Search Results - acm: c.: computer systems organizacion/c.1: processes architectures
-
1
Authors: et al.
Contributors: et al.
Subject Terms: Development of computer programs, Information storage systems, Information retrieval systems, Electronic data processing, Systems engineering, Investigations, Analysis, Development of multi-agent systems, Electronic notebooks, Investigative processes, Desarrollo de programas para computador, Sistemas de almacenamiento de información, Sistemas de recuperación de información, Procesamiento electrónico de datos, Ingeniería de sistemas, Investigaciones, Análisis, Desarrollo de sistemas multiagentes, Ingenias, Cuadernos electrónicos, Procesos investigativos
Subject Geographic: Bucaramanga (Colombia), UNAB Campus Bucaramanga
File Description: application/pdf; application/octet-stream
Relation: Casas Castañeda, Sara Lucía, Albornoz Balaguera, Carlos Alberto, Barrera Sanabria, Gareth (2005). Aplicación de la metodología de desarrollo ingenia y técnicas de web semántica en la implementación de un cuaderno electrónico de investigaciones. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB; BARRERA Sanabria Gareth, Rodríguez Buitrago Carolina. Aplicación de una metodología orientada a agentes en la implantación de un sistema de reserva de vuelos. Universidad Autónoma de Bucaramanga. Facultad de Ingeniería de Sistemas, 2001; BRAY, J. Paoli, C. M. Sperberg-McQueen, Nore Markup Language (XML) 1.0 (Second Edition). Disponible en: http://www.w3.org/TR/REC-xml.html W3C Recommendation 6 October 2000.; CASAS Castañeda Casas Castañeda Norma Judith, Quintanilla Diana Patricia. Tesis Diseño e implementación de un prototipo de comercio electrónico utilizando un paradigma orientado a agentes. Universidad Autónoma de Bucaramanga. Facultad de Ingeniería de Sistemas, 2002; CASTELFRANCHI, C. Guarantees for autonomy. En : Cognitive Agent Architecture. (1995). Citado por : IGLESIAS FERNÁNDEZ, Carlos Ángel. Definición de una metodología para el desarrollo de sistemas multiagente. España, 1998, 321 p. Tesis (Doctoral). Universidad Politécnica de Madrid. Departamento de Ingeniería de Sistemas Telemáticos.; CONNOLLY, F. van Harmelen, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein. DAML+OIL Reference Description. W3C Note 18 December 2001. Disponible en http://www.w3.org/TR/daml+oil-reference.; DEAN, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Language 1.0 Reference W3C Working Draft 29 July 2002. Disponible en http://www.w3.org/TR/owl-ref.; DECKER, S. Keith:Environment Centered Analysis and Design of Coordination Mechanisms. Informe. Department of Computer Science, University of Massachusetts. 1995; DIAZ Silva José Fabián, Murillo Anderson. Diseño e implementación de un prototipo de mercado virtual utilizando la tecnología de agentes. Universidad Autónoma de Bucaramanga. Facultad de Ingeniería de Sistemas, 2003.; ELLIOTTE Rusty Harold. XML Bible 3ra edición isbn: 076454986-3 February 2004; EURESCOM. MESSAGE: Methodology for engineering systems of software agents. Initial methodology. Technical Report P907-D1, EURESCOM. January 2000; EURESCOM. MESSAGE: Methodology for engineering systems of software agents (Final). Technical Report P907-TI1, EURESCOM. December 2001; FERBER, J. y Gutknecht, O.: A Meta-Model for the Analysis and Design of Organizations in Multi-Agent Systems. Actas de conferencia. Proceedings of the Third International Conference on Multi-Agent Systems (ICMAS98), IEEE CS Press. 1998.; GALLIERS, J. A theoretical framework for computer models of cooperative dialogue, acknowledging multiagent conflict. Tesis (PhD). Open University Uk. Citado por : IGLESIAS FERNÁNDEZ, Carlos Ángel. Definición de una metodología para el desarrollo de sistemas multiagente. 321 p. Tesis (Doctoral). Universidad Politécnica de Madrid. Departamento de Ingeniería de Sistemas Telemáticos. España, julio 1998; GARCIA Juan Carlos. Buscadores inteligentes de información basados en la tecnología de agentes móviles. Universidad Autónoma de Bucaramanga. Facultad de Ingeniería de Sistemas, 2001.; GEIST, Al. Design of The DOE2000 Electronic Notebook : The Electronic Notebook Architecture. Berkeley California. December 1997; GILBERT, N. 1-85728-305-8, UCL Press, London, Artificial Societies: the Computer Simulation of Social Life. February 1995; GOMEZ, J. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial. No.18, pp. 51-63. ISSN: 1137-3601. © AEPIA (http://www.aepia.dsic.upv.es/). Metodologías para el desarrollo de Sistemas multi-agente Jorge J. Gómez Sanz 2003; GUTTMAN, R. H. y A. G. Moukas The Knowledge Engineering Review, Cambridge University Press, 0269-8889, Editado por Simons Parsons y Adele E. Howe, "Agent-mediated electronic commerce: a survey", , 1998, 147-159.; HYACINTH, Nwana. Software agents: An overview [online]. Disponible en: http://labs.bt.com/proyects/agents/publish/papers/review.html [cited 25 august 2004]; IBM Agent Building and Learning Environment (ABLE). [online] Available from World Wide Web: [cited 15 february 2004]; IGLESIAS Fernández, Carlos Ángel et al. Analysis and design of multiagent systems using MAS – CommonKADS. Valladolid, España. (1999); 15 p.; JENNINGS, J. International Journal of Cooperative Information Systems, World Scientific Publishing Co., 0218-8430, Editado por M. P. Papazoglou, "Agent-based busines process management.", N. R. April 1996.; D’INVERNO, Mark y Michael Luck, 3-540-41975-6, Springer, Understanding Agent Systems. March 2001; JACOBSON, I., Booch, G. y Rumbaugh, J.: El Proceso Unificado de Desarrollo de Software. Libro completo. Addison Wesley. 303-3792000. January 2000; MALONE, T. W. and Crowston, K., The Interdisciplinary Study of Coordination, ACM Computing Survey, vol. 26, no. 1, pp. 87-119, Mar.1994; MARTINEZ Eduardo, Prieto William y Freddy Pico. Prototipo de aplicación de comercio electrónico utilizando la metodología Gaia al desarrollo de software orientado a agentes. Universidad Autónoma de Bucaramanga. Facultad de Ingeniería de Sistemas, 2002.; MYERS, James D., Elena S. Mendoza , Bonnie Hoopes. A collaborative electronic laboratory notebook , Pacific Northwest, National Laboratory PO Box 999 Richland, WA 99352 USA; MONTAGÚ Castro, María Clemencia, Vargas Mayorga, Jorge Leonardo. Tesis Aplicación de la metodología ingenias en la implentación de un prototipo de Supply Chain Manageme. Universidad Autónoma de Bucaramanga. Facultad de Ingeniería de Sistemas, 2004; NEWELL, A. and Simons, H. A., GPS: A program that simulates Human Thought, en Computers and Thought. Mc Graw Hill, 1963.; O. LASSILLA, O., R. R. Swick. Resource Description Framework (RDF) Model and Syntax Specification. W3C Recommendation 22 February 1999. Available at http://www.w3.org/TR/REC-rdf-syntax.; PERRY, Bruce W. Java Servlet & JSP Cookbook . Publisher : O'Reilly Pub Date : January 2004 ISBN : 0-596-00572-5 Pages : 746; RAO, A y M. Georgeff. Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference, Morgan Kaufmann, San Mateo, 1-55860-262-3, Editado por B. Nebel, C. Rich, y W. Swartout, "An abstract architecture for rational agents, 1992.; RICH, E. y Knight, K.: Artificial Intelligence. Libro completo. McGraw-Hill. 1990; ROSENSCHEIN, J and GENESERETH, M. Deals among rational agents. En : Proceedings of the ninth International join conference on artificial intelligent. (1985); RUSELL, S. y Norvig, P: Artificial Intelligence: a modern approach. Libro completo. Prentice Hall. 1995.; SYCARA, K., Klusch, M., idof, S., and Lu, J., Dynamic Service Matchmaking among Agents in Open Information Environments, Journal ACM SIGMOD Record, Special Issue on Semantic Interoperability in Global Information Systems, 1999; TIMBERNERS-LEE, J. Hendler, O Lassila. Fascinating facts about Tim Berners-Lee inventor of the World Wide Web. The Semantic Web 12-589-6587-AK25, http://www.ideafinder.com/history/inventors/berners-lee.htm Scientific American, May 2001; WAGNER G. Agent-Oriented Analysis and Design of Organizational Information Systems. In Proc. of Fourth IEEE International Baltic Workshop on Databases and Information Systems, Vilnius (Lithua-nia), May 2000.; Wim Coulier: Belgacom Project Leader & Responsible for Dissemination. Disponible en: http://www.eurescom.de/~public-webspace/P900-series/P907 May 23, 2000; WHITAKER, R.:Self-Organization, Autopoiesis, and Enterprises. ACM SIGGROUP. http://www.acm.org/siggroup/auto/Main.html; WOOLDRIDGE, Michael et al. 0-471-49691-X, Agent – oriented software engineering for Internet applications. An introduction to Multiagent Systems October 2002.; WOOLDRIDGE and N. R. Jennings. Agent theories, architectures, and languages: A survey. In M. Wooldridge and N. R. Jennings, editors, Intelligent Agents: Theories, Architectures, and Languages (LNAI Volume 890), Springer-Verlag: Heidelberg, Germany, Jan. 1995.; Workflow Management Coalition:The Workflow Management Coalition Specification: Workflow Management Coalition Terminology & Glossary. Informe. 1999; http://hdl.handle.net/20.500.12749/1325; reponame:Repositorio Institucional UNAB
Availability: https://hdl.handle.net/20.500.12749/1325
-
2
Authors: et al.
Contributors: et al.
Subject Terms: Engineering, Technology management, Maturity model, Smart technologies, Smart-university, Technology adoption, Technological innovations, Technological change, Artificial intelligence, Computer networks, Communications technology, Ingeniería, Innovaciones tecnológicas, Cambio tecnológico, Inteligencia artificial, Redes de computadores, Tecnología de las comunicaciones, Gestión de tecnología, Modelo de madurez, Tecnologías inteligentes, Universidad inteligente, Adopción tecnológica
Subject Geographic: Norte de Santander (Colombia), UNAB Campus Bucaramanga
File Description: application/pdf
Relation: [1] C. U. ESPAÑOLAS, Analisis de las TIC en las Universidades Españolas. 2015. doi:10.1017/CBO9781107415324.004; [2] J. S. Rueda-Rueda, D. Rico-Bautista, and É. Flórez-Solano, “Education in ICT: Teaching to use, teaching to protect oneself and teaching to create [Educación en TIC: Enseñar a usar, enseñar a protegerse y enseñar a crear tecnología],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2019, no. 19, pp. 252–264, 2019.; [3] L. V. Glukhova, S. D. Syrotyuk, A. A. Sherstobitova, and S. V. Pavlova, Smart university development evaluation models, vol. 144. Springer Singapore, 2019. doi:10.1007/978-981-13-8260-4_47; [4] D. Rico-bautista, C. D. Guerrero, C. A. Collazos, and G. Maestre-góngora, “Smart University : A vision of technology adoption Universidad inteligente : Una visión de la adopción de la tecnología,” Revista Colombiana de Computación, vol. 22, no. 1, pp. 44–55, 2021, doi:10.29375/25392115.4153; [5] P. Pornphol and T. Tongkeo, “Transformation from a traditional university into a smart university,” Proceedings of the 6th International Conference on Information and Education Technology - ICIET ’18. ACM Press, pp. 144–148, 2018. doi:10.1145/3178158.3178167; [6] I. Staškevičiute and B. Neverauskas, “The intelligent university’s conceptual model,” Engineering Economics, vol. 4, no. 59, pp. 53–58, 2008, doi:10.5755/j01.ee.59.4.11563; [7] D. Rico-Bautista, C. D. Guerrero, C. A. Collazos, and G. Maestre-Gongora, “Maturity model of adoption of Information Technologies for universities: An approach from the Smart University perspective,” in 2021 16th Iberian Conference on Information Systems and Technologies (CISTI), Jun. 2021, pp. 1–6. doi:10.23919/CISTI52073.2021.9476468; [8] L. I. U. Xiong, “A Study on Smart Campus Model in the Era of Big Data,” Advances in Social Science, Education and Humanities Research, vol. 87, no. Icemeet 2016, pp. 919–922, 2017.; [9] D. Rico-Bautista, G. P. Maestre-Góngora, and C. D. Guerrero, “Smart university: Characterization of the current situation of intelligent technologies, based on two case studies [Caracterización de la situación actual de las tecnologías inteligentes para una universidad inteligente en Colombia/latinoamérica],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E27, pp. 484–501, 2020; [10] F. M. Pérez, J. V. B. Martínez, J. M. S. Bernabeu, I. L. Fonseca, and A. Fuster-Guilló, “Smart university: hacia una universidad más abierta.” 2016.; [11] D. Rico-Bautista, Y. Medina-Cárdenas, and C. D. Guerrero, “Smart University: A Review from the Educational and Technological View of Internet of Things,” in International Conference on Information Technology and Systems, ICITS 2019, vol. 918, P. M., F. C., and R. A., Eds. Systems and Informatics Department, Universidad Francisco de Paula Santander Ocaña, Algodonal Campus Vía Acolsure, Ocaña, 546551, Colombia: Springer Verlag, 2019, pp. 427–440. doi:10.1007/978-3-03011890-7_42; [12] J. P. Bakken, V. L. Uskov, S. V. Kuppili, A. V Uskov, N. Golla, and N. Rayala, Smart University: Conceptual Modeling and Systems’ Design, vol. 70. Cham: Springer International Publishing, 2018. doi:10.1007/978-3-319-59454-5.; [13] O. Akhrif, Y. E. B. El Idrissi, and N. Hmina, “Smart university: SOC-based study,” Proceedings of the 3rd International Conference on Smart City Applications - SCA ’18. ACM Press, 2018. doi:10.1145/3286606.3286798; [14] Aqeel-ur-Rehman, A. Z. Abbasi, and Z. A. Shaikh, “Building a Smart University Using RFID Technology,” in 2008 International Conference on Computer Science and Software Engineering, 2008, vol. 5, pp. 641–644. doi:10.1109/CSSE.2008.1528.; [15] K. Sargent, P. Hyland, and S. Sawang, “Factors influencing the adoption of information technology in a construction business,” Construction Economics and Building, vol. 12, no. 2, p. 86, Jun. 2012, doi:10.5130/AJCEB.v12i2.244; [16] S. Karkošková, “Towards Cloud Computing Management Model Based on ITIL Processes,” in Proceedings of the 2nd International Conference on Business and Information Management, Sep. 2018, pp. 1–5. doi:10.1145/3278252.3278265; [17] M. Comuzzi and A. Patel, “How organisations leverage: Big Data: A maturity model,” Industrial Management and Data Systems, vol. 116, no. 8, pp. 1468–1492, 2016, doi:10.1108/IMDS-12-20150495.; [18] N. V Semenova, E. A. Svyatkina, T. G. Pismak, and Z. Y. Polezhaeva, “The Realities of Smart Education in the Contemporary Russian Universities,” in Proceedings of the Internationsl Conference on Electronic Governance and Open Society: Challenges in Eurasia, 2017, pp. 48–52. doi:10.1145/3129757.3129767; [19] A. Fernández Martínez and F. Llorens Largo, Gobierno de las TI para universidades. 2016.; [20] C. Williams, D. Schallmo, K. Lang, and L. Boardman, “Digital Maturity Models for Small and Medium-sized Enterprises: A Systematic Literature Review,” ISPIM Conference Proceedings, no. June, pp. 1–15, 2019; [21] J. Rueda-Rueda, J. Manrique, and J. Cabrera Cruz, Internet de las Cosas en las Instituciones de Educación Superior. 2017.; [22] J. Becker, R. Knackstedt, and J. Pöppelbuß, “Developing Maturity Models for IT Management,” Business & Information Systems Engineering, vol. 1, no. 3, pp. 213–222, 2009, doi:10.1007/s12599009-0044-5.; [23] C. Heinemann and V. L. Uskov, “Smart University: Literature Review and Creative Analysis,” in Smart Universities, Germany: Springer International Publishing, 2018, pp. 11–46. doi:10.1007/978-3-31959454-5_2; [24] P. Rikhardsson and R. Dull, “An exploratory study of the adoption, application and impacts of continuous auditing technologies in small businesses,” International Journal of Accounting Information Systems, vol. 20, pp. 26–37, Apr. 2016, doi:10.1016/j.accinf.2016.01.003; [25] Y. C. Medina-Cárdenas and D. Rico-Bautista, “Strategic alignment under a technology management organizational approach: ITIL & ISO 20000,” Revista Tecnura, vol. 20, no. 1, pp. 82–94, 2016, doi:10.14483/22487638.11681; [26] D. Rico-Bautista et al., “Smart university: Strategic map since the adoption of technology [Universidad inteligente: Mapa estratégico desde la adopción de tecnología].,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E28, pp. 711–724, 2020.; [27] Dewar. Rico-Bautista, Y. Areniz Arévalo, and Y. C. Medina Cárdenas, “Strategic management appropriation: A question of organizational skills,” FACE: Revista de la Facultad de Ciencias Económicas y Empresariales, vol. 15, no. 2, pp. 71–80, Nov. 2015; [28] D. Rico-Bautista et al., “Smart university: Key factors for the adoption of internet of things and big data,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 201, no. 41, pp. 63–79, 2021, doi:10.17013/risti.41.63–79; [29] D. Rico-Bautista, C. A. Collazos, C. D. Guerrero, G. Maestre-Gongora, and Y. Medina-Cárdenas, “Latin American Smart University: Key Factors for a User-Centered Smart Technology Adoption Model,” in Sustainable Intelligent Systems, 2021, pp. 161–173. doi:10.1007/978-981-33-4901-8_1; [30] D. Rico-Bautista, Y. Medina-Cardenas, L. A. Coronel-Rojas, F. Cuesta-Quintero, G. Maestre-Gongora, and C. D. Guerrero, “Smart University: Key Factors for an Artificial Intelligence Adoption Model,” in Advances and Applications in Computer Science, Electronics and Industrial Engineering, vol. 1307, M. v. García, F. Fernández-Peña, and C. Gordón-Gallegos, Eds. Singapore: Springer Singapore, 2021, pp. 153–166. doi:10.1007/978-981-33-4565-2_10.; [31] D. Rico-Bautista, G. Maestre-Gongora, and C. D. Guerrero, “Smart University:IoT adoption model,” in 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), Jul. 2020, pp. 821–826. doi:10.1109/WorldS450073.2020.9210369. [32] D. Rico-Bautista, Y. Medina-Cardenas, Y. Areniz-Arevalo, E.; [32] D. Rico-Bautista, Y. Medina-Cardenas, Y. Areniz-Arevalo, E. Barrientos-Avendano, G. MaestreGongora, and C. D. Guerrero, “Smart University: Big Data adoption model,” in 2020 9th International Conference On Software Process Improvement (CIMPS), Oct. 2020, pp. 52–60. doi:10.1109/CIMPS52057.2020.9390151; [33] O. Akhrif, Y. E. B. El Idrissi, and N. Hmina, “Smart university, a new concept in the Internet of Things,” in Proceedings of the 3rd International Conference on Smart City Applications - SCA ’18, 2018, pp. 1– 6. doi:10.1145/3286606.3286798.; [34] C. de la república de Colombia, “Plan nacional de desarrollo 2014-2018,” 2015.; [35] Consejo Privado de Competitividad, “Informe nacional de competitividad 2017-2018,” p. 271, 2017, doi: ISSN 2016-1430; [36] P. Generales and C. De Calidad, “Modelo de acreditación CNA,” 2006; [37] L. Enrique and O. Silva, “La calidad de la universidad. Más allá de toda ambigüedad,” pp. 1–14, 1997; [38] A. Roa, “Hacia un modelo de aseguramiento de la calidad en la educación superior en Colombia: estándares básicos y acreditación de excelencia,” Educación superior, calidad y acreditación. Alfa Omega Colombiana, Bogotá, pp. 101–107, 2003; [39] Ministerio de Educación Nacional, “Propuesta metodológica para la distribución de recursos Artículo 87 de la Ley 30 de 1992 Vigencia 2013,” p. 6, 2013.; [40] M. Zapata-Ros, “La universidad inteligente La transición de los LMS a los Sistemas Inteligentes de Aprendizaje en Educación Superior The transition from Learning Management Systems (LMS) to Smart Learning Systems (SLS) in Higher Education,” RED. Revista de Educación a Distancia. Núm, vol. 57, no. 10, pp. 31–1, 2018, doi:10.6018/red/57/10; [41] J. Gómez, T. Jimenez, J. Gumbau, and F. Llorens, Universitic 2017 Análisis de las TIC en las Universidades Españolas. 2017; [42] F. Maciá, Smart University. Hacia una universidad más abierta, Primera. 2017.; [43] J. Gómez, T. Jimenez, J. Gumbau, and F. Llorens, “UNIVERSITIC 2016 Análisis de las TIC en las Universidades Españolas,” p. 150, 2016; Universidades Españolas,” p. 150, 2016. [44] ANUIES, Estado actual de las Tecnologías de la Información y las Comunicaciones en las Instituciones de Educación Superior en México. 2017.; [45] R. Padilla, S. Cadena, R. Enríquez, J. Córdova, and F. Lllorens, Estado de las tecnologías de la información y la comunicación en las universidades ecuatorianas. 2017.; [46] F. L. L. Antonio Fernández Martínez, Universitic Latam 2014, no. 1. 2014. doi:10.1007/s13398-0140173-7.2; [47] J. Valls, R. Villers, and G. Duque, Estado Actual de las Tecnologías de la Información y las Comunicaciones en las Instituciones de Educación Superior en México. 2016; [48] A. Whitmore, A. Agarwal, and L. Da Xu, “The Internet of Things—A survey of topics and trends,” Information Systems Frontiers, vol. 17, no. 2, pp. 261–274, 2015, doi:10.1007/s10796-014-9489-2; [49] N. Gershenfeld, R. Krikorian, and D. Cohen, The internet of things, vol. 291, no. 4. 2004. doi:10.1038/scientificamerican1004-76.; [50] C. (Software B. Williams, “Smart Systems,” Cybertalk, no. April, 2016; [51] O. Flauzac, C. Gonzalez, and F. Nolot, “New security architecture for IoT network,” in Procedia Computer Science, 2015, vol. 52, no. 1, pp. 1028–1033. doi:10.1016/j.procs.2015.05.099; [52] G. Maestre-Góngora, “Revisión de literatura sobre ciudades inteligentes: una perspectiva centrada en las TIC,” Ingeniare, vol. 19, no. 19, pp. 137–149, 2016.; [53] G. Perboli, A. De Marco, F. Perfetti, and M. Marone, “A New Taxonomy of Smart City Projects,” Transportation Research Procedia, vol. 3, pp. 470–478, 2014, doi:10.1016/j.trpro.2014.10; [54] L. Muñoz López, D. Proyecto, P. Antón Martínez, and S. Fernández Ciez, “Summary for Policymakers,” in Climate Change 2013 - The Physical Science Basis, Intergovernmental Panel on Climate Change, Ed. Cambridge: Cambridge University Press, 2015, pp. 1–30. doi:10.1017/CBO9781107415324.004.; [55] Y. Atif, S. S. Mathew, and A. Lakas, “Building a smart campus to support ubiquitous learning,” Journal of Ambient Intelligence and Humanized Computing, vol. 6, no. 2, pp. 223–238, 2015, doi:10.1007/s12652-014-0226-y; [56] E. M. Malatji, “The development of a smart campus - African universities point of view,” in 2017 8th International Renewable Energy Congress (IREC), Mar. 2017, pp. 1–5. doi:10.1109/IREC.2017.7926010; [57] A. Adamko, T. Kadek, and M. Kosa, “Intelligent and adaptive services for a smart campus,” in 5th IEEE Conference on Cognitive Infocommunications (CogInfoCom), Nov. 2014, pp. 505–509. doi:10.1109/CogInfoCom.2014.7020509; [58] Y. Khamayseh, W. Mardini, S. Aljawarneh, and M. B. Yassein, “Integration of Wireless Technologies in Smart University Campus Environment,” International Journal of Information and Communication Technology Education, vol. 11, no. 1, pp. 60–74, Jan. 2015, doi:10.4018/ijicte.2015010104.; [59] M. Rohs and J. Bohn, “Entry points into a smart campus environment - overview of the ETHOC system,” in 23rd International Conference on Distributed Computing Systems Workshops, 2003. Proceedings., 2003, pp. 260–266. doi:10.1109/ICDCSW.2003.1203564.; [60] S. Gul, M. Asif, S. Ahmad, M. Yasir, M. Majid, and M. S. A. Malik, “A Survey on role of Internet of Things in education,” IJCSNS International Journal of Computer Science and Network Security, vol. 17, no. 5, pp. 159–165, 2017; [61] L. Banica, E. Burtescu, and F. Enescu, “The impact of internet-of-things in higher education,” Scientific Bulletin-Economic Sciences, vol. 16, no. 1, pp. 53–59, 2017.; [62] D. Galego, C. Giovannella, and Ó. Mealha, “Determination of the Smartness of a University Campus: The Case Study of Aveiro,” Procedia - Social and Behavioral Sciences, vol. 223, pp. 147–152, 2016, doi:10.1016/j.sbspro.2016.05.336.; [63] R. Wendler, “The maturity of maturity model research: A systematic mapping study,” Information and Software Technology, vol. 54, no. 12, pp. 1317–1339, 2012, doi:10.1016/j.infsof.2012.07.007; [64] J. Fraser and S. Plewes, “Applications of a UX Maturity Model to Influencing HF Best Practices in Technology Centric Companies – Lessons from Edison,” Procedia Manufacturing, vol. 3, pp. 626–631, 2015, doi:10.1016/j.promfg.2015.07.285.; [65] J. Poeppelbuss, B. Niehaves, A. Simons, and J. Becker, “Maturity Models in Information Systems Research: Literature Search and Analysis,” Communications of the Association for Information Systems, vol. 29, no. 1, 2011, doi:10.17705/1cais.02927; [66] L. G. Pee and A. Kankanhalli, “A model of organisational knowledge management maturity based on people, process, and technology,” Journal of Information and Knowledge Management, vol. 8, no. 2, pp. 79–99, 2009, doi:10.1142/S0219649209002270; [67] L. Montañez Carrillo and J. P. Lis Gutiérrez, “A propósito de los modelos de madurez de gestión del conocimiento,” Revista Facultad de Ciencias Económicas, vol. 25, no. 2, pp. 63–81, 2017, doi:10.18359/rfce.3069; [68] F. Y. Hernández, R. I. Laguado, and J. P. Rodriguez, “Maturity analysis in project management in Colombian universities,” in Journal of Physics: Conference Series, 2018, vol. 1126, no. 1. doi:10.1088/1742-6596/1126/1/012055; [69] T. de Bruin, M. Rosemann, R. Freeze, and U. Kulkarni, “Understanding the main phases of developing a maturity assessment model,” 2005; [70] L. Lee‐Kelley, D. A. Blackman, and J. P. Hurst, “An exploration of the relationship between learning organisations and the retention of knowledge workers,” The Learning Organization, vol. 14, no. 3, pp. 204–221, Apr. 2007, doi:10.1108/09696470710739390.; [71] P. Jonsson and C. Wohlin, “An evaluation of k-nearest neighbour imputation using likert data,” in 10th International Symposium on Software Metrics, 2004. Proceedings., pp. 108–118. doi:10.1109/METRIC.2004.1357895; [72] J. Martínez Lozano, “Modelo de madurez en el dominio de los proyectos aplicado a organizaciones de gestión de proyectos en Medellín,” Universidad EAFIT, 2015.; [73] E. I. Pérez-Mergarejo, I. I. Pérez-Vergara, and Y. Rodríguez-Ruíz III, “Modelos de madurez y su idoneidad para aplicar en pequeñas y medianas empresas Maturity models and the suitability of its application in small and medium enterprises,” Ingeniería Industrial, vol. XXXV, no. 2, pp. 1815–5936, 2014, doi:10.1016/j.jag.2015.12.005.; [74] S. Marshall, “Change, technology and higher education: Are universities capable of organisational change?,” Australasian Journal of Educational Technology, vol. 26, no. 8, pp. 179–192, 2010, doi:10.14742/ajet.1018.; [75] C. L. Carvajal and A. M. Moreno, “The Maturity of Usability Maturity Models,” no. February, 2018, doi:10.1007/978-3-319-67383-7.; [76] T. C. Lacerda and C. G. von Wangenheim, “Systematic literature review of usability capability/maturity models,” Computer Standards and Interfaces, vol. 55, pp. 1339–1351, 2018, doi:10.1016/j.csi.2017.06.001; [77] J. Becker, B. Niehaves, J. Pöppelbuß, and A. Simons, “Maturity models in IS research,” 18th European Conference on Information Systems, ECIS 2010, 2010; [78] T. De Bruin, R. Freeze, U. Kaulkarni, and M. Rosemann, “Understanding the main phases of developing a maturity assessment model,” Australasian Chapter of the Association for Information Systems, pp. 8– 19, 2005, doi:10.1108/14637151211225225; [79] J. Becker, R. Knackstedt, and J. Pöppelbuß, “Developing maturity models for it management - A procedure model and its application [Entwicklung von reifegradmodellen für das it-management - VorgehensModell und praktische anwendung],” Business and Information Systems Engineering, vol. 51, no. 3, pp. 249–260, 2009, doi:10.1007/s11576-009-0167-9.; [80] J. Vuorio, J. Okkonen, and J. Viteli, “Enhancing user value of educational technology by three layer assessment,” in Proceedings of the 21st International Academic Mindtrek Conference, Sep. 2017, pp. 220–226. doi:10.1145/3131085.3131105.; [81] P. Martins and J. de S. D. Duarte, “Towards a Maturity Model for Higher Education Institutions,” Journal of Spatial and Organisational Dynamics, vol. 1, no. 1, 2013; [82] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “A gap analysis of Internet-of-Things platforms,” Computer Communications, vol. 89–90, 2016, doi:10.1016/j.comcom.2016.03.015; [83] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125–1142, 2017, doi:10.1109/JIOT.2017.2683200.; [84] M. A. Marotta, C. B. Both, J. Rochol, L. Z. Granville, and L. M. R. Tarouco, “Evaluating management architectures for Internet of Things devices,” IFIP Wireless Days, vol. 2015-Janua, no. January, 2015, doi:10.1109/WD.2014.7020811.; [85] T. Ara, P. Gajkumar Shah, and M. Prabhakar, “Internet of Things Architecture and Applications: A Survey,” Indian Journal of Science and Technology; Volume 9, Issue 45, December 2016, 2016.; [86] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: The internet of things architecture, possible applications and key challenges,” in Proceedings - 10th International Conference on Frontiers of Information Technology, FIT 2012, 2012, pp. 257–260. doi:10.1109/FIT.2012.53.; [87] J. I. Rodríguez Molano, C. E. Montenegro marín, J. M. Cueva Lovelle, J. Molano, C. Marin, and J. Cueva, “Introducción al Internet de las Cosas,” Redes de Ingeniería, vol. 6, no. 7, pp. 53–59, 2015, doi:10.14483/udistrital.jour.redes.2016.1.a04.; [88] T. Cao, X. Chen, R. Doss, J. Zhai, L. J. Wise, and Q. Zhao, “RFID ownership transfer protocol based on cloud,” Computer Networks, vol. 105, pp. 47–59, 2016, doi:10.1016/j.comnet.2016.05.017; [89] F. Maciá-Pérez, J. Berná-Martínez, J. Sánchez-Bernabéu, and I. Lorenzo, Smart university: hacia una universidad más abierta. Marcombo, 2016.; [90] S. Downes and C. E.-A. Campbell, “Smart University Utilising the Concept of the Internet of Things (IOT),” in 2018 UKSim-AMSS 20th International Conference on Computer Modelling and Simulation (UKSim), 2018, pp. 145–150. doi:10.1109/uksim.2018.00037.; [91] M. Zapata-ros, “La universidad inteligente La transición de los LMS a los Sistemas Inteligentes de Aprendizaje en Educación Superior The smart university,” vol. 57, no. 10, pp. 1–43, 2018.; [92] Y. S. Mitrofanova, A. A. Sherstobitova, and O. A. Filippova, Modeling the assessment of definition of a smart university infrastructure development level, vol. 144. Springer Singapore, 2019. doi:10.1007/978-981-13-8260-4_50; [93] S. Park and D. Ko, “Design of the Convergence Security Platform for Smart Universities,” vol. 3, no. 2. pp. 3–7, 2015.; [94] X. Cheng and R. Xue, “Construction of Smart Campus System Based on Cloud Computing,” Proceedings of the 2016 6th International Conference on Applied Science, Engineering and Technology (ICASET), vol. 77, no. Icaset, pp. 187–191, 2016, doi:10.2991/icaset-16.2016.37.; [95] A. Ben Rjab and S. Mellouli, “Smart cities in the era of artificial intelligence and internet of things,” no. 1, pp. 1–10, 2018, doi:10.1145/3209281.3209380; [96] S. Alqassemi, Y. K. Ever, and A. V. Rajan, “Maturity Level of Cloud Computing at HCT,” ITT 2017 - Information Technology Trends: Exploring Current Trends in Information Technology, Conference Proceedings, vol. 2018-Janua, no. Itt, pp. 5–8, 2018, doi:10.1109/CTIT.2017.8259558.; [97] C. N. Hung, M. D. Hwang, and Y. C. Liu, “Building a Maturity Model of Information Security Governance for Technological Colleges and Universities in Taiwan,” Applied Mechanics and Materials, vol. 284–287, pp. 3657–3661, 2013, doi:10.4028/www.scientific.net/amm.284-287.3657; [98] B. Sánchez-Torres, J. A. Rodríguez-Rodríguez, D. Rico-Bautista, and C. D. Guerrero, “Smart Campus: Trends in cybersecurity and future development,” Revista Facultad de Ingeniería, vol. 27, no. 47, pp. 93–101, Jan. 2018, doi:10.19053/01211129.v27.n47.2018.7807; [99] D. Rico-Bautista, Y. Medina-Cárdenas, and C. D. Guerrero, “Smart University: A Review from the Educational and Technological View of Internet of Things,” in International Conference on Information Technology and Systems, ICITS 2019, vol. 918, M. Paredes, C. Ferras, and A. Rocha, Eds. Systems and Informatics Department, Universidad Francisco de Paula Santander Ocaña, Algodonal Campus Vía Acolsure, Ocaña, 546551, Colombia: Springer Verlag, 2019, pp. 427–440. doi:10.1007/978-3-030-11890-7_42.; [100] D. Rico-Bautista, G. P. Maestre-Góngora, and C. D. Guerrero, “Smart university: Characterization of the current situation of intelligent technologies, based on two case studies [Caracterización de la situación actual de las tecnologías inteligentes para una universidad inteligente en Colombia/latinoamérica],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E27, pp. 484–501, 2020; [101] M. Ali and A. Majeed, “How Internet-of-Things ( IoT ) Making the University Campuses Smart ?,” pp. 646–648, 2018, doi:10.1109/CCWC.2018.8301774; [102] S. Hipwell, “Developing smart campuses #x2014; A working model,” 2014 International Conference on Intelligent Green Building and Smart Grid (IGBSG), pp. 1–6, 2014, doi:10.1109/IGBSG.2014.6835169.; [103] I. Staskeviciute and B. Neverauskas, “The Intelligent University’s Conceptual Model,” Inzinerine Ekonomika-Engineering Economics, no. 4, pp. 53–58, 2008; [104] J. Green, “The Internet of Things Reference Model,” Internet of Things World Forum, pp. 1–12, 2014; [105] S. Li, L. Da Xu, and S. Zhao, “The internet of things: a survey,” Information Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015, doi:10.1007/s10796-014-9492-7; [106] D. Airehrour, J. Gutierrez, and S. K. Ray, “Secure routing for internet of things: A survey,” Journal of Network and Computer Applications, vol. 66, 2016, doi:10.1016/j.jnca.2016.03.006; [107] Dewar. Rico-Bautista, Y. Medina-Cárdenas, and L. M. Santos Jaimes, “Ipsec de Ipv6 en la universidad de Pamplona,” Scientia Et Technica, vol. 2, no. 39, pp. 320–325, 2008, doi:10.22517/23447214.3239; [108] A. J. Jara, P. Moreno-Sanchez, A. F. Skarmeta, S. Varakliotis, and P. Kirstein, “IPv6 addressing proxy: Mapping native addressing from legacy technologies and devices to the internet of things (IPv6),” Sensors (Switzerland), vol. 13, no. 5, pp. 6687–6712, 2013, doi:10.3390/s130506687; [109] L. M. Santos and D. Rico-Bautista, “IPv6 en la Universidad de Pamplona: Estado del arte,” Scientia Et Technica, vol. XIII, pp. 415–420, 2007.; [110] T. Le Vinh, S. Bouzefrane, J. M. Farinone, A. Attar, and B. P. Kennedy, “Middleware to integrate mobile devices, sensors and cloud computing,” Procedia Computer Science, vol. 52, no. 1, pp. 234– 243, 2015, doi:10.1016/j.procs.2015.05.061.; [111] A. Kotsev, F. Pantisano, S. Schade, and S. Jirka, “Architecture of a service-enabled sensing platform for the environment,” Sensors (Switzerland), vol. 15, no. 2, pp. 4470–4495, 2015, doi:10.3390/s150204470; [112] M. Taneja and A. Davy, “Resource Aware Placement of Data Analytics Platform in Fog Computing,” Procedia Computer Science, vol. 97, pp. 153–156, 2016, doi:10.1016/j.procs.2016.08.295; [113] M. M. Rathore, A. Ahmad, and A. Paul, “Big Data and Internet of Things,” in Proceedings of the 2015 International Conference on Big Data Applications and Services - BigDAS ’15, 2015, vol. 20-23-Octo, pp. 58–65. doi:10.1145/2837060.2837067.; [114] M. Quwaider, M. Al-Alyyoub, and Y. Jararweh, “Cloud Support Data Management Infrastructure for Upcoming Smart Cities,” Procedia Computer Science, vol. 83, pp. 1232–1237, 2016, doi:10.1016/j.procs.2016.04.257.; [115] A. S. Yeole and D. R. Kalbande, “Use of Internet of Things (IoT) in Healthcare,” in Proceedings of the ACM Symposium on Women in Research 2016 - WIR ’16, 2016, vol. 21-22-Marc, pp. 71–76. doi:10.1145/2909067.2909079.; [116] S. V. Zanjal and G. R. Talmale, “Medicine Reminder and Monitoring System for Secure Health Using IOT,” in Physics Procedia, 2016, vol. 78, pp. 471–476. doi:10.1016/j.procs.2016.02.090; [117] D. Rico-Bautista, J. Rueda-Rueda, and S. Alvernia Acevedo, “Las TIC como agente social Una apuesta de la universidad Francisco de Paula Santander Ocaña,” in Simbiosis del aprendizaje con las tecnologías: experiencias innovadoras en el ámbito hispano, 2016, pp. 329–342.; [118] H. Aldowah, S. Ul Rehman, S. Ghazal, and I. Naufal Umar, “Internet of Things in Higher Education: A Study on Future Learning,” Journal of Physics: Conference Series, vol. 892, p. 012017, Sep. 2017, doi:10.1088/1742-6596/892/1/012017; [119] M. Coccoli, P. Maresca, and L. Stanganelli, “The role of big data and cognitive computing in the learning process,” Journal of Visual Languages and Computing, vol. 38, pp. 97–103, 2017, doi:10.1016/j.jvlc.2016.03.002; [120] J. Lobo and Dewar. Rico-Bautista, “Implementación de la seguridad del protocolo de internet versión 6,” Gerencia tecnológica informática, vol. 11, no. 29, pp. 35–46, 2012.; [121] B. Sánchez-Torres, J. A. Rodríguez-Rodríguez, D. W. Rico-Bautista, and C. D. Guerrero, “Smart Campus: Trends in cybersecurity and future development,” Revista Facultad de Ingeniería, vol. 27, no. 47, pp. 93–101, Jan. 2018, doi:10.19053/01211129.v27.n47.2018.7807; [122] Katz. Matías David, “Redes y seguridad,” Alfaomega grupo editor, no. Mexico, p. 87, 2013; [123] B. Aziz, “A formal model and analysis of an IoT protocol,” Ad Hoc Networks, vol. 36, pp. 49–57, Jan. 2016, doi:10.1016/J.ADHOC.2015.05.013; [124] N. Xiong, R. W. Liu, M. Liang, D. Wu, Z. Liu, and H. Wu, “Effective alternating direction optimization methods for sparsity-constrained blind image deblurring,” Sensors (Switzerland), vol. 17, no. 1, 2017, doi:10.3390/s17010174; [125] W. Mujun, “Smart Campus-Based Study on Optimization Model for the Computer Information Processing Technology in Universities and Colleges,” Revista de la Facultad de Ingeniería, vol. 32, no. 15, pp. 524–529, 2017; [126] M. Stočes, J. Vaněk, J. Masner, and J. Pavlík, “Internet of Things (IoT) in Agriculture - Selected Aspects,” Agris on-line Papers in Economics and Informatics, vol. VIII, no. 1, pp. 83–88, 2016, doi:10.7160/aol.2016.080108.; [127] K. Taylor et al., “Farming the Web of Things,” IEEE Intelligent Systems, vol. 28, no. 6, pp. 12–19, 2013, doi:10.1109/MIS.2013.102; [128] T. Arsan, “Smart Systems: From design to implementation of embedded Smart Systems,” in 2016 HONET-ICT, 2016, pp. 59–64. doi:10.1109/HONET.2016.7753420; [129] G. F. Hurlburt, J. Voas, and K. W. Miller, “The Internet of Things: A Reality Check,” IT Professional, vol. 14, no. June, pp. 56–59, 2012, doi:10.1109/MITP.2012.60.; [130] M. Weyrich and C. Ebert, “Reference architectures for the internet of things,” IEEE Software, vol. 33, no. 1, pp. 112–116, 2016, doi:10.1109/MS.2016.20.; [131] K. Dar, A. Taherkordi, H. Baraki, F. Eliassen, and K. Geihs, “A resource oriented integration architecture for the Internet of Things: A business process perspective,” Pervasive and Mobile Computing, vol. 20. pp. 145–159, 2015. doi:10.1016/j.pmcj.2014.11.0; [132] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Communications Surveys and Tutorials, vol. 17, no. 4, 2015, doi:10.1109/COMST.2015.2444095.; [133] D. Gagliardi, L. Schina, M. L. Sarcinella, G. Mangialardi, F. Niglia, and A. Corallo, “Information and communication technologies and public participation: interactive maps and value added for citizens,” Government Information Quarterly, vol. 34, no. 1, pp. 153–166, 2017, doi:10.1016/j.giq.2016.09.002.; [134] L. Tan, Lu Tan, and Neng Wang, “Future internet: The Internet of Things,” 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE), pp. V5-376-V5-380, 2010, doi:10.1109/ICACTE.2010.5579543; [135] European Technology Platform on Smart Systems Integration, Internet of Things in 2020. 2008. doi:10.1007/978-3-319-49736-5_2; [136] I. F. Akyildiz, S. Nie, S. C. Lin, and M. Chandrasekaran, “5G roadmap: 10 key enabling technologies,” Computer Networks, vol. 106, pp. 17–48, 2016, doi:10.1016/j.comnet.2016.06.010; [137] L. Atzori, A. Iera, and G. Morabito, “Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm,” Ad Hoc Networks, vol. 56, pp. 122–140, 2017, doi:10.1016/j.adhoc.2016.12.004; [138] M. Coccoli, A. Guercio, P. Maresca, and L. Stanganelli, “Smarter universities: A vision for the fast changing digital era,” Journal of Visual Languages & Computing, vol. 25, no. 6, pp. 1003–1011, Dec. 2014, doi:10.1016/j.jvlc.2014.09.007; [139] C. Heinemann and V. L. Uskov, Smart Universities, vol. 70. 2018. doi:10.1007/978-3-319-59454-5.; [140] M. Bertolli, G. Roark, S. Urrutia, and F. Chiodi, “Revisión de modelos de madurez en la medición del desempeño,” INGE CUC, vol. 13, no. 1, pp. 70–83, Jan. 2017, doi:10.17981/ingecuc.13.1.2017.07; [141] A. Acevedo, “Modelo de madurez para la transformación digital,” 2018.; [142] F. W. Van Dijk, F. Willem, J. Van Hillegersberg, and M. Daneva, “Van Dijk - Cloud maturity models,” 2017.; [143] D. Duarte and P. V. Martins, “A maturity model for higher education institutions,” CEUR Workshop Proceedings, vol. 731, pp. 25–45, 2011.; [144] F. W. Van Dijk, F. Willem, J. Van Hillegersberg, and M. Daneva, “Van Dijk - Cloud maturity models,” 2017.; [145] B. Henrik, “EVALUATION OF BIG DATA MATURITY MODELS - A BENCH- MARKING STUDY TO SUPPORT BIG DATA MATURITY AS- SESSMENT IN ORGANIZATIONS,” 2015; [146] M. Al-Ruithe and E. Benkhelifa, “Cloud data governance maturity model,” in Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing, Mar. 2017, pp. 1– 10. doi:10.1145/3018896.3036394; [147] I. Mitchell and S. Isherwood, Cloud adoption The definitive guide to a business technology revolution, Fujitsu Se. 2014. doi:10.1145/2554850.2555067; [148] B. White, H. Longenecker, P. Leidig, J. Reynolds, and D. Yarbrough, “Applicability of CMMI to the IS curriculum: a panel discussion,” Proceedings of the Information Systems Education Conference 2003, vol. 20, pp. 2–6, 2003; [149] C. Neuhauser, “A maturity model: Does it provide a path for online course design?,” Journal of Interactive Online Learning, vol. 3, no. 1, pp. 1–17, 2004; [150] I. Keshta, “A model for defining project lifecycle phases: Implementation of CMMI level 2 specific practice,” Journal of King Saud University - Computer and Information Sciences, Nov. 2019, doi:10.1016/j.jksuci.2019.10.013.; [151] E. Thompson et al., “Towards a learning process maturity model,” PhD Workshop 2004, vol. 9/2004, no. definition 3, pp. 8–16, 2004.; [152] S. Mattoon, B. Hensle, and J. Baty, “Cloud Computing Maturity Model Mattoon, S., Hensle, B., & Baty, J. (2011). Cloud Computing Maturity Model Guiding Success with Cloud Capabilities. Computing, (December), 13.Guiding Success with Cloud Capabilities,” Computing, no. December, p. 13, 2011.; [153] P. J. Schmidt, “Proposing a Cloud Computing Capability Maturity Model Proposing a Cloud Computing Capability Maturity Model,” 2015; [154] B. Henrik, “EVALUATION OF BIG DATA MATURITY MODELS - A BENCH- MARKING STUDY TO SUPPORT BIG DATA MATURITY AS- SESSMENT IN ORGANIZATIONS,” 2; [155] C. J. Galeano-Barrera, D. Bellón-Monsalve, S. A. Zabala-Vargas, E. Romero-Riaño, and V. uro-N. Duro-Novoa, “Identificación de los pilares que direccionan a una institución universitaria hacia un smart-campus,” Revista De Investigación, Desarrollo E Innovación, vol. 9, no. 1, pp. 127–145, 2018, doi:10.19053/20278306.v9.n1.2018.8511; [156] M. Coccoli, P. Maresca, L. Stanganelli, and A. Guercio, “An experience of collaboration using a PaaS for the smarter university model,” Journal of Visual Languages and Computing, vol. 31, pp. 275–282, 2015, doi:10.1016/j.jvlc.2015.10.014; [157] L. L. Ching, N. H. A. H. Malim, M. H. Husin, and M. M. Singh, “ICC - Smart university: reservation system with contactless technology,” in Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing - ICC ’17, 2017, p. 9. doi:10.1145/3018896.3018903; [158] W. Filho, J. B. Andrade Guerra, M. Mifsud, and R. Pretorius, Universities as Living Labs for sustainable development: A global perspective, vol. 26. 2017.; [159] O. Akhrif, Y. bouzekri el idrissi, and N. Hmina, “Enabling Smart Collaboration with Smart University Services,” 2019. doi:10.1145/3331453.3361311.; [160] O. Akhrif, C. Benfares, Y. El Bouzekri El Idrissi, and N. Hmina, “Collaborative learning services in the smart university environment,” ACM International Conference Proceeding Series, no. 3, 2019, doi:10.1145/3368756.3369020; [161] A. El Sayed, Š. Suad, Ć. Fuad, and A. Novali, New Technologies, Development and Application II, vol. 76. Cham: Springer International Publishing, 2020. doi:10.1007/978-3-030-18072-0.; [162] P. Pornphol and T. Tongkeo, “Transformation from a traditional university into a smart university,” in Proceedings of the 6th International Conference on Information and Education Technology, Jan. 2018, pp. 144–148. doi:10.1145/3178158.3178167; [163] O. J. Adeyemi, S. I. Popoola, A. A. Atayero, D. G. Afolayan, M. Ariyo, and E. Adetiba, “Exploration of daily Internet data traffic generated in a smart university campus,” Data in Brief, vol. 20, pp. 30–52, Oct. 2018, doi:10.1016/j.dib.2018.07.039; [164] M. V. López Cabrera, E. Hernandez-Rangel, G. P. Mejía Mejía, and J. L. Cerano Fuentes, “Factors that enable the adoption of educational technology in medical schools,” Educacion Medica, vol. 20, no. xx, pp. 3–9, 2019, doi:10.1016/j.edumed.2017.07.006; [165] J. Lin, H. Pu, Y. Li, and J. Lian, “Intelligent Recommendation System for Course Selection in Smart Education,” Procedia Computer Science, vol. 129, pp. 449–453, 2018, doi:10.1016/j.procs.2018.03.023.; [166] R. Bajaj and V. Sharma, “Smart Education with artificial intelligence based determination of learning styles,” Procedia Computer Science, vol. 132, pp. 834–842, 2018, doi:10.1016/j.procs.2018.05.095; [167] S. El Janati, A. Maach, and D. El Ghanami, “SMART education framework for adaptation content presentation,” Procedia Computer Science, vol. 127, pp. 436–443, 2018, doi:10.1016/j.procs.2018.01.141.; [168] P. Fraser, J. Moultrie, and M. Gregory, “The_use_of_maturity_models_grids_as_a_to.” Cambridge, Reino Unido, 2003. doi:10.1109 / IEMC.2002.1038431.; [169] C. M. Christensen, “The Innovator’s Dilemma,” Business, 1997, doi:10.1515/9783110215519.82; [170] C. M. Christensen, “The ongoing process of building a theory of disruption,” Journal of Product Innovation Management. 2006. doi:10.1111/j.1540-5885.2005.00180.x.; [171] M. Kuniavsky, “User Experience and HCI Section 1 : the boundaries of user experience,” HCI Handbook, pp. 1–37; [172] S. S. Rautaray and A. Agrawal, “Vision based hand gesture recognition for human computer interaction: a survey,” Artificial Intelligence Review, vol. 43, no. 1, pp. 1–54, 2012, doi:10.1007/s10462-012-93569.; [173] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and P. Tran-gia, “A Survey on Quality of Experience of HTTP Adaptive Streaming,” Ieee Communication Surveys & Tutorials, vol. 17, no. 1, pp. 469–492, 2015, doi:10.1109/COMST.2014.236094; [174] M. Turk, “Multimodal interaction: A review,” Pattern Recognition Letters, vol. 36, no. 1, pp. 189–195, 2014, doi:10.1016/j.patrec.2013.07.003; [175] H.-S. Yeo, B.-G. Lee, and H. Lim, “Hand tracking and gesture recognition system for human-computer interaction using low-cost hardware,” Multimedia Tools and Applications, vol. 74, no. 8, pp. 2687– 2715, Sep. 2015, doi:10.1007/s11042-013-1501-1; [176] K. Seaborn and D. I. Fels, “Gamification in theory and action: A survey,” International Journal of Human Computer Studies, vol. 74, pp. 14–31, 2015, doi:10.1016/j.ijhcs.2014.09.006.; [177] Y. Mengüç et al., “Wearable soft sensing suit for human gait measurement,” International Journal of Robotics Research, vol. 33, no. 14, pp. 1748–1764, 2014, doi:10.1177/0278364914543793; [178] D. González-Ortega, F. J. Díaz-Pernas, M. Martínez-Zarzuela, and M. Antón-Rodríguez, “A Kinectbased system for cognitive rehabilitation exercises monitoring,” Computer Methods and Programs in Biomedicine, vol. 113, no. 2, pp. 620–631, 2014, doi:10.1016/j.cmpb.2013.10.014; [179] S. Herath, M. Harandi, and F. Porikli, “Going deeper into action recognition: A survey,” Image and Vision Computing, vol. 60, pp. 4–21, Sep. 2017, doi:10.1016/j.imavis.2017.01.010; [180] C. Lallemand, G. Gronier, and V. Koenig, “User experience: A concept without consensus? Exploring practitioners’ perspectives through an international survey,” Computers in Human Behavior, vol. 43, pp. 35–48, Sep. 2015, doi:10.1016/j.chb.2014.10.048.; [181] P. K. Pisharady and M. Saerbeck, “Recent methods and databases in vision-based hand gesture recognition: A review,” Computer Vision and Image Understanding, vol. 141, pp. 152–165, Sep. 2015, doi:10.1016/j.cviu.2015.08.004.; [182] H. Cheng, L. Yang, and Z. Liu, “A Survey on 3D Hand Gesture Recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. PP, no. 99, p. 1, 2015, doi:10.1109/TCSVT.2015.2469551.; [183] P. Tsarouchi, S. Makris, and G. Chryssolouris, “Human – robot interaction review and challenges on task planning and programming,” International Journal of Computer Integrated Manufacturing, vol. 29, no. 8, pp. 916–931, Sep. 2016, doi:10.1080/0951192X.2015.1130251.; [184] J. Lorés and T. Granollers, “Ingeniería de la Usabilidad y de la Accesibilidad aplicada al diseño y desarrollo de sitios web,” no. May, pp. 3–7, 2004.; [185] J. Mariano and G. Romano, “Introducción a la IPO,” Metro, 2008; [186] T. Granollers, “Usability Evaluation with Heuristics . New Proposal from Integrating Two Trusted Sources 2 Combining Common Heuristic Sets,” pp. 1–16, 2018.; [187] L. Muñoz López, P. Antón Martínez, and S. Fernández Ciez, “Estudio y Guía metodológica sobre Ciudades Inteligentes,” 2015; [188] E. Ontiveros, D. Vizcaíno, and V. López Sabaer, Las ciudades del futuro : inteligentes , digitales y sostenibles futuro : inteligentes , digitales y sostenibles. 2016.; [189] E. Del and D. Une, “Norma Española Accesibilidad Universal en las Ciudades Inteligentes,” 2017.; [190] O. Iberoamericano, “Manual Iberoamericano de Indicadores de Educación Superior: Manual de Lima,” p. 88 p., 2016; [191] Ministerio de Modernización Innovación y Tecnología, “La Importancia de un Modelo de Planificación Estratégica para el Desarrollo de Ciudades Inteligentes,” p. 32, 2017; [192] P. Fernández, “Análisis de los factores de influencia en la adopción de herramientas colaborativas basadas en software social. Aplicación a entornos empresariales,” Universidad Politécnica de Madrid, 2015; [193] D. W. Rico-Bautista, “Conceptual framework for smart university,” Journal of Physics: Conference Series, vol. 1409, p. 012009, Nov. 2019, doi:10.1088/1742-6596/1409/1/012009.; [194] J. A. Parra Valencia, C. D. Guerrero, and D. Rico-Bautista, “IOT: una aproximación desde ciudad inteligente a universidad inteligente,” Revista Ingenio, vol. 13, no. 1, pp. 9–20, Jun. 2017, doi:10.22463/2011642X.2128.; [195] F. H. Cerdeira Ferreira and R. Mendes de Araujo, “Campus Inteligentes: Conceitos, aplicações, tecnologias e desafios.,” Relatórios Técnicos do DIA/UNIRIO, vol. 11, no. 1, pp. 4–19, 2018.; [196] D. Rico-Bautista, C. D. Guerrero, Y. Medina-Cárdenas, and A. García-Barreto, “Analysis of the potential value of technology: Case of universidad francisco de paula santander O; [197] D. Rico-Bautista, G. P. Maestre-Góngora, and C. D. Guerrero, “Caracterización de la situación actual de las tecnologías inteligentes para una Universidad inteligente en Colombia/Latinoamérica,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E27, pp. 484–501, 2020.; [198] D. Rico-Bautista et al., “Smart University: Strategic map since the adoption of technology,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E28, pp. 711–724, 2020; [199] D. Rico-Bautista et al., “Smart University: Key Factors for a Cloud Computing Adoption Model,” Lecture Notes in Networks and Systems, vol. 334, pp. 85–93, 2022, doi:10.1007/978-981-16-6369-7_8; [200] M. V. López Cabrera, E. Hernandez-Rangel, G. P. Mejía Mejía, and J. L. Cerano Fuentes, “Factores que facilitan la adopción de tecnología educativa en escuelas de medicina,” Educación Médica, vol. 20, pp. 3–9, Mar. 2019, doi:10.1016/j.edumed.2017.07.006; [202] A. V. Martín García, Á. García del Dujo, and J. M. Muñoz Rodríguez, “Factores determinantes de adopción de blended learning en educación superior. Adaptación del modelo UTAUT*,” Educación XX1, vol. 17, no. 2, May 2014, doi:10.5944/educxx1.17.2.11489; [203] M. Luzardo Briceño, B. E. Sandia Saldivia, A. S. Aguilar Jiménez, M. Macias Martínez, and J. Herrera Díaz, “Factores que influyen en la adopción de las Tecnologías de Información y Comunicación por parte de las universidades. Dimensión Enseñanza-Aprendizaje,” Educere, vol. 21, no. 68, pp. 143–153, 2017; [204] M. Frasquet Deltoro, A. Mollá Descals, and M. Eugenia Ruiz Molina, “Factores determinantes y consecuencias de la adopción del comercio electrónico B2C:una comparativa internacional,” Estudios Gerenciales, vol. 28, no. 123, pp. 101–120, Apr. 2012, doi:10.1016/S0123-5923(12)70207-3.; [205] D. Rico-Bautista et al., “Key Technology Adoption Indicators for Smart Universities: A Preliminary Proposal,” Lecture Notes in Networks and Systems, vol. 333, pp. 651–663, 2022, doi:10.1007/978-98116-6309-3_61.; [206] P. Hernández, R., Fernández, C. y Baptista, Libro Metodología de la Investigación 6ta edición SAMPIERI (PDF) %7C Metodologiaecs. 2014; [207] S. M. Takey and M. M. Carvalho, “Fuzzy front end of systemic innovations: A conceptual framework based on a systematic literature review,” Technological Forecasting and Social Change, vol. 111, pp. 97–109, Oct. 2016, doi:10.1016/j.techfore.2016.06.011; [208] P. Martins and J. de S. D. Duarte, “A Maturity Model for Higher Education Institutions,” Journal of Spatial and Organisational Dynamics , vol. 1, no. 1, 2013.; [209] Z. Liu, Y. Yin, W. Liu, and M. Dunford, “Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis,” Scientometrics, 2015, doi:10.1007/s11192-0141517-y.; [210] J. A. Wise, “The ecological approach to text visualization,” Journal of the American Society for Information Science, 1999, doi:10.1002/(SICI)1097-4571(1999)50:133.0.CO;2-4.; [211] J. E. Meissner, “VantagePoint,” Nursing, 1981, doi:10.1097/00152193-198101000-00010.; [212] L. Leydesdorff and T. Schank, “Dynamic animations of journal maps: Indicators of structural changes and interdisciplinary developments,” Journal of the American Society for Information Science and Technology, 2008, doi:10.1002/asi.20891; [213] “Science of Science (Sci2) Tool,” in Encyclopedia of Social Network Analysis and Mining, 2018. doi:10.1007/978-1-4939-7131-2_101025.; [214] N. J. Van Eck and L. Waltman, “VOSviewer: A computer program for bibliometric mapping,” 2009; [215] “Network Workbench Tool,” in Encyclopedia of Social Network Analysis and Mining, 2014. doi:10.1007/978-1-4614-6170-8_110035; [216] B. Vargas-Quesada and F. de Moya Aragón, Visualizing the structure of science. New York, NY, 2007.; [217] L. A. R. Hoeffner and R. P. Smiraglia, “Visualizing domain coherence: Social informatics as a case study,” 2014. doi:10.7152/acro.v23i1.14261.; [218] K. Fujita, Y. Kajikawa, J. Mori, and I. Sakata, “Detecting research fronts using different types of weighted citation networks,” Journal of Engineering and Technology Management - JET-M, vol. 32, pp. 129–146, 2014, doi:10.1016/j.jengtecman.2013.07.002.; [219] A. Angelakis and K. Galanakis, “A science-based sector in the making: the formation of the biotechnology sector in two regions,” Regional Studies, 2017, doi:10.1080/00343404.2016.1215601.; [220] A. Gaur, B. Scotney, G. Parr, and S. McClean, “Smart city architecture and its applications based on IoT,” in Procedia Computer Science, 2015, vol. 52, no. 1. doi:10.1016/j.procs.2015.05.122.; [221] R. Díaz-Díaz, L. Muñoz, and D. Pérez-González, “Business model analysis of public services operating in the smart city ecosystem: The case of SmartSantander,” Future Generation Computer Systems, 2017, doi:10.1016/j.future.2017.01.032.; [222] A. Sampri, A. Mavragani, and K. P. Tsagarakis, “Evaluating Google Trends as a Tool for Integrating the ‘Smart Health’ Concept in the Smart Cities’ Governance in USA,” Procedia Engineering, vol. 162, pp. 585–592, 2016, doi:10.1016/j.proeng.2016.11.104.; [223] U. Rosati and S. Conti, “What is a Smart City Project? An Urban Model or A Corporate Business Plan?,” Procedia - Social and Behavioral Sciences, vol. 223, pp. 968–973, 2016, doi:10.1016/j.sbspro.2016.05.332.; [224] C. M. et. Al, “Mapping Smart Cities in the EU,” European Parliament, pp. 23–49, 2015.; [225] G. P. Maestre Góngora, “Revisión de literatura sobre ciudades inteligentes: una perspectiva centrada en las TIC,” INGENIARE, no. 19, p. 137, Jul. 2015, doi:10.18041/1909-2458/ingeniare.19.531; [226] X. Nie, “Constructing Smart Campus Based on the Cloud Computing Platform and the Internet of Things,” 2013. doi:10.2991/iccsee.2013.395.; [227] M. Cata, “Smart university, a new concept in the Internet of Things,” in 2015 14th RoEduNet International Conference - Networking in Education and Research (RoEduNet NER), Sep. 2015, pp. 195–197. doi:10.1109/RoEduNet.2015.7311993; [228] V. A. F. Almeida, D. Doneda, and M. Monteiro, “Governance Challenges for the Internet of Things,” IEEE Internet Computing, vol. 19, no. 4, pp. 56–59, Jul. 2015, doi:10.1109/MIC.2015.86; [229] S. Thiel, J. Mitchell, and J. Williams, “Coordination or Collision? The Intersection of Diabetes Care, Cybersecurity, and Cloud-Based Computing,” Journal of Diabetes Science and Technology, vol. 11, no. 2, pp. 195–197, Mar. 2017, doi:10.1177/1932296816676189.; [230] E. Borgia, “The Internet of Things vision: Key features, applications and open issues,” Computer Communications, vol. 54, pp. 1–31, Dec. 2014, doi:10.1016/j.comcom.2014.09.008.; [231] A. Jara, P. Moreno-Sanchez, A. Skarmeta, S. Varakliotis, and P. Kirstein, “IPv6 Addressing Proxy: Mapping Native Addressing from Legacy Technologies and Devices to the Internet of Things (IPv6),” Sensors, vol. 13, no. 5, pp. 6687–6712, May 2013, doi:10.3390/s130506687.; [232] E. Chinkes, Las Tecnologías de la Información y la Comunicación Potenciando la Universidad del Siglo XXI: Claves para una política TIC universitaria, vol. 1. 2015. doi:10.1017/CBO9781107415324.004; [233] E. Chinkes, Potenciando la Universidad del Siglo XXI: Soluciones TIC para pensar la universidad del futuro. 2017; [234] RedCLARA, ACTAS TICAL 2016. 2016; [235] RedCLARA, ACTAS TICAL 2017. 2017; [236] RedCLARA, ACTAS TICAL 2018. 2018.; [237] RedCLARA, ACTAS TICAL 2019. 2019; [238] O. Akhri, Y. El Bouzekri El Idrissi, and N. Hmina, “Enabling smart collaboration with smart university services,” in ACM International Conference Proceeding Series, 2019. doi:10.1145/3331453.3361311.; [239] D. Rico-Bautista et al., “Smart university: Strategic map since the adoption of technology [Universidad inteligente: Mapa estratégico desde la adopción de tecnología],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E28, pp. 711–724, 2020; [240] M. de L. Sigg, J. L. V. Cisneros, S. V. Reyes, and J. A. R. Salcedo, “Explicación de la Adopción de Tecnologías de Información en Pequeñas Empresas Usando el Modelo del Usuario Perezoso: un Caso de Estudio,” Iberian Journal of Information Systems and Technologies, no. e1, pp. 91–104, Mar. 2014, doi:10.4304/risti.e1.91-104.; [241] L. O. S. A. Erasmus et al., “Adopción de las tecnologías infocomunicacionales (TI) en Docentes: actualizando enfoques.,” Revista Electrónica Teoría de la Educación. Educación y Cultura en La Sociedad de la Información., vol. 10, pp. 310–337, 2009; [242] P. Brous, M. Janssen, and P. Herder, “The dual effects of the Internet of Things (IoT): A systematic review of the benefits and risks of IoT adoption by organizations,” International Journal of Information Management, vol. 51, p. 101952, Apr. 2020, doi:10.1016/j.ijinfomgt.2019.05.008.; [243] J. Martín et al., “Review of IoT applications in agro-industrial and environmental fields,” vol. 142, no. 118, pp. 283–297, 2017, doi:10.1016/j.compag.2017.09.015.; [244] A. Abushakra and D. Nikbin, Knowledge Management in Organizations, vol. 1027. Cham: Springer International Publishing, 2019. doi:10.1007/978-3-030-21451-7; [245] D. Mourtzis, E. Vlachou, and N. Milas, “Industrial Big Data as a Result of IoT Adoption in Manufacturing,” Procedia CIRP, vol. 55, pp. 290–295, 2016, doi:10.1016/j.procir.2016.07.038.; [246] I. C. Ehie and M. A. Chilton, “Understanding the influence of IT/OT Convergence on the adoption of Internet of Things (IoT) in manufacturing organizations: An empirical investigation,” Computers in Industry, vol. 115, p. 103166, Feb. 2020, doi:10.1016/j.compind.2019.103166.; [247] L. Amodu, O. Odiboh, S. Usaini, D. Yartey, and T. Ekanem, “Data on security implications of the adoption of Internet of Things by public relations professionals,” Data in Brief, vol. 27, 2019, doi:10.1016/j.dib.2019.104663.; [248] H. Shaikh, M. S. Khan, Z. A. Mahar, M. Anwar, A. Raza, and A. Shah, “A Conceptual Framework for Determining Acceptance of Internet of Things (IoT) in Higher Education Institutions of Pakistan,” in 2019 International Conference on Information Science and Communication Technology (ICISCT), Mar. 2019, pp. 1–5. doi:10.1109/CISCT.2019.8777431.; [249] A. Abushakra and D. Nikbin, Knowledge Management in Organizations, vol. 1027. Cham: Springer International Publishing, 2019. doi:10.1007/978-3-030-21451-7.; [250] M. Mital, V. Chang, P. Choudhary, A. Papa, and A. K. Pani, “Adoption of Internet of Things in India: A test of competing models using a structured equation modeling approach,” Technological Forecasting and Social Change, vol. 136, pp. 339–346, 2018, doi:10.1016/j.techfore.2017.03.001.; [251] S. Lu and Y. P. Singh, “Scie enceDir rect ScienceDirect Analyz zing chal llenges t o Interne et of Thi ings ( IoT T ) adopt tion and ion : An Indian context c diffusi,” 2018, doi:10.1016/j.procs.2017.12.094; [252] Y. Kao, K. Nawata, and C. Huang, “An Exploration and Confirmation of the Factors Influencing Adoption of IoT-Based Wearable Fitness Trackers,” 2019.; [253] Y.-S. Kao, K. Nawata, and C.-Y. Huang, “An Exploration and Confirmation of the Factors Influencing Adoption of IoT-Based Wearable Fitness Trackers,” International Journal of Environmental Research and Public Health, vol. 16, no. 18, p. 3227, Sep. 2019, doi:10.3390/ijerph16183227.; [254] V. Venkatesh, J. Thong, and X. Xu, “Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead,” Journal of the Association for Information Systems, vol. 17, no. 5, pp. 328–376, May 2016, doi:10.17705/1jais.00428; [255] E. González Arza, “Validación de la Teoría Unificada de Aceptación y Uso de la Tecnología UTAUT en castellano en el ámbito de las consultas externas de la Red de Salud Mental de Bizkaia,” Universitat Oberta de Catalunya, 2013.; [256] T. Kr. Aune, H. Gjestland, J. Ø. Haagensen, B. Kittilsen, J. I. Skar, and H. Westengen, “Magnesium Alloys,” in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2003, pp. 1–19. doi:10.1002/14356007.a15_581; [257] P. Palos-Sanchez, A. Reyes-Menendez, and J. R. Saura, “Models of adoption of information technology and cloud computing in organizations,” Informacion Tecnologica, vol. 30, no. 3, pp. 3–12, 2019, doi:10.4067/S0718-07642019000300003; [258] P. Pinheiro, M. Aparicio, and C. Costa, “Adoption of cloud computing systems,” in Proceedings of the International Conference on Information Systems and Design of Communication - ISDOC ’14, 2014, pp. 127–131. doi:10.1145/2618168.2618188; [259] H. Vasudavan, K. Shanmugam, and H. A. Ahmada, “User Perceptions in Adopting Cloud Computing in Autonomous Vehicle,” in Proceedings of the 6th International Conference on Information Technology: IoT and Smart City - ICIT 2018, 2018, pp. 151–156. doi:10.1145/3301551.3301583; [260] F. Nikolopoulos and S. Likothanassis, “Using UTAUT2 for cloud computing technology acceptance modeling,” in Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing, Mar. 2017, no. March, pp. 1–6. doi:10.1145/3018896.3025153; [261] U. Nasir and M. Niazi, “Cloud computing adoption assessment model (CAAM),” in Proceedings of the 12th International Conference on Product Focused Software Development and Process Improvement - Profes ’11, 2011, vol. 44, no. 0, pp. 34–37. doi:10.1145/2181101.2181110.; [262] M. Al-Ruithe, E. Benkhelifa, and K. Hameed, “Current State of Cloud Computing Adoption – An Empirical Study in Major Public Sector Organizations of Saudi Arabia (KSA),” Procedia Computer Science, vol. 110, pp. 378–385, 2017, doi:10.1016/j.procs.2017.06.080; [263] P. Priyadarshinee, R. D. Raut, M. K. Jha, and B. B. Gardas, “Understanding and predicting the determinants of cloud computing adoption: A two staged hybrid SEM - Neural networks approach,” Computers in Human Behavior, vol. 76, pp. 341–362, Nov. 2017, doi:10.1016/j.chb.2017.07.027; [264] K. Njenga, L. Garg, A. K. Bhardwaj, V. Prakash, and S. Bawa, “The cloud computing adoption in higher learning institutions in Kenya: Hindering factors and recommendations for the way forward,” Telematics and Informatics, vol. 38, no. May, pp. 225–246, May 2019, doi:10.1016/j.tele.2018.10.007.; [265] I. Arpaci, “Antecedents and consequences of cloud computing adoption in education to achieve knowledge management,” Computers in Human Behavior, vol. 70, pp. 382–390, May 2017, doi:10.1016/j.chb.2017.01.024; [266] H. M. Sabi, F. E. Uzoka, K. Langmia, and F. N. Njeh, “Conceptualizing a model for adoption of cloud computing in education,” International Journal of Information Management, vol. 36, no. 2, pp. 183– 191, Apr. 2016, doi:10.1016/j.ijinfomgt.2015.11.010; [267] P. Palos-Sanchez, A. Reyes-Menendez, and J. R. Saura, “Modelos de Adopción de Tecnologías de la Información y Cloud Computing en las Organizaciones,” Información tecnológica, vol. 30, no. 3, pp. 3–12, Jun. 2019, doi:10.4067/S0718-07642019000300003; [268] M. Shorfuzzaman, M. S. Hossain, A. Nazir, G. Muhammad, and A. Alamri, “Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment,” Computers in Human Behavior, vol. 92, pp. 578–588, Mar. 2019, doi:10.1016/j.chb.2018.07.002; [269] F. P. S. Surbakti, W. Wang, M. Indulska, and S. Sadiq, “Factors influencing effective use of big data: A research framework,” Information & Management, vol. 57, no. 1, p. 103146, Jan. 2020, doi:10.1016/j.im.2019.02.001; [270] S. Das, “‘The Early Bird Catches the Worm - First Mover Advantage through IoT Adoption for Indian Public Sector Retail Oil Outlets,’” Journal of Global Information Technology Management, vol. 22, no. 4, pp. 280–308, Oct. 2019, doi:10.1080/1097198X.2019.1679588; [271] A. M. Al-Momani, M. A. Mahmoud, and M. S. Ahmad, “A Review of Factors Influencing Customer Acceptance of Internet of Things Services,” International Journal of Information Systems in the Service Sector, vol. 11, no. 1, pp. 54–67, Jan. 2019, doi:10.4018/IJISSS.2019010104; [272] D. Nikbin and A. Abushakra, “Internet of Things Adoption: Empirical Evidence from an Emerging Country,” in Communications in Computer and Information Science, 2019, pp. 348–352. doi:10.1007/978-3-030-21451-7_30; [273] B. Sivathanu, “Adoption of internet of things (IOT) based wearables for healthcare of older adults – a behavioural reasoning theory (BRT) approach,” Journal of Enabling Technologies, vol. 12, no. 4, pp. 169–185, Dec. 2018, doi:10.1108/JET-12-2017-0048; [274] A. M. Al-Momani, M. A. Mahmoud, and M. S. Ahmad, “Factors that Influence the Acceptance of Internet of Things Services by Customers of Telecommunication Companies in Jordan,” Journal of Organizational and End User Computing, vol. 30, no. 4, pp. 51–63, Oct. 2018, doi:10.4018/JOEUC.2018100104.; [275] E. E. Grandon, A. A. Ibarra, S. A. Guzman, P. Ramirez-Correa, and J. Alfaro-Perez, “Internet of Things: Factors that influence its adoption among Chilean SMEs,” in 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Jun. 2018, vol. 2018-June, pp. 1–6. doi:10.23919/CISTI.2018.8399183; [276] M. Tu, “An exploratory study of Internet of Things (IoT) adoption intention in logistics and supply chain management,” The International Journal of Logistics Management, vol. 29, no. 1, pp. 131–151, Feb. 2018, doi:10.1108/IJLM-11-2016-0274; [277] M. Trujillo Suárez, J. J. Aguilar, and C. Neira, “Los métodos más característicos del diseño centrado en el usuario -DCU-, adaptados para el desarrollo de productos materiales,” Iconofacto, vol. 12, no. 19, pp. 215–236, 2016, doi:10.18566/iconofact.v12.n19.a09.; [278] M. Greer and H. S. Harris, “User-Centered Design as a Foundation for Effective Online Writing Instruction,” Computers and Composition, vol. 49, no. 2017, pp. 14–24, 2018, doi:10.1016/j.compcom.2018.05.006; [278] M. Greer and H. S. Harris, “User-Centered Design as a Foundation for Effective Online Writing Instruction,” Computers and Composition, vol. 49, no. 2017, pp. 14–24, 2018, doi:10.1016/j.compcom.2018.05.006.; [279] Y. Han and M. Moghaddam, “Analysis of sentiment expressions for user-centered design,” Expert Systems with Applications, vol. 171, p. 114604, 2021, doi: https://doi.org/10.1016/j.eswa.2021.114604.; [280] T. Xu, Study on user experience design of mobile application interfaces, vol. 1018. Springer International Publishing, 2020. doi:10.1007/978-3-030-25629-6_80; [281] 2019 ISO Standard, “International Standard interactive systems,” Iso 9241-210:2019, vol. 2019, 2019.; [282] O. Ayalon and E. Toch, “User-Centered Privacy-by-Design: Evaluating the Appropriateness of Design Prototypes,” International Journal of Human Computer Studies, vol. 154, no. March, p. 102641, 2021, doi:10.1016/j.ijhcs.2021.102641; [283] M. François, F. Osiurak, A. Fort, P. Crave, and J. Navarro, “Usability and acceptance of truck dashboards designed by drivers: Two participatory design approaches compared to a user-centered design,” International Journal of Industrial Ergonomics, vol. 81, no. November 2019, p. 103073, 2021, doi:10.1016/j.ergon.2020.103073.; [284] A. C. Luis, T. E. M. Elizabeth, F. V. Jesús, R. U. M. Deyanira, and A. S. J., “Interacción HumanoComputadora,” pp. 195–232, 2016; [285] Ideo, “Diseño centrado en las personas,” 2019; [286] P. M. A. Desmet, H. Xue, and S. F. Fokkinga, “The Same Person Is Never the Same: Introducing MoodStimulated Thought/Action Tendencies for User-Centered Design,” She Ji, vol. 5, no. 3, pp. 167–187, 2019, doi:10.1016/j.sheji.2019.07.; [287] L. M. Kopf and J. Huh-Yoo, “A User-Centered Design Approach to Developing a Voice Monitoring System for Disorder Prevention,” Journal of Voice, vol. 3200, 2020, doi:10.1016/j.jvoice.2020.10.015; [288] L. Bu, C. H. Chen, K. K. H. Ng, P. Zheng, G. Dong, and H. Liu, “A user-centric design approach for smart product-service systems using virtual reality: A case study,” Journal of Cleaner Production, vol. 280, p. 124413, 2021, doi:10.1016/j.jclepro.2020.124413; [289] H. Khalajzadeh, T. Verma, A. J. Simmons, J. Grundy, M. Abdelrazek, and J. Hosking, “User-centred tooling for modelling of big data applications,” Proceedings - 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, MODELS-C 2020 - Companion Proceedings, pp. 31–35, 2020, doi:10.1145/3417990.3422004; [290] G. A. García-Mireles, M. Á. Moraga, and F. García, “Development of maturity models: A systematic literature review,” IET Seminar Digest, vol. 2012, no. 1, pp. 279–283, 2012, doi:10.1049/ic.2012.0036; [291] J. Wang and A. Moulden, “AI Trust Score: A User-Centered Approach to Building, Designing, and Measuring the Success of Intelligent Workplace Features,” Conference on Human Factors in Computing Systems - Proceedings, 2021, doi:10.1145/3411763.3443452.; [292] J. Escobar-Pérez and Á. Cuervo-Martínez, “Validez de contenido y juicio de expertos: una aproximación a su utilización,” Avances en medición, vol. 6, no. 1, pp. 27–36, 2008.; [293] G. C. Vázquez González, I. U. Jiménez Macías, and L. G. Juárez Hernández, “Construction-validation of the questionnaire: Maturity of knowledge management to educational innovation in universities,” Apertura, vol. 12, no. 1, Mar. 2020, doi:10.32870/Ap.v12n1.1767.; [294] J. Escobar and Á. Cuervo, “Validez de contenido y juicio de expertos: una aproximación a su utilización,” Polymer, 2008.; [295] J. S. Grant and L. L. Davis, “Selection and use of content experts for instrument development,” Research in Nursing & Health, vol. 20, no. 3, pp. 269–274, 1997, doi:10.1002/(sici)1098240x(199706)20:33.3.co;2-3; [296] R. Skjong and B. H. Wentworth, “Expert judgment and risk perception,” Proceedings of the International Offshore and Polar Engineering Conference, vol. 4, pp. 537–544, 2001.; [297] A. Raza, L. F. Capretz, and F. Ahmed, “An open source usability maturity model (OS-UMM),” Computers in Human Behavior, vol. 28, no. 4, pp. 1109–1121, 2012, doi:10.1016/j.chb.2012.01.018; [298] S. Beecham, T. Hall, C. Britton, M. Cottee, and A. Rainer, “Using an expert panel to validate a requirements process improvement model,” The journal of systems and software, vol. 76, pp. 251–275, 2005, doi:10.1016/j.jss.2004.06.004; [299] C. Shaoyong, T. Yirong, and L. Zhefu, “UNITA : A Reference Model of University IT Architecture,” ICCIS ’16: Proceedings of the 2016 International Conference on Communication and Information Systems, pp. 73–77, 2016, doi:10.1145/3023924.3023949; [300] H. Chaoui and I. Makdoun, “A new secure model for the use of cloud computing in big data analytics,” pp. 1–11, 2018, doi:10.1145/3018896.3018913; [301] S. Chaveesuk, P. Wutthirong, and W. Chaiyasoonthorn, “Cloud Computing Classroom Acceptance Model in Thailand Higher Education’s Institutes,” in Proceedings of the 2018 10th International Conference on Information Management and Engineering - ICIME 2018, 2018, pp. 141–145. doi:10.1145/3285957.3285989; [302] F. Nikolopoulos, “Using UTAUT2 for Cloud Computing Technology Acceptance Modeling,” no. 1995, 2017; [303] B. B. Rad, T. Diaby, and M. E. Rana, “Cloud Computing Adoption,” in Proceedings of the 2017 International Conference on E-commerce, E-Business and E-Government - ICEEG 2017, 2017, no. June, pp. 51–55. doi:10.1145/3108421.3108426; [304] E. H. Steele and I. R. Guzman, “Investigating the Role of Top Management and Institutional Pressures in Cloud Computing Adoption,” pp. 25–26, 2016.; [305] A. M. Shaaban, C. Schmittner, T. Gruber, G. Quirchmayr, and E. Schikuta, “CloudWoT - A Reference Model for Knowledge-based IoT Solutions,” 2018, doi:10.1145/3282373.3282400.; [306] M. Basingab, L. Rabelo, C. Rose, and E. Gutiérrez, “Business Modeling Based on Internet of Things : A Case Study of Predictive Maintenance Software Using ABS Model,” 2017, doi:10.1145/3018896.3018905; [307] M.-C. Vega-Hernández, M.-C. Patino-Alonso, and M.-P. Galindo-Villardón, “Multivariate characterization of university students using the ICT for learning,” Computers & Education, vol. 121, pp. 124–130, Jun. 2018, doi:10.1016/j.compedu.2018.03.004.; [308] u-planner, “U-planner,” 2019; [309] Bizagi, “Bizagi,” 2019; [309] Bizagi, “Bizagi,” 2019.; [310] Analytikus, “Analytikus,”; [311] Y. Medina and Dewar. Rico-Bautista, “Modelo de gestión de servicios para la universidad de Pamplona: ITIL,” Scientia Et Technica, vol. XIV, no. 39, pp. 314–319, 2008; [312] Y. Medina-Cárdenas and D. Rico- Bautista, “Modelo de gestión basado en el ciclo de vida del servicio de la Biblioteca de Infraestructura de Tecnologías de Información ( ITIL ),” Revista Virtual Universidad Católica del Norte, no. 27, pp. 1–21, 2009.; [313] M. V Bueno-Delgado, P. Pavón-Marino, A. De-Gea-García, and A. Dolón-García, “The Smart University Experience: An NFC-Based Ubiquitous Environment,” in 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, 2012, pp. 799–804. doi:10.1109/IMIS.2012.110; [314] O. A. Shvetsova, “Smart education in high school: New perspectives in global world,” in Proceedings of the 2017 International Conference “Quality Management, Transport and Information Security, Information Technologies”, IT and QM and IS 2017, 2017, pp. 688–691. doi:10.1109/ITMQIS.2017.8085917.; [315] T. Savov, V. Terzieva, K. Todorova, and P. Kademova-Katzarova, “CONTEMPORARY TECHNOLOGY SUPPORT FOR EDUCATION,” CBU International Conference Proceedings, vol. 5, pp. 802–806, Sep. 2017, doi:10.12955/cbup.v5.1029.; [316] A. M. Shaaban, C. Schmittner, T. Gruber, G. Quirchmayr, and E. Schikuta, “CloudWoT - A Reference Model for Knowledge-based IoT Solutions,” 2018, doi:10.1145/3282373.3282400.; [317] S. Chen, Y. Tang, and Z. Li, “UNITA: A reference model of university IT architecture,” in ACM International Conference Proceeding Series, 2016, pp. 73–77. doi:10.1145/3023924.3023949; [318] E. Barrientos-Avendaño and Y. Areniz-Arévalo, “Universidad inteligente: Oportunidades y desafíos desde la Industria 4.0,” Revista Ingenio UFPSO, vol. 16, no. 1, 2019, doi:10.22463/2011642X.2343.; [319] E. Barrientos-Avendaño, Y. Areniz-Arevalo, L. A. Coronel-Rojas, F. Cuesta-Quintero, and D. RicoBautista, “Industry foray model 4.0 applied to the food company your gourmet bread sas: Strategy for rebirth in the COVID-19 (SARS-CoV-2) pandemic [Modelo de incursión en la industria 4.0 aplicado a la compañía alimenticia tu pan gourmet sas: estrategia para el rena,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E34, pp. 436–449, 2020.; [320] C. D. Guerrero and D. Rico-Bautista, “Center for excellence and internet acquisition of things: A commitment to competitiveness from alliances between government, academia and productive sector [Centro de excelencia y apropiación en internet de las cosas: Una apuesta a la competitividad desde,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E28, pp. 615–628, 202; [321] D. Mourtzis, E. Vlachou, and N. Milas, “Industrial Big Data as a Result of IoT Adoption in Manufacturing,” Procedia CIRP, vol. 55, pp. 290–295, 2016, doi:10.1016/j.procir.2016.07.038.; [322] I. C. Ehie and M. A. Chilton, “Understanding the influence of IT/OT Convergence on the adoption of Internet of Things (IoT) in manufacturing organizations: An empirical investigation,” Computers in Industry, vol. 115, p. 103166, Feb. 2020, doi:10.1016/j.compind.2019.103166.; [323] H. Xu, “Application of Cloud Computing Information Processing System in Network Education,” in International Conference on Applications and Techniques in Cyber Intelligence, ATCI 2019, vol. 1017, A. J.H., C. K.-K.R., I. R., X. Z., and A. M., Eds. Dianchi College of Yunnan University, Kunming, 650000, China: Springer Verlag, 2020, pp. 1809–1815. doi:10.1007/978-3-030-25128-4_238; [324] Y. C. Medina Cárdenas, Y. Areniz Arévalo, and D. W. Rico Bautista, Modelo estratégico para la gestión tecnológica en la organización: plan táctico de la calidad (ITIL & ISO 20000), vol. 1. Instituto Tecnológico Metropolitano, 2016. doi:10.22430/9789585414006; [325] Y. Medina-Cárdenas and D. Rico-Bautista, “Model of Administration of Services for the Universidad of Pamplona: ITIL,” Scientia Et Technica Scientia et Technica Año XIV, vol. 14, no. 39, pp. 314–319, 2008; [326] R. D. Raut, P. Priyadarshinee, B. B. Gardas, and M. K. Jha, “Analyzing the factors influencing cloud computing adoption using three stage hybrid SEM-ANN-ISM (SEANIS) approach,” Technological Forecasting and Social Change, vol. 134, no. July 2017, pp. 98–123, Sep. 2018, doi:10.1016/j.techfore.2018.05.020; [327] R. El-Gazzar, E. Hustad, and D. H. Olsen, “Understanding cloud computing adoption issues: A Delphi study approach,” Journal of Systems and Software, vol. 118, pp. 64–84, Aug. 2016, doi:10.1016/j.jss.2016.04.061; [328] J. Cecil, “A Collaborative Manufacturing Approach supporting adoption of IoT Principles in Micro Devices Assembly,” Procedia Manufacturing, vol. 26, pp. 1265–1277, 2018, doi:10.1016/j.promfg.2018.07.141; [329] W. Hao, Z. Huang, and L. Shi, “Research on college students’ ideological and political education and daily performance evaluation model based on big data,” Journal of Advanced Oxidation Technologies, vol. 21, no. 2, 2018, doi:10.26802/jaots.2018.01625; [330] Y. H. Kim and J. Ahn, “A Study on the Application of Big Data to the Korean College Education System,” Procedia Computer Science, vol. 91, no. Itqm 2016, pp. 855–861, 2016, doi:10.1016/j.procs.2016.07.096; [331] T. G. Ramos, J. C. F. Machado, and B. P. V. Cordeiro, “Primary Education Evaluation in Brazil Using Big Data and Cluster Analysis,” Procedia Computer Science, vol. 55, no. Itqm, pp. 1031–1039, 2015, doi:10.1016/j.procs.2015.07.061; [332] R. H. Hamilton and W. A. Sodeman, “The questions we ask: Opportunities and challenges for using big data analytics to strategically manage human capital resources,” Business Horizons, vol. 63, no. 1, pp. 85–95, Jan. 2020, doi:10.1016/j.bushor.2019.10.001; [333] J. Wu, H. Li, L. Liu, and H. Zheng, “Adoption of big data and analytics in mobile healthcare market: An economic perspective,” Electronic Commerce Research and Applications, vol. 22, pp. 24–41, Mar. 2017, doi:10.1016/j.elerap.2017.02.002; [334] Z. Allam and Z. A. Dhunny, “On big data, artificial intelligence and smart cities,” Cities, vol. 89, no. January, pp. 80–91, Jun. 2019, doi:10.1016/j.cities.2019.01.032; [335] M. A. Goralski and T. K. Tan, “Artificial intelligence and sustainable development,” The International Journal of Management Education, vol. 18, no. 1, p. 100330, Mar. 2020, doi:10.1016/j.ijme.2019.100330.; [336] C. R. Deig, A. Kanwar, and R. F. Thompson, “Artificial Intelligence in Radiation Oncology,” Hematology/Oncology Clinics of North America, vol. 33, no. 6, pp. 1095–1104, Dec. 2019, doi:10.1016/j.hoc.2019.08.003; [337] M. Chassignol, A. Khoroshavin, A. Klimova, and A. Bilyatdinova, “Artificial Intelligence trends in education: a narrative overview,” Procedia Computer Science, vol. 136, pp. 16–24, 2018, doi:10.1016/j.procs.2018.08.233; [338] E. Barrientos-Avendaño, L. A. Coronel-Rojas, F. Cuesta-Quintero, and D. Rico-Bautista, “Store-tostore sales management system: Applying artificial intelligence techniques [Sistema de administración de ventas tienda a tienda: Aplicando técnicas de inteligencia artificial],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E27, pp. 677–689, 2020.; [339] A. Kankanhalli, Y. Charalabidis, and S. Mellouli, “IoT and AI for Smart Government: A Research Agenda,” Government Information Quarterly, vol. 36, no. 2, pp. 304–309, Apr. 2019, doi:10.1016/j.giq.2019.02.003; [340] A. Y. Sheikh and J. I. Fann, “Artificial Intelligence,” Thoracic Surgery Clinics, vol. 29, no. 3, pp. 339– 350, Aug. 2019, doi:10.1016/j.thorsurg.2019.03.011; [341] A. Haleem, M. Javaid, and I. H. Khan, “Current status and applications of Artificial Intelligence (AI) in medical field: An overview,” Current Medicine Research and Practice, vol. 9, no. 6, pp. 231–237, Nov. 2019, doi:10.1016/j.cmrp.2019.11.005; [342] T. Granollers i Saltiveri, “MPIu+a. Una metodología que integra la Ingeniería del Software, la Interacción Persona-Ordenador y la Accesibilidad en el contexto de equipos de desarrollo multidisciplinares,” 2004; [343] U. de Lleida, “Departament de Llenguatges i Sistemes Informàtics Universitat de Lleida Lleida, julio 2004,” Screen, 2004; [344] V. De Freitas, “Model of Maturity in Knowledge Management System, From a Holistic Approach,” Negotium, vol. Revista Ci, pp. 5–31, 2018; [345] F. RICHARDSON and G. LEóN, “Instrumento para determinar el nivel de madurez en la adopción de tecnologías escolar en la educación primaria en escuelas públicas de la República Dominicana,” 2019.; [346] L. C. Ñungo Pinzón, B. Torres González, and J. I. Palacios Osma, “Modelo de nivel de madurez para los procesos de emprendimiento en las pymes colombianas,” Ingeniería Solidaria, vol. 14, no. 26, Dec. 2018, doi:10.16925/in.v14i26.2456.; [347] L. v. Glukhova, S. D. Syrotyuk, A. A. Sherstobitova, and S. v. Pavlova, “Smart University Development Evaluation Models,” in Smart Innovation, Systems and Technologies, vol. 144, Springer Science and Business Media Deutschland GmbH, 2019, pp. 539–549. doi:10.1007/978-981-13-8260-4_47; [348] D. Lee, J. Gu, and H. Jung, “Process maturity models: Classification by application sectors and validities studies,” Journal of Software: Evolution and Process, vol. 31, no. 4, p. e2161, Apr. 2019, doi:10.1002/smr.2161.; [349] S. Beecham, T. Hall, and A. Rainer, “Defining a Requirements Process Improvement Model,” Software Quality Journal, vol. 13, no. 3, pp. 247–279, Sep. 2005, doi:10.1007/s11219-005-1752-9.; [350] U. Benjamín et al., “EVALUACIÓN DE LA MADUREZ DE LOS PRINCIPIOS LEAN EN PROYECTOS DE CONSTRUCCIÓN,” 2016; [351] M. Gina and P. M. Gongora, “FRAMEWORK DE GESTIÓN DE TECNOLOGÍAS DE INFORMACIÓN PARA CIUDADES INTELIGENTES: CASO COLOMBIANO TESIS DOCTORAL,” Barranquilla, 2017.; [352] L. C. Ñungo Pinzón, B. Torres González, and J. I. Palacios Osma, “Modelo de nivel de madurez para los procesos de emprendimiento en las pymes colombianas,” Ingeniería Solidaria, vol. 14, no. 26, 2018, doi:10.16925/in.v14i26.2456; [353] R. Morales Fernandez, J. A. Brieto Rojas, and J. A. Villaseñor Marcial, “CMMI - Capability Maturity Model Integration,” MIPRO 2008 - 31st International Convention Proceedings: Digital Economy - 5th ALADIN, Information Systems Security, Business Intelligence Systems, Local Government and Student Papers, vol. 5, no. Cmmi, pp. 229–234, 2008.; [354] E. Pérez Mergarejo, I. Pérez Vergara, and Y. Rodriguez Ruiz, “Modelos de madurez y su idoneidad para aplicar en pequeñas y medianas empresas / Maturity models and the suitability of its application in small and medium enterprises,” Ingeniería Industrial, vol. XXXV, no. 2, pp. 146–158, 20; [355] R. Galeano, “Diseño Hipermedia centrado en el usuario,” Universidad Pontificia Bolivariana, vol. 2, no. 4, pp. 1–15, 2008; [356] T. Granollers, “Diseño Centrado en el Usuario (DCU). El modelo MPlu+a,” p. 71, 2013; [357] M. Garreta Domingo and E. Mor Pera, “Diseño centrado en el usuario (I). Introducción,” El Profesional de la Informacion, vol. 12, no. 1, pp. 52–54, 2003, doi:10.1076/epri.12.1.52.19713.; [358] L. Perurena Cancio and M. Moráguez Bergues, “Usabilidad de los sitios Web, los métodos y las técnicas para la evaluación,” Usabilidad de los sitios Web, los métodos y las técnicas para la evaluación, vol. 24, no. 2, pp. 176–194, 2013; [359] E. E. Grandon, A. A. Ibarra, S. A. Guzman, P. Ramirez-Correa, and J. Alfaro-Perez, “Internet of Things: Factors that influence its adoption among Chilean SMEs,” in 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Jun. 2018, pp. 1–6. doi:10.23919/CISTI.2018.8399183.; [360] F. Authors, “An exploratory study of Internet of Things ( IoT ) adoption intention in logistics and supply chain management - a mixed research approach,” 2016; [361] P. Brous, M. Janssen, and P. Herder, “The dual effects of the Internet of Things ( IoT ): A systematic review of the benefits and risks of IoT adoption by organizations,” International Journal of Information Management, no. May, pp. 1–17, 2019, doi:10.1016/j.ijinfomgt.2019.05.008; [362] H. Shaikh, Z. A. Mahar, and A. Raza, “A Conceptual Framework for Determining Acceptance of Internet of Things ( IoT ) in Higher Education Institutions of Pakistan,” 2019 International Conference on Information Science and Communication Technology (ICISCT), pp. 1–5, 2019.; [363] M. Mital, P. Choudhary, V. Chang, A. Papa, and A. K. Pani, “Technological Forecasting & Social Change Adoption of Internet of Things in India : A test of competing models using a structured equation modeling approach,” Technological Forecasting & Social Change, pp. 1–8, 2017, doi:10.1016/j.techfore.2017.03.001; [364] S. Kang, H. B. Rn, E. Jung, and H. Hwang, “Survey on the demand for adoption of Internet of Things ( IoT ) -based services in hospitals : Investigation of nurses ’ perception in a tertiary university hospital,” Applied Nursing Research, vol. 47, no. May 2018, pp. 18–23, 2019, doi:10.1016/j.apnr.2019.03.005; [365] F. Authors, “Adoption of internet of things ( IOT ) based wearables for elderly healthcare – a behavioural reasoning theory ( BRT ) approach,” 2018, doi:10.1108/JET-12-2017-0048.; [366] R. BaÅ¡ková, Z. Struková, and M. Kozlovská, “Construction Cost Saving Through Adoption of IoT Applications in Concrete Works,” Lecture Notes in Civil Engineering, vol. 47, pp. 452–459, 2020, doi:10.1007/978-3-030-27011-7_57; [367] Y. Kao, K. Nawata, and C. Huang, “An Exploration and Confirmation of the Factors Influencing Adoption of IoT-Based Wearable Fitness Trackers,” 2019.; [368] M. Mital, P. Choudhary, V. Chang, A. Papa, and A. K. Pani, “Technological Forecasting & Social Change Adoption of Internet of Things in India : A test of competing models using a structured equation modeling approach,” Technological Forecasting & Social Change, pp. 1–8, 2017, doi:10.1016/j.techfore.2017.03.001; [369] M. Fahmideh and D. Zowghi, “An exploration of IoT platform development,” Information Systems, vol. 87, p. 101409, 2020, doi:10.1016/j.is.2019.06.005; [370] S. Kang, H. B. Rn, E. Jung, and H. Hwang, “Survey on the demand for adoption of Internet of Things ( IoT ) -based services in hospitals : Investigation of nurses ’ perception in a tertiary university hospital,” Applied Nursing Research, vol. 47, no. May 2018, pp. 18–23, 2019, doi:10.1016/j.apnr.2019.03.005; [371] M. Al-Emran, S. I. Malik, and M. N. Al-Kabi, “A Survey of Internet of Things (IoT) in Education: Opportunities and Challenges,” Studies in Computational Intelligence, vol. 846, pp. 197–209, 2020, doi:10.1007/978-3-030-24513-9_12; [372] H. Shaikh, Z. A. Mahar, and A. Raza, “A Conceptual Framework for Determining Acceptance of Internet of Things ( IoT ) in Higher Education Institutions of Pakistan,” 2019 International Conference on Information Science and Communication Technology (ICISCT), pp. 1–5, 2019.; [373] R. Scherer, F. Siddiq, and J. Tondeur, “The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education,” Computers and Education, vol. 128, pp. 13–35, 2019, doi:10.1016/j.compedu.2018.09.009.; [374] Y. S. Kao, K. Nawata, and C. Y. Huang, “An exploration and confirmation of the factors influencing adoption of IoT-basedwearable fitness trackers,” International Journal of Environmental Research and Public Health, vol. 16, no. 18, 2019, doi:10.3390/ijerph16183227.; [375] P. K. Paul, “Usability engineering and hci for promoting root-level social computation and informatics practice: A possible academic move in the indian perspective,” International Journal of Asian Business and Information Management, vol. 12, no. 2, pp. 96–109, 2021, doi:10.4018/IJABIM.20210401.oa6; [376] M. A. Castaño González, “Índice de madurez de transformación digital de las empresas Colombianas,” Cintel, pp. 1–36, 2016; [377] P. Pinheiro, M. Aparicio, and C. Costa, “Adoption of cloud computing systems,” in Proceedings of the International Conference on Information Systems and Design of Communication - ISDOC ’14, 2014, pp. 127–131. doi:10.1145/2618168.2618188; [378] H. Xu, International Conference on Applications and Techniques in Cyber Intelligence ATCI 2019, vol. 1017. Cham: Springer International Publishing, 2020. doi:10.1007/978-3-030-25128-4; [379] B. B. Rad, T. Diaby, and M. E. Rana, “Cloud Computing Adoption,” in Proceedings of the 2017 International Conference on E-commerce, E-Business and E-Government - ICEEG 2017, 2017, pp. 51– 55. doi:10.1145/3108421.3108426; [380] B. B. Rad, T. Diaby, and M. E. Rana, “Cloud Computing Adoption,” in Proceedings of the 2017 International Conference on E-commerce, E-Business and E-Government - ICEEG 2017, 2017, pp. 51– 55. doi:10.1145/3108421.3108426; [381] H. Vasudavan, K. Shanmugam, and H. A. Ahmada, “User Perceptions in Adopting Cloud Computing in Autonomous Vehicle,” in Proceedings of the 6th International Conference on Information Technology: IoT and Smart City - ICIT 2018, 2018, pp. 151–156. doi:10.1145/3301551.3301583; [382] D. S. Jat, M. S. Haodom, and A. Peters, “Relevance of Cloud Computing in Namibia,” in Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies - ICTCS ’16, 2016, pp. 1–4. doi:10.1145/2905055.2905301; [383] T. Branco, F. de Sá-Soares, and A. L. Rivero, “Key Issues for the Successful Adoption of Cloud Computing,” Procedia Computer Science, vol. 121, pp. 115–122, 2017, doi:10.1016/j.procs.2017.11.016.; [384] R. D. Raut, P. Priyadarshinee, B. B. Gardas, and M. K. Jha, “Analyzing the factors influencing cloud computing adoption using three stage hybrid SEM-ANN-ISM (SEANIS) approach,” Technological Forecasting and Social Change, vol. 134, no. July 2017, pp. 98–123, Sep. 2018, doi:10.1016/j.techfore.2018.05.020; [385] R. El-Gazzar, E. Hustad, and D. H. Olsen, “Understanding cloud computing adoption issues: A Delphi study approach,” Journal of Systems and Software, vol. 118, pp. 64–84, Aug. 2016, doi:10.1016/j.jss.2016.04.061; [386] D. S. Jat, M. S. Haodom, and A. Peters, “Relevance of Cloud Computing in Namibia,” in Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies - ICTCS ’16, 2016, pp. 1–4. doi:10.1145/2905055.29053; [387] M. Al-Ruithe, E. Benkhelifa, and K. Hameed, “Current State of Cloud Computing Adoption – An Empirical Study in Major Public Sector Organizations of Saudi Arabia (KSA),” Procedia Computer Science, vol. 110, pp. 378–385, 2017, doi:10.1016/j.procs.2017.06.080; [388] O. Sabri, “Measuring is Success Factors of Adopting Cloud Computing from Enterprise Overview,” in Proceedings of the The International Conference on Engineering & MIS 2015 - ICEMIS ’15, 2015, pp. 1–5. doi:10.1145/2832987.2832993; [389] F. Alharbi, A. Atkins, and C. Stanier, “Cloud Computing Adoption Readiness Assessment in Saudi Healthcare Organisations : A Strategic View,” 2017.; [390] U. Nasir and M. Niazi, “Cloud computing adoption assessment model (CAAM),” in Proceedings of the 12th International Conference on Product Focused Software Development and Process Improvement - Profes ’11, 2011, vol. 44, no. 0, pp. 34–37. doi:10.1145/2181101.2181110; [391] J. Cecil, “A Collaborative Manufacturing Approach supporting adoption of IoT Principles in Micro Devices Assembly,” Procedia Manufacturing, vol. 26, pp. 1265–1277, 2018, doi:10.1016/j.promfg.2018.07.141.; [392] R. F. El-gazzar, “An Overview of Cloud Computing Adoption Challenges in the Norwegian Context,” 2014.; [393] R. F. El-gazzar, “An Overview of Cloud Computing Adoption Challenges in the Norwegian Context,” 2014; [394] H. Hassan, “ScienceDirect ScienceDirect Organisational factors affecting cloud computing adoption in small and medium enterprises ( SMEs ) in service sector,” Procedia Computer Science, vol. 121, pp. 976–981, 2017, doi:10.1016/j.procs.2017.11.126; [395] I. Arpaci, “Antecedents and consequences of cloud computing adoption in education to achieve knowledge management,” Computers in Human Behavior, vol. 70, pp. 382–390, May 2017, doi:10.1016/j.chb.2017.01.024; [396] H. M. Sabi, F. E. Uzoka, K. Langmia, and F. N. Njeh, “Conceptualizing a model for adoption of cloud computing in education,” International Journal of Information Management, vol. 36, no. 2, pp. 183– 191, Apr. 2016, doi:10.1016/j.ijinfomgt.2015.11.010; [397] F. Gao and A. Sunyaev, “International Journal of Information Management Context matters : A review of the determinant factors in the decision to adopt cloud computing in healthcare,” International Journal of Information Management, vol. 48, no. February, pp. 120–138, 2019, doi:10.1016/j.ijinfomgt.2019.02.002.; [398] K. Njenga, L. Garg, A. K. Bhardwaj, V. Prakash, and S. Bawa, “The cloud computing adoption in higher learning institutions in Kenya: Hindering factors and recommendations for the way forward,” Telematics and Informatics, vol. 38, no. May, pp. 225–246, May 2019, doi:10.1016/j.tele.2018.10.007; [399] P. Priyadarshinee, R. D. Raut, M. K. Jha, and B. B. Gardas, “Understanding and predicting the determinants of cloud computing adoption: A two staged hybrid SEM - Neural networks approach,” Computers in Human Behavior, vol. 76, pp. 341–362, Nov. 2017, doi:10.1016/j.chb.2017.07.027.; [400] W. Hao, Z. Huang, and L. Shi, “Research on college students’ ideological and political education and daily performance evaluation model based on big data,” Journal of Advanced Oxidation Technologies, vol. 21, no. 2, 2018, doi:10.26802/jaots.2018.01625.; [401] J. Wu, H. Li, L. Liu, and H. Zheng, “Adoption of big data and analytics in mobile healthcare market: An economic perspective,” Electronic Commerce Research and Applications, vol. 22, pp. 24–41, Mar. 2017, doi:10.1016/j.elerap.2017.02.002; [402] Y. H. Kim and J. Ahn, “A Study on the Application of Big Data to the Korean College Education System,” Procedia Computer Science, vol. 91, no. Itqm 2016, pp. 855–861, 2016, doi:10.1016/j.procs.2016.07.096.; [403] M. Shorfuzzaman, M. S. Hossain, A. Nazir, G. Muhammad, and A. Alamri, “Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment,” Computers in Human Behavior, vol. 92, pp. 578–588, Mar. 2019, doi:10.1016/j.chb.2018.07.002; [403] M. Shorfuzzaman, M. S. Hossain, A. Nazir, G. Muhammad, and A. Alamri, “Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment,” Computers in Human Behavior, vol. 92, pp. 578–588, Mar. 2019, doi:10.1016/j.chb.2018.07.002. [404] T. G. Ramos, J. C. F. Machado, and B. P. V. Cordeiro, “Primary Education Evaluation in; [404] T. G. Ramos, J. C. F. Machado, and B. P. V. Cordeiro, “Primary Education Evaluation in Brazil Using Big Data and Cluster Analysis,” Procedia Computer Science, vol. 55, no. Itqm, pp. 1031–1039, 2015, doi:10.1016/j.procs.2015.07.061.; [405] R. H. Hamilton and W. A. Sodeman, “The questions we ask: Opportunities and challenges for using big data analytics to strategically manage human capital resources,” Business Horizons, vol. 63, no. 1, pp. 85–95, Jan. 2020, doi:10.1016/j.bushor.2019.10.001; [406] F. P. S. Surbakti, W. Wang, M. Indulska, and S. Sadiq, “Factors influencing effective use of big data: A research framework,” Information & Management, vol. 57, no. 1, p. 103146, Jan. 2020, doi:10.1016/j.im.2019.02.001; [407] U. D. Kumar, Analytics Education Ms Purvi Tiwari , Research Associates at DCAL , Indian Institute of Management. Elsevier Ltd, 2019. doi:10.1016/j.iimb.2019.10.014; [408] M. Zapata-ros, “La universidad inteligente La transición de los LMS a los Sistemas Inteligentes de Aprendizaje en Educación Superior The smart university,” vol. 57, no. 10, pp. 1–43, 2018.; [409] N. Mehta, A. Pandit, and S. Shukla, “Transforming Healthcare with Big Data Analytics and Artificial Intelligence: A Systematic Mapping Study,” Journal of Biomedical Informatics, p. 103311, 2019, doi:10.1016/j.jbi.2019.103311.; [410] J. A. Carrillo Ruiz et al., “Big Data En Los Entornos De Defensa Y Seguridad,” 2003.; [411] A. S. Leví, “Aproximación al Big Data . Análisis de su posible utilización en la universidad pública,” 2018; [412] Z. Allam and Z. A. Dhunny, “On big data, artificial intelligence and smart cities,” Cities, vol. 89, no. January, pp. 80–91, Jun. 2019, doi:10.1016/j.cities.2019.01.032; [413] M. A. Goralski and T. K. Tan, “Artificial intelligence and sustainable development,” The International Journal of Management Education, vol. 18, no. 1, p. 100330, Mar. 2020, doi:10.1016/j.ijme.2019.100330; [414] C. R. Deig, A. Kanwar, and R. F. Thompson, “Artificial Intelligence in Radiation Oncology,” Hematology/Oncology Clinics of North America, vol. 33, no. 6, pp. 1095–1104, Dec. 2019, doi:10.1016/j.hoc.2019.08.003; [415] M. Chassignol, A. Khoroshavin, A. Klimova, and A. Bilyatdinova, “Artificial Intelligence trends in education: a narrative overview,” Procedia Computer Science, vol. 136, pp. 16–24, 2018, doi:10.1016/j.procs.2018.08.233; [416] R. Bajaj and V. Sharma, “ScienceDirect ScienceDirect Smart Education with artificial intelligence based determination of Smart Education with artificial intelligence learning styles based determination of learning styles,” Procedia Computer Science, vol. 132, pp. 834–842, 2018, doi:10.1016/j.procs.2018.05.095; [417] A. Kankanhalli, Y. Charalabidis, and S. Mellouli, “IoT and AI for Smart Government: A Research Agenda,” Government Information Quarterly, vol. 36, no. 2, pp. 304–309, Apr. 2019, doi:10.1016/j.giq.2019.02.003; [418] A. Y. Sheikh and J. I. Fann, “Artificial Intelligence,” Thoracic Surgery Clinics, vol. 29, no. 3, pp. 339– 350, Aug. 2019, doi:10.1016/j.thorsurg.2019.03.011; [419] A. Blandford, “education : the potential offered by artificial intellige e tech s,” pp. 212–222, 1990; [420] A. Haleem, M. Javaid, and I. H. Khan, “Current status and applications of Artificial Intelligence (AI) in medical field: An overview,” Current Medicine Research and Practice, vol. 9, no. 6, pp. 231–237, Nov. 2019, doi:10.1016/j.cmrp.2019.11.005.; [421] I. y U. Ministerio de Ciencia, “Estrategia Española De I+D+I En Inteligencia Artificial,” p. 48, 2019; [422] J. G. Sierra Llorente, Y. A. Palmezano Córdoba, and B. S. Romero Mora, “CAUSAS QUE DETERMINAN LAS DIFICULTADES DE LA INCORPORACIÓN DE LAS TIC EN LAS AULAS DE CLASES - Causes that determine the difficulties in the onboarding process of ICT in classrooms,” Panorama, vol. 12, no. 22, pp. 31–41, 2018, doi:10.15765/pnrm.v12i22.1064; [423] MINTIC, “Análisis del sector dirección de gobierno digital,” Ministerio de las tecnologías de la información, vol. 57, no. 1, p. 31, 2019.; [424] H. A. Botello Peñaloza, O. E. Contreras Pacheco, and P. Avella. A. Cecilia, “Análisis empresarial de la influencia de las TIC en el desempeño de las empresas de servicios en Colombia,” Panorama, vol. 4, no. 8, pp. 3–15, 2013, doi:10.15765/pnrm.v4i8.57.; [425] M. E. Rojas Salgado, “Los recursos tecnológicos como soporte para la enseñanza de las ciencias naturales - Technological resources as support in natural sciences teaching,” Hamut’Ay, vol. 4, no. 1, p. 85, 2017, doi:10.21503/hamu.v4i1.1403; [426] Universidad Santo Tomás, “Documento Marco Tecnologías de la Información y la Comunicación,” 2015.; [427] F. I. Díazgranados et al., Uso De Recursos Educativos En Educación Superior. 2018. doi:10.2307/j.ctt2050wh0.7; [428] C. Alberto, F. Reboreda, C. Alberto, and F. Reboreda, “UD igital,” 2020; [429] D. Rico-Bautista, C. D. Guerrero, Y. Medina-Cárdenas, and A. García-Barreto, “Analysis of the potential value of technology: Case of universidad francisco de paula santander Ocaña [Análisis del valor potencial de la tecnología: Caso universidad francisco de paula santander Ocaña],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, no. E17, pp. 756–774, 2019; [430] D. Rico-Bautista and Y. Medina-Cárdenas, “Modelo institucional de autoevaluación y mejoramiento continuo: Proceso misional de investigación de la Universidad Francisco de Paula Santander Ocaña (UFPSO). Un caso de éxito,” Revista Iberoamericana CTS, vol. Abril, pp. 1–14, 2; [431] M. Arrieta, M. Sanguino, and C. Lobo, “Diseño de un plan estratégico de tecnologías de información para la Universidad Francisco de Paula Santander Ocaña,” 2015. [; [432] J. F. Rockart, “Chief executives define their own data needs.,” Harvard Business Review, 1979, doi: Article.; [433] M. Arrieta, M. Sanguino, and C. Lobo, “Diseño de un plan estratégico de tecnologías de información para la Universidad Francisco de Paula Santander Ocaña,” 2015.; [434] M. E. Porter, “Competitive Advantage,” Competitive Advantage: Creating and Sustaining Superior Performance. 1985. doi:10.1182/blood-2005-11-4354.; [435] D. S. Hidayat and D. I. Sensuse, “Knowledge Management Model for Smart Campus in Indonesia,” Data, vol. 7, no. 1, p. 7, Jan. 2022, doi:10.3390/data7010007; [436] V. Salazar Solano, J. M. Moreno Dena, I. S. Rojas Rodríguez, and L. A. Islas Olavarrieta, “Nivel de adopción de tecnologías de la información y la comunicación en empresas comercializadoras de mango en Nayarit – México,” Estudios Gerenciales, vol. 34, no. 148, pp. 292–304, Sep. 2018, doi:10.18046/j.estger.2018.148.2639; [437] S. Dalal, D. Khodyakov, R. Srinivasan, S. Straus, and J. Adams, “ExpertLens: A system for eliciting opinions from a large pool of non-collocated experts with diverse knowledge,” Technological Forecasting and Social; [438] S. Beecham, T. Hall, C. Britton, M. Cottee, and A. Rainer, “Using an expert panel to validate a requirements process improvement model,” Journal of Systems and Software, vol. 76, no. 3, pp. 251– 275, Jun. 2005, doi:10.1016/j.jss.2004.06.004.; [439] M. Kopyto, S. Lechler, H. A. von der Gracht, and E. Hartmann, “Potentials of blockchain technology in supply chain management: Long-term judgments of an international expert panel,” Technological Forecasting and Social Change, vol. 161, p. 120330, Dec. 2020, doi:10.1016/j.techfore.2020.120330; [440] L. A. Galicia Alarcón, J. A. Balderrama Trápaga, and R. Edel Navarro, “Content validity by experts judgment: Proposal for; [441] F. Sheikhshoaei, N. Naghshineh, S. Alidousti, M. Nakhoda, and H. Dehdarirad, “Development and validation of a measuring instrument for digital library maturity,” Library & Information Science Research, vol. 43, no. 3, p. 101101, Jul. 2021, doi:10.1016/j.lisr.2021.101101; [442] C. Á. Álvarez, “La relación teoría-práctica en los procesos de enseñanza-aprendizaje Theory-practice relationship in the processes of teaching and learning,” 2012.; [443] J. M. González-Varona, A. López-Paredes, J. Pajares, F. Acebes, and F. Villafáñez, “Aplicabilidad de los Modelos de Madurez de Business Intelligence a PYMES,” Direccion y Organizacion, no. 71, pp. 31–45, Jul. 2020, doi:10.37610/dyo.v0i71.577; [444] C. U. Españolas, “TIC 360o - Transformación Digital en la Universidad,” 2017; [445] L. F. Berdnikova, A. A. Sherstobitova, O. V. Schnaider, N. O. Mikhalenok, and O. E. Medvedeva, Smart university: Assessment models for resources and economic potential, vol. 144. Springer Singapore, 2019. doi:10.1007/978-981-13-8260-4_51; http://hdl.handle.net/20.500.12749/16730; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Availability: https://hdl.handle.net/20.500.12749/16730
-
3
Authors: et al.
Contributors: et al.
Subject Terms: Enterprise architecture, Public sector, Principles of architecture, Software development, Information systems, Public administration, Systems engineer, Software management, Software application, New technologies, Research, Teaching, Sistemas de información, Administración pública, Ingeniería de sistemas, Gestión de software, Aplicación de software, Nuevas tecnologías, Investigaciones, Enseñanza, Arquitectura empresarial, TOGAF, Sector público, Principios de arquitectura, Desarrollo de software
Subject Geographic: Bucaramanga (Colombia), UNAB Campus Bucaramanga
File Description: application/pdf
Relation: Cruz Bueno, Hernán Darío (2014). Lineamientos iníciales para implementación de arquitecturas empresariales utilizando TOGAF en entidades públicas colombianas, caso de estudio Hospital Universitario de Santander (HUS). Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB; Aagesen G., & Van Veenstra A. (2011). The Entanglement of Enterprise Architecture and IT-Governance: The Cases of Norway and the Netherlands, Proceedings of the 44th Hawaii International Conference on System Sciences. ISBN: 978-0-7695-4282-9; Abul Kalam M., & Ali Khan A. (2008). Government Enterprise Architectures: Present Status of Bangladesh and Scope of Development. ICEGOV2008, 2nd International Conference on Theory and Practice of Electronic Governance, December 1-4, 2008, Cairo, Egypt.; Aier S. (2012). The role of organizational culture for grounding, management, guidance and effectiveness of enterprise architecture principles. Information Systems and e-Business Management ISSN: 1617-9854 (Online); Al-Nasrawi S., & Ibrahim M. (2013). An Enterprise Architecture Mapping Approach for Realizing e-Government. The 3rd International Conference on communications and information technology (ICCIT-2013): Digital information management & security, Beirut. Junio 19-21, 2013. IEEE.; Andreas Ask, Karin Hedström, 2011 - Taking Initial Steps towards Enterprise Architecture in Local Government, Department of Informatics, Swedish Business School at Örebro University, Sweden, Springer 2011; Avison, D., Jones, J., Powell, 2004 - Using and Validating the Strategic Alignment Model. The Journal of Strategic Information Systems, Vol. 13, Issue 3, September 2004; Bejarano G. & Ropero E., 2012, Análisis y diseño de una arquitectura empresarial como solución al proceso de certificación de competencias laborales en el sistema nacional de formación para el trabajo-SENA, Proyecto de Maestría en Gestión Aplicación y Desarrollo de Software, UNAB, 2012.; D. Greefhorst, 2011, A Practical Approach to the Formulation and Use of Architecture Principles, 2011 15th IEEE International Enterprise Distributed Object Computing Conference Workshops; Doucet, G., Gøtze J., & Saha P. (2008), Coherency Management: Using Enterprise Architecture for Alignment, Agility, and Assurance, Journal of Enterprise Architecture, 2008. ISSN 2166-6792 (online); Ebrahim Z., & Irani Z. (2006). E-government adoption: architecture and barriers. Business Process Management Journal, Vol. 11 No. 5, 2005, pp. 589-611. Emerald Group Publishing. ISSN: 1463-7154; Ecopetrol innova parte1, 2011 - El mapa de decisiones, Revista Innova Ecopetrol, Edición 7 - 2011, http://www.ecopetrol.com.co/especiales/RevistaInnova7ed/innovaciones16.html, Revisado 17 Octubre 2013; Espinosa A., & Fong W. (2011). The Organizational Impact of Enterprise Architecture: A Research Framework. Proceedings of the 44th Hawaii International Conference on System Sciences, 2011. IEEE Computer Society Washington, ISBN: 978-0-7695-4282-9.; Espinosa A., & Fong W. (2009). Coordination and Governance in Geographically Distributed Enterprise Architecting: An Empirical Research Design. Proceedings of the 42nd Hawaii International Conference on System Sciences – 2009. 5-8 Junio. 2009. ISBN: 978-0-7695-3450-3; FEAF, 2012 - Federal Enterprise Architecture (FEA) Recuperado Octubre 25 de 2013, http://www.whitehouse.gov/omb/e-gov/fea/; G. Doucet, J. Gøtze, P. Saha, S. Bernard, 2008 - “Coherency Management: Using Enterprise Architecture for Alignment, Agility, and Assurance,” Journal of Enterprise Architecture, May, 2008.; Guijarro L. (2007). Interoperability frameworks and enterprise architectures in e-governmentinitiatives in Europe and the United States. Government Information Quarterly 24 (2007) 89 – 101. ISSN: 0740-624X; Gobierno en Línea, 2011 – Programa de Gobierno electrónico colombiano, http://programa.gobiernoenlinea.gov.co/index.shtml; González L., 2005 - Arquitectura de Empresa. Visión General, IX Congreso de Ingeniería de Organización, 2005. Recuperado Octubre 17 de 2013, http://dialnet.unirioja.es/servlet/articulo?codigo=3250017; Hannu Larsson, 2011 - Ambiguities in the Early Stages of Public Sector Enterprise Architecture Implementation: Outlining Complexities of Interoperability, IFIP International Federation for Information Processing 2011.; Hans Jochen Scholl, Herbert Kubicek, Ralf Cimander, 2011 - Interoperability, Enterprise Architectures, and IT Governance in Government, IFIP International Federation for Information Processing 2011.; Hirvonen, A, 2005 - “Enterprise Architecture Planning in Practice – The Perspectives of Information and Communication Technology Service Provider and End-User”, Doctoral dissertation, University of Jyväskylä; Hjort-Madsen K., & Pries-Heje J. (2009). Enterprise Architecture in Government: Fad or Future? , Proceedings of the 42nd Hawaii International Conference on System Sciences – 2009. 5-8 Junio. 2009. ISBN: 978-0-7695-3450-3; Hjort-Madsen K. (2007). Institutional patterns of enterprise architecture adoption in government. Transforming Government: People, Process and Policy Vol. 1 No. 4, 2007 pp. 333-349. Emerald Group Publishing. ISSN: 1750-6166; Hugoson M., & Magoulas T. (2010). Enterprise Architecture Design Principles and Business-Driven IT Management. BIS 2010, 13th International Conference on Business Information Systems, Berlin, Germany 3-5 Mayo, 2010. LNBIP 57, pp. 144–155. ISBN 978-3-642-15401-0; ICBF- Instituto Colombiano de Bienestar Familiar, 2013, F02 - Anexo– Condiciones Técnicas para la prestación del servicio y/o entrega de bien, Recuperado Octubre 20 de 2013, http://www.icbf.gov.co/portal/page/portal/PortalICBF/NormatividadGestion/EstudiosdeMercado/Estudios2013/Direcci%C3%B3n%20de%20Informaci%C3%B3n%20y%20Tecnolog%C3%ADa/Tab1/ARQUITECTURA%20EMP%20-%20FCTEPS%20060513.pdf; ICFES, 2010- Convocatoria Pública ICFES CP No. 002-2010, “Contratar los servicios de consultoría especializada para el diseño y definición de la Arquitectura Empresarial del ICFES, plantear los proyectos para su implementación, y realizar por demanda mantenimiento a la Arquitectura.”, Recuperado Noviembre 23 de 2013, http://web.icfes.gov.co/component/docman/doc_view/3290-cp-002-acto-de-adjudicacion?Itemid=59; ISO/IEC/IEEE 42010, 2013 - System and Software Engineering - Recommende Practice for Architectural Description of Software-Intensive Systems. Recuperado Octubre 20 de 2013, de http://www.iso-architecture.org/ieee-1471/afs; Iyamu T. (2009). The Factors affecting Institutionalisation of Enterprise Architecture in the Organisation. 2009 IEEE Conference on Commerce and Enterprise Computing. 20-23 Julio 2009. IEEE computer society.; Janssen, M., & Hjort-Madsen, K. (2007). Analyzing Enterprise Architecture in National Governments: The Cases of Denmark and the Netherlands. Proceedings of the 40th Hawaii International Conference on System Sciences (HICSS'07), IEEE, Big Island, Hawaii, 2007. ISBN:0-7695-2755-8; Janssen M. (2012). Sociopolitical Aspects of Interoperability and Enterprise Architecture in E-Government, Social Science Computer Review 30(1) 24-36. SAGE Journals; Janssen M., & Klievink B. (2010). ICT-project failure in public administration: The need to include risk management in enterprise architectures. Proceedings of the 11th Annual International Conference on Digital Government Research. Mexico, Mayo 17 - 17, 2010. ISBN: 978-1-4503-0070-4; Janssen M., & Klievink B. (2009). Can enterprise architectures reduce failure in development projects. 2009 International Conference on Electrical Engineering and Informatics. Transforming Government: People, Process and Policy. Vol. 6 No. 1, 2012, pp. 27-40. Emerald Group Publishing. ISSN: 1750-6166; Jin y Kung, 2010 - Research of Information System Technology Architecture-2010 2nd IEEE -2010, International Conference on Industrial and Information Systems; J. Carrillo, 2010 - Roadmap for the implementation of an Enterprise Architecture Framework Oriented to Institutions of Higher Education in Ecuador - Universidad Politécnica de Madrid, 2010; Kaisler, S.H., Valivullah, M., (2005). Enterprise Architecting: Critical Problems. Proceedings of the 38th Annual Hawaii International Conference on System Sciences - Volume 09. ISBN:0-7695-2268-8-9.; Kamal M.M. (2006). IT innovation adoption in the government sector: identifying the critical success factors. Journal of Enterprise Information Management. Vol. 19 No. 2, 2006, pp. 192-222. Emerald Group Publishing Limited. ISSN: 1741-0398.; Kamal M., Hackney R., & Ali M. (2013). Facilitating enterprise application integration adoption: An empirical analysis of UK local government authorities. International Journal of Information Management 33 (2013) pp. 61-75. ISSN: 0268-4012; Kamal M. M., Weerakkody V., & Jones S. (2009). The case of EAI in facilitating e-Government services in a Welsh authority. International Journal of Information Management 29 (2009) pp 161–165. ISSN: 0268-4012; Kristian Hjort-Madsen, Jan Pries-Heje, 2009 - Enterprise Architecture in Government: Fad or Future? , Proceedings of the 42nd Hawaii International Conference on System Sciences – 2009, IT-University of Copenhagen.; Kristian Hjort-Madsen, 2007 - Institutional patterns of enterprise architecture adoption in government, Transforming Government: People, Process and Policy Vol. 1 No. 4, 2007, IT-University of Copenhagen.; Kaisler, S.H., Valivullah, M., 2005 - Enterprise Architecting: Critical Problems”, Proceedings of the 38th Hawaii International Conference on System Sciences; K. Valtonen, M. Leppänen, M. Pulkkinen, 2011 - “Enterprise Architecture Descriptions for Enhancing Local Government Transformation and Coherency Management”, 15th IEEE International Enterprise Distributed Object Computing Conference Workshops 2011.; Larsson H. (2011). Ambiguities in the Early Stages of Public Sector Enterprise Architecture Implementation: Outlining Complexities of Interoperability. IFIP – 10th conference on electronic government, EGOV 2011. Agosto 28 a Septiembre 02 de 2011. Springer, ISBN 978-3-642-22877-3.; M. EsmaeilZadeh, G. Millar, 2012, Mapping the Enterprise Architecture Principles in TOGAF to the Cybernetic Concepts – An Exploratory Study; Lineamientos Marco referencia Gestión de TI, 2014, Ministerio de Tecnologías de Información y Comunicaciones, Recuperado Junio 18 de 2014 http://www.mintic.gov.co/portal/604/w3-article-6301.html; Marco referencia AE Colombia, 2014, Ministerio de Tecnologías de Información y Comunicaciones, Recuperado Junio 18 de 2014 http://www.mintic.gov.co/portal/604/w3-article-6313.html; Maya E., 2010 – ArquitecturaEmpresarial: un nuevo reto para las empresas de hoy – INTERACTIC (Articulos de Interes No 15 Año 3) - CINTEL (Centro de Investigación de Telecomunicaciones).; Martin N., & Gregor S. (2005). Using a Common Architecture in Australian e-Government – The Case of Smart Service Queensland. ICEC '04 Proceedings of the 6th international conference on Electronic commerce. ISBN:1-58113-930-6; Marijn Janssen, Bram Klievink, 2010, ICT-project failure in public administration: The need to include risk management in enterprise architectures, Proceedings of the 11th Annual International Conference on Digital Government Research – 2010; Marijn Janssen, 2012 - Sociopolitical Aspects of Interoperability and Enterprise Architecture in E-Government, Social Science Computer Review 30(1) 24-36.; Marijn Janssen, Kristian Hjort-Madsen, 2007, Analyzing Enterprise Architecture in National Governments: The cases of Denmark and the Netherlands, Proceedings of the 40th Hawaii International Conference on System Sciences - 2007.; Mats-Åke Hugoson, Thanos Magoulas, 2010, Enterprise Architecture Design Principles and Business-Driven IT Management, BIS 2010 Workshops, LNBIP 57, pp. 144–155, 2010; Mohamed Ali Mohamed, Galal Hassan Galal-Edeen, Hesham Ahmed Hassan, 2012, An Evaluation of Enterprise Architecture Frameworks for E-Government, Faculty of Computers and Information, Cairo University, Egypt – 2012, IEEE.; Ministerio de Tecnologías de la Información y las Comunicaciones, (2011), Programa de Gobierno electrónico colombiano Colombia, Recuperado (2013, octubre 18) de http://programa.gobiernoenlinea.gov.co/apc-aa-files/eb0df10529195223c011ca6762bfe39e/manual-3.1.pdf; Ministerio de Tecnologías de la Información y las Comunicaciones, Plan Vive Digital, (2012), Colombia, Agenda estratégica de Innovación Arquitectura de TI, Recuperado (2013, octubre 21) de http://vivedigital.gov.co/idi/wp-content/uploads/2012/10/ATI_AEI__Vectores_v_1-2-0.pdf; Mosquera L., Andrade D., Sierra L. (2013). A Guide to support the priorization of the risk in information techonologies project management. Gerencia Tecnológica Informática, Vol. 12 - N° 33 - pp 15 - 32. ISSN: 2027-8330; N. Umeh, C. Dagli, 2007 - TOGAF vs. DoDAF: Architecting Frameworks for Net-centric Systems, Njideka Umeh, Cihan Dagli; Nodo arquitectura, 2012 – Documento de agenda estratégica de innovación, Recuperado Octubre 20 de 2013, http://vivedigital.gov.co/idi/wp-content/uploads/2012/10/ATI_AEI__Vectores_v_1-2-0.pdf; Ojo, A., Janowski, T. & Estevez, E. (2012). Improving Government Enterprise Architecture Practice – Maturity Factor Analysis. 45th Hawaii International Conference on System Sciences, 4- 7 de enero 2012, USA. ISBN:9781457719257; Paz, R. y Macedo, R., 2010 - The Open Group Architecture Framework, Paz Renato y Macedo Ricardo, Universidad Catolica San Pablo, Recuperado Octubre 18 de 2013, tis-2010-g1.googlecode.com/svn-history/r4/trunk/TOGAF.doc; Plan Vive Digital, Ministerio Tecnologías de Información y Comunicaciones (2012), Recuperado (2014, Abril 28) de http://www.mintic.gov.co/portal/vivedigital/612/w3-propertyvalue-6106.html; Penttinen K., & Isomäki H. (2010). Stakeholders’ Views on Government Enterprise Architecture: Strategic Goals and New Public Services. First International Conference, EGOVIS 2010, Bilbao, Spain, Agosto 31 – Septiembre 2, 2010. Proceedings. ISBN: 978-3-642-15172-9 (Online).; Pessi, K., Magoulas, T. & Hugoson, M., 2011, “The Impact of Enterprise Architecture Principles on the Management of IT Investments” The Electronic Journal Information Systems Evaluation Volume 14 Issue 1 2011, (pp53-62), ISSN 1566-6379; Pulkkinen, M., Hirvonen, A., 2005 - EA Planning, Development and Management Process for Agile Enterprise Development, Proceedings of the 38th Hawaii International Conference on System Sciences; Richardson L., Jackson B. M., & Dickson G. (1990). A principle-based enterprise architecture: Lessons From Texaco and Star Enterprise. MIS Quarterly, 14, 385–403.; Richard A. Martin, Edward L. Robertson, 2005, Architectural Principles for Enterprise Frameworks, IFIP — The International Federation for Information Processing, Volume 183, 2005, pp 79-91; Robert Winter, Stephan Aier, 2011, How are Enterprise Architecture Design Principles Used?, 2011 15th IEEE International Enterprise Distributed Object Computing Conference Workshops; Saha, P. (2007). Handbook of Enterprise Systems Architecture in Practice. IGI Global Information Science Reference, Hershey, 2007. ISBN13: 9781599041896; Saha P. (2009). Architecting the Connected Government: Practices and Innovations in Singapore. The 3rd International Conference on Theory and Practice of Electronic Governance (ICEGOV2009). 10 - 13 Noviembre 2009. ACM.; Schekkerman, J. (2005). Enterprise Architecture: How are Organizations Progressing? Web-form Based. Institute For Enterprise architecture Developments. 2005, pp 79-84; Scholl H., & Kubicek H. (2011). Interoperability, Enterprise Architectures, and IT Governance in Government. 10th conference on electronic government, EGOV 2011. Agosto 28 a Septiembre 02 de 2011. ISBN 978-3-642-22877-3. IFIP International Federation for Information Processing 2011 LNCS 6846, pp. 345–354; Sessions R., 2007 - “Comparison of the Top Four Enterprise Architecture Methodologies”, object watch, 2007, Revisado el 21 de Octubre de 2013. http://msdn.microsoft.com/en-us/library/bb466232.aspx; Seppänen V., Heikkilä J., & Liimatainen K. (2009). Key Issues in EA-implementation: Case study of two Finnish government agencies, 11th IEEE Conference on Commerce and Enterprise Computing (CEC’09). 20-23 Julio 2009.; Servicio Nacional de Aprendizaje SENA, (2012). Colombia. Estudio de mercado, oficina de sistemas – Arquitectura Empresarial, Recuperado (2013, noviembre 23) de http://contratacion.sena.edu.co/_file/solicitudes/2321_1.pdf; Sistema de Investigación, Desarrollo e Innovación, Ministerio Tecnologías e Información, (2012). Colombia, Documento de plan de acción Nodo de innovación en Arquitectura TI para Gobierno, Recuperado (2013, octubre 21) de http://vivedigital.gov.co/idi/wp-content/uploads/2012/07/Plan_de_Accion_NDI_Arquitectura_V2_0_0.pdf; Stephan Aier, 2012 - The role of organizational culture for grounding, management, guidance and effectiveness of enterprise architecture principles, Springer-Verlag Berlin Heidelberg 2012, University of St. Gallen , Switzerland.; Superintendencia Sociedades, (2012). Colombia, Resolución No. 511-004064 de 2012 de Superintendencia de Sociedades, Recuperado (2013, octubre 20) de http://www.supersociedades.gov.co/ss/drvisapi.dll?MIval=muestra&id_pag=33550&t=1; S. Lusa y D. Sensuse, 2011 - Enterprise Architecture Model For Implementation Knowledge Management System (KMS) - Sofian Lusa y Dana Indra Sensuse , University of Indonesia - Depok, Indonesia – IEEE 2011; Tambouris E., & Kaliva E. (2012). A reference requirements set for public service provision enterprise architectures, Springer. Software & Systems Modeling. ISSN: 1619-1374 (Online); Togaf v9, 2009 - The Open Group .La arquitectura abierta del Grupo Marco (TOGAF) versión 9 Enterprise Edition. 2009 (Online):\url{http://www.opengroup.org/architecture/togaf9-doc/arch/index.html /; The Open Group, 2013 - The Open Group Architecture Framework (TOGAF). Versión 9.1. Disponible en: http://pubs.opengroup.org/architecture/togaf9-doc/arch/; The Open Group Principles, 2013 - The Open Group Architecture Framework (TOGAF). Principles, Versión 9.1. Disponible en: http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap04.html; Tuo Zheng, Lei Zheng, 2013 - Examining e-government enterprise architecture research in China: A systematic approach and research agenda Government Information Quarterly 30 (2013) S59–S67.; U. Franke, D. Hook, J. Konig, R. Lagerstrom, 2009 - “ EAF2 – A Framework for Categorizing Enterprise Architecture Frameworks”, 10th ACIS International Conference on Software Engineering, pp. 327–633, 2009; Valtonen, K. & Leppanen M. (2009). Business Architecture Development at Public Administration – Insights from Government EA Method Engineering Project in Finland. Information Systems Development. ISBN: 978-0-387-84810-5 (Online) Pages 765-774; Valtonen K., Leppänen M., & Pulkkinen M. (2011). Enterprise Architecture Descriptions for Enhancing Local Government Transformation and Coherency Management. 15th IEEE International Enterprise Distributed Object Computing Conference Workshops. (EDOCW 2011). ISBN:9781457708695; Valtonen K., & Seppänen V. (2009). Government Enterprise Architecture Grid Adaptation in Finland. Proceedings of the 42nd Hawaii International Conference on System Sciences – 2009. IEEE Computer Society. ISBN: 978-0-7695-3450-3; Ville Seppänen, Jukka Heikkilä, Katja Liimatainen, 2009 - Key Issues in EA-implementation: Case study of two Finnish government agencies, 2009 IEEE Conference on Commerce and Enterprise Computing; http://hdl.handle.net/20.500.12749/3343; reponame:Repositorio Institucional UNAB
Availability: https://hdl.handle.net/20.500.12749/3343
-
4
Authors: et al.
Contributors: et al.
Subject Terms: Collaborative networks, Enterprise architectures, Interoperability, ORGANIZACION DE EMPRESAS
File Description: application/pdf
Relation: On the Move to Meaningful Internet Systems: OTM 2011 Workshops; Lecture Notes in Computer Science;vol. 7046; Confederated International Workshops and Posters: EI2N+NSF ICE, ICSP+INBAST, ISDE, ORM, OTMA, SWWS+MONET+SeDeS, and VADER 2011; October 17-21, 2011; Hersonissos, Crete, Greece; http://link.springer.com/chapter/10.1007/978-3-642-25126-9_18; https://riunet.upv.es/handle/10251/36008
-
5
Authors: et al.
Contributors: et al.
Subject Terms: 690 - Construcción de edificios, 620 - Ingeniería y operaciones afines::624 - Ingeniería civil, Construcción - Métodos de simulación, Construcción - Simulación por computadores, Construcción - Control de costos, Construcción - Presupuestos, Industria de la construcción - Planificación, Industria de la construcción - Predicciones, Proyecto de Construcción, Modelamiento de procesos de construcción, Simulaciones Computacionales en construcción, Predicción Costo y cronograma, Construction Project, Model construction processes, Computer Simulations In construction, Prediction, Cost and schedule
File Description: 234 páginas; application/pdf
Relation: LaReferencia; Abdelgawad, M., & Fayek, A. (2010). Risk Management in the Construction Industry Using Combined Fuzzy FMEA and Fuzzy AHP. Journal of Construction Engineering and Management-Asce - J CONSTR ENG MANAGE-ASCE, 136. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000210; Abdelmegid, M., Gonzalez, V., Poshdar, M., O'Sullivan, M., Walker, C., Ying, F. (2020). Barriers to adopting simulation modelling in construction industry. Automation in Construction. 111. 103046. 10.1016/j.autcon.2019.103046.; Abdelouahed, S. M., Abla, R., Asmae, E., & Abdellah, A. (2024). Harnessing feature engineering to improve machine learning: A review of different data processing techniques. 2024 International Conference on Intelligent Systems and Computer Vision (ISCV), 1–6. https://doi.org/10.1109/ISCV60512.2024.10620105; Abdomerovic, M. (2022). Project Management Planning. In From Practice to Applied Research. Peter Lang Verlag. https://doi.org/10.3726/b19696; Abedjan, Z., Chu, X., Deng, D., Fernandez, R. C., Ilyas, I. F., Ouzzani, M., Papotti, P., Stonebraker, M., & Tang, N. (2016). Detecting data errors: where are we and what needs to be done? Proc. VLDB Endow., 9(12), 993–1004. https://doi.org/10.14778/2994509.2994518; Aboura, K., Kljajić, M., & Eskandarian, A. (2012). The need for simulation in complex industrial systems. Organizacija, 45. https://doi.org/10.2478/v10051-012-0022-4; AbouRizk, M. (2010). ‘Role of simulation in construction engineering and management’. In: Journal of Construction Engineering and Management 136.10, pp. 1140–1153.; Adekunle, S. A., Onatayo Damilola, A., Madubuike, O. C., Aigbavboa, C., & Ejohwomu, O. (2024). Machine Learning Algorithm Application in the Construction Industry – A Review. In S. Skatulla & H. Beushausen (Eds.), Advances in Information Technology in Civil and Building Engineering (pp. 263–271). Springer International Publishing.; Agarwal, A. L., & Mahajan, D. A. (2017). A Probability Analysis of Construction Project Schedule Using Risk Management Tool. MATTER: International Journal of Science and Technology, 3(1), 104 - 109.; Al-Baldawi Zainaband, A., & Hussein, I. (2021). Estimating the Optimum Completion Time of Project Using Binomial Distribution and Probabilistic PERT Network. In R.-X. and P. S. Peng Sheng-Lung and Hao (Ed.), Proceedings of First International Conference on Mathematical Modeling and Computational Science (pp. 627–637). Springer Singapore.; Albarello, N., & Welcomme, J.-B. (2012). A model-based method for the generation and optimization of complex systems architectures. 2012 IEEE International Systems Conference SysCon 2012, 1–6. https://doi.org/10.1109/SysCon.2012.6189456; Ali, A. (2024). The utilization of the discrete event simulation method in scheduling repetitive construction. IOP Conference Series: Earth and Environmental Science, 1355, 012015. https://doi.org/10.1088/1755-1315/1355/1/012015; Alzarrad, A. (2020). Fuzzy Monte Carlo Simulation to Optimize Resource Planning and Operations. https://doi.org/10.5772/intechopen.93632; Amirzehni, P., Samadianfard, S., Nazemi, A., & Sadraddini, A. (2023). Evaluating capabilities of the spline and cubic spline interpolation functions in reference evapotranspiration estimation implementing satellite image data. Earth Science Informatics, 16. https://doi.org/10.1007/s12145-023-01127-z; Ankarali, H., Pasin, Ö., Gönenç, S., & Al Mahmood, A. K. (2023). Interaction between numerical variables in regression model, and its graphical interpretation. Bangladesh Journal of Medical Science, 22(1), 189–194. https://doi.org/10.3329/bjms.v22i1.63078; Asfoor, H. M. A., AL-Jandeel, A. A. T., Igorevich, K. K., & Ivanovna, L. A. (2022). Control of Time, Cost and Quality of Construction Project Management. E3S Web Conf., 336. https://doi.org/10.1051/e3sconf/202233600072; Babar, S., Thaheem, MJ y Ayub, B. (2017). Costo estimado al finalizar: integración del riesgo en la gestión del valor ganado. Revista de Ingeniería y Gestión de la Construcción , 143 (3). https://doi.org/10.1061/(asce)co.1943-7862.0001245; Baghalzadeh Shishehgarkhaneh, M., Moehler, R. C., Fang, Y., Aboutorab, H., & Hijazi, A. A. (2024). Construction supply chain risk management. Automation in Construction, 162, 105396. https://doi.org/https://doi.org/10.1016/j.autcon.2024.105396; Ballard, G. (2000). Sistema de ejecución de proyectos ajustados (Revisión 1). http://www.leanconstruction.org/pdf/WP8-LPDS.pdf; Ballard, G. (2008). El sistema de ejecución de proyectos Lean: una actualización. www.leanconstructionjournal.org; Barbu, A., & Zhu, S.-C. (2020). Introduction to Monte Carlo Methods. In A. Barbu & S.-C. Zhu (Eds.), Monte Carlo Methods (pp. 1–17). Springer Singapore. https://doi.org/10.1007/978-981-13-2971-5_1; Bauce, G. (2007). El problema de investigación. Revista de La Facultad de Medicina, 30, 115–118.; Ben-Alon, L & Sacks R. (2017). ‘Simulating the behavior of trade crews in construction using agents and building information modeling’. In: Automation in Construction 74, pp. 12–27.; Berthold, M. R., Borgelt, C., Höppner, F., Klawonn, F., & Silipo, R. (2020). Deployment and Model Management. In M. R. Berthold, C. Borgelt, F. Höppner, F. Klawonn, & R. Silipo (Eds.), Guide to Intelligent Data Science: How to Intelligently Make Use of Real Data (pp. 319–328). Springer International Publishing. https://doi.org/10.1007/978-3-030-45574-3_10; Bhattacharya, S. P. (2023). The Fundamentals of Resource Optimization in Construction Projects. In V. J. (Ed.), Building Construction and Technology (pp. 139–156). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3526-0_10; Bhosale, T., Biradar, A., Bhat, K., Barhate, S., & Kotwal, J. (2023). Applied Deep Learning for Safety in Construction Industry. In I. J. Jacob, S. Kolandapalayam Shanmugam, & I. Izonin (Eds.), Data Intelligence and Cognitive Informatics (pp. 167–181). Springer Nature Singapore.; Bishop, C.M. (2006) Pattern Recognition and Machine Learning. Springer, Berlin. https://link.springer.com/book/9780387310732; Bokor, O., Florez-Perez, L., Osborne, A., Gledson, B. (2019). Overview of construction simulation approaches to model construction processes. Organization, Technology and Management in Construction: an International Journal. 11. 1853-1861. 10.2478/otmcj-2018-0018.; Botero, L. F. (2002). Análisis de Rendimientos y consumos de mano de obra en actividades de construcción. Revista Universidad EAFIT. https://doi.org/10.1080/17549507.2022.2055145; Brioso, X., Murguía, D., & Urbina, A. (2017). Comparación de tres métodos de programación utilizando modelos BIM en el sistema Last Planner. Organización, tecnología y gestión en la construcción: una revista internacional, 9 (1), 1604–1614. https://doi.org/10.1515/otmcj-2016-0024; Cabrera, A. G. (2010). Simulación de procesos constructivos. Revista Ingenieria de Construccion, 25(1), 121–141. https://doi.org/10.4067/s0718-50732010000100006; Camacol y Sena. (2015). Proyecto de investigación del sector de la construcción de edificación en Colombia .; Carvajal, H. (2013). EL DISEÑO DE EJECUCIÓN “Un planteamiento metodológico para la enseñanza de la planeación de obras a constructores, arquitectos e ingenieros civiles” (Primera edición). Universidad Nacional de Colombia - Sede Medellín.; Chiou, S. H., Xu, G., Yan, J., & Huang, C. Y. (2023). Regression Modeling for Recurrent Events Possibly with an Informative Terminal Event Using R Package reReg. Journal of Statistical Software, 105(5), 1–34. https://doi.org/10.18637/jss.v105.i05; CII. (2013a). Improving the Accuracy and Timeliness of Project Outcome Predictions.; CII. (2013 b). Cuatro lanzamientos para una previsibilidad temprana y precisa. Recurso de implementación 291-2 .; CIRIA. (2013). Implementación de Lean en la construcción: descripción general de las guías CIRIA y una breve introducción a Lean .; Codina, L. (2022). Revisiones de la literatura y cómo llevarlas a cabo con garantías: systematic reviews y SALSA Framework. https://www.lluiscodina.com/revision-sistematica-salsa-framework/; Cohen, S. (2021). Chapter 5 - Dealing with data: strategies of preprocessing data. In S. Cohen (Ed.), Artificial Intelligence and Deep Learning in Pathology (pp. 77–92). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-67538-3.00005-1; Contreras, J. (2013). Aplicación de la herramienta time-lapse para la identificación y reducción de pérdidas en edificaciones con estructura en concreto; Cooke-Davies, T. (2011). Aspectos de complejidad: Gestión de Proyectos en un mundo complejo (Primera). Instituto de manejo proyectos.; Corlatti, L. (2021). Regression Models, Fantastic Beasts, and Where to Find Them: A Simple Tutorial for Ecologists Using R. Bioinformatics and Biology Insights, 15. https://doi.org/10.1177/11779322211051522; Creswell, J. (2013). Qualitative Inquary & Research Design (V. Knight, Ed.; 3rd ed., Vol. 3). Sage.; Datta, S. D., Islam, M., Rahman Sobuz, Md. H., Ahmed, S., & Kar, M. (2024). Artificial intelligence and machine learning applications in the project lifecycle of the construction industry: A comprehensive review. Heliyon, 10(5). https://doi.org/10.1016/j.heliyon.2024.e26888; Dave, B., Koskela, L., & Kiviniemi, A. (2013). Implementing Lean in construction. Assets.Highways.Gov.Uk, 44+29-44+29. http://assets.highways.gov.uk/specialist-information/knowledge-compendium/2011-13-knowledge-programme/Lean and the Sustainability Agenda.pdf; Dayal, V. (2020). Graphs for Time Series. In V. Dayal (Ed.), Quantitative Economics with R: A Data Science Approach (pp. 259–271). Springer Singapore. https://doi.org/10.1007/978-981-15-2035-8_13; De Carvalho Servia, M. Á., & del Rio Chanona, E. A. (2023). Model Structure Identification. In D. Zhang & E. A. del Río Chanona (Eds.), Machine Learning and Hybrid Modelling for Reaction Engineering: Theory and Applications (Vol. 26, p. 0). Royal Society of Chemistry. https://doi.org/10.1039/BK9781837670178-00085; Denzin, N. K., & Lincoln, Y. S. (2005). The Sage handbook of qualitative Research; Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. North American Chapter of the Association for Computational Linguistics. https://api.semanticscholar.org/CorpusID:52967399; Diaz, M. (2019). MEDIDAS ESTADÌSTICAS BIVARIANTES. https://www.goconqr.com/mapamental/17124557/medidas-estadisticas-bivariantes; Duarte, N., & Pinilla, J. J. (2014). Razón de costo-efectividad de la implementación de la metodología BIM y la metodología tradicional en la planeación y control de un proyecto de construcción de vivienda en Colombia. Pontificia Universidad Javeriana; Echeverry, J., & Giraldo, M. (2012). Mejoramiento de Procesos Constructivos de una Edificación a Partir de Simulación Digital y Videos Time Lapse.; Elhilbawi, H., Eldawlatly, S., & Mahdi, H. (2021). The Importance of Discretization Methods in Machine Learning Applications: A Case Study of Predicting ICU Mortality. In A.-E. Hassanien, K.-C. Chang, & T. Mincong (Eds.), Advanced Machine Learning Technologies and Applications (pp. 214–224). Springer International Publishing.; Elsahly, O. M., Ahmed, S., & Abdelfatah, A. (2023). Systematic Review of the Time-Cost Optimization Models in Construction Management. In Sustainability (Switzerland) (Vol. 15, Issue 6). MDPI. https://doi.org/10.3390/su15065578; Ensign, P. C. (2009). Construction of Variables. In P. C. Ensign (Ed.), Knowledge Sharing among Scientists: Why Reputation Matters for R&D in Multinational Firms (pp. 63–93). Palgrave Macmillan US. https://doi.org/10.1057/9780230617131_4; Fadjar, A., Nirmalawati, N., & Hidayat, N. (2022). Estimating Project Completion Time with Monte Carlo Simulation. REKONSTRUKSI TADULAKO: Civil Engineering Journal on Research and Development, 3(2), 21–26. https://doi.org/10.22487/renstra.v3i2.448; Faraji, A., Rashidi, M., Perera, S., & Samali, B. (2022). Applicability-Compatibility Analysis of PMBOK Seventh Edition from the Perspective of the Construction Industry Distinctive Peculiarities. Buildings, 12(2). https://doi.org/10.3390/buildings12020210; Faraway, J. J. (2016). Does data splitting improve prediction? Statistics and Computing, 26(1), 49–60. https://doi.org/10.1007/s11222-014-9522-9; Fleming, Q. W., & Koppelman, J. M. (2016). Earned Value Project Management (Fourth Edition). Project Management Institute. https://books.google.com.co/books?id=yOSuDgAAQBAJ; Frącz, P., Dąbrowski, I., Wotzka, D., Zmarzły, D., & Mach, Ł. (2023). Identification of Differences in the Seasonality of the Developer and Individual Housing Market as a Basis for Its Sustainable Development. Buildings, 13(2). https://doi.org/10.3390/buildings13020316; Gaitán, J. & Gómez-Cabrera, A. (2014). Uso de la metodología BRIM (Bridge Information Modeling) como herramienta para la planificación de la construcción de un puente de concreto en Colombia. Ciencia e Ingeniería Neogranadina. 24. 145. 10.18359/rcin.398.; Gantt, HL (1910). Trabajo, salario y beneficio. Nuevo. En The Engineering Magacine (Ed.), Biblioteca de Gestión Industrial (Segunda Edi). http://www.nber.org/papers/w16019; Gell-Mann, M. (1995). El quark y el jaguar: Aventuras en lo simple y lo complejo (Tusquets, Ed.).; Geng, S. (2024). Analysis of the Different Statistical Metrics in Machine Learning. Highlights in Science, Engineering and Technology, 88, 350–356. https://doi.org/10.54097/jhq3tv19; Gerasymenko, V., Protsenko, О., Bielykh, I., & Tymchenko, I. (2023). Implementation of Artificial Neural Networks and Fuzzy Logic in Civil and Industrial Construction. https://doi.org/10.21203/rs.3.rs-3669381/v1; Ghosh, S., & Dasgupta, R. (2022). Model Selection for Machine Learning. In S. Ghosh & R. Dasgupta (Eds.), Machine Learning in Biological Sciences: Updates and Future Prospects (pp. 51–57). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-8881-2_5; Gómez-Cabrera, A. (2013). Implementación de metodologías BIM en el entorno Colombiano.; Gómez-Cabrera, A. Pulido, N. & Díaz, J. (2015). Simulación de eventos discretos y líneas de balance, aplicadas al mejoramiento del proceso constructivo de la cimentación de un edificio. Ingeniería y Ciencia. 11. 157-175. 10.17230/ingciencia.11.21.8.; González, Jaime & Suarez, Sandra.(2017).Evaluación de la influencia del pmi® sobre la triple restricción de un proyecto de consultoría de infraestructura: caso de estudio basado en diseños de obras civiles para servicio público domiciliario en Bogotá.; González-Cruz, M.-C., Ballesteros-Pérez, P., Lucko, G., & Zhang, J.-X. (2022). Critical Duration Index: Anticipating Project Delays from Deterministic Schedule Information. Journal of Construction Engineering and Management, 148(11), 4022121. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002387; Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. www.deeplearningbook.org; Government Accountability Office. (2015). Guía de evaluación de cronogramas: mejores prácticas para cronogramas de proyectos.; Granados, Alejandra & Ivonne, Perez.(2014).Simulación Para El Mejoramiento De La Logística De Materiales y Equipos En Un Proyecto De Edificación; Grau, D., Back, WE y Aguilar, GM (2013). Cuatro lanzamientos para una previsibilidad temprana y precisa. Recurso de implementación , 291–292.; Grau, D., y Back, NOSOTROS (2015). Índice de previsibilidad: métrica novedosa para evaluar el costo y el rendimiento del cronograma. Revista de Ingeniería y Gestión de la Construcción , 141 (12), 1–8. https://doi.org/10.1061/(asce)co.1943-7862.0000994; Gupta, M., Rajpoot, V., Chaturvedi, A., & Agrawal, R. (2022). A detailed Study of different Clustering Algorithms in Data Mining. 2022 2nd International Conference on Intelligent Technologies (CONIT), 1–6. https://doi.org/10.1109/CONIT55038.2022.9848233; Gupta, P., & Bagchi, A. (2024). Machine Learning. In P. Gupta & A. Bagchi (Eds.), Essentials of Python for Artificial Intelligence and Machine Learning (pp. 283–448). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-43725-0_8; Hamdan, Samer Bu et al. (2015). ‘A BIM-based simulation model for inventory management in panelized construction’. In: Proceedings of the International Symposium on Automation and Robotics in Construction. Vol. 32. IAARC Publications, p. 1.; Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics).; Heikki, Halttula., Harri, Haapasalo., Risto, Silvola. (2020). 3. Managing data flows in infrastructure projects: the lifecycle process model. Journal of Information; Hendradewa, A. (2019). Schedule Risk Analysis by Different Phases of Construction Project Using CPM-PERT and Monte-Carlo Simulation. IOP Conference Series: Materials Science and Engineering, 528, 012035. https://doi.org/10.1088/1757-899X/528/1/012035; Hermano, V., & Martín-Cruz, N. (2019). Expanding the Knowledge on Project Management Standards: A Look into the PMBOK® with Dynamic Lenses. 19–34. https://doi.org/10.1007/978-3-319-92273-7_2; Hernández R, Fernández C, Baptista P. Metodología de la Investigación. México: McGraw-Hill; 1998:9-13.; Hillson, D., & Simon, P. (2012). Practical project risk management : the ATOM methodology (Second edition). Management Concepts Press. http://site.ebrary.com/id/10850167; Ho, V. L., Ho, N., & Pedersen, T. B. (2023). Mining Seasonal Temporal Patterns in Time Series. 2023 IEEE 39th International Conference on Data Engineering (ICDE), 2249–2261. https://doi.org/10.1109/ICDE55515.2023.00174; Huang, L., Qin, J., Zhou, Y., Zhu, F., Liu, L., & Shao, L. (2023). Normalization Techniques in Training DNNs: Methodology, Analysis and Application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(8), 10173–10196. https://doi.org/10.1109/TPAMI.2023.3250241; Huang, Y., Shi, Q., Zuo, J., Pena-Mora, F., & Chen, J. (2021). Research Status and Challenges of Data-Driven Construction Project Management in the Big Data Context. In Advances in Civil Engineering (Vol. 2021). Hindawi Limited. https://doi.org/10.1155/2021/6674980; Huaping, X. (2024). Optimization Control of Construction Project Management Project Based on Deep Learning Algorithm. https://doi.org/10.1109/APCIT62007.2024.10673593; IBM. (2024). ¿Qué es la simulación Montecarlo? https://www.ibm.com/es-es/topics/monte-carlo-simulation; IBM. (nd). Sistema de estadísticas IBM SPSS . Recuperado el 11 de agosto de 2023 de https://www.ibm.com/docs/es/spss-statistics/saas?topic=regression-nonlinear; Industrial Conconcreto S.A.S. (2019). Declaración Ambiental de Producto ARENA, TRITURADO 1” Y 3/8”.; Izquierdo, Luis R.; Galán, José M.;Santos, José I.;del Olmo, Ricardo (2008). Modelado de sistemas complejos mediante simulación basada en agentes y mediante dinámica de sistemas; Jaafari, A., Pazhouhan, I. y Bettinger, P. (2021). Modelado de aprendizaje automático de los costos de construcción de caminos forestales. Bosques , 12 (9). https://doi.org/10.3390/f12091169; Jang, J.-S., Sun, C.-T., & Mizutani, E. (1997). In Neuro-Fuzzy and Soft Computing (Vol. 34).; Jie, D., & Wei, J. (2022). Estimating Construction Project Duration and Costs upon Completion Using Monte Carlo Simulations and Improved Earned Value Management. Buildings, 12(12). https://doi.org/10.3390/buildings12122173; Kadang, T., Hidayah, P. W., Simarmata, K., Putri, N. A., & Krisvinus, K. (2024a). Analysis of Consultant Building Project Management Using the CPM (Critical Path Method). Journal of Business Management and Economic Development, 2(03), 1169–1179. https://doi.org/10.59653/jbmed.v2i03.891; Kalita, J. K., Bhattacharyya, D. K., & Roy, S. (2024). 3 - Data preparation. In J. K. Kalita, D. K. Bhattacharyya, & S. Roy (Eds.), Fundamentals of Data Science (pp. 31–46). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-32-391778-0.00010-7; Kamandang, Z. R. (2023). Risk Assessment of Construction Project Scheduling. In B. S. and S. M. and S. A. Kristiawan Stefanus Adi and Gan (Ed.), Proceedings of the 5th International Conference on Rehabilitation and Maintenance in Civil Engineering (pp. 863–872). Springer Nature Singapore; Kedir, N., Siraj, N., & Fayek, A. R. (2023). Application of System Dynamics in Construction Engineering and Management: Content Analysis and Systematic Literature Review. Advances in Civil Engineering, 2023(1), 1058063. https://doi.org/https://doi.org/10.1155/2023/1058063; Kenley, R. y Seppänen, O. (2009). Gestión de proyectos de construcción basada en la ubicación: parte de una nueva tipología de metodologías de programación de proyectos. En actas - Conferencia de simulación de invierno . https://doi.org/10.1109/WSC.2009.5429669; Kerzner, H. (2022). Gestión de proyectos de innovación: métodos, estudios de casos y herramientas para la gestión de proyectos de innovación . Wiley. https://books.google.com.co/books?id=cWedEAAAQBAJ; Kerzner, H. R. (2013). Project management: a systems approach to planning, scheduling, and controlling. John Wiley & Sons.; Klir, G.J. and Yuan, B. (1995) Fuzzy Sets and Fuzzy Logic, Theory and Applications. Prentice Hall Inc., Upper Saddle River.; Kloppenborg, T. J., Anantatmula, V. S., & Wells, K. N. (2023). Contemporary Project Management: Organize, Lead, Plan, Perform. Cengage. https://books.google.com.co/books?id=XwU90AEACAAJ; Koren, M., Peretz, O., & Koren, O. (2023). Feature Engineering Procedure for Information Enrichment. 2023 International Conference on Advanced Enterprise Information System (AEIS), 28–34. https://doi.org/10.1109/AEIS61544.2023.00012; Koreshi, Z. U. (2022). Chapter 7 - The Monte Carlo method. In Z. U. Koreshi (Ed.), Nuclear Engineering Mathematical Modeling and Simulation (pp. 305–336). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-90618-0.00007-7; Koskela, L., Ferrantelli, A., Niiranen, J., Pikas, E. y Dave, B. (2019). Explicación epistemológica de la construcción Lean. Revista de Ingeniería y Gestión de la Construcción , 145 (2), 1–10. https://doi.org/10.1061/(asce)co.1943-7862.0001597; Koskela, LJ, Ballard, G. y Tommelein, I. (2002). Los fundamentos de la construcción lean . https://www.researchgate.net/publication/28578914; Kostrzewa-Demczuk, P. (2024). Construction Schedule versus Various Constraints and Risks. Applied Sciences, 14(1). https://doi.org/10.3390/app14010196; Koulinas, G. K., Sidas, K. A., & Koulouriotis, D. E. (2023). Project Makespan Prediction and Risk Analysis Using Simulation: Application in a Seawater Desalination Plant Construction Project. In N. F. Matsatsinis, F. C. Kitsios, M. A. Madas, & M. I. Kamariotou (Eds.), Operational Research in the Era of Digital Transformation and Business Analytics (pp. 149–157). Springer International Publishing.; Ladnykh, I. A., & Ibadov, N. (2024). Estimating the Duration of Construction Works Using Fuzzy Modeling to Assess the Impact of Risk Factors. Applied Sciences, 14(9). https://doi.org/10.3390/app14093847; Law, Averill M and W David Kelton (2000). Simulation modeling and analysis. Vol. 3. McGraw-Hill New York.; Liu, B. D., Yang, B., Han, Y., Xiao, J. Z., & Dong, M. S. (2023). Establishment and Application of Multi-agent Simulation System Based on On-Site Construction Performers. In G. Geng, X. Qian, L. H. Poh, & S. D. Pang (Eds.), Proceedings of The 17th East Asian-Pacific Conference on Structural Engineering and Construction, 2022 (pp. 284–304). Springer Nature Singapore.; Liu, M., Le, Y., Hu, Y., Xia, B., Skitmore, M., & Gao, X. (2019). System dynamics modeling for construction management research: critical review and future trends. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 25, 1–12. https://doi.org/10.3846/jcem.2019.10518; Liu, W., Meng, Q., Zhi, H., Li, Z., & Hu, X. (2024). A REVIEW OF AGENT-BASED MODELING IN CONSTRUCTION MANAGEMENT: AN ANALYTICAL FRAMEWORK BASED ON MULTIPLE OBJECTIVES. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 30, 200–219. https://doi.org/10.3846/jcem.2024.20949; Lukman, S., Nazaruddin, Y., ai, bo, He, R., & Joelianto, E. (2019). Estimation of Received Signal Power for 5G-Railway Communication Systems. https://doi.org/10.1109/ICEVT48285.2019.8994017; Madrakhimov, S., Makharov, K., & Lolaev, M. (2021). Data preprocessing on input. AIP Conference Proceedings, 2365(1), 030003. https://doi.org/10.1063/5.0058132; Mahesh Babu, P., Pedro, L., & GhaffarianHoseini, A. (2024). Construction projects: interactions of the causes of delays. Smart and Sustainable Built Environment. https://doi.org/10.1108/SASBE-11-2023-0334; Mansoor, A., Liu, S., Ali, G. M., Bouferguene, A., & Al-Hussein, M. (2022). Scientometric analysis and critical review on the application of deep learning in the construction industry. Canadian Journal of Civil Engineering, 50(4), 253–269. https://doi.org/10.1139/cjce-2022-0379; Marinelli, M., & Janardhanan, M. (2023). The Value Proposition of Machine Learning in Construction Management: Exploring the Trends in Construction 4.0 and Beyond (pp. 247–272). https://doi.org/10.4018/978-1-6684-5643-9.ch010; Marsh, ER (1975). El armograma de Carol Adamiecki. Revista de la Academia de Gestión , 18 (2), 358–364. https://doi.org/10.2307/255537; Mohagheghi, V., Mousavi, S. M., & Vahdani, B. (2017). Analyzing project cash flow by a new interval type-2 fuzzy model with an application to construction industry. Neural Computing and Applications, 28(11), 3393–3411. https://doi.org/10.1007/s00521-016-2235-6; Mohamed, HH, Ibrahim, AH y Soliman, AA (2021). Hacia la reducción del tiempo de entrega de proyectos de construcción con recursos limitados. Sostenibilidad (Suiza) , 13 (19), 1–17. https://doi.org/10.3390/su1; Morín, E. (1990). Introducción al Pensamiento Complejo (Gedisa, Ed.; 10ª, 2011ª ed.).; Mosquera, R., Parra Osorio, L., & Castrillón, O. (2016). Metodología para la Predicción del Grado de Riesgo Psicosocial en Docentes de Colegios Colombianos utilizando Técnicas de Minería de Datos. Información Tecnológica, 27, 259–272. https://doi.org/10.4067/S0718-07642016000600026; Mossman, A. (2020). Construction is Broken. In Lean construction blog (Issue 2003, pp. 1–18). https://leanconstructionblog.com/construction-is-broken.html; Mossman, A., Ballard, G., & Pasquire, & C. (2013). Lean Project Delivery - Innovation in Integrated Design & Delivery. The Design Manager’s Handbook, January, 165–190. https://doi.org/10.1002/9781118486184.app1; Mykytyuk, P., Brych, V., Manzhula, V., Borysiak, O., Sachenko, A., Banasik, A., Kempa, W. M., Mykytyuk, Y., Czupryna-Nowak, A., & Lebid, I. (2024). Efficient Management of Material Resources in Low-Carbon Construction. Energies, 17(3). https://doi.org/10.3390/en17030575; Nascimento, J., Silva, J., Cupertino Bernardes, R., Costa, G., & Emiliano, P. (2024). Statistical data transformation in agrarian sciences for variance analysis: a systematic review. F1000Research, 13, 459. https://doi.org/10.12688/f1000research.144805.2; Neethidevan, V., & Anand, S. (2022). Implementing and evaluating the performance of various Machine Learning algorithms with different datasets. International Journal of Health Sciences, 4684–4694. https://doi.org/10.53730/ijhs.v6nS1.5890; Ogunbayo, B. F., Ramabodu, M. S., Adewale, B. A., & Ogundipe, K. E. (2024). Strategies for Successful Monitoring and Evaluation Practices in Construction Projects. 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), 1–7. https://doi.org/10.1109/SEB4SDG60871.2024.10630137; Olivieri, H., Seppänen, O. y Denis Granja, A. (2018). Mejorar el flujo de trabajo y el uso de recursos en los cronogramas de construcción a través del sistema de gestión basado en la ubicación (LBMS). Gestión y economía de la construcción , 36 (2), 109–124. https://doi.org/10.1080/01446193.2017.1410561; Olubajo, O., Hughes, W., & Schweber, L. (2019). Construction Programmes and Programming: A Critical Review. In I. Lill & E. Witt (Eds.), 10th Nordic Conference on Construction Economics and Organization (Vol. 2, pp. 189–194). Emerald Publishing Limited. https://doi.org/10.1108/S2516-285320190000002045; Orozco, A. (2012). Estos nuevos escenarios teóricos, se plantearon variando la cantidad y tipos de recursos.; Ortiz-Pimiento, N. R. (2020). Modelo de solución al problema de programación de proyectos de desarrollo de nuevos productos con recursos restringidos, inserción de tareas y duración aleatoria Solution model to the resource constrained project scheduling problem RCPSP with insertion task and random duration.; Osorio-Sandoval, C. A. (2021). BIM-based construction simulation modelling.; Parhizkar, T. (2022). Simulation-based Probabilistic Risk Assessment.; Pascual, J. (2021, July 17). Regresión Logística para clasificadores de Machine Learning I: la curva de regresión logística. https://analisisyprogramacionoop.blogspot.com/2021/07/regresion-logistica-machine-learning.html; Paterson, SJC (2017). Desarrollo de un modelo de puntuación utilizando las mejores prácticas de evaluación de cronogramas de la GAO: vol. VI . www.pmworldlibrary.net; Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., & Louppe, G. (2012). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12.; Pellerin, R. y Perrier, N. (2019). Una revisión de métodos, técnicas y herramientas para la planificación y control de proyectos. Revista internacional de investigación de producción , 57 (7), 2160–2178. https://doi.org/10.1080/00207543.2018.1524168; Peña, D. (2001). «Deducción de distribuciones: el método de Monte Carlo», en Fundamentos de Estadística. Madrid: Alianza Editorial. ISBN 84-206-8696-4.; Perez-Cruz, F., Van Vaerenbergh, S., Murillo-Fuentes, J., Lázaro-Gredilla, M., & Santamaria, I. (2013). Gaussian Processes for Nonlinear Signal Processing: An Overview of Recent Advances. Signal Processing Magazine, IEEE, 30, 40–50. https://doi.org/10.1109/MSP.2013.2250352; Pilnik, N., Pospelov, I. G., & Stankevich, I. (2015). On the Use of Dummy Variables to Solve the Problem of Seasonality in General Equilibrium Models. HSE Economic Journal, 19, 249–270. https://api.semanticscholar.org/CorpusID:119708184; Plebankiewicz, E., Zima, K., & Wieczorek, D. (2021). Modelling of time, cost and risk of construction with using fuzzy logic. Journal of Civil Engineering and Management, 27, 412–426. https://doi.org/10.3846/jcem.2021.15255; PMI. (2016). Extensión de construcción de la guía PMBOK® (Inc. Project Management Institute, Ed.; 2ª ed.).; PMI. (2017). Guía de los fundamentos para la dirección de proyectos (Guía del PMBOK) (Inc. Project Management Institute, Ed.; Sexta Edic). Project Management Institute, Inc.; PMI. (2021). A guide to the project management body of knowledge (PMBOK guide) (Seventh ed). Project Management Institute.; Popîrlan, C., & Popîrlan, C.-I. (2023). New Techniques in Numerical Analysis for Artificial Intelligence. 2023 25th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 76–81. https://doi.org/10.1109/SYNASC61333.2023.00017; Portland Cement Association. (2014). Declaración Ambiental de Producto Cementos adicionados (según ASTM C595, ASTM C1157, AASHTOM240, o CSA A3001). www.astm.org; Poslavskaya, E., & Korolev, A. (2023). Encoding categorical data: Is there yet anything “hotter” than one-hot encoding? https://arxiv.org/abs/2312.16930; Rafieian, B., Hermosilla, P., & Vázquez, P.-P. (2023). Improving Dimensionality Reduction Projections for Data Visualization. Applied Sciences, 13(17). https://doi.org/10.3390/app13179967; Rahman, A. U., Alam, S. M., Dallasega, P., Marengo, E., & Nutt, W. (2020). Increasing Control in Construction Processes: The Role of Digitalization. Lecture Notes in Business Information Processing, 397(May), 263–275. https://doi.org/10.1007/978-3-030-66498-5_20; Rao, S., & Moon, K. (2021). Literature Search for Systematic Reviews. In S. Patole (Ed.), Principles and Practice of Systematic Reviews and Meta-Analysis (pp. 11–31). Springer International Publishing. https://doi.org/10.1007/978-3-030-71921-0_2; Ravitch, S., & Carl, N. M. (2016). Qualitative Research: Bridging the Conceptual, Theoretical, and Methodological. Thousand Oaks, CA: Sage Publications.; Remington, K., & Pollack, J. (2016). Tools for Complex Projects (Vol. 1). Routledge.; Restrepo, A. F., Rúa, C. A., & Arias, Y. P. (2024). OPTIMIZATION IN THE DESIGN OF CONCRETE MIXES FOR THE SUSTAINABILITY OF A SOUTH AMERICAN METROPOLITAN AREA BY IMPLEMENTING MATERIAL LIFE CYCLE ANALYSIS. Habitat Sustentable, 14(1), 44–65. https://doi.org/10.22320/07190700.2024.14.01.04; Rios Quiroz, M. F. (2018). Propuesta de mejora en la productividad de mano de obra y equipos del proceso ejecución de obra del área de operaciones en empresa especializada en construcciones civiles de instalación del servicio de agua en sistemas de irrigación. Universidad Peruana de Ciencias Aplicadas (UPC). http://hdl.handle.net/10757/622894; Rodríguez-Ponce, R. (2022). MAC-based Artificial Neural network for voice command recognition. Revista Del Diseño Innovativo, 19–25. https://doi.org/10.35429/JID.2022.15.6.19.25; Rojas, M. (2017).Guía de gestión de la calidad para los proyectos constructivos de la empresa Navarro y Avilés S.A.; Rúa Machado, C. A., Arboleda López, S. A., & Serna Machado, N. (2022). Pilotos para la transferencia de conocimiento entorno a la digitalización en la construcción en Medellín, Colombia. Revista M, 19. https://doi.org/10.15332/rev.m.v19i1.2833; Rúa-Machado, C. A. (2022). Gestión de la construcción para una era digital. Tecnología, transformación y cooperación como retos del ejercicio pedagógico en la gestión del diseño y la construcción de edificios. In Universidad Nacional de Colombia Sede Medellín (Ed.), Construcción Temas y reflexiones (pp. 121–155). Facultad de Arquitectura.; Rudeli, N. (2019). Proyectos de construcción: determinación de causas principales de retraso y desarrollo de modelos estadísticos para la mejora.; Rudeli, N., Santilli, A., Puente, I., & Viles, E. (2017). Statistical Model for Schedule Prediction: Validation in a Housing-Cooperative Construction Database. Journal of Construction Engineering and Management, 143(11). https://doi.org/10.1061/(asce)co.1943-7862.0001396; Rudeli, N., Viles, E. y Santilli, A. (2018). Una herramienta de gestión de la construcción: determinación de los comportamientos típicos del cronograma de un proyecto mediante el análisis de conglomerados. Academia Mundial de Ciencia, Ingeniería y Tecnología Revista Internacional de Ingeniería Civil y Ambiental Vol:12, No:5, 2018 , 12 (5), 485–492. https://doi.org/10.1999/1307-6892/10008879; Rudeli, Natalia. (2019). Proyectos de construcción: determinación de causas principales de retraso y desarrollo de modelos estadísticos para la mejora.; Russell, S.J. and Norvig, P. (2016) Artificial Intelligence: A Modern Approach. Pearson Education Limited, Malaysia.; Sawhney, A., Reley, M. e Irizarry, J. (2020). Construcción 4.0. Una plataforma de innovación para el entorno construido. En Routledge . Routledge es una marca de Taylor & Francis Group, una empresa informa ©.; Senses, S., & Kumral, M. (2024). Trade-off between time and cost in project planning: a simulation-based optimization approach. SIMULATION, 100(2), 127–143. https://doi.org/10.1177/00375497231196889; S. y McCarthy, D. (2019). Causas de retrasos y herramientas digitales emergentes: un modelo novedoso de análisis de retrasos, que incluye la entrega integrada de proyectos y el PMBOK. En edificios (Vol. 9, Número 9). https://doi.org/10.3390/buildings9090191; Serna-Gutiérrez, E. (2023). Propuesta metodológica para la planificación y control de proyectos de construcción basada en un complemento informático. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/84031; Shubham, S., Saloni, S., & Sidra-Tul-Muntaha. (2023). Optimizing construction processes and improving building performance through data engineering and computation. World Journal of Advanced Research and Reviews, 18, 390–398. https://doi.org/10.30574/wjarr.2023.18.1.0614; Singh, U. P. (2023). Decision Making and Predictive Analysis for Real Time Data. In Advances in Data Science and Analytics (pp. 21–38). https://doi.org/https://doi.org/10.1002/9781119792826.ch2; Sreram, P. K., & Thomas, A. (2023). A Value Stream Mapping-Based Discrete Event Simulation Template For Lean Off-Site Construction Activities. 2023 Winter Simulation Conference (WSC), 2768–2776. https://doi.org/10.1109/WSC60868.2023.10407723; Stake, R. (1999). Investigación con estudios de caso. In Mejía Lequerica (Ed.), Investigacion con estudios de casos (Ediciones Morata, Vol. 2). Sage Publication. https://www.redalyc.org/pdf/2810/281021548015.pdf; Surya-Prakash, S., Joseph, S. M., Kishore, D., & Yamini-Devi, Y. (2023). Stochastic Computing Solutions Challenges and Application. Advances in Transdisciplinary Engineering, 32, 71–77. https://doi.org/10.3233/ATDE221239; Szeliski, R. (2010) Computer Vision: Algorithms and Applications. Springer, London, UK.; SZÓSTAK, M. (2023). Forecasting the Course of Cumulative Cost Curves for Different Construction Projects. Civil and Environmental Engineering Reports, 33(1), 71–89. https://doi.org/10.59440/ceer-2023-0005; Taghaddos, Hosein (2010). ‘Developing a generic resource allocation framework for construction simulation’. Doctoral dissertation. University of Alberta.; Tan, J., Yang, J., Wu, S., Chen, G., & Zhao, J. (2021). A critical look at the current train/test split in machine learning. https://doi.org/10.48550/arXiv.2106.04525; Templ, M. (2023). Enhancing Precision in Large-Scale Data Analysis: An Innovative Robust Imputation Algorithm for Managing Outliers and Missing Values. Mathematics, 11(12). https://doi.org/10.3390/math11122729; Theingi Aung, Liana, SR, Htet, A. y Amiya Bhaumik. (2023). Uso del aprendizaje automático para predecir sobrecostos en proyectos de construcción. Revista de Innovación Tecnológica y Energía , 2 (2), 1–7. https://doi.org/10.56556/jtie.v2i2.511; Tsegaye, M. (2019). Procedimiento Eficiente para la Programación de Proyectos de Construcción en la Fase de Planificación. Revista Báltica de Economía Inmobiliaria y Gestión de la Construcción , 7 , 60–80. https://doi.org/10.2478/bjreecm-2019-0004; Vanhoucke, M. (2012). Gestión de proyectos con programación dinámica (págs. 11 a 35). https://doi.org/10.1007/978-3-642-25175-7_2; Vanhoucke, M. (2013). Gestión de proyectos con programación dinámica. En Gestión de Proyectos con Programación Dinámica . https://doi.org/10.1007/978-3-642-40438-2; Velandia, J. (2022). Estudio de rendimientos y consumos de la mano de obra en actividades de cimentación en la construcción de vivienda unifamiliar en el municipio de Tame, departamento de Arauca. Universidad Nacional de Colombia.; Velásquez, J. D. (2015). Una guía corta para escribir revisiones sistemáticas de literatura parte 3. DYNA (Colombia), 82(189), 9–12. https://doi.org/10.15446/dyna.v82n189.48931; Venkatesh, K. A., Mishra, D., & Manimozhi, T. (2023). 9 - Model selection and regularization. In T. Goswami & G. R. Sinha (Eds.), Statistical Modeling in Machine Learning (pp. 159–178). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-91776-6.24001-3; Wang, Shihyi & Halpin, Daniel. (2005). Simulation experiment for improving construction processes. Proceedings - Winter Simulation Conference. 2. 1252- 1259 vol.2. 10.1109/WSC.2004.1371457.; WEF, Rodríguez de Almeida, P., Solas, M., Renz, A., Bühler, MM, Gerbert, P., Castagnino, S. y Rothballer, C. (2016). Dar forma al futuro de la construcción: un gran avance en la mentalidad y la tecnología (Foro Económico Mundial). https://doi.org/10.13140/RG.2.2.21381.37605; WEF. (2016). Construction A Breakthrough in Mindset and Technology. In World Economic Forum (WEF) (Issue May). https://www.bcgperspectives.com/Images/Shaping_the_Future_of_Construction_may_2016.pdf; WEF. (2020). El Informe Global de Riesgos 2020 . www.weforum.org; Wesz, J. G. B., Formoso, C. T., & Tzortzopoulos, P. (2018). Planning and controlling design in engineered-to-order prefabricated building systems. Engineering, Construction and Architectural Management, 25(2), 134–152. https://doi.org/10.1108/ECAM-02-2016-0045; White, R. W., & Hassan Awadallah, A. (2019). Task Duration Estimation. Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, 636–644. https://doi.org/10.1145/3289600.3290997; Whiting, N. W., Roy, C. J., Duque, E., Lawrence, S., & Oberkampf, W. L. (2023). Assessment of Model Validation, Calibration, and Prediction Approaches in the Presence of Uncertainty. Journal of Verification, Validation and Uncertainty Quantification, 8(1). https://doi.org/10.1115/1.4056285; Witteman, H P J (1997). Styles of Learning and Regulation in an Interactive Learning Group System, Nijgh & Van Ditmar; Wu, CL y Chau, KW (2013). Predicción de series temporales de precipitaciones mediante métodos modulares de computación blanda. Aplicaciones de ingeniería de la inteligencia artificial , 26 (3), 1–20.; Wu, L., AbouRizk, S., & Li, K. (2022). System Dynamics Modeling of the Construction Supply Chain in Industrial Modularized Construction Projects. 2022 Winter Simulation Conference (WSC), 2409–2420. https://doi.org/10.1109/WSC57314.2022.10015329; Xing-xia, W., & Jian-wen, H. (2009). Risk Analysis of Construction Schedule Based on Monte Carlo Simulation. https://doi.org/10.1109/CNMT.2009.5374816; Yahaya, B. H., Ahmed, A. A., & Anikajogun, B. O. (2023). Economic Sustainability of Building and Construction Projects Based on Artificial Intelligence Techniques. The Asian Review of Civil Engineering, 12(1), 34–40. https://doi.org/10.51983/tarce-2023.12.1.3677; Yazıcıoğlu, E. y Kanoglu, A. (2022). Un modelo de adquisición de proyectos que permite la competencia por concepto de diseño mediante la integración de herramientas de evaluación basada en el desempeño (PBA), estimación basada en procesos (PBE) y modelado de redes de costos (CNM) . 12 , 65–92. https://doi.org/10.14424/ijcscm120222-65-92; Yin, M., Iannelli, A., & Smith, R. S. (2022). Data-Driven Prediction with Stochastic Data: Confidence Regions and Minimum Mean-Squared Error Estimates. 2022 European Control Conference (ECC), 853–858. https://doi.org/10.23919/ECC55457.2022.9838046; Yu, X., & Zuo, H. (2022). Intelligent Construction Optimization Control of Construction Project Schedule Based on the Fuzzy Logic Neural Network Algorithm. Mathematical Problems in Engineering, 2022, 1–11. https://doi.org/10.1155/2022/8111504; Yudistira, A., Nariswari, R., Arifin, S., Abdillah, A. A., Prasetyo, P., & Susyanto, N. (2024). Program Evaluation and Review Technique (PERT) Analysis to Predict Completion Time and Project Risk Using Discrete Event System Simulation Method. CommIT (Communication and Information Technology) Journal, 18, 67–76. https://doi.org/10.21512/commit.v18i1.8495; Zadeh, L.A. (1965) Fuzzy Sets. Information Control, 8, 338-353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X; Zargar, S. H., Sadeghi, J., & Brown, N. C. (2022). Agent-based modelling for early-stage optimization of spatial structures. International Journal of Architectural Computing, 21(1), 84–99. https://doi.org/10.1177/14780771221143493; Zeng, Z., & Gao, Y. (2024). Cost Control Management of Construction Projects Based on Fuzzy Logic and Auction Theory. IEEE Access, PP, 1. https://doi.org/10.1109/ACCESS.2024.3438291; Zhang, H. (2015). Discrete-Event Simulation for Estimating Emissions from Construction Processes. Journal of Management in Engineering, 31, 04014034. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000236; Zhang, Q. (2024). Building Engineering Cost Prediction Based On Deep Learning: Model Construction and Real - Time Optimization. Journal of Electrical Systems, 20, 151–164. https://doi.org/10.52783/jes.1887; Zhang, S., & Li, X. (2022). A comparative study of machine learning regression models for predicting construction duration. Journal of Asian Architecture and Building Engineering, 1–17. https://doi.org/10.1080/13467581.2023.2278887; Zhou, S., & Chen, Y. (2022). Explaining Covariance Structure: Principal Components. In Industrial Data Analytics for Diagnosis and Prognosis (pp. 61–80). John Wiley & Sons, Ltd. https://doi.org/https://doi.org/10.1002/9781119666271.ch4; Zhou, Y., Wang, X., Gosling, J., & Naim, M. (2023). The System Dynamics of Engineer-to-Order Construction Projects: Past, Present, and Future. Journal of Construction Engineering and Management, 149. https://doi.org/10.1061/JCEMD4.COENG-12926; Zowghi, M., Haghighi, M. y Zohouri, B. (2011). Enfoque de control de costos y cronogramas en un entorno difuso. Editor de la Academia de Ciencias Revista internacional de investigación y reseñas en ciencias de la información , 1 , 2046–6439.; Галина, Р., Honcharenko, T., Predun, K., Petrukha, N., Malykhina, O., & Khomenko, O. (2023). Using of Fuzzy Logic for Risk Assessment of Construction Enterprise Management System. https://doi.org/10.1109/SIST58284.2023.10223560; https://repositorio.unal.edu.co/handle/unal/88154; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
6
Authors: et al.
Contributors: et al.
Subject Terms: Redes neuronales convolucionales, Termodinámica, Diseño de prótesis, Diseño de prototipos, Algoritmos, Generadores eléctricos, Tendencias tecnológicas, Bioingeniería, Bioingeniería -- Congresos, conferencias, etc. -- Memorias, Energía -- Congresos, Sistemas de control inteligente -- Congresos, Procesamiento de señales -- Congresos, Automatización -- Congresos, etc. -- Memoria, Desarrollo de prototipos -- Congresos, Ingeniería biomédica -- Congresos, Redes eléctricas -- Congresos, Tecnologías de la información y de la comunicación -- Congresos, Procesamiento digital de imágenes -- Congresos, Redes neuronales (Computadores) -- Congresos, Nanotecnología -- Congresos, Telecomunicaciones -- Congresos, Convolutional Neural Networks, Thermodynamics, Prosthesis design
File Description: pdf; application/pdf
Relation: L. Coffey, P. Gallager, O. Horgan, D. Desmond, and M. MacLachlan. “Psychosocial adjustment to diabetes‐related lower limb amputation”. Oxford, Diabetic Medicine, 2009, pp.1063–1067.; DANE. “Censo de Población y Viviendas 2018”. Bogotá, D.C, Departamento Administrativo Nacional de Estadística, 2018.; D. Silverthorn, “Fisiología humana: un enfoque integrado” , 4ta ed, reimp- Bogotá - Panamericána, 2009.; K.J. Zuo, and J. L. Olson. “The evolution of functional hand replacement”: From iron prostheses to hand transplantation. Plastic Surgery, 22(1), 44-51, 2014.; D. Foord. “CHANGES IN TECHNOLOGIES AND MEANINGS OF UPPER LIMB PROSTHETICS: PART I-FROM ANCIENT EGYPT TO EARLY MODERN EUROPE”. In MEC Symposium Conference, July 2020.; K. Ashmore, S. Cialdella, A. Giuffrida, E. Kon, M. Marcacci, and B. Di Matteo. “ArtiFacts: Gottfried “Götz” von Berlichingen—The “Iron Hand” of the Renaissance”. Clinical Orthopaedics and Related Research®, 477(9), 2002-2004, 2019.; K. Moore, and A. Dalley. “Clinically oriented anatomy”. 7ª ed, UK, Wolters Klawer, 2013.; Àngels. (2017, Jan 16). “Cómo se llaman los huesos de la mano” [Online]. Available at:https://www.mundodeportivo.com/uncomo/educacion/articulo/como-se-llaman-los-huesos-de-la-mano-40009.html.; B. Maat, G. Smit, D. Plettenburg, and P. Breedveld. “Passive prosthetic hands and tools: A literature review”. Prosthetics and orthotics international, 42(1), 66-74, 2018.; A. Chadwell, L. Kenney, S. Thies, A. Galpin, and J. Head. “The reality of myoelectric prostheses: understanding what makes these devices difficult for some users to control”. Frontiers in neurorobotics, 10, 7, 2016.; T. Fujimaki et al., “Prevalence of floating toe and its relationship with static postural stability in children: The Yamanashi adjunct study of the Japan Environment and Children’s Study (JECS-Y),” PLoS One, vol. 16, no. 3 March, pp. 1–8, 2021, doi:10.1371/journal.pone.0246010.; L. A. Luengas-C, D. C. Toloza, and L. F. Wanumen, “Utilización de la Teoría de la Información para evaluar el comportamiento de la estabilidad estática en amputaciones transtibiales,” RISTI - Rev. Ibérica Sist. e Tecnol. Informação, vol. 40, no. 12, pp. 15–30, 2020, doi:10.17013/risti.40.15–30.; B. Olsen et al., “The Relationship Between Hip Strength and Postural Stability in Collegiate Athletes Who Participate in Lower Extremity Dominant Sports,” Int. J. Sports Phys. Ther., vol. 16, no. 1, pp. 64–71, 2021, doi:10.26603/001c.18817.; L. A. Luengas C. and D. C. Toloza, Análisis de estabilidad en amputados transtibiales unilaterales. Bogota: UD Editorial, 2019.; M. F. Peydro de Moya, J. M. Baydal, and M. J. Vivas, “Evaluación y rehabilitación del equilibrio mediante posturografía,” Rehabilitación, vol. 39, no. 6, pp. 315–323, 2005.; L. A. Luengas-C, J. López, and G. Sánchez Prieto, “Comportamiento de rangos articulares con alineación en amputados transtibiales,” Visión Electrónica Más que un estado sólido, vol. 1, no. 1, pp. 48–52, 2018.; A. Ruhe, R. Fejer, and B. Walker, “The test-retest reliability of centre of pressure measures in bipedal static task conditions - A systematic review of the literature,” Gait and Posture, vol. 32, no. 4. pp. 436–445, Oct. 2010, doi:10.1016/j.gaitpost.2010.09.012.; P. Schubert, M. Kirchner, S. Dietmar, and C. T. Haas, “About the structure of posturography: Sampling duration, parametrization, focus of attention (part I),” J. Biomed. Sci. Eng., vol. 5, pp. 496–507, 2012, doi: http://dx.doi.org/10.4236/jbise.2012.59062.; F. Martínez-Solís et al., “Algorithm to estimate the knee angle in normal gait: trajectory generation approach to intelligent transfemoral prosthesis,” Rev. Mex. Ing. Biomédica, vol. 37, no. 3, pp. 221–233, Sep. 2016, doi:10.17488/RMIB.37.3.7.; S. A. Ahmadi et al., “Towards computerized diagnosis of neurological stance disorders: data mining and machine learning of posturography and sway,” J. Neurol., vol. 266, no. s1, pp. 108–117, 2019, doi:10.1007/s00415-019-09458-y.; L. A. Luengas-C, “Computational Method to Verify Static Alignment of Transtibial Prosthesis,” Biomed. J. Sci. Tech. Res., vol. 31, no. 2, Oct. 2020, doi:10.26717/bjstr.2020.31.005074.; J. R. Chagdes, S. Rietdyk, M. H. Jeffrey, N. Z. Howard, and A. Raman, “Dynamic stability of a human standing on a balance board,” J. Biomech., vol. 46, no. 15, 2013, doi:10.1016/j.jbiomech.2013.08.012.; L. A. Luengas-C. and D. C. Toloza, “Frequency and Spectral Power Density Analysis of the Stability of Amputees Subjects,” TecnoLógicas, vol. 23, no. 48, pp. 1–16, 2020, doi: https://doi.org/10.22430/22565337.1453.; L. Verdichio, “Equilibrio y dominancia,” Universidad FASTA, 2016.; J. C. Segovia Martínez and J. C. Legido Arce, “Valores podoestabilométricos en la población deportiva infantil,” UNIVERSIDAD COMPLUTENSE DE MADRID, 2009.; B. Ristevski and M. Chen, “Big Data Analytics in Medicine and Healthcare,” J. Integr. Bioinform., vol. 15, no. 3, pp. 1–5, 2018, doi:10.1515/jib-2017-0030.; P. Schubert and M. Kirchner, “Ellipse area calculations and their applicability in posturography,” Gait Posture, vol. 39, no. 1, pp. 518–522, 2014, doi:10.1016/j.gaitpost.2013.09.001.; M. Duarte and S. M. Freitas, “Revision of posturography based on force plate for balance evaluation,” Rev. Bras. Fisioter., vol. 14, no. 3, pp. 183–192, 2010, doi: S1413-35552010000300003 [pii].; M. Duarte, “Comments on ‘ellipse area calculations and their applicability in posturography’ (schubert and kirchner, vol.39, pages 518-522, 2014),” Gait Posture, vol. 41, no. 1, pp. 44–45, 2015, doi:10.1016/j.gaitpost.2014.08.008.; M. Gómez, J. Serna, and L. Vélez, “Diagnosis of bearing with mechanical vibrations and virtual instruments,” Visión Electrónica Más que un estado sólido, vol. 8, no. 2, pp. 107–113, 2014.; Novel.de, “The pedar® system,” Novel GmbH, 2019. http://www.novel.de/novelcontent/pedar (accessed May 11, 2014).; D. A. Winter, Biomechanics and motor control of human movement, 4th ed. New Jersey: John Wiley & sons, Inc, 2009.; A. Bottaro, M. Casadio, P. G. Morasso, and V. Sanguineti, “Body sway during quiet standing: Is it the residual chattering of an intermittent stabilization process?,” in Human Movement Science, 2005, vol. 24, no. 4, pp. 588–615, doi:10.1016/j.humov.2005.07.006.; R. T. Disler et al., “Factors impairing the postural balance in COPD patients and its influence upon activities of daily living,” Eur. Respir. J., vol. 15, no. 1, 2019.; Bomberos Colombia. (2016). Guía para Certificar Equipos de Búsqueda y Rescate Urbano en los Cuerpos de Bomberos de Colombia. Disponible en: https://bomberos.mininterior.gov.co/sites/default/files/guia_final_bomberos_colombia_2017_.pdf.; Brigham and Women’s Hospital. (2019). Signos vitales (temperatura corporal, pulso, frecuencia respiratoria y presión arterial). Disponible en: https://healthlibrary.brighamandwomens.org/spanish/diseasesconditions/adult/NonTraumatic/85,P03963.; Catalogo de la Salud. (s.f). Monitoreo de signos vitales. Disponible en: https://www.catalogodelasalud.com/ficha-producto/Monitores-de-pacientes+102363.; CNN. (2012). Un dispositivo inalámbrico para monitorear signos vitales. Disponible en: https://cnnespanol.cnn.com/2012/05/25/un-dispositivo-inalambrico-para-monitorear-signos-vitales/.; OMS. (s.f). Terremotos. Disponible en: https://www.who.int/hac/techguidance/ems/earthquakes/es/.; OMS. (2017). 10 datos sobre la seguridad vial en el mundo – Organización Mundial de la Salud (OMS). Disponible en: https://www.who.int/features/factfiles/roadsafety/es/.; Ramírez López, L. J., Marín López, A. F., & Cifuentes Sanabria, Y. P. (2015). Aplicación de la biotelemetría para tres signos vitales. Ciencia Y Poder Aéreo, 10(1), 179-186. https://doi.org/10.18667/cienciaypoderaereo.428.; Rosenberg D. (2009). ICONIX Process for Embedded Systems - A roadmap for embedded system development using SysML. Tomado de: https://community.sparxsystems.com/white-papers/616-88iconix-process-for-embedded-systems-a-roadmap-for-embedded-system-development-using-sysml.; Salazar-Arbelaez, Gabriel. (2018). Terremotos y salud: lecciones y recomendaciones. Salud Pública de México, 60(Supl. 1), 6-15. https://doi.org/10.21149/9445.; SUMMA 112. (s.f). Módulo 7 Actuación ante Accidentes con Múltiples Víctimas y Catástrofes. Incidentes NBQR. Rescate sanitario. Manuel de enfermería. Disponible en: http://www.madrid.org/cs/Satellite?blobcol=urldata&blobheader=application%2Fpdf&blobheadername1=Content-Disposition&blobheadervalue1=filename%3DModulo+7.pdf&blobkey=id&blobtable=MungoBlobs&blobwhere=1352868957600&ssbinary=true.; Tecnológico de Monterrey. (2011). Sistema para la visualización de signos vitales con dispositivos móviles utilizando tecnología Bluetooth. Disponible en: https://repositorio.tec.mx/bitstream/handle/11285/632321/33068001111800.pdf?sequence=1&isAllowed=y.; UdeA. (2016). Monitor de signos vitales vestible. UdeA – Universidad de Antioquía, Medellín, Colombia. Disponible en: http://www.udea.edu.co/wps/portal/udea/web/inicio/extension/portafoliotecnologico/articulos/Monitor_de_signos_vitales_vestible.; Udistrital. (2018). Monitoreo remoto de signos corporales y transmisión de datos y alertas a una aplicación instalada en un smartphone. Udistrital – Universidad Distrital Francisco José de Caldas. Disponible en: https://repository.udistrital.edu.co/bitstream/handle/11349/13383/SarmientoG%C3%B3mezOscar2018.pdf?sequence=2&isAllowed=y.; Volcano Discovery. (2021). Informe de terremotos en todo el mundo por enero 2021. Disponible en: https://www.volcanodiscovery.com/es/earthquakes/monthly/news/118160/Informe-de-terremotos-en-todo-el-mundo-por-enero-2021.html.; A. F. Calvo Salcedo, A. Bejarano Martínez, y A. Castillo González, “Diseño prototipo de una red de sensores inalámbricos", Visión Electrónica, vol. 12, no. 1, pp. 43-50, 2018. https://doi.org/10.14483/22484728.13405.; E. Y. Rodríguez, L. F. Pedraza Martínez, y D. A. López Sarmiento, “Desarrollo y evaluación de un sistema de comunicación remota para el monitoreo de una máquina sopladora de botellas", Visión Electrónica, vol. 5, no. 1, pp. 89-102, 2011. https://doi.org/10.14483/22484728.3517.; T. Salamanca, “Prototipo para monitorización de signos vitales en espacios confinados", Visión Electrónica, vol. 12, no. 1, pp. 83-88, 2018. https://doi.org/10.14483/22484728.13401 [18] Volcano Discovery. (2021). Informe de terremotos en todo el mundo por enero 2021. Disponible en: https://www.volcanodiscovery.com/es/earthquakes/monthly/news/118160/Informe-de-terremotos-en-todo-el-mundo-por-enero-2021.html.; W. Enríquez, P. Nazate, y O. Marcillo, “Prototipo DAS basado en FPGA de 12 canales para monitoreo geodinámico", Visión Electrónica, vol. 12, no. 1, pp. 73-82, 2018. https://doi.org/10.14483/22484728.13782.; Y. Baquero, Z. Alezones Campos, y H. Borrero Guerrero, “Robot móvil controlado por comandos de voz LPC-DTW”, Visión Electrónica, vol. 5, no. 1, pp. 15-25, 2011. https://doi.org/10.14483/22484728.3524.; Cardona, O. (2007). La gestión del riesgo colectivo. Un marco conceptual que encuentra sustento en una ciudad laboratorio. Red de Estudios Sociales en Prevención de Desastres en América Latina.; Cardona, O. D., García, A. C., Mattingly, S., Trujillo, E. G. C., & Vega, D. F. P. (2003). Plan de emergencias de Manizales. Alcaldía de Manizales–Oficina Municipal para la Prevención y Atención de Desastres-OMPAD. Manizales.; Castro, F.D. (2008). Metodología de projeto centrada na casa da qualidade. Tesis de maestría, universidade federal rio grande do sul, Porto Alegre, Brasil.; Chowdhury, T. J., Elkin, C., Devabhaktuni, V., Rawat, D. B., & Oluoch, J. (2016). Advances on localization techniques for wireless sensor networks: A survey. Computer Networks, 110, 284-305.; Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., & Mankodiya, K. (2017). Towards fog-driven IoT eHealth: promises and challenges of IoT in medicine and healthcare. Future Generation Computer Systems.; García, A. M., & Castaño Dávila, A. C. (2013). SIG de deslizamientos para el departamento de Caldas.; Keipi, K., Mora-Castro, S., & Bastidas, P. (2005). Gestión de riesgo de amenazas naturales en proyectos de desarrollo: Lista de preguntas de verificación (" Checklist"). Inter-American Development Bank.; Kim, T., Ramos, C., & Mohammed, S. (2017). Smart City and IoT. Elsevier.; Lavell, A. (2001). Sobre la gestión del riesgo: apuntes hacia una definición. Biblioteca Virtual en Salud de Desastres-OPS. Consultado el, 4.; Liu, L., Guo, C., Li, J., Xu, H., Zhang, J., & Wang, B. (2016). Simultaneous life detection and localization using a wideband chaotic signal with an embedded tone. Sensors, 16(11), 1866.; Lomotey, R. K., Pry, J., & Sriramoju, S. (2017). Wearable IoT data stream traceability in a distributed health information system. Pervasive and Mobile Computing.; Morral, G., & Bianchi, P. (2016). Distributed on-line multidimensional scaling for self-localization in wireless sensor networks. Signal Processing, 120, 88-98.; Novák, D., Švecová, M., & Kocur, D. (2017). Multiple Person Localization Based on Their Vital Sign Detection Using UWB Sensor. In Microwave Systems and Applications. InTech.; Pahl, G., & Beitz, W. (2013). Engineering design: a systematic approach. Springer Science & Business Media.; Rising, L., & Janoff, N. S. (2000). The Scrum software development process for small teams. IEEE software, (4), 26-32.; Schwaber, K., & Sutherland, J. (2013). The definitive guide to Scrum: The rules of the game. online], Scrum. org, http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf. [Visitada en agosto de 2015].; Shalloway A, Bain S, Pugh K and Kolsky A. 2011. Essential Skills for the agile developer. A guide to better programming and desing. Ed. Addison-Wesley.; UNGRD (2017). Boletín de prensa 131, Unidad atención de riesgos y desastres. Tras avalancha en manizales, continúan los trabajos de recuperación.; J. Hartvigsen et al., “What low back pain is and why we need to pay attention,” Lancet, vol. 391, no. 10137, pp. 2356–2367, 2018, doi:10.1016/S0140-6736(18)30480-X.; A. Cieza, K. Causey, K. Kamenov, S. W. Hanson, S. Chatterji, and T. Vos, “Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019,” Lancet, vol. 396, no. 10267, pp. 2006–2017, 2020, doi:10.1016/S0140-6736(20)32340-0.; A. M. Briggs et al., “Musculoskeletal Health Conditions Represent a Global Threat to Healthy Aging: A Report for the 2015 World Health Organization World Report on Ageing and Health,” Gerontologist, vol. 56, pp. S243–S255, 2016, doi:10.1093/geront/gnw002.; (OMS) Organizacion Mundial de la Salud, “Rehabilitación,” 2020. https://www.who.int/es/news-room/fact-sheets/detail/rehabilitation.; (OMS) Organizacion Mundial de la Salud, “Rehabilitation 2030 Initiative.” https://www.who.int/initiatives/rehabilitation-2030.; F. A. Abdulla, S. Alsaadi, M. I. R. Sadat-Ali, F. Alkhamis, H. Alkawaja, and S. Lo, “Effects of pulsed low-frequency magnetic field therapy on pain intensity in patients with musculoskeletal chronic low back pain: Study protocol for a randomised double-blind placebo-controlled trial,” BMJ Open, vol. 9, no. 6, pp. 1–9, 2019, doi:10.1136/bmjopen-2018-024650.; H. Hu et al., “Promising application of Pulsed Electromagnetic Fields (PEMFs) in musculoskeletal disorders,” Biomed. Pharmacother., vol. 131, p. 110767, 2020, doi:10.1016/j.biopha.2020.110767.; J. D. Z. Guillot, “La magnetoterapia y su aplicación en la medicina,” Rev. Cuba. Med. Gen. Integr., vol. 18, no. 1, pp. 60–72, 2002.; (OMS) Organización Mundial de la Salud, “Campos electromagnéticos (CEM).” https://www.who.int/peh-emf/about/WhatisEMF/es/ (accessed Apr. 10, 2021).; E. Alonso Fustel, R. Garcia Vázquez, and C. Onaindia Olalde, “Campos electromagnéticos y efectos en salud.” Bizkaia, Vasco, 2012.; M. O. Mattsson and M. Simkó, “Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz,” Medical Devices: Evidence and Research, vol. 12. Dove Medical Press Ltd, pp. 347–368, 2019, doi:10.2147/MDER.S214152.; N. Bachl, G. Ruoff, B. Wessner, and H. Tschan, “Electromagnetic Interventions in Musculoskeletal Disorders,” Clinics in Sports Medicine, vol. 27, no. 1. pp. 87–105, Jan. 2008, doi:10.1016/j.csm.2007.10.006.; T. Paolucci, L. Pezzi, A. M. Centra, N. Giannandrea, R. G. Bellomo, and R. Saggini, “Electromagnetic field therapy: A rehabilitative perspective in the management of musculoskeletal pain – A systematic review,” J. Pain Res., vol. 13, pp. 1385–1400, 2020, doi:10.2147/JPR.S231778.; J. Multanen, A. Häkkinen, P. Heikkinen, H. Kautiainen, S. Mustalampi, and J. Ylinen, “Pulsed electromagnetic field therapy in the treatment of pain and other symptoms in fibromyalgia: A randomized controlled study,” Bioelectromagnetics, vol. 39, no. 5, pp. 405–413, 2018, doi:10.1002/bem.22127.; H. Mohajerani, F. Tabeie, F. Vossoughi, E. Jafari, and M. Assadi, “Effect of pulsed electromagnetic field on mandibular fracture healing: A randomized control trial, (RCT),” J. Stomatol. Oral Maxillofac. Surg., vol. 120, no. 5, pp. 390–396, Nov. 2019, doi:10.1016/j.jormas.2019.02.022.; A. M. Elshiwi, H. A. Hamada, D. Mosaad, I. M. A. Ragab, G. M. Koura, and S. M. Alrawaili, “Effect of pulsed electromagnetic field on nonspecific low back pain patients: a randomized controlled trial,” Brazilian J. Phys. Ther., vol. 23, no. 3, pp. 244–249, 2019, doi:10.1016/j.bjpt.2018.08.004.; H. L. Casalechi et al., “Acute effects of photobiomodulation therapy and magnetic field on functional mobility in stroke survivors: a randomized, sham-controlled, triple-blind, crossover, clinical trial,” Lasers Med. Sci., vol. 35, no. 6, pp. 1253–1262, 2020, doi:10.1007/s10103-019-02898-y.; L. Kopacz, Z. Ciosek, H. Gronwald, P. Skomro, R. Ardan, and D. Lietz-Kijak, “Comparative Analysis of the Influence of Selected Physical Factors on the Level of Pain in the Course of Temporomandibular Joint Disorders,” Pain Res. Manag., vol. 2020, 2020, doi:10.1155/2020/1036306.; E. Hattapoğlu, İ. Batmaz, B. Dilek, M. Karakoç, S. Em, and R. Çevik, “Efficiency of pulsed electromagnetic fields on pain, disability, anxiety, depression, and quality of life in patients with cervical disc herniation: A randomized controlled study,” Turkish J. Med. Sci., vol. 49, no. 4, pp. 1095–1101, 2019, doi:10.3906/sag-1901-65.; G. L. Bagnato, G. Miceli, N. Marino, D. Sciortino, and G. F. Bagnato, “Pulsed electromagnetic fields in knee osteoarthritis: A double blind, placebo-controlled, randomized clinical trial,” Rheumatol. (United Kingdom), vol. 55, no. 4, pp. 755–762, 2016, doi:10.1093/rheumatology/kev426.; L. Chen et al., “Effects of pulsed electromagnetic field therapy on pain, stiffness and physical function in patients with knee osteoarthritis: A systematic review and meta-analysis of randomized controlled trials,” J. Rehabil. Med., vol. 51, no. 11, pp. 821–827, 2019, doi:10.2340/16501977-2613.; T. Paolucci et al., “Efficacy of extremely low-frequency magnetic field in fibromyalgia pain: A pilot study,” J. Rehabil. Res. Dev., vol. 53, no. 6, pp. 1023–1034, 2016, doi:10.1682/JRRD.2015.04.0061.; A. El Zohiery, Y. El Miedany, T. Elserry, O. El Shazly, and S. Galal, “Impact of electromagnetic field exposure on pain, severity, functional status and depression in patients with primary fibromyalgia syndrome,” Egypt. Rheumatol., no. xxxx, pp. 0–4, 2020, doi:10.1016/j.ejr.2020.10.001.; C. L. Ross, I. Syed, T. L. Smith, and B. S. Harrison, “The regenerative effects of electromagnetic field on spinal cord injury,” Electromagn. Biol. Med., vol. 36, no. 1, pp. 74–87, 2017, doi:10.3109/15368378.2016.1160408.; T. Pesqueira, R. Costa-Almeida, and M. E. Gomes, “Magnetotherapy: The quest for tendon regeneration,” J. Cell. Physiol., vol. 233, no. 10, pp. 6395–6405, 2018, doi:10.1002/jcp.26637.; G. Vicenti et al., “Biophysical stimulation of the knee with PEMFs: from bench to bedside,” J. Biol. Regul. Homeost. Agents, vol. 32, no. 6, pp. 23–28, 2018.; K. Iwasa and A. H. Reddi, “Pulsed Electromagnetic Fields and Tissue Engineering of the Joints,” Tissue Engineering - Part B: Reviews, vol. 24, no. 2. Mary Ann Liebert Inc., pp. 144–154, Apr. 01, 2018, doi:10.1089/ten.teb.2017.0294.; A. Madroñero De La Cal, “Importancia de los aplicadores de campo magnético en los tratamientos electroterapéuticos en las personas mayores,” Rev. Esp. Geriatr. Gerontol., vol. 38, no. 6, pp. 355–368, 2003, doi:10.1016/s0211-139x(03)74917-8.; T. Wang et al., “Pulsed electromagnetic fields: promising treatment for osteoporosis,” Osteoporos. Int., vol. 30, no. 2, pp. 267–276, 2019, doi:10.1007/s00198-018-04822-6.; X. sheng Qiu, X. gang Li, and Y. xin Chen, “Pulsed electromagnetic field (PEMF): A potential adjuvant treatment for infected nonunion,” Med. Hypotheses, vol. 136, Mar. 2020, doi:10.1016/j.mehy.2019.109506.; J. Taradaj, M. Ozon, R. Dymarek, B. Bolach, K. Walewicz, and J. Rosinczuk, “Impact of selected magnetic fields on the therapeutic effect in patients with lumbar discopathy: A prospective, randomized, single-blinded, and placebo-controlled clinical trial,” Adv. Clin. Exp. Med., vol. 27, no. 5, pp. 649–666, 2018, doi:10.17219/acem/68690.; J. Zwolińska, M. Gąsior, E. Śniezek, and A. Kwolek, “The use of magnetic fields in treatment of patients with rheumatoid arthritis. Review of the literature,” Reumatologia, vol. 54, no. 4, pp. 201–206, 2016, doi:10.5114/reum.2016.62475.; Z. Wu et al., “Efficacy and safety of the pulsed electromagnetic field in osteoarthritis: A meta-analysis,” BMJ Open, vol. 8, no. 12, Dec. 2018, doi:10.1136/bmjopen-2018-022879.; L. Mori, “EFICACIA DE LA MAGNETOTERAPIA EN LA DISMINUCION DEL DOLOR EN ADULTOS MAYORES CON OSTEOARTROSIS CENTRO DE MEDICINA COMPLEMENTARIA ESSALUD TRUJILLO,” Tesis - Universidad Cesar Vallejo - Trujillo Perú, vol. 0, no. 12. p. Pág. 89-95-95, 2019, doi:10.5354/0717-8883.1986.23781.; K. Marycz, K. Kornicka, and M. Röcken, “Static Magnetic Field (SMF) as a Regulator of Stem Cell Fate – New Perspectives in Regenerative Medicine Arising from an Underestimated Tool,” Stem Cell Rev. Reports, vol. 14, no. 6, pp. 785–792, 2018, doi:10.1007/s12015-018-9847-4.; N. Kamei, N. Adachi, and M. Ochi, “Magnetic cell delivery for the regeneration of musculoskeletal and neural tissues,” Regen. Ther., vol. 9, pp. 116–119, 2018, doi:10.1016/j.reth.2018.10.001.; A. Catalano, S. Loddo, F. Bellone, C. Pecora, A. Lasco, and N. Morabito, “Pulsed electromagnetic fields modulate bone metabolism via RANKL/OPG and Wnt/β-catenin pathways in women with postmenopausal osteoporosis: A pilot study,” Bone, vol. 116. pp. 42–46, 2018, doi:10.1016/j.bone.2018.07.010.; H. Okano, H. Ishiwatari, A. Fujimura, and K. Watanuki, “The physiological influence of alternating current electromagnetic field exposure on human subjects,” 2017 IEEE Int. Conf. Syst. Man, Cybern. SMC 2017, vol. 2017-Janua, pp. 2442–2447, 2017, doi:10.1109/SMC.2017.8122989.; A. Maziarz et al., “How electromagnetic fields can influence adult stem cells: Positive and negative impacts,” Stem Cell Res. Ther., vol. 7, no. 1, 2016, doi:10.1186/s13287-016-0312-5.; E. I. Waldorff, N. Zhang, and J. T. Ryaby, “Pulsed electromagnetic field applications: A corporate perspective,” J. Orthop. Transl., vol. 9, pp. 60–68, 2017, doi:10.1016/j.jot.2017.02.006.; A. M. Nayback-Beebe, L. H. Yoder, B. J. Goff, S. Arzola, and C. Weidlich, “The effect of pulsed electromagnetic frequency therapy on health-related quality of life in military service members with chronic low back pain,” Nurs. Outlook, vol. 65, no. 5, pp. S26–S33, 2017, doi:10.1016/j.outlook.2017.07.012.; T. Klüter et al., “Electromagnetic transduction therapy and shockwave therapy in 86 patients with rotator cuff tendinopathy: A prospective randomized controlled trial,” Electromagn. Biol. Med., vol. 37, no. 4, pp. 175–183, 2018, doi:10.1080/15368378.2018.1499030.; J. Pasek, T. Pasek, K. Sieroń-Stołtny, G. Cieślar, and A. Sieroń, “Electromagnetic fields in medicine – The state of art,” Electromagn. Biol. Med., vol. 35, no. 2, pp. 170–175, Apr. 2016, doi:10.3109/15368378.2015.1048549.; A. Hochsprung, S. Escudero-Uribe, A. J. Ibáñez-Vera, and G. Izquierdo-Ayuso, “Effectiveness of monopolar dielectric transmission of pulsed electromagnetic fields for multiple sclerosis–related pain: A pilot study,” Neurologia, 2018, doi:10.1016/j.nrl.2018.03.003.; A. B. Camacho, Y. A. P. Borrego, M. J. R. Matas, V. S. León, L. M. Mateos, and A. Oliviero, “Protocolo terapéutico del dolor con técnicas de estimulación no invasiva,” Med., vol. 12, no. 75, pp. 4451–4454, 2019, doi:10.1016/j.med.2019.03.026.; J. Arabloo et al., “Health technology assessment of magnet therapy for relieving pain,” Med. J. Islam. Repub. Iran, vol. 31, no. 1, pp. 184–188, 2017, doi:10.18869/mjiri.31.31.; J. Chudorlinski and L. Ksiazek, “Medical device for physical therapy with a magnetic field and light,” 2019 Appl. Electromagn. Mod. Eng. Med. PTZE 2019, pp. 22–25, 2019, doi:10.23919/PTZE.2019.8781742.; J. Chudorlinski and L. Ksiazek, “Signals for magnetic field therapy and a method for their preparation,” 2018 Appl. Electromagn. Mod. Tech. Med. PTZE 2018, pp. 29–32, 2018, doi:10.1109/PTZE.2018.8503080.; A. Krawczyk, P. Murawski, and E. Korzeniewska, “New Magnetotherapeutical Device,” pp. 2–5, 2017.; Samuel K Au, Jeff Weber, and Hugh Herr. Biomechanical design of a powered ankle-foot prosthesis. In Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on, pages 298–303. IEEE, 2007.; Rouse, Elliott Jay; Mooney, Luke M.; Martinez-Villalpando, Ernesto C.; Herr, Hugh M. "Clutchable Series-Elastic Actuator: Design of a Robotic Knee Prosthesis for Minimum Energy Consumption". 13th International Conference on Rehabilitation Robotics, ICORR 2013.; Samuel K Au and Hugh M Herr. Powered ankle-foot prosthesis. IEEE Robotics & Automation Magazine, 15(3), 2008.; Dong, D., Ge, W., Liu, S., Xia, F., & Sun, Y. (2017). Design and optimization of a powered ankle-foot prosthesis using a geared five-bar spring mechanism. International Journal of Advanced Robotic Systems, 14(3), 1729881417704545.; Andrew K LaPre, Ryan D Wedge, Brian R Umberger, and Frank C Sup. Preliminary study of a robotic foot-ankle prosthesis with active alignment. In Rehabilitation Robotics (ICORR), 2017 International Conference on, pages 1299–1304. IEEE, 2017.; Maurice LeBlanc. Give hope-give a hand. The LN-4 Prosthetic Hand, 2014, 2008.; Dianbiao Dong, Wenjie Ge, Shumin Liu, Fan Xia, and Yuanxi Sun. Design and optimization of a powered ankle-foot prosthesis using a geared five-bar spring mechanism. International Journal of Advanced Robotic Systems, 14(3):1729881417704545, 2017.; Samuel K Au, Jeff Weber, and Hugh Herr. Powered ankle–foot prosthesis improves walking metabolic economy. IEEE Transactions on Robotics, 25(1):51–66, 2009.; Arthur D Kuo. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective. Human movement science, 26(4):617–656, 2007.; Mary M Rodgers. Dynamic biomechanics of the normal foot and ankle during walking and running. Physical therapy, 68(12):1822–1830, 1988.; Tan Thang Nguyen, Thanh-Phong Dao, and Shyh-Chour Huang. Bio- mechanical design of a novel six dof compliant prosthetic ankle-foot 2.0 for rehabilitation of amputee. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pages V05AT08A013–V05AT08A013. Ameri- can Society of Mechanical Engineers, 2017.; Joana Alves, Eurico Seabra, César Ferreira, Cristina P Santos, and Luís Paulo Reis. Design and dynamic modelling of an ankle-foot prosthesis for humanoid robot. In Autonomous Robot Systems and Competitions (ICARSC), 2017 IEEE International Conference on, pages 128–133. IEEE, 2017.; Lei Ren, Richard K Jones, and David Howard. Predictive modelling of human walking over a complete gait cycle. Journal of biomechanics, 40(7):1567–1574, 2007.; SK Au and H Herr. Initial experimental study on dynamic interaction between an amputee and a powered ankle-foot prosthesis. In Workshop on dynamic walking: Mechanics and control of human and robot locomotion, page 1, 2006.; Samuel K Au, Hugh Herr, Jeff Weber, and Ernesto C Martinez- Villalpando. Powered ankle-foot prosthesis for the improvement of amputee ambulation. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, pages 3020–3026. IEEE, 2007.; Grimmer, M., Eslamy, M., Gliech, S., & Seyfarth, A. (2012, May). A comparison of parallel-and series elastic elements in an actuator for mimicking human ankle joint in walking and running. In 2012 IEEE International Conference on Robotics and Automation (pp. 2463-2470). IEEE.; Soren Shashikant, 2017. Mechanical Leg. https://grabcad.com/library/mechanical-leg-2.; Guy Rouleau, 2014. From SolidWorks to SimMechanics Posted in July 10, 2014. Simulink & Model-Based Design. https://blogs.mathworks.com/simulink/2014/07/10/from-solidworks-to-simmechanics/.; Eilenberg, M. F., Geyer, H., & Herr, H. (2010). Control of a powered ankle–foot prosthesis based on a neuromuscular model. IEEE transactions on neural systems and rehabilitation engineering, 18(2), 164-173.; L. Agudelo, “La discapacidad en Colombia: una mirada global,” Revista Colombiana de Medicina Física y Rehabilitación, p. 16, 2012.; D. A. N. de E. (DANE), “Boletín Censo General 2005 DISCAPACIDAD-COLOMBIA,” 2005. Accessed: Oct. 08, 2020. [Online]. Available: https://www.dane.gov.co/files/censos/libroCenso2005nacional.pdf.; Ministerio de Salud y Protección Social, “Sala situacional de las Personas con Discapacidad,” 2019. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/MET/sala-situacional-discapacidad2019-2-vf.pdf (accessed Feb. 25, 2021).; MINISTERIO DE SALUD Y PROTECCIÓN SOCIAL, Resolución 2968 DE 2015. República de Colombia: Ministerio de Salud y Protección Social, 2015, pp. 1–16.; Ministerio de Salud y Protección Social, Decreto Número 4725 DE 2005. República de Colombia: Ministerio de Protección Social, 2005, pp. 1–31.; N. Dechev, W. L. Cleghorn, and S. Naumann, “Multiple finger, passive adaptive grasp prosthetic hand,” Mech. Mach. Theory, vol. 36, no. 10, pp. 1157–1173, Oct. 2001, doi:10.1016/S0094-114X(01)00035-0.; R. I. Flores Luna, “Repositorio de Tesis DGBSDI: Diseño de protesis mecatronica de mano,” Universidad Nacional Autónoma de México, 2007.; S. R. Kashef, S. Amini, and A. Akbarzadeh, “Robotic hand: A review on linkage-driven finger mechanisms of prosthetic hands and evaluation of the performance criteria,” Mechanism and Machine Theory, vol. 145. Elsevier Ltd, p. 103677, Mar. 01, 2020, doi:10.1016/j.mechmachtheory.2019.103677.; L. Roselia, P. León, and E. Luz González Muñoz, Rosalío Ávila Chaurand Dimensiones antropométricas de población latinoamericana. 2007.; M. Monar and L. Murillo, “DISEÑO Y CONSTRUCCIÓN DE UNA PRÓTESIS BIÓNICA DE MANO DE 7 GRADOS DE LIBERTAD UTILIZANDO MATERIALES INTELIGENTES Y CONTROL MIOELÉCTRICO ADAPTADA PARA VARIOS PATRONES DE SUJECIÓN,” Universidad de las Fuerzas Armadas, Latacunga, 2015.; J. Zhang, B. Wang, C. Zhang, Y. Xiao, and M. Y. Wang, “An EEG/EMG/EOG-Based Multimodal Human-Machine Interface to Real-Time Control of a Soft Robot Hand,” Front. Neurorobot., vol. 13, no. 7, p. 7, Mar. 2019, doi:10.3389/fnbot.2019.00007.; K. P. Biswajeet Champaty, Suraj Nayak, “Development of an Electrooculogram-based Human-Computer Interface for Hands-Free Control of Assistive Devices,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 4S, p. 11, 2019.; E. Camargo Casallas, L. A. Luengas C., y M. Balaguera, “Respuesta a carga de una prótesis transtibial con elementos infinitos durante el apoyo y balanceo", Visión Electrónica, vol. 6, no. 2, pp. 82-92, 2012.; Q. Huang et al., “An EOG-based wheelchair robotic arm system for assisting patients with severe spinal cord injuries,” J. Neural Eng, vol. 16, 2019, doi:10.1088/1741-2552/aafc88.; S. D and R. R. M, “A high performance asynchronous EOG speller system,” Biomed. Signal Process. Control, vol. 59, p. 101898, May 2020, doi:10.1016/j.bspc.2020.101898.; A. López, M. Fernández, H. Rodríguez, F. Ferrero, and O. Postolache, “Development of an EOG-based system to control a serious game,” Meas. J. Int. Meas. Confed., vol. 127, pp. 481–488, Oct. 2018, doi:10.1016/j.measurement.2018.06.017.; O. F. Avilés, R. D. Hernández, J. L. Loaiza, and J. M. Rosário, “Simulation model of an anthropomorphic hand,” Int. J. Appl. Eng. Res., vol. 11, no. 23, pp. 11114–11120, 2016, Accessed: Oct. 11, 2020. [Online]. Available: https://www.researchgate.net/publication/312979011_Simulation_Model_of_an_Anthropomorphic_Hand.; O. F. A. Sánchez, R. Gutiérrez, A. J. U. Quevedo, and J. M. Rosario, “(PDF) Antrohopomorphic Grippers - Modelling, Analysis and Implementation,” 2015. https://www.researchgate.net/publication/228090516_Antrhopomorphic_Grippers_-_Modelling_Analysis_and_Implementation (accessed Oct. 11, 2020).; A. Sharma, W. Niu, C. L. Hunt, G. Lévay, R. R. Kaliki, and N. Thakor, “Augmented Reality Prosthesis Training Setup for Motor Skill Enhancement,” 2019.; Y. Tsepkovskiy, L. Antonov, C. Kocev, F. Palis, and N. Shoylev, “DEVELOPMENT OF A 3D AND VRML VIRTUAL HAND MODELS FOR DIFFERENT MECHANICAL GRIPPER,” 2008.; S. T. Vite, C. F. Domínguez Velasco, J. B. Reséndiz Rodríguez, A. Hernández Valencia, y M. Ángel Padilla Castañeda, “Simulador de reparación de aneurismas cerebrales para entrenamiento médico Visión Electrónica, vol. 12, no. 1, pp. 51-57, 2018. https://doi.org/10.14483/22484728.13399.; F. J. Badesa et al., “Physiological responses during hybrid BNCI control of an upper-limb exoskeleton,” Sensors (Switzerland), vol. 19, no. 22, Nov. 2019, doi:10.3390/s19224931.; M. R. Cutkosky, “On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks,” IEEE Trans. Robot. Autom., vol. 5, no. 3, pp. 269–279, 1989, doi:10.1109/70.34763.; “Anexo A Norma DIN 33 402.”; J. F. Guerrero Martínez, “INGENIERÍA BIOMÉDICA Tema 2 Bioseñales 2.1. Introducción,” 2010.; L. Atanelov, S. A. Stiens, and M. A. Young, “History of physical medicine and rehabilitation and its ethical dimensions”, AMA journal of ethics, vol. 17, no. 6, pp. 568–574, 2015. DOI:10.1001/journalofethics.2015.17.6.mhst1-1506 URL: https://journalofethics.ama-assn.org/article/history-physical-medicine-and-rehabilitation-and-its-ethical-dimensions/2015-06.; M. C. Garcia and T. Vieira, “Surface electromyography: Why, when and how to use it”, Revista andaluza de medicina del deporte, vol. 4, no. 1, pp.17–28, 2011. URL: https://www.elsevier.es/es-revista-revista-andaluza-medicina-del-deporte-284-articulo-surface-electromyography-why-when-how-X1888754611201253.; J. C. Guerrero Pupo, I. Amell Muñoz, and R. Cañedo Andalia, “Tecnología, tecnología médica y tecnología de la salud: algunas consideraciones básicas”, Acimed, vol. 12, no. 4, pp. 1–1, 2004. URL: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1024-94352004000400007.; J. A. A. Londoño, E. C. Bravo, and J. F. C. García, “Aplicación de tecnologías de rehabilitación robótica en niños con lesión del miembro superior”, Revista Salud UIS, vol. 49, no. 1, pp. 103–114, 2017. DOI: http://dx.doi.org/10.18273/revsal.v49n1-2017010 URL: http://www.scielo.org.co/scielo.php?pid=S0121-08072017000100103&script=sci_abstract&tlng=es.; F. Salvuci and R. Kohanoff, Tecnologías de rehabilitación. Wiley-Interscience, 2016.; A. Merlo and I. Campanini, “Technical aspects of surface electromyography for clinicians”, The open rehabilitation journal, vol. 3, no. 1, 2010. DOI:10.2174/1874943701003010098 URL: https://benthamopen.com/ABSTRACT/TOREHJ-3-98 [7]. F. J. Juan, “Utilidad de la electromiografía de superficie en rehabilitación” URL: https://www.researchgate.net/profile/Francisco_Juan-Garcia/publication/316588275_UTILIDAD_DE_LA_ELECTROMIOGRAFIA_DE_SUPERFICIE_EN_REHABILITACION/links/5905b86c4585152d2e957860/UTILIDAD-DE-LA-ELECTROMIOGRAFIA-DE-SUPERFICIE-EN-REHABILITACION.pdf.; J. W. Meklenburg, S. K. Patrick, and S. D. Jung, “Surface electromyogram simulator for myoelectric prosthesis testing,” 2010. URL: https://digitalcommons.wpi.edu/mqp-all/1402/.; Merletti Roberto, and Dario Farina. Surface electromyography: physiology, engineering, and applications. Piscataway, NJ: IEEE Press, 2016, online. ISBN: 9781119082934, DOI:10.1002/9781119082934.; E. Guzmán, G. Méndez, “Electromiografía en las Ciencias de la Rehabilitación”, Salud Uninorte, Vol 3, no. 3, pp 753-765, 2018.; WOLFRAM S., y PACKARD N. H. Two-dimensional Cellular Autómata. J. Statist. Phys. 38, 1985.; MUÑOZ CASTAÑO, J. D., Artículo: Autómatas Celulares y Física Digital, en: Memorias del Primer Congreso Colombiano de Neuro Computación. Santa fe de Bogotá, D. C.: Academia Colombiana de Ciencias Exactas, Físicas y Naturales, p 28. ISBN 958-9205- 17-8. 1996.; HERNÁNDEZ, J. C., Algunas Generalizaciones en Autómatas Celulares. México: Consejo Nacional de Ciencia y Tecnología – CONACYT, 2008.; JUÁREZ, G. Teoría del Campo Promedio En Autómatas Celulares Similares a "The Game Of Life". México: Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 2000.; CUEVAS, E., ZALDÍVAR, D., & PÉREZ, M., Procesamiento digital de imágenes con MATLAB y Simulink. México: Alfaomega Grupo Editor; RA-MA Editorial. 2010.; MUÑOZ, M. A., Privacidad y ocultación de información digital ESTEGANOGRAFÍA protegiendo y atacando redes informáticas. Madrid, Bogotá., España, Colombia: Ra-ma, Ediciones de la U. 2017; PONCE, C., P. Inteligencia Artificial con aplicaciones a la ingeniería. México: Alfa Omega Grupo Editor. 2010.; WOLFRAM S., Cellular automata as simple self-organizing systems. Pasadena: Caltech prepint CAL-68-938. 1982.; ESPÍNOLA, M. Clasificación de Imágenes de Satélite mediante Autómatas Celulares. Almería: Universidad de Almería. 2011.; MOORE, E. F. Machine Models Of Self-Reproduction. U.S.A.: Proceedings of Symposia in Applied Mathematics. 1963.; GUERRERO, C. Á. “RapaNui – Isla de Pascua”. RapaNui, Chile. 20/06/2018.; CHEDDAD, A., CONDELL, J., CURRAN, K., & MCKEVITT, P. Digital image steganography: Survey and analysis of current methods. Northern Ireland: School of Computing and Intelligent Systems, University of Ulster at Magee. Signal Processing, 90 (3), 26. Obtenido de EL SEVIER, 2010.; DE LA CRUZ FRANCO, A. Implementación de un Algoritmo Computacional para Esteganografía basado en técnicas del bit menos significativo. Chetumal, México: Universidad de Quintana Roo. 2017.; VÁZQUEZ, J. I., & OLIVER, J. Evolución de Autómatas Celulares utilizando Algoritmos Genéticos. Bilbao, España: Universidad de Deusto. 2008.; MIRI, A., FAEZ, K. Adaptive Image Steganography based on transform domain via Genetic Algorithm. Tehran, Iran: Department of Electrical Engineering, Amirkabir University of Technology. Optika, 145, 10. Obtenido de EL SEVIER, 2017.; MUKJERJEE, S., ROY, S., & SANYAL, G. Image Steganography Using Mid Position Value Technique. Durgapur, India: National Institute of Technology Durgapur. Procedia Computer Science, 132, 7. Obtenido de EL SEVIER, 2018.; WESTFELD, A., PFIZMANN, A. Attacks on Steganographic System. Dresden, Germany: Department of Computer Science, Dresden University of Technology. Information Hiding, 15. 1999.; CABALLERO, H. Cálculo de la dispersión de pixels en imágenes RGB para Esteganografía con base en la teoría fractal. Toluca de Lerdo, México: Facultad de Ingeniería, Universidad Autónoma de México. 2020.; FRIDRICH, J., GOLJAN, M., & DU, R. Reliable Detection of LSB steganography in color and grayscale images. Binghamton, U.S.A.: Department of Electrical and Computer Engineering, Binghamton University, 7. 2002.; D. Galeano and I. Electr, “Robótica Médica,” p. 21.; J. Cornejo, J. A. Cornejo Aguilar, and J. P. Perales Villarroel, “Innovaciones Internacionales En Robótica Médica Para Mejorar El Manejo Del Paciente En Perú,” Rev. la Fac. Med. Humana, vol. 19, no. 4, pp. 105–113, 2019, doi:10.25176/rfmh.v19i4.2349.; E. Saraee, A. Joshi, and M. Betke, “A therapeutic robotic system for the upper body based on the Proficio robotic arm,” Int. Conf. Virtual Rehabil. ICVR, vol. 2017-June, 2017, doi:10.1109/ICVR.2017.8007498.; M. A. Soleimani, H. Zohoor, A. R. F. Yakhdani, M. Heravi, and E. Mohammadi, “Designing, Prototyping, and Controlling a Portable Rehabilitation Robot for the Shoulder Physiotherapy and Training,” ICRoM 2019 - 7th Int. Conf. Robot. Mechatronics, no. ICRoM, pp. 281–284, 2019, doi:10.1109/ICRoM48714.2019.9071844.; M. R. Sarder, F. Ahmed, and B. A. Shakhar, “Design and implementation of a lightweight telepresence robot for medical assistance,” ECCE 2017 - Int. Conf. Electr. Comput. Commun. Eng., pp. 779–783, 2017, doi:10.1109/ECACE.2017.7913008.; R. R. Murphy, D. Riddle, and E. Rasmussen, “Robot-assisted medical reachback: A survey of how medical personnel expect to interact with rescue robots,” Proc. - IEEE Int. Work. Robot Hum. Interact. Commun., pp. 301–306, 2004, doi:10.1109/roman.2004.1374777.; M. Cardona, F. Cortez, A. Palacios, and K. Cerros, “Mobile robots application against covid-19 pandemic,” 2020 Ieee Andescon, Andescon 2020, 2020, doi:10.1109/ANDESCON50619.2020.9272072.; R. M. Nope-Giraldo et al., “Mechatronic Systems Design of ROHNI-1: Hybrid Cyber-Human Medical Robot for COVID-19 Health Surveillance at Wholesale-Supermarket Entrances,” Pan Am. Heal. Care Exch. PAHCE, vol. 2021-May, 2021, doi:10.1109/GMEPE/PAHCE50215.2021.9434874.; P. Manikandan, G. Ramesh, G. Likith, D. Sreekanth, and G. Durga Prasad, “Smart Nursing Robot for COVID-19 Patients,” 2021 Int. Conf. Adv. Comput. Innov. Technol. Eng. ICACITE 2021, vol. 7, pp. 839–842, 2021, doi:10.1109/ICACITE51222.2021.9404698.; Coronavirus: 12 aspectos en los que cambiará radicalmente nuestras vidas”: BBC News, mayo 2020. https://www.bbc.com/mundo/noticias-52512680.; UN. “La enfermedad del coronavirus, una emergencia de salud mundial”. Naciones Unidas. https://www.un.org/es/coronavirus.; “Medidas tomadas por el gobierno.” GOV.CO. Fronteras, marzo 2020. https://coronaviruscolombia.gov.co/Covid19/acciones/acciones-de-fronteras.html.; “Cómo se propaga el COVID-19”. Centros para el Control y la Prevención de Enfermedades, julio 2021. https://espanol.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html.; OMS. “Protéjase a sí mismo y a los demás contra la COVID-19”. Organización Mundial de la Salud. Octubre 2020. https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019/advice-for-public.; M. A. Vivas. “Medidas para la reactivación económica en Colombia-Decreto 580 de 2021. Consultor Salud, junio 2021. https://consultorsalud.com/medidas-para-la-reactivacion-economica/.; C.R. Colombiana. “Consejos de autocuidado y prevención COVID-19”. Cruz Roja Colombiana. https://www.cruzrojacolombiana.org/consejos-de-autocuidado-y-prevencion/.; Cinco protocolos que se usan a diario y que no sirven contra el Covid”. Portafolio, febrero de 2021. https://www.portafolio.co/economia/cinco-protocolos-covid-19-que-no-sirven-contra-el-coronavirus-549048.; “Empresas deberán adaptar protocolo de bioseguridad de Minsalud a sus actividades”. Minsalud, abril 2020. https://www.minsalud.gov.co/Paginas/Empresas-deberan-adaptar-protocolo-de-bioseguridad-de-Minsalud-a-sus-actividades.aspx.; I. J. Molina Pineda. “¿Por qué el coronavirus se propaga ahora con tanta velocidad?”. BBC News, noviembre 2020. https://www.bbc.com/mundo/noticias-54794713.; “COVID-19: novedades científicas”. Instituto de Salud Global Barcelona, noviembre 2021. https://www.isglobal.org/covid-19-novedades-cientificas.; Lionex. “Proximiti-i”. Lionex. 2020. https://lionex.co/proximiti-i.; “La solución digital más confiable del mundo para mitigar la propagación de COVID-19”. KINEXON, 2020. https://kinexon.com/technology/safetag/.; “Coronavirus: el plan de Apple y Google para rastrear el covid-19 desde tu teléfono”. BBC News, abril 2020. https://www.bbc.com/mundo/noticias-52251843.; “Nissan incorporó un nuevo Dispositivo de Distanciamiento Físico para toda su red de concesionarios”. La Nación, marzo 2021. https://www.lanacion.com.ar/lifestyle/nissan-incorporo-un-nuevo-dispositivo-de-distanciamiento-fisico-para-toda-su-red-de-concesionarios-nid11032021/.; “Analítica de detección de tapabocas, para una reapertura segura”. SAC Seguridad, 2020. https://sacseguridad.com/iss-analitica-deteccion-tapabocas-termica/.; W. Yan. “¿Llevas puesta la mascarilla? Un software de reconocimiento está listo para checar si las personas cumplen con el correcto uso”. National Geographic, septiembre 2020. https://www.nationalgeographicla.com/ciencia/2020/09/software-reconocimiento-mascarillas.; K1T671TM-3XF”. HIKVISION, 2020. https://www.hikvision.com/es-la/products/Access-Control-Products/Face-Recognition-Terminals/Ultra-Series/ds-k1t671tm-3xf-/?q=ds-k1t671tm-3xf&position=5.; “SOLIDWORKS. Qué es y para qué sirve”. SolidBi. https://solid-bi.es/solidworks/.; “Sensor de distancia SHARP GP2Y0A02YK0F”. Naylamp Mechatronics. https://naylampmechatronics.com/sensores-proximidad/204-sensor-de-distancia-infrarrojo-sharp-gp2y0a02.html.; “Sensor ultrasónico HC-SR04”. Naylamp Mechatronics. https://naylampmechatronics.com/sensores-proximidad/10-sensor-ultrasonido-hc-sr04.html.; “Sensor de temperatura TMP36”. Prometec. https://www.prometec.net/sensor-tmp36/.; “Comprensión del reconocimiento facial mediante el algoritmo LBPH”. Analytics Vidhya, julio 2021. https://www.analyticsvidhya.com/blog/2021/07/understanding-face-recognition-using-lbph-algorithm/.; Y. M. Shum. “Situación Global Mobile 2020”. YS social media, 2020. https://yiminshum.com/mobile-movil-app-2020/.; F. Cortez, J. Cercado Mancero, A. Vera Lorenti, and E. Valle Flores, “Un panorama de las energías renovables en el Mundo, Latinoamérica y Colombia,” Espacios, vol. 39, p. 10, 2018.; G. A. Zapata and J. A. Valencia, “Guía práctica para la aplicación de los incentivos tributarios de la Ley 1715 de 2014,” Colombia.; J. Faiz and A. Nematsaberi, “Linear electrical generator topologies for direct-drive marine wave energy conversion- an overview,” IET Renew. Power Gener., vol. 11, no. 9, pp. 1163–1176, 2017.; X. Wang, F. Chen, R. Zhu, G. Yang, and C. Zhang, “A Review of the Design and Control of Free-Piston Linear Generator,” Energies, vol. 11, no. 8, p. 2179, 2018.; H. Chen, S. Zhao, H. Wang, and R. Nie, “A Novel Single-Phase Tubular Permanent Magnet Linear Generator,” IEEE Trans. Appl. Supercond., vol. 30, no. 4, pp. 2–6, 2020.; R. Guo, H. Yu, T. A. O. Xia, Z. Shi, W. Zhong, and X. Liu, “A Simplified Subdomain Analytical Model for the Design and Analysis of a Tubular Linear Permanent Magnet Oscillation Generator,” IEEE Access, vol. 6, pp. 42355–42367, 2018.; H. M. Zapata, F. A. Cabrera, M. A. Perez, C. A. Silva, and W. Jara, “Model of a permanent magnet linear generator,” IECON Proc. (Industrial Electron. Conf., vol. 2019-Octob, pp. 6992–6997, 2019.; H. Jing, N. Maki, T. Ida, and M. Izumi, “Electrical design of large-scale tubular PM linear generators for wave energy conversion,” IEEJ Trans. Electr. Electron. Eng., vol. 12, pp. S113–S119, 2017.; R. M. Korbekandi, N. J. Baker, and D. Wu, “A study of translator length in a tubular linear electrical machine designed for use in alinear combustion joule engine,” 2019 12th Int. Symp. Linear Drives Ind. Appl. LDIA 2019, pp. 1–6, 2019.; Y. Sun, Z. Xu, Q. Zhang, J. Lu, and L. Liu, “A Tubular Single-Phase Linear Generator with an Axially Magnetized PM Mover for Free-Piston Engines,” IEEJ Trans. Electr. Electron. Eng., vol. 16, no. 1, pp. 139–146, 2021.; J. Kim, J. Y. Kim, and J. B. Park, “Design and optimization of a 8kW linear generator for a direct-drive point absorber,” Ocean. 2013 MTS/IEEE - San Diego An Ocean Common, pp. 1–6, 2013.; S. Arslan and S. A. Oy, “Design and optimization of tube type interior permanent magnets generator for free piston applications,” TEM J., vol. 6, no. 2, pp. 214–221, 2017.; H. J.R. and T. J. E. Miller, Design of brushless permanetn magnet machines, vol. 732, no. 1. USA: Magna physycs publishing & Oxford University Press, 2010.; J. Zhang, H. Yu, and Z. Shi, “Analysis of a PM linear generator with double translators for complementary energy generation platform,” Energies, vol. 12, no. 24, 2019.; A. Musolino, R. Rizzo, and M. Raugi, “A semi-analytical model for the analysis of a Permanent Magnet tubular linear generator,” 2015 Int. Conf. Renew. Energy Res. Appl. ICRERA 2015, vol. 54, no. 1, pp. 1513–1517, 2015.; S. A. Nasar, “Permanent-Magnet Linear Alternators Part II: Design Guidelines,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-23, no. 1, pp. 79–82, 1987.; H. M. Quintero, E. R. Trujillo, and G. M. Tarazona Bermudez, “EVOLUTION OF WIND POWER TECHNOLOGY.” [Online]. Available: www.tjprc.org.; H. Montaña Quintero, E. Rivas Trujillo, and G. M. Tarazona, “TRENDS ON WIND POWER ELECTRIC GENERATORS,” vol. 15, no. 17, 2020, [Online]. Available: www.arpnjournals.com.; M. Abril Martínez, L. Carolina, R. Rodríguez, U. Militar, N. Granada, and D. P. Cuero, “Estado Del Arte Sobre Materiales Utilizados Para La Fabricación De Las Palas De Turbinas Eólicas Offshore.”; N. Javahiraly, A. Chakari, L. Calegari, and P. Meyrueis, “Determination of solid materials rigidity modulus by a new nondestructive optical method,” Optics & Laser Technology, vol. 36, no. 3, pp. 239–243, Apr. 2004, doi:10.1016/J.OPTLASTEC.2003.09.002.; I. M. Bragado, “Física General,” 2013.; H. A. Gonzáles - D. H. Meza, “LA IMPORTANCIA DEL MÉTODO EN LA SELECCION DE MATERIALES,” vol. 4, no. ISSN 0122-1701, 2004.; “Colección: LAS CIENCIAS NATURALES Y LA MATEMATICAS,” 2010.; Y. Jiang, B. Song, J. Hu, H. Liang, and S. Rao, “Time-dependent reliability of corroded circular steel tube structures: Characterization of statistical models for material properties,” Structures, vol. 33, pp. 792–803, Oct. 2021, doi:10.1016/J.ISTRUC.2021.04.091.; H. Zhang, B. Zhang, Q. Gao, J. Song, and G. Han, “A review on microstructures and properties of graphene-reinforced aluminum matrix composites fabricated by friction stir processing,” Journal of Manufacturing Processes, vol. 68, pp. 126–135, Aug. 2021, doi:10.1016/J.JMAPRO.2021.07.023.; W. Zhang, X. Zhang, Z. Qin, W. Zhang, and R. Yang, “Mechanical and flame retardant performance of fiberglass-reinforced polysilsesquioxane interpenetrated with poly(ethylene glycol)-urethane,” Composites Part A: Applied Science and Manufacturing, vol. 149, p. 106490, Oct. 2021, doi:10.1016/J.COMPOSITESA.2021.106490.; A. Zavdoveev et al., “Effect of heat treatment on the mechanical properties and microstructure of HSLA steels processed by various technologies,” Materials Today Communications, vol. 28, p. 102598, Sep. 2021, doi:10.1016/J.MTCOMM.2021.102598.; G. Kumar Sharma and B. Nidhi Vats, “A comparative study on mechanical and tribological properties of different grades of tool steels,” Materials Today: Proceedings, Mar. 2021, doi:10.1016/J.MATPR.2021.02.275.; F. Tariq and P. Bhargava, “Stress–strain curves and mechanical properties of corrosion damaged super ductile reinforcing steel,” Structures, vol. 33, pp. 1532–1543, Oct. 2021, doi:10.1016/J.ISTRUC.2021.05.039.; B. Nie, S. Xu, Z. Zhang, and A. Li, “Surface morphology characteristics and mechanical properties of corroded cold-formed steel channel sections,” Journal of Building Engineering, vol. 42, p. 102786, Oct. 2021, doi:10.1016/J.JOBE.2021.102786.; I. J. Delfin, F. Madrid, and R. Martínez Sánchez, “Tesis: EFECTO DE LA CERIA (CeO 2 ) EN LA MICROESTRUCTURA Y PROPIEDADES MECÁNICAS DE UNA ALEACIÓN DE ALUMINIO 2024 Que como requisito presenta.”; A. Baradeswaran and A. E. Perumal, “Wear and mechanical characteristics of Al 7075/graphite composites,” Composites Part B: Engineering, vol. 56, pp. 472–476, Jan. 2014, doi:10.1016/J.COMPOSITESB.2013.08.073.; P. Chakrapani and T. S. A. Suryakumari, “Mechanical properties of aluminium metal matrix composites-A review,” Materials Today: Proceedings, vol. 45, pp. 5960–5964, Jan. 2021, doi:10.1016/J.MATPR.2020.09.247.; N. Kumar, A. Bharti, and K. K. Saxena, “A re-investigation: Effect of powder metallurgy parameters on the physical and mechanical properties of aluminium matrix composites,” Materials Today: Proceedings, vol. 44, pp. 2188–2193, Jan. 2021, doi:10.1016/J.MATPR.2020.12.351.; B. Zhou, B. Liu, S. Zhang, R. Lin, Y. Jiang, and X. Lan, “Microstructure evolution of recycled 7075 aluminum alloy and its mechanical and corrosion properties,” Journal of Alloys and Compounds, vol. 879, p. 160407, Oct. 2021, doi:10.1016/J.JALLCOM.2021.160407.; M. Barhoumi, N. Sfina, M. Said, and S. Znaidia, “Elastic and mechanical properties of aluminium and silicon carbide using density functional theory and beyond,” Solid State Communications, vol. 334–335, p. 114369, Aug. 2021, doi:10.1016/J.SSC.2021.114369.; E. M. Ruiz Navas and B. Ruiz Palenzuela, “Sintering of Aluminum Alloys. Processing and Properties,” Encyclopedia of Materials: Metals and Allloys, pp. 343–352, Jan. 2022, doi:10.1016/B978-0-12-819726-4.00114-9.; Ankur, A. Bharti, D. Prasad, N. Kumar, and K. K. Saxena, “A Re-investigation: Effect of various parameter on mechanical properties of copper matrix composite fabricated by powder metallurgy,” Materials Today: Proceedings, vol. 45, pp. 4595–4600, Jan. 2021, doi:10.1016/J.MATPR.2021.01.009.; A. Agrawal and R. Mirzaeifar, “Copper-graphene composites; developing the MEAM potential and investigating their mechanical properties,” Computational Materials Science, vol. 188, p. 110204, Feb. 2021, doi:10.1016/J.COMMATSCI.2020.110204.; S. Thapliyal and A. Mishra, “Machine learning classification-based approach for mechanical properties of friction stir welding of copper,” Manufacturing Letters, vol. 29, pp. 52–55, Aug. 2021, doi:10.1016/J.MFGLET.2021.05.010.; J. Chi et al., “Titanium alloy components fabrication by laser depositing TA15 powders on TC17 forged plate: Microstructure and mechanical properties,” Materials Science and Engineering: A, vol. 818, p. 141382, Jun. 2021, doi:10.1016/J.MSEA.2021.141382.; D. Liović, M. Franulović, and D. Kozak, “Material models and mechanical properties of titanium alloys produced by selective laser melting,” Procedia Structural Integrity, vol. 31, pp. 86–91, Jan. 2021, doi:10.1016/J.PROSTR.2021.03.014.; J. Aguilar Pozzer and E. Guzowski, “Guía didáctica Materiales y materias primas.”; M. Z. R. Khan, S. K. Srivastava, and M. K. Gupta, “A state-of-the-art review on particulate wood polymer composites: Processing, properties and applications,” Polymer Testing, vol. 89, p. 106721, Sep. 2020, doi:10.1016/J.POLYMERTESTING.2020.106721.; C. Wu, N. Vahedi, A. P. Vassilopoulos, and T. Keller, “Mechanical properties of a balsa wood veneer structural sandwich core material,” Construction and Building Materials, vol. 265, p. 120193, Dec. 2020, doi:10.1016/J.CONBUILDMAT.2020.120193.; F. Tian, L. Chen, and X. Xu, “Dynamical mechanical properties of wood-high density polyethylene composites filled with recycled rubber,” Journal of Bioresources and Bioproducts, vol. 6, no. 2, pp. 152–159, May 2021, doi:10.1016/J.JOBAB.2021.02.007.; J. F. Shackelford, “Introducción a la ciencia de materiales para ingenieros 6a edición.”; S. Velu, J. K. Joseph, M. Sivakumar, V. K. Bupesh Raja, K. Palanikumar, and N. Lenin, “Experimental investigation on the mechanical properties of carbon-glass-jute fiber reinforced epoxy hybrid composites,” Materials Today: Proceedings, vol. 46, pp. 3566–3571, Jan. 2021, doi:10.1016/J.MATPR.2021.01.333.; W. Chen, Q. Meng, H. Hao, J. Cui, and Y. Shi, “Quasi-static and dynamic tensile properties of fiberglass/epoxy laminate sheet,” Construction and Building Materials, vol. 143, pp. 247–258, Jul. 2017, doi:10.1016/J.CONBUILDMAT.2017.03.074.; S. Y. Voronina, T. A. Shalygina, V. D. Voronchikhin, A. Y. Vlasov, A. N. Ovchinnikov, and N. N. Grotskaya, “Data for determining the surface properties of carbon fiber in contact interaction with polymeric binders,” Data in Brief, vol. 35, p. 106847, Apr. 2021, doi:10.1016/J.DIB.2021.106847.; C. Colombo and L. Vergani, “Influence of delamination on fatigue properties of a fibreglass composite,” Composite Structures, vol. 107, no. 1, pp. 325–333, Jan. 2014, doi:10.1016/J.COMPSTRUCT.2013.07.028.; L. Wang, J. Zhang, X. Yang, C. Zhang, W. Gong, and J. Yu, “Flexural properties of epoxy syntactic foams reinforced by fiberglass mesh and/or short glass fiber,” Materials & Design, vol. 55, pp. 929–936, Mar. 2014, doi:10.1016/J.MATDES.2013.10.065.; J. Viña, J. Bonhomme, V. Mollón, I. Viña, and A. Argüelles, “Mechanical properties of fibreglass and carbon-fibre reinforced polyetherimide after twenty years of outdoor environmental aging in the city of Gijón (Spain),” Composites Communications, vol. 22, p. 100522, Dec. 2020, doi:10.1016/J.COCO.2020.100522.; A. Armanfard and G. W. Melenka, “Experimental evaluation of carbon fibre, fibreglass and aramid tubular braided composites under combined tension–torsion loading,” Composite Structures, vol. 269, p. 114049, Aug. 2021, doi:10.1016/J.COMPSTRUCT.2021.114049.; Z. Sun et al., “Temperature-dependent mechanical properties of polyetherimide composites reinforced by graphene oxide-coated short carbon fibers,” Composite Structures, vol. 270, p. 114075, Aug. 2021, doi:10.1016/J.COMPSTRUCT.2021.114075.; V. Amigó, J. J. Payá, M. D. Salvador, J. M. Monzó, F. Segovia, and V. Borrachero, “MATERIALES COMPUESTOS 05.”; S. C. Das et al., “On the use of wood charcoal filler to improve the properties of natural fiber reinforced polymer composites,” Materials Today: Proceedings, vol. 44, pp. 926–929, Jan. 2021, doi:10.1016/J.MATPR.2020.10.808.; S. Yousef, S. P. Subadra, P. Griškevičius, S. Varnagiris, D. Milcius, and V. Makarevicius, “Superhydrophilic functionalized graphene/fiberglass/epoxy laminates with high mechanical, impact and thermal performance and treated by plasma,” Polymer Testing, vol. 90, p. 106701, Oct. 2020, doi:10.1016/J.POLYMERTESTING.2020.106701.; P. Karthick, A. A. E. Andrews, K. Subbareddy, K. Basha, V. Harshavardhan, and S. G. S. K. Reddy, “Investigation of mandatory properties of NaOH – KMnO4 Treated Banana/Fiberglass Hybrid Composite,” Materials Today: Proceedings, vol. 37, no. Part 2, pp. 63–66, Jan. 2021, doi:10.1016/J.MATPR.2020.03.072.; S. Saroj, S. Nayak, and D. Kumar Jesthi, “Effect of hybridization of carbon/glass/flax/kenaf fibre composite on flexural and impact properties,” Materials Today: Proceedings, Apr. 2021, doi:10.1016/J.MATPR.2021.03.094.; H. A. S. y. M. A. P., «ANÁLISIS DE TECNOLOGÍAS DE MEDICIÓN DE NIVEL DE TANQUES DE PRODUCTOS USADOS EN LA INDUSTRIA PETROLERA,» 5 Diciembre 2003. [En línea]. Available: https://repositorio.utb.edu.co/bitstream/handle/20.500.12585/3407/0024835.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; C. A. V. AGUILAR, «DISEÑO DE UN SISTEMA DE MONITOREO DE NIVEL DE LOS TANQUES DE EMERGENCIA DE EMCALI TELECOMUNICACIONES,» 9 Diciembre 2013. [En línea]. Available: https://red.uao.edu.co/bitstream/handle/10614/5683/T03722.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; A. A. Naranjo, «Diseño de control de nivel por medio de una medición continua en los tanques de almacenamiento de ACPM en la empresa de Colcafe S.A.,» 7 Marzo 2018. [En línea]. Available: https://repositorio.itm.edu.co/bitstream/handle/20.500.12622/3975/Rep_Itm_pre_Arbelaez.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; P. R. Martín, «¿Qué es una central de generación eléctrica diésel?,» 11 Junio 2020. [En línea]. Available: https://www.tecnatom.es/blog/que-es-una-central-de-generacion-electrica-diesel/. [Último acceso: 26 Septiembre 2021].; F. O. C. GUERRERO, «GENERACIÓN DE ENERGÍA ELÉCTRICA CON UN MOTOR DE COMBUSTIÓN INTERNA USANDO BIODIESEL DE ACEITE DE PIÑÓN (Jatropha curcas),» 2015. [En línea]. Available: https://repositorio.lamolina.edu.pe/bitstream/handle/UNALM/2152/P06-C118-T.pdf?sequence=1&isAllowed=y. [Último acceso: 26 Septiembre 2021].; El pensante.com , «¿Qué es el ACPM?,» E-Cultura Group, 7 Abril 2016. [En línea]. Available: https://elpensante.com/que-es-el-acpm/. [Último acceso: 25 Septiembre 2021].; D. Plaza, «El gasóleo o gasoil: propiedades y tipos,» motor.es, s.f. [En línea]. Available: https://www.motor.es/que-es/gasoil#:~:text=Es%20un%20hidrocarburo%20l%C3%ADquido%20que,carbono%20por%2026%20de%20hidr%C3%B3geno). [Último acceso: 25 Septiembre 2021].; C. Ribeiro, «Cómo funciona la medición automática de combustible en los tanques y cómo su estación puede beneficiarse,» 9 Agosto 2017. [En línea]. Available: https://blog.gilbarco.com/latam/como-funciona-la-medicion-automatica-de-combustible-en-los-tanques. [Último acceso: 25 Septiembre 2021].; Nation Unies, «Prescriptions uniformes relatives à l’homologation des véhicules en ce qui concerne,» 16 Octubre 1995. [En línea]. Available: https://unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/r083r4f.pdf. [Último acceso: 25 Septiembre 2021].; U.S. Environmental Protection Agency, «Code Of Federal Regulations Part 1065—Engine-Testing Procedures.,» 17 Septiembre 2021. [En línea]. Available: https://www.ecfr.gov/recent-changes?search%5Bhierarchy%5D%5Btitle%5D=16&search%5Blast_modified_after%5D=2021-09-10. [Último acceso: 25 Septirmbre 2021].; Code Of Federal Regulations, «VEHICLE-TESTING PROCEDURES,» 28 Abril 2014. [En línea]. Available: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-U/part-1066. [Último acceso: 25 Septiembre 2021].; L. B. M. y. H. C. F. Melissa Ávila Dávila, «Análisis gravimétrico y volumétrico,» 26 Agosto 2011. [En línea]. Available: https://www.monografias.com/trabajos89/analisis-gravimetrico-y-volumetrico/analisis-gravimetrico-y-volumetrico.shtml. [Último acceso: 27 Septienbre 2021].; C. B. ,. J. G. H. Richard D Burke, «Critical evaluation of on-engine fuel consumption measurement,» Automobile Engineering, vol. 225, nº 6, p. 829–844, Junio 2011.; O. NUNIGE, «EVALUACION Y COMPARACION DE METODOS DE MEDICION CONSUMO DE COMBUSTIBLE PARA LABORATORIO Y RUTA EN UN VEHICULO LIVIANO,» 2018. [En línea]. Available: http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/9465/T629.2538%20N972.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; W. E. L. C. F. d. R. Cesar V. Vargas, «Sistemas de Comunicación Inalámbrica MIMO - OFDM,» RevActaNova, vol. 3, nº 4, pp. 750-760, 2007.; F. E. Vargas Silva, «Sistema Digital De Medición De Nivel De Combustible En El Tanque Del Generador Para El Radar De ESUFA.,» 7 Noviembre 2019. [En línea]. Available: https://catalogosibfa.hosted.exlibrisgroup.com/exlibris/aleph/a23_1/apache_media/NIK8N7VLBTRRSKEGTLYUM76FF5BIB8.pdf. [Último acceso: 26 Septiembre 2021].; Quonty, «Tecnología inalámbrica, ¿cuáles son las redes y los dispositivos que más la utilizan?,» 21 Febrero 2018. [En línea]. Available: https://www.quonty.com/blog/tecnologia-inalambrica/. [Último acceso: 27 Septiembre 2021].; Morales, «Qué es la transmisión Wifi,» 11 Octubre 2019. [En línea]. Available: https://www.ticarte.com/contenido/que-es-la-transmision-wifi. [Último acceso: 27 Septiembre 2021].; J. Borlongan, «Cómo funciona la tecnología WiFi,» s.f. [En línea]. Available: https://techlandia.com/funciona-tecnologia-wifi-como_10752/. [Último acceso: 27 Septiembre 2021].; runestone.academy, «¿Qué es programación?,» s.f. [En línea]. Available: https://runestone.academy/runestone/static/pythoned/Introduction/QueEsProgramacion.html. [Último acceso: 28 Septiembre 2021].; aprendiendoarduino.wordpress.com, «Programación Arduino,» 23 Enero 2017. [En línea]. Available: https://aprendiendoarduino.wordpress.com/2017/01/23/programacion-arduino-5/. [Último acceso: 28 Septiembre 2021].; Arduino.cl, «Software de Arduino,» Enero 2019. [En línea]. Available: https://arduino.cl/programacion/. [Último acceso: 28 Septiembre 2021].; Arduino, «Arduino UNO,» s.f. [En línea]. Available: https://arduino.cl/arduino-uno/. [Último acceso: 27 Septiembre 2021].; L. LLAMAS, «MEDIR DISTANCIA CON ARDUINO Y SENSOR DE ULTRASONIDOS HC-SR04,» 16 Junio 2015. [En línea]. Available: https://www.luisllamas.es/medir-distancia-con-arduino-y-sensor-de-ultrasonidos-hc-sr04/. [Último acceso: 27 Septiembre 2021].; naylampmechatronics.com, «SENSOR ULTRASONIDO HC-SR04,» s.f. [En línea]. Available: https://naylampmechatronics.com/sensores-proximidad/10-sensor-ultrasonido-hc-sr04.html. [Último acceso: 27 Septiembre 2021].; L. Llamas, «COMUNICACIÓN INALÁMBRICA A 2.4GHZ CON ARDUINO Y NRF24L01,» 8 Diciembre 2016. [En línea]. Available: https://www.luisllamas.es/comunicacion-inalambrica-a-2-4ghz-con-arduino-y-nrf24l01/. [Último acceso: 28 Septiembre 2021].; robots-argentina.com.ar, «Arduino: Comunicación inalámbrica con NRF24L01,» 25 Diciembre 2019. [En línea]. Available: http://robots-argentina.com.ar/didactica/arduino-comunicacion-inalambrica-con-nrf24l01/. [Último acceso: 28 Septiembre 2021].; the Secretary of the Air Force, «TECHNICAL AND MANAGERIAL REFERENCE FOR MOTOR VEHICLE MAINTENANCE,» Published Under Authority, USA, 2004.; B. R. Serra, «VOLUMEN DE UN PRISMA RECTANGULAR,» 2014. [En línea]. Available: https://www.universoformulas.com/matematicas/geometria/volumen-prisma-rectangular/. [Último acceso: 28 Septiembre 2021].; extraconversion.com, «Metros Cúbicos a US Galones Líquidos Calculadora de Conversión,» s.f. [En línea]. Available: http://extraconversion.com/es/volumen/metros-cubicos/metros-cubicos-a-us-galones-liquidos.html. [Último acceso: 28 Septiembre 2021].; J. C. Najar Pacheco, «Exposición del activo más valioso de la organización, la “información", Visión Electrónica, vol. 11, no. 1, pp. 107-115, 2017. https://doi.org/10.14483/22484728.12345.; Clincy, V., & Shahriar, H., Web Application Firewall: Network Security Models and Configuration. Proceedings - International Computer Software and Applications Conference, 1, 835–836. https://doi.org/10.1109/COMPSAC.2018.00144, 2018.; C. Ping. "A second-order SQL injection detection method". Digital Object Identifier System. https://doi.org/10.1109/ITNEC.2017.8285104, 2018.; Tovar Valencia, O. (s. f.). INYECCIÓN DE SQL, TIPOS DE ATAQUES Y PREVENCION EN ASP.NET-C#. Universidad Piloto de Colombia. http://polux.unipiloto.edu.co:8080/00002026.pdf.; Rajashree, A. K., Sherekar, S. S., & Thakare, V. M. Detection of SQL injection attacks by removing the parameter values of SQL query. IEEE Conference Publication %7C IEEE Xplore. https://ieeexplore.ieee.org/document/8398896, 2018.; Gestión, Tecnología. Uso de apps y visitas a sitios web de alto riesgo subieron 161% debido a COVID. Gestión Tecnología. https://gestion.pe/tecnologia/uso-de-apps-y- visitas-a-sitios-web-de-alto-riesgo-subieron-161-debido-a-covid-noticia/, 2020.; Castillo, A., OWASP Top 1 - Ataques por Inyección SQL. Seguridad Ofensiva. https://seguridad-ofensiva.com/blog/owasp-top-10/owasp-top-1/, 2020.; A7:2017-Cross-Site Scripting (XSS) %7C OWASP, https://owasp.org/www-project-top-ten/2017/A7_2017-Cross-Site_Scripting_(XSS), 2017.; Vulnerabilidades OWASP - Ciberseguridad informática - Seguridad informática para Empresas. (n.d.). https://antimalwares.es/tecnologias/vulnerabilidades-owasp.; W. A. Barbosa y D. A. Buelvas Peñarredonda, “Implementación de redes privadas virtuales en la mediana empresa", Visión Electrónica, vol. 4, no. 2, pp. 106-121, 2010. https://revistas.udistrital.edu.co/index.php/visele/article/view/282/5573.; N. A. Gómez-Cruz and C. E. Maldonado, “Sistemas bio-inspirados: un marco teórico para la ingeniería de sistemas complejos,” Ing. Sist. complejos. Compil. las Conf. Present. en la Cuarta Asam. la Red Cart. Ing., p., 2011.; Y. Leidy, O. López, D. Guillermo, and B. Benavides, “Plataformas Bionpiradas Tipo Lego En Un Ambiente Conocido.”; Y. Jian and Y. Li, “Research on intelligent cognitive function enhancement of intelligent robot based on ant colony algorithm,” Cogn. Syst. Res., vol. 56, pp. 203–212, 2019, doi:10.1016/j.cogsys.2018.12.014.; L. M. Layos, E. L. Mundo, and D. E. L. A. S. Hormigas, “HORMIGAS,” 2006.; J. Rolando, C. López, N. Johanna Hernández Suárez, A. Del Pilar, and R. Tibaduiza, “Sistema de transporte y embalaje utilizando robótica cooperativa basada en teoría de colonias de hormigas mediante plataforma Mindstorm de LEGO® Transportation and Packaging System Using Cooperative Robotics Based on Theory of Ants Colonies Using Platform,” vol. 6, no. 1, pp. 60–71, 2015, doi:10.14483/udistrital.jour.redes.2015.1.a04.; Jaffe, “Evolucion de Sistemas de Comunicacion Quimico en Hormigas (Hymenoptera: Formicidae),” Folia Entomológica Mexicana, vol. 61. pp. 189–203, 1984.; Y. Leidy, O. López, G. Duvan, and B. Benavides, “Implementación de un sistema multirobot basado en el comportamiento de las hormigas.”; M. Dc and G. Motor, “Tank Mobile Platform Instrution Manual,” no. 112.; Alibaba.com. (2021). Professional Outdoor Solar Powered Automatic Weather Station. Tomado de: https://www.alibaba.com/product-detail/Professional-Outdoor-Solar-Powered-Automatic-Weather_60492093064.html.; BBC. (2021). River flooding - causes and management. Tomado de: https://www.bbc.co.uk/bitesize/guides/zx9kfrd/revision/1#:~:text=Flooding%20occurs%20when%20a%20river,interactions%20can%20increase%20the%20risk.; Bourdeau-Brien, M., & Kryzanowski, L. (2020). Natural disasters and risk aversion. Journal of Economic Behavior & Organization, 177, 818–835. Tomado de: https://doi.org/https://doi.org/10.1016/j.jebo.2020.07.007.; Boustan, L. P., Kahn, M. E., Rhode, P. W., & Yanguas, M. L. (2020). The effect of natural disasters on economic activity in US counties: A century of data. Journal of Urban Economics, 118, 103257. Tomado de: https://doi.org/https://doi.org/10.1016/j.jue.2020.103257.; Campo, P. A., Zafra K. (2013). SISTEMA ELECTRÓNICO INALÁMBRICO DE ALERTA TEMPRANA Y MONITOREO DEL COMPORTAMIENTO DEL NIVEL DE LOS RÍOS DE BAJO COSTO (Tesis de grado). Universidad San Buenaventura de Cali. Tomado de: http://bibliotecadigital.usbcali.edu.co/bitstream/10819/2144/1/Sistema_Electronico_Inalambrico_Monitoreo_Campo_2013.pdf.; Cao, H., & Wachowicz, M. (2019). The design of an IoT-GIS platform for performing automated analytical tasks. Computers, Environment and Urban Systems, 74, 23–40. Tomado de: https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2018.11.004.; CEPAL. (2018). Situación de las estadísticas e indicadores de eventos extremos y desastres. Tomado de: https://www.cepal.org/sites/default/files/presentations/2018-06-2areu-expertos-ea-4_2-cepal-pleonard.pdf.; Colombia Reports. (2020). Fatal landslide blocks road between Colombia’s capital and Medellin. Tomado de: https://colombiareports.com/fatal-landslide-blocks-road-between-colombias-capital-and-medellin/.; Confluence. (2021). Sensor T/H/CE de suelo CERES - IoT. Tomado de: https://nazaries.atlassian.net/wiki/spaces/IOT/pages/4654272/Sensor+T+H+CE+de+suelo+CERES.; CORTOLIMA. (s.f). Pérdida de suelos. Corporación Autónoma Regional del Tolima. Tomado de: https://www.cortolima.gov.co/sites/default/files/images/stories/centro_documentos/pom_totare/diagnostico/m_212perdida_de_suelos_totare.pdf.; Datos abiertos. (2021). Gov.co - Datos abiertos. Tomado de: https://www.datos.gov.co/.; Dorado, J.E. (2020). SISTEMA DE MONITOREO Y CONTROL DE ALERTA TEMPRANA DEL DESBORDAMIENTO DE UN RÍO (Tesis de grado). Universidad Piloto de Colombia. Tomado de: http://repository.unipiloto.edu.co/bitstream/handle/20.500.12277/7475/TESIS%20DE%20GRADO.pdf?sequence=1&isAllowed=y.; Duan, X., Bai, Z., Rong, L., Li, Y., Ding, J., Tao, Y., Li, J., Li, J., & Wang, W. (2020). Investigation method for regional soil erosion based on the Chinese Soil Loss Equation and high-resolution spatial data: Case study on the mountainous Yunnan Province, China. CATENA, 184, 104237. Tomado de: https://doi.org/https://doi.org/10.1016/j.catena.2019.104237.; FAO (Food and Agriculture Organization of the United Nations). (s.f). Lang & Water. Universal Soil Loss Equation. Tomado de: http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1236441/.; FloodList. (2017). Colombia – 11 Departments Hit by Heavy Rain, Floods and Landslides. Tomado de: http://floodlist.com/america/colombia-11-departments-floods-march-2017.; FloodList. (2020). Colombia – Rains Trigger Deadly Landslide in Antioquia. Tomado de: http://floodlist.com/america/colombia-landslide-floods-antioquia-november-2020.; Humanitarian RESPONSE. (2018). Colombia: Snapshot Desastres Naturales 2017 - OCHA Services. Tomado de: https://www.humanitarianresponse.info/en/operations/colombia/infographic/colombia-snapshot-desastres-naturales-2017.; IDEAM. S.f. Datos IDEAM. IDEAM: Instituto de Hidrología, Meteorología y Estudios Ambientales. Tomado de: http://www.ideam.gov.co/.; Insurance Information Institute (iii). (2019). Current graph - World Natural Catastrophes, 2019. Tomado de: https://www.iii.org/graph-archive/96134.; Jimenez N, A. (2005). LA INVESTIGACIÓN DE SUELOS EROSIONADOS: MÉTODOS E ÍNDICES DE DIAGNÓSTICO. Minería y Geología, vol. 21, num 2, 2005, pp. 1-18. Tomado de: https://www.redalyc.org/pdf/2235/223516049002.pdf.; Kamatchi Sundari, V., Nithyashri, J., Kuzhaloli, S., Subburaj, J., Vijayakumar, P., & Subha Hency Jose, P. (2021). Comparison analysis of IoT based industrial automation and improvement of different processes – review. Materials Today: Proceedings. Tomado de: https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.338.; Kong, D., Lin, Z., Wang, Y., & Xiang, J. (2021). Natural disasters and analysts’ earnings forecasts. Journal of Corporate Finance, 66, 101860. Tomado de: https://doi.org/https://doi.org/10.1016/j.jcorpfin.2020.101860.; Local Government Association. (s.f). Flood risk and flood risk management. Tomado de: https://www.local.gov.uk/topics/severe-weather/flooding/flood-and-coastal-erosion-risk-management/flood-risk-and-flood-risk.; McIvor, I., Youjun, H., Daoping, L., Eyles, G., & Pu, Z. (2014). Agroforestry: Conservation Trees and Erosion Prevention (N. K. B. T.-E. of A. and F. S. Van Alfen (ed.); pp. 208–221). Academic Press. Tomado de: https://doi.org/https://doi.org/10.1016/B978-0-444-52512-3.00247-3.; NETWORKWORLD. (2020). What is IoT? The internet of things explained. Tomado de: https://www.networkworld.com/article/3207535/what-is-iot-the-internet-of-things-explained.html.; Newark. (2014). A Brief History of Single Board Computers - electronicdesign. Tomado de: https://www.newark.com/wcsstore/ExtendedSitesCatalogAssetStore/cms/asset/pdf/americas/common/NE14-ElectronicDesignUncovered-Dec14.pdf.; OCHA. (2018). COLOMBIA Desastres Naturales 2017. Tomado de: https://www.humanitarianresponse.info/sites/www.humanitarianresponse.info/files/documents/files/20180420_snapshot_desastres_naturales_2017_-_v2.pdf.; OMM. (2016). Laboratorio virtual de la OMM para la enseñanza y formación en meteorología satelital. OMM - Organización Meteorológica Mundial. Tomado de: https://public.wmo.int/es/resources/bulletin/laboratorio-virtual-de-la-omm-para-la-ense%C3%B1anza-y-formaci%C3%B3n-en-meteorolog%C3%ADa.; Organización Mundial de la Salud (OMS). (s.f). Acción sanitaria en las crisis humanitarias - Inundaciones. Tomado de: https://www.who.int/hac/techguidance/ems/floods/es/.; Organización Mundial de la Salud (OMS). (s.f). Acción sanitaria en las crisis humanitarias - Corrimientos de tierra. Tomado de: https://www.who.int/hac/techguidance/ems/landslides/es/.; Organization of American States (OAS). (s.f). La erosión hídrica y las crecidas. Tomado de: https://www.oas.org/dsd/publications/Unit/oea23s/ch16.htm.; Osenga, E. C., Arnott, J. C., Endsley, K. A., & Katzenberger, J. W. (2019). Bioclimatic and Soil Moisture Monitoring Across Elevation in a Mountain Watershed: Opportunities for Research and Resource Management. Water Resources Research, 55(3), 2493–2503. Tomado de: https://doi.org/https://doi.org/10.1029/2018WR023653.; Paulino, Â., Guimarães, L., & Shiguemori, E. (2019). Hybrid Adaptive Computational Intelligence-based Multisensor Data Fusion applied to real-time UAV autonomous navigation. INTELIGENCIA ARTIFICIAL, 22, 162–195. Tomado de: https://doi.org/10.4114/intartif.vol22iss63pp162-195.; Pellet, C. and Hauck, C. (2017) Monitoring soil moisture from middle to high elevation in Switzerland: set-up and first results from the SOMOMOUNT network, Hydrol. Tomado de: Earth Syst. Sci., 21, 3199–3220, https://doi.org/10.5194/hess-21-3199-2017.; PreventivoWeb. (s.f). Disaster Data & statistics. Tomado de: https://www.preventionweb.net/knowledgebase/disaster-statistics.; R2D3. (s.f). A visual introduction to machine learning. Tomado de: http://www.r2d3.us/visual-intro-to-machine-learning-part-1/.; Raspberrypi. (s.f). Raspberry Pi 3 Model B+. Tomado de: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/.; Reggio, G., Leotta, M., Cerioli, M., Spalazzese, R., & Alkhabbas, F. (2020). What are IoT systems for real? An experts’ survey on software engineering aspects. Internet of Things, 12, 100313. Tomado de: https://doi.org/https://doi.org/10.1016/j.iot.2020.100313.; Scikit-learn.org. (2021). Scikit-learn machine learning in python. Tomado de: https://scikit-learn.org/stable/index.html.; sdxcentral. (s.f). IoT Definitions & Basics. Tomado de: https://www.sdxcentral.com/5g/iot/definitions/.; Thangamani, T., Prabha, R., Prasad, M., Kumari, U., KV, R., & Abidin, S. (2021). IoT Defense Machine Learning: Emerging Solutions and Future Problems. Microprocessors and Microsystems, 104043. Tomado de: https://doi.org/https://doi.org/10.1016/j.micpro.2021.104043.; Thibaud, M., Chi, H., Zhou, W., & Piramuthu, S. (2018). Internet of Things (IoT) in high-risk Environment, Health and Safety (EHS) industries: A comprehensive review. Decision Support Systems, 108, 79–95. Tomado de: https://doi.org/https://doi.org/10.1016/j.dss.2018.02.005.; towards data science. (2017). Types of Machine Learning Algorithms You Should Know. Tomado de: https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861.; UNGRD. 2018. Implementación del Sistema Nacional de información para la gestión del riesgo de desastres. Tomado de: http://portal.gestiondelriesgo.gov.co/Documents/Proyectos-Inversion/2015/proyecto_sistema_integrado_informacion_2015_2018.pdf.; Universidad de Chile. (s.f). Laboratorio de Meteorología (LM - DGF). Tomado de: http://uchile.cl/i91300.; University, C. for H. and R. R.-C.-C., University, C. for I. E. S. I. N.-C.-C., & Bank, I. B. for R. and D.-T. W. (2005). Global Multihazard Mortality Risks and Distribution. NASA Socioeconomic Data and Applications Center (SEDAC). Tomado de: https://doi.org/10.7927/H41J97NM.; University, C. for H. and R. R.-C.-C., University, C. for I. E. S. I. N.-C.-C., & Bank, I. B. for R. and D.-T. W. (2005). Global Landslide Mortality Risks and Distribution. NASA Socioeconomic Data and Applications Center (SEDAC). Tomado de: https://doi.org/10.7927/H4JH3J4N.; Waze. (2021). Acerca de Waze: Mapas con datos de tráfico en tiempo real. Tomado de: https://www.waze.com/es/about.; World Health Organization. (s.f). Lanslides. Tomado de: https://www.who.int/health-topics/landslides#tab=tab_2.; Zhang, H., Zhang, R., Qi, F., Liu, X., Niu, Y., Fan, Z., Zhang, Q., Li, J., Yuan, L., Song, Y., Yang, S., & Yao, X. (2018). The CSLE model based soil erosion prediction: Comparisons of sampling density and extrapolation method at the county level. CATENA, 165, 465–472. Tomado de: https://doi.org/https://doi.org/10.1016/j.catena.2018.02.007.; E. A. Avila Gomez, A. M. Martinez Daza, y S. A. Pinzon, “Estado de arte sobre infraestructura telemática para el teletrabajo", Visión Electrónica, vol. 11, no. 2, pp. 261-278, 2017.; F. E. Pineda Torres y A. de J. Chica Leal, “Propuesta de un estimador de fallas usando fracciones coprimas", Visión Electrónica, vol. 9, no. 2, pp. 172-181, 2015. https://doi.org/10.14483/22484728.11025.; F. N. Giraldo Ramos, F. Gonzalez, y E. Camargo Casallas, “Algoritmos de procesamiento de imágenes satelitales con tranformada Hough", Visión Electrónica, vol. 5, no. 2, pp. 26-41, 2011. https://doi.org/10.14483/22484728.3568.; H. J. Eslava Blanco, N. Serrano P., y F. A. Castro, “Sistema de alerta de riesgos en hogares mediante SMS”, Visión Electrónica, vol. 6, no. 2, pp. 15-30, 2012. https://doi.org/10.14483/22484728.3883.; J. O. Castellanos Millán, V. H. Amarillo Calvo, y R. M. Poveda Chaves, “Problema de asignación quadrática (pac) sobre gpu a través de una pga maestro-esclavo”, Visión Electrónica, vol. 10, no. 2, pp. 179-183, 2016.; J. C. Najar-Pacheco, J. A. Bohada-Jaime, y W. Y. Rojas-Moreno, “Vulnerabilidades en el internet de las cosas", Visión Electrónica, vol. 13, no. 2, pp. 312-321, 2019.; J. A. Londoño Alzate, A. Fonseca Velásquez, y E. A. Delgadillo, “Laboratorios remotos: estudio de caso con una planta térmica didáctica", Visión Electrónica, vol. 12, no. 2, pp. 265-277, 2018. https://doi.org/10.14483/22484728.14263.; J. Cortina, J. López-Lezama, And N. Muñoz-Galeano, “Metaheurísticas Aplicadas Al Problema De Interdicción En Sistemas De Potencia,” Inf. Tecnológica, Vol. 29, No. 2, Pp. 73–88, Mar. 2018, Doi:10.4067/S0718-07642018000200073.; C. A. Mora, “Problema De Interdicción De La Red Eléctrica.” Universidad Distrital Francisco José De Caldas, Bogotá, D. C., P. 16, 2020, [Online]. Available: Https://Drive.Google.Com/File/D/1qxg7pvhy1dndz9sgr0qug4ldnyzmpi5-/View?Usp=Sharing.; B. Mundial And Colombia, Análisis De La Gestión Del Riesgo De Desastres En Colombia, Primera. Bogotá, D. C.: Equilatero, 2012.; V. A. Gómez, R. A. Peña, And C. Hernández, “Identificación Y Localización De Fallas En Sistemas De Distribución Con Medidores De Calidad Del Servicio De Energía Eléctrica,” Inf. Tecnol., Vol. 23, No. 2, Pp. 109–116, 2012, Doi:10.4067/S0718-07642012000200013.; F. Olivari, “Diseño, Construcción Y Prueba De Un Sensor Sísmico Para Edificaciones.” Valparaiso, Nov. 2017, Accessed: Nov. 11, 2020. [Online]. Available: Http://Opac.Pucv.Cl/Pucv_Txt/Txt-2500/Ucc2795_01.Pdf.; C. Bonilla And Y. Gonzales, “Dispositivo De Adquisición De Señales Sísmicas”, Visión Electrónica, 2019, Accessed: Nov. 11, 2020. [Online]. Available: Http://Repository.Udistrital.Edu.Co/Bitstream/11349/22441/1/Bonillaseguracamilaalejandra2019.Pdf.; F. Torres And K. Chaca, “Diseño E Implementación De Un Digitalizador Sísmico De 4 Canales Con Acceso Ip,” Universidad De Cuenca, 2015.; D. García, J. Rio, D. Toma, And M. Blanco, “Array Sísmico Inalámbrico Y De Parámetros Ambientales Para La Caracterización De Precursores De Actividad Volcánica,” Universitat Politecnica De Catalunya, 2017.; Á. Herrera, “Prototipo Hardware De Bajo Coste Para La Alerta Sísmica Temprana Local,” 2016.; G. Martinez, “Diseño Y Construcción De Un Prototipo De Detección De Fallas Serie Para Disminuir El Tiempo De Interrupciones En El Sistema Eléctrico De Distribución,” Escuela Politécnica Nacional, 2019.; V. A. Gómez, R. A. Peña, And C. Hernández, “Identificación Y Localización De Fallas En Sistemas De Distribución Con Medidores De Calidad Del Servicio De Energía Eléctrica,” Inf. Tecnol., Vol. 23, No. 2, Pp. 109–116, 2012, Doi:10.4067/S0718-07642012000200013.; "Redes Sin", Xm, 2020, Accessed: Dic. 9, 2020. [En línea]. Available: Https://Www.Xm.Com.Co/Paginas/Transmision/Redes-Sistema-Interconectado-Nacional.Aspx.; R. Chokshi, “MPU-6000 and MPU-6050 Register Map and Descriptions Revision 4.0 MPU-6000/MPU-6050 Register Map and Descriptions,” MPU-6000 MPU-6050 Regist. Map Descr., vol. 1, no. 408, p. 48, 2012.N. Wolfberg, “Storage and retrieval for image and video databases”, SPIE Proceedings, pp. 27-32, 1993.; InvenSense Inc., “MPU-9150 Register Map and Descriptions,” vol. 1, no. 408, pp. 1–52, 2013.; “Raspberry pi foundation", Raspberrypi.org, 2020. [En linea]. Disponible en: https://www.raspberrypi.org.; VMware, “¿Qué son las redes definidas por software (SDN)? %7C Glosario de VMware %7C ES.” https://www.vmware.com/es/topics/glossary/content/software-defined-networking.html (accessed Sep. 22, 2021).; Citrix, “¿Qué son las redes definidas por software (SDN)? - Citrix Mexico.” https://www.citrix.com/es-mx/solutions/app-delivery-and-security/what-is-software-defined-networking.html (accessed Sep. 22, 2021).; M. Marchetti, “The road to riches,” Sales Mark. Manag., vol. 150, no. 10, p. 128, 2013, doi:10.2307/j.ctvc77cz1.22.; M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Software-Defined Networking Security: Pros and Cons,” IEEE Commun. Mag., vol. 53, no. September, pp. 48–54, 2015, doi:10.1109/MCOM.2015.7120048.; A. Feghali, R. Kilany, and M. Chamoun, “SDN security problems and solutions analysis,” Int. Conf. Protoc. Eng. ICPE 2015 Int. Conf. New Technol. Distrib. Syst. NTDS 2015 - Proc., 2015, doi:10.1109/NOTERE.2015.7293514.; S. Sidhu and H. Gupta, “A Security Mechanism for Software Defined Vulnerabilities,” 2019 4th International Conference on Information Systems and Computer Networks, ISCON 2019, pp. 59–62, 2019, doi:10.1109/ISCON47742.2019.9036247.; A. Pradhan and R. Mathew, “Solutions to Vulnerabilities and Threats in Software Defined Networking (SDN),” Procedia Comput. Sci., vol. 171, no. 2019, pp. 2581–2589, 2020, doi:10.1016/j.procs.2020.04.280.; F. W. Sanabria Navarro, J. G. Bustos, and W. E. Castellanos Hernández, “Adaptive video transmission over software defined networks,” Visión electrónica, vol. 13, no. 1, pp. 152–161, Feb. 2019, doi:10.14483/22484728.14398.; J. C. Najar Pacheco, “Exposición del activo más valioso de la organización, la ‘información,’” Visión electrónica, vol. 11, no. 1, pp. 107–115, Jun. 2017, doi:10.14483/22484728.12345.; A. M. Felicísimo, «Conceptos básicos, modelos y simulación.,» 2009. [En línea]. Available: http://www6. uniovi. es/~ feli/CursoMDT/Tema_1. pdf. [Último acceso: 10 Agosto 2021].; N. M. Chirinos y S. R. González, «Consideraciones teórico-epistémicas acerca del concepto de modelo,» Telos, vol. 13, nº 1, pp. 51-64, 2011.; E. López Moreno, Construcción de ciudades más equitativas. Políticas públicas para la inclusión en América Latina., Bogotá: CAF, 2014.; J. Linares-García, A. Hernández-Quirama y H. M. Rojas-Betancur, «Accesibilidad espacial e inclusión social: experiencias de ciudades incluyentes en Europa y Latinoamérica,» Civilizar: Ciencias Sociales y Humanas, vol. 18, nº 35, pp. 115-128, 2018.; É. A. López López y É. L. Álvarez-Aros, «Estrategia en ciudades inteligentes e inclusión social del adulto mayor,» Paakat: Revista de Tecnología y Sociedad, vol. 11, nº 20, pp. 1-29, 2021.; J. A. IREGUI DUARTE, «INCLUSIÓN DIGITAL: UN ANÁLISIS DE LA ESTRATEGIA DE TELETRABAJO EN BOGOTÁ,» PONTIFICIA UNIVERSIDAD JAVERIANA, BOGOTÁ D.C., 2018.; CMSI, «Declaración de Principios. Construir la Sociedad de la Información: un desafío global para el nuevo milenio,» CMSI, Ginebra, 2004.; K. Frey, «Gobernanza electrónica urbana e inclusión digital: experiencias en ciudades europeas y brasileñas,» Nueva Sociedad, nº 196, pp. 109-124, 2005.; D. Dávila, «Inclusión digital en colombia: Un análisis del plan vive digital I,» Pontificia Universidad Javeriana, Bogotá D.C., 2017.; F. Duarte y H. F. Pires, «INCLUSIÓN DIGITAL, TRES CONCEPTOS CLAVE: CONECTIVIDAD, ACCESIBILIDAD, COMUNICABILIDAD,» REVISTA ELECTRÓNICA DE RECURSOS EN INTERNET SOBRE GEOGRAFÍA Y CIENCIAS SOCIALES, nº 150, 2011.; E. Van der Klift y N. Kunc, «Beyond benevolence: Friendship and the politics of help,» de Creativity and collaborative learning: A practical guide to empowering students and teachers, Baltimore, Paul Brookes, 1994, pp. 391-401.; M. Sapon-Shevin, «La inclusión real: Una perspectiva de justicia social,» Revista de Investigación en Educación, vol. 3, nº 11, pp. 71-85, 2013.; G. A. Toledo, «Accesibilidad digital para usuarios con limitaciones visuales,» Universidad Nacional de la Plata, 2012.; Comisión Europea, «Aprovechar las TIC para la acción social: un programa de voluntariado digital,» Unión Europea, Luxemburgo, 2014.; E. M. Tapia, E. Munguia, «Activity recognition in the home setting using simple and ubiquitous sensors,» de international conference on pervasive computing, Berlin, Heidelberg, Springer Berlin Heidelberg, 2004, pp. 158--175.; C. Liming et al, «Sensor-based activity recognition,» IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, nº 6, pp. 790 - 808, 2012.; N. Wei et al, «Human activity detection and recognition for video surveillance,» de 2004 IEEE International Conference on Multimedia and Expo (ICME), IEEE, 2004, pp. 719--722.; M. S. Ryoo, «Human activity prediction: Early recognition of ongoing activities from streaming videos,» de 2011 International Conference on Computer Vision, IEEE, 2011, pp.; M. S. Ryoo, «Human activity prediction: Early recognition of ongoing activities from streaming videos,» de 2011 International Conference on Computer Vision, IEEE, 2011, pp. 1036--1043.; R. Nishkam, D. Nikhil et al., «Activity recognition from accelerometer data,» de Aaai, 2005, pp. 1541--1546.; Intille, L. Bao and S. S., «Activity recognition from user-annotated acceleration data,» de International conference on pervasive computing, 2004.; N. Belapurkar, S. Sagar and A. Baris, «The Case for Ambient Sensing for Human Activity Detection,» de Proceedings of the 8th International Conference on the Internet of Things, New, York, 2018.; D. Anguita et al, International workshop on ambient assisted living, Springer, 2012.; E. Kim, S. Helal and D. Cook, «Human activity recognition and pattern discovery,» IEEE Pervasive Computing/IEEE Computer Society [and] IEEE Communications Society, vol. 9, nº1, p. 48, 2010.; B. P. Clarkson, Life patterns: structure from wearable sensors, Massachusetts Institute of Technology, 2002.; J. Shotton, T. Sharp et al., «Real-time Human Pose Recognition in Parts from Single Depth Images,» Commun. ACM, vol. 56, nº 1, pp. 116--124, 2013.; R. Poppe, «A survey on vision-based human action recognition,» Image and vision computing, vol. 28, nº 6, pp. 976--990, 2010.; J. K Aggarwal and M. S. Ryoo, «Human activity analysis: A review,» ACM Computing Surveys (CSUR), vol. 43, nº 3, p. 16, 2011.; D. Weinland, R. Ronfard and Ed Boyer, «A survey of vision-based methods for actionrepresentation, segmentation and recognition,» Computer vision and image understanding, vol. 115, nº 2, pp. 224 -- 241, 2011.; V. Argyriou, M. Petrou and S. Barsky, «Photometric stereo with an arbitrary number of illuminants,» Computer Vision and Image Understanding, vol. 14, nº 8, pp. 887--900, 2010.; R. Chavarriaga, H. Sagha et al, «The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition,» Pattern Recognition Letters, vol. 34, nº 15, pp. 2033--2042, 2013.; T. Plötz, N. Y. Hammerla and P. Oliver, «Feature Learning for Activity Recognition in Ubiquitous Computing» de Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, AAAI Press, 2011, pp. 1729--1734.; A. Ferscha and F. Mattern, Pervasive Computing: Second International Conference, PERVASIVE 2004, Linz, Vienna: Springer, 2004.; N. Ravi, D. Nikhil et al, «Activity recognition from accelerometer data,» de Aaai, 2005, pp. 1541--1546.; L. B. a. S. Intille, «Activity recognition from user-annotated acceleration data,» de International conference on pervasive computing, 2004.; G. Z. Yang, and M. Yacoub, Body Sensor Networks. 2006, London: Springer, 2006.[22]. D. Anguita, A. Ghio et al, «A Public Domain Dataset for Human Activity Recognition using Smartphones,» de 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), 2013.; D. Roggen, K. Forster at al, «OPPORTUNITY: Towards opportunistic activity and context recognition systems,» de 2009 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks \& Workshops, 2009.; A. M. Khan, Y-K. Lee et al, «Human activity recognition via an accelerometer-enabled smartphone using kernel discriminant analysis,» de 2010 5th international conference on future information technology, 2010.; J. Reyes-Ortiz, L. Oneto et al, «Transition-aware human activity recognition using smartphones,» Transition-aware human activity recognition using smartphones, vol. 171, pp. 754--767, 2016.; S. I. Yang and S. B. Cho, «Recognizing human activities from accelerometer and physiological sensors,» de 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008.; R. Poovandran, «Human activity recognition for video surveillance,» de 2008 IEEE International Symposium on Circuits and Systems, 2008.; C. T. a. V. Hlavac, «Pose primitive based human action recognition in videos or still images,» de 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.; J. S. Caros, O. Chetelat, P. Celka et al, «Very low complexity algorithm for ambulatory activity classification,» de EMBEC, 2005.; M. F. Bin Abdullah et al, «Classification Algorithms in Human Activity Recognition using Smartphones,» World Academy of Science, Engineering and Technology International Journal of Biomedical and Biological Engineering, vol. 6, nº 1, 2012.; O. D. Lara and M. A. Labrador, «A survey on human activity recognition using wearable sensors,» pp. 1192-1209, 2013.; N. Robertson and I. Reid, «A general method for human activity recognition in video,» Computer Vision and Image Understanding, vol. 104, nº 2-3, pp. 232--248, 2006.; C. Thurau and V Hlavac, «Pose primitive based human action recognition in videos or still images,» de 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.; R. Poovsndran, «Human activity recognition for video surveillance,» de 2008 IEEE International Symposium on Circuits and Systems, 2008.; W. Niu, J. Long, D. Han and W. Yuan-Fang , «Human Activity Detection and Recognition for Video Surveillance,» 2004 IEEE International Conference on Multimedia and Expo (ICME), vol. 1, pp. 719-722, 2004.; J. M. Ermes, J. Parkka, J. Mantyjarvi, and I. Korhonen, «Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions,» TITB, vol. 12, nº 1, pp. 20--26, 2008.; X. Long, B. Yin and R. M. Aarts, «Singleaccelerometer-based daily physical activity classification,» de EMBS, 2009.; D. Karantonis, M. Narayanan, M. Mathier, et al, «Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring,» TITB, vol. 10, nº 1, pp. 156-167, 2006.; E. Heinz, K. Kunze, M. Gruber et al, «Using wearable sensors for Real-Time recognition tasks in games of martial arts - an initial experiment,» de GIC´06, 2006.; H. Markus, H. Takafumi, et al, «Chi-ball, an interactive device assisting martial arts,» de CHI´03, 2003.; J. Liao,Y. Bi and C. Nugent , «Activity recognition for smart Homes using Dempster-Shafer theory of evidence based on a revised lattice structure,» de 2010 Sixth International Conference on Intelligent Environments, 2010.; F. Cicirelli,G. Fortino, A. giordano et al, «On the design of smar homes framework for activyty recpgnition in home environment,» journal of medical systems, vol. 40, nº 9, p. 200, 2016.; S. C. Mukhopadhyay, «Wearable sensors for human activity monitoring: A review,» IEEE Sensors Journal, vol. 15, p. 1321–1330, 2015.; A. Reiss and D. Stricker, «Introducing a new benchmarked dataset for activity monitoring,» de International Symposium on Wearable Computers, 2012.; W. H. Wu, A. A. Bui, M.A. Batalin et al, «MEDIC: medical embedded device for individualized care,» Artificial Intelligence in Medicine, vol. 42, nº 2, pp. 137-152, 2008.; E. V. Someren, B. Vonk, W. Thijssen, J. Speelman et al, «A new actigraph for long-term registration of the duration and intensity of tremor and movement,» Biomedical Engineering, vol. 45, nº 3, pp. 386395, 1998.; D. J. Walker, P. S. Heslop, C. J. Plummer, et al, «A continuous patient activity,» Physiological Measurement, vol. 18, nº 1, pp. 49-59, 1997.; N. Hu, Z. Lou, G. Englebienne and B. Kröse, B., «Learning to Recognize Human Activities from Soft Labeled Data,» de Robotics: Science and Systems X, Berkeley, 2014.; G. Wu and S. Xue, «Portable preimpact fall detector with inertial sensors,» Neural Systems and Rehabilitation Engineering IEEE Transactions on,, vol. 16, nº 2, p. 178–183, 2008.; H. J. Busser, J. Ott, R. C. van Lummel et al, «Ambulatory monitoring of children’s activity,» Medical Engineering & Physics, vol. 19, nº 5, pp. 440-445, 1997.; B. G. Steele, B. Belza, K. Cain, C. Warms,, «Bodies in motion: Monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease,» Rehabilitation Research and Development, vol. 40, nº 5, 2003.; S. Bosch, M. Marin-Perianu, et al, «Keep on moving! activity monitoring and stimulation using wireless sensor networks,» de European Conference on Smart Sensing and Context, 2009.; F. Chen, Q. Zhong and F. Cannella, «Hand gesture modeling and recognition for human and robot interactive assembly using hidden markov models,» International Journal of Advanced Robotic Systems, vol. 12, nº 4, p. 48, 2015.; Ministerio de Minas y Energía, [En línea]. Available: https://www.minenergia.gov.co/ [Ultimo acceso: 24 agosto 2021].; Instituto de Planificación y Promoción de Soluciones Energéticas para Zonas no Interconectadas IPSE, [En línea]. Available: https://ipse.gov.co/ [Último acceso: 24 08 2021].; Unidad de Planeación Minero-Energética, [En línea]. Available: https://www1.upme.gov.co/Paginas/default.aspx [Último acceso: 24 08 2021].; Comisión de Regulación de Energía y Gas, [En línea]. Available: https://www.creg.gov.co/ [Último acceso: 6 septiembre 2021].; La Cámara Colombiana de Energía, [En línea]. Available: https://www.ccenergia.org.co/ [Ultimo acceso: 08 septiembre 2021].; Fondo de Energías No Convencionales y Gestión Eficiente de la Energía [En línea]. Available: https://fenoge.com/ [Último acceso: 7 septiembre 2021].; A. M. M. H. A. Al Hasib, «A Comparative Study of the Performance and Security Issues of AES and RSA Cryptography,» de Convergence Information Technology, International Conference, Finlandia, 2008.; Shamir R.L. Rivest and L. Adleman, (1978). A Method for Obtaining Digital Signatures and PublicKey Cryptosystems, Magazine Communications of the ACM, 1978.Volumen 21 págs. 120–126. https://doi.org/10.1145/359340.359342.; Castro Lechtaler, A., Cipriano, M., García, E., Liporace, J., Maiorano, A., Malvacio, E. and Tapia, N., (2021). Estudio de técnicas de criptoanálisis.XXI Workshop de Investigadores en Ciencias de la Computación. [online] Sedici.unlp.edu.ar. Available at: http://sedici.unlp.edu.ar/handle/10915/77269.; J. C. Mendoza T, «Universidad Politecnica Salesiana de Ecuador,» [En línea]. Available: https://dspace.ups.edu.ec/bitstream/123456789/8185/1/Demostraci%C3%B3n%20de%20cifrado%2 0sim%C3%A9trico%20y%20asim%C3%A9trico.pdf.; W. Dent, «Hybrid Cryptography,» 3 Junio 2009. [En línea]. Available: https://eprint.iacr.org/2004/210.ps.; Escobar Molero Gabriel. (2011). Clúster de alto rendimiento en un cloud: ejemplo de aplicación en criptoanálisis de funciones hash. Universidad de Almería. pg 60. http://repositorio.ual.es/bitstream/handle/10835/1202/PFC.pdf?sequence=1.; A. Pousa, «Universidad Nacional de la Plata,» Diciembre 2011. [En línea]. Available: https://postgrado.info.unlp.edu.ar/wp-content/uploads/2014/07/Pousa_Adrian.pdf.; A. Lenstra, «Key Lengths,» [En línea]. Available: https://infoscience.epfl.ch/record/164539/files/NPDF-32.pdf.; R. Avinash, A. Potnis, S. Kumar, P. Dwivedy y S. Soofi, «Internation Journal Of Engineering Research and Applications,» Agosto 2017. [En línea]. Available: http://www.ijera.com/papers/Vol7_issue8/Part-1/O0708019094.pdf.; A. Faget, «What are Cryptographic Signatures? %7C Introduction to the Most Common Schemes,» 14 Noviembre 2018. [En línea]. Available: https://coindoo.com/what-are-cryptographic-signaturesintroduction-to-the-most-common-schemes/.; Goldreich, O. (2000). Modern Cryptography, Probabilistic Proofs and Pseudorandomness (Second Edition - author's copy). Springer.pag 1-2, consultado en http://www.wisdom.weizmann.ac.il/~oded/PDF/mcppp-v2.pdf.; Muñoz, R., Muñoz, R., & completo, V. (2021). Algoritmo RSA en aplicación web. Retrieved 12 July 2021, from http://criptografiaverm1.blogspot.com/2013/07/tarea-5-algoritmo-rsa-en-aplicacionweb.html.; Eslava Blanco, H. J., Rocha, J. F., & Morales, J. I. (2011). Estudio de tráfico sobre una plataforma de virtualización. Visión electrónica, 5(2), 78-94. https://doi.org/10.14483/22484728.3572.; Congreso de Colombia. ley 1636 de 2013.; Lei Chen and Nansheng Yao, "Publishing Linked Data from relational databases using traditional views," 2010 3rd International Conference on Computer Science and Information Technology, 2010, pp. 9-12, doi:10.1109/ICCSIT.2010.5563576.; Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M. A., Saggion, H., Petrak, J., Li, Y., y Peters, W. (2017). Text Processing with GATE (Version 6).; C. Gardent and S. Narayan Multiple Adjunction in Feature-Based Tree-Adjoining Grammar In Computational Linguistics, Volume 41, Issue 1 - March 2015.; LM Vilches-Blázquez, B Villazón-Terrazas, O Corcho, A Gómez-Pérez. International Journal of Digital Earth 7 (7), 554-575, 2014.; R. Jessop, “El Futuro del Estado Capitalista”, Madrid: Ed. Catarata, Pag.124,2007.; M. Castells e Himanen, “Modelos de Desarrollo en la Era Global de la Información: Construcción de un Marco Analítico” en Castells e Himanen “reconceptualización del desarrollo en la era global de la información”. Santiago de Chile: FCE, Pag. 27, 2017.; C. H. Caicedo y A. Smida, “Intensidad informacional para la longitudinalidad asistencial en sistemas de salud", Visión Electrónica, vol. 10, no. 1, pp. 83-95, 2016. https://doi.org/10.14483/22484728.11612.; J. Van Dijck, “La Cultura de la Conectividad”, Siglo XXI. Bs. A. Pag 268, 2016.; S. Zuboff, “Atrapados en la era del capitalismo de Vigilancia y la Economía Predictiva”, El Espectador, p. 20, enero 10, 2020.; P. Virno, “Cuando el Verbo se hace Carne”. Madrid: Mapas, p.20, 2005.; E. Sadin, “La Siliconización del Mundo”, Bs As: Caja Negra, p.108, 2018.; M. Doueihi, “La Gran Conversión Digital”, Bs. As.: F.C.E. p. 21, 2010.; R. Echeverría. “Ontología del Lenguaje”, Chile: JC Sáez editor, Pag. 24 1997.; J.F. Lyotard, “La condition postmoderne: rapport sur le savoir”. París: Minuit, 1979.; O. Dallera, “La sociedad como sistema de comunicación. La teoría sociológica de Niklas Luhmann en 30 lecciones”, Buenos Aires: editorial Biblos, 2012.; S. Rozas,” Lenguaje y performatividad”, Psicología, Conocimiento y Sociedad, vol 6, no.2, pp. 280-298, 2016.; J. L. Austin, “Cómo hacer cosas con palabras”, Barcelona: Paidós, 1982.; S. Belli, R. Harré, L. Íñiguez, “Emociones en la tecnociencia: la performance de la velocidad”, Prisma Social, 3, pp. 1-41, 2009.; A. Heller, “Sociología de la vida cotidiana”, J. F. Yvars y E. Pérez Nadal (trads.). Barcelona: Península, 1977.; L. F. Aguilar, “En torno del concepto de racionalidad de Max Weber”, en l. Olivé, “Racionalidad Ensayos sobre la racionalidad en ética y política, ciencia y tecnología”, México: Siglo XXI Editores, Coediciones Temas: Ética, Filosofía política, Instituto de Investigaciones Filosóficas, 1988.; M. Weber, “El problema de la irracionalidad en las ciencias sociales”, Madrid: Tecnos, 192 p. 1985.; N. Luhmann, “Organización y decisión. Autopoiesis, acción y entendimiento comunicativo”, Rubí (Barcelona): Anthropos, 2005.; C.H., Caicedo E, “Fortalecimiento de la Gestión de la Investigación y la Extensión, condición para el avance del Sistema Nacional de Innovación”. Documento presentado como requisito para cambio de categoría de Profesor Asistente a Profesor Asociado, Bogotá: Facultad de Ingeniería de la Universidad Nacional de Colombia, 2006.; J. March, H. A. Simon, “Teoría de la organización”, Barcelona: Ariel Economía, 1980.; Joffre, Aurégan, Chédotel y Tellier, “Le Management Stratégique per le Projet”, París: Economica, P.45, 2006.; J. Neré, “Le Management de Projet”, Paris: Puf, p.4, 2015.; Garel, Giard y Midler, “Faire de la Recherche en Management de Projet”, París: FNEGE, Vuibert, p.1, 2004.; AMBROSE, W., Parallel translation of Riemannian curvature. Ann. of Math., 64, 337363. 1956.; APOSTOL TOM, Calculus vol. 1 y 2. Segunda edición. Reverté. 1982.; BERGER - GAUDUCHON - MAZET, Le Spectre d′une Varieté Rie- mannianne. Springer - Verlag. New York. 1971.; DO CARMO, M., Differential Geometry of Curves and Super- faces. Printece - Hall, New Jersy. 1976.; DO CARMO, M., Geometría Riemanniana. 2a Ed. Rio de Janeiro. Brasil. 1988.; CARTAN, E., Lecons sur la Géométrie des Espaces de Riemann (2‘eme édition). Paris, Gauthier-Villard. 1951.; FOMENKO, A. T., Symplectic Geometry. Moscuw. 1998.; FRANKEL, T., The Geometry of Physics. Cambrige University. 2001.; GALLOT-HULLIN-LAFONTAINE, Riemannian Geometry. 2a ed., Springer. 1990.; GUILLEMIN & POLLACK, Differential Topology. Prentice - Hall. 1974.; LIPSCHUTS MARTIN, Differential Geometry. Mc Graw-Hill. 1969. (Hay versión en Español).; HOWARDS H., HUTCHINGS M., MORGAN F., The isoperimetric Problem on surfaces. Monthly, vol. 106, Number 5, (1999) 430 - 439.; LIMA, ELON LARGE, Curso de Análise. Vol. 1 y 2. Terceira Ed. IMPA-Brasil. 1981.; MUNKRES JAMES, TOPOLOGY a first course. Prentice-Hall.New Jersey. 1975. (Hay versión en Español).; MUNKRES JAMES, Elements of Algebraic Topology. Addison- Wesley. 1984.; MYERS, S. B., Riemannian manifolds with positive mean cur- vatura. Duke Math. J., 8, 401-404. 1941.; NASH, J. F., The imbedding problem for Riemannian manifolds. Ann. of. Math., 63, 2063. 1956.; O’NEILL, B., Semi-Riemannianan Geometry: Aplication to Rela- tivity. University of California. Los Angeles California. Academic Press. 1983. 468 páginas.; POOR, W., Differential Geometric Structures. Dover Publications. New York. 1981.; RIEMANN, B.,Über die Hypothesen, welche der Geometrie zu Grunde liegen. Nature, 8 (183-184), 14-17, 36, 37. 1854.; SPIVAK, M., A comprehensive Introduction to DIFFERENTIAL GEOMETRY. Publish or Perish. 1990. 2.785 páginas en 5 volumenes.; SPIVAK, M., Cálculo en Variedades. Reverté. 1975.; WARNER F. W., Foundations of Differentiable Manifolds and Lie Groups. Springer. 1983.; A. Mouthon, “Los Beneficios de la Inteligencia Artificial,” 2017. https://www.eleconomista.es/firmas/noticias/8716667/11/17/Beneficios-de-la-inteligencia-artificial.html (accessed May 06, 2021).; A. Garcia-Serrano and S. Ossowski, “Inteligencia Artificial Distribuida y Sistemas Multiagentes,” Inteligencia Artificial, vol. 2, no. 6, pp. 1–6, 1998, doi:10.4114/ia.v2i6.614.; A. Turing, “Mind a Quarterly Review of Psychology and Philosophy,” Mind, vol. 8, no. 2, pp. 145– 166, 1899, doi:10.1093/mind/VIII.2.145.; M. A. Salichs, M. Malfaz, and J. F. Gorostiza, “Toma de Decisiones en Robótica,” Revista Iberoamericana de Automática e Informática Industrial RIAI, vol. 7, no. 4, pp. 5–16, 2010, doi:10.1016/s1697-7912(10)70055-8.; M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “Describing textures in the wild,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3606–3613, 2014, doi:10.1109/CVPR.2014.461.; Tensorflow, “TensorFlow 2 Detection Model Zoo.” https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo. md (accessed May 05, 2021).; L. F. Mahecha, N. F. Conde, H. Vacca-González, “Implementación de Redes Neuronales y Procesamiento de Imágenes en el Movimiento de Robots Modulares Tipo Cadena. SOMI XXXV Congreso de Instrumentación CDMX, México, 27 al 29 de octubre de 2021.; R. A. Valdesueiro, “Muestreo digital”, p. 12.; A. Hashemi Fath, F. Madanifar, y M. Abbasi, “Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems”, Petroleum, vol. 6, núm. 1, pp. 80–91, mar. 2020, doi:10.1016/j.petlm.2018.12.002.; L. O. González Salcedo, A. P. Guerrero Zúñiga, S. Delvasto Arjona, y A. L. E. Will, “Artificial Neural Model based on radial basis function networks used for prediction of compressive strength of fiber-reinforced concrete mixes”, Cien.Ing.Neogranadina, vol. 29, núm. 2, pp. 37–52, jun. 2019, doi:10.18359/rcin.3737.; A. Sudou, P. Hartono, R. Saegusa, y S. Hashimoto, “Signal reconstruction from sampled data using neural network”, en Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing, Martigny, Switzerland, 2002, pp. 707–715, doi:10.1109/NNSP.2002.1030082.; A. Ugena, “THE NEWTON NEURAL NET: A NEW APPROXIMATING NETWORK”, Int. J. of Pure and Appl. Math., vol. 82, núm. 4, feb. 2013, doi:10.12732/ijpam.v82i4.13.; N. M. Khan, “Audio Signal Reconstruction Using Cartesian Genetic Programming Evolved Artificial Neural Network (CGPANN)”, p. 6.; L. H. C. Casallas, E. H. M. Alfonso, y M. L. C. Martínez, “Clasificación de Plasmodium Falciparum por estadio en cultivos sincrónicos de eritrocitos”, Visión electrónica, vol. 5, núm. 1, Art. núm. 1, may 2011, doi:10.14483/22484728.3519.; J. A. P. Plaza, D. R. Zapata, y A. T. Tascón, “Implementación de redes neuronales utilizando dispositivos lógicos programables”, Visión electrónica, vol. 1, núm. 1, Art. núm. 1, jun. 2008, doi:10.14483/22484728.250.; O. L. Ramos, D. A. Rojas, y L. A. Góngora, “Reconocimiento de patrones de habla usando MFCC y RNA”, Visión electrónica, vol. 10, núm. 1, Art. núm. 1, jun. 2016, doi:10.14483/22484728.11712.; E. J. G. Monterroza, “Reconocimiento de primitivas 3D, usando autocorrelación y ANFIS”, Visión electrónica, vol. 1, núm. 1, Art. núm. 1, 2008, doi:10.14483/22484728.251.; L. F. P. Martínez, Ó. F. C. Camargo, y J. E. Roa, “Estudio comparativo de técnicas artificiales para la predicción de una serie de tiempo caótica”, Visión electrónica, vol. 2, núm. 2, Art. núm. 2, dic. 2008, doi:10.14483/22484728.792.; A. E. Díaz y L. A. Calderón, “Modelo tridimensional de extremidad inferior basado en imágenes de resonancia magnética”, Visión electrónica, vol. 3, núm. 1, Art. núm. 1, jun. 2009, doi:10.14483/22484728.686.; Ahl´en, J., Sundgren, D., Bengtsson, E.: Application of underwater hyperspectraldata for color correction purposes. Pattern Recognition and Image Analysis 17 (3 2007). https://doi.org/10.1134/S105466180701021X .; Arnold-Bos, A., Malkasse, J.P., Kervern, G.: A preprocessing framework for auto- matic underwater images denoising (3 2005), https://hal.archives-ouvertes.fr/hal- 00494314.; Bazeille, S., Quidu, I., Jaulin, L., Malkasse, J.P.: Automatic underwater image preprocessing. Proceedings of CMM’06 (4 2006).; Cetto, A.M.: La luz: en la naturaleza y en el laboratorio. Fondo de Cultura Econ´omica (2019).; Chambah, M., Semani, D., Renouf, A., Coutellemont, P., Rizzi, A.: Underwa- ter color constancy: Enhancement of automatic live fish recognition (2004), https://hal.archivesouvertes.fr/hal-00263734.; Iqbal, K., Odetayo, M., James, A., Salam, R.A., Talib, A.Z.H.: Enhancing the low quality images using unsupervised colour correction method. IEEE (10 2010). https://doi.org/10.1109/ICSMC.2010.5642311.; Jaffe, J.: Computer modeling and the design of optimal underwater imaging systems. IEEE Journal of Oceanic Engineering 15 (4 1990). https://doi.org/10.1109/48.50695.; McGlamery, B.L.: A computer model for underwater camera systems (3 1980). https://doi.org/10.1117/12.958279.; Schechner, Y., Karpel, N.: Recovery of underwater visibility and structure by polarization analysis. IEEE Journal of Oceanic Engineering 30 (7 2005). https://doi.org/10.1109/JOE.2005.850871.; Sears, F.W., Zemansky, M.W., Young, H.D., Freedman, R.A., Flores Flores, V.A., Rubio Ponce, A.: Fisica universitaria. Addison-Wesley; Pearson Educacion, Mexico (2009), oCLC: 991818413.; Serway, R.A.: Física para ciencias e ingenieria. McGraw-Hill, Mexico (2002), oCLC: 807250137.; Trucco, E., Olmos-Antillon, A.: Self-tuning underwater image restoration. IEEE Journal of Oceanic Engineering 31 (4 2006). https://doi.org/10.1109/JOE.2004.836395.; Wikipedia: Patron de muar´e — wikipedia, la enciclopedia libre (2020).; Pérez, M. A. A. (2009). Espacios De Color RGB, HSI Y Sus Generalizaciones A NDimensiones. PhD thesis, InstitutoNacional de Astrofísica, Óptica y Electrónica.; O. Ronneberger, P. Fischer, y T. Brox, «U-Net: Convolutional Networks for Biomedical Image Segmentation», CoRR, vol. abs/1505.04597, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1505.04597.; V. Badrinarayanan, A. Kendall, y R. Cipolla, «SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation», CoRR, vol. abs/1511.00561, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1511.00561.; S. Liu y W. Deng, «Very deep convolutional neural network based image classification using small training sample size», en 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), 2015, pp. 730-734. doi:10.1109/ACPR.2015.7486599.; J. Long, E. Shelhamer, y T. Darrell, «Fully Convolutional Networks for Semantic Segmentation», CoRR, vol. abs/1411.4038, 2014, [En línea]. Disponible en: http://arxiv.org/abs/1411.4038.; C. Szegedy et al., «Going Deeper with Convolutions», CoRR, vol. abs/1409.4842, 2014, [En línea]. Disponible en: http://arxiv.org/abs/1409.4842.; H. Zhao, J. Shi, X. Qi, X. Wang, y J. Jia, «Pyramid Scene Parsing Network», CoRR, vol. abs/1612.01105, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1612.01105.; K. He, X. Zhang, S. Ren, y J. Sun, «Deep Residual Learning for Image Recognition», CoRR, vol. abs/1512.03385, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1512.03385.; L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, y A. L. Yuille, «DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs», IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, n.o 4, pp. 834-848, 2018, doi:10.1109/TPAMI.2017.2699184.; L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, y A. L. Yuille, «DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs», CoRR, vol. abs/1606.00915, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1606.00915.; L.-C. Chen, G. Papandreou, F. Schroff, y H. Adam, «Rethinking Atrous Convolution for Semantic Image Segmentation», CoRR, vol. abs/1706.05587, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1706.05587.; R. Girshick, J. Donahue, T. Darrell, y J. Malik, «Rich feature hierarchies for accurate object detection and semantic segmentation». 2014.; R. Girshick, «Fast R-CNN». 2015.; S. Ren, K. He, R. Girshick, y J. Sun, «Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks». 2016.; T.-Y. Lin, P. Goyal, R. Girshick, K. He, y P. Dollor, «Focal Loss for Dense Object Detection». 2018.; W. Liu et al., «SSD: Single Shot MultiBox Detector», Lect. Notes Comput. Sci., p. 21-37, 2016, doi:10.1007/978-3-319-46448-0_2.; J. Redmon y A. Farhadi, «YOLO: Real-Time Object Detection». 2018.; J. Redmon y A. Farhadi, «YOLO9000: Better, Faster, Stronger». 2016.; J. Redmon y A. Farhadi, «YOLOv3: An Incremental Improvement». 2018.; F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, y K. Keutzer, «SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \textless1MB model size», CoRR, vol. abs/1602.07360, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1602.07360.; A. G. Howard et al., «MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications», CoRR, vol. abs/1704.04861, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1704.04861.; M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, y L.-C. Chen, «Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation», CoRR, vol. abs/1801.04381, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1801.04381.; G. Huang, S. Liu, L. van der Maaten, y K. Q. Weinberger, «CondenseNet: An Efficient DenseNet using Learned Group Convolutions», CoRR, vol. abs/1711.09224, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1711.09224.; X. Zhang, X. Zhou, M. Lin, y J. Sun, «ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices», CoRR, vol. abs/1707.01083, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1707.01083.; N. Ma, X. Zhang, H.-T. Zheng, y J. Sun, «ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design», CoRR, vol. abs/1807.11164, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1807.11164.; M. Tan, B. Chen, R. Pang, V. Vasudevan, y Q. V. Le, «MnasNet: Platform-Aware Neural Architecture Search for Mobile», CoRR, vol. abs/1807.11626, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1807.11626.; M. Tan y Q. V. Le, «EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks», CoRR, vol. abs/1905.11946, 2019, [En línea]. Disponible en: http://arxiv.org/abs/1905.11946.; M. Cordts et al., «The Cityscapes Dataset for Semantic Urban Scene Understanding». 2016.; J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, y L. Fei-Fei, «ImageNet: A Large-Scale Hierarchical Image Database», 2009.; K. C. L. Wong, M. Moradi, H. Tang, y T. F. Syeda-Mahmood, «3D Segmentation with Exponential Logarithmic Loss for Highly Unbalanced Object Sizes», CoRR, vol. abs/1809.00076, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1809.00076.; M. Willett, “Lessons of the SolarWinds Hack,” Survival (Lond)., vol. 63, no. 2, 2021, doi:10.1080/00396338.2021.1906001.; H. S. Lallie et al., “Cyber security in the age of COVID-19: A timeline and analysis of cyber-crime and cyber-attacks during the pandemic,” Comput. Secur., vol. 105, 2021, doi:10.1016/j.cose.2021.102248.; J. Aguirre, CURSO DE SEGURIDAD INFORMÁTICA Y CRIPTOGRAFÍA, vol. 3.1. 2003.; E. Biham and A. Shamir, “Differential cryptanalysis of DES-like cryptosystems,” J. Cryptol., vol. 4, no. 1, 1991, doi:10.1007/BF00630563.; J. Daemen and V. Rijmen, “AES proposal: Rijndael,” no. December, 1999.; N. Velasquez and N. Pineda, “Diseño e Implementacion de un Prototipo Criptoprocesador AES-Rijndael en FPGA,” Universidad de Los Llanos, 2007.; A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, and A. Poschmann, “PRESENT: An Ultra-Lightweight Block Cipher.; J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw, “The LED block cipher,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2011, vol. 6917 LNCS, doi:10.1007/978-3-642-23951-9_22.; F. Velásquez and J. F. Castaño, “Cryptographic Implementations for Fpga,” Rev. Visión Electron., vol. 5, no. 1, pp. 26–37, 2011.; F. Velásquez and J. A. Castaño, “Implementation of binary finite fields towers of extension 2,” Rev. Visión Electrónica, vol. 7, no. 2, pp. 89–96, 2013.; W. Enríquez, P. Nazate, and O. Marcillo, “Prototipo DAS basado en FPGA de 12 canales para monitoreo geodinámico,” Visión electrónica, vol. 12, no. 1, pp. 73–82, 2018, doi:10.14483/22484728.13782.; C. A. HERNANDEZ and E. JACINTO, “a New Methodology in the Design of Digital Filters Fir on Fpga,” Rev. Visión Electron., vol. 3, no. 2, pp. 40–47, 2009.; L. W. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, “THE SIMON AND SPECK FAMILIES OF LIGHTWEIGHT BLOCK CIPHERS,” Natl. Secur. Agency, p. 42, 2013.; P. Maene and I. Verbauwhede, “Single-cycle implementations of block ciphers,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9542, pp. 131–147, 2016, doi:10.1007/978-3-319-29078-2_8.; S. Abed, R. Jaffal, B. J. Mohd, and M. Alshayeji, “FPGA modeling and optimization of a SIMON lightweight block cipher,” Sensors (Switzerland), vol. 19, no. 4, 2019, doi:10.3390/s19040913.; A. Shahverdi, M. Taha, and T. Eisenbarth, “Lightweight Side Channel Resistance: Threshold Implementations of Simon,” IEEE Trans. Comput., vol. 66, no. 4, pp. 661–671, 2017, doi:10.1109/TC.2016.2614504.; S. B. Basturk, C. E. J. Dancer, and T. McNally, “High-throughput Configurable SIMON Architecture for Flexible Security,” Pharmacol. Res., p. 104743, 2020, doi:10.1016/j.mejo.2021.105085.; A. Muthumari et al., “High security for de-duplicated big data using optimal SIMON Cipher,” Comput. Mater. Contin., vol. 67, no. 2, pp. 1863–1879, 2021, doi:10.32604/cmc.2021.013614.; W. Diehl, A. Abdulgadir, J. P. Kaps, and K. Gaj, “Comparing the cost of protecting selected lightweight block ciphers against differential power analysis in low-cost FPGAs,” Computers, vol. 7, no. 2, pp. 128–135, 2018, doi:10.3390/computers7020028.; FAO, «Objetivos de Desarrollo Sostenible», Agenda 2030 para el desarrollo sostenible, 2021. http://www.fao.org/sustainable-development-goals/overview/fao-and-post-2015/sustainableagriculture/es/.; G. Spencer, Fundamentos de Acuaponía. 2018.; R. Adhikari, S. Rauniyar, N. Pokhrel, A. Wagle, T. Komai, y S. R. Paudel, «Nitrogen recovery via aquaponics in Nepal: current status, prospects, and challenges», SN Appl. Sci., vol. 2, n.o 7, 2020, doi:10.1007/s42452-020-2996-5.; P. Carneiro, A. Maria, M. Nunes, y R. Ujimoto, «Aquaponia: produção sustentável de peixes e vegetais», en Embrapa Tabuleiros Costeiros, 2015.; A. Caldas, I. Castillo, S. Prado, L. Rosales, y L. Vargas, «Diseño y construcción de sistemas acuapónicos a pequeña escala para familias de la región Piura», Pirhua, p. 205, 2019, [En línea]. Disponible en: https://pirhua.udep.edu.pe/handle/11042/4285.; C. M. Correa y J. F. Valencia, «Configuración de un control de temperatura en un sistema embebido de bajo costo, usando herramientas de inteligencia artificial y el internet de las cosas», Rev. Iber. Sist. y Tecnol. Inf., n.o 34, pp. 68-84, 2019, doi:10.17013/risti.34.68-84.; V. Jahnavi y S. Ahamed, «Red inteligente de sensores inalámbricos para invernaderos automatizados», IETE J. Res., vol. 61, n.o 2, pp. 180-185, 2015.; I. Lee y K. Lee, «The Internet of Things (IoT): Applications, investments, and challenges for enterprises», Bus. Horiz., vol. 58, n.o 4, pp. 431-440, 2015, doi:10.1016/j.bushor.2015.03.008.; E. Barrientos, D. Rico, L. A. Coronel, y F. R. Cuesta, «Granja inteligente: Definición de infraestructura basada en internet de las cosas, IpV6 y redes definidas por software», Rev. Ibérica Sist. e Tecnol. Informação, vol. E17, pp. 183-197, 2019.; F. Simanca, J. Paez, J. Cortés, E. Díaz, y J. Palacio, «Sistema de riego para cultivos controlado mediante una aplicación de IoT», Rev. Ibérica Sist. e Tecnol. Inf., pp. 410-424, 2020, [En línea]. Disponible en: www.estudioscualitativos.ec.; E. A. Q. Montoya, S. F. J. Colorado, W. Y. C. Muñoz, y G. E. C. Golondrino, «Propuesta de una Arquitectura para Agricultura de Precisión Soportada en IoT», RISTI - Rev. Iber. Sist. e Tecnol. Inf., n.o 24, pp. 39-56, 2017, doi:10.17013/risti.24.39-56.; S. M. A. Aguirre, D. R. M. Rivadeneira, L. R. G. Torrealba, L. D. N. Erazo, F. I. Rivas-Echeverría, y D. M. R. Albarran, «Metodología para el almacenamiento y visualización de datos masivos en invernadero basado en el Internet de las Cosas IoT.», Rev. Ibérica Sist. e Tecnol. Informação, n.o E15, pp. 1-12, 2018, [En línea]. Disponible en: https://search.proquest.com/docview/2041143320?accountid=134127%0Ahttp://link.periodicos.capes. gov.br/sfxlcl41?url_ver=Z39.882004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&genre=unknown&sid=ProQ:ProQ%3Ahightechjournals& atitle=Metodología+para+el+almacenam; G. E. Chanchí, L. M. Sierra, y W. Y. Campo, «Propuesta de una plataforma académica portable para la construcción de microservicios en entornos de IoT», Rev. Ibérica Sist. e Tecnol. Informação, n.o E27, pp. 1-13, 2020.; J. A. Brenes Carranza, A. Martínez Porras, C. U. Quesada López, y M. Jenkins Coronas, «Sistemas de apoyo a la toma de decisiones que usan inteligencia artificial en la agricultura de precisión», Rev. Ibérica Sist. y Tecnol. la Inf. núm E28, pp. 217-229, n.o 28, pp. 217-230, 2020.; A. Bárta, P. Soucek, V. Bozhynov, y P. Urbanová, «Automatic Multiparameter Acuisition in Aquaponics Systems», en 5th International Work-Conference, IWBBIO 2017 Granada, Spain, April 26– 28, 2017, Proceedings, Part II, 1.a ed., Springer, Ed. Granada, 2017, pp. 712-725.; O. A. O. Valero, P. A. R. Trujillo, N. L. M. Valderrama, M. E. de Oliveira, y A. R. B. Tech, «Monitoreo remoto automatizado de calidad del agua en sistemas acuapónicos en Sao Paulo, Brasil», Rev. Ibérica Sist. e Tecnol. Informação, n.o E31, pp. 223-235, 2020, [En línea]. Disponible en: http://ezproxy.unal.edu.co/scholarly-journals/monitoreo-remoto-automatizado-de-calidad-delagua/docview/2468684076/se-2?accountid=137090.; K. J. Keesman, O. Körner, K. Wagner, J. U. Urban, D. Karimanzira, y S. Rauschenbach, Thomas , Goddek, «Aquaponics Systems Modelling», en Aquaponics Food Production Systems, 1.a ed., Springer, Ed. Cham, 2019, pp. 273-299.; A. Ahmed, S. Zulfiqar, A. Ghandar, Y. Chen, M. Hanai, y G. Theodoropoulos, «Digital Twin Technology for Aquaponics: Towards Optimizing Food Production with Dynamic Data Driven Application Systems», en Methods and Applications for Modeling and Simulation of Complex Systems. 19th Asia Simulation Conference, AsiaSim 2019 Singapore, October 30 – November 1, 2019 Proceedings, Singapur: Springer, 2019, pp. 3-14.; Haryanto, M. Ulum, A. F. Ibadillah, R. Alfita, K. Aji, y R. Rizkyandi, «Smart aquaponic system based Internet of Things (IoT)», J. Phys. Conf. Ser., vol. 1211, n.o 1, 2019, doi:10.1088/17426596/1211/1/012047.; M. Dayahna Caro M., E. Romero-Riaño, M. Alexandra Espinosa C, y C. D. Guerrero, «Evaluando contribuciones de usabilidad en soluciones TIC-IOT para la agricultura: Una perspectiva desde la bibliometría», RISTI - Rev. Iber. Sist. e Tecnol. Inf., vol. 2020, n.o E28, pp. 681-692, 2020, [En línea]. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.085081040306&partnerID=40&md5=f59611d7803425f519635fe4470fdaca.; P. Rituay Trujillo, N. L. Murga Valderrama, M. D. P. Bustos Chavéz, P. Chauca Valqui, y J.-A. Campos Trigoso, «Evolución y tendencias investigativas de tecnologías aplicadas en los agronegocios : una revisión sistemática de la literatura», Iber. J. Inf. Syst. Technol., vol. 39, pp. 189-199, 2021.; S. F. Mejía S., L. Y. Flóres G., y C. D. Guerrero S., «Desarrollo tecnológico del IoT en el sector de la agricultura : una visión desde el análisis de patentes», Rev. Ibérica Sist. e Tecnol. Informação, n.o 28, pp. 375-386, 2020.; L. A. Rodríguez-umaña, «efectos de la variación de caudal sobre los niveles de amonio , nitrato y pH de un prototipo de cultivo acuapónico Evaluation of the effects of varying water flow on the levels of Ammonium , Nitrate and Ph of a prototype aquaponic system . Avaliação dos e», vol. 7, n.o 2, pp. 126-138, 2016.; M. Eck, K. Oliver, y M. H. Jijakli, «Nutrient Cycling in Aquaponics Systems», en Aquaponics Food Production Systems, 1ra ed., S. Goddek, A. Joyce, B. Kotzen, y G. Burnell M., Eds. Switzerland: Springer Nature Switzerland, 2020, pp. 231-246.; M. Á. Barrera Pérez, N. Y. Serrato Losada, E. Rojas Sánchez, y G. Mancilla Gaona, «Estado del arte en redes definidas por software (SDN)», Visión Electrónica, vol. 13, n.o 1, pp. 178-194, 2019, doi: https://doi.org/10.14483/22484728.14424.; J. C. Najar-Pacheco, J. A. Bohada-Jaime, y W. Y. Rojas-Moreno, «Vulnerabilidades en el internet de las cosas», Visión Electrónica, vol. 13, n.o 2, pp. 312-321, 2019, doi: https://doi.org/10.14483/22484728.14424.; J. A. Londoño Alzate, A. Fonseca Velásquez, y E. A. Delgadillo, «Laboratorios remotos: estudio de caso con una planta térmica didáctica», Visión Electrónica, vol. 12, n.o 2, pp. 265-277, 2018, doi: https://doi.org/10.14483/22484728.14263.; I. J. Donado Romero y J. C. Villamizar Rincón, «“Metodología para estandarización de componentes SCADA bajo normas ISA», Visión Electrónica, vol. 12, n.o 1, pp. 14-21, 2018, doi: https://doi.org/10.14483/22484728.13402.; O. L. Quintero, H. Medina, y E. A. Pineda Muñoz, «Automatización para dosificación de reactivos en clasificación de carbón», Visión Electrónica, vol. 11, n.o 1, pp. 45-54, 2017, doi: https://doi.org/10.14483/22484728.10995.; C. González, D. Zamara, S. R. González B, I. F. Mondragón B, y M. Moreno, «Inspección no invasiva de Physalis peruviana usando técnicas (Vir/Nir)», Visión Electrónica, vol. 10, n.o 1, pp. 22-28, 2016, doi: https://doi.org/10.14483/22484728.11702.; L. E. Galindo C, A. A. Aguilera, y L. A. Rojas Castellar, «Automatización en la industria de bolígrafos: El caso del estampado», Visión Electrónica, vol. 5, n.o 1, pp. 103-113, 2011, doi: https://doi.org/10.14483/22484728.3512.; A. Garcia Chacon, J. L. Martínez Rodríguez, y E. Y. Torres Castro, «Automatización de procesos en el sector plásticos: el caso de una inyectora», Visión Electrónica, vol. 2, n.o 2, pp. 52-63, 2008, [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/796.; Zamora Musa, Ronald, y “Laboratorios Remotos: Actualidad y Tendencias Futuras." Scientia Et Technica XVII, no. 51 (2012):113-118. Redalyc, https://www.redalyc.org/articulo.oa?id=84923910017.; C. I. Jiménez, «Propuesta pedagógica para el uso de laboratorios virtuales como actividad complementaria en las asignaturas teórico-prácticas,» Revista Mexicana De Investigación Educativa, 2014.; Nacional, M. d. (2 de septiembre de 2020). Ministerio de Educación Nacional. Obtenido de https://www.mineducacion.gov.co/1759/w3-article-400640.html?_noredirect=1.; Ramírez, E. A. (2014). Una Mirada Crítica al Papel de las TIC en la Educación Superior. Ibagué: Universidad del Tolima; A. F. Reinoso López y J. C. Forero Jiménez, «Diseño e implementación de un laboratorio con características de acceso remoto orientado hacia el calentamiento de agua» Universidad Distrital Francisco José de Caldas, Bogotá, 2021.; N. LabVIEW, «NI home,» [En línea]. Available: https://www.ni.com/academic/students/learnlabview/esa/environment.htm.; S. C. Giselle, «Laboratorio virtual y remoto, aprendiendo a través de la experimentación, » Universidad Tecnológica Nacional, 2017.; Heradio, R. et al. Virtual and remote labs in education: A bibliometric analysis. Computers & Education, Volume 98, 2016, Pages 14-3.; Unai H.J.; Javier G. Zubia. Remote measurement and instrumentation laboratory for training in real analog electronic experiments. Measurement, Volume 82, 2016, Pages 123-134.; B.R. Poorna chandra, K.P. Geevarghese, K.V. Gangadharan. Design and Implementation of Remote Mechatronics Laboratory for e-Learning Using LabVIEW and Smartphone and Cross-platform Communication Toolkit (SCCT), Procedia Technology, Volume 14, 2014, Pages 108-115.; Van Wylen, G. J.; Sonntag, R. E. Fundamentals of Classical Thermodynamics. Ed. John Wiley & Sons: Singapore, 3ra. edición, 1985.; Petrescu, R. V. V., Aversa, R., Apicella, A., Mirsayar, M., Kozaitis, S., Abu-Lebdeh, T. y Tiberiu Petrescu, F. I. (2017). The Inverse Kinematics of the Plane System 2-3 in a Mechatronic MP2R System, by a Trigonometric Method. Journal of Mechatronics and Robotics, 1(2), 75–87. https://doi.org/10.3844/jmrsp.2017.75.87.; Y Sethi, S. P., Sriskandarajah, C., Sorger, G., Blazewicz, J. y Kubiak, W. (1992). Sequencing of parts and robot moves in a robotic cell. International Journal of Flexible Manufacturing Systems, 4(3-4), 331–358. https://doi.org/10.1007/bf01324886.; Blazewicz, J., Eiselt, H.A., Finke, G., Laporte, G., Weglarz, J., 1991. Scheduling tasks and vehicles in a flexible manufacturing system. International Journal of Flexible Manufacturing Systems 4, 5–16.; Deuerlein, C., Müller, F., Seßner, J., Heß, P., & Franke, J. (2021). Improved design flexibility of open robot cells through tool-center-point monitoring. Procedia CIRP, 100, 295–300. https://doi.org/10.1016/j.procir.2021.05.069.; Veiga, G., Pires, J. N. y Nilsson, K. (2009). Experiments with service-oriented architectures for industrial robotic cells programming. Robotics and Computer-Integrated Manufacturing, 25(4-5), 746– 755. https://doi.org/10.1016/j.rcim.2008.09.001.; Zhao, Q., Sun, M., Cui, M., Yu, J., Qin, Y., & Zhao, X. (2015). Robotic Cell Rotation Based on the Minimum Rotation Force. IEEE Transactions on Automation Science and Engineering, 12(4), 1504– 1515. https://doi.org/10.1109/tase.2014.2360220.; G. Michalos, S. Makris, P. Tsarouchi, T. Guasch, D. Kontovrakis, G. Chryssolouris, Design Considerations for Safe Human-robot Collaborative Workplaces, in: Understanding the life cycle implications of manufacturing, 2015, pp. 248–253.; E. Magrini, F. Ferraguti, A.J. Ronga, F. Pini, A. de Luca, F. Leali, Human-robot coexistence and interaction in open industrial cells, in: Journal of Robotics and Computer-Integrated Manufacturing, 2019, p. 101846.; datasheet PCA9685PW. (2009, 16 de julio). DigChip IC database.; Zamora Navarro, F. J., & Valiente Cristancho, A. (2015). Tasa de muestreo ADC en microcontroladores avanzados de 8 bits. Visión electrónica, 9(1), 128-138. https://doi.org/10.14483/22484728.11022.; García-Guerrero, E., Inzunza-González, E., López-Bonilla, O., Cárdenas-Valdez, J., & TleloCuautle, E. (2020). Randomness improvement of chaotic maps for image encryption in a wireless communication scheme using PIC-microcontroller via Zigbee channels. Chaos, Solitons & Fractals, 133, 109646. https://doi.org/10.1016/j.chaos.2020.109646.; I2C - Puerto, Introducción, trama y protocolo - HETPRO/TUTORIALES. (s. f.). HETPRO/TUTORIALES. https://hetpro-store.com/TUTORIALES/i2c/.; Z. Boric and B. Markovic, "The talking thermometer simulator based on the DS1820 sensor and PIC18F45K22 microcontroller," 2012 20th Telecommunications Forum (TELFOR), 2012, pp. 544-547, doi:10.1109/TELFOR.2012.6419268.; Corke, P. I. (1996). A robotics toolbox for MATLAB. IEEE Robotics and Automation Magazine, 3(1), 24–32. https://doi.org/10.1109/100.486658.; Y. Fang and X. Chen, "Design and Simulation of UART Serial Communication Module Based on VHDL," 2011 3rd International Workshop on Intelligent Systems and Applications, 2011, pp. 1-4, doi:10.1109/ISA.2011.5873448.; Calderón Acero, J., & Parra Garzón, I. V. (2010). Controladores difusos en microcontroladores: software para diseño e implementación. Visión electrónica, 4(2), 64-76. https://doi.org/10.14483/22484728.273.; D’Souza, A., Vijayakumar, S., & Schaal, S. (2001). Learning inverse kinematics. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium (Cat. No.01CH37180). Published. https://doi.org/10.1109/iros.2001.973374.; R. Junge, B. König, M. Villarroel, T. Komives, and M. H. Jijakli, “Strategic points in aquaponics,” Water (Switzerland). 2017, doi:10.3390/w9030182.; C. Maucieri et al., “Life cycle assessment of a micro aquaponic system for educational purposes built using recovered material,” J. Clean. Prod., vol. 172, pp. 3119–3127, 2018, doi: https://doi.org/10.1016/j.jclepro.2017.11.097.; B. König, J. Janker, T. Reinhardt, M. Villarroel, and R. Junge, “Analysis of aquaponics as an emerging technological innovation system,” J. Clean. Prod., 2018, doi:10.1016/j.jclepro.2018.01.037.; Z. Hu, J. W. Lee, K. Chandran, S. Kim, A. C. Brotto, and S. K. Khanal, “Effect of plant species on nitrogen recovery in aquaponics,” Bioresour. Technol., vol. 188, pp. 92–98, 2015, doi: https://doi.org/10.1016/j.biortech.2015.01.013.; W. Kloas et al., “A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts,” Aquac. Environ. Interact., 2015, doi:10.3354/aei00146.; C. Maucieri et al., “Life cycle assessment of a micro aquaponic system for educational purposes built using recovered material,” J. Clean. Prod., 2018, doi:10.1016/j.jclepro.2017.11.097.; Y. Wei, W. Li, D. An, D. Li, Y. Jiao, and Q. Wei, “Equipment and Intelligent Control System in Aquaponics: A Review,” IEEE Access. 2019, doi:10.1109/ACCESS.2019.2953491.; Z. M. Gichana, D. Liti, H. Waidbacher, W. Zollitsch, S. Drexler, and J. Waikibia, “Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation,” Aquaculture International. 2018, doi:10.1007/s10499-018-0303-x.; W. A. Lennard and B. V. Leonard, “A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic test system,” Aquac. Int., 2006, doi:10.1007/s10499-006-9053-2.; I. Pinheiro et al., “Aquaponic production of Sarcocornia ambigua and Pacific white shrimp in biofloc system at different salinities,” Aquaculture, 2020, doi:10.1016/j.aquaculture.2019.734918.; Z. Schmautz et al., “Tomato productivity and quality in aquaponics: Comparison of three hydroponic methods,” Water (Switzerland), 2016, doi:10.3390/w8110533.; J. Dalsgaard, I. Lund, R. Thorarinsdottir, A. Drengstig, K. Arvonen, and P. B. Pedersen, “Farming different species in RAS in Nordic countries: Current status and future perspectives,” Aquac. Eng., vol. 53, pp. 2–13, 2013, doi: https://doi.org/10.1016/j.aquaeng.2012.11.008.; J. Suhl et al., Prospects and challenges of double recirculating aquaponic systems (DRAPS) for intensive plant production, vol. 1227. 2018.; H. R. Roosta and M. Hamidpour, “Effects of foliar application of some macro- and micronutrients on tomato plants in aquaponic and hydroponic systems,” Sci. Hortic. (Amsterdam)., vol. 129, no. 3, pp. 396–402, 2011, doi: https://doi.org/10.1016/j.scienta.2011.04.006.; Y. Fang et al., “Improving nitrogen utilization efficiency of aquaponics by introducing algalbacterial consortia,” Bioresour. Technol., vol. 245, pp. 358–364, 2017, doi: https://doi.org/10.1016/j.biortech.2017.08.116.; B. S. Cerozi and K. Fitzsimmons, “Phosphorus dynamics modeling and mass balance in an aquaponics system,” Agric. Syst., vol. 153, pp. 94–100, 2017, doi: https://doi.org/10.1016/j.agsy.2017.01.020.; D. Karimanzira, K. J. Keesman, W. Kloas, D. Baganz, and T. Rauschenbach, “Dynamic modeling of the INAPRO aquaponic system,” Aquac. Eng., vol. 75, pp. 29–45, 2016, doi: https://doi.org/10.1016/j.aquaeng.2016.10.004.; C. Lee and Y.-J. Wang, “Development of a cloud-based IoT monitoring system for Fish metabolism and activity in aquaponics,” Aquac. Eng., vol. 90, p. 102067, 2020, doi: https://doi.org/10.1016/j.aquaeng.2020.102067.; M. Manju, V. Karthik, S. Hariharan, and B. Sreekar, “Real time monitoring of the environmental parameters of an aquaponic system based on internet of things,” 2017, doi:10.1109/ICONSTEM.2017.8261342.; A. R. Yanes, P. Martinez, and R. Ahmad, “Towards automated aquaponics: A review on monitoring, IoT, and smart systems,” Journal of Cleaner Production. 2020, doi:10.1016/j.jclepro.2020.121571.; K. S. Khan, R. Kunz, J. Kleijnen, and G. Antes, “Five steps to conducting a systematic review,” J. R. Soc. Med., vol. 96, no. 3, pp. 118–121, 2003, doi:10.1258/jrsm.96.3.118.; M. Petticrew, “Petticrew_2001_Myths_Misconceptions,” vol. 322, no. January, 2001.; J. Mori and R. Smith, “Transmission of waterborne fish and plant pathogens in aquaponics and their control with physical disinfection and filtration: A systematized review,” Aquaculture. 2019, doi:10.1016/j.aquaculture.2019.02.009.; A. S. Oladimeji, S. O. Olufeagba, V. O. Ayuba, S. G. Sololmon, and V. T. Okomoda, “Effects of different growth media on water quality and plant yield in a catfish-pumpkin aquaponics system,” J. King Saud Univ. - Sci., vol. 32, no. 1, pp. 60–66, 2020, doi:10.1016/j.jksus.2018.02.001.; M. N. Mamatha and S. N. Namratha, “Design & implementation of indoor farming using automated aquaponics system,” 2017, doi:10.1109/ICSTM.2017.8089192.; P. Boonrawd, S. Nuchitprasitchai, and Y. Nilsiam, “Aquaponics Systems Using Internet of Things,” 2020, doi:10.1007/978-3-030-44044-2_5.; R. Calone et al., “Improving water management in European catfish recirculating aquaculture systems through catfish-lettuce aquaponics,” Sci. Total Environ., vol. 687, pp. 759–767, 2019, doi: https://doi.org/10.1016/j.scitotenv.2019.06.167.; J. P. Mandap et al., “Oxygen Monitoring and Control System Using Raspberry Pi as Network Backbone,” TENCON 2018 - 2018 IEEE Reg. 10 Conf., no. October, pp. 1381–1386, 2018.; S. E. Wortman, “Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system,” Sci. Hortic. (Amsterdam)., vol. 194, pp. 34–42, 2015, doi: https://doi.org/10.1016/j.scienta.2015.07.045.; S. Y. Choi and A. M. Kim, “Development of indoor aquaponics control system using a computational thinking-based convergence instructional model,” Univers. J. Educ. Res., 2019, doi:10.13189/ujer.2019.071509.; S. Goddek and O. Körner, “A fully integrated simulation model of multi-loop aquaponics: A case study for system sizing in different environments,” Agric. Syst., 2019, doi:10.1016/j.agsy.2019.01.010.; W. Vernandhes, N. S. Salahuddin, A. Kowanda, and S. P. Sari, “Smart aquaponic with monitoring and control system based on IoT,” Proc. 2nd Int. Conf. Informatics Comput. ICIC 2017, vol. 2018-Janua, pp. 1–6, 2018, doi:10.1109/IAC.2017.8280590.; D. Karimanzira and T. Rauschenbach, “Enhancing aquaponics management with IoT-based Predictive Analytics for efficient information utilization,” Inf. Process. Agric., vol. 6, no. 3, pp. 375– 385, 2019, doi: https://doi.org/10.1016/j.inpa.2018.12.003.; A. M. Nagayo, C. Mendoza, E. Vega, R. K. S. Al Izki, and R. S. Jamisola, “An automated solar-powered aquaponics system towards agricultural sustainability in the Sultanate of Oman,” 2017 IEEE Int. Conf. Smart Grid Smart Cities, ICSGSC 2017, pp. 42–49, 2017, doi:10.1109/ICSGSC.2017.8038547.; D. Pantazi, S. Dinu, and S. Voinea, “The smart aquaponics greenhouse – an interdisciplinary educational laboratory,” Rom. Reports Phys., 2019.; A. Tumbaco y B. Daniela, «Optimización del proceso productivo para incrementar la Utilidad en Mundo Verde, » Universidad de Guayaquil Facultad de Ciencias Administrativas, Guayaquil, Ecuador, 2017.; J. Montero y S. Cecilia, «Invernadero para la, » Institut de Recerca i Tecnología Agroalimentaries de Cabrils, España, 2008.; G. Ramón y F. Rodríguez, «Algoritmo De Navegación Reactiva De Robots, » Universidad de Almería, España, 2015.; K. Yingchun y S. Yue, «A Greenhouse Temperature and Humidity Controller Based on MIMO Fuzzy System, » International Conference on Intelligent System Design and Engineering Application, nº 1, pp. 35-39, 2010.; S. A. Giraldo, R. C. Castaño, C. Flesch y J. E. Normey-Rico, «Multivariable Greenhouse Control Using the Filtered Smith Predictor, » Journal of Control, Automation and Electrical Systems, vol. 27, nº 4, pp. 349-358, 2016.; M. Heidari, «Climate Control of An Agricultural Greenhouse by Using Fuzzy Logic SelfTuning PID Approach, » Proceedings of the 23rd International Conference on Automation & Computing, University of Huddersfield, 2017.; J. G. Jurado, «diseño de sistemas de control multivariable por desacoplo con controladores PID, » madrid, 2012.; M. Ajit K, Introduction to Control Engineering Modeling, Analysis and Desing, NEW AGE INTERNATIONAL PUBLISHERS, 2006.; M. G. Martínez, «Síntesis de controladores robustos mediante el análisis de la compatibilidad de especificaciones e incertidumbre, » Tesis de Grado- Universidad Pública de Navarra, 2001.; C. H. Houpis, S. N. Sheldon y J. J. D’Azzo, Linear Control System Analysis and Design: Fifth Edition, London: Revised and Expanded., 2003.; J. Elso, M. G. Martínez y M. Garcia-Sanz, «Quantitative Feedback Control for Multivariable Model Matching and Disturbance Rejection, » International Journal of Robust and Nonlinear Control, vol. 1, nº 27, pp. 121-134, 2017.; M. Gil-Martínez y M. García-Sanz, «Simultaneous meeting of robust control specifications in QFT, » International Journal of Robust and Nonlinear Control, vol. 7, nº 13, p. 643–656., 2003.; Y. Chait y O. Yaniv, «Multi-Input/Single-Output Computer-Aided Control Design Using the Quantitative Feedback Theory, » International Journal of Robust and Nonlinear Control, vol. 1, nº 3, pp. 47-54, 1993; Z. Hu, W. Wan and K. Harada, "Designing a Mechanical Tool for Robots With Two-Finger Parallel Grippers," in IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2981-2988, July 2019, doi:10.1109/LRA.2019.2924129.; L. Berscheid, T. Rühr and T. Kröger, "Improving Data Efficiency of Self-supervised Learning for Robotic Grasping," 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 2125-2131, doi:10.1109/ICRA.2019.8793952.; Y. Domae, A. Noda, T. Nagatani and W. Wan, "Robotic General Parts Feeder: Bin-picking, Regrasping, and Kitting," 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 5004-5010, doi:10.1109/ICRA40945.2020.9197056.; J. H. Sanchez, W. Amanhoud, A. Billard and M. Bouri, "Foot Control of a Surgical Laparoscopic Gripper via 5DoF Haptic Robotic Platform: Design, Dynamics and Haptic Shared Control," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 1255912566, doi:10.1109/ICRA48506.2021.9561887.; S. Ainetter and F. Fraundorfer, "End-to-end Trainable Deep Neural Network for Robotic Grasp Detection and Semantic Segmentation from RGB," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 13452-13458, doi:10.1109/ICRA48506.2021.9561398.; S. K. Rajput, A. Kaushal, R. K. Singh and A. K. Sharma, "A Study and Fabrication of SMA based 3D Printed Adaptive Gripper," 2021 Smart Technologies, Communication and Robotics (STCR), 2021, pp. 1-5, doi:10.1109/STCR51658.2021.9588838.; C. Son and S. Kim, "A Shape Memory Polymer Adhesive Gripper For Pick-and-Place Applications," 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 10010-10016, doi:10.1109/ICRA40945.2020.9197511.; S. D. Liyanage, A. M. Mazid and P. Dzitac, "An Innovative Whisker Tactile Sensor for Intelligent Robotic Grasping," IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, 2021, pp. 1-6, doi:10.1109/IECON48115.2021.9589765.; T. V. Prabhu, P. V. Manivannan, D. Roy and Yathishkumar, "A robust tactile sensor matrix for intelligent grasping of objects using robotic grippers," 2021 International Symposium of Asian Control Association on Intelligent Robotics and Industrial Automation (IRIA), 2021, pp. 400-405, doi:10.1109/IRIA53009.2021.9588669.; G. Hwang, J. Park, D. S. D. Cortes, K. Hyeon and K. -U. Kyung, "Electroadhesion-Based High-Payload Soft Gripper With Mechanically Strengthened Structure," in IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 642-651, Jan. 2022, doi:10.1109/TIE.2021.3053887.; J. Guo, J. -H. Low, X. Liang, J. S. Lee, Y. -R. Wong and R. C. H. Yeow, "A Hybrid Soft Robotic Surgical Gripper System for Delicate Nerve Manipulation in Digital Nerve Repair Surgery," in IEEE/ASME Transactions on Mechatronics, vol. 24, no. 4, pp. 1440-1451, Aug. 2019, doi:10.1109/TMECH.2019.2924518.; C.I. Basson, G. Bright y A.J. Walker. “Testing flexible grippers for geometric and surface grasping conformity in reconfigurable assembly systems.” En: South African Journal of Industrial Engineering 29.1 (2018), pags. 128 -142. ISSN: 2224-7890.; Festo AG & Co.KG. “MultiChoiceGripper”. En: Variable gripping based on human hand (2018).; https://ultimaker.com/es/software/ultimaker-cura, consultado Noviembre de 2021.; IFR, “Definition of Industrial Robot.” [Online]. Available: https://ifr.org/industrial-robots. [Accessed: 15-Sep-2021].; A. A. Malik and A. Bilberg, “Collaborative robots in assembly: A practical approach for tasks distribution,” Procedia CIRP, vol. 81, pp. 665–670, Jan. 2019.; P. Andhare and S. Rawat, “Pick and place industrial robot controller with computer vision,” Proc. - 2nd Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2016, Feb. 2017.; J. Iqbal, Z. H. Khan, and A. Khalid, “Prospects of robotics in food industry,” Food Sci. Technol., vol. 37, no. 2, pp. 159–165, May 2017.; K. H. Tantawi, A. Sokolov, and O. Tantawi, “Advances in Industrial Robotics: From Industry 3.0 Automation to Industry 4.0 Collaboration,” TIMES-iCON 2019 - 2019 4th Technol. Innov. Manag. Eng. Sci. Int. Conf., Dec. 2019.; J. J. Vaca González, C. A. Peña Caro, and H. Vacca González, “Cinemática inversa de robot serial utilizando algoritmo genético basado en MCDS,” Rev. Tecnura, vol. 19, no. 44, p. 33, Apr. 2015.; O. A. Vivas Alban, M. F. Piamba Mamián, and Y. E. Otaya Bravo, “Diseño y construcción de una interfaz háptica de seis grados de libertad,” Tecnura, vol. 21, no. 54, pp. 33–40, Oct. 2017.; C. Ma, Y. Zhang, J. Cheng, B. Wang, and Q. Zhao, “Inverse kinematics solution for 6R serial manipulator based on RBF neural network,” Int. Conf. Adv. Mechatron. Syst. ICAMechS, vol. 0, pp. 350–355, Jul. 2016.; V. Noppeney, T. Boaventura, and A. Siqueira, “Task-space impedance control of a parallel Delta robot using dual quaternions and a neural network,” J. Brazilian Soc. Mech. Sci. Eng. 2021 439, vol. 43, no. 9, pp. 1–11, Aug. 2021.; M. Meghana et al., “Hand gesture recognition and voice-controlled robot,” Mater. Today Proc., vol. 33, pp. 4121–4123, Jan. 2020.; P. M. Reddy, S. P. Kalyan Reddy, G. R. Sai Karthik, and B. K. Priya, “Intuitive Voice Controlled Robot for Obstacle, Smoke and Fire Detection for Physically Challenged People,” Proc. 4th Int. Conf. Trends Electron. Informatics, ICOEI 2020, pp. 763–767, Jun. 2020.; G. Y. Luo, M. Y. Cheng, and C. L. Chiang, “Vision-based 3-D object pick-And-place tasks of industrial manipulator,” 2017 Int. Autom. Control Conf. CACS 2017, vol. 2017-November, pp. 1–7, Feb. 2018.; M. Zhao, Y. Peng, L. Li, and X. Qiao, “Detection and classification manipulator system for apple based on machine vision and optical technology,” ASABE 2020 Annu. Int. Meet., pp. 1-, 2020.; Annoni, Federico. 2000. “Sistemas de Sujecion y Soporte.” Journal of Petrology 369(1): 1689– 99. http://dx.doi.org/10.1016/j.jsames.2011.03.003%0Ahttps://doi.org/10.1016/j.gr.2017.08.001%0Ahtt p://dx.doi.org/10.1016/j.precamres.2014.12.018%0Ahttp://dx.doi.org/10.1016/j.precamres.2011.08. 005%0Ahttp://dx.doi.org/10.1080/00206814.2014.902757%0Ahttp://dx.“FT-TMH06.Pdf.”; Garzón, Yamid. 2020. “Sensores y Actuadores Introducción:” (2014): 1–32.; Hidai-go, Alfonso. 1987. “Construccion de Un Dinamometro Para Medir Fuerzas de Corte En La Operacion de Taladro.” Corporacion universitaria autonoma de occidente, programa de ingenieria.; Karabay, Sedat. 2007. “Analysis of Drill Dynamometer with Octagonal Ring Type Transducers for Monitoring of Cutting Forces in Drilling and Allied Process.” Materials and Design 28(2): 673–85.; Mohanraj, T., S. Shankar, R. Rajasekar, and M. S. Uddin. 2020. “Design, Development, Calibration, and Testing of Indigenously Developed Strain Gauge Based Dynamometer for Cutting Force Measurement in the Milling Process.” Journal of Mechanical Engineering and Sciences 14(2): 6594–6609.; Norton, Robert L. 2006. Diseño de Máquinas.; Ramírez, Luis Pablo. 2011. “Diseño De Un Dinamómetro Mediante El Método De Los Elementos Finitos.” Tendencias en Tecnología de Medición de Fuerza (6360).; Schmid, S Kalpakjian S R. 2002. ManufacturA, INGENIERÍA Y TecNOLOGÍA.; Setiyawan. 2013. 53 Journal of Chemical Information and Modeling Fundamentos de Manufactura Moderna 3edi Groover.; Morral, P. Metalurgía General, p. 1163, en Google Libros 2004.; Metalurgia general. II - F. R. Morral, P. Molera - Google Libros; Tecnitool. 2020. “DIFERENCIAS ENTRE LAS BROCAS DE TITANIO Y LAS DE COBALTO”. Diferencias entre broca acero rápido HSS con titanio y/o cobalto (tecnitool.es) demaquinasyherramientas1. 2010. “Partes de la broca”. De máquinas y herramientas. USAPartes Broca %7C De Máquinas y Herramientas (demaquinasyherramientas.com).; Esquivel R. 2017. “DISTINTOS TIPOS DE BROCAS PARA DISTINTOS TIPOS DE PROFESIONALES”. Revista Ferrepat. Distintos tipos de brocas para distintos tipos de profesionales (ferrepat.com).; Ingenieria mecánica y automotriz. 2020. “Qué es el Coeficiente de Poisson y cómo se calcula?”; ] Estudiantes metalografia. 2010. “Diagramas esfuerzo-deformación unitaria, convencional y real, para un material dúctil (acero) (no de escala)”. Universidad Tecnológica de Pereira.; Diagramas esfuerzo-deformación unitaria, convencional y real, para un material dúctil (acero) (no de escala) %7C METALOGRAFÍA – UNIVERSIDAD TECNOLÓGICA DE PEREIRA (utp.edu.co).; O. Herrera, A. Quino, B. Cabrera, “Control de cortinas”, noviembre 2021. [En línea]. Disponible en http://micro2verano2012.blogspot.com/2012/03/control-de-cortinas.html.; Fuenteelectronica.es, “Fotocelda – Control de dispositivos con la luz”, noviembre 2017. [En línea]. Disponible en: https://tuelectronica.es/fotocelda-control-de-dispositivos-con-la-luz/ [3] Electronicathidos, “Fotoresistencia LDR 5mm, 2 Mohms”, noviembre 2021. [En línea]. Disponible en: https://electronicathido.com/detallesProducto.php?id=MkxldEdPZ3AwbjNMUEV3aWdXb0pSdz09.; Real Academia Española,”Relé”, noviembre 2021.[En línea]. Disponible en: https://dle.rae.es/rel%C3%A9.; A.Perez-Paris,”RELÉS ELECTROMAGNÉTICOS Y ELECTRÓNICOS”, noviembre 2021 En línea]. Disponible en: http://www.vivatacademia.net/index.php/vivat/article/view/373/689.; Electro Club Didactic,”Potenciómetros (teoría y practica)”, noviembre 2021.[En línea]. Disponible en: http://www.electroclub.com.mx/2015/08/potenciometros-teoria-y-practica.html.; Chabonnier,”Potenciómetros”, noviembre 2021.[En línea]. Disponible en: https://deresistencias.com/wp-content/uploads/2020/08/Diagrama-en-blanco-64-1.png.; Pascual,J ,”Este gadget convierte tus viejas cortinas en cortinas inteligentes controladas con el móvil”,noviembre 2021 .[En línea]. Disponible en: https://computerhoy.com/noticias/life/gadgetconvierte-viejas-cortinas-cortinas-inteligentes-controladas-movil-516887.; Tecnología a tu alcance ,”¿Cómo hacer un circuito de apertura y cierre de cortinas?”,noviembre de 2021 .[En línea]. Disponible en: https://latecnologiaatualcance.com/como-hacer-un-circuito-deapertura-y-cierre-de-cortinas/.; Ruales.A ,”Diseño de puente Wheatstone para una fotoresistencia.”,noviembre de 2021.[En línea]. Disponible en: https://www.youtube.com/watch?v=Vz_6vPjn4Bo.; Figueiras.T ,”Cómo convertir el MOVIMIENTO ROTATORIO de un Motor en un MOVIMIENTO LINEAL”,noviembre de 2021 .[En línea]. Disponible en: https://youtu.be/WynJqz-hibA.; OMS, “Inocuidad de los alimentos”, 30/04 de 2020, [online]. Available at: https://www.who.int/es/news-room/fact-sheets/detail/food-safety.; Minsalud,” Enfermedades transmitidas por alimentos disminuyeron en 2020”,14/08/2020, [online]. Available at: https://www.minsalud.gov.co/Paginas/Enfermedades%20transmitidas%20por%20alimento s%20disminuyeron%20en%202020.aspx.; BES (Boletín Epidemiológico Semanal), “Vigilancia de brotes de enfermedades transmitidas por alimentos, Colombia, semana epidemiológica 31 de 2020”, 26/07 de 2020, [online]. Available at: https://www.ins.gov.co/buscador eventos/BoletinEpidemiologico/2020_Boletin_epidemiologico_semana_31.pdf.; BES (Boletín Epidemiológico Semanal),” Las enfermedades transmitidas por Alimentos-ETA”,23/12 de 2018, [online]. Available at: https://www.ins.gov.co/buscador eventos/boletinepidemiologico/2018%20bolet%C3%ADn%20epidemiol%C3%B3gico%20s emana%2052.pdf.; FAO, FIDA y PMA, Seguimiento de la seguridad alimentaria y la nutrición en apoyo de la Agenda 2030 para el Desarrollo Sostenible: Balance y perspectivas, 2016. [Online]. Available at: https://www.fao.org/3/i6188s/i6188s.pdf.; Ministerio de salud, Calidad e inocuidad de alimentos,15 de noviembre de 2021. [Online]. Available at: www.minsalud.gov.co/salud/Paginas/inocuidad-alimentos.aspx.; David K. Lewis,Method and apparatus for washing fruits and vegetables,2009. [Online]. Available at: patents.google.com/patent/US8293025B2/en?q=A23N12%2f02&oq=A23N12%2f02.; Garcia Portillo, M., 2015. Google Patents. [online] Patents.google.com. Available at: patents.google.com/patent/ES2544005A1/es?assignee=TECNIDEX&oq=TECNIDEX.; Di Pannini, H., 2011. Google Patents. [online] Patents.google.com. Available at:; J Goodale, R., 1975. US3880068A - Apparatus for washing and blanching of vegetables - Google Patents. [online] Patents.google.com. Available at: .; A Tiby, G., 1969. US3456659A - Apparatus for treating food articles - Google Patents. [online] Patents.google.com. Available at: .; Who.int, 2020.-"Inocuidad de los alimentos"-, [Online]. Available: .; Ministerio de salud, ABECÉ de la inocuidad de alimentos, 2017. [Online]. Available at: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/abc inocuidad.pdf.; E. I. Alimentos, Inocuidad alimentaria en América Latina, 2015. [Online]. Available: www.revistaialimentos.com/ediciones/edicion-19/inocuidad-alimentaria-en-america latina/>; Fao.org, CODEXALIMENTARIUS FAO-WHO, 1994 [online] Available at: www.fao.org/fao-who-codexalimentarius/es/> [Accessed 8 July 2021].; Fao.org. n.d. ,“Acerca del Codex %7C CODEXALIMENTARIUS FAO-WHO” ,not date, [online]. Available at: .; AJ Avances,” Normograma del Instituto Nacional de Vigilancia de Medicamentos y Alimentos, INVIMA”, 13 /12 de 2020, [online]. Available at: .; Miquel Mor,”¿aplicas biocidas? Descubre nueva formacion necesaria”, 29/10/2014, [online] Available at: .; LA VERDAD MULTIMEDIA, S.A,”Descontaminación superficial de alimentos que aumenta su vida útil”, 16/01 /2017,[online] Available at: .; Dirección Regional de Inocuidad de los Alimentos,”Guía para uso de cloro en desinfección de frutas y hortalizas de consumo fresco, equipos y superficies en establecimientos ”, 15/05/2019, [online] Available at:; Equipos, M., n.d. TRANSPORTADOR DE TORNILLO SIN FIN CHILE – MYP EQUIPOS. [online] Mypequipos.com. Available at: [Accessed 16 November 2021].; Intralogistica, I., 2018. Qué son las bandas transportadoras. [online] Irp intralogistica.com. Available at: [Accessed 16 November 2021].; Motorex. n.d. El uso de la faja transportadora en las industrias - Motorex. [online] Available at: [Accessed 16 November 2021].; Nittacorporation.com. n.d. Bandas transportadoras para alimentos. [online] Available at: .; Indomaxve.com. 2019. Conoce los tipos de Mangueras industriales que existen. [online] Available at: .; Blog de Ventageneradores. 2016. Tipos de Motobombas o Bombas de Agua: según tipos de aguas, caudal o presión. [online] Available at: .; GTE. n.d. Apuntes SEC. UIB. [online] Available at: .; Gecousb.com.ve. n.d. Motores 1LA7. [online] Available at: .; Appinventor.mit.edu. 2012. About Us. [online] Available at: .; Irdmailp.com. n.d. 37mm DC 12V Motor de Reducción de Velocidad Caja de Engranajes de Alta Fuerza de Tensión Motor Reductor de Velocidad 3.5/15/30/70RPM(70RPM). [online] Available at: .; López, S., 2020. Qué es Firebase: funcionalidades, ventajas y conclusiones. [online] DIGITAL55. Available at: .; Y. Rojas, K. Aguado, and I. González, “La nanomedicina y los sistemas de liberación de fármacos: ¿la (r)evolución de la terapia contra el cáncer?,” Educ. Quim., vol. 27, no. 4, pp. 286–291, 2016.; R. R. Wakaskar, “General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes,” J. Drug Target., vol. 26, no. 4, pp. 311–318, 2018.; B. Alfonso and C. Casado, “DENDRÍMEROS: MACROMOLÉCULAS VERSÁTILES CON INTERÉS INTERDISCIPLINAR,” J. Chem. Inf. Model., vol. 01, no. 01, pp. 1689–1699, 2016.; B. Haley and E. Frenkel, “Nanoparticles for drug delivery in cancer treatment,” Urol. Oncol. Semin. Orig. Investig., vol. 26, no. 1, pp. 57–64, 2008.; M. C. Urrejola et al., “Sistemas de Np Poliméricas II: Estructura, Métodos de Elaboración, Características, Propiedades, Biofuncionalización y Tecnologías de Auto-Ensamblaje Capa por Capa (Layer-by-Layer Self-Assembly),” Int. J. Morphol., vol. 36, no. 4, pp. 1463–1471, 2018.; F. Chávez, B. I. Olvera, A. Ganem, and D. Quintanar, “Liberación de sustancias lipofílicas a partir de nanocápsulas poliméricas,” J. Mex. Chem. Soc., vol. 46, no. 4, pp. 349–356, 2002.; Z. M. Avval et al., “Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application,” Drug Metab. Rev., vol. 52, no. 1, pp. 157–184, 2020.; L. Mohammed, H. G. Gomaa, D. Ragab, and J. Zhu, “Magnetic nanoparticles for environmental and biomedical applications: A review,” Particuology, vol. 30, pp. 1–14, 2017.; A. S. Lübbe et al., “Clinical experiences with magnetic drug targeting: A phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors,” Cancer Res., vol. 56, no. 20, pp. 4686– 4693, 1996.; H. D. Liu, W. Xu, S. G. Wang, and Z. J. Ke, “Hydrodynamic modeling of ferrofluid flow in magnetic targeting drug delivery,” Appl. Math. Mech. (English Ed., vol. 29, no. 10, pp. 1341–1349, 2008.; G. Zhang et al., “Oxygen-enriched Fe3O4/Gd2O3 nanopeanuts for tumor-targeting MRI and ROS-triggered dual-modal cancer therapy through platinum (IV) prodrugs delivery,” Chem. Eng. J., vol. 388, no. February, p. 124269, 2020.; S. Tong, H. Zhu, and G. Bao, “Magnetic iron oxide nanoparticles for disease detection and therapy,” Mater. Today, vol. 31, no. December, pp. 86–99, 2019.; M. Sosa, J. J. B. Alvarado, and J. L. Gonz, “Tecnicas biomagneticas y su comparacion con los metodos bioelectricos,” vol. 48, no. 5, pp. 490–500, 2002.; S. Bose and M. Banerjee, “Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling,” J. Magn. Magn. Mater., vol. 385, pp. 32–46, 2015.; M. Bartoszek and Z. Drzazga; “A study of magnetic anisotropy of blood cells,” vol. 197, pp. 573–575, 1999.; Y. Haik, V. Pai, and C. J. Chen, “Development of magnetic device for cell separation,” J. Magn. Magn. Mater., vol. 194, no. 1, pp. 254–261, 1999.; Z. Liu, Y. Zhu, R. R. Rao, J. R. Clausen, and C. K. Aidun, “Nanoparticle transport in cellular blood flow,” Comput. Fluids, vol. 172, pp. 609–620, 2018.; S. Y. Lee, M. Ferrari, and P. Decuzzi, “Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows,” Nanotechnology, vol. 20, no. 49, 2009.; G. A. Duncan and M. A. Bevan, “Computational design of nanoparticle drug delivery systems for selective targeting,” Nanoscale, vol. 7, no. 37, pp. 15332–15340, 2015.; K. Müller, D. A. Fedosov, and G. Gompper, “Margination of micro- and nano-particles in blood flow and its effect on drug delivery,” Sci. Rep., vol. 4, pp. 1–8, 2014.; Y. Haik, V. Pai, and C. J. Chen, “Apparent viscosity of human blood in a high static magnetic field,” J. Magn. Magn. Mater., vol. 225, no. 1–2, pp. 180–186, 2001.; S. Afkhami and Y. Renardy, “Ferrofluids and magnetically guided superparamagnetic particles in flows: a review of simulations and modeling,” J. Eng. Math., vol. 107, no. 1, pp. 231–251, 2017.; I. Rukshin, J. Mohrenweiser, P. Yue, and S. Afkhami, “Modeling superparamagnetic particles in blood flow for applications in magnetic drug targeting,” Fluids, vol. 2, no. 2, pp. 1–12, 2017.; M. O. Avilés, A. D. Ebner, H. Chen, A. J. Rosengart, M. D. Kaminski, and J. A. Ritter, “Theoretical analysis of a transdermal ferromagnetic implant for retention of magnetic drug carrier particles,” J. Magn. Magn. Mater., vol. 293, no. 1, pp. 605–615, 2005.; A. Hajiaghajani, S. Hashemi, and A. Abdolali, “Adaptable setups for magnetic drug targeting in human muscular arteries: Design and implementation,” J. Magn. Magn. Mater., vol. 438, pp. 173– 180, 2017.; V. R. Sharma, A. K. Sharma, V. Punj, and P. Priya, “Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: A focus on breast cancer,” Semin. Cancer Biol., vol. 59, no. July 2019, pp. 133–146, 2019.; M. E. Miller, Human Diseases and Yeast.Pdf, First edit. New York: Momentum Press Health, 2018.; A. S. Lübbe, C. Bergemann, W. Huhnt, T. Fricke, and H. Riess, “Lübbe1996_Preclinical,” pp. 4694–4701, 1996.; Lübbe., C. Bergemann, J. Brock, and D. G. McClure, “Physiological aspects in magnetic drug-targeting,” J. Magn. Magn. Mater., vol. 194, no. 1, pp. 149–155, 1999.; C. Alexiou et al., “Locoregional cancer treatment with magnetic drug targeting,” Cancer Res., vol. 60, no. 23, pp. 6641–6648, 2000.; C. Alexiou, A. Schmidt, R. Klein, P. Hulin, C. Bergemann, and W. Arnold, “Magnetic drug targeting: Biodistribution and dependency on magnetic field strength,” J. Magn. Magn. Mater., vol. 252, no. 1-3 SPEC. ISS., pp. 363–366, 2002.; K. Gitter and S. Odenbach, “Experimental investigations on a branched tube model in magnetic drug targeting,” J. Magn. Magn. Mater., vol. 323, no. 10, pp. 1413–1416, 2011.; M. G. Krukemeyer, V. Krenn, M. Jakobs, and W. Wagner, “Mitoxantrone-iron oxide biodistribution in blood, tumor, spleen, and liver - Magnetic nanoparticles in cancer treatment,” J. Surg. Res., vol. 175, no. 1, pp. 35–43, 2012.; M. M. Attar et al., “Thermal analysis of magnetic nanoparticle in alternating magnetic field on human HCT-116 colon cancer cell line,” Int. J. Hyperth., vol. 32, no. 8, pp. 858–867, 2016.; R. Eivazzadeh-Keihan, F. Radinekiyan, A. Maleki, M. Salimi Bani, Z. Hajizadeh, and S. Asgharnasl, “A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy,” Int. J. Biol. Macromol., vol. 140, pp. 407–414, 2019.; S. Shabestari Khiabani, M. Farshbaf, A. Akbarzadeh, and S. Davaran, “Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy,” Artif. Cells, Nanomedicine Biotechnol., vol. 45, no. 1, pp. 6–17, 2017.; K. T. Al-Jamal et al., “Magnetic Drug Targeting: Preclinical in Vivo Studies, Mathematical Modeling, and Extrapolation to Humans,” Nano Lett., vol. 16, no. 9, pp. 5652–5660, 2018.; M. Minbashi, A. A. Kordbacheh, A. Ghobadi, and V. V. Tuchin, “Optimization of power used in liver cancer microwave therapy by injection of Magnetic Nanoparticles (MNPs),” Comput. Biol. Med., vol. 120, no. February, p. 103741, 2020.; A. Nan, M. Suciu, I. Ardelean, M. Şenilă, and R. Turcu, “Characterization of the Nuclear Magnetic Resonance Relaxivity of Gadolinium Functionalized Magnetic Nanoparticles,” Anal. Lett., vol. 0, no. 0, pp. 1–16, 2020.; I. Cicha, S. Lyer, C. Alexiou, and C. D. Garlichs, “Nanomedicine in diagnostics and therapy of cardiovascular diseases: Beyond atherosclerotic plaque imaging,” Nanotechnol. Rev., vol. 2, no. 4, pp. 449–472, 2013.; M. Nahrendorf et al., “Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis,” Circulation, vol. 117, no. 3, pp. 379–387, 2008.; S. Jaimes, A. Gonzáles, C. Granados, D. Álvarez, and E. Espitia, “Redalyc.Nanotecnología: avances y expectativas en cirugía,” Rev. Colomb. Cirugía, vol. 27, pp. 158–166, 2012.; B. Méndez and C. Muñoz, “Nanochips y nanosensores para eldiagnóstico temprano de cáncer oral: una revisión,” no. 67, pp. 131–147, 2012.; D. Rodriguez, J. Moyano, and L. Roa, “Estudio por dinámica molecular browniana de np bajo efectos de Bs externos,” Ing. Mil., vol. 13, no. 9, pp. 90–98, 2018.; J. Gallo and C. Ossa, “Fabricación y caracterización de np de plata con potencial uso en el tratamiento del cáncer de piel,” Ing. y Desarro., vol. 37, no. 1, pp. 88–104, 2019.; J. Pantoja, “np magnéticas en flujo sanguíneo para tratamiento de cáncer,” Universidad Distrital Francisco José de Caldas, 2020.; https://hdl.handle.net/11349/31171; Universidad Distrital Francisco José de Caldas
Availability: https://hdl.handle.net/11349/31171
-
7
Authors:
Source: Gerencia y Políticas de Salud; Vol. 23 (2024): Publicación continua; 1-30 ; 2500-6177 ; 1657-7027
Subject Terms: salud pública, sistema de salud, refundación de los sistemas, modelo de organización
File Description: application/pdf
Relation: https://revistas.javeriana.edu.co/index.php/gerepolsal/article/view/40507/31568; https://revistas.javeriana.edu.co/index.php/gerepolsal/article/view/40507/31569; https://revistas.javeriana.edu.co/index.php/gerepolsal/article/view/40507/31570; https://revistas.javeriana.edu.co/index.php/gerepolsal/article/view/40507
-
8
Authors: Bermon Angarita, Leonardo
Subject Terms: 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación, Ingeniería de software -- Administración -- Problemas, ejercicios, etc, Proceso de desarrollo de software, Desarrollo de software de aplicaciones, Medición de software, Software de entornos de trabajo, Lenguajes de modelado (Computación), Ingeniería de software -- Ciclo de vida -- Normas técnicas, Proceso de mejora continua -- Normas técnicas, Sistemas informáticos -- Gestión - - Problemas, Mejora de procesos, Metodología de desarrollo de software, Gestión de proyectos de software
File Description: 647 páginas; application/pdf; application/epub+zip; image/png
Relation: Anton, C. y Anton, D. (2001). ISO 9000:2000 Survival Guide: 30 Minutes to Understanding the Process. aem Consulting Group.; Balzer, R. (1990). What we do and don’t know about software process. En Proceedings of the 6th International Software Process Workshop’Support for the Software Process’ (pp. 61-62). IEEE Computer Society. https://doi.ieeecomputersociety.org/10.1109/ ISPW.1990.659574; Boehm, B. (2006). A view of 20th and 21st century software engineering. En Proceedings of the 28th International Conference on Software Engineering (pp. 12-29). https://doi. org/10.1145/1134285.1134288; Boehm, B. W. y Turner, R. (2004). Balancing agility and discipline: A guide for the perplexed. Addison-Wesley.; Bourque, P. y Fairley, R. E. (eds.) (2014). Guide to the software engineering body of knowledge, version 3.0. ieee Computer Society. http://artemisa.unicauca.edu.co/~cardila/ IS__SWEBOKv3.pdf; Brookse, F. (1986). No silver bullet: Essence and accident in software engineering. En Proceedings of the ifip 10th World Computing Conference, Dublin, Ireland (pp. 1069-1076).; Cignoni, G. A. (2000). Software process technologies and the competitiveness challenge. En R. Conradi (eds.), Software Process Technology. ewspt 2000. Lecture Notes in Computer Science (pp. 151-155). Springer. https://doi.org/10.1007/BFb0095024; Clarke, P. y O’Connor, R. V. (2012). The situational factors that affect the software development process: Towards a comprehensive reference framework. Information and Software Technology, 54(5), 433-447. https://doi.org/10.1016/j.infsof.2011.12.003; Conway, M. E. (1968). How do committees invent? Datamation, 14(4), 28-31. https:// hashingit.com/elements/research-resources/1968-04-committees.pdf; Emami, M. S., Ithnin, N. B. y Ibrahim, O. (2010). Software process engineering: Strengths, weaknesses, opportunities and threats. En INC2010: 6th International Conference on Networked Computing (pp. 1-5). IEEE.; Erdogmus, H. (2008). Seven essentials of software process. En Proceedings of the 1st International Workshop on Business Impact of Process Improvements (pp. 39-40). https://doi. org/10.1145/1370837.1370846; Estublier, J. (2005). Software are processes too. En M. Li, B. Boehm y L. J. Osterweil (eds.), Software Process Workshop (pp. 25-34). Springer. https://doi.org/10.1007/11608035_3; Fairley, R. E. (2009). Managing and leading software projects. John Wiley & Sons.; Feiler, P. H. y Humphrey, W. S. (1993). Software process development and enactment: Concepts and definitions. En Proceedings of the Second International Conference on the Software Process-Continuous Software Process Improvement (pp. 28-40). ieee. https:// doi.org/10.1109/SPCON.1993.236824; Finkelstein, A., Kramer, J. y Nuseibeh, B. (1994). Software process modelling and technology. Research Studies Press.; Florac, W., Park, R. y Carleton, A. (1997). Practical software measurement: Measuring for process management and improvement. cmu/sei-97-hb-003. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu.edu/documents/ 1627/1997_002_001_16529.pdf; Forrester, E. (2006). A process research framework: The International Process Research Consortium (iprc). Software Engineering Institute, Carnegie Mellon University. https:// insights.sei.cmu.edu/documents/1301/2006_014_001_30505.pdf; Fuggetta, A. (2000). Software process: A roadmap. En Proceedings of the Conference on the Future of Software Engineering (pp. 25-34). https://doi.org/10.1109/CERMA.2012.25; Garg, P. K. (1995). Process-centered software engineering environments. IEEE Computer Society Press.; Henderson-Sellers, B. y González-Pérez, C. (2005). A comparison of four process metamodels and the creation of a new generic standard. Information and Software Technology, 47(1), 49-65. https://doi.org/10.1016/j.infsof.2004.06.001; Humphrey, W. S. (1988). Characterizing the software process: A maturity framework. ieee Software, 5(2), 73-79. https://doi.org/10.1109/52.2014; Isaias, P. y Issa, T. (2015). High level models and methodologies for information systems. Springer. https://doi.org/10.1007/978-1-4614-9254-2; Jalote, P. (2002). Software project management in practice. Addison Wesley.; Kneuper, R. (2002). Supporting software processes using knowledge management. En S. K. Chang (ed.), Handbook of software engineering and knowledge engineering (vol. 2, pp. 579-606). World Scientific. https://doi.org/10.1142/9789812389701_0025; Kneuper, R. (2018). Software processes and life cycle models: An introduction to modelling, using and managing agile, plan-driven and hybrid processes. Springer.; Kroeger, T. A., Davidson, N. J. y Cook, S. C. (2014). Understanding the characteristics of quality for software engineering processes: A grounded theory investigation. Information and Software Technology, 56(2), 252-271. https://doi.org/10.1016/j.infsof. 2013.10.003; Kwan, I., Cataldo, M. y Damian, D. (2011). Conway’s law revisited: The evidence for a taskbased perspective. IEEE Software, 29(1), 90-93. https://doi.org/10.1109/MS.2012.3; Li, M. (2006). Expanding the horizons of software development processes: A 3-D integrated methodology. En M. Li, B. Boehm y L. J. Osterweil (eds.), Unifying the Software Process Spectrum. spw 2005. Lecture Notes in Computer Science (pp. 54-67). Springer. https:// doi.org/10.1007/11608035_6; Lonchamp, J. (1993). A structured conceptual and terminological framework for software process engineering. En Proceedings of the Second International Conference on the Software Process-Continuous Software Process Improvement (pp. 41-53). ieee. https://doi. org/10.1109/SPCON.1993.236823; Meyer, B. (2009). Touch of class: Learning to program well with objects and contracts. Springer. https://doi.org/10.1007/978-3-540-92145-5; Moore, J. W. (2005). The road map to software engineering: A standards-based guide. Wiley-ieee Computer Society; Mustafa, G., Hafeez, Y. y Abbas, M. A. (2011). Fundamental characteristics creating software process diversity. En International Conference on Computer Networks and Information Technology (pp. 341-344). ieee. https://doi.org/10.1109/ICCNIT.2011.6020891; O’Regan, G. (2017). Concise guide to software engineering: From fundamentals to application methods. Springer.; Osterweil, L. (2011). Software processes are software too. En P. Tarr y A. Wolf (eds.), Engineering of software (pp. 323-344). Springer. https://doi.org/10.1007/978-3-642- 19823-6_17; Pedreira, O., Piattini, M., Luaces, M. R. y Brisaboa, N. R. (2007). A systematic review of software process tailoring. acm sigsoft Software Engineering Notes, 32(3), 1-6. https:// doi.org/10.1145/1241572.1241584; Prodan, M., Prodan, A. y Purcarea, A. A. (2015). Three new dimensions to people, process, technology improvement model. En A. Rocha, A. Correia, S. Costanzo y L. Reis (eds.), New contributions in information systems and technologies: Advances in intelligent systems and computing (pp. 481-490). Springer. https://doi.org/10.1007/978-3-319-16486-1_47; Raman, S. (2000). It is software process, stupid: Next millennium software quality key. ieee Aerospace and Electronic Systems Magazine, 15(6), 33-37. https://doi. org/10.1109/62.847929; Ruiz-González, F. y Canfora, G. (2004). Software process: Characteristics, technology and environments. spt Software Process Technology, 5, 6-10.; Software Engineering Institute. (2010). cmmi for development, cmmi-dev version 1.3. cmu/sei- 2010-tr-033. https://insights.sei.cmu.edu/documents/87/2010_019_001_28782.pdf; Sommerville, I. (2015). Software engineering: Always learning. Pearson.; Suri, D. y Sebern, M. J. (2004). Incorporating software process in an undergraduate software engineering curriculum: Challenges and rewards. En 17th Conference on Software Engineering Education and Training, 2004. Proceedings (pp. 18-23). ieee. https://doi. org/10.1109/CSEE.2004.1276505; Sutton, S. M. (2000). The role of process in software start-up. ieee Software, 17(4), 33-39.; Wieczorek, M., Vos, D. y Bons, H. (2014). Systems and software quality. Springer. https://doi. org/10.1007/978-3-642-39971-8; Yang, D. y Xue, M. (2011). Software process paradigm and its constraint mechanisms. En 2011 ieee 2nd International Conference on Software Engineering and Service Science (pp. 842-845). ieee. https://doi.org/10.1109/ICSESS.2011.5982472; Arms, W. Y. (2022). Examples of software development processes. Cornell University Compunng and Information Science. https://www.cs.cornell.edu/courses/cs5150/2017sp/ slides/3-process-examples.pdf; Azam, F., Gull, H., Bibi, S. y Amjad, S. (2010). Back and forth (BnF) software process model. En 2010 Second International Conference on Computer Engineering and Applications (vol. 1, pp. 426-430). ieee. https://doi.org/10.1109/ICCEA.2010.89; Banker, R. D., Kauffman, R. J. y Zweig, D. (1993). Repository evaluation of software reuse. ieee Transactions on Software Engineering, 19(4), 379-389. https://doi. org/10.1109/32.223805; Boehm, B. W. (1996). Anchoring the software process. IEEE Software, 13(4), 73-82. https:// doi.org/10.1109/52.526834; Boehm, B. W. (1988). A spiral model of software development and enhancement. Computer, 21(5), 61-72. https://doi.org/10.1109/2.59; Boehm, B. W. y Hansen, W. J. (2000). Spiral development: Experience, principles and refinements. Special Report cmu/sei-2000-sr-008. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu.edu/documents/5439/2000_003_001_13655.pdf; Boehm, B. W. y Turner, R. (2004). Balancing agility and discipline: A guide for the perplexed. Addison-Wesley; Capers, J. (2012). Software engineering best practices: Lessons from successful projects in the top companies. McGraw-Hill; Carr, M. y Verner, J. (1997). Prototyping and software development approaches. https://citeseerx. ist.psu.edu/document?repid=rep1&type=pdf&doi=0b05add730e04843e- 234937a070f24b19efaadc3; Crnkovic, I. y Larsson, M. (2001). Component-based software engineering: New paradigm of software development. Mälardalen University.; Diebold, P. y Zehler, T. (2016). The right degree of agility in rich processes. En M. Kuhrmann, J. Münch, I. Richardson, A. Rausch y H. Zhang (eds.), Managing software process evolution (pp. 15-37). Springer. https://doi.org/10.1007/978-3-319-31545-4_2; Floyd, C. (1984). A systematic look at prototyping. En R. Budde, K. Kuhlenkamp, L. Mathiassen y H. Züllighoven (eds.), Approaches to prototyping (pp. 1-18). Springer. https:// doi.org/10.1007/978-3-642-69796-8_1; Gottesdiener, E. (1995). RAD realities: Beyond the hype to how rad really works. Application Development Trends, 2(8), 28-38.; Henninger, S. (1997). An evolutionary approach to constructing effective software reuse repositories. ACM Transactions on Software Engineering and Methodology (tosem), 6(2), 111-140. https://doi.org/10.1145/248233.248242; International Organization for Standardization. (2008). ISO/IEC 12207:1995/AMD2:2004. Information Technology - Software life cycle processes - Amendment 2.; Jirava, P. (2004). System development life cycle. https://dk.upce.cz/bitstream/handle/ 10195/32471/CL456.pdf?sequence=1&isAllowed=y; Jurgens, D. (2009). Survey on software engineering for scientific applications. Institute for Scientific Computing. https://leopard.tu-braunschweig.de/servlets/MCRFileNodeServlet/ dbbs_derivate_00006306/Juergens-Survey-Software-Eng-Scientific-Applications.pdf; Madachy, R. J. (2008). Software process dynamics. John Wiley & Sons.; Mathur, S. y Malik, S. (2010). Advancements in the V-Model. International Journal of Computer Applications, 1(12), 29-34. https://citeseerx.ist.psu.edu/document?repid=rep1&- type=pdf&doi=04aca97824d178d7ca3688bbed2118d0115dfaba; May, E. L. y Zimmer, B. A. (1996). The evolutionary development model for software. Hewlett Packard Journal, 47, 39-41. https://citeseerx.ist.psu.edu/document?repid=rep1&- type=pdf&doi=5304a6d70439f180af1e349d518cb1d20b99e4a8; Mills, H. D., Dyer, M. y Linger, R. C. (1987). Cleanroom software engineering. IEEE Software, 4(5), 19-25. https://doi.org/10.1109/MS.1987.231413; Munassar, N. M. A. y Govardhan, A (2010). Comparison between five models of software engineering. International Journal of Computer Science Issues, 7(5), 94-101. https:// www.ijcsi.org/papers/7-5-94-101.pdf; Petersen, K. y Wohlin, C. (2010). The effect of moving from a plan-driven to an incremental software development approach with agile practices: An industrial case study. Empirical Software Engineering, 15, 654-693. https://doi.org/10.1007/s10664-010-9136-6; Petersen, K., Wohlin, C. y Baca, D. (2009). The waterfall model in large-scale development. En F. Bomarius, M. Oivo, P. Jaring y P. Abrahamsson (eds.), Product-Focused Software Process Improvement. PROFES 2009. Lecture Notes in Business Information Processing (pp. 386-400). Springer. https://doi.org/10.1007/978-3-642-02152-7_29; Pressman, R. S. (2005). Software engineering: A practitioner’s approach (6.ª ed.). McGraw-Hill.; ProjectSmart. (2008). Which life cycle is best for your project? https://www.projectsmart.co.uk/ agile-project-management/which-life-cycle-is-best-for-your-project.php; Rastogi, V. (2015). Software development life cycle models-comparison, consequences. International Journal of Computer Science and Information Technologies, 6(1), 168-172. https://www.academia.edu/download/40003520/ijcsit2015060137.pdf; Royce, W. W. (1987). Managing the development of large software systems: Concepts and techniques. En Proceedings of the 9th International Conference on Software Engineering (ICSE ’87) (pp. 328-338).; Sabale, R. y Dani, A. (2012). Comparative study of prototype model for software engineering with system development life cycle. IOSR Journal of Engineering, 2(7), 21-24. https://www.iosrjen.org/Papers/vol2_issue7%20(part-2)/D0272124.pdf; Sharma, P. y Singh, D. (2015). Comparative study of various SDLC models on different parameters. International Journal of Engineering Research, 4(4), 188-191. https://citeseerx. ist.psu.edu/document?repid=rep1&type=pdf&doi=2628386ec0e41ed06dbb604bf9729e679f394cb2; Solinski, A. y Petersen, K. (2016). Prioritizing agile benefits and limitations in relation to practice usage. Software Quality Journal, 24, 447-482. https://doi.org/10.1007/ s11219-014-9253-3; Špundak, M. (2014). Mixed agile/traditional project management methodology: Reality or illusion? Procedia-Social and Behavioral Sciences, 119, 939-948. https://doi. org/10.1016/j.sbspro.2014.03.105; Tian, J. (2005). Software quality engineering: Testing, quality assurance, and quantifiable improvement. John Wiley & Sons.; Tilloo, R. (2013). What is incremental model in software engineering? http://www.technotrice. com/incremental-model-in-software-engineering; Wallin, C. y Land, R. (2005). Software development lifecycle models: The basic types. Research methodology for computer science and engineering. Mälardalen University.; Abrahamsson, P., Salo, O., Ronkainen, J. y Warsta, J. (2002). Agile software development methods: Review and analysis. vtt Electronics. https://doi.org/10.48550/arXiv.1709.08439; Abrahamsson, P., Warsta, J., Siponen, M. T. y Ronkainen, J. (2003). New directions on agile methods: A comparative analysis. En 25th International Conference on Software Engineering, 2003. Proceedings (pp. 244-254). IEEE. https://doi.org/10.1109/ ICSE.2003.1201204; Abrantes, J. F. y Travassos, G. H. (2011). Common agile practices in software processes. En 2011 International Symposium on Empirical Software Engineering and Measurement (pp. 355-358). IEEE. https://doi.org/10.1109/ESEM.2011.47; Adelyar, S. H. y Norta, A. (2016). Towards a secure agile software development process. En 2016 10th International Conference on the Quality of Information and Communications Technology (quatic) (pp. 101-106). IEEE. https://doi.org/10.1109/QUATIC.2016.028; Agile Manifesto. (2001). Manifesto for Agile Software Development. http://agilemanifesto.org/; Alqudah, M. y Razali, R. (2016). A review of scaling agile methods in large software development. International Journal on Advanced Science, Engineering and Information Technology, 6(6), 828-837. http://dx.doi.org/10.18517/ijaseit.6.6.1374; Ambler, S. (2002). Agile modeling: Effective practices for eXtreme Programming and the unified process. John Wiley & Sons.; Ambler, S. W. (2009). The agile scaling model (asm): Adapting agile methods for complex environments. https://scrummasters.com/wp-content/uploads/2022/02/White-Paper- Adapting-Agile.pdf; Ambler, S. W. y Lines, M. (2012). Disciplined Agile Delivery: A practitioner’s guide to agile software delivery in the enterprise. IBM Press; Ambler, S. W. y Lines, M. (2013). Going beyond scrum: Disciplined Agile Delivery, disciplined agile consortium. White Paper Series. https://www.classes.cs.uchicago.edu/ archive/2016/fall/51205-1/required.reading/BeyondScrum.pdf; Ambler, S. W. y Lines, M. (2016). The disciplined agile process decision framework. En D. Winkler, S. Biffl y J. Bergsmann (eds.), Software Quality: The Future of Systems- and Software Development. swqd 2016. Lecture Notes in Business Information Processing (pp. 3-14). Springer. https://doi.org/10.1007/978-3-319-27033-3_1; Anderson, L., Alleman, G. B., Beck, K., Blotner, J., Cunningham, W., Poppendieck, M. y Wirfs-Brock, R. (2003). Agile management-an oxymoron? Who needs managers anyway? En Companion of the 18th Annual acm sigplan Conference on Object-Oriented Programming, Systems, Languages, and Applications (pp. 275-277). https://doi. org/10.1145/949344.949410; Aoyama, M. (1998). Agile software process and its experience. En Proceedings of the 20th International Conference on Software Engineering (pp. 3-12). IEEE. https://doi.org/10.1109/ ICSE.1998.671097; Baca, D. y Carlsson, B. (2011). Agile development with security engineering activities. En Proceedings of the 2011 International Conference on Software and Systems Process (pp. 149-158). https://doi.org/10.1145/1987875.1987900; Barnett, L. y Schwaber, C. (2004). Adopting agile development processes: Improve time-to-benefits for software projects forrester research.; Bartsch, S. (2011). Practitioners’ perspectives on security in agile development. En 2011 Sixth International Conference on Availability, Reliability and Security (pp. 479-484). IEEE. https://doi.org/10.1109/ARES.2011.82; Beck, K. (2000). Extreme programming explained: Embrace change. Addison-Wesley.; Beck, K. (2002). Test driven development: By example. Addison-Wesley.; Beck, K. y Fowler, M. (2001). Planning eXtreme Programming. Addison-Wesley.; Ben Othmane, L., Angin, P., Weffers, H. y Bhargava, B. (2014). Extending the agile development process to develop acceptably secure software. ieee Transactions on Dependable and Secure Computing, 11(6), 497-509. https://doi.org/10.1109/TDSC.2014.2298011; Bessam, A., Kimour, M. T. y Melit, A. (2009). Separating users’ views in a development process for agile methods. En 2009 Fourth International Conference on Dependability of Computer Systems (pp. 61-68). IEEE. https://doi.org/10.1109/DepCoS-RELCOMEX. 2009.16; Boehm, B. y Turner, R. (2005). Management challenges to implementing agile processes in traditional development organizations. IEEE Software, 22(5), 30-39. https://doi. org/10.1109/MS.2005.129; Buglione, L. y Abran, A. (2013). Improving the user story agile technique using the invest criteria. En 2013 Joint Conference of the 23rd International Workshop on Software Measurement and the 8th International Conference on Software Process and Product Measurement (pp. 49-53). IEEE. https://doi.org/10.1109/IWSM-Mensura.2013.18; Canós, J., Letelier, P. y Penadés, M. (2003). Metodologías ágiles en el desarrollo de software. https://www.academia.edu/download/34546906/XP_Agil.pdf; Chowdhury, A. F. y Huda, M. N. (2011). Comparison between Adaptive Software Development and Feature-Driven Development. En Proceedings of 2011 International Conference on Computer Science and Network Technology (vol. 1, pp. 363-367). IEEE. https:// doi.org/10.1109/ICCSNT.2011.6181977; Coad, P., Lefebvre, E. y Luca, J. D. (1999). Feature-driven development. En Java modeling in color with UML: Enterprise components and process. Prentice Hall ptr.; Cockburn, A. (2004). Crystal clear: A human-powered methodology for small teams. Addison- Wesley.; Cohen D., Lindvall, M. y Costa P. (2004). An introduction to agile methods. Advances in Computers, 62(3), 1-66. https://doi.org/10.1016/S0065-2458(03)62001-2; Cohn, M. y Ford, D. (2003). Introducing an agile process to an organization [software development]. Computer, 36(6), 74-78. https://doi.org/10.1109/MC.2003.1204378; Coram, M. y Bohner, S. (2005). The impact of agile methods on software project management. En 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05) (pp. 363-370). IEEE. https://doi.org/10.1109/ ECBS.2005.68; Cugola, G. y Ghezzi, C. (1998). Software processes: A retrospective and a path to the future. Software Process: Improvement and Practice, 4(3), 101-123. https://doi.org/10.1002/ (SICI)1099-1670(199809)4:3%3C101::AID-SPIP103%3E3.0.CO;2-K; Deemer, P., Benefield, G., Larman, C. y Vodde, B. (2012). A lightweight guide to the theory and practice of scrum. Version 2.0. InfoQ Enterprise Software Development Series. https:// www.scruminc.com/wp-content/uploads/2014/05/scrumprimer20.pdf; Despa, M. L. (2014). Comparative study on software development methodologies. Database Systems Journal, 5(3), 37-56. https://dbjournal.ro/archive/17/17.pdf#page=38; Digital.ai. (2024, 4 de marzo). The 17th State of Agile Report. https://digital.ai/resource-center/ analyst-reports/state-of-agile-report/; DSDM Consortium. (2008). DSDM Atern Handbook V2/2. Whitehorse Press.; Fitzgerald, B., Hartnett, G. y Conboy, K. (2006). Customising agile methods to software practices at Intel Shannon. European Journal of Information Systems, 15(2), 200-213. https://doi.org/10.1057/palgrave.ejis.3000605; Fowler, M. (2005, 13 de diciembre). The new methodology. https://www.martinfowler.com/ articles/newMethodology.html; Fraser, S., Reinitz, R., Eckstein, J., Kerievsky, J., Mee, R. y Poppendieck, M. (2003). Xtreme programming and agile coaching. En Companion of the 18th Annual acm sigplan Conference on Object-Oriented Programming, Systems, Languages, and Applications (pp. 265-267). https://doi.org/10.1145/949344.949406; Ghani, I. y Yasin, I. (2013). Software security engineering in eXtreme Programming methodology: A systematic literature review. Science International, 25(2), 215-221. https:// citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fb3ac381f336911fe- 46c638abdde53376d74a5e5; Hewitt, B. y Walz, D. (2005). Using shared leadership to foster knowledge sharing in information systems development projects. En Proceedings of the 38th Annual Hawaii International Conference on System Sciences (pp. 256a-256a). ieee. https://doi.org/10.1109/ HICSS.2005.666; Highsmith, J. A. (2002). Agile software development ecosystems. Addison-Wesley.; Highsmith, J. A. (2004). Agile project management: Creating innovative products. Addison- Wesley.; Highsmith, J. A. (2013). Adaptive software development: A collaborative approach to managing complex systems. Addison-Wesley.; Highsmith, J. y Cockburn, A. (2001). Agile software development: The business of innovation. Computer, 34(9), 120-127. https://doi.org/10.1109/2.947100; Ionel, N. (2008). Critical analysis of the scrum project management methodology. Annals of the University of Oradea, Economic Science Series, 17(4), 435-441. https://anale.steconomiceuoradea. ro/volume/2008/v4-management-marketing/077.pdf; Kanwal, F., Junaid, K. y Fahiem, M. A. (2010). A hybrid software architecture evaluation method for fdd: An agile process model. En 2010 International Conference on Computational Intelligence And Software Engineering (pp. 1-5). IEEE. https://doi.org/10.1109/ CISE.2010.5676863; Khatri, S. K., Bahri, K. y Johri, P. (2014). Best practices for managing risk in adaptive agile process. En Proceedings of 3rd International Conference on Reliability, Infocom Technologies and Optimization (pp. 1-5). IEEE. https://doi.org/10.1109/ICRITO.2014.7014759; Kirkman, B. L. y Rosen, B. (1999). Beyond self-management: Antecedents and consequences of team empowerment. Academy of Management Journal, 42(1), 58-74. https://doi. org/10.5465/256874; Larman, C. (2004). Agile and iterative development: A manager’s guide. Addison-Wesley; Larman, C. y Vodde, B. (2008). Scaling lean & agile development: Thinking and organizational tools for large-scale scrum. Addison-Wesley.; Larman, C. y Vodde, B. (2013). Scaling agile development. CrossTalk, 9, 8-12. https://miroslawdabrowski. com/downloads/Scrum/Large%20Scale%20Scrum%20(LESS).pdf; Larman, C. y Vodde, B. (2016). Large-scale scrum: More with LeSS. Addison-Wesley.; Leffingwell, D. (2011). Scaling Agile Framework (SAFe). http://www.scaledagileframework.com/; Lindstrom, L. y Jeffries, R. (2005). Extreme Programming and agile software development methodologies. Information Systems Management, 21(3), 41-52.; Lui, T. W. y Piccoli, G. (2006). Degrees of agility: Implications for information systems design and firm strategy. En K. Desouza (ed.), Agile information systems (pp. 122-133). Routledge. https://doi.org/10.4324/9780080463681; Mahmud, D. M. y Abdullah, N. A. S. (2015). Reviews on agile methods in mobile application development process. En 2015 9th Malaysian Software Engineering Conference (MySEC) (pp. 161-165). IEEE. https://doi.org/10.1109/MySEC.2015.7475214; Marrington, A., Hogan, J. M. y Thomas, R. (2005). Quality assurance in a student-based agile software engineering process. En 2005 Australian Software Engineering Conference (pp. 324-331). IEEE. https://doi.org/10.1109/ASWEC.2005.38; Maximini, D. (2015). The scrum culture: Introducing agile methods in organizations. management for professionals. Springer. https://doi.org/10.1007/978-3-319-73842-0; Meng, X. X., Wang, Y. S., Shi, L. y Wang, F. J. (2007). A process pattern language for agile methods. En 14th Asia-Pacific Software Engineering Conference (apsec’07) (pp. 374-381). IEEE. https://doi.org/10.1109/ASPEC.2007.72; Meyer, B. (2014). Agile! The good, the hype and the ugly. Springer.; Millett, S., Blankenship, J. y Bussa, M. (2011). Pro agile: NET development with scrum. Apress.; Misra, S. C., Kumar, V. y Kumar, U. (2009). Identifying some important success factors in adopting agile software development practices. Journal of Systems and Software, 82(11), 1869-1890. https://doi.org/10.1016/j.jss.2009.05.052; Morgan, G. (2006). Images of organizations. Sage.; Müller, M. M. y Höfer, A. (2007). The effect of experience on the test-driven development process. Empirical Software Engineering, 12, 593-615. https://doi.org/10.1007/ s10664-007-9048-2; Mundra, A., Misra, S. y Dhawale, C. A. (2013). Practical scrum-scrum team: Way to produce successful and quality software. En 2013 13th International Conference on Computational Science and Its Applications (pp. 119-123). ieee. https://doi.org/10.1109/ ICCSA.2013.25; Nerur, S., Mahapatra, R. y Mangalaraj, G. (2005). Challenges of migrating to agile methodologies. Communications of the acm, 48(5), 72-78. https://doi.org/ 10.1145/1060710.1060712; Newkirk, J. (2002). Introduction to agile processes and eXtreme Programming. En Proceedings of the 24th International Conference on Software Engineering (pp. 695-696). https:// doi.org/10.1145/581339.581450; Paasivaara, M., Lassenius, C. y Heikkilä, V. T. (2012). Inter-team coordination in large-scale globally distributed scrum: Do scrum-of-scrums really work? En Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and Measurement (pp. 235-238). https://doi.org/10.1145/2372251.2372294; Palmer, S. R. y Felsing, M. (2002). A practical guide to Feature-Driven Development. Prentice Hall.; Pearce, C. L. (2004). The future of leadership: Combining vertical and shared leadership to transform knowledge work. Academy of Management Executive, 18(1), 47-57. https:// doi.org/10.5465/ame.2004.12690298; Pikkarainen, M., Salo, O. y Still, J. (2005). Deploying agile practices in organizations: A case study. En I. Richardson, P. Abrahamsson y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2005. Lecture Notes in Computer Science (pp. 16-27). Springer. https://doi.org/10.1007/11586012_3; Pohl, C. y Hof, H. J. (2015). Secure scrum: Development of secure software with scrum. En Proceedings of the Ninth International Conference on Emerging Security Information, Systems and Technologies (SECURWARE 2015). IARIA XPS Press. https://doi.org/10.48550/ arXiv.1507.02992; Poppendieck, M. y Poppendieck, T. (2003). Lean software development: An agile toolkit. Addison- Wesley.; Poppendieck, M. y Poppendieck, T. (2006). Implementing Lean Software Development: From concept to cash. Addison-Wesley.; Qumer, A. y Henderson-Sellers, B. (2008). An evaluation of the degree of agility in six agile methods and its applicability for method engineering. Information and Software Technology, 50(4), 280-295. https://doi.org/10.1016/j.infsof.2007.02.002; Reifer, D. (2002). How good are agile methods? IEEE Software, 19(4), 16-18. https://doi. org/10.1109/MS.2002.1020280; Rick, U., Vossen, R., Richert, A. y Henning, K. (2010). Designing agile processes in information management. En 2010 2nd IEEE International Conference on Information Management and Engineering (pp. 156-160). IEEE. https://doi.org/10.1109/ICIME.2010.5477776; Rieckmann, H. (1992). Dynaxibility - oder wie “systemisches”. Management in der Praxis funktionieren kann. En K. Henning y B. Harendt (eds.), Methodik und Praxis der Komplexitätsbewältigung (pp. 17-39). Duncker & Humblot.; Riehle, D. (2000). A comparison of the value systems of Adaptive Software Development and eXtreme Programming: How methodologies may learn from each other. En Proceedings of the First International Conference on Extreme Programming and Flexible Processes in Software Engineering (XP 2000) (pp. 35-50). https:// citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=807bd8be840eded41828ad9052e0d4d14b31865c; Rubin, K. S. (2012). Essential scrum: A practical guide to the most popular agile process. Addison- Wesley.; Rossberg, J. (2014). Beginning application lifecycle management. Apress.; Scale Agile Framework. (2020). SAFe 6.0. https://www.scaledagileframework.com/; Schuh, P. (2004). Integrating agile development in the real world. Charles River Media.; Schwaber, K. y Beedle, M. (2001). Agile software development with scrum. Prentice Hall PTR.; Sidky, A. S. (2007). A structured approach to adopting agile practices: The agile adoption framework (tesis de doctorado, Virginia Tech). https://vtechworks.lib.vt.edu/server/api/ core/bitstreams/4ff25112-51c4-4ce7-86f3-ee3e0c84100a/content; Singhal, A. (2012). Integration analysis of security activities from the perspective of agility. En 2012 Agile India (pp. 40-47). ieee. https://doi.org/10.1109/AgileIndia.2012.9; Sneed, H. M. (2014). Dealing with technical debt in agile development projects. En D. Winkler, S. Biffl y J. Bergsmann (eds.), Software Quality. Model-Based Approaches for Advanced Software and Systems Engineering. swqd 2014. Lecture Notes in Business Information Processing (pp. 48-62). Springer. https://doi.org/10.1007/978-3-319-03602-1_4; Stapleton, J. (1997). DSDM, dynamic systems development method: The method in practice. Cambridge University Press.; Sutherland, J. y Schwaber, K. (2020). The 2020 Scrum GuideTM. https://scrumguides.org/ scrum-guide.html; Tahir, F. y Manarvi, I. A. (2013). Agile process model and practices in distributed environment. En J. Stjepandić, G. Rock y C. Bil (eds.), Concurrent engineering approaches for sustainable product development in a multi-disciplinary environment (pp. 1169-1180). Springer. https://doi.org/10.1007/978-1-4471-4426-7_98; Tiltmann, T. (2007). Agile Entwicklung von cscw-Anwendungen für regionale Bildungswerke. Mainz.; Trist, E. (1981). The evolution of socio-technical systems: A conceptual framework and an action research program. Occasional Paper, 2. https://www.lmmiller.com/blog/ wp-content/uploads/2013/06/The-Evolution-of-Socio-Technical-Systems-Trist.pdf; Vaidya, A. (2014). Does dad know best, is it better to do less or just be safe? Adapting scaling agile practices into the Enterprise. En 32nd Annual Pacific Northwest Software Quality Conference - PNSQC 2014 (pp. 1-18). https://pnsqc.org/archives/dad-knowbest- better-less-just-enough-safe-adapting-agile-scaling-practices-enterprise/; Voigt, B. J., Glinz, M. y Seybold, D. I. C. (2004). Dynamic system development method. University of Zurich. https://files.ifi.uzh.ch/rerg/amadeus/teaching/seminars/seminar_ ws0304/14_Voigt_DSMD_Ausarbeitung.pdf; Walton, M. (1999). Strategies for lean product development: A compilation of lean aerospace initiative research. Research Paper, 2.; Womack, J. P. y Jones, D. T. (2003). Lean thinking: Banish waste and create wealth in your corporation. Free Press.; Womack, J. P., Jones, D. T. y Roos, D. (2007). The machine that changed the world: The story of lean production. Simon and Schuster.; Acuna, S. T., Juristo, N., Moreno, A. M. y Mon, A. (2006). A software process model handbook for incorporating people’s capabilities. Springer.; Alarcón, A., Martínez, N. y Sandoval, J. (2013). Use of learning strategies of swebok© guide proposed knowledge areas. En L. Uden, F. Herrera, J. Bajo Pérez y J. Corchado Rodríguez (eds.), 7th International Conference on Knowledge Management in Organizations: Service and Cloud Computing. Advances in Intelligent Systems and Computing pp. 243-254). Springer. https://doi.org/10.1007/978-3-642-30867-3_22; Bernardos, M.ª del S. (2004). Guideline for developing a software life cycle process in natural language generation projects. En A. Gelbukh (eds.), Computational Linguistics and Intelligent Text Processing. CICLing 2004. Lecture Notes in Computer Science (pp. 355-359). Springer. https://doi.org/10.1007/978-3-540-24630-5_43; Booch, G., Rumbaugh, J. y Jacobson, I. (2017). The unified modeling language user guide. Addison-Wesley.; Ceccarelli, A. y Silva, N. (2013). Qualitative comparison of aerospace standards: An objective approach. En 2013 ieee International Symposium on Software Reliability Engineering Workshops (issrew) (pp. 331-336). ieee. https://doi.org/10.1109/ISSREW. 2013.6688916; Dahhane, W., Berrich, J., Bouchentouf, T. y Rahmoun, M. (2016). semat Essence’s Kernel applied to O-MaSE. En 2016 5th International Conference on Multimedia Computing and Systems (icmcs) (pp. 799-804). ieee. https://doi.org/10.1109/ICMCS.2016.7905565; David, P. A. (1995). Standardization policies for network technologies: The flux between freedom and order revisited. En R. Hawkins, R. Mansell y J. Skea (eds.), Standards, innovation and competitiveness: The politics and economics of standards in natural and technical environments (pp. 15-35). Edward Elgar.; De Vries, H. J. (2013). Standardization: A business approach to the role of national standardization organizations. Springer.; Derniame, J. C., Kaba, B. A. y Wastell, D. (eds.) (1999). Software process: Principles, methodology, and technology. Springer.; Dupuis, R., Bourque, P. y Abran, A. (2003). swebok guide an overview of trial usages in the field of education. En Proceedings of the 33rd Annual Frontiers in Education (fie 2003). ieee. https://doi.org/10.1109/FIE.2003.1265987; ECSS-E-ST-10-02c - Verification (2009, 6 de marzo). https://ecss.nl/standard/ecss-e-st-10- 02c-verification/; ECSS-E-ST-10-06C - Technical requirements specification. (2009, 6 de marzo). https://ecss.nl/ standard/ecss-e-st-10-06c-technical-requirements-specification/; ECSS-E-ST-10c Rev.1 - System engineering general requirements. (2017, 15 de febrero). https://ecss.nl/standard/ecss-e-st-10c-rev-1-system-engineering-general-requirements- 15-february-2017/; ECSS-E-ST-40c - Software (2009, 6 de marzo). https://ecss.nl/standard/ecss-e-st-40c-software- general-requirements/; ECSS-Q-ST-30c Rev.1 - Dependability (2017, 15 de febrero). https://ecss.nl/standard/; ECSS-Q-ST-30c-rev-1-space-product-assurance-dependability-15-february-2017/; ECSS-Q-ST-40c - Safety. (2009, 6 de marzo). https://ecss.nl/standard/ecss-q-st-40c-safety/; ECSS-Q-ST-80C Rev.1 - Software product assurance. (2017, 15 de febrero). https://ecss.nl/ standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/; Elvesæter, B., Striewe, M., McNeile, A. y Berre, A. J. (2012). Towards an agile foundation for the creation and enactment of software engineering methods: The semat approach. En Proceedings of the Co-located Events at the 8th European Conference on Modelling Foundations and Applications (ecmfa 2012) (pp. 279-290). Technical University of Denmark. https://www.dcs.bbk.ac.uk/~amcnei01/docs/be_pmde_2012_paper.pdf; Emmerich, W. (1999). Software process: Standards, assessments and improvement. En J. C. Derniame, B. A. Kaba y D. Wastell (eds.), Software Process: Principles, Methodology, and Technology. Lecture Notes in Computer Science (pp. 15-25). Springer. https://doi. org/10.1007/3-540-49205-4_2; ESA Board for Software Standardisation and Control. (1995). Guide to the Software Engineering Standards. http://everyspec.com/ESA/ESA_PSS-05-06_ISSUE-1_REVISION- 1_10567/; Freericks, C. (2001). Open source standards on software process: A practical application. ieee Communications Magazine, 39(4), 116-123. https://doi.org/10.1109/35.917513; Halling, M., Zuser, W., Kohle, M. y Biffl, S. (2002). Teaching the unified process to undergraduate students. En Proceedings 15th Conference on Software Engineering Education and Training (csee&t 2002) (pp. 148-159). ieee. https://doi.org/10.1109/ CSEE.2002.995207; Hui, Y., Yan, Y., Quanyu, W. y Zhiwen, C. (2015). Compare essential unified process (EssUP) with rational unified process (RUP). En 2015 ieee 10th Conference on Industrial Electronics and Applications (iciea) (pp. 472-476). ieee. https://doi.org/10.1109/ICIEA. 2015.7334159; Ida, T. (2017). Evolutionary stability of de jure and de facto standards. Working Paper. ieee-std 1074. (2006). ieee Standard for Developing a Software Project Life Cycle Process, ieee Std 1074-2006 (Revision of ieee Std 1074-1997). https://doi.org/10.1109/ IEEESTD.2006.219190; ISO/IEC 15288:2015. (2015). Systems engineering - System life cycle processes. International Standardization Organization.; ISO/IEC 9000-3:2004. (2004). Software engineering - Guidelines for the application of ISO 9001:2000 to computer software. International Organization for Standardization.; ISO/IEC/IEEE 12207:2017. (2017). Systems and software engineering - Software life cycle processes. International Organization for Standardization.; Ivar Jacobson International. (2015). How to use the Agile Essentials Practice Pack. https:// www.ivarjacobson.com/services/agile-essentials-starter-pack-agile-practices; Jacobson, I., Ng, P. W., McMahon, P. E., Spence, I. y Lidman, S. (2012). The essence of software engineering: The semat kernel. Communications of the acm, 55(12), 42-49. http:// doi.acm.org/10.1145/2380656.2380670; Jones, M., Mortensen, U. K. y Fairclough, J. (1997). The esa software engineering standards: Past, present and future. En Proceedings of ieee International Symposium on Software Engineering Standards (pp. 119-126). ieee. https://doi.org/10.1109/SESS.1997.595952; Kajko-Mattsson, M., Striewe, M., Goedicke, M., Jacobson, I., Spence, I., Huang, S. … y Seymour, E. (2012). Refounding software engineering: The SEMAT initiative (Invited presentation). En 2012 34th International Conference on Software Engineering (icse) (pp. 1649-1650). ieee. https://doi.org/10.1109/ICSE.2012.6227214; Kempton, S., Sobell, C. y Withrow, C. (1988). dod-std-2167a applied to software maintenance. En 1988 Conference on Software Maintenance (pp. 159-164). ieee Computer Society. https://doi.ieeecomputersociety.org/10.1109/ICSM.1988.10156; Krishnan, M. S., Mukhopadhyay, T. y Zubrow, D. (1999). Software process models and project performance. Information Systems Frontiers, 1, 267-277. https://doi. org/10.1023/A:1010054412650; Kuhrmann, M., Münch, J., Richardson, I., Rausch, A. y Zhang, H. (eds.) (2016). Managing software process evolution: Traditional, agile and beyond–how to handle process change. Springer. https://doi.org/10.1007/978-3-319-31545-4; Land, S. K. y Walz, J. W. (2007). Practical support for ISO 9001 Software Project Documentation using IEEE Software Engineering Standards. Wiley-ieee Press.; Land, S. K., Smith, D. B. y Walz, J. W. (2012). Practical support for lean six sigma software process definition: Using ieee software engineering standards. John Wiley & Sons.; Mahonen, P. (2000). The standardization process in it-too slow or too fast? En Information technology standards and standardization: A global perspective (pp. 35-47). IGI Global. http://dx.doi.org/10.4018/978-1-878289-70-4.ch003; McCord, J. W. (1990). Software development-process and implementation: dod-std- 2167a vs. traditional methodologies. En ieee Conference on Aerospace and Electronics (pp. 681-687). IEEE. https://doi.org/10.1109/NAECON.1990.112848; Métrica v.3. (2020). Metodología de planificación, desarrollo y mantenimiento de sistemas de información. https://administracionelectronica.gob.es/pae_Home/pae_Documentacion/ pae_Metodolog/pae_Metrica_v3.html; Moore, J. W. (2006). The road map to software engineering: A standards-based guide. Wiley-ieee Computer Society Press.; Object Management Group. (2015). Essence - Kernel and Language for Software Engineering Methods. Version 1.1. https://www.omg.org/spec/Essence/1.0/PDF; OpenUP. (2022). Proceso unificado abierto. https://www.utm.mx/~caff/doc/OpenUPWeb/; Pino, F. J., Baldassarre, M. T., Piattini, M., Visaggio, G. y Caivano, D. (2010). Mapping software acquisition practices from iso 12207 and cmmi. En L. A. Maciaszek, C. González-Pérez y S. Jablonski (eds.), Evaluation of Novel Approaches to Software Engineering. enase enase 2009 2008. Communications in Computer and Information Science (pp. 234-247). Springer. https://doi.org/10.1007/978-3-642-14819-4_17; Pons, C., Giandini, R. y Baum, G. (2000). Dependency relations between models in the Unified Process. En Tenth International Workshop on Software Specification and Design. iwssd-10 2000 (pp. 149-157). ieee. https://doi.org/10.1109/IWSSD.2000.891136; Portuguese Institute of Quality. (2008). np en iso 9001:2008 - Quality Management Systems - Requirements.; Priestley, M. y Utt, M. H. (2000). A unified process for software and documentation development. En 18th Annual Conference on Computer Documentation. ipcc sigdoc 2000. Technology and Teamwork. Proceedings. ieee Professional Communication Society International Professional Communication Conference (pp. 221-238). ieee. https://doi.org/10.1109/ IPCC.2000.887279; Strandberg, T. (2016). What is iso/iec 15288? (A concise introduction). White Paper.; Valdés Cárdenas, L. E. (2005). Guía para la implementación de la Norma iso 9001:2000 en las empresas de software. Colciencias.; West, J. (2003). The role of standards in the creation and use of information systems. En Proceedings of the Workshop on Standard Making: A Critical Research Frontier for Information Systems (pp. 314-326). MIS Quarterly.; Amjad, A., Azam, F., Anwar, M. W., Butt, W. H. y Rashid, M. (2018). Event-driven process chain for modeling and verification of business requirements: A systematic literature review. ieee Access, 6, 9027-9048. https://doi.org/10.1109/ACCESS.2018.2791666; Atkinson, D. C., Weeks, D. C. y Noll, J. (2004). The design of evolutionary process modeling languages. En 11th Asia-Pacific Software Engineering Conference (pp. 73-82). ieee. https://doi.org/10.1109/APSEC.2004.98; Bandinelli, S. C., Fuggetta, A. y Ghezzi, C. (1993). Software process model evolution in the spade environment. ieee Transactions on Software Engineering, 19(12), 1128-1144. https://doi.org/10.1109/32.249659; Bendraou, R., Jézéquel, J. M., Gervais, M. P. y Blanc, X. (2010). A comparison of six uml-based languages for software process modeling. ieee Transactions on Software Engineering, 36(5), 662-675. https://doi.org/10.1109/TSE.2009.85; Brcina, R. (2007). Arbeiten zur Verfolgbarkeit und Aspekte des Verfolgbarkeitsprozesses. Softwaretechnik-Trends: Mitteilungen von mehreren Fachgruppen des Fachausschusses, 27(1), 3-8.; Brondani, C. H., da Cruz Mello, O. y Fontoura, L. M. (2019). A case study of a software development process model for sis-astros. En seke (pp. 600-776). http://ksiresearch. org/seke/seke19paper/seke19paper_98.pdf; Broy, M. y Rumpe B. (2007). Modulare hierarchische Modellierung als Grundlage der Software- und Systementwicklung. InformatikSpektrum, 30(1), 3-18. https://doi. org/10.1007/; Campos, A. L. N. y Oliveira, T. (2013). Software processes with bpmn: An empirical analysis. En J. Heidrich, M. Oivo, A. Jedlitschka y M. T. Baldassarre (eds.), Product- Focused Software Process Improvement. profes 2013. Lecture Notes in Computer Science (pp. 338-341). Springer. https://doi.org/10.1007/978-3-642-39259-7_29; Cempel, W. A. y Dąbal, D. (2014). idef0 as a project management tool in the simulation modeling and analysis process in emergency evacuation from hospital facility: A case study. En P. Pawlewski y A. Greenwood (eds.), Process Simulation and Optimization in Sustainable Logistics and Manufacturing. EcoProduction (pp. 155-166). Springer. https://doi.org/10.1007/978-3-319-07347-7_11; Conradi, R., Jaceheri, M. L., Mazzi, C., Nguyen y M. N., Aarsten, A. (1992). Design, use and implementation of spell: A language for software process modeling and evolution. En J. C. Derniame (eds.), Software Process Technology. ewspt 1992. Lecture Notes in Computer Science (pp. 167-177). Springer. https://doi.org/10.1007/BFb0017519; Decker, G. (2009). Design and analysis of process choreographies [tesis de doctorado, Universität Potsdam]. https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/ index/docId/3898/file/decker_diss.pdf; DeMarco, T. (2004). Was man nicht messen kann, kann man nicht kontrollieren. MitpVerlag.; Dowson, M. y Fernström, C. (1994). Towards requirements for enactment mechanisms. En B. C. Warboys (eds.), Software Process Technology. ewspt 1994. Lecture Notes in Computer Science (pp. 90-106). Springer. https://doi.org/10.1007/3-540-57739-4_13; Dumas, M., La Rosa, M., Mendling, J. y Reijers, H. A. (2013). Fundamentals of business process management. Springer. https://doi.org/10.1007/978-3-642-33143-5; Gallina, B., Pitchai, K. R. y Lundqvist, K. (2014). S-TunExSPEM: Towards an extension of spem 2.0 to model and exchange tunable safety-oriented processes. En R. Lee (eds.), Software Engineering Research, Management and Applications. Studies in Computational Intelligence (pp. 215-230). Springer. https://doi.org/10.1007/978-3-319-00948-3_14; García-Borgoñón, L., Barcelona, M. A., García-García, J. A., Alba, M. y Escalona, M. J. (2014). Software process modeling languages: A systematic literature review. Information and Software Technology, 56(2), 103-116. https://doi.org/10.1016/j.infsof. 2013.10.001; García-García, J. A., Enríquez, J. G. y Domínguez-Mayo, F. J. (2019). Characterizing and evaluating the quality of software process modeling language: Comparison of ten representative model-based languages. Computer Standards & Interfaces, 63, 52-66. https://doi.org/10.1016/j.csi.2018.11.008; Génova, G. (2012). Conceptos básicos de modelado. En Desarrollo de software dirigido por modelos: Conceptos, métodos y herramientas (pp. 67-80). Ra-Ma. http://www.lcc.uma. es/~av/Publicaciones/12/LibroDSDM.pdf; Harel, D. y Rumpe, B. (2004). Meaningful modeling: What’s the semantics of “semantics”? Computer, 37(10), 64-72. https://doi.org/10.1109/MC.2004.172; Hauser, R. (2010). Automatic transformation from graphical process models to executable code. eth Zürich. https://doi.org/10.3929/ethz-a-006050258; Holt, J. (2004). uml for systems engineering: Watching the wheels. iet.; Hunter, R. B. y Thayer, R. H. (eds.) (2001). Software process improvement (practitioners). ieee Computer Society; Hurtado Alegría, J. A., Bastarrica, M. C. y Bergel, A. (2011). Analyzing software process models with avispa. En Proceedings of the 2011 International Conference on Software and Systems Process (pp. 23-32). https://doi.org/10.1145/1987875.1987882; Kaiser, G. E., Barghouti, N. S. y Sokolsky, M. H. (1990). Preliminary experience with process modeling in the marvel software development environment kernel. En Proceedings of the 23rd International Conference on System Sciences (pp. 131-140). ieee. https:// doi.org/10.1109/HICSS.1990.205161; Kelemen, Z. D., Kusters, R., Trienekens, J. y Balla, K. (2013). Selecting a process modeling language for process based unification of multiple standards and models. https://www. academia.edu/download/40527680/Selecting_a_Process_Modeling_Language_ fo20151130-12371-180bp3v.pdf; Li, Y. B. y Mao, F. Q. (2010). Research of the verification in workflow process modeling on the application of Petri nets. En 2010 International Conference on e-Education, e-Business, e-Management and e-Learning (pp. 21-24). ieee. https://doi.org/10.1109/ IC4E.2010.71; Ludewig, J. y Lichter, H. (2023). Software engineering: Grundlagen, menschen, prozesse, techniken. Dpunkt Verlag GmbH.; Mendling, J., Neumann, G. y Nüttgens, M. (2005). Yet another Event-Driven Process Chain. En W. M. P. van der Aalst, B. Benatallah, F. Casati y F. Curbera (eds.), Business Process Management. bpm 2005. Lecture Notes in Computer Science (pp. 428-433). Springer. https://doi.org/10.1007/11538394_35; Mili, H., Tremblay, G., Jaoude, G. B., Lefebvre, É., Elabed, L. y Boussaidi, G. E. (2010). Business process modeling languages: Sorting through the alphabet soup. acm Computing Surveys (csur), 43(1), 1-56. https://doi.org/10.1145/1824795.1824799; Moro, M. (2004). Modellbasierte Qualitätsbewertung von Softwaresystemen. Books on Demand GmbH.; Nitto, E. D., Lavazza, L., Schiavoni, M., Tracanella, E. y Trombetta, M. (2002). Deriving executable process descriptions from uml. En Proceedings of the 24th International Conference on Software Engineering (pp. 155-165). https://doi.org/10.1145/581339.581361; Object Management Group. (2008a). Software & Systems Process Engineering Meta-Model Specification Version 2.0. omg Document Number: formal/2008-04-01. https://www.omg. org/spec/SPEM/2.0/PDF; Object Management Group. (2008b). Meta Object Facility (mof) Core Specification. Version 2.5.1. omg Document Number: formal/2019-10-01. https://www.omg.org/spec/MOF; Object Management Group. (2017). omg Unified Modeling Language (omg uml) Version 2.5.1. omg Document Number: formal/2017-12-05. https://www.omg.org/spec/UML/2.5.1/ PDF; OpenUP. (2012). Eclipse Process Framework Composer. http://www.utm.mx/~caff/doc/OpenUPWeb/ index.htm; Pawel, P. (2010). Using Petri nets to model and simulation production systems in process reengineering (case study). intech Open Access Publisher. https://www.intechopen.com/ chapters/9195; Pereira, E. B., Bastos, R. M., Oliveira, T. C. y Móra, M. C. (2012). A set of well-formedness rules to checking the consistency of the software processes based on spem 2.0. En R. Zhang, J. Zhang, Z. Zhang, J. Filipe y J. Cordeiro (eds.), Enterprise Information Systems. iceis 2011. Lecture Notes in Business Information Processing (pp. 284-299). Springer. https://doi.org/10.1007/978-3-642-29958-2_19; Ris-Ala, R. (2016). Scrum Framework Drawn in bpmn. https://www.linkedin.com/pulse/ scrum-drawn-bpmn-rafael-ris-ala-jos%C3%A9-jardim; Seidewitz, E. (2003). What models mean. ieee Software, 20(5), 26-32. https://doi. org/10.1109/MS.2003.1231147; Sutton, S. M., Heimbigner, D. y Osterweil, L. J. (1995). appl/a: A language for software process programming. acm Transactions on Software Engineering and Methodology (tosem), 4(3), 221-286. https://doi.org/10.1145/214013.214017; Van der Aalst, W. (2016). Process mining: Data science in action. Springer.; Basili, V. R., Caldiera, G. y Rombach, H. D. (1994). The goal question metric approach. En Encyclopedia of software engineering (pp. 528-532). Wiley & Sons Inc.; Bourque, P. y Fairley, R. E. (eds.) (2014). Guide to the software engineering body of knowledge, version 3.0. ieee Computer Society; Canfora, G., García, F., Piattini, M., Ruiz, F. y Visaggio, C. A. (2005). A family of experiments to validate metrics for software process models. Journal of Systems and Software, 77(2), 113-129. https://doi.org/10.1016/j.jss.2004.11.007; Deridder, D. (2002). A concept-oriented approach to support software maintenance and reuse activities. En Workshop on Knowledge-Based Object-Oriented Software Engineering at 16th European Conference on Object-Oriented Programming (ecoop 2002). Springer. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7785ac1e75fc7b343776cbb98c598e1b1a0be565; Fairley, R. E. (2011). Managing and leading software projects. John Wiley & Sons.; Farooq, S. U., Quadri, S. M. K. y Ahmad, N. (2011). Software measurements and metrics: Role in effective software testing. International Journal of Engineering Science and Technology, 3(1), 671-680. https://www.academia.edu/download/52482421/SOFTWARE_ MEASUREMENTS_AND_METRICS_ROLE_I20170404-6019-9p9zbx.pdf; Florak, W. A., Park, R. E. y Carleton, A. (1997). Practical software measurement: Measuring for process management and improvement. No. cmu/sei-97-hb-003. Software Engineering Institute, Carnegie Mellon University. https://citeseerx.ist.psu.edu/document? repid=rep1&type=pdf&doi=76aafd5d0ed49263488bca95f00f1fdad3729bec; Grady, R. B. (1992). Practical software metrics for project management and process improvement. Prentice-Hall.; Institute of Electrical and Electronics Engineers. (1990). 610.12-1990 - ieee Standard Glossary of Software Engineering Terminology. https://doi.org/10.1109/IEEESTD.1990.101064; ISO/IEC/IEEE 12207. (2017). ISO/IEC/IEEE 12207:2017 Systems and software engineering – Software life cycle processes.; ISO/IEC/IEEE 15288. (2015). ISO/IEC/IEEE 15288:2015 Systems and software engineering – System life cycle processes.; ISO/IEC/IEEE 15939. (2017). ISO/IEC/IEEE 15939:2017 Systems and software engineering – Measurement process.; Joint Committee for Guides in Metrology. (2012). jcgm 200:2012: International vocabulary of metrology. Basic and general concepts and associated terms (vim). https://www.bipm.org/ utils/common/documents/jcgm/JCGM_200_2012.pdf; Kurnia, R., Ferdiana, R. y Wibirama, S. (2018). Software metrics classification for agile scrum process: A literature review. En 2018 International Seminar on Research of Information Technology and Intelligent Systems (isriti) (pp. 174-179). ieee. https://doi. org/10.1109/ISRITI.2018.8864244; Menéndez Domínguez, V. H. y Castellanos Bolaños, M. E. (2015). spem: Software process engineering metamodel. Archivo de la Revista Latinoamericana de Ingeniería de Software, 3(2), 92-100. https://doi.org/10.18294/relais.2015.92-100; Mills, E. E. y Shingler, K. H. (1988). Software Metrics: sei Curriculum Module sei-cm-12-1.1. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu. edu/documents/1537/1988_007_001_15608.pdf; Noor, H., Hayat, D. B., Hamid, A., Wakeel, T. y Nasim, R. (2020). Software metrics: Investigating success factors, challenges, solutions and new research directions. International Journal of Scientific & Technology Research, 9(8), 38-44.; Park, R. E., Goethert, W. B. y Florac, W. A. (1996). Goal-driven software measurement: A guidebook. No. cmu/sei-96-hb-002. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu.edu/documents/1623/1996_002_001_16436.pdf; Piattini Velthuis, M. G., García Rubio, F. O., García Rodríguez de Guzmán, I. y Pino, F. J. (2011). Calidad de sistemas de información. Ra-Ma.; Pressman, R. S. (2005). Software engineering: A practitioner’s approach. McGraw-Hill.; Ruiz, F., Genero, M., García, F., Piattini, M. y Calero, C. (2003). A proposal of a software measurement ontology. En Proceedings of the Conference on Computer Science and Operational Research. Springer. https://www.academia.edu/download/68115968/A_proposal_ of_a_Software_Measurement_Ont20210715-13490-bwjmn6.pdf; Srinivasan, K. P. (2015). Unique fundamentals of software measurement and software metrics in software engineering. International Journal of Computer Science & Information Technology (ijcsit), 7(4), 29-43. https://www.airccse.org/journal/jcsit/7415ijcsit03.pdf; Tautz, C. y Von Wangenheim, C. (1998). refseno: A representation formalism for software engineering ontologies. Technical report No. 015.98/E, version 1.1. Fraunhofer iese. https://publica-rest.fraunhofer.de/server/api/core/bitstreams/05029db1-0b3f-408eb786- 468127baee2d/content; Xu, R., Xue, Y., Nie, P., Zhang, Y. y Li, D. (2006). Research on CMMI-based software process metrics. En First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS’06) (vol. 2, pp. 391-397). ieee. https://doi.org/10.1109/ IMSCCS.2006.260; Baldassarre, T., Boffoli, N., Caivano, D. y Visaggio, G. (2004). Managing Software Process Improvement (SPI) through statistical process control (spc). En F. Bomarius y H. Iida (eds.), Product Focused Software Process Improvement. profes 2004. Lecture Notes in Computer Science (pp. 30-46). Springer. https://doi.org/10.1007/978-3-540-24659-6_3; Caivano, D. (2005). Continuous Software Process Improvement through statistical process control. En Ninth European Conference on Software Maintenance and Reengineering (pp. 288-293). ieee. https://doi.org/10.1109/CSMR.2005.20; Card, D. N. y Glass, R. L. (1990). Measuring software design quality. Prentice-Hall.; Chang, C. W. y Tong, L. I. (2013). Monitoring the software development process using a short-run control chart. Software Quality Journal, 21, 479-499. https://doi. org/10.1007/s11219-012-9182-y; DeMarco, T. (1986). Controlling software projects: Management, measurement, and estimates. Prentice Hall.; Fine, E. S. (1997). What is wrong with spc? Quality, 36(10), 22-24.; Florac, W. A. y Carleton, A. D. (1999). Measuring the software process: Statistical process control for Software Process Improvement. Addison-Wesley.; Florac, W. A., Carleton, A. D. y Barnard, J. R. (2000). Statistical process control: Analyzing space shuttle onboard software process. ieee Software, 17(4), 97-106. https://doi. org/10.1109/52.854075; Florac, W. A., Park, R. E. y Carleton, A. (1997). Practical software measurement: Measuring for process management and improvement. No. cmu/sei-97-hb-003. Software Engineering Institute, Carnegie Mellon University. https://citeseerx.ist.psu.edu/document? repid=rep1&type=pdf&doi=76aafd5d0ed49263488bca95f00f1fdad3729bec; Gonçalves, L., Lima, L., Reis, R. Q., Nascimento, L. y Ribeiro, T. (2012). Support for statistic process control of software process. En 2012 xxxviii Conferencia Latinoamericana en Informática (clei) (pp. 1-10). ieee. https://doi.org/10.1109/CLEI.2012.6426915; Humphrey, W. S. (2005). psp (sm): A self-improvement process for software engineers. Addison-Wesley.; Jalote, P. y Saxena, A. (2002). Optimum control limits for employing statistical process control in software process. ieee Transactions on Software Engineering, 28(12), 1126-1134. https://doi.org/10.1109/TSE.2002.1158286; Komuro, M. (2006). Experiences of applying SPC techniques to software development processes. En Proceedings of the 28th international conference on Software engineering (pp. 577-584). https://doi.org/10.1145/1134285.1134367; Khurana, R. (2007). Software engineering: Principles and practices. Vikas.; Manlove, D. y Kan, S. H. (2007). Practical statistical process control for software metrics. Software Quality Professional Magazine, 9(4), 15-26.; Montgomery, D. C. (2012). Statistical quality control. Wiley Global Education.; Raczynski, B. y Curtis, B. (2008). Software data violate spc’s underlying assumptions. ieee Software, 25(3), 48-50.; Salazar, R. (2019). Quality Control Charts: x-bar chart, R-chart and Process Capability Analysis. Towards data science. https://towardsdatascience.com/quality-controlcharts- x-bar-chart-r-chart-and-process-capability-analysis-96caa9d9233e; Sargut, K. U. y Demirörs, O. (2006). Utilization of statistical process control (spc) in emergent software organizations: Pitfalls and suggestions. Software Quality Journal, 14, 135-157. https://doi.org/10.1007/s11219-006-7599-x; Şengöz, N. G. (2018). Control charts to enhance quality. En L. Kounis (ed.), Quality management systems: A selective presentation of case-studies showcasing its evolution (pp. 153-194). IntechOpen.; Shewhart, W. A. (1926). Quality control charts. Bell System Technical Journal, 5, 593-603. https://doi.org/10.1002/j.1538-7305.1926.tb00125.x; Tarhan, A. y Demirörs, O. (2006). Investigating suitability of software process and metrics for statistical process control. En I. Richardson, P. Runeson y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2006. Lecture Notes in Computer Science (pp. 88-99). Springer. https://doi.org/10.1007/11908562_9; Weller, E. y Card, D. (2008). Applying spc to software development where and why. ieee Software, 25(3), 48-50.; Wheeler, D. J. (1993). Understanding variation: The key to managing chaos. spc Press.; Wheeler, D. J. (1995). Advanced topics in statistical process control. spc Press.; Allison, I. (2005). Towards an agile approach to Software Process Improvement: Addressing the changing needs of software products. Communications of iima, 5(1), 67-76. https:// doi.org/10.58729/1941-6687.1256; American Society for Quality. (2020). Quality tools. https://asq.org/quality-resources/quality- tools; Antony, J. y Banuelas, R. (2002). Key ingredients for the effective implementation of Six Sigma program. Measuring Business Excellence, 6(4), 20-27. https://doi. org/10.1108/13683040210451679; Basili, V., Caldiera, G. y Rombach, D. (1994). Experience factory. En Encyclopedia of software engineering (vol. 1, pp. 476-496). John Wiley & Sons.; Beecham, S., Hall, T. y Rainer, A. (2003). Software process improvement problems in twelve software companies: An empirical analysis. Empirical Software Engineering, 8, 7-42. https://doi.org/10.1023/A:1021764731148; Bekaroo, G. y Warren, P. (2016). Self-tuning flowcharts: A priority-based approach to optimize diagnostic flowcharts. En 2016 ieee International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech) (pp. 279-285). IEEE. https://doi.org/10.1109/EmergiTech.2016.7737352; Birk, A. y Rombach, D. (2001). A practical approach to continuous improvement in software engineering. En M. Wieczorek y D. Meyerhoff (eds.), Software quality: State of the art in management, testing, and tools (pp. 34-45). https://doi.org/10.1007/978-3- 642-56529-8_3; Borstler, J., Carrington, D., Hislop, G. W., Lisack, S., Olson, K. y Williams, L. (2002). Teaching PSP: Challenges and lessons learned. ieee Software, 19(5), 42-48. https://doi. org/10.1109/MS.2002.1032853; British Standards Institution. (2011). Kick start guide TickITplus. https://www.tickitplus. org/en/standards-and-guidance/guidance.html?file=files/content/tickitplus/TickITplus_-_ Kick_Start_Guide_1.pdf&cid=33397; Bubevski, V. (2010). An application of Six Sigma and simulation in software testing risk assessment. En 2010 Third International Conference on Software Testing, Verification and Validation (pp. 295-302). ieee. https://doi.org/10.1109/ICST.2010.23; Cangussu, J. W., DeCarlo, R. A. y Mathur, A. P. (2003). Monitoring the software test process using statistical process control: A logarithmic approach. En Proceedings of the 9th European Software Engineering Conference held jointly with 11th acm sigsoft International Symposium on Foundations of Software Engineering (pp. 158-167). ieee. https://doi. org/10.1145/940071.940093; Cano, E. L., Moguerza, J. M. y Redchuk, A. (2012). Six Sigma with R: Statistical engineering for process improvement. Springer.; Chaudhary, M. y Chopra, A. (2017). CMMI for development: Implementation guide. Apress. https://doi.org/10.1007/978-1-4842-2529-5; Davis, P. T. y Lewis, B. D. (2018). Project management capability assessment: Performing iso 33000-Based capability assessments of project management. crc Press.; Ferreira, M. G. y Wazlawick, R. S. (2011). Complementing the sei-ideal model with deployers’ real experiences: The need to address human factors in spi Initiatives. En CIbSE (pp. 39-52). https://www.academia.edu/download/32809080/cibse_paper03.pdf; Fontana, R. M., Albuquerque, R., Luz, R., Moises, A. C., Malucelli, A. y Reinehr, S. (2018). Maturity models for agile software development: What are they? En X. Larrucea, I. Santamaria, R. O’Connor y R. Messnarz (eds.), Systems, Software and Services Process Improvement. EuroSPI 2018. Communications in Computer and Information Science (pp. 3-14). Springer. https://doi.org/10.1007/978-3-319-97925-0_1; Grütter, G. y Ferber, S. (2002). The Personal Software Process in practice: Experience in two cases over five years. En J. Kontio y R. Conradi (eds.), Software Quality - ecsq 2002. ecsq 2002. Lecture Notes in Computer Science (pp. 165-174). Springer. https:// doi.org/10.1007/3-540-47984-8_20; Gupta, P. y Rao, D. S. (2011). Best practices to achieve CMMI level 2 configuration management process area through vss tool. International Journal of Computer Technology and Applications, 2(3), 542-558.; Harry, M. y Schroeder, R. (2000). Six Sigma: The breakthrough management strategy revolutionizing the world’s top corporations. Doubleday.; Hauser, S. (2018). Analysis of requirement problems regarding their causes and effects for projects with the objective to model qualitative pris-empirical study. https://ceur-ws.org/Vol-2075/ DS-paper3.pdf; Humphrey, W. S. (2001). Winning with software: An executive strategy. Pearson Education.; Humphrey, W. S. y Over, J. W. (2010). Leadership, teamwork, and trust: Building a competitive software capability. Addison-Wesley.; Iqbal, J., Nasir, M. H. N., Khan, M., Awan, I. y Farid, S. (2020). Software process improvement implementation issues in small and medium enterprises that develop healthcare applications. Journal of Medical Imaging and Health Informatics, 10(10), 2393-2403. https://doi.org/10.1166/jmihi.2020.3187; ISO 33000. (2020). iso 33000. https://www.iso33000.es/; ISO/IEC 15504. (2003). International Organization for Standardization and the International Electrotechnical Commission (iso/iec). iso/iec 15504-2 - Information technology - Process assessment - Part 2: Performing an assessment.; Kandt, R. K. (2003). Ten steps to successful Software Process Improvement. https://dataverse. jpl.nasa.gov/api/access/datafile/6189?gbrecs=true; Kaplan, R. S. y Norton, D.P. (1992). The balanced scorecard: Measures that drive performance. Harvard Business Review, 70(1), 71-79. https://hbr.org/1992/01/the-balancedscorecard- measures-that-drive-performance-2; Kaplan, R. S. y Norton, D.P. (2009). El cuadro de mando integral. Gestión 2000.; Kazi, L., Radosav, D., Nikolic, M. y Chotaliya, N. (2011). Balanced scorecard framework in software project monitoring. Journal of Engineering Management and Competitiveness (jemc), 1(1-2), 51-56. http://www.tfzr.uns.ac.rs/JEMC/files/V1N1-22011-10.pdf; Kuhrmann, M., Konopka, C., Nellemann, P., Diebold, P. y Münch, J. (2015). Software process improvement: Where is the evidence? Initial findings from a systematic mapping study. En Proceedings of the 2015 International Conference on Software and System Process (pp. 107-116). https://doi.org/10.1145/2785592.2785600; Kuilboer, J. P. y Ashrafi, N. (2000). Software process and product improvement: An empirical assessment. Information and Software Technology, 42(1), 27-34. https://doi. org/10.1016/S0950-5849(99)00054-3; Lee, J. C., Hsu, W. C. y Chen, C. Y. (2018). Impact of absorptive capability on Software Process Improvement and firm performance. Information Technology and Management, 19, 21-35. https://doi.org/10.1007/s10799-016-0272-6; Liliana, L. (2016). A new model of Ishikawa diagram for quality assessment. En Iop Conference Series: Materials Science and Engineering, 161(1), 012099. https://doi. org/10.1088/1757-899X/161/1/012099; McFeeley, B. (1996). IDEAL: A user’s guide for Software Process Improvement. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu.edu/documents/ 1622/1996_002_001_16433.pdf; Mejía, J., Íñiguez, F. y Muñoz, M. (2017). Data Analysis for Software Process Improvement: A systematic literature review. En Á. Rocha, A. Correia, H. Adeli, L. Reis y S. Costanzo (eds.), Recent Advances in Information Systems and Technologies. WorldCIST 2017. Advances in Intelligent Systems and Computing (pp. 48-59). Springer. https://doi. org/10.1007/978-3-319-56535-4_5; Mills, H. D. y Linger, R. C. (2002). Cleanroom software engineering: Developing software under statistical quality control. En Encyclopedia of Software Engineering. John Wiley & Sons. https://doi.org/10.1002/0471028959.sof040; Niazi, M., Mishra, A. y Gill, A. Q. (2018). What do software practitioners really think about Software Process Improvement project success? An exploratory study. Arabian Journal for Science and Engineering, 43, 7719-7735. https://doi.org/10.1007/s13369- 018-3140-3; O’Regan, G. (2017). Concise guide to software engineering. Springer.; Pernstål, J., Feldt, R., Gorschek, T. y Florén, D. (2019). flex-rca: A lean-based method for root cause analysis in Software Process Improvement. Software Quality Journal, 27, 389-428. https://doi.org/10.1007/s11219-018-9408-8; Piattini Velthuis, M. G. y Garzás Parra, J. (2007). Fábricas de software: Experiencias, tecnologías y organización. ra-ma.; Pillai, A. K. R., Pundir, A. K. y Ganapathy, L. (2012). Implementing integrated Lean Six Sigma for software development: A flexibility framework for managing the continuity. Change dichotomy. Global Journal of Flexible Systems Management, 13, 107-116. https://doi.org/10.1007/s40171-012-0009-2; Pomeroy-Huff, M., Mullaney, J., Cannon, R. y Seburn, M. (2008). The Personal Software Process-SM (PSP-SM) Body of Knowledge, Version 1.0. No. cmu/sei-2005-sr-003. Software Engineering Institute, Carnegie Mellon University. https://apps.dtic.mil/sti/tr/ pdf/ADA636411.pdf; Poth, A., Sasabe, S. y Mas, A. (2017). Lean and agile Software Process Improvement: An overview and outlook. En J. Stolfa, S. Stolfa, R. O’Connor y R. Messnarz (eds.), Systems, Software and Services Process Improvement. EuroSPI 2017. Communications in Computer and Information Science (pp. 471-485). Springer. https://doi.org/10.1007/978-3- 319-64218-5_38; Pournaghshband, H. y Watson, J. (2017). Should Six Sigma be incorporated into software development & project management? En 2017 International Conference on Computational Science and Computational Intelligence (csci) (pp. 1021-1026). ieee. https://doi. org/10.1109/CSCI.2017.176; Pressman, R. S. (2005). Software engineering: A practitioner’s approach. Palgrave Macmillan.; Qumer, A., Henderson-Sellers, B. y Mcbride, T. (2007). Agile adoption and improvement model. En Proceedings European and Mediterranean Conference on Information Systems (emcis). The Information Institute, Brunel University. https://opus.lib.uts.edu.au/bitstream/ 10453/6833/1/2006014581.pdf; Salo, O. (2006). Enabling Software Process Improvement in agile software development teams and organisations [tesis de doctorado, vtt Technical Research Centre of Finland]. https://publications.vtt.fi/pdf/publications/2006/P618.pdf; Santana, C., Queiroz, F., Vasconcelos, A. y Gusmão, C. (2015). Software process improvement in agile software development a systematic literature review. En 2015 41st Euromicro Conference on Software Engineering and Advanced Applications (pp. 325-332). ieee. https://doi.org/10.1109/SEAA.2015.82; scampi Upgrade Team. (2011). scampi - Standard cmmi Appraisal Method for Process Improvement (scampi) A, Version 1.3: Method Definition Document. Technical Report cmu/sei-2011- hb-001. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA. https://insights.sei.cmu.edu/documents/1618/2011_002_001_15311. pdf; Shin, H., Choi, H. J. y Baik, J. (2007). Jasmine: A PSP supporting tool. En Q. Wang, D. Pfahl y D. M. Raffo (eds.), Software Process Dynamics and Agility. icsp 2007. Lecture Notes in Computer Science (pp. 73-83). Springer. https://doi.org/10.1007/978-3-540- 72426-1_7; Software Engineering Institute. (2010). cmmi para Desarrollo, Versión 1.3. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu.edu/ documents/87/2010_019_001_28782.pdf; Tague, N. R. (2005). The quality toolbox. asq Quality Press.; Wiegers, K. E. (1999). Process Improvement that works. Software Development, 7(10), 24-30.; Zahran, S. (1998). Software process improvement: Practical guidelines for business susccess. Addison-Wesley.; Amescua, A., Bermón Angarita, L., García, J. y Sánchez-Segura, M. I. (2010). Knowledge repository to improve agile development processes learning. iet Software, 4(6), 434-444. https://doi.org/10.1049/iet-sen.2010.0067; Bayona, S., Calvo Manzano, J., Cuevas, G. y San Feliu, T. (2013). Identify and classify the critical success factors for a successful process deployment. En R. Pooley, J. Coady, C. Schneider, H. Linger, C. Barry y M. Lang (eds.), Information systems development: Reflections, challenges and new directions (pp. 11-22). Springer. https:// doi.org/10.1007/978-1-4614-4951-5_2; Bermón Angarita, L. (2010). Librería de activos para la gestión del conocimiento sobre procesos de software: PAL-Wiki [tesis de doctorado, Universidad Carlos III de Madrid]. https://e-archivo.uc3m.es/handle/10016/10231#preview; Bourque, P. y Fairley, R. E. (eds.) (2014). Guide to the Software Engineering Body of Knowledge, Version 3.0. ieee Computer Society. https://cs.fit.edu/~kgallagher/Schtick/Serious/ SWEBOKv3.pdf; Chaghrouchni, T., Kabbaj, M. I. y Bakkoury, Z. (2016). Optimized approach for dynamic adaptation of process models. En A. El Oualkadi, F. Choubani y A. El Moussati (eds.), Proceedings of the Mediterranean Conference on Information & Communication Technologies 2015. Lecture Notes in Electrical Engineering (pp. 101-109). Springer. https://doi. org/10.1007/978-3-319-30298-0_11; Chaudhary, M. y Chopra, A. (2017). cmmi for development: Implementation guide. Apress. http://ndl.ethernet.edu.et/bitstream/123456789/27112/1/Mukund %20Chaudhary. pdf; Christensen, C. M. y Overdorf, M. (2000). Meeting the challenge of disruptive change. Harvard Business Review, 78(2), 66-77. http://innovbfa.viabloga.com/files/HBR___Christensen___ meeting_the_challenge_of_disruptive_change___2009.pdf; De Lucia, A., Fasano, F., Francese, R. y Tortora, G. (2004). ADAMS: An artefact-based process support system. En F. Maurer y G. Ruhe (eds.), Proceedings of the Seventh International Conference on Software Engineering and Knowledge Engineering (apeie) (pp. 31-36). IEEE.; De Oliveira, K. M., Zlot, F., Rocha, A. R., Travassos, G. H., Galotta, C. y de Menezes, C. S. (2004). Domain-oriented software development environment. Journal of Systems and Software, 72(2), 145-161. https://doi.org/10.1016/S0164-1212(03)00233-4; DeMarco, T. y Lister, T. (2013). Peopleware: Productive projects and teams. Addison-Wesley.; Dengler, F., Lamparter, S., Hefke, M. y Abecker, A., (2009). Collaborative process development using Semantic MediaWiki. En K. Hinkelmann y H. Wache (eds.), WM2009: 5th Conference on Professional Knowledge Management (pp. 97-107). Gesellschaft für Informatik e.V. https://new-dl.gi.de/bitstream/handle/20.500.12116/23326/giproc- 145-008.pdf?sequence=1&isAllowed=y; Dowson, M. (1993). Consistency maintenance in process sensitive environments. En Proceedings of Workshop on Process Sensitive Environments Architectures. Rocky Mountain Institute of Software Engineering.; Dybå, T. (2005). An empirical investigation of the key factors for success in Software Process Improvement. ieee transactions on Software Engineering, 31(5), 410-424. https://doi.org/10.1109/TSE.2005.53; Ebersbach, A., Glaser, M., Heigl, R. y Warta, A. (2008). Wiki: Web collaboration (2.ª ed.). Springer.; García, J., Amescua, A., Sánchez, M. I. y Bermón Angarita, L. (2011). Design guidelines for software processes knowledge repository development. Information and Software Technology, 53(8), 834-850. https://doi.org/10.1016/j.infsof.2011.03.002; García, S. y Turner, R. (2007). CMMI survival guide: Just enough process improvement. Addison-Wesley.; Gruhn, V. (2002). Process-centered software engineering environments: A brief history and future challenges. Annals of Software Engineering, 14, 363-382. https://doi. org/10.1023/A:1020522111961; Hasan, H. y Pfaff, C. C. (2006). The Wiki: An environment to revolutionise employees’ interaction with corporate knowledge. En Proceedings of the 18th Australia conference on Computer-Human Interaction: Design: Activities, Artefacts and Environments (pp. 377-380). https://doi.org/10.1145/1228175.1228250; Henderson, R. M. y Clark, K. B. (1990). Architectural innovation: The reconfiguration of existing product technologies and the failure of established firms. Administrative Science Quarterly, 35, 9-30. https://doi.org/10.2307/2393549; Humphrey, W. S. (2005). The software process: Global goals. En M. Li, B. Boehm y L. J. Osterweil (eds.), Unifying the Software Process Spectrum. spw 2005. Lecture Notes in Computer Science (pp. 35-42). Springer. https://doi.org/10.1007/11608035_4; Jiang, T., Ying, J., Wu, M. y Fang, M. (2006). An architecture of process-centered context- aware software development environment. En 2006 10th International Conference on Computer Supported Cooperative Work in Design (pp. 1-5). ieee. https://doi. org/10.1109/CSCWD.2006.253193; Kaltio, T. (2001). Software process asset management and deployment in a multi-site organization [tesis de doctorado, Helsinki University of Technology]. https://aaltodoc.aalto.fi/ server/api/core/bitstreams/627a1f2d-ca62-4915-a2af-5c69ba06d629/content; Kellner, M. I., Becker-Kornstaedt, U., Riddle, W. E., Tomal, J. y Verlage, M. (1998). Process guides: Effective guidance for process participants. ispa Press. https://publica-rest.fraunhofer. de/server/api/core/bitstreams/0cae4e01-20d2-490c-b565-3eb6dd58539a/content; Layman, B. (2005). Implementing an organizational Software Process Improvement program. IEEE Software Engineering, 2, 279-288.; Leuf, B. y Cunningham, W. (2001). The wiki way: Quick collaboration on the web. Addison- Wesley.; Maciel, R. S. P., da Silva, B. C., Magalhães, A. P. F. y Rosa, N. S. (2009). An integrated approach for model driven process modeling and enactment. En 2009 xxiii Brazilian Symposium on Software Engineering (pp. 104-114). ieee. https://doi. org/10.1109/SBES.2009.18; Maciel, R. S. P., Gomes, R. A., Magalhães, A. P., Silva, B. C. y Queiroz, J. P. B. (2013). Supporting model-driven development using a process-centered software engineering environment. Automated Software Engineering, 20, 427-461. https://doi.org/10.1007/ s10515-013-0124-0; Matinnejad, R. y Ramsin, R. (2012). An analytical review of process-centered software engineering environments. En 2012 ieee 19th International Conference and Workshops on Engineering of Computer-Based Systems (pp. 64-73). ieee. https://doi.org/10.1109/ ECBS.2012.11; Maurer, R. (2010). Beyond the wall of resistance: Why 70 % of all changes still fail-and what you can do about it. Bard Press.; Meso, P. y Jain, R. (2006). Agile software development: Adaptive systems principles and best practices. Information Systems Management, 23(3), 19-30. https://doi.org/10.120 1/1078.10580530/46108.23.3.20060601/93704.3; Messnarz, R., Ekert, D., Reiner, M. y O’Suilleabhain, G. (2008). Human resources based improvement strategies: The learning factor. Software Process: Improvement and Practice, 13(4), 355-362. https://doi.org/10.1002/spip.397; Moe, N. B. y Dybå, T. (2006). The use of an electronic process guide in a medium‐sized software development company. Software Process: Improvement and Practice, 11(1), 21-34. https://doi.org/10.1002/spip.250; Münch, J., Armbrust, O., Kowalczyk, M. y Sotó, M. (2012). Software process definition and management. Springer. https://doi.org/10.1007/978-3-642-24291-5; Nikula, U., Jurvanen, C., Gotel, O. y Gause, D. C. (2010). Empirical validation of the Classic Change Curve on a software technology change project. Information and Software Technology, 52(6), 680-696. https://doi.org/10.1016/j.infsof.2010.02.004; Osterweil, L. (2011). Software processes are software too. En P. Tarr y A. Wolf (eds.), Engineering of Software. Springer. https://doi.org/10.1007/978-3-642-19823-6_17; Rico, D. F. (2005). Practical metrics and models for Return on Investment. TickIT International, 7(2), 10-16. https://davidfrico.com/rico05p.pdf; Rogers, E. W. (2004). Introducing the pause and learn (pal) process: Adapting the Army after action review process to the nasa project world at the Goddard Space Flight Center. nasa Goddard Space Flight Center Knowledge Management Office; Schneider, D. M. y Goldwasser, C. (1998). Be a model leader of change. Management Review, 87(3), 41-45.; Scott, L., Carvalho, L., Jeffery, R., D’Ambra, J. y Becker-Kornstaedt, U. (2002). Understanding the use of an electronic process guide. Information and Software Technology, 44(10), 601-616. https://doi.org/10.1016/S0950-5849(02)00080-0; Smatti, M., Oussalah, M. y Ahmed Nacer, M. (2016). Supporting deviations on software processes: A literature overview. En P. Lorenz, J. Cardoso, L. Maciaszek y M. van Sinderen (eds.), Software Technologies. ICSOFT 2015. Communications in Computer and Information Science (pp. 191-209). Springer. https://doi.org/10.1007/978-3-319- 30142-6_11; Software Engineering Institute. (2010). cmmi® para Desarrollo, Versión 1.3. https://insights. sei.cmu.edu/documents/87/2010_019_001_28782.pdf; Van Solingen, R. (2004). Measuring the ROI of Software Process Improvement. ieee Software, 21(3), 32-38. https://doi.org/10.1109/MS.2004.1293070; Veterans Affairs. (2022). Process Asset Library. https://www.va.gov/process/artifacts.asp; Weber, S., Emrich, A., Broschart, J., Ras, E. y Ünalan, Ö. (2009). Supporting software development teams with a semantic process- and artifact-oriented collaboration environment. En Software Engineering 2009 - Workshopband (pp. 243-254). Gesellschaft für Informatik e.V. https://dl.gi.de/server/api/core/bitstreams/ac0c66ff-4de1-4aadbfee- da2ffb68ec0f/content; Wikipedia. (s. f.). Wiki. http://en.wikipedia.org/wiki/Wiki; Zahran, S. (1998). Software process improvement: Practical guidelines for business success. Addison-Wesley.; Ahonen, J. J., Forsell, M. y Taskinen, S. K. (2002). A modest but practical software process modeling technique for Software Process Improvement. Software Process: Improvement and Practice, 7(1), 33-44. https://doi.org/10.1002/spip.152; Alexandre, S., Renault, A. y Habra, N. (2006). OWPL: A gradual approach for Software Process Improvement in SMEs. En 32nd euromicro Conference on Software Engineering and Advanced Applications (euromicro’06) (pp. 328-335). ieee. https://doi.org/10.1109/ EUROMICRO.2006.48; Allen, P., Ramachandran, M. y Abushama, H. (2003). prisms: An approach to Software Process Improvement for small to medium enterprises. En Third International Conference on Quality Software, 2003. Proceedings (pp. 211-214). ieee. https://doi.org/10.1109/ QSIC.2003.1319105; Anacleto, R., Von Wangenheim, C. G., Salviano, C. F. y Savi, R. (2004). A method for process assessment in small software companies. En Proceedings of 4th International Software Process Improvement and Capability Determination Conference (SPICE04) (pp. 69-76). Springer. https://www.inf.ufsc.br/~c.wangenheim/download/MARESMethod_ spice2004_vref.pdf; Baskerville, R. y Pries-Heje, J. (1999). Knowledge capability and maturity in software management. acm sigmis Database: The database for Advances in Information Systems, 30(2), 26-43. https://doi.org/10.1145/383371.383374; Basri, S. y O’Connor, R. V. (2010). Understanding the perception of very small software companies towards the adoption of process standards. En A. Riel, R. O’Connor, S. Tichkiewitch y R. Messnarz (eds.), Systems, Software and Services Process Improvement. EuroSPI 2010. Communications in Computer and Information Science (pp. 153- 164). Springer. https://doi.org/10.1007/978-3-642-15666-3_14; Berander, P. y Andrews, A. (2005). Requirements prioritization. En A. Aurum y C. Wohlin (eds.), Engineering and managing software requirements (pp. 69-94). Springer. https:// doi.org/10.1007/3-540-28244-0_4; Bucci, G., Campanai, M. y Cignoni, G. A. (2000). Rapid assessment to solicit process improvement in SMEs. En Proceedings of 7th European Software Process Improvement Conference (EuroSPI). Springer. http://groups.di.unipi.it/~giovanni/CV/Pubb/GAC-2001- SQP-Doc.pdf; Calvo-Manzano Villalón, J. A., Cuevas Agustín, G., San Feliu Gilabert, T., De Amescua Seco, A., García Sánchez, L. y Pérez Cota, M. (2002). Experiences in the application of Software Process Improvement in SMEs. Software Quality Journal, 10, 261-273. https:// doi.org/10.1023/A:1021638523413; Cater-Steel, A. P. (2004). Low-rigour, rapid software process assessments for small software development firms. En 2004 Australian Software Engineering Conference. Proceedings (pp. 368-377). ieee. https://doi.org/10.1109/ASWEC.2004.1290490; Cater-Steel, A., Toleman, M. y Rout, T. (2006). Process improvement for small firms: An evaluation of the rapid assessment-based method. Information and Software Technology, 48(5), 323-334. https://doi.org/10.1016/j.infsof.2005.09.012; Chen, X. y Staples, M. (2007). Using practice outcome areas to understand perceived value of cmmi specific practices for SMEs. En P. Abrahamsson, N. Baddoo, T. Margaria y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2007. Lecture Notes in Computer Science (pp. 59-70). Springer. https://doi.org/10.1007/978-3-540-75381-0_6; Chin, A. (2000). 10 factors on fostering innovation in small and medium-sized organisations. En Proceedings of the 2000 ieee International Conference on Management of Innovation and Technology. icmit 2000.’Management in the 21st Century’(Cat. No. 00EX457) (vol. 1, pp. 473-478). ieee. https://doi.org/10.1109/ICMIT.2000.917383; Clarke, P. y O’Connor, R. V. (2012a). The influence of spi on business success in software SMEs: An empirical study. Journal of Systems and Software, 85(10), 2356-2367. https:// doi.org/10.1016/j.jss.2012.05.024; Coleman, G. y O’Connor, R. (2008). Investigating software process in practice: A grounded theory perspective. Journal of Systems and Software, 81(5), 772-784. https://doi.org/10.1016/j.jss.2007.07.027; Dybå, T. (2003). Factors of Software Process Improvement success in small and large organizations: An empirical study in the scandinavian context. acm sigsoft Software Engineering Notes, 28(5), 148-157. https://doi.org/10.1145/949952.940092; European Commission. (2020). What is a SME? https://ec.europa.eu/growth/smes/business- friendly-environment/sme-definition_en/; Fontana, R. M., Meyer, V., Reinehr, S. y Malucelli, A. (2015). Progressive outcomes: A framework for maturing in agile software development. Journal of Systems and Software, 102, 88-108. https://doi.org/10.1016/j.jss.2014.12.032; García Paucar, L. H., Laporte, C. Y., Arteaga, Y. y Bruggmann, M. (2015). Implementation and Certification of iso/iec 29110 in an IT Startup in Peru. Software Quality Professional Journal, 17(2), 16-29. https://profs.etsmtl.ca/claporte/Publications/Publications/iso- 29110-in-an-it-startup-in-peru.pdf; García-Mireles, G. A. y Rodríguez-Castillo, I. (2009). Software engineering area curricular evaluation method based in Moprosoft. En 2009 Mexican International Conference on Computer Science (pp. 272-279). ieee. https://doi.org/10.1109/ENC.2009.19; Hall, T., Rainer, A. y Baddoo, N. (2002). Implementing Software Process Improvement: An empirical study. Software Process: Improvement and Practice, 7(1), 3-15. https://doi. org/10.1002/spip.150; Hauck, J. C. R., Almeida, I., Araujo, R., Dymow, J. y Neto, M. F. (2015). Harmonizing mps. br and certics: A case study in a maturity level f organization. En 2015 29th Brazilian Symposium on Software Engineering (pp. 61-70). ieee. https://doi.org/10.1109/ SBES.2015.22; Hauck, J. C. R., Gresse Von Wangenheim, C., de Souza, R. H. y Thiry, M. (2008). Process reference guides: Support for improving software processes in alignment with reference models and standards. En R. V. O’Connor, N. Baddoo, K. Smolander y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2008. Communications in Computer and Information Science (pp. 70-81). Springer. https://doi.org/10.1007/978- 3-540-85936-9_7; Hoffman, L. (1998). Small projects and the CMM. En Key Practices to the CMM: Inappropriate for Small projects? Proceedings of the 1998 Software Engineering Process Group Conference (pp. 9-12). Chicago.; Horvat, R. V., Rozman, I. y Györkös, J. (2000). Managing the complexity of spi in small companies. Software Process: Improvement and Practice, 5(1), 45-54. https://doi. org/10.1002/(SICI)1099-1670(200003)5:1%3C45::AID-SPIP110%3E3.0.CO;2-2; ISO/IEC 29110-1. (2010). Software engineering - lifecycle profiles for very small entities (vse) - Part 1: vse profiles overview. International Organization for Standardization.; ISO/IEC 29110-2. (2010). Software engineering - lifecycle profiles for very Small entities (vse) - Part 2: Framework and taxonomy. International Organization for Standardization.; ISO/IEC 29110-3. (2010). Software engineering - lifecycle profiles for very small entities (vse) - Part 3: Assessment guide. International Organization for Standardization.; ISO/IEC 29110-4. (2010). Software engineering - lifecycle profiles for very small entities (vse) - Part 4: Specifications of VSE profiles. International Organization for Standardization.; ISO/IEC 29110-5. (2010). Software engineering - lifecycle profiles for very small entities (vse) - Part 5: Management and engineering guide. International Organization for Standardization.; ISO/IEC 42010. (2007). Systems and software engineering - recommended practice for architectural description of software-intensive systems. International Organization for Standardization; ITmark. (2020). Modelo ITmark. http://it-mark.eu/; Järvi, A., Mäkilä, T. y Hakonen, H. (2006). Changing role of SPI: Opportunities and challenges of process modeling. En I. Richardson, P. Runeson y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2006. Lecture Notes in Computer Science (pp. 135-146). Springer. https://doi.org/10.1007/11908562_13; Jeners, S., Clarke, P., O’Connor, R. V., Buglione, L. y Lepmets, M. (2013). Harmonizing software development processes with software development settings: A systematic approach. En F. McCaffery, R. V. O’Connor y R. Messnarz (eds.), Systems, Software and Services Process Improvement. EuroSPI 2013. Communications in Computer and Information Science (pp. 167-178). Springer. https://doi.org/10.1007/978-3-642-39179-8_15; Johnson, D. L. y Brodman, J. G. (1998). Applying the CMM to small organizations and small projects. En Proceedings of the 1998 Software Engineering Process Group Conference.; Kachigan, S. K. (1986). Statistical analysis: An interdisciplinary introduction to univariate & multivariate methods. Radius Press.; Kautz, K., Hansen, H. W. y Thaysen, K. (2000). Applying and adjusting a Software Process Improvement model in practice: The use of the ideal model in a small software enterprise. En Proceedings of the 22nd international conference on Software engineering (pp. 626-633). https://doi.org/10.1145/337180.337492; Kuvaja, P., Palo, P. y Bicego, A. (1999). tapistry: A Software Process Improvement approach tailored for small enterprises. Software Quality Journal, 8(2), 149-156. https://doi. org/10.1023/A:1008909011736; Lester, N. G., Wilkie, F. G., McFall, D. y Ware, M. P. (2007). Evaluating the internal consistency of the base questions in the Express Process Appraisal. En 33rd euromicro Conference on Software Engineering and Advanced Applications (euromicro 2007) (pp. 289-296). ieee. https://doi.org/10.1109/EUROMICRO.2007.30; Lester, N. G., Wilkie, F. G., McFall, D. y Ware, M. P. (2010). Investigating the role of cmmi with expanding company size for small‐to medium‐sized enterprises. Journal of Software Maintenance and Evolution: Research and Practice, 22(1), 17-31. https://doi. org/10.1002/spip.409; López, O., Esquivel-Vega, G., Valerio, A. L., Víquez-Acuña, L., Víquez-Acuña, O. y Umaña, D. (2012). Mejora de procesos para fomentar la competitividad de la pequeña y mediana industria del software de Iberoamérica. Instituto Tecnológico de Costa Rica. https://repositoriotec. tec.ac.cr/bitstream/handle/2238/3358/mejora-procesos-fomentar-competitividad. pdf?sequence=1&isAllowed=y; McCaffery, F. y Coleman, G. (2009). Lightweight spi assessments: What is the real cost? Software Process: Improvement and Practice, 14(5), 271-278. https://doi.org/10.1002/ spip.430; McCaffery, F., McFall, D. y Wilkie, F.G. (2005). Improving the Express Process Appraisal method. En F. Bomarius y S. Komi-Sirviö (eds.), Product Focused Software Process Improvement. profes 2005. Lecture Notes in Computer Science (pp. 286-298). Springer. https://doi.org/10.1007/11497455_24; McCaffery, F., Richardson, I. y Coleman, G. (2006). A Adept: A software process appraisal method for small to medium-sized Irish software development organisations. En Proceedings of the European Software Process Improvement and Innovation Conference (Euro- SPI06). https://eprints.dkit.ie/173/; Mishra, D. y Mishra, A. (2009). Software process improvement in SMEs: A comparative view. Computer Science and Information Systems, 6(1), 111-140. https://doi. org/10.2298/CSIS0901111M; MPS.BR. (2012). Melhoria de Processo de Software Brasileiro: Guia Geral. Softex.; Nawrocki, J. R., Jasiñski, M., Walter, B. y Wojciechowski, A. (2002). Combining eXtreme Programming with ISO 9000. En H. Shafazand y A. M. Tjoa (eds.), EurAsia-ICT 2002: Information and Communication Technology. EurAsia-ICT 2002. Lecture Notes in Computer Science (pp. 786-794). Springer. https://doi.org/10.1007/3-540-36087-5_91; Nawrocki, J., Walter, B. y Wojciechowski, A. (2001). Toward maturity model for eXtreme Programming. En Proceedings 27th euromicro Conference. 2001: A Net Odyssey (pp. 233-239). ieee. https://doi.org/10.1109/EURMIC.2001.952459; O’Connor, R. V. (2014). Early stage adoption of iso/iec 29110 software project management practices: A case study. En A. Mitasiunas, T. Rout, R. V. O’Connor y A. Dorling (eds.), Software Process Improvement and Capability Determination. spice 2014. Communications in Computer and Information Science (pp. 226-237). Springer. https://doi. org/10.1007/978-3-319-13036-1_20; O’Connor, R. V. y Laporte, C. Y. (2014). An innovative approach to the development of an international software process lifecycle standard for very small entities. International Journal Information Technologies and Systems Approach (ijitsa), 7(1), 1-22. https://doi. org/10.4018/ijitsa.2014010101; Oktaba, H. (dir.) (2005). Modelo de procesos para la industria de software MoProSoft por niveles de capacidad de procesos. Versión 1.3. nmx-059/01-nyce-2005. Organismo Nacional de Normalización y Evaluación de la Conformidad.; Oktaba, H., Alquicira Esquivel, C., Ramos, A. S., Palacios Elizalde, J., Pérez Escobar, C. J. y López Lira Hinojo, F. (2004). Método de evaluación de procesos para la industria del software, EvalProSoft V1.1. Secretaría de Economía de México.; Oktaba, H., García, F., Piattini, M., Ruiz, F., Pino, F. J. y Alquicira, C. (2007). Software process improvement: The Competisoft project. Computer, 40(10), 21-28. https://doi. org/10.1109/MC.2007.361; Paulk, M. C. (1998). Using the software CMM in small organizations. En The Joint 1998 Proceedings of the Pacific Northwest Software Quality Conference and the Eighth International Conference on Software Quality (pp. 350-361). Carnegie Mellon University. http://www.iso.staratel.com/iso/CMM/Article/cmm-small.pdf; Pettersson, F., Ivarsson, M., Gorschek, T. y Öhman, P. (2008). A practitioner’s guide to light weight software process assessment and improvement planning. Journal of Systems and Software, 81(6), 972-995. https://doi.org/10.1016/j.jss.2007.08.032; Piattini, M. y Garzás-Parra, J. (2007). Fábricas de software: Experiencias, tecnologías y organización. ra-ma.; Pino, F. J., García, F. y Piattini, M. (2008). Software process improvement in small and medium software enterprises: A systematic review. Software Quality Journal, 16, 237-261. https://doi.org/10.1007/s11219-007-9038-z; Raninen, A., Ahonen, J. J., Sihvonen, H. M., Savolainen, P. y Beecham, S. (2013). lappi: A light‐weight technique to practical process modeling and improvement target identification. Journal of Software: Evolution and Process, 25(9), 915-933. https://doi. org/10.1002/smr.1571; Regnell, B., Höst, M., och Dag, J. N., Beremark, P. y Hjelm, T. (2001). An industrial case study on distributed prioritisation in market-driven requirements engineering for packaged software. Requirements Engineering, 6, 51-62. https://doi.org/10.1007/ s007660170015; Richardson, I. (2002). SPI models: What characteristics are required for small software development companies? En J. Kontio y R. Conradi (eds.), Software Quality: ECSQ 2002. ECSQ 2002. Lecture Notes in Computer Science (pp. 100-113). Springer. https:// doi.org/10.1007/3-540-47984-8_14; Richardson, I. y Ryan, K. (2001). Software process improvements in a very small company. Software Quality professional, 3(2), 23-35. https://citeseerx.ist.psu.edu/document? repid=rep1&type=pdf&doi=37f9a4ce4e41816901f3c9f99eaec880f18f18c2; Rozman, I., Vajde Horvat, R., GyÓrkÓs, J. y Hericùko, M. (1997). Processus: Integration of sei cmm and iso quality models. Software Quality Journal, 6, 37-63. https://doi. org/10.1023/A:1018539413913; Saaty, T. L. y Vargas, L. G. (2012). Models, methods, concepts & applications of the analytic hierarchy process. Springer.; Sánchez-Gordón, M. L., Colomo-Palacios, R., de Amescua Seco, A. y O’Connor, R. V. (2016). The route to Software Process Improvement in small-and medium-sized enterprises. En M. Kuhrmann, J. Münch, I. Richardson, A. Rausch y H. Zhang (eds.), Managing software process evolution. Springer. https://doi.org/10.1007/978-3-319-31545-4_7; Santos, G., Kalinowski, M., Rocha, A. R., Travassos, G. H., Weber, K. C. y Antonioni, J. A. (2012). MPS. BR program and MPS model: Main results, benefits and beneficiaries of Software Process Improvement in Brazil. En 2012 Eighth International Conference on the Quality of Information and Communications Technology (pp. 137-142). ieee. https:// doi.org/10.1109/QUATIC.2012.42; Savolainen, P., Sihvonen, H. M. y Ahonen, J. J. (2007). SPI with lightweight software process modeling in a small software company. En P. Abrahamsson, N. Baddoo, T. Margaria y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2007. Lecture Notes in Computer Science (pp. 71-81). Springer. https://doi.org/10.1007/978-3-540-75381-0_7; Scott, L., Jeffery, R., Carvalho, L., D’ambra, J. y Rutherford, P. (2001). Practical Software Process Improvement-the IMPACT project. En Proceedings 2001 Australian Software Engineering Conference (pp. 182-189). ieee. https://doi.org/10.1109/ASWEC.2001.948512; Softex. (2020). Modelos de referência. https://softex.br/mpsbr/modelos/; Stambollian, A., Habra, N., Laporte, C. Y., Desharnais, J. M. y Renault, A. (2006). owpl: A light model & methodology for initiation Software Process Improvement. En Proceedings of the 6th SPICE Conference on Process Assessment and Improvement (pp. 97- 105).; Suwanya, S. y Kurutach, W. (2008). An analysis of Software Process Improvement for sustainable development in Thailand. En 2008 8th ieee International Conference on Computer and Information Technology (pp. 724-729). ieee. https://doi.org/10.1109/ CIT.2008.4594764; Turgeon, J. (2006). CMMI on the sly for the CMMI shy: Implementing Software Process Improvement in small teams and organizations. Presentation in sepg.; Vahaniitty, J. y Rautiainen, K. (2005). Towards an approach for managing the development portfolio in small product-oriented software companies. En Proceedings of the 38th Annual Hawaii International Conference on System Sciences (pp. 314c-314c). ieee. https:// doi.org/10.1109/HICSS.2005.636; Valdés, G., Astudillo, H., Visconti, M. y López, C. (2010). The Tutelkan SPI framework for small settings: A methodology transfer vehicle. En A. Riel, R. O’Connor, S. Tichkiewitch y R. Messnarz (eds.), Systems, Software and Services Process Improvement. EuroSPI 2010. Communications in Computer and Information Science (pp. 142-1529. Springer. https://doi.org/10.1007/978-3-642-15666-3_13; Valdés, G., Visconti, M. y Astudillo, H. (2011). The Tutelkan Reference Process: A reusable process model for enabling SPI in small settings. En R. V. O’Connor, J. Pries-Heje y R. Messnarz (eds.), Systems, Software and Service Process Improvement. EuroSPI 2011. Communications in Computer and Information Science (pp. 179-190). Springer. https:// doi.org/10.1007/978-3-642-22206-1_16; Valencia, L. S., Villas, P. A. y Ocampo, C. A. (2009). Modelo de calidad de software. Scientia et Technica, 2(42), 172-176. https://www.redalyc.org/pdf/849/84916714032.pdf; Valtanen, A. y Ahonen, J. J. (2008). Big improvements with small changes: Improving the processes of a small software company. En A. Jedlitschka y O. Salo (eds.), Product-Focused Software Process Improvement. profes 2008. Lecture Notes in Computer Science (pp. 258-272). Springer. https://doi.org/10.1007/978-3-540-69566-0_22; Villarroel, R., Gómez, Y., Gajardo, R. y Rodríguez, O. (2009). Implementation of an improvement cycle using the competisoft methodological framework and the Tutelkan platform. En 2009 International Conference of the Chilean Computer Science Society (pp. 97-104). ieee. https://doi.org/10.1109/SCCC.2009.20; Von Wangenheim, C. G., Anacleto, A. y Salviano, C. F. (2006). Helping small companies assess software processes. ieee Software, 23(1), 91-98. https://doi.org/10.1109/ MS.2006.13; Von Wangenheim, C. G., Weber, S., Hauck, J. C. R. y Trentin, G. (2006). Experiences on establishing software processes in small companies. Information and Software Technology, 48(9), 890-900. https://doi.org/10.1016/j.infsof.2005.12.010; Weber, K. C., Araújo, E. E. R., da Rocha, A. R. C., Machado, C. A. F., Scalet, D. y Salviano, C. F. (2005). Brazilian software process reference model and assessment method. En P. Yolum, T. Güngör, F. Gürgen y C. Özturan (eds.), Computer and Information Sciences - ISCIS 2005. ISCIS 2005. Lecture Notes in Computer Science (pp. 402-411). Springer. https://doi.org/10.1007/11569596_43; Wheelen, T. L., Hunger, J. D., Hoffman, A. N. y Bamford, C. E. (2017). Strategic management and business policy. Pearson; Wilkie, F. G., Mc Caffery, F., McFall, D., Lester, N. y Wilkinson, E. (2007). A Low‐overhead method for software process appraisal. Software Process: Improvement and Practice, 12(4), 339-349. https://doi.org/10.1002/spip.321; Zarour, M., Abran, A. y Desharnais, J. M. (2011). Evaluation of software process assessment methods: Case study. En R. V. O’Connor, T. Rout, F. McCaffery y A. Dorling (eds.), Software Process Improvement and Capability Determination. spice 2011. Communications in Computer and Information Science (pp. 42-51). Springer. https://doi. org/10.1007/978-3-642-21233-8_4; Akbar, R., Hassan, M. F. y Abdullah, A. (2011). A review of prominent work on agile processes Software Process Improvement and process tailoring practices. En J. M. Zain, W. M. b. Wan Mohd y E. El-Qawasmeh (eds.), Software Engineering and Computer Systems. icsecs 2011. Communications in Computer and Information Science (pp. 571-585). Springer. https://doi.org/10.1007/978-3-642-22203-0_49; Alavi, M. y Leidner, D. E. (2001). Knowledge management and knowledge management systems: Conceptual foundations and research issues. mis Quarterly, 25(1), 107-136. https://doi.org/10.2307/3250961; Alexander, C. (1979). The timeless way of building. Oxford University Press.; Anguswamy, R. y Frakes, W. B. (2012). A study of reusability, complexity, and reuse design principles. En Proceedings of the acm-ieee International Symposium on Empirical Software Engineering and Measurement (pp. 161-164). https://doi. org/10.1145/2372251.2372280; Armbrust, O., Katahira, M., Miyamoto, Y., Münch, J., Nakao, H. y Ocampo, A. (2009). Scoping software process lines. Software Process: Improvement and Practice, 14(3), 181-197. https://doi.org/10.1002/spip.412; Barreto, A. S., Murta, L. G. P. y Rocha, A. R. (2011). Software process definition: A reuse-based approach. Journal of Universal Computer Science (jucs), 17(13), 1765-1799. https:// www.jucs.org/jucs_17_13/software_process_definition_a/jucs_17_13_1765_1799_ barreto.pdf; Bermón Angarita, L. (2010). Librería de activos para la gestión del conocimiento sobre procesos de software: PAL-Wiki [tesis doctoral, Universidad Carlos III de Madrid]. https://e-archivo.uc3m.es/bitstream/handle/10016/10231/Tesis_Leonardo_Bermon. pdf?sequence=2&isAllowed=y; Bhuta, J., Boehm, B. y Meyers, S. (2006). Process elements: Components of software process architectures. En M. Li, B. Boehm y L. J. Osterweil (eds.), Unifying the Software Process Spectrum. spw 2005. Lecture Notes in Computer Science (pp. 332-346). Springer. https://doi.org/10.1007/11608035_28; Birk, A., Heller, G., John, I., Schmid, K., von der Maßen, T. y Muller, K. (2003). Product line engineering, the state of the practice. ieee Software, 20(6), 52-60. https://doi. org/10.1109/MS.2003.1241367; Chrissis, M. B., Konrad, M. y Shrum, S. (2006). CMMI: Guidelines for process integration and product improvement. Addison-Wesley.; Ezran, M., Morisio, M. y Tully, C. (2002). Practical software reuse. Springer.; Fenton, N. y Bieman, J. (2014). Software metrics: A rigorous and practical approach. crc Press.; Fitzgerald, B., Russo, N. y O’Kane, T. (2003). Software development method tailoring at Motorola. Communications of the acm, 46(4), 65-70. https://doi. org/10.1145/641205.641206; Forrester, E. (ed.) (2006). A process research framework: The international process research consortium. Carnegie Mellon University, Software Engineering Institute.; Fusaro, P., Tortorella, M. y Visaggio, G. (1998). rep-chaRacterising and exploiting process components: Results of experimentation. En Proceedings Fifth Working Conference on Reverse Engineering (Cat. No. 98TB100261) (pp. 20-29). ieee. https://doi.org/10.1109/ WCRE.1998.723172; Gallina, B., Kashiyarandi, S., Martin, H. y Bramberger, R. (2014). Modeling a safety-and automotive-oriented process line to enable reuse and flexible process derivation. En 2014 ieee 38th International Computer Software and Applications Conference Workshops (pp. 504-509). ieee. https://doi.org/10.1109/COMPSACW.2014.84; Gamma, E., Helm, R., Johnson, R. y Vlissides, J. (1994). Design patterns: Elements of reusable object-oriented software. Addison Wesley.; Gary, K. A. y Lindquist, T. E. (1999). Cooperating process components. En Proceedings. Twenty-Third Annual International Computer Software and Applications Conference (Cat. No. 99CB37032) (pp. 218-223). ieee. https://doi.org/10.1109/CMPSAC. 1999.812704; Ginsberg, M. P. y Quinn, L. H. (1995). Process tailoring and the software capability maturity model. Carnegie Mellon University, Software Engineering Institute. https://citeseerx. ist.psu.edu/document?repid=rep1&type=pdf&doi=fe11de0ed0212b58fb9d- 47152c94a34ab5b31974; Hansen, M. T., Nohria, N. y Tierney, T. (2000). What’s your strategy for managing knowledge? En J. A. Woods y J. Cortada (eds.), The knowledge management yearbook 2000-2001 (pp. 55-69). Routledge. https://doi.org/10.4324/9780080941042; Hassan, A. (2018). Style and meta-style: Another way to reuse software architecture evolution [tesis de doctorado, Universite de Nantes]. https://hal.science/tel-01917775/; Hollenbach, C. y Frakes, W. (1996). Software process reuse in an industrial setting. En Proceedings of Fourth ieee International Conference on Software Reuse (pp. 22-30). ieee. https://doi.org/10.1109/ICSR.1996.496110; Hurtado Alegria, J. A., Bastarrica, M. C., Quispe, A. y Ochoa, S. F. (2014). MDE‐based process tailoring strategy. Journal of Software: Evolution and Process, 26(4), 386-403. https://doi.org/10.1002/smr.1576; Institute of Electrical and Electronics Engineers. (2010). Std 1517-2010 ieee Standard for Information Technology - Software Life Cycle Processes - Reuse Processes - Description. ihs Standards.; Kalus, G. y Kuhrmann, M. (2013). Criteria for software process tailoring: A systematic review. En Proceedings of the 2013 International Conference on Software and System Process (pp. 171-180). IEEE. https://doi.org/10.1145/2486046.2486078; Karlsson, E. A. (ed.) (1995). Software reuse: A holistic approach. John Wiley & Sons.; Kneuper, R. (2018). Software processes and life cycle models: An introduction to modelling, using and managing agile, plan-driven and hybrid processes. Springer. https://doi. org/10.1007/978-3-319-98845-0; Kucza, T., Nättinen, M. y Parviainen, P. (2001). Improving knowledge management in software reuse process. En F. Bomarius y S. Komi-Sirviö (eds.), Product Focused Software Process Improvement. profes 2001. Lecture Notes in Computer Science (pp. 141-152). Springer. https://doi.org/10.1007/3-540-44813-6_15; Li, T. (2008). Overview of software processes and software evolution. En An approach to modelling software evolution processes (pp. 8-33). Springer. https://doi.org/10.1007/978-3- 540-79464-6_2; Lim, W. C. (1998). Managing software reuse: A comprehensive guide to strategically reengineering the organization for reusable components. Prentice-Hall.; Magdaleno, A. M., de Oliveira Barros, M., Werner, C. M. L., de Araujo, R. M. y Batista, C. F. A. (2015). Collaboration optimization in software process composition. Journal of Systems and Software, 103, 452-466. https://doi.org/10.1016/j.jss.2014.11.036; McIlroy, M. D., Buxton, J., Naur, P. y Randell, B. (1968). Mass-produced software components. En Proceedings of the 1st International Conference on Software Engineering, Garmisch Partenkirchen, Germany (pp. 88-98). Petrocelli/Charter Publishers. https:// st.inf.tu-dresden.de/files/teaching/ss16/cbse/slides/50-cbse-transconsistent-composition. pdf; Medina Domínguez, F. (2010). Marco metodológico para la mejora de la eficiencia de uso de los procesos de software [tesis doctoral, Universidad Carlos III de Madrid]. https://e-archivo. uc3m.es/bitstream/handle/10016/7433/Memoria%20Tesis-Fuensanta%20Medina% 20Dominguez.pdf?sequence=1&isAllowed=y; Nanda, V. (2001). On tailoring an organizational standard software development process for specific projects. En Proceedings of the 11th International Conference on Software Quality (pp. 1-13). ieee.; O’Regan, G. (2017). Concise guide to software engineering: From fundamentals to application methods. Springer. https://doi.org/10.1007/978-3-319-57750-0; Osterweil, L. (2011). Software processes are software too. En P. Tarr y A. Wolf (eds.), Engineering of software (pp 323-344). Springer. https://doi.org/10.1007/978-3-642-19823- 6_17; Pedreira, O., Piattini, M., Luaces, M. R. y Brisaboa, N. R. (2007). Una revisión sistemática de la adaptación del proceso de software. reicis: Revista Española de Innovación, Calidad e Ingeniería del Software, 3(2), 21-39. https://www.redalyc.org/pdf/922/92230204.pdf; Pesantes, M., Lemus, C., Mitre, H. A. y Mejía, J. (2012). Software process architecture: Roadmap. En 2012 ieee Ninth Electronics, Robotics and Automotive Mechanics Conference (pp. 111-116). ieee. https://doi.org/10.1109/CERMA.2012.25; Probst, G. J. B. (1998). Practical knowledge management: A model that works. En Managing knowledge: Building blocks for success (pp. 17-29). Wiley.; Rombach, D. (2006). Integrated software process and product lines. En M. Li, B. Boehm y L. J. Osterweil (eds.) Unifying the Software Process Spectrum. SPW 2005. Lecture Notes in Computer Science (pp 83-90). Springer. https://doi.org/10.1007/11608035_9; Rus, I., Lindvall, M. y Sinha, S. (2002). Knowledge management in software engineering. ieee Software, 19(3), 26-38.; Santos, V., Cortés, M. y Brasil, M. (2009). Dynamic management of the organizational knowledge using case-based reasoning. En L. A. Maciaszek, C. González-Pérez y S. Jablonski (eds.), Evaluation of Novel Approaches to Software Engineering. enase enase 2009 2008. Communications in Computer and Information Science (pp. 220-233). Springer. https://doi.org/10.1007/978-3-642-14819-4_16.; Software Engineering Institute. (2010). CMMI® para Desarrollo, Versión 1.3. Software Engineering Institute. Carnegie-Mellon University, Pittsburg, Pennsylvania.; Teixeira, E. N., Aleixo, F. A., de Sousa Amancio, F. D., Oliveira, E., Kulesza, U. y Werner, C. (2019). Software process line as an approach to support software process reuse: A systematic literature review. Information and Software Technology, 116, 106175. https://doi.org/10.1016/j.infsof.2019.08.007; Tran, H. N., Coulette B. y Dong, T. B. T. (2005). A classification of process patterns. En Proceedings of the International Conference on Software Development (swdc-rek 2005), Reykjavik.; Tran, H. N., Coulette, B. y Thuy, D. T. B. (2007). Broadening the use of process patterns for modeling processes. En seke (pp. 57-62). https://citeseerx.ist.psu.edu/document? repid=rep1&type=pdf&doi=a094027803f6fc090c35caef958b33924789c960#page= 77; Tran, H. N., Coulette, B., Tran, D. T. y Vu, M. H. (2011). Automatic reuse of process patterns in process modeling. En Proceedings of the 2011 acm Symposium on Applied Computing (pp. 1431-1438). https://doi.org/10.1145/1982185.1982494; Verma, A. y Tiwari, M. K. (2009). Role of corporate memory in the global supply chain environment. International Journal of Production Research, 47(19), 5311-5342. https:// doi.org/10.1080/00207540801918570; Washizaki, H. (2006). Deriving project-specific processes from process line architecture with commonality and variability. En 2006 4th ieee International Conference on Industrial Informatics (pp. 1301-1306). IEEE. https://doi.org/10.1109/INDIN.2006.275847; Xu, P. y Ramesh, B. (2008). Using process tailoring to manage software development challenges. IT Professional, 10(4), 39-45. https://doi.org/10.1109/MITP.2008.81; Abouzid, I. y Saidi, R. (2019). Proposal of bpmn extensions for modelling manufacturing processes. En 2019 5th International Conference on Optimization and Applications (icoa) (pp. 1-6). ieee. https://doi.org/10.1109/ICOA.2019.8727651; Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E. … y Zimmermann, T. (2019). Software engineering for machine learning: A case study. En 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (icse-seip) (pp. 291-300). ieee. https://doi.org/10.1109/ICSE-SEIP.2019.00042; arc. (2012). Automation expenditures for discrete industries. https://www.arcweb.com/market- studies/automation-software-expenditures-discrete-industries; Berkhout, F. y Hertin, J. (2001). Impacts of information and communication technologies on environmental sustainability: Speculations and evidence. oecd. https://www.oecd.org/science/ inno/1897156.pdf; Chakraborty, P., Shahriyar, R., Iqbal, A. y Bosu, A. (2018). Understanding the software development practices of blockchain projects: A survey. En Proceedings of the 12th acm/ieee International Symposium on Empirical Software Engineering and Measurement (pp. 1-10). https://doi.org/10.1145/3239235.3240298; Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C. y Wirth, R. (2000). crisp-dm 1.0: Step-by-step data mining guide. SPSS Inc, 9(13), 1-73.; Deep Intelligence. (2022). https://app.deepint.net/shared/c9d55a1f-6ec9daf4-0dd31924- 17429a774d9/dashboards/000001768ad911aa-d0711434-b94233c3-e0e- 32b99?lang=en#1; Dubey, A. (2011). Evaluating software engineering methods in the context of automation applications. En 2011 9th ieee International Conference on Industrial Informatics (pp. 585-590). ieee. https://doi.org/10.1109/INDIN.2011.6034944; Faruk, M. J. H., Islam, M., Alam, F., Shahriar, H. y Rahman, A. (2022a). Bie Vote: A Biometric Identification Enabled Blockchain-Based Secure and Transparent Voting Framework. En 2022 Fourth International Conference on Blockchain Computing and Applications (bcca) (pp. 253-258). ieee. https://doi.org/10.1109/BCCA55292.2022.9922588; Faruk, M. J. H., Subramanian, S., Shahriar, H., Valero, M., Li, X. y Tasnim, M. (2022b). Software engineering process and methodology in blockchain-oriented software development: A systematic study. En 2022 ieee/acis 20th International Conference on Software Engineering Research, Management and Applications (sera) (pp. 120-127). ieee. https://doi.org/10.1109/SERA54885.2022.9806817; Jain, A. K., Duin, R. P. W. y Mao, J. (2000). Statistical pattern recognition: A review. ieee Transactions on pattern analysis and machine intelligence, 22(1), 4-37. https://doi. org/10.1109/34.824819; Jain, A. K., Flynn, P. y Ross, A. A. (eds.) (2008). Handbook of biometrics. Springer.; Marchesi, L., Marchesi, M. y Tonelli, R. (2020). abcde: Agile block chain DApp engineering. Blockchain: Research and Applications, 1(1-2), 100002. https://doi.org/ 10.1016/j.bcra.2020.100002; Marchesi, M., Marchesi, L. y Tonelli, R. (2018). An agile software engineering method to design blockchain applications. En Proceedings of the 14th Central and Eastern European Software Engineering Conference Russia (pp. 1-8). https://doi.org/10.1145/3290621.3290627; Naumann, S., Dick, M., Kern, E. y Johann, T. (2011). The greensoft Model: A reference model for green and sustainable software and its engineering. Sustainable Computing: Informatics and Systems, 1(4), 294-304. https://doi.org/10.1016/j.suscom.2011.06.004; Shivers, R., Rahman, M. A., Faruk, M. J. H., Shahriar, H., Cuzzocrea, A. y Clincy, V. (2021). Ride-hailing for autonomous vehicles: Hyperledger fabric-based secure and decentralize blockchain platform. En 2021 ieee International Conference on Big Data (Big Data) (pp. 5450-5459). ieee. https://doi.org/10.1109/BigData52589.2021.9671379; Vyatkin, V. (2013). Software engineering in industrial automation: State-of-the-art review. ieee Transactions on Industrial Informatics, 9(3), 1234-1249. https://doi.org/10.1109/ TII.2013.2258165; Watanabe, S. (1985). Pattern recognition: Human and mechanical. John Wiley & Sons.; Wirth, R. y Hipp, J. (2000). crisp-dm: Towards a standard process model for data mining. En Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining (vol. 1, pp. 29-39). https://www.cs.unibo.it/~danilo. montesi/CBD/Beatriz/10.1.1.198.5133.pdf; Yousfi, A., Batoulis, K. y Weske, M. (2019). Achieving business process improvement via ubiquitous decision-aware business processes. acm Transactions on internet Technology (toit), 19(1), 1-19. https://doi.org/10.1145/3298986; Yousfi, A., Bauer, C., Saidi, R. y Dey, A. K. (2016). uBPMN: A bpmn extension for modeling ubiquitous business processes. Information and Software Technology, 74, 55-68. https://doi.org/10.1016/j.infsof.2016.02.002; Apple. (2004, 14 de enero). Apple Reports First Quarter Results. https://www.apple.com/ newsroom/2004/01/14Apple-Reports-First-Quarter-Results/#:~:text=CUPERTINO% 2C%20California%E2%80%94January%2014,,of%20%248%20million% 2C%20or%20%24.; Apple. (2007, 17 de enero). Apple reports third quarter results. https://www.apple.com/ newsroom/2007/01/17Apple-Reports-First-Quarter-Results/#:~:text=CUPERTINO% 2C%20California%E2%80%94January%2017,,or%20%241.14%20 per%20diluted%20share.; Bäcklander, G. (2019). Doing complexity leadership theory: How agile coaches at Spotify practise enabling leadership. Creativity and Innovation Management, 28(1), 42- 60. https://doi.org/10.1111/caim.12303; Butler, K. (1995). The economic benefits of software process improvement. Crosstalk, 8(7), 14-17.; Denning, S. (2019). How Amazon practices the three laws of agile management. Strategy & Leadership, 47(5), 36-41. https://doi.org/10.1108/SL-07-2019-0104; Diaz, M. y Sligo, J. (1997). How software process improvement helped Motorola. ieee software, 14(5), 75-81. https://doi.org/10.1109/52.605934; Dion, R. (1993). Process improvement and the corporate balance sheet. ieee Software, 10(4), 28-35. https://doi.org/10.1109/52.219618; Elwer, P. (2008). Agile Project Development at Intel: A scrum Odyssey. http://www.michaeljames. org/Intel-case-study.pdf; Forcano, R. (2018a, 14 de junio). hr goes Agile: A case study in bbva. https://www.linkedin. com/pulse/hr-goes-agile-case-study-bbva-ricardo-forcano; Forcano, R. (2018b, 16 de julio). rrhh se transforma a ‘agile’: Un caso de estudio en bbva. https://www.bbva.com/es/opinion/rrhh-transforma-agile-caso-estudio-bbva/; Ganguly, A., Nilchiani, R. y Farr, J. V. (2009). Evaluating agility in corporate enterprises. International Journal of Production Economics, 118(2), 410-423. https://doi. org/10.1016/j.ijpe.2008.12.009; Garzás, J. y Paulk, M. C. (2013). A case study of software process improvement with CMMI‐DEV and scrum in Spanish companies. Journal of Software: Evolution and Process, 25(12), 1325-1333. https://doi.org/10.1002/smr.1605; Gregory, P., Barroca, L., Taylor, K., Salah, D. y Sharp, H. (2015). Agile challenges in practice: A thematic analysis. En C. Lassenius, T. Dingsøyr y M. Paasivaara (eds.), Agile Processes in Software Engineering and Extreme Programming. xp 2015. Lecture Notes in Business Information Processing (vol. 212, pp. 64-80). Springer. https://doi.org/10.1007/978- 3-319-18612-2_6; Haley, T. J. (1996). Software process improvement at Raytheon. ieee Software, 13(6), 33-41. https://doi.org/10.1109/52.542292; Herbsleb, J. D. y Goldenson, D. R. (1996). A systematic survey of cmm experience and results. En Proceedings of ieee 18th International Conference on Software Engineering (pp. 323-330). IEEE. https://doi.org/10.1109/ICSE.1996.493427; Herbsleb, J., Carleton, A., Rozum, J., Siegel, J. y Zubrow, D. (1994). Benefits of CMM-based software process improvement: Executive summary of initial results. Carnegie Mellon University. https://insights.sei.cmu.edu/documents/1112/1994_005_001_16310.pdf; Humphrey, W. S., Snyder, T. R. y Willis, R. R. (1991). Software process improvement at Hughes Aircraft. IEEE Software, 8(4), 11-23. https://doi.org/10.1109/52.300031; Middleton, P. y Joyce, D. (2011). Lean software management: BBC worldwide case study. ieee Transactions on Engineering Management, 59(1), 20-32. https://doi.org/10.1109/ TEM.2010.2081675; NASA. (1997). Software Safety. nasa Technical Standard nasa-std-8719.13A.; Niazi, M. (2006). Software process improvement: A road to success. En J. Münch y M. Vierimaa (eds.), Product-Focused Software Process Improvement. profes 2006. Lecture Notes in Computer Science (vol. 4034, pp. 395-401). Springer. https://doi. org/10.1007/11767718_34; Olszewski, L. y Wingreen, S. C. (2011). The fbi sentinel project. Journal of Cases on Information Technology (jcit), 13(3), 84-102. https://doi.org/10.4018/jcit.2011070105; Pitterman, B. (2000). Telcordia technologies: The journey to high maturity. ieee Software, 17(4), 89-96. https://doi.org/10.1109/52.854074; Smite, D., Moe, N. B., Floryan, M., Levinta, G. y Chatzipetrou, P. (2020). Spotify guilds. Communications of the ACM, 63(3), 56-61. http://dx.doi.org/10.1145/3343146; Standish Group. (2020). CHAOS report: Beyond infinity. https://standishgroup.myshopify. com/; Striebeck, M. (2006). Ssh! We are adding a process… [agile practices]. En agile 2006 (agile’06) (pp. 9-193). ieee. https://doi.org/10.1109/AGILE.2006.48; Vassev, E., Sterritt, R., Rouff, C. y Hinchey, M. (2012). Swarm technology at nasa: Building resilient systems. IT Professional, 14(2), 36-42. https://doi.org/10.1109/MITP.2012.18; Yamamura, G. (1999). Software process satisfied employees. ieee Software, 16(5), 83-85.; Zelkowitz, M. V. (2009). An update to experimental models for validating computer technology. Journal of Systems and Software, 82(3), 373-376. https://doi.org/10.1016/j. jss.2008.06.040; Zelkowitz, M. V. y Wallace, D. R. (1998). Experimental models for validating technology. Computer, 31(5), 23-31. https://doi.org/10.1109/2.675630; Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J., Korkala, M. … y Salo, O. (2004). Mobile-D: An agile approach for mobile application development. En Companion to the 19th Annual acm sigplan Conference on Object-Oriented Programming, Systems, Languages, and Applications (pp. 174-175). https://doi. org/10.1145/1028664.1028736; Ågerfalk, P. J., Fitzgerald, B., Holmström, H., Lings, B., Lundell, B. y Conchúir, E. Ó. (2005). A framework for considering opportunities and threats in distributed software development. En Proceedings of the International Workshop on Distributed Software Development (pp. 47-61). Austrian Computer Society. https://researchrepository.ul.ie/ ndownloader/files/35267047/1; Akhtar, N. y Mian, A. (2018). Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access, 6, 14410-14430. https://doi.org/10.1109/ACCESS. 2018.2807385; Aldayel, A. y Alnafjan, K. (2017). Challenges and best practices for mobile application development. En Proceedings of the International Conference on Compute and Data Analysis (pp. 41-48). https://doi.org/10.1145/3093241.3093245; Ashishdeep, A., Bhatia, J. y Varma, K. (2016). Software process models for mobile application development: A review. Computer Science and Electronic Journal, 7(1), 150-153. https://csjournals.com/IJCSC/PDF7-1/20.%20Anitha.pdf; Basha, N. M. J., Moiz, S. A. y Rizwanullah, M. (2012). Model based software development: Issues & challenges. Special Issue of International Journal of Computer Science & Informatics (ijcsi), 2(1), 226-230. https://doi.org/10.47893/ijcsi.2013.1123; Beecham, S., Richardson, I. y Noll, J. (2015). Assessing the strength of global teaming practices: A pilot study. En 2015 ieee 10th International Conference on Global Software Engineering (pp. 110-114). ieee. https://doi.org/10.1109/ICGSE.2015.14; Bhatti, M. W. y Ahsan, A. (2016). Global software development: An exploratory study of challenges of globalization, HRM practices and process improvement. Review of Managerial Science, 10(4), 649-682. https://doi.org/10.1007/s11846-015-0171-y; Blum, F. R. (2016). Mining software process lines. En Proceedings of the 38th International Conference on Software Engineering Companion (pp. 839-842). https://doi. org/10.1145/2889160.2889267; Cabac, L. y Denz, N. (2008). Net components for the integration of process mining into agent-oriented software engineering. En K. Jensen, W. M. P. van der Aalst y J. Billington (eds.), Transactions on Petri nets and other models of concurrency I. Lecture notes in computer science (pp. 86-103). Springer. https://doi.org/10.1007/978-3-540-89287- 8_6; Caldeira, J. y Abreu, F. B. e. (2016). Software development process mining: Discovery, conformance checking and enhancement. En 2016 10th International Conference on the Quality of Information and Communications Technology (quatic) (pp. 254-259). ieee. https://doi.org/10.1109/QUATIC.2016.061; Conchúir, E. Ó. (2010). Global software development: A multiple-case study of the realisation of the benefits [tesis doctoral, University of Limerick]. https://researchrepository.ul.ie/ ndownloader/files/35241937/1; Da Cunha, T. F. V., Dantas, V. L. y Andrade, R. M. (2011). SLeSS: A Scrum and Lean Six Sigma integration approach for the development of sofware customization for mobile phones. En 2011 25th Brazilian Symposium on Software Engineering (pp. 283-292). ieee. https://doi.org/10.1109/SBES.2011.38; Del Carpio, A. F. y Angarita, L. B. (2020). Trends in software engineering processes using deep learning: A systematic literature review. En 2020 46th Euromicro Conference on Software Engineering and Advanced Applications (seaa) (pp. 445-454). ieee. https://doi. org/10.1109/SEAA51224.2020.00077; Dong, L., Liu, B., Li, Z., Wu, O., Babar, M. A. y Xue, B. (2017). A mapping study on mining software process. En 2017 24th Asia-Pacific Software Engineering Conference (apsec) (pp. 51-60). ieee. https://doi.org/10.1109/APSEC.2017.11; Ebert, C., Gallardo, G., Hernantes, J. y Serrano, N. (2016). DevOps. ieee Software, 33(3), 94-100. https://doi.org/10.1109/MS.2016.68; Erich, F. M., Amrit, C. y Daneva, M. (2017). A qualitative study of DevOps usage in practice. Journal of software: Evolution and Process, 29(6), e1885. https://doi.org/10.1002/ smr.1885; Fakhoury, S., Arnaoudova, V., Noiseux, C., Khomh, F. y Antoniol, G. (2018). Keep it simple: Is deep learning good for linguistic smell detection? En 2018 ieee 25Th international conference on software analysis, evolution and reengineering (saner) (pp. 602-611). ieee. https://doi.org/10.1109/SANER.2018.8330265; Falcini, F., Lami, G. y Costanza, A. M. (2017). Deep learning in automotive software. ieee Software, 34(3), 56-63. https://doi.org/10.1109/MS.2017.79; Fernández del Carpio, A. y Bermón Angarita, L. (2018). Techniques based on data science for software processes: A systematic literature review. En I. Stamelos, R. O’Connor, T. Rout y A. Dorling (eds.), Software Process Improvement and Capability Determination. spice 2018. Communications in Computer and Information Science (pp. 16-30). Springer. https://doi.org/10.1007/978-3-030-00623-5_2; Fuggetta, A. y Di Nitto, E. (2014). Software process. En Future of Software Engineering Proceedings (pp. 1-12). https://doi.org/10.1145/2593882.2593883; Godfrey, M. W., Hassan, A. E., Herbsleb, J., Murphy, G. C., Robillard, M., Devanbu, P. y Notkin, D. (2008). Future of mining software archives: A roundtable. ieee Software, 26(1), 67-70. https://doi.org/10.1109/MS.2009.10; Guo, J., Cheng, J. y Cleland-Huang, J. (2017). Semantically enhanced software traceability using deep learning techniques. En 2017 ieee/acm 39th International Conference on Software Engineering (ICSE) (pp. 3-14). ieee. https://doi.org/10.1109/ICSE.2017.9; Herbsleb, J. D. (2007). Global software engineering: The future of socio-technical coordination. En Future of software engineering (fose’07) (pp. 188-198). ieee. https://doi. org/10.1109/FOSE.2007.11; Hüttermann, M. (2012). Beginning devops for developers. En DevOps for Developers (pp. 3-13). Apress. https://doi.org/10.1007/978-1-4302-4570-4_1; Jeong, Y. J., Lee, J. H. y Shin, G. S. (2008). Development process of mobile application SW based on agile methodology. En 2008 10th International Conference on Advanced Communication Technology (vol. 1, pp. 362-366). ieee. https://doi.org/10.1109/ ICACT.2008.4493779; Kardoš, M. y Drozdová, M. (2010). Analytical method of cim to pim transformation in model driven architecture (MDA). Journal of Information and Organizational Sciences, 34(1), 89-99. https://hrcak.srce.hr/file/83906; Kaur, A. y Kaur, K. (2015). Suitability of existing software development life cycle (sdlc) in context of mobile application development life cycle (madlc). International Journal of Computer Applications, 116(19), 1-6. https://research.ijcaonline.org/volume116/number19/ pxc3902785.pdf; Kim, G., Humble, J., Debois, P., Willis, J. y Forsgren, N. (2016). The DevOps handbook: How to create world-class agility, reliability, & security in technology organizations. IT Revolution.; LeCun, Y., Bengio, Y. y Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-44. https://doi.org/10.1038/nature14539; Li, Z., Zhao, H., Shi, J., Huang, Y. y Xiong, J. (2019). An intelligent fuzzing data generation method based on deep adversarial learning. ieee Access, 7, 49327-49340. https://doi. org/10.1109/ACCESS.2019.2911121; Lwakatare, L. E., Kuvaja, P. y Oivo, M. (2015). Dimensions of DevOps. En C. Lassenius, T. Dingsøyr y M. Paasivaara (eds.), Agile Processes in Software Engineering and Extreme Programming. xp 2015. Lecture Notes in Business Information Processing (pp. 212-217). Springer. https://doi.org/10.1007/978-3-319-18612-2_19; Manoj Ray, D. y Samuel, P. (2016). Improving the productivity in global software development. En V. Snášel, A. Abraham, P. Krömer, M. Pant y A. Muda (eds.), Innovations in bio-inspired computing and applications: Advances in intelligent systems and computing (pp. 175-185). Springer. https://doi.org/10.1007/978-3-319-28031-8_15; Marshal, S. (2015). Machine learning an algorithm perspective. CRC Press.; Miralles, A. y Rouge, T. L. (2008). Modeling with enriched model driven architecture. En Encyclopedia of geographical information sciences (pp. 700-705). Springer. https:// dx.doi.org/10.1007/978-0-387-35973-1; Moreira, F., Cota, M. P. y Gonçalves, R. (2015). The influence of the use of mobile devices and the cloud computing in organizations. En A. Rocha, A. Correia, S. Costanzo y L. Reis (eds.), New contributions in information systems and technologies: Advances in intelligent systems and computing (vol. 1, pp. 275-284). Springer. https://doi. org/10.1007/978-3-319-16486-1_28; Murphy, K. P. (2011). Machine learning: A probabilistic perspective. MIT Press.; Ng, A., Ngiam, J., Foo, C. Y., Mai, Y., Suen, C., Coates, A. … y Tandon, S. (2013). Unsupervised feature learning and deep learning. https://redirect.cs.umbc.edu/courses/pub/ www/courses/graduate/678/spring15/visionaudio.pdf; Object Management Group (2014). Object Management Group Model Driven Architecture (MDA) MDA Guide rev. 2.0. https://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf; Object Management Group (2020). MDA® - The Architecture of Choice for a Changing World. https://www.omg.org/mda/; Overeem, M., Jansen, S. y Fortuin, S. (2018). Generative versus Interpretive Model-Driven Development: Moving Past ‘It Depends’. En L. Pires, S. Hammoudi y B. Selic (eds.), Model-Driven Engineering and Software Development. modelsward 2017. Communications in Computer and Information Science (pp. 222-246). Springer. https://doi. org/10.1007/978-3-319-94764-8_10; Paige, R. F., Kolovos, D. S. y Polack, F. A. (2014). A tutorial on metamodelling for grammar researchers. Science of Computer Programming, 96, 396-416. https://doi.org/10.1016/j. scico.2014.05.007; Popa, M. (2013). Considerations regarding the cross-platform mobile application development process. Economy Informatics, 13(1), 40-52. https://www.economyinformatics. ase.ro/content/EN13/04%20-%20Popa.pdf; Rahimian, V. y Ramsin, R. (2008). Designing an agile methodology for mobile software development: A hybrid method engineering approach. En 2008 Second International Conference on Research Challenges in Information Science (pp. 337-342). ieee. https:// doi.org/10.1109/RCIS.2008.4632123; Rubin, V., Günther, C. W., van der Aalst, W. M. P., Kindler, E., van Dongen, B. F. y Schäfer, W. (2007). Process mining framework for software processes. En Q. Wang, D. Pfahl y D. M. Raffo (eds.), Software Process Dynamics and Agility. ICSP 2007. Lecture Notes in Computer Science (pp. 169-181). Springer. https://doi.org/10.1007/978-3-540- 72426-1_15; Rui, Z., Tong, L., Qi, M., Zhenli, H., Qian, Y. y Yiquan, W. (2018). Data-driven bilayer software process mining. Journal of Software, 29(11), 3455-3483. http://dx.doi. org/10.13328/j.cnki.jos.005304; Sacks, M. (2012). DevOps principles for successful web sites. En Pro website development and operations: Streamlining DevOps for large-scale websites (pp. 1-14). Apress. https:// doi.org/10.1007/978-1-4302-3970-3_1; Schmidt, D. C. (2006). Guest editor’s introduction: Model-driven engineering. ieee Computer, 2(39), 25-31. https://doi.org/10.1109/MC.2006.58; Senapathi, M., Buchan, J. y Osman, H. (2018). DevOps capabilities, practices, and challenges: Insights from a case study. En Proceedings of the 22nd International Conference on Evaluation and Assessment in Software Engineering 2018 (pp. 57-67). https:// doi.org/10.1145/3210459.3210465; Shrestha, A. y Mahmood, A. (2019). Review of deep learning algorithms and architectures. ieee Access, 7, 53040-53065. https://doi.org/10.1109/ACCESS.2019.2912200; Swamynathan, M. (2019). Mastering machine learning with python in six steps: A practical implementation guide to predictive data analytics using python. Apress. https://doi. org/10.1007/978-1-4842-4947-5; Van der Aalst, W. M. (2011). Process mining: Discovery, conformance and enhancement of business processes. Springer.; Verdier, F., Seriai, A. D. y Tiam, R. T. (2019). Combining model-driven architecture and software product line engineering: Reuse of platform-specific assets. En S. Hammoudi, L. Pires y B. Selic (eds.), Model-Driven Engineering and Software Development. modelsward 2018. Communications in Computer and Information Science (pp. 430-454). Springer. https://doi.org/10.1007/978-3-030-11030-7_19; Vizcaíno, A., García, F. y Piattini, M. (2015). Visión general del desarrollo global de software. International Journal of Information Systems and Software Engineering for Big Companies, 1(1), 8-22. http://www.uajournals.com/ojs/index.php/ijisebc/article/view/1/1; Wang, J., Luo, W., Wu, X., Li, T., Qian, Y. y Xie, Z. (2012). An approach to modeling SaaS-oriented software service processes. En 2012 International Conference on System Science and Engineering (icsse) (pp. 573-577). ieee. https://doi.org/10.1109/ ICSSE.2012.6257252; Wasserman, A. I. (2010). Software engineering issues for mobile application development. En Proceedings of the fse/sdp workshop on Future of software engineering research (pp. 397-400). https://doi.org/10.1145/1882362.1882443; https://repositorio.unal.edu.co/handle/unal/87158; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
9
Authors: et al.
Contributors: et al.
Subject Terms: Revista Colombiana de Computación, Multi-agent systems, Article reception and administration system, Systems engineering, Computer science, Computer program, Data processing, Investigations, Analysis, Gaia methodology, Agent-oriented software engineering, Sistemas multiagentes, Sistema de recepción y administración de artículos, Ingeniería de sistemas, Ciencias computacionales, Programa para computador, Procesamiento de datos, Investigaciones, Análisis, Metodología Gaia, AUML, Ingeniería de software orientada a agentes
Subject Geographic: Bucaramanga (Colombia), UNAB Campus Bucaramanga
File Description: application/pdf
Relation: García Ojeda, Juan Carlos (2005). Gadmas. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB, Instituto Tecnológico y de Estudios Superiores de Monterrey ITESM; [ABE00] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Napal, E. Rauch, G. Sussmann, and R. Weiss, R. 2000. Amorphous computing. Commun. ACM 43, 5 (May), 43–50.; [ARE04] A. E. Arenas, J. C. García-Ojeda, J. de J. Pérez-Alcázar. On Combining Organisational Modelling and Graphical Languages for the Development of Multiagent Systems. Journal of Integrated Computer-Aided Engineering (ICAE). IOS Press Netherlands, 11(2):151-163, Mar. 2004.; [BAU01a] B. Bauer, J. P. Muller and J. Odell. Agent UML: A formalism for specifying multiagent software systems. Int. J. Softw. Eng. Knowl. Eng. ll, 3 (Apr.), 207–230. 2001.; [BAU01b] Bauer, B.: UML Class Diagrams and Agent-Based Systems, Proceedings Autonomous Agents 2001, Montreal, 2001.; [BAU02] B. Bauer. Uml class diagrams revisited in the context of agent based systems. In Agent-Oriented Software Engineering II (LNCS Volume 2222), pages 101–118. Springer-Verlag, 2002.; [BER01] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Sci. Amer. May.; [BRE01] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia and J. Mylopoulos. A knowledge level software engineering methodology for agent oriented programming. In Proceedings of the5th International Conference on Autonomous Agents (Montreal, Ont., Canada, June). ACM, New York, pp. 648–655. 2001.; [BRO91] R. A. Brooks. Intelligence without representation. Artificial Intelligence. 47, 139-159. 1991.; [CAB02] G. Cabri, L. Leonardi and F. Zambonelli, XRole: XML Roles for Agent Interaction, Proceedings of the Third International Symposium "From Agent Theory to Agent Implementation" at the 16th European Meeting on Cybernetics and Systems Research, Vienna (A), April 2002.; [CAI02] G. Caire, W. Coulier, F. Garijo, J. Gómez, J. Pavón, F. Leal, P. Chaino, P. Kearney, J. Stark, R. Evans and P. Massonet. Agent-oriented analysis using message/uml. In Proceedings of the 2nd International Workshop on Agent-Oriented Software Engineering. Lecture Notes in Computer Science, vol. 2222. Springer Verlag, New York, pp. 119– 135. 2002.; [CER04a] L. Cernuzzi, T. Juan, L. Sterling, F. Zambonelli, "The Gaia Methodology: Basic Concepts and Extensions", in Methodologies and Software Engineering for Agent Systems, Kluwer, 2004.; [CER04b] L. Cernuzzi, F. Zambonelli, "Experiencing AUML with the Gaia Methodology", 6th International Conference on Enterprise Information Systems, Porto (P), April 2004.; [CERV04] R. Cervenka,I. Trencansky, M. Calisti and D. A. P. Greenwood. AML: Agent Modeling Language Toward Industry-Grade Agent-Based Modeling. In Proceedings of the Fifth International Workshop on Agent-Oriented software Engineering AOSE, pages 31-46, 2004.; [CIA01] P. Ciancarini and M. Wooldridge, editors: Agent-Oriented Software Engineering. Springer-Verlag Lecture Notes in AI Volume 1957, January 2001.; [COL94] D. Coleman, P. Arnold, S. Bodoff, D. Dollin, H. Gilchrist, F. Hayes and P. Jeremas. Object-Oriented Development: The FUSION Method. Prentice-Hall International, Hemel Hampstead U.K, 1994; [COS02] M. Cossentino, C. Potts - "A CASE tool supported methodology for the design of multi-agent systems" - The 2002 International Conference on Software Engineering Research and Practice (SERP'02) 2002.; [DEL01] S. A. DeLoach and M. Word. Developing Multiagent Systems with agentTool. 7th.International Workshop ATAL, 2001; [EST02] D. Estrin, D. Culler, K. Pister and G. Sukjatme. Connecting the physical world with pervasive networks. IEEE Perv. Comput. l, 1, 59– 69. 2002; [FER98] J. Ferber, O. Gutknecht. A meta-model for the analysis and design of organizations in multi-agent systems. In Proceedings of the Third International Conference on Multi-Agent Systems (ICMAS98) , pages 128--135, 1998, Paris, France; [FER98] J. Ferber, and O. Gutknecht. A meta-model for the analysis and design of organizations in multi-agent systems. In Proceedings of the 3rd International Conference on Multi-Agent Systems (Paris, France). IEEE Computer Society Press, Los Alamitos, Calif., pp. 128–135. 1998.; [FIP05] Foundation for Intelligent Physical Agents. http://www.fipa.org/, Consultado Enero de 2005.; [FOS99] I. Foster and C. Kesselman (EDS.). The Grid: Blueprint for a New Computing Infrastructure. Morgan-Kaufmann, 1999; [GAR02a] J. C. García- Ojeda, J. de J. Pérez-Alcázar, A. E. Arenas. Aplicación de una Metodología de Desarrollo de Sistemas Multiagente en la Diseminación Selectiva de Información en la Web, Memorias del II Congreso Iberoamericano de Telemática (CITA’02). ISBN: 980-237- 217- X. Septiembre, 2002; [GAR02b] J. C. García-Ojeda, J. de J. Pérez-Alcázar and A. E. Arenas. Applying Gaia and AUML to the Selective Dissemination of Information on the Web, Proceedings of the 4th Iberoamerican Workshop on Multiagent Systems, Málaga, España, 2002; [GAR04] J. C. García-Ojeda, J. de J. Pérez-Alcázar, A. E. Arenas. Extending the Gaia Methodology with Agent-UML, In Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-04). New York, USA, 2004.; [GAR05] Paving the Way for Implementing Multiagent systems: Refining Gaia with AUML. Juan C. García-Ojeda, Álvaro E. Arenas and José de J. Pérez-Alcázar. In Proceedings of the 6th International Workshop on Agent-Oriented Software engineering (AOSE-2005), Por Aparecer.; [GOM03] J. Gomez-Sanz and J. Pavon. Agent oriented software engineering with INGENIAS. CEEMAS 2003 – Multi-Agent Systems and Applications III, 2691 , pages 394–403, 2003.; [HUH97] M. Huhns and M. P. Singh. Agents and Multiagent Systems: Themes, Approaches and Challenges. In Readings in Agents, chapter 1. Morgan Kaufmann Publishers. 1997.; [IEEE93] IEEE Standard 610.12 “Glossary of software engineering terminology,” in Software Engineering Standards Collection, IEEE CS Press, Los Alamitos, Calif. 1993; [IGL97] C. A. Iglesias, M. Garijo, J. C. Gonzalez and J. R. Velasco. Analysis and Design of Multiagent Systems Using MAS-CommonKADS. In Proceedings of the 4th International Workshop, ATAL'97. USA, pages 313-327, 1997.; [IGL99] C. Iglesias, M. Garito and J. Gonzáles. A survey of agent-oriented methodologies. In Intelligents Agents IV: Agent Theories, Architectures, and Languages. Lacture Notes in Artificial Intelligence, vol. 1555. Springer-Verlag, New York, pp. 317–330. 1999.; [JAC98] I. Jacobson. "Applying UML in The Unified Process" Rational Software. Presentación disponible en http://www.rational.com/uml como UMLconf.zip, 1998.; [JEN00] N. R. Jennings (2000) "On Agent-Based Software Engineering", Artificial Intelligence, 117 (2) 277-296.; [JEN01] N. R. Jennings (2001) "An agent-based approach for building complex software systems" Comms. of the ACM, 44 (4) 35-41.; [JUA03] Juan, T. and Sterling, L., The ROADMAP Meta-model for Intelligent Adaptive Multi-AgentSystems in Open Environments, Proceedings of the Fourth International Workshop on Agent Oriented Software Engineering, at AAMAS'03, Melbourne, Australia, July 2003.; [JUA02] Juan, T., Pearce, A. and Sterling, L., ROADMAP: Extending the Gaia methodology for Complex Open Systems, Proceedings of the First International Joint Conference on Autonomous Agents and Multi- Agent Systems (AAMAS 2002), Bologna, Italy, July 2002.; [MOR03] P. Moraitis, E. Petraki and N. Spanoudakis, Engineering JADE Agents with the Gaia Methodology. Lecture Notes in Computer Science (LNCS), vol. 2592: "Agent Technologies, Infrastructures, Tools, and Applications for e-Services", Springer-Verlag, 2003, pp 77-91; [MOR04] P. Moraitis and N. Spanoudakis. Combining Gaia and JADE for Multiagent Systems. In Proceedings of the 4th International Symposium "From Agent Theory to Agent Implementation" (AT2AI4), in: Proceedings of the 17th European Meeting on Cybernetics and Systems Research (EMCSR 2004), Vienna, Austria, April 13 - 16, 2004.; [MYL99] J. Mylopoulos, L. Chung, E. S. K. Yu. From Object-Oriented to Goal- Oriented Requirements Analysis, Commun. ACM 42(1): 31-37 (1999); [ODE00] J. Odell, V. D. Parunak, and B. Bauer. Extending uml for agents. In G. Wagner, Y. Lesperance, and E. Yu, editors, Proceedings of the Agent- Oriented Information Systems Workshop at the l7th National conference on Artificial Intelligence., pages 3–17, 2000.; [ODE01] J. Odell, H. Van Dyke Parunak and B. Bauer. Representing agent interaction protocols in UML. In Proceedings of the lst International Workshop on Agent-Oriented Software Engineering. Lecture Notes in Computer Science, vol. 1957. Springer-Verlag, New York, pp. 121– 140, 2001.; [OMG] Object Management Group. http://www.omg.org/, Consultado Enero de 2005.; [PAR01] H. V. Parunak, J. Odell. "Representing Social Structures in UML," Agent-Oriented Software Engineering (AOSE) II, Michael Wooldridge et al. eds., Springer-Verlag, Berlin, 2002, pp. 1-16.; [PAR97] H. V. D. Parunak. Go to the ant: Engineering principles from natural agent systems. Ann. Oper.Res. 75, 69–101. 1997; [PAU93] M. C. Paulk, B. Curtis, M. B. Chrissis and C. V. Weber."The Capability Maturity Model for Software", IEEE Software, Vol. 10, No. 4, July 1993, pp. 18-27.; [RIC02] A. Ricci, A. Omicini and E. Dente. Agent coordination infrastructures for virtual enterprises and workflow. Int. J. Coop. Inf. Syst. ll, 3 (Sept.), 335–380. 2002.; [RIP02] M. Ripeani, A. Iamnitchi and I. Foster. Mapping the gnutella network. IEEE Internet Comput. 6, 1 (Jan.), 50–57. 2002; [RUM91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object-Oriented Modelling and Design. Prentice Hall, 1991; [RUS02] S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2002; [SHA95] M. Shaw, R. Deline, D. Klein, T. Ross, D. Young and G. Zelesnik. Abstractions for software architecture and tools to support them. IEEE Trans. Softw. Eng. 2l, 4 (Apr.), 314–335. 1995; [SIM54] H. A. Simon. Models of Man. Wiley, New York, 1957.; [STU03] A. Sturm and O. Shehory. “A Framework for Evaluating Agent- Oriented Methodologies”, Workshop on Agent-Oriented Information System (AOIS), Melbourne, Australia, 2003.; [SUD04] J. Sudeikat, L. Braubach, A. Pokahr and W. Lamersdorf. “Evaluation of Agent-Oriented Software Methodologies – Examination of the Gap Between Modeling and Platform”, AOSE 2004, 126-141; [TEN00] D. Tennenhouse. Embedding the Internet: Proactive computing. Commun. ACM 43, 5 (May), 36–42. 2000.; [WOD01] M. Word, S. A. DeLoach and C. Sparkman. Multiagent system engineering. Int. J. Softw. Eng. Knowl. Eng. ll, 3 (Apr.), 231–258. 2001.; [WOO00] M. Wooldridge, N. R. Jennings, and D. Kinny. “The Gaia Methodology for Agent-Oriented Analysis and Design", Journal of Autonomous Agents and Multi-Agent Systems 3 (3) 285-312, 2000; [WOO02] Michael Wooldridge. An Introduction to Multiagent Systems. Ed. John Wiley & Sons, 2002.; [WOO95] M. J. Woolridge and N. R. Jennings. Intelligent Agents, Theory and Practice, 1995 Knowledge Engineering Review vol. 10:2, 115-152; [WOO97] M. Wooldridge (1997) “Agent-based software engineering” IEE Proc. on Software Engineering, 144 (1) 26-37.; [ZAM03a] F. Zambonelli, F. and H. V. D. Parunak. Signs of a revolution in computer science and software engineering. In Proceedings of the 3rd International Workshop on Engineering Societies in the Agents World. Lecture Notes in Computer Science, vol. 2577. Springer-Verlag, New York, pp. 13–28.; [ZAM03b] F. Zambonelli, N. R. Jennings and M. Wooldridge. "Developing multiagent systems: the Gaia Methodology", ACM Trans on Software Engineering and Methodology 12 (3) 317-370, 2003.; http://hdl.handle.net/20.500.12749/3301; reponame:Repositorio Institucional UNAB
Availability: https://hdl.handle.net/20.500.12749/3301
-
10
Authors: et al.
Contributors: et al.
Subject Terms: Voice processing systems, Automatic voice recognition, Systems engineering, Telematics, Investigations, New technologies, Internet of things, Speech recognition, Ubiquitous computing, Sistemas de procesamiento de voz, Reconocimiento automático de la voz, Ingeniería de sistemas, Telemática, Investigaciones, Nuevas tecnologías, Internet de las cosas, Middleware, Reconocimiento del habla, Computación ubicua
Subject Geographic: Bucaramanga (Colombia), UNAB Campus Bucaramanga
File Description: application/pdf; application/octet-stream
Relation: Manrique Hernández, Johana Andrea (2018). Switch: un Middleware para el desarrollo de aplicaciones IOT con interfaces basadas en voz. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB; Abdmeziem, M. R., Tandjaoui, D., & Romdhani, I. (2016). Architecting the internet of things: state of the art. In Robots and Sensor Clouds (pp. 55–75). Springer.; Abreu, D. P., Velasquez, K., Curado, M., & Monteiro, E. (2017). A resilient Internet of Things architecture for smart cities. Annals of Telecommunications, 72(1–2), 19–30.; Adams, K. (2015). Non-functional Requirements in Systems Analysis and Design. Springer.; Addo, I. D., Ahamed, S. I., Yau, S. S., & Buduru, A. (2014). A reference architecture for improving security and privacy in Internet of Things applications. In Mobile Services (MS), 2014 IEEE International Conference on (pp. 108–115).; Afonso, S., Laranjo, I., Braga, J., Alves, V., & Neves, J. (2015). Multilingual Voice Control for Endoscopic Procedures. In Internet of Things. User-Centric IoT (pp. 229–235). Springer.; Akash, S. A., Menon, A., Gupta, A., Wakeel, M. W., Praveen, M. N., & Meena, P. (2014). A novel strategy for controlling the movement of a smart wheelchair using internet of things. In Global Humanitarian Technology Conference-South Asia Satellite (GHTC-SAS), 2014 IEEE (pp. 154–158).; Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376.; Al-Jaroodi, J., Aziz, J., & Mohamed, N. (2009). Middleware for RFID systems: An overview. In Computer Software and Applications Conference, 2009. COMPSAC’09. 33rd Annual IEEE International (Vol. 2, pp. 154–159).; Aldosari, H. M. (2015). A Proposed Security Layer for the Internet of Things Communication Reference Model. Procedia Computer Science, 65, 95–98.; Alhamedi, A. H., Snasel, V., Aldosari, H. M., & Abraham, A. (2014). Internet of things communication reference model. In Computational Aspects of Social Networks (CASoN), 2014 6th International Conference on (pp. 61–66).; Association for computing machinery ACM. (2012). CCS 2012.; Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805. http://doi.org/doi.org/10.1016/j.comnet.2010.05.010; Baccaglini, E., Gavelli, M., Morello, M., & Vergori, P. (2015). A multimodal user interface using the webinos platform to connect a smart input device to the Web of Things. In Pervasive and Embedded Computing and Communication Systems (PECCS), 2015 International Conference on (pp. 1–5).; Bai, J. G., Wei, J. G., Chen, L., He, Y. Q., Wang, J. R., & Dang, J. W. (2013). Design and Implementation of a Housekeeper System. In Applied Mechanics and Materials (Vol. 437, pp. 394–398).; Banda, G., Chaitanya, K., & Mohan, H. (2015). An IoT protocol and framework for OEMs to make IoT-enabled devices forward compatible. In Signal-Image Technology & Internet-Based Systems (SITIS), 2015 11th International Conference on (pp. 824–832).; Bandyopadhyay, S., Sengupta, M., Maiti, S., & Dutta, S. (2011). A Survey of Middleware for Internet of Things. In A. Özcan, J. Zizka, & D. Nagamalai (Eds.), Recent Trends in Wireless and Mobile Networks: Third International Conferences, WiMo 2011 and CoNeCo 2011, Ankara, Turkey, June 26-28, 2011. Proceedings (pp. 288–296). Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-21937-5_27; Bassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S., & Meissner, S. (Eds.). (2013). Enabling Things to Talk. Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-40403-0; Bell, A. G. (1881). The production of sound by radiant energy. Science, 2(48), 242– 253.; Bernabe, J. B., Hernández, J. L., Moreno, M. V., & Gomez, A. F. S. (2014). Privacypreserving security framework for a social-aware internet of things. In International conference on ubiquitous computing and ambient intelligence (pp. 408–415).; Berners-Lee, T., Cailliau, R., Groff, J.-R., & Pollermann, B. (1992). World-Wide Web: The Information Universe. Electronic Networking: Research, Applications and Policy, 2(1), 52–58.; Besacier, L., Barnard, E., Karpov, A., & Schultz, T. (2014). Automatic speech recognition for under-resourced languages: A survey. Speech Communication, 56, 85–100.; Blackstock, M., & Lea, R. (2016). FRED: A Hosted Data Flow Platform for the IoT. In Proceedings of the 1st International Workshop on Mashups of Things and APIs (p. 2:1--2:5). New York, NY, USA: ACM. http://doi.org/10.1145/3007203.3007214; Bochmann, G. V. (1990). Protocol specification for OSI. Computer Networks and ISDN Systems, 18(3), 167–184.; Borgia, E. (2014). The Internet of Things vision: Key features, applications and open issues. Computer Communications, 54, 1–31.; Bouraoui, H., Jerad, C., Chattopadhyay, A., & Hadj-Alouane, N. Ben. (2017). Hardware Architectures for Embedded Speaker Recognition Applications: A Survey. ACM Transactions on Embedded Computing Systems (TECS), 16(3), 78.; Boussard, M., Meissner, S., Nettsträter, A., Olivereau, A., Segura, A. S., Thoma, M.,& Walewski, J. W. (2013). A Process for Generating Concrete Architectures. In Enabling Things to Talk (pp. 45–111). Springer.; Brown, A. (2016). The role of voice in IoT applications. Retrieved from https://www.strategyanalytics.com/strategy-analytics/blogs/iot/2016/02/19/therole- of-voice-in-the-internet-of-things#.WD3wMPkrLcc; Buyya, R., & Dastjerdi, A. V. (2016). Internet of Things: Principles and paradigms. Elsevier.; Cavalcante, E., Alves, M. P., Batista, T., Delicato, F. C., & Pires, P. F. (2015). An analysis of reference architectures for the internet of things. In Proceedings of the 1st International Workshop on Exploring Component-based Techniques for Constructing Reference Architectures (pp. 13–16). Ccori, P. C., De Biase, L. C. C., Zuffo, M. K., & da Silva, F. S. C. (2016). Device discovery strategies for the IoT. In Consumer Electronics (ISCE), 2016 IEEE International Symposium on (pp. 97–98).; Chaqfeh, M. A., & Mohamed, N. (2012). Challenges in middleware solutions for the internet of things. In Collaboration Technologies and Systems (CTS), 2012 International Conference on (pp. 21–26).; Chelloug, S. A., & El-Zawawy, M. A. (2017). Middleware for Internet of Things: Survey and Challenges. Intelligent Automation & Soft Computing, 0(0), 1–9. http://doi.org/10.1080/10798587.2017.1290328; CISCO. (2014). The Internet of Things Reference Model. San José, California. Retrieved from http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_ 4_2014.pdf; CISCO. (2016). Internet of Things at a Glance. Retrieved from https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/ata- glance-c45-731471.pdf; Colciencias. (2016). Tipología de proyectos calificados como de carácter cientifíco, tecnológico e innovación (Vol. 4).; Costa, N., Pereira, A., & Serodio, C. (2007). Virtual Machines Applied to WSN’s: The state-of-the-art and classification. In Systems and Networks Communications, 2007. ICSNC 2007. Second International Conference on (p. 50).; Coulouris, G. F., Dollimore, J., & Kindberg, T. (2005). Distributed systems: concepts and design (Fifth edit). Pearson education.; Davis, K. H., Biddulph, R., & Balashek, S. (1952). Automatic recognition of spoken digits. The Journal of the Acoustical Society of America, 24(6), 637–642.; De, S., Carrez, F., Reetz, E., Tönjes, R., & Wang, W. (2013). Test-enabled architecture for IoT service creation and provisioning. In The Future Internet Assembly (pp. 233–245).; Delicato, F. C., Pires, P. F., & Batista, T. (2017). The Resource Management Challenge in IoT. In Resource Management for Internet of Things (pp. 7–18). Springer.; Dino, J. (2008). Ames Technology Capabilities and Facilities. Retrieved January 5, 2017, from https://www.nasa.gov/centers/ames/research/technologyonepagers/ hc-computing.html; Eisenhauer, M., Rosengren, P., & Antolin, P. (2010). HYDRA: A Development Platform for Integrating Wireless Devices and Sensors into Ambient Intelligence Systems. In D. Giusto, A. Iera, G. Morabito, & L. Atzori (Eds.), The Internet of Things: 20th Tyrrhenian Workshop on Digital Communications (pp. 367–373). New York, NY: Springer New York. http://doi.org/10.1007/978-1-4419-1674- 7_36; European Lighthouse Integrated Project. (2016). Internet of things Architecture IoTA. Retrieved November 1, 2016, from http://www.iota. eu/public/requirements/copy_of_requirements; Evans, D. (2011). The Internet of Things: How the next evolution of the internet is changing everything. Retrieved from http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FIN AL.pdf; EY. (2016). Internet of Things: Human machine interactions that unlock possibilities. United Kingdom. Retrieved from http://www.ey.com/Publication/vwLUAssets/ey-m-e-internet-ofthings/$ FILE/ey-m-e-internet-of-things.pdf; Fernandes, J., Nati, M., Loumis, N. S., Nikoletseas, S., Raptis, T. P., Krco, S., … Ziegler, S. (2015). IoT Lab: Towards co-design and IoT solution testing using the crowd. In Recent Advances in Internet of Things (RIoT), 2015 International Conference on (pp. 1–6).; Ferreira, H. G. C., Canedo, E. D., & de Sousa, R. T. (2013). IoT architecture to enable intercommunication through REST API and UPnP using IP, ZigBee and arduino. In 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 53–60). http://doi.org/10.1109/WiMOB.2013.6673340; Ferreira, H. G., & Sousa Junior, R. T. (2017). Security Analysis of a Proposed Internet of Things Middleware. Cluster Computing, 20(1), 651–660. http://doi.org/10.1007/s10586-017-0729-3; Formisano, C., Pavia, D., Gurgen, L., Yonezawa, T., Galache, J. A., Doguchi, K., & Matranga, I. (2015). The advantages of IoT and cloud applied to smart cities. In Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on (pp. 325–332).; Fremantle, P. (2015). A reference architecture for Internet of Things. Sri Lanka. Retrieved from https://wso2.com/whitepapers/a-reference-architecture-for-theinternet- of-things/; Gartner Inc. (2014). IT Glossary. Retrieved January 4, 2017, from http://www.gartner.com/it-glossary/telematics/; Gartner Inc. (2016). Hype Cycle for Emerging Technologies, 2016.; Gartnet Inc. (2017). Hype Cycle for Emerging Technologies, 2017. USA.; Gilchrist, A. (2016). IIoT Reference Architecture. In Industry 4.0 (pp. 65–86). Springer.; Gluhak, A., Hauswirth, M., Krco, S., Stojanovic, N., Bauer, M., Nielsen, R. H., … Corcho, O. (2011). An Architectural Blueprint for a Real-World Internet. In Future Internet Assembly (pp. 67–80).; Gluhak, A., Munoz, L., Sotres, P., Sanchez, L., Roux, P., Sanchez, B., … Hernandez, A. L. (2013). Third Cycle Architecture Specification.; Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. http://doi.org/10.1016/j.future.2013.01.010; Guo, B., Zhang, D., Wang, Z., Yu, Z., & Zhou, X. (2013). Opportunistic IoT: exploring the harmonious interaction between human and the internet of things. Journal of Network and Computer Applications, 36(6), 1531–1539.; Hadim, S., & Mohamed, N. (2006). Middleware: Middleware challenges and approaches for wireless sensor networks. IEEE Distributed Systems Online, 7(3), 1.; Han, X., & Rashid, M. A. (2016). Gesture and voice control of Internet of Things. In Industrial Electronics and Applications (ICIEA), 2016 IEEE 11th Conference on (pp. 1791–1795).; Haridas, A. V., Marimuthu, R., & Sivakumar, V. G. (2018). A critical review and analysis on techniques of speech recognition: The road ahead. International Journal of Knowledge-Based and Intelligent Engineering Systems, 22(1), 39– 57.; Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2010). Metodología de la investigación. McGraw-Hill (Quinta Edi). México DF.; Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014a). Architecture Reference Model. In From Machine-To-Machine to the Internet of Things (pp. 167–197). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00007-3; Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014b). IoT Architecture – State of the Art. In From Machine-To-Machine to the Internet of Things (pp. 145–165). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00006-1; Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014c). IoT Reference Architecture. In From Machine-To-Machine to the Internet of Things (pp. 199–223). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00008-5; Hollosi, D., Nagy, G., Rodigast, R., Goetze, S., & Cousin, P. (2013). Enhancing wireless sensor networks with acoustic sensing technology: use cases, applications & experiments. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing (pp. 335–342).; Huang, Z., Lin, K. J., & Shih, C. S. (2016). Supporting Edge Intelligence in Service- Oriented Smart IoT Applications. In 2016 IEEE International Conference on Computer and Information Technology (CIT) (pp. 492–499). Nadi, Fiji: IEEE. http://doi.org/10.1109/CIT.2016.40; Huang, Z., Tsai, B. L., Chou, J. J., Chen, C. Y., Chen, C. H., Chuang, C. C., … Shih, C. S. (2015). Context and user behavior aware intelligent home control using WuKong middleware. In 2015 IEEE International Conference on Consumer Electronics - Taiwan (pp. 302–303). Taipei, Taiwan: IEEE. http://doi.org/10.1109/ICCE-TW.2015.7216911; Hui, G. (2014). How the Internet of Things changes Business Models. Retrieved from https://hbr.org/2014/07/how-the-internet-of-things-changes-business-models; IEEE. (1990). IEEE Standard Glossary of Software Engineering Terminology.; IEEE Computer Society. (2014). Guide to the Software Engineering - Body of Knowledge. (P. Bourque & R. E. Fairley, Eds.)IEEE Computer Society (V3 ed.). http://doi.org/10.1234/12345678; Igure, V. M., Laughter, S. A., & Williams, R. D. (2006). Security issues in SCADA networks. Computers & Security, 25(7), 498–506.; International Organization for Standardization - ISO. Software product quality, 1 ISO/IEC 25010 34 (2011).; International Telecommunication Union - ITU. (2012). Recommendation ITU-T Y.2060: Overview of the Internet of things. Series Y: Global information infrastructure, internet protocol aspects and next-generation networks - Frameworks and functional architecture models. Retrieved from https://www.itu.int/rec/T-REC-Y.2060-201206-I; International Telecomunication Union - ITU. (2005). The Internet of Things. ITU Internet Reports.; Internet Society. (2015). The Internet of Things (IoT): An Overview. Geneva, Switzerland. Retrieved from https://www.internetsociety.org/doc/iot-overview; IoT-A Project. (2016). Requirements — IOT-A: Internet of Things Architecture.; IoT Analytics. (2016). IoT Platforms: Market Report 2015-2021. Hamburg, Germany. Retrieved from https://iot-analytics.com/product/iot-platforms-market-report- 2015-2021-3/; ISO/IEC/IEEE. (2010). ISO/IEC/IEEE 24765:2010 Systems and software engineering - Vocabulary.; ISO/IEC JTC 1. (2009). Study on Sensor Networks (Version 3).; ISO, & IEEE. Systems and software engineering - Vocabulary, ISO/IEC/IEEE 24765:2010(E) 1–418 (2010). http://doi.org/10.1109/IEEESTD.2010.5733835; Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili, M., … Hamida, A. Ben. (2011). Service-oriented middleware for the Future Internet: state of the art and research directions. Journal of Internet Services and Applications, 2(1), 23–45. http://doi.org/10.1007/s13174-011-0021-3; Itakura, F. (1975). Minimum prediction residual principle applied to speech recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 23(1), 67–72.; Jelinek, F., Bahl, L., & Mercer, R. (1975). Design of a linguistic statistical decoder for the recognition of continuous speech. IEEE Transactions on Information Theory, 21(3), 250–256.; Juang, B.-H., Hou, W., & Lee, C.-H. (1997). Minimum classification error rate methods for speech recognition. IEEE Transactions on Speech and Audio Processing, 5(3), 257–265.; Juang, B.-H., & Rabiner, L. R. (2005). Automatic speech recognition-a brief history of the technology development. Elsevier Encyclopedia of Language and Linguistics, 1, 24.; Kaneko, M., Arima, K., Usami, M., Sugimura, H., Isshiki, M., & Koh, K. (2015). Development of information living integrated by home appliances and web services. In Consumer Electronics (GCCE), 2015 IEEE 4th Global Conference on (pp. 311–312).; Keh, H.-C., Shih, C.-C., Chou, K.-Y., Cheng, Y.-C., Ho, H.-K., Yu, P.-Y., & Huang, N.-C. (2014). Integrating unified communications and internet of m-health things with micro wireless physiological sensors, 17(3), 319–328.; Khurana, T. (2017). IPv6 Enables Global Mobile IoT Innovation and Proliferation. Retrieved February 26, 2017, from https://goo.gl/B1E1eF; Kim, J., Lee, J., Kim, J., & Yun, J. (2014). M2M service platforms: survey, issues, and enabling technologies. IEEE Communications Surveys & Tutorials, 16(1), 61–76.; Kostelnik, P., Sarnovsk, M., & Furdik, K. (2011). The semantic middleware for networked embedded systems applied in the internet of things and services domain. Scalable Computing: Practice and Experience, 12(3), 307–316.; Krco, S., Pokric, B., & Carrez, F. (2014). Designing IoT architecture (s): A European perspective. In Internet of Things (WF-IoT), 2014 IEEE World Forum on (pp. 79–84).; Kubitza, T. (2016). Using Speech for End User Programming of Smart Environments in the Internet of Thing. Germany.; Kubitza, T., & Schmidt, A. (2016). Rapid Interweaving of Smart Things with the meSchup IoT Platform. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (pp. 313–316). New York, NY, USA: ACM. http://doi.org/10.1145/2968219.2971379; Kubitza, T., & Schmidt, A. (2017). meSchup: A Platform for Programming Interconnected Smart Things. Computer, 50(11), 38–49.; Kumar, A., Mishra, A., Makula, P., Karan, K., & Mittal, V. K. (2015). Smart Robotic Assistant. In Region 10 Symposium (TENSYMP), 2015 IEEE (pp. 25–28).; Lee, G. M., Crespi, N., Choi, J. K., & Boussard, M. (2013). Internet of things. In Evolution of Telecommunication Services (pp. 257–282). Springer.; Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431–440.; Lin, K. J., Reijers, N., Wang, Y. C., Shih, C. S., & Hsu, J. Y. (2013). Building Smart M2M Applications Using the WuKong Profile Framework. In 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing (pp. 1175–1180). Beijing, China: IEEE. http://doi.org/10.1109/GreenCom-iThings- CPSCom.2013.204; Loucopoulus, P., & Karakostas, V. (1995). System Requirements Engineering. McGraw-Hill, Inc.; Ma, M., Wang, P., & Chu, C.-H. (2013). Data management for internet of things: challenges, approaches and opportunities. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing (pp. 1144–1151).; MacGillivray, C. (2016). Worldwide Internet of Things Forecast Update, 2015-2019.; Mamei, M., & Zambonelli, F. (2006). Field-based coordination for pervasive multiagent systems. Springer Science & Business Media.; Manrique, J. ., Rueda-Rueda, J., & Portocarrero, J. . (2016). Contrasting Internet of Things and Wireless Sensor Network from a conceptual overview. In 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (p. 6). IEEE Computer Society. http://doi.org/978-1-5090-5880-8/16; Marulli, F., Pareschi, R., & Baldacci, D. (2016). The internet of speaking things and its applications to Cultural Heritage. In Proceedings of IoTBD2016 Conference, SCITEPRESS.; McCulloch, W. S., & Pitts, W. (1990). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 52(1), 99–115.; Meier, R., & Cahill, V. (2002). Steam: Event-based middleware for wireless ad hoc networks. In Distributed Computing Systems Workshops, 2002. Proceedings. 22nd International Conference on (pp. 639–644).; Mineraud, J., Mazhelis, O., Su, X., & Tarkoma, S. (2016). A gap analysis of Internetof-Things platforms. Computer Communications, 89, 5–16.; Miranda, J., Mäkitalo, N., Garcia-Alonso, J., Berrocal, J., Mikkonen, T., Canal, C., & Murillo, J. M. (2015). From the Internet of Things to the Internet of People. IEEE Internet Computing, 19(2), 40–47.; Mittal, Y., Toshniwal, P., Sharma, S., Singhal, D., Gupta, R., & Mittal, V. K. (2015). A voice-controlled multi-functional Smart Home Automation System. In India Conference (INDICON), 2015 Annual IEEE (pp. 1–6).; Monteiro, C., Oliveira, M., Bastos, J., Ramrekha, T., & Rodriguez, J. (2014). Social Networks and Internet of Things, an Overview of the SITAC Project. In International Wireless Internet Conference (pp. 191–196).; Mottola, L., Murphy, A. L., & Picco, G. Pietro. (2006). Pervasive games in a moteenabled virtual world using tuple space middleware. In Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games (p. 29).; Nagata, K., Kato, Y., & Chiba, S. (1964). Spoken digit recognizer for Japanese language. In Audio Engineering Society Convention 16.; Nakagawa, E. Y., Oquendo, F., & Becker, M. (2012). Ramodel: A reference model for reference architectures. In Software Architecture (WICSA) and European Conference on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP Conference on (pp. 297–301).; Ngu, A. H., Gutierrez, M., Metsis, V., Nepal, S., & Sheng, Q. Z. (2017). IoT middleware: A survey on issues and enabling technologies. IEEE Internet of Things Journal, 4(1), 1–20.; Nia, A. M., & Jha, N. K. (2016). A comprehensive study of security of internet-ofthings. IEEE Transactions on Emerging Topics in Computing.; Nitti, M., Pilloni, V., Colistra, G., & Atzori, L. (2016). The virtual object as a major element of the internet of things: a survey. IEEE Communications Surveys & Tutorials, 18(2), 1228–1240.; Nuance Communications. (2016). Majority of Consumers Want Intelligent, Personalized Dialogue with Customer Service. Retrieved February 27, 2017, from https://www.nuance.com/about-us/newsroom/press-releases/opusintelligent- assistants-and-authentication-conference-2016.html; Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service- Oriented Computing: State of the Art and Research Challenges. Computer, 40(11), 38–45. http://doi.org/10.1109/MC.2007.400; Park, K.-J., Zheng, R., & Liu, X. (2012). Cyber-physical systems: Milestones and research challenges. Computer Communications, 36(1), 1–7.; Patel, P., & Cassou, D. (2015). Enabling high-level application development for the Internet of Things. Journal of Systems and Software, 103, 62–84.; Payne, G. (2014). The Internet of Things brings a new era of connectivity… and a talking fridge. Retrieved February 27, 2017, from http://whatsnext.nuance.com/connected-living/the-internet-of-thingsconnectivity/; Petrolo, R., Mitton, N., Soldatos, J., Hauswirth, M., & Schiele, G. (2014). Integrating wireless sensor networks within a city cloud. In 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking Workshops (SECON Workshops) (pp. 24–27). http://doi.org/10.1109/SECONW.2014.6979700; Pressman, R. (2010). Ingeniería del software: un enfoque práctico (Séptima Ed). México DF: McGraw-Hill Interamericana.; Rabiner, L., Levinson, S., Rosenberg, A., & Wilpon, J. (1979). Speaker-independent recognition of isolated words using clustering techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 27(4), 336–349.; Rabiner, L. R., & Juang, B. H. (2004). Statistical methods for the recognition and understanding of speech. Encyclopedia of language and linguistics.; Ratkowski, A. (2016). Architecture for Internet of Things Analytical Ecosystem. In Dependability Engineering and Complex Systems (pp. 385–393). Springer.; Raveendran, V., Sanjeev, M. R., Paul, N., & Jijina, K. P. (2016). Speech only interface approach for personal computing environment. In Engineering and Technology (ICETECH), 2016 IEEE International Conference on (pp. 372–377).; Razzaque, M. A., Milojevic-Jevric, M., Palade, A., & Clarke, S. (2016). Middleware for internet of things: a survey. IEEE Internet of Things Journal, 3(1), 70–95.; Richards, M. (2015). Software architecture patterns. O’Reilly Media, Incorporated.; Robles, T., Alcarria, R., de Andrés, D. M., Navarro, M., Calero, R., Iglesias, S., & López, M. (2015). An IoT based reference architecture for smart water management processes. JoWUA, 6(1), 4–23.; Sakai, T., & Doshita, S. (1962). The Phonetic Typewriter. In IFIP Congress (Vol. 445, p. 449).; Sanchez, L., Muñoz, L., Galache, J. A., Sotres, P., Santana, J. R., Gutierrez, V., … others. (2014). SmartSantander: IoT experimentation over a smart city testbed. Computer Networks, 61, 217–238.; Sanchez, S., Angel Sicilia, M., & Rodriguez, D. (2012). Ingeniería del Sofware. Un enfoque desde la guía SWEBOK. Alfaomega.; Santos, J. F. M., Guessi, M., Galster, M., Feitosa, D., & Nakagawa, E. Y. (2013). A Checklist for Evaluation of Reference Architectures of Embedded Systems. In SEKE (Vol. 13, pp. 1–4).; Sarma, S., Brock, D., & Engels, D. (2001). Radio Frequency Identification and the Electronic Product Code. IEEE Micro, 21(6), 50–54. http://doi.org/10.1109/40.977758; Schauer, P., & Debita, G. (2015). Internet of Things Service Systems Architecture.; Seo, S., Kim, J., Yun, S., Huh, J., & Maeng, S. (2015). HePA: Hexagonal Platform Architecture for Smart Home Things. In Parallel and Distributed Systems (ICPADS), 2015 IEEE 21st International Conference on (pp. 181–189).; Shen, S., & Carugi, M. (2014). Standardizing the Internet of Things in an evolutionary way. In ITU Kaleidoscope Academic Conference: Living in a converged world- Impossible without standards?, Proceedings of the 2014 (pp. 249–254).; Shih, C. S., Lin, K. J., Chou, J. J., & Chuang, C. C. (2014). Autonomous Service Management for Location and Context Aware Service. In 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications (pp. 246–251). Matsue, Japan: IEEE. http://doi.org/10.1109/SOCA.2014.10; Shin, D.-G., & Jun, M.-S. (2015). Home IoT device certification through speaker recognition. In Advanced Communication Technology (ICACT), 2015 17th International Conference on (pp. 600–603).; Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. In Industrial Engineering and Engineering Management (IEEM), 2014 IEEE International Conference on (pp. 697–701).; Singh, S., & Singh, N. (2015). Internet of Things (IoT): Security challenges, business opportunities & reference architecture for E-commerce. In Green Computing and Internet of Things (ICGCIoT), 2015 International Conference on (pp. 1577– 1581).; Sinha, S., Agrawal, S. S., & Jain, A. (2013). Continuous density Hidden Markov Model for context dependent Hindi speech recognition. In Advances in Computing, Communications and Informatics (ICACCI), 2013 International Conference on (pp. 1953–1958).; Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte, J.-P., Riahi, M., … Herzog, R. (2015). OpenIoT: Open Source Internet-of-Things in the Cloud. In I. Podnar Žarko, K. Pripužić, & M. Serrano (Eds.), Interoperability and Open- Source Solutions for the Internet of Things: International Workshop, FP7 OpenIoT Project, Held in Conjunction with SoftCOM 2014, Split, Croatia,September 18, 2014, Invited Papers (pp. 13–25). Cham: Springer International Publishing. http://doi.org/10.1007/978-3-319-16546-2_3; Sommerville, I. (2011). Ingeniería del Software. PEARSON.; Souza, R., & Cardozo, E. (2016). A Resource-Oriented Architecture for the Internet of Things (IoT). In Connectivity Frameworks for Smart Devices (pp. 99–116). Springer.; Stravoskoufos, K., Sotiriadis, S., & Petrakis, E. (2016). IoT-A and FIWARE: bridging the barriers between the cloud and IoT systems design and implementation. In Proc. 6th Int’l Conf. Cloud Computing and Services Science (pp. 146–153).; Sundmaeker, H., Guillemin, P., Friess, P., & Woelfflé, S. (2010). Vision and challenges for realising the Internet of Things. (Cluster of European research projects on the Internet of Things, Ed.)European Commision.; Suzuki, J., & Nakata, K. (1961). Recognition of Japanese vowels - Preliminary to the recognition of speech. Journal of the Radio Research Laboratory, 8(37), 193– 212.; Talavera Portocarrero, J. M. (2016). RAMSES: Reference Architectue of Self- Adaptative Middleware for Wireless Sensor Networks. Universidade Federal fo Rio de Janeiro.; Techopedia. (2017). What is Modeling Language?; The Institute of Electrical and Electronics Engineers. (2014). 2014 IEEE Thesaurus. Retrieved from http://www.ieee.org/documents/ieee_thesaurus_2013.pdf; Turck, M. (2018). Growing Pains: The 2018 Internet of Things Landscape. Retrieved April 2, 2018, from http://mattturck.com/iot2018/; United Nations Educational Scientific and Cultural Organization. (2016). UNESCO Thesaurus. Retrieved August 29, 2016, from http://vocabularies.unesco.org/; United Nations Educational Scientific and Cultural Organization (UNESCO). (2016). UNESCO Thesaurus. Retrieved April 11, 2016, from http://vocabularies.unesco.org/browser/thesaurus/en/; Unnibhavi, A. H., & Jangamshetti, D. S. (2016). A survey of speech recognition on south Indian Languages. In Signal Processing, Communication, Power and Embedded System (SCOPES), 2016 International Conference on (pp. 1122– 1126).; Usländer, T., & Epple, U. (2015). Reference model of industrie 4.0 service architectures. At-Automatisierungstechnik, 63(10), 858–866.; Verdouw, C. N., Robbemond, R. M., Verwaart, T., Wolfert, J., & Beulens, A. J. M. (2015). A reference architecture for IoT-based logistic information systems in agri-food supply chains. Enterprise Information Systems, 1–25.; Wang, M.-M., Cao, J.-N., Li, J., & Dasi, S. K. (2008). Middleware for wireless sensor networks: A survey. Journal of Computer Science and Technology, 23(3), 305– 326.; Weiser, M. (1991). The computer for the 21st century. Scientific American, 265(3), 94–104.; Weyrich, M., & Ebert, C. (2016). Reference architectures for the internet of things. IEEE Software, 33(1), 112–116.; Whittaker, E. W. D. (2000). Statistical language modelling for automatic speech recognition of Russian and English. University of Cambridge.; Wiener, N. (1961). Cybernetics or Control and Communication in the Animal and the Machine (Vol. 25). MIT press.; Wortmann, F., Flüchter, K., & others. (2015). Internet of things. Business & Information Systems Engineering, 57(3), 221–224. http://doi.org/10.1007/s12599-015-0383-3; Xu, B., Zhang, D., & Yang, W. (2012). Research on architecture of the Internet of Things for grain monitoring in storage. In Internet of Things (pp. 431–438). Springer.; Zhong, N., Ma, J., Huang, R., Liu, J., Yao, Y., Zhang, Y., & Chen, J. (2016). Research challenges and perspectives on Wisdom Web of Things (W2T). In Wisdom Web of Things (pp. 3–26). Springer.; Zhou, S., Liu, G., & Lin, C. (2012). An Embedded Voice Inquiry Experimental Platform for Temperature and Humidity Measurement on the Internet of Things. In Emerging Computation and Information teChnologies for Education (pp. 533– 539). Springer.; http://hdl.handle.net/20.500.12749/3547; reponame:Repositorio Institucional UNAB
Availability: https://hdl.handle.net/20.500.12749/3547
-
11
Authors: et al.
Contributors: et al.
Subject Terms: Systems engineer, Software development, IOT, Monitoring, Water quality, Real time, Drinking water, Public health, Water resources, Environmental monitoring, Desarrollo de Software, Ingeniería de sistemas, Agua potable, Salud pública, Recursos hídricos, Vigilancia ambiental, Internet, Monitoreo, Calidad del agua, Tiempo real
Subject Geographic: Colombia, UNAB Campus Bucaramanga
File Description: application/pdf; application/octet-stream
Relation: Ahrend, U., Aleksy, M., Berning, M., Gebhardt, J., Mendoza, F., & Schulz, D. (2021). Sensors as the Basis for Digitalization: New Approaches in Instrumentation, IoT-concepts, and 5G. Internet of Things, 100406. https://doi.org/https://doi.org/10.1016/j.iot.2021.100406; Akhter, F., Siddiquei, H. R., Alahi, M. E. E., & Mukhopadhyay, S. C. (2021). Design and Development of an IoT-enabled Portable Phosphate Detection System in Water for Smart Agriculture. Sensors and Actuators A: Physical, 112861. https://doi.org/https://doi.org/10.1016/j.sna.2021.112861; Al-Turjman, F. (2020). The Cloud in Iot-Enabled Spaces. In CRC Press.; Alahi, M. E. E., Mukhopadhyay, S. C., & Burkitt, L. (2018). Imprinted polymer coated impedimetric nitrate sensor for real- time water quality monitoring. Sensors and Actuators B: Chemical, 259, 753–761. https://doi.org/10.1016/j.snb.2017.12.104; Albano, M., Ferreira, L. L., Pinho, L. M., & Alkhawaja, A. R. (2015). Computer Standards & Interfaces Message-oriented middleware for smart grids. Computer Standards & Interfaces, 38, 133–143. https://doi.org/10.1016/j.csi.2014.08.002; Alcaldía de Bogota. (2021). Documentos para Agua: Agua Para el Consumo Humano.; Algore, M. (2021). Machine Learning With Python: The Definitive Tool to Improve Your Python Programming and Deep Learning to Take You to The Next Level of Coding and Algorithms Optimization.; Alley, E. R. (2006). Water Quality Control Handbook. In Environment (Second). McGraw Hill. https://doi.org/10.1036/0071467602; Amato, A., Cozzolino, G., Maisto, A., & Pelosi, S. (2021). Monitoring Airplanes Faults Through Business Intelligence Tools (pp. 224–234). https://doi.org/10.1007/978-3-030-61105-7_22; Arévalo-Gómez, M. Á., Carrillo-Zambrano, E., Herrera-Quintero, L. F., & Chavarriaga, J. (2018). Water wells monitoring solution in rural zones using IoT approaches and cloud-based real-time databases. Proceedings of the Euro American Conference on Telematics and Information Systems - EATIS ’18, 1–5. https://doi.org/10.1145/3293614.3293659; Arévalo Junco, A. D. (2019). Prototipo de un sistema de monitoreo de calidad del agua subterránea en instalaciones de captación de una localidad rural del municipio de Tibaná-Boyacá. Universidad Piloto de Colombia.; Aspin, A. (2020). Pro Power BI Desktop. Apress. https://doi.org/10.1007/978-14842-5763-0; Aznil Ab Aziz, M., Abas, M. F., Anwar Abu Bashri, M. K., Saad, N. M., & Ariff, M. H. (2019). Evaluating IoT based passive water catchment monitoring system data acquisition and analysis. Bulletin of Electrical Engineering and Informatics, 8(4). https://doi.org/10.11591/eei.v8i4.1583; Badii, M., Guillen, A., Rodríguez, C., Lugo, O., Aguilar, J., & Acuña, M. (2015). Pérdida de Biodiversidad: Causas y Efectos Biodiversity Loss: Causes and Factors. Daena: International Journal of Good Conscience, 10(2), 156–174; Bagali, M. U., & Thangadurai, N. (2021). NavIC/GNSS receiver based integrated transport monitoring system using embedded system. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.11.080; Bahadori, A., & Smith,Bahadori, A., & Smith, S. T. (2016). A. In Dictionary of Environmental Engineering and Wastewater Treatment (pp. 1–37). Springer International Publishing. https://doi.org/10.1007/978-3-319-26261-1_1; Baird, R. B., Rice, E. W., & Posavec, S. (2017). Standard Methods For The Examination Of Water And Wastewater 23th. In Amer Public Health Assn; Balachandar, S., & Chinnaiyan, R. (2020). Reliable pharma cold chain monitoring and analytics through Internet of Things Edge. In Emergence of Pharmaceutical Industry Growth with Industrial IoT Approach (pp. 133–161). Elsevier. https://doi.org/10.1016/B978-0-12-819593-2.00005-4; Bastião Silva, L. A., Costa, C., & Oliveira, J. L. (2013). A common API for delivering services over multi-vendor cloud resources. Journal of Systems and Software, 86(9), 2309–2317. https://doi.org/10.1016/j.jss.2013.04.037; Bastidas, S. E. C., & Plata, R. A. D. (2020). Sistema IoT con UAV y GPR para Identificar Zonas Con Aguas Subterráneas en el Departamento de la GuajiraColombia. Encuentro Internacional de Educación En Ingeniería; Beigi, N. K., Partov, B., & Farokhi, S. (2018). Real-time cloud robotics in practical smart city applications. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 2017-Octob, 1–5. https://doi.org/10.1109/PIMRC.2017.8292655; Boehm, B. (2004). Balancing Agility and Discipline: A Guide for the Perplexed. https://doi.org/10.1007/978-3-540-24675-6_1; Boeker, M., Vach, W., & Motschall, E. (2013). Google Scholar as replacement for systematic literature searches: Good relative recall and precision are not enough. BMC Medical Research Methodology, 13(1). https://doi.org/10.1186/1471-2288-13-131; Boyd, C. E. (2020). Water Quality. Springer International Publishing. https://doi.org/10.1007/978-3-030-23335-8; Burbano Ordoñez, C. Y., & others. (2017). Implementación de una red de sensores inalámbricos LPWAN mediante módulos LoRa para el monitoreo de la calidad del agua en 2 ríos. Universidad Distrital Francisco José de Caldas.; Burgos Galeano, C. A., Lafont Álvarez, K., & Estrada Palencia, P. A. (2018). Análisis comparativo de indicadores de la calidad del agua del rio Sinú municipio de Montería, Córdoba. Modum, 55–64.; Caballero-Flores, R. (2019). Análisis de errores en las medidas. https://digibuo.uniovi.es/dspace/bitstream/handle/10651/52857/ANÁLISIS DE ERRORES EN LA MEDIDA_RCF.pdf?sequence=1; Caho-Rodríguez, C. A., & López-Barrera, E. A. (2017). Determinación del Índice de Calidad de Agua para el sector occidental del humedal Torca-Guaymaral empleando las metodologías UWQI y CWQI. Producción + Limpia, 12(2), 35– 49. https://doi.org/10.22507/pml.v12n; Camacho Botero, L. A. (2020). La paradoja de la disponibilidad de agua de mala calidad en el sector rural colombiano. Revista de Ingeniería, 49(49), 38–51. https://doi.org/10.16924/revinge.49.6; Cao, H., Guo, Z., Wang, S., Cheng, H., & Zhan, C. (2020). Intelligent wide-area water quality monitoring and analysis system exploiting unmanned surface vehicles and ensemble learning. Water (Switzerland), 12(3). https://doi.org/10.3390/w12030681; Carminati, M., Turolla, A., Mezzera, L., Di Mauro, M., Tizzoni, M., Pani, G., Zanetto, F., Foschi, J., & Antonelli, M. (2020). A Self-Powered Wireless Water Quality Sensing Network Enabling Smart Monitoring of Biological and Chemical Stability in Supply Systems. Sensors, 20(4), 1125. https://doi.org/10.3390/s20041125; Carrasco Mantilla, W. (2016). Estado del arte del agua y saneamiento rural en Colombia. Revista de Ingeniería, 0(44), 46. https://doi.org/10.16924/riua.v0i44.923; CEPAL. (2013). Agua para el Siglo XXI para América del Sur. Journal of Chemical Information and Modeling, 53(9), 1689–1699.; Chang, J. F. (2006). Business Process Management Systems. Strategy and Implementation. Taylor & Francis Group; Chen, G., & Kotz, D. (2000). A Survey of Context-Aware Mobile Computing Research. Time, 3755(TR2000-381), 1–16. https://doi.org/10.1.1.140.3131; Chin Roemer, R., & Borchardt, R. (2015). Meaningful Metrics: A 21st Century Librarian’s Guide to Bibliometrics, Altmetrics, and Research Impact. Association of College and Research Libraries; Climent, E., Pelegri-Sebastia, J., Sogorb, T., Talens, J., & Chilo, J. (2017). Development of the MOOSY4 eNose IoT for Sulphur-Based VOC Water Pollution Detection. Sensors, 17(8), 1917. https://doi.org/10.3390/s17081917; Coetzee, L., & Eksteen, J. (2011). The Internet of Things - promise for the future? An introduction. In In IST-Africa Conference Proceedings. IEEE.; Conagua. (2010). Capítulo 3. Usos del Agua. Estadísticas Del Agua En México, Edición 2010, 61–76; Copeland, D. B. (2017). Rails, Angular, Postgres, and Bootstrap: Powerful, Effective, Efficient, Full-Stack Web Development; Cordeiro, L., Mar, C., Valentin, E., Cruz, F., Patrick, D., Barreto, R., & Lucena, V. (2008). An agile development methodology applied to embedded control software under stringent hardware constraints. ACM SIGSOFT Software Engineering Notes, 33(1), 1. https://doi.org/10.1145/1344452.1344459; Cotruvo, J. A. (2018). Drinking water quality and contaminants guidebook. Taylor & Francis; Cressie, N., & Wikle, C. K. (2011). Statistics for Spatio-Temporal Data. John Wiley and Sons; CVS. (2020). Cobertura geográfica Departamento de Córdoba.; DANE. (2018). Censo Nacional de Población y censo nacional de vivienda Vivienda. DANE, Publicacion Para Todos, 66. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-ypoblacion/censo-nacional-de-poblacion-y-vivenda-2018/cuantos-somos; Darwish, M., & Ouda, A. (2015). Evaluation of an OAuth 2 . 0 Protocol Implementation for Web Server Applications. 2015 International Conference and Workshop on Computing and Communication (IEMCON), 2–5.; De Bellis, N. (2009). Bibliometrics and Citation Analysis; from the Science Citation Index to Cybermetrics. The Scarecrow Press, Inc.; De León-Peña, R., & Vargas-Lombardo, M. (2017). OpenID connect and digital identity security. Revista de Iniciación Científica, 3(2), 94–99; Díaz Porras, K. P. (2019). El oro azul y su gestión de pérdidas en Colombia. Módulo Arquitectura CUC, 23(1), 9–22. https://doi.org/10.17981/mod.arq.cuc.23.1.2019.01; Dow, C. (2020). Hands-On Edge Analytics with Azure IoT: Design and Develop IoT Applications with Edge Analytical Solutions Including Azure IoT Edge. Packt Publishing Ltd.; Dürr, C., & Vie, J.-J. (2021). Competitive Programming in Python: 128 Algorithms to Develop your Coding Skills. In Cambridge University Press. https://doi.org/10.1017/9781108591928; Edmondson, V., Cerny, M., Lim, M., Gledson, B., Lockley, S., & Woodward, J. (2018). A smart sewer asset information model to enable an ‘Internet of Things’ for operational wastewater management. Automation in Construction, 91, 193–205. https://doi.org/10.1016/j.autcon.2018.03.003; Ehrenmueller-Jensen, M. (2020). Self-Service AI with Power BI Desktop. In SelfService AI with Power BI Desktop. Apress. https://doi.org/10.1007/978-1-48426231-3; Emerson, S., Choi, Y. K., Hwang, D. Y., Kim, K. S., & Kim, K. H. (2015). An OAuth based authentication mechanism for IoT networks. International Conference on ICT Convergence 2015: Innovations Toward the IoT, 5G, and Smart Media Era, ICTC 2015, 1072–1074. https://doi.org/10.1109/ICTC.2015.7354740; Escobar Roberto, L. A., & Gutierrez Ramirez, N. (2020). Implementación de un sistema electrónico de monitoreo de la calidad del agua para un estanque piscícola. Universidad Distrital Francisco José de Caldas; Espake, P. (2015). Learning Heroku Postgres. Packt Publishing; Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37–54.; Foro Económico Mundial. (2019). Informe de riesgos mundiales 2019 14.a edición.; García, S., Luengo, J., & Herrera, F. (2015). Data Preprocessing in Data Mining. In Intelligent Systems Reference Library (Vol. 72). Springer International Publishing. https://doi.org/10.1007/978-3-319-10247-4; Geetha, S., & Gouthami, S. (2016). Internet of things enabled real time water quality monitoring system. Smart Water, 2(1), 1. https://doi.org/10.1186/s40713-017-0005-y; Gingras, Y. (2016). Bibliometrics and Research Evaluation: Uses and Abuses (History and Foundations of Information Science). The MIT Press.; Global Water. (2019). Water Quality. In Instrumentation Resource Book (pp. 54– 101). http://www.globalw.com/downloads/Catalog/WaterQuality.pdf; Gorchev, H. G., & Ozolins, G. (1984). WHO guidelines for drinking- water quality. WHO Chronicle, 38(3), 104–108.; Goyal, H. R., Ghanshala, K. K., & Sharma, S. (2021a). Flash flood risk management modeling in indian cities using IoT based reinforcement learning. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2021.01.072; Goyal, H. R., Ghanshala, K. K., & Sharma, S. (2021b). Recommendation based rescue operation model for flood victim using smart IoT devices. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.12.959; Greenfeld, D. R., & Greenfeld, A. R. (2020). Django Crash Course.; Greengard, S. (2015). The Internet of Things; Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. https://doi.org/10.1016/j.future.2013.01.010; Gupta, A. (2013). Java EE 7 Essentials: Enterprise Developer Handbook (M. Loukides & M. Blanchette (eds.); First Edit). O’Reilly Media, Inc. https://doi.org/10.1007/978-1-4302-4426-4; Guzmán, B. L., Nava, G., & Díaz, P. (2015). La calidad del agua para consumo humano y su asociación con la morbimortalidad en Colombia, 2008-2012. Biomedica, 35(3), 177–190. https://doi.org/10.7705/biomedica.v35i0.2511; Hakim, W. L., Hasanah, L., Mulyanti, B., & Aminudin, A. (2019). Characterization of turbidity water sensor SEN0189 on the changes of total suspended solids in the water. Journal of Physics: Conference Series, 1280, 022064. https://doi.org/10.1088/1742-6596/1280/2/022064; Havinek, P. (2009). Risk Management of Water Supply and Sanitation Systems (P. Hlavinek, C. Popovska, J. Marsalek, I. Mahrikova, & T. Kukharchyk (eds.)). Springer Netherlands. https://doi.org/10.1007/978-90-481-2365-0; Hill, C. A., Biemer, P. P., Buskirk, T. D., Japec, L., Kirchner, A., Kolenikov, S., & Lyberg, L. E. (2021). Big Data Meets Survey Science: A Collection of Innovative Methods. In Wiley Series in Survey Methodology. Wiley; Hlavinek, P. (2020). Management of Water Quality and Quantity (M. Zelenakova, P. Hlavínek, & A. M. Negm (eds.)). Springer International Publishing. https://doi.org/10.1007/978-3-030-18359-2; Hoyos Botero, C. (2000). Un modelo para investigación documental (Señal Editora (ed.)).; Hu, Z., & Liu, L. (2018). Prediction of water pollution by nutrients based on eutrophication evaluation. Chemical Engineering Transactions, 71, 667–672. https://doi.org/10.3303/CET1871112; IGAC. (2017). Mapas Departamentales Físico Políticos. Instituto Geográfico Agustín Codazzi.; Islam, M., Ashraf, F., Alam, T., Misran, N., & Mat, K. (2018). A Compact Ultrawideband Antenna Based on Hexagonal Split-Ring Resonator for pH Sensor Application. Sensors, 18(9), 2959. https://doi.org/10.3390/s18092959; James, S. (2016). An Introduction to Data Analysis using Aggregation Functions in R. In An Introduction to Data Analysis using Aggregation Functions in R. Springer International Publishing. https://doi.org/10.1007/978-3-319-46762-7; Jia, T., Zhao, X., Wang, Z., Gong, D., & Ding, G. (2016). Model Transformation and Data Migration from Relational Database to MongoDB. 2016 IEEE International Congress on Big Data (BigData Congress), 60–67. https://doi.org/10.1109/BigDataCongress.2016.16; John, V., & Liu, X. (2017). A Survey of Distributed Message Broker Queues; Kachroud, M., Trolard, F., Kefi, M., Jebari, S., & Bourrié, G. (2019). Water quality indices: Challenges and application limits in the literature. Water (Switzerland), 11(2), 1–26. https://doi.org/10.3390/w11020361; Kaur, H., Singh, S. P., Bhatnagar, S., & Solanki, A. (2021). Chapter 10 - Intelligent Smart Home Energy Efficiency Model Using Artificial Intelligence and Internet of Things (G. Kaur, P. Tomar, & M. B. T.-A. I. to S. P. I. of T. I. Tanque (eds.); pp. 183–210). Academic Press. https://doi.org/https://doi.org/10.1016/B978-012-818576-6.00010-1; Kim, H. (2021). Software Engineering in IoT, Big Data, Cloud and Mobile Computing (H. Kim & R. Lee (eds.); Vol. 930). Springer International Publishing. https://doi.org/10.1007/978-3-030-64773-; Kothari, N., Shreemali, J., Chakrabarti, P., & Poddar, S. (2021). Design and implementation of IoT sensor based drinking water quality measurement system. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.12.1142; Lai, C. S., Lai, L. L., & Lai, Q. H. (2021). Smart Grids and Big Data Analytics for Smart Cities. In Smart Grids and Big Data Analytics for Smart Cities. Springer International Publishing. https://doi.org/10.1007/978-3-030-52155-4; Larson, B. (2019). Data Analysis with Microsoft Power BI. McGraw-Hill Education.; Lea, P. (2018). Internet of Things for Architects: Architecting IoT solutions by implementing sensors, communication infrastructure, edge computing, analytics, and security. Packt Publishing; Lea, P. (2020). IoT and Edge Computing for Architects.; Lee, R. (2020). Big Data, Cloud Computing, and Data Science Engineering (R. Lee (ed.); Vol. 844). Springer International Publishing. https://doi.org/10.1007/9783-030-24405-7; Leke, C. A., & Marwala, T. (2019). Deep Learning and Missing Data in Engineering Systems (Vol. 48). Springer International Publishing. https://doi.org/10.1007/978-3-030-01180-2; Lima-Rodrigues, L. M. S., & Rodrigues, D. A. (2020). Agenda 2030. Quaestio - Revista de Estudos Em Educação, 22(3), 721–739. https://doi.org/10.22483/2177-5796.2020v22n3p721-739; Little, R. J. A., & Rubin, D. B. (2019). Statistical Analysis with Missing Data. In Wiley Series in Probability and Statistics. John Wiley & Sons; Livelihoods & Natural Resource Man, International Water & Sanitation C, Centre for Economic and Social Stu, & Watershed Support Services & Activ. (2014). Sustainable Water and Sanitation Services. In Sustainable Water and Sanitation Services: The Life-Cycle Cost Approach to Planning and Management. Routledge. https://doi.org/10.4324/9780203521670; Loucks, D. P., & van Beek, E. (2017). Water resource systems planning and management: An introduction to methods, models, and applications. In Water Resource Systems Planning and Management: An Introduction to Methods, Models, and Applications. https://doi.org/10.1007/978-3-319-44234-1; Ma, H., & Wang, J. (2021). The 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy. In J. MacIntyre, J. Zhao, & X. Ma (Eds.), Advances in Intelligent Systems and Computing (Vol. 1282). Springer International Publishing. https://doi.org/10.1007/978-3-03062743-0; Megargel, A., Shankararaman, V., & Walker, D. K. (2020). Software Engineering in the Era of Cloud Computing (M. Ramachandran & Z. Mahmood (eds.)). Springer International Publishing. https://doi.org/10.1007/978-3-030-33624-0; Melé, A. (2020). Django 3 By Example: Build powerful and reliable Python web applications from scratch (3th ed.). PACKT Publishing; Melendez Gelvez, I., Quijano Parra, A., & Pardo Perez, E. (2015). Actividad genotóxica de aguas antes y despues de clorar en la planta de potabilización Empopamplona. Bistua Revista De La Facultad De Ciencias Basicas, 13(2), 12. https://doi.org/10.24054/01204211.v2.n2.2015.1795; Meneses, H. W. P., García, J. P. M., & Sánchez, M. E. L. (2018). AQUASMART, La Solución Mecatrónica al Manejo de Recursos Hídricos. Encuentro Internacional de Educación En Ingeniería.; Micheli, G. De. (2020). Embedded, Cyber-Physical, and IoT Systems. In S. S. Bhattacharyya, M. Potkonjak, & S. Velipasalar (Eds.), Embedded, CyberPhysical, and IoT Systems. Springer International Publishing. https://doi.org/10.1007/978-3-030-16949-7; Decreto número 1575 de 2007, 14 (2007).; Ministerio de la protección social, & Ministerio de Ambiente, V. y D. T. (2007). Resolución 2115/2007. Gaceta Oficial, 23.; Minteer, A. (2017). Analytics for the Internet of Things (IoT): Intelligent analytics for your intelligent devices. Packt Publishing; Mirzavand, R., Honari, M., Laribi, B., Khorshidi, B., Sadrzadeh, M., & Mousavi, P. (2018). An Unpowered Sensor Node for Real-Time Water Quality Assessment (Humic Acid Detection). Electronics, 7(10), 231. https://doi.org/10.3390/electronics710023; Mishra, V., Kumar, T., Bhalla, K., & Patil, M. M. (2018). SuJAL: Design and Development of IoT-Based Real-Time Lake Monitoring System. 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C), 1–4. https://doi.org/10.1109/CIMCA.2018.8739; Mitsa, T. (2010). Temporal Data Mining. Chapman and Hall/CRC. https://doi.org/10.1201/9781420089776; Molenberghs, G., Fitzmaurice, G., Kenward, M., Tsiatis, B., & Verbeke, G. (2015). Handbook of Missing Data Methodology. In G. Molenberghs, G. Fitzmaurice, M. G. Kenward, & A. Tsiatis (Eds.), Handbook of Missing Data Methodology. Chapman and Hall/CRC. https://doi.org/10.1201/b17622; Morales García, J., Peñuela Meneses, W., & Leyes Sánchez, M. (2018). Aquasmart, la solución mecatrónica al manejo de recursos hídricos. Encuentro Internacional de Educación En Ingeniería ACOFI, 1–7.; Moreno Arboleda, F. J., Quintero Rendón, J. E., & Rueda Vásquez, R. (2016). Una comparación de rendimiento entre Oracle y MongoDB. Ciencia e Ingeniería Neogranadina, 26(1), 109. https://doi.org/10.18359/rcin.1669; Munirathinam, S. (2021). Drift Detection Analytics for IoT Sensors. Procedia Computer Science, 180, 903–912. https://doi.org/https://doi.org/10.1016/j.procs.2021.01.341; Musa, P., Sugeru, H., & Mufza, H. F. (2019). An intelligent applied Fuzzy Logic to prediction the Parts per Million (PPM) as hydroponic nutrition on the based Internet of Things (IoT). 2019 Fourth International Conference on Informatics and Computing (ICIC), 1–7. https://doi.org/10.1109/ICIC47613.2019.8985712; Naqvi, S., Yfantidou, S., & Zimányi, E. (2017). Advanced Databases. Time Series Databases and InfluxDB. In Universite libre de Bruxelles.; Norris, D. J. (2020). Machine Learning with the Raspberry Pi: Experiments with Data and Computer Vision. Apress. https://doi.org/10.1007/978-1-4842-5174-4; Núñez-Blanco, Y., Ramírez-Cerpa, E., & Sánchez-Comas, A. (2020). Revisión de sistemas de telemetría en ríos: propuesta para el río Magdalena, Barranquilla, Colombia. Tecnología y Ciencias Del Agua, 11(5), 298–343. https://doi.org/10.24850/j-tyca-2020-05-08; Ojha, A. (2020). Sensors in Water Pollutants Monitoring: Role of Material (D. Pooja, P. Kumar, P. Singh, & S. Patil (eds.)). Springer Singapore. https://doi.org/10.1007/978-981-15-0671-0; OMS. (2006). Guidelines for drinking- water qualit; OMS, O. M. D. L. S., & UNICEF, F. de las N. U. para la I. (2017). Progresos en materia de agua potable, saneamiento e higiene. In Organización Mundial de la Salud.; Organización Mundial de La Salud. (2011). Guías para la calidad del agua de consumo humano. Organización Mundial de La Salud, 4, 608.; Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLOS Medicine, 18(3), e1003583. https://doi.org/10.1371/journal.pmed.1003583; Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., MayoWilson, E., McDonald, S., … McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ, 372, n160. https://doi.org/10.1136/bmj.n160; Parameswari, M., & Moses, M. B. (2018). Online measurement of water quality and reporting system using prominent rule controller based on aqua care-IOT. Design Automation for Embedded Systems, 22(1–2), 25–44. https://doi.org/10.1007/s10617-017-9187-7; Particle. (2020). Quick Start: ARGON. Particle.Io.; Pilicita Garrido, A., Borja López, Y., & Gutiérrez Constante, G. (2020). Rendimiento de MariaDB y PostgreSQL. Revista Científica y Tecnológica UPSE, 7(2), 09– 16. https://doi.org/10.26423/rctu.v7i2.538; Poongodi, T., Rathee, A., Indrakumari, R., & Suresh, P. (2020). Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm. In S.-L. Peng, S. Pal, & L. Huang (Eds.), Intelligent Systems Reference Library. Springer International Publishing. https://doi.org/10.1007/978-3-030-33596-0; Poza Luján, J. L. (2012). Proposed smart control distributed architecture based on service quality policies. Doctoral thesis. Universidad Politécnica de Valencia; Prashanth, D. S., Patel, G., & Bharathi, B. (2017). Research and development of a mobile based women safety application with real-time database and datastream network. 2017 International Conference on Circuit ,Power and Computing Technologies (ICCPCT), 1–5. https://doi.org/10.1109/ICCPCT.2017.8074261; Programa de las Naciones Unidas para el Desarrollo. (2015). Objetivos de Desarrollo del Milenio. In Humanismo y Trabajo Social: Vols 5 (93-101).; Puig, V., Ocampo-Martínez, C., Pérez, R., Cembrano, G., Quevedo, J., & Escobet, T. (Eds.). (2017). Real-time Monitoring and Operational Control of DrinkingWater Systems. Springer International Publishing. https://doi.org/10.1007/9783-319-50751-4; Quintana Fajardo, B. F., & Sarabia Caffroni, J. J. (2018). Arquitectura para el sistema de monitoreo de la calidad del agua de los caños y lagos internos del Distrito de Cartagena de Indias soportada en tecnologías de internet de las cosas. Universidad de Cartagena; Rad, R. (2018). Power BI Service Content. In Pro Power BI Architecture (pp. 29– 57). Apress. https://doi.org/10.1007/978-1-4842-4015-1_3; Raghuvanshi, A., & Singh, U. K. (2020). Internet of Things for smart cities- security issues and challenges. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.10.849; Rajanna, R. R., Natarajan, S., & Vittal, P. R. (2018). An IoT Wi-Fi Connected Sensor For Real Time Heart Rate Variability Monitoring. 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C), 1–4. https://doi.org/10.1109/CIMCA.2018.8739323; Ratnaparkhi, S., Khan, S., Arya, C., Khapre, S., Singh, P., Diwakar, M., & Shankar, A. (2020). Smart agriculture sensors in IOT: A review. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.138; Ray, P. P., Dash, D., & De, D. (2019). Internet of things-based real-time model study on e-healthcare: Device, message service and dew computing. Computer Networks, 149, 226–239. https://doi.org/10.1016/j.comnet.2018.12.006; Asamblea General de las Naciones Unidas, Naciones Unidas 3 (2010).; Rethlefsen, M. L., Kirtley, S., Waffenschmidt, S., Ayala, A. P., Moher, D., Page, M. J., & Koffel, J. B. (2021). PRISMA-S: an extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Systematic Reviews, 10(1), 39. https://doi.org/10.1186/s13643-020-01542-z; Rey Graña, C., & Ramil Diaz, M. (2011). Series temporales. Introduccion a La Estadistica Descriptiva. Segunda Edicion, 85–105. https://doi.org/10.4272/978-84-9745-167-3.ch4; Rojo-Nieto, E., & Montoto, T. (2017). Basuras marinas, plásticos y microplásticos orígenes, impactos y consecuencias de una amenaza global. Ecologistas en Acción; Rondero, C., & Font, V. (2015). Articulación de la complejidad matemática de la media aritmética. Ensenanza de Las Ciencias, 33(2), 29–49. https://doi.org/10.5565/rev/ensciencias.1386; Ruiz, C. A., Salazar, D. M., & Rodríguez González, N. (2020). La prestación de los servicios de agua potable y saneamiento básico en Colombia análisis y prospectiva. In Investigaciones y productos CID; Ruiz, C. A., Salazar, D. M., & Rodríguez, N. (2020). The provision of drinking water and basic sanitation services in Colombia: analysis and prospective. Documentos FCE-CID Escuela de Economía, 34, 1–86. www.fce.unal.edu.co/centro-editorial/documentos.html; Ruiz Peláez, J. G., & Rodríguez Malagón, M. N. (2015). Población y muestra. Epidemiología Clínica: Investigación Clínica Aplicada, 62–66.; Russo, C., Ramón, H., Alonso, N., Cicerchia, B., Esnaola, L., & Tessore, J. P. (2015). Tratamiento Masivo de Datos Utilizando Técnicas de Machine Learning Resumen Contexto Introducción. 131–134; Samaranayake, P., Ramanathan, K., & Laosirihongthong, T. (2017). Implementing industry 4.0 — A technological readiness perspective. 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 529–533. https://doi.org/10.1109/IEEM.2017.8289947; Saravanan, K., Anusuya, E., Kumar, R., & Son, L. H. (2018). Real-time water quality monitoring using Internet of Things in SCADA. Environmental Monitoring and Assessment, 190(9). https://doi.org/10.1007/s10661-018-6914x; Schwaber, K. (2004). Agile Project Management with Scrum (Vol. 7, Issue CMM). https://doi.org/10.1201/9781420084191-c2; Seamark, P., & Martens, T. (2019). Pro Dax with Power Bi: Business Intelligence with Powerpivot and SQL Server Analysis Services Tabular. Apress. https://doi.org/10.1007/978-1-4842-4897-3; Sebastian, A. (2020). Smart Systems and IoT: Innovations in Computing. In A. K. Somani, R. S. Shekhawat, A. Mundra, S. Srivastava, & V. K. Verma (Eds.), Smart Innovation, Systems and Technologies. Springer Singapore. https://doi.org/10.1007/978-981-13-8406-6; Serpanos, D., & Wolf, M. (2018). Internet-of-Things (IoT) Systems. In Internet-ofThings (IoT) Systems. Springer International Publishing. https://doi.org/10.1007/978-3-319-69715-4; Serrano Castaño, C. E. (2002). Modelo integral para el profesional en ingeniería (Universidad del Cauca (Ed.)).; Shaw, P. (2013). Postgres Succinctly. In Syncfusion Inc; Sierra, C. A. (2011). Calidad del Agua. Evaluación y diagnóstico. In Journal of Chemical Information and Modeling. https://repository.udem.edu.co/handle/11407/2568; Siow, E., Tiropanis, T., & Hall, W. (2018). Analytics for the Internet of Things. ACM Computing Surveys, 51(4), 1–36. https://doi.org/10.1145/3204947; Spandana, K., & Rao, V. R. S. (2018). Internet of Things (Iot) Based smart water quality monitoring system. International Journal of Engineering and Technology(UAE), 7(3), 259–262. https://doi.org/10.14419/ijet.v7i3.6.14985; Suresh, A., Nandagopal, M., Pethuru Raj, Neeba, E. A., & Lin, J.-W. (2020). Industrial IoT Application Architectures and Use Cases. Auerbach Publications.; Suseendran, G., & Balaganesh, D. (2021). Smart cattle health monitoring system using IoT sensors. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2021.01.873; Sutradhar, B. C. (2013). ISS-2012 Proceedings Volume On Longitudinal Data Analysis Subject to Measurement Errors, Missing Values, and/or Outliers (B. C. Sutradhar (Ed.); Vol. 211). Springer New York. https://doi.org/10.1007/9781-4614-6871-4; Tanwar, S. (2020). Fog Data Analytics for IoT Applications: Next Generation Process Model with State of the Art Technologies (S. Tanwar (Ed.); Vol. 76). Springer Singapore. https://doi.org/10.1007/978-981-15-6044-6; The Government Office for Science. (2014). The IoT: making the most of the Second Digital Revolution. WordLink, 1–40. https://doi.org/GS/14/1230; Torres Pardo, J. C. (2017). Definition of a Reference Architecture for Information Systems in Ubiquitous Wireless Sensor Networks based on quality of service. Master’s Degree Option Work. Universidad Nacional de Colombia; Tukey, J. W. (1962). The Future of Data Analysis. The annals of mathematical statistics.; UNESCO. (2015). El Crecimiento Insostenible Y La Creciente Demanda Mundial De Agua. Wwdr, 12; UNESCO. (2019). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2019. No dejar a nadie atrás. In Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura; UNESCO. (2020). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2020. In Agua y Cambio Climático; Urrútia, G., & Bonfill, X. (2010). Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Medicina Clínica, 135(11), 507–511. https://doi.org/10.1016/j.medcli.2010.01.015; van Eck, N. J., & Waltman, L. (2011). Text mining and visualization using VOSviewer. Text Mining and Visualization, 1–5.; van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053–1070. https://doi.org/10.1007/s11192-017-2300-7; Vélez, A., & Calvo, G. (1992). La investigación documental. Estado del arte y del conocimiento. Análisis de la investigación en la formación de investigadores. Universidad de la Sabana; Viegas, V., Pereira, J. M. D., Girao, P., Postolache, O., & Salgado, R. (2018). IoT applied to Environmental Monitoring in Oysters’ Farms. 2018 International Symposium in Sensing and Instrumentation in IoT Era (ISSI), 1–5. https://doi.org/10.1109/ISSI.2018.8538136; Vikesland, P. J. (2018). Nanosensors for water quality monitoring. Nature Nanotechnology, 13(8), 651–660. https://doi.org/10.1038/s41565-018-0209-9; Viloria, A., Acuña, G. C., Alcázar Franco, D. J., Hernández-Palma, H., Fuentes, J. P., & Rambal, E. P. (2019). Integration of Data Mining Techniques to PostgreSQL Database Manager System. Procedia Computer Science, 155, 575–580. https://doi.org/10.1016/j.procs.2019.08.080; Wade, R. (2020). Advanced Analytics in Power BI with R and Python. Apress. https://doi.org/10.1007/978-1-4842-5829-3; Water-quality engineering in natural systems: fate and transport processes in the water environment. (2013). Choice Reviews Online, 50(12), 50-6781-50–6781. https://doi.org/10.5860/choice.50-6781; Weber, R. H., & Weber, R. (2010). Internet of Things. In Development. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-11710-7; Weiser, M. (1991). The computer for the 21st century. Scientific American (International Edition), 265(3), 66–75. https://doi.org/10.1038/scientificamerican0991-94; Wolf, W. H. W. H. (1994). Hardware-software co-design of embedded systems. Proceedings of the IEEE, 82(7), 967–989. https://doi.org/10.1109/5.293155; Wong, B. P., & Kerkez, B. (2016). Real-time environmental sensor data: An application to water quality using web services. Environmental Modelling & Software, 84, 505–517. https://doi.org/10.1016/j.envsoft.2016.07.020; World Health Organization. (2019). Safe water, better health. In Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO; Wortham, R. H. (2020). Transparency for Robots and Autonomous Systems. The Institution of Engineering and Technology; Yanes, A. R., Martinez, P., & Ahmad, R. (2020). Towards automated aquaponics: A review on monitoring, IoT, and smart systems. Journal of Cleaner Production, 263, 121571. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.121571; Zelenakova, M., Hlavínek, P., & Negm, A. M. (2020). Management of Water Quality and Quantity. Springer International Publishing. https://doi.org/10.1007/978-3-030-18359-2; Ziegler, A. (2014). In-situ Materials Characterization (A. Ziegler, H. Graafsma, X. F. Zhang, & J. W. M. Frenken (Eds.); Vol. 193). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-45152-2; Zimányi, E., Sakr, M., & Lesuisse, A. (2020). MobilityDB: A Mobility Database Based on PostgreSQL and PostGIS. ACM Transactions on Database Systems, 45(4), 1–42. https://doi.org/10.1145/3406534; Zou, Q., Xiong, Q., Li, Q., Yi, H., Yu, Y., & Wu, C. (2020). A water quality prediction method based on the multi-time scale bidirectional long short-term memory network. Environmental Science and Pollution Research, 27(14), 16853– 16864. https://doi.org/10.1007/s11356-020-08087-7; http://hdl.handle.net/20.500.12749/15481; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Availability: https://hdl.handle.net/20.500.12749/15481
-
12
Authors: et al.
Contributors: et al.
Source: Revista Colombiana de Computación; Vol. 17 Núm. 2 (2016): Revista Colombiana de Computación; 66-75
Subject Terms: Innovaciones tecnológicas, Ciencia de los computadores, Desarrollo de tecnología, Ingeniería de sistemas, Investigaciones, Tecnologías de la información y las comunicaciones, TIC´s, Technological innovations, Computer science, Technology development, Systems engineering, Investigations, Information and communication technologies, ICT's, Ontology, Semantic web, Web service, Recover of information, Information management, Ciencias de la computación, Desarrollo tecnológico, Tecnologías de la información y la comunicación, Ontología, Web semántica, Servicio web, Recuperación de información, Administración de información
File Description: application/pdf
Relation: https://revistas.unab.edu.co/index.php/rcc/article/view/2533/2291; https://revistas.unab.edu.co/index.php/rcc/article/view/2533; T. BERNERS-LEE, J. HENDLER, and O. LASSILA, "The Semantic Web, A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities," Scientific American, vol. 284, n.° 5, pp. 34-43, May-2001.; R. García, F. Botella, and M.-C. Marcos, "Hacia la arquitectura de la información 3.0: pasado, presente y futuro. (Spanish)," El Prof. Int, vol. 19, n.° 4, pp. 339-347, Jul. 2010.; I. HORROCKS, "Ontologies and the Semantic Web," Communications of the ACM, vol. 58, 2008.; V. Dhingra and K. K. Bhatia, "Towards Intelligent Information Retrieval on Web." [Online]. Available: http://cite-seerx.ist.psu.eduiviewdocidownload?doi=10.1.1.301.7956&rep=rep1&type=pdf. [Accessed: 10-Mar-2015].; Y. Marketakis and Y. Tzitzikas, "Dependency management for digital preservation using semantic web technolo-gies," Int. J. Digit. Libr., vol. 10, n.° 4, pp. 159-177, May 2010.; E. G. Pemberty and E. R. Pineda, "Soluciones organizacionales a partir de ontologías," Av. En Sist. E Informática, vol. 8, n.° 1, p. 11—, 2011.; A. P. Soltero, M. B. Valenzuela, and G. G. A. S. Schmitz, "La web semántica como apoyo a la gestión del cono-cimiento y al modelo organizacional," Ing. Informática, n.° 12, p. 4, 2006.; P. Valledor Pellicer, "Servicios Web Semánticos," Universidad de Oviedo, 2006.; T. Gruber, "It Is What It Does: The Pragmatics of Ontology," Washington, D.C, Mar-2003.; R. Kishore and R. Sharman, "Computational Ontologies and Information Systems I: Foundations," Communica¬tions of the Association for Information Systems, vol. 14, 2004.; "Guía Breve de Web Semántica." [Online]. Available: http://www.w3c.es/Divulgacion/GuiasBreves/WebSeman¬tica. [Accessed: 10-Mar-2015].; M. C. Périssé and J. Eterovic, "Gestión del conocimiento en una Web Semántica segura para la educación superi-or," presented at the XIV Congreso Argentino de Ciencias de la Computación, 2008.; R. Guns, "Tracing the origins of the semantic web," J. Am. Soc. Int Sci. Technol., vol. 64, n.° 10, pp. 2173-2181; http://hdl.handle.net/20.500.12749/8865; instname:Universidad Autónoma de Bucaramanga UNAB; repourl:https://repository.unab.edu.co
-
13
Authors:
Contributors:
Subject Terms: Systems engineer, Technological innovations, Email, Mobile agents, System architecture, Storage systems, Information retrieval, Information storage and retrieval systems, Mobile agents (Computer software), Ingeniería de sistemas, Innovaciones tecnológicas, Recuperación de información, Sistemas de almacenamiento y recuperación de información, Agentes móviles (Software para computadores), Correo electrónico, Agentes móviles, Arquitectura del sistema, Sistemas de almacenamiento
Subject Geographic: Bucaramanga (Santander, Colombia), UNAB Campus Bucaramanga
File Description: application/pdf
Relation: [1] RUSSEL, S.; NORVIG, P. Inteligencia Artificial: Un enfoque moderno. Prentice Hall Hispanoamericana, S.A., México 1996.; [2] MAES, P. Artificial Life meets entertaiment: life like autonomous agent. Comuncations of the ACM 38 (11), 1995.; [3] HAYES-ROTH, B. An architecture for Adaptative Intelligent Systems. Artificial Intelligence: Special Issue on Agents and Interactivity, 72, 329-365. 1995; [4] JENNINGS, N. R.; WOOLDRIGE, M. Intelligent Agents : Theory and Practice. Knowledge Engineering Review, October 1994. Revised January 1995.; [5] GILBER, A; et al. The Role of Intelligent Agents in the Information Infraestructure. IBM, United States 1995; [6] What's An Agent, Anyway? A Sociological Case Study. Agents Memo 93-01, MIT Media Lab, Cambridge, MA. 1993; [7] S. Franklin and A. Graesser, Is it an Agent, or just a program?: A taxonomy for autonomous agents. http://www.msci.members.edu/~franklin/index.html. Febrero de 2001; [8] CASTELFRANCHI, C. Guarantees for autonomy in cognitive agent architecture. Intelligent Agents: Theories, Architectures, and Languages (LNAI Volume 890) pp56-70. Springer-Verlag: Heidelberg, Germany. 1995; [9] GENESERETH, M.¡ KETCHPEL, S. Software Agents. Comunications of the ACM 37 (7), 48-53, 1994; [10] SHOHAM, Y. Agent-oriented programming. Artificial Intelligence, 60(1):51-92, 1993; [11] BATES, J. The role of emotion in believable agents. Communications of the ACM, 37(7): 122-125. 1994; [12] LITTMAN, L. M. An optimization-based categorization or reinforcement learning environments. Proceeding of the Second International Conference on Simulation of Adaptative Behavior: From Animal to Animats, 1994; [13] LANGTON, C. Artificial Life. Addison-Wesley, Redwood City, CA 1989; [14] SANZ SACRISTÁN, M. A, B, C, de Internet. Boletín de la red nacional de l+D, Redlris. N° 28, Julio 1994; [15] BROOKS, R. A. A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and Automation 2(1), 14-23; [16] ETZIONI, O.; WELD, D. A Softbot-Based Interface to the Internet. Communications of the ACM 37 (7), 77-76. 1994; [17] MAES, P. Designing Autonomous Agents. Ed. P. Maes The MIT Press, Cambridge, MA. 1991; [18] WAYNER, P. Agents Unleashed: A Public Domain Look at Agent Technology Boston, MA: AP Profesional, 1995; [19] D’Agents: Mobile Agents at Darthmouth College. http://agent.cs.dartmouth.edu/, Enero. 2001.; [20] The Ara platform for Mobile Agents. http://wwwagss.informatik.unikl. de/Projekte/Ara/index e.html. Enero. 2001.; [21] IBM Aglets Home Page. http://www.trl.ibm.co.ip/aglets/. Enero 2001; [22] The Home of the Mole, http://mole.informatik.uni-: '. Enero. 2001.; [23] The Internet Softbot. http://www.cs.washington.edu/research/projects/softbots/www/internet-softbot.html. Junio. 2001.; [24] BALABANOVIC, M.; SHOHAM, Y. Fab: content-based, collaborative recommendation. Communications of the ACM, 40,3 (Marzo), 66-72. 1997; [25] A,B,C de Internet. SAENZ, M. A. http://www.ub.es/div3/enfogue1.htm. Junio 2001; http://hdl.handle.net/20.500.12749/27003; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Availability: https://hdl.handle.net/20.500.12749/27003
-
14
Authors: et al.
Contributors: et al.
Subject Terms: 570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales, Cell aggregates, Morphogenesis model, Tissue engineering, Cell rearrangement, Self-learning KMC, Morphogenesis, Bioprinting simulation, Bioconvergence, Agregados celulares, Modelo de morfogenesis, Ingenieria de tejidos, Morfogenesis, Bioconvergencia
File Description: 227 páginas; application/pdf
Relation: RedCol; LaReferencia; Sánchez Rodríguez, D.A., A.I. Ramos-Murillo, and R.D. Godoy-Silva, Tissue engineering, 3DBioprinting, morphogenesis modelling and simulation of biostructures: Relevance, underpinning biological principles and future trends. Bioprinting, 2021. 24: p. e00171.; Liu, N., et al., Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration. Bioactive Materials, 2021. 6(5): p. 1388-1401.; GODT. Global Observatory on Donation and Transplantation data. 2016 25 April 2020 [cited 2020; Available from: http://www.transplant-observatory.org/summary/.; Health Resources and Services Administration. Organ Procurement and Transplantation Network. 26 April 2020 [cited 2020; Available from: https://optn.transplant.hrsa.gov/data/.; Matai, I., et al., Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 2020. 226: p. 119536.; Dzobo, K., K.S.C.M. Motaung, and A. Adesida, Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review. International Journal of Molecular Sciences, 2019. 20(18): p. 4628.; Gomes, M.E., et al., Tissue Engineering and Regenerative Medicine: New Trends and Directions—A Year in Review. Tissue Engineering Part B: Reviews, 2017. 23(3): p. 211-224.; Lanza, R.P., R. Langer, and J. Vacanti, Chapter 1 - The History and Scope of Tissue Engineering. 2014. p. 3 - 8.; Murphy, S.V. and A. Atala, 3D bioprinting of tissues and organs. Nature biotechnology, 2014. 32(8): p. 773-85.; Neagu, A., Role of computer simulation to predict the outcome of 3D bioprinting. Journal of 3D Printing in Medicine, 2017. 1(2): p. 103-121.; Brody, H., Regenerative medicine. Nature, 2016. 540: p. S49.; Langer, R. and J. Vacanti, Tissue engineering. Science, 1993. 260(5110): p. 920-926.; Ballet, F., Hepatotoxicity in drug development: detection, significance and solutions. Journal of Hepatology, 1997. 26: p. 26-36.; Caponigro, G. and W.R. Sellers, Advances in the preclinical testing of cancer therapeutic hypotheses. Nature Reviews Drug Discovery, 2011. 10(3): p. 179-187.; Schutgens, F. and H. Clevers, Human Organoids: Tools for Understanding Biology and Treating Diseases. Annu Rev Pathol, 2020. 15: p. 211-234.; Clevers, H., Modeling Development and Disease with Organoids. Cell, 2016. 165(7): p. 1586- 1597.; Dzobo, K., Taking a Full Snapshot of Cancer Biology: Deciphering the Tumor Microenvironment for Effective Cancer Therapy in the Oncology Clinic. OMICS: A Journal of Integrative Biology, 2020. 24(4): p. 175-179.; Dzobo, K., et al., Three-Dimensional Organoids in Cancer Research: The Search for the Holy Grail of Preclinical Cancer Modeling. Omics, 2018. 22(12): p. 733-748.; Kaushik, G., M.P. Ponnusamy, and S.K. Batra, Concise Review: Current Status of Three- Dimensional Organoids as Preclinical Models. STEM CELLS, 2018. 36(9): p. 1329-1340.; Drost, J. and H. Clevers, Organoids in cancer research. Nature Reviews Cancer, 2018. 18(7): p. 407-418.; Cellink. Bioconvergence is the future of healthcare. 2021; Available from: https://www.cellink.com/bioconvergence/.; Authority, I.I. Bio-Convergence. The Future of Medicine. 2019; Available from: https://innovationisrael.org.il/en/reportchapter/bio-convergence.; Senthebane, D.A., et al., The Role of Tumor Microenvironment in Chemoresistance: To Survive, Keep Your Enemies Closer. International Journal of Molecular Sciences, 2017. 18(7). Bibliografía 217; Khademhosseini, A. and R. Langer, Microengineered hydrogels for tissue engineering. Biomaterials, 2007. 28(34): p. 5087-92.; Kim, J.D., et al., Piezoelectric inkjet printing of polymers: Stem cell patterning on polymer substrates. Polymer, 2010. 51(10): p. 2147-2154.; Mège, R.-M., Les molécules d'adhérence cellulaire: molécules morphogénétiques. médecine/sciences, 1991. 7: p. 544.; Glazier, J.A. and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1993. 47(3): p. 2128-2154.; Savill, N.J. and P. Hogeweg, Modelling Morphogenesis: From Single Cells to Crawling Slugs. Journal of Theoretical Biology, 1997. 184(3): p. 229 - 235.; Walker, D.C., et al., Agent-based computational modeling of wounded epithelial cell monolayers. IEEE Transactions on NanoBioscience, 2004. 3(3): p. 153-163.; Galle, J., et al., Individual cell-based models of tumor-environment interactions: Multiple effects of CD97 on tumor invasion. The American journal of pathology, 2006. 169(5): p. 1802-11.; Takeichi, M., Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 1991. 251(5000): p. 1451-5.; Pepper, M., et al., Post-Bioprinting Processing Methods to Improve Cell Viability and Pattern Fidelity in Heterogeneous Tissue Test Systems. Vol. 2010. 2010. 259-62.; Murphy, S.V., A. Skardal, and A. Atala, Evaluation of hydrogels for bio-printing applications. Journal of biomedical materials research. Part A, 2013. 101(1): p. 272-84.; Jakab, K., et al., Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures. Vol. 14. 2007.; Jakab, K., et al., Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication, 2010. 2(2): p. 022001-022001.; Nogueira, J.A., et al., Simulation of a 3D Bioprinted Human Vascular Segment. Computer Aided Chemical Engineering, 2015: p. 684-688; Gjorevski, N., et al., Designer matrices for intestinal stem cell and organoid culture. Nature, 2016. 539(7630): p. 560-564.; West, J.L. and J.A. Hubbell, Polymeric Biomaterials with Degradation Sites for Proteases Involved in Cell Migration. Macromolecules, 1999. 32(1): p. 241-244.; Schiller, M., D. Javelaud, and A. Mauviel, TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. Journal of dermatological science, 2004. 35(2): p. 83-92.; Tamamura, Y., et al., Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. The Journal of biological chemistry, 2005. 280(19): p. 19185-95.; Ingber, D.E., et al., Tissue engineering and developmental biology: going biomimetic. Tissue engineering, 2006. 12(12): p. 3265-83.; Behonick, D.J. and Z. Werb, A bit of give and take: the relationship between the extracellular matrix and the developing chondrocyte. Mechanisms of development, 2003. 120(11): p. 1327-36.; Hersel, U., C. Dahmen, and H. Kessler, RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, 2003. 24(24): p. 4385-415. 218 Título de la tesis o trabajo de investigación; Price, R.L., K.M. Haberstroh, and T.J. Webster, Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina. Medical and Biological Engineering and Computing, 2003. 41(3): p. 372-375.; Teixeira, A.I., P.F. Nealey, and C.J. Murphy, Responses of human keratocytes to micro- and nanostructured substrates. Journal of biomedical materials research. Part A, 2004. 71(3): p. 369- 76.; Discher, D.E., P. Janmey, and Y.L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science, 2005. 310(5751): p. 1139-43.; Hopp, B., et al., Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue engineering, 2005. 11(11-12): p. 1817-23.; Stevens, M.M. and J.H. George, Exploring and engineering the cell surface interface. Science, 2005. 310(5751): p. 1135-8.; Wu, Z., et al., Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Scientific Reports, 2016. 6: p. 24474.; Schon, B.S., G.J. Hooper, and T.B.F. Woodfield, Modular Tissue Assembly Strategies for Biofabrication of Engineered Cartilage. Annals of Biomedical Engineering, 2017. 45(1): p. 100- 114.; Murphy, S.V. and A. Atala, 3D bioprinting of tissues and organs. Nat Biotechnol, 2014. 32(8): p. 773-85.; Chang, R., J. Nam, and W. Sun, Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue engineering. Part C, Methods, 2008. 14(2): p. 157-66.; Nair, K., et al., Characterization of cell viability during bioprinting processes. Biotechnology journal, 2009. 4(8): p. 1168-77.; Cui, X., et al., Thermal inkjet printing in tissue engineering and regenerative medicine. Recent patents on drug delivery & formulation, 2012. 6(2): p. 149-55.; Robu, A., et al., Computer simulations of in vitro morphogenesis. Biosystems, 2012. 109(3): p. 430-43.; Zhou, B., et al., Simulation of the gelation process of hydrogel droplets in 3D bioprinting. Vol. 16. 2016. 117-118.; Fristrom, D., The cellular basis of epithelial morphogenesis. A review. Tissue and Cell, 1988. 20(5): p. 645 - 690.; Radisic, M., et al., Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(52): p. 18129-34.; Xu, T., et al., Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials, 2006. 27(19): p. 3580 - 3588.; Steinberg, M.S., Adhesion in development: an historical overview. Developmental biology, 1996. 180(2): p. 377-88.; Wang, Y., et al., Spheroid formation of hepatocarcinoma cells in microwells: Experiments and Monte Carlo simulations. PLoS ONE, 2016. 11(8).; Mironov, V., et al., Organ printing: tissue spheroids as building blocks. Biomaterials, 2009. 30(12): p. 2164-74.; Kelm, J.M., et al., A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. Journal of biotechnology, 2010. 148(1): p. 46-55.; Tejavibulya, N., et al., Directed self-assembly of large scaffold-free multi-cellular honeycomb structures. Biofabrication, 2011. 3(3): p. 034110.; Derby, B., Printing and prototyping of tissues and scaffolds. Science, 2012. 338(6109): p. 921-6. Bibliografía 219; Jakab, K., et al., Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(9): p. 2864-2869.; Jakab, K., et al., Relating cell and tissue mechanics: implications and applications. Developmental dynamics, 2008. 237(9): p. 2438-49.; Steinberg, M.S., Reconstruction of Tissues by Dissociated Cells. Science, 1963. 141(3579): p. 401-408.; Nakamura, M., et al., Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue engineering, 2005. 11(11-12): p. 1658-66.; Freutel, M., et al., Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin Biomech (Bristol, Avon), 2014. 29(4): p. 363-72.; Timpl, R., et al., Laminin--a glycoprotein from basement membranes. J Biol Chem, 1979. 254(19): p. 9933-7.; Pankov, R. and K.M. Yamada, Fibronectin at a glance. J Cell Sci, 2002. 115(Pt 20): p. 3861-3.; Vazin, T. and D.V. Schaffer, Engineering strategies to emulate the stem cell niche. Trends Biotechnol, 2010. 28(3): p. 117-24.; Gleghorn, J.P., et al., Inhibitory morphogens and monopodial branching of the embryonic chicken lung. Developmental dynamics, 2012. 241(5): p. 852-62.; Iber, D. and D. Menshykau, The control of branching morphogenesis. Open biology, 2013. 3(9): p. 130088-130088.; Marga, F., et al., Developmental biology and tissue engineering. Birth Defects Research Part C: Embryo Today: Reviews, 2007. 81(4): p. 320-8.; Betsch, M., et al., Incorporating 4D into Bioprinting: Real-Time Magnetically Directed Collagen Fiber Alignment for Generating Complex Multilayered Tissues. Advanced Healthcare Materials, 2018. 7(21): p. e1800894.; Heinrich, M.A., et al., Bioprinting: 3D Bioprinting: from Benches to Translational Applications (Small 23/2019). Small, 2019. 15(23): p. 1970126.; Hoshiba, T. and M. Tanaka, Decellularized matrices as in vitro models of extracellular matrix in tumor tissues at different malignant levels: Mechanism of 5-fluorouracil resistance in colorectal tumor cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2016. 1863(11): p. 2749-2757.; Kasza, K.E., et al., The cell as a material. Current opinion in cell biology, 2007. 19(1): p. 101-7.; Mironov, V., V. Kasyanov, and R.R. Markwald, Organ printing: from bioprinter to organ biofabrication line. Current opinion in biotechnology, 2011. 22(5): p. 667-73.; Marga, F., et al., Toward engineering functional organ modules by additive manufacturing. Biofabrication, 2012. 4(2): p. 022001.; A., N., et al., Simulation of a 3D Bioprinted Human Vascular, in 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering, J.K.H.a.R.G. Krist V. Gernaey, Editor. 2015, Elsevier B.V.: Copenhagen, Denmark. p. 684-688; Khoo, Z.X., et al., 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping, 2015. 10(3): p. 103-122.; An, J., C.K. Chua, and V. Mironov, A Perspective on 4D Bioprinting. International Journal of Bioprinting, 2016. 220 Título de la tesis o trabajo de investigación; Kamei, M., et al., Endothelial tubes assemble from intracellular vacuoles in vivo. Nature, 2006. 442(7101): p. 453-6.; Alajati, A., et al., Spheroid-based engineering of a human vasculature in mice. Nature methods, 2008. 5(5): p. 439-45.; Chang, R., J. Nam, and W. Sun, Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue engineering. Part A, 2008. 14(1): p. 41-8.; Gunther, A., et al., A microfluidic platform for probing small artery structure and function. Lab on a chip, 2010. 10(18): p. 2341-9.; Huh, D., et al., Reconstituting organ-level lung functions on a chip. Science, 2010. 328(5986): p. 1662-8.; Xu, F., et al., A three-dimensional in vitro ovarian cancer coculture model using a highthroughput cell patterning platform. Biotechnology journal, 2011. 6(2): p. 204-212.; Ghaemmaghami, A.M., et al., Biomimetic tissues on a chip for drug discovery. Drug discovery today, 2012. 17(3-4): p. 173-81.; Knowlton, S., et al., Bioprinting for cancer research. Trends in biotechnology, 2015. 33(9): p. 504-13.; Villasante, A. and G. Vunjak-Novakovic, Tissue-engineered models of human tumors for cancer research. Expert opinion on drug discovery, 2015. 10(3): p. 257-68.; Lancaster, M.A., et al., Cerebral organoids model human brain development and microcephaly. Nature, 2013. 501(7467): p. 373-379.; Wong, A.P., et al., Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nature Biotechnology, 2012. 30(9): p. 876-882.; Clevers, H., STEM CELLS. What is an adult stem cell? Science, 2015. 350(6266): p. 1319-20.; Eiraku, M. and Y. Sasai, Self-formation of layered neural structures in three-dimensional culture of ES cells. Current opinion in neurobiology, 2012. 22(5): p. 768-777.; Lancaster, M.A. and J.A. Knoblich, Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014. 345(6194): p. 1247125.; Dekkers, J.F., et al., A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nature Medicine, 2013. 19(7): p. 939-945.; Ciancanelli, M.J., et al., Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science, 2015. 348(6233): p. 448.; Firth, A.L., et al., Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs. Cell Rep, 2015. 12(9): p. 1385-90.; Benam, K.H., et al., Human Lung Small Airway-on-a-Chip Protocol, in 3D Cell Culture: Methods and Protocols, Z. Koledova, Editor. 2017, Springer New York: New York, NY. p. 345- 365.; Bhatia, S.N. and D.E. Ingber, Microfluidic organs-on-chips. Nature Biotechnology, 2014. 32(8): p. 760-772.; Kimura, H., Y. Sakai, and T. Fujii, Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metabolism and Pharmacokinetics, 2018. 33(1): p. 43-48.; Domansky, K., et al., Perfused multiwell plate for 3D liver tissue engineering. Lab on a chip, 2010. 10(1): p. 51-8.; Faulkner-Jones, A., et al., Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication, 2015. 7(4): p. 044102. Bibliografía 221; Ma, X., et al., Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proceedings of the National Academy of Sciences of the United States of America, 2016. 113(8): p. 2206-11.; Dinh, N.-D., et al., Effective Light Directed Assembly of Building Blocks with Microscale Control. Small, 2017. 13.; Kizawa, H., et al., Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery. Biochemistry and Biophysics Reports, 2017. 10: p. 186-191.; Stichler, S., et al., Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(ε-caprolactone) for MSC chondrogenesis. Biofabrication, 2017. 9(4).; Kang, K., et al., Three-Dimensional Bioprinting of Hepatic Structures with Directly Converted Hepatocyte-Like Cells. Tissue engineering. Part A, 2018. 24(7-8): p. 576-583.; Takebe, T., et al., Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013. 499(7459): p. 481-484.; Bhise, N.S., et al., A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication, 2016. 8(1): p. 014101.; Hirt, M.N., A. Hansen, and T. Eschenhagen, Cardiac Tissue Engineering. Circulation Research, 2014. 114(2): p. 354-367.; Lind, J.U., et al., Instrumented cardiac microphysiological devices via multimaterial threedimensional printing. Nature Materials, 2017. 16(3): p. 303-308.; Zhang, Y.S., et al., Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 2016. 110: p. 45-59.; Ma, X., et al., 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Advanced drug delivery reviews, 2018. 132: p. 235-251.; Jang, J., H.-G. Yi, and D.-W. Cho, 3D Printed Tissue Models: Present and Future. ACS Biomaterials Science & Engineering, 2016. 2(10): p. 1722-1731.; Koch, L., et al., Skin tissue generation by laser cell printing. Biotechnology and bioengineering, 2012. 109(7): p. 1855-63.; Lee, V., et al., Design and fabrication of human skin by three-dimensional bioprinting. Tissue engineering. Part C, Methods, 2014. 20(6): p. 473-84.; Randall, M.J., et al., Advances in the Biofabrication of 3D Skin in vitro: Healthy and Pathological Models. Frontiers in Bioengineering and Biotechnology, 2018. 6(154).; Lindberg, K., et al., In vitro propagation of human ocular surface epithelial cells for transplantation. Investigative Ophthalmology & Visual Science, 1993. 34(9): p. 2672-2679.; Pellegrini, G., et al., Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. The Lancet, 1997. 349(9057): p. 990-993.; Rama, P., et al., Limbal stem-cell therapy and long-term corneal regeneration. New England journal of medicine, 2010. 363(2): p. 147-155.; Lancaster, M.A. and J.A. Knoblich, Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014. 345(6194).; Longmire, T.A., et al., Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell stem cell, 2012. 10(4): p. 398-411.; Steinberg, M.S., Differential adhesion in morphogenesis: a modern view. Current Opinion in Genetics and Development 2007. 17(4): p. 281-6.; Horning, J.L., et al., 3-D Tumor Model for In Vitro Evaluation of Anticancer Drugs. Molecular Pharmaceutics, 2008. 5(5): p. 849-862. 222 Título de la tesis o trabajo de investigación; Flenner, E., et al., Kinetic Monte Carlo and Cellular Particle Dynamics Simulations of Multicellular Systems. Vol. 85. 2012. 031907.; Shin, C.S., et al., 3D cancer tumor models for evaluating chemotherapeutic efficacy, in Biomaterials for Cancer Therapeutics, K. Park, Editor. 2013, Woodhead Publishing. p. 445-460.; Hubert, C.G., et al., A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found In Vivo. Cancer Res, 2016. 76(8): p. 2465-77.; Fujii, M., et al., A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis. Cell Stem Cell, 2016. 18(6): p. 827-838.; Liverani, C., et al., A biomimetic 3D model of hypoxia-driven cancer progression. Scientific Reports, 2019. 9(1): p. 12263.; Tanner, K. and M.M. Gottesman, Beyond 3D culture models of cancer. Science Translational Medicine, 2015. 7(283): p. 283ps9-283ps9.; Roberts, S., S. Peyman, and V. Speirs, Current and Emerging 3D Models to Study Breast Cancer, in Breast Cancer Metastasis and Drug Resistance. 2019. p. 413-427.; Ringeisen, B.R., et al., Laser printing of pluripotent embryonal carcinoma cells. Tissue engineering, 2004. 10(3-4): p. 483-91.; Matsusaki, M., et al., Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing. Advanced Healthcare Materials, 2013. 2(4): p. 534-9.; Zhao, Y., et al., Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication, 2014. 6(3): p. 035001.; Yamada, K.M. and E. Cukierman, Modeling Tissue Morphogenesis and Cancer in 3D. Cell, 2007. 130(4): p. 601-610.; Nantasanti, S., et al., Disease modeling and gene therapy of copper storage disease in canine hepatic organoids. Stem cell reports, 2015. 5(5): p. 895-907.; Chaturvedi, R., et al., A Hybrid Discrete-Continuum Model for 3-D Skeletogenesis of the Vertebrate Limb, in International Conference on Cellular Automata. 2004. p. 543-552.; Hespel, A.M., R. Wilhite, and J. Hudson, Invited review-applications for 3D printers in veterinary medicine. Veterinary Radiology & Ultrasound, 2014. 55(4): p. 347-358.; Kamb, A., What's wrong with our cancer models? Nat Rev Drug Discov, 2005. 4(2): p. 161-5.; Guillotin, B., et al., Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 2010. 31(28): p. 7250-6.; Campbell, P.G., et al., Engineered spatial patterns of FGF-2 immobilized on fibrin direct cell organization. Biomaterials, 2005. 26(33): p. 6762-70.; Phillippi, J.A., et al., Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells, 2008. 26(1): p. 127-34.; Norotte, C., et al., Scaffold-free vascular tissue engineering using bioprinting. Biomaterials, 2009. 30(30): p. 5910-7.; Chrisey, D.B., Materials Processing: The Power of Direct Writing. Science, 2000. 289(5481): p. 879-81.; Kattamis, N.T., et al., Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Applied Physics Letters, 2007. 91(17): p. 171120.; Koch, L., et al., Laser printing of skin cells and human stem cells. Tissue engineering. Part C, Methods, 2010. 16(5): p. 847-54.; Gruene, M., et al., Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue engineering. Part C, Methods, 2011. 17(1): p. 79-87.; Duocastella, M., et al., Novel laser printing technique for miniaturized biosensors preparation. Sensors and Actuators B: Chemical, 2010. 145(1): p. 596-600. Bibliografía 223; Tekin, E., P.J. Smith, and U.S. Schubert, Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter, 2008. 4(4): p. 703-713.; Klebe, R.J., Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Experimental cell research, 1988. 179(2): p. 362-73.; Okamoto, T., T. Suzuki, and N. Yamamoto, Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nature biotechnology, 2000. 18(4): p. 438-41.; Xu, T., et al., High-throughput production of single-cell microparticles using an inkjet printing technology. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2008. 130(2): p. 0210171-0210175.; Cohen, D.L., et al., Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue engineering, 2006. 12(5): p. 1325-35.; Visser, J., et al., Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication, 2013. 5(3): p. 035007.; Khalil, S. and W. Sun, Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Materials Science & Engineering C, 2007. 27(3): p. 469-478.; Guvendiren, M., H.D. Lu, and J.A. Burdick, Shear-thinning hydrogels for biomedical applications. Soft Matter, 2012. 8(2): p. 260-272.; Hribar, K.C., et al., Light-assisted direct-write of 3D functional biomaterials. Lab on a Chip, 2014. 14(2): p. 268-275.; Morris, V.B., et al., Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography. Annals of Biomedical Engineering, 2017. 45(1): p. 286-296.; Abdel Fattah, A.R., et al., In Situ 3D Label-Free Contactless Bioprinting of Cells through Diamagnetophoresis. ACS Biomaterials Science & Engineering, 2016. 2(12): p. 2133-2138.; Tseng, H., et al., A three-dimensional co-culture model of the aortic valve using magnetic levitation. Acta Biomaterialia, 2014. 10(1): p. 173-182.; Hennink, W.E. and C.F. van Nostrum, Novel crosslinking methods to design hydrogels. Advanced drug delivery reviews, 2002. 54(1): p. 13-36.; Shin, S.R., et al., A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics. Advanced Materials, 2016. 28(17): p. 3280-3289.; Li, L., et al., In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Scientific reports, 2017. 7(1): p. 9416.; Hakimi, N., et al., Handheld skin printer: in situ formation of planar biomaterials and tissues. Lab on a chip, 2018. 18(10): p. 1440-1451.; Silva, C., et al., Rational Design of a Triple-Layered Coaxial Extruder System: in silico and in vitro Evaluations Directed Toward Optimizing Cell Viability. International journal of bioprinting, 2020. 6(4): p. 282-282.; Hufnagel, L., et al., On the mechanism of wing size determination in fly development. Proceedings of the National Academy of Sciences, 2007. 104(10): p. 3835-3840.; Vincent, J.-P., A.G. Fletcher, and L.A. Baena-Lopez, Mechanisms and mechanics of cell competition in epithelia. Nature Reviews Molecular Cell Biology, 2013. 14(9): p. 581-591.; Fletcher, A.G., F. Cooper, and R.E. Baker, Mechanocellular models of epithelial morphogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017. 372(1720): p. 20150519.; Kolesky, D.B., et al., 3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs. Advanced Materials, 2014. 26(19): p. 3124-3130.; Kolesky, D.B., et al., Three-dimensional bioprinting of thick vascularized tissues. Proceedings of the National Academy of Sciences, 2016. 113(12): p. 3179-3184.; Kang, H.-W., et al., A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature Biotechnology, 2016. 34(3): p. 312-319.; Neagu, A., et al., Role of physical mechanisms in biological self-organization. Physical review letters, 2005. 95(17): p. 178104.; Fleming, P.A., et al., Fusion of uniluminal vascular spheroids: a model for assembly of blood vessels. Developmental dynamics, 2010. 239(2): p. 398-406.; Carter, S.B., Haptotaxis and the Mechanism of Cell Motility. Nature, 1967. 213(5073): p. 256- 260.; Harris, A., Behavior of cultured cells on substrata of variable adhesiveness. Experimental cell research, 1973. 77(1): p. 285-97.; Galle, J., M. Loeffler, and D. Drasdo, Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. Biophysical journal, 2005. 88(1): p. 62-75.; Merks, R.M.H., et al., Contact-Inhibited Chemotaxis in De Novo and Sprouting Blood-Vessel Growth. PLOS Computational Biology, 2008. 4(9): p. e1000163.; Sengers, B.G., et al., Computational modelling of cell spreading and tissue regeneration in porous scaffolds. Biomaterials, 2007. 28(10): p. 1926-40.; Hynes, R.O., Integrins: bidirectional, allosteric signaling machines. Cell, 2002. 110(6): p. 673- 87.; Gumbiner, B.M., Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 1996. 84(3): p. 345-57.; Beysens, D.A., G. Forgacs, and J.A. Glazier, Cell sorting is analogous to phase ordering in fluids. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(17): p. 9467-9471.; Foty, R.A. and M.S. Steinberg, The differential adhesion hypothesis: a direct evaluation. Developmental Biology, 2005. 278(1): p. 255-263.; Steinberg, M.S., On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the organization of fused, heteronomic tissue fragments. Proceedings of the National Academy of Sciences of the United States of America, 1962. 48(10): p. 1769-76.; Gierer, A., et al., Regeneration of hydra from reaggregated cells. Nature: New biology, 1972. 239(91): p. 98-101.; Yamanaka, H., Y. Tanaka-Ohmura, and M. Dan-Sohkawa, What do dissociated embryonic cells of the starfish, Asterina pectinifera, do to reconstruct bipinnaria larvae? Journal of embryology and experimental morphology, 1986. 94: p. 61-71.; Kipper, M.J., H.K. Kleinman, and F.W. Wang, New method for modeling connective-tissue cell migration: improved accuracy on motility parameters. Biophysical journal, 2007. 93(5): p. 1797- 808.; Steinberg, M.S., Adhesion-guided multicellular assembly: a commentary upon the postulates, real and imagined, of the differential adhesion hypothesis, with special attention to computer simulations of cell sorting. Journal of Theoretical Biology, 1975. 55(2): p. 431 - 443.; Foty, R.A., et al., Liquid properties of embryonic tissues: Measurement of interfacial tensions. Physical review letters, 1994. 72(14): p. 2298-2301.; Foty, R.A., et al., Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development, 1996. 122(5): p. 1611-20. Bibliografía 225; Marmottant, P., et al., The role of fluctuations and stress on the effective viscosity of cell aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(41): p. 17271-17275.; Pajic-Lijakovic, I. and M. Milivojevic, Long-time viscoelasticity of multicellular surfaces caused by collective cell migration – Multi-scale modeling considerations. Seminars in Cell & Developmental Biology, 2019. 93: p. 87-96.; Griffith, L.G. and G. Naughton, Tissue Engineering-Current Challenges and Expanding Opportunities. Science, 2002. 295(5557): p. 1009-1014.; Norotte, C., et al., Experimental evaluation of apparent tissue surface tension based on the exact solution of the Laplace equation. Europhysics Letters, 2008. 81(46003).; Mgharbel, A., H. Delanoe-Ayari, and J.P. Rieu, Measuring accurately liquid and tissue surface tension with a compression plate tensiometer. HFSP journal, 2009. 3(3): p. 213-21.; Korff, T. and H.G. Augustin, Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. Journal of cell science, 1999. 112 ( Pt 19): p. 3249-58.; Friedl, P. and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer. Nature reviews. Molecular cell biology 2009. 10(7): p. 445-57.; Lo, C.M., et al., Cell movement is guided by the rigidity of the substrate. Biophysical journal, 2000. 79(1): p. 144-152.; Mayor, R. and C. Carmona-Fontaine, Keeping in touch with contact inhibition of locomotion. Trends in cell biology, 2010. 20(6): p. 319-28.; Goel, N.S. and G. Rogers, Computer simulation of engulfment and other movements of embryonic tissues. Journal of Theoretical Biology, 1978. 71(1): p. 103-140.; Glazier, J.A., S.P. Gross, and J. Stavans, Dynamics of two-dimensional soap froths. Physical Review A, 1987. 36(1): p. 306-312.; Stavans, J. and J.A. Glazier, Soap froth revisited: Dynamic scaling in the two-dimensional froth. Physical review letters, 1989. 62(11): p. 1318-1321.; Turing, A.M., The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1952. 237(641): p. 37-72.; Wittwer, L.C., Roberto; Aland, Sebastian; Iber, Dagmar, Simulating Organogenesis in COMSOL: Phase-Field Based Simulations of Embryonic Lung Branching Morphogenesis. 2016.; Wittwer, L.D., Phase-Field Based Simulations of Embryonic Branching Morphogenesis. 2017, ETH Zurich.; Metzger, R.J., et al., The branching programme of mouse lung development. Nature, 2008. 453(7196): p. 745-50.; Walker, D.C. and J. Southgate, The virtual cell--a candidate co-ordinator for 'middle-out' modelling of biological systems. Briefings in bioinformatics, 2009. 10(4): p. 450-61.; Andasari, V., et al., Integrating Intracellular Dynamics Using CompuCell3D and Bionetsolver: Applications to Multiscale Modelling of Cancer Cell Growth and Invasion. PLOS ONE, 2012. 7(3): p. e33726.; Ingber, D.E. and M. Levin, What lies at the interface of regenerative medicine and developmental biology? Development, 2007. 134(14): p. 2541-2547.; Andreea Robu, L.S.-T., SIMMMC – An Informatic Application for Mmodelling and Simulating the Evolution of Multicellular Systems in the Vicinity of Biomaterials. Romaninan Journal of Biophysics, 2016. 26(3).; Amar, J.G., The Monte Carlo Method in Science and Engineering. Computing in Science and Engineering, 2006. 8: p. 9-19.; Fichthorn, K.A. and W.H. Weinberg, Theoretical foundations of dynamical Monte Carlo simulations. The Journal of Chemical Physics, 1991. 95(2): p. 1090-1096.; Vineyard, G.H., Frequency factors and isotope effects in solid state rate processes. Journal of Physics and Chemistry of Solids, 1957. 3(1): p. 121-127.; Sun, Y. and Q. Wang, Modeling and simulations of multicellular aggregate self-assembly in biofabrication using kinetic Monte Carlo methods. Soft Matter, 2013. 9(7): p. 2172-2186.; Bortz, A.B., M.H. Kalos, and J.L. Lebowitz, A new algorithm for Monte Carlo simulation of Ising spin systems. Journal of Computational Physics, 1975. 17(1): p. 10-18.; NEAGU, A., et al., COMPUTATIONAL MODELING OF TISSUE SELF-ASSEMBLY. Modern Physics Letters B, 2006. 20(20): p. 1217-1231.; Schienbein, M., K. Franke, and H. Gruler, Random walk and directed movement: Comparison between inert particles and self-organized molecular machines. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1994. 49(6): p. 5462-5471.; Mombach, J.C. and J.A. Glazier, Single cell motion in aggregates of embryonic cells. Physical review letters, 1996. 76(16): p. 3032-3035.; Graner, F. and J.A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model. Physical review letters, 1992. 69(13): p. 2013-2016.; Glazier, J.A., A. Balter, and N.J. Poplawski, Magnetization to Morphogenesis: A Brief History of the Glazier-Graner Hogeweg Model, in Singl-Cell-Based Models in Biology and Medicine, M.A.J.C. A.R.A. Anderson, K.A. Rejniak, Editor. 2007, Mathematics and Biosciences in Interaction: Birkhäuser Verlag Basel / Switzerland. p. 79-106.; Cickovski, T., et al., A Framework for Three-Dimensional Simulation of Morphogenesis. IEEE/ACM transactions on computational biology and bioinformatics, 2005. 2: p. 273-88.; Merks, R.M.H. and P. Koolwijk, Modeling Morphogenesis in silico and in vitro: Towards Quantitative, Predictive, Cell-based Modeling. Mathematical Modelling of Natural Phenomena, 2009. 4(4): p. 149-171; Hester, S.D., et al., A multi-cell, multi-scale model of vertebrate segmentation and somite formation. PLoS computational biology, 2011. 7(10): p. e1002155.; Rowlinson, J.S., Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density”. Journal of Statistical Physics, 1979. 20(2): p. 197-200.; Yang, X., V. Mironov, and Q. Wang, Modeling fusion of cellular aggregates in biofabrication using phase field theories. Journal of theoretical biology, 2012. 303: p. 110-8.; Yang, X., Y. Sun, and Q. Wang, A phase field approach for multicellular aggregate fusion in biofabrication. Journal of biomechanical engineering, 2013. 135(7): p. 71005.; Flory, P.J., Principles of Polymer Chemistry. 1953, Ithaca, N.Y.: Cornell University Press.; Qin, R.S. and H.K. Bhadeshia, Phase field method. Materials Science and Technology, 2010. 26(7): p. 803-811.; Aland, S., Modelling of two-phase flow with surface active particles, in Der Fakultät Mathematik und Naturwissenschaften. 2012, Technischen Universität Dresden. p. 127.; Chen, L.-Q., Phase-Field Models for Microstructure Evolution. Annual Review of Materials Research, 2002. 32(1): p. 113-140.; Folch, R., et al., Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1999. 60(2 Pt B): p. 1724-33.; Cahn, J.W. and J.E. Hilliard, Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics, 1958. 28(2): p. 258-267. Bibliografía 227; Cahn, J.W. and J.E. Hilliard, Free Energy of a Nonuniform System. III. Nucleation in a Two‐ Component Incompressible Fluid. The Journal of Chemical Physics, 1959. 31(3): p. 688-699.; Lervåg, K.Y. and J. Lowengrub, Analysis of the diffuse-domain method for solving PDEs in complex geometries. Communications in mathematical sciences, 2015. 13: p. 1473.; Ibrahimi, O.A., et al., Analysis of mutations in fibroblast growth factor (FGF) and a pathogenic mutation in FGF receptor (FGFR) provides direct evidence for the symmetric two-end model for FGFR dimerization. Molecular and cellular biology, 2005. 25(2): p. 671-84.; Francavilla, C., et al., Functional Proteomics Defines the Molecular Switch Underlying FGF Receptor Trafficking and Cellular Outputs. Molecular Cell, 2013. 51(6): p. 707-722.; Donea, J., et al., Arbitrary Lagrangian–Eulerian Methods, in Encyclopedia of Computational Mechanics. 2004.; Iber, D., et al., Simulating tissue morphogenesis and signaling. Methods in molecular biology, 2015. 1189: p. 323-38.; Kockelkoren, J., H. Levine, and W.-J. Rappel, Computational approach for modeling intra- and extracellular dynamics. Physical Review E, 2003. 68(3): p. 037702.; Kurics, T., D. Menshykau, and D. Iber, Feedback, receptor clustering, and receptor restriction to single cells yield large Turing spaces for ligand-receptor-based Turing models. Physical Review E, 2014. 90(2): p. 022716.; Palsson, E. and H.G. Othmer, A model for individual and collective cell movement in Dictyostelium-discoideum. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(19): p. 10448-10453.; Dallon, J.C. and H.G. Othmer, How cellular movement determines the collective force generated by the Dictyostelium discoideum slug. Journal of theoretical biology, 2004. 231(2): p. 203-22.; Walker, D.C., et al., The epitheliome: agent-based modelling of the social behaviour of cells. Biosystems, 2004. 76(1-3): p. 89-100.; Drasdo, D. and S. Hoehme, A single-cell-based model of tumor growth in vitro: Monolayers and spheroids. Physical biology, 2005. 2: p. 133-47.; Chu, Y.S., et al., Johnson-Kendall-Roberts theory applied to living cells. Physical review letters, 2005. 94(2): p. 028102.; Hoehme, S. and D. Drasdo, A cell-based simulation software for multi-cellular systems. Bioinformatics, 2010. 26(20): p. 2641-2.; Hoehme, S., et al., Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(23): p. 10371-6.; Hoffmann, M., et al., Spatial Organization of Mesenchymal Stem Cells In Vitro—Results from a New Individual Cell-Based Model with Podia. PLOS ONE, 2011. 6(7): p. e21960.; Newman, T.J., Modeling Multicellular Systems Using Subcellular Elements. Mathematical Biosciences & Engineering, 2005. 2(3): p. 613-624.; Zaman, M.H., et al., Computational model for cell migration in three-dimensional matrices. Biophysical journal, 2005. 89(2): p. 1389-97.; Flenner, E., et al., Relating biophysical properties across scales, in Current Topics in Developmental Biology. 2008. p. 461-83.; Sandersius, S.A. and T.J. Newman, Modeling cell rheology with the Subcellular Element Model. Physical biology, 2008. 5(1): p. 015002.; Kosztin, I., G. Vunjak-Novakovic, and G. Forgacs, Colloquium: Modeling the dynamics of multicellular systems: Application to tissue engineering. Reviews of Modern Physics, 2012. 84(4): p. 1791-1805.; 259. Chaikin, P.M., Principles of Condensed Matter Physics. 2000: Cambridge University Press.; Alberts, B., et al., Molecular Biology of the Cell. 2002, New York: Garland Science.; Pathmanathan, P., et al., A computational study of discrete mechanical tissue models. Physical Biology, 2009. 6(3): p. 036001.; Phillips, J.C., et al., Scalable molecular dynamics with NAMD. Journal of computational chemistry, 2005. 26(16): p. 1781-802.; Shafiee, A., et al., Post-deposition bioink self-assembly: a quantitative study. Biofabrication, 2015. 7(4): p. 045005.; Cristea, A. and A. Neagu, Shape changes of bioprinted tissue constructs simulated by the Lattice Boltzmann method. Computers in biology and medicine, 2016. 70: p. 80-87.; Silva, H.S. and M.L. Martins, A cellular automata model for cell differentiation. Physica A: Statistical Mechanics and its Applications, 2003. 322: p. 555-566.; Garijo, N., et al., Stochastic cellular automata model of cell migration, proliferation and differentiation: Validation with in vitro cultures of muscle satellite cells. Journal of Theoretical Biology, 2012. 314: p. 1-9.; Van Scoy, G.K., et al., A cellular automata model of bone formation. Mathematical Biosciences, 2017. 286: p. 58-64.; Ben Youssef, B., Simulating Cell-Cell Interactions Using a Multicellular Three-Dimensional Computational Model of Tissue Growth. 2018. p. 215-228.; Sipahi, R. and G.K.H. Zupanc, Stochastic cellular automata model of neurosphere growth: Roles of proliferative potential, contact inhibition, cell death, and phagocytosis. Journal of Theoretical Biology, 2018. 445: p. 151-165.; Zupanc, G.K.H., F.B. Zupanc, and R. Sipahi, Stochastic cellular automata model of tumorous neurosphere growth: Roles of developmental maturity and cell death. Journal of Theoretical Biology, 2019. 467: p. 100-110.; Beros, A., M. Chyba, and K. Noe, Co-evolving cellular automata for morphogenesis. Discrete & Continuous Dynamical Systems - B, 2019. 24(5): p. 2053-2071.; Brodland, G.W. and J.H. Veldhuis, Assessing the mechanical energy costs of various tissue reshaping mechanisms. Biomech Model Mechanobiol, 2012. 11(8): p. 1137-47.; Steinberg, M.S., Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science, 1963. 141(3579): p. 401-8.; Brodland, G.W. and H.H. Chen, The mechanics of heterotypic cell aggregates: insights from computer simulations. J Biomech Eng, 2000. 122(4): p. 402-7.; Hwang, M., et al., Rule-Based Simulation of Multi-Cellular Biological Systems-A Review of Modeling Techniques. Cellular and molecular bioengineering, 2009. 2(3): p. 285-294.; Rezende, R.A., et al., Organ Printing as an Information Technology. Procedia Engineering, 2015. 110: p. 151-158.; Cohen, D.L., et al., Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng, 2006. 12(5): p. 1325-35.; Chang, R., J. Nam, and W. Sun, Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng Part C Methods, 2008. 14(2): p. 157-66.; Hopp, B., et al., Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng, 2005. 11(11-12): p. 1817-23. Bibliografía 229; Mironov, V., V. Kasyanov, and R.R. Markwald, Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol, 2011. 22(5): p. 667-73.; Xu, F., et al., A three-dimensional in vitro ovarian cancer coculture model using a highthroughput cell patterning platform. Biotechnol J, 2011. 6(2): p. 204-212.; Jiang, T., et al., Directing the Self-assembly of Tumour Spheroids by Bioprinting Cellular Heterogeneous Models within Alginate/Gelatin Hydrogels. Scientific Reports, 2017. 7(1): p. 4575.; Lind, J.U., et al., Instrumented cardiac microphysiological devices via multimaterial threedimensional printing. 2017. 16(3): p. 303-308.; Koti, P., et al., Use of GelMA for 3D printing of cardiac myocytes and fibroblasts. Journal of 3D printing in medicine, 2019. 3(1): p. 11-22.; Klebe, R.J., Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res, 1988. 179(2): p. 362-73.; Nakamura, M., et al., Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng, 2005. 11(11-12): p. 1658-66.; Cui, X., et al., Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul, 2012. 6(2): p. 149-55.; Okamoto, T., T. Suzuki, and N. Yamamoto, Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol, 2000. 18(4): p. 438-41.; Matsusaki, M., et al., Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing. Adv Healthc Mater, 2013. 2(4): p. 534-9.; Lee, V., et al., Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods, 2014. 20(6): p. 473-84.; Ringeisen, B.R., et al., Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng, 2004. 10(3-4): p. 483-91.; Gruene, M., et al., Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods, 2011. 17(1): p. 79-87.; Guillemot, F., et al., High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomaterialia, 2010. 6(7): p. 2494-2500.; Ali, M., et al., Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication, 2014. 6(4): p. 045001.; Stavans, J. and J.A. Glazier, Soap froth revisited: Dynamic scaling in the two-dimensional froth. Phys Rev Lett, 1989. 62(11): p. 1318-1321.; Glazier, J.A. and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1993. 47(3): p. 2128-2154.; Amar, J.G., The Monte Carlo Method in Science and Engineering. Computing in Science and Engg., 2006. 8(2): p. 9–19.; Steinberg, M.S., On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the organization of fused, heteronomic tissue fragments. Proc Natl Acad Sci U S A, 1962. 48(10): p. 1769-76.; Steinberg, M.S., Differential adhesion in morphogenesis: a modern view. Curr Opin Genet Dev, 2007. 17(4): p. 281-6.; Domansky, K., et al., Perfused multiwell plate for 3D liver tissue engineering. Lab Chip, 2010. 10(1): p. 51-8. 230 Título de la tesis o trabajo de investigación; Cickovski, T.M., et al., A framework for three-dimensional simulation of morphogenesis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2005. 2(4): p. 273-288.; Merks, R.M.H. and P. Koolwijk, Modeling Morphogenesis in silico and in vitro: Towards Quantitative, Predictive, Cell-based Modeling. Math. Model. Nat. Phenom., 2009. 4(4): p. 149- 171.; R. Chaturvedi, C.H., J. A. Izaguirre, S. A. Newman, J. A. Glazier, M. Alber, A Hybrid Discrete- Continuum Model for 3-D Skeletogenesis of the Vertebrate Limb. International Conference on Cellular Automata, 2004: p. 543-552.; Nicholas J.Savill, P., Modelling Morphogenesis: From Single Cells to Crawling Slugs. Journal of Theoretical Biology, 1997. 184(3): p. 229 - 235.; Galle, J., et al., Individual cell-based models of tumor-environment interactions: Multiple effects of CD97 on tumor invasion. Am J Pathol, 2006. 169(5): p. 1802-11.; Jakab, K., et al., Relating cell and tissue mechanics: implications and applications. Dev Dyn, 2008. 237(9): p. 2438-49.; Jakab, K., et al., Organ printing: fiction or science. Biorheology, 2004. 41(3-4): p. 371-5.; Yang, X., V. Mironov, and Q. Wang, Modeling fusion of cellular aggregates in biofabrication using phase field theories. J Theor Biol, 2012. 303: p. 110-8.; Voter, A.F. INTRODUCTION TO THE KINETIC MONTE CARLO METHOD. 2007. Dordrecht: Springer Netherlands.; Glazier James A, A.B.a.N.J.P., Magnetization to Morphogenesis: A Brief History of the Glazier- Graner Hogeweg Model, in Singl-Cell-Based Models in Biology and Medicine, M.A.J.C. A.R.A. Anderson, K.A. Rejniak, Editor. 2007, Mathematics and Biosciences in Interaction: Birkhäuser Verlag Basel / Switzerland. p. 79-106.; Steinberg, M.S., Adhesion in development: an historical overview. Dev Biol, 1996. 180(2): p. 377-88.; Chatterjee, A. and D.G. Vlachos, An overview of spatial microscopic and accelerated kinetic Monte Carlo methods. Journal of Computer-Aided Materials Design, 2007. 14(2): p. 253-308.; Folch, R., et al., Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1999. 60(2 Pt B): p. 1724-33.; Yang, X., Y. Sun, and Q. Wang, A phase field approach for multicellular aggregate fusion in biofabrication. J Biomech Eng, 2013. 135(7): p. 71005.; Cristea, A. and A. Neagu, Shape changes of bioprinted tissue constructs simulated by the Lattice Boltzmann method. Comput Biol Med, 2016. 70: p. 80-87.; Norris, J.R., Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. 1997, Cambridge: Cambridge University Press.; Feller, W., An Introduction to Probability Theory and Its Applications. Vol. 1. 1966.; Blue, J.L., I. Beichl, and F. Sullivan, Faster Monte Carlo simulations. Physical Review E, 1995. 51(2): p. R867-R868.; Rahman, T., et al., Atomistic studies of thin film growth. Optical Science and Technology, the SPIE 49th Annual Meeting. Vol. 5509. 2004: SPIE.; Trushin, O., et al., Self-learning kinetic Monte Carlo method: Application to Cu(111). Physical Review B, 2005. 72(11): p. 115401.; Foty, R.A., et al., Liquid properties of embryonic tissues: Measurement of interfacial tensions. Phys Rev Lett, 1994. 72(14): p. 2298-2301.; Freutel, M., et al., Finite element modeling of soft tissues: Material models, tissue interaction and challenges. Clinical Biomechanics, 2014. 29(4): p. 363-372. Bibliografía 231; Marmottant, P., et al., The role of fluctuations and stress on the effective viscosity of cell aggregates. Proceedings of the National Academy of Sciences, 2009. 106(41): p. 17271-17275.; Schienbein, M., K. Franke, and H. Gruler, Random walk and directed movement: Comparison between inert particles and self-organized molecular machines. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1994. 49(6): p. 5462-5471.; Kipper, M.J., H.K. Kleinman, and F.W. Wang, New method for modeling connective-tissue cell migration: improved accuracy on motility parameters. Biophys J, 2007. 93(5): p. 1797-808.; Mombach, J.C. and J.A. Glazier, Single cell motion in aggregates of embryonic cells. Phys Rev Lett, 1996. 76(16): p. 3032-3035.; Flenner, E., et al., Relating biophysical properties across scales. Curr Top Dev Biol, 2008. 81: p. 461-83.; Thomas, W.A. and J. Yancey, Can retinal adhesion mechanisms determine cell-sorting patterns: a test of the differential adhesion hypothesis. Development, 1988. 103(1): p. 37-48.; Frenkel, J., Viscous flow of crystalline bodies under the action of surface tension. The Journal of Physics, USSR, 1945. 9: p. 385-391.; J, D., Eshelby, Trans. AIME, 1949(185).; Ma, X., et al., 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev, 2018. 132: p. 235-251.; An, J., C.K. Chua, and V. Mironov, A Perspective on 4D Bioprinting. International Journal of Bioprinting; Vol 2, No 1 (2016), 2016.; Nogueira JA., L.a., Marques TS., Oliveira DS., Mironov V., da Silva and R.R. JV., Simulation of a 3D Bioprinted Human Vascular Segment, in 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering, J.K.H.a.R.G. Krist V. Gernaey, Editor. 2015, Elsevier B.V.: Copenhagen, Denmark. p. 684-688; Iber, D., et al., Simulating tissue morphogenesis and signaling. Methods Mol Biol, 2015. 1189: p. 323-38.; Douglas Brown, R.H., and Wolfgang Christian, Tracker Video Analysis and Modeling Tool. October, 2020.; Inc., T.M., Matlab. 2017.; Han, Y., et al., Cultivation of recombinant Chinese hamster ovary cells grown as suspended aggregates in stirred vessels. J Biosci Bioeng, 2006. 102(5): p. 430-5.; Pan, X., et al., Metabolic characterization of a CHO cell size increase phase in fed-batch cultures. Applied microbiology and biotechnology, 2017. 101(22): p. 8101-8113.; https://repositorio.unal.edu.co/handle/unal/82216; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
15
Authors: et al.
Contributors: et al.
Source: Revista Colombiana de Computación; Vol. 8 Núm. 1 (2007): Revista Colombiana de Computación; 1-19
Subject Terms: Innovaciones tecnológicas, Ciencia de los computadores, Desarrollo de tecnología, Ingeniería de sistemas, Investigaciones, Tecnologías de la información y las comunicaciones, TIC´s, Technological innovations, Computer science, Technology development, Systems engineering, Investigations, Information and communication technologies, ICT's, Computing Information, Information systems, Management, Organization, Systems thinking, Ciencias de la computación, Desarrollo tecnológico, Tecnologías de la información y la comunicación, Información informática, Sistemas de información, Gestión, Organización, Pensamiento sistémico
File Description: application/pdf
Relation: https://revistas.unab.edu.co/index.php/rcc/article/view/1043/1016; https://revistas.unab.edu.co/index.php/rcc/article/view/1043; ACM, AIS, IEEE-CS. Computing Curricula 2005. Overview Report. Draft. http://www.acm.org/education/curricula.html (descargado el 16 de Mayo de 2005).; Olave C. Yesid A. y Gómez F. Luis Carlos. Sistemas de Información: Un acercamiento a la disciplina. Revista Universidad Eafit, 41(138) 29-43, 2005.; Andrade Hugo, Dyner Isaac, Espinosa Angela, López Garay Hernán, Sotaquirá Ricardo. Pensamiento sistémico: Diversidad en búsqueda de unidad. Ediciones UIS. 2001.; Hirschheim, R. y Klein, H.K. Four Paradigms of Information Systems Development. Communications of the ACM, 32(10) 1199-1216, 1989.; Checkland Peter y Scholes Jim. La metodología de sistemas suevas de acción. Editorial Limusa. 1994; Checkland Peter. Pensamiento de sistemas, práctica de sistemas. Editorial Limusa. 2000; Jackson Michael C. Systems approaches to management. Kluwer Academic Plenum Publishers. 2000.; López Garay Hernán. Extending Checkland's Phenomenological Approach to Information Systems. En: Cabo Jeimy J. Critical Reflections on Information Systems: A Systemic Approach. Newport University, 2003.; Checkland Peter. A 30-Year Retrospective. En: Systems Thinking, Systems Practice. John Wiley & Sons. Nueva Edición. 1999.; Checkland Peter y Holwell Sue. Information, Systems and Information Systems. John Wiley and Sons. 1998.; Fuenmayor Ramsés. Interpretando organizaciones. Una teoría sistémico-interpretativa de organizaciones. Editorial Universidad de los Andes. 2001; Morgan Gareth. Imágenes de la organización. Editorial Alfa omega. 1996.; Anthony R.A. Planning and control systems: a framework for analysis. Hardvard University Press. 1965.; Abril Gonzalo. Teoría General de la Información. Ediciones Cátedra. 1997; Davis Gordon y Olson Margarethe. Sistemas de Información Gerencial. McGraw Hill. 1987.; Johansen Oscar. Introducción a la teoría general de sistemas. Editorial Limusa. 1997.; Laudon Kenneth C. y Laudon Jane P. Sistemas de Información Gerencial. Editorial Prentice Hall. 2.002.; González C. Gustavo. Asesores en sistemas y desarrollo: Los nuevos Humanistas. Ediciones Uniandes. 2.003.; Maturana H. y Varela F. El árbol del conocimiento. Editorial Universitaria. 1984.; López Garay Hernán. ¿Modelado sistémico o diseño de medios de revelado?. Primera Conferencia Colombiana sobre Modelamiento Sistémico. Universidad Industrial de Santander. s.f.; Fuenmayor R. y López Garay H. The scene for interpretative systemology. Systems Practice. 4(5). 1991.; Fuenmayor R. The roots of reductionism. Systems Practice. 4(5). 1991.; Fuenmayor R. the self-referential structure of an everyday living situation: A phenomelogical ontology for interpretative systemology. Systems Practice. 4(5). 1991.; Fuenmayor R. Truth and openness: An epistemology for interpretative systemology, Systems Practice. 4(5). 1991.; Olave C. Yesid A. y Gómez F. Luis Carlos. La Naturaleza Sistémica de los Sistemas de Información. Una amplicación conceptual del enfoque teórico y práctico para su diseño. Tesis en desarrollo para optar por el título de Magíster en Informática. Grupo de Investigación STI. Universidad Industrial de Santander.; http://hdl.handle.net/20.500.12749/9002; instname:Universidad Autónoma de Bucaramanga UNAB; repourl:https://repository.unab.edu.co
Availability: https://hdl.handle.net/20.500.12749/9002
-
16
Authors: et al.
Contributors: et al.
Subject Terms: Industrial automation, Industrial engineering, Technological change, Automatic control, Automatic machinery, Nanotechnology, Bibliographic research, High technology, Factories, Automatización industrial, Ingeniería industrial, Cambio tecnológico, Control automático, Maquinaria automática, Alta tecnología, Fábricas, Nanotecnología, Investigación bibliográfica
Subject Geographic: Colombia
File Description: application/pdf
Relation: Teik-Cheng Lim. (2011) Nanosensors Theory and Applications in Industry, Healthcare and Defense. Boca Raton: Taylor and Francis Group, LLC. T. Pradeep. (2008) Nano: The Essentials Understanding Nanoscience and Nanotechnology. New York: McGraw-Hill.; Ahmed Busnaina. (2007) Nanomanfacturing Handbook. Boca Raton: Taylor and Francis Group, LLC.; Renzo Tomellini (2004) La nanotecnología. Innovaciones para el mundo del mañana. Luxemburgo: Comisión Europea; http://www.ijitee.org/attachments/File/v3i4/D1199093413.pdf; http://www.nano.gov/you/nanotechnology-benefits; http://blogs.creamoselfuturo.com/nano-tecnologia/; http://www.ehu.eus/sgi/software-de-calculo/siesta#informacingeneral; Fundación Española para la Ciencia y la Tecnología, FECYT (2009) NANOCIENCIA Y NANOTECNOLOGÍA Entre la ciencia ficción del presente y la tecnología del futuro. España: Fundación Española para la Ciencia y la Tecnología.; http://www.idepa.es/sites/web/idepaweb/Repositorios/galeria_descargas_idepa/AplicacionesIndustriales_Nanotecnologia.pdf; http://www.euroresidentes.com/futuro/nanotecnologia/diccionario/nanomateriales.htm; http://catarina.udlap.mx/u_dl_a/tales/documentos/leip/vega_m_d/indice.html PABLO R. HERNÁNDEZ RODRÍGUEZ Bioelectrónica, Departamento de Ingeniería Eléctrica, CINVESTAV IPN, México; Martinez, Pau & Marín, Pedro. “Diseño y estudio de una máquina de electrospinning”. Tomado de la red en Abril de 2017. Disponible en Internet: https://upcommons.upc.edu/pfc/bitstream/2099.1/7123/4/03_Mem%C3%B2ria.pdf; Jaimes Moreno, Edgar Mauricio. “Electroestimulador inteligente y sistema de clonación artificial de sensores de movimiento y control adaptativo-predictivo, por 143 143 acupuntura con agujas-electrodos y transmisión inalámbrica, evaluado en un diseño de prototipo construido”. Universidad Autónoma de Bucaramanga. 2009.; Siti Fatimah Abd Rahman, Nor Azah Yusof, Uda Hashim, M. Nuzaihan Md Nor. “Design and Fabrication of Silicon Nanowire based Sensor”. Institute of Advanced Technology, Universiti Putra Malaysia. 2013.; Rodriguez Pacheco, Jorge Humberto. “Prototipo automatizado para la implementacion de la técnica “electrospinning” en aplicaciones farmacológicas”. Universidad Autónoma de Bucaramanga. 2010.; Asgar, Z., Kodakara, S., & Lilja, D. (2005). Fault-tolerant image processing using stochastic logic (Tech. Rep.). Retrieved from http://www.zasgar.net/zain/publications/publications.php; Bryant, R., & Chen, Y. (1995). Verification of arithmetic circuits with binary moment diagrams. In Proceedings of the 32nd Design Automation Conference (DAC ’95), San Francisco (pp.535-541).; DeHon, A. (2005). Nanowire-based programmable architectures. ACM Journal on Emerging Technologies in Computing Systems, 1(2), 109–162. doi:10.1145/1084748.1084750; FENA. (2006). Mission statement. Retrieved from http://www.fena.org; Qian, W, Backes, J, Riedel, M. (2009). The synthesis of stochastic Circuits for Nanoscale Computation; [ADAM 94] ADAMI, C., Learning and complexity in genetic auto¬adaptive systems. California Institute of Technology, 1994.; [ADEL 95] ADELI, H., Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems. John Wiley and Sons, Inc, 1995; S. A. Pérez. 2002. “Diseño de Sistemas Digitales con VHDL”. Ed. Thomson. Neil H. E. Weste and Kamran Eshraghian. Principles of CMOS VLSI Design. Addison-Wesley, 2nd edition, 1994; Xilinx Inc., 2100 Logic Drive, San Jose, CA 95124. The Programmable Gate ArrayData Book, 1991.; National Acdemy of Science. Panel on Scientific and Medical Aspects of Human Cloning. August 7, 2001; Vera, F. (2006). “Sistema Electrónico de clonación Artificial de un Sensor de Viscocidad Basado en Hardware Evolutivo.” Universidad de Pamplona; WINTER, D. A. Biomechanics and Motor Control of Human Movement. Warterloo: Warterloo Press, 1991.; Pedro Carlos Russi. Estudo De Um Modelo Dinâmico Para Avaliação Física Do Corpo Humano. Faculdade de Engenharia de Guaratinguetá da Universidade Estadual Paulista. Sao Paulo. Brasil; Sistema electrónico de clonacion artificial de un sensor de viscosidad basado en hardware evolutivo. Fredy Vera Perez trabajo de grado para optar por el título de ingeniero electrónico. Universidad de Pamplona. 2006; Muñoz Antonio F. Sensorica e instrumentación, Mecánica de Alta precisión. . Pueblo y educación. 1997; Maneiro Malavé Ninoska. Algoritmos genéticos aplicados al problema cuadrático de asignación de facilidades. Departamento de Investigación Operativa, Escuela de Ingeniería Industrial, Universidad de Carabobo, Valencia. Venezuela. Febrero 2002; Faustino, A, Muñoz, Mariela. (2010). “Algoritmos y Sistemas Genéticos Aplicados en sistema de control en Tiempo Real Obtenido por Clonación Artificial para Prótesis Mecatrónica de Piel Artificial con Nanopartículas.”. Universidad Autónoma de Bucaramanga y Universidad del Cauca, Colombia; Beneficios de la Nanotecnología: Presentación. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/nanotecnologia_benecios.html; Caro Bejarano, José (2012). Los riesgos mundiales en el 2012 según el foro económico mundial. ieee.es. Tomado de la red en Abril de 2015. URL: http://www.ieee.es/Galerias/chero/docs_informativos/2012/DIEEEI06-2012_ForoEconomicoMundial_RiesgosGlobales2012_MJCaro_v2.pdf; García Díaz, J. (2006). Normalización sobre Nanotecnologías. AENOR, p. 26-28. Tomado de la red en Abril de 2015. URL: http://www.nanospain.org/les/Working%20Groups/NanoSpain_WGIndustrial_Normalizacion.pdf; José Luis Carrillo Aguado. Cómo es la Nanotecnología según la FDA. Perdiositasenlinea.org. Tomado de la red en Abril de 2015. URL: 145 145 http://www.periodistasenlinea.org/modules.php?op=modload&name=News&le=article&sid=23516; Marquez, J. (2008). Nanobioética, nanobiopolítica y nanotecnología. Revista Salud Uninorte. 24 (1), 140-157. Tomado de la red en Abril de 2015. URL: http://rcienticas.uninorte.edu.co/index.php/salud/article/view/3824/2435; Organización de las Naciones Unidas para la Agricultura y la Alimentación y Organización mundial de la salud. Reunión Conjunta FAO/OMS de Expertos acerca de la aplicación de la nanotecnología en los sectores alimentario y agropecuario: posibles consecuencias para la inocuidad de los alimentos. Informe. Consultado en http://www.fao.org/docrep/015/i1434s/i1434s00.pdf; Panorama y perspectivas de la nanotecnología. Revista Virtual Pro, Agosto 2009 (91), pp17-18. Tomado de la red en Abril de 2015. URL: http://www.revistavirtualpro.com/revista/index.php?ed=2009-08-01&pag=17; Riesgos de la Nanotecnología. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/riesgos_nanotecnologia.htm; Creus Sole, A. “Instrumentación Industrial”. 7 ed., México: Alfaomega, 2005; Delgado, A. Inteligencia Artificial y Minirobots. Ecoe Ediciones, 1998; Ghosh, A. N. R. Pal, and S. K. Pal, "Self-organization for object extraction using a multilayer neural network and fuzziness measures," IEEE Transactions on Fuzzy Systems, vol. 1, pp. 54-58, 1993.; CARDENAS, J., Diseño Geométrico de Carreteras, Primera Edición, Ecoe Ediciones, 2011.; CARREÑO, Y., Investigación de Sistemas de Control Inteligente del Tráfico Vehicular y Desarrollo de Instrumentación de Alta Precisión de Parámetros Asociados al Monitoreo, Mando y Control Automáticos de Carreteras Urbanas. Programa Jóvenes Investigadores e Innovadores "Virginia Gutiérrez de Pineda Colciencias, Colombia 2011; MONTEJO, A., Ingeniería de Pavimentos. Fundamentos, Estudios Básicos y Diseño, Tercera Edición, Tomo 1, Universidad Católica de Colombia, 2010; C. J. Lin, C. H. Chen, and C. T. Lin, "Efficient self-evolving evolutionary learning for neurofuzzy inference systems," IEEE Transactions on Fuzzy Systems, vol. 16, pp. 1476- 1490, 2008.; D. Goldberg. Genetics Algorithms in Search, Optimization and Machine Learning. Massachusetts: Addison-Wesley Reading, 1983; D. Nauck, F. Klawonn, and R. Kruse, "Foundations of neuro-fuzzy systems," Chichester,U.K.: Wiley, 1997.; D. Valdez, “Automatización en el área de bodega en una empresa de correo y mensajería para lograr una mayor productividad”. M.S. tesis, Universidad De San Carlos De Guatemala, Guatemala, 2005; F. E. Cellier, Continuous System Modeling. New York, 1991; F. Munoz, “Sistemas de control inteligentes de la planta de viscorreduccion basados en la clonacion artificial de un sensor de viscosidad y parámetros asociados”; G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B. Rosen, "Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps," IEEE Transactions on Neural Networks, vol. 3, pp. 698-713, 1992; H. Boudouda, H. Seridi H. Akdag. “The Fuzzy Possibilistic C-Means Classifier”, Asian Journal of Infomation Technology, Vol. 4, no 11, pp. 981-985, 2005.; H. Ishibuchi, M. Nii, and T. Murata, "Linguistic rule extraction from neural networks and genetic-algorithm-based rule selection," in IEEE International Conference on Neural Networks - Conference Proceedings, Houston, TX, USA, 1997, pp. 2390-2395.; H. R. Berenji and P. Khedkar, "Learning and tuning fuzzy logic controllers through reinforcements," IEEE Transactions on Neural Networks, vol. 3, pp. 724-740, 1992.; H. Takagi, N. Suzuki, T. Koda, and Y. Kojima, "Neural networks designed on approximate reasoning architecture and their applications," IEEE Transactions on Neural http://www.unipamplona.edu.co/unipamplona/hermesoft/portalIG/home_2/recursos/investigacion/contenidos/01102007/sistemas_control_inteligente.jsp. [Consultado 20 Marzo 2013].; I. Lache, F. Muñoz, “Investigación de nuevos prototipos de sensores y sistema de control por clonación artificial, basados en técnicas de inteligencia artificial” [En línea]. Disponible: http://ivanovichlache.googlepages.com/PaperPamILS.doc [Consultado 3 Febrero 2013; J. Castro, J. Padilla y E. Romero, “Metodología para realizar una automatización utilizando PLC,” Impulso, Revista De Electrónica, Eléctrica Y Sistemas Computacionales, Departamento de Eléctrica y Electrónica del Instituto Tecnológico de Sonora, vol. 1, nro. 1, pp. 18-21, 2005; J. J. Buckley and Y. Hayashi, "Fuzzy neural networks: A survey," Fuzzy Sets andSystems, vol. 66, pp. 1-13, 1994.; J. J. Hopfield and D. W. Tank, "'Neural' computation of decisions in optimization problems," Biological Cybernetics, vol. 52, pp. 141-152, 1985.; J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities," Proceedings of the National Academy of Sciences of the United States of America, vol. 79, pp. 2554-2558, 1982.; J. M. Keller and D. J. Hunt, "Incorporating fuzzy membership functions into the perceptron algorithm," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-7, pp. 693-699, 1985; J. M. Keller and H. Tahani, "Implementation of conjunctive and disjunctive fuzzy logic rules with neural networks," International Journal of Approximate Reasoning, vol. 6, pp.221-240, 1992.; J. M. Keller, R. Krishnapuram, and F. C.-H. Rhee, "Evidence aggregation networks for fuzzy logic inference," IEEE Transactions on Neural Networks, vol. 3, pp. 761-769,1992; J. Rissanen, "Modeling by shortest data description," Automatica, vol. 14, pp. 465-471, 1978; J.-S. R. Jang, "ANFIS: adaptive-network-based fuzzy inference system," IEEE Transactions on Systems, Man and Cybernetics, vol. 23, pp. 665-685, 1993; J.S.R. Jang, N. Gulley, Natick. Fuzzy Logic Toolbox. MS, Mathworks, 2000; K. J. Aström and P. Eykhoff, "System identification-A survey," Automatica, vol. 7, pp. 123-162, 1971; K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop, "Neural networks for control systems - A survey," Automatica, vol. 28, pp. 1083-1112, 1992; K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks," IEEE Transactions on Neural Networks, vol. 1, pp. 4-27, 1990.; L. Ljung and Z.-D. Yuan, "Asymptotic Properties of Black-Box Identification of Transfer Functions," IEEE Transactions on Automatic Control, vol. AC-30, pp. 514-530, 1985.; L. Ljung, "System Identification: Theory for the User.," New Jersey: Prentice-Hall, 1999.; L.-X. Wang and J. M. Mendel, "Fuzzy basis functions, universal approximation, and orthogonal least-squares learning," IEEE Transactions on Neural Networks, vol. 3, pp. 807-814, 1992; Muñoz Mariela, Muñoz F, (2010). Diseño De Un Sistema De Control Basado en Clonación Artificial, ISSN: 1692-7257 Revista Tecnologías Avanzada Universidad de Pamplona, Colombia; N. K. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction," IEEE Transactions on Fuzzy Systems, vol. 10, pp. 144-154, 2002; N. K. Sinha and B. Kuszta, Modeling and identification of dynamic systems: Springer,1983. Networks, vol. 3, pp. 752-760, 1992; P. Angelov P. Filev, “An approach to online identification of Takagi-Sugeno fuzzy models”, IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(1), pp. 484-498, 2004.; P. Eykhoff, "System Identification," John Wiley, 1974; Q. Song and N. K. Kasabov, "NFI: A neuro-fuzzy inference method for transductive reasoning," IEEE Transactions on Fuzzy Systems, vol. 13, pp. 799-808, 2005; Q. Song and N. Kasabov, "TWNFI - a transductive neuro-fuzzy inference system with weighted data normalization for personalized modeling," Neural Networks, vol. 19, pp. 1591-1596, 2006; R. Babuska, Fuzzy Modeling for Control: Kluwer Academic Publishers, 1998; R. Haber and H. Unbehauen, "Structure identification of nonlinear dynamic systems - Asurvey on input/output approaches," Automatica, vol. 26, pp. 651-677, 1990.; R. J. Oentaryo, M. Pasquier, and C. Quek, "GenSoFNN-Yager: A novel brain-inspired generic self-organizing neuro-fuzzy system realizing Yager inference," Expert Systems with Applications, vol. 35, pp. 1825-1840; R. Johansson, "System Modeling and Identification," in Information and System Sciences New Jersey: Prentice Hall, 1993; S. C. Lee and E. T. Lee, "Fuzzy neural networks," Mathematical Biosciences, vol. 23, pp. 151-177, 1975; S. K. Pal and S. Mitra, "Multilayer perceptron, fuzzy sets, and classification," IEEE Transactions on Neural Networks, vol. 3, pp. 683-697, 1992; S. Mitra and S. K. Pal, "Fuzzy multi-layer perceptron, inferencing and rule generation," IEEE Transactions on Neural Networks, vol. 6, pp. 51-63, 19; S. Mitra and Y. Hayashi, "Neuro-fuzzy rule generation: survey in soft computing framework," IEEE Transactions on Neural Networks, vol. 11, pp. 748-768, 2000.; S. Mitra, "Fuzzy MLP based expert system for medical diagnosis," Fuzzy Sets and Systems, vol. 65, pp. 285-296, 1994; S.J. Derby, “Design of Automatic Machinery”, New York: Marcel Dekker, 2005; T. Calonge, L. Alonso, and R. Ralha, "Transputer implementations of a multilayer perceptron used for speech-recognition task," Microcomputer Applications, vol. 16, pp.64-69, 1997.; T. Kohonen, "The self-organizing map," Proceedings of the IEEE, vol. 78, pp. 1464-1480, 1990; T. Söderström and P. Stoica, "System Identification," New York: Prentice Hall, 1989.; U.K.: Wiley, 1997.; W. A. Farag, V. H. Quintana, and G. Lambert-Torres, "A genetic-based neuro-fuzzy approach for modeling and control of dynamical systems," IEEE Transactions on Neural Networks, vol. 9, pp. 756-767, 1998; W. L. Tung and C. Quek, "eFSM - A novel online neural-fuzzy semantic memory model," IEEE Transactions on Neural Networks, vol. 21, pp. 136-157, 2010.; Y. Hayashi, J. J. Buckley, and E. Czogala, "Fuzzy neural network with fuzzy signals and weights," International Journal of Intelligent Systems, vol. 8, pp. 527-537, 1993; Automatización de las vías, carreteras e inteligencia de automoviles – Pölliita Fänii http://pollitafannimecatronica.wordpress.com/2011/12/08/automatizacion-de-las-vias-carreteras-e-inteligencia-de-automoviles; Carreteras, Análisis de Tráfico – Vaisala http://es.vaisala.com/sp/roads/applications/trafficanalysis/Pages/default.as; La DGT trabaja en un proyecto para instaurar en España sistemas inteligentes de comunicación entre el vehículo y la vía – Lukor 150 150 http://www.lukor.com/ordenadores/11012301.htm; Sistemas inteligentes de transporte ¿Realidad o Ficción? – Circula Seguro http://www.circulaseguro.com/vehiculos-y-tecnologia/sistemas-inteligentes-de-transporte-ficcion-o-realidad; Sistemas inteligentes de transporte http://www.google.com.co/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&ved=0CFEQFjAH&url=http%3A%2F%2Fwww.iies.es%2Fattachment%2F115765%2F&ei=yS5GUfTzLIrW0gGF3YDIBw&usg=AFQjCNF2RLjXUUjDjor9B-xqi5tlblePbw&bvm=bv.43828540,d.eWU&cad=rja; CICNetwork – Ciencia y Tecnología http://www.cicnetwork.es/upload/pdf/revistas/CN1.p; BARROSO OLIVEIA, Luis Manuel. Automatização e controlo de um sistema de electrospinning [en línea]. Universidade do Minho, Escola de Engenharia. Octubre de 2011. Disponible en Internet: https://repositorium.sdum.uminho.pt/bitstream/1822/16498/1/pg16155_TESE_MEM.pdf; DUQUE SÁNCHEZ, Lina Marcela; RODRÍGUEZ, Leonardo y LÓPEZ, Marcos. Electrospinning: La Era de las Nanofibras [en línea]. En: Revista Iberoamericana de Polímeros Volumen 14(1), Enero de 2013; Siti Fatimah Abd Rahman, Nor Azah Yusof, Uda Hashim, M. Nuzaihan Md Nor. “Design and Fabrication of Silicon Nanowire based Sensor”. Institute of Advanced Technology, Universiti Putra Malaysia. 2013; Qian, W, Backes, J, Riedel, M. (2009). The synthesis of stochastic Circuits for Nanoscale Computation.; Rodríguez Pacheco, Jorge Humberto. “Prototipo automatizado para la implementacion de la técnica “electrospinning” en aplicaciones farmacológicas”. Universidad Autónoma de Bucaramanga. 2010.; MANTILLA, Oscar Alberto. Diseño y Construcción de un Prototipo Electro-mecánico para la Implementación de la Técnica " Electrospinning " en Aplicaciones Farmacológicas. Junio de 2006.; Jie Chen y Hua Li, “Design Methodology for Hardware-efficient Fault-tolerant Nanoscale Circuits”, en IEEE International Symposium on Circuits and Systems’ 2006; USERO, Rafael y SUÁREZ, Natalia. Electrospinning de poliesteramidas Biodegradables [en línea]. 2010. [Citado 3 feb 2016] Disponible en Internet; MUÑOZ, A.F., Aplicación de los algoritmos genéticos en la identificación y control de bioprocesos por clonación artificial. IEEE Transactions on Systems, Man, and Cybernetic V 19 No. 2 58-76, 1998; MUÑOZ, A.F., Tecnología de clonación artificial on-line de sensores y controladores. Oficina Internacional de Invenciones, Patentes y Marcas, República de Cuba. Registros No. 7-789735, 2000; ADAMI, C., Learning and complexity in genetic auto¬adaptive systems. California Institute of Technology, 1994; ADELI, H., Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems. John Wiley and Sons, Inc, 1995.; Vera, F. “Sistema Electrónico de clonación Artificial de un Sensor de Viscocidad Basado en Hardware Evolutivo.” Universidad de Pamplona. 2006; Faustino, A, Muñoz, Mariela. (2010). “Algoritmos y Sistemas Genéticos Aplicados en sistema de control en Tiempo Real Obtenido por Clonación Artificial para Prótesis Mecatrónica de Piel Artificial con Nanopartículas.”. Universidad Autónoma de Bucaramanga y Universidad del Cauca, Colombia.; Beneficios de la Nanotecnología: Presentación. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/nanotecnologia_bene¬cios.htm; Caro Bejarano, José (2012). Los riesgos mundiales en el 2012 según el foro económico mundial. ieee.es. Tomado de la red en abril de 2015. URL: http://www.ieee.es/Galerias/-chero/docs_informativos/2012/DIEEEI06-2012_ForoEconomicoMundial_RiesgosGlobales2012_MJCaro_v2.pdf; García Díaz, J. (2006). Normalización sobre Nanotecnologías. AENOR, p. 26-28. Tomado de la red en Abril de 2015. URL: http://www.nanospain.org/-les/Working%20Groups/NanoSpain_WGIndustrial_Normalizacion.pdf; José Luis Carrillo Aguado. Cómo es la Nanotecnología según la FDA. Perdiositasenlinea.org. Tomado de la red en abril de 2015. URL: http://www.periodistasenlinea.org/modules.php?op=modload&name=News&-le=article&sid=23516; Marquez, J. (2008). Nanobioética, nanobiopolítica y nanotecnología. Revista Salud Uninorte. 24 (1), 140-157. Tomado de la red en Abril de 2015. URL: http://rcienti-cas.uninorte.edu.co/index.php/salud/article/view/3824/2435; Ingeniería en Nanotecnología. Upb. Tomado de la red en Mayo 17 de 2015. URL: http://www.upb.edu.co/portal/page?_pageid=1054,53529575&_dad=portal&_schema=PORTAL; GALVIS, Dalya Julieth. Sistema de electroestimulación por tecnología de fabricación de electrohilado. Noviembre de 2014; GAMBOA, Wilsón., MANTILLA, O., CASTILLO, V., Producción de micro y nano fibras a partir de la técnica “Electrospinning” para aplicaciones farmacológicas. Agosto, 2007, vol. 053, 1-4; J. Chen, J. Mundy, Y. Bai, S. Chan, P. Petrica, y R. I. Bahar, “A probabilistic approach to nano-computing,” En Proceedings of the Second Workshop on Non-Silicon Computing, San Diego, CA, Junio 2003.; K. N. Patel, I. L. Markov, y J. P. Hayes, “Evaluating circuit reliability under probabilistic gate-level fault models,” en IEEE International Workshop on Logic and Synthesis, 2003.; MODELAJE Y SIMULACION MULTIFISICA DE UN SENSOR DE GAS DE Sno2 EN COVENTORWARE™. Andrés Felipe Méndez Jiménez, Alba Ávila Bernal. Departamento de Ingeniería Eléctrica y Electrónica, Universidad de los Andes. Bogota, Colombia. Noviembre de 2005; MEMORIAS I SEMINARIO INTERNACIONAL DE NANOTECNOLOGÍA UDES 2011.; HERSEL U., DAHMEN C., KESSLER H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. Vol. 24, 2003, p. 4385-4415; DOSHI, Jayesh., RENEKER, Darrell H. Electrospinning process and applications of electrospun fibers: Journal of Electrostatic. Agosto, 1995, vol. 35. 151-160.; J.S.R Jang y Sun C.T(1993) Funcional Equivalence Berween Radial Basis Funtion Networks and Fuzzy Inference Systems. IEEE Transactions on Neuronal Networks.; K.F. Man and K.S. Tang Genetic Algorithms for Control and Signal Processing Department of Electronic Engineering City University of Hong Kong; Haber and H. Unbehauen, "Structure identification of nonlinear dynamic systems – A survey on input/output approaches," Automatica, vol. 26, pp. 651-677, 1990; Delgado Alberto Rule Based System with DNA Chip Proceedings of the 2003 IEEE International Symposium on Intelligent Control Houston, Texas October 5-8, 2003; D. Frenkel, B. Smit, Understanding Molecular Simulations software SIESTA: from algorithms to applications, Academic Press (1996; Huifei Rao, Jie Chen, Changhong Yu, Woon Tiong and others Ensemble Dependent Matrix Methodology for Probabilistic-Based Fault-tolerant Nanoscale Circuit Design; Muñoz Antonio F NUEVOS MÉTODOS Y PROCEDIMIENTOS DE ALTA PRECISIÓN APLICADO A PAVIMENTOS Y VÍA CERTIFICADO DE REGISTRO DE SOPORTE LÓGICO – SOFTWARE TÉCNICAS DE INTELIGENCIA ARTIFICIAL BASADOS EN ALGORITMOS GEN ÉTICOS PARA DETERMINAR EL DESEMPEÑO A PARTIR DE LOS PARÁMETROS DE COMPORTAMIENTO Libro - Tomo – Partida 13-40-467 Fecha Registro 03-Feb-2014; Durakbasa et PUC Río Brasil CERTIFICADO DE DERECHO DE AUTOR Registro 0410263/CA Fuzzy Logic Measurement Nanosystems d; Entrenamientos. “Fitness y electroestimulación”. Tomado de la red en Agosto de 2014. URL: http://www.entrenamientos.org/entrenamiento-fisico/item/70-fitness-y-electroestimulacion; Entrenamientos. “Entrenamiento físico y electroestimulación”. Tomado de la red en Agosto de 2014. URL: http://www.entrenamientos.org/entrenamiento-fisico/item/47-electroestimulacion; Martinez, Pau & Marín, Pedro. “Diseño y estudio de una máquina de electrospinning”. Tomado de la red en Agosto Septiembre de 2014. URL: https://upcommons.upc.edu/pfc/bitstream/2099.1/7123/4/03_Mem%C3%B2ria.pdf; Jaimes Moreno, Edgar Mauricio. “Electroestimulador inteligente y sistema de clonación artificial de sensores de movimiento y control adaptativo-predictivo, por acupuntura con agujas-electrodos y transmisión inalámbrica, evaluado en un diseño de prototipo construido”. Universidad Autónoma de Bucaramanga. 2009; Rodriguez Pacheco, Jorge Humberto. “Prototipo automatizado para la implementacion de la técnica “electrospinning” en aplicaciones farmacológicas”. Universidad Autónoma de Bucaramanga. 2010; FENA. (2006). Mission statement. Retrieved from http://www.fena.org Qian, W, Backes, J, Riedel, M. (2009). The synthesis of stochastic Circuits for Nanoscale Computation.; MUÑOZ, A.F., Aplicación de los algoritmos genéticos en la identificación y control de bioprocesos por clonación artificial. IEEE Transactions on Systems, Man, and Cybernetic V 19 No. 2 58-76, 19; MUÑOZ, A.F., Equipo de control genético de la composición en medios continuos on-line. Oficina Internacional de Invenciones, Patentes y Marcas, República de Cuba. Registros No. 7-789734, 2001; ADELI, H., Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems. John Wiley and Sons, Inc, 1995; Vera, F. (2006). “Sistema Electrónico de clonación Artificial de un Sensor de Viscocidad Basado en Hardware Evolutivo.” Universidad de Pamplona. WINTER, D. A. Biomechanics and Motor Control of Human Movement. Warterloo: Warterloo Press, 1991.; Maneiro Malavé Ninoska. Algoritmos genéticos aplicados al problema cuadrático de asignación de facilidades. Departamento de Investigación Operativa, Escuela de Ingeniería Industrial, Universidad de Carabobo, Valencia. Venezuela. Febrero 2; Faustino, A, Muñoz, Mariela. (2010). “Algoritmos y Sistemas Genéticos Aplicados en sistema de control en Tiempo Real Obtenido por Clonación Artificial para Prótesis Mecatrónica de Piel Artificial con Nanopartículas.”. Universidad Autónoma de Bucaramanga y Universidad del Cauca, Colomb; Beneficios de la Nanotecnología: Presentación. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/nanotecnologia_benecios.htm; García Díaz, J. (2006). Normalización sobre Nanotecnologías. AENOR, p. 26-28. Tomado de la red en Abril de 2015. URL: 157 157 http://www.nanospain.org/les/Working%20Groups/NanoSpain_WGIndustrial_Normalizacion.pdf; José Luis Carrillo Aguado. Cómo es la Nanotecnología según la FDA. Perdiositasenlinea.org. Tomado de la red en Abril de 2015. URL: http://www.periodistasenlinea.org/modules.php?op=modload&name=News&le=article&sid=23516; Panorama y perspectivas de la nanotecnología. Revista Virtual Pro, Agosto 2009 (91), pp17-18. Tomado de la red en Abril de 2015. URL: http://www.revistavirtualpro.com/revista/index.php?ed=2009-08-01&pag=17 Riesgos de la Nanotecnología. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/riesgos_nanotecnologia.htm; D. Olea, S.S. Alexandre, P. Amo-Ochoa, A. Guijarro, F. de Jesús, J.M. Soler, P.J. de Pablo, F. Zamora, J. Gómez Herrero, Advanced Materials 2005, 17, 1761-176; “Assembling of Dimeric Entities of Cd(II) with 6-Mercaptopurine to Afford One dimensional Coordination Polymers: Synthesis and Scanning Probe Microscopy Characterization”. P. Amo-Ochoa, M.I. Rodríguez-Tapiador, O. Castillo, D. Olea, A. Guijarro, S.S. Alexandre, J. Gómez-Herrero, F. Zamora, Inorganic Chemistry 2006, 45, 7642-7650.; “Electrical Conductivity in Platinum-Dimer Columns”. A. Guijarro, O. Castillo, A. Calzolari, P. J. Sanz Miguel, C. J. Gómez-García, R. di Felice, F. Zamora, Inorganic Chemistry 2008, 47, 9736-9738.; “Organization of Cordination Polymers on Surfaces by Direct Sublimation”. L. Welte, U. García-Couceiro, O. Castillo, D. Olea, C. Polop, A. Guijarro, A. Luque, J.; M. Gómez-Rodríguez, J. Gómez Herrero, F. Zamora, Advanced Materials 2009, 21, 2025-2028.; “Nanofibers generated by spontaneous self-assembly on surfaces of individual bimetallic building blocks”. R. Mas-Ballesté, R. Gonzalez-Prieto, A. Guijarro, M. A. Fernández, F. Zamora, Dalton Transactions 2009, Submitted; “MMX as conductors from single crystals to nanostructures”. A. Guijarro, O. Castillo, L. Welte, A. Calzolari, P. J. Sanz Miguel, C. J. Gómez-García, D. Olea, R. di Felice, J. Gómez-Herrero, F. Zamora, Journal of the American Chemical Society 2009, Subm; Ozin, G.; Arsenault, A. C. “Nanochemistry, A Chemical Aproach to Nanomaterials” RSC Publishing, 2005; página web http://www.intel.com, marzo 2009. 3 (a) Gates, B. D. Chem. Rev. 2005, 105, 1171-1196 (b) Barth, J. V. Nature 2005, 437,671-679.; Bibliografía Software Molecular workbench Charles Xie. SPORE, Science Prize for Online Resources in Education; http://www.sciencemag.org/site/special/spore/; Pryor. R. W. Multiphysics Modeling Using COMSOL: A First Principles Approach (Jones and Bartlett Publishers, Sudbury, MA, 2009).; Bridson, C. R. Batty, Science 330, 1756 (2010). Abstract/FREE Full Text; Finkelstein N. D. et al., Phys. Rev. Spec. Top. Phys. Educ. Res. 1, 010103 (2005). CrossRef; Klahr,L. M. Triona, C. Williams, J. Res. Sci. Teach. 44, 183 (2007). CrossRefWeb of Scie; Leach A. R., Molecular Modeling: Principles and Applications (Pearson Education, Upper Saddle River, NJ, ed.2, 2001). D. C. Rappaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, Cambridge,1997; N. Watanabe, M. Tsukada, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62, (2 Pt B), 2914 (2000). CrossRefPubMed; R. Feynman, J. Microelectromech. Syst. 1, 60 (1992). CrossRef; W. H. Schmidt, C. C. McKnight, S. A. Raizen , A Splintered Vision: An Investigation of U.S. Science and Mathematics Education (Kluwer Academic Press, Boston, MA, 1997).; National Research Council, Conceptual Framework for New Science Education Standards, update 7,March 2011; http://www7.nationalacademies.org/bose/Standards_Framework_Homepage.html. Y. B. Kafai, Games Cult. 1, 36 (2006).; William Humphrey, Andrew Dalke, and Klaus Schulten. VMD - Visual Molecular Dynamics. J. Mol. Graphics, 14:33-38, 199; Rajeev Sharma, Michael Zeller, Vladimir I. Pavlovic, Thomas S. Huang, Zion Lo, Stephen Chu, Yunxin Zhao, James C. Phillips, and Klaus Schulten. Speech/gesture interface to a visual-computing environment. IEEE Comp. Graph. App., 20:29-37, 2000.; Simon Cross, Michelle M. Kuttell, John E. Stone, and James E. Gain. Visualization of cyclic and multi-branched molecules with VMD. J. Mol. Graph. Model., 28:131-139, 2009.; John E. Stone, Axel Kohlmeyer, Kirby L. Vandivort, and Klaus Schulten. Immersive molecular visualization and interactive modeling with commodity hardware. Lect. Notes in Comp. Sci., 6454:382-393, 2010.; John E. Stone, Kirby L. Vandivort, and Klaus Schulten. Immersive out-of-core visualization of large-size and long-timescale molecular dynamics trajectories. Lect. Notes in Comp. Sci., 6939:1-12, 2011.; John E. Stone, William R. Sherman, and Klaus Schulten. Immersive molecular visualization with omnidirectional stereoscopic ray tracing and remote rendering. 2016 IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW), pages 1048-1057, 2016; Michael Zeller, James C. Phillips, Andrew Dalke, William Humphrey, Klaus Schulten, Rajeev Sharma, T. S. Huang, V. I. Pavlovic, Y. Zhao, Z. Lo, and S. Chu. A visual computing environment for very large scale biomolecular modeling. In Proceedings of the 1997 IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), pages 3-12. IEEE Computer Society Press, 1997; John E. Stone, Justin Gullingsrud, Paul Grayson, and Klaus Schulten. A system for interactive molecular dynamics simulation. In John F. Hughes and Carlo H. Séquin, editors, 2001 ACM Symposium on Interactive 3D Graphics, pages 191-194, New York, 2001. ACM SIGGRAPH.; Matthieu Chavent, Tyler Reddy, Joseph Goose, Anna Caroline E. Dahl, John E. Stone, Bruno Jobard, and Mark S.P. Sansom. Methodologies for the analysis of instantaneous lipid diffusion in MD simulations of 161 161 large membrane systems. Faraday Discuss., 169:455-475, 2014.; Benjamin G. Levine, John E. Stone, and Axel Kohlmeyer. Fast analysis of molecular dynamics trajectories with graphics processing units-radial distribution function histogramming. J. Comp. Phys., 230:3556-3569, 2011.; John Stone and Mark Underwood. Rendering of numerical flow simulations using MPI. In Second MPI Developer's Conference, pages 138-141. IEEE Computer Society Technical Committee on Distributed Processing, IEEE Computer Society Press, 1996.; John E. Stone. An Efficient Library for Parallel Ray Tracing and Animation. Master's thesis, Computer Science Department, University of Missouri-Rolla, April 1998.; John E. Stone, Barry Isralewitz, and Klaus Schulten. Early experiences scaling VMD molecular visualization and analysis jobs on Blue Waters. In Extreme Scaling Workshop (XSW), 2013, pages 43-50, Aug. 2013; I. Wald, G. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers, J. Gunther, and P. Navratil. OSPRay - a CPU ray tracing framework for scientific visualization. IEEE Transactions on Visualization and Computer Graphics, 23(1):1-1, 20; John E. Stone, James C. Phillips, Peter L. Freddolino, David J. Hardy, Leonardo G. Trabuco, and Klaus Schulten. Accelerating molecular modeling applications with graphics processors. J. Comp. Chem., 28:2618-2640, 2007.; John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone, and James C. Phillips. GPU computing. Proc. IEEE, 96:879-899, 2008; Christopher I. Rodrigues, David J. Hardy, John E. Stone, Klaus Schulten, and Wen-mei W. Hwu. GPU acceleration of cutoff pair potentials for molecular modeling applications. In CF'08: Proceedings of the 2008 conference on Computing Frontiers, pages 273-282, New York, NY, USA, 2008. AC; David J. Hardy, John E. Stone, and Klaus Schulten. Multilevel summation of electrostatic potentials using graphics processing units. J. Paral. Comp., 35:164-177, 2009.; Volodymyr Kindratenko, Jeremy Enos, Guochun Shi, Michael Showerman, Galen Arnold, John E. Stone, James Phillips, and Wen-mei Hwu. GPU clusters for high performance computing. In Cluster Computing and Workshops, 2009. CLUSTER '09. IEEE International Conference on, pages 1-8, 2009; John E. Stone, David J. Hardy, Ivan S. Ufimtsev, and Klaus Schulten. GPU-accelerated molecular modeling coming of age. J. Mol. Graph. Model., 29:116-125, 2010; John E. Stone, David Gohara, and Guochun Shi. OpenCL: A parallel programming standard for heterogeneous computing systems. Comput. in Sci. and Eng., 12:66-73, 2010.; Jeremy Enos, Craig Steffen, Joshi Fullop, Michael Showerman, Guochun Shi, Kenneth Esler, Volodymyr Kindratenko, John E. Stone, and James C. Phillips. Quantifying the impact of GPUs on performance and energy efficiency in HPC clusters. In International Conference on Green Computing, pages 317-324, 2010.; John E. Stone, David J. Hardy, Barry Isralewitz, and Klaus Schulten. GPU algorithms for molecular modeling. In Jack Dongarra, David A. Bader, and Jakub Kurzak, editors, Scientific Computing with Multicore and Accelerators, chapter 16, pages 351-371. Chapman & Hall/CRC Press, 2011; David J. Hardy, Zhe Wu, James C. Phillips, John E. Stone, Robert D. Skeel, and Klaus Schulten. Multilevel summation method for electrostatic force evaluation. J. Chem. Theor. Comp., 11:766-779, 201; John E. Stone, Ryan McGreevy, Barry Isralewitz, and Klaus Schulten. GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting. Faraday Discuss., 169:265-283, 2014; Abhishek Singharoy, Ivan Teo, Ryan McGreevy, John E. Stone, Jianhua Zhao, and Klaus Schulten. Molecular dynamics-based refinement and validation with Resolution Exchange MDFF for sub-5 Å cryo-electron microscopy maps. eLife, 10.7554/eLife.16105, 2016. (66 pages).; John E. Stone, Juan R. Perilla, C. Keith Cassidy, and Klaus Schulten. GPU-accelerated molecular dynamics clustering analysis with OpenACC. In Robert Farber, editor, Parallel Programming with OpenACC, pages 215-240. Morgan Kaufmann, Cambridge, MA, 2016; John E. Stone, Jan Saam, David J. Hardy, Kirby L. Vandivort, Wen-mei W. Hwu, and Klaus Schulten. High performance computation and interactive display of molecular orbitals on GPUs and multi-core CPUs. In Proceedings of the 2nd Workshop on General-Purpose Processing on Graphics Processing Units, ACM International Conference Proceeding Series, volume 383, pages 9-18, New York, NY, USA, 2009. ACM.; John E. Stone, David J. Hardy, Jan Saam, Kirby L. Vandivort, and Klaus Schulten. GPU-accelerated computation and interactive display of molecular orbitals. In Wen-mei Hwu, editor, GPU Computing Gems, chapter 1, pages 5-18. Morgan Kaufmann Publishers, 2011; John E. Stone, Michael J. Hallock, James C. Phillips, Joseph R. Peterson, Zaida Luthey-Schulten, and Klaus Schulten. Evaluation of emerging energy-efficient heterogeneous computing platforms for biomolecular and cellular simulation workloads. 2016 IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW), pages 89-100, 2016.; John E. Stone, Antti-Pekka Hynninen, James C. Phillips, and Klaus Schulten. Early experiences porting the NAMD and VMD molecular simulation and analysis software to GPU-accelerated OpenPOWER platforms. Lect. Notes in Comp. Sci., 9945:188-206, 2016; Michael Krone, John E. Stone, Thomas Ertl, and Klaus Schulten. Fast visualization of Gaussian density surfaces for molecular dynamics and particle system trajectories. In EuroVis - Short Papers 2012, pages 67-71, 2012; Elijah Roberts, John E. Stone, and Zaida Luthey-Schulten. Lattice microbes: High-performance stochastic simulation method for the reaction-diffusion master equation. J. Comp. Chem., 34:245-255, 2013.; Structures et fonctions des molécules biologiques. Utilisations pédagogiques des visualisations tridimensionnelles avec Rasmol. J. Barrère, J-Y Dupont and N. Salamé. INRP, 1997, 128 pages.; Surprising similarities in structure comparison. Jean-François Gilbrat, Thomas Madej, and Stephen H. Bryant. Current Opinion in Structural Biology 6:377-385, 1996. A review of early results of searcing for similarities in structure, regardless of sequence similarities. Describes the Vector Alignment Search Tool (VAST) provided by the US National Center for Biotechnology Information; GlaxoWellcome and MDL become entangled in the Web, by John Hodgson, Nature Biotechnology 14:690, June 1996. This article concerning RasMol and Chime is full of errors. See the editorial comment; A Dynamic Look at Structures: WWW-Entrez and the Molecular Modeling Database, by Christopher W. V. Hogue, Hitomi Ohkawa and Stephen H. Bryant. Trends in Biochemical Sciences, 21:226-9, 1996. All PDB files have been converted to the WWW-Entrez format ASN.1. This format can handle a broader range of 3D structural information, including for example models from electron microscopy. WWW-Entrez links 3D structural information with GenBank sequences and MEDLINE abstracts. Related structures can be identified. Kinemage animations are generated automatically to reveal information buried in PDB files, such as thermal factors, disordered zones, and multiple NMR models.; RasMol: Biomolecular graphics for all, by Roger A. Sayle and E. James Milner-White, Trends in Biochemical Sciences 20(Sept):374-376, 1995. RasMol was first widely distributed via the Internet in June, 1993, but this is the original paper publication describing RasMol; Hyperactive Molecules and the World-Wide-Web Information System, by Omer Casher, Gudge K. Chandramohan, Martin J. Hargreaves, Christopher Leach, Peter Murray-Rust, Henry S. Rzepa, Roger A. Sayle and Benjamin J. Whitaker. J. Chem. Soc., Perkin Trans. 2, 1995, 7. This paper proposes sharing chemical data too bulky for journal publication via World Wide Web. To accomplish this, it introduces various new chemical MIME (Multipurpose Internet Mail Extension) types, including chemical/x-csml for the Chemical Structure Markup Language which can be understood by RasMol; Software for viewing biomolecules in three dimensions on the Internet, by Alvaro Sanchez-Ferrer, Estrella Nunez-Delicado, and Roque Bru, Trends in Biochemical Sciences 20(July):286-288, 1995.Compares RasMol 2.5, pdVwin, Pkin_2_4/Mage_2_4, Hyperchem 3; Utilisations pédagogiques des visualisations tridimensionelles de molécules en biologie, by J. Barrère, J.-Y. Dupont, and N. Salamé, in Images numériques dan l'enseignement des sciences, Journées d'études CNAM, June 1995, J. C. Le Touzé and N. Salamé, eds., Institut Nationale de Recherche Pédagogique, pp. 87-93. A brief introduction to the use of RasMol for educational molecular visualization of DNA and proteins, touching on hemoglobin and the active site of carboxypeptidase. Illustrated.; Kinemages: make your own molecules for teaching, by Charles W. Sokolik, Trends in Biochemical Sciences 20(March):122-4, 1995; Kinemages -- simple macromolecular graphics for interactive teaching and publication, by David C. Richardson and Jane S. Richardson, Trends in Biochemical Sciences 19(March):135-8, 1994.; CPK models are very informative during the process of putting them together, but the completed models all look alike. Computer versions of CPK models have successfully imitated their appearance and most of their disadvantages (the fact that the inside is completely hidden, and the difficulty of identifying an atom or group), without, so far, imitating the real virtue of CPK's, which is the physical "feel" for the bumps, constraints, and degrees of freedom one obtains by manipulating them.; The Kinemage: A tool for scientific communication, by David C. Richardson, and Jane S. Richardson, Protein Science 1:3-9, 1992; Feynman. R, There’s Plenty of Room at the Bottom, American Physical Society, 1959. H.D. Gilbert, Miniaturization Reinhold Publishing Corp, N.Y, 1961,282. http://www.zyvex.com/nanotech/feynman.html. 2 N. Taniguchi, “On the Basic Concept of Nanotechnology”, Proc.Intl.Conf.Prod.Eng, Tokyo 1974, 18. 3 T. Theis, D. Parr, P. Binks, J. Ying, K. E.; Drexler, E. Schepers, K. Mullis, C. Bai, J. J. Boland, R. Langer, P. Dobson, C. N. R. Rao, M. Ferrari, , Nat.Nanotech. 2006,1,8. 4 J. J. Ramsden, Nanotechnology: An Introduction, Elsevier, Amsterdam, 2011. 5 (a) G. Binnig, H. Rohrer, IBM Journal of Research and Development 1986,30,355. (b) G.; Binnig, H. Rohrer, Rev. Mod. Phys. 1987, 59,615. 6 D. Eigler, E. Schweizer, Nature 1990,344,.524. 7 167 167 http://researcher.watson.ibm.com/researcher/view_group.php?id=4245 8 (a) C. P. Poole Jr., F. J.; Owens, Introduction To Nanotechnology, John Wiley & Sons, New Yersey, 2003. (b) R. Kelsall, I. W. Hamley, M. Geoghegan, Nanoscale Science and Technology, John Wiley & Sons, UK, 2005. 9 (a) M. Pagliaro, Nano-Age: How Nanotechnology Changes our Future, Wiley-VCH, Weinheim 2010 (b) J. J. Ramsden, Applied Nanotechnology. The Conversion of Research Results to Products, Elsevier, Amsterdam, 2014; V.V. Pokropivny, V.V. Skorokhod, Mater.Sci.Eng.C 2007,27,990. (b) K. Ariga, M. Li, G. J. Richards, J. P. Hill, J. Nanosci.Nanotechnol.2011,11,1. 11 (a) M. Wautelet, Eur. J. Phys. 2001; E. Roduner, Chem. Soc. Rev. 2006, 35, 583. (c) G. Hodes, Adv. Mater. 2007, 19, 639. 12 C. Baia, M. Liub, Nano Today 2012,7,258. 13 (a) B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, Chem. Rev. 2005, 105, 1171. (b) M. J. Köhler, W. Fritzsche, Nanotechnology: An Introduction to Nanostructuring Techniques, 2nd Ed., Wiley-VCH, Weinheim, 2007.; The Royal Society & The Royal Academy of Engineering, Nanoscience and nanotechnologies: opportunities and uncertainties, London, 2004 (http://www.nanotec.org.uk/finalReport.htm).; T. Ito, S. Okazaki, Nature 2000,406,1027.; Basnar, I. Willner, Small 2009,5,28; G. Cao, Nanostructures and nanomaterials, Imperial College Press, London, UK, 2009.; Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, J. N. Coleman, Science 2013,340,1420; http://hdl.handle.net/20.500.12749/7272; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Availability: https://hdl.handle.net/20.500.12749/7272
-
17
Authors:
Contributors:
Subject Terms: Procesos de mejora, recursos/activos informáticos, sistemas de monitoreo, arquitecturas tecnológicas, buenas prácticas, métricas e indicadores, Especialización en Proyectos Informáticos - Tesis y disertaciones académicas, Recursos informaticos, Herramientas tecnológicas, Análisis funcional, Procesamiento de datos, Improvement processes, computer resources / assets, monitoring systems, technological architectures, good practices, metrics and indicators
File Description: pdf; application/pdf
Relation: https://hdl.handle.net/11349/25591
Availability: https://hdl.handle.net/11349/25591
-
18
Authors:
Contributors:
Source: Revista Colombiana de Computación; Vol. 13 Núm. 2 (2012): Revista Colombiana de Computación; 124-140
Subject Terms: Ingeniería del Software, Procesos Software, Métodos Agiles, Arquitectura del Software, Software Engineering, Software Processes, Agile Methods, Software Architecture, Technological innovations, Technological development, Computer's science, Information technology and communication, Research, Innovaciones tecnológicas, Desarrollo tecnológico, Ciencias de la computación, Tecnología de la información y la comunicación, Investigación
File Description: application/pdf
Relation: https://revistas.unab.edu.co/index.php/rcc/article/view/2128/1896; https://revistas.unab.edu.co/index.php/rcc/article/view/2128; Fedesoft. (2011) Noticias TIC. [Online]. Available: http://www.fedesoft.org; P. L. José Hilario Canós and C. Penadés, “Metodologías Agiles en el Desarrollo de Software,” Tech. Rep., 2003.; R. J. Costello and D.-B. Liu, Metrics for Requirements Engineering. Journal of Systems and Software 1995, 1995.; K. Beck and C. Andres, Extreme Programming Explained: Embrace Change (2nd Edition). Addison-Wesley Professional, 2004.; P. C. Pendharkar, Rodger, and J. A., “The Relationship Between Software Development Team Size and Software Development Cost,” Commun. ACM, vol. 52, no. 1, pp. 141–144, Jan. 2009.; R. L. Nord, Tomayko, and J. E., “Software Architecture-Centric Methodsand Agile Development,” IEEE Software, vol. 23, no. 2, pp. 47–53, Mar.2006.; E. Hadar and G. M. Silberman, “Agile architecture Methodology: Long Term Strategy Interleaved with Short Term Practics,” in Companion tothe 23rd ACM SIGPLAN conference on Objectoriented programmingsystems languages and applications, ser. OOPSLA Companion '08.New York, NY, USA: ACM, 2008, pp. 641–652.; O. S. P Abrahamsson and J. Ronkainen, Agile Software Development Methods: Review and Analysis. VTT Electronics, 2002.; A. Kornstadt and J. Sauer, “Tackling Offshore Communication Challenges with Agile Architecture-Centric Development,” in Proceedingsof the Sixth Working IEEE/IFIP Conference on Software Architecture,ser. WICSA '07. Washington, DC, USA: IEEE Computer Society,2007, pp.; P. S. Rolf Njor Jensen, Thomas Maller and G. Tarnehaj, Architectureand Design in eXtreme Programming; Introducing Developer Stories.Lecture Notes in Computer Science, 2006.; D. J. Reifer, F. Maurer, and M. H. Erdogmus, “Scaling Agile Methods,”IEEE Software, vol. 20, no. 4, pp. 12–14, 2003.; L. Layman, L. Williams, and L. Cunningham, “Exploring ExtremeProgramming in Context: An Industrial Case Study,” in Proceedingsof the Agile Development Conference, ser. ADC '04. Washington, DC,USA: IEEE Computer Society, 2004, pp. 32–41.; F. Maurer and S. Martel, “On the Productivity of Agile Software Practices:An Industrial Case study,” International Workshop on Economics-Driven Software Engineering Researh(EDSER, Tech. Rep., 2002.; D. Wells, “Extreme Programming a Gentle Introduction,” 2012. [Online]. Available: http://www.extremeprogramming.org; K. Beck, M. Beedle, A. V. Bennekum, A. Cockburn, and W. Cunningham, Manifesto for Agile Software Development. URL: http://agilemanifesto.org/l, 2009.; R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord,and B. Wood, Attribute-Driven Design (ADD), Version 2.0. SoftwareEngineering Institute, 2006, no.CMU/SEI-2006-TR023.; M. R. Barbacci, R. J. Ellison, A. J. Lattanze, J. A. Stafford, C. B.Weinstock, and W. G. Wood, “Quality Attribute Workshops QAW -Third Edition,” Carnegie Mellon, Technical Report CMU/SEI-2003-TR-016, Oct. 2003.; M. Freddy and H. Julio, “XP/Architecture,” Tech. Rep. IDIS-TR002, 2011.; http://hdl.handle.net/20.500.12749/8919; instname:Universidad Autónoma de Bucaramanga UNAB; repourl:https://repository.unab.edu.co
Availability: https://hdl.handle.net/20.500.12749/8919
-
19
Authors:
Source: Ingeniería e Investigación; Vol. 27 No. 3 (2007); 203-209 ; Ingeniería e Investigación; Vol. 27 Núm. 3 (2007); 203-209 ; 2248-8723 ; 0120-5609
Subject Terms: strategic information systems planning (SISP), processes, organisation, process-organisation matrix, planeación estratégica en informática (PEI), procesos, organización, matriz proceso organización
File Description: application/pdf
-
20
Authors: Curiel Carías, Ernesto C.
Source: Arbor; Vol. 182 No. 718 (2006); 179-188 ; Arbor; Vol. 182 Núm. 718 (2006); 179-188 ; 1988-303X ; 0210-1963 ; 10.3989/arbor.2006.i718
Subject Terms: Artificial systems, Living systems, Organization, Buildings, Sistemas artificiales, Sistemas biológicos, Organización, Edificaciones
File Description: application/pdf
Relation: https://arbor.revistas.csic.es/index.php/arbor/article/view/21/21; Acurero, G. (1987): Filosofía de la biología. Caracas. Fondo Editorial Acta Científica. Ashby, W. R. (1963): An Introduction to cybernetic. New York. Wiley.; Bertalanffy, L. (1981): Teoría General de los Sistemas. Madrid. Fondo de Cultura Económica.; Brooks, R. A. (1991): How to build complete creatures rather than isolated cognitive simulators. Architectures for Intelligence, ed. K. van Lehn, Lawrence Erlbaum Associates, pp. 225-239.; Capra, F. (1998): La trama de la vida. Una nueva perspectiva de los sistemas vivos. Barcelona. Anagrama.; Churchman, C. W. (1968): The Systems Approach. New York. Delacorte.; Curiel Carías, E. C. (2000a): “Inconsequence of scientific knowledge in the field of design: Building in tropical coasts”. Interciencias, 25 (7), pp. 346-350.; Curiel Carías, E.C. (2000b): “La tesis del tercer mundo en la comprensión de la teoría general de los sistemas”. Tribuna del Investigador, 7 (1), pp. 60-76.; Curiel Carías, E. C. (2000c): Elementos para el diseño de edificaciones en paisajes de riberas. Caracas. Ediciones Biblioteca FAU-UCV.; Curiel Carías, E. C. (2003): “Design in the integration of natural and artificial systems”. Interciencia, 28 (8), pp. 482-486.; Curiel Carías, E. C. (2005a): The building concept in hybrid systems constitution (Kiron system). Building & Environment (Ed. Elsevier), Vol. 40, Issue 9, pp. 1235-1243.; Curiel Carías, E. C. (2005b): The building’s function in the containment and organization of activities in the Kiron system. Proceeding of the Fifth International Conference on Ecosystems and Sustainable Development ECOSUD 2005. Ed. by Tiezzi, E., Brebbia, C.A. Jørgensen, S.E., Almorza Gomar, D. WIT Press, Southampton, Boston, pp. 267-278.; Goldsmith, E. (1972): “Bringing the chaos in order”. The Ecologist, September, pp. 11-18.; Hillier, b. & Leaman, a. (1972): A new approach to architectural research. Ribaj, December, pp. 15-30.; Járos, G. (2000): “Living Systems Theory of James Grier Miller and Teleonics”. Systems Research and Behavioral Science, 17, pp. 289-300. doi:10.1002/(SICI)1099-1743(200005/06)17:33.0.CO;2-Z; Langton, C. G. (1992): Preface. Proceeding of the Artificial Life II. SFI Studies in the Sciences of Complexity, eds. C. G. Langton, C. Taylor, J. D. Farmer & S. Rasmussen, Addison-Wesley: Redwood City, Vol. X, pp. xiii-xviii.; Laszlo, E. (1972): The systems view of the world. New York. G. Braziller.; Le Corbusier (1973): Mensaje a los estudiantes de arquitectura. Buenos Aires. Ediciones Infinito.; Lovelock, J. (1995): “GAIA, Un modelo para la dinámica planetaria y celular”. GAIA Implicaciones de la nueva biología, ed. W. I. Thompson. Barcelona. Kairós, pp. 80-94.; Margulis, L. (2000): Symbiotic planet: A new look at evolution. New York. Basic Books.; Maturana, H. (1995): “Todo lo dice un observador”. GAIA Implicaciones de la nueva biología, ed. W. I. Thompson. Barcelona. Kairós, pp. 63-79.; Mikulecky, D. C. (2000): “Robert Rosen: The Well-Posed Question and its Answer –Why Are Organisms Different from Machines?”. Systems Research and Behavioral Science, 17, pp. 419-432. doi:10.1002/1099-1743(200009/10)17:53.0.CO;2-D; Miller, J. G. (1978): Living Systems. New York. Mc Graw-Hill.; Mosterin, J. (2000): Apuntes del Seminario de Filosofía En búsqueda de una cosmovisión a la altura de nuestro tiempo. Escuela de Filosofía. Universidad Central de Venezuela.; Odum, H. T. (1994): Ecological and general systems: An introduction to systems ecology. Colorado. University Press.; Pérez, C. (1986): Las nuevas tecnologías: una visión de conjunto. Ominami, C. editor. La tercera Revolución Industrial. Buenos Aires. Grupo Editor Latinoamericano.; Prigoguin, I. (1990): El orden nació del caos. Los verdaderos pensadores de nuestro tiempo. Ed. G. Sorman. Barcelona. Seix Barral, pp. 37-45.; Ruiz-Mirazo, K. y Moreno, A. (2001): Artificial life. An epistemologic study. Departamento de Lógica y Filosofía de la Ciencia, Universidad del País Vasco.; Simon, H. A. (1973): Las ciencias de lo artificial. Barcelona. Ediciones ATE.; Smith, R. L. & Smith, T. M. (2002): Elements of ecology. California. Benjamín/Cummings.; Steadman, P. (1982): Arquitectura y naturaleza. Madrid. Blume.; Tedeschi, E. (1972): Teoría de la arquitectura. Buenos Aires. Ediciones Nueva Visión.; Van Gigch, J. P. (1998): Teoría General de Sistemas. México. Trillas.; Villee, C. A. (1995): Biología. México. McGraw-Hill.; https://arbor.revistas.csic.es/index.php/arbor/article/view/21
Full Text Finder
Nájsť tento článok vo Web of Science