Výsledky vyhledávání - acm: c.: computer systems organizacion/c.1: processes architectural/c.1.4: parallel architectural*
-
1
Autoři: a další
Přispěvatelé: a další
Zdroj: WWS'09, 1er Workshop sur les Services Web dans les Systèmes d'Information, Algiers, Algeria ; https://hal.archives-ouvertes.fr/hal-01125693 ; WWS'09, 1er Workshop sur les Services Web dans les Systèmes d'Information, Algiers, Algeria, Jan 2009, X, France. pp.1-11
Témata: [INFO]Computer Science [cs], [INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], archi, envir
Geografické téma: France
Dostupnost: https://hal.archives-ouvertes.fr/hal-01125693
-
2
Autoři: a další
Přispěvatelé: a další
Zdroj: ftp://www.cos.ufrj.br/pub/tech_reps/es47798.ps.gz
Popis souboru: application/postscript
-
3
Autoři: a další
Přispěvatelé: a další
Zdroj: RAPIDO '15 Proceedings of the 2015 Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools ; https://cea.hal.science/cea-01818887 ; RAPIDO '15 Proceedings of the 2015 Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools, Jan 2015, Amsterdam, Netherlands. ⟨10.1145/2693433.2693440⟩
Témata: ACM: I.: Computing Methodologies/I.6: SIMULATION AND MODELING/I.6.7: Simulation Support Systems, ACM: I.: Computing Methodologies/I.6: SIMULATION AND MODELING/I.6.7: Simulation Support Systems/I.6.7.0: Environments, ACM: C.: Computer Systems Organization/C.1: PROCESSOR ARCHITECTURES/C.1.1: Single Data Stream Architectures, [INFO]Computer Science [cs]
Geografické téma: Amsterdam, Netherlands
-
4
Autoři: a další
Přispěvatelé: a další
Zdroj: Software Architecture for Big Data and the Cloud ; https://inria.hal.science/hal-01507344 ; Ivan Mistrik; Rami Bahsoon; Nour Ali; Maritta Heisel; Bruce Maxim. Software Architecture for Big Data and the Cloud, Morgan Kaufmann, 2017, 9780128054673
Témata: ACM: C.: Computer Systems Organization/C.2: COMPUTER-COMMUNICATION NETWORKS/C.2.4: Distributed Systems, [INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], [INFO.INFO-OS]Computer Science [cs]/Operating Systems [cs.OS], [INFO.INFO-PF]Computer Science [cs]/Performance [cs.PF], [INFO.INFO-AR]Computer Science [cs]/Hardware Architecture [cs.AR]
Relation: info:eu-repo/grantAgreement/EC/FP7/318521/EU/Hardware- and Network-Enhanced Software Systems for Cloud Computing/HARNESS
-
5
Autoři: a další
Přispěvatelé: a další
Témata: Procesamiento de imagenes, Simulación, Energía, Sensores, Sistemas inteligentes, Inteligencia artificial, TIC, Cobertura 5G, Plataformas Web, Procesamiento digital de señales, Prototipos, Automatización, Control, Tecnologías remotas, Bioingeniería -- Congresos, conferencias, etc. -- Memorias, Energía -- Congresos, Sistemas de control inteligente -- Congresos, Procesamiento de señales -- Congresos, Automatización -- Congresos, etc. -- Memoria, Desarrollo de prototipos -- Congresos, Ingeniería biomédica -- Congresos, Tecnologías de la información y de la comunicación -- Congresos, Procesamiento digital de imágenes -- Congresos, Redes neuronales (Computadores) -- Congresos, Matemáticas -- Enseñanza -- Congresos, Inteligencia artificial -- Congresos
Popis souboru: pdf; application/pdf
Relation: H. Y. Vivian-Ip, A. Abrishami, P. W. H. Peng, J. Wong, and F. Chung, “Predictors of Postoperative Pain and Analgesic Consumption: A Qualitative Systematic review”, Anesthesiology, vol. 111, no. 3, pp. 657–677, september 2009. https://doi.org/10.1097/ALN.0b013e3181aae87a.; O. L. Elvir-Lazo and P. F. White, “Postoperative pain management after ambulatory surgery: role of multimodal analgesia”, Anesthesiology Clinics, vol. 28, no. 2, pp. 217–224, june 2010. https://doi.org/10.1016/j.anclin.2010.02.011.; American Academy of Pain Medicine, “Get the facts on pain”. [Online]. Available at:http://www.painmed.org/patientcenter/facts-on-pain/.; P. J. Mathew and J. L. Mathew, “Assessment and management of pain in infants”,Postgraduate Medical Journal, vol. 79, no. 934, pp. 438–43, august 2003. http://dx.doi.org/10.1136/pmj.79.934.438.; M. Clarett, “Escalas de evaluación de dolor y protocolo de analgesia en terapia intensiva”,Clínica y Maternidad Suizo Argentina Instituto Argentino de Diagnóstico y Tratamiento, Buenos Aires, Argentina, 2012.; L. J. Duhn and J. M. Medves, “A systematic integrative review of infant pain assessmenttools”, Advance in Neonatal Care, vol. 4, no. 3, pp. 126–140, june 2004. 10.1016/j.adnc.2004.04.005.; R. Slater, A. Cantarella, L. Franck, J. Meek, and M. Fitzgerald, “How Well Do Clinical PainAssessment Tools Reflect Pain in Infants?” PLoS Medicine, vol. 5, no. 6, p. e129, june 2008. https://doi.org/10.1371/journal.pmed.0050129.; N. C. de Knegt. et al., “Behavioral Pain Indicators in People With Intellectual Disabilities: ASystematic Review”, The Journal of Pain, vol. 14, no. 9, pp. 885–896, september 2013. https://doi.org/10.1016/j.jpain.2013.04.016.; G. Zamzmi. et al., “An approach for automated multimodal analysis of infants’ pain”, in 201623rd International Conference on Pattern Recognition (ICPR), pp. 4148–4153, 2016.; V. Guruswamy, “Assessment of pain in nonverbal children”, Association of PaediatricAnaesthetists of Great Britain and Ireland, vol. APA Leeds, no. 41st Annual Scientific Meeting in Leeds, p. 33, 2014.; Registered Nurses’ Association of Ontario, Assessment and management of pain, vol. 3.Toronto, Canada, 2013.; R. Srouji, S. Ratnapalan, and S. Schneeweiss, “Pain in Children: Assessment andNonpharmacological Management”, International Journal of Pediatrics, july 2010. https://doi.org/10.1155/2010/474838.; K. Brand and A. Al-Rais, “Pain assessment in children”, Anaesthesia and Intensive CareMedicine, vol. 20, no. 6, pp. 314–317, june 2019. https://doi.org/10.1016/j.mpaic.2019.03.003.; D. Freund and B. N. Bolick, “Assessing a Child’s Pain”, AJN, American Journal of Nursing,vol. 119, no. 5, pp. 34–41, may 2019. 10.1097/01.NAJ.0000557888.65961.c6.; M. Pérez, G. A. Cavanzo Nisso, and F. Villavisán Buitrago, “Sistema embebido de detecciónde movimiento mediante visión artificial ", Visión Electrónica, vol. 12, no. 1, pp. 97-101, 2018. https://doi.org/10.14483/22484728.15087.; J. F. Pantoja Benavides, F. N. Giraldo Ramos, Y. S. Rubio Valderrama, and V. M. RojasLara, “Segmentación de imágenes utilizando campos aleatorios de Markov", Visión Electrónica, vol. 4, no. 2, pp. 5-16, 2010. https://doi.org/10.14483/22484728.432.; J. Forero C., C. Bohórquez, and V. H. Ruiz, “Medición automatizada de piezas torneadasusando visión artificial", Visión Electrónica, vol. 7, no. 2, pp. 36-44, 2013. https://doi.org/10.14483/22484728.5507.; S. Brahnam, C.-F. Chuang, R. S. Sexton, and F. Y. Shih, “Machine assessment of neonatalfacial expressions of acute pain”, Decision Support System, vol. 43, no. 4, pp. 1242–1254, august 2007. https://doi.org/10.1016/j.dss.2006.02.004.; A. Beltramini, K. Milojevic, and D. Pateron, “Pain Assessment in Newborns, Infants, andChildren”, Pediatric. Annals, vol. 46, no. 10, pp. e387–e395, october 2017. https://doi.org/10.3928/19382359-20170921-03.; X. Cong, J. M. McGrath, R. M. Cusson, and D. Zhang, “Pain Assessment and Measurementin Neonates: An Ipdated Review”, Advances in Neonatal Care, vol. 13, no. 6, pp. 379–395, december 2013. 10.1097/ANC.0b013e3182a41452.; C. L. von Baeyer and L. J. Spagrud, “Systematic review of observational (behavioral)measures of pain for children and adolescents aged 3 to 18 years”, Pain, vol. 127, no. 1–2, pp. 140–150, january 2007. https://doi.org/10.1016/j.pain.2006.08.014.; J. Zieliński, M. Morawska-Kochman, and T. Zatoński, “Pain assessment and managementin children in the postoperative period: A review of the most commonly used postoperative pain assessment tools, new diagnostic methods and the latest guidelines for postoperative pain therapy in children”, Advances in Clinical and Experimental Medicine, vol. 29, no. 3, pp. 365–374, febrary 2020. 10.17219/acem/112600.; C. Greco and C. Berde, “Pain Management in Children”, Gregory’s Pediatric Anesthesia,Wiley, pp. 929–954, 2020. https://doi.org/10.1002/9781119371533.ch37.; G. Zamzmi, R. Kasturi, D. Goldgof, R. Zhi, T. Ashmeade, and Y. Sun, “A Review ofAutomated Pain Assessment in Infants: Features, Classification Tasks, and Databases,” IEEE Reviews in Biomedical. Engineering, vol. 11, pp. 77–96, noviembre 2017. 10.1109/RBME.2017.2777907.; T. Voepel-Lewis, J. Zanotti, J. A. Dammeyer, and S. Merkel, “Reliability and Validity of theFace, Legs, Activity, Cry, Consolability Behavioral Tool in Assessing Acute Pain in Critically Ill Patients”, American Journal of Critical Care, vol. 19, no. 1, pp. 55–61, january 2010. https://doi.org/10.4037/ajcc2010624.; G. Guillen, “Digital Image Processing with Python and OpenCV”, Sensor Projects withRaspberry Pi, Springer, pp. 97–140, 2019. https://doi.org/10.1007/978-1-4842-5299-4_5.; Momtahina, R. Hossain, M. M. Rahman, and O. A. Tania, “Image Capturing and AutomaticFace Recognition”, Dhaka, Bangladesh, 2019.; O. Subea and G. Suciu, “Facial Analysis Method for Pain Detection”, InternationalConference on Future Access Enablers of Ubiquitous and Intelligent Infrastructures, pp. 167–180, 2019. https://doi.org/10.1007/978-3-030-23976-3_17.; D. E. King, “Dlib-ml: A Machine Learning Toolkit”, The Journal of Machine LearningResearch, vol. 10, pp. 1755–1758, december 2009. 10.1145/1577069.1755843.; K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”,Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. [Online]. Available at: https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html.; O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition”, Proceedings of theBritish Machine Vision Conference (BMVC), vol. 1, no. 3, p. 6, september 2015. https://dx.doi.org/10.5244/C.29.41.; S. J. Pan and Q. Yang, “A Survey on Transfer Learning”, IEEE Transactions on knowledgeand data engineering, vol. 22, no. 10, pp. 1345-1359, october 2010. 10.1109/TKDE.2009.191.; F. Zhuang. et al., “A Comprehensive Survey on Transfer Learning”, Proceedings of theIEEE, pp. 1-34, july 2019. 10.1109/JPROC.2020.3004555.; H.-W. Ng, V. D. Nguyen, V. Vonikakis, and S. Winkler, “Deep Learning for EmotionRecognition on Small Datasets using Transfer Learning”, Proceedings of the 2015 ACM on International Conference on Multimodal Interaction (ICMI ’15), pp. 443–449, november 2015. https://doi.org/10.1145/2818346.2830593.; W. Ding et al., “Audio and face video emotion recognition in the wild using deep neuralnetworks and small datasets”, Proceedings of the 18th ACM International Conference on Multimodal Interaction (ICMI ’1), pp. 506–513, october 2016. https://doi.org/10.1145/2993148.2997637.; K. Zhang, L. Tan, Z. Li, and Y. Qiao, “Gender and smile classification using deepconvolutional neural networks”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. [Online]. Available at: https://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/html/Zhang_Gender_and_Smile_CVPR_2016_paper.html.; V. Campos, A. Salvador, B. Jou, X. Giró-i-Nieto and B. Jou, “Diving Deep into Sentiment:Understanding Fine-tuned CNNs for Visual Sentiment Prediction”, Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia (ASM '15), pp. 57-62, october 2015. https://doi.org/10.1145/2813524.2813530.; H. Ding, S. K. Zhou, and R. Chellappa, “FaceNet2ExpNet: Regularizing a Deep FaceRecognition Net for Expression Recognition”, 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 118–126, june 2017. 10.1109/FG.2017.23.; F. Wang et al., “Regularizing face verification nets for pain intensity regression,” in 2017IEEE International Conference on Image Processing (ICIP), pp. 1087–1091, september 2017. 10.1109/ICIP.2017.8296449.; M. S. Hossain and G. Muhammad, “Emotion recognition using deep learning approach fromaudio–visual emotional big data,” Information Fusion, vol. 49, pp. 69–78, september 2019. https://doi.org/10.1016/j.inffus.2018.09.008.; “Una herramienta nueva de aprendizaje automático predice con exactitud el cáncer depróstataIndustriaMedimaging.es.”[Online].Available:https://www.medimaging.es/industria/articles/294777132/una-herramienta-nueva-de-aprendizaje-automatico-predice-con-exactitud-el-cancer-de-prostata.html. [Accessed: 06-Nov-2020].; N. A. Ram, “Clasificadores supervisados del cáncer de próstata a partir de imágenes deresonancia magnética en magnetic resonance images in T2 sequences .,” no. June, pp. 19–22, 2019.; Ramírez; N, Aparicio; E, Gómez; E, “SUPERVISED CLASSIFIERS OF PROSTATECANCER. A GEOMETRIC STUDY ON MAGNETIC RESONANCE IMAGES T2 WEIGHTED (T2W), BY DIFFUSION (DWI-ADC),” Congr. Int. electrónica, Control y telecomunicaciones, vol. 51, no. 1, p. 51, 2018.; J. C. Batlle et al., “Diagnóstico del cáncer de próstata mediante espectroscopia deresonancia magnetica endorectal,” Arch. Esp. Urol., vol. 59, no. 10, pp. 953–963, 2006.; "Diferenciación entre prostatitis y cáncer de próstata utilizando el sistema PI-RADS %7C.”[Online]. Available: https://cbseram.com/2016/06/22/diferenciacion-entre-prostatitis-y-cancer-de-prostata-utilizando-el-sistema-pi-rads/. [Accessed: 06-Nov-2020]; T. Hambrock et al., “Prospective assessment of prostate cancer aggressiveness using 3-Tdiffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort,” Eur. Urol., vol. 61, no. 1, pp. 177–184, 2012.; 7]“Cáncer de Próstata - SEOM: Sociedad Española de Oncología Médica © 2019.” [Online].Available: https://seom.org/info-sobre-el-cancer/prostata?showall=1. [Accessed: 06-Nov-2020].; A. B. Rosenkrantz and S. S. Taneja, “Radiologist, be aware: Ten pitfalls that confound theinterpretation of multiparametric prostate MRI,” American Journal of Roentgenology, vol. 202, no. 1. pp. 109–120, Jan-2014.; "The Radiology Assistant : Prostate Cancer - PI-RADS v2.” [Online]. Available:https://radiologyassistant.nl/abdomen/prostate/prostate-cancer-pi-rads-v2. [Accessed: 05-Nov-2020].; P. Guzmán F and A. Messina, “Cáncer de próstata, el problema del diagnóstico ¿Es laresonancia multiparamétrica de próstata la solución?,” Rev. Chil. Radiol., vol. 25, no. 2, pp. 60–66, 2019.; I. Robles, Identificacion de Biomarcadores Predictivos ,Pronosticos y de Respuesta alCancer de Prostata. 2018.; J. I. Díaz, “Matemáticas y Ciencias de la Salud,” pp. 65–67, 2005.; R. Cuocolo et al., “Machine learning applications in prostate cancer magnetic resonanceimaging,” Eur. Radiol. Exp., vol. 3, no. 1, 2019.; S. L. Goldenberg, G. Nir, and S. E. Salcudean, “A new era: artificial intelligence andmachine learning in prostate cancer,” Nat. Rev. Urol., vol. 16, no. 7, pp. 391–403, 2019.; S. Yoo, I. Gujrathi, M. A. Haider, and F. Khalvati, “Prostate Cancer Detection using DeepConvolutional Neural Networks,” Sci. Rep., vol. 9, no. 1, pp. 1–10, 2019.; I. Simon, C. R. Pound, A. W. Partin, J. Q. Clemens, and W. A. Christens-Barry, “Automatedimage analysis system for detecting boundaries of live prostate cancer cells,” Cytometry, vol. 31, no. 4, pp. 287–294, 1998.; S. Sarkar and S. Das, “A Review of Imaging Methods for Prostate Cancer Detection,”Biomed. Eng. Comput. Biol., vol. 7s1, p. BECB.S34255, 2016.; Christian, R., Juan, F. O., y-Alejandro, M. C. (2018). Detección precoz de cáncer depróstata: Controversias y recomendaciones actuales. Revista Médica Clínica Las Condes, 29(2), 128–135. https://doi.org/10.1016/j.rmclc.2018.02.013.; Hambrock, T., Hoeks, C., Hulsbergen-Van De Kaa, C., Scheenen, T., Futterer, J.,Bouwense, S., . Barentsz, J. (2012). Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. European Urology, 61(1), 177–184. https://doi.org/10.1016/j.eururo.2011.08.042.; Nguyen, K., Sabata, B., Jain, A. K. (2012). Prostate cancer grading: Gland segmentationand structural features. Pattern Recognition Letters, 33(7), 951–961. https://doi.org/10.1016/j.patrec.2011.10.001.; Ng, Y.-M. H. Diagnosis of sheet metal stamping processes base on 3-D thermal energydistribution. IEEE Transactions on automation science and engineering. Pp, 22-30. Jan. 2007.; Prakash Surya. 3D mapping of surface temperature using thermal stereo. 9th InternationalConference on Control, Automation, Robotics and Vision. ICARCV 2006. Pp, 1- 4. 5-8 Dec. 2006.; Fan, Y., X. Li, et al. (2009). "3D numerical simulation on temperature field and flow field inthe tuyere of blast furnace (BF) based on the fluent software." Tezhong Zhuzao Ji Youse Hejin/Special Casting and Nonferrous Alloys 29(4): 324-326.; Cornacchia, T. P. M., E. B. Las Casas, et al. (2010). "3D finite element analysis on estheticindirect dental restorations under thermal and mechanical loading." Medical and Biological Engineering and Computing: 1-7.; Chethan, Y. D., Ravindra, H. V., gowda, Y. T., & Bharath Kumar, S. (2015). Machine Visionfor Tool Status Monitoring in Turning Inconel 718 using Blob Analysis. In Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2015.07.124.; Siddhpura, A., & Paurobally, R. (2013). A review of flank wear prediction methods for toolcondition monitoring in a turning process. International Journal of Advanced Manufacturing Technology, 65(1–4), 371–393. https://doi.org/10.1007/s00170-012-4177-1.; Azimi, S. M., Britz, D., Engstler, M., & Fritz, M. (2018). Advanced Steel MicrostructureClassification by Deep Learning Methods. Scientifics Reports, 8, 1–14.; Kesireddy, A., & Mccaslin, S. (2015). Using Mathematica to Accurately Approximate thePercent Area of Grains and Phases in Digital Metallographic Images. Lecture Notes in Electrical Engineering, 313. https://doi.org/10.1007/978-3-319-06773-5.; Kesireddy, A., & McCaslin, S. (2015). Application of Image Processing Techniques to theIdentification of Phases in Steel Metallographich Specimens. Lecture Notes in Electrical Engineering, 312. https://doi.org/10.1007/978-3-319-06764-3.; E. J. Guerra Monterroza, “Reconocimiento de primitivas 3D, usando autocorrelación yANFIS", Visión Electrónica, vol. 1, no. 1, pp. 56-61,2008. https://revistas.udistrital.edu.co/index.php/visele/article/view/251.; Forero C., J., Bohórquez, C., & Ruiz, V. H. (2013). Medición automatizada de piezastorneadas usando visión artificial. Visión electrónica, 7(2), 36-44.https://doi.org/10.14483/22484728.5507.; Forero C., J., Gaitán, D., & Martínez, H. (2018). Recolector autónomo de bolas de tenismediante vision artificial. Visión electrónica, 7(2), 36-44. https://doi.org/10.14483/issn.2248-4728.; S. Andreo, «Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water,» Iaea Trs, Austria, 2000.; Sociedad Española de Oncología Médica SEOM, 2020. [En línea]. Available: https://seom.org/. [Último acceso: 03 2020].; Instituto Nacional de Salud, Observatorio Nacional de Salud, «Primer Informe ONS, aspectos relacionados con la frecuencia de uso de los servicios de salud, mortalidad y discapacidad en Colombia,» Imprenta Nacional de Colombia, Bogotá D.C., 2011.; F. SALVAT, J. M. FERNÁNDEZ-VAREA y J. SEMPAU, PENELOPE-2006: A code system for Monte Carlo simulation of electron and photon transport, Barcelona: OECD, 2006.; Computerized Imaging Reference Systems CIRS, Manual Tissue Simulation & Phantom Technology, Norfolk, Virginia, 2017.; A. Brosed, Fundamentos de física médica, vol. 1, Madrid: ADI, 2011.; H. Andreo, Fundamentals of ionizing radiation dosimetry, 2017.; Agostinelli, «Simulation toolkit, Nuclear instruments and methods in physics,» sciencedirect, vol. 506, nº 3, pp. 250- 303, 2003.; Ministerio de Salud y Protección Social, «https://www.minsalud.gov.co,» 25 Marzo 2020. [En línea]. Available: https://www.minsalud.gov.co/salud/publica/PET/Documents/Circular%2019.pdf.pdf. [Último acceso: 8 11 2020].; Asociación Colombiana de Infectologia, «Consenso colombiano de atención, diagnóstico y manejo de la infección,» Revista de la Asociación Colombiana de Infectologia, vol. 24, nº 3, pp. 20-21, 2020.; L. Gamboa O, «Atlas de mortalidad por cancer en Colombia,» Instituto Nacional de Cancerologia, vol. 1, nº 4, 2017.; G. de Fernicola, «Arsénico en el agua de bebida: un problema de salud pública,» Revista Brasileira de Ciências Farmacêuticas, vol. 39, nº 4, pp. 365-372, 2003.; J. C. Ramirez, «Tomografía computarizada por rayos X: fundamentos y actualidad,» Revista Ingeniería Biomédica, vol. 2, nº 4, 2008.; l.R.Raudales Díaz, «IMÁGENES DIAGNÓSTICAS: CONCEPTOS Y GENERALIDADES,» Revista Facultad Ciencias Médicas, vol. 1, nº 1, pp. 35-43, 2014.; A. P. Montenegro, «Repositorio Pontificia Universidad Javeriana,» 19 07 2019. [En línea]. Available: https://repository.javeriana.edu.co/handle/10554/44080. [Último acceso: 14 11 2020].; A. Amer, T. Marchant, J. Sykes, J. Czajka y C. Moore,, «Imaging doses from the Elekta Synergy X-ray cone beam CT system,» The British Journal of Radiology, vol. 80, nº 954, p.476–482, 2007.; CSN, «Interaccion de la radiación con la materia,» 2013. [En línea]. Available:http://csn.ciemat.es/MDCSN/recursos/ficheros_md/133100241_2411200913036.pdf.; A. Brosed, Fundamentos De Fisica Medica, vol. 2, ADI, 2012.; E. B. Podgorsak, Radiaton Physics for Medical Physicists, 2 ed., Springer, 2010.; CIRS, «IMRT Thorax Phantom,» [En línea]. Available: www.cirsinc.com. [Último acceso: 22 02 2020].; A. Castillo, «Caracteristicas del sistema de IGRT de ELEKTA,» Grupo CROASA, Granada.; Elekta AB, «Elekta Synergy Digital accelerator for advanced IGRT,» 2017. [En línea]. Available: https://www.elekta.com/radiotherapy/treatment-delivery-systems/elekta- synergy/. [Último acceso: 14 11 2020].; C. David, «Estudio de la viabilidad de las imágenes de CBCT para planeación de tratamientos,» Pontificia Universidad Javeriana, Bogotá, 2020.; J. Allison, «Geant4 Developments and Applications,» IEEE TRANSACTIONS ON NUCLEAR SCIENCE, vol. 53, 2006.; J DeMarco, «A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms,» PHYSICS IN MEDICINE ANDBIOLOGY, nº 50, p. 3989–4004, 2005.; O. Apostolakis, «The Geant4 Simulation Toolkit and Applications For the Geant4 Collaboration,» NATO Science for Peace and Security Series B: Physics and Biophysics, 2008.; C. Giraldo, «Desarrollo y aplicaciones de GEANT4 para radioterapia y microdosimetria en detectores y circuitos integrados,» 04 2011. [En línea]. Available: https://idus.us.es/handle/11441/15762. [Último acceso: 14 11 2020].; Geant4 Collaboration, Book For Application Developers, Geant4 Collaboration, 2017.; P. Montenegro, «Repositorio Pontificia Universidad Javeriana,» 19 07 2019. [En línea].Available: https://repository.javeriana.edu.co/handle/10554/44080. [Último acceso: 14 10 2020].; M. Mostazo Caro, «Interacción Radiación-Materia Conceptos B ásico,» de Técnicas Experimentales Avanzadas, 2013, pp. 4-6.; C. Vidal Silva and L. Pavesi Farriol, “Desarrollo De Un Sistema De Adquisición Y TratamientoDe Señales Electrocardiográficas,” Rev. Fac. Ing. - Univ. Tarapacá, vol. 13, no. 1, pp. 39–46, 2005, doi:10.4067/s0718-13372005000100005.; C. Correa Flórez, R. Bolaños Ocampo, and A. Escobar, “Análisis de esquemas de filtradoanálogo para señales ecg.,” Sci. Tech., vol. 5, no. 37, pp. 103–108, 2007.; Tortora, Gerald. Derrickson, Bryan. 2006. Principios de Anatomía y Fisiología. 11ª. Edición.Editorial Médica Panamericana. México DF. México. Cap 20.; M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep learning for cybersecurity intrusion detection: Approaches, datasets, and comparative study,” J. Inf. Secur. Appl., vol. 50, p. 102419, 2020, doi:10.1016/j.jisa.2019.102419.; G. Zeng, Y. He, Z. Yu, X. Yang, R. Yang, and L. Zhang, “Preparation of novel high copperions removal membranes by embedding organosilane-functionalized multi-walled carbon nanotube,” J. Chem. Technol. Biotechnol., vol. 91, no. 8, pp. 2322–2330, 2016, doi:10.1002/jctb.4820.; T. Park, Introduction to digital signal processing. Singapore: World Scientific, 2010.; M. O. Alzate, “Clasificación de Arritmias Cardíacas usando Transformada Waveleth - tesispregrado.pdf,” 2003.; A. D. E. Maquina and C. O. N. Interfaz, “Mediante Aprendizaje De Máquina Con Interfaz aUsuario Model of Dynamic Classification of Arrhythmias Cardiac By,” Leonardo, vol. 16, pp. 86–95, 2006.; A. Behrad and K. Faez, “New method for QRS-wave recognition in ECG using MART neuralnetwork,” ANZIIS 2001 - Proc. 7th Aust. New Zeal. Intell. Inf. Syst. Conf., no. November, pp. 291–296, 2001, doi:10.1109/ANZIIS.2001.974093.; M. Mitrokhin, A. Kuzmin, N. Mitrokhina, S. Zakharov, and M. Rovnyagin, “Deep learningapproach for QRS wave detection in ECG monitoring,” 11th IEEE Int. Conf. Appl. Inf. Commun. Technol. AICT 2017 - Proc., pp. 1–3, 2019, doi:10.1109/ICAICT.2017.8687235.; I. A. Tarmizi, S. S. N. A. S. Hassan, U. K. Ngah, and W. P. W. Ibrahim, “A journal of realpeak recognition of electrocardiogram (ECG) signals using neural network,” 2012 2nd Int. Conf. Digit. Inf. Commun. Technol. its Appl. DICTAP 2012, pp. 504–510, 2012, doi:10.1109/DICTAP.2012.6215429.; M. Llamedo and J. P. Martínez, “Clasificación de ECG basada en Características de Escala, Dirección y Ritmo,” Caseib 2009, pp. 2–5, 2009.; E. D. A. Botter, C. L. Nascimento, and T. Yoneyama, “A neural network with asymmetricbasis functions for feature extraction of ECG P waves,” IEEE Trans. Neural Networks, vol. 12, no. 5, pp. 1252–1255, 2001, doi:10.1109/72.950154.; S. H. El-Khafif and M. A. El-Brawany, “Artificial Neural Network-Based Automated ECGSignal Classifier,” ISRN Biomed. Eng., vol. 2013, pp. 1–6, 2013, doi:10.1155/2013/261917.; N. Maglaveras, T. Stamkopoulos, K. Diamantaras, C. Pappas, and M. Strintzis, “ECGpattern recognition and classification using non-linear transformations and neural networks: A review,” Int. J. Med. Inform., vol. 52, no. 1–3, pp. 191–208, 1998, doi:10.1016/S1386-5056(98)00138-5.; C. Rose-Gómez and M. Serna-Encinas, “Procesamiento del Electrocardiograma para laDetección de Cardiopatías,” Researchgate.Net, no. May, pp. 3–6, 2015, [Online]. Available: http://enc2014.cicese.mx/Memorias/paper_19.pdf%5Cnhttps://www.researchgate.net/profile/Cesar_Rose/publication/277324231_Procesamiento_del_Electrocardiograma_para_la_Deteccion_de_Cardiopatias/links/5567b77d08aeab77721eac2b.pdf.; S. Jiménez Serrano, “Clasificación automática de registros ECG para la detección deFibrilación Auricular y otros ritmos cardíacos,” 2018, [Online]. Available: https://riunet.upv.es:443/handle/10251/111113.; S. G. Artis, R. G. Mark, and G. B. Moody, “Detection of atrial fibrillation using artificial neuralnetworks,” Comput. Cardiol., pp. 173–176, 1992, doi:10.1109/cic.1991.169073.; J. Wang and W. Lu, “A method of electrocardiogram classification based on neural network,”Chinese J. Biomed. Eng., vol. 14, no. 4, pp. 306–311, 1995.; M. Hammad, A. Maher, K. Wang, F. Jiang, and M. Amrani, “Detection of abnormal heartconditions based on characteristics of ECG signals,” Meas. J. Int. Meas. Confed., vol. 125, pp. 634–644, 2018, doi:10.1016/j.measurement.2018.05.033.; T. H. Chen, Z. Yu, L. Q. Han, P. Y. Guo, and X. Y. He, “The sorting method of ECG signalsbased on neural network,” 2nd Int. Conf. Bioinforma. Biomed. Eng. iCBBE 2008, pp. 543–546, 2008, doi:10.1109/ICBBE.2008.132.; Taylor GJ. 150 Practice ECGs: Interpretation and Review. Blackwell Science, 2002. ISBN0-632-04623-6.; Committee on Engineering Education, "Educating the Engineer of 2020: AdaptingEngineering Education to New the Century", NAE, pp. 1-209, 2010. Available at: http://www.nap.edu/catalog/11338.html.; World Health Organization, “World health statistics overview 2019: monitoring health for theSDGs, sustainable development goals”, Geneva: World Health Organization; pp. 1-28, 2019 (WHO/DAD/2019.1). License: CC BY-NC-SA 3.0 IGO.; World Health Organization, “Human resources for medical devices, the role of biomedicalengineers”. Geneva: World Health Organization; pp.: 1-240, 2017. License: CCBY-NC- SA 3.0 IGO.; J. Sappey and S. Relf, “Digital Technology Education and its Impact on Traditional AcademicLists and Practice”. J. Univ. Teach. & Lear. Pract. 7(1), 7(3), 2007.; J. Candle-Valdés, “The challenges of the Cuban new university”. Paper presented at thePedagogy 2007, Havana, Cuba, pp. 1-14, feb. 2007.; K. M. Galotti, et al., “To New Way of Assessing Ways of Knowing: The Attitudes TowardsThinking and Learning Survey (ATTLS)”. Sex Lists, 40(9/10), 745-766, 1999.; Ministerio de Educación Superior, Documento Ejecutivo Plan de Estudio: IngenieríaBiomédica, MES, La Habana, Cuba, págs. 1-10, 15 julio, 2017.; T. T. Bekele, “Motivation and Satisfaction in Internet-Supported Learning Environments: ToReview”. Educ. Tech. & Soc., 13(2), 116-127, 2009.; S. N. Karagiannis, “The Conflicts Between Science Research and Teaching in HigherEducation: An Academic's Perspective”. J. Teach. and Lear. Higher Educ., 21(1), 75-83, 2010.; R. Garrote and T. Pettersson. “The use of learning management systems: A LongitudinalCase Study”. Eleed, 8. 2011.; R. Hernández-Sampieri y otros, “Metodología de la Investigación. 6ta Ed., Ed. McGraw-HillEducation. México D. F., págs. 1- 634, 2014.; R. N. Strickland, Image-Processing Techniques for Tumor Detection, Boca Raton, Florida: CRC Press, 2002.; J. Thirumaran y S. Shylaja, «Medical Image Processing – An Introduction,» International Journal of Science and Research (IJSR), vol. 4, nº 11, pp. 1197-1199., 2015.; F. Ballester y J. M. Udías, «Física Nuclear y Medicina,» Rev Esp Fís, vol. 22, nº 1, pp. 29- 36, 2008.; P. Mildenberger, M. Eichelberg y E. Martin, «Introduction to the DICOM standard,» European Radiology, vol. 12, p. 920–927, 2002.; C. E. J. Kahn, J. A. Carrino, M. J. Flynn, D. J. Peck y S. C. Horii, «DICOM and Radiology: Past, Present, and Future,» TECHNOLOGY TALK, vol. 4, nº 9, pp. 652-657, 2007.; A. P. Bhagat y M. Atique, «Medical images: Formats, compression techniques and DICOM image retrieval a survey,» 2012 International Conference on Devices, Circuits and Systems (ICDCS), pp. 172-176, 2012.; D. P. Hanson y R. A. Robb, «Chapter 45 - Three-Dimensional Visualization in Medicine and Biology,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 755-784.; El Hospital, Reconstrucción 3D de la anatomía humana a partir de imágenes médicas obtenidas por ayuda diagnóstica, 2016.; J. M. Selman R., «Aplicaciones clínicas del procesamiento digital,» Revista Médica Clínica Las Condes, vol. 15, nº 2, 2004.; M. Solaiyappan, «Chapter 44 - Visualization Pathways in Biomedicine,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 729-753.; J. Rogowska, «Chapter 5 - Overview and Fundamentals of Medical Image Segmentation,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 73- 90.; A. Escobar Díaz y L. A. Calderón, «Modelo tridimensional de extremidad inferior basado en imágenes de resonancia magnética,» Visión electrónica, vol. 3, nº 1, pp. 4-15, 2009.; DICOM Library & medDream, «Dicom Library (Modality CT),» 2011. [En línea]. Available: https://www.dicomlibrary.com/.; L. Atanelov, S. A. Stiens, and M. A. Young, “History of physical medicine and rehabilitationand its ethical dimensions”, AMA journal of ethics, vol. 17, no. 6, pp. 568–574, 2015. DOI:10.1001/journalofethics.2015.17.6.mhst1-1506 URL: https://journalofethics.ama-assn.org/article/history-physical-medicine-and-rehabilitation-and-its-ethical-dimensions/2015-06; M. C. Garcia and T. Vieira, “Surface electromyography: Why, when and how to use it”,Revista andaluza de medicina del deporte, vol. 4, no. 1, pp.17–28, 2011. URL: https://www.elsevier.es/es-revista-revista-andaluza-medicina-del-deporte-284-articulo-surface-electromyography-why-when-how-X1888754611201253.; J. C. Guerrero Pupo, I. Amell Muñoz, and R. Cañedo Andalia, “Tecnología, tecnologíamédica y tecnología de la salud: algunas consideraciones básicas”, Acimed, vol. 12, no. 4, pp. 1–1, 2004. URL: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1024-94352004000400007.; J. A. A. Londoño, E. C. Bravo, and J. F. C. García, “Aplicación de tecnologías derehabilitación robótica en niños con lesión del miembro superior”, Revista Salud UIS, vol. 49, no. 1, pp. 103–114, 2017. DOI: http://dx.doi.org/10.18273/revsal.v49n1-2017010 URL: http://www.scielo.org.co/scielo.php?pid=S012108072017000100103&script=sci_abstract&tlng=es.; F. Salvuci and R. Kohanoff, Tecnologías de rehabilitación. Wiley-Interscience, 2016.; A. Merlo and I. Campanini, “Technical aspects of surface electromyography for clinicians”,The open rehabilitation journal, vol. 3, no. 1, 2010. DOI:10.2174/1874943701003010098 URL: https://benthamopen.com/ABSTRACT/TOREHJ-3-98.; F. J. Juan, “Utilidad de la electromiografía de superficie en rehabilitación” URL:https://www.researchgate.net/profile/Francisco_Juan-Garcia/publication/316588275_UTILIDAD_DE_LA_ELECTROMIOGRAFIA_DE_SUPERFICIE_EN_REHABILITACION/links/5905b86c4585152d2e957860/UTILIDAD-DE-LA-ELECTROMIOGRAFIA-DE-SUPERFICIE-EN-REHABILITACION.pdf.; J. W. Meklenburg, S. K. Patrick, and S. D. Jung, “Surface electromyogram simulator formyoelectric prosthesis testing,” 2010. URL: https://digitalcommons.wpi.edu/mqp-all/1402/.; Merletti Roberto, and Dario Farina. Surface electromyography: physiology, engineering, andapplications. Piscataway, NJ: IEEE Press, 2016, online. ISBN: 9781119082934, DOI:10.1002/9781119082934.; E. Guzmán, G. Méndez, “Electromiografía en las Ciencias de la Rehabilitación”, SaludUninorte, Vol 3, no. 3, pp 753-765, 2018.; W. A. Marrison, “Apparatus for converting radiant energy to electromechanical energy”, U.S.,Patent 2919358, Dec. 29, 1959. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/e7/ce/c2/f8074398301da9/US2919358.pdf.; D. M. Chapin, C. S. Fuller and G. L. Pearson, “Solar energy converting apparatus”, U.S.,Patent US2780765, Feb. 5, 1957. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/36/ee/af/d21dacd3884160/US2780765.pdf.; H. E. Hall, “Solar motor”, U.S., Patent US3296469, Ene. 3, 1967. [En línea]. Disponible en:https://patentimages.storage.googleapis.com/7e/58/b3/09cf657161e51f/US3296469.pdf.; B. Sepp, “Rotating advertising device”, U.S., Patent US3325930, Ene. 20, 1967. [En línea].Disponible en: https://patentimages.storage.googleapis.com/2e/14/de/57d7f191d20af2/US3325930.pdf.; Y. Nakamats, “Apparatus for converting radiant energy such as light or heat directly intoturning force”, Japón, Patent US4634343, Ene. 6, 1987. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/78/4e/a0/414270d9bad0e0/US4634343.pdf.; H. Izawa, “Solar Energy Motor”, Japan. Patent 4751413, Jun. 14, 1988. [En línea]. Disponibleen: https://patentimages.storage.googleapis.com/3f/8b/a3/9e59494a100d1e/US4751413.pdf.; G. J. Shea, “Solar energy magnetic resonance motor”, U.S., Patent US5408167, Abr. 18,1995. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/77/c4/f7/c12b523e12bfdc/US5408167.pdf.; A. Coty, “Automatically switched photovoltaic motor”, Francia, Patent WO2010082007A3,Jul. 22, 2010. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/36/8f/25/4c5399bdb634a4/WO2010082007A3.pdf.; W. Amrhein, H. Mitterhofer, E. Marth, G. Bramerdorfer, “Aufbau eines Mendocino-Motors”,Ene 2018 [En línea]. Disponible en: http://www.bis0uhr.de/projekte/magnet/projektseminar.pdf.; T. Kornher, M. Noebels, J. Roeller, S. Schwieger, F. Weller, “Mendocino-Motor”, Feb 2018[En línea]. Disponible en: https://ap.physik.uni-konstanz.de/projektpraktikum/PP2011/Bericht_Mendocinomotor.pdf.; Z. Novák, M. Hofreiter. “Mendocino motor and a different approaches to its control”,Proceedings of 15th International Conference MECHATRONIKA, Prague, pp. 1-6, 2012. [En línea]. Disponible en: https://ieeexplore.ieee.org/document/6415075.; C.M. Estupiñán, J.P. Puerto-Reyes, M. A. Beltrán, “Desarrollo de un motor mendocinocomo herramienta de enseñanza en la aplicación de energías renovables y generación de alternativas energéticas”, Revista Loggin, vol. 1, no. 1, pp. 78-89, 2017.; K. Berger, et al, “Solar Electric Motor on Superconducting Bearings: Design and Tests inLiquid Nitrogen" en IEEE sobre aplicaciones de superconductividad, vol. 27, no. 4, pp. 1-5, Jun. 2017, https://doi.org/10.1109/TASC.2016.2642140.; Fawzi Boufatah. “Réalisation d’un moteur à énergie solaire sur paliers supraconducteurs”,2016, hal-01824246. [En línea]. Disponible en: https://hal.univ-lorraine.fr/hal-01824246/document.; W. K. Lane, “Light emitting unit for continuous light production”, U.S., PatentUS20130141900A1, Jun. 6, 2013. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/f6/89/60/242f9861427fb1/US20130141900A1.pdf.; Supermagnete, “Anillo imán”, Nov, 2019. [En línea]. Disponible en: https://www.supermagnete.de/eng/ring-magnets-neodymium/ring-magnet-25mm-4.2mm-5mm_R-25-04-05-N.; Supermagnete, “Disco magnético autoadhesivo” noviembre de 2019. [En línea]. Disponibleen: https://www.supermagnete.de/eng/adhesive-magnets-neodymium/disc-magnet-self-adhesive-25mm-2mm_S-25-02-FOAM?group=discs.; Supermagnete, “Bloque imán” diciembre de 2019. [En línea]. Disponible en: https://www.supermagnete.de/eng/block-magnets-neodymium/block-magnet-40mm-20mm-10mm_Q-40-20-10-N.; H. Polo, A. Valencia, J. Roldan, J.Diaz, “Evaluación de la seguridad estructural de unsistema de seguimiento solar en Colombia”, Colombia, Universidad Distrital Francisco José de Caldas, Oct. 06, 2013. [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/5522.; D. Gomez, J. Leal, H. Montaña, A. Sanchez, “Detección de posición a partir de la mediciónde un campo magnético”, Colombia, Universidad Distrital Francisco José de Caldas, Ene. 01, 2013. [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/4397.; A. Nataraj and B. Ramasamy, "Modeling and FEA analysis of axial flux PMG for low speedwind turbine applications," 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), pp. 1-5, Kollam, 2017. doi:10.1109/TAPENERGY.2017.8397290.; M. Carrillo, C. Claudio y A. Mayorga, “Caracterización de un generador de flujo axial paraaplicaciones en energía eólica,” Revista de Ciencia y Tecnología, INGENIUS, N°19, pp. 19-28, 2018. https://doi.org/10.17163/ings.n19.2018.02.; S. S. Laxminarayan, M. Singh, A. H. Saifee and A. Mital, “Design, Modeling and Simulationof Variable Speed Axial Flux Permanent Magnet Wind Generator”, ELSEVIER, Sustainable Energy Technologies and Assessments, India, 2017. https://doi.org/10.1016/j.seta.2017.01.004.; G. Ahmad and U. Amin, “Design, Construction and Study of Small-Scale Vertical Axis WindTurbine based on a Magnetically Levitated Axial Flux Permanent Magnet Generator”, ELSEVIER, Renewable Energy, 2016. https://doi.org/10.1016/j.renene.2016.08.027.; M. Castillo García, “Diseño Electromagnético de un Generador Eléctrico para Turbina Eólicade 100 kW”, trabajo de fin de grado, Universidad Politécnica de Madrid, Madrid, España, 2017. http://oa.upm.es/49261/1/TFG_MONTANA_CASTILLO_GARCIA.pdf.; C. F. González Velázquez, “Optimización de Banco de Pruebas y Sistema de Monitoreo deAerogenerador de Baja Potencia”, trabajo de fin de tecnólogo, Centro de Ingeniería y Desarrollo Industrial, Santiago de Querétaro, 2017. http://cidesi.repositorioinstitucional.mx/jspui/handle/1024/269.; J. Kappatou, G. Zalokostas and D. Spytatos, “3-D FEM Analysis, Prototyping and Tests ofan Axial Flux Permanent-Magnet Wind Generator,” Energies, Greece, 2017. https://doi.org/10.3390/en10091269.; R. D. Chavan and V. N. Bapat, "The study of different topologies of Axial Flux PermanentMagnet generator," IEEE, 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), pp. 202-206, Pune, 2016. doi:10.1109/ICACDOT.2016.7877579.; T. Asefi, J. Faiz and M. A. Khan, “Design of Dual Rotor Axial Flux Permanent MagnetGenerators with Ferrite and Rare-Earth Magnets”, IEEE, 18th International Power Electronics and Motion Control Conference (PEMC), Budapest, 2018. doi:10.1109/EPEPEMC.2018.8522004.; Yicheng Chen, Pragasen Pillay and A. Khan, "PM wind generator comparison of differenttopologies," IEEE; Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting., pp. 1405-1412 vol.3, Seattle, WA, USA, 2004. doi:10.1109/IAS.2004.1348606.; R. Rusmana, A. A. Melkias, N. Nurrohman and I. M. W. Kastawan, “Voltage GenerationCharacteristics of an Axial Flux Permanent Magnet (AFPM) Generator”, IOP Conference Series: Materials Science and Engineering, ICIEVE, Indonesia, 2019. doi:10.1088/1757-899X/830/4/042019; I. M. W. Kastawan and Rusmana, “Voltage Generation of Three-Phase Double SidedInternal Stator Axial Flux Permanent Magnet (AFPM) Generator”, IOP Conference Series: Materials Science and Engineering, 1st Annual Applied Science and Engineering Conference, Indonesia, 2017, doi:10.1088/1757-899X/180/1/012105.; H. Gör and E. Kurt, “Preliminary Studies of a New Permanent Magnet Generator (PMG)with the Axial and Radial Flux Morphology”, ELSEVIER, ScienceDirect, Turkey, 2016. https://doi.org/10.1016/j.ijhydene.2015.12.195.; H. Gor and E. Kurt, “Waveform Characteristics and Losses of a New Double Sided Axialand Radial Flux Generator”, ELSEVIER, ScienceDirect, Turkey, 2015. https://doi.org/10.1016/j.ijhydene.2015.12.172.; A. Habib, H. Che, N. Rahim, M. Tousizadeh and E. Sulaiman, “A fully coreless Multi-StatorMulti-Rotor (MSMR) AFPM generator with combination of conventional and Halbach magnet arrays,” Alexandria Engineering Journal, vol n. 59, Issue 2, pp 589-600, April 2020. https://doi.org/10.1016/j.aej.2020.01.039.; N. Georgiev, “Study of Three-Phase Axial Flux Generators”, IEEE, 20th InternationalSymposium on Electrical Apparatus and Technologies (SIELA), Bourgas, 2018. doi:10.1109/SIELA.2018.8447093.; E. Celik, H. Gör, N. Öztürk and E. Kurt, “Application of Artificial Neural Network to EstimatePower Generation and Efficiency of a New Axial Flux Permanent Magnet Synchronous Generator”, ELSEVIER, ScienceDirect, Turkey, 2017. https://doi.org/10.1016/j.ijhydene.2017.01.168.; M. R. Minaz and M. Celebi, “Design and Analysis of a New Axial Flux Coreless PMSG withThree Rotors and Double Stators”, ELSEVIER, Results in Physics, Turkey, 2016. https://doi.org/10.1016/j.rinp.2016.10.026.; M. Dranca, M. Chirca and S. Breban, “Comparative Design Analysis of Axial FluxPermanent Magnet Direct-Drive Wind Generators”, IEEE, The 11st International Symposium on Advanced Topics in Electrical Engineering, Technical University of Cluj-Napoca, Romania, 2019. doi:10.1109/ATEE.2019.8724928.; N. E. Lastra, “Diseño y Construcción de un Generador de Flujo Axial con ImanesPermanentes de Bajo Costo para Aplicaciones Eólicas”, ResearchGate, 2019, https://www.researchgate.net/publication/336071436_Diseno_y_Construccion_de_un_Generador_de_Flujo_Axial_con_Imanes_Permanentes_de_Bajo_Costo_para_Aplicaciones_Eolicas.; A. Rasekh, P. Sergeant and L. Vierendeels, “Fully Predictive Heat Transfer CoefficientModeling of an Axial Flux Permanent Magnet Synchronous Machine with Geometrical Parameters of the Magnets”, ELSEVIER, Applied Thermal Engineering, Ghent University, Belgium, 2016. https://doi.org/10.1016/j.applthermaleng.2016.09.019.; M. Irfan, R. F. Ariyanto, L. Syafaah, A. Faruq and N. Subeki, “Stator Slotted Design of AxialFlux Permanent Magnet Generator for Low-Speed Turbine”, IOP Conference Series: Materials Science and Engineering, ICEAT, Indonesia, 2020. doi:10.1088/1757-899X/821/1/012027.; H. Polinder, “2 - Principles of electrical design of permanent magnet generators for directdrive renewable energy systems,” Woodhead Publishing Limited, Delft University of Technology, pp. 30-50, The Netherlands, 2013. doi:10.1533/9780857097491.1.30.; V. N. Antipov, A. D. Grozov and A. V. Ivanova, “Design and Analysis of a New Axial FluxPermanent Magnet Synchronous Generator for Wind”, IOP Conference Series: Materials Science and Engineering, International Scientific Electric Power Conference, Russia, 2019. doi:10.1016/j.rinp.2016.10.026.; M.M. Radulescu, S. Breban and M. Chirca, “Novel topologies of low-speed axial-fluxpermanent- magnet micro-wind generator,” The 18 th National Conference on Electrical Drives, CNAE 2016, Acta Electrotechnica, vol. 57, n° 3-4, Special Issue, 2016. doi:10.4283/JMAG.2014.19.3.273.; B. J. Chalmers and E. Spooner, "An axial-flux permanent-magnet generator for a gearlesswind energy system," in IEEE Transactions on Energy Conversion, vol. 14, no. 2, pp. 251-257, June 1999. doi:10.1109/60.766991.; A. R. Dehghanzadeh, V. Behjat and M. R. Banaei, “Dynamic Modeling of Wind TurbineBased Axial Flux Permanent Magnetic Synchronous Generator Connected to the Grid with Switch Reduced Converter”, ELSEVIER, Ain Shams Engineering Journal, Azarbaijan Shahid Madani University, Iran, 2015. https://doi.org/10.1016/j.asej.2015.11.002.; N. Radwan-Praglowska, D. Borkowski and T. Wegiel, "Model of coreless axial fluxpermanent magnet generator," 2017 International Symposium on Electrical Machines (SME), pp. 1-6, Naleczow, 2017. doi:10.1109/ISEM.2017.7993568.; S. Khan, S. Amin and S. S. Hussain Bukhari, “Design and Comparative PerformanceAnalysis of Inner Rotor and Inner Stator Axial Flux Permanent Magnet Synchronous Generator for Wind Turbine Applications”, IEEE, International Conference on Computing-iCoMET, Sukkur IBA University, Pakistan, 2019. doi:10.1109/ICOMET.2019.8673537.; L. Wei, T. Nakamura and K. Imai, “Development and Optimization of Low-Speed and High-Efficiency Permanent Magnet Generator for Micro Hydro-Electrical Generation System”, ELSEVIER, Renewable Energy, Kyoto University, Japan, 2019. https://doi.org/10.1016/j.renene.2019.09.049.; M. Ardestani, N. Arish and H. Yaghobi, “A New HTS Dual Stator Linear Permanent MagnetVernier Machine with Halbach Array for Wave Energy Conversion”, ELSEVIER, Physyca C: Superconductivity and its Applications, Semman University, Iran, 2019. https://doi.org/10.1016/j.physc.2019.1353593.; P. Khatri and X. Wang, “Comprehensive Review of a Linear electrical Generator for OceanWave Energy Conversion”, IET Renewable Power Generation, IET, Vol. 14, Lss. 6, pp. 949-958, February, 2020. doi:10.1049/iet-rpg.2019.0624.; O. S. Muñoz Muñoz, “Dimensionamiento electromagnético de un Generador Lineal para laConversión de Energía Undimotriz de Acuerdo a las Características del Océano Pacífico Colombiano”, trabajo de fin de grado, Universidad del Valle, Colombia, 2020.; C. García Saiz, “Diseño, Dimensionado y Simulación de un Generador Lineal para elDesarrollo de una Boya de Generación de Energía Undimotriz”, trabajo de fin de grado, Universidad de Cantabria, España, 2015. https://repositorio.unican.es/xmlui/handle/10902/7332.; A. García Villalmanzo, “Diseño de un Motor Lineal de Reluctancia Autoconmutado conImanes Permanentes”, trabajo de fin de grado, Universidad Rovira I Virgili, Tarragona, 2017. http://deeea.urv.cat/public/PROPOSTES/pub/pdf/2459pub.pdf.; A. Shiri and A. Shoulaie, “End Effect Braking Force Reduction in High-Speed Single-SidedLinear Induction Machine”, ELSEVIER, Energy Conversion and Management, Iran University of Science and Technology, Iran, 2012. https://doi.org/10.1016/j.enconman.2011.11.014.; X. Chen, S. Zheng, J. Li, G. T. Ma and F. Yen, “A Linear Induction Motor with a CoatedConductor Superconducting Secondary”, ELSEVIER, Physyca C: Superconductivity and its Applications, Southwest Jiaotong University, China, 2017. https://doi.org/10.1016/j.physc.2018.04.002.; SS. Rathore, S. Mishra, M. K. Paswan and Sanjay, “A Review on Design and Developmentof Free Piston Linear Generators in Hybrid Vehicles”, IOP Conference Series: Materials Science and Engineering, ICCEMME, India, 2019. doi:10.1088/1757-899X/691/1/012053.; Y. Gao, S. Shao, H. Zou, M. Tang, H. Xu and C. Tian, “A Fully Floating System for WaveEnergy Converter with Direct-Driven Linear Generator”, ELSEVIER, Energy, Beijing, China, 2015. https://doi.org/10.1016/j.energy.2015.11.072.; J. F. Fortes, L. M. Ferraz and I. E. Chabu, “Optimized Double Sided Linear Generator forWave Energy in Sao Paulo’s Coast”, 7th International Conference on Ocean Energy (ICOE), Polytechnic School of University of Sao Paulo, France, 2018. https://www.icoe-conference.com/publication/optimized-double-sided-linear-generator-for-wave-energy-in-sao-paulo-s-coast/.; V. Boscaino, G. Cipriani, V. Di Dio, V. Franzitta and M. Trapanense, “Experimental Testand Simulations on a Linear Generator-Based Prototype of a Wave Energy Conversion System Designed with a Reliability-Oriented Approach”, MDPI, Sustainability, University or Palermo, 2017. doi:10.3390/su9010098.; O. Farrok, M. R. Islam, Y. G. Guo and J. G. Zhu, “Design and Analysis of a NovelLightweight Translator Permanent Magnet Linear Generator for Oceanic Wave Energy Conversion”, IEEE, 2015. doi:10.1109/TMAG.2017.2713770.; K. Cruz, F. Dator, J. Ong, N. Bumanlag and M. C. Pacis, “Harnessing of Wave Energy usingAxially Magnetized Linear Generator with Data Logger using Gizduino Microcontroller”, IOP Conference Series: Journal of Physics: Conference Series, CEEPE, Mapua University, Philippines, 2019. doi:10.1088/1742-6596/1304/1/012013.; A. Tapia-Hernández, M. Ponce-Silva, N. Mondragón-Escamilla y L. Hernández-González,“Impacto de la Geometría en el Efecto Fin de Generadores Lineales”, Información Tecnológica, Vol.27, No. 4, pp. 133-138, México, Agosto, 2016. http://dx.doi.org/10.4067/S0718-07642016000400014.; P. Naderi, M. Heidary and M. Vahedi, “Performance Analysis of Ladder-Secondary-LinearInduction Motor with Two Different Secondary Types using Magnetic Equivalent Circuit”, ELSEVIER, ISA Transactions, Shahid Beheshti University, Iran, 2020. https://doi.org/10.1016/j.isatra.2020.03.013.; Y. Xu, X. Xue, Y. Wang and M. Ai, “Performance Characteristics of Compressed Air-Driven-Free-Piston Linear Generator (FPLG) System – A Simulation Study”, ELSEVIER, Applied Thermal Engineering, 2019. https://doi.org/10.1016/j.applthermaleng.2019.114013.; J. Xi, Z. Dong, P. Liu and H. Ding, “Modeling and Identification of Iron-less PMLSM EndEffects for Reducing Ultra-Low-Velocity Fluctuations of Ultra-precision Air Bearing Linear Motion Stage”, ELSEVIER, Precision Engineering, Shanghai Jiaotong University, China, 2017. https://doi.org/10.1016/j.precisioneng.2017.01.016.; X. Luo, C. Zhang, S. Wang, E. Zio and X. Wang, “Modeling and Analysis of Mover Gaps inTubular Moving-Magnet Linear Oscillating Motors”, ELSEVIER, Chinese Journal of Aeronautics, Chinese Society of Aeronautics ans Astronautics & Beihang University, China, 2017. https://doi.org/10.1016/j.cja.2017.11.008; K. S. Rama Rao, T. Sunderan and M. Ref’at Adiris, “Performance and Design Optimizationof Two Model Based Wave Energy Permanent Magnet Linear Generators”, ELSEVIER, Renewable Energy, 2016. https://doi.org/10.1016/j.renene.2016.07.019.; M. F. M Naafi, T. Ibrahim, N. M. Nor and M. A. Firdaus bin M. Hamim, “Design and Modellingof a Portable Pico Linear Generator for Wave Energy Conversion System”, Applied Mechanics and Materials, Vol. 785, pp. 300-304, Malaysia, 2015. https://doi.org/10.4028/www.scientific.net/AMM.785.300.; W. Rentería Palacios, “Diseño y Evaluación Electromagnética de un Motor Síncrono Linealde Imanes Permanentes en Disposición Halbach”, trabajo de fin de máster, Universidad Autónoma de Occidente, Colombia, 2018. https://hdl.handle.net/10614/10454.; J. Kim, J. Y. Kim and J. B. Park, “Design and Optimization of a 8kW Linear Generator for aDirect-Drive Point Absorber”, IEEE, Yonsei University, Seoul, Korea, 2013. doi:10.23919/OCEANS.2013.6741125.; W. Li, T.W. Ching and K.T. Chau, “Design and Analysis of a New Parallel-Hybrid-ExcitedLinear Vernier Machine for Oceanic Wave Power Generation”, ELSEVIER, Applied Energy, China, 2017. https://doi.org/10.1016/j.apenergy.2017.09.061.; L. Huang, J. Liu, H. Yu, R. Qu, H. Chen and H. Fang, “Winding Configuration andPerformance Investigation of a Tubular Superconducting Flux-Switching Linear Generator”, IEEE, Transactions on Applied Superconductivity, Vol. 25, No. 3, 2015. doi:10.1109/TASC.2014.2382877.; X. Liu, H. Yu, Z. Shi, T. Xia and M. Hu, “Electromagnetic-Fluid-Thermal Field Calculationand Analysis of a Permanent Magnet Linear Motor”, ELSEVIER, Applied Thermal engineering, Southeast University, China, 2017. https://doi.org/10.1016/j.applthermaleng.2017.10.066.; 288; CREG - Comisión de Regulación de Energía y Gas, «Regulación Aplicable al Biogás,» Comisión de Regulación de Energía y Gas, 2009.; O. Harker, «Presentación del proyecto - Prototipo de Sistema de generación de energía eléctrica a partir de residuos sólidos,» Colciencias, Fusagasugá, 2019.; I. Vera, J. Martínez, M. Estrada y A. Ortiz, «Potencial de generación de biogás y energía eléctrica Parte I: excretas de ganado bovino y porcino,» Ingeniería Investigación y Tecnología, vol. 15, nº 3, pp. 429-436, 2014. Doi: https://doi.org/10.1016/S1405- 7743(14)70352-X.; I. D. B. Sierra, «Actualización del Plan de Gestión Integral de Residuos Sólidos PGIRS de Fusagasugá,» Alcaldía de Fusagasugá, Fusagasugá, 2017.; L. D. Romero, «EL ESPECTADOR,» Tratar las basuras, lucha contrarreloj, 18 Junio 2015. [En línea]. Available: https://www.elespectador.com/noticias/bogota/tratar-basuras-lucha- contrarreloj-articulo-567135. [Último acceso: 13 abril 2020].; J. Niemczewska y G. Kolodziejak, «Landfill Gas Energy Technologies,» Instytut Nafty I Gazu, Cracovia, 2010. Disponible: https://www.globalmethane.org/Data/1022_LFG-Handbook.pdf.; R. Bove y P. Lunghi, «Electric power generation from landfill gas using traditional,» Energy Conversion and Management, vol. 47, p. 11, 2006. Doi: https://doi.org/10.1016/j.enconman.2005.08.017.; G. Blanco, E. Santalla, V. Córdoba y A. Levy, «Generación de electricidad a partir de biogás capturado de residuos sólidos urbanos: Un análisis teórico-práctico,» División de Energía: Banco Interamericano de Desarrollo, Buenos Aires, 2017. Disponible: https://publications.iadb.org/publications/spanish/document/Generación-de-electricidad- a-partir-de-biogás-capturado-de-residuos-sólidos-urbanos-Un-análisis-teórico- práctico.pdf.; Cogenera Mexico, «COGENERA MEXICO,» 2012. [En línea]. Available: http://www.cogeneramexico.org.mx/menu.php?m=77. [Último acceso: 5 Junio 2020].; ICONTEC, «Norma Técnica Colombiana GTC-24 "Gestión Ambiental. Residuos Sólidos. Guía para la separación en la fuente".,» Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), 2009.; Universidad de Cundinamarca, «Anexo 1. Protocolo para el manejo y pretratamiento de los RSO de la Plaza de Mercado del municipio de Fusagasugá.,» Anexos convocatoria Colciencias 829 - 2018 , Fusagasugá , 2020.; A. Andrade, A. Restrepo y J. Tibaquirá, «Estimación de biogás de relleno sanitario, caso de estudio: Colombia,» Entre ciencia e ingeniería, vol. 12, pp. 40-47, 2018. Doi: http://dx.doi.org/10.31908/19098367.3701.; Aqualimpia Engineering , «Aqualimpia,» [En línea]. Available:https://www.aqualimpia.com/biodigestores/biogas-purificacion/. [Último acceso: 22 05 2020].; W. Lema, «DESOTEC Actived Carbon,» 14 05 2014. [En línea]. Available: https://www.desotec.com/es/carbonologia/casos/eliminaci-n-del-sulfuro-de-hidr-geno-en- el-biog-s-parte-1. [Último acceso: 2020].; COLCIENCIAS, «Presentación del proyecto - Prototipo de Sistema de generación de energía eléctrica a partir de residuos sólidos,» Fusagasugá, 2019.; “El papel de la ciencia y la tecnología en la sociedad de conocimiento,” OCyT. https://www.ocyt.org.co/el-papel-de-la-ciencia-y-la-tecnologia-en-la-sociedad-de conocimiento/ (accessed Oct. 27, 2020).; A. Kapoor, S. I. Bhat, S. Shidnal, and A. Mehra, “Implementation of IoT (Internet of Things) and Image processing in smart agriculture,” in 2016 International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), Bengaluru, India, Oct. 2016, pp. 21–26, doi:10.1109/CSITSS.2016.7779434.; J. Zhou, D. Xiao, and M. Zhang, “Feature Correlation Loss in Convolutional Neural Networks for Image Classification,” in 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, Mar. 2019, pp. 219–223, doi:10.1109/ITNEC.2019.8729534.; T. Treebupachatsakul and S. Poomrittigul, “Bacteria Classification using Image Processing and Deep learning,” in 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), JeJu, Korea (South), Jun. 2019, pp. 1–3, doi:10.1109/ITC-CSCC.2019.8793320.; S. Dutta Gupta and A. K. Pattanayak, “Intelligent image analysis (IIA) using artificial neural network (ANN) for non-invasive estimation of chlorophyll content in micropropagated plants of potato,” Vitro Cell. Dev. Biol. - Plant, vol. 53, no. 6, pp. 520–526, Dec. 2017, doi:10.1007/s11627-017-9825-6.; A. M. Moreno-Jiménez, S. Loza-Cornejo, and M. Ortiz-Morales, “Efecto de luz LED sobresemillas de Capsicum annuum L. var. serrano,” vol. 17, no. 3, p. 7, 2017.; A. Rojas, “Flora Urbana Del Área Metropolitana De Bucaramanga,” Innovaciencia Fac.Cienc. Exactas Físicas Nat., vol. 5, no. 1 S1, Dec. 2017, doi:10.15649/2346075X.454.; A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with DeepConvolutional Neural Networks,” in Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–1105.; Y. A. Arévalo Ortega, S. R. Corredor Vargas y G. A. Higuera Castro, «Análisis forense con herramientas de hacking en dispositivos android,» Visión Electrónica, vol. 13, nº 1, pp. 162-177, 2019.; L. iyuan y H. Wenfeng, «Development of Puzzle Game for IOS Platform Based on Unity3D,» de 3rd International Conference on Applied Computing and Information Technology/2nd International Conference on Computational Science and Intelligence (ACIT-CSI), 2015.; A. Lima y E. A. da Costa, «Experimental Approach of the Asymptotic Computational Complexity of Shaders for Mobile Devices with OpenGL ES,» de Brazilian Symposium on Computer Games and Digital Entertainment, 2014.; B. J. Cox, The objective-C environment: past, present, and future, 1987.; G. Bournoutian y A. Orailoglu, «On-device objective-C application optimization framework for high-performance mobile processors,» de Design, Automation & Test in Europe Conference & Exhibition (DATE), 2014.; R. Rawlings, «bjective-C: an object-oriented language for pragmatists,» de Colloquium on Applications of Object-Oriented Programming, 1989.; G. Song, S. Ren, D. Zhang, K. Liu, Y. Sun y X. A. Wang, «Research on War Strategy Games on Mobile Phone based on Cocos2d-JS,» de 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2015.; S. Guozhi, R. Shuxia, Z. Dakun, L. Kunliang, S. Yumeng y A. W. Xu, «Research on War Strategy Games on Mobile Phone,» 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 151-155, 2015.; B. A. Brady, A. K. Jones y I. S. Kourtev, «Efficient CAD development for emerging technologies using Objective-C and Cocoa,» de International Conference on Electronics, Circuits and Systems, 2004, 2004.; C. W. Cho, C. P. Hong, J. C. Piao, Y. K. Lim y S. D. Kim, «Performance optimization of 3D applications by OpenGL ES library hooking in mobile devices,» de 13th International Conference Computer and Information Science (ICIS), 2014 IEEE/ACIS , 2014.; J. C. Piao, C. W. Cho, C. G. Kim, B. Burgstaller y S. D. Kim, «An Adaptive LOD Setting Methodology with OpenGL ES Library on Mobile Devices,» de International Conference on Convergence and Security (ICITCS), 2014.; F. A. Manrique Suarez, L. C. Velásquez Rodríguez y G. M. Tarazona Bermúdez, «Estado del arte sobre aplicaciones móviles: caso de estudio enfocado a estudiantes universitarios en Bogotá, Colombia,» Visión Electrónica, vol. 11, nº 2, pp. 279-288, 2017.; R. Besas, R. O. Atienza, T. Tai y R. Cruz, «An implementation of a structured and highly engaging learning environment on educational games for elementary education,» de IT in Medicine and Education (ITME), 2011.; C. Carter, Q. Mehdi y T. Hartley, «Navigational techniques to improve usability and user experience in RPG games,» de 17th International Conference on Computer Games (CGAMES), 2012.; C. Le Marc, J. P. Mathieu, M. Pallot y S. Richir, «Serious gaming: From learning experience towards User Experience,» de International Technology Management Conference (ICE), 2010.; S. F. Hsiao, S. Y. Li y K. H. Tsao, «Low-power and high-performance design of OpenGL ES 2.0 graphics processing unit for mobile applications,» de International Conference on Digital Signal Processing (DSP) , 2015.; S. F. Hsiao, P. H. Wu, C. S. Wen y L. Y. Chen, «Design of a programmable vertex processor in OpenGL ES 2.0 mobile graphics processing units,» de International Symposium on VLSI Design, Automation, and Test (VLSI-DAT), 2013.; X. Zhao y X. Huang, «A general solution of script-based fragment animation,» de 6th IEEE International ConferenceSoftware Engineering and Service Science (ICSESS), 2015.; L. Wang, «Design and Implementation of Four Arithmetic Operations Learning Games in Primary Mathematics Based on cocos2d-js,» 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE), pp. 595-598, 2018.; M. P. A. Balayan, V. V. B. Conoza, J. M. M. Tolentino, R. C. Solamo y R. P. Feria, «On evaluating skillville: An educational mobile game on visual perception skills. In Information, Intelligence, Systems and Applications,» de The 5th International Conference IISA 2014,, 2014.; B. Cassidy, G. Stringer y M. H. Yap, «Mobile Framework for Cognitive Assessment: Trail Making Test and Reaction Time Test,» de Computer and Information Technology (CIT), 2014.; Y. Lu, W. Gao y F. Wu, «Efficient background video coding with static sprite generation and arbitrary-shape spatial prediction techniques,» Transactions on Circuits and Systems for Video Technology, vol. 13, nº 5, pp. 394-405, 2013.; Cocos2D-x, «ARCHITECTURE OVERVIEW,» [En línea]. Available: http://www.cocos2d-x.org/wiki/Engine_Architecture. [Último acceso: 14 02 2016].; Y. Lu, Y. Liu y S. Dey, «loud mobile 3D display gaming user experience modeling and optimization by asymmetric graphics rendering,» IEEE Journal of Selected Topics in Signal Processing, vol. 9, nº 3, pp. 517-532, 2015.; S. Arefin Riffat, F. Harun y T. Hassan, «An Interactive Tele-Medicine System via Android Application,» Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA), pp. 148-152, 2020.; Y. Liu, H. Dar y R. Sharp, «Mobile Gamer Modelling and Game Performance Preference Measurement,» IEEE Conference on Games (CoG), pp. 632-635, 2020.; J. C. Piao, C. W. Cho, C. G. Kim, B. Burgstaller y S. D. Kim, «An adaptive LOD setting methodology with OpenGL ES library on mobile devices,» de IT Convergence and Security (ICITCS), 2014.; E. C. Chan y B. G. , «Appendix B: Introduction to Objective-C Programming in iPhone,» de Introduction to Wireless Localization: With iPhone SDK Examples, pp. 261-304.; Simulation Study on Duoplasmatron With Optimization of Ion Beam Extraction System S.Park and Y. Kim. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 45, NO. 6, JUNE 2017 955.; Aceleradores de partículas: Modelos para su diseño y la dinámica del haz MODELIZACIÓNAPLICADA A LA INGENIERÍA. R. Strangis. CYCLOTOPE, Houston, Texas, Estados Unidos. Junio 2011.; Presente y futuro de la implantación iónica: se describe la naturaleza, características,ventajas y desventajas de los tratamientos de superficie por implantación iónica; además el actual estado de desarrollo de esta tecnología, sus aplicaciones y las previsiones de su evolución en los próximos años. T. Rodríguez. 1998.; Modificación superficial de un acero AISI SAE 1045 mediante la implantación de iones denitrógeno y titanio. D. V. Salinas, D. Y. Peña y L. F. Chinchilla. Universidad Industrial de Santander UIS. Universidad Pontificia Bolivariana UPB. Julio 2011.; Microcavity engineering by plasma immersion ion implantation, Materials Chemistry andPhysics. P. K. Chu and N. W. Cheung. 57, 1998, 1-16.; A review of recent developments in ion implantation for metallurgical application. Se realizaeste trabajo o proyecto con el objetivo de identificar oportunidades para la aplicación industrial de la implantación iónica. R. Hutchings. 1994.; Experimental investigation on corrosion and hardness of ion implanted AISI 316L stainlesssteel. Materials & design technology. V. Muthukumaran. 2010.; Una mirada a los medios para diagnóstico por imágenes desde la educación médica. L.Esquivel Sosa, Y. Fleites García y Y. Jiménez González. EDUMECENTRO 2018;10(1): ISSN 2077-2874 RNPS 2234 Santa Clara ene.-mar.; La revolución científico-técnica y su impacto en las ciencias médicas. M. Hernández Pino.La Habana: Universidad Virtual de Salud Manuel Fajardo. 6 Sep 2016.; Imágenes Médicas: adquisición, análisis, procesamiento e interpretación. G. Passariello yF.Mora. Eds. Venezuela: Equinoccio, Ediciones de la Universidad Simón Bolívar;1995.; IMÁGENES DIAGNÓSTICAS: CONCEPTOS Y GENERALIDADES DIAGNOSTICIMAGES: CONCEPTS AND GENERALITIES I. R. Raudales Díaz. Rev. Fac. Cienc. Méd. Enero -Junio 2014.; Getting started in clinical radiology from image to diagnosis. G. W. Eastman, C. Wald andJ.Crossin. Germany: Thieme; 2005.; «Organización Mundial de la Salud,» 1 febrero 2018. [En línea]. Available:http://www.who.int/es/newsroom/fact-sheets/detail/cancer.; El Cáncer. J. G. de la Garza Salazar y P. Juárez Sánchez. Universidad Autónoma de NuevoLeón. Centro, Monterrey, Nuevo León, México, C.P. 64000 Primera edición, 2014.; Hadronterapia. J. L. Herranz, E. Herraiz, S. Vicente, J. España, J. L. Cal-Gonzalez y J. M.Udías. Primer Encuentro Complutense para la Divulgación en Física Nuclear y de Partículas [Internet]. gfn; 2008.; Proton Therapy: state of the art and clinical applications. I. López Moranchel and P. I.Maurelos Castell, 1). Centro de Formación Profesional San Juan de Dios, GENUD Toledo Research Group. (Universidad de Castilla-La Mancha). REVISTA OFICIAL DE LA SOCIEDAD ESPAÑOLA DE ENFERMERÍA ONCOLÓGICA. 2019.; Proton Therapy. A. R. Smith. Med Phys. 26 de enero de 2009 [citado 20 de abril de2019];36(2):556-68.; The risk of radiation-induced second cancers in the high to medium dose region: acomparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors. M. Moteabbed, T. I. Yock, H. Paganetti. Phys Medicina Biol [Internet]. 21 de junio de 2014 [citado 20 de abril de 2019];59(12):2883-99. D.; A Sealed-Accelerator-Tube Neutron Generator for Boron Neutron Capture TherapyApplication. K. N. Leung, Y. Lee, J. M. Verbeke, J. Vujic, M. D. Williams, L. K. Wu, N. Zahir. Lawrence Berkeley National Laboratory University of California Berkeley Berkeley USA Nuclear Engineering Department. La jolla, CA septiembre 1998.; Evaluación Preliminar de la Aceleración de D en un Generador de Neutrones D-DCompacto de Alto Flujo. J. A. Cifuentes Parada, Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Física Bogotá D.C., Colombia 2019.; Physics. D. Halliday and R. Resnick. Wiley; Part 2 edition, 1978.; Educational Applets: https://www.falstad.com/vector2de, https://www.falstad.com/vector3de.; M. Sereday, M. Damiano, and S. Lapertosa, “Amputaciones de Miembros Inferiores endiabéticos y no diabéti-cos en el ámbito hospitalario,” Alad(Asociación Larinoamericana de Diabetes), pp. 9–15, 2009, [Online]. Available: http://www.revistaalad.com.ar/pdfs/0905_Amp_de_Miem.pdf.; C. Quintero Quiroz, A. Jaramillo Zapata, M. T. De Ossa Jiménez, and P. A. Villegas Bolaños,“Estudio descriptivo de condiciones del muñón en personas usuarias de prótesis de miembros inferiores,” Rev. Colomb. Médicina Física y Rehabil., vol. 25, no. 2, pp. 94–103, 2018, doi:10.28957/rcmfr.v25n2a1.; L. H. Lugo and G. Desarrollador, “Guía de Práctica Clínica.”; O. Horgan and M. M. A. C. Lachlan, “Psychosocial adjustment to lower-limb amputation : Areview,” 2004, doi:10.1080/09638280410001708869.; B. L. Martín, M. Jesús, and P. Hernández-Rico, “Amputación.”; "Convocatoria para proyectos de Ciencia, Tecnología e Innovación y su contribución a losretos de país- 2018 %7C Convocatoria 808 %7C COLCIENCIAS.” https://www.colciencias.gov.co/convocatorias/investigacion/convocatoria-para-proyectos-ciencia-tecnologia-e-innovacion-y-su-0 (accessed Aug. 04, 2019).; W. L. Childers, R. S. Kistenberg, and R. J. Gregor, “The Biomechanics of Cycling with aTranstibial Amputation: Recommendations for Prosthetic Design and Direction for Future Research,” Prosthet. Orthot. Int., vol. 33, no. 3, pp. 256–271, Sep. 2009, doi:10.1080/03093640903067234.; I. Pinilla Giménez, “Juego serio para terapias de rehabilitación motora y cognitiva conrealidad virtual,” 2017, Accessed: Aug. 29, 2019. [Online]. Available: http://uvadoc.uva.es/handle/10324/23073.; G. Fiedler, J. Akins, R. Cooper, S. Munoz, and R. A. Cooper, “Rehabilitation of People withLower-Limb Amputations,” Curr. Phys. Med. Rehabil. Reports, vol. 2, no. 4, pp. 263–272, Dec. 2014, doi:10.1007/s40141-014-0068-8.; Prodalca, “Rodillo personal trainer con regulador de esfuerzo,” 2019. https://prodalca.com.co/producto/rodillo-personal-trainer-con-regulador-de-esfuerzo/.; C. Sun and Z. Qing, “Design and Construction of a Virtual Bicycle Simulator for EvaluatingSustainable Facilities Design,” Adv. Civ. Eng., vol. 2018, 2018, doi:10.1155/2018/5735820.; T. Instruments and I. Sloa, “Chapter 16 Active Filter Design Techniques Excerpted from OpAmps for Everyone Literature Number: SLOD006A.”; L. Xiong et al., “IMU-based automated vehicle slip angle and attitude estimation aided byvehicle dynamics,” Sensors (Switzerland), vol. 19, no. 8, 2019, doi:10.3390/s19081930.; Arduino Uno Rev3 %7C Arduino Official Store.” https://store.arduino.cc/usa/arduino-uno-rev3.; S. Sanghani, Stumps and Cranks: An Introduction to Amputee Cycling.; M. Ambrož, “Raspberry Pi as a low-cost data acquisition system for human poweredvehicles,” Meas. J. Int. Meas. Confed., vol. 100, pp. 7–18, 2017, doi:10.1016/j.measurement.2016.12.037.; F. Villarreal, “Introducción a los modelos de pronósticos,” Univ. Nac. del Sur, pp. 1–121,2016.; “pySerial 3.0 documentation.” https://pythonhosted.org/pyserial/.; “python-drawnow: MATLAB-like drawnow to easily update a figure.” https://github.com/stsievert/python-drawnow.; J. D. Rairan-Antolines and J. M. Fonseca-Gómez, “Algoritmo para la aproximación de lavelocidad de giro de un eje mediante un encoder incremental,” Ing. y Univ., vol. 17, no. 2, pp. 293–309, 2013.; MinSalud, “33 mil personas al año mueren de Cáncer en Colombia.” https://www.minsalud.gov.co/Paginas/33-mil-personas-al-año-mueren-de-Cáncer-en-Colombia.aspx.; D. Raúl Pefaur, “Imaginología actual del cáncer pulmonar,” Rev. Médica Clínica Las Condes, vol. 24, no. 1, pp. 44–53, 2013, doi: https://doi.org/10.1016/S0716-8640(13)70128-7.; C. R. José Miguel, “Estado actual del tratamiento del cáncer pulmonar,” Rev. Médica Clínica Las Condes, vol. 24, no. 4, pp. 611–625, 2013, doi: https://doi.org/10.1016/S0716-8640(13)70200-1.; Society American Cancer, “Cancer Statistics Center,” 2020. https://cancerstatisticscenter.cancer.org/?_ga=2.68534866.2102841857.1593652002-2027832360.1593652002#!/.; Diariopresente.mx, “Google desarrolla algoritmo que detecta el cáncer de pulmón,” 2018. [Online]. Available: https://www.diariopresente.mx/actualidad/google-desarrolla-algoritmo-que-detecta-el-cancer-de-pulmon/218050.; M. F. Abbod, J. W. F. Catto, D. A. Linkens, and F. C. Hamdy, “Application of ArtificialIntelligence to the Management of Urological Cancer,” J. Urol., vol. 178, no. 4, pp. 1150–1156, 2007, doi: https://doi.org/10.1016/j.juro.2007.05.122.; J. M. Purswani, A. P. Dicker, C. E. Champ, M. Cantor, and N. Ohri, “Big Data From SmallDevices: The Future of Smartphones in Oncology,” Semin. Radiat. Oncol., vol. 29, no. 4, pp. 338–347, 2019, doi: https://doi.org/10.1016/j.semradonc.2019.05.008.; K. Cieślak, “Professional psychological support and psychotherapy methods for oncologypatients. Basic concepts and issues,” Reports Pract. Oncol. Radiother., vol. 18, no. 3, pp. 121–126, 2013, doi: https://doi.org/10.1016/j.rpor.2012.08.002.; H. Contreras, “Teoria de la Computacion para Ingeniería de Sistemas: Un enfoque practico.”Caracas: Saber, Ula. V, 2012, [Online]. Available: https://d1wqtxts1xzle7.cloudfront.net/39872592/tema1.pdf?1447177931=&response-content-disposition=inline%3B+filename%3DTema1.pdf&Expires=1594305464&Signature=Fe86rqeud4Y7osvWzUUhOYTIZCaL-k~pJaar2XxVbujlot-4xV9wYpduKdxkZ5zHaSPhUOCcpH1v0k7Y5shbONvWqbXmdTzdO.; A. GALIPIENSO, M. ISABEL, M. A. CAZORLA QUEVEDO, O. Colomina Pardo, F.ESCOLANO RUIZ, and M. A. LOZANO ORTEGA, Inteligencia artificial: modelos, técnicas y áreas de aplicación. Editorial Paraninfo, 2003.; J. V. González, O. A. V. Arenas, and V. V. González, “Semiología de los signos vitales:Una mirada novedosa a un problema vigente,” Arch. Med., vol. 12, no. 2, pp. 221–240, 2012, [Online]. Available: https://www.redalyc.org/pdf/2738/273825390009.pdf.; Liip.care, “Liip Smart Monitor,” 2019. https://liip.care/es/.; Welchallyn.com, “Equipos de signos vitales,” 2018.; Welchallyn.com, “Equipos de signos vitales,” 2018. https://www.welchallyn.com/content/welchallyn/latam/es/products/categories/patient-monitoring/vital-signs-devices.html#.; Scikit-learn.org, “Scikit-learn machine learning in python,” 2019. https://scikit-learn.org/stable/index.html.; Cancer Treatment Centers of America, “Lung cancer stages,” 2020. https://www.cancercenter.com/cancer-types/lung-cancer/stages.; NIH (Instituto Nacional del Cáncer), “¿Qué es el cancer?,” 2015. https://www.cancer.gov/espanol/cancer/naturaleza/que-es%0A.; Roger S. Pressman. (2010). Ingeniería del Software Un enfoque práctico. Vol. 3, SéptimaEdición. pp. 70.; Castro, F.D. (2008). Metodologia de projeto centrada na casa da qualidade. Tesis deMaestría, universidade federal rio grande do sul, Porto Alegre, Brasil.; Pahl, G., & Beits, W. (2013). Engineering design: a systematic approach. Springer ScienceBusiness Media.; R. De Armas, A. Alfonso, y L. Rojas, “Tomografía local con bases daubechies", VisiónElectrónica, vol. 9, no. 2, pp. 300-311, 2015.; C. H. Caicedo y A. Smida, “Intensidad informacional para la longitudinalidad asistencial ensistemas de salud", Visión Electrónica, vol. 10, no. 1, pp. 83-95, 2016. https://doi.org/10.14483/22484728.11612.; J. R. Torres Castillo, J. S. Pérez Lomelí, E. Camargo Casallas, y M. Ángel PadillaCastañeda, “Dispositivo háptico vibrotáctil inalámbrico para asistencia de actividades motoras", Visión Electrónica, vol. 12, no. 1, pp. 58-64, 2018. https://doi.org/10.14483/22484728.13310.; N. W. S. US Department of Commerce, NOAA, “Your National Weather Service: Evolvingto Build a Weather-Ready Nation,” 2017. https://www.weather.gov/about/wrn (accessed Oct. 17, 2020).; NOAA,“AboutOur Agency %7C National Oceanic and AtmosphericAdministration.” https://www.noaa.gov/about-our-agency (accessed Oct. 17, 2020).; NOAA, “Marina y aviación %7C Administración Nacional Oceánica y Atmosférica,” 2020.https://www.noaa.gov/marine-aviation (accessed Oct. 25, 2020).; N. NESDIS, “About %7C NOAA National Environmental Satellite, Data, and Information Service(NESDIS),” 2019. https://www.nesdis.noaa.gov/content/about (accessed Oct. 25, 2020).; NOAA,“Gráficos %7C Administración Nacional Oceánica yAtmosférica,”2020. https://www.noaa.gov/charting (accessed Oct. 25, 2020).; NOAA,“Educación Administración Nacional Oceánica y Atmosférica,”2019. https://www.noaa.gov/education (accessed Oct. 25, 2020).; N. N. O. and A. A. US Department of Commerce, “National Oceanic and AtmosphericAdministration (NOAA) Staff Directory Page,” 2018.; N. O. and A. A. US Department of Commerce, “NOAA’s National Ocean Service,” 2019.; R. Weiher, “Assessing the Economic & Social Benefits of NOAA Data,” 2008. Accessed:Nov. 19, 2020. [Online]. Available: https://www.oecd.org/sti/ieconomy/40066192.pdf.; H. Kite-Powell, “Estimating Economic Benefits from NOAA PORTS ® Information: A CaseStudy of Houston,” 2007. Accessed: Nov. 19, 2020. [Online]. Available: https://tidesandcurrents.noaa.gov/publications/EstimatingEconomicBenefitsfromNOAAPORTSIn formation_Houston-Galveston.pdf.; NASA, “Órbitas de Satélites,” 2020. https://scool.larc.nasa.gov/Spanish/orbits-sp.html(accessed Oct. 17, 2020).; N. OSPO, “GOES Status - Office of Satellite and Product Operations,” Aug. 15, 2019.https://www.ospo.noaa.gov/Operations/GOES/status.html (accessed Oct. 17, 2020).; N.OSPO, “POES Operational Status- POESStatus- OSPO,”Mar. 22, 2019. https://www.ospo.noaa.gov/Operations/POES/status.html (accessed Oct. 19, 2020).; NOAA, “NOAA Readies GOES-15 and GOES-14 for Orbital Storage %7C NOAA NationalEnvironmental Satellite, Data, and Information Service (NESDIS),” Jan. 29, 2020. https://www.nesdis.noaa.gov/content/noaa-readies-goes-15-and-goes-14-orbital-storage (accessed Oct. 17, 2020).; N. OSPO, “Suomi-NPP Operational Status - Office of Satellite and Product Operations,”Apr. 14, 2016. https://www.ospo.noaa.gov/Operations/SNPP/status.html (accessed Oct. 19, 2020).; X. Zou and X. Tian, “COMPARISON OF ATMS STRIPING NOISE BETWEEN NOAA-20AND S- NPP Xiaolei Zou and Xiaoxu Tian Earth System Science Interdisciplinary Center , University of Maryland , College Park , MD 20740,” IEEE Int. Geosci. Remote Sens. Symp., pp. 3105–3108, 2018, doi:10.1109/IGARSS.2018.8517482.; X. Tian, X. Zou, and N. Sun, “COMPARISON OF RO-ESTIMATED ATMS BIASESBETWEEN NOAA-20 AND S-NPP Earth System Science Interdisciplinary Center , University of Maryland , College Park , MD 20740 Earth Resources Technology ( ERT ), Inc ., Laurel , MD20707 , USA,” IEEE Int. Geosci. Remote Sens. Symp., pp. 3101–3104, 2018, doi:10.1109/IGARSS.2018.8519416.; W. Wang, C. Cao, Y. Bai, S. Blonski, and M. A. Schull, “Assessment of the NOAA S-NPPVIIRS geolocation reprocessing improvements,” Remote Sens., vol. 9, no. 10, 2017, doi:10.3390/rs9100974.; N. NESDIS, “Imágenes del sector: América del Sur - Norte - NOAA / NESDIS / STAR,”2020. https://www.star.nesdis.noaa.gov/GOES/sector.php?sat=G16§or=nsa (accessed Oct. 17, 2020).; S. A. Buehler, V. O. John, A. Kottayil, M. Milz, and P. Eriksson, “Efficient radiative transfersimulations for a broadband infrared radiometer-Combining a weighted mean of representative frequencies approach with frequency selection by simulated annealing,” J. Quant. Spectrosc. Radiat. Transf., vol. 111, no. 4, pp. 602–615, 2010, doi:10.1016/j.jqsrt.2009.10.018.; U.S. DEPARTMENT OF COMERCE, National Oceanic and Atmospheric Adminitration,and and National Environmental Satellite, Data, “National Oceanic and Atmospheric Administration User’s Guide for Building and Operating Environmental Satellite Receiving Stations,” Feb. 2009. Accessed: Oct.17,2020. [Online]. Available: https://noaasis.noaa.gov/NOAASIS/pubs/Users_GuideBuilding_Receive_Stations_March_2009.pdf.; J. Mitola, “The Software Radio Architecture,” Softw. Radio Technol., vol. 33, no. May, pp.26–38, 2009, doi:10.1109/9780470546444.ch1.; V. Dascal, P. Dolea, O. Cristea, and P. Tudor, “Advanced Vhf Ground Station for NoaaWeather Satellite Apt Image Reception,” Acta Tech. Napocensis, vol. 53, no. 3, pp. 1–7, 2012.; C. Bosquez, A. Ramos, and L. Noboa, “System for receiving NOAA meteorological satelliteimages using software defined radio,” Proc. 2016 IEEE ANDESCON, ANDESCON 2016, pp. 0– 3, 2016, doi:10.1109/ANDESCON.2016.7836233.; C. Velasco and C. Tipantuna, “Meteorological picture reception system using softwaredefined radio (SDR),” 2017 IEEE 2nd Ecuador Tech. Chapters Meet. ETCM 2017, vol. 2017-Janua, pp. 1–6, 2017, doi:10.1109/ETCM.2017.8247551.; E. B. Mikkelsen, “The Design of a Low Cost Beacon Receiver System using SoftwareDefined Radio,” Inst. Elektron. og telekommunikasjo, no. July, pp. 1–83, 2009, [Online]. Available: https://hdl.handle.net/11250/2369478.; D. J. M. Peralta, D. S. Dos Santos, A. Tikami, W. A. Dos Santos, and E. W. R. Pereira,“Satellite telemetry and image reception with software defineradio applied to space outreach projects in brazil,” An. Acad. Bras. Cienc., vol. 90, no. 3, pp. 3175–3184, 2018, doi:10.1590/0001- 3765201820170955.; A. G. C. Guerra, A. S. Ferreira, M. Costa, D. Nodar-López, and F. Aguado Agelet,“Integrating small satellite communication in an autonomous vehicle network: A case for oceanography,” Acta Astronaut., vol. 145, no. November 2017, pp. 229–237, 2018, doi:10.1016/j.actaastro.2018.01.022.; J. Lee Min, “Decoding Signals From Weather Satellites Using Software Defined Radio,”Electron.Theses Diss., vol. 3, no. 2, pp. 1–70, 2018, doi:10.18041/2382-3240/saber.2010v5n1.2536.; Icom, “INSTRUCTON MANUAL iPCR1500 iPCR2500,” Screen. Icom, Osaka, pp. 45–49,2006, [Online]. Available: http://www.icomamerica.com/es/products/receivers/pc/pcr1500/default.aspx.; National Instruments, “SPECIFICATIONS USRP-2920,” Jul. 13, 2017. https://www.ni.com/pdf/manuals/375839c.pdf (accessed Oct. 19, 2020).; RTL-SDR, “RTL-SDR Blog V3 Datasheet,” Feb. 2018. Accessed: Oct. 19, 2020. [Online].Available: https://www.rtl-sdr.com/wp-content/uploads/2018/02/RTL-SDR-Blog-V3- Datasheet.pdf.; N. Crisan and L. Cremene, “NOAA Signal Decoding And Image Processing Using GNU-Radio,” Acta Tech. Napocensis, vol. 49, no. 4, pp. 1–5, 2012.; D. Aguirre and P. R. Yanyachi, “Design of a parabolic patch antenna in band L, with doublelayer and air substrate, for weather satellite reception,” 2017 6th Int. Conf. Futur. Gener. Commun. Technol. FGCT 2017, pp. 10–14, 2017, doi:10.1109/FGCT.2017.8103395.; Y. Rafsyam, Z. Indra, E. E. Khairas, Jonifan, and W. A. Karimah, “Design of Double CrossDipole Antenna as NOAA Satellite Signal Receiver for Monitor Cloud Conditions Application,” J.Phys. Conf. Ser., vol. 1364, no. 1, 2019, doi:10.1088/1742-6596/1364/1/012059.; M. Fathurahman, Zulhelman, A. Maulana, and M. Widyawati, “Design and Development ofDipole Antenna for NOAA Satellite Image Acquisition System and Processing,” J. Phys. Conf. Ser., vol. 1364, no. 1, 2019, doi:10.1088/1742-6596/1364/1/012025.; F. P. A. Escobedo, H. R. Alvarez, H. Salazar, C. G. R. Percing, and R. L. J. M. De Oca,“Low cost optimization method of a double cross antenna satellite reception system for the processing and improvement of meteorological satellite signals and images NOAA 15-18-19,” Proc. 2019 IEEE 1st Sustain. Cities Lat. Am. Conf. SCLA 2019, pp. 1–6, 2019, doi:10.1109/SCLA.2019.8905749.; A. E. Quiroz-Olivares, N. I. Vargas-Cuentas, G. W. Zarate Segura, and A. Roman-Gonzalez, “Low-cost and portable ground station for the reception of NOAA satellite images,”Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 5, pp. 450–454, 2019, doi:10.14569/ijacsa.2019.0100557.; M. L. Keefer et al., “Evaluating the NOAA Coastal and Marine Ecological ClassificationStandard in estuarine systems: A Columbia River Estuary case study,” Estuar. Coast. Shelf Sci., vol. 78, no. 1, pp. 89–106, 2008, doi:10.1016/j.ecss.2007.11.020.; A. K. Mitra, P. K. Kundu, A. K. Sharma, and S. K. Roy Bhowmik, “A neural networkapproach for temperature retrieval from AMSU-a measurements onboard NOAA-15 and NOAA-16 satellites and a case study during Gonu cyclone,” Atmosfera, vol. 23, no. 3, pp. 225–239, 2010.; D. J. Schneider and M. J. Pavolonis, “ADVANCES IN VOLCANO MONITORING : THEROLE OF JPSS INSTRUMENTS U . S . Geological Survey-Alaska Volcano Observatory , Anchorage , AK NOAA Cooperative Institute for Meteorological Satellite Studies , Madison , WI,” IEEE Int. Geosci. Remote Sens. Symp., pp. 2798–2801, 2017, doi:10.1109/IGARSS.2017.8127579.; C. Muñoz, P. Acevedo, S. Salvo, G. Fagalde, and F. Vargas, “Detección de incendiosforestales utilizando imágenes NOAA/16-LAC en la Región de la Araucanía, Chile,” Bosque, vol. 28, no. 2, pp. 119–128, 2007, doi:10.4067/s0717-92002007000200004.; L. Carro-Calvo, C. Casanova-Mateo, J. Sanz-Justo, J. L. Casanova-Roque, and S.Salcedo- Sanz, “Efficient prediction of total column ozone based on support vector regression algorithms, numerical models and Suomi-satellite data,” Atmosfera, vol. 30, no. 1, pp. 1–10, 2017, doi:10.20937/ATM.2017.30.01.01.; A. Antón, R. Martínez, M. A. Salas, and A. Torre, “Performance analysis andimplementation of spatial and blind beamforming algorithms for tracking leo satellites with adaptive antenna arrays,” in European Conference on Antennas and Propagation, EuCAP 2009, Proceedings, 2009, pp. 216–220.; S. Soisuvarn, Z. Jelenak, P. S. Chang, Q. Zhu, and G. Sindic-Rancic, “Validation of noaa’snear real-time ascat ocean vector winds,” Int. Geosci. Remote Sens. Symp., vol. 1, no. 1, pp. 118–121, 2008, doi:10.1109/IGARSS.2008.4778807.; A. Huang, L. Gumley, K. Strabala, S. Mindock, R. Garcia, and G. Martin, “COMMUNITYSATELLITE PROCESSING PACKAGE FROM DIRECT BROADCAST : PROVIDING REAL- TIME SATELLITE DATA TO EVERY CORNER OF THE WORLD Space Science and Engineering Center ( SSEC ) Cooperative Institute for Meteorological Studies ( CIMSS ) University of Wisconsin,” IEEE Int. Geosci. Remote Sens. Symp., pp. 5532–5535, 2016, doi:10.1109/IGARSS.2016.7730443.; K. R. Al-Rawi and J. L. Casanova, “APLICACIÓN DE LAS REDES NEURONALES PARAEL CONTROL Y SEGUIMIENTO EN TIEMPO REAL DE LOS INCENDIOS FORESTALES MEDIANTE IMÁGENES NOAA-AVHRR,” in TELEDETECCION. Avances y Aplicaciones.VIII Congreso Nacional de teledeteccion, 1999, no. January, pp. 244–247.; Organización Meteorología Mundial, “IDEAM se fortalece en monitoreo y seguimiento dehuracanes (IDEAM, Columbia) %7C Organización Meteorológica Mundial,” Feb. 07, 2013. https://public.wmo.int/es/media/news-from-members/ideam-se-fortalece-en-monitoreo-y- seguimiento-de-huracanes-ideam-columbia (accessed Oct. 26, 2020). [49] IDEAM, “VISOR DE IMÁGENES SATÉLITALES - IDEAM.” http://www.pronosticosyalertas.gov.co/imagsatelital-portlet/html/imagsatelital/view.jsp (accessed Oct. 26, 2020).; NOAA, “National Oceanic and Atmospheric Administration %7C U.S. Department ofCommerce.” https://www.noaa.gov/ (accessed Oct. 26, 2020). IDEAM, “IDEAM - IDEAM.” http://www.ideam.gov.co/ (accessed Oct. 26, 2020).; J. S. M. G, J. E. Ar, and M. L. Su, “Comparacion De Herramientas De Software Para LaCoordinacion Internacional Del Roe En La Orbita Geoestacionaria,” Visión Electrónica algo más que un estado sólido, vol. 9, no. 1, pp. 5–12, 2016, doi:10.14483/22484728.11009.; Google Cloud, “Weather, climate big data from NOAA now in cloud %7C Google Cloud Blog,”Dec.19, 2019. https://cloud.google.com/blog/products/data-analytics/weather-climate-big-data-from-noaa-now-in-cloud (accessed Oct. 26, 2020).; Amazon Web Services, “Registry of Open Data on AWS,” Dec. 19, 2019.https://registry.opendata.aws/collab/noaa/ (accessed Oct. 26, 2020).; NOAA, “Cloud platforms unleash full potential of NOAA’s environmental data %7C NationalOceanic and Atmospheric Administration,” Dec. 19, 2019. https://www.noaa.gov/media-release/cloud- platforms-unleash-full-potential-of-noaa-s-environmental-data (accessed Oct. 26, 2020).; J. A. Niño, L. Y. Martínez y F. H. Fernández “Mano robótica como alternativa para laenseñanza de conceptos de programación en Arduino”, Revista Colombiana de Tecnologías de Avanzada, vol. 2, no. 28, pp. 132 - 139, may 2016.; C. Flores-Vázquez, A. Rojas y K. Trejo, “Operación remota de un robot móvil usando unteléfono inteligente” INGENIUS, núm. 17, 2017.; A. Cerón, “Sistemas robóticos teleoperados” Ciencia e Ingeniería Neogranadiana, no. 15,pp. 62-72, 2005.; A. M. Rivera, L. A. O’Farril, C. Miguélez, P. Martínez y I. O. Benítez “Caracterización del ez-robot para su utilización en la robótica educativa”, Serie Científica de la Universidad de las Ciencias Informáticas, vol. 12, no. 11, pp. 73 - 80, nov 2019.; M. G. da Silva, C. S. González “PequeBot: Propuesta de un Sistema Ludificado de RobóticaEducativa para la Educación Infantil”, Actas del V Congreso Internacional de Videojuegos y Educación (CIVE'17), 2017.; A. Marroquín, A. Gómez y A. Paz “Design and implementation of Explorer Mobile Robotcontrolled remotely using IoT Technology”, 2017.; R. Batista, " Diseño e implementación de un sistema de iluminación inteligente de interiores”, tesis Eng., Universidad Tecnológica de La Habana “José A. Echeverría” CUJAE, La Habana, Cuba, 2019.; S. Companioni, "Procesamiento de imágenes, obtenidas por un vehículo autónomo, para elreconocimiento de daños en cultivos ”, tesis Eng, Universidad Tecnológica de La Habana “José A.Echeverría” CUJAE, La Habana, Cuba, 2020.; J. A. Licona, “Diseño y desarrollo de un robotmóvil a bajo costo para niños: EcateBot”, thesisEng, Universidad Autónoma del estado de México, México D.F, México, 2019.; R. A. Moreno, Desarrollo de aplicaciones para Android usando MIT App Inventor 2, 1eraed. Bogotá: Autoedición, 2016.; L. A. Velazco, "Diseño de un sistema de control basado en linealización por realimentaciónpara robot móvil tipo Ackerman con velocidad variable y movimiento en doble sentido describiendo trayectorias óptimas " thesis MSc, Pontificia Universidad Católica del Perú, Lima, Perú, 2019.; C. Vázquez, "Framework de comunicaciones para robótica educativa, distributiva ycolaborativa” thesis Eng, Universidad de Extremadura, Badajoz, España, 2019.; L. Rodríguez, "Diseño e implementación de una Estación Meteorológica para la agriculturabasada en Arduino", thesis Eng, Universidad Tecnológica de La Habana “José A. Echeverría” CUJAE, La Habana, Cuba, 2019.; D. Higuera, J. Guzmán, A. Rojas “Implementando las metodologías steam y abp en laenseñanza de la física mediante Arduino”, III Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y Móvil AmITIC, pp 133 – 137, 2019.; J.M. Nova, " Diseño y desarrollo de una aplicación para monitorear la concentración deCO y CH4 en dispositivos móviles Android". thesis Eng, Universidad Pontificia Bolivariana, Bucaramanga, Colombia, 2018.; ECDRUM. “Circuito – inversión de giro de un motor de CD con relés”, 2018, [Online]Available at http: //ecdrumdownload.blogspot.com. “Manual de la GoPro H9”, 2017, [Online] Available at http: //www.google.com.; R. a. markets, «Research and Markets,» 2020.[En línea]. Available: https://www.globenewswire.com/news-release/2020/03/18/2002434/0/en/IoT-in-the-Global-Retail-Market-2020-2025-Analyzed-by-Platform-Hardware-Service-Application-and-Region.html. [Último acceso: 4 7 2020].; H. T. a. S. Dustdar, «Principles for Engineering IoT Cloud Systems,» IEEE Cloud Computing, vol. II, nº 2, pp. 68-76, 2015.; A. Rahmani, N. K. Thanigaivelan, T. N. Gia, J. Granados, B. Negash, P. Liljeberg y H. Tenhunen, «Smart e-Health Gateway :,» Consumer Communications and Networking Conference (CCNC), 12th Annual IEEE, pp. 826-834, 2015.; P. Desai, A. Sheth y P. Anantharam, «Semantic Gateway as a Service Architecture for IoT Interoperability,» 2015 IEEE International Conference on Mobile Services, pp. 313-319, 2015.; A. A. Sánchez Martín, E. González Guerrero y L. E. Barreto Santamaría, «Prospective integration between Environmental Intelligence (AMI), Data Analytics (DA), and Internet of Things (IoT),» 2019 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI ), pp. 1-6, 2019.; I. A. M. M. J.-M. R. J.-C. T. M. Berrouyne, «A Model-Driven Approach to Unravel the Interoperability Problem of the Internet of Things,» de Barolli, L., Amato, F., Moscato, F., Enokido, T., & Takizawa, M. (Eds.). (2020). Advanced Information Networking and Applications. Advances in Intelligent Systems and Computing. doi:10.1007/978-3-030-44041-1 , Caserta, Italia, 2020.; D. Yacchirema y C. E. Palau Salvador, «Smart IoT Gateway for Heterogeneous Devices Interoperability,» IEEE Latin America Transactions, vol. 14, nº 8, pp. 3900-3906, 2016.; C. Dergarabedian, «La fuerte apuesta de Samsung a la Internet de las cosas para simplificar la vida cotidiana de los usuarios,» iProfesional, 10 Enero 2018.; OpenIoT Consortium, «Open Source cloud solution for the Internet of Things,» OpenIoT, 1 Septiembre 2019. [En línea]. Available: http://www.openiot.eu/. [Último acceso: 02Marzo 2020].; E. González Guerrero, L. E. Barreto Santamaría y A. A. Sánchez Martín, «Integrated Model AmI-IoT-DA for Care of Elderly People,» de Advances in Computing. CCC 2018, Bogotá, 2018.; N. Al-Oudat, A. Aljaafreh, M. Saleh y M. Alaqtash, «IoT-Based Home and Community Energy Management System in Jordan,» Tafila Technical University, vol. CLX, pp. 142-148, 2019.; F. Herrera Araújo, M. A. Ardila Lara, E. Gutiérrez Gil y D. Herrera Téllez, «ODS en Colombia: Los retos para 2030,» Programa de las Naciones Unidas para el Desarrollo -PNUD-, Bogotá, 2018.; M. Unis, A. Nettsträter, F. Iml, J. Stefa, C. S. D. Suni, A. Salinas y U. Sapienza, «Internet of Things-Architecture IoT-A Final architectural reference model for the IoT,» 2013.; F. Leiva, «La agricultura de precisión: una producción más sostenible y competitiva con visión futurista,» VIII Congreso de la Sociedad Colombiana de Fitomejoramiento y Producción de Cultivos, vol. 93, nº 997-1006, p. 7, 2003.; F. A. Urbano Molano, «Wireless Sensor Networks Applied to Optimization in Precision Agriculture for Coffee Crops in Colombia,» Journal de Ciencia e Ingenier´ıa, vol. 5, nº 1, pp. 46-52, 2013.; IERC, «IoT Semantic Interoperability:Research Challenges, Best,» 2011.; M. MARJANI, F. NASARUDDIN, A. GANI, A. KARIM, I. A. TARGIO HASHEM, A. SIDDIQA y . I. YAQOOB, «Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges,» IEEE Access, vol. V, nº 2, p. 15, 2017.; W. Ruíz Martínez , Y. Díaz Gutiérrez, R. Ferro Escobar y L. Pallares, «Application of the Internet of Things through a Network of Wireless Sensors ina Coffee Crop for Monitoring and Control its Environmental Variables,» TecnoLógicas, vol. 22, nº 46, pp. 2-17, 2019.; C. A. Barry, «Choosing Qualitative Data Analysis Software: Atlas/ti and Nudist Compared,» Sociological Research Online, vol. III, nº 3, p. 16–28, 1998.; J. Macias, H. Pinilla, W. Castellanos y J. D. Alvarado, «Sistema de monitoreo de variables ambientales usando IOT,» Tech Fest, 2019.; J. Macías, H. Pinilla, W. Castellanos, J. D. Alvarado y A. Sánchez, «DISEÑO E IMPLEMENTACIÓN DE UN GATEWAY IOT MULTIPROTOCOLO,» 14° CONGRESO INTERNACIONAL DE ELECTRÓNICA, CONTROL Y TELECOMUNICACIONES, vol. 13, pp. 179-198, 2019.; A. A. Sánchez Martín, L. E. Barreto Santamaría, J. J. Ochoa Ortiz y S. E. Villanueva Navarro, «EMULADOR PARA DESARROLLO DE PROYECTOS IOT Y ANALITICAS DE DATOS,» de XII Congreso Internacional de Electrónica, Control y Telecomunicaciones, Bogota, 2019.; allmeteo, «Agro IoT Weather Sensor: AN AFFORDABLE SOLUTION FOR DISTRIBUTED WEATHER MONITORING FOR AGRICULTURE, FARMING & WINE YARDS.,» BARANI DESIGN Technologies s.r.o., 2018. [En línea]. Available: https://www.allmeteo.com/agriculture-iot-weather-station. [Último acceso: 02 03 2020].; LEMKEN, «LEMKEN: The Agrovision Company,» LEMKEN , 2020. [En línea]. Available: https://smartfarming.lemken.com/en/. [Último acceso: 02 03 2020].; RIGADO, «Cascade IoT Gateway: Edge Bluetooth® connectivity & secure data processing,» RIGADO, 2016-2020. [En línea]. Available: https://www.rigado.com/cascade-iot-gateway/. [Último acceso: 02 03 2020].; NXP Semiconductors, «IoT Gateway Solution: Complete development platform that brings together the building blocks for secure, production-ready IoT systems,» NXP Semiconductors, 2006-2020. [En línea]. Available: https://www.nxp.com/design/designs/iot-gateway-solution:IOT-GATEWAY-SOLUTION.[Último acceso: 02 03 2020].; Google, Google Big Query Analytics, United States of America : John Wiley & Sons, Inc., 2014.; P. P. Ray, «A survey of IoT cloud platforms,» Future Computing and Informatics Journal, vol. 1, nº 1-2, pp. 35-46, 2016.; J. C. Najar-Pacheco, J. A. Bohada-Jaime y W. Y. Rojas-Moreno, «Vulnerabilidades en el internet de las cosas,» Visión Electrónica, vol. 13, nº 2, pp. 312-321, 2019.; K. Husenovic, I. Bedi, and S. Maddens, Sentando las bases para la 5G: Oportunidades ydesafíos. ITU, 2018 [Online]. Available: https://www.itu.int/dms_pub/itu-d/opb/pref/D-PREF-BB.5G_01-2018-PDF-S.pdf; GSMA, “Study on Socio-Economic Benefits of 5G Services Provided in mmWave Bands.”Reportes GSMA, 2018 [Online]. Available: https://www.gsma.com/spectrum/wp-content/uploads/2019/10/mmWave-5G-benefits.pdf.; 5G Américas, Identificación de habilitadores para redes 4G y 5G en América Latina. 2020[Online]. Available: https://brechacero.com/wp-content/uploads/2020/04/WP-Identificaci%C3%B3n-de-habilitadores-para-la-implementaci%C3%B3n-de-redes-4G-y-5G-en-Am%C3%A9rica-Latina.pdf.; GSMA, The Mobile Economy. GSM Association, 2020 [Online]. Available:https://www.gsma.com/mobileeconomy/wpcontent/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf.; N. Vyakaranam and S. Dilip Krishna, “5G: Network As A Service - How 5G enables thetelecom operators to lease out their network,” 22-Mar-2018. [Online]. Available: https://netmanias.com/en/?m=view&id=blog&no=13311. [Accessed: 20-Nov-2020].; J. C. Martínez, J de J. Rugeles y E. P. Estupiñán. “Análisis de ocupación espectral bandaGSM 850 en Bogotá”. Visión Electrónica, algo más que un estado sólido, Vol. 12, No. 1, 5-13, enero-junio 2018. https://doi.org/10.14483/22484728.14801.; Ericsson, “5G architecture next mobile technology %7C Whitepaper,” 01-Jan-2017. [Online].Available: https://www.ericsson.com/en/reports-and-papers/white-papers/5g-systems--enabling-the-transformation-of-industry-and-society. [Accessed: 18-Nov-2020].; H. Ekström, “Non-standalone and Standalone: two paths to 5G,” 2019. [Online]. Available:https://www.ericsson.com/en/blog/2019/7/standalone-and-non-standalone-5g-nr-two-5g tracks. [Accessed: 16-Oct-2020].; 3 GPP, “Release 15 Description,” 3rd Generation Partnership Project (3GPP), 2019 [Online]Available:https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3389.; L. Casaccia, “Propelling 5G forward: A closer look at 3GPP Release 16.” 07-Jul-2020[Online]. Available: https://www.qualcomm.com/news/onq/2020/07/07/propelling-5g-forward-closer-look-3gpp-release-16. [Accessed: 12-Oct-2020].; M. Clark, C. Vanoli, and A. Smith, Abrir sendas hacia 5G. ITU News Magazine, 2017[Online]. Available: https://www.itu.int/en/itunews/Documents/2017/2017-02/2017_ITUNews02-es.pdf.; GSMA, “Espectro 5G Postura de la GSMA sobre política pública,” GSMA, 2018 [Online].Available: https://www.gsma.com/latinamerica/wp-content/uploads/2019/03/5G-Spectrum-Positions-SPA.pdf. [Accessed: 05-Oct-2020].; 5G Américas, Análisis de las recomendaciones de espectro de la UIT en América Latina.White Papers 5G Américas, 2019, p. 6-21 [Online]. Available: https://brechacero.com/wp-content/uploads/2019/08/ES-Analisis-de-las-Recomendaciones-de-Espectro-de-la-UIT-en-America-Latina-2019-vf.pdf.; 5G Américas, Espectro para 5G: Banda 3,5 GHZ en América Latina. 2019 [Online].Available: https://brechacero.com/wp-content/uploads/2019/06/3.5-GHz-esp-ok.pdf.; Poder Legislativo, "Ley No. 14.235," Centro De Información Oficial, Ago 3, 1974.; Council of State, "ACT of 2004 No.151," Official Gazette of the Republic of Suriname, 2004.; QoSi, “Etude de la qualité d’expérience des opérateurs mobiles en Guyane Francaise,”Publicaciones QoSi, Francia, 2019 [Online]. Available: https://www.5gmark.com/news/2019/Barometre_4Gmark_Guyane_2019.pdf. [Accessed: 17-Jul-2020].; F. Staff. (Jul 8,). Claro, de Carlos Slim, iniciará la carrera del 5G en Brasil. Available:https://www.forbes.com.mx/tecnologia-claro-slim-5g-brasil/.; Telesur. (s.f.). 5G - Beyond Connectivity. Available: https://www.telesur.sr/5g/.; NOKIA. (Apr 10,). ANTEL and Nokia make the first 5G call on a commercial network inLatin America. Available: https://www.nokia.com/about-us/news/releases/2019/04/10/antel-and-nokia-make-the-first-5g-call-on-a-commercial-network-in-latin-america/.; ENACOM, "LEY ARGENTINA DIGITAL," Boletín Oficial De La Republica De Argentina,Dec 19, 2014.; Secretaría de Tecnologías de la Información, "Documento base sobre la identificación dedesafíos y necesidades de Espectro Radioeléctrico en Argentina," Boletin Oficial De La Republica De Argentina, pp. 1-36, 2019.; Asamblea Legislativa Plurinacional, "Ley General de Telecomunicaciones, Tecnologías dela Información y Comunicación" Gaceta Oficial De Bolivia, Ago 8, 2011.; Agencia Boliviana Espacial, "Satélite TUPAC KATARI," 2019.; Poder Legislativo, "Ley No. 13.879," Diario Oficial De La Unión, vol. 1, Oct 4, 2019.; ANATEL, “Anatel aprova consulta pública para implementar o 5G,” 06-Feb-2020. [Online].Available: https://www.anatel.gov.br/institucional/component/content/article/171-manchete/2491-anatel-aprova-consulta-publica-para-licitar-faixas-de-frequencias-para-o-5g. [Accessed: 20-May-2020].; SUBTEL, "CONSULTA PÚBLICA SOBRE PLAN NACIONAL 5G PARA CHILE," 2018.; SUBTEL. (Jan 14,). Consulta Pública 5G: Gobierno licitará cuatro bandas para generarmayor competencia y eficiencia espectral en el mercado móvil. Available: https://www.subtel.gob.cl/consulta-publica-5g-gobierno-licitara-cuatro-bandas-para-generar-mayor-competencia-y-eficiencia-espectral-en-el-mercado-movil/.; MINTIC, Plan 5G Colombia. Colombia: Planes Nacionales del MINTIC, 2019.; 5G Américas, “Temas en Regulación de Telecomunicaciones: Ecuador,” Publicaciones 5GAméricas, 2019 [Online]. Available: https://brechacero.com/white-papers/. [Accessed: 26-Jul-2020].; PUC, "ACT NO. 18- TELECOMMUNICATIONS ACT," The Official Gazette, Ago 5, 2016.; F. D'Almeida and D. Margot, La Evolución De Las Telecomunicaciones Móviles EnAmérica Latina Y El Caribe. (Publicaciones BID ed.) 20182.; Poder Legislativo, "LEY No. 642 DE TELECOMUNICACIONES," Gaceta Oficial De LaRepública Del Paraguay, 1995.; J. M. Perrotta, "Conatel pone fecha al 5G en Paraguay para después de 2024,"TeleSemana.Com, Jun 11, 2020. Available: http://www.telesemana.com/blog/2020/06/11/conatel-pone-fecha-al-5g-en-paraguay-para-despues-de-2024/.; OSIPTEL, "Reporte estadístico" Publicaciones OSIPTEL, Perú, Abril. 2020.; J. O. Prats Cabrera and P. Puig Gabarró, La gobernanza de las telecomunicaciones: Haciala economía digital. 2017, pp. 49–51 [Online]. Available: https://publications.iadb.org/es/node/14083.; LEY ORGÁNICA DE TELECOMUNICACIONES, "LEY ORGÁNICA DE TELECOMUNICACIONES," Gaceta Oficial De Venezuela, Feb 7, 2011.; N. Larocca, "Venezuela presenta una penetración 4G que la región alcanzó en 2016," Mar1, 2019. Available: http://www.telesemana.com/blog/2019/03/01/venezuela-presenta-una-penetracion-4g-que-la-region-alcanzo-en-2016/.; ARCEP, La régulation de l’Arcep au service des territoires connectés. 2020 [Online].Available: https://www.arcep.fr/collectivites/larcep-et-les-territoires.htm.; J. E. Garcia Orjuela, “Descripcion planta de tratamiento de agua - Icononzo, Tolima,” J.Chem. Inf. Model., 2014.; Gobernación del Tolima, “Estadísticas 2011-2014,” BMC Public Health, vol. 5, no. 1, pp.1–8, 2017.; J. E. Garcia Orjuela, “Propuesta de reducción de cargas contaminantes en el municipiode Icononzo, Tolima.” 2018.; Gobernación del Tolima, “Municipio de Icononzo,” 2019. [Online]. Available:https://www.tolima.gov.co/publicaciones/21123/municipio-de-icononzo/. [Accessed: 26-Apr-2020].; "Clima promedio en Icononzo, Colombia, durante todo el año - Weather Spark.” [Online].Available: https://es.weatherspark.com/y/23362/Clima-promedio-en-Icononzo-Colombia-durante-todo-el-año. [Accessed: 26-Apr-2020].; “Ósmosis Inversa %7C SEFILTRA %7C Expertos en purificación de fluidos.” [Online]. Available:https://www.sefiltra.com/productos/osmosis-inversa/. [Accessed: 21-Nov-2020].; S. L. Sanderson, E. Roberts, J. Lineburg, and H. Brooks, “Fish mouths as engineeringstructures for vortical cross-step filtration,” Nat. Commun., vol. 7, Mar. 2016.; “Las barbas de las ballenas.” [Online]. Available: https://universomarino.com/2011/02/04/las-barbas-de-las-ballenas/. [Accessed: 26-Apr-2020].; "PROCEDIMIENTO PARA LA OBTENCIÓN DE M ICROPIBRAS DE QUERATINA APARTIR DE RESIDUOS GANADEROS’ DESCRIPCIÓN Objeto de la Invención,” Jul. 2006.; R. D. E. Estudios and E. N. Psicolox, “Plumas: Implicancia ambiental y uso en la industriaagropecuaria,” vol. 21, no. 3, pp. 225–237, 2013.; I. E. Roca Girón, “Estudio de las propiedades y aplicaciones industriales del polietilenode alta densidad (PEAD),” J. Chem. Inf. Model., vol. 12 Suppl 1, no. 9, pp. 1–29, 2005.; 12]“Filtración (II): selección del equipo de filtrado %7C iAgua.” [Online]. Available:https://www.iagua.es/blogs/miguel-angel-monge-redondo/filtracion-ii-seleccion-equipo-filtrado. [Accessed: 26-Apr-2020].; ATDI, «5G: A revolution in evolution, even in 2017,» de RadioExpo, 2017.; MinTic, «Boletin trimestral de las Tic: Cifras Segundo Trimestre de 2019,» Ministerio de Tecnologías de la Información y las Comunicaciones , 2020.; CRC, «Reporte de industria sector TIC 2016,» Comisión de regulación de las comunicaciones, 2017.; Gupta , A., & Jha , R., «A Survey of 5G Network: Architecture and Emerging Technologies,» IEEE Access, pp. 1206-1032, 2015.; K. E. Requena, D. M. Rozo y J. E. Arévalo, «Radiopropagation simulations comparison in millimeter waves frequencies for fifth generation (5G) mobile networks,» Actas de Ingeniería, pp. 97-105, 2017.; A. Durán Barrado, «Estudio y caracterización del canal y de la propagación en ondas milimétricas, orientada a su utilización en redes de comunicaciones móviles 5g.,» ETSIT UPM, 2017.; K. E. REQUENA Barrera y D. M. Rozo Moreno, «Análisis de desempeño de la propagación de señales en redes móviles de quinta generación (5g) en bandas de frecuencias de ondas milimétricas (mmwaves) empleando la herramienta de simulación ics telecom,» FUAC, 2017.; J. E. Arévalo Peña & R. A. González Bustamante, «Radiopropagation Performance Analysis Simulations ofMassive MIMO Configurations in 28 GHz,» CEUR-WS, p. 4, 2018.; P. Missud, «Extrayendo Clutter de imagenes Multiespectrales de Landsat 8,» ATDI, 2013.; Google,«Google Maps,» Google, 01 07 2018. [En línea].Available: https://www.google.com/maps. [Último acceso: 21 10 2020].; ITU, «Recomendación UIT-R P.526,» ITU, 2018.; IDEAM, «ideam.gov.co,» 31 05 2002. [En línea]. Available:https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.526-14-201801-I!!PDF-S.pdf.; M. Montoya Rendon, P. Zapata Saldarriaga & M. Correa Ochoa, «Contaminación ambiental por PM10 dentro y fuera del domicilio y capacidad respiratoria en Puerto Nare, Colombia,» salud pública, pp. 113-115, 2013.; CRC, «Áreas de cobertura del servicio,» Comisión de Regulación de Comunicaciones, 20 03 2009. [En línea]. Available: https://www.crcom.gov.co/es/pagina/reas-de-cobertura- del-servicio. [Último acceso: 21 10 2020].; ITU, «Guidelines for evaluation of radio interface technologies for IMT-2020,» ITU, 2017.; ITU, «UIT-R M.1073-1,» ITU, 1997.; Camino L. García. (2016). Enseñar con TIC: Nuevas y renovadas metodologías para laenseñanza superior. © 2016, CINEP/IPC. pp 26-27.; Charles Kadushin. (diciembre 2013). Comprender las redes sociales. Teorías, conceptosy hallazgos. Primera Edición. Moltalbán, 8. 28014 Madrid. pp. 93-95.; Roger S. Pressman. (2010). Ingeniería del Software Un enfoque práctico. Vol. 3, SéptimaEdición. pp. 70 Sitios web.; ICFES. (2019) Resultados de las pruebas ICFES. http://www2.icfesinteractivo.gov.co/resultadossaber2016web/pages/publicacionResultados/agregados/saber11/agregadosSecretarias.jsf#Noback button.; Juan Carlos Mejía Llanos (21 de marzo, 2019) Estadísticas de redes sociales 2019:USUARIOS DE FACEBOOK, TWITTER, INSTAGRAM, YOUTUBE, LINKEDIN, WHATSAPP Y OTROS. https://www.juancmejia.com/marketing-digital/estadisticas-de-redessocialesusuarios-de-facebook-instagram-linkedin-twitter-whatsapp-y-otrosinfografia/#Informe_detallado_usuarios_redes_sociales_WeAreSocial_y_Hootsuite (5 de mayo de 2019).; Psicología-Onlie (20 de agosto 2018) Teorías del aprendizaje según Brunner.https://www.psicologia-online.com/teorias-del-aprendizaje-segun-bruner-2605.html.; Revista Médica Clínica Las Condes (enero-febrero, 2015) Impacto de las redes socialese internet en la adolescencia: aspectos positivos y negativos. https://www.sciencedirect.com/science/article/pii/S0716864015000048#bib0005.; TeleMedellin (28 de septiembre, 2018) Preocupación por déficit de ingenieros enColombia. https://telemedellin.tv/deficit-ingenieros-colombia/284852/.; UNESCO (21 de septiembre, 2017) SERVICIO DE PRENSA: 617 millones de niños yadolescentes no están recibiendo conocimientos mínimos en lectura y matemática. http://www.unesco.org/new/es/mediaservices/singleview/news/617_million_children_and_adolescents_not_getting_the_minimum/.; Walter, L., Gallegos, Arias, & Huerta, Adriana Oblitas. (2014). Aprendizaje pordescubrimiento vs. Aprendizaje significativo: Un experimento en el curso de historia de la psicología. Boletim - Academia Paulista de Psicologia, 34(87), 455-471. http://pepsic.bvsalud.org/scielo.php?script=sci_arttext&pid=S1415711X2014000200010&lng=pt&tlng=es.Artículos.; L. A. Luengas, G. Sánchez, y S. M. Cárdenas, “Nuevas herramientas pedagógicas:laboratorio virtual", Visión Electrónica, vol. 9, no. 2, pp. 277-284,2015. https://doi.org/10.14483/22484728.11034.; M. Vergel Ortega, O. L. Rincón Leal, y L. A. Jaimes Contreras, “Prototipos electrónicosen el desarrollo de pensamientos formales", Visión Electrónica, vol. 9, no. 2, pp. 182-193, 2015. https://doi.org/10.14483/22484728.11026.; J. F. Pastrán Beltrán y F. Pinzón Herrera, “Software libre: una estrategia para aprendera factorizar ", Visión Electrónica, vol. 9, no. 1, pp. 139-148,2015. https://doi.org/10.14483/22484728.11024.; R. López Gonzalez, “Genealogía de cambio conceptual en la enseñanza de la ciencia",Visión Electrónica, vol. 1, no. 1, pp. 88-92, 2008. https://doi.org/10.14483/22484728.255.; F. P. Rodriguez, A. R. Torres, y H. Vacca, “Estudio con análisis por elementos finitos desistemas análogos circuitales en física", Visión Electrónica, vol. 6, no. 1, pp. 98-103, 2012. https://doi.org/10.14483/22484728.3750.; R. Lopez, “La propedéutica y el discurso sobre las tecnologías", Visión Electrónica, vol.7, no. 1, pp. 178-187, 2013. https://doi.org/10.14483/22484728.4399.; Arquitectura, L., Negocios, A. De, & Salimbeni, S. (2017). La Arquitectura Empresarial y elAnálisis de Negocios.; Basyarudin. (2018). Диф нарушениямиNo Title. Высшей Нервной Деятельности, 2, 227–249.; Clavijo, S., & Vera, A. (2013). Inversion en infraestructura.7–14.; CoronApp, la aplicación para que conocer la evolución del coronavirus - Rumble. (n.d.).Retrieved May 8, 2020, from https://rumble.com/embed/ubedx.v6h0k3/?rel=0.; Dashboard Coronavirus COVID-19 (Mobile). (n.d.). Retrieved May 8, 2020, from https://www.arcgis.com/apps/opsdashboard/index.html#/85320e2ea5424dfaaa75ae62e5c06e61.; Dussan, H., & Garzon, K. (2017). DIAGNÓSTICO PARA LA CREACIÓN DE UN MODELO BAJO LA ARQUITECTURA ORGANIZACIONAL TOGAF APLICADO EN LAS DEPENDENCIAS TIC DE LA UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS. 1–126.; Gasto en investigación y desarrollo (% del PIB) %7C Data. (n.d.). etrieved May 8, 2020, from https://datos.bancomundial.org/indicador/GB.XPD.RSDV.GD.ZS?name_desc=false&view=map.; Gobernanza Territorial, Identificación De Fortalezas, Áreas De. (2013).; González Campo, C. H., & Lozano Oviedo, J. (2020). Propuesta para la definición de la arquitectura empresarial. Dimensión Empresarial, 18((1)). https://doi.org/10.15665/dem.v18i(1).2109 Palacios-Urgilés, F. G., & Campoverde-Molina, M. A. (2019).; Análisis de la arquitectura empresarial como oportunidad de mejora en las microempresas de la ciudad de Cuenca. Dominio de Las Ciencias, 5(3), 487. https://doi.org/10.23857/dc.v5i3.949.; Ministerio de Tecnologías de la Información y las Comunicaciones. (2016). G . GEN . 03 . Guía General de un Proceso de Arquitectura Empresarial. 1–41. Retrieved from http://www.mintic.gov.co/arquitecturati/630/articles- 9435_Guia_Proceso.pdf.; PIB-real segundo trimestre de 2019 y revisión de pronósticos. (n.d.). Retrieved May 8, 2020,from https://www.larepublica.co/analisis/sergio-clavijo- 500041/pib-real-segundo-trimestre-de-2019-y-revision- de-pronosticos-2900103 PND. (2018). Bases del Plan Nacional de Desarrollo.; Presupuesto y estados financieros. (n.d.). Retrieved May 10, 2020, fromhttps://www.dane.gov.co/index.php/servicios-al-ciudadano/tramites/transparencia-y-acceso-a-la- informacion-publica/presupuesto-general- asignado#presupuesto-general.; Saboya, N., Loaiza, O., & Lévano, D. (2018). Diseño de un modelo de arquitecturaempresarial para publicaciones científicas basado en adm - Togaf 9.0. Retrieved May 10, 2020, from https://www.redalyc.org/jatsRepo/4676/467655911004/ html/index.html.; Carlo Batini y Monica Scannapieco, DATA AND INFORMATION QUALITY, I.Switzerland: Springer International Publishing, 2016.; C. Sammut y G. I. Webb, Eds., Encyclopedia of Machine Learning and Data Mining.Boston, MA: Springer US, 2017.; «Who we are - Eurostat». https://ec.europa.eu/eurostat/about/who-we-are (accedidoago. 23, 2020).; B. G. Grow y 2020 January 24, «Data Quality Predictions for 2020», Transforming Datawith Intelligence. https://tdwi.org/articles/2020/01/24/diq-all-data-quality-predictions-for- 2020.aspx (accedido ago. 21, 2020).; T. C. Redman, «Bad Data Costs the U.S. $3 Trillion Per Year», Harvard BusinessReview, sep. 22, 2016.; B. G. Grow y 2018 July 6, «Reducing the Impact of Bad Data on Your Business»,Transforming Data with Intelligence. https://tdwi.org/articles/2018/07/06/diq-all-reducing-the-impact-of-bad- data.aspx (accedido ago. 21, 2020).; B. G. Grow y 2019 May 3, «Data Quality Best Practices for Today’s Data- DrivenOrganization», Transforming Data with Intelligence. https://tdwi.org/articles/2019/05/03/diq-all-data-quality-best-practices-for- data-driven-organizations.aspx (accedido ago. 23, 2020).; C. W. Fisher y B. R. Kingma, «Criticality of data quality as exemplified in two disasters»,Inf. Manage., vol. 39, n.o 2, pp. 109-116, dic. 2001, doi:10.1016/S0378-7206(01)00083-0.; crodwflower, «2016 DATA SCIENCE REPORT», 2016.; S. Lohr, «For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights», The NewYork Times, ago. 17, 2014.; «ISO 9000:2015(en), Quality management systems — Fundamentals and vocabulary».https://www.iso.org/obp/ui/#iso:std:45481:en (accedido ago. 23, 2020).; C. Batini y M. Scannapieco, «Data Quality Dimensions», en Data and Information Quality,Springer, Cham, 2016, pp. 21-51.; «NORMAS ISO 25000». https://iso25000.com/index.php/normas-iso-25000 (accedidomar. 23, 2019).; C. Batini y M. Scannapieco, «Activities for Information Quality», en Data and InformationQuality, Springer, Cham, 2016, pp. 155-175.; C. Batini y M. Scannapieco, «Object Identification», en Data and Information Quality,Springer, Cham, 2016, pp. 177-215.; Tejada S, Knoblock C, Minton S, Learning object identification rules for informationintegration. 2001.; 2014 January 21, «New Techniques Detect Anomalies in Big Data», Transforming Datawith Intelligence. https://tdwi.org/articles/2014/01/21/detecting-big-data-anomalies.aspx (accedido ago. 26, 2020).; J. Taylor, «Clean your data with unsupervised machine learning», Towards Data Science,dic. 01, 2018. https://towardsdatascience.com/clean-your- data-with-unsupervised-machine-learning-8491af733595 (accedido mar. 17, 2019).; I. Taleb, H. T. E. Kassabi, M. A. Serhani, R. Dssouli, y C. Bouhaddioui.; I. Taleb, H. T. E. Kassabi, M. A. Serhani, R. Dssouli, y C. Bouhaddioui, «Big Data Quality: A Quality Dimensions Evaluation», en 2016 Intl IEEE Conferences on Ubiquitous Intelligence Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), jul. 2016, pp. 759-765, doi:10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0122.; H. Liu, T. K. A. Kumar, y J. P. Thomas, «Cleaning Framework for Big Data -Object Identification and Linkage», en 2015 IEEE International Congress on Big Data, jun.2015, pp. 215-221, doi:10.1109/BigDataCongress.2015.38.; «LEILA - Librería de calidad de datos — documentación de LEILA - 0.1». https://ucd-dnp.github.io/leila/ (accedido ago. 27, 2020).; H. Müller y J.-C. Freytag, «Problems, Methods, and Challenges in Comprehensive DataCleansing», p. 23.; «Google Colaboratory». https://colab.research.google.com/notebooks/welcome.ipynb?hl=es-419 (accedido jun. 29, 2020).; hrasheed-msft, «¿Qué es Azure HDInsight?» https://docs.microsoft.com/es- es/azure/hdinsight/hdinsight-overview (accedido abr. 27, 2020).; S. F. Fernández, J. M. C. Sánchez, A. Córdoba, y A. C. Largo, Estadística Descriptiva.ESIC Editorial, 2002.; F. Sidi, P. H. Shariat Panahy, L. S. Affendey, M. A. Jabar, H. Ibrahim, y A. Mustapha, «Dataquality: A survey of data quality dimensions», en 2012 International Conference on Information Retrieval Knowledge Management, mar. 2012, pp. 300-304,doi:10.1109/InfRKM.2012.6204995.; J. Wang, C. Zhang, X. Wu, H. Qi and J. Wang, «SVM-OD: A New SVM Algorithm forOutlier Detection - Google Académico», presentado en Proc. ICDM’03 Workshop Foundations and New Directions of Data Mining, 2003, Accedido: ago. 24, 2020. [En línea]. Disponible en: https://scholar.google.com/scholar?hl=es&as_sdt=0,5&q=SVM- OD%3A+A+New+SVM+Algorithm+for+Outlier+Detection&btnG=.; «Factores que afectan el peso y la salud %7C NIDDK», National Institute of Diabetes andDigestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/informacion-de-la- salud/control-de-peso/informacion-sobre-sobrepeso-obesidad- adultos/factores-afectan (accedido may 16, 2020).; Lean Yu, Shouyang Wang, y K. K. Lai, «An integrated data preparation scheme for neuralnetwork data analysis», IEEE Trans. Knowl. Data Eng., vol. 18, n.o 2, pp. 217-230, feb. 2006, doi:10.1109/TKDE.2006.22.; Sumithra V.S,Subu Surendran, «A Review of Various Linear and Non LinearDimensionality Reduction Techniques», Int. J. Comput. Sci. Inf. Technol., vol. 6.; D. Chicco y G. Jurman, «The advantages of the Matthews correlation coefficient (MCC)over F1 score and accuracy in binary classification evaluation», BMC Genomics, vol. 21, n.o 1, p.6, ene. 2020, doi:10.1186/s12864-019-6413-7.; Katrakazas, E. Michelaraki, M. Sekadakis, and G. Yannis, “A descriptive analysis of the effect of the COVID-19 pandemic on driving behavior and road safety,” Transp. Res. Interdiscip. Perspect., vol. 7, 2020, doi:10.1016/j.trip.2020.100186.; P. Pereira and J. Pais, “Main flexible pavement and mix design methods in Europe andchallenges for the development of an European method,” J. Traffic Transp. Eng. (English Ed., vol. 4, no. 4, pp. 316–346, 2017, doi:10.1016/j.jtte.2017.06.001.; A. P. Singh, A. Sharma, R. Mishra, M. Wagle, and A. K. Sarkar, “Pavement conditionassessment using soft computing techniques,” Int. J. Pavement Res. Technol., 2018.; Z. Zhang, Q. Liu, Q. Wu, H. Xu, P. Liu, and M. Oeser, “Damage evolution of asphalt mixtureunder freeze-thaw cyclic loading from a mechanical perspective,” Int. J. Fatigue, vol. 142, no. June 2020, pp. 1–9, 2021, doi:10.1016/j.ijfatigue.2020.105923.; K. B. Bai Kamara, E. Ganjian, and M. Khorami, “The effect of quarry waste dust andreclaimed asphalt filler in hydraulically bound mixtures containing plasterboard gypsum and GGBS,” J. Clean. Prod., vol. 279, 2021, doi:10.1016/j.jclepro.2020.123584.; D. M. Kusumawardani and Y. D. Wong, “The influence of aggregate shape properties onaggregate packing in porous asphalt mixture (PAM),” Constr. Build. Mater., vol. 255, 2020, doi:10.1016/j.conbuildmat.2020.119379.; T. M. Al Rousan, “Characterization of aggregate shape properties using a computerautomated system,” Texas A&M University, 2004.; C. García-González, J. Yepes, and M. A. Franesqui, “Geomechanical characterization ofvolcanic aggregates for paving construction applications and correlation with the rock properties,” Transp. Geotech., vol. 24, no. January, 2020, doi:10.1016/j.trgeo.2020.100383.; J. Hu and P. Stroeven, “Shape characterization of concrete aggregate,” Image Anal. Stereol.,vol. 25, no. 1, pp. 43–53, 2006, doi:10.5566/ias.v25.p43-53.; T. Roussillon, H. Piégay, I. Sivignon, L. Tougne, and F. Lavigne, “Automatic computationof pebble roundness using digital imagery and discrete geometry,” Comput. Geosci., vol. 35, no. 10, pp. 1992–2000, 2009, doi:10.1016/j.cageo.2009.01.013.; J. Zhang, X. Yang, W. Li, S. Zhang, and Y. Jia, “Automatic detection of moisture damagesin asphalt pavements from GPR data with deep CNN and IRS method,” Autom. Constr., vol. 113, no. September 2019, 2020, doi:10.1016/j.autcon.2020.103119.; L. Pei et al., “Pavement aggregate shape classification based on extreme gradientboosting,” Constr. Build. Mater., vol. 256, 2020, doi:10.1016/j.conbuildmat.2020.119356.; K. A. Ghuzlan, M. T. Obaidat, and M. M. Alawneh, “Cellular-phone-based computer visionsystem to extract shape properties of coarse aggregate for asphalt mixtures,” Eng. Sci. Technol. an Int. J., vol. 22, no. 3, pp. 767–776, 2019, doi:10.1016/j.jestch.2019.02.003.; J. Kim, B. S. Park, S. I. Woo, and Y. T. Choi, “Evaluation of ballasted-track condition basedon aggregate-shape characterization,” Constr. Build. Mater., vol. 232, 2020, doi:10.1016/j.conbuildmat.2019.117082.; O. J. Reyes-ortiz, M. Mejía, and J. S. Useche-Castelblanco, “Aggregate segmentation ofasphaltic mixes using digital image,” Bull. Polish Acad. Sci. Tech. Sci., vol. 67, no. 2, pp. 279–287, 2019.; S. M. E. Harb, N. Ashidi, M. Isa, and S. A. Salamah, “Improved image magnificationalgorithm based on Otsu,” Comput. Electr. Eng. J., vol. 46, pp. 338–355, 2015.; J. V. C. I. R, C. Sha, J. Hou, and H. Cui, “A robust 2D Otsu ’ s thresholding method in imagesegmentation q,” J. Vis. Commun. Image R. J., vol. 41, pp. 339–351, 2016.; O. J. Reyes-Ortiz, M. Mejia, and J. S. Useche-Castelblanco, “Digital image analysis appliedin asphalt mixtures for sieve size curve reconstruction and aggregate distribution homogeneity,” Int. J. Pavement Res. Technol., 2020, doi:10.1007/s42947-020-0315-6.; S. Yu, S. Jia, and C. Xu, “Convolutional neural networks for hyperspectral imageclassification,” Neurocomputing, vol. 219, pp. 88–98, 2017.; V. C. Janoo, “Quantification of shape, angularity, and surface texture of base coursematerials,” 1998.; E. Masad, T. M. Al Rousan, J. Button, and D. Little, Test Methods for CharacterizingAggregate Shape, Texture, and Angularity. United States of America, 2007.; E. dos S. Silva et al., “Evaluation of macro and micronutrient elements content from softdrinks using principal component analysis and Kohonen self-organizing maps,” Food Chem., vol. 273, no. May 2018, pp. 9–14, 2019, doi:10.1016/j.foodchem.2018.06.021.; B. Yang, S. Yang, J. Zhang, and D. Li, “Optimizing random searches on three-dimensionallattices,” Phys. A Stat. Mech. its Appl., vol. 501, pp. 120–125, Jul. 2018, doi:10.1016/J.PHYSA.2018.02.100.; Diego Heras, “Clasificador de imágenes de frutas basado en inteligencia artificial”, KillkanaTécnica, Vol. 1, no. 2, pp. 21-30, 2017.; SicTransCore Latinoamérica, Sic TransCore Sistemas de Identificación y control vehicular,2019. [Online]. Disponible en: https://www.sictranscore.com/.; V. M. Arévalo, J. González, G. Ambrosio, La Librería De Visión Artificial Opencv AplicaciónA La Docencia E Investigación, Dep.Sis. y Aut. Universidad de Málaga, España. [Online]. Disponible en: http://mapir.isa.uma.es/varevalo/drafts/arevalo2004lva1.pdf.; Bastián Nicolás Carvajal Ahumada, Reconocimiento Fotográfico De Patentes, Facultad deIngeniería, Pontificia Universidad Católica De Valparaíso, Valparaíso, Ciudad de Chile, 2018.; Guerra Monterroza, E. J. (2008). Reconocimiento de primitivas 3D, usando autocorrelación yANFIS. Visión electrónica, 1(1), 56-61. https://doi.org/10.14483/22484728.251.; Giraldo Ramos, F. N., Gonzalez, F., & Camargo Casallas, E. (2011). “Algoritmos deprocesamiento de imágenes satelitales con transformada Hough. Visión electrónica, 5(2), 26-41. https://doi.org/10.14483/22484728.3568.; Jiménez Moreno, R., Martínez Baquero, J. E., & Rodríguez Umaña, L. A. (2018). Sistemaautomático de clasificación de peces. Visión electrónica, 12(2), 258-264.https://doi.org/10.14483/22484728.14265.; A. Daneels and W. Salter, “WHAT IS SCADA?,” in International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, pp. 339–343, Accessed: Sep. 20, 2019. [Online]. Available: http://cds.cern.ch/record/532624/files/mc1i01.pdf.; Wikipedia, “Distributed control system,” 2019. https://en.wikipedia.org/wiki/Distributed_control_system (accessed Sep. 29, 2019).; R. Hunzinger, Scada fundamentals and applications in the IoT, 1st ed. Wiley Telecom, 2017.; S. Ray, Y. Jin, and A. Raychowdhury, “The Changing Computing Paradigm with Internet of Things: A Tutorial Introduction,” IEEE Des. Test, vol. 33, no. 2, pp. 76–96, 2016, doi:10.1109/MDAT.2016.2526612.; A. Bhatia, Z. Yusuf, D. Ritter, and N. Hunke, “Who Will Win the IoT Platform Wars?,” BCG Perspect., p. 6, 2017, [Online]. Available: https://image-src.bcg.com/Images/BCG-Who-Will-Win-the-IoT-Platform-Wars-June-2017_2_tcm58-162424.pdf.; L. Doron and Netafim, “The core results of the FIGARO project: the Platform,” in InternationalFIGARO Conference, 19 September 2016, Brussels, Belgium, 2016, [Online]. Available: http://www.figaro-irrigation.net/fileadmin/user_upload/figaro/docs/Lior_2_NET_FIGARO_project_summary.pdf.; A. (Eastern P. Chalimov, “IoT in Agriculture: 5 Technology Use Cases for Smart Farming(and 4 Challenges to Consider),” 2018. https://easternpeak.com/blog/iot-in-agriculture-5-technology-use-cases-for-smart-farming-and-4-challenges-to-consider/ (accessed Mar. 21, 2020).; L. Xiamen Ursalink Technology Co., “IoT-based Smart Irrigation,” 2019.https://www.ursalink.com/en/solution/agriculture/smart-irrigation (accessed May 30, 2020).; O. Pandithurai, S. Aishwarya, B. Aparna, and K. Kavitha, “Agro-tech: A digital model formonitoring soil and crops using internet of things (IOT),” ICONSTEM 2017 - Proc. 3rd IEEE Int. Conf. Sci. Technol. Eng. Manag., vol. 2018-Janua, pp. 342–346, 2018, doi:10.1109/ICONSTEM.2017.8261306.; A. N. Nassar A.S., Montasser A.H., “Smart Aquaponics System for Industrial Internet ofThings (IIoT),” Proc. Int. Conf. Adv. Intell. Syst. Informatics, vol. 639, no. 1, pp. 855–864, 2018, doi:10.1007/978-3-319-64861-3.; R. Nageswara Rao and B. Sridhar, “IoT based smart crop-field monitoring and automationirrigation system,” Proc. 2nd Int. Conf. Inven. Syst. Control. ICISC 2018, no. Icisc, pp. 478–483, 2018, doi:10.1109/ICISC.2018.8399118.; S. Bakalis et al., “Perspectives from CO+RE: How COVID-19 changed our food systemsand food security paradigms,” Curr. Res. Food Sci., vol. 3, pp. 166–172, 2020, doi:10.1016/j.crfs.2020.05.003.; J. M. Talavera et al., “Review of IoT applications in agro-industrial and environmental fields,”Comput. Electron. Agric., vol. 142, no. 118, pp. 283–297, 2017, doi:10.1016/j.compag.2017.09.015.; Wikipedia, “Druckschalter,” Wikipedia, 2013. https://de.wikipedia.org/wiki/Druckschalter#/media/Datei:Druckschalter_PSD_30.jpg (accessed Jun. 30, 2020).; P. IoT, “PARTICLE IoT-BORON,” 2019. https://docs.particle.io/datasheets/cellular/boron-datasheet/ (accessed Oct. 19, 2019).; The ThingsBoard Authors, “Smart farming and smart agriculture solutions,” ThingsBoard.io,2020. https://thingsboard.io/smart-farming/ (accessed Jun. 20, 2020).; A. Joseph Fernando, “How Africa Is Promoting Agricultural Innovations and Technologiesamidst the COVID-19 Pandemic,” Mol. Plant, vol. 13, no. 10, pp. 1345–1346, 2020, doi:10.1016/j.molp.2020.08.003.; E. Vargas, A. Guillermo Correa, P. C. souza, N. Rodrigues de Baptestini, F. Machado Zaidan y I. Ramos, "Avaliação da homogeneidade da expansão dos grãos de café torrados" de VIII Simpósio de Pesquisa dos Cafés do Brasil, novembro 2013.; Giraldo Cerón, A. F. "Tan cerca y tan lejos de la agricultura 4.0 en Colombia". Revista Universidad EAFIT, 55(175), 78-85.2020.; O. L. Ocampo López y L. M. Álvarez Herrera, «Tendencia de la producción y el consumo del café en Colombia,» Apuntes del CENES, vol. 36, nº 64, pp. 139-165, julio -diciembre 2017.; G. I. Puerta Quintero, Investigador Científico III y Centro Nacional deInvestigaciones, «COMPOSICIÓN QUÍMICA DE UNA TAZA DE CAFÉ,» Ciencia, tecnología e innovación para la caficultura colombiana, MANIZALES , 2011.; Samodro, Bayu, et al. "Maintaining the Quality and Aroma of Coffee with Fuzzy Logic Coffee Roasting Machine." IOP Conference Series: Earth and Environmental Science. Vol. 426. No. 1. IOP Publishing, 2020.; Fadri, R. A., et al. "Review of coffee roasting process and formation of acrylamide related to health." Journal of Applied Agricultural Science and Technology 3.1 (2019): 129-145.; Botero Lopez, Santiago, and Muhammad Salman Chaudhry. "Designing an Efficient Supply Chain for Specialty Coffee from Caldas-Colombia." (2020).; Suarez-Peña, Javier Andrés, et al. "Machine Learning for Cup Coffee Quality Prediction from Green and Roasted Coffee Beans Features." Workshop on Engineering Applications. Springer, Cham, 2020.; Putra, Satya Andika, Umi Hanifah, and Mirwan Ardiansyah Karim. "Theoretical study of fluidization and heat transfer on fluidized bed coffee roaster." AIP Conference Proceedings. Vol. 2097. No. 1. AIP Publishing LLC, 2019.; Benitez O, Campo-Ceballos D, «Evaluación de la calidad el café tostado utilizando herramientas de procesamiento digital de imágenes», ACCB, vol. 1, n.º 30, pp. 32-43, dic. 2018.; Meana, Vanessa Rose L., Nazer Sarapeo P. Kimkiman, and Alvin C. Dulay. "Design, Fabrication, and Performance Evaluation of a Batch-Type Fluidized Bed Coffee Roaster for Small-Scale Coffee Growers." Mountain Journal of Science and Interdisciplinary Research (formerly Benguet State University Research Journal) 79.2 (2019): 90-97.; Buesaquillo Imbaquingo, Luis Darío. Sistema de control para mejorar el desempeño de una máquina tostadora de café. BS thesis. 2019.; Abdul. Ghani, Nur Hamizah, et al. "Development of a novel 2D single coffee bean model and comparison with a 3D model under varying heating profiles." Journal ofFood Process Engineering 42.4 (2019).; Campo Ceballos D, et al. "Herramientas de cv para evaluar el color y matiz del café tostado: el color del café tostado y su relación con las propiedades organolépticas".EAE. 68 páginas. 2018.; N. Reddy, N. Maheshwari, D. K. Sahu, y G. K. Ananthasuresh, «Miniature CompliantGrippers With Vision-Based Force Sensing», IEEE Transactions on Robotics, vol. 26, no. 5, pp. 867–877, Oct. 2010.; Barraza, A., Rúa, J., Sosa, J., Yime, E., & Roldan, J. (2015). Modelado dinámico delmanipulador serial Mitsubishi Movemaster RV-M1 usando SolidWorks. Revista de la facultad de Ingenierías Físicas Mecánicas, 49-62.; Benbelkacem, Y., & Mohd-Mokhtar, R. (26-29 de Noviembre de 2012). Explicit kinematicmodel of the Mitsubishi RV-M1 robot arm. IEEE, 404-409. Obtenido de http://ieeexplore.ieee.org/document/6466627/.; Carrasco, B., & Alberto, J. (2015). Integración de un UAV (vehículo aéreo no tripulado)en la plataforma robótica ARGOS.; DARMOUL Saber. Reality for Manufacturing: A Robotic Cell Case Study. Department ofIndustrial Engineering. King Saud University. Saudi Arabia. 7pag. 2015.; Research on Assembly Modeling Process Based on Virtual Manufacturing InteractiveApplication Technology. School of Mechanical and Electronic Engineering. Wuhan University of Technology. Wuhan, China. 5 pág. 2017.; Forero, J., Hurtado, L., & Ruiz, V. (Febrero de 2015). Visión electrónica, Más que unestado sólido. Arquitectura paralela robótica: modelado y simulación con siemens NX. Recuperado el 10 de agosto de 2015, de http://revistas.udistrital.edu.co/ojs/index.php/visele/article/view/11018.; Marcu, C., Lazea, G., Herle, S., Robotin, R., & Tamas, L. (2010 de junio de 25). IEEEexplore Digital Library, 3D graphical simulation of an articulated serial manipulator based on kinematic models. Recuperado el 10 de Agosto de 2017, de http://ieeexplore.ieee.org/abstract/document/5524593/.; Luengas, L. A., Sánchez, G., & Cárdenas, S. M. (2015). Nuevas herramientaspedagógicas: laboratorio virtual. Visión electrónica, 9(2), 277-284.https://revistas.udistrital.edu.co/index.php/visele/article/view/11034.; Luengas, L. A., Rincón López, D. A., & Galeano, K. J. (2010). Realidad virtual noinmersiva: instrumentos electrónicos de aplicación educativa. Visión electrónica, 4(1), 94-105.https://revistas.udistrital.edu.co/index.php/visele/article/view/275.; K. Cacua, O. Amell y L. Olmos, "Estudio comparativo entre las propiedades decombustión de la mezcla biogás-aire normal y biogás-aire enriquecido con oxígeno", Revista Ingeniería e Investigación, vol. 1, pp. 233-241, 2011.; R. Liriano, Aplicación de biofertilizantes como alternativa nutricional, ambiental y económica en la agricultura urbana, España: Universidad de Girona, 2005.; A. Padilla y J. Rivero, "Producción de Biogás y compost a partir de Residuos Orgánicos recolectados del complejo arqueológico Huaca de la Luna", Ciencia y Tecnología, vol. 1, pp. 29-43, 2016.; L. O. González Salcedo y Y. Olaya Arboleda, Fundamentos para el diseño de Biodigestores, Departamento de Ingeniería, 2009.; M. T. Madigan, J. M. Martinko y J. Parker, Biología de los microorganismos, 10 ed, 2004.; A. Pulido y J. Espitia, Diseño e implementación de un sistema de supervisión, monitoreo y control de temperatura, presión y tiempo de proceso en un sistema de digestión anaerobia de biomasa (contenido ruminal bovino) a escala de laboratorio, Bogotá: Universidad Distrital Francisco José de Caldas, 2016.; G. Bastin, "On-line estimation and adaptive control of bioreactors", Elsevier, vol. 1, 2013.; S. Hassam, E. Ficara, A. Leva y J. Harmand, "A generic and systematic procedure to derive a simplified model from the anaerobic digestion model No. 1 (ADM1)", Biochemical Engineering Journal, pp. 99, 193-203, 2015.; E. Ficara, S. Hassam, A. Allegrini, A. Leva, F. Malpei y G. Ferretti, "Anaerobic digestion models: a comparative study. IFAC Proceedings.", vol. 45(2), pp. 1052- 1057, 2012.; J. A. Jiménez, G. Pomboza y J. A. Holgado, «El gesto aplicado al control de dispositivosen,» Jornadas SARTECO, Ecuador, 2017.; O. F. Olivera, J. A. Cuervo, y F. N. Giraldo Ramos, “Sistema de control de posición angularaplicado a dispositivos RF", Visión Electrónica, vol. 5, no. 2, pp. 42-58, 2011.; T. G. Zimmerman, J. Lanier, C. Blanchard, S. Bryson, and Y. Harvill, “A hand gestureinterface device,” ACM SIGCHI Bull., vol. 17, no. SI, pp. 189 192, 1986.; Omega engineering, «Omega ENGINEERING,» es.omega.com, [En línea]. Available:https://es.omega.com/prodinfo/acelerometro.html. [Último acceso: 11 08 2019].; tdk, «Datasheet MPU60XX,» [En línea]. Available: https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf. [Último acceso: 11 08 2020].; Naylamp Mechatronics, «Naylamp Mechatronics,» Naylamp Mechatronics, [En línea].Available:https://naylampmechatronics.com/blog/45_Tutorial-MPU6050-Acelerómetro-y-Giros copio.html. [Último acceso: 11 08 2019].; Arduino, «arduino.cl,» arduino.cl, [En línea]. Available: http://arduino.cl/arduino-nano/.[Último acceso: 15 08 2019].; J. J. M. Fuentes, Fundamentos de radiación y radiocomunicación, Sevilla: Departamentode Teoría de la Señal y Comunicaciones, 2012.; J. Vargas, G. Poveda y V. Martinez, «Dispositivo inalámbrico para el control de,»ESPACIOS, vol. 39, nº 45, p. 9, 2018.; M. A. Arenas, J. M. Palomares, L. Girard, J. Olivares y J. M., «Diseño y Construcciónde un Guante de Datos mediante Sensores de Flexibilidad y acelerómetro,» researchgate, España, 2011.; K. K. Abgaryan and I. S. Kolbin, “Calculation of Heat Transfer in NanosizedHeterostructures,” Russ. Microelectron., vol. 48, no. 8, pp. 559–563, 2019, doi:10.1134/S1063739719080031.; A. R. Shabaan, S. M. El-Metwally, M. M. A. Farghaly, and A. A. Sharawi, “PID and fuzzylogic optimized control for temperature in infant incubators,” 2013 Proc. Int. Conf. Model. Identif. Control. ICMIC 2013, no. Icmic, pp. 53–59, 2013.; D. M. Ovalle M and L. F. Cómbita A., “Teaching basic control concepts with a home-madethermal system,” IEEE Glob. Eng. Educ. Conf. EDUCON, no. April, pp. 739–744, 2014, doi:10.1109/EDUCON.2014.6826176.; S. A. Adnan, A. Muhammad, and Z. Shareef, “Development of a low cost thermalfeedback system for basic control education,” Proc. 14th IEEE Int. Multitopic Conf. 2011, INMIC 2011, pp. 228–232, 2011, doi:10.1109/INMIC.2011.6151478.; R. Urbieta Parrazales, “Diseño, Simulación y Construcci?n de un Control PID Aplicado aun Sistema Térmico,” Polibits, vol. 15, pp. 11–19, 1995, doi:10.17562/pb-15-2.; C. Close, Modeling and Analysis of Dynamic Systems. 2002.; F. Navas, “DISEÑO Y CONSTRUCCION DE CAJA DE TRANSFERENCIA DE CALOR (GUARDED HOT BOX ),” 2007.; J. Bravo, G. López, R. Rodríguez, and F. J. Sabina, “Acerca de la homogeneización ypropiedades efectivas de la ecuación del calor On homogenization and effective properties of the heat equation Resumen,” pp. 149–159, 2013.; E. Significativas, Electrónica : teoría de circuitos y dispositivos electrónicos.; P. E. Allen, Operational amplifiers and linear integrated circuits, vol. 71, no. 9. 2008.; N. Ruangpayoongsak, J. Sumroengrit, & M. Leanglum, “A floating waste scooperrobot on water surface”, In 2017 17th International Conference on Control, Automation and Systems (ICCAS), pp. 1543-1548, IEEE, October 2017.; I Baturone, Robótica: manipuladores y robots móviles. Marcombo, 2005.; P. Jorge-Sanz, "Robots industriales colaborativos: una nueva forma de trabajo",Seguridad y Salud en el trabajo 95, pp. 6-10, 2018.; H. Thomas, S. Bensch. "Understandable robots-what, why, and how." Paladyn,Journal of Behavioral Robotics 9,pp. 110-123. no. 1, 2018.; B. Andrew, E. F. Buffie, and L.F. Zanna. "Robots, growth, and inequality." Finance &Development 53, pp. 10-13, no. 3, 2016.; S. Martínez, A. Carvajal, D. Loza, A. Ibarra, and L. Segura. "Collaborative two-armrobotic torso for the development of an assembly process." In 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), pp. 1-6. IEEE, 2017.; T.I., Getting Started MSP430G2553 Value Line LaunchPad Workshop Series, [Enlínea]. Disponible en: https://training.ti.com/getting-started-msp430g2553-launchpad-part-1.; D. Anderson, G. Constante, and T. Arrigoni. "Arquitetura FPGAs CPLDs da Xilinx."; Creus-Solé, “Instrumentación industrial”, 8va. ed. México: Alfaomega Grupo Editor, 2011.; M. A. Pérez-García, et al., “Instrumentación electrónica”, Madrid: Thomson, 2004.; Manuel, et al., “Instrumentación virtual adquisición, procesado y análisis de señales”,1era ed. Barcelona: UPC, 2001.; O. F. Corredor, et al. “Diseño e implementación de filtros digitales”. Visión electrónica,vol. 3, no. 1, pp. 55-56,2009. https://doi.org/10.14483/22484728.691.; Silicon Labs, “Using microcontrollers in digital signal processing applications”. AN219, Rev. 0.2 8/08. https://www.silabs.com/documents/public/application-notes/an219.pdf.; Hernández y E. Jacinto, “Una nueva metodología en el diseño de filtros digitales FIR sobre FPGA”. Visión electrónica, vol. 3, no. 2, pp. 40-47, 2009. https://doi.org/10.14483/22484728.2834.; V. M. Gómez, et al. “Diagnóstico de rodamientos con vibraciones mecánicas einstrumentos virtuales”. Visión electrónica, vol. 8, no. 2, pp. 107-113, 2014. https://doi.org/10.14483/22484728.9881.; National Instruments, “Strain gauge measurement - A tutorial”, Aplication Note 078, 2018.; J. Horn y G. Gleason, “Weigh Scale Applications for the MCP3551”, AN1030 Microchip, 2006.; F. Quiles-Latorre, et al., “Diseño del interfaz de una balanza electrónica basada en una celda de carga,” en Libro de catas SAAAEI2018, Córdoba, pp. 272-277, 2018.; J. Hernández-Jiménez y M. Fabela-Gallegos, “Diseño y construcción de un prototipo para determinar el peso de vehículos ligeros en movimiento”, 2004.; Rice Lake Weighing Systems, “Load cell and weigh module handbook”, 2017.; OIML, “Metrological regulation of load cells”, OIML R 60-1, 2017.; National Instruments, “User guide and specifications NI USB-6008/6009”, 2007. C. E. Pardo-Beainy, “Instrumentación Virtual, Control y Adquisición de Datos para Unidades de Cuidados Intensivos”, 2007.; G. Tem, “Concurso en Ingeniería de Control 2020,” 2020.; G. G. Slabaugh, “Computing Euler angles from a rotation matrix,” denoted as TRTAImplement. from httpwww starfireresearch comservicesjava3dsamplecodeFlorinE ulers html, vol. 6, no. 2000, pp. 1–6, 1999.; L. Euler, “Formvlae generales pro translatione qvacvnqvve corporvm rigidor,” NoviCommentarii academiae scientiarum Petropolitanae, vol. 20. pp. 189–207, 1776.; D. Entwurf, “Der Entwurf linearer Regelungssysteme im Zustandsraum,” vol. 1, no. 8,1972.; D. D. E. I. Eléctrica and J. P. S. V, “Desarrollo de software para inspección técnica deuna aplicación CPM,” 2017.; S. C. C. Navarrete, “Control avanzado de un sistema de refrigeración,” 2019.; "Measures of controlled system performance.” [Online]. Available: http://www.online-courses.vissim.us/Strathclyde/measures_of_controlled_system_pe.htm. [Accessed: 20-Nov-2020].; Á. Valera Fernández, Modelado y control en el espacio de estados. 2016.; O. A. Esquivel Flores, “Análisis de observabilidad y controlabilidad para sistemasdiferenciaslmente planos. Aplicación a un sistema de oscilaciones de calcio,” p. 107, 2007.; J. Ángel and S. Blanco, “Diseño en el Espacio de Estados,” pp. 1–9, 2017.; https://hdl.handle.net/11349/31383; Universidad Distrital Francisco José de Caldas.
Dostupnost: https://hdl.handle.net/11349/31383
-
6
Autoři:
Přispěvatelé:
Témata: 670 - Manufactura, 620 - Ingeniería y operaciones afines, 680 - Manufactura para usos específicos, 600 - Tecnología (Ciencias aplicadas), Diseño industrial, Automatización, Productos nuevos, Diseños de productos, Desarrollo de nuevos productos, Design, industrial, Automation, New products, New product development, Diseño generativo realimentado, Diseño generativo, Optimización multiobjetivo, Diseño paramétrico, Grafos direccionales, Frentes de Pareto, Programación paralela, Feedback-based generative design, Feedback generative design, Generative design, Multi-objective optimization, Parametric design, Directed graphs, Pareto fronts, parallel programming
Popis souboru: xxiii, 206 páginas; application/pdf
Relation: [1] J. S. Restrepo Mendoza and E. Cordoba Nieto, “DISEÑO PARAMÉTRICO PARA CLASIFICACIÓN DE FAMILIAS DE PRODUCTOS EN MANUFACTURA DISCRETA EN EL LABFABEXUN,” in CONGRESO INTERNACIONAL DE INGENIERÍA MECÁNICA, MECATRÓNICA Y AUTOMATIZACIÓN - Memorias 2021, pp. 21–21, 2021.; Martin Hankel, “RAMI4.0 – Reference Architecture Model Industry 4.0.,” 11 2016.; TheOPCFoundation, “RAMI4.0 by Martin Hankel (Bosch-Rexroth) at OPC Day Europe 2016,” 2 2017.; Gonz´alez, “Measurement of Areas on a Sphere Using Fibonacci and Latitude-Longitude Lattices,” Mathematical Geosciences, vol. 42, pp. 49–64, 1 2010.; Departamento Nacional de Planeaci´on (DNP), Superintendencia de Industria y Comercio (SIC), Direcci´on Nacional de Derecho de Autor (DNDA), Instituto Colombiano Agropecuario (ICA), Organizaci´on Mundial de la Propiedad Intelectual (OMPI), and Misi´on permanente de Colombia ante las naciones Unidas, “Reporte sobre la informaci ´on en materia de Propiedad Intelectual en Colombia,” tech. rep., 2017.; J. Mountstephens and J. Teo, “Progress and challenges in generative product design: A review of systems,” 12 2020.; Z. Jiang, H. Wen, F. Han, Y. Tang, and Y. Xiong, “Data-driven generative design for mass customization: A case study,” Advanced Engineering Informatics, vol. 54, 10 2022.; P. Wolniak, B. Sauthoff, D. Kloock-Schreiber, and R. Lachmayer, “AUTOMATED PRODUCT FUNCTIONALITY and DESIGN OPTIMIZATION INSTANCING A PRODUCT-SERVICE SYSTEM,” in Proceedings of the Design Society: DESIGN Conference, vol. 1, pp. 1405–1414, Cambridge University Press, 2020.; M. A. S. Al-Shamsi, “Review of Korean Imitation and Innovation in the Last 60 Years,” 3 2022.; B. Bartikowski, F. Fastoso, and H. Gierl, “Luxury cars Made-in-China: Consequences for brand positioning,” Journal of Business Research, vol. 102, pp. 288–297, 9 2019; K. D. Thoben, S. A. Wiesner, and T. Wuest, “Industrie 4.0 and smart manufacturing-a review of research issues and application examples,” 2017.; D. G. Ullman, The Mechanical Design Process, vol. 1. 2010.; A. M. Farid and N. P. Suh, Axiomatic Design in Large Systems. 2016.; R. L. Norton, Dise˜no de m´aquinas. Un enfoque integrado. Pearson Educaci´on, cuarta edi ed., 2011.; S. BuHamdan, A. Alwisy, and A. Bouferguene, “Generative systems in the architecture, engineering and construction industry: A systematic review and analysis,” International Journal of Architectural Computing, 2020.; D. Nagaraj and D. Werth, “Towards a Generalized System for Generative Engineering,” in ACM International Conference Proceeding Series, Association for Computing Machinery, 1 2020.; S. Fox, “A preliminary methodology for generative production systems,” Journal of Manufacturing Technology Management, vol. 22, no. 3, pp. 348–364, 2011.; A. N. Pilagatti, G. Vecchi, E. Atzeni, L. Iuliano, and A. Salmi, “Generative Design and new designers’ role in the manufacturing industry,” in Procedia CIRP, vol. 112, pp. 364–369, Elsevier B.V., 2022.; C. Hyunjin, “A Study on Application of Generative Design System in Manufacturing Process,” in IOP Conference Series: Materials Science and Engineering, vol. 727, Institute of Physics Publishing, 1 2020.; J.Wu, M. Li, Z. Chen, W. Chen, X.Wu, and Y. Xi, “Generative Design of the Roller Seat of the Wind Turbine Blade Turnover Machine Based on Cloud Computing,” ICMAE 2020 - 2020 11th International Conference on Mechanical and Aerospace Engineering, pp. 212–217, 2020.; H. Li and R. Lachmayer, “Automated exploration of design solution space applying the generative design approach,” in Proceedings of the International Conference on Engineering Design, ICED, vol. 2019-August, pp. 1085–1094, Cambridge University Press, 2019.; S. Khan and M. J. Awan, “A generative design technique for exploring shape variations,” Advanced Engineering Informatics, vol. 38, no. October, pp. 712–724, 2018.; S. Khan, E. Gunpinar, and B. Sener, “GenYacht: An interactive generative design system for computer-aided yacht hull design,” Ocean Engineering, vol. 191, no. August, p. 106462, 2019.; E. Gunpinar and S. Gunpinar, “A shape sampling technique via particle tracing for CAD models,” Graphical Models, vol. 96, no. January, pp. 11–29, 2018; S. Oh, Y. Jung, S. Kim, I. Lee, and N. Kang, “Deep generative design: Integration of topology optimization and generative models,” Journal of Mechanical Design, Transactions of the ASME, vol. 141, 11 2019; P. Ghannad and Y. C. Lee, “Automated modular housing design using a module configuration algorithm and a coupled generative adversarial network (CoGAN),” Automation in Construction, vol. 139, 7 2022; N. A. Kallioras and N. D. Lagaros, “DzAI: Deep learning based generative design,” Procedia Manufacturing, vol. 44, pp. 591–598, 2020; N. A. Kallioras and N. D. Lagaros, “Mlgen: Generative design framework based on machine learning and topology optimization,” Applied Sciences (Switzerland), vol. 11, 12 2021; J. C. Garc´ıa Carrero, Planeaci´on de trayectorias en vuelo de un manipulador industrial para el Laboratorio F´abrica Experimental UN. PhD thesis, Universidad Nacional de Colombia, Bogot´a D.C, 2017; C. Sarmiento Fautoque, Desarrollo Te´orico- Experimental en la Geometr´ıa de Maquinado M´ulti-ejes aplicando Ingenier´ıa Inversa Mixta. PhD thesis, Universidad Nacional de Colombia, Bogot´a D.C., 2014; V. Granadeiro, L. Pina, J. P. Duarte, J. R. Correia, and V. M. Leal, “A general indirect representation for optimization of generative design systems by genetic algorithms: Application to a shape grammar-based design system,” Automation in Construction, vol. 35, pp. 374–382, 2013; H. Li and R. Lachmayer, “Generative Design Approach for Modeling Creative Designs,” IOP Conference Series: Materials Science and Engineering, vol. 408, no. 1, 2018; S. S. Pibal, K. Khoss, and I. Kovacic, “Framework of an algorithm-aided BIM approach for modular residential building information models,” International Journal of Architectural Computing, vol. 20, pp. 777–800, 12 2022; M. Younus, C. Peiyong, L. Hu, and F. Yuqing, “MES development and significant applications in manufacturing -A review,” in ICETC 2010 - 2010 2nd International Conference on Education Technology and Computer, vol. 5, 2010; T. A. Jauhar, M. Safdar, I. Kim, and S. Han, “Web-based Product Data Visualization and Feedback between PLM and MES,” in Proceedings - Web3D 2020: 25th ACM Conference on 3D Web Technology, Association for Computing Machinery, Inc, 11 2020; G. Bruno, A. Faveto, and E. Traini, “An open source framework for the storage and reuse of industrial knowledge through the integration of plm and mes,” Management and Production Engineering Review, vol. 11, pp. 62–73, 6 2020; E. Traini, G. Bruno, A. Awouda, P. Chiabert, and F. Lombardi, “Integration Between PLM and MES for One-of-a-Kind Production,” in IFIP Advances in Information and Communication Technology, vol. 565 IFIP, pp. 356–365, Springer, 2019; M. I. Mahmoud, H. H. Ammar, M. M. Hamdy, and M. H. Eissa, “Production operation management using Manufacturing Execution Systems (MES),” in 2015 11th International Computer Engineering Conference: Today Information Society What’s Next?, ICENCO 2015, pp. 111–116, Institute of Electrical and Electronics Engineers Inc., 2 2016; W. Qifeng and W. Zhangjian, “Web services-based system integration approach for manufacturing execution system,” in Proceedings - 2011 International Conference on Internet Computing and Information Services, ICICIS 2011, pp. 469–472, 2011; S.-H. Jing, Q.-J. Meng, and W.-Q. Cao, “Cement Enterprise MES Key Technology Research and Application,” in 2007 International Conference on Machine Learning and Cybernetics, pp. 277–282, IEEE, 8 2007; W. Qu, W. Cao, and Y. C. Su, “Design and implementation of smart manufacturing execution system in solar industry,” Journal of Ambient Intelligence and Humanized Computing, 2020; Y. Yue-Xina and R. Gong-Chang, “Design of Real Time Data Acquisition System Framework for Production Workshop Based on OPC Technology,” in MATEC Web of Conferences, vol. 128, EDP Sciences, 10 2017; X. Zeng, “Design and implementation of production management system in aviation machining workshop based on MES,” in Proceedings - International Conference on Control Science and Electric Power Systems, CSEPS 2021, pp. 385–388, Institute of Electrical and Electronics Engineers Inc., 5 2021; S. Mantravadi, C. Møller, C. LI, and R. Schnyder, “Design choices for next-generation IIoT-connected MES/MOM: An empirical study on smart factories,” Robotics and Computer-Integrated Manufacturing, vol. 73, 2 2022; J. Barata, P. R. da Cunha, A. S. Gonnagar, and M. Mendes, “Product traceability in ceramic industry 4.0: A design approach and cloud-based MES prototype,” in Lecture Notes in Information Systems and Organisation, vol. 26, pp. 187–204, Springer Heidelberg, 2018; M. Ko, C. Lee, and Y. Cho, “Design and Implementation of Cloud-Based Collaborative Manufacturing Execution System in the Korean Fashion Industry,” Applied Sciences (Switzerland), vol. 12, 9 2022; X. Han, M. Li, and X. Zhang, “Design and key technology of MES for spacecraft assembly,” in Proceedings - 2016 6th International Conference on Instrumentation and Measurement, Computer, Communication and Control, IMCCC 2016, pp. 844–847, Institute of Electrical and Electronics Engineers Inc., 12 2016; D. F. Tosse, S. Araujo, and E. C´ordoba, “Plataforma para integraci´on de m´aquinas en laboratorio f´abrica experimental con enfoque de Industria 4.0,” in Innovar para educar (Corporaci´on Cimted© 2020, ed.), vol. 1, pp. 125–146, Medell´ın, Antioquia – Colombia: Corporaci´on Centro Internacional de Marketing Territorial para la Educaci´on y el Desarrollo, primera ed., 2020; R. Y. Zhong, G. Q. Huang, Q. Y. Dai, K. Zhou, T. Qu, and G. J. Hu, “RFID-enabled real-time manufacturing execution system for discrete manufacturing: Software design and implementation,” in 2011 International Conference on Networking, Sensing and Control, ICNSC 2011, pp. 311–316, 2011; Y. Wang, M. Wang, J. Wang, and Y. Zhou, “Design and implementation of device integration framework based on agent technology in MES,” in Procedia CIRP, vol. 83, pp. 485–489, Elsevier B.V., 2019; G. D’Antonio, F. Segonds, J. S. Bedolla, P. Chiabert, and N. Anwer, “A proposal of manufacturing execution system integration in design for additive manufacturing,” in IFIP Advances in Information and Communication Technology, vol. 467, pp. 761–770, Springer New York LLC, 2016; M. Naedele, H. M. Chen, R. Kazman, Y. Cai, L. Xiao, and C. V. Silva, “Manufacturing execution systems: A vision for managing software development,” Journal of Systems and Software, vol. 101, pp. 59–68, 3 2015; T. Masood and R. H. Weston, “Modelling framework to support decision-making in manufacturing enterprises,” Advances in Decision Sciences, vol. 2013, 2013; H. Habib, R. Menhas, and O. McDermott, “Managing Engineering Change within the Paradigm of Product Lifecycle Management,” Processes, vol. 10, 9 2022; M. Hayat and H. Winkler, “Exploring the Basic Features and Challenges of Traditional Product Lifecycle Management Systems,” in IEEE International Conference on Industrial Engineering and Engineering Management, vol. 2022-December, pp. 762–766, IEEE Computer Society, 2022; S. R¨adler and E. Rigger, “A Survey on the Challenges Hindering the Application of Data Science, Digital Twins and Design Automation in Engineering Practice,” in Proceedings of the Design Society, vol. 2, pp. 1699–1708, Cambridge University Press, 5 2022; S. Nzetchou, A. Durupt, S. Remy, and B. Eynard, “Semantic enrichment approach for low-level CAD models managed in PLM context: Literature review and research prospect,” Computers in Industry, vol. 135, 2 2022; M. Lennartsson, S. Andr´e, and F. Elgh, “PLM support for design platforms in industrialized house-building,” Construction Innovation, 2 2021; V. Kopei, O. Onysko, C. Barz, P. Daˇsi´c, and V. Panchuk, “Designing a Multi-Agent PLM System for Threaded Connections Using the Principle of Isomorphism of Regularities of Complex Systems,” Machines, vol. 11, 2 2023; Y. Liao, F. Deschamps, E. d. F. R. Loures, and L. F. P. Ramos, “Past, present and future of Industry 4.0 - a systematic literature review and research agenda proposal,” International Journal of Production Research, vol. 55, no. 12, pp. 3609–3629, 2017; J. W. Veile, D. Kiel, J. M. M¨uller, and K. I. Voigt, “Lessons learned from Industry 4.0 implementation in the German manufacturing industry,” Journal of Manufacturing Technology Management, 2019; “Status Report Reference Architecture Model Industrie 4.0 (RAMI4.0),” tech. rep., 2015; A. F. Cifuentes G´omez, Implementaci´on de sistemas de gesti´on de informaci´on del ciclo de vida de producto basado en el desarrollo de un molde de inyecci´on. PhD thesis, Universidad Nacional de Colombia, Bogot´a, Colombia, 2021; P. Andr´es and C. Parra, “Modelo e-Manufacturing bajo la arquitectura Cloud Manufacturing para el Laboratorio F´abrica Experimental UN,” tech. rep., 2015; M. K. Mohanty, P. Gahan, and S. Choudhury, “Why most of the supplier development programs fail in discrete manufacturing – findings from selected Indian discrete manufacturing industries,” 2014; T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong, H. Wang, Z. Lin, and K. H. Johansson, “A survey of distributed optimization,” Annual Reviews in Control, vol. 47, pp. 278–305, 2019; A. K. Sethi and S. P. Sethi, “Flexibility in manufacturing: A survey,” International Journal of Flexible Manufacturing Systems, vol. 2, no. 4, pp. 289–328, 1990.; S. K. Saren and V. Tiberiu, “Review of Flexible Manufacturing System Based on Modeling and Simulation,” ANNALS OF THE ORADEA UNIVERSITY. Fascicle of Management and Technological Engineering., vol. Volume XXV, no. 1, 2016.; G. Kim, Y. Kwon, E. S. Suh, and J. Ahn, “Analysis of Architectural Complexity for Product Family and Platform,” Journal of Mechanical Design, Transactions of the ASME, vol. 138, no. 7, pp. 1–11, 2016; O. Asikoglu and T. W. Simpson, “A new method for evaluating design dependencies in product architectures,” 12th AIAA Aviation Technology, Integration and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, no. September, pp. 1–11, 2012; M. Lafou, L. Mathieu, S. Pois, and M. Alochet, “Manufacturing System Flexibility: Product Flexibility Assessment,” Procedia CIRP, vol. 41, pp. 99–104, 2016.; F. M. Kasie, G. Bright, and A. Walker, “Decision support systems in manufacturing: a survey and future trends,” Journal of Modelling in Management, vol. 12, no. 3, pp. 432– 454, 2017.; J. Igba, K. Alemzadeh, P. M. Gibbons, and K. Henningsen, “A framework for optimising product performance through feedback and reuse of in-service experience,” Robotics and Computer-Integrated Manufacturing, vol. 36, pp. 2–12, 2015; M. von Stietencron, K. A. Hribernik, C. C. Røstad, B. Henriksen, and K. D. Thoben, “Applying closed-loop product lifecycle management to enable fact based design of boats,” in IFIP Advances in Information and Communication Technology, vol. 517, pp. 522–531, Springer New York LLC, 2017; C. a. Coello Coello and G. B. Lamont, Applications Of Multi-Objective Evolutionary Algorithms. 2004; H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-objective optimization: A short review,” in 2008 IEEE Congress on Evolutionary Computation, CEC 2008, 2008.; G. Chiandussi, M. Codegone, S. Ferrero, and F. E. Varesio, “Comparison of multiobjective optimization methodologies for engineering applications,” Computers and Mathematics with Applications, vol. 63, no. 5, pp. 912–942, 2012.; G. Ortega, E. Filatovas, E. M. Garz´on, and L. G. Casado, “Non-dominated sorting procedure for Pareto dominance ranking on multicore CPU and/or GPU,” Journal of Global Optimization, vol. 69, pp. 607–627, 11 2017; L. B. De Oliveira, C. G. Marcelino, A. Milanes, P. E. Almeida, and L. M. Carvalho, “A successful parallel implementation of NSGA-II on GPU for the energy dispatch problem on hydroelectric power plants,” in 2016 IEEE Congress on Evolutionary Computation, CEC 2016, pp. 4305–4312, Institute of Electrical and Electronics Engineers Inc., 11 2016.; K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.; E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the Strength Pareto Evolutionary Algorithm,” Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp. 95–100, 2001; P. K. Tripathi, S. Bandyopadhyay, and S. K. Pal, “Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients,” Information Sciences, vol. 177, pp. 5033–5049, 11 2007.; X. Li, “A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization,” Genetic and Evolutionary Computation — GECCO 2003, vol. 2723, pp. 37–48, 6 2003; R. Sedgewick and K. Wayne, “Algorithms,” tech. rep; J. J. Craig, P. Prentice, and P. P. Hall, “Introduction to Robotics Mechanics and Control Third Edition,” tech. rep., 2005.; I. Viana, J.-J. Orteu, N. Cornille, and F. Bugarin, “Inspection of aeronautical mechanical parts with a pan-tilt-zoom camera: an approach guided by the computer-aided design model,” Journal of Electronic Imaging, vol. 24, no. 6, p. 061118, 2015; H. Huang, J. Liu, S. Liu, T. Wu, and P. Jin, “A method for classifying tube structures based on shape descriptors and a random forest classifier,” Measurement: Journal of the International Measurement Confederation, vol. 158, p. 107705, 2020; F. Hui, P. Payeur, and A. M. Cretu, “Visual tracking of deformation and classification of non-rigid objects with robot hand probing,” Robotics, vol. 6, no. 1, 2017.; J. K. Oh, S. Lee, and C. H. Lee, “Stereo vision based automation for a bin-picking solution,” International Journal of Control, Automation and Systems, vol. 10, no. 2, pp. 362–373, 2012; E. Gunpinar and S. Khan, A multi-criteria based selection method using non-dominated sorting for genetic algorithm based design. No. 65, Springer US, 2019; https://repositorio.unal.edu.co/handle/unal/85019; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
7
Autoři: a další
Přispěvatelé: a další
Zdroj: https://inria.hal.science/tel-01956255 ; Hardware Architecture [cs.AR]. Université de Rennes 1 [UR1], 2018. English. ⟨NNT : ⟩.
Témata: Network on chip NoC, Réseau sur puce NoC, ACM: C.: Computer Systems Organization/C.2: COMPUTER-COMMUNICATION NETWORKS/C.2.1: Network Architecture and Design, ACM: D.: Software/D.4: OPERATING SYSTEMS, [INFO.INFO-AR]Computer Science [cs]/Hardware Architecture [cs.AR], [INFO.INFO-ET]Computer Science [cs]/Emerging Technologies [cs.ET]
-
8
Autoři: a další
Témata: Computer Science - Hardware Architecture, Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Performance, archi, info
Relation: http://arxiv.org/abs/2301.00414
Dostupnost: http://arxiv.org/abs/2301.00414
-
9
Autoři:
Zdroj: ACM SIGARCH Computer Architecture News ; volume 15, issue 5, page 21-30 ; ISSN 0163-5964
Dostupnost: https://doi.org/10.1145/36177.36180
https://dl.acm.org/doi/10.1145/36177.36180
https://dl.acm.org/doi/pdf/10.1145/36177.36180 -
10
Autoři: a další
Přispěvatelé: a další
Zdroj: https://inria.hal.science/inria-00110507 ; [Research Report] PI 1822, 2006, pp.19.
Témata: Multi-core processor, temperature, thread scheduling, time slice, activity migration, ACM: C.: Computer Systems Organization/C.1: PROCESSOR ARCHITECTURES, [INFO.INFO-AR]Computer Science [cs]/Hardware Architecture [cs.AR]
Relation: Report N°: PI 1822
-
11
Autoři:
Zdroj: ACM SIGARCH Computer Architecture News ; volume 25, issue 2, page 50-61 ; ISSN 0163-5964
Dostupnost: https://doi.org/10.1145/384286.264129
https://dl.acm.org/doi/10.1145/384286.264129
https://dl.acm.org/doi/pdf/10.1145/384286.264129 -
12
Autoři: a další
Přispěvatelé: a další
Zdroj: 10th International Conference on Services Computing
https://inria.hal.science/hal-00870721
10th International Conference on Services Computing, Andrzej M Goscinski, Ephraim Feig, Jun 2013, Santa Clara, United States. pp.168-175, ⟨10.1109/SCC.2013.101⟩Témata: ACM: C.: Computer Systems Organization/C.2: COMPUTER-COMMUNICATION NETWORKS/C.2.4: Distributed Systems/C.2.4.1: Distributed applications, [INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI]
Geografické téma: Santa Clara, United States
-
13
Autoři: Graham, Peter C. J.
Zdroj: ACM SIGARCH Computer Architecture News ; volume 12, issue 5, page 12-18 ; ISSN 0163-5964
Dostupnost: https://doi.org/10.1145/859576.859578
https://dl.acm.org/doi/10.1145/859576.859578
https://dl.acm.org/doi/pdf/10.1145/859576.859578 -
14
Autoři: a další
Přispěvatelé: a další
Témata: 000 - Ciencias de la computación, información y obras generales::003 - Sistemas, 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería, Radiation, Radiación, Métodos orientados a objetos (computadores), Object-oriented methods (computer), Diagnosis computer assisted, Diagnóstico por computación, Fault Tolerance, Approximate Computing, Reliability, Soft Errors, Tolerancia a fallos, Computación aproximada, Confiabilidad
Popis souboru: xviii, 135 páginas; application/pdf
Relation: Aamodt, T. M. and Chow, P. (2008). Compile-time and instruction-set methods for improving floating-to fixed-point conversion accuracy. ACM Transactions on Embedded Computing Systems, 7(3):1–27.; AEC (2014). FAILURE MECHANISM BASED STRESS TEST QUALIFICATION FOR INTEGRATED CIRCUITS Automotive Electronics Council Rev-H.; Agarwal, A., Rinard, M., Sidiroglou, S., Misailovic, S., and Hoffmann, H. (2009). Using Code Perforation to Improve Performance, Reduce Energy Consumption, and Respond to Failures. Technical report, MIT.; Alaghi, A. and Hayes, J. P. (2015). STRAUSS: Spectral Transform Use in Stochastic Circuit Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(11):1770–1783.; Aponte-Moreno, A., Isaza-Gonzalez, J., Serrano-Cases, A., Martinez-Alvarez, A., Cuenca-Asensi, S., and Restrepo-Calle, F. (2020). An experimental comparison of fault injection tools for microprocessor-based systems. In 21st IEEE Latin-American Test Symposium, LATS 2020.; Aponte-Moreno, A., Isaza-González, J., Serrano-Cases, A., Martínez-Álvarez, A., Cuenca-Asensi, S., and Restrepo-Calle, F. (2023). Evaluation of fault injection tools for reliability estimation of microprocessor-based embedded systems. Microprocessors and Microsystems, 96:104723.; Aponte-Moreno, A., Moncada, A., Restrepo-Calle, F., and Pedraza, C. (2018). A review of approximate computing techniques towards fault mitigation in HW/SW systems. In 2018 IEEE 19th Latin- American Test Symposium (LATS), pages 1–6. IEEE.; Aponte-Moreno, A., Pedraza, C., and Restrepo-Calle, F. (2019a). Reducing overheads in software-based fault tolerant systems using approximate computing. In LATS 2019 - 20th IEEE Latin American Test Symposium.; Aponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. (2019b). A Low-Overhead Radiation Hardening Approach using Approximate Computing and Selective Fault Tolerance Techniques at the Software Level. In 2019 19th European Conference on Radiation and Its Effects on Components and Systems (RADECS), pages 1–4. IEEE.; Aponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. (2019c). MiFIT: A fault injection tool to validate the reliability of microprocessors. In LATS 2019 - 20th IEEE Latin American Test Symposium.; Aponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. (2019d). Using approximate computing and selective hardening for the reduction of overheads in the design of radiation-induced fault-tolerant systems. Electronics (Switzerland), 8.; Aponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. (2021a). A Low-cost Fault Tolerance Method for ARM and RISC-V Microprocessor-based Systems using Temporal Redundancy and Approximate Computing through Simplified Iterations. Journal of Integrated Circuits and Systems, 16(3):1–14.; Aponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. (2021b). Reliability Evaluation of RISC-V and ARM Microprocessors Through a New Fault Injection Tool. In 2021 IEEE 22nd Latin American Test Symposium (LATS), pages 1–6. IEEE.; Aponte-Moreno, A., Restrepo-Calle, F., and Pedraza, C. A. (2021c). FTxAC: Leveraging the Approximate Computing Paradigm in the Design of Fault-Tolerant Embedded Systems to Reduce Overheads. IEEE Transactions on Emerging Topics in Computing, 9(2):797–810.; Arifeen, T., Hassan, A. S., Moradian, H., and Lee, J. A. (2016). Probing Approximate TMR in Error Resilient Applications for Better Design Tradeoffs. In Proceedings - 19th Euromicro Conference on Digital System Design, DSD 2016, pages 637–640.; ARM (2023). Arm ref. manual.; Augustin, M., Gossel, M., and Kraemer, R. (2011). Implementation of Selective Fault Tolerance with conventional synthesis tools. In 14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems, pages 213–218. IEEE.; Avizienis, A. (1985). The N-Version Approach to Fault-Tolerant Software. IEEE Transactions on Software Engineering, SE-11(12):1491–1501.; Azambuja, J. R., Lapolli, Â., Rosa, L., and Kastensmidt, F. L. (2011a). Detecting SEEs in microprocessors through a non-intrusive hybrid technique. IEEE Transactions on Nuclear Science, 58(3 PART 2):993–1000.; Azambuja, J. R., Pagliarini, S., Rosa, L., and Kastensmidt, F. L. (2011b). Exploring the Limitations of Software-based Techniques in SEE Fault Coverage. Journal of Electronic Testing, 27(4):541–550.; Baek, W. and Chilimbi, T. M. (2010). Green: A Framework for Supporting Energy-Conscious Programming using Controlled Approximation. ACM SIGPLAN Notices, 45(6):198–209.; Baharvand, F. and Miremadi, S. G. (2020). Lexact: Low energy n-modular redundancy using approximate computing for real-time multicore processors. IEEE Transactions on Emerging Topics in Computing, 8(2):431–441.; Barr, M. and Massa, A. (2006). Programming embedded systems: with C and GNU development tools. O’Reilly Media, 2 edition.; Bellard, F. (2005). QEMU, a Fast and Portable Dynamic Translator. In USENIX Annual Technical Conf, pages 41–46.; Benso, A., Di Carlo, S., Di Natale, G., Prinetto, P., and Tagliaferri, L. (2001). Control-flow checking via regular expressions. In Proceedings 10th Asian Test Symposium, pages 299–303. IEEE.; Bernardi, P., Bolzani Poehls, L., Grosso, M., and Sonza Reorda, M. (2010). A Hybrid Approach for Detection and Correction of Transient Faults in SoCs. IEEE Transactions on Dependable and Secure Computing, 7(4):439–445.; Bohman, M., James, B., Wirthlin, M. J., Quinn, H., and Goeders, J. (2019). Microcontroller compiler-assisted software fault tolerance. IEEE Transactions on Nuclear Science, 66(1):223–232.; Boston, B., Sampson, A., Grossman, D., and Ceze, L. (2015). Probability type inference for flexible approximate programming. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, pages 470–487, New York, NY, USA. ACM.; Carbin, M., Misailovic, S., and Rinard, M. C. (2013). Verifying quantitative reliability for programs that execute on unreliable hardware. In Proceedings of the 2013 ACM SIGPLAN international conference on Object oriented programming systems languages & applications, pages 33–52, New York, NY, USA. ACM.; Chang, I. J., Mohapatra, D., and Roy, K. (2011). A Priority-Based 6T/8T Hybrid SRAM Architecture for Aggressive Voltage Scaling in Video Applications. IEEE Transactions on Circuits and Systems for Video Technology, 21(2):101–112.; Chang, J., Reis, G., and August, D. (2006). Automatic instruction-level software-only recovery. In International Conference on Dependable Systems and Networks (DSN’06), pages 83–92. IEEE.; Chen, K., Han, J., and Lombardi, F. (2017). Two approximate voting schemes for reliable computing. IEEE Transactions on Computers, 66(7):1227–1239.; Chielle, E., Azambuja, J. R., Barth, R. S., Almeida, F., and Kastensmidt, F. L. (2013). Evaluating selective redundancy in data-flow software-based techniques. IEEE Transactions on Nuclear Science, 60(4):2768–2775.; Chippa, V. K., Mohapatra, D., Roy, K., Chakradhar, S. T., and Raghunathan, A. (2014). Scalable Effort Hardware Design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(9):2004–2016.; Chippa, V. K., Roy, K., Chakradhar, S. T., and Raghunathan, A. (2013a). Managing the Quality vs. Efficiency Trade-off Using Dynamic Effort Scaling. ACM Transactions on Embedded Computing Systems, 12(2s):1–23.; Chippa, V. K., Venkataramani, S., Chakradhar, S. T., Roy, K., and Raghunathan, A. (2013b). Approximate computing: An integrated hardware approach. In 2013 Asilomar Conference on Signals, Systems and Computers, pages 111–117. IEEE.; Cho, H., Leem, L., and Mitra, S. (2012). ERSA: Error Resilient System Architecture for Probabilistic Applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 31(4):546–558.; Choudhury, M. R. and Mohanram, K. (2008). Approximate logic circuits for low overhead, non-intrusive concurrent error detection. In 2008 Design, Automation and Test in Europe, pages 903–908. IEEE.; Clark, L. T., Patterson, D. W., Hindman, N. D., Holbert, K. E., Maurya, S., and Guertin, S. M. (2011). A Dual Mode Redundant Approach for Microprocessor Soft Error Hardness. IEEE Transactions on Nuclear Science, 58(6):3018–3025.; Creswell, J. W. (2014). Research design : qualitative, quantitative, and mixed methods approaches. SAGE Publications, 4 edition.; Deveautour, B., Traiola, M., Virazel, A., and Girard, P. (2020). Qamr: An approximation-based fully reliable tmr alternative for area overhead reduction. Proceedings of the European Test Workshop, 2020-May.; Deveautour, B., Traiola, M., Virazel, A., and Girard, P. (2021). Reducing Overprovision of Triple Modular Reduncancy Owing to Approximate Computing. In 2021 IEEE 27th International Symposium on On-Line Testing and Robust System Design (IOLTS), pages 1–7. IEEE.; Di Mascio, S., Menicucci, A., Furano, G., Monteleone, C., and Ottavi, M. (2019). The case for risc-v in space. In Saponara, S. and De Gloria, A., editors, Applications in Electronics Pervading Industry, Environment and Society, pages 319–325, Cham. Springer International Publishing.; Doochul Shin and Gupta, S. K. (2011). A new circuit simplification method for error tolerant applications. In 2011 Design, Automation & Test in Europe, pages 1–6. IEEE.; Dubrova, E. (2013). Fault-Tolerant Design. Springer New York, New York, NY.; ECSS (2016). Techniques for radiation effects mitigation in ASICs and FPGAs handbook (1 September 2016) %7C European Cooperation for Space Standardization. ESA Requirements and Standards Division.; Esmaeilzadeh, H., Sampson, A., Ceze, L., and Burger, D. (2012a). Architecture support for disciplined approximate programming. In Proceedings of the 17th international conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS ’12, page 301, New York, New York, USA. ACM Press.; Esmaeilzadeh, H., Sampson, A., Ceze, L., and Burger, D. (2012b). Neural Acceleration for General-Purpose Approximate Programs. In Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM International Symposium. IEEE.; Fulton, R. and Vandermolen, R. (2014). Airborne electronic hardware design assurance : a practitioner’s guide to RTCA/DO-254. CRC Press.; Gala, N., Venkataramani, S., Raghunathan, A., and Kamakoti, V. (2017). Approximate Error Detection With Stochastic Checkers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(8):2258–2270.; Gao, M. and Qu, G. (2017). A novel approximate computing based security primitive for the Internet of Things. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–4. IEEE.; Garcia-Astudillo, L. A., Entrena, L., Lindoso, A., and Martin, H. (2022). Reduced resolution redundancy: A novel approximate error mitigation technique. IEEE Access, 10:20643–20651.; Goloubeva, O., Rebaudengo, M., Sonza Reorda, M., and Violante, M. (2003). Soft-error detection using control flow assertions. In Proceedings. 16th IEEE Symposium on Computer Arithmetic, pages 581–588. IEEE Comput. Soc.; Gomes, I. A. C. and Kastensmidt, F. G. L. (2013). Reducing TMR overhead by combining approximate circuit, transistor topology and input permutation approaches. Chip in Curitiba 2013 - SBCCI 2013: 26th Symposium on Integrated Circuits and Systems Design.; Gomes, I. A. C., Martins, M., Reis, A., and Kastensmidt, F. L. (2015). Using only redundant modules with approximate logic to reduce drastically area overhead in TMR. In 2015 16th Latin-American Test Symposium (LATS), pages 1–6. IEEE.; Gupta, V., Mohapatra, D., Raghunathan, A., and Roy, K. (2013). Low-Power Digital Signal Processing Using Approximate Adders. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(1):124–137.; Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T., and Brown, R. B. (2001). MiBench: A free, commercially representative embedded benchmark suite. Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE International Workshop, pages 3–14.; Han, J. and Orshansky, M. (2013). Approximate computing: An emerging paradigm for energy-efficient design. Proceedings - 2013 18th IEEE European Test Symposium, ETS 2013.; He, X., Yan, G., Han, Y., and Li, X. (2016). ACR: Enabling computation reuse for approximate computing. Proceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC, 25-28-Janu:643–648.; Hegde, R. and Shanbhag, N. (2001). Soft digital signal processing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 9(6):813–823.; Herrera-Alzu, I. and Lopez-Vallejo, M. (2013). Design Techniques for Xilinx Virtex FPGA Configuration Memory Scrubbers. IEEE Transactions on Nuclear Science, 60(1):376–385.; Ho, N.-M., Manogaran, E., Wong, W.-F., and Anoosheh, A. (2017). Efficient floating point precision tuning for approximate computing. In 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), pages 63–68. IEEE.; Huang, Q. and Jiang, J. (2019). An overview of radiation effects on electronic devices under severe accident conditions in NPPs, rad-hardened design techniques and simulation tools. Progress in Nuclear Energy, 114(November 2018):105–120.; IEC (2012). INTERNATIONAL STANDARD Process management for avionics – Atmospheric radiation effects – Part 1: Accommodation of atmospheric radiation effects via single event effects within avionics electronic equipment.; ISO (2018). ISO 26262 Functional Safety Sandards for Road Vehicles.; James, B., Quinn, H., Wirthlin, M., and Goeders, J. (2020). Applying Compiler-Automated Software Fault Tolerance to Multiple Processor Platforms. IEEE Transactions on Nuclear Science, 67(1):321–327.; Karnik, T., Hazucha, P., and Patel, J. (2004). Characterization of soft errors caused by single event upsets in CMOS processes. IEEE Transactions on Dependable and Secure Computing, 1(2):128–143.; Keramidas, G., Kokkala, C., and Stamoulis, I. (2015). Clumsy Value Cache: An Approximate Memoization Technique for Mobile GPU Fragment Shaders. In Workshop on Approximate Computing (WAPCO’15).; Kooli, M. and Di Natale, G. (2014). A survey on simulation-based fault injection tools for complex systems. 9th IEEE Int Conf on Design and Technology of Integrated Systems in Nanoscale Era, DTIS 2014, pages 1–6.; Leveugle, R., Calvez, A., Maistri, P., and Vanhauwaert, P. (2009). Statistical fault injection: Quantified error and confidence. In Design, Automation & Test in Europe Conf, pages 502–506. IEEE.; Liu, K., Li, Y., and Ouyang, L. (2021). Fast recoverable heterogeneous quad-core lockstep architecture. 2021 International Conference on Advanced Computing and Endogenous Security, ICACES 2021.; LLVM (2023). The llvm compiler infrastructure.; Lotfi, A., Rahimi, A., Yazdanbakhsh, A., Esmaeilzadeh, H., and Gupta, R. K. (2016). GRATER: An Approximation Workflow for Exploiting Data-Level Parallelism in FPGA Acceleration. Design, Automation and Test in Europe (DATE). Design, Automation & Test in Europe (DATE), March 14-18, Dresden, Germany, pages 1393–1398.; Mahdiani, H. R., Ahmadi, A., Fakhraie, S. M., and Lucas, C. (2010). Bio-Inspired Imprecise Computational Blocks for Efficient VLSI Implementation of Soft-Computing Applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(4):850–862.; Mahmood, A. and McCluskey, E. (1988). Concurrent error detection using watchdog processors-a survey. IEEE Transactions on Computers, 37(2):160–174.; Martínez-Álvarez, A., Cuenca-Asensi, S., and Restrepo-Calle, F. (2016). Soft Error Mitigation in Soft-Core Processors. In Kastensmidt, F. and Rech, P., editors, FPGAs and Parallel Architectures for Aerospace Applications, chapter 16, pages 239–258. Springer International Publishing, Cham.; Martinez-Alvarez, A., Cuenca-Asensi, S., Restrepo-Calle, F., Pinto, F. R. P., Guzman-Miranda, H., and Aguirre, M. A. (2012). Compiler-Directed Soft Error Mitigation for Embedded Systems. IEEE Transactions on Dependable and Secure Computing, 9(2):159–172.; Martinez-Alvarez, A., Restrepo-Calle, F., Cuenca-Asensi, S., Reyneri, L. M., Lindoso, A., and Entrena, L. (2016). A Hardware-Software Approach for On-Line Soft Error Mitigation in Interrupt-Driven Applications. IEEE Transactions on Dependable and Secure Computing, 13(4):502–508.; McAfee, L. and Olukotun, K. (2015). EMEURO: A framework for generating multi-purpose accelerators via deep learning. In 2015 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), pages 125–135. IEEE.; Menard, D., Chillet, D., and Sentieys, O. (2006). Floating-to-Fixed-Point Conversion for Digital Signal Processors. EURASIP Journal on Advances in Signal Processing, 2006(1):096421.; Miao, J., Gerstlauer, A., and Orshansky, M. (2013). Approximate logic synthesis under general error magnitude and frequency constraints. In 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 779–786. IEEE.; Misailovic, S., Carbin, M., Achour, S., Qi, Z., and Rinard, M. C. (2014). Chisel: reliability- and accuracy-aware optimization of approximate computational kernels. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications - OOPSLA ’14, pages 309–328, New York, New York, USA. ACM Press.; Misailovic, S., Sidiroglou, S., Hoffmann, H., and Rinard, M. (2010). Quality of service profiling. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - ICSE ’10, volume 1, page 25, New York, New York, USA. ACM Press.; Mishra, A. K., Barik, R., and Paul, S. (2014). iACT: A Software-Hardware Framework for Understanding the Scope of Approximate Computing. In Wacas.; Mittal, S. (2016). A Survey of Techniques for Approximate Computing. ACM Computing Surveys, 48(4):1–33.; Mohanram, K. and Touba, N. (2003). Partial error masking to reduce soft error failure rate in logic circuits. In Proceedings 18th IEEE Symposium on Defect and Fault Tolerance in VLSI Systems, pages 433–440. IEEE Comput. Soc.; Mohapatra, D., Chippa, V. K., Raghunathan, A., and Roy, K. (2011). Design of voltage-scalable meta-functions for approximate computing. In 2011 Design, Automation & Test in Europe, pages 1–6. IEEE.; Mukherjee, S., Kontz, M., and Reinhardt, S. (2002). Detailed design and evaluation of redundant multi-threading alternatives. In Proceedings 29th Annual International Symposium on Computer Architecture, pages 99–110. IEEE Comput. Soc.; Mukherjee, S., Weaver, C., Emer, J., Reinhardt, S., and Austin, T. (2003). A systematic methodology to compute the architectural vulnerability factors for a high-performance microprocessor. In 22nd Digital Avionics Systems Conference. Proceedings (Cat. No.03CH37449), pages 29–40. IEEE Comput. Soc.; Nicolaidis, M. (2005). Design for soft error mitigation. IEEE Transactions on Device and Materials Reliability, 5(3):405–418.; Nicolaidis, M., editor (2011). Soft Errors in Modern Electronic Systems, volume 41 of Frontiers in Electronic Testing. Springer US, Boston, MA.; Oh, N. and McCluskey, E. J. (2002). Error detection by selective procedure call duplication for low energy consumption. IEEE Transactions on Reliability, 51(4):392–402.; Omar, H., Shi, Q., Ahmad, M., Dogan, H., and Khan, O. (2018). Declarative Resilience. ACM Transactions on Embedded Computing Systems, 17(4):1–27.; Parr, T. (2013). The Definite ANTLR 4 Reference. The Pragmatic Bookshelf, Dallas.; Patterson, D. and Waterman, A. (2017). The RISC-V Reader: An Open Architecture Atlas. Strawberry Canyon.; Qian Zhang, Yuan, F., Ye, R., and Xu, Q. (2014). ApproxIt: An approximate computing framework for iterative methods. In 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6. IEEE.; Quinn, H., Black, D., Robinson, W., and Buchner, S. (2013). Fault simulation and emulation tools to augment radiation-hardness assurance testing. IEEE Trans Nuclear Science, 60(3):2119–2142.; Ragel, R. G. and Parameswaran, S. (2011). A hybrid hardware–software technique to improve reliability in embedded processors. ACM Transactions on Embedded Computing Systems, 10(3):1–16.; Rajesh Venkatasubramanian, Hayes, J., and Murray, B. (2003). Low-cost on-line fault detection using control flow assertions. In 9th IEEE On-Line Testing Symposium, 2003. IOLTS 2003., pages 137–143. IEEE Comput. Soc.; Ranjan, A., Raha, A., Venkataramani, S., Roy, K., and Raghunathan, A. (2014). ASLAN: Synthesis of approximate sequential circuits. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2014, pages 1–6, New Jersey. IEEE Conference Publications.; Reddy, V. K., Rotenberg, E., and Parthasarathy, S. (2006). Understanding prediction-based partial redundant threading for low-overhead, high- coverage fault tolerance. ACM SIGARCH Computer Architecture News, 34(5):83.; Reis, G., Chang, J., Vachharajani, N., Rangan, R., August, D., and Mukherjee, S. (2005). Design and Evaluation of Hybrid Fault-Detection Systems. In 32nd International Symposium on Computer Architecture (ISCA’05), pages 148–159. IEEE.; Renganarayana, L., Srinivasan, V., Nair, R., and Prener, D. (2012). Programming with relaxed synchronization. In Proceedings of the 2012 ACM workshop on Relaxing synchronization for multicore and manycore scalability - RACES ’12, page 41, New York, New York, USA. ACM Press.; Restrepo-Calle, F., Martínez-Álvarez, A., Cuenca-Asensi, S., and Jimeno-Morenilla, A. (2013). Selective SWIFT-R. A Flexible Software-Based Technique for Soft Error Mitigation in Low-Cost Embedded Systems. Journal of Electronic Testing, 29(6):825–838.; Rodrigues, C., Marques, I., Pinto, S., Gomes, T., and Tavares, A. (2019). Towards a heterogeneous fault-tolerance architecture based on arm and risc-v processors. IECON Proceedings (Industrial Electronics Conference), 2019-October:3112–3117.; Rodrigues, G. S., Barros de Oliveira, A., Bosio, A., Kastensmidt, F. L., and Pignaton de Freitas, E. (2018). ARFT: An Approximative Redundant Technique for Fault Tolerance. In 2018 Conference on Design of Circuits and Integrated Systems (DCIS), pages 1–6. IEEE.; Roy, D. B., Fritzmann, T., and Sigl, G. (2020). Efficient hardware/software co-design for post-quantum crypto algorithm sike on arm and risc-v based microcontrollers. In 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD), pages 1–9.; Rubio-González, C., Nguyen, C., Nguyen, H. D., Demmel, J., Kahan, W., Sen, K., Bailey, D. H., Iancu, C., and Hough, D. (2013). Precimonious. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on - SC ’13, pages 1–12, New York, New York, USA. ACM Press.; Salehi, M., Tavana, M. K., Rehman, S., Kriebel, F., Shafique, M., Ejlali, A., and Henkel, J. (2015). DRVS: Power-efficient reliability management through Dynamic Redundancy and Voltage Scaling under variations. In 2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), pages 225–230. IEEE.; Samadi, M., Lee, J., Jamshidi, D. A., Hormati, A., and Mahlke, S. (2013). SAGE: Self-tuning approximation for graphics engines. MICRO 2013 - Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture, pages 13–24.; Sampson, A. (2015). Hardware and Software for Approximate Computing. PhD thesis, University of Washington.; Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., and Grossman, D. (2011). EnerJ: approximate data types for safe and general low-power computation. In Proceedings of the 32nd ACM SIGPLAN conference on Programming language design and implementation - PLDI ’11, page 164, New York, New York, USA. ACM Press.; Sampson, A., Nelson, J., Strauss, K., and Ceze, L. (2014). Approximate Storage in Solid-State Memories. ACM Transactions on Computer Systems, 32(3):1–23.; Sampson, A., Ransford, B., and Ceze, L. (2015). ACCEPT: A Programmer-Guided Compiler Framework for Practical Approximate Computing. University of Washington Technical Report UW-CSE-15-01.; Sanchez, A., Entrena, L., and Kastensmidt, F. (2018). Approximate TMR for selective error mitigation in FPGAs based on testability analysis. In 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pages 112–119. IEEE.; Sanchez-Clemente, A. J., Entrena, L., and Garcia-Valderas, M. (2016). Partial TMR in FPGAs Using Approximate Logic Circuits. IEEE Transactions on Nuclear Science, 63(4):2233–2240.; Shi, Q., Hoffmann, H., and Khan, O. (2015). A Cross-Layer Multicore Architecture to Tradeoff Program Accuracy and Resilience Overheads. IEEE Computer Architecture Letters, 14(2):85–89.; Shivakumar, P., Kistler, M. D., Keckler, S. W., Burger, D. C., and Alvisi, L. (2002). Modeling the effect of technology trends on the soft error rate of combinational logic. Dependable Systems and Networks, 2002. DSN 2002. Proceedings. International Conference on, pages 389–398.; Sidiroglou-Douskos, S., Misailovic, S., Hoffmann, H., and Rinard, M. (2011). Managing performance vs. accuracy trade-offs with loop perforation. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software engineering - SIGSOFT/FSE ’11, page 124, New York, New York, USA. ACM Press.; Stanley-Marbell, P., Alaghi, A., Carbin, M., Darulova, E., Dolecek, L., Gerstlauer, A., Gillani, G., Jevdjic, D., Moreau, T., Cacciotti, M., Daglis, A., Jerger, N. E., Falsafi, B., Misailovic, S., Sampson, A., and Zufferey, D. (2018). Exploiting errors for efficiency: A survey from circuits to algorithms.; Taher, F. N., Callenes-Sloan, J., and Schafer, B. C. (2018). A Machine Learning based Hard Fault Recuperation Model for Approximate Hardware Accelerators. In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6. IEEE.; Texas Instruments, I. (2023). Msp430 ultra-low-power mcus.; Tiwari, V., Malik, S., and Wolfe, A. (1994). Power analysis of embedded software: a first step towards software power minimization. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2(4):437–445.; Tofallis, C. (2015). A better measure of relative prediction accuracy for model selection and model estimation. Journal of the Operational Research Society, 66(8):1352–1362.; Traiola, M., Echavarria, J., Bosio, A., Teich, J., and O’Connor, I. (2021). Design Space Exploration of Approximation-Based Quadruple Modular Redundancy Circuits. In IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD, volume 2021-November, pages 1–9. IEEE.; Tsuchiya, T., Ootsu, K., Yokota, T., and Kojima, S. (2022). Assembly code translation from arm64 to risc-v. Proceedings - 2022 23rd ACIS International Summer Virtual Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD-Summer 2022, pages 68–73.; Van Leussen, M., Huisken, J., Wang, L., Jiao, H., and Pineda De Gyvez, J. (2017). Reconfigurable Support Vector Machine Classifier with Approximate Computing. In 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 13–18. IEEE.; Venkataramani, S., Chippa, V. K., Chakradhar, S. T., Roy, K., and Raghunathan, A. (2013). Quality programmable vector processors for approximate computing. In 2013 46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 1–12.; Venkataramani, S., Sabne, A., Kozhikkottu, V., Roy, K., and Raghunathan, A. (2012). SALSA: Systematic logic synthesis of approximate circuits. In Proceedings of the 49th Annual Design Automation Conference on - DAC ’12, page 796, New York, New York, USA. ACM Press.; Vera, X., Abella, J., Carretero, J., and González, A. (2009). Selective replication. ACM Transactions on Computer Systems, 27(4):1–30.; Wang, Y., Dong, J., Xu, Q., and Qu, G. (2021). Ftapprox: A fault-tolerant approximate arithmetic computing data format. Proceedings -Design, Automation and Test in Europe, DATE, 2021-February:1548–1551.; Xu, Q., Mytkowicz, T., and Kim, N. S. (2016). Approximate Computing: A Survey. IEEE Design and Test, 33(1):8–22.; Yang, Z., Jain, A., Liang, J., Han, J., and Lombardi, F. (2013). Approximate XOR/XNOR-based adders for inexact computing. In 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013), pages 690–693. IEEE.; Yanmei Li, Dongmei Li, and Zhihua Wang (2000). A new approach to detect-mitigate-correct radiation-induced faults for SRAM-based FPGAs in aerospace application. In Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093), volume 1, pages 588–594. IEEE.; Yazdanbakhsh, A., Mahajan, D., Esmaeilzadeh, H., and Lotfi-Kamran, P. (2017). AxBench: A Multiplatform Benchmark Suite for Approximate Computing. IEEE Design & Test, 34(2):60–68.; Yen-Kuang Chen, Chhugani, J., Dubey, P., Hughes, C., Daehyun Kim, Kumar, S., Lee, V., Nguyen, A., and Smelyanskiy, M. (2008). Convergence of Recognition, Mining, and Synthesis Workloads and Its Implications. Proceedings of the IEEE, 96(5):790–807.; Zhang, Q., Wang, T., Tian, Y., Yuan, F., and Xu, Q. (2015). ApproxANN: An Approximate Computing Framework for Artificial Neural Network. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2015, pages 701–706, New Jersey. IEEE Conference Publications.; https://repositorio.unal.edu.co/handle/unal/85008; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
15
Autoři: a další
Přispěvatelé: a další
Témata: Voice processing systems, Automatic voice recognition, Systems engineering, Telematics, Investigations, New technologies, Internet of things, Speech recognition, Ubiquitous computing, Sistemas de procesamiento de voz, Reconocimiento automático de la voz, Ingeniería de sistemas, Telemática, Investigaciones, Nuevas tecnologías, Internet de las cosas, Middleware, Reconocimiento del habla, Computación ubicua
Geografické téma: Bucaramanga (Colombia), UNAB Campus Bucaramanga
Popis souboru: application/pdf; application/octet-stream
Relation: Manrique Hernández, Johana Andrea (2018). Switch: un Middleware para el desarrollo de aplicaciones IOT con interfaces basadas en voz. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB; Abdmeziem, M. R., Tandjaoui, D., & Romdhani, I. (2016). Architecting the internet of things: state of the art. In Robots and Sensor Clouds (pp. 55–75). Springer.; Abreu, D. P., Velasquez, K., Curado, M., & Monteiro, E. (2017). A resilient Internet of Things architecture for smart cities. Annals of Telecommunications, 72(1–2), 19–30.; Adams, K. (2015). Non-functional Requirements in Systems Analysis and Design. Springer.; Addo, I. D., Ahamed, S. I., Yau, S. S., & Buduru, A. (2014). A reference architecture for improving security and privacy in Internet of Things applications. In Mobile Services (MS), 2014 IEEE International Conference on (pp. 108–115).; Afonso, S., Laranjo, I., Braga, J., Alves, V., & Neves, J. (2015). Multilingual Voice Control for Endoscopic Procedures. In Internet of Things. User-Centric IoT (pp. 229–235). Springer.; Akash, S. A., Menon, A., Gupta, A., Wakeel, M. W., Praveen, M. N., & Meena, P. (2014). A novel strategy for controlling the movement of a smart wheelchair using internet of things. In Global Humanitarian Technology Conference-South Asia Satellite (GHTC-SAS), 2014 IEEE (pp. 154–158).; Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376.; Al-Jaroodi, J., Aziz, J., & Mohamed, N. (2009). Middleware for RFID systems: An overview. In Computer Software and Applications Conference, 2009. COMPSAC’09. 33rd Annual IEEE International (Vol. 2, pp. 154–159).; Aldosari, H. M. (2015). A Proposed Security Layer for the Internet of Things Communication Reference Model. Procedia Computer Science, 65, 95–98.; Alhamedi, A. H., Snasel, V., Aldosari, H. M., & Abraham, A. (2014). Internet of things communication reference model. In Computational Aspects of Social Networks (CASoN), 2014 6th International Conference on (pp. 61–66).; Association for computing machinery ACM. (2012). CCS 2012.; Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805. http://doi.org/doi.org/10.1016/j.comnet.2010.05.010; Baccaglini, E., Gavelli, M., Morello, M., & Vergori, P. (2015). A multimodal user interface using the webinos platform to connect a smart input device to the Web of Things. In Pervasive and Embedded Computing and Communication Systems (PECCS), 2015 International Conference on (pp. 1–5).; Bai, J. G., Wei, J. G., Chen, L., He, Y. Q., Wang, J. R., & Dang, J. W. (2013). Design and Implementation of a Housekeeper System. In Applied Mechanics and Materials (Vol. 437, pp. 394–398).; Banda, G., Chaitanya, K., & Mohan, H. (2015). An IoT protocol and framework for OEMs to make IoT-enabled devices forward compatible. In Signal-Image Technology & Internet-Based Systems (SITIS), 2015 11th International Conference on (pp. 824–832).; Bandyopadhyay, S., Sengupta, M., Maiti, S., & Dutta, S. (2011). A Survey of Middleware for Internet of Things. In A. Özcan, J. Zizka, & D. Nagamalai (Eds.), Recent Trends in Wireless and Mobile Networks: Third International Conferences, WiMo 2011 and CoNeCo 2011, Ankara, Turkey, June 26-28, 2011. Proceedings (pp. 288–296). Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-21937-5_27; Bassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S., & Meissner, S. (Eds.). (2013). Enabling Things to Talk. Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-40403-0; Bell, A. G. (1881). The production of sound by radiant energy. Science, 2(48), 242– 253.; Bernabe, J. B., Hernández, J. L., Moreno, M. V., & Gomez, A. F. S. (2014). Privacypreserving security framework for a social-aware internet of things. In International conference on ubiquitous computing and ambient intelligence (pp. 408–415).; Berners-Lee, T., Cailliau, R., Groff, J.-R., & Pollermann, B. (1992). World-Wide Web: The Information Universe. Electronic Networking: Research, Applications and Policy, 2(1), 52–58.; Besacier, L., Barnard, E., Karpov, A., & Schultz, T. (2014). Automatic speech recognition for under-resourced languages: A survey. Speech Communication, 56, 85–100.; Blackstock, M., & Lea, R. (2016). FRED: A Hosted Data Flow Platform for the IoT. In Proceedings of the 1st International Workshop on Mashups of Things and APIs (p. 2:1--2:5). New York, NY, USA: ACM. http://doi.org/10.1145/3007203.3007214; Bochmann, G. V. (1990). Protocol specification for OSI. Computer Networks and ISDN Systems, 18(3), 167–184.; Borgia, E. (2014). The Internet of Things vision: Key features, applications and open issues. Computer Communications, 54, 1–31.; Bouraoui, H., Jerad, C., Chattopadhyay, A., & Hadj-Alouane, N. Ben. (2017). Hardware Architectures for Embedded Speaker Recognition Applications: A Survey. ACM Transactions on Embedded Computing Systems (TECS), 16(3), 78.; Boussard, M., Meissner, S., Nettsträter, A., Olivereau, A., Segura, A. S., Thoma, M.,& Walewski, J. W. (2013). A Process for Generating Concrete Architectures. In Enabling Things to Talk (pp. 45–111). Springer.; Brown, A. (2016). The role of voice in IoT applications. Retrieved from https://www.strategyanalytics.com/strategy-analytics/blogs/iot/2016/02/19/therole- of-voice-in-the-internet-of-things#.WD3wMPkrLcc; Buyya, R., & Dastjerdi, A. V. (2016). Internet of Things: Principles and paradigms. Elsevier.; Cavalcante, E., Alves, M. P., Batista, T., Delicato, F. C., & Pires, P. F. (2015). An analysis of reference architectures for the internet of things. In Proceedings of the 1st International Workshop on Exploring Component-based Techniques for Constructing Reference Architectures (pp. 13–16). Ccori, P. C., De Biase, L. C. C., Zuffo, M. K., & da Silva, F. S. C. (2016). Device discovery strategies for the IoT. In Consumer Electronics (ISCE), 2016 IEEE International Symposium on (pp. 97–98).; Chaqfeh, M. A., & Mohamed, N. (2012). Challenges in middleware solutions for the internet of things. In Collaboration Technologies and Systems (CTS), 2012 International Conference on (pp. 21–26).; Chelloug, S. A., & El-Zawawy, M. A. (2017). Middleware for Internet of Things: Survey and Challenges. Intelligent Automation & Soft Computing, 0(0), 1–9. http://doi.org/10.1080/10798587.2017.1290328; CISCO. (2014). The Internet of Things Reference Model. San José, California. Retrieved from http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_ 4_2014.pdf; CISCO. (2016). Internet of Things at a Glance. Retrieved from https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/ata- glance-c45-731471.pdf; Colciencias. (2016). Tipología de proyectos calificados como de carácter cientifíco, tecnológico e innovación (Vol. 4).; Costa, N., Pereira, A., & Serodio, C. (2007). Virtual Machines Applied to WSN’s: The state-of-the-art and classification. In Systems and Networks Communications, 2007. ICSNC 2007. Second International Conference on (p. 50).; Coulouris, G. F., Dollimore, J., & Kindberg, T. (2005). Distributed systems: concepts and design (Fifth edit). Pearson education.; Davis, K. H., Biddulph, R., & Balashek, S. (1952). Automatic recognition of spoken digits. The Journal of the Acoustical Society of America, 24(6), 637–642.; De, S., Carrez, F., Reetz, E., Tönjes, R., & Wang, W. (2013). Test-enabled architecture for IoT service creation and provisioning. In The Future Internet Assembly (pp. 233–245).; Delicato, F. C., Pires, P. F., & Batista, T. (2017). The Resource Management Challenge in IoT. In Resource Management for Internet of Things (pp. 7–18). Springer.; Dino, J. (2008). Ames Technology Capabilities and Facilities. Retrieved January 5, 2017, from https://www.nasa.gov/centers/ames/research/technologyonepagers/ hc-computing.html; Eisenhauer, M., Rosengren, P., & Antolin, P. (2010). HYDRA: A Development Platform for Integrating Wireless Devices and Sensors into Ambient Intelligence Systems. In D. Giusto, A. Iera, G. Morabito, & L. Atzori (Eds.), The Internet of Things: 20th Tyrrhenian Workshop on Digital Communications (pp. 367–373). New York, NY: Springer New York. http://doi.org/10.1007/978-1-4419-1674- 7_36; European Lighthouse Integrated Project. (2016). Internet of things Architecture IoTA. Retrieved November 1, 2016, from http://www.iota. eu/public/requirements/copy_of_requirements; Evans, D. (2011). The Internet of Things: How the next evolution of the internet is changing everything. Retrieved from http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FIN AL.pdf; EY. (2016). Internet of Things: Human machine interactions that unlock possibilities. United Kingdom. Retrieved from http://www.ey.com/Publication/vwLUAssets/ey-m-e-internet-ofthings/$ FILE/ey-m-e-internet-of-things.pdf; Fernandes, J., Nati, M., Loumis, N. S., Nikoletseas, S., Raptis, T. P., Krco, S., … Ziegler, S. (2015). IoT Lab: Towards co-design and IoT solution testing using the crowd. In Recent Advances in Internet of Things (RIoT), 2015 International Conference on (pp. 1–6).; Ferreira, H. G. C., Canedo, E. D., & de Sousa, R. T. (2013). IoT architecture to enable intercommunication through REST API and UPnP using IP, ZigBee and arduino. In 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 53–60). http://doi.org/10.1109/WiMOB.2013.6673340; Ferreira, H. G., & Sousa Junior, R. T. (2017). Security Analysis of a Proposed Internet of Things Middleware. Cluster Computing, 20(1), 651–660. http://doi.org/10.1007/s10586-017-0729-3; Formisano, C., Pavia, D., Gurgen, L., Yonezawa, T., Galache, J. A., Doguchi, K., & Matranga, I. (2015). The advantages of IoT and cloud applied to smart cities. In Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on (pp. 325–332).; Fremantle, P. (2015). A reference architecture for Internet of Things. Sri Lanka. Retrieved from https://wso2.com/whitepapers/a-reference-architecture-for-theinternet- of-things/; Gartner Inc. (2014). IT Glossary. Retrieved January 4, 2017, from http://www.gartner.com/it-glossary/telematics/; Gartner Inc. (2016). Hype Cycle for Emerging Technologies, 2016.; Gartnet Inc. (2017). Hype Cycle for Emerging Technologies, 2017. USA.; Gilchrist, A. (2016). IIoT Reference Architecture. In Industry 4.0 (pp. 65–86). Springer.; Gluhak, A., Hauswirth, M., Krco, S., Stojanovic, N., Bauer, M., Nielsen, R. H., … Corcho, O. (2011). An Architectural Blueprint for a Real-World Internet. In Future Internet Assembly (pp. 67–80).; Gluhak, A., Munoz, L., Sotres, P., Sanchez, L., Roux, P., Sanchez, B., … Hernandez, A. L. (2013). Third Cycle Architecture Specification.; Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. http://doi.org/10.1016/j.future.2013.01.010; Guo, B., Zhang, D., Wang, Z., Yu, Z., & Zhou, X. (2013). Opportunistic IoT: exploring the harmonious interaction between human and the internet of things. Journal of Network and Computer Applications, 36(6), 1531–1539.; Hadim, S., & Mohamed, N. (2006). Middleware: Middleware challenges and approaches for wireless sensor networks. IEEE Distributed Systems Online, 7(3), 1.; Han, X., & Rashid, M. A. (2016). Gesture and voice control of Internet of Things. In Industrial Electronics and Applications (ICIEA), 2016 IEEE 11th Conference on (pp. 1791–1795).; Haridas, A. V., Marimuthu, R., & Sivakumar, V. G. (2018). A critical review and analysis on techniques of speech recognition: The road ahead. International Journal of Knowledge-Based and Intelligent Engineering Systems, 22(1), 39– 57.; Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2010). Metodología de la investigación. McGraw-Hill (Quinta Edi). México DF.; Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014a). Architecture Reference Model. In From Machine-To-Machine to the Internet of Things (pp. 167–197). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00007-3; Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014b). IoT Architecture – State of the Art. In From Machine-To-Machine to the Internet of Things (pp. 145–165). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00006-1; Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014c). IoT Reference Architecture. In From Machine-To-Machine to the Internet of Things (pp. 199–223). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00008-5; Hollosi, D., Nagy, G., Rodigast, R., Goetze, S., & Cousin, P. (2013). Enhancing wireless sensor networks with acoustic sensing technology: use cases, applications & experiments. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing (pp. 335–342).; Huang, Z., Lin, K. J., & Shih, C. S. (2016). Supporting Edge Intelligence in Service- Oriented Smart IoT Applications. In 2016 IEEE International Conference on Computer and Information Technology (CIT) (pp. 492–499). Nadi, Fiji: IEEE. http://doi.org/10.1109/CIT.2016.40; Huang, Z., Tsai, B. L., Chou, J. J., Chen, C. Y., Chen, C. H., Chuang, C. C., … Shih, C. S. (2015). Context and user behavior aware intelligent home control using WuKong middleware. In 2015 IEEE International Conference on Consumer Electronics - Taiwan (pp. 302–303). Taipei, Taiwan: IEEE. http://doi.org/10.1109/ICCE-TW.2015.7216911; Hui, G. (2014). How the Internet of Things changes Business Models. Retrieved from https://hbr.org/2014/07/how-the-internet-of-things-changes-business-models; IEEE. (1990). IEEE Standard Glossary of Software Engineering Terminology.; IEEE Computer Society. (2014). Guide to the Software Engineering - Body of Knowledge. (P. Bourque & R. E. Fairley, Eds.)IEEE Computer Society (V3 ed.). http://doi.org/10.1234/12345678; Igure, V. M., Laughter, S. A., & Williams, R. D. (2006). Security issues in SCADA networks. Computers & Security, 25(7), 498–506.; International Organization for Standardization - ISO. Software product quality, 1 ISO/IEC 25010 34 (2011).; International Telecommunication Union - ITU. (2012). Recommendation ITU-T Y.2060: Overview of the Internet of things. Series Y: Global information infrastructure, internet protocol aspects and next-generation networks - Frameworks and functional architecture models. Retrieved from https://www.itu.int/rec/T-REC-Y.2060-201206-I; International Telecomunication Union - ITU. (2005). The Internet of Things. ITU Internet Reports.; Internet Society. (2015). The Internet of Things (IoT): An Overview. Geneva, Switzerland. Retrieved from https://www.internetsociety.org/doc/iot-overview; IoT-A Project. (2016). Requirements — IOT-A: Internet of Things Architecture.; IoT Analytics. (2016). IoT Platforms: Market Report 2015-2021. Hamburg, Germany. Retrieved from https://iot-analytics.com/product/iot-platforms-market-report- 2015-2021-3/; ISO/IEC/IEEE. (2010). ISO/IEC/IEEE 24765:2010 Systems and software engineering - Vocabulary.; ISO/IEC JTC 1. (2009). Study on Sensor Networks (Version 3).; ISO, & IEEE. Systems and software engineering - Vocabulary, ISO/IEC/IEEE 24765:2010(E) 1–418 (2010). http://doi.org/10.1109/IEEESTD.2010.5733835; Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili, M., … Hamida, A. Ben. (2011). Service-oriented middleware for the Future Internet: state of the art and research directions. Journal of Internet Services and Applications, 2(1), 23–45. http://doi.org/10.1007/s13174-011-0021-3; Itakura, F. (1975). Minimum prediction residual principle applied to speech recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 23(1), 67–72.; Jelinek, F., Bahl, L., & Mercer, R. (1975). Design of a linguistic statistical decoder for the recognition of continuous speech. IEEE Transactions on Information Theory, 21(3), 250–256.; Juang, B.-H., Hou, W., & Lee, C.-H. (1997). Minimum classification error rate methods for speech recognition. IEEE Transactions on Speech and Audio Processing, 5(3), 257–265.; Juang, B.-H., & Rabiner, L. R. (2005). Automatic speech recognition-a brief history of the technology development. Elsevier Encyclopedia of Language and Linguistics, 1, 24.; Kaneko, M., Arima, K., Usami, M., Sugimura, H., Isshiki, M., & Koh, K. (2015). Development of information living integrated by home appliances and web services. In Consumer Electronics (GCCE), 2015 IEEE 4th Global Conference on (pp. 311–312).; Keh, H.-C., Shih, C.-C., Chou, K.-Y., Cheng, Y.-C., Ho, H.-K., Yu, P.-Y., & Huang, N.-C. (2014). Integrating unified communications and internet of m-health things with micro wireless physiological sensors, 17(3), 319–328.; Khurana, T. (2017). IPv6 Enables Global Mobile IoT Innovation and Proliferation. Retrieved February 26, 2017, from https://goo.gl/B1E1eF; Kim, J., Lee, J., Kim, J., & Yun, J. (2014). M2M service platforms: survey, issues, and enabling technologies. IEEE Communications Surveys & Tutorials, 16(1), 61–76.; Kostelnik, P., Sarnovsk, M., & Furdik, K. (2011). The semantic middleware for networked embedded systems applied in the internet of things and services domain. Scalable Computing: Practice and Experience, 12(3), 307–316.; Krco, S., Pokric, B., & Carrez, F. (2014). Designing IoT architecture (s): A European perspective. In Internet of Things (WF-IoT), 2014 IEEE World Forum on (pp. 79–84).; Kubitza, T. (2016). Using Speech for End User Programming of Smart Environments in the Internet of Thing. Germany.; Kubitza, T., & Schmidt, A. (2016). Rapid Interweaving of Smart Things with the meSchup IoT Platform. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (pp. 313–316). New York, NY, USA: ACM. http://doi.org/10.1145/2968219.2971379; Kubitza, T., & Schmidt, A. (2017). meSchup: A Platform for Programming Interconnected Smart Things. Computer, 50(11), 38–49.; Kumar, A., Mishra, A., Makula, P., Karan, K., & Mittal, V. K. (2015). Smart Robotic Assistant. In Region 10 Symposium (TENSYMP), 2015 IEEE (pp. 25–28).; Lee, G. M., Crespi, N., Choi, J. K., & Boussard, M. (2013). Internet of things. In Evolution of Telecommunication Services (pp. 257–282). Springer.; Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431–440.; Lin, K. J., Reijers, N., Wang, Y. C., Shih, C. S., & Hsu, J. Y. (2013). Building Smart M2M Applications Using the WuKong Profile Framework. In 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing (pp. 1175–1180). Beijing, China: IEEE. http://doi.org/10.1109/GreenCom-iThings- CPSCom.2013.204; Loucopoulus, P., & Karakostas, V. (1995). System Requirements Engineering. McGraw-Hill, Inc.; Ma, M., Wang, P., & Chu, C.-H. (2013). Data management for internet of things: challenges, approaches and opportunities. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing (pp. 1144–1151).; MacGillivray, C. (2016). Worldwide Internet of Things Forecast Update, 2015-2019.; Mamei, M., & Zambonelli, F. (2006). Field-based coordination for pervasive multiagent systems. Springer Science & Business Media.; Manrique, J. ., Rueda-Rueda, J., & Portocarrero, J. . (2016). Contrasting Internet of Things and Wireless Sensor Network from a conceptual overview. In 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (p. 6). IEEE Computer Society. http://doi.org/978-1-5090-5880-8/16; Marulli, F., Pareschi, R., & Baldacci, D. (2016). The internet of speaking things and its applications to Cultural Heritage. In Proceedings of IoTBD2016 Conference, SCITEPRESS.; McCulloch, W. S., & Pitts, W. (1990). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 52(1), 99–115.; Meier, R., & Cahill, V. (2002). Steam: Event-based middleware for wireless ad hoc networks. In Distributed Computing Systems Workshops, 2002. Proceedings. 22nd International Conference on (pp. 639–644).; Mineraud, J., Mazhelis, O., Su, X., & Tarkoma, S. (2016). A gap analysis of Internetof-Things platforms. Computer Communications, 89, 5–16.; Miranda, J., Mäkitalo, N., Garcia-Alonso, J., Berrocal, J., Mikkonen, T., Canal, C., & Murillo, J. M. (2015). From the Internet of Things to the Internet of People. IEEE Internet Computing, 19(2), 40–47.; Mittal, Y., Toshniwal, P., Sharma, S., Singhal, D., Gupta, R., & Mittal, V. K. (2015). A voice-controlled multi-functional Smart Home Automation System. In India Conference (INDICON), 2015 Annual IEEE (pp. 1–6).; Monteiro, C., Oliveira, M., Bastos, J., Ramrekha, T., & Rodriguez, J. (2014). Social Networks and Internet of Things, an Overview of the SITAC Project. In International Wireless Internet Conference (pp. 191–196).; Mottola, L., Murphy, A. L., & Picco, G. Pietro. (2006). Pervasive games in a moteenabled virtual world using tuple space middleware. In Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games (p. 29).; Nagata, K., Kato, Y., & Chiba, S. (1964). Spoken digit recognizer for Japanese language. In Audio Engineering Society Convention 16.; Nakagawa, E. Y., Oquendo, F., & Becker, M. (2012). Ramodel: A reference model for reference architectures. In Software Architecture (WICSA) and European Conference on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP Conference on (pp. 297–301).; Ngu, A. H., Gutierrez, M., Metsis, V., Nepal, S., & Sheng, Q. Z. (2017). IoT middleware: A survey on issues and enabling technologies. IEEE Internet of Things Journal, 4(1), 1–20.; Nia, A. M., & Jha, N. K. (2016). A comprehensive study of security of internet-ofthings. IEEE Transactions on Emerging Topics in Computing.; Nitti, M., Pilloni, V., Colistra, G., & Atzori, L. (2016). The virtual object as a major element of the internet of things: a survey. IEEE Communications Surveys & Tutorials, 18(2), 1228–1240.; Nuance Communications. (2016). Majority of Consumers Want Intelligent, Personalized Dialogue with Customer Service. Retrieved February 27, 2017, from https://www.nuance.com/about-us/newsroom/press-releases/opusintelligent- assistants-and-authentication-conference-2016.html; Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service- Oriented Computing: State of the Art and Research Challenges. Computer, 40(11), 38–45. http://doi.org/10.1109/MC.2007.400; Park, K.-J., Zheng, R., & Liu, X. (2012). Cyber-physical systems: Milestones and research challenges. Computer Communications, 36(1), 1–7.; Patel, P., & Cassou, D. (2015). Enabling high-level application development for the Internet of Things. Journal of Systems and Software, 103, 62–84.; Payne, G. (2014). The Internet of Things brings a new era of connectivity… and a talking fridge. Retrieved February 27, 2017, from http://whatsnext.nuance.com/connected-living/the-internet-of-thingsconnectivity/; Petrolo, R., Mitton, N., Soldatos, J., Hauswirth, M., & Schiele, G. (2014). Integrating wireless sensor networks within a city cloud. In 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking Workshops (SECON Workshops) (pp. 24–27). http://doi.org/10.1109/SECONW.2014.6979700; Pressman, R. (2010). Ingeniería del software: un enfoque práctico (Séptima Ed). México DF: McGraw-Hill Interamericana.; Rabiner, L., Levinson, S., Rosenberg, A., & Wilpon, J. (1979). Speaker-independent recognition of isolated words using clustering techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 27(4), 336–349.; Rabiner, L. R., & Juang, B. H. (2004). Statistical methods for the recognition and understanding of speech. Encyclopedia of language and linguistics.; Ratkowski, A. (2016). Architecture for Internet of Things Analytical Ecosystem. In Dependability Engineering and Complex Systems (pp. 385–393). Springer.; Raveendran, V., Sanjeev, M. R., Paul, N., & Jijina, K. P. (2016). Speech only interface approach for personal computing environment. In Engineering and Technology (ICETECH), 2016 IEEE International Conference on (pp. 372–377).; Razzaque, M. A., Milojevic-Jevric, M., Palade, A., & Clarke, S. (2016). Middleware for internet of things: a survey. IEEE Internet of Things Journal, 3(1), 70–95.; Richards, M. (2015). Software architecture patterns. O’Reilly Media, Incorporated.; Robles, T., Alcarria, R., de Andrés, D. M., Navarro, M., Calero, R., Iglesias, S., & López, M. (2015). An IoT based reference architecture for smart water management processes. JoWUA, 6(1), 4–23.; Sakai, T., & Doshita, S. (1962). The Phonetic Typewriter. In IFIP Congress (Vol. 445, p. 449).; Sanchez, L., Muñoz, L., Galache, J. A., Sotres, P., Santana, J. R., Gutierrez, V., … others. (2014). SmartSantander: IoT experimentation over a smart city testbed. Computer Networks, 61, 217–238.; Sanchez, S., Angel Sicilia, M., & Rodriguez, D. (2012). Ingeniería del Sofware. Un enfoque desde la guía SWEBOK. Alfaomega.; Santos, J. F. M., Guessi, M., Galster, M., Feitosa, D., & Nakagawa, E. Y. (2013). A Checklist for Evaluation of Reference Architectures of Embedded Systems. In SEKE (Vol. 13, pp. 1–4).; Sarma, S., Brock, D., & Engels, D. (2001). Radio Frequency Identification and the Electronic Product Code. IEEE Micro, 21(6), 50–54. http://doi.org/10.1109/40.977758; Schauer, P., & Debita, G. (2015). Internet of Things Service Systems Architecture.; Seo, S., Kim, J., Yun, S., Huh, J., & Maeng, S. (2015). HePA: Hexagonal Platform Architecture for Smart Home Things. In Parallel and Distributed Systems (ICPADS), 2015 IEEE 21st International Conference on (pp. 181–189).; Shen, S., & Carugi, M. (2014). Standardizing the Internet of Things in an evolutionary way. In ITU Kaleidoscope Academic Conference: Living in a converged world- Impossible without standards?, Proceedings of the 2014 (pp. 249–254).; Shih, C. S., Lin, K. J., Chou, J. J., & Chuang, C. C. (2014). Autonomous Service Management for Location and Context Aware Service. In 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications (pp. 246–251). Matsue, Japan: IEEE. http://doi.org/10.1109/SOCA.2014.10; Shin, D.-G., & Jun, M.-S. (2015). Home IoT device certification through speaker recognition. In Advanced Communication Technology (ICACT), 2015 17th International Conference on (pp. 600–603).; Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. In Industrial Engineering and Engineering Management (IEEM), 2014 IEEE International Conference on (pp. 697–701).; Singh, S., & Singh, N. (2015). Internet of Things (IoT): Security challenges, business opportunities & reference architecture for E-commerce. In Green Computing and Internet of Things (ICGCIoT), 2015 International Conference on (pp. 1577– 1581).; Sinha, S., Agrawal, S. S., & Jain, A. (2013). Continuous density Hidden Markov Model for context dependent Hindi speech recognition. In Advances in Computing, Communications and Informatics (ICACCI), 2013 International Conference on (pp. 1953–1958).; Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte, J.-P., Riahi, M., … Herzog, R. (2015). OpenIoT: Open Source Internet-of-Things in the Cloud. In I. Podnar Žarko, K. Pripužić, & M. Serrano (Eds.), Interoperability and Open- Source Solutions for the Internet of Things: International Workshop, FP7 OpenIoT Project, Held in Conjunction with SoftCOM 2014, Split, Croatia,September 18, 2014, Invited Papers (pp. 13–25). Cham: Springer International Publishing. http://doi.org/10.1007/978-3-319-16546-2_3; Sommerville, I. (2011). Ingeniería del Software. PEARSON.; Souza, R., & Cardozo, E. (2016). A Resource-Oriented Architecture for the Internet of Things (IoT). In Connectivity Frameworks for Smart Devices (pp. 99–116). Springer.; Stravoskoufos, K., Sotiriadis, S., & Petrakis, E. (2016). IoT-A and FIWARE: bridging the barriers between the cloud and IoT systems design and implementation. In Proc. 6th Int’l Conf. Cloud Computing and Services Science (pp. 146–153).; Sundmaeker, H., Guillemin, P., Friess, P., & Woelfflé, S. (2010). Vision and challenges for realising the Internet of Things. (Cluster of European research projects on the Internet of Things, Ed.)European Commision.; Suzuki, J., & Nakata, K. (1961). Recognition of Japanese vowels - Preliminary to the recognition of speech. Journal of the Radio Research Laboratory, 8(37), 193– 212.; Talavera Portocarrero, J. M. (2016). RAMSES: Reference Architectue of Self- Adaptative Middleware for Wireless Sensor Networks. Universidade Federal fo Rio de Janeiro.; Techopedia. (2017). What is Modeling Language?; The Institute of Electrical and Electronics Engineers. (2014). 2014 IEEE Thesaurus. Retrieved from http://www.ieee.org/documents/ieee_thesaurus_2013.pdf; Turck, M. (2018). Growing Pains: The 2018 Internet of Things Landscape. Retrieved April 2, 2018, from http://mattturck.com/iot2018/; United Nations Educational Scientific and Cultural Organization. (2016). UNESCO Thesaurus. Retrieved August 29, 2016, from http://vocabularies.unesco.org/; United Nations Educational Scientific and Cultural Organization (UNESCO). (2016). UNESCO Thesaurus. Retrieved April 11, 2016, from http://vocabularies.unesco.org/browser/thesaurus/en/; Unnibhavi, A. H., & Jangamshetti, D. S. (2016). A survey of speech recognition on south Indian Languages. In Signal Processing, Communication, Power and Embedded System (SCOPES), 2016 International Conference on (pp. 1122– 1126).; Usländer, T., & Epple, U. (2015). Reference model of industrie 4.0 service architectures. At-Automatisierungstechnik, 63(10), 858–866.; Verdouw, C. N., Robbemond, R. M., Verwaart, T., Wolfert, J., & Beulens, A. J. M. (2015). A reference architecture for IoT-based logistic information systems in agri-food supply chains. Enterprise Information Systems, 1–25.; Wang, M.-M., Cao, J.-N., Li, J., & Dasi, S. K. (2008). Middleware for wireless sensor networks: A survey. Journal of Computer Science and Technology, 23(3), 305– 326.; Weiser, M. (1991). The computer for the 21st century. Scientific American, 265(3), 94–104.; Weyrich, M., & Ebert, C. (2016). Reference architectures for the internet of things. IEEE Software, 33(1), 112–116.; Whittaker, E. W. D. (2000). Statistical language modelling for automatic speech recognition of Russian and English. University of Cambridge.; Wiener, N. (1961). Cybernetics or Control and Communication in the Animal and the Machine (Vol. 25). MIT press.; Wortmann, F., Flüchter, K., & others. (2015). Internet of things. Business & Information Systems Engineering, 57(3), 221–224. http://doi.org/10.1007/s12599-015-0383-3; Xu, B., Zhang, D., & Yang, W. (2012). Research on architecture of the Internet of Things for grain monitoring in storage. In Internet of Things (pp. 431–438). Springer.; Zhong, N., Ma, J., Huang, R., Liu, J., Yao, Y., Zhang, Y., & Chen, J. (2016). Research challenges and perspectives on Wisdom Web of Things (W2T). In Wisdom Web of Things (pp. 3–26). Springer.; Zhou, S., Liu, G., & Lin, C. (2012). An Embedded Voice Inquiry Experimental Platform for Temperature and Humidity Measurement on the Internet of Things. In Emerging Computation and Information teChnologies for Education (pp. 533– 539). Springer.; http://hdl.handle.net/20.500.12749/3547; reponame:Repositorio Institucional UNAB
Dostupnost: https://hdl.handle.net/20.500.12749/3547
-
16
Autoři: a další
Zdroj: Piscataway, NJ : IEEE 182-189 (2014). doi:10.1109/ISPA.2014.32 ; 2014 IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA) : 26-28 Aug. 2014 ; Milan ; Milan 2014 IEEE International Symposium on Parallel and Distributed Processing with Applications, ISPA 2014, Milan, Italy, 2014-08-26 - 2014-08-28
Témata: Abstracts, Computer architecture, EURETILE design flow, EURETILE software design flow, Hardware, Optimization, Program processors, Programming, architectural dynamism, architecture-specific implementation, autonomous processes, behavioral dynamism, debugging, dynamic mapping, embedded computing benchmark, fault tolerant mapping, fault-tolerant distributed network processor, general-purpose processors, hardware-based fault awareness strategies, high performance computing benchmark, high-level programming model, intertile communication network, lightweight operating system, many-tile architectures, many-tile systems, multiple dynamic application mapping, multitile hardware architecture, operating systems (computers), organized runtime-manager, parallel programming
Geografické téma: DE
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-1-4799-4292-3; info:eu-repo/semantics/altIdentifier/wos/WOS:000364951700023; info:eu-repo/semantics/altIdentifier/isbn/978-1-4799-4293-0; info:eu-repo/semantics/altIdentifier/issn/2158-9208; info:eu-repo/semantics/altIdentifier/issn/2158-9178
-
17
Autoři: a další
Přispěvatelé: a další
Zdroj: 9th IEEE/ACM International Conference on Utility and Cloud Computing (UCC 2016)
https://inria.hal.science/hal-01356998
9th IEEE/ACM International Conference on Utility and Cloud Computing (UCC 2016), Dec 2016, Shanghai, China
http://computing.derby.ac.uk/ucc2016/Témata: FPGA, Accelerators, Virtualization, Architectural model, Multi-tenancy, [INFO.INFO-OS]Computer Science [cs]/Operating Systems [cs.OS], [INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC]
Relation: info:eu-repo/grantAgreement/EC/FP7/318521/EU/Hardware- and Network-Enhanced Software Systems for Cloud Computing/HARNESS
-
18
Autoři: a další
Přispěvatelé: a další
Témata: 690 - Construcción de edificios, 620 - Ingeniería y operaciones afines::624 - Ingeniería civil, Construcción - Métodos de simulación, Construcción - Simulación por computadores, Construcción - Control de costos, Construcción - Presupuestos, Industria de la construcción - Planificación, Industria de la construcción - Predicciones, Proyecto de Construcción, Modelamiento de procesos de construcción, Simulaciones Computacionales en construcción, Predicción Costo y cronograma, Construction Project, Model construction processes, Computer Simulations In construction, Prediction, Cost and schedule
Popis souboru: 234 páginas; application/pdf
Relation: LaReferencia; Abdelgawad, M., & Fayek, A. (2010). Risk Management in the Construction Industry Using Combined Fuzzy FMEA and Fuzzy AHP. Journal of Construction Engineering and Management-Asce - J CONSTR ENG MANAGE-ASCE, 136. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000210; Abdelmegid, M., Gonzalez, V., Poshdar, M., O'Sullivan, M., Walker, C., Ying, F. (2020). Barriers to adopting simulation modelling in construction industry. Automation in Construction. 111. 103046. 10.1016/j.autcon.2019.103046.; Abdelouahed, S. M., Abla, R., Asmae, E., & Abdellah, A. (2024). Harnessing feature engineering to improve machine learning: A review of different data processing techniques. 2024 International Conference on Intelligent Systems and Computer Vision (ISCV), 1–6. https://doi.org/10.1109/ISCV60512.2024.10620105; Abdomerovic, M. (2022). Project Management Planning. In From Practice to Applied Research. Peter Lang Verlag. https://doi.org/10.3726/b19696; Abedjan, Z., Chu, X., Deng, D., Fernandez, R. C., Ilyas, I. F., Ouzzani, M., Papotti, P., Stonebraker, M., & Tang, N. (2016). Detecting data errors: where are we and what needs to be done? Proc. VLDB Endow., 9(12), 993–1004. https://doi.org/10.14778/2994509.2994518; Aboura, K., Kljajić, M., & Eskandarian, A. (2012). The need for simulation in complex industrial systems. Organizacija, 45. https://doi.org/10.2478/v10051-012-0022-4; AbouRizk, M. (2010). ‘Role of simulation in construction engineering and management’. In: Journal of Construction Engineering and Management 136.10, pp. 1140–1153.; Adekunle, S. A., Onatayo Damilola, A., Madubuike, O. C., Aigbavboa, C., & Ejohwomu, O. (2024). Machine Learning Algorithm Application in the Construction Industry – A Review. In S. Skatulla & H. Beushausen (Eds.), Advances in Information Technology in Civil and Building Engineering (pp. 263–271). Springer International Publishing.; Agarwal, A. L., & Mahajan, D. A. (2017). A Probability Analysis of Construction Project Schedule Using Risk Management Tool. MATTER: International Journal of Science and Technology, 3(1), 104 - 109.; Al-Baldawi Zainaband, A., & Hussein, I. (2021). Estimating the Optimum Completion Time of Project Using Binomial Distribution and Probabilistic PERT Network. In R.-X. and P. S. Peng Sheng-Lung and Hao (Ed.), Proceedings of First International Conference on Mathematical Modeling and Computational Science (pp. 627–637). Springer Singapore.; Albarello, N., & Welcomme, J.-B. (2012). A model-based method for the generation and optimization of complex systems architectures. 2012 IEEE International Systems Conference SysCon 2012, 1–6. https://doi.org/10.1109/SysCon.2012.6189456; Ali, A. (2024). The utilization of the discrete event simulation method in scheduling repetitive construction. IOP Conference Series: Earth and Environmental Science, 1355, 012015. https://doi.org/10.1088/1755-1315/1355/1/012015; Alzarrad, A. (2020). Fuzzy Monte Carlo Simulation to Optimize Resource Planning and Operations. https://doi.org/10.5772/intechopen.93632; Amirzehni, P., Samadianfard, S., Nazemi, A., & Sadraddini, A. (2023). Evaluating capabilities of the spline and cubic spline interpolation functions in reference evapotranspiration estimation implementing satellite image data. Earth Science Informatics, 16. https://doi.org/10.1007/s12145-023-01127-z; Ankarali, H., Pasin, Ö., Gönenç, S., & Al Mahmood, A. K. (2023). Interaction between numerical variables in regression model, and its graphical interpretation. Bangladesh Journal of Medical Science, 22(1), 189–194. https://doi.org/10.3329/bjms.v22i1.63078; Asfoor, H. M. A., AL-Jandeel, A. A. T., Igorevich, K. K., & Ivanovna, L. A. (2022). Control of Time, Cost and Quality of Construction Project Management. E3S Web Conf., 336. https://doi.org/10.1051/e3sconf/202233600072; Babar, S., Thaheem, MJ y Ayub, B. (2017). Costo estimado al finalizar: integración del riesgo en la gestión del valor ganado. Revista de Ingeniería y Gestión de la Construcción , 143 (3). https://doi.org/10.1061/(asce)co.1943-7862.0001245; Baghalzadeh Shishehgarkhaneh, M., Moehler, R. C., Fang, Y., Aboutorab, H., & Hijazi, A. A. (2024). Construction supply chain risk management. Automation in Construction, 162, 105396. https://doi.org/https://doi.org/10.1016/j.autcon.2024.105396; Ballard, G. (2000). Sistema de ejecución de proyectos ajustados (Revisión 1). http://www.leanconstruction.org/pdf/WP8-LPDS.pdf; Ballard, G. (2008). El sistema de ejecución de proyectos Lean: una actualización. www.leanconstructionjournal.org; Barbu, A., & Zhu, S.-C. (2020). Introduction to Monte Carlo Methods. In A. Barbu & S.-C. Zhu (Eds.), Monte Carlo Methods (pp. 1–17). Springer Singapore. https://doi.org/10.1007/978-981-13-2971-5_1; Bauce, G. (2007). El problema de investigación. Revista de La Facultad de Medicina, 30, 115–118.; Ben-Alon, L & Sacks R. (2017). ‘Simulating the behavior of trade crews in construction using agents and building information modeling’. In: Automation in Construction 74, pp. 12–27.; Berthold, M. R., Borgelt, C., Höppner, F., Klawonn, F., & Silipo, R. (2020). Deployment and Model Management. In M. R. Berthold, C. Borgelt, F. Höppner, F. Klawonn, & R. Silipo (Eds.), Guide to Intelligent Data Science: How to Intelligently Make Use of Real Data (pp. 319–328). Springer International Publishing. https://doi.org/10.1007/978-3-030-45574-3_10; Bhattacharya, S. P. (2023). The Fundamentals of Resource Optimization in Construction Projects. In V. J. (Ed.), Building Construction and Technology (pp. 139–156). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3526-0_10; Bhosale, T., Biradar, A., Bhat, K., Barhate, S., & Kotwal, J. (2023). Applied Deep Learning for Safety in Construction Industry. In I. J. Jacob, S. Kolandapalayam Shanmugam, & I. Izonin (Eds.), Data Intelligence and Cognitive Informatics (pp. 167–181). Springer Nature Singapore.; Bishop, C.M. (2006) Pattern Recognition and Machine Learning. Springer, Berlin. https://link.springer.com/book/9780387310732; Bokor, O., Florez-Perez, L., Osborne, A., Gledson, B. (2019). Overview of construction simulation approaches to model construction processes. Organization, Technology and Management in Construction: an International Journal. 11. 1853-1861. 10.2478/otmcj-2018-0018.; Botero, L. F. (2002). Análisis de Rendimientos y consumos de mano de obra en actividades de construcción. Revista Universidad EAFIT. https://doi.org/10.1080/17549507.2022.2055145; Brioso, X., Murguía, D., & Urbina, A. (2017). Comparación de tres métodos de programación utilizando modelos BIM en el sistema Last Planner. Organización, tecnología y gestión en la construcción: una revista internacional, 9 (1), 1604–1614. https://doi.org/10.1515/otmcj-2016-0024; Cabrera, A. G. (2010). Simulación de procesos constructivos. Revista Ingenieria de Construccion, 25(1), 121–141. https://doi.org/10.4067/s0718-50732010000100006; Camacol y Sena. (2015). Proyecto de investigación del sector de la construcción de edificación en Colombia .; Carvajal, H. (2013). EL DISEÑO DE EJECUCIÓN “Un planteamiento metodológico para la enseñanza de la planeación de obras a constructores, arquitectos e ingenieros civiles” (Primera edición). Universidad Nacional de Colombia - Sede Medellín.; Chiou, S. H., Xu, G., Yan, J., & Huang, C. Y. (2023). Regression Modeling for Recurrent Events Possibly with an Informative Terminal Event Using R Package reReg. Journal of Statistical Software, 105(5), 1–34. https://doi.org/10.18637/jss.v105.i05; CII. (2013a). Improving the Accuracy and Timeliness of Project Outcome Predictions.; CII. (2013 b). Cuatro lanzamientos para una previsibilidad temprana y precisa. Recurso de implementación 291-2 .; CIRIA. (2013). Implementación de Lean en la construcción: descripción general de las guías CIRIA y una breve introducción a Lean .; Codina, L. (2022). Revisiones de la literatura y cómo llevarlas a cabo con garantías: systematic reviews y SALSA Framework. https://www.lluiscodina.com/revision-sistematica-salsa-framework/; Cohen, S. (2021). Chapter 5 - Dealing with data: strategies of preprocessing data. In S. Cohen (Ed.), Artificial Intelligence and Deep Learning in Pathology (pp. 77–92). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-67538-3.00005-1; Contreras, J. (2013). Aplicación de la herramienta time-lapse para la identificación y reducción de pérdidas en edificaciones con estructura en concreto; Cooke-Davies, T. (2011). Aspectos de complejidad: Gestión de Proyectos en un mundo complejo (Primera). Instituto de manejo proyectos.; Corlatti, L. (2021). Regression Models, Fantastic Beasts, and Where to Find Them: A Simple Tutorial for Ecologists Using R. Bioinformatics and Biology Insights, 15. https://doi.org/10.1177/11779322211051522; Creswell, J. (2013). Qualitative Inquary & Research Design (V. Knight, Ed.; 3rd ed., Vol. 3). Sage.; Datta, S. D., Islam, M., Rahman Sobuz, Md. H., Ahmed, S., & Kar, M. (2024). Artificial intelligence and machine learning applications in the project lifecycle of the construction industry: A comprehensive review. Heliyon, 10(5). https://doi.org/10.1016/j.heliyon.2024.e26888; Dave, B., Koskela, L., & Kiviniemi, A. (2013). Implementing Lean in construction. Assets.Highways.Gov.Uk, 44+29-44+29. http://assets.highways.gov.uk/specialist-information/knowledge-compendium/2011-13-knowledge-programme/Lean and the Sustainability Agenda.pdf; Dayal, V. (2020). Graphs for Time Series. In V. Dayal (Ed.), Quantitative Economics with R: A Data Science Approach (pp. 259–271). Springer Singapore. https://doi.org/10.1007/978-981-15-2035-8_13; De Carvalho Servia, M. Á., & del Rio Chanona, E. A. (2023). Model Structure Identification. In D. Zhang & E. A. del Río Chanona (Eds.), Machine Learning and Hybrid Modelling for Reaction Engineering: Theory and Applications (Vol. 26, p. 0). Royal Society of Chemistry. https://doi.org/10.1039/BK9781837670178-00085; Denzin, N. K., & Lincoln, Y. S. (2005). The Sage handbook of qualitative Research; Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. North American Chapter of the Association for Computational Linguistics. https://api.semanticscholar.org/CorpusID:52967399; Diaz, M. (2019). MEDIDAS ESTADÌSTICAS BIVARIANTES. https://www.goconqr.com/mapamental/17124557/medidas-estadisticas-bivariantes; Duarte, N., & Pinilla, J. J. (2014). Razón de costo-efectividad de la implementación de la metodología BIM y la metodología tradicional en la planeación y control de un proyecto de construcción de vivienda en Colombia. Pontificia Universidad Javeriana; Echeverry, J., & Giraldo, M. (2012). Mejoramiento de Procesos Constructivos de una Edificación a Partir de Simulación Digital y Videos Time Lapse.; Elhilbawi, H., Eldawlatly, S., & Mahdi, H. (2021). The Importance of Discretization Methods in Machine Learning Applications: A Case Study of Predicting ICU Mortality. In A.-E. Hassanien, K.-C. Chang, & T. Mincong (Eds.), Advanced Machine Learning Technologies and Applications (pp. 214–224). Springer International Publishing.; Elsahly, O. M., Ahmed, S., & Abdelfatah, A. (2023). Systematic Review of the Time-Cost Optimization Models in Construction Management. In Sustainability (Switzerland) (Vol. 15, Issue 6). MDPI. https://doi.org/10.3390/su15065578; Ensign, P. C. (2009). Construction of Variables. In P. C. Ensign (Ed.), Knowledge Sharing among Scientists: Why Reputation Matters for R&D in Multinational Firms (pp. 63–93). Palgrave Macmillan US. https://doi.org/10.1057/9780230617131_4; Fadjar, A., Nirmalawati, N., & Hidayat, N. (2022). Estimating Project Completion Time with Monte Carlo Simulation. REKONSTRUKSI TADULAKO: Civil Engineering Journal on Research and Development, 3(2), 21–26. https://doi.org/10.22487/renstra.v3i2.448; Faraji, A., Rashidi, M., Perera, S., & Samali, B. (2022). Applicability-Compatibility Analysis of PMBOK Seventh Edition from the Perspective of the Construction Industry Distinctive Peculiarities. Buildings, 12(2). https://doi.org/10.3390/buildings12020210; Faraway, J. J. (2016). Does data splitting improve prediction? Statistics and Computing, 26(1), 49–60. https://doi.org/10.1007/s11222-014-9522-9; Fleming, Q. W., & Koppelman, J. M. (2016). Earned Value Project Management (Fourth Edition). Project Management Institute. https://books.google.com.co/books?id=yOSuDgAAQBAJ; Frącz, P., Dąbrowski, I., Wotzka, D., Zmarzły, D., & Mach, Ł. (2023). Identification of Differences in the Seasonality of the Developer and Individual Housing Market as a Basis for Its Sustainable Development. Buildings, 13(2). https://doi.org/10.3390/buildings13020316; Gaitán, J. & Gómez-Cabrera, A. (2014). Uso de la metodología BRIM (Bridge Information Modeling) como herramienta para la planificación de la construcción de un puente de concreto en Colombia. Ciencia e Ingeniería Neogranadina. 24. 145. 10.18359/rcin.398.; Gantt, HL (1910). Trabajo, salario y beneficio. Nuevo. En The Engineering Magacine (Ed.), Biblioteca de Gestión Industrial (Segunda Edi). http://www.nber.org/papers/w16019; Gell-Mann, M. (1995). El quark y el jaguar: Aventuras en lo simple y lo complejo (Tusquets, Ed.).; Geng, S. (2024). Analysis of the Different Statistical Metrics in Machine Learning. Highlights in Science, Engineering and Technology, 88, 350–356. https://doi.org/10.54097/jhq3tv19; Gerasymenko, V., Protsenko, О., Bielykh, I., & Tymchenko, I. (2023). Implementation of Artificial Neural Networks and Fuzzy Logic in Civil and Industrial Construction. https://doi.org/10.21203/rs.3.rs-3669381/v1; Ghosh, S., & Dasgupta, R. (2022). Model Selection for Machine Learning. In S. Ghosh & R. Dasgupta (Eds.), Machine Learning in Biological Sciences: Updates and Future Prospects (pp. 51–57). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-8881-2_5; Gómez-Cabrera, A. (2013). Implementación de metodologías BIM en el entorno Colombiano.; Gómez-Cabrera, A. Pulido, N. & Díaz, J. (2015). Simulación de eventos discretos y líneas de balance, aplicadas al mejoramiento del proceso constructivo de la cimentación de un edificio. Ingeniería y Ciencia. 11. 157-175. 10.17230/ingciencia.11.21.8.; González, Jaime & Suarez, Sandra.(2017).Evaluación de la influencia del pmi® sobre la triple restricción de un proyecto de consultoría de infraestructura: caso de estudio basado en diseños de obras civiles para servicio público domiciliario en Bogotá.; González-Cruz, M.-C., Ballesteros-Pérez, P., Lucko, G., & Zhang, J.-X. (2022). Critical Duration Index: Anticipating Project Delays from Deterministic Schedule Information. Journal of Construction Engineering and Management, 148(11), 4022121. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002387; Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. www.deeplearningbook.org; Government Accountability Office. (2015). Guía de evaluación de cronogramas: mejores prácticas para cronogramas de proyectos.; Granados, Alejandra & Ivonne, Perez.(2014).Simulación Para El Mejoramiento De La Logística De Materiales y Equipos En Un Proyecto De Edificación; Grau, D., Back, WE y Aguilar, GM (2013). Cuatro lanzamientos para una previsibilidad temprana y precisa. Recurso de implementación , 291–292.; Grau, D., y Back, NOSOTROS (2015). Índice de previsibilidad: métrica novedosa para evaluar el costo y el rendimiento del cronograma. Revista de Ingeniería y Gestión de la Construcción , 141 (12), 1–8. https://doi.org/10.1061/(asce)co.1943-7862.0000994; Gupta, M., Rajpoot, V., Chaturvedi, A., & Agrawal, R. (2022). A detailed Study of different Clustering Algorithms in Data Mining. 2022 2nd International Conference on Intelligent Technologies (CONIT), 1–6. https://doi.org/10.1109/CONIT55038.2022.9848233; Gupta, P., & Bagchi, A. (2024). Machine Learning. In P. Gupta & A. Bagchi (Eds.), Essentials of Python for Artificial Intelligence and Machine Learning (pp. 283–448). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-43725-0_8; Hamdan, Samer Bu et al. (2015). ‘A BIM-based simulation model for inventory management in panelized construction’. In: Proceedings of the International Symposium on Automation and Robotics in Construction. Vol. 32. IAARC Publications, p. 1.; Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics).; Heikki, Halttula., Harri, Haapasalo., Risto, Silvola. (2020). 3. Managing data flows in infrastructure projects: the lifecycle process model. Journal of Information; Hendradewa, A. (2019). Schedule Risk Analysis by Different Phases of Construction Project Using CPM-PERT and Monte-Carlo Simulation. IOP Conference Series: Materials Science and Engineering, 528, 012035. https://doi.org/10.1088/1757-899X/528/1/012035; Hermano, V., & Martín-Cruz, N. (2019). Expanding the Knowledge on Project Management Standards: A Look into the PMBOK® with Dynamic Lenses. 19–34. https://doi.org/10.1007/978-3-319-92273-7_2; Hernández R, Fernández C, Baptista P. Metodología de la Investigación. México: McGraw-Hill; 1998:9-13.; Hillson, D., & Simon, P. (2012). Practical project risk management : the ATOM methodology (Second edition). Management Concepts Press. http://site.ebrary.com/id/10850167; Ho, V. L., Ho, N., & Pedersen, T. B. (2023). Mining Seasonal Temporal Patterns in Time Series. 2023 IEEE 39th International Conference on Data Engineering (ICDE), 2249–2261. https://doi.org/10.1109/ICDE55515.2023.00174; Huang, L., Qin, J., Zhou, Y., Zhu, F., Liu, L., & Shao, L. (2023). Normalization Techniques in Training DNNs: Methodology, Analysis and Application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(8), 10173–10196. https://doi.org/10.1109/TPAMI.2023.3250241; Huang, Y., Shi, Q., Zuo, J., Pena-Mora, F., & Chen, J. (2021). Research Status and Challenges of Data-Driven Construction Project Management in the Big Data Context. In Advances in Civil Engineering (Vol. 2021). Hindawi Limited. https://doi.org/10.1155/2021/6674980; Huaping, X. (2024). Optimization Control of Construction Project Management Project Based on Deep Learning Algorithm. https://doi.org/10.1109/APCIT62007.2024.10673593; IBM. (2024). ¿Qué es la simulación Montecarlo? https://www.ibm.com/es-es/topics/monte-carlo-simulation; IBM. (nd). Sistema de estadísticas IBM SPSS . Recuperado el 11 de agosto de 2023 de https://www.ibm.com/docs/es/spss-statistics/saas?topic=regression-nonlinear; Industrial Conconcreto S.A.S. (2019). Declaración Ambiental de Producto ARENA, TRITURADO 1” Y 3/8”.; Izquierdo, Luis R.; Galán, José M.;Santos, José I.;del Olmo, Ricardo (2008). Modelado de sistemas complejos mediante simulación basada en agentes y mediante dinámica de sistemas; Jaafari, A., Pazhouhan, I. y Bettinger, P. (2021). Modelado de aprendizaje automático de los costos de construcción de caminos forestales. Bosques , 12 (9). https://doi.org/10.3390/f12091169; Jang, J.-S., Sun, C.-T., & Mizutani, E. (1997). In Neuro-Fuzzy and Soft Computing (Vol. 34).; Jie, D., & Wei, J. (2022). Estimating Construction Project Duration and Costs upon Completion Using Monte Carlo Simulations and Improved Earned Value Management. Buildings, 12(12). https://doi.org/10.3390/buildings12122173; Kadang, T., Hidayah, P. W., Simarmata, K., Putri, N. A., & Krisvinus, K. (2024a). Analysis of Consultant Building Project Management Using the CPM (Critical Path Method). Journal of Business Management and Economic Development, 2(03), 1169–1179. https://doi.org/10.59653/jbmed.v2i03.891; Kalita, J. K., Bhattacharyya, D. K., & Roy, S. (2024). 3 - Data preparation. In J. K. Kalita, D. K. Bhattacharyya, & S. Roy (Eds.), Fundamentals of Data Science (pp. 31–46). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-32-391778-0.00010-7; Kamandang, Z. R. (2023). Risk Assessment of Construction Project Scheduling. In B. S. and S. M. and S. A. Kristiawan Stefanus Adi and Gan (Ed.), Proceedings of the 5th International Conference on Rehabilitation and Maintenance in Civil Engineering (pp. 863–872). Springer Nature Singapore; Kedir, N., Siraj, N., & Fayek, A. R. (2023). Application of System Dynamics in Construction Engineering and Management: Content Analysis and Systematic Literature Review. Advances in Civil Engineering, 2023(1), 1058063. https://doi.org/https://doi.org/10.1155/2023/1058063; Kenley, R. y Seppänen, O. (2009). Gestión de proyectos de construcción basada en la ubicación: parte de una nueva tipología de metodologías de programación de proyectos. En actas - Conferencia de simulación de invierno . https://doi.org/10.1109/WSC.2009.5429669; Kerzner, H. (2022). Gestión de proyectos de innovación: métodos, estudios de casos y herramientas para la gestión de proyectos de innovación . Wiley. https://books.google.com.co/books?id=cWedEAAAQBAJ; Kerzner, H. R. (2013). Project management: a systems approach to planning, scheduling, and controlling. John Wiley & Sons.; Klir, G.J. and Yuan, B. (1995) Fuzzy Sets and Fuzzy Logic, Theory and Applications. Prentice Hall Inc., Upper Saddle River.; Kloppenborg, T. J., Anantatmula, V. S., & Wells, K. N. (2023). Contemporary Project Management: Organize, Lead, Plan, Perform. Cengage. https://books.google.com.co/books?id=XwU90AEACAAJ; Koren, M., Peretz, O., & Koren, O. (2023). Feature Engineering Procedure for Information Enrichment. 2023 International Conference on Advanced Enterprise Information System (AEIS), 28–34. https://doi.org/10.1109/AEIS61544.2023.00012; Koreshi, Z. U. (2022). Chapter 7 - The Monte Carlo method. In Z. U. Koreshi (Ed.), Nuclear Engineering Mathematical Modeling and Simulation (pp. 305–336). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-90618-0.00007-7; Koskela, L., Ferrantelli, A., Niiranen, J., Pikas, E. y Dave, B. (2019). Explicación epistemológica de la construcción Lean. Revista de Ingeniería y Gestión de la Construcción , 145 (2), 1–10. https://doi.org/10.1061/(asce)co.1943-7862.0001597; Koskela, LJ, Ballard, G. y Tommelein, I. (2002). Los fundamentos de la construcción lean . https://www.researchgate.net/publication/28578914; Kostrzewa-Demczuk, P. (2024). Construction Schedule versus Various Constraints and Risks. Applied Sciences, 14(1). https://doi.org/10.3390/app14010196; Koulinas, G. K., Sidas, K. A., & Koulouriotis, D. E. (2023). Project Makespan Prediction and Risk Analysis Using Simulation: Application in a Seawater Desalination Plant Construction Project. In N. F. Matsatsinis, F. C. Kitsios, M. A. Madas, & M. I. Kamariotou (Eds.), Operational Research in the Era of Digital Transformation and Business Analytics (pp. 149–157). Springer International Publishing.; Ladnykh, I. A., & Ibadov, N. (2024). Estimating the Duration of Construction Works Using Fuzzy Modeling to Assess the Impact of Risk Factors. Applied Sciences, 14(9). https://doi.org/10.3390/app14093847; Law, Averill M and W David Kelton (2000). Simulation modeling and analysis. Vol. 3. McGraw-Hill New York.; Liu, B. D., Yang, B., Han, Y., Xiao, J. Z., & Dong, M. S. (2023). Establishment and Application of Multi-agent Simulation System Based on On-Site Construction Performers. In G. Geng, X. Qian, L. H. Poh, & S. D. Pang (Eds.), Proceedings of The 17th East Asian-Pacific Conference on Structural Engineering and Construction, 2022 (pp. 284–304). Springer Nature Singapore.; Liu, M., Le, Y., Hu, Y., Xia, B., Skitmore, M., & Gao, X. (2019). System dynamics modeling for construction management research: critical review and future trends. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 25, 1–12. https://doi.org/10.3846/jcem.2019.10518; Liu, W., Meng, Q., Zhi, H., Li, Z., & Hu, X. (2024). A REVIEW OF AGENT-BASED MODELING IN CONSTRUCTION MANAGEMENT: AN ANALYTICAL FRAMEWORK BASED ON MULTIPLE OBJECTIVES. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 30, 200–219. https://doi.org/10.3846/jcem.2024.20949; Lukman, S., Nazaruddin, Y., ai, bo, He, R., & Joelianto, E. (2019). Estimation of Received Signal Power for 5G-Railway Communication Systems. https://doi.org/10.1109/ICEVT48285.2019.8994017; Madrakhimov, S., Makharov, K., & Lolaev, M. (2021). Data preprocessing on input. AIP Conference Proceedings, 2365(1), 030003. https://doi.org/10.1063/5.0058132; Mahesh Babu, P., Pedro, L., & GhaffarianHoseini, A. (2024). Construction projects: interactions of the causes of delays. Smart and Sustainable Built Environment. https://doi.org/10.1108/SASBE-11-2023-0334; Mansoor, A., Liu, S., Ali, G. M., Bouferguene, A., & Al-Hussein, M. (2022). Scientometric analysis and critical review on the application of deep learning in the construction industry. Canadian Journal of Civil Engineering, 50(4), 253–269. https://doi.org/10.1139/cjce-2022-0379; Marinelli, M., & Janardhanan, M. (2023). The Value Proposition of Machine Learning in Construction Management: Exploring the Trends in Construction 4.0 and Beyond (pp. 247–272). https://doi.org/10.4018/978-1-6684-5643-9.ch010; Marsh, ER (1975). El armograma de Carol Adamiecki. Revista de la Academia de Gestión , 18 (2), 358–364. https://doi.org/10.2307/255537; Mohagheghi, V., Mousavi, S. M., & Vahdani, B. (2017). Analyzing project cash flow by a new interval type-2 fuzzy model with an application to construction industry. Neural Computing and Applications, 28(11), 3393–3411. https://doi.org/10.1007/s00521-016-2235-6; Mohamed, HH, Ibrahim, AH y Soliman, AA (2021). Hacia la reducción del tiempo de entrega de proyectos de construcción con recursos limitados. Sostenibilidad (Suiza) , 13 (19), 1–17. https://doi.org/10.3390/su1; Morín, E. (1990). Introducción al Pensamiento Complejo (Gedisa, Ed.; 10ª, 2011ª ed.).; Mosquera, R., Parra Osorio, L., & Castrillón, O. (2016). Metodología para la Predicción del Grado de Riesgo Psicosocial en Docentes de Colegios Colombianos utilizando Técnicas de Minería de Datos. Información Tecnológica, 27, 259–272. https://doi.org/10.4067/S0718-07642016000600026; Mossman, A. (2020). Construction is Broken. In Lean construction blog (Issue 2003, pp. 1–18). https://leanconstructionblog.com/construction-is-broken.html; Mossman, A., Ballard, G., & Pasquire, & C. (2013). Lean Project Delivery - Innovation in Integrated Design & Delivery. The Design Manager’s Handbook, January, 165–190. https://doi.org/10.1002/9781118486184.app1; Mykytyuk, P., Brych, V., Manzhula, V., Borysiak, O., Sachenko, A., Banasik, A., Kempa, W. M., Mykytyuk, Y., Czupryna-Nowak, A., & Lebid, I. (2024). Efficient Management of Material Resources in Low-Carbon Construction. Energies, 17(3). https://doi.org/10.3390/en17030575; Nascimento, J., Silva, J., Cupertino Bernardes, R., Costa, G., & Emiliano, P. (2024). Statistical data transformation in agrarian sciences for variance analysis: a systematic review. F1000Research, 13, 459. https://doi.org/10.12688/f1000research.144805.2; Neethidevan, V., & Anand, S. (2022). Implementing and evaluating the performance of various Machine Learning algorithms with different datasets. International Journal of Health Sciences, 4684–4694. https://doi.org/10.53730/ijhs.v6nS1.5890; Ogunbayo, B. F., Ramabodu, M. S., Adewale, B. A., & Ogundipe, K. E. (2024). Strategies for Successful Monitoring and Evaluation Practices in Construction Projects. 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), 1–7. https://doi.org/10.1109/SEB4SDG60871.2024.10630137; Olivieri, H., Seppänen, O. y Denis Granja, A. (2018). Mejorar el flujo de trabajo y el uso de recursos en los cronogramas de construcción a través del sistema de gestión basado en la ubicación (LBMS). Gestión y economía de la construcción , 36 (2), 109–124. https://doi.org/10.1080/01446193.2017.1410561; Olubajo, O., Hughes, W., & Schweber, L. (2019). Construction Programmes and Programming: A Critical Review. In I. Lill & E. Witt (Eds.), 10th Nordic Conference on Construction Economics and Organization (Vol. 2, pp. 189–194). Emerald Publishing Limited. https://doi.org/10.1108/S2516-285320190000002045; Orozco, A. (2012). Estos nuevos escenarios teóricos, se plantearon variando la cantidad y tipos de recursos.; Ortiz-Pimiento, N. R. (2020). Modelo de solución al problema de programación de proyectos de desarrollo de nuevos productos con recursos restringidos, inserción de tareas y duración aleatoria Solution model to the resource constrained project scheduling problem RCPSP with insertion task and random duration.; Osorio-Sandoval, C. A. (2021). BIM-based construction simulation modelling.; Parhizkar, T. (2022). Simulation-based Probabilistic Risk Assessment.; Pascual, J. (2021, July 17). Regresión Logística para clasificadores de Machine Learning I: la curva de regresión logística. https://analisisyprogramacionoop.blogspot.com/2021/07/regresion-logistica-machine-learning.html; Paterson, SJC (2017). Desarrollo de un modelo de puntuación utilizando las mejores prácticas de evaluación de cronogramas de la GAO: vol. VI . www.pmworldlibrary.net; Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., & Louppe, G. (2012). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12.; Pellerin, R. y Perrier, N. (2019). Una revisión de métodos, técnicas y herramientas para la planificación y control de proyectos. Revista internacional de investigación de producción , 57 (7), 2160–2178. https://doi.org/10.1080/00207543.2018.1524168; Peña, D. (2001). «Deducción de distribuciones: el método de Monte Carlo», en Fundamentos de Estadística. Madrid: Alianza Editorial. ISBN 84-206-8696-4.; Perez-Cruz, F., Van Vaerenbergh, S., Murillo-Fuentes, J., Lázaro-Gredilla, M., & Santamaria, I. (2013). Gaussian Processes for Nonlinear Signal Processing: An Overview of Recent Advances. Signal Processing Magazine, IEEE, 30, 40–50. https://doi.org/10.1109/MSP.2013.2250352; Pilnik, N., Pospelov, I. G., & Stankevich, I. (2015). On the Use of Dummy Variables to Solve the Problem of Seasonality in General Equilibrium Models. HSE Economic Journal, 19, 249–270. https://api.semanticscholar.org/CorpusID:119708184; Plebankiewicz, E., Zima, K., & Wieczorek, D. (2021). Modelling of time, cost and risk of construction with using fuzzy logic. Journal of Civil Engineering and Management, 27, 412–426. https://doi.org/10.3846/jcem.2021.15255; PMI. (2016). Extensión de construcción de la guía PMBOK® (Inc. Project Management Institute, Ed.; 2ª ed.).; PMI. (2017). Guía de los fundamentos para la dirección de proyectos (Guía del PMBOK) (Inc. Project Management Institute, Ed.; Sexta Edic). Project Management Institute, Inc.; PMI. (2021). A guide to the project management body of knowledge (PMBOK guide) (Seventh ed). Project Management Institute.; Popîrlan, C., & Popîrlan, C.-I. (2023). New Techniques in Numerical Analysis for Artificial Intelligence. 2023 25th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 76–81. https://doi.org/10.1109/SYNASC61333.2023.00017; Portland Cement Association. (2014). Declaración Ambiental de Producto Cementos adicionados (según ASTM C595, ASTM C1157, AASHTOM240, o CSA A3001). www.astm.org; Poslavskaya, E., & Korolev, A. (2023). Encoding categorical data: Is there yet anything “hotter” than one-hot encoding? https://arxiv.org/abs/2312.16930; Rafieian, B., Hermosilla, P., & Vázquez, P.-P. (2023). Improving Dimensionality Reduction Projections for Data Visualization. Applied Sciences, 13(17). https://doi.org/10.3390/app13179967; Rahman, A. U., Alam, S. M., Dallasega, P., Marengo, E., & Nutt, W. (2020). Increasing Control in Construction Processes: The Role of Digitalization. Lecture Notes in Business Information Processing, 397(May), 263–275. https://doi.org/10.1007/978-3-030-66498-5_20; Rao, S., & Moon, K. (2021). Literature Search for Systematic Reviews. In S. Patole (Ed.), Principles and Practice of Systematic Reviews and Meta-Analysis (pp. 11–31). Springer International Publishing. https://doi.org/10.1007/978-3-030-71921-0_2; Ravitch, S., & Carl, N. M. (2016). Qualitative Research: Bridging the Conceptual, Theoretical, and Methodological. Thousand Oaks, CA: Sage Publications.; Remington, K., & Pollack, J. (2016). Tools for Complex Projects (Vol. 1). Routledge.; Restrepo, A. F., Rúa, C. A., & Arias, Y. P. (2024). OPTIMIZATION IN THE DESIGN OF CONCRETE MIXES FOR THE SUSTAINABILITY OF A SOUTH AMERICAN METROPOLITAN AREA BY IMPLEMENTING MATERIAL LIFE CYCLE ANALYSIS. Habitat Sustentable, 14(1), 44–65. https://doi.org/10.22320/07190700.2024.14.01.04; Rios Quiroz, M. F. (2018). Propuesta de mejora en la productividad de mano de obra y equipos del proceso ejecución de obra del área de operaciones en empresa especializada en construcciones civiles de instalación del servicio de agua en sistemas de irrigación. Universidad Peruana de Ciencias Aplicadas (UPC). http://hdl.handle.net/10757/622894; Rodríguez-Ponce, R. (2022). MAC-based Artificial Neural network for voice command recognition. Revista Del Diseño Innovativo, 19–25. https://doi.org/10.35429/JID.2022.15.6.19.25; Rojas, M. (2017).Guía de gestión de la calidad para los proyectos constructivos de la empresa Navarro y Avilés S.A.; Rúa Machado, C. A., Arboleda López, S. A., & Serna Machado, N. (2022). Pilotos para la transferencia de conocimiento entorno a la digitalización en la construcción en Medellín, Colombia. Revista M, 19. https://doi.org/10.15332/rev.m.v19i1.2833; Rúa-Machado, C. A. (2022). Gestión de la construcción para una era digital. Tecnología, transformación y cooperación como retos del ejercicio pedagógico en la gestión del diseño y la construcción de edificios. In Universidad Nacional de Colombia Sede Medellín (Ed.), Construcción Temas y reflexiones (pp. 121–155). Facultad de Arquitectura.; Rudeli, N. (2019). Proyectos de construcción: determinación de causas principales de retraso y desarrollo de modelos estadísticos para la mejora.; Rudeli, N., Santilli, A., Puente, I., & Viles, E. (2017). Statistical Model for Schedule Prediction: Validation in a Housing-Cooperative Construction Database. Journal of Construction Engineering and Management, 143(11). https://doi.org/10.1061/(asce)co.1943-7862.0001396; Rudeli, N., Viles, E. y Santilli, A. (2018). Una herramienta de gestión de la construcción: determinación de los comportamientos típicos del cronograma de un proyecto mediante el análisis de conglomerados. Academia Mundial de Ciencia, Ingeniería y Tecnología Revista Internacional de Ingeniería Civil y Ambiental Vol:12, No:5, 2018 , 12 (5), 485–492. https://doi.org/10.1999/1307-6892/10008879; Rudeli, Natalia. (2019). Proyectos de construcción: determinación de causas principales de retraso y desarrollo de modelos estadísticos para la mejora.; Russell, S.J. and Norvig, P. (2016) Artificial Intelligence: A Modern Approach. Pearson Education Limited, Malaysia.; Sawhney, A., Reley, M. e Irizarry, J. (2020). Construcción 4.0. Una plataforma de innovación para el entorno construido. En Routledge . Routledge es una marca de Taylor & Francis Group, una empresa informa ©.; Senses, S., & Kumral, M. (2024). Trade-off between time and cost in project planning: a simulation-based optimization approach. SIMULATION, 100(2), 127–143. https://doi.org/10.1177/00375497231196889; S. y McCarthy, D. (2019). Causas de retrasos y herramientas digitales emergentes: un modelo novedoso de análisis de retrasos, que incluye la entrega integrada de proyectos y el PMBOK. En edificios (Vol. 9, Número 9). https://doi.org/10.3390/buildings9090191; Serna-Gutiérrez, E. (2023). Propuesta metodológica para la planificación y control de proyectos de construcción basada en un complemento informático. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/84031; Shubham, S., Saloni, S., & Sidra-Tul-Muntaha. (2023). Optimizing construction processes and improving building performance through data engineering and computation. World Journal of Advanced Research and Reviews, 18, 390–398. https://doi.org/10.30574/wjarr.2023.18.1.0614; Singh, U. P. (2023). Decision Making and Predictive Analysis for Real Time Data. In Advances in Data Science and Analytics (pp. 21–38). https://doi.org/https://doi.org/10.1002/9781119792826.ch2; Sreram, P. K., & Thomas, A. (2023). A Value Stream Mapping-Based Discrete Event Simulation Template For Lean Off-Site Construction Activities. 2023 Winter Simulation Conference (WSC), 2768–2776. https://doi.org/10.1109/WSC60868.2023.10407723; Stake, R. (1999). Investigación con estudios de caso. In Mejía Lequerica (Ed.), Investigacion con estudios de casos (Ediciones Morata, Vol. 2). Sage Publication. https://www.redalyc.org/pdf/2810/281021548015.pdf; Surya-Prakash, S., Joseph, S. M., Kishore, D., & Yamini-Devi, Y. (2023). Stochastic Computing Solutions Challenges and Application. Advances in Transdisciplinary Engineering, 32, 71–77. https://doi.org/10.3233/ATDE221239; Szeliski, R. (2010) Computer Vision: Algorithms and Applications. Springer, London, UK.; SZÓSTAK, M. (2023). Forecasting the Course of Cumulative Cost Curves for Different Construction Projects. Civil and Environmental Engineering Reports, 33(1), 71–89. https://doi.org/10.59440/ceer-2023-0005; Taghaddos, Hosein (2010). ‘Developing a generic resource allocation framework for construction simulation’. Doctoral dissertation. University of Alberta.; Tan, J., Yang, J., Wu, S., Chen, G., & Zhao, J. (2021). A critical look at the current train/test split in machine learning. https://doi.org/10.48550/arXiv.2106.04525; Templ, M. (2023). Enhancing Precision in Large-Scale Data Analysis: An Innovative Robust Imputation Algorithm for Managing Outliers and Missing Values. Mathematics, 11(12). https://doi.org/10.3390/math11122729; Theingi Aung, Liana, SR, Htet, A. y Amiya Bhaumik. (2023). Uso del aprendizaje automático para predecir sobrecostos en proyectos de construcción. Revista de Innovación Tecnológica y Energía , 2 (2), 1–7. https://doi.org/10.56556/jtie.v2i2.511; Tsegaye, M. (2019). Procedimiento Eficiente para la Programación de Proyectos de Construcción en la Fase de Planificación. Revista Báltica de Economía Inmobiliaria y Gestión de la Construcción , 7 , 60–80. https://doi.org/10.2478/bjreecm-2019-0004; Vanhoucke, M. (2012). Gestión de proyectos con programación dinámica (págs. 11 a 35). https://doi.org/10.1007/978-3-642-25175-7_2; Vanhoucke, M. (2013). Gestión de proyectos con programación dinámica. En Gestión de Proyectos con Programación Dinámica . https://doi.org/10.1007/978-3-642-40438-2; Velandia, J. (2022). Estudio de rendimientos y consumos de la mano de obra en actividades de cimentación en la construcción de vivienda unifamiliar en el municipio de Tame, departamento de Arauca. Universidad Nacional de Colombia.; Velásquez, J. D. (2015). Una guía corta para escribir revisiones sistemáticas de literatura parte 3. DYNA (Colombia), 82(189), 9–12. https://doi.org/10.15446/dyna.v82n189.48931; Venkatesh, K. A., Mishra, D., & Manimozhi, T. (2023). 9 - Model selection and regularization. In T. Goswami & G. R. Sinha (Eds.), Statistical Modeling in Machine Learning (pp. 159–178). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-91776-6.24001-3; Wang, Shihyi & Halpin, Daniel. (2005). Simulation experiment for improving construction processes. Proceedings - Winter Simulation Conference. 2. 1252- 1259 vol.2. 10.1109/WSC.2004.1371457.; WEF, Rodríguez de Almeida, P., Solas, M., Renz, A., Bühler, MM, Gerbert, P., Castagnino, S. y Rothballer, C. (2016). Dar forma al futuro de la construcción: un gran avance en la mentalidad y la tecnología (Foro Económico Mundial). https://doi.org/10.13140/RG.2.2.21381.37605; WEF. (2016). Construction A Breakthrough in Mindset and Technology. In World Economic Forum (WEF) (Issue May). https://www.bcgperspectives.com/Images/Shaping_the_Future_of_Construction_may_2016.pdf; WEF. (2020). El Informe Global de Riesgos 2020 . www.weforum.org; Wesz, J. G. B., Formoso, C. T., & Tzortzopoulos, P. (2018). Planning and controlling design in engineered-to-order prefabricated building systems. Engineering, Construction and Architectural Management, 25(2), 134–152. https://doi.org/10.1108/ECAM-02-2016-0045; White, R. W., & Hassan Awadallah, A. (2019). Task Duration Estimation. Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, 636–644. https://doi.org/10.1145/3289600.3290997; Whiting, N. W., Roy, C. J., Duque, E., Lawrence, S., & Oberkampf, W. L. (2023). Assessment of Model Validation, Calibration, and Prediction Approaches in the Presence of Uncertainty. Journal of Verification, Validation and Uncertainty Quantification, 8(1). https://doi.org/10.1115/1.4056285; Witteman, H P J (1997). Styles of Learning and Regulation in an Interactive Learning Group System, Nijgh & Van Ditmar; Wu, CL y Chau, KW (2013). Predicción de series temporales de precipitaciones mediante métodos modulares de computación blanda. Aplicaciones de ingeniería de la inteligencia artificial , 26 (3), 1–20.; Wu, L., AbouRizk, S., & Li, K. (2022). System Dynamics Modeling of the Construction Supply Chain in Industrial Modularized Construction Projects. 2022 Winter Simulation Conference (WSC), 2409–2420. https://doi.org/10.1109/WSC57314.2022.10015329; Xing-xia, W., & Jian-wen, H. (2009). Risk Analysis of Construction Schedule Based on Monte Carlo Simulation. https://doi.org/10.1109/CNMT.2009.5374816; Yahaya, B. H., Ahmed, A. A., & Anikajogun, B. O. (2023). Economic Sustainability of Building and Construction Projects Based on Artificial Intelligence Techniques. The Asian Review of Civil Engineering, 12(1), 34–40. https://doi.org/10.51983/tarce-2023.12.1.3677; Yazıcıoğlu, E. y Kanoglu, A. (2022). Un modelo de adquisición de proyectos que permite la competencia por concepto de diseño mediante la integración de herramientas de evaluación basada en el desempeño (PBA), estimación basada en procesos (PBE) y modelado de redes de costos (CNM) . 12 , 65–92. https://doi.org/10.14424/ijcscm120222-65-92; Yin, M., Iannelli, A., & Smith, R. S. (2022). Data-Driven Prediction with Stochastic Data: Confidence Regions and Minimum Mean-Squared Error Estimates. 2022 European Control Conference (ECC), 853–858. https://doi.org/10.23919/ECC55457.2022.9838046; Yu, X., & Zuo, H. (2022). Intelligent Construction Optimization Control of Construction Project Schedule Based on the Fuzzy Logic Neural Network Algorithm. Mathematical Problems in Engineering, 2022, 1–11. https://doi.org/10.1155/2022/8111504; Yudistira, A., Nariswari, R., Arifin, S., Abdillah, A. A., Prasetyo, P., & Susyanto, N. (2024). Program Evaluation and Review Technique (PERT) Analysis to Predict Completion Time and Project Risk Using Discrete Event System Simulation Method. CommIT (Communication and Information Technology) Journal, 18, 67–76. https://doi.org/10.21512/commit.v18i1.8495; Zadeh, L.A. (1965) Fuzzy Sets. Information Control, 8, 338-353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X; Zargar, S. H., Sadeghi, J., & Brown, N. C. (2022). Agent-based modelling for early-stage optimization of spatial structures. International Journal of Architectural Computing, 21(1), 84–99. https://doi.org/10.1177/14780771221143493; Zeng, Z., & Gao, Y. (2024). Cost Control Management of Construction Projects Based on Fuzzy Logic and Auction Theory. IEEE Access, PP, 1. https://doi.org/10.1109/ACCESS.2024.3438291; Zhang, H. (2015). Discrete-Event Simulation for Estimating Emissions from Construction Processes. Journal of Management in Engineering, 31, 04014034. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000236; Zhang, Q. (2024). Building Engineering Cost Prediction Based On Deep Learning: Model Construction and Real - Time Optimization. Journal of Electrical Systems, 20, 151–164. https://doi.org/10.52783/jes.1887; Zhang, S., & Li, X. (2022). A comparative study of machine learning regression models for predicting construction duration. Journal of Asian Architecture and Building Engineering, 1–17. https://doi.org/10.1080/13467581.2023.2278887; Zhou, S., & Chen, Y. (2022). Explaining Covariance Structure: Principal Components. In Industrial Data Analytics for Diagnosis and Prognosis (pp. 61–80). John Wiley & Sons, Ltd. https://doi.org/https://doi.org/10.1002/9781119666271.ch4; Zhou, Y., Wang, X., Gosling, J., & Naim, M. (2023). The System Dynamics of Engineer-to-Order Construction Projects: Past, Present, and Future. Journal of Construction Engineering and Management, 149. https://doi.org/10.1061/JCEMD4.COENG-12926; Zowghi, M., Haghighi, M. y Zohouri, B. (2011). Enfoque de control de costos y cronogramas en un entorno difuso. Editor de la Academia de Ciencias Revista internacional de investigación y reseñas en ciencias de la información , 1 , 2046–6439.; Галина, Р., Honcharenko, T., Predun, K., Petrukha, N., Malykhina, O., & Khomenko, O. (2023). Using of Fuzzy Logic for Risk Assessment of Construction Enterprise Management System. https://doi.org/10.1109/SIST58284.2023.10223560; https://repositorio.unal.edu.co/handle/unal/88154; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
19
Autoři: a další
Zdroj: Lecture Notes in Computer Science ; Practical Aspects of Declarative Languages ; page 122-136 ; ISSN 0302-9743 ; ISBN 9783540655275 9783540492016
-
20
Autoři: a další
Přispěvatelé: a další
Zdroj: DTIC AND NTIS
Témata: Computer Programming and Software, Computer Systems, SYSTEMS ENGINEERING, REAL TIME, COMPUTERIZED SIMULATION, DISTRIBUTED DATA PROCESSING, PARALLEL PROCESSING, AIR FORCE EQUIPMENT, FAULT TOLERANT COMPUTING, NETWORK ARCHITECTURE, TPN(TIME PETRI NET MODEL), SAM(SOFTWARE ARCHITECTURAL MODEL), PETRI NETS
Popis souboru: text/html
Nájsť tento článok vo Web of Science