Výsledky vyhledávání - adaptive forgetting factor recursive past square algorithm
-
1
Autoři:
Zdroj: IEEE Access, Vol 11, Pp 54616-54628 (2023)
Témata: Data-driven adaptive control, steady state-integral-derivative control, gradient descent, recursive least squares, forgetting factor, performance condition, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
Popis souboru: electronic resource
Přístupová URL adresa: https://doaj.org/article/df4272deef324be7bfa2e82f9bfaded1
-
2
Autoři:
Zdroj: Periodica Polytechnica: Electrical Engineering & Computer Science; 2023, Vol. 67 Issue 3, p239-248, 10p
Témata: PARAMETER identification, LEAST squares, LITHIUM-ion batteries, ALGORITHMS, ELECTRIC circuits, PROBLEM solving, SENSOR networks
Korporace: SAMSUNG Group (Company)
-
3
Autoři:
Zdroj: Electrical Engineering; Jun2024, Vol. 106 Issue 3, p2425-2445, 21p
Témata: ONLINE algorithms, PARAMETER identification, LEAST squares, ELECTRIC circuits, LITHIUM cells
Korporace: SAMSUNG Group (Company)
-
4
Autoři:
Zdroj: IEEE Transactions on Circuits & Systems. Part II: Express Briefs; Jun2016, Vol. 63 Issue 6, p588-592, 5p
-
5
Autoři: a další
Zdroj: Energies (19961073); Nov2018, Vol. 11 Issue 11, p3180, 1p
-
6
Autoři: a další
Zdroj: Sustainability (2071-1050); Feb2025, Vol. 17 Issue 3, p812, 24p
-
7
Autoři:
Zdroj: Journal of Advanced Manufacturing Systems; Sep2016, Vol. 15 Issue 3, p133-150, 18p, 1 Diagram, 1 Chart, 2 Graphs
-
8
Autoři: a další
Zdroj: Water Resources Research; Jul2018, Vol. 54 Issue 7, p4730-4749, 20p
-
9
Autoři:
Zdroj: IEEE Transactions on Neural Networks & Learning Systems; Jun2022, Vol. 33 Issue 6, p2605-2614, 10p
-
10
Autoři:
Zdroj: IEEE Transactions on Neural Networks & Learning Systems; Aug2012, Vol. 23 Issue 8, p1313-1326, 14p
-
11
Autoři: a další
Zdroj: IEEE Transactions on Audio, Speech & Language Processing; Mar2008, Vol. 16 Issue 3, p554-562, 9p, 3 Diagrams, 5 Charts, 5 Graphs
-
12
Autoři: Nishiyama, Kiyoshi
Zdroj: IEEE Transactions on Signal Processing; May2004, Vol. 52 Issue 5, p1335-1342, 8p
-
13
Autoři:
Resource Type: eBook.
Categories: MATHEMATICS / Applied, COMPUTERS / Computer Science, COMPUTERS / Programming / Algorithms, TECHNOLOGY & ENGINEERING / Electrical
-
14
Autoři: a další
Přispěvatelé: a další
Témata: 620 - Ingeniería y operaciones afines, Machine learning, Forecasts, Kernel adaptative filtering, Dictionary, Learning rate, Kernel bandwidth, Clustering adaptive, Aprendizaje de máquina, Predicción, Filtros adaptativos Kernel, Diccionario, Tasa de aprendizaje, Ancho de banda del Kernel, Agrupamiento adaptativo
Popis souboru: application/pdf
Relation: S. Shanmuganathan and S. Samarasinghe, Artificial neural network modelling, vol. 628. Springer, 2016.; Y. Cui, S. Ahmad, and J. Hawkins, “Continuous online sequence learning with an unsupervised neural network model,” Neural computation, vol. 28, no. 11, pp. 2474–2504, 2016.; C. Deb, F. Zhang, J. Yang, S. E. Lee, and K. W. Shah, “A review on time series forecasting techniques for building energy consumption,” Renewable and Sustainable Energy Reviews, vol. 74, pp. 902–924, 2017.; Y. Feng, P. Zhang, M. Yang, Q. Li, and A. Zhang, “Short term load forecasting of offshore oil field microgrids based on da-svm,” Energy Procedia, vol. 158, pp. 2448–2455, 2019.; B. Schölkopf, A. J. Smola, et al., Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press, 2002.; F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural networks architectures,” Neural computation, vol. 7, no. 2, pp. 219–269, 1995.; B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component analysis as a kernel eigenvalue problem,” Neural computation, vol. 10, no. 5, pp. 1299–1319, 1998.; W. Liu, P. P. Pokharel, and J. C. Principe, “The kernel least-mean-square algorithm,” IEEE Transactions on Signal Processing, vol. 56, no. 2, pp. 543–554, 2008.; Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares algorithm,” IEEE Transactions on signal processing, vol. 52, no. 8, pp. 2275–2285, 2004.; W. Liu, I. Park, Y. Wang, and J. C. Príncipe, “Extended kernel recursive least squares algorithm,” IEEE Transactions on Signal Processing, vol. 57, no. 10, pp. 3801–3814, 2009.; B. Chen, S. Zhao, P. Zhu, and J. C. Príncipe, “Quantized kernel least mean square algorithm,” IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 1, pp. 22–32, 2012.; H. Fan and Q. Song, “A linear recurrent kernel online learning algorithm with sparse updates,” Neural Networks, vol. 50, pp. 142–153, 2014.; W. Liu, I. Park, and J. C. Principe, “An information theoretic approach of designing sparse kernel adaptive filters,” IEEE Transactions on Neural Networks, vol. 20, no. 12, pp. 1950–1961, 2009.; W. Ao, W.-Q. Xiang, Y.-P. Zhang, L. Wang, C.-Y. Lv, and Z.-H. Wang, “A new variable step size lms adaptive filtering algorithm,” in 2012 International Conference on Computer Science and Electronics Engineering, vol. 2, pp. 265–268, IEEE, 2012.; Q. Niu and T. Chen, “A new variable step size lms adaptive algorithm,” in 2018 Chinese Control And Decision Conference (CCDC), pp. 1–4, IEEE, 2018.; S. Garcia-Vega, X.-J. Zeng, and J. Keane, “Learning from data streams using kernel least-mean-square with multiple kernel-sizes and adaptive step-size,” Neurocomputing, vol. 339, pp. 105–115, 2019.; B. Chen, J. Liang, N. Zheng, and J. C. Príncipe, “Kernel least mean square with adaptive kernel size,” Neurocomputing, vol. 191, pp. 95–106, 2016.; W. W. Qitang Sun, Lujuan Dang and S. Wang, “Kernel least mean square algorithm with mixed kernel,” In Advanced Computational Intelligence (ICACI), 2018 Tenth International Conference, pp. 140–144, 2018.; J. Platt, A resource-allocating network for function interpolation. MIT Press, 1991.; L. Csató and M. Opper, “Sparse on-line gaussian processes,” Neural computation, vol. 14, no. 3, pp. 641–668, 2002.; K. Li and J. C. Principe, “Transfer learning in adaptive filters: The nearest instance centroid-estimation kernel least-mean-square algorithm,” IEEE Transactions on Signal Processing, vol. 65, no. 24, pp. 6520–6535, 2017.; G. Wahba, Spline models for observational data, vol. 59. Siam, 1990.; J. Racine, “An efficient cross-validation algorithm for window width selection for nonparametric kernel regression,” Communications in Statistics-Simulation and Computation, vol. 22, no. 4, pp. 1107–1114, 1993.; E. Herrmann, “Local bandwidth choice in kernel regression estimation,” Journal of Computational and Graphical Statistics, vol. 6, no. 1, pp. 35–54, 1997.; B. W. Silverman, Density estimation for statistics and data analysis. Routledge, 2018.; Y. Gao and S.-L. Xie, “A variable step size lms adaptive filtering algorithm and its analysis,” Acta Electronica Sinica, vol. 29, no. 8, pp. 1094–1097, 2001.; Y. Qian, “A new variable step size algorithm applied in lms adaptive signal processing,” in 2016 Chinese Control and Decision Conference (CCDC), pp. 4326–4329, IEEE, 2016.; UPME, Plan de Expansión de Referencia Generación-Transmisión 2017 - 2031. Unidad de Planeación Minero Energética, 2017.; S. Sagiroglu and D. Sinanc, “Big data: A review,” in 2013 International Conference on Collaboration Technologies and Systems (CTS), pp. 42–47, IEEE, 2013.; N. Aronszajn, “Theory of reproducing kernels,” Transactions of the American mathematical society, vol. 68, no. 3, pp. 337–404, 1950.; C. J. Burges, “A tutorial on support vector machines for pattern recognition,” Data mining and knowledge discovery, vol. 2, no. 2, pp. 121–167, 1998.; B. Chen, L. Li, W. Liu, and J. C. Príncipe, “Nonlinear adaptive filtering in kernel spaces,” in Springer Handbook of Bio-/Neuroinformatics, pp. 715–734, Springer, 2014.; C. Cheng, A. Sa-Ngasoongsong, O. Beyca, T. Le, H. Yang, Z. Kong, and S. T. Bukkapatnam, “Time series forecasting for nonlinear and non-stationary processes: a review and comparative study,” Iie Transactions, vol. 47, no. 10, pp. 1053–1071, 2015.; B. Scholkopf and A. J. Smola, Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press, 2001.; K. I. Kim, M. O. Franz, and B. Scholkopf, “Iterative kernel principal component analysis for image modeling,” IEEE transactions on pattern analysis and machine intelligence, vol. 27, no. 9, pp. 1351–1366, 2005.; T.-T. Frieß and R. F. Harrison, “A kernel based adaline.,” in ESANN, vol. 72, pp. 21–23, 1999.; S. An, W. Liu, and S. Venkatesh, “Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression,” Pattern Recognition, vol. 40, no. 8, pp. 2154–2162, 2007.; G. C. Cawley and N. L. Talbot, “Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers,” Pattern Recognition, vol. 36, no. 11, pp. 2585–2592, 2003.; W. Hardle, “ ‘applied nonparametric regression (cambridge: Cambridge university press),” 1990.; C. M. Bishop, Pattern recognition and machine learning. springer, 2006.; R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John Wiley & Sons, 2012.; A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern recognition letters, vol. 31, no. 8, pp. 651–666, 2010.; J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy k-nearest neighbor algorithm,” IEEE transactions on systems, man, and cybernetics, no. 4, pp. 580–585, 1985.; K. Fu, Sequential methods in pattern recognition and machine learning, vol. 52. Academic press, 1968.; C. Richard, J. C. M. Bermudez, and P. Honeine, “Online prediction of time series data with kernels,” IEEE Transactions on Signal Processing, vol. 57, no. 3, pp. 1058–1067, 2008.; C. Henry and R. Williams, “Real-time recursive estimation of statistical parameters,” Analytica chimica acta, vol. 242, pp. 17–23, 1991.; C. G. Bezerra, B. S. J. Costa, L. A. Guedes, and P. P. Angelov, “A new evolving clustering algorithm for online data streams,” in 2016 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), pp. 162–168, IEEE, 2016.; A. G. Salman, Y. Heryadi, E. Abdurahman, and W. Suparta, “Single layer & multilayer long short-term memory (lstm) model with intermediate variables for weather forecasting,” Procedia Computer Science, vol. 135, pp. 89–98, 2018; M. Yukawa and R.-i. Ishii, “On adaptivity of online model selection method based on multikernel adaptive filtering,” in 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, pp. 1–6, IEEE, 2013.; M. Yukawa, “Multikernel adaptive filtering,” IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4672–4682, 2012.; F. A. Tobar, S.-Y. Kung, and D. P. Mandic, “Multikernel least mean square algorithm,” IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 2, pp. 265– 277, 2013.; T. Ishida and T. Tanaka, “Multikernel adaptive filters with multiple dictionaries and regularization,” in 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, pp. 1–6, IEEE, 2013.; Q. Sun, L. Dang, W. Wang, and S. Wang, “Kernel least mean square algorithm with mixed kernel,” in 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI), pp. 140–144, IEEE, 2018.; T. Burton, D. Sharpe, N. Jenkins, and E. Bossanyi, Wind energy handbook. John Wiley & Sons, 2001.; M. Elshendy, A. F. Colladon, E. Battistoni, and P. A. Gloor, “Using four different online media sources to forecast the crude oil price,” Journal of Information Science, 2017.; P. J. Brockwell and R. A. Davis, Introduction to time series and forecasting. ingerir, 2016.; V. Kotu, “Chapter 12: Time series forecasting, editor (s): Vijay kotu, bala deshpande, data science,” 2019.; Q. Song, X. Zhao, Z. Feng, and B. Song, “Recursive least squares algorithm with adaptive forgetting factor based on echo state network,” in 2011 9th World Congress on Intelligent Control and Automation, pp. 295–298, IEEE, 2011.; S. Wen, R. Hu, Y. Yang, T. Huang, Z. Zeng, and Y.-D. Song, “Memristor-based echo state network with online least mean square,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, no. 99, pp. 1–10, 2018.; W.-Y. Chang, “A literature review of wind forecasting methods,” Journal of Power and Energy Engineering, vol. 2, no. 4, 2014.; C. Voyant, G. Notton, S. Kalogirou, M.-L. Nivet, C. Paoli, F. Motte, and A. Fouilloy, “Machine learning methods for solar radiation forecasting: A review,” Renewable Energy, vol. 105, pp. 569–582, 2017.; G. Bontempi, S. B. Taieb, and Y.-A. Le Borgne, “Machine learning strategies for time series forecasting,” in European business intelligence summer school, pp. 62–77, Springer, 2012.; L. Yu, Y. Zhao, L. Tang, and Z. Yang, “Online big data-driven oil consumption forecasting with google trends,” International Journal of Forecasting, vol. 35, no. 1, pp. 213– 223, 2019.; O. Schaer, N. Kourentzes, and R. Fildes, “Demand forecasting with user-generated online; A. S.Weigend, Time series prediction: forecasting the future and understanding the past. Routledge, 2018.; F. Kaytez, M. C. Taplamacioglu, E. Cam, and F. Hardalac, “Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines,” International Journal of Electrical Power & Energy Systems, vol. 67, pp. 431–438, 2015.; W. Liu, J. C. Principe, and S. Haykin, Kernel adaptive filtering: a comprehensive introduction, vol. 57. John Wiley & Sons, 2011.; https://repositorio.unal.edu.co/handle/unal/75985
-
15
Autoři: a další
Přispěvatelé: a další
Zdroj: IEEE Transactions on Vehicular Technology. :1-12
Témata: Consistency Evaluation, Electrical and electronic engineering [Engineering], 7. Clean energy, Energy Storage Systems
Přístupová URL adresa: https://hdl.handle.net/10356/171783
-
16
Autoři: a další
Zdroj: Journal of Applied Mathematics; 2014, p1-8, 8p
-
17
Autoři:
Zdroj: Journal of Information Processing Systems; Oct2024, Vol. 20 Issue 5, p663-674, 12p
-
18
Autoři: a další
Zdroj: Journal of Marine Science & Engineering; Apr2025, Vol. 13 Issue 4, p753, 22p
-
19
Autoři: a další
Zdroj: COMPEL; 2024, Vol. 43 Issue 6, p1220-1238, 19p
-
20
Autoři: a další
Zdroj: Electronics (2079-9292); Sep2023, Vol. 12 Issue 17, p3670, 15p
Full Text Finder
Nájsť tento článok vo Web of Science