gov/education (accessed Oct. 25, 2020).; N. N. O. and A. A. US Department of Commerce, “National Oceanic and AtmosphericAdministration (NOAA) Staff Directory Page,” 2018.; N. O. and A. A. US Department of Commerce, “NOAA’s National Ocean Service,” 2019.; R. Weiher, “Assessing the Economic & Social Benefits of NOAA Data,” 2008. Accessed:Nov. 19, 2020. [Online]. Available: https://www.oecd.org/sti/ieconomy/40066192.pdf.; H. Kite-Powell, “Estimating Economic Benefits from NOAA PORTS ® Information: A CaseStudy of Houston,” 2007. Accessed: Nov. 19, 2020. [Online]. Available: https://tidesandcurrents.noaa.gov/publications/EstimatingEconomicBenefitsfromNOAAPORTSIn formation_Houston-Galveston.pdf.; NASA, “Órbitas de Satélites,” 2020. https://scool.larc.nasa.gov/Spanish/orbits-sp.html(accessed Oct. 17, 2020).; N. OSPO, “GOES Status - Office of Satellite and Product Operations,” Aug. 15, 2019.https://www.ospo.noaa.gov/Operations/GOES/status.html (accessed Oct. 17, 2020).; N.OSPO, “POES Operational Status- POESStatus- OSPO,”Mar. 22, 2019. https://www.ospo.noaa.gov/Operations/POES/status.html (accessed Oct. 19, 2020).; NOAA, “NOAA Readies GOES-15 and GOES-14 for Orbital Storage %7C NOAA NationalEnvironmental Satellite, Data, and Information Service (NESDIS),” Jan. 29, 2020. https://www.nesdis.noaa.gov/content/noaa-readies-goes-15-and-goes-14-orbital-storage (accessed Oct. 17, 2020).; N. OSPO, “Suomi-NPP Operational Status - Office of Satellite and Product Operations,”Apr. 14, 2016. https://www.ospo.noaa.gov/Operations/SNPP/status.html (accessed Oct. 19, 2020).; X. Zou and X. Tian, “COMPARISON OF ATMS STRIPING NOISE BETWEEN NOAA-20AND S- NPP Xiaolei Zou and Xiaoxu Tian Earth System Science Interdisciplinary Center , University of Maryland , College Park , MD 20740,” IEEE Int. Geosci. Remote Sens. Symp., pp. 3105–3108, 2018, doi:10.1109/IGARSS.2018.8517482.; X. Tian, X. Zou, and N. Sun, “COMPARISON OF RO-ESTIMATED ATMS BIASESBETWEEN NOAA-20 AND S-NPP Earth System Science Interdisciplinary Center , University of Maryland , College Park , MD 20740 Earth Resources Technology ( ERT ), Inc ., Laurel , MD20707 , USA,” IEEE Int. Geosci. Remote Sens. Symp., pp. 3101–3104, 2018, doi:10.1109/IGARSS.2018.8519416.; W. Wang, C. Cao, Y. Bai, S. Blonski, and M. A. Schull, “Assessment of the NOAA S-NPPVIIRS geolocation reprocessing improvements,” Remote Sens., vol. 9, no. 10, 2017, doi:10.3390/rs9100974.; N. NESDIS, “Imágenes del sector: América del Sur - Norte - NOAA / NESDIS / STAR,”2020. https://www.star.nesdis.noaa.gov/GOES/sector.php?sat=G16&sector=nsa (accessed Oct. 17, 2020).; S. A. Buehler, V. O. John, A. Kottayil, M. Milz, and P. Eriksson, “Efficient radiative transfersimulations for a broadband infrared radiometer-Combining a weighted mean of representative frequencies approach with frequency selection by simulated annealing,” J. Quant. Spectrosc. Radiat. Transf., vol. 111, no. 4, pp. 602–615, 2010, doi:10.1016/j.jqsrt.2009.10.018.; U.S. DEPARTMENT OF COMERCE, National Oceanic and Atmospheric Adminitration,and and National Environmental Satellite, Data, “National Oceanic and Atmospheric Administration User’s Guide for Building and Operating Environmental Satellite Receiving Stations,” Feb. 2009. Accessed: Oct.17,2020. [Online]. Available: https://noaasis.noaa.gov/NOAASIS/pubs/Users_GuideBuilding_Receive_Stations_March_2009.pdf.; J. Mitola, “The Software Radio Architecture,” Softw. Radio Technol., vol. 33, no. May, pp.26–38, 2009, doi:10.1109/9780470546444.ch1.; V. Dascal, P. Dolea, O. Cristea, and P. Tudor, “Advanced Vhf Ground Station for NoaaWeather Satellite Apt Image Reception,” Acta Tech. Napocensis, vol. 53, no. 3, pp. 1–7, 2012.; C. Bosquez, A. Ramos, and L. Noboa, “System for receiving NOAA meteorological satelliteimages using software defined radio,” Proc. 2016 IEEE ANDESCON, ANDESCON 2016, pp. 0– 3, 2016, doi:10.1109/ANDESCON.2016.7836233.; C. Velasco and C. Tipantuna, “Meteorological picture reception system using softwaredefined radio (SDR),” 2017 IEEE 2nd Ecuador Tech. Chapters Meet. ETCM 2017, vol. 2017-Janua, pp. 1–6, 2017, doi:10.1109/ETCM.2017.8247551.; E. B. Mikkelsen, “The Design of a Low Cost Beacon Receiver System using SoftwareDefined Radio,” Inst. Elektron. og telekommunikasjo, no. July, pp. 1–83, 2009, [Online]. Available: https://hdl.handle.net/11250/2369478.; D. J. M. Peralta, D. S. Dos Santos, A. Tikami, W. A. Dos Santos, and E. W. R. Pereira,“Satellite telemetry and image reception with software defineradio applied to space outreach projects in brazil,” An. Acad. Bras. Cienc., vol. 90, no. 3, pp. 3175–3184, 2018, doi:10.1590/0001- 3765201820170955.; A. G. C. Guerra, A. S. Ferreira, M. Costa, D. Nodar-López, and F. Aguado Agelet,“Integrating small satellite communication in an autonomous vehicle network: A case for oceanography,” Acta Astronaut., vol. 145, no. November 2017, pp. 229–237, 2018, doi:10.1016/j.actaastro.2018.01.022.; J. Lee Min, “Decoding Signals From Weather Satellites Using Software Defined Radio,”Electron.Theses Diss., vol. 3, no. 2, pp. 1–70, 2018, doi:10.18041/2382-3240/saber.2010v5n1.2536.; Icom, “INSTRUCTON MANUAL iPCR1500 iPCR2500,” Screen. Icom, Osaka, pp. 45–49,2006, [Online]. Available: http://www.icomamerica.com/es/products/receivers/pc/pcr1500/default.aspx.; National Instruments, “SPECIFICATIONS USRP-2920,” Jul. 13, 2017. https://www.ni.com/pdf/manuals/375839c.pdf (accessed Oct. 19, 2020).; RTL-SDR, “RTL-SDR Blog V3 Datasheet,” Feb. 2018. Accessed: Oct. 19, 2020. [Online].Available: https://www.rtl-sdr.com/wp-content/uploads/2018/02/RTL-SDR-Blog-V3- Datasheet.pdf.; N. Crisan and L. Cremene, “NOAA Signal Decoding And Image Processing Using GNU-Radio,” Acta Tech. Napocensis, vol. 49, no. 4, pp. 1–5, 2012.; D. Aguirre and P. R. Yanyachi, “Design of a parabolic patch antenna in band L, with doublelayer and air substrate, for weather satellite reception,” 2017 6th Int. Conf. Futur. Gener. Commun. Technol. FGCT 2017, pp. 10–14, 2017, doi:10.1109/FGCT.2017.8103395.; Y. Rafsyam, Z. Indra, E. E. Khairas, Jonifan, and W. A. Karimah, “Design of Double CrossDipole Antenna as NOAA Satellite Signal Receiver for Monitor Cloud Conditions Application,” J.Phys. Conf. Ser., vol. 1364, no. 1, 2019, doi:10.1088/1742-6596/1364/1/012059.; M. Fathurahman, Zulhelman, A. Maulana, and M. Widyawati, “Design and Development ofDipole Antenna for NOAA Satellite Image Acquisition System and Processing,” J. Phys. Conf. Ser., vol. 1364, no. 1, 2019, doi:10.1088/1742-6596/1364/1/012025.; F. P. A. Escobedo, H. R. Alvarez, H. Salazar, C. G. R. Percing, and R. L. J. M. De Oca,“Low cost optimization method of a double cross antenna satellite reception system for the processing and improvement of meteorological satellite signals and images NOAA 15-18-19,” Proc. 2019 IEEE 1st Sustain. Cities Lat. Am. Conf. SCLA 2019, pp. 1–6, 2019, doi:10.1109/SCLA.2019.8905749.; A. E. Quiroz-Olivares, N. I. Vargas-Cuentas, G. W. Zarate Segura, and A. Roman-Gonzalez, “Low-cost and portable ground station for the reception of NOAA satellite images,”Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 5, pp. 450–454, 2019, doi:10.14569/ijacsa.2019.0100557.; M. L. Keefer et al., “Evaluating the NOAA Coastal and Marine Ecological ClassificationStandard in estuarine systems: A Columbia River Estuary case study,” Estuar. Coast. Shelf Sci., vol. 78, no. 1, pp. 89–106, 2008, doi:10.1016/j.ecss.2007.11.020.; A. K. Mitra, P. K. Kundu, A. K. Sharma, and S. K. Roy Bhowmik, “A neural networkapproach for temperature retrieval from AMSU-a measurements onboard NOAA-15 and NOAA-16 satellites and a case study during Gonu cyclone,” Atmosfera, vol. 23, no. 3, pp. 225–239, 2010.; D. J. Schneider and M. J. Pavolonis, “ADVANCES IN VOLCANO MONITORING : THEROLE OF JPSS INSTRUMENTS U . S . Geological Survey-Alaska Volcano Observatory , Anchorage , AK NOAA Cooperative Institute for Meteorological Satellite Studies , Madison , WI,” IEEE Int. Geosci. Remote Sens. Symp., pp. 2798–2801, 2017, doi:10.1109/IGARSS.2017.8127579.; C. Muñoz, P. Acevedo, S. Salvo, G. Fagalde, and F. Vargas, “Detección de incendiosforestales utilizando imágenes NOAA/16-LAC en la Región de la Araucanía, Chile,” Bosque, vol. 28, no. 2, pp. 119–128, 2007, doi:10.4067/s0717-92002007000200004.; L. Carro-Calvo, C. Casanova-Mateo, J. Sanz-Justo, J. L. Casanova-Roque, and S.Salcedo- Sanz, “Efficient prediction of total column ozone based on support vector regression algorithms, numerical models and Suomi-satellite data,” Atmosfera, vol. 30, no. 1, pp. 1–10, 2017, doi:10.20937/ATM.2017.30.01.01.; A. Antón, R. Martínez, M. A. Salas, and A. Torre, “Performance analysis andimplementation of spatial and blind beamforming algorithms for tracking leo satellites with adaptive antenna arrays,” in European Conference on Antennas and Propagation, EuCAP 2009, Proceedings, 2009, pp. 216–220.; S. Soisuvarn, Z. Jelenak, P. S. Chang, Q. Zhu, and G. Sindic-Rancic, “Validation of noaa’snear real-time ascat ocean vector winds,” Int. Geosci. Remote Sens. Symp., vol. 1, no. 1, pp. 118–121, 2008, doi:10.1109/IGARSS.2008.4778807.; A. Huang, L. Gumley, K. Strabala, S. Mindock, R. Garcia, and G. Martin, “COMMUNITYSATELLITE PROCESSING PACKAGE FROM DIRECT BROADCAST : PROVIDING REAL- TIME SATELLITE DATA TO EVERY CORNER OF THE WORLD Space Science and Engineering Center ( SSEC ) Cooperative Institute for Meteorological Studies ( CIMSS ) University of Wisconsin,” IEEE Int. Geosci. Remote Sens. Symp., pp. 5532–5535, 2016, doi:10.1109/IGARSS.2016.7730443.; K. R. Al-Rawi and J. L. Casanova, “APLICACIÓN DE LAS REDES NEURONALES PARAEL CONTROL Y SEGUIMIENTO EN TIEMPO REAL DE LOS INCENDIOS FORESTALES MEDIANTE IMÁGENES NOAA-AVHRR,” in TELEDETECCION. Avances y Aplicaciones.VIII Congreso Nacional de teledeteccion, 1999, no. January, pp. 244–247.; Organización Meteorología Mundial, “IDEAM se fortalece en monitoreo y seguimiento dehuracanes (IDEAM, Columbia) %7C Organización Meteorológica Mundial,” Feb. 07, 2013. https://public.wmo.int/es/media/news-from-members/ideam-se-fortalece-en-monitoreo-y- seguimiento-de-huracanes-ideam-columbia (accessed Oct. 26, 2020). [49] IDEAM, “VISOR DE IMÁGENES SATÉLITALES - IDEAM.” http://www.pronosticosyalertas.gov.co/imagsatelital-portlet/html/imagsatelital/view.jsp (accessed Oct. 26, 2020).; NOAA, “National Oceanic and Atmospheric Administration %7C U.S. Department ofCommerce.” https://www.noaa.gov/ (accessed Oct. 26, 2020). IDEAM, “IDEAM - IDEAM.” http://www.ideam.gov.co/ (accessed Oct. 26, 2020).; J. S. M. G, J. E. Ar, and M. L. Su, “Comparacion De Herramientas De Software Para LaCoordinacion Internacional Del Roe En La Orbita Geoestacionaria,” Visión Electrónica algo más que un estado sólido, vol. 9, no. 1, pp. 5–12, 2016, doi:10.14483/22484728.11009.; Google Cloud, “Weather, climate big data from NOAA now in cloud %7C Google Cloud Blog,”Dec.19, 2019. https://cloud.google.com/blog/products/data-analytics/weather-climate-big-data-from-noaa-now-in-cloud (accessed Oct. 26, 2020).; Amazon Web Services, “Registry of Open Data on AWS,” Dec. 19, 2019.https://registry.opendata.aws/collab/noaa/ (accessed Oct. 26, 2020).; NOAA, “Cloud platforms unleash full potential of NOAA’s environmental data %7C NationalOceanic and Atmospheric Administration,” Dec. 19, 2019. https://www.noaa.gov/media-release/cloud- platforms-unleash-full-potential-of-noaa-s-environmental-data (accessed Oct. 26, 2020).; J. A. Niño, L. Y. Martínez y F. H. Fernández “Mano robótica como alternativa para laenseñanza de conceptos de programación en Arduino”, Revista Colombiana de Tecnologías de Avanzada, vol. 2, no. 28, pp. 132 - 139, may 2016.; C. Flores-Vázquez, A. Rojas y K. Trejo, “Operación remota de un robot móvil usando unteléfono inteligente” INGENIUS, núm. 17, 2017.; A. Cerón, “Sistemas robóticos teleoperados” Ciencia e Ingeniería Neogranadiana, no. 15,pp. 62-72, 2005.; A. M. Rivera, L. A. O’Farril, C. Miguélez, P. Martínez y I. O. Benítez “Caracterización del ez-robot para su utilización en la robótica educativa”, Serie Científica de la Universidad de las Ciencias Informáticas, vol. 12, no. 11, pp. 73 - 80, nov 2019.; M. G. da Silva, C. S. González “PequeBot: Propuesta de un Sistema Ludificado de RobóticaEducativa para la Educación Infantil”, Actas del V Congreso Internacional de Videojuegos y Educación (CIVE'17), 2017.; A. Marroquín, A. Gómez y A. Paz “Design and implementation of Explorer Mobile Robotcontrolled remotely using IoT Technology”, 2017.; R. Batista, " Diseño e implementación de un sistema de iluminación inteligente de interiores”, tesis Eng., Universidad Tecnológica de La Habana “José A. Echeverría” CUJAE, La Habana, Cuba, 2019.; S. Companioni, "Procesamiento de imágenes, obtenidas por un vehículo autónomo, para elreconocimiento de daños en cultivos ”, tesis Eng, Universidad Tecnológica de La Habana “José A.Echeverría” CUJAE, La Habana, Cuba, 2020.; J. A. Licona, “Diseño y desarrollo de un robotmóvil a bajo costo para niños: EcateBot”, thesisEng, Universidad Autónoma del estado de México, México D.F, México, 2019.; R. A. Moreno, Desarrollo de aplicaciones para Android usando MIT App Inventor 2, 1eraed. Bogotá: Autoedición, 2016.; L. A. Velazco, "Diseño de un sistema de control basado en linealización por realimentaciónpara robot móvil tipo Ackerman con velocidad variable y movimiento en doble sentido describiendo trayectorias óptimas " thesis MSc, Pontificia Universidad Católica del Perú, Lima, Perú, 2019.; C. Vázquez, "Framework de comunicaciones para robótica educativa, distributiva ycolaborativa” thesis Eng, Universidad de Extremadura, Badajoz, España, 2019.; L. Rodríguez, "Diseño e implementación de una Estación Meteorológica para la agriculturabasada en Arduino", thesis Eng, Universidad Tecnológica de La Habana “José A. Echeverría” CUJAE, La Habana, Cuba, 2019.; D. Higuera, J. Guzmán, A. Rojas “Implementando las metodologías steam y abp en laenseñanza de la física mediante Arduino”, III Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y Móvil AmITIC, pp 133 – 137, 2019.; J.M. Nova, " Diseño y desarrollo de una aplicación para monitorear la concentración deCO y CH4 en dispositivos móviles Android". thesis Eng, Universidad Pontificia Bolivariana, Bucaramanga, Colombia, 2018.; ECDRUM. “Circuito – inversión de giro de un motor de CD con relés”, 2018, [Online]Available at http: //ecdrumdownload.blogspot.com. “Manual de la GoPro H9”, 2017, [Online] Available at http: //www.google.com.; R. a. markets, «Research and Markets,» 2020.[En línea]. Available: https://www.globenewswire.com/news-release/2020/03/18/2002434/0/en/IoT-in-the-Global-Retail-Market-2020-2025-Analyzed-by-Platform-Hardware-Service-Application-and-Region.html. [Último acceso: 4 7 2020].; H. T. a. S. Dustdar, «Principles for Engineering IoT Cloud Systems,» IEEE Cloud Computing, vol. II, nº 2, pp. 68-76, 2015.; A. Rahmani, N. K. Thanigaivelan, T. N. Gia, J. Granados, B. Negash, P. Liljeberg y H. Tenhunen, «Smart e-Health Gateway :,» Consumer Communications and Networking Conference (CCNC), 12th Annual IEEE, pp. 826-834, 2015.; P. Desai, A. Sheth y P. Anantharam, «Semantic Gateway as a Service Architecture for IoT Interoperability,» 2015 IEEE International Conference on Mobile Services, pp. 313-319, 2015.; A. A. Sánchez Martín, E. González Guerrero y L. E. Barreto Santamaría, «Prospective integration between Environmental Intelligence (AMI), Data Analytics (DA), and Internet of Things (IoT),» 2019 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI ), pp. 1-6, 2019.; I. A. M. M. J.-M. R. J.-C. T. M. Berrouyne, «A Model-Driven Approach to Unravel the Interoperability Problem of the Internet of Things,» de Barolli, L., Amato, F., Moscato, F., Enokido, T., & Takizawa, M. (Eds.). (2020). Advanced Information Networking and Applications. Advances in Intelligent Systems and Computing. doi:10.1007/978-3-030-44041-1 , Caserta, Italia, 2020.; D. Yacchirema y C. E. Palau Salvador, «Smart IoT Gateway for Heterogeneous Devices Interoperability,» IEEE Latin America Transactions, vol. 14, nº 8, pp. 3900-3906, 2016.; C. Dergarabedian, «La fuerte apuesta de Samsung a la Internet de las cosas para simplificar la vida cotidiana de los usuarios,» iProfesional, 10 Enero 2018.; OpenIoT Consortium, «Open Source cloud solution for the Internet of Things,» OpenIoT, 1 Septiembre 2019. [En línea]. Available: http://www.openiot.eu/. [Último acceso: 02Marzo 2020].; E. González Guerrero, L. E. Barreto Santamaría y A. A. Sánchez Martín, «Integrated Model AmI-IoT-DA for Care of Elderly People,» de Advances in Computing. CCC 2018, Bogotá, 2018.; N. Al-Oudat, A. Aljaafreh, M. Saleh y M. Alaqtash, «IoT-Based Home and Community Energy Management System in Jordan,» Tafila Technical University, vol. CLX, pp. 142-148, 2019.; F. Herrera Araújo, M. A. Ardila Lara, E. Gutiérrez Gil y D. Herrera Téllez, «ODS en Colombia: Los retos para 2030,» Programa de las Naciones Unidas para el Desarrollo -PNUD-, Bogotá, 2018.; M. Unis, A. Nettsträter, F. Iml, J. Stefa, C. S. D. Suni, A. Salinas y U. Sapienza, «Internet of Things-Architecture IoT-A Final architectural reference model for the IoT,» 2013.; F. Leiva, «La agricultura de precisión: una producción más sostenible y competitiva con visión futurista,» VIII Congreso de la Sociedad Colombiana de Fitomejoramiento y Producción de Cultivos, vol. 93, nº 997-1006, p. 7, 2003.; F. A. Urbano Molano, «Wireless Sensor Networks Applied to Optimization in Precision Agriculture for Coffee Crops in Colombia,» Journal de Ciencia e Ingenier´ıa, vol. 5, nº 1, pp. 46-52, 2013.; IERC, «IoT Semantic Interoperability:Research Challenges, Best,» 2011.; M. MARJANI, F. NASARUDDIN, A. GANI, A. KARIM, I. A. TARGIO HASHEM, A. SIDDIQA y . I. YAQOOB, «Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges,» IEEE Access, vol. V, nº 2, p. 15, 2017.; W. Ruíz Martínez , Y. Díaz Gutiérrez, R. Ferro Escobar y L. Pallares, «Application of the Internet of Things through a Network of Wireless Sensors ina Coffee Crop for Monitoring and Control its Environmental Variables,» TecnoLógicas, vol. 22, nº 46, pp. 2-17, 2019.; C. A. Barry, «Choosing Qualitative Data Analysis Software: Atlas/ti and Nudist Compared,» Sociological Research Online, vol. III, nº 3, p. 16–28, 1998.; J. Macias, H. Pinilla, W. Castellanos y J. D. Alvarado, «Sistema de monitoreo de variables ambientales usando IOT,» Tech Fest, 2019.; J. Macías, H. Pinilla, W. Castellanos, J. D. Alvarado y A. Sánchez, «DISEÑO E IMPLEMENTACIÓN DE UN GATEWAY IOT MULTIPROTOCOLO,» 14° CONGRESO INTERNACIONAL DE ELECTRÓNICA, CONTROL Y TELECOMUNICACIONES, vol. 13, pp. 179-198, 2019.; A. A. Sánchez Martín, L. E. Barreto Santamaría, J. J. Ochoa Ortiz y S. E. Villanueva Navarro, «EMULADOR PARA DESARROLLO DE PROYECTOS IOT Y ANALITICAS DE DATOS,» de XII Congreso Internacional de Electrónica, Control y Telecomunicaciones, Bogota, 2019.; allmeteo, «Agro IoT Weather Sensor: AN AFFORDABLE SOLUTION FOR DISTRIBUTED WEATHER MONITORING FOR AGRICULTURE, FARMING & WINE YARDS.,» BARANI DESIGN Technologies s.r.o., 2018. [En línea]. Available: https://www.allmeteo.com/agriculture-iot-weather-station. [Último acceso: 02 03 2020].; LEMKEN, «LEMKEN: The Agrovision Company,» LEMKEN , 2020. [En línea]. Available: https://smartfarming.lemken.com/en/. [Último acceso: 02 03 2020].; RIGADO, «Cascade IoT Gateway: Edge Bluetooth® connectivity & secure data processing,» RIGADO, 2016-2020. [En línea]. Available: https://www.rigado.com/cascade-iot-gateway/. [Último acceso: 02 03 2020].; NXP Semiconductors, «IoT Gateway Solution: Complete development platform that brings together the building blocks for secure, production-ready IoT systems,» NXP Semiconductors, 2006-2020. [En línea]. Available: https://www.nxp.com/design/designs/iot-gateway-solution:IOT-GATEWAY-SOLUTION.[Último acceso: 02 03 2020].; Google, Google Big Query Analytics, United States of America : John Wiley & Sons, Inc., 2014.; P. P. Ray, «A survey of IoT cloud platforms,» Future Computing and Informatics Journal, vol. 1, nº 1-2, pp. 35-46, 2016.; J. C. Najar-Pacheco, J. A. Bohada-Jaime y W. Y. Rojas-Moreno, «Vulnerabilidades en el internet de las cosas,» Visión Electrónica, vol. 13, nº 2, pp. 312-321, 2019.; K. Husenovic, I. Bedi, and S. Maddens, Sentando las bases para la 5G: Oportunidades ydesafíos. ITU, 2018 [Online]. Available: https://www.itu.int/dms_pub/itu-d/opb/pref/D-PREF-BB.5G_01-2018-PDF-S.pdf; GSMA, “Study on Socio-Economic Benefits of 5G Services Provided in mmWave Bands.”Reportes GSMA, 2018 [Online]. Available: https://www.gsma.com/spectrum/wp-content/uploads/2019/10/mmWave-5G-benefits.pdf.; 5G Américas, Identificación de habilitadores para redes 4G y 5G en América Latina. 2020[Online]. Available: https://brechacero.com/wp-content/uploads/2020/04/WP-Identificaci%C3%B3n-de-habilitadores-para-la-implementaci%C3%B3n-de-redes-4G-y-5G-en-Am%C3%A9rica-Latina.pdf.; GSMA, The Mobile Economy. GSM Association, 2020 [Online]. Available:https://www.gsma.com/mobileeconomy/wpcontent/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf.; N. Vyakaranam and S. Dilip Krishna, “5G: Network As A Service - How 5G enables thetelecom operators to lease out their network,” 22-Mar-2018. [Online]. Available: https://netmanias.com/en/?m=view&id=blog&no=13311. [Accessed: 20-Nov-2020].; J. C. Martínez, J de J. Rugeles y E. P. Estupiñán. “Análisis de ocupación espectral bandaGSM 850 en Bogotá”. Visión Electrónica, algo más que un estado sólido, Vol. 12, No. 1, 5-13, enero-junio 2018. https://doi.org/10.14483/22484728.14801.; Ericsson, “5G architecture next mobile technology %7C Whitepaper,” 01-Jan-2017. [Online].Available: https://www.ericsson.com/en/reports-and-papers/white-papers/5g-systems--enabling-the-transformation-of-industry-and-society. [Accessed: 18-Nov-2020].; H. Ekström, “Non-standalone and Standalone: two paths to 5G,” 2019. [Online]. Available:https://www.ericsson.com/en/blog/2019/7/standalone-and-non-standalone-5g-nr-two-5g tracks. [Accessed: 16-Oct-2020].; 3 GPP, “Release 15 Description,” 3rd Generation Partnership Project (3GPP), 2019 [Online]Available:https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3389.; L. Casaccia, “Propelling 5G forward: A closer look at 3GPP Release 16.” 07-Jul-2020[Online]. Available: https://www.qualcomm.com/news/onq/2020/07/07/propelling-5g-forward-closer-look-3gpp-release-16. [Accessed: 12-Oct-2020].; M. Clark, C. Vanoli, and A. Smith, Abrir sendas hacia 5G. ITU News Magazine, 2017[Online]. Available: https://www.itu.int/en/itunews/Documents/2017/2017-02/2017_ITUNews02-es.pdf.; GSMA, “Espectro 5G Postura de la GSMA sobre política pública,” GSMA, 2018 [Online].Available: https://www.gsma.com/latinamerica/wp-content/uploads/2019/03/5G-Spectrum-Positions-SPA.pdf. [Accessed: 05-Oct-2020].; 5G Américas, Análisis de las recomendaciones de espectro de la UIT en América Latina.White Papers 5G Américas, 2019, p. 6-21 [Online]. Available: https://brechacero.com/wp-content/uploads/2019/08/ES-Analisis-de-las-Recomendaciones-de-Espectro-de-la-UIT-en-America-Latina-2019-vf.pdf.; 5G Américas, Espectro para 5G: Banda 3,5 GHZ en América Latina. 2019 [Online].Available: https://brechacero.com/wp-content/uploads/2019/06/3.5-GHz-esp-ok.pdf.; Poder Legislativo, "Ley No. 14.235," Centro De Información Oficial, Ago 3, 1974.; Council of State, "ACT of 2004 No.151," Official Gazette of the Republic of Suriname, 2004.; QoSi, “Etude de la qualité d’expérience des opérateurs mobiles en Guyane Francaise,”Publicaciones QoSi, Francia, 2019 [Online]. Available: https://www.5gmark.com/news/2019/Barometre_4Gmark_Guyane_2019.pdf. [Accessed: 17-Jul-2020].; F. Staff. (Jul 8,). Claro, de Carlos Slim, iniciará la carrera del 5G en Brasil. Available:https://www.forbes.com.mx/tecnologia-claro-slim-5g-brasil/.; Telesur. (s.f.). 5G - Beyond Connectivity. Available: https://www.telesur.sr/5g/.; NOKIA. (Apr 10,). ANTEL and Nokia make the first 5G call on a commercial network inLatin America. Available: https://www.nokia.com/about-us/news/releases/2019/04/10/antel-and-nokia-make-the-first-5g-call-on-a-commercial-network-in-latin-america/.; ENACOM, "LEY ARGENTINA DIGITAL," Boletín Oficial De La Republica De Argentina,Dec 19, 2014.; Secretaría de Tecnologías de la Información, "Documento base sobre la identificación dedesafíos y necesidades de Espectro Radioeléctrico en Argentina," Boletin Oficial De La Republica De Argentina, pp. 1-36, 2019.; Asamblea Legislativa Plurinacional, "Ley General de Telecomunicaciones, Tecnologías dela Información y Comunicación" Gaceta Oficial De Bolivia, Ago 8, 2011.; Agencia Boliviana Espacial, "Satélite TUPAC KATARI," 2019.; Poder Legislativo, "Ley No. 13.879," Diario Oficial De La Unión, vol. 1, Oct 4, 2019.; ANATEL, “Anatel aprova consulta pública para implementar o 5G,” 06-Feb-2020. [Online].Available: https://www.anatel.gov.br/institucional/component/content/article/171-manchete/2491-anatel-aprova-consulta-publica-para-licitar-faixas-de-frequencias-para-o-5g. [Accessed: 20-May-2020].; SUBTEL, "CONSULTA PÚBLICA SOBRE PLAN NACIONAL 5G PARA CHILE," 2018.; SUBTEL. (Jan 14,). Consulta Pública 5G: Gobierno licitará cuatro bandas para generarmayor competencia y eficiencia espectral en el mercado móvil. Available: https://www.subtel.gob.cl/consulta-publica-5g-gobierno-licitara-cuatro-bandas-para-generar-mayor-competencia-y-eficiencia-espectral-en-el-mercado-movil/.; MINTIC, Plan 5G Colombia. Colombia: Planes Nacionales del MINTIC, 2019.; 5G Américas, “Temas en Regulación de Telecomunicaciones: Ecuador,” Publicaciones 5GAméricas, 2019 [Online]. Available: https://brechacero.com/white-papers/. [Accessed: 26-Jul-2020].; PUC, "ACT NO. 18- TELECOMMUNICATIONS ACT," The Official Gazette, Ago 5, 2016.; F. D'Almeida and D. Margot, La Evolución De Las Telecomunicaciones Móviles EnAmérica Latina Y El Caribe. (Publicaciones BID ed.) 20182.; Poder Legislativo, "LEY No. 642 DE TELECOMUNICACIONES," Gaceta Oficial De LaRepública Del Paraguay, 1995.; J. M. Perrotta, "Conatel pone fecha al 5G en Paraguay para después de 2024,"TeleSemana.Com, Jun 11, 2020. Available: http://www.telesemana.com/blog/2020/06/11/conatel-pone-fecha-al-5g-en-paraguay-para-despues-de-2024/.; OSIPTEL, "Reporte estadístico" Publicaciones OSIPTEL, Perú, Abril. 2020.; J. O. Prats Cabrera and P. Puig Gabarró, La gobernanza de las telecomunicaciones: Haciala economía digital. 2017, pp. 49–51 [Online]. Available: https://publications.iadb.org/es/node/14083.; LEY ORGÁNICA DE TELECOMUNICACIONES, "LEY ORGÁNICA DE TELECOMUNICACIONES," Gaceta Oficial De Venezuela, Feb 7, 2011.; N. Larocca, "Venezuela presenta una penetración 4G que la región alcanzó en 2016," Mar1, 2019. Available: http://www.telesemana.com/blog/2019/03/01/venezuela-presenta-una-penetracion-4g-que-la-region-alcanzo-en-2016/.; ARCEP, La régulation de l’Arcep au service des territoires connectés. 2020 [Online].Available: https://www.arcep.fr/collectivites/larcep-et-les-territoires.htm.; J. E. Garcia Orjuela, “Descripcion planta de tratamiento de agua - Icononzo, Tolima,” J.Chem. Inf. Model., 2014.; Gobernación del Tolima, “Estadísticas 2011-2014,” BMC Public Health, vol. 5, no. 1, pp.1–8, 2017.; J. E. Garcia Orjuela, “Propuesta de reducción de cargas contaminantes en el municipiode Icononzo, Tolima.” 2018.; Gobernación del Tolima, “Municipio de Icononzo,” 2019. [Online]. Available:https://www.tolima.gov.co/publicaciones/21123/municipio-de-icononzo/. [Accessed: 26-Apr-2020].; "Clima promedio en Icononzo, Colombia, durante todo el año - Weather Spark.” [Online].Available: https://es.weatherspark.com/y/23362/Clima-promedio-en-Icononzo-Colombia-durante-todo-el-año. [Accessed: 26-Apr-2020].; “Ósmosis Inversa %7C SEFILTRA %7C Expertos en purificación de fluidos.” [Online]. Available:https://www.sefiltra.com/productos/osmosis-inversa/. [Accessed: 21-Nov-2020].; S. L. Sanderson, E. Roberts, J. Lineburg, and H. Brooks, “Fish mouths as engineeringstructures for vortical cross-step filtration,” Nat. Commun., vol. 7, Mar. 2016.; “Las barbas de las ballenas.” [Online]. Available: https://universomarino.com/2011/02/04/las-barbas-de-las-ballenas/. [Accessed: 26-Apr-2020].; "PROCEDIMIENTO PARA LA OBTENCIÓN DE M ICROPIBRAS DE QUERATINA APARTIR DE RESIDUOS GANADEROS’ DESCRIPCIÓN Objeto de la Invención,” Jul. 2006.; R. D. E. Estudios and E. N. Psicolox, “Plumas: Implicancia ambiental y uso en la industriaagropecuaria,” vol. 21, no. 3, pp. 225–237, 2013.; I. E. Roca Girón, “Estudio de las propiedades y aplicaciones industriales del polietilenode alta densidad (PEAD),” J. Chem. Inf. Model., vol. 12 Suppl 1, no. 9, pp. 1–29, 2005.; 12]“Filtración (II): selección del equipo de filtrado %7C iAgua.” [Online]. Available:https://www.iagua.es/blogs/miguel-angel-monge-redondo/filtracion-ii-seleccion-equipo-filtrado. [Accessed: 26-Apr-2020].; ATDI, «5G: A revolution in evolution, even in 2017,» de RadioExpo, 2017.; MinTic, «Boletin trimestral de las Tic: Cifras Segundo Trimestre de 2019,» Ministerio de Tecnologías de la Información y las Comunicaciones , 2020.; CRC, «Reporte de industria sector TIC 2016,» Comisión de regulación de las comunicaciones, 2017.; Gupta , A., & Jha , R., «A Survey of 5G Network: Architecture and Emerging Technologies,» IEEE Access, pp. 1206-1032, 2015.; K. E. Requena, D. M. Rozo y J. E. Arévalo, «Radiopropagation simulations comparison in millimeter waves frequencies for fifth generation (5G) mobile networks,» Actas de Ingeniería, pp. 97-105, 2017.; A. Durán Barrado, «Estudio y caracterización del canal y de la propagación en ondas milimétricas, orientada a su utilización en redes de comunicaciones móviles 5g.,» ETSIT UPM, 2017.; K. E. REQUENA Barrera y D. M. Rozo Moreno, «Análisis de desempeño de la propagación de señales en redes móviles de quinta generación (5g) en bandas de frecuencias de ondas milimétricas (mmwaves) empleando la herramienta de simulación ics telecom,» FUAC, 2017.; J. E. Arévalo Peña & R. A. González Bustamante, «Radiopropagation Performance Analysis Simulations ofMassive MIMO Configurations in 28 GHz,» CEUR-WS, p. 4, 2018.; P. Missud, «Extrayendo Clutter de imagenes Multiespectrales de Landsat 8,» ATDI, 2013.; Google,«Google Maps,» Google, 01 07 2018. [En línea].Available: https://www.google.com/maps. [Último acceso: 21 10 2020].; ITU, «Recomendación UIT-R P.526,» ITU, 2018.; IDEAM, «ideam.gov.co,» 31 05 2002. [En línea]. Available:https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.526-14-201801-I!!PDF-S.pdf.; M. Montoya Rendon, P. Zapata Saldarriaga & M. Correa Ochoa, «Contaminación ambiental por PM10 dentro y fuera del domicilio y capacidad respiratoria en Puerto Nare, Colombia,» salud pública, pp. 113-115, 2013.; CRC, «Áreas de cobertura del servicio,» Comisión de Regulación de Comunicaciones, 20 03 2009. [En línea]. Available: https://www.crcom.gov.co/es/pagina/reas-de-cobertura- del-servicio. [Último acceso: 21 10 2020].; ITU, «Guidelines for evaluation of radio interface technologies for IMT-2020,» ITU, 2017.; ITU, «UIT-R M.1073-1,» ITU, 1997.; Camino L. García. (2016). Enseñar con TIC: Nuevas y renovadas metodologías para laenseñanza superior. © 2016, CINEP/IPC. pp 26-27.; Charles Kadushin. (diciembre 2013). Comprender las redes sociales. Teorías, conceptosy hallazgos. Primera Edición. Moltalbán, 8. 28014 Madrid. pp. 93-95.; Roger S. Pressman. (2010). Ingeniería del Software Un enfoque práctico. Vol. 3, SéptimaEdición. pp. 70 Sitios web.; ICFES. (2019) Resultados de las pruebas ICFES. http://www2.icfesinteractivo.gov.co/resultadossaber2016web/pages/publicacionResultados/agregados/saber11/agregadosSecretarias.jsf#Noback button.; Juan Carlos Mejía Llanos (21 de marzo, 2019) Estadísticas de redes sociales 2019:USUARIOS DE FACEBOOK, TWITTER, INSTAGRAM, YOUTUBE, LINKEDIN, WHATSAPP Y OTROS. https://www.juancmejia.com/marketing-digital/estadisticas-de-redessocialesusuarios-de-facebook-instagram-linkedin-twitter-whatsapp-y-otrosinfografia/#Informe_detallado_usuarios_redes_sociales_WeAreSocial_y_Hootsuite (5 de mayo de 2019).; Psicología-Onlie (20 de agosto 2018) Teorías del aprendizaje según Brunner.https://www.psicologia-online.com/teorias-del-aprendizaje-segun-bruner-2605.html.; Revista Médica Clínica Las Condes (enero-febrero, 2015) Impacto de las redes socialese internet en la adolescencia: aspectos positivos y negativos. https://www.sciencedirect.com/science/article/pii/S0716864015000048#bib0005.; TeleMedellin (28 de septiembre, 2018) Preocupación por déficit de ingenieros enColombia. https://telemedellin.tv/deficit-ingenieros-colombia/284852/.; UNESCO (21 de septiembre, 2017) SERVICIO DE PRENSA: 617 millones de niños yadolescentes no están recibiendo conocimientos mínimos en lectura y matemática. http://www.unesco.org/new/es/mediaservices/singleview/news/617_million_children_and_adolescents_not_getting_the_minimum/.; Walter, L., Gallegos, Arias, & Huerta, Adriana Oblitas. (2014). Aprendizaje pordescubrimiento vs. Aprendizaje significativo: Un experimento en el curso de historia de la psicología. Boletim - Academia Paulista de Psicologia, 34(87), 455-471. http://pepsic.bvsalud.org/scielo.php?script=sci_arttext&pid=S1415711X2014000200010&lng=pt&tlng=es.Artículos.; L. A. Luengas, G. Sánchez, y S. M. Cárdenas, “Nuevas herramientas pedagógicas:laboratorio virtual", Visión Electrónica, vol. 9, no. 2, pp. 277-284,2015. https://doi.org/10.14483/22484728.11034.; M. Vergel Ortega, O. L. Rincón Leal, y L. A. Jaimes Contreras, “Prototipos electrónicosen el desarrollo de pensamientos formales", Visión Electrónica, vol. 9, no. 2, pp. 182-193, 2015. https://doi.org/10.14483/22484728.11026.; J. F. Pastrán Beltrán y F. Pinzón Herrera, “Software libre: una estrategia para aprendera factorizar ", Visión Electrónica, vol. 9, no. 1, pp. 139-148,2015. https://doi.org/10.14483/22484728.11024.; R. López Gonzalez, “Genealogía de cambio conceptual en la enseñanza de la ciencia",Visión Electrónica, vol. 1, no. 1, pp. 88-92, 2008. https://doi.org/10.14483/22484728.255.; F. P. Rodriguez, A. R. Torres, y H. Vacca, “Estudio con análisis por elementos finitos desistemas análogos circuitales en física", Visión Electrónica, vol. 6, no. 1, pp. 98-103, 2012. https://doi.org/10.14483/22484728.3750.; R. Lopez, “La propedéutica y el discurso sobre las tecnologías", Visión Electrónica, vol.7, no. 1, pp. 178-187, 2013. https://doi.org/10.14483/22484728.4399.; Arquitectura, L., Negocios, A. De, & Salimbeni, S. (2017). La Arquitectura Empresarial y elAnálisis de Negocios.; Basyarudin. (2018). Диф нарушениямиNo Title. Высшей Нервной Деятельности, 2, 227–249.; Clavijo, S., & Vera, A. (2013). Inversion en infraestructura.7–14.; CoronApp, la aplicación para que conocer la evolución del coronavirus - Rumble. (n.d.).Retrieved May 8, 2020, from https://rumble.com/embed/ubedx.v6h0k3/?rel=0.; Dashboard Coronavirus COVID-19 (Mobile). (n.d.). Retrieved May 8, 2020, from https://www.arcgis.com/apps/opsdashboard/index.html#/85320e2ea5424dfaaa75ae62e5c06e61.; Dussan, H., & Garzon, K. (2017). DIAGNÓSTICO PARA LA CREACIÓN DE UN MODELO BAJO LA ARQUITECTURA ORGANIZACIONAL TOGAF APLICADO EN LAS DEPENDENCIAS TIC DE LA UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS. 1–126.; Gasto en investigación y desarrollo (% del PIB) %7C Data. (n.d.). etrieved May 8, 2020, from https://datos.bancomundial.org/indicador/GB.XPD.RSDV.GD.ZS?name_desc=false&view=map.; Gobernanza Territorial, Identificación De Fortalezas, Áreas De. (2013).; González Campo, C. H., & Lozano Oviedo, J. (2020). Propuesta para la definición de la arquitectura empresarial. Dimensión Empresarial, 18((1)). https://doi.org/10.15665/dem.v18i(1).2109 Palacios-Urgilés, F. G., & Campoverde-Molina, M. A. (2019).; Análisis de la arquitectura empresarial como oportunidad de mejora en las microempresas de la ciudad de Cuenca. Dominio de Las Ciencias, 5(3), 487. https://doi.org/10.23857/dc.v5i3.949.; Ministerio de Tecnologías de la Información y las Comunicaciones. (2016). G . GEN . 03 . Guía General de un Proceso de Arquitectura Empresarial. 1–41. Retrieved from http://www.mintic.gov.co/arquitecturati/630/articles- 9435_Guia_Proceso.pdf.; PIB-real segundo trimestre de 2019 y revisión de pronósticos. (n.d.). Retrieved May 8, 2020,from https://www.larepublica.co/analisis/sergio-clavijo- 500041/pib-real-segundo-trimestre-de-2019-y-revision- de-pronosticos-2900103 PND. (2018). Bases del Plan Nacional de Desarrollo.; Presupuesto y estados financieros. (n.d.). Retrieved May 10, 2020, fromhttps://www.dane.gov.co/index.php/servicios-al-ciudadano/tramites/transparencia-y-acceso-a-la- informacion-publica/presupuesto-general- asignado#presupuesto-general.; Saboya, N., Loaiza, O., & Lévano, D. (2018). Diseño de un modelo de arquitecturaempresarial para publicaciones científicas basado en adm - Togaf 9.0. Retrieved May 10, 2020, from https://www.redalyc.org/jatsRepo/4676/467655911004/ html/index.html.; Carlo Batini y Monica Scannapieco, DATA AND INFORMATION QUALITY, I.Switzerland: Springer International Publishing, 2016.; C. Sammut y G. I. Webb, Eds., Encyclopedia of Machine Learning and Data Mining.Boston, MA: Springer US, 2017.; «Who we are - Eurostat». https://ec.europa.eu/eurostat/about/who-we-are (accedidoago. 23, 2020).; B. G. Grow y 2020 January 24, «Data Quality Predictions for 2020», Transforming Datawith Intelligence. https://tdwi.org/articles/2020/01/24/diq-all-data-quality-predictions-for- 2020.aspx (accedido ago. 21, 2020).; T. C. Redman, «Bad Data Costs the U.S. $3 Trillion Per Year», Harvard BusinessReview, sep. 22, 2016.; B. G. Grow y 2018 July 6, «Reducing the Impact of Bad Data on Your Business»,Transforming Data with Intelligence. https://tdwi.org/articles/2018/07/06/diq-all-reducing-the-impact-of-bad- data.aspx (accedido ago. 21, 2020).; B. G. Grow y 2019 May 3, «Data Quality Best Practices for Today’s Data- DrivenOrganization», Transforming Data with Intelligence. https://tdwi.org/articles/2019/05/03/diq-all-data-quality-best-practices-for- data-driven-organizations.aspx (accedido ago. 23, 2020).; C. W. Fisher y B. R. Kingma, «Criticality of data quality as exemplified in two disasters»,Inf. Manage., vol. 39, n.o 2, pp. 109-116, dic. 2001, doi:10.1016/S0378-7206(01)00083-0.; crodwflower, «2016 DATA SCIENCE REPORT», 2016.; S. Lohr, «For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights», The NewYork Times, ago. 17, 2014.; «ISO 9000:2015(en), Quality management systems — Fundamentals and vocabulary».https://www.iso.org/obp/ui/#iso:std:45481:en (accedido ago. 23, 2020).; C. Batini y M. Scannapieco, «Data Quality Dimensions», en Data and Information Quality,Springer, Cham, 2016, pp. 21-51.; «NORMAS ISO 25000». https://iso25000.com/index.php/normas-iso-25000 (accedidomar. 23, 2019).; C. Batini y M. Scannapieco, «Activities for Information Quality», en Data and InformationQuality, Springer, Cham, 2016, pp. 155-175.; C. Batini y M. Scannapieco, «Object Identification», en Data and Information Quality,Springer, Cham, 2016, pp. 177-215.; Tejada S, Knoblock C, Minton S, Learning object identification rules for informationintegration. 2001.; 2014 January 21, «New Techniques Detect Anomalies in Big Data», Transforming Datawith Intelligence. https://tdwi.org/articles/2014/01/21/detecting-big-data-anomalies.aspx (accedido ago. 26, 2020).; J. Taylor, «Clean your data with unsupervised machine learning», Towards Data Science,dic. 01, 2018. https://towardsdatascience.com/clean-your- data-with-unsupervised-machine-learning-8491af733595 (accedido mar. 17, 2019).; I. Taleb, H. T. E. Kassabi, M. A. Serhani, R. Dssouli, y C. Bouhaddioui.; I. Taleb, H. T. E. Kassabi, M. A. Serhani, R. Dssouli, y C. Bouhaddioui, «Big Data Quality: A Quality Dimensions Evaluation», en 2016 Intl IEEE Conferences on Ubiquitous Intelligence Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), jul. 2016, pp. 759-765, doi:10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0122.; H. Liu, T. K. A. Kumar, y J. P. Thomas, «Cleaning Framework for Big Data -Object Identification and Linkage», en 2015 IEEE International Congress on Big Data, jun.2015, pp. 215-221, doi:10.1109/BigDataCongress.2015.38.; «LEILA - Librería de calidad de datos — documentación de LEILA - 0.1». https://ucd-dnp.github.io/leila/ (accedido ago. 27, 2020).; H. Müller y J.-C. Freytag, «Problems, Methods, and Challenges in Comprehensive DataCleansing», p. 23.; «Google Colaboratory». https://colab.research.google.com/notebooks/welcome.ipynb?hl=es-419 (accedido jun. 29, 2020).; hrasheed-msft, «¿Qué es Azure HDInsight?» https://docs.microsoft.com/es- es/azure/hdinsight/hdinsight-overview (accedido abr. 27, 2020).; S. F. Fernández, J. M. C. Sánchez, A. Córdoba, y A. C. Largo, Estadística Descriptiva.ESIC Editorial, 2002.; F. Sidi, P. H. Shariat Panahy, L. S. Affendey, M. A. Jabar, H. Ibrahim, y A. Mustapha, «Dataquality: A survey of data quality dimensions», en 2012 International Conference on Information Retrieval Knowledge Management, mar. 2012, pp. 300-304,doi:10.1109/InfRKM.2012.6204995.; J. Wang, C. Zhang, X. Wu, H. Qi and J. Wang, «SVM-OD: A New SVM Algorithm forOutlier Detection - Google Académico», presentado en Proc. ICDM’03 Workshop Foundations and New Directions of Data Mining, 2003, Accedido: ago. 24, 2020. [En línea]. Disponible en: https://scholar.google.com/scholar?hl=es&as_sdt=0,5&q=SVM- OD%3A+A+New+SVM+Algorithm+for+Outlier+Detection&btnG=.; «Factores que afectan el peso y la salud %7C NIDDK», National Institute of Diabetes andDigestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/informacion-de-la- salud/control-de-peso/informacion-sobre-sobrepeso-obesidad- adultos/factores-afectan (accedido may 16, 2020).; Lean Yu, Shouyang Wang, y K. K. Lai, «An integrated data preparation scheme for neuralnetwork data analysis», IEEE Trans. Knowl. Data Eng., vol. 18, n.o 2, pp. 217-230, feb. 2006, doi:10.1109/TKDE.2006.22.; Sumithra V.S,Subu Surendran, «A Review of Various Linear and Non LinearDimensionality Reduction Techniques», Int. J. Comput. Sci. Inf. Technol., vol. 6.; D. Chicco y G. Jurman, «The advantages of the Matthews correlation coefficient (MCC)over F1 score and accuracy in binary classification evaluation», BMC Genomics, vol. 21, n.o 1, p.6, ene. 2020, doi:10.1186/s12864-019-6413-7.; Katrakazas, E. Michelaraki, M. Sekadakis, and G. Yannis, “A descriptive analysis of the effect of the COVID-19 pandemic on driving behavior and road safety,” Transp. Res. Interdiscip. Perspect., vol. 7, 2020, doi:10.1016/j.trip.2020.100186.; P. Pereira and J. Pais, “Main flexible pavement and mix design methods in Europe andchallenges for the development of an European method,” J. Traffic Transp. Eng. (English Ed., vol. 4, no. 4, pp. 316–346, 2017, doi:10.1016/j.jtte.2017.06.001.; A. P. Singh, A. Sharma, R. Mishra, M. Wagle, and A. K. Sarkar, “Pavement conditionassessment using soft computing techniques,” Int. J. Pavement Res. Technol., 2018.; Z. Zhang, Q. Liu, Q. Wu, H. Xu, P. Liu, and M. Oeser, “Damage evolution of asphalt mixtureunder freeze-thaw cyclic loading from a mechanical perspective,” Int. J. Fatigue, vol. 142, no. June 2020, pp. 1–9, 2021, doi:10.1016/j.ijfatigue.2020.105923.; K. B. Bai Kamara, E. Ganjian, and M. Khorami, “The effect of quarry waste dust andreclaimed asphalt filler in hydraulically bound mixtures containing plasterboard gypsum and GGBS,” J. Clean. Prod., vol. 279, 2021, doi:10.1016/j.jclepro.2020.123584.; D. M. Kusumawardani and Y. D. Wong, “The influence of aggregate shape properties onaggregate packing in porous asphalt mixture (PAM),” Constr. Build. Mater., vol. 255, 2020, doi:10.1016/j.conbuildmat.2020.119379.; T. M. Al Rousan, “Characterization of aggregate shape properties using a computerautomated system,” Texas A&M University, 2004.; C. García-González, J. Yepes, and M. A. Franesqui, “Geomechanical characterization ofvolcanic aggregates for paving construction applications and correlation with the rock properties,” Transp. Geotech., vol. 24, no. January, 2020, doi:10.1016/j.trgeo.2020.100383.; J. Hu and P. Stroeven, “Shape characterization of concrete aggregate,” Image Anal. Stereol.,vol. 25, no. 1, pp. 43–53, 2006, doi:10.5566/ias.v25.p43-53.; T. Roussillon, H. Piégay, I. Sivignon, L. Tougne, and F. Lavigne, “Automatic computationof pebble roundness using digital imagery and discrete geometry,” Comput. Geosci., vol. 35, no. 10, pp. 1992–2000, 2009, doi:10.1016/j.cageo.2009.01.013.; J. Zhang, X. Yang, W. Li, S. Zhang, and Y. Jia, “Automatic detection of moisture damagesin asphalt pavements from GPR data with deep CNN and IRS method,” Autom. Constr., vol. 113, no. September 2019, 2020, doi:10.1016/j.autcon.2020.103119.; L. Pei et al., “Pavement aggregate shape classification based on extreme gradientboosting,” Constr. Build. Mater., vol. 256, 2020, doi:10.1016/j.conbuildmat.2020.119356.; K. A. Ghuzlan, M. T. Obaidat, and M. M. Alawneh, “Cellular-phone-based computer visionsystem to extract shape properties of coarse aggregate for asphalt mixtures,” Eng. Sci. Technol. an Int. J., vol. 22, no. 3, pp. 767–776, 2019, doi:10.1016/j.jestch.2019.02.003.; J. Kim, B. S. Park, S. I. Woo, and Y. T. Choi, “Evaluation of ballasted-track condition basedon aggregate-shape characterization,” Constr. Build. Mater., vol. 232, 2020, doi:10.1016/j.conbuildmat.2019.117082.; O. J. Reyes-ortiz, M. Mejía, and J. S. Useche-Castelblanco, “Aggregate segmentation ofasphaltic mixes using digital image,” Bull. Polish Acad. Sci. Tech. Sci., vol. 67, no. 2, pp. 279–287, 2019.; S. M. E. Harb, N. Ashidi, M. Isa, and S. A. Salamah, “Improved image magnificationalgorithm based on Otsu,” Comput. Electr. Eng. J., vol. 46, pp. 338–355, 2015.; J. V. C. I. R, C. Sha, J. Hou, and H. Cui, “A robust 2D Otsu ’ s thresholding method in imagesegmentation q,” J. Vis. Commun. Image R. J., vol. 41, pp. 339–351, 2016.; O. J. Reyes-Ortiz, M. Mejia, and J. S. Useche-Castelblanco, “Digital image analysis appliedin asphalt mixtures for sieve size curve reconstruction and aggregate distribution homogeneity,” Int. J. Pavement Res. Technol., 2020, doi:10.1007/s42947-020-0315-6.; S. Yu, S. Jia, and C. Xu, “Convolutional neural networks for hyperspectral imageclassification,” Neurocomputing, vol. 219, pp. 88–98, 2017.; V. C. Janoo, “Quantification of shape, angularity, and surface texture of base coursematerials,” 1998.; E. Masad, T. M. Al Rousan, J. Button, and D. Little, Test Methods for CharacterizingAggregate Shape, Texture, and Angularity. United States of America, 2007.; E. dos S. Silva et al., “Evaluation of macro and micronutrient elements content from softdrinks using principal component analysis and Kohonen self-organizing maps,” Food Chem., vol. 273, no. May 2018, pp. 9–14, 2019, doi:10.1016/j.foodchem.2018.06.021.; B. Yang, S. Yang, J. Zhang, and D. Li, “Optimizing random searches on three-dimensionallattices,” Phys. A Stat. Mech. its Appl., vol. 501, pp. 120–125, Jul. 2018, doi:10.1016/J.PHYSA.2018.02.100.; Diego Heras, “Clasificador de imágenes de frutas basado en inteligencia artificial”, KillkanaTécnica, Vol. 1, no. 2, pp. 21-30, 2017.; SicTransCore Latinoamérica, Sic TransCore Sistemas de Identificación y control vehicular,2019. [Online]. Disponible en: https://www.sictranscore.com/.; V. M. Arévalo, J. González, G. Ambrosio, La Librería De Visión Artificial Opencv AplicaciónA La Docencia E Investigación, Dep.Sis. y Aut. Universidad de Málaga, España. [Online]. Disponible en: http://mapir.isa.uma.es/varevalo/drafts/arevalo2004lva1.pdf.; Bastián Nicolás Carvajal Ahumada, Reconocimiento Fotográfico De Patentes, Facultad deIngeniería, Pontificia Universidad Católica De Valparaíso, Valparaíso, Ciudad de Chile, 2018.; Guerra Monterroza, E. J. (2008). Reconocimiento de primitivas 3D, usando autocorrelación yANFIS. Visión electrónica, 1(1), 56-61. https://doi.org/10.14483/22484728.251.; Giraldo Ramos, F. N., Gonzalez, F., & Camargo Casallas, E. (2011). “Algoritmos deprocesamiento de imágenes satelitales con transformada Hough. Visión electrónica, 5(2), 26-41. https://doi.org/10.14483/22484728.3568.; Jiménez Moreno, R., Martínez Baquero, J. E., & Rodríguez Umaña, L. A. (2018). Sistemaautomático de clasificación de peces. Visión electrónica, 12(2), 258-264.https://doi.org/10.14483/22484728.14265.; A. Daneels and W. Salter, “WHAT IS SCADA?,” in International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, pp. 339–343, Accessed: Sep. 20, 2019. [Online]. Available: http://cds.cern.ch/record/532624/files/mc1i01.pdf.; Wikipedia, “Distributed control system,” 2019. https://en.wikipedia.org/wiki/Distributed_control_system (accessed Sep. 29, 2019).; R. Hunzinger, Scada fundamentals and applications in the IoT, 1st ed. Wiley Telecom, 2017.; S. Ray, Y. Jin, and A. Raychowdhury, “The Changing Computing Paradigm with Internet of Things: A Tutorial Introduction,” IEEE Des. Test, vol. 33, no. 2, pp. 76–96, 2016, doi:10.1109/MDAT.2016.2526612.; A. Bhatia, Z. Yusuf, D. Ritter, and N. Hunke, “Who Will Win the IoT Platform Wars?,” BCG Perspect., p. 6, 2017, [Online]. Available: https://image-src.bcg.com/Images/BCG-Who-Will-Win-the-IoT-Platform-Wars-June-2017_2_tcm58-162424.pdf.; L. Doron and Netafim, “The core results of the FIGARO project: the Platform,” in InternationalFIGARO Conference, 19 September 2016, Brussels, Belgium, 2016, [Online]. Available: http://www.figaro-irrigation.net/fileadmin/user_upload/figaro/docs/Lior_2_NET_FIGARO_project_summary.pdf.; A. (Eastern P. Chalimov, “IoT in Agriculture: 5 Technology Use Cases for Smart Farming(and 4 Challenges to Consider),” 2018. https://easternpeak.com/blog/iot-in-agriculture-5-technology-use-cases-for-smart-farming-and-4-challenges-to-consider/ (accessed Mar. 21, 2020).; L. Xiamen Ursalink Technology Co., “IoT-based Smart Irrigation,” 2019.https://www.ursalink.com/en/solution/agriculture/smart-irrigation (accessed May 30, 2020).; O. Pandithurai, S. Aishwarya, B. Aparna, and K. Kavitha, “Agro-tech: A digital model formonitoring soil and crops using internet of things (IOT),” ICONSTEM 2017 - Proc. 3rd IEEE Int. Conf. Sci. Technol. Eng. Manag., vol. 2018-Janua, pp. 342–346, 2018, doi:10.1109/ICONSTEM.2017.8261306.; A. N. Nassar A.S., Montasser A.H., “Smart Aquaponics System for Industrial Internet ofThings (IIoT),” Proc. Int. Conf. Adv. Intell. Syst. Informatics, vol. 639, no. 1, pp. 855–864, 2018, doi:10.1007/978-3-319-64861-3.; R. Nageswara Rao and B. Sridhar, “IoT based smart crop-field monitoring and automationirrigation system,” Proc. 2nd Int. Conf. Inven. Syst. Control. ICISC 2018, no. Icisc, pp. 478–483, 2018, doi:10.1109/ICISC.2018.8399118.; S. Bakalis et al., “Perspectives from CO+RE: How COVID-19 changed our food systemsand food security paradigms,” Curr. Res. Food Sci., vol. 3, pp. 166–172, 2020, doi:10.1016/j.crfs.2020.05.003.; J. M. Talavera et al., “Review of IoT applications in agro-industrial and environmental fields,”Comput. Electron. Agric., vol. 142, no. 118, pp. 283–297, 2017, doi:10.1016/j.compag.2017.09.015.; Wikipedia, “Druckschalter,” Wikipedia, 2013. https://de.wikipedia.org/wiki/Druckschalter#/media/Datei:Druckschalter_PSD_30.jpg (accessed Jun. 30, 2020).; P. IoT, “PARTICLE IoT-BORON,” 2019. https://docs.particle.io/datasheets/cellular/boron-datasheet/ (accessed Oct. 19, 2019).; The ThingsBoard Authors, “Smart farming and smart agriculture solutions,” ThingsBoard.io,2020. https://thingsboard.io/smart-farming/ (accessed Jun. 20, 2020).; A. Joseph Fernando, “How Africa Is Promoting Agricultural Innovations and Technologiesamidst the COVID-19 Pandemic,” Mol. Plant, vol. 13, no. 10, pp. 1345–1346, 2020, doi:10.1016/j.molp.2020.08.003.; E. Vargas, A. Guillermo Correa, P. C. souza, N. Rodrigues de Baptestini, F. Machado Zaidan y I. Ramos, "Avaliação da homogeneidade da expansão dos grãos de café torrados" de VIII Simpósio de Pesquisa dos Cafés do Brasil, novembro 2013.; Giraldo Cerón, A. F. "Tan cerca y tan lejos de la agricultura 4.0 en Colombia". Revista Universidad EAFIT, 55(175), 78-85.2020.; O. L. Ocampo López y L. M. Álvarez Herrera, «Tendencia de la producción y el consumo del café en Colombia,» Apuntes del CENES, vol. 36, nº 64, pp. 139-165, julio -diciembre 2017.; G. I. Puerta Quintero, Investigador Científico III y Centro Nacional deInvestigaciones, «COMPOSICIÓN QUÍMICA DE UNA TAZA DE CAFÉ,» Ciencia, tecnología e innovación para la caficultura colombiana, MANIZALES , 2011.; Samodro, Bayu, et al. "Maintaining the Quality and Aroma of Coffee with Fuzzy Logic Coffee Roasting Machine." IOP Conference Series: Earth and Environmental Science. Vol. 426. No. 1. IOP Publishing, 2020.; Fadri, R. A., et al. "Review of coffee roasting process and formation of acrylamide related to health." Journal of Applied Agricultural Science and Technology 3.1 (2019): 129-145.; Botero Lopez, Santiago, and Muhammad Salman Chaudhry. "Designing an Efficient Supply Chain for Specialty Coffee from Caldas-Colombia." (2020).; Suarez-Peña, Javier Andrés, et al. "Machine Learning for Cup Coffee Quality Prediction from Green and Roasted Coffee Beans Features." Workshop on Engineering Applications. Springer, Cham, 2020.; Putra, Satya Andika, Umi Hanifah, and Mirwan Ardiansyah Karim. "Theoretical study of fluidization and heat transfer on fluidized bed coffee roaster." AIP Conference Proceedings. Vol. 2097. No. 1. AIP Publishing LLC, 2019.; Benitez O, Campo-Ceballos D, «Evaluación de la calidad el café tostado utilizando herramientas de procesamiento digital de imágenes», ACCB, vol. 1, n.º 30, pp. 32-43, dic. 2018.; Meana, Vanessa Rose L., Nazer Sarapeo P. Kimkiman, and Alvin C. Dulay. "Design, Fabrication, and Performance Evaluation of a Batch-Type Fluidized Bed Coffee Roaster for Small-Scale Coffee Growers." Mountain Journal of Science and Interdisciplinary Research (formerly Benguet State University Research Journal) 79.2 (2019): 90-97.; Buesaquillo Imbaquingo, Luis Darío. Sistema de control para mejorar el desempeño de una máquina tostadora de café. BS thesis. 2019.; Abdul. Ghani, Nur Hamizah, et al. "Development of a novel 2D single coffee bean model and comparison with a 3D model under varying heating profiles." Journal ofFood Process Engineering 42.4 (2019).; Campo Ceballos D, et al. "Herramientas de cv para evaluar el color y matiz del café tostado: el color del café tostado y su relación con las propiedades organolépticas".EAE. 68 páginas. 2018.; N. Reddy, N. Maheshwari, D. K. Sahu, y G. K. Ananthasuresh, «Miniature CompliantGrippers With Vision-Based Force Sensing», IEEE Transactions on Robotics, vol. 26, no. 5, pp. 867–877, Oct. 2010.; Barraza, A., Rúa, J., Sosa, J., Yime, E., & Roldan, J. (2015). Modelado dinámico delmanipulador serial Mitsubishi Movemaster RV-M1 usando SolidWorks. Revista de la facultad de Ingenierías Físicas Mecánicas, 49-62.; Benbelkacem, Y., & Mohd-Mokhtar, R. (26-29 de Noviembre de 2012). Explicit kinematicmodel of the Mitsubishi RV-M1 robot arm. IEEE, 404-409. Obtenido de http://ieeexplore.ieee.org/document/6466627/.; Carrasco, B., & Alberto, J. (2015). Integración de un UAV (vehículo aéreo no tripulado)en la plataforma robótica ARGOS.; DARMOUL Saber. Reality for Manufacturing: A Robotic Cell Case Study. Department ofIndustrial Engineering. King Saud University. Saudi Arabia. 7pag. 2015.; Research on Assembly Modeling Process Based on Virtual Manufacturing InteractiveApplication Technology. School of Mechanical and Electronic Engineering. Wuhan University of Technology. Wuhan, China. 5 pág. 2017.; Forero, J., Hurtado, L., & Ruiz, V. (Febrero de 2015). Visión electrónica, Más que unestado sólido. Arquitectura paralela robótica: modelado y simulación con siemens NX. Recuperado el 10 de agosto de 2015, de http://revistas.udistrital.edu.co/ojs/index.php/visele/article/view/11018.; Marcu, C., Lazea, G., Herle, S., Robotin, R., & Tamas, L. (2010 de junio de 25). IEEEexplore Digital Library, 3D graphical simulation of an articulated serial manipulator based on kinematic models. Recuperado el 10 de Agosto de 2017, de http://ieeexplore.ieee.org/abstract/document/5524593/.; Luengas, L. A., Sánchez, G., & Cárdenas, S. M. (2015). Nuevas herramientaspedagógicas: laboratorio virtual. Visión electrónica, 9(2), 277-284.https://revistas.udistrital.edu.co/index.php/visele/article/view/11034.; Luengas, L. A., Rincón López, D. A., & Galeano, K. J. (2010). Realidad virtual noinmersiva: instrumentos electrónicos de aplicación educativa. Visión electrónica, 4(1), 94-105.https://revistas.udistrital.edu.co/index.php/visele/article/view/275.; K. Cacua, O. Amell y L. Olmos, "Estudio comparativo entre las propiedades decombustión de la mezcla biogás-aire normal y biogás-aire enriquecido con oxígeno", Revista Ingeniería e Investigación, vol. 1, pp. 233-241, 2011.; R. Liriano, Aplicación de biofertilizantes como alternativa nutricional, ambiental y económica en la agricultura urbana, España: Universidad de Girona, 2005.; A. Padilla y J. Rivero, "Producción de Biogás y compost a partir de Residuos Orgánicos recolectados del complejo arqueológico Huaca de la Luna", Ciencia y Tecnología, vol. 1, pp. 29-43, 2016.; L. O. González Salcedo y Y. Olaya Arboleda, Fundamentos para el diseño de Biodigestores, Departamento de Ingeniería, 2009.; M. T. Madigan, J. M. Martinko y J. Parker, Biología de los microorganismos, 10 ed, 2004.; A. Pulido y J. Espitia, Diseño e implementación de un sistema de supervisión, monitoreo y control de temperatura, presión y tiempo de proceso en un sistema de digestión anaerobia de biomasa (contenido ruminal bovino) a escala de laboratorio, Bogotá: Universidad Distrital Francisco José de Caldas, 2016.; G. Bastin, "On-line estimation and adaptive control of bioreactors", Elsevier, vol. 1, 2013.; S. Hassam, E. Ficara, A. Leva y J. Harmand, "A generic and systematic procedure to derive a simplified model from the anaerobic digestion model No. 1 (ADM1)", Biochemical Engineering Journal, pp. 99, 193-203, 2015.; E. Ficara, S. Hassam, A. Allegrini, A. Leva, F. Malpei y G. Ferretti, "Anaerobic digestion models: a comparative study. IFAC Proceedings.", vol. 45(2), pp. 1052- 1057, 2012.; J. A. Jiménez, G. Pomboza y J. A. Holgado, «El gesto aplicado al control de dispositivosen,» Jornadas SARTECO, Ecuador, 2017.; O. F. Olivera, J. A. Cuervo, y F. N. Giraldo Ramos, “Sistema de control de posición angularaplicado a dispositivos RF", Visión Electrónica, vol. 5, no. 2, pp. 42-58, 2011.; T. G. Zimmerman, J. Lanier, C. Blanchard, S. Bryson, and Y. Harvill, “A hand gestureinterface device,” ACM SIGCHI Bull., vol. 17, no. SI, pp. 189 192, 1986.; Omega engineering, «Omega ENGINEERING,» es.omega.com, [En línea]. Available:https://es.omega.com/prodinfo/acelerometro.html. [Último acceso: 11 08 2019].; tdk, «Datasheet MPU60XX,» [En línea]. Available: https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf. [Último acceso: 11 08 2020].; Naylamp Mechatronics, «Naylamp Mechatronics,» Naylamp Mechatronics, [En línea].Available:https://naylampmechatronics.com/blog/45_Tutorial-MPU6050-Acelerómetro-y-Giros copio.html. [Último acceso: 11 08 2019].; Arduino, «arduino.cl,» arduino.cl, [En línea]. Available: http://arduino.cl/arduino-nano/.[Último acceso: 15 08 2019].; J. J. M. Fuentes, Fundamentos de radiación y radiocomunicación, Sevilla: Departamentode Teoría de la Señal y Comunicaciones, 2012.; J. Vargas, G. Poveda y V. Martinez, «Dispositivo inalámbrico para el control de,»ESPACIOS, vol. 39, nº 45, p. 9, 2018.; M. A. Arenas, J. M. Palomares, L. Girard, J. Olivares y J. M., «Diseño y Construcciónde un Guante de Datos mediante Sensores de Flexibilidad y acelerómetro,» researchgate, España, 2011.; K. K. Abgaryan and I. S. Kolbin, “Calculation of Heat Transfer in NanosizedHeterostructures,” Russ. Microelectron., vol. 48, no. 8, pp. 559–563, 2019, doi:10.1134/S1063739719080031.; A. R. Shabaan, S. M. El-Metwally, M. M. A. Farghaly, and A. A. Sharawi, “PID and fuzzylogic optimized control for temperature in infant incubators,” 2013 Proc. Int. Conf. Model. Identif. Control. ICMIC 2013, no. Icmic, pp. 53–59, 2013.; D. M. Ovalle M and L. F. Cómbita A., “Teaching basic control concepts with a home-madethermal system,” IEEE Glob. Eng. Educ. Conf. EDUCON, no. April, pp. 739–744, 2014, doi:10.1109/EDUCON.2014.6826176.; S. A. Adnan, A. Muhammad, and Z. Shareef, “Development of a low cost thermalfeedback system for basic control education,” Proc. 14th IEEE Int. Multitopic Conf. 2011, INMIC 2011, pp. 228–232, 2011, doi:10.1109/INMIC.2011.6151478.; R. Urbieta Parrazales, “Diseño, Simulación y Construcci?n de un Control PID Aplicado aun Sistema Térmico,” Polibits, vol. 15, pp. 11–19, 1995, doi:10.17562/pb-15-2.; C. Close, Modeling and Analysis of Dynamic Systems. 2002.; F. Navas, “DISEÑO Y CONSTRUCCION DE CAJA DE TRANSFERENCIA DE CALOR (GUARDED HOT BOX ),” 2007.; J. Bravo, G. López, R. Rodríguez, and F. J. Sabina, “Acerca de la homogeneización ypropiedades efectivas de la ecuación del calor On homogenization and effective properties of the heat equation Resumen,” pp. 149–159, 2013.; E. Significativas, Electrónica : teoría de circuitos y dispositivos electrónicos.; P. E. Allen, Operational amplifiers and linear integrated circuits, vol. 71, no. 9. 2008.; N. Ruangpayoongsak, J. Sumroengrit, & M. Leanglum, “A floating waste scooperrobot on water surface”, In 2017 17th International Conference on Control, Automation and Systems (ICCAS), pp. 1543-1548, IEEE, October 2017.; I Baturone, Robótica: manipuladores y robots móviles. Marcombo, 2005.; P. Jorge-Sanz, "Robots industriales colaborativos: una nueva forma de trabajo",Seguridad y Salud en el trabajo 95, pp. 6-10, 2018.; H. Thomas, S. Bensch. "Understandable robots-what, why, and how." Paladyn,Journal of Behavioral Robotics 9,pp. 110-123. no. 1, 2018.; B. Andrew, E. F. Buffie, and L.F. Zanna. "Robots, growth, and inequality." Finance &Development 53, pp. 10-13, no. 3, 2016.; S. Martínez, A. Carvajal, D. Loza, A. Ibarra, and L. Segura. "Collaborative two-armrobotic torso for the development of an assembly process." In 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), pp. 1-6. IEEE, 2017.; T.I., Getting Started MSP430G2553 Value Line LaunchPad Workshop Series, [Enlínea]. Disponible en: https://training.ti.com/getting-started-msp430g2553-launchpad-part-1.; D. Anderson, G. Constante, and T. Arrigoni. "Arquitetura FPGAs CPLDs da Xilinx."; Creus-Solé, “Instrumentación industrial”, 8va. ed. México: Alfaomega Grupo Editor, 2011.; M. A. Pérez-García, et al., “Instrumentación electrónica”, Madrid: Thomson, 2004.; Manuel, et al., “Instrumentación virtual adquisición, procesado y análisis de señales”,1era ed. Barcelona: UPC, 2001.; O. F. Corredor, et al. “Diseño e implementación de filtros digitales”. Visión electrónica,vol. 3, no. 1, pp. 55-56,2009. https://doi.org/10.14483/22484728.691.; Silicon Labs, “Using microcontrollers in digital signal processing applications”. AN219, Rev. 0.2 8/08. https://www.silabs.com/documents/public/application-notes/an219.pdf.; Hernández y E. Jacinto, “Una nueva metodología en el diseño de filtros digitales FIR sobre FPGA”. Visión electrónica, vol. 3, no. 2, pp. 40-47, 2009. https://doi.org/10.14483/22484728.2834.; V. M. Gómez, et al. “Diagnóstico de rodamientos con vibraciones mecánicas einstrumentos virtuales”. Visión electrónica, vol. 8, no. 2, pp. 107-113, 2014. https://doi.org/10.14483/22484728.9881.; National Instruments, “Strain gauge measurement - A tutorial”, Aplication Note 078, 2018.; J. Horn y G. Gleason, “Weigh Scale Applications for the MCP3551”, AN1030 Microchip, 2006.; F. Quiles-Latorre, et al., “Diseño del interfaz de una balanza electrónica basada en una celda de carga,” en Libro de catas SAAAEI2018, Córdoba, pp. 272-277, 2018.; J. Hernández-Jiménez y M. Fabela-Gallegos, “Diseño y construcción de un prototipo para determinar el peso de vehículos ligeros en movimiento”, 2004.; Rice Lake Weighing Systems, “Load cell and weigh module handbook”, 2017.; OIML, “Metrological regulation of load cells”, OIML R 60-1, 2017.; National Instruments, “User guide and specifications NI USB-6008/6009”, 2007. C. E. Pardo-Beainy, “Instrumentación Virtual, Control y Adquisición de Datos para Unidades de Cuidados Intensivos”, 2007.; G. Tem, “Concurso en Ingeniería de Control 2020,” 2020.; G. G. Slabaugh, “Computing Euler angles from a rotation matrix,” denoted as TRTAImplement. from httpwww starfireresearch comservicesjava3dsamplecodeFlorinE ulers html, vol. 6, no. 2000, pp. 1–6, 1999.; L. Euler, “Formvlae generales pro translatione qvacvnqvve corporvm rigidor,” NoviCommentarii academiae scientiarum Petropolitanae, vol. 20. pp. 189–207, 1776.; D. Entwurf, “Der Entwurf linearer Regelungssysteme im Zustandsraum,” vol. 1, no. 8,1972.; D. D. E. I. Eléctrica and J. P. S. V, “Desarrollo de software para inspección técnica deuna aplicación CPM,” 2017.; S. C. C. Navarrete, “Control avanzado de un sistema de refrigeración,” 2019.; "Measures of controlled system performance.” [Online]. Available: http://www.online-courses.vissim.us/Strathclyde/measures_of_controlled_system_pe.htm. [Accessed: 20-Nov-2020].; Á. Valera Fernández, Modelado y control en el espacio de estados. 2016.; O. A. Esquivel Flores, “Análisis de observabilidad y controlabilidad para sistemasdiferenciaslmente planos. Aplicación a un sistema de oscilaciones de calcio,” p. 107, 2007.; J. Ángel and S. Blanco, “Diseño en el Espacio de Estados,” pp. 1–9, 2017.; https://hdl.handle.net/11349/31383; Universidad Distrital Francisco José de Caldas.

  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17

    Alternate Title: Diseño y construcción de un sistema de seguimiento solar para un prototipo de colector cilindro-parabólico. (Spanish)

    Zdroj: Scientia et Technica; ene-mar2023, Vol. 28 Issue 1, p6-14, 9p

    Geografický termín: SANTANDER (Spain)

  18. 18
  19. 19

    Alternate Title: Repotenciación sísmica con aislamiento de cubierta como amortiguador de masa sintonizado para edificios académicos. (Spanish)

    Zdroj: Ingeniería y Competitividad; ene-jun2023, Vol. 25 Issue 1, p1-18, 18p

    Geografický termín: CALI (Colombia), COLOMBIA

  20. 20