Výsledky vyhledávání - acm: c.: computer systems organizacion/c.1: process architecture

Upřesnit hledání
  1. 1

    Popis souboru: 227 páginas; application/pdf

    Relation: RedCol; LaReferencia; Sánchez Rodríguez, D.A., A.I. Ramos-Murillo, and R.D. Godoy-Silva, Tissue engineering, 3DBioprinting, morphogenesis modelling and simulation of biostructures: Relevance, underpinning biological principles and future trends. Bioprinting, 2021. 24: p. e00171.; Liu, N., et al., Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration. Bioactive Materials, 2021. 6(5): p. 1388-1401.; GODT. Global Observatory on Donation and Transplantation data. 2016 25 April 2020 [cited 2020; Available from: http://www.transplant-observatory.org/summary/.; Health Resources and Services Administration. Organ Procurement and Transplantation Network. 26 April 2020 [cited 2020; Available from: https://optn.transplant.hrsa.gov/data/.; Matai, I., et al., Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 2020. 226: p. 119536.; Dzobo, K., K.S.C.M. Motaung, and A. Adesida, Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review. International Journal of Molecular Sciences, 2019. 20(18): p. 4628.; Gomes, M.E., et al., Tissue Engineering and Regenerative Medicine: New Trends and Directions—A Year in Review. Tissue Engineering Part B: Reviews, 2017. 23(3): p. 211-224.; Lanza, R.P., R. Langer, and J. Vacanti, Chapter 1 - The History and Scope of Tissue Engineering. 2014. p. 3 - 8.; Murphy, S.V. and A. Atala, 3D bioprinting of tissues and organs. Nature biotechnology, 2014. 32(8): p. 773-85.; Neagu, A., Role of computer simulation to predict the outcome of 3D bioprinting. Journal of 3D Printing in Medicine, 2017. 1(2): p. 103-121.; Brody, H., Regenerative medicine. Nature, 2016. 540: p. S49.; Langer, R. and J. Vacanti, Tissue engineering. Science, 1993. 260(5110): p. 920-926.; Ballet, F., Hepatotoxicity in drug development: detection, significance and solutions. Journal of Hepatology, 1997. 26: p. 26-36.; Caponigro, G. and W.R. Sellers, Advances in the preclinical testing of cancer therapeutic hypotheses. Nature Reviews Drug Discovery, 2011. 10(3): p. 179-187.; Schutgens, F. and H. Clevers, Human Organoids: Tools for Understanding Biology and Treating Diseases. Annu Rev Pathol, 2020. 15: p. 211-234.; Clevers, H., Modeling Development and Disease with Organoids. Cell, 2016. 165(7): p. 1586- 1597.; Dzobo, K., Taking a Full Snapshot of Cancer Biology: Deciphering the Tumor Microenvironment for Effective Cancer Therapy in the Oncology Clinic. OMICS: A Journal of Integrative Biology, 2020. 24(4): p. 175-179.; Dzobo, K., et al., Three-Dimensional Organoids in Cancer Research: The Search for the Holy Grail of Preclinical Cancer Modeling. Omics, 2018. 22(12): p. 733-748.; Kaushik, G., M.P. Ponnusamy, and S.K. Batra, Concise Review: Current Status of Three- Dimensional Organoids as Preclinical Models. STEM CELLS, 2018. 36(9): p. 1329-1340.; Drost, J. and H. Clevers, Organoids in cancer research. Nature Reviews Cancer, 2018. 18(7): p. 407-418.; Cellink. Bioconvergence is the future of healthcare. 2021; Available from: https://www.cellink.com/bioconvergence/.; Authority, I.I. Bio-Convergence. The Future of Medicine. 2019; Available from: https://innovationisrael.org.il/en/reportchapter/bio-convergence.; Senthebane, D.A., et al., The Role of Tumor Microenvironment in Chemoresistance: To Survive, Keep Your Enemies Closer. International Journal of Molecular Sciences, 2017. 18(7). Bibliografía 217; Khademhosseini, A. and R. Langer, Microengineered hydrogels for tissue engineering. Biomaterials, 2007. 28(34): p. 5087-92.; Kim, J.D., et al., Piezoelectric inkjet printing of polymers: Stem cell patterning on polymer substrates. Polymer, 2010. 51(10): p. 2147-2154.; Mège, R.-M., Les molécules d'adhérence cellulaire: molécules morphogénétiques. médecine/sciences, 1991. 7: p. 544.; Glazier, J.A. and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1993. 47(3): p. 2128-2154.; Savill, N.J. and P. Hogeweg, Modelling Morphogenesis: From Single Cells to Crawling Slugs. Journal of Theoretical Biology, 1997. 184(3): p. 229 - 235.; Walker, D.C., et al., Agent-based computational modeling of wounded epithelial cell monolayers. IEEE Transactions on NanoBioscience, 2004. 3(3): p. 153-163.; Galle, J., et al., Individual cell-based models of tumor-environment interactions: Multiple effects of CD97 on tumor invasion. The American journal of pathology, 2006. 169(5): p. 1802-11.; Takeichi, M., Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 1991. 251(5000): p. 1451-5.; Pepper, M., et al., Post-Bioprinting Processing Methods to Improve Cell Viability and Pattern Fidelity in Heterogeneous Tissue Test Systems. Vol. 2010. 2010. 259-62.; Murphy, S.V., A. Skardal, and A. Atala, Evaluation of hydrogels for bio-printing applications. Journal of biomedical materials research. Part A, 2013. 101(1): p. 272-84.; Jakab, K., et al., Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures. Vol. 14. 2007.; Jakab, K., et al., Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication, 2010. 2(2): p. 022001-022001.; Nogueira, J.A., et al., Simulation of a 3D Bioprinted Human Vascular Segment. Computer Aided Chemical Engineering, 2015: p. 684-688; Gjorevski, N., et al., Designer matrices for intestinal stem cell and organoid culture. Nature, 2016. 539(7630): p. 560-564.; West, J.L. and J.A. Hubbell, Polymeric Biomaterials with Degradation Sites for Proteases Involved in Cell Migration. Macromolecules, 1999. 32(1): p. 241-244.; Schiller, M., D. Javelaud, and A. Mauviel, TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. Journal of dermatological science, 2004. 35(2): p. 83-92.; Tamamura, Y., et al., Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. The Journal of biological chemistry, 2005. 280(19): p. 19185-95.; Ingber, D.E., et al., Tissue engineering and developmental biology: going biomimetic. Tissue engineering, 2006. 12(12): p. 3265-83.; Behonick, D.J. and Z. Werb, A bit of give and take: the relationship between the extracellular matrix and the developing chondrocyte. Mechanisms of development, 2003. 120(11): p. 1327-36.; Hersel, U., C. Dahmen, and H. Kessler, RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, 2003. 24(24): p. 4385-415. 218 Título de la tesis o trabajo de investigación; Price, R.L., K.M. Haberstroh, and T.J. Webster, Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina. Medical and Biological Engineering and Computing, 2003. 41(3): p. 372-375.; Teixeira, A.I., P.F. Nealey, and C.J. Murphy, Responses of human keratocytes to micro- and nanostructured substrates. Journal of biomedical materials research. Part A, 2004. 71(3): p. 369- 76.; Discher, D.E., P. Janmey, and Y.L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science, 2005. 310(5751): p. 1139-43.; Hopp, B., et al., Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue engineering, 2005. 11(11-12): p. 1817-23.; Stevens, M.M. and J.H. George, Exploring and engineering the cell surface interface. Science, 2005. 310(5751): p. 1135-8.; Wu, Z., et al., Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Scientific Reports, 2016. 6: p. 24474.; Schon, B.S., G.J. Hooper, and T.B.F. Woodfield, Modular Tissue Assembly Strategies for Biofabrication of Engineered Cartilage. Annals of Biomedical Engineering, 2017. 45(1): p. 100- 114.; Murphy, S.V. and A. Atala, 3D bioprinting of tissues and organs. Nat Biotechnol, 2014. 32(8): p. 773-85.; Chang, R., J. Nam, and W. Sun, Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue engineering. Part C, Methods, 2008. 14(2): p. 157-66.; Nair, K., et al., Characterization of cell viability during bioprinting processes. Biotechnology journal, 2009. 4(8): p. 1168-77.; Cui, X., et al., Thermal inkjet printing in tissue engineering and regenerative medicine. Recent patents on drug delivery & formulation, 2012. 6(2): p. 149-55.; Robu, A., et al., Computer simulations of in vitro morphogenesis. Biosystems, 2012. 109(3): p. 430-43.; Zhou, B., et al., Simulation of the gelation process of hydrogel droplets in 3D bioprinting. Vol. 16. 2016. 117-118.; Fristrom, D., The cellular basis of epithelial morphogenesis. A review. Tissue and Cell, 1988. 20(5): p. 645 - 690.; Radisic, M., et al., Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(52): p. 18129-34.; Xu, T., et al., Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials, 2006. 27(19): p. 3580 - 3588.; Steinberg, M.S., Adhesion in development: an historical overview. Developmental biology, 1996. 180(2): p. 377-88.; Wang, Y., et al., Spheroid formation of hepatocarcinoma cells in microwells: Experiments and Monte Carlo simulations. PLoS ONE, 2016. 11(8).; Mironov, V., et al., Organ printing: tissue spheroids as building blocks. Biomaterials, 2009. 30(12): p. 2164-74.; Kelm, J.M., et al., A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. Journal of biotechnology, 2010. 148(1): p. 46-55.; Tejavibulya, N., et al., Directed self-assembly of large scaffold-free multi-cellular honeycomb structures. Biofabrication, 2011. 3(3): p. 034110.; Derby, B., Printing and prototyping of tissues and scaffolds. Science, 2012. 338(6109): p. 921-6. Bibliografía 219; Jakab, K., et al., Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(9): p. 2864-2869.; Jakab, K., et al., Relating cell and tissue mechanics: implications and applications. Developmental dynamics, 2008. 237(9): p. 2438-49.; Steinberg, M.S., Reconstruction of Tissues by Dissociated Cells. Science, 1963. 141(3579): p. 401-408.; Nakamura, M., et al., Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue engineering, 2005. 11(11-12): p. 1658-66.; Freutel, M., et al., Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin Biomech (Bristol, Avon), 2014. 29(4): p. 363-72.; Timpl, R., et al., Laminin--a glycoprotein from basement membranes. J Biol Chem, 1979. 254(19): p. 9933-7.; Pankov, R. and K.M. Yamada, Fibronectin at a glance. J Cell Sci, 2002. 115(Pt 20): p. 3861-3.; Vazin, T. and D.V. Schaffer, Engineering strategies to emulate the stem cell niche. Trends Biotechnol, 2010. 28(3): p. 117-24.; Gleghorn, J.P., et al., Inhibitory morphogens and monopodial branching of the embryonic chicken lung. Developmental dynamics, 2012. 241(5): p. 852-62.; Iber, D. and D. Menshykau, The control of branching morphogenesis. Open biology, 2013. 3(9): p. 130088-130088.; Marga, F., et al., Developmental biology and tissue engineering. Birth Defects Research Part C: Embryo Today: Reviews, 2007. 81(4): p. 320-8.; Betsch, M., et al., Incorporating 4D into Bioprinting: Real-Time Magnetically Directed Collagen Fiber Alignment for Generating Complex Multilayered Tissues. Advanced Healthcare Materials, 2018. 7(21): p. e1800894.; Heinrich, M.A., et al., Bioprinting: 3D Bioprinting: from Benches to Translational Applications (Small 23/2019). Small, 2019. 15(23): p. 1970126.; Hoshiba, T. and M. Tanaka, Decellularized matrices as in vitro models of extracellular matrix in tumor tissues at different malignant levels: Mechanism of 5-fluorouracil resistance in colorectal tumor cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2016. 1863(11): p. 2749-2757.; Kasza, K.E., et al., The cell as a material. Current opinion in cell biology, 2007. 19(1): p. 101-7.; Mironov, V., V. Kasyanov, and R.R. Markwald, Organ printing: from bioprinter to organ biofabrication line. Current opinion in biotechnology, 2011. 22(5): p. 667-73.; Marga, F., et al., Toward engineering functional organ modules by additive manufacturing. Biofabrication, 2012. 4(2): p. 022001.; A., N., et al., Simulation of a 3D Bioprinted Human Vascular, in 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering, J.K.H.a.R.G. Krist V. Gernaey, Editor. 2015, Elsevier B.V.: Copenhagen, Denmark. p. 684-688; Khoo, Z.X., et al., 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping, 2015. 10(3): p. 103-122.; An, J., C.K. Chua, and V. Mironov, A Perspective on 4D Bioprinting. International Journal of Bioprinting, 2016. 220 Título de la tesis o trabajo de investigación; Kamei, M., et al., Endothelial tubes assemble from intracellular vacuoles in vivo. Nature, 2006. 442(7101): p. 453-6.; Alajati, A., et al., Spheroid-based engineering of a human vasculature in mice. Nature methods, 2008. 5(5): p. 439-45.; Chang, R., J. Nam, and W. Sun, Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue engineering. Part A, 2008. 14(1): p. 41-8.; Gunther, A., et al., A microfluidic platform for probing small artery structure and function. Lab on a chip, 2010. 10(18): p. 2341-9.; Huh, D., et al., Reconstituting organ-level lung functions on a chip. Science, 2010. 328(5986): p. 1662-8.; Xu, F., et al., A three-dimensional in vitro ovarian cancer coculture model using a highthroughput cell patterning platform. Biotechnology journal, 2011. 6(2): p. 204-212.; Ghaemmaghami, A.M., et al., Biomimetic tissues on a chip for drug discovery. Drug discovery today, 2012. 17(3-4): p. 173-81.; Knowlton, S., et al., Bioprinting for cancer research. Trends in biotechnology, 2015. 33(9): p. 504-13.; Villasante, A. and G. Vunjak-Novakovic, Tissue-engineered models of human tumors for cancer research. Expert opinion on drug discovery, 2015. 10(3): p. 257-68.; Lancaster, M.A., et al., Cerebral organoids model human brain development and microcephaly. Nature, 2013. 501(7467): p. 373-379.; Wong, A.P., et al., Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nature Biotechnology, 2012. 30(9): p. 876-882.; Clevers, H., STEM CELLS. What is an adult stem cell? Science, 2015. 350(6266): p. 1319-20.; Eiraku, M. and Y. Sasai, Self-formation of layered neural structures in three-dimensional culture of ES cells. Current opinion in neurobiology, 2012. 22(5): p. 768-777.; Lancaster, M.A. and J.A. Knoblich, Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014. 345(6194): p. 1247125.; Dekkers, J.F., et al., A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nature Medicine, 2013. 19(7): p. 939-945.; Ciancanelli, M.J., et al., Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science, 2015. 348(6233): p. 448.; Firth, A.L., et al., Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs. Cell Rep, 2015. 12(9): p. 1385-90.; Benam, K.H., et al., Human Lung Small Airway-on-a-Chip Protocol, in 3D Cell Culture: Methods and Protocols, Z. Koledova, Editor. 2017, Springer New York: New York, NY. p. 345- 365.; Bhatia, S.N. and D.E. Ingber, Microfluidic organs-on-chips. Nature Biotechnology, 2014. 32(8): p. 760-772.; Kimura, H., Y. Sakai, and T. Fujii, Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metabolism and Pharmacokinetics, 2018. 33(1): p. 43-48.; Domansky, K., et al., Perfused multiwell plate for 3D liver tissue engineering. Lab on a chip, 2010. 10(1): p. 51-8.; Faulkner-Jones, A., et al., Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication, 2015. 7(4): p. 044102. Bibliografía 221; Ma, X., et al., Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proceedings of the National Academy of Sciences of the United States of America, 2016. 113(8): p. 2206-11.; Dinh, N.-D., et al., Effective Light Directed Assembly of Building Blocks with Microscale Control. Small, 2017. 13.; Kizawa, H., et al., Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery. Biochemistry and Biophysics Reports, 2017. 10: p. 186-191.; Stichler, S., et al., Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(ε-caprolactone) for MSC chondrogenesis. Biofabrication, 2017. 9(4).; Kang, K., et al., Three-Dimensional Bioprinting of Hepatic Structures with Directly Converted Hepatocyte-Like Cells. Tissue engineering. Part A, 2018. 24(7-8): p. 576-583.; Takebe, T., et al., Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013. 499(7459): p. 481-484.; Bhise, N.S., et al., A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication, 2016. 8(1): p. 014101.; Hirt, M.N., A. Hansen, and T. Eschenhagen, Cardiac Tissue Engineering. Circulation Research, 2014. 114(2): p. 354-367.; Lind, J.U., et al., Instrumented cardiac microphysiological devices via multimaterial threedimensional printing. Nature Materials, 2017. 16(3): p. 303-308.; Zhang, Y.S., et al., Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 2016. 110: p. 45-59.; Ma, X., et al., 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Advanced drug delivery reviews, 2018. 132: p. 235-251.; Jang, J., H.-G. Yi, and D.-W. Cho, 3D Printed Tissue Models: Present and Future. ACS Biomaterials Science & Engineering, 2016. 2(10): p. 1722-1731.; Koch, L., et al., Skin tissue generation by laser cell printing. Biotechnology and bioengineering, 2012. 109(7): p. 1855-63.; Lee, V., et al., Design and fabrication of human skin by three-dimensional bioprinting. Tissue engineering. Part C, Methods, 2014. 20(6): p. 473-84.; Randall, M.J., et al., Advances in the Biofabrication of 3D Skin in vitro: Healthy and Pathological Models. Frontiers in Bioengineering and Biotechnology, 2018. 6(154).; Lindberg, K., et al., In vitro propagation of human ocular surface epithelial cells for transplantation. Investigative Ophthalmology & Visual Science, 1993. 34(9): p. 2672-2679.; Pellegrini, G., et al., Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. The Lancet, 1997. 349(9057): p. 990-993.; Rama, P., et al., Limbal stem-cell therapy and long-term corneal regeneration. New England journal of medicine, 2010. 363(2): p. 147-155.; Lancaster, M.A. and J.A. Knoblich, Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014. 345(6194).; Longmire, T.A., et al., Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell stem cell, 2012. 10(4): p. 398-411.; Steinberg, M.S., Differential adhesion in morphogenesis: a modern view. Current Opinion in Genetics and Development 2007. 17(4): p. 281-6.; Horning, J.L., et al., 3-D Tumor Model for In Vitro Evaluation of Anticancer Drugs. Molecular Pharmaceutics, 2008. 5(5): p. 849-862. 222 Título de la tesis o trabajo de investigación; Flenner, E., et al., Kinetic Monte Carlo and Cellular Particle Dynamics Simulations of Multicellular Systems. Vol. 85. 2012. 031907.; Shin, C.S., et al., 3D cancer tumor models for evaluating chemotherapeutic efficacy, in Biomaterials for Cancer Therapeutics, K. Park, Editor. 2013, Woodhead Publishing. p. 445-460.; Hubert, C.G., et al., A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found In Vivo. Cancer Res, 2016. 76(8): p. 2465-77.; Fujii, M., et al., A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis. Cell Stem Cell, 2016. 18(6): p. 827-838.; Liverani, C., et al., A biomimetic 3D model of hypoxia-driven cancer progression. Scientific Reports, 2019. 9(1): p. 12263.; Tanner, K. and M.M. Gottesman, Beyond 3D culture models of cancer. Science Translational Medicine, 2015. 7(283): p. 283ps9-283ps9.; Roberts, S., S. Peyman, and V. Speirs, Current and Emerging 3D Models to Study Breast Cancer, in Breast Cancer Metastasis and Drug Resistance. 2019. p. 413-427.; Ringeisen, B.R., et al., Laser printing of pluripotent embryonal carcinoma cells. Tissue engineering, 2004. 10(3-4): p. 483-91.; Matsusaki, M., et al., Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing. Advanced Healthcare Materials, 2013. 2(4): p. 534-9.; Zhao, Y., et al., Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication, 2014. 6(3): p. 035001.; Yamada, K.M. and E. Cukierman, Modeling Tissue Morphogenesis and Cancer in 3D. Cell, 2007. 130(4): p. 601-610.; Nantasanti, S., et al., Disease modeling and gene therapy of copper storage disease in canine hepatic organoids. Stem cell reports, 2015. 5(5): p. 895-907.; Chaturvedi, R., et al., A Hybrid Discrete-Continuum Model for 3-D Skeletogenesis of the Vertebrate Limb, in International Conference on Cellular Automata. 2004. p. 543-552.; Hespel, A.M., R. Wilhite, and J. Hudson, Invited review-applications for 3D printers in veterinary medicine. Veterinary Radiology & Ultrasound, 2014. 55(4): p. 347-358.; Kamb, A., What's wrong with our cancer models? Nat Rev Drug Discov, 2005. 4(2): p. 161-5.; Guillotin, B., et al., Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 2010. 31(28): p. 7250-6.; Campbell, P.G., et al., Engineered spatial patterns of FGF-2 immobilized on fibrin direct cell organization. Biomaterials, 2005. 26(33): p. 6762-70.; Phillippi, J.A., et al., Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells, 2008. 26(1): p. 127-34.; Norotte, C., et al., Scaffold-free vascular tissue engineering using bioprinting. Biomaterials, 2009. 30(30): p. 5910-7.; Chrisey, D.B., Materials Processing: The Power of Direct Writing. Science, 2000. 289(5481): p. 879-81.; Kattamis, N.T., et al., Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Applied Physics Letters, 2007. 91(17): p. 171120.; Koch, L., et al., Laser printing of skin cells and human stem cells. Tissue engineering. Part C, Methods, 2010. 16(5): p. 847-54.; Gruene, M., et al., Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue engineering. Part C, Methods, 2011. 17(1): p. 79-87.; Duocastella, M., et al., Novel laser printing technique for miniaturized biosensors preparation. Sensors and Actuators B: Chemical, 2010. 145(1): p. 596-600. Bibliografía 223; Tekin, E., P.J. Smith, and U.S. Schubert, Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter, 2008. 4(4): p. 703-713.; Klebe, R.J., Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Experimental cell research, 1988. 179(2): p. 362-73.; Okamoto, T., T. Suzuki, and N. Yamamoto, Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nature biotechnology, 2000. 18(4): p. 438-41.; Xu, T., et al., High-throughput production of single-cell microparticles using an inkjet printing technology. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2008. 130(2): p. 0210171-0210175.; Cohen, D.L., et al., Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue engineering, 2006. 12(5): p. 1325-35.; Visser, J., et al., Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication, 2013. 5(3): p. 035007.; Khalil, S. and W. Sun, Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Materials Science & Engineering C, 2007. 27(3): p. 469-478.; Guvendiren, M., H.D. Lu, and J.A. Burdick, Shear-thinning hydrogels for biomedical applications. Soft Matter, 2012. 8(2): p. 260-272.; Hribar, K.C., et al., Light-assisted direct-write of 3D functional biomaterials. Lab on a Chip, 2014. 14(2): p. 268-275.; Morris, V.B., et al., Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography. Annals of Biomedical Engineering, 2017. 45(1): p. 286-296.; Abdel Fattah, A.R., et al., In Situ 3D Label-Free Contactless Bioprinting of Cells through Diamagnetophoresis. ACS Biomaterials Science & Engineering, 2016. 2(12): p. 2133-2138.; Tseng, H., et al., A three-dimensional co-culture model of the aortic valve using magnetic levitation. Acta Biomaterialia, 2014. 10(1): p. 173-182.; Hennink, W.E. and C.F. van Nostrum, Novel crosslinking methods to design hydrogels. Advanced drug delivery reviews, 2002. 54(1): p. 13-36.; Shin, S.R., et al., A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics. Advanced Materials, 2016. 28(17): p. 3280-3289.; Li, L., et al., In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Scientific reports, 2017. 7(1): p. 9416.; Hakimi, N., et al., Handheld skin printer: in situ formation of planar biomaterials and tissues. Lab on a chip, 2018. 18(10): p. 1440-1451.; Silva, C., et al., Rational Design of a Triple-Layered Coaxial Extruder System: in silico and in vitro Evaluations Directed Toward Optimizing Cell Viability. International journal of bioprinting, 2020. 6(4): p. 282-282.; Hufnagel, L., et al., On the mechanism of wing size determination in fly development. Proceedings of the National Academy of Sciences, 2007. 104(10): p. 3835-3840.; Vincent, J.-P., A.G. Fletcher, and L.A. Baena-Lopez, Mechanisms and mechanics of cell competition in epithelia. Nature Reviews Molecular Cell Biology, 2013. 14(9): p. 581-591.; Fletcher, A.G., F. Cooper, and R.E. Baker, Mechanocellular models of epithelial morphogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017. 372(1720): p. 20150519.; Kolesky, D.B., et al., 3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs. Advanced Materials, 2014. 26(19): p. 3124-3130.; Kolesky, D.B., et al., Three-dimensional bioprinting of thick vascularized tissues. Proceedings of the National Academy of Sciences, 2016. 113(12): p. 3179-3184.; Kang, H.-W., et al., A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature Biotechnology, 2016. 34(3): p. 312-319.; Neagu, A., et al., Role of physical mechanisms in biological self-organization. Physical review letters, 2005. 95(17): p. 178104.; Fleming, P.A., et al., Fusion of uniluminal vascular spheroids: a model for assembly of blood vessels. Developmental dynamics, 2010. 239(2): p. 398-406.; Carter, S.B., Haptotaxis and the Mechanism of Cell Motility. Nature, 1967. 213(5073): p. 256- 260.; Harris, A., Behavior of cultured cells on substrata of variable adhesiveness. Experimental cell research, 1973. 77(1): p. 285-97.; Galle, J., M. Loeffler, and D. Drasdo, Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. Biophysical journal, 2005. 88(1): p. 62-75.; Merks, R.M.H., et al., Contact-Inhibited Chemotaxis in De Novo and Sprouting Blood-Vessel Growth. PLOS Computational Biology, 2008. 4(9): p. e1000163.; Sengers, B.G., et al., Computational modelling of cell spreading and tissue regeneration in porous scaffolds. Biomaterials, 2007. 28(10): p. 1926-40.; Hynes, R.O., Integrins: bidirectional, allosteric signaling machines. Cell, 2002. 110(6): p. 673- 87.; Gumbiner, B.M., Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 1996. 84(3): p. 345-57.; Beysens, D.A., G. Forgacs, and J.A. Glazier, Cell sorting is analogous to phase ordering in fluids. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(17): p. 9467-9471.; Foty, R.A. and M.S. Steinberg, The differential adhesion hypothesis: a direct evaluation. Developmental Biology, 2005. 278(1): p. 255-263.; Steinberg, M.S., On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the organization of fused, heteronomic tissue fragments. Proceedings of the National Academy of Sciences of the United States of America, 1962. 48(10): p. 1769-76.; Gierer, A., et al., Regeneration of hydra from reaggregated cells. Nature: New biology, 1972. 239(91): p. 98-101.; Yamanaka, H., Y. Tanaka-Ohmura, and M. Dan-Sohkawa, What do dissociated embryonic cells of the starfish, Asterina pectinifera, do to reconstruct bipinnaria larvae? Journal of embryology and experimental morphology, 1986. 94: p. 61-71.; Kipper, M.J., H.K. Kleinman, and F.W. Wang, New method for modeling connective-tissue cell migration: improved accuracy on motility parameters. Biophysical journal, 2007. 93(5): p. 1797- 808.; Steinberg, M.S., Adhesion-guided multicellular assembly: a commentary upon the postulates, real and imagined, of the differential adhesion hypothesis, with special attention to computer simulations of cell sorting. Journal of Theoretical Biology, 1975. 55(2): p. 431 - 443.; Foty, R.A., et al., Liquid properties of embryonic tissues: Measurement of interfacial tensions. Physical review letters, 1994. 72(14): p. 2298-2301.; Foty, R.A., et al., Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development, 1996. 122(5): p. 1611-20. Bibliografía 225; Marmottant, P., et al., The role of fluctuations and stress on the effective viscosity of cell aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(41): p. 17271-17275.; Pajic-Lijakovic, I. and M. Milivojevic, Long-time viscoelasticity of multicellular surfaces caused by collective cell migration – Multi-scale modeling considerations. Seminars in Cell & Developmental Biology, 2019. 93: p. 87-96.; Griffith, L.G. and G. Naughton, Tissue Engineering-Current Challenges and Expanding Opportunities. Science, 2002. 295(5557): p. 1009-1014.; Norotte, C., et al., Experimental evaluation of apparent tissue surface tension based on the exact solution of the Laplace equation. Europhysics Letters, 2008. 81(46003).; Mgharbel, A., H. Delanoe-Ayari, and J.P. Rieu, Measuring accurately liquid and tissue surface tension with a compression plate tensiometer. HFSP journal, 2009. 3(3): p. 213-21.; Korff, T. and H.G. Augustin, Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. Journal of cell science, 1999. 112 ( Pt 19): p. 3249-58.; Friedl, P. and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer. Nature reviews. Molecular cell biology 2009. 10(7): p. 445-57.; Lo, C.M., et al., Cell movement is guided by the rigidity of the substrate. Biophysical journal, 2000. 79(1): p. 144-152.; Mayor, R. and C. Carmona-Fontaine, Keeping in touch with contact inhibition of locomotion. Trends in cell biology, 2010. 20(6): p. 319-28.; Goel, N.S. and G. Rogers, Computer simulation of engulfment and other movements of embryonic tissues. Journal of Theoretical Biology, 1978. 71(1): p. 103-140.; Glazier, J.A., S.P. Gross, and J. Stavans, Dynamics of two-dimensional soap froths. Physical Review A, 1987. 36(1): p. 306-312.; Stavans, J. and J.A. Glazier, Soap froth revisited: Dynamic scaling in the two-dimensional froth. Physical review letters, 1989. 62(11): p. 1318-1321.; Turing, A.M., The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1952. 237(641): p. 37-72.; Wittwer, L.C., Roberto; Aland, Sebastian; Iber, Dagmar, Simulating Organogenesis in COMSOL: Phase-Field Based Simulations of Embryonic Lung Branching Morphogenesis. 2016.; Wittwer, L.D., Phase-Field Based Simulations of Embryonic Branching Morphogenesis. 2017, ETH Zurich.; Metzger, R.J., et al., The branching programme of mouse lung development. Nature, 2008. 453(7196): p. 745-50.; Walker, D.C. and J. Southgate, The virtual cell--a candidate co-ordinator for 'middle-out' modelling of biological systems. Briefings in bioinformatics, 2009. 10(4): p. 450-61.; Andasari, V., et al., Integrating Intracellular Dynamics Using CompuCell3D and Bionetsolver: Applications to Multiscale Modelling of Cancer Cell Growth and Invasion. PLOS ONE, 2012. 7(3): p. e33726.; Ingber, D.E. and M. Levin, What lies at the interface of regenerative medicine and developmental biology? Development, 2007. 134(14): p. 2541-2547.; Andreea Robu, L.S.-T., SIMMMC – An Informatic Application for Mmodelling and Simulating the Evolution of Multicellular Systems in the Vicinity of Biomaterials. Romaninan Journal of Biophysics, 2016. 26(3).; Amar, J.G., The Monte Carlo Method in Science and Engineering. Computing in Science and Engineering, 2006. 8: p. 9-19.; Fichthorn, K.A. and W.H. Weinberg, Theoretical foundations of dynamical Monte Carlo simulations. The Journal of Chemical Physics, 1991. 95(2): p. 1090-1096.; Vineyard, G.H., Frequency factors and isotope effects in solid state rate processes. Journal of Physics and Chemistry of Solids, 1957. 3(1): p. 121-127.; Sun, Y. and Q. Wang, Modeling and simulations of multicellular aggregate self-assembly in biofabrication using kinetic Monte Carlo methods. Soft Matter, 2013. 9(7): p. 2172-2186.; Bortz, A.B., M.H. Kalos, and J.L. Lebowitz, A new algorithm for Monte Carlo simulation of Ising spin systems. Journal of Computational Physics, 1975. 17(1): p. 10-18.; NEAGU, A., et al., COMPUTATIONAL MODELING OF TISSUE SELF-ASSEMBLY. Modern Physics Letters B, 2006. 20(20): p. 1217-1231.; Schienbein, M., K. Franke, and H. Gruler, Random walk and directed movement: Comparison between inert particles and self-organized molecular machines. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1994. 49(6): p. 5462-5471.; Mombach, J.C. and J.A. Glazier, Single cell motion in aggregates of embryonic cells. Physical review letters, 1996. 76(16): p. 3032-3035.; Graner, F. and J.A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model. Physical review letters, 1992. 69(13): p. 2013-2016.; Glazier, J.A., A. Balter, and N.J. Poplawski, Magnetization to Morphogenesis: A Brief History of the Glazier-Graner Hogeweg Model, in Singl-Cell-Based Models in Biology and Medicine, M.A.J.C. A.R.A. Anderson, K.A. Rejniak, Editor. 2007, Mathematics and Biosciences in Interaction: Birkhäuser Verlag Basel / Switzerland. p. 79-106.; Cickovski, T., et al., A Framework for Three-Dimensional Simulation of Morphogenesis. IEEE/ACM transactions on computational biology and bioinformatics, 2005. 2: p. 273-88.; Merks, R.M.H. and P. Koolwijk, Modeling Morphogenesis in silico and in vitro: Towards Quantitative, Predictive, Cell-based Modeling. Mathematical Modelling of Natural Phenomena, 2009. 4(4): p. 149-171; Hester, S.D., et al., A multi-cell, multi-scale model of vertebrate segmentation and somite formation. PLoS computational biology, 2011. 7(10): p. e1002155.; Rowlinson, J.S., Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density”. Journal of Statistical Physics, 1979. 20(2): p. 197-200.; Yang, X., V. Mironov, and Q. Wang, Modeling fusion of cellular aggregates in biofabrication using phase field theories. Journal of theoretical biology, 2012. 303: p. 110-8.; Yang, X., Y. Sun, and Q. Wang, A phase field approach for multicellular aggregate fusion in biofabrication. Journal of biomechanical engineering, 2013. 135(7): p. 71005.; Flory, P.J., Principles of Polymer Chemistry. 1953, Ithaca, N.Y.: Cornell University Press.; Qin, R.S. and H.K. Bhadeshia, Phase field method. Materials Science and Technology, 2010. 26(7): p. 803-811.; Aland, S., Modelling of two-phase flow with surface active particles, in Der Fakultät Mathematik und Naturwissenschaften. 2012, Technischen Universität Dresden. p. 127.; Chen, L.-Q., Phase-Field Models for Microstructure Evolution. Annual Review of Materials Research, 2002. 32(1): p. 113-140.; Folch, R., et al., Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1999. 60(2 Pt B): p. 1724-33.; Cahn, J.W. and J.E. Hilliard, Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics, 1958. 28(2): p. 258-267. Bibliografía 227; Cahn, J.W. and J.E. Hilliard, Free Energy of a Nonuniform System. III. Nucleation in a Two‐ Component Incompressible Fluid. The Journal of Chemical Physics, 1959. 31(3): p. 688-699.; Lervåg, K.Y. and J. Lowengrub, Analysis of the diffuse-domain method for solving PDEs in complex geometries. Communications in mathematical sciences, 2015. 13: p. 1473.; Ibrahimi, O.A., et al., Analysis of mutations in fibroblast growth factor (FGF) and a pathogenic mutation in FGF receptor (FGFR) provides direct evidence for the symmetric two-end model for FGFR dimerization. Molecular and cellular biology, 2005. 25(2): p. 671-84.; Francavilla, C., et al., Functional Proteomics Defines the Molecular Switch Underlying FGF Receptor Trafficking and Cellular Outputs. Molecular Cell, 2013. 51(6): p. 707-722.; Donea, J., et al., Arbitrary Lagrangian–Eulerian Methods, in Encyclopedia of Computational Mechanics. 2004.; Iber, D., et al., Simulating tissue morphogenesis and signaling. Methods in molecular biology, 2015. 1189: p. 323-38.; Kockelkoren, J., H. Levine, and W.-J. Rappel, Computational approach for modeling intra- and extracellular dynamics. Physical Review E, 2003. 68(3): p. 037702.; Kurics, T., D. Menshykau, and D. Iber, Feedback, receptor clustering, and receptor restriction to single cells yield large Turing spaces for ligand-receptor-based Turing models. Physical Review E, 2014. 90(2): p. 022716.; Palsson, E. and H.G. Othmer, A model for individual and collective cell movement in Dictyostelium-discoideum. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(19): p. 10448-10453.; Dallon, J.C. and H.G. Othmer, How cellular movement determines the collective force generated by the Dictyostelium discoideum slug. Journal of theoretical biology, 2004. 231(2): p. 203-22.; Walker, D.C., et al., The epitheliome: agent-based modelling of the social behaviour of cells. Biosystems, 2004. 76(1-3): p. 89-100.; Drasdo, D. and S. Hoehme, A single-cell-based model of tumor growth in vitro: Monolayers and spheroids. Physical biology, 2005. 2: p. 133-47.; Chu, Y.S., et al., Johnson-Kendall-Roberts theory applied to living cells. Physical review letters, 2005. 94(2): p. 028102.; Hoehme, S. and D. Drasdo, A cell-based simulation software for multi-cellular systems. Bioinformatics, 2010. 26(20): p. 2641-2.; Hoehme, S., et al., Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(23): p. 10371-6.; Hoffmann, M., et al., Spatial Organization of Mesenchymal Stem Cells In Vitro—Results from a New Individual Cell-Based Model with Podia. PLOS ONE, 2011. 6(7): p. e21960.; Newman, T.J., Modeling Multicellular Systems Using Subcellular Elements. Mathematical Biosciences & Engineering, 2005. 2(3): p. 613-624.; Zaman, M.H., et al., Computational model for cell migration in three-dimensional matrices. Biophysical journal, 2005. 89(2): p. 1389-97.; Flenner, E., et al., Relating biophysical properties across scales, in Current Topics in Developmental Biology. 2008. p. 461-83.; Sandersius, S.A. and T.J. Newman, Modeling cell rheology with the Subcellular Element Model. Physical biology, 2008. 5(1): p. 015002.; Kosztin, I., G. Vunjak-Novakovic, and G. Forgacs, Colloquium: Modeling the dynamics of multicellular systems: Application to tissue engineering. Reviews of Modern Physics, 2012. 84(4): p. 1791-1805.; 259. Chaikin, P.M., Principles of Condensed Matter Physics. 2000: Cambridge University Press.; Alberts, B., et al., Molecular Biology of the Cell. 2002, New York: Garland Science.; Pathmanathan, P., et al., A computational study of discrete mechanical tissue models. Physical Biology, 2009. 6(3): p. 036001.; Phillips, J.C., et al., Scalable molecular dynamics with NAMD. Journal of computational chemistry, 2005. 26(16): p. 1781-802.; Shafiee, A., et al., Post-deposition bioink self-assembly: a quantitative study. Biofabrication, 2015. 7(4): p. 045005.; Cristea, A. and A. Neagu, Shape changes of bioprinted tissue constructs simulated by the Lattice Boltzmann method. Computers in biology and medicine, 2016. 70: p. 80-87.; Silva, H.S. and M.L. Martins, A cellular automata model for cell differentiation. Physica A: Statistical Mechanics and its Applications, 2003. 322: p. 555-566.; Garijo, N., et al., Stochastic cellular automata model of cell migration, proliferation and differentiation: Validation with in vitro cultures of muscle satellite cells. Journal of Theoretical Biology, 2012. 314: p. 1-9.; Van Scoy, G.K., et al., A cellular automata model of bone formation. Mathematical Biosciences, 2017. 286: p. 58-64.; Ben Youssef, B., Simulating Cell-Cell Interactions Using a Multicellular Three-Dimensional Computational Model of Tissue Growth. 2018. p. 215-228.; Sipahi, R. and G.K.H. Zupanc, Stochastic cellular automata model of neurosphere growth: Roles of proliferative potential, contact inhibition, cell death, and phagocytosis. Journal of Theoretical Biology, 2018. 445: p. 151-165.; Zupanc, G.K.H., F.B. Zupanc, and R. Sipahi, Stochastic cellular automata model of tumorous neurosphere growth: Roles of developmental maturity and cell death. Journal of Theoretical Biology, 2019. 467: p. 100-110.; Beros, A., M. Chyba, and K. Noe, Co-evolving cellular automata for morphogenesis. Discrete & Continuous Dynamical Systems - B, 2019. 24(5): p. 2053-2071.; Brodland, G.W. and J.H. Veldhuis, Assessing the mechanical energy costs of various tissue reshaping mechanisms. Biomech Model Mechanobiol, 2012. 11(8): p. 1137-47.; Steinberg, M.S., Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science, 1963. 141(3579): p. 401-8.; Brodland, G.W. and H.H. Chen, The mechanics of heterotypic cell aggregates: insights from computer simulations. J Biomech Eng, 2000. 122(4): p. 402-7.; Hwang, M., et al., Rule-Based Simulation of Multi-Cellular Biological Systems-A Review of Modeling Techniques. Cellular and molecular bioengineering, 2009. 2(3): p. 285-294.; Rezende, R.A., et al., Organ Printing as an Information Technology. Procedia Engineering, 2015. 110: p. 151-158.; Cohen, D.L., et al., Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng, 2006. 12(5): p. 1325-35.; Chang, R., J. Nam, and W. Sun, Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng Part C Methods, 2008. 14(2): p. 157-66.; Hopp, B., et al., Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng, 2005. 11(11-12): p. 1817-23. Bibliografía 229; Mironov, V., V. Kasyanov, and R.R. Markwald, Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol, 2011. 22(5): p. 667-73.; Xu, F., et al., A three-dimensional in vitro ovarian cancer coculture model using a highthroughput cell patterning platform. Biotechnol J, 2011. 6(2): p. 204-212.; Jiang, T., et al., Directing the Self-assembly of Tumour Spheroids by Bioprinting Cellular Heterogeneous Models within Alginate/Gelatin Hydrogels. Scientific Reports, 2017. 7(1): p. 4575.; Lind, J.U., et al., Instrumented cardiac microphysiological devices via multimaterial threedimensional printing. 2017. 16(3): p. 303-308.; Koti, P., et al., Use of GelMA for 3D printing of cardiac myocytes and fibroblasts. Journal of 3D printing in medicine, 2019. 3(1): p. 11-22.; Klebe, R.J., Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res, 1988. 179(2): p. 362-73.; Nakamura, M., et al., Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng, 2005. 11(11-12): p. 1658-66.; Cui, X., et al., Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul, 2012. 6(2): p. 149-55.; Okamoto, T., T. Suzuki, and N. Yamamoto, Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol, 2000. 18(4): p. 438-41.; Matsusaki, M., et al., Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing. Adv Healthc Mater, 2013. 2(4): p. 534-9.; Lee, V., et al., Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods, 2014. 20(6): p. 473-84.; Ringeisen, B.R., et al., Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng, 2004. 10(3-4): p. 483-91.; Gruene, M., et al., Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods, 2011. 17(1): p. 79-87.; Guillemot, F., et al., High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomaterialia, 2010. 6(7): p. 2494-2500.; Ali, M., et al., Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication, 2014. 6(4): p. 045001.; Stavans, J. and J.A. Glazier, Soap froth revisited: Dynamic scaling in the two-dimensional froth. Phys Rev Lett, 1989. 62(11): p. 1318-1321.; Glazier, J.A. and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1993. 47(3): p. 2128-2154.; Amar, J.G., The Monte Carlo Method in Science and Engineering. Computing in Science and Engg., 2006. 8(2): p. 9–19.; Steinberg, M.S., On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the organization of fused, heteronomic tissue fragments. Proc Natl Acad Sci U S A, 1962. 48(10): p. 1769-76.; Steinberg, M.S., Differential adhesion in morphogenesis: a modern view. Curr Opin Genet Dev, 2007. 17(4): p. 281-6.; Domansky, K., et al., Perfused multiwell plate for 3D liver tissue engineering. Lab Chip, 2010. 10(1): p. 51-8. 230 Título de la tesis o trabajo de investigación; Cickovski, T.M., et al., A framework for three-dimensional simulation of morphogenesis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2005. 2(4): p. 273-288.; Merks, R.M.H. and P. Koolwijk, Modeling Morphogenesis in silico and in vitro: Towards Quantitative, Predictive, Cell-based Modeling. Math. Model. Nat. Phenom., 2009. 4(4): p. 149- 171.; R. Chaturvedi, C.H., J. A. Izaguirre, S. A. Newman, J. A. Glazier, M. Alber, A Hybrid Discrete- Continuum Model for 3-D Skeletogenesis of the Vertebrate Limb. International Conference on Cellular Automata, 2004: p. 543-552.; Nicholas J.Savill, P., Modelling Morphogenesis: From Single Cells to Crawling Slugs. Journal of Theoretical Biology, 1997. 184(3): p. 229 - 235.; Galle, J., et al., Individual cell-based models of tumor-environment interactions: Multiple effects of CD97 on tumor invasion. Am J Pathol, 2006. 169(5): p. 1802-11.; Jakab, K., et al., Relating cell and tissue mechanics: implications and applications. Dev Dyn, 2008. 237(9): p. 2438-49.; Jakab, K., et al., Organ printing: fiction or science. Biorheology, 2004. 41(3-4): p. 371-5.; Yang, X., V. Mironov, and Q. Wang, Modeling fusion of cellular aggregates in biofabrication using phase field theories. J Theor Biol, 2012. 303: p. 110-8.; Voter, A.F. INTRODUCTION TO THE KINETIC MONTE CARLO METHOD. 2007. Dordrecht: Springer Netherlands.; Glazier James A, A.B.a.N.J.P., Magnetization to Morphogenesis: A Brief History of the Glazier- Graner Hogeweg Model, in Singl-Cell-Based Models in Biology and Medicine, M.A.J.C. A.R.A. Anderson, K.A. Rejniak, Editor. 2007, Mathematics and Biosciences in Interaction: Birkhäuser Verlag Basel / Switzerland. p. 79-106.; Steinberg, M.S., Adhesion in development: an historical overview. Dev Biol, 1996. 180(2): p. 377-88.; Chatterjee, A. and D.G. Vlachos, An overview of spatial microscopic and accelerated kinetic Monte Carlo methods. Journal of Computer-Aided Materials Design, 2007. 14(2): p. 253-308.; Folch, R., et al., Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1999. 60(2 Pt B): p. 1724-33.; Yang, X., Y. Sun, and Q. Wang, A phase field approach for multicellular aggregate fusion in biofabrication. J Biomech Eng, 2013. 135(7): p. 71005.; Cristea, A. and A. Neagu, Shape changes of bioprinted tissue constructs simulated by the Lattice Boltzmann method. Comput Biol Med, 2016. 70: p. 80-87.; Norris, J.R., Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. 1997, Cambridge: Cambridge University Press.; Feller, W., An Introduction to Probability Theory and Its Applications. Vol. 1. 1966.; Blue, J.L., I. Beichl, and F. Sullivan, Faster Monte Carlo simulations. Physical Review E, 1995. 51(2): p. R867-R868.; Rahman, T., et al., Atomistic studies of thin film growth. Optical Science and Technology, the SPIE 49th Annual Meeting. Vol. 5509. 2004: SPIE.; Trushin, O., et al., Self-learning kinetic Monte Carlo method: Application to Cu(111). Physical Review B, 2005. 72(11): p. 115401.; Foty, R.A., et al., Liquid properties of embryonic tissues: Measurement of interfacial tensions. Phys Rev Lett, 1994. 72(14): p. 2298-2301.; Freutel, M., et al., Finite element modeling of soft tissues: Material models, tissue interaction and challenges. Clinical Biomechanics, 2014. 29(4): p. 363-372. Bibliografía 231; Marmottant, P., et al., The role of fluctuations and stress on the effective viscosity of cell aggregates. Proceedings of the National Academy of Sciences, 2009. 106(41): p. 17271-17275.; Schienbein, M., K. Franke, and H. Gruler, Random walk and directed movement: Comparison between inert particles and self-organized molecular machines. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1994. 49(6): p. 5462-5471.; Kipper, M.J., H.K. Kleinman, and F.W. Wang, New method for modeling connective-tissue cell migration: improved accuracy on motility parameters. Biophys J, 2007. 93(5): p. 1797-808.; Mombach, J.C. and J.A. Glazier, Single cell motion in aggregates of embryonic cells. Phys Rev Lett, 1996. 76(16): p. 3032-3035.; Flenner, E., et al., Relating biophysical properties across scales. Curr Top Dev Biol, 2008. 81: p. 461-83.; Thomas, W.A. and J. Yancey, Can retinal adhesion mechanisms determine cell-sorting patterns: a test of the differential adhesion hypothesis. Development, 1988. 103(1): p. 37-48.; Frenkel, J., Viscous flow of crystalline bodies under the action of surface tension. The Journal of Physics, USSR, 1945. 9: p. 385-391.; J, D., Eshelby, Trans. AIME, 1949(185).; Ma, X., et al., 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev, 2018. 132: p. 235-251.; An, J., C.K. Chua, and V. Mironov, A Perspective on 4D Bioprinting. International Journal of Bioprinting; Vol 2, No 1 (2016), 2016.; Nogueira JA., L.a., Marques TS., Oliveira DS., Mironov V., da Silva and R.R. JV., Simulation of a 3D Bioprinted Human Vascular Segment, in 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering, J.K.H.a.R.G. Krist V. Gernaey, Editor. 2015, Elsevier B.V.: Copenhagen, Denmark. p. 684-688; Iber, D., et al., Simulating tissue morphogenesis and signaling. Methods Mol Biol, 2015. 1189: p. 323-38.; Douglas Brown, R.H., and Wolfgang Christian, Tracker Video Analysis and Modeling Tool. October, 2020.; Inc., T.M., Matlab. 2017.; Han, Y., et al., Cultivation of recombinant Chinese hamster ovary cells grown as suspended aggregates in stirred vessels. J Biosci Bioeng, 2006. 102(5): p. 430-5.; Pan, X., et al., Metabolic characterization of a CHO cell size increase phase in fed-batch cultures. Applied microbiology and biotechnology, 2017. 101(22): p. 8101-8113.; https://repositorio.unal.edu.co/handle/unal/82216; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  2. 2

    Geografické téma: Colombia, UNAB Campus Bucaramanga

    Popis souboru: application/pdf

    Relation: [1] United Nations, “La población mundial sigue en aumento, aunque sea cada vez más vieja %7C Noticias ONU,” Jun. 17, 2019. https://news.un.org/es/story/2019/06/1457891 (accessed Mar. 25, 2020).; [2] Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, “Agricultura mundial: Hacia los años 2015/2030,” 2015, [Online]. Available: http://www.fao.org/3/y3557s/y3557s03.htm; [3] V. Ricciardi, N. Ramankutty, Z. Mehrabi, L. Jarvis, and B. Chookolingo, “How much of the world’s food do smallholders produce?,” Glob. Food Sec., vol. 17, no. January, pp. 64–72, 2018, doi:10.1016/j.gfs.2018.05.002.; [4] Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, “The impact of disasters on agriculture,” p. 28, 2017.; [5] Government of Canada, “Causes of climate change - Canada.ca,” Mar. 28, 2019.https://www.canada.ca/en/environment-climatechange/services/climate-change/causes.html (accessed Mar. 25, 2020).; [6] K. Amadeo, “Heat Waves and Their Effect on the Economy,” Aug. 13, 2019. https://www.thebalance.com/heat-wave-causes-list-effect-on-the-economy4173881 (accessed Mar. 25, 2020).; [7] D. Carrington, N. , Kommenda, P. Gutiérrez, and C. Levett, “One football pitch of forest lost every second in 2017, data reveals %7C Environment %7C The Guardian,” Jun. 27, 2018. https://www.theguardian.com/environment/nginteractive/2018/jun/27/one-football-pitch-of-forest-lost-every-second-in2017-data-reveals (accessed Mar. 25, 2020).; [8] World Metereological Organization, “Climate change and desertifi cation,” p. 4, 2007; [9] Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, “FAO: Agricultura comercial generó casi el 70 % de la deforestación en América Latina %7C FAO,” Jul. 18, 2016. http://www.fao.org/americas/noticias/ver/es/c/425614/ (accessed Mar. 25, 2020).; [10] Mongabay Latam, “La ganadería extensiva está acabando con los bosques en Colombia,” El Espectador, Jan. 26, 2017. https://blogs.elespectador.com/medio-ambiente/mongabay-latam/laganaderia-extensiva-esta-acabando-los-bosques-colombia (accessed Mar. 25, 2020).; [11] CÁMARA DE COMERCIO DE BUCARAMANGA, “Cámara de Comercio de Bucaramanga - [ Blog - En Santander más de 500 mil hectáreas son destinadas a la agricultura ],” Apr. 26, 2018. https://www.camaradirecta.com/noticias//en-santander-mas-de-500-milhectareas-son-destinadas-a-la-agricultura/ (accessed Mar. 25, 2020).; [12] R. Bongiovanni, E. Chartuni, S. Best, and Á. Roel, Agricultura de Presición: Integrando Conocimentos para una Agricultura Moderna y Sustentable, vol. 10. 2006; [13] Banco Mundial, “La innovación agrícola y la tecnología son la clave para reducir la pobreza en los países en desarrollo, según un informe del Banco Mundial,” Sep. 16, 2019. https://www.bancomundial.org/es/news/pressrelease/2019/09/16/agricultural-innovation-technology-hold-key-to-povertyreduction-in-developing-countries-says-world-bank-report (accessed Mar. 25, 2020).; [14] Portafolio, “La apuesta para convertir a Colombia en una de las despensas del mundo %7C Economía %7C Portafolio,” Jun. 08, 2019. https://www.portafolio.co/economia/la-apuesta-para-convertir-a-colombia-enuna-de-las-despensas-del-mundo-530405 (accessed Mar. 25, 2020).; [15] Tepro Consultores, “La agricultura intensiva podría ser la solución al reto alimentario,” 2018. https://tepro.es/la-agricultura-intensiva-podria-ser-lasolucion-al-reto-alimentario/ (accessed Mar. 10, 2020).; [16] Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, The impact of disasters on agriculture and food security. 2017; [17] Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, “La seguridad alimentaria futura del mundo peligra debido a múltiples desafíos,” 2017. http://www.fao.org/news/story/es/item/471772/icode/.; [18] Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, “Nueva enfermedad por coronavirus (COVID-19). Preguntas frecuentes: pandemia del COVID-19, su impacto en la alimentación y la agricultura,” 2020. http://www.fao.org/2019-ncov/q-and-a/impact-on-food-and-agriculture/es/ (accessed May 01, 2020).; [19] J. Didier Ruiz, “Academia comprometida con el agro desde la investigación,” 2018. https://www.agronegocios.co/analisis/john-didier-ruiz2706349/academia-comprometida-con-el-agro-desde-la-investigacion2706324 (accessed Mar. 25, 2020).; [20] J. F. Naomi, R. A. Theepavishal, K. . Madhuaravindh, and V. Tharuneshwar, “A soil quality analysis and an efficient irrigation system using agro-sensors,” Int. J. Eng. Adv. Technol., vol. 8, no. 5, pp. 703–706, 2019; [21] J. A. Castillo F and E. Amézquita C., “Erosión hídrica y degradación de suelos en laderas andinas,” Rev. Tec. científica la Esc. Nac. ciencias For., vol. 20, 2008; [22] Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, “Buenas prácticas en la FAO: Sistematización de experiencias para el aprendizaje continuo,” Organ. las Nac. Unidas para la Aliment. y la Agric. FAO, vol. 13, pp. 1–12, 2013, [Online]. Available: http://www.fao.org/docrep/018/ap784s/ap784s.pdf%0Ahttp://www.hhv.gob.pe /estadistica/2013/cext_anual_2013.pdf.; [23] H. Sumnall, “Get Ready For Connected . Cattle?,” ABI Research, May 24, 2019. https://www.abiresearch.com/blogs/2019/05/24/get-ready-connectedcattle/ (accessed May 06, 2020).; [24] Cenicafe, “La acidez del suelo, una limitante común para la producción de café,” Av. Técnicos Cenicafé, vol. 466, no. 12, pp. 1–12, 2016, doi: 0120-0178; [25] GLOBE, “Protocolo de Temperatura del Suelo,” Suelo, pp. 1–17, 2005.; [26] B. Sanou and S. Grindeanu, “GSR-18 BEST PRACTICE GUIDELINES ON NEW REGULATORY FRONTIERS TO ACHIEVE DIGITAL TRANSFORMATION,” ITU (International Telecommun. Union), pp. 1–8, 2018, [Online]. Available: https://www.itu.int/net4/ITUD/CDS/GSR/2018/documents/Guidelines/GSR-18_BPG_Final-E.PDF; [27] A. A. L. O. S. P. Rurales, “Alcanzando a los pobres rurales,” World Bank, p. 36, 2001, [Online]. Available: http://documents.worldbank.org/curated/en/890441468764052052/pdf/30411 0SPANISH01ary01see0also0267631.pdf.; [28] W. B. Group, “Internet of things: The New Government to Business Platform: A REVIEW OF OPPORTUNITIES, PRACTICES, AND CHALLENGES,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7768 LNCS, pp. 257–282, 2017, doi:10.1007/978-3-64241569-2-13; [29] OECD, “The Internet of Things - Seizing the Benefits and Addressing the Challenges,” OECD Digit. Econ. Pap., no. 252, pp. 4–11, 2016, [Online]. Available: http://search.proquest.com/docview/1797548811?accountid=8144%5Cnhttp: //sfx.aub.aau.dk/sfxaub?url_ver=Z39.882004&rft_val_fmt=info:ofi/fmt:kev:mtx:book&genre=unknown&sid=ProQ:ABI %2FINFORM+Global&atitle=&title=THE+INTERNET+OF+THINGS+SEIZING +THE+BENEFITS+AND; [30] Consultora de Transformación Digital - INCIPY, “Internet of things (IoT) en la transformación digital de las empresas,” 2015; [31] Internet Society, “La internet de las cosas - Una breve reseña,” 2015; [32] Canneye Docs, “Getting Started.” https://developers.mydevices.com/cayenne/docs/getting-started/ (accessed Apr. 14, 2020).; [33] Electronilab, “Electronilab Store,” 2020.; [34] Rapsberry PI Foundation, “About Us,” 2020. https://www.raspberrypi.org/about/ (accessed Apr. 14, 2020).; [35] R. Asenjo, S. González, F. Corbera, and Á. Navarro, “La plataforma Raspberry Pi como base para la coordinación vertical,” 2017.; [36] M. M. Macías, C. J. G. Orellana, H. M. G. Velasco, and A. G. Manso, “La plataforma MBED para la enseñanza de la electrónica aplicada al diseño de productos,” XI Congr. Tecnol. Aprendiz. y Enseñanza la Electrónica, 2014; [37] Canneye Docs, “Cayenne MQTT API,” 2020. https://developers.mydevices.com/cayenne/docs/cayenne-mqtt-api/.; [38] X. Mi and X. Wang, “An Empirical Characterization of IFTTT : Ecosystem, Usage, and Performance,” 2017, doi:10.1145/3131365.3131369; [39] Blynk, “Blynk,” 2020. https://blynk.io; [40] V. Shymanskyy, “Supported Hardware,” 2019. https://github.com/blynkkk/blynkkk.github.io/blob/master/SupportedHardware .md; [41] FIWOO, “FIWOO, la plataforma IoT basada en FIWARE,” 2019. https://www.fiwoo.eu/.; [42] FIWOO, “Conecta tus datos. FIWOO: El cerebro de tu organización,” 2019. https://www.fiwoo.eu/caracteristicas-tecnicas; [43] Node-RED, “Node-RED,” 2020. https://nodered.org/ (accessed May 02, 2020).; [44] Agricultures, “Sensores en tiempo real,” 2019. https://agriculturers.com/sensores-en-tiempo-real/.; [45] Canal Comstor, “6 tipos de sensores para aplicación en la internet de las cosas,” 2017. https://blogmexico.comstor.com/6-tipos-de-sensores-paraaplicacion-en-la-internet-de-las-cosas.; [46] PRISMAB, “Sensores de suelo para agricultura de precisión,” 2019. https://prismab.com/sensores-de-suelo-para-agricultura-de-precision/ (accessed Apr. 28, 2020).; [47] MisterComapardor, “Tipos de Internet: conoce todos las redes que existen,” Jan. 21, 2019. https://www.mistercomparador.com/noticias/tipos-deconexion-a-internet/ (accessed Nov. 13, 2020).; [48] A. D. Alcudia León, “Descripción general de ADSL,” Universidad de las Américas Puebla - UDLAP, 2005; [49] Cables y Componentes para Comunicaciones S.L., “Fibra óptica: Diferentes tipos y aplicaciones.,” Bogotá, Colombia, 2019.; [50] S. Juliá, “Ventajas de la fibra óptica sobre el cable de cobre,” Gadae Netweb, 2019. https://www.gadae.com/blog/ventajas-de-la-fibra-optica-sobre-el-cablede-cobre; [51] Comisión de Regulación de Comunicaciones - CRC, “Redes Móviles en Colombia,” Bogotá, Colombia, 2019.; [52] A. Lamelas Torrijos, “¿Qué es WiMAX? ¿Cómo funciona WiMAX?,” pp. 1–15, 2006, [Online]. Available: https://www.dipbadajoz.es/agenda/tablon/jornadaWIFI/doc/tecnologias_wifi_wmax.pdf.; [53] A. Carmona, “Planificación mediante Atoll de Red WiMAX móvil para los centros de la Universidad de Sevilla,” 2008, [Online]. Available: http://bibing.us.es/proyectos/abreproy/11677/fichero/Volumen+1%252F3.WiMAX.pdf; [54] J. Pianchiche Añapa, “Internet de alta velocidad para comunidades rurales,” Universidad San Francisco de Quito, 2016.; [55] J. C. Gonzalez Islas, “Comunicación vía Internet sobre la Plataforma satelital,” Universidad Autónoma del Estado de Hidalgo, 2006.; [56] D. López Aznar, J. Caraballo, and J. S. Artal-Sevil, “Desarrollo de una Aplicación Wireless basada en Tecnología Bluetooth .,” 2010; [57] Zigbee Alliance, “Sobre Nosotros. El abanderado del open IoT,” 2020. https://zigbeealliance.org/es/sobre-nosotros; [58] Zigbee Alliance, “Zigbee: La solución full-stack que entrelaza todos sus dispositivos inteligentes.,” 2020, [Online]. Available: https://zigbeealliance.org/es/solución/Zigbeeb; [59] Universidad Nacional Autónoma de México - UNAM, “CAPÍTULO 3: ESTÁNDAR IEEE 802.15.4 ‘REDES ZIGBEE,’” Ciudad de México (MX).; [60] J. C. Triana Useche and R. E. Rodriguez Leguizamo, “Prototipo de solución IoT con tecnología ‘LoRa’ en monitoreo de cultivos agrícolas.,” Universidad Francisco José de Caldas, 2018; [61] A. Torres and J. C. Ponces, “Inteligencia Artificial,” Iniciat. Latinoam. Libr. Texto Abiertos, no. March, 2014, doi:10.13140/2.1.3720.0960; [62] L. J. Sandoval, “Algoritmos de aprendizaje automático para análisis y predicción de datos,” Repositorio Digital de Ciencia y Cultura de El Salvador - REDICCES, San Salvador (SV), pp. 36–40, 2018; [63] F. Parra, “Estadística y Machine Learning con R,” BOOKDOWN., 2019.; [64] G. Julián, “Las redes neuronales: qué son y por qué están volviendo,” 2016. https://www.xataka.com/robotica-e-ia/las-redes-neuronales-que-son-y-porque-estan-volviendo.; [65] B. M. Åkesson and H. T. Toivonen, “A neural network model predictive controller,” J. Process Control, vol. 16, no. 9, pp. 937–946, 2006, doi:10.1016/j.jprocont.2006.06.001.; [66] O. Ramiro, M. Segura, and M. Villalba, “Predicción del tráfico de una red inalámbrica basada en redes neuronales artificiales mediante el algoritmode Levenberg-Marquardt,” Desarro. e innovación en Ing., vol. 4, pp. 27–36, 2019, [Online]. Available: https://www.researchgate.net/profile/Edgar_Serna_M/publication/339177129 _Desarrollo_e_innovacion_en_ingenieria_4_ed/links/5e42a2f4458515072d9 1c468/Desarrollo-e-innovacion-en-ingenieria-4-ed.pdf#page=30.; [67] J. Hernandez and J. Rodriguez, “Algoritmos de Retropropagación con restricciones para la estimación de parámetros de curvas de titulación,” Cienc. e Ing., vol. 39, no. 1, pp. 13–26, 2018; [68] P. A. Blanco, “Algoritmo de Retropropagación,” 2014.; [69] C. Hernández Herrero, “Aplicación de Técnicas de Web Scraping al Boletín Oficial de Castilla y León (BOCyL),” Universidad de Valladolid, 2014; [70] N. Villaverde Medina, “Nuevas técnicas estadísticas: Text Mining en Web,” Universidade Da Coruña, 2017.; [71] J. Callejo González, “Herramienta de Text Mining aplicado a textos cortos y redes sociales,” Universidad de Cantábira, 2016; [72] Global Plan Santander, “GPS %7C Global Plan Santander.” https://www.globalplansantander.com/ (accessed Nov. 18, 2020).; [73] National Geographic, “10 datos que debes saber sobre el café.” https://www.ngenespanol.com/gastronomia/10-datos-que-debes-sabersobre-el-cafe/ (accessed Nov. 18, 2020).; [74] Federación Nacional de Cafeteros, “Café de Santander.” https://santander.federaciondecafeteros.org/cafe-de-santander/ (accessed Nov. 18, 2020).; [75] Federación Nacional de cafeteros - Fedecafe, “Descripción del proceso productivo y del beneficio del café. Guía tecnológica del cultivo.,” Guía Ambient. para el Sect. Cafe., pp. 51–80, 2006, [Online]. Available: https://www.federaciondecafeteros.org/static/files/8Capitulo6.pdf; [76] EcuRed, “Cacao.” https://www.ecured.cu/Cacao#Caracter.C3.ADsticas_generales (accessed Nov. 18, 2020).; [77] Vanguardia Liberal, “Cacao de Santander, sigue destacándose en producción y sabor .” https://www.vanguardia.com/economia/local/cacao-de-santandersigue-destacandose-en-produccion-y-sabor-YM1619504 (accessed Nov. 18, 2020).; [78] X. González, “‘TENEMOS 176.050 HECTÁREAS SEMBRADAS DE CACAO’, PRESIDENTE DE FEDECACAO,” AgroNegocios, 2019. https://www.agronegocios.co/agricultura/tenemos-176050-hectareassembradas-de-cacao-eduard-baquero-lopez-presidente-ejecutivo-defedecacao-2923404.; [79] Federación Nacional De Cacaoteros - Fedecacao, “Guía ambiental para el cultivo del cacao,” pp. 1–126, 2013.; [80] X. González, “‘TENEMOS 176.050 HECTÁREAS SEMBRADAS DE CACAO’, PRESIDENTE DE FEDECACAO,” AgroNegocios, 2019; [81] EcuRed, “Limón Tahití.” https://www.ecured.cu/Limón_Tahití#Descripci.C3.B3n (accessed Nov. 18, 2020).; [82] C. P. Ardila Jaimes, L. K. Prieto López, and M. J. Rodríguez Galeano, “Cosecha de Limón Tahití (Citrus Latifolia Tanaka),” 2018.; [83] X. González, “Santander, principal productor de limón tahití del país con 83% de participación,” AgroNegocios, 2018. https://www.agronegocios.co/agricultura/santander-principal-productor-delimon-tahiti-del-pais-con-83-de-participacion-2773458. [b; [84] Negocios Pyme, “El arte de cultivar limón tahití.” [Online]. Available: https://www.grupobancolombia.com/wps/wcm/connect/562d575b-9b624648-ae92-3471e355b166/el-arte-de-cultivar-limóntahití.pdf?MOD=AJPERES&CVID=moJG1PV; [85] Departamento Administrativo Nacional de Estadística - DANE, “Cultivo del limón o lima Tahití (Citrus latifolia Tanaka) frente a los efectos de las condiciones climáticas adversas,” 2015. [Online]. Available: https://www.grupobancolombia.com/wps/wcm/connect/f017197a-425a-4b7d8a23-308b7871e4f0/cultivo-limon-condicionesclimaticas.pdf?MOD=AJPERES&CVID=moLXHgk; [86] S. L. Interempresas Media, “Aguacate - Información general,” 2020. https://www.frutas-hortalizas.com/Frutas/Presentacion-Aguacate.html (accessed Nov. 18, 2020).; [87] Vanguardia Liberal, “Santander con tierras aptas para sembrar aguacate hass %7C Vanguardia.com.” https://www.vanguardia.com/economia/local/santandertiene-tierras-aptas-para-sembrar-aguacate-hass-HEvl438438 (accessed Nov. 18, 2020).; [88] W. Granados Pérez and J. C. Valencia Rincón, “Cadena de Aguacate. Indicadores e Instrumentos Generales,” 2018. [Online]. Available: https://imgcdn.larepublica.co/cms/2018/09/26180443/Aguacate.pdf?w=auto.; [89] W. Granados Pérez and J. C. Valencia Rincón, “Cadena de Aguacate. Indicadores e Instrumentos Generales,” 2018; [90] Fondo para el Financiamiento del Sector Agropecuario - FINAGRO, “Ficha de inteligencia Aguacate,” 2018. [Online]. Available: https://www.finagro.com.co/sites/default/files/node/basicpage/files/ficha_aguacate_version_ii.pdf.; [91] E. Mejía Vélez, “Aguacate: Persea americana Miller,” Monografìa de cultivos: Bayer CropScience, p. 10, 2011; [92] C. N. Esguerra Yara and D. Guarín Cardona, “Guía técnica ambiental para la producción de aguacate ‘persea americana’ en sus variedades lorena y choquette bajo un sistema de silvopastoreo en la vereda cerro gordo del municipio de mariquita en el departamento del tolima,” Resultados de búsqueda Resultado web con enlaces de partes del sitio Universidad Distrital Francisco José de Caldas, 2016.; [93] E. Mejía Vélez, “Aguacate: Persea americana Miller,” Monografìa de cultivos: Bayer CropScience, p. 10, 2011; [94] Fondo para el Financiamiento del Sector Agropecuario - FINAGRO, “Ficha de inteligencia Aguacate,” 2018.; [95] J. A. Díaz Arbeláez, “Las 5 claves en el cultivo del aguacate,” Crop Science - Colombia, 2018. https://www.cropscience.bayer.co/Centro-deNoticias/Noticias/2018/09/Cinco-claves-Aguacate.aspx (accessed May 08, 2020).; [96] Lactalis Puleva S.L., “La piña es un fruto tropical rico en potasio y bajo en calorias.” https://www.lechepuleva.es/aprende-a-cuidarte/tu-alimentacion-dela-a-z/p/pina (accessed Nov. 18, 2020).; [97] J. Guillermo Zuluaga, “Producción de piña llegaría a más 950 mil toneladas en 2018, calcula MinAgricultura,” Ministerio de Agricultura y Desarrollo Rural, 2018. https://www.minagricultura.gov.co/noticias/Paginas/Producción-depiña-llegaría-a-más-950-mil-toneladas-en-2018,-calcula-MinAgricultura-.aspx (accessed May 08, 2020).; [98] Gobernación de Santander, “Piña santandereana, ‘sello de calidad’ en los mercados internacionales,” 2019. http://www.santander.gov.co/index.php/actualidad/item/3503-pinasantandereana-sello-de-calidad-en-los-mercados-internacionales (accessed May 08, 2020).; [99] A. García and M. Rodriguez, “Proyecto ‘Colombia, Costa Rica, Nicaragua: Reduciendo el Escurrimiento de Plaguicidas al mar Caribe’ Manual de Buenas Prácticas Agrícolas para la producción de piña en Costa Rica,” 2011. [Online]. Available: (Viceministra de Agricultura).; [100] J. A. Sanchez E, “Manual para la produccion de una piña de calidad,” Manual, vol. 0, no. 0, pp. 2–41, 2012, doi:10.1016/j.arcmed.2011.12.001.; [101] M. Urbina Chavarría, “Manual Técnico: Buenas prácticas para el cultivo de Piña,” 2012.; [102] Oracle, “Protocol Layers and the OSI Model.” https://docs.oracle.com/cd/E19683-01/806-4075/ipov-7/index.html (accessed Nov. 05, 2020).; [103] Cloudflare, “What Is The OSI Model?” https://www.cloudflare.com/learning/ddos/glossary/open-systemsinterconnection-model-osi/ (accessed Nov. 05, 2020).; [104] S. Chaitanya, “Computer Network TCP/IP model.” https://beginnersbook.com/2019/04/computer-network-tcp-ip-model/ (accessed Nov. 09, 2020).; [105] Traxco, “Análisis de suelos para determinar una buena fertilización,” Oct. 16, 2015. https://www.traxco.es/blog/produccion-agricola/analisis-de-suelos (accessed Nov. 05, 2020).; [106] L. M. Rincón Suarez, “Caracterización fisicoquímica de algunos suelos de la zona de los municipios de Villanueva y Barichara – Santander,” vol. 2, no. 5, pp. 1–179, 2010, [Online]. Available: http://tangara.uis.edu.co/biblioweb/tesis/2010/134435.pdf; [107] Departamento Administrativo Nacional de Estadística - DANE, “COLOMBIA - Censo Nacional de Población y Vivienda,” 2018. http://microdatos.dane.gov.co/index.php/catalog/643/study-description (accessed Nov. 09, 2020).; [108] Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, “Portal de Suelos de la FAO.” http://www.fao.org/soils-portal/soilsurvey/clasificacion-de-suelos/sistemas-numericos/propiedades-quimicas/es/ (accessed Nov. 02, 2020).; [109] Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, “CAPÍTULO 2: FACTORES QUE CONDICIONAN LA PRODUCCIÓN.” http://www.fao.org/3/s8630s/s8630s04.htm (accessed Nov. 02, 2020).; [110] J. R. Celestrini, C. A. S. Santos, R. N. Rocha, J. G. Pereira Filho, E. B. Saleme, and R. V. Andreão, “An architecture and its tools for integrating IoT and BPMN in agriculture scenarios,” Proc. ACM Symp. Appl. Comput., vol. Part F1477, pp. 824–831, 2019, doi:10.1145/3297280.3297361; [111] M. Caluva, “¿Qué son los sensores? Sensores Industriales.” https://sites.google.com/site/654sensoresindustriales/home/-quee-son-lossensores (accessed Nov. 02, 2020).; [112] A. Triantafyllou, P. Sarigiannidis, and S. Bibi, “Precision agriculture: A remote sensing monitoring system architecture,” Inf., vol. 10, no. 11, 2019, doi:10.3390/info10110348.; [113] M. S. Farooq, S. Riaz, A. Abid, K. Abid, and M. A. Naeem, “A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming,” IEEE Access, vol. 7, pp. 156237–156271, 2019, doi:10.1109/ACCESS.2019.2949703; [114] M. Abbasi, M. H. Yaghmaee, and F. Rahnama, “Internet of Things in agriculture: A survey,” Proc. 3rd Int. Conf. Internet Things Appl. IoT 2019, pp. 1–12, 2019, doi:10.1109/IICITA.2019.8808839; [115] Arduino, “Arduino - HomePage.” https://www.arduino.cc/en/IoT/HomePage (accessed Nov. 02, 2020).; [116] Arduino Official Store, “Arduino Nano 33 IoT.” https://store.arduino.cc/usa/nano-33-iot (accessed Nov. 09, 2020).; [117] Arduino Official Store, “Arduino MKR FOX 1200 (Europe only).” https://store.arduino.cc/usa/arduino-mkrfox1200 (accessed Nov. 09, 2020).; [118] Arduino Official Store, “Arduino MKR WAN 1300 (LoRa connectivity) .” https://store.arduino.cc/usa/mkr-wan-1300 (accessed Nov. 09, 2020).; [119] Arduino Official Store, “Arduino MKR GSM 1400.” https://store.arduino.cc/usa/mkr-gsm-1400 (accessed Nov. 09, 2020).; [120] Arduino Official Store, “Arduino MKR WiFi 1010.” https://store.arduino.cc/usa/mkr-wifi-1010 (accessed Nov. 09, 2020).; [121] Arduino Official Store, “Arduino MKR NB 1500.” https://store.arduino.cc/usa/arduino-mkr-nb-1500 (accessed Nov. 09, 2020).; [122] Arduino Official Store, “Arduino MKR Vidor 4000.” https://store.arduino.cc/usa/mkr-vidor-4000 (accessed Nov. 09, 2020).; [123] Arduino Official Store, “ARDUINO UNO WiFi REV2.” https://store.arduino.cc/usa/arduino-uno-wifi-rev2 (accessed Nov. 09, 2020).; [124] F. J. Ferrández-Pastor, J. M. García-Chamizo, M. Nieto-Hidalgo, and J. MoraMartínez, “Precision agriculture design method using a distributed computing architecture on internet of things context,” Sensors (Switzerland), vol. 18, no. 6, Jun. 2018, doi:10.3390/s18061731; [125] M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E. H. M. Aggoune, “Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk,” IEEE Access, vol. 7, pp. 129551–129583, 2019, doi:10.1109/ACCESS.2019.2932609.; [126] GeeksforGeeks, “Difference between 32-bit and 64-bit operating systems ,” Oct. 07, 2020. https://www.geeksforgeeks.org/difference-32-bit-64-bitoperating-systems/ (accessed Nov. 06, 2020).; [127] Rapsberry PI Foundation, “Raspberry Pi 4 Model B.” https://www.raspberrypi.org/products/raspberry-pi-4-modelb/?resellerType=home (accessed Nov. 06, 2020).; [128] Rapsberry PI Foundation, “Download Raspberry Pi OS for Raspberry Pi.” https://www.raspberrypi.org/downloads/raspberry-pi-os/ (accessed Nov. 09, 2020).; [129] R. Velasco, “Raspberry Pi OS (Raspbian), Linux optimizado para Raspberry Pi,” SoftZone, May 29, 2020. https://www.softzone.es/programas/linux/raspberry-pi-os/ (accessed Nov. 09, 2020).; [130] OffSec Services Limited, “Official Kali Linux Downloads.” https://www.kali.org/downloads/ (accessed Nov. 09, 2020).; [131] OffSec Services Limited, “Which Image Should I Download? %7C Kali Linux Documentation.” https://www.kali.org/docs/introduction/what-image-todownload/ (accessed Nov. 09, 2020).; [132] J. P. B.C., “Requisitos Mínimos ~ Kali Linux.” https://sisopekalil.blogspot.com/2017/11/requisitos-minimos.html (accessed Nov. 09, 2020); [133] GetMyOS, “Kali Linux 2020.3 (August, 2020) Desktop 32-bit 64-bit ISO Disk Image Download - GetMyOS.Com.” https://www.getmyos.com/kali-linux 148 2020-3-august-2020-desktop-32-bit-64-bit-iso-disk-image-download (accessed Nov. 09, 2020).; [134] Fedora Docs, “Fedora on Raspberry Pi.” https://docs.fedoraproject.org/enUS/quick-docs/raspberry-pi/ (accessed Nov. 09, 2020).; [135] Fedora Docs, “Architectures/ARM/Raspberry Pi.” https://fedoraproject.org/wiki/Architectures/ARM/Raspberry_Pi#Prerequisites (accessed Nov. 09, 2020).; [136] Fedora Docs, “2. Requirements.” https://docs.fedoraproject.org/enUS/Fedora/20/html/Installation_Quick_Start_Guide/Requirements.html (accessed Nov. 09, 2020).; [137] GetMyOS, “Fedora 29 (Oct, 2018) Desktop All Editions (64-bit, Live) ISO Disk Image Free Download .” https://www.getmyos.com/fedora-29-desktop-alleditions (accessed Nov. 09, 2020).; [138] GetMyOS, “Fedora .” https://www.getmyos.com/name/fedora (accessed Nov. 09, 2020).; [139] Microsoft Docs, “Suggested Prototype Boards - Windows IoT.” https://docs.microsoft.com/en-us/windows/iotcore/tutorials/quickstarter/PrototypeBoards (accessed Nov. 09, 2020).; [140] Bytesnap, “Windows 10 IoT Core: what you need to know.” https://www.bytesnap.com/windows-10-iot-core-what-you-need-to-know/# (accessed Nov. 09, 2020).; [141] C. Trum, “Is Windows 10 IoT a Suitable Replacement for Windows Embedded?,” Fierce Electronics, 2016. https://www.fierceelectronics.com/components/windows-10-iot-a-suitablereplacement-for-windows-embedded (accessed Nov. 09, 2020).; [142] Ubuntu Core documentation, “What is Ubuntu Core?” https://core.docs.ubuntu.com/en/guides/intro/what-is-core (accessed Nov. 09, 2020).; [143] Ubuntu Core documentation, “Supported platforms.” https://core.docs.ubuntu.com/en/platforms (accessed Nov. 09, 2020).; [144] Ubuntu Core documentation, “Basic installation.” https://ubuntu.com/server/docs/installation (accessed Nov. 09, 2020).; [145] Community Help Wiki Ubuntu, “Installation/SystemRequirements.” https://help.ubuntu.com/community/Installation/SystemRequirements (accessed Nov. 09, 2020).; [146] RISC OS Open, “Raspberry Pi.” https://www.riscosopen.org/content/downloads/raspberry-pi (accessed Nov. 09, 2020).; [147] Arch Linux ARM, “Arch Linux ARM.” https://archlinuxarm.org/ (accessed Nov. 09, 2020).; [148] BeagleBoard, “BeagleBoard.org Latest Firmware Images.” http://beagleboard.org/latest-images (accessed Nov. 09, 2020).; [149] Debian docs, “3.4. Cumplir los requisitos mínimos de hardware.” https://www.debian.org/releases/jessie/i386/ch03s04.html.es (accessed Nov. 09, 2020).; [150] Oracle, “What Is a Database.” https://www.oracle.com/database/what-isdatabase.html (accessed Nov. 06, 2020).; [151] S. Amghar, S. Cherdal, and S. Mouline, “Which NoSQL database for IoT applications?,” in 2018 International Conference on Selected Topics in Mobile and Wireless Networking, MoWNeT 2018, Aug. 2018, pp. 131–137, doi:10.1109/MoWNet.2018.8428922; [152] E. Mitreva and K. Kaloyanova, “NoSQL Solutions to Handle Big Data,” Proc. Dr. Conf. MIE, no. September 2013, pp. 77–86, 2013; [153] K. Sachs, I. Petrov, and P. Guerrero (Eds.), From Active Data Management to Event-Based Systems and More, vol. 6462. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.; [154] D. A. Pereira, W. Ourique de Morais, and E. Pignaton de Freitas, “NoSQL realtime database performance comparison,” Int. J. Parallel, Emergent Distrib. Syst., vol. 33, no. 2, pp. 144–156, Mar. 2018, doi:10.1080/17445760.2017.1307367.; [155] K. Ramamritham, “Real-time databases,” Distrib. Parallel Databases, vol. 1, no. 2, pp. 199–226, Apr. 1993, doi:10.1007/BF01264051; [156] K. Ahmad, M. S. Alam, and N. I. Udzir, “Security of NoSQL Database Against Intruders,” Recent Patents Eng., vol. 13, no. 1, pp. 5–12, Feb. 2019, doi:10.2174/1872212112666180731114714; [157] S. Li et al., “Geospatial big data handling theory and methods: A review and research challenges,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 115. Elsevier B.V., pp. 119–133, May 01, 2016, doi:10.1016/j.isprsjprs.2015.10.012.; [158] B. Krishnamachari, D. Estrin, and S. Wicker, “The Impact of Data Aggregation in Wireless Sensor Networks,” Jul. 2012. Accessed: Nov. 06, 2020. [Online]. Available: https://www.researchgate.net/publication/2837759_The_Impact_of_Data_Ag gregation_in_Wireless_Sensor_Networks; [159] M. V, “Comparative Study of NoSQL Document, Column Store Databases and Evaluation of Cassandra,” Int. J. Database Manag. Syst., vol. 6, no. 4, pp. 11– 26, Aug. 2014, doi:10.5121/ijdms.2014.6402; [160] E. Tang and Y. Fan, “Performance comparison between five NoSQL databases,” in Proceedings - 2016 7th International Conference on Cloud Computing and Big Data, CCBD 2016, Jul. 2017, pp. 105–109, doi:10.1109/CCBD.2016.030.; [161] Rapsberry Pi Foundation, “Raspberry Pi Zero W.” https://www.raspberrypi.org/products/raspberry-pi-zerow/?resellerType=home (accessed Nov. 09, 2020).; [162] Rapsberry Pi Foundation, “Raspberry Pi 3 Model B.” https://www.raspberrypi.org/products/raspberry-pi-3-modelb/?resellerType=home (accessed Nov. 09, 2020).; [163] Rapsberry Pi Foundation, “Raspberry Pi 3 Model B+.” https://www.raspberrypi.org/products/raspberry-pi-3-model-bplus/?resellerType=home (accessed Nov. 09, 2020).; [164] Rapsberry Pi Foundation, “Raspberry Pi 3 Model A+.” https://www.raspberrypi.org/products/raspberry-pi-3-model-aplus/?resellerType=home (accessed Nov. 09, 2020).; [165] Rapsberry Pi Foundation, “Raspberry Pi 4.” https://www.raspberrypi.org/products/raspberry-pi-4-modelb/?resellerType=home (accessed Nov. 09, 2020).; [166] BeagleBone, “BeagleBoard.org.” https://beagleboard.org/bone (accessed Nov. 09, 2020).; [167] BeagleBone, “SanCloud BeagleBone Enhanced.” https://beagleboard.org/enhanced (accessed Nov. 09, 2020).; [168] BeagleBone, “BeagleBone Black Wireless.” http://beagleboard.org/blackwireless (accessed Nov. 09, 2020).; [169] BeagleBone, “SeeedStudio BeagleBone Green Wireless.” https://beagleboard.org/green-wireless (accessed Nov. 09, 2020).; [170] Raspberry Pi Foundation, “Raspberry Pi Zero.” https://www.raspberrypi.org/products/raspberry-pi-zero/?resellerType=home (accessed Nov. 09, 2020).; [171] Raspberry Pi Foundation, “Raspberry Pi 1 Model A+.” https://www.raspberrypi.org/products/raspberry-pi-1-model-aplus/?resellerType=home (accessed Nov. 09, 2020).; [172] Raspberry Pi Foundation, “Raspberry Pi 1 Model B+.” https://www.raspberrypi.org/products/raspberry-pi-1-model-bplus/?resellerType=home (accessed Nov. 09, 2020).; [173] Raspberry Pi Foundation, “Raspberry Pi 2 Model B.” https://www.raspberrypi.org/products/raspberry-pi-2-modelb/?resellerType=home (accessed Nov. 09, 2020).; [174] BeagleBoard, “PocketBeagle.” http://beagleboard.org/pocket (accessed Nov. 09, 2020).; [175] BeagleBone, “BeagleBone Original.” https://beagleboard.org/bone-original (accessed Nov. 09, 2020).; [176] WhatIs.com, “What is ARM processor?,” Jan. 2015. https://whatis.techtarget.com/definition/ARM-processor (accessed Nov. 08, 2020).; [177] K. Du, Z. Sun, F. Zheng, J. Chu, and J. Ma, “MONITORING SYSTEM FOR WHEAT METEOROLOGICAL DISASTERS USING WIRELESS SENSOR NETWORKS,” in 2017 Spokane, Washington July 16 - July 19, 2017, 2017, pp. 1-, doi:10.13031/aim.201700055.; [178] J. Bauer and N. Aschenbruck, “Design and implementation of an agricultural monitoring system for smart farming,” in 2018 IoT Vertical and Topical Summit on Agriculture - Tuscany, IOT Tuscany 2018, Jun. 2018, pp. 1–6, doi:10.1109/IOT-TUSCANY.2018.8373022.; [179] GSMA, “5G Spectrum GSMA Public Policy Position,” Mar. 2020. Accessed: Nov. 08, 2020. [Online]. Available: https://www.gsma.com/spectrum/wpcontent/uploads/2020/03/5G-Spectrum-Positions.pdf; [180] J. C. Guillermo, A. García-Cedeño, D. Rivas-Lalaleo, M. Huerta, and R. Clotet, 151 “IoT Architecture Based on Wireless Sensor Network Applied to Agricultural Monitoring: A Case of Study of Cacao Crops in Ecuador,” in Advances in Intelligent Systems and Computing, 2019, vol. 893, pp. 42–57, doi:10.1007/978-3-030-04447-3_3.; [181] F. Ferrández-Pastor, J. García-Chamizo, M. Nieto-Hidalgo, J. Mora-Pascual, and J. Mora-Martínez, “Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture,” Sensors, vol. 16, no. 7, p. 1141, Jul. 2016, doi:10.3390/s16071141; [182] AG Electrónica, “Sigfox: La red del IoT .” https://agelectronica.blog/2019/09/18/sigfox-la-red-del-iot/ (accessed Nov. 10, 2020).; [183] X. Muñoz, “Tecnología Sigfox,” DSET ENERGY. http://www.dsetenergy.com/2019/06/05/tecnologia-sigfox/ (accessed Nov. 10, 2020).; [184] R. Irons-Mclean, A. Sabella, and M. Yannuzzi, “IoT and Security Standards and Best Practices,” Orchestrating and Automating Security for the Internet of Things: Delivering Advanced Security Capabilities from Edge to Cloud for IoT, 2019; [185] B. Condori and G. Teodor, “El internet de las cosas IoT,” UNIVERSIDAD NACIONAL DE EDUCACIÓN, Lima, 2019.; [186] S. Ziegler et al., “IoT6 - Moving to an IPv6-based future IoT,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2013, vol. 7858 LNCS, pp. 161–172, doi:10.1007/978-3-642-38082-2_14.; [187] Ministerio de Tecnologías de la Información y las Comunicaciones - TIC, “IPV6.” https://www.mintic.gov.co/portal/inicio/Micrositios/IPV6/ (accessed Nov. 08, 2020).; [188] S. C. Constaín Rengifo, J. Castro Sierra, C. Rozo Bolaños, L. V. Cristancho Cruz; [189] T. Romario Bhattacharyya and D. M. Pushpalatha, “Routing protocols for internet of things: a survey,” Int. J. Eng. Technol., vol. 7, no. 2.4, p. 196, Mar. 2018, doi:10.14419/ijet.v7i2.4.13038.; [190] M. Zhao, A. Kumar, P. H. Joo Chong, and R. Lu, “A comprehensive study of RPL and P2P-RPL routing protocols: Implementation, challenges and opportunities,” Peer-to-Peer Netw. Appl., vol. 10, no. 5, pp. 1232–1256, Sep. 2017, doi:10.1007/s12083-016-0475-; [191] B. An, J. S. Lee, N. S. Kim, and D. H. Kim, “CARP: A cooperative-aided routing protocol in mobile ad-hoc wireless sensor networks,” in International Conference on Advanced Communication; [192] M. Singh and S. Kumar, “A Survey: Ad-hoc on Demand Distance Vector (AODV) Protocol,” Int. J. Comput. Appl., vol. 161, no. 1, pp. 38–44, Mar. 2017, doi:10.5120/ijca2017913109.; [193] J. V. V. Sobral, J. J. P. C. Rodrigues, R. A. L. Rabêlo, K. Saleem, and V. Furtado, “LOADng-IoT: An Enhanced Routing Protocol for Internet of Things 152 Applications over Low Power Networks,” Sensors, vol. 19, no. 1, p. 150, Jan. 2019, doi:10.3390/s19010150.; [194] H. Narra, Y. Cheng, E. Çetinkaya, J. Rohrer, and J. Sterbenz, “DestinationSequenced Distance Vector (DSDV) Routing Protocol Implementation in ns3,” Nov. 2012, doi:10.4108/icst.simutools.2011.2455; [195] T. Clausen and P. Jacquet, “Optimized link state routing protocol (OLSR),” no. August 2015, 2003, [Online]. Available: https://www.rfc-editor.org/info/rfc3626; [196] A. Balchunas, “Routing Information Protocol-RIP,” 2012. Accessed: Nov. 08, 2020. [Online]. Available: http://www.routeralley.com.; [197] A. Balchunas, “IGRP (Interior Gateway Routing Protocol),” 2012. Accessed: Nov. 08, 2020. [Online]. Available: http://www.routeralley.com.; [198] A. Balchunas, “Enhanced Interior Gateway Routing Protocol-EIGRP,” 2007. Accessed: Nov. 08, 2020. [Online]. Available: http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080 093f07.shtml#eigrp_work; [199] T. Salman, “Networking Protocols and Standards for Internet of Things,” Nov. 2015. Accessed: Nov. 08, 2020. [Online]. Available: http://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html1.; [200] S. Görmüş and A. Faruk Yavuz, “A protocol for Internet of Things : IETF 6TİSCH - IEEE Conference Publication,” 2017, Accessed: Nov. 08, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7960606; [201] A. Triantafyllou, P. Sarigiannidis, and T. D. Lagkas, “Network protocols, schemes, and mechanisms for internet of things (IoT): Features, open challenges, and trends,” Wirel. Commun. Mob. Comput., vol. 2018, 2018, doi:10.1155/2018/5349894. [; [202] HiveMQ Team, “Getting Started with MQTT,” Apr. 24, 2020. https://www.hivemq.com/blog/how-to-get-started-with-mqtt/ (accessed Nov. 08, 2020).; [203] S. Aiyagari et al., “AMQP A General-Purpose Middleware Standard.” Accessed: Nov. 08, 2020. [Online]. Available: https://www.immagic.com/eLibrary/ARCHIVES/TECH/AMQP_US/A080219O. pdf; [204] R. Fielding et al., “Hypertext Transfer Protocol -- HTTP/1.1,” [Online]. Available: https://www.w3.org/Protocols/HTTP/1.1/rfc2616.pdf.; [205] Google Cloud, “Cloud IoT Core .” https://cloud.google.com/iot-core?hl=es (accessed Nov. 13, 2020).; [206] Cloud IoT Core Documentation, “Publishing over the MQTT bridge .” https://cloud.google.com/iot/docs/how-tos/mqtt-bridge?hl=es#iot-core-mqttauth-run-python (accessed Nov. 13, 202; [207] Google Cloud, “Publica mensajes en temas.” https://cloud.google.com/pubsub/docs/publisher?hl=es-419#rest (accessed Nov. 13, 2020).; [208] Google Cloud, “Guías prácticas.” https://cloud.google.com/functions/docs/how-to (accessed Nov. 13, 2020).; [209] Google Cloud, “Usa la interfaz de supervisión de Dataflow.” https://cloud.google.com/data; [210] Google Cloud, “Guías de inicio rápido %7C Documentación de Cloud Bigtable.” https; [211] Google Cloud, “Guía de inicio rápido %7C BigQuery ML .” https://cloud.google.com/bigquery-ml/docs/bigqueryml-web-ui-start?hl=es (accessed Nov. 13, 2020).; [212] Google Cloud, “BigQuery Omni for multi-cloud data analytics.” https://cloud.google.com/blog/p; [213] Google Cloud, “Guía de inicio rápido para usar Data Studio %7C BI Engine .” https://cloud.google.com/bi-engine/docs/getting-started-data-studio?hl=es (accessed Nov. 13, 2020).; [214] Google Cloud, “Le damos la bienvenida a Data Studio - Ayuda de Data Studio.” https://support.google.com/datastudio/answer/6283323?hl=es (accessed Nov. 13, 2020).; [215] Google Cloud, “Documentación de Datalab .” https://cloud.google.com/datalab/docs?hl=es (accessed Nov. 13, 2020).; [216] Google Cloud, “Obtén predicciones en línea %7C AI Platform Prediction.” https://cloud.google.com/ai-platform/prediction/docs/online-predict?hl=es419#python (accessed Nov. 13, 2020).; [217] Microsoft Azure, “Azure IoT: plataforma de Internet de las cosas.” https://azure.microsoft.com/es-es/overview/iot/ (accessed Nov. 18, 2020).; [219] Microsoft Docs, “Introducción a Azure IoT Hub.” https://docs.microsoft.com/es-es/azure/iot-hub/about-iot-hub (accessed Nov. 18, 2020; [221] Microsoft Docs, “Introduction to Azure Stream Analytics.” https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analyticsintroduction (accessed Nov. 18, 2020; [222] Microsoft Docs, “Azure Functions documentation.” https://docs.microsoft.com/en-us/azure/azure-functions/ (accessed Nov. 18, 2020).; [223] Microsoft Docs, “Introduction to Azure Storage - Cloud storage on Azure.” https://docs.microsoft.com/en-us/azure/storage/common/storageintroduction?toc=%2Fazure%2Fstorage%2Fblobs%2Ftoc.json (accessed Nov. 18, 2020; [224] Microsoft Docs, “Azure Logic Apps documentation.” https://docs.microsoft.com/en-us/azure/logic-apps/ (accessed Nov. 18, 2020).; [225] Microsoft Docs, “Introduction to Azure Cosmos DB.” https://docs.microsoft.com/en-us/azure/cosmos-db/introduction (accessed Nov. 18, 2020; [226] Microsoft Docs, “Azure Synapse Analytics (formerly SQL DW) architecture - Azure Synapse Analytics.” https://docs.microsoft.com/en-us/azure/synapseanalytics/sql-data-warehouse/massively-parallel-processing-mpparchitecture (accessed Nov. 18, 2020).; [227] Microsoft Docs, “What is Azure Machine Learning.” https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-isazure-ml (accessed Nov. 18, 2020; [228] IBM Cloud Documentation, “Product architecture.” https://www.ibm.com/support/knowledgecenter/SSQP8H/iot/overview/archite cture.html (accessed Nov. 18, 2020).; [229] IBM Cloud Documentation, “Getting started with Watson IoT Platform Starter.” https://cloud.ibm.com/docs/IoT-starter (accessed Nov. 18, 2020).; [230] IBM Cloud Documentation, “Overview of IBM® Watson IoT Platform Analytics.” https://www.ibm.com/support/knowledgecenter/SSQP8H/iot/analytics/as_ove rview.html (accessed Nov. 18, 2020).; [231] IBM Cloud Documentation, “Iniciación a IBM Cloudant.” https://cloud.ibm.com/docs/Cloudant?topic=Cloudant-getting-started-withcloudant#prereqs (accessed Nov. 18, 2020); [232] IBM Cloud Documentation, “Visión general de las conexiones.” https://cloud.ibm.com/docs/Db2whc?topic=Db2whc-connect_ov (accessed Nov. 18, 2020).; [233] IBM Cloud Documentation, “Acerca de IBM Cloud Object Storage.” https://cloud.ibm.com/docs/cloud-object-storage?topic=cloud-object-storageabout-ibm-cloud-object-storage (accessed Nov. 18, 2020).; [234] IBM Cloud Documentation, “Iniciación a App ID.” https://cloud.ibm.com/docs/appid?topic=appid-getting-started (accessed Nov. 18, 2020).; [235] IBM Cloud Documentation, “Guía de inicio Cómo empezar.” https://cloud.ibm.com/docs/EventStreams?topic=EventStreamsgetting_started (accessed Nov. 18, 2020).; [236] GTI España, “Cómo empezar con Alibaba Cloud.” https://www.gti.es/eses/Cloud-Publica-CSP/Paginas/Alibaba-Cloud.aspx.; [237] Alibaba Cloud Documentation Center, “Elastic Compute Service Product Introduction,” Nov. 2020.; [238] Alibaba Cloud Documentation Center, “What is Simple Application Server? .” https://www.alibabacloud.com/help/docdetail/58612.htm?spm=a2c63.l28256.a3.1.97aa3c2c15D4Hw (accessed Nov. 10, 2020); [239] Alibaba Cloud Documentation Center, “What is E-HPC,” 2018, Sep. . https://www.alibabacloud.com/help/docdetail/57677.htm?spm=a2c63.l28256.a3.1.2f875c6bgYvJe2 (accessed Nov. 10, 2020); [240] Alibaba Cloud, “Batch Compute: Massive Simultaneous Batch Processing.” https://www.alibabacloud.com/products/batchcompute?spm=a3c0i.11270126.5942891490.11.12105f93q2ky6o (accessed Nov. 10, 2020; [241] Alibaba Cloud Documentation Center, “Container Service for Kubernetes Product Introduction,” 2020; [242] Alibaba Cloud Documentation Center, “What is Elastic Container Instance - Product Introduction.” https://www.alibabacloud.com/help/docdetail/89129.htm?spm=a2c63.l28256.a3.1.52bf3b03HHIPaS (accessed Nov. 10, 2020); [243] Alibaba Cloud Documentation Center, “What is Web+? - Product Introduction,” Dec. 19, 2019. https://www.alibabacloud.com/help/docdetail/115432.htm?spm=a3c0i.15177720.9469901820.1.13542cf0RIeGxy (accessed Nov. 10, 2020).; [244] Alibaba Cloud, “Web App Service Web App .” https://www.alibabacloud.com/product/webx?spm=a3c0i.11270126.5942891 490.15.77b75f93uuV1a3 (accessed Nov. 10, 2020); [245] Alibaba Cloud, “Function Compute: Fully Hosted and Serverless Running Environment.” https://www.alibabacloud.com/products/functioncompute?spm=a3c0i.7954052.3156523820.146.14601cbbEWtbC4 (accessed Nov. 12, 2020).; [246] Alibaba Cloud Documentation Center, “Auto Scaling Product Introduction,” 202; [247] Alibaba Cloud Documentation Center, “Virtual Private Cloud Product Introduction,” 2020.; [248] Alibaba Cloud, “VPN Gateway: Connection between a VPC and Your Data Center.” https://www.alibabacloud.com/product/vpngateway?spm=a3c0i.228914.3156523820.147.19727ddfPrElH1 (accessed Nov. 12, 2020).; [249] Alibaba Cloud Documentation Center, “Alibaba Cloud VPN Gateway Product Overview.”; [250] Alibaba Cloud Documentation Center, “Alibaba Cloud 阿里云公共DNS Product Introduction.”; [251] Alibaba Cloud Documentation Center, “Alibaba Cloud 物联网平台 Product Introduction.”; [252] Alibaba Cloud, “IoT Platform: Connect to Devices via Data Transmission.” https://www.alibabacloud.com/product/iot?spm=a3c0i.11270126.315652382 0.dnavproductiot1.66f45f93GZad1X (accessed Nov. 12, 202; [253] Alibaba Cloud, “Link IoT Edge: Empower Your Business with Edge Capabilities - Alibaba Cloud.” https://www.alibabacloud.com/product/linkiotedge?spm=a3c0i.253693.31565 23820.dnavproductiot2.4e5c2a4cA9q8Gy (accessed Nov. 12, 2020).; [254] Alibaba Cloud Documentation Center, “Alibaba Cloud 物联网边缘计算 Product 156 Introduction.” https://static-aliyun-doc.oss-cnhangzhou.aliyuncs.com/download%2Fpdf%2F69086%2FProduct_Introductio n_intl_enUS.pdf?spm=a2c63.l28256.a3.1.73405ad877L02O&file=download%2Fpdf%; [255] Amazon Web Services Documentation, “¿Qué es FreeRTOS?” https://docs.aws.amazon.com/es_es/freertos/latest/userguide/what-isfreertos.html (accessed Nov. 12, 2020).; [256] Amazon Web Services, “FreeRTOS, sistema operativo con funcionamiento en tiempo real para microcontroladores .” https://aws.amazon.com/es/freertos/?nc2=type_a (accessed Nov. 12, 2020); [258] Amazon Web Services, “Información general sobre AWS IoT Core.” https://aws.amazon.com/es/iot-core/?nc2=type_a (accessed Nov. 12, 2020).; [259] Amazon Web Services Documentation, “¿Qué es AWS IoT Analytics? .” https://docs.aws.amazon.com/es_es/iotanalytics/latest/userguide/welcome.ht ml (accessed Nov. 12, 2020; [260] Amazon Web Services, “AWS IoT Analytics - Análisis para dispositivos compatibles con IoT; [261] Amazon Web Services Documentation, “AWS IoT Device Defender.” https://docs.aws.amazon.com/es_es/iot/latest/developerguide/devicedefender.html (accessed Nov. 12, 2; [262] Amazon Web Services, “AWS IoT Device Defender.” https://aws.amazon.com/es/iot-device-defender/?nc2=type_a (accessed Nov. 12, 2020); [263] Amazon Web Services Documentation, “Administración de dispositivos con AWS IoT.” https://docs.aws.amazon.com/es_es/iot/latest/developerguide/iotthing-management.html (accessed Nov. 12, 2020).; [264] Amazon Web Services, “AWS IoT Device Management .” https://aws.amazon.com/es/iot-device-management/?nc2=type_a (accessed Nov. 12, 2020; [265] Amazon Web Services Documentation, “¿Qué es AWS IoT Events?” https://docs.aws.amazon.com/es_es/iotevents/latest/developerguide/what-isiotevents.html (accessed Nov. 12, 202; [266] Amazon Web Services, “Detecte y responda a eventos de IoT.” https://aws.amazon.com/es/iot-events/?nc2=type_a (accessed Nov. 12, 2020; [267] Amazon Web Services Documentation, “¿Qué es AWS IoT Greengrass? .” https://docs.aws.amazon.com/es_es/greengrass/latest/developerguide/whatis-gg.html (accessed Nov. 12, 2020; [268] Amazon Web Services, “AWS IoT Greengrass.” https://aws.amazon.com/es/greengrass/?nc2=type_a (accessed Nov. 12, 2020; [269] Amazon Web Services Documentation, “¿Qué es AWS IoT SiteWise?” https://docs.aws.amazon.com/es_es/iot-sitewise/latest/userguide/what-issitewise.html (accessed Nov. 12, 2020).; [270] Amazon Web Services, “AWS IoT SiteWise.” https://aws.amazon.com/es/iotsitewise/?nc2=type_a (accessed Nov. 12, 20; [271] Oracle Cloud Infrastructure Documentation, “Overview of API Gateway.” https://docs.cloud.oracle.com/enus/iaas/Content/APIGateway/Concepts/apigatewayoverview.htm; [272] Oracle Cloud Infrastructure Documentation, “Overview of Archive Storage.” https://docs.cloud.oracle.com/enus/iaas/Content/Archive/Concepts/archivestorageoverview.htm (accessed Nov. 12, 2020; [273] Oracle Cloud Infrastructure Documentation, “Overview of Data Transfer Service.” https://docs.cloud.oracle.com/enus/iaas/Content/DataTransfer/Concepts/overview.htm (accessed Nov. 12, 2020); [274] Oracle Cloud Infrastructure Documentation, “Oracle Database Cloud.” https://docs.cloud.oracle.com/enus/iaas/Content/DataTransfer/Concepts/overview.h; [275] Oracle Cloud Infrastructure Documentation, “Visión general del servicio DNS.” https://docs.cloud.oracle.com/esww/iaas/Content/DNS/Concepts/dnszonemanagement.htm (accessed Nov. 12, 2020). [276] Oracle; [276] Oracle Cloud Infrastructure Documentation, “Overview of Resource Manager.” https://docs.cloud.oracle.com/enus/iaas/Content/ResourceManager/Concepts/resourcemanager.htm (accessed Nov. 12, 202; [277] Oracle Cloud Infrastructure Documentation, “Oracle Internet of Things Cloud Service.” https://docs.oracle.com/en/cloud/paas/iot-cloud/ (accessed Nov. 12, 2020)B; [278] Universidad Computense de Madrid, “Niveles de madurez tecnológica – Technology Readiness Levels (TRLs),” Feb. 20, 2016. https://oficinaeuropea.ucm.es/noticias/item/141-niveles-de-madureztecnologica-technology-readiness-levels-trls (accessed Nov. 12, 2020; http://hdl.handle.net/20.500.12749/13601; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co

  3. 3

    Popis souboru: application/pdf

    Relation: [1] RUSSEL, S.; NORVIG, P. Inteligencia Artificial: Un enfoque moderno. Prentice Hall Hispanoamericana, S.A., México 1996.; [2] MAES, P. Artificial Life meets entertaiment: life like autonomous agent. Comuncations of the ACM 38 (11), 1995.; [3] HAYES-ROTH, B. An architecture for Adaptative Intelligent Systems. Artificial Intelligence: Special Issue on Agents and Interactivity, 72, 329-365. 1995; [4] JENNINGS, N. R.; WOOLDRIGE, M. Intelligent Agents : Theory and Practice. Knowledge Engineering Review, October 1994. Revised January 1995.; [5] GILBER, A; et al. The Role of Intelligent Agents in the Information Infraestructure. IBM, United States 1995; [6] What's An Agent, Anyway? A Sociological Case Study. Agents Memo 93-01, MIT Media Lab, Cambridge, MA. 1993; [7] S. Franklin and A. Graesser, Is it an Agent, or just a program?: A taxonomy for autonomous agents. http://www.msci.members.edu/~franklin/index.html. Febrero de 2001; [8] CASTELFRANCHI, C. Guarantees for autonomy in cognitive agent architecture. Intelligent Agents: Theories, Architectures, and Languages (LNAI Volume 890) pp56-70. Springer-Verlag: Heidelberg, Germany. 1995; [9] GENESERETH, M.¡ KETCHPEL, S. Software Agents. Comunications of the ACM 37 (7), 48-53, 1994; [10] SHOHAM, Y. Agent-oriented programming. Artificial Intelligence, 60(1):51-92, 1993; [11] BATES, J. The role of emotion in believable agents. Communications of the ACM, 37(7): 122-125. 1994; [12] LITTMAN, L. M. An optimization-based categorization or reinforcement learning environments. Proceeding of the Second International Conference on Simulation of Adaptative Behavior: From Animal to Animats, 1994; [13] LANGTON, C. Artificial Life. Addison-Wesley, Redwood City, CA 1989; [14] SANZ SACRISTÁN, M. A, B, C, de Internet. Boletín de la red nacional de l+D, Redlris. N° 28, Julio 1994; [15] BROOKS, R. A. A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and Automation 2(1), 14-23; [16] ETZIONI, O.; WELD, D. A Softbot-Based Interface to the Internet. Communications of the ACM 37 (7), 77-76. 1994; [17] MAES, P. Designing Autonomous Agents. Ed. P. Maes The MIT Press, Cambridge, MA. 1991; [18] WAYNER, P. Agents Unleashed: A Public Domain Look at Agent Technology Boston, MA: AP Profesional, 1995; [19] D’Agents: Mobile Agents at Darthmouth College. http://agent.cs.dartmouth.edu/, Enero. 2001.; [20] The Ara platform for Mobile Agents. http://wwwagss.informatik.unikl. de/Projekte/Ara/index e.html. Enero. 2001.; [21] IBM Aglets Home Page. http://www.trl.ibm.co.ip/aglets/. Enero 2001; [22] The Home of the Mole, http://mole.informatik.uni-: '. Enero. 2001.; [23] The Internet Softbot. http://www.cs.washington.edu/research/projects/softbots/www/internet-softbot.html. Junio. 2001.; [24] BALABANOVIC, M.; SHOHAM, Y. Fab: content-based, collaborative recommendation. Communications of the ACM, 40,3 (Marzo), 66-72. 1997; [25] A,B,C de Internet. SAENZ, M. A. http://www.ub.es/div3/enfogue1.htm. Junio 2001; http://hdl.handle.net/20.500.12749/27003; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co

  4. 4

    Popis souboru: application/pdf

    Relation: García Ojeda, Juan Carlos (2005). Gadmas. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB, Instituto Tecnológico y de Estudios Superiores de Monterrey ITESM; [ABE00] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Napal, E. Rauch, G. Sussmann, and R. Weiss, R. 2000. Amorphous computing. Commun. ACM 43, 5 (May), 43–50.; [ARE04] A. E. Arenas, J. C. García-Ojeda, J. de J. Pérez-Alcázar. On Combining Organisational Modelling and Graphical Languages for the Development of Multiagent Systems. Journal of Integrated Computer-Aided Engineering (ICAE). IOS Press Netherlands, 11(2):151-163, Mar. 2004.; [BAU01a] B. Bauer, J. P. Muller and J. Odell. Agent UML: A formalism for specifying multiagent software systems. Int. J. Softw. Eng. Knowl. Eng. ll, 3 (Apr.), 207–230. 2001.; [BAU01b] Bauer, B.: UML Class Diagrams and Agent-Based Systems, Proceedings Autonomous Agents 2001, Montreal, 2001.; [BAU02] B. Bauer. Uml class diagrams revisited in the context of agent based systems. In Agent-Oriented Software Engineering II (LNCS Volume 2222), pages 101–118. Springer-Verlag, 2002.; [BER01] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Sci. Amer. May.; [BRE01] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia and J. Mylopoulos. A knowledge level software engineering methodology for agent oriented programming. In Proceedings of the5th International Conference on Autonomous Agents (Montreal, Ont., Canada, June). ACM, New York, pp. 648–655. 2001.; [BRO91] R. A. Brooks. Intelligence without representation. Artificial Intelligence. 47, 139-159. 1991.; [CAB02] G. Cabri, L. Leonardi and F. Zambonelli, XRole: XML Roles for Agent Interaction, Proceedings of the Third International Symposium "From Agent Theory to Agent Implementation" at the 16th European Meeting on Cybernetics and Systems Research, Vienna (A), April 2002.; [CAI02] G. Caire, W. Coulier, F. Garijo, J. Gómez, J. Pavón, F. Leal, P. Chaino, P. Kearney, J. Stark, R. Evans and P. Massonet. Agent-oriented analysis using message/uml. In Proceedings of the 2nd International Workshop on Agent-Oriented Software Engineering. Lecture Notes in Computer Science, vol. 2222. Springer Verlag, New York, pp. 119– 135. 2002.; [CER04a] L. Cernuzzi, T. Juan, L. Sterling, F. Zambonelli, "The Gaia Methodology: Basic Concepts and Extensions", in Methodologies and Software Engineering for Agent Systems, Kluwer, 2004.; [CER04b] L. Cernuzzi, F. Zambonelli, "Experiencing AUML with the Gaia Methodology", 6th International Conference on Enterprise Information Systems, Porto (P), April 2004.; [CERV04] R. Cervenka,I. Trencansky, M. Calisti and D. A. P. Greenwood. AML: Agent Modeling Language Toward Industry-Grade Agent-Based Modeling. In Proceedings of the Fifth International Workshop on Agent-Oriented software Engineering AOSE, pages 31-46, 2004.; [CIA01] P. Ciancarini and M. Wooldridge, editors: Agent-Oriented Software Engineering. Springer-Verlag Lecture Notes in AI Volume 1957, January 2001.; [COL94] D. Coleman, P. Arnold, S. Bodoff, D. Dollin, H. Gilchrist, F. Hayes and P. Jeremas. Object-Oriented Development: The FUSION Method. Prentice-Hall International, Hemel Hampstead U.K, 1994; [COS02] M. Cossentino, C. Potts - "A CASE tool supported methodology for the design of multi-agent systems" - The 2002 International Conference on Software Engineering Research and Practice (SERP'02) 2002.; [DEL01] S. A. DeLoach and M. Word. Developing Multiagent Systems with agentTool. 7th.International Workshop ATAL, 2001; [EST02] D. Estrin, D. Culler, K. Pister and G. Sukjatme. Connecting the physical world with pervasive networks. IEEE Perv. Comput. l, 1, 59– 69. 2002; [FER98] J. Ferber, O. Gutknecht. A meta-model for the analysis and design of organizations in multi-agent systems. In Proceedings of the Third International Conference on Multi-Agent Systems (ICMAS98) , pages 128--135, 1998, Paris, France; [FER98] J. Ferber, and O. Gutknecht. A meta-model for the analysis and design of organizations in multi-agent systems. In Proceedings of the 3rd International Conference on Multi-Agent Systems (Paris, France). IEEE Computer Society Press, Los Alamitos, Calif., pp. 128–135. 1998.; [FIP05] Foundation for Intelligent Physical Agents. http://www.fipa.org/, Consultado Enero de 2005.; [FOS99] I. Foster and C. Kesselman (EDS.). The Grid: Blueprint for a New Computing Infrastructure. Morgan-Kaufmann, 1999; [GAR02a] J. C. García- Ojeda, J. de J. Pérez-Alcázar, A. E. Arenas. Aplicación de una Metodología de Desarrollo de Sistemas Multiagente en la Diseminación Selectiva de Información en la Web, Memorias del II Congreso Iberoamericano de Telemática (CITA’02). ISBN: 980-237- 217- X. Septiembre, 2002; [GAR02b] J. C. García-Ojeda, J. de J. Pérez-Alcázar and A. E. Arenas. Applying Gaia and AUML to the Selective Dissemination of Information on the Web, Proceedings of the 4th Iberoamerican Workshop on Multiagent Systems, Málaga, España, 2002; [GAR04] J. C. García-Ojeda, J. de J. Pérez-Alcázar, A. E. Arenas. Extending the Gaia Methodology with Agent-UML, In Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-04). New York, USA, 2004.; [GAR05] Paving the Way for Implementing Multiagent systems: Refining Gaia with AUML. Juan C. García-Ojeda, Álvaro E. Arenas and José de J. Pérez-Alcázar. In Proceedings of the 6th International Workshop on Agent-Oriented Software engineering (AOSE-2005), Por Aparecer.; [GOM03] J. Gomez-Sanz and J. Pavon. Agent oriented software engineering with INGENIAS. CEEMAS 2003 – Multi-Agent Systems and Applications III, 2691 , pages 394–403, 2003.; [HUH97] M. Huhns and M. P. Singh. Agents and Multiagent Systems: Themes, Approaches and Challenges. In Readings in Agents, chapter 1. Morgan Kaufmann Publishers. 1997.; [IEEE93] IEEE Standard 610.12 “Glossary of software engineering terminology,” in Software Engineering Standards Collection, IEEE CS Press, Los Alamitos, Calif. 1993; [IGL97] C. A. Iglesias, M. Garijo, J. C. Gonzalez and J. R. Velasco. Analysis and Design of Multiagent Systems Using MAS-CommonKADS. In Proceedings of the 4th International Workshop, ATAL'97. USA, pages 313-327, 1997.; [IGL99] C. Iglesias, M. Garito and J. Gonzáles. A survey of agent-oriented methodologies. In Intelligents Agents IV: Agent Theories, Architectures, and Languages. Lacture Notes in Artificial Intelligence, vol. 1555. Springer-Verlag, New York, pp. 317–330. 1999.; [JAC98] I. Jacobson. "Applying UML in The Unified Process" Rational Software. Presentación disponible en http://www.rational.com/uml como UMLconf.zip, 1998.; [JEN00] N. R. Jennings (2000) "On Agent-Based Software Engineering", Artificial Intelligence, 117 (2) 277-296.; [JEN01] N. R. Jennings (2001) "An agent-based approach for building complex software systems" Comms. of the ACM, 44 (4) 35-41.; [JUA03] Juan, T. and Sterling, L., The ROADMAP Meta-model for Intelligent Adaptive Multi-AgentSystems in Open Environments, Proceedings of the Fourth International Workshop on Agent Oriented Software Engineering, at AAMAS'03, Melbourne, Australia, July 2003.; [JUA02] Juan, T., Pearce, A. and Sterling, L., ROADMAP: Extending the Gaia methodology for Complex Open Systems, Proceedings of the First International Joint Conference on Autonomous Agents and Multi- Agent Systems (AAMAS 2002), Bologna, Italy, July 2002.; [MOR03] P. Moraitis, E. Petraki and N. Spanoudakis, Engineering JADE Agents with the Gaia Methodology. Lecture Notes in Computer Science (LNCS), vol. 2592: "Agent Technologies, Infrastructures, Tools, and Applications for e-Services", Springer-Verlag, 2003, pp 77-91; [MOR04] P. Moraitis and N. Spanoudakis. Combining Gaia and JADE for Multiagent Systems. In Proceedings of the 4th International Symposium "From Agent Theory to Agent Implementation" (AT2AI4), in: Proceedings of the 17th European Meeting on Cybernetics and Systems Research (EMCSR 2004), Vienna, Austria, April 13 - 16, 2004.; [MYL99] J. Mylopoulos, L. Chung, E. S. K. Yu. From Object-Oriented to Goal- Oriented Requirements Analysis, Commun. ACM 42(1): 31-37 (1999); [ODE00] J. Odell, V. D. Parunak, and B. Bauer. Extending uml for agents. In G. Wagner, Y. Lesperance, and E. Yu, editors, Proceedings of the Agent- Oriented Information Systems Workshop at the l7th National conference on Artificial Intelligence., pages 3–17, 2000.; [ODE01] J. Odell, H. Van Dyke Parunak and B. Bauer. Representing agent interaction protocols in UML. In Proceedings of the lst International Workshop on Agent-Oriented Software Engineering. Lecture Notes in Computer Science, vol. 1957. Springer-Verlag, New York, pp. 121– 140, 2001.; [OMG] Object Management Group. http://www.omg.org/, Consultado Enero de 2005.; [PAR01] H. V. Parunak, J. Odell. "Representing Social Structures in UML," Agent-Oriented Software Engineering (AOSE) II, Michael Wooldridge et al. eds., Springer-Verlag, Berlin, 2002, pp. 1-16.; [PAR97] H. V. D. Parunak. Go to the ant: Engineering principles from natural agent systems. Ann. Oper.Res. 75, 69–101. 1997; [PAU93] M. C. Paulk, B. Curtis, M. B. Chrissis and C. V. Weber."The Capability Maturity Model for Software", IEEE Software, Vol. 10, No. 4, July 1993, pp. 18-27.; [RIC02] A. Ricci, A. Omicini and E. Dente. Agent coordination infrastructures for virtual enterprises and workflow. Int. J. Coop. Inf. Syst. ll, 3 (Sept.), 335–380. 2002.; [RIP02] M. Ripeani, A. Iamnitchi and I. Foster. Mapping the gnutella network. IEEE Internet Comput. 6, 1 (Jan.), 50–57. 2002; [RUM91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object-Oriented Modelling and Design. Prentice Hall, 1991; [RUS02] S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2002; [SHA95] M. Shaw, R. Deline, D. Klein, T. Ross, D. Young and G. Zelesnik. Abstractions for software architecture and tools to support them. IEEE Trans. Softw. Eng. 2l, 4 (Apr.), 314–335. 1995; [SIM54] H. A. Simon. Models of Man. Wiley, New York, 1957.; [STU03] A. Sturm and O. Shehory. “A Framework for Evaluating Agent- Oriented Methodologies”, Workshop on Agent-Oriented Information System (AOIS), Melbourne, Australia, 2003.; [SUD04] J. Sudeikat, L. Braubach, A. Pokahr and W. Lamersdorf. “Evaluation of Agent-Oriented Software Methodologies – Examination of the Gap Between Modeling and Platform”, AOSE 2004, 126-141; [TEN00] D. Tennenhouse. Embedding the Internet: Proactive computing. Commun. ACM 43, 5 (May), 36–42. 2000.; [WOD01] M. Word, S. A. DeLoach and C. Sparkman. Multiagent system engineering. Int. J. Softw. Eng. Knowl. Eng. ll, 3 (Apr.), 231–258. 2001.; [WOO00] M. Wooldridge, N. R. Jennings, and D. Kinny. “The Gaia Methodology for Agent-Oriented Analysis and Design", Journal of Autonomous Agents and Multi-Agent Systems 3 (3) 285-312, 2000; [WOO02] Michael Wooldridge. An Introduction to Multiagent Systems. Ed. John Wiley & Sons, 2002.; [WOO95] M. J. Woolridge and N. R. Jennings. Intelligent Agents, Theory and Practice, 1995 Knowledge Engineering Review vol. 10:2, 115-152; [WOO97] M. Wooldridge (1997) “Agent-based software engineering” IEE Proc. on Software Engineering, 144 (1) 26-37.; [ZAM03a] F. Zambonelli, F. and H. V. D. Parunak. Signs of a revolution in computer science and software engineering. In Proceedings of the 3rd International Workshop on Engineering Societies in the Agents World. Lecture Notes in Computer Science, vol. 2577. Springer-Verlag, New York, pp. 13–28.; [ZAM03b] F. Zambonelli, N. R. Jennings and M. Wooldridge. "Developing multiagent systems: the Gaia Methodology", ACM Trans on Software Engineering and Methodology 12 (3) 317-370, 2003.; http://hdl.handle.net/20.500.12749/3301; reponame:Repositorio Institucional UNAB

  5. 5

    Popis souboru: application/pdf

    Relation: Cruz Bueno, Hernán Darío (2014). Lineamientos iníciales para implementación de arquitecturas empresariales utilizando TOGAF en entidades públicas colombianas, caso de estudio Hospital Universitario de Santander (HUS). Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB; Aagesen G., & Van Veenstra A. (2011). The Entanglement of Enterprise Architecture and IT-Governance: The Cases of Norway and the Netherlands, Proceedings of the 44th Hawaii International Conference on System Sciences. ISBN: 978-0-7695-4282-9; Abul Kalam M., & Ali Khan A. (2008). Government Enterprise Architectures: Present Status of Bangladesh and Scope of Development. ICEGOV2008, 2nd International Conference on Theory and Practice of Electronic Governance, December 1-4, 2008, Cairo, Egypt.; Aier S. (2012). The role of organizational culture for grounding, management, guidance and effectiveness of enterprise architecture principles. Information Systems and e-Business Management ISSN: 1617-9854 (Online); Al-Nasrawi S., & Ibrahim M. (2013). An Enterprise Architecture Mapping Approach for Realizing e-Government. The 3rd International Conference on communications and information technology (ICCIT-2013): Digital information management & security, Beirut. Junio 19-21, 2013. IEEE.; Andreas Ask, Karin Hedström, 2011 - Taking Initial Steps towards Enterprise Architecture in Local Government, Department of Informatics, Swedish Business School at Örebro University, Sweden, Springer 2011; Avison, D., Jones, J., Powell, 2004 - Using and Validating the Strategic Alignment Model. The Journal of Strategic Information Systems, Vol. 13, Issue 3, September 2004; Bejarano G. & Ropero E., 2012, Análisis y diseño de una arquitectura empresarial como solución al proceso de certificación de competencias laborales en el sistema nacional de formación para el trabajo-SENA, Proyecto de Maestría en Gestión Aplicación y Desarrollo de Software, UNAB, 2012.; D. Greefhorst, 2011, A Practical Approach to the Formulation and Use of Architecture Principles, 2011 15th IEEE International Enterprise Distributed Object Computing Conference Workshops; Doucet, G., Gøtze J., & Saha P. (2008), Coherency Management: Using Enterprise Architecture for Alignment, Agility, and Assurance, Journal of Enterprise Architecture, 2008. ISSN 2166-6792 (online); Ebrahim Z., & Irani Z. (2006). E-government adoption: architecture and barriers. Business Process Management Journal, Vol. 11 No. 5, 2005, pp. 589-611. Emerald Group Publishing. ISSN: 1463-7154; Ecopetrol innova parte1, 2011 - El mapa de decisiones, Revista Innova Ecopetrol, Edición 7 - 2011, http://www.ecopetrol.com.co/especiales/RevistaInnova7ed/innovaciones16.html, Revisado 17 Octubre 2013; Espinosa A., & Fong W. (2011). The Organizational Impact of Enterprise Architecture: A Research Framework. Proceedings of the 44th Hawaii International Conference on System Sciences, 2011. IEEE Computer Society Washington, ISBN: 978-0-7695-4282-9.; Espinosa A., & Fong W. (2009). Coordination and Governance in Geographically Distributed Enterprise Architecting: An Empirical Research Design. Proceedings of the 42nd Hawaii International Conference on System Sciences – 2009. 5-8 Junio. 2009. ISBN: 978-0-7695-3450-3; FEAF, 2012 - Federal Enterprise Architecture (FEA) Recuperado Octubre 25 de 2013, http://www.whitehouse.gov/omb/e-gov/fea/; G. Doucet, J. Gøtze, P. Saha, S. Bernard, 2008 - “Coherency Management: Using Enterprise Architecture for Alignment, Agility, and Assurance,” Journal of Enterprise Architecture, May, 2008.; Guijarro L. (2007). Interoperability frameworks and enterprise architectures in e-governmentinitiatives in Europe and the United States. Government Information Quarterly 24 (2007) 89 – 101. ISSN: 0740-624X; Gobierno en Línea, 2011 – Programa de Gobierno electrónico colombiano, http://programa.gobiernoenlinea.gov.co/index.shtml; González L., 2005 - Arquitectura de Empresa. Visión General, IX Congreso de Ingeniería de Organización, 2005. Recuperado Octubre 17 de 2013, http://dialnet.unirioja.es/servlet/articulo?codigo=3250017; Hannu Larsson, 2011 - Ambiguities in the Early Stages of Public Sector Enterprise Architecture Implementation: Outlining Complexities of Interoperability, IFIP International Federation for Information Processing 2011.; Hans Jochen Scholl, Herbert Kubicek, Ralf Cimander, 2011 - Interoperability, Enterprise Architectures, and IT Governance in Government, IFIP International Federation for Information Processing 2011.; Hirvonen, A, 2005 - “Enterprise Architecture Planning in Practice – The Perspectives of Information and Communication Technology Service Provider and End-User”, Doctoral dissertation, University of Jyväskylä; Hjort-Madsen K., & Pries-Heje J. (2009). Enterprise Architecture in Government: Fad or Future? , Proceedings of the 42nd Hawaii International Conference on System Sciences – 2009. 5-8 Junio. 2009. ISBN: 978-0-7695-3450-3; Hjort-Madsen K. (2007). Institutional patterns of enterprise architecture adoption in government. Transforming Government: People, Process and Policy Vol. 1 No. 4, 2007 pp. 333-349. Emerald Group Publishing. ISSN: 1750-6166; Hugoson M., & Magoulas T. (2010). Enterprise Architecture Design Principles and Business-Driven IT Management. BIS 2010, 13th International Conference on Business Information Systems, Berlin, Germany 3-5 Mayo, 2010. LNBIP 57, pp. 144–155. ISBN 978-3-642-15401-0; ICBF- Instituto Colombiano de Bienestar Familiar, 2013, F02 - Anexo– Condiciones Técnicas para la prestación del servicio y/o entrega de bien, Recuperado Octubre 20 de 2013, http://www.icbf.gov.co/portal/page/portal/PortalICBF/NormatividadGestion/EstudiosdeMercado/Estudios2013/Direcci%C3%B3n%20de%20Informaci%C3%B3n%20y%20Tecnolog%C3%ADa/Tab1/ARQUITECTURA%20EMP%20-%20FCTEPS%20060513.pdf; ICFES, 2010- Convocatoria Pública ICFES CP No. 002-2010, “Contratar los servicios de consultoría especializada para el diseño y definición de la Arquitectura Empresarial del ICFES, plantear los proyectos para su implementación, y realizar por demanda mantenimiento a la Arquitectura.”, Recuperado Noviembre 23 de 2013, http://web.icfes.gov.co/component/docman/doc_view/3290-cp-002-acto-de-adjudicacion?Itemid=59; ISO/IEC/IEEE 42010, 2013 - System and Software Engineering - Recommende Practice for Architectural Description of Software-Intensive Systems. Recuperado Octubre 20 de 2013, de http://www.iso-architecture.org/ieee-1471/afs; Iyamu T. (2009). The Factors affecting Institutionalisation of Enterprise Architecture in the Organisation. 2009 IEEE Conference on Commerce and Enterprise Computing. 20-23 Julio 2009. IEEE computer society.; Janssen, M., & Hjort-Madsen, K. (2007). Analyzing Enterprise Architecture in National Governments: The Cases of Denmark and the Netherlands. Proceedings of the 40th Hawaii International Conference on System Sciences (HICSS'07), IEEE, Big Island, Hawaii, 2007. ISBN:0-7695-2755-8; Janssen M. (2012). Sociopolitical Aspects of Interoperability and Enterprise Architecture in E-Government, Social Science Computer Review 30(1) 24-36. SAGE Journals; Janssen M., & Klievink B. (2010). ICT-project failure in public administration: The need to include risk management in enterprise architectures. Proceedings of the 11th Annual International Conference on Digital Government Research. Mexico, Mayo 17 - 17, 2010. ISBN: 978-1-4503-0070-4; Janssen M., & Klievink B. (2009). Can enterprise architectures reduce failure in development projects. 2009 International Conference on Electrical Engineering and Informatics. Transforming Government: People, Process and Policy. Vol. 6 No. 1, 2012, pp. 27-40. Emerald Group Publishing. ISSN: 1750-6166; Jin y Kung, 2010 - Research of Information System Technology Architecture-2010 2nd IEEE -2010, International Conference on Industrial and Information Systems; J. Carrillo, 2010 - Roadmap for the implementation of an Enterprise Architecture Framework Oriented to Institutions of Higher Education in Ecuador - Universidad Politécnica de Madrid, 2010; Kaisler, S.H., Valivullah, M., (2005). Enterprise Architecting: Critical Problems. Proceedings of the 38th Annual Hawaii International Conference on System Sciences - Volume 09. ISBN:0-7695-2268-8-9.; Kamal M.M. (2006). IT innovation adoption in the government sector: identifying the critical success factors. Journal of Enterprise Information Management. Vol. 19 No. 2, 2006, pp. 192-222. Emerald Group Publishing Limited. ISSN: 1741-0398.; Kamal M., Hackney R., & Ali M. (2013). Facilitating enterprise application integration adoption: An empirical analysis of UK local government authorities. International Journal of Information Management 33 (2013) pp. 61-75. ISSN: 0268-4012; Kamal M. M., Weerakkody V., & Jones S. (2009). The case of EAI in facilitating e-Government services in a Welsh authority. International Journal of Information Management 29 (2009) pp 161–165. ISSN: 0268-4012; Kristian Hjort-Madsen, Jan Pries-Heje, 2009 - Enterprise Architecture in Government: Fad or Future? , Proceedings of the 42nd Hawaii International Conference on System Sciences – 2009, IT-University of Copenhagen.; Kristian Hjort-Madsen, 2007 - Institutional patterns of enterprise architecture adoption in government, Transforming Government: People, Process and Policy Vol. 1 No. 4, 2007, IT-University of Copenhagen.; Kaisler, S.H., Valivullah, M., 2005 - Enterprise Architecting: Critical Problems”, Proceedings of the 38th Hawaii International Conference on System Sciences; K. Valtonen, M. Leppänen, M. Pulkkinen, 2011 - “Enterprise Architecture Descriptions for Enhancing Local Government Transformation and Coherency Management”, 15th IEEE International Enterprise Distributed Object Computing Conference Workshops 2011.; Larsson H. (2011). Ambiguities in the Early Stages of Public Sector Enterprise Architecture Implementation: Outlining Complexities of Interoperability. IFIP – 10th conference on electronic government, EGOV 2011. Agosto 28 a Septiembre 02 de 2011. Springer, ISBN 978-3-642-22877-3.; M. EsmaeilZadeh, G. Millar, 2012, Mapping the Enterprise Architecture Principles in TOGAF to the Cybernetic Concepts – An Exploratory Study; Lineamientos Marco referencia Gestión de TI, 2014, Ministerio de Tecnologías de Información y Comunicaciones, Recuperado Junio 18 de 2014 http://www.mintic.gov.co/portal/604/w3-article-6301.html; Marco referencia AE Colombia, 2014, Ministerio de Tecnologías de Información y Comunicaciones, Recuperado Junio 18 de 2014 http://www.mintic.gov.co/portal/604/w3-article-6313.html; Maya E., 2010 – ArquitecturaEmpresarial: un nuevo reto para las empresas de hoy – INTERACTIC (Articulos de Interes No 15 Año 3) - CINTEL (Centro de Investigación de Telecomunicaciones).; Martin N., & Gregor S. (2005). Using a Common Architecture in Australian e-Government – The Case of Smart Service Queensland. ICEC '04 Proceedings of the 6th international conference on Electronic commerce. ISBN:1-58113-930-6; Marijn Janssen, Bram Klievink, 2010, ICT-project failure in public administration: The need to include risk management in enterprise architectures, Proceedings of the 11th Annual International Conference on Digital Government Research – 2010; Marijn Janssen, 2012 - Sociopolitical Aspects of Interoperability and Enterprise Architecture in E-Government, Social Science Computer Review 30(1) 24-36.; Marijn Janssen, Kristian Hjort-Madsen, 2007, Analyzing Enterprise Architecture in National Governments: The cases of Denmark and the Netherlands, Proceedings of the 40th Hawaii International Conference on System Sciences - 2007.; Mats-Åke Hugoson, Thanos Magoulas, 2010, Enterprise Architecture Design Principles and Business-Driven IT Management, BIS 2010 Workshops, LNBIP 57, pp. 144–155, 2010; Mohamed Ali Mohamed, Galal Hassan Galal-Edeen, Hesham Ahmed Hassan, 2012, An Evaluation of Enterprise Architecture Frameworks for E-Government, Faculty of Computers and Information, Cairo University, Egypt – 2012, IEEE.; Ministerio de Tecnologías de la Información y las Comunicaciones, (2011), Programa de Gobierno electrónico colombiano Colombia, Recuperado (2013, octubre 18) de http://programa.gobiernoenlinea.gov.co/apc-aa-files/eb0df10529195223c011ca6762bfe39e/manual-3.1.pdf; Ministerio de Tecnologías de la Información y las Comunicaciones, Plan Vive Digital, (2012), Colombia, Agenda estratégica de Innovación Arquitectura de TI, Recuperado (2013, octubre 21) de http://vivedigital.gov.co/idi/wp-content/uploads/2012/10/ATI_AEI__Vectores_v_1-2-0.pdf; Mosquera L., Andrade D., Sierra L. (2013). A Guide to support the priorization of the risk in information techonologies project management. Gerencia Tecnológica Informática, Vol. 12 - N° 33 - pp 15 - 32. ISSN: 2027-8330; N. Umeh, C. Dagli, 2007 - TOGAF vs. DoDAF: Architecting Frameworks for Net-centric Systems, Njideka Umeh, Cihan Dagli; Nodo arquitectura, 2012 – Documento de agenda estratégica de innovación, Recuperado Octubre 20 de 2013, http://vivedigital.gov.co/idi/wp-content/uploads/2012/10/ATI_AEI__Vectores_v_1-2-0.pdf; Ojo, A., Janowski, T. & Estevez, E. (2012). Improving Government Enterprise Architecture Practice – Maturity Factor Analysis. 45th Hawaii International Conference on System Sciences, 4- 7 de enero 2012, USA. ISBN:9781457719257; Paz, R. y Macedo, R., 2010 - The Open Group Architecture Framework, Paz Renato y Macedo Ricardo, Universidad Catolica San Pablo, Recuperado Octubre 18 de 2013, tis-2010-g1.googlecode.com/svn-history/r4/trunk/TOGAF.doc‎; Plan Vive Digital, Ministerio Tecnologías de Información y Comunicaciones (2012), Recuperado (2014, Abril 28) de http://www.mintic.gov.co/portal/vivedigital/612/w3-propertyvalue-6106.html; Penttinen K., & Isomäki H. (2010). Stakeholders’ Views on Government Enterprise Architecture: Strategic Goals and New Public Services. First International Conference, EGOVIS 2010, Bilbao, Spain, Agosto 31 – Septiembre 2, 2010. Proceedings. ISBN: 978-3-642-15172-9 (Online).; Pessi, K., Magoulas, T. & Hugoson, M., 2011, “The Impact of Enterprise Architecture Principles on the Management of IT Investments” The Electronic Journal Information Systems Evaluation Volume 14 Issue 1 2011, (pp53-62), ISSN 1566-6379; Pulkkinen, M., Hirvonen, A., 2005 - EA Planning, Development and Management Process for Agile Enterprise Development, Proceedings of the 38th Hawaii International Conference on System Sciences; Richardson L., Jackson B. M., & Dickson G. (1990). A principle-based enterprise architecture: Lessons From Texaco and Star Enterprise. MIS Quarterly, 14, 385–403.; Richard A. Martin, Edward L. Robertson, 2005, Architectural Principles for Enterprise Frameworks, IFIP — The International Federation for Information Processing, Volume 183, 2005, pp 79-91; Robert Winter, Stephan Aier, 2011, How are Enterprise Architecture Design Principles Used?, 2011 15th IEEE International Enterprise Distributed Object Computing Conference Workshops; Saha, P. (2007). Handbook of Enterprise Systems Architecture in Practice. IGI Global Information Science Reference, Hershey, 2007. ISBN13: 9781599041896; Saha P. (2009). Architecting the Connected Government: Practices and Innovations in Singapore. The 3rd International Conference on Theory and Practice of Electronic Governance (ICEGOV2009). 10 - 13 Noviembre 2009. ACM.; Schekkerman, J. (2005). Enterprise Architecture: How are Organizations Progressing? Web-form Based. Institute For Enterprise architecture Developments. 2005, pp 79-84; Scholl H., & Kubicek H. (2011). Interoperability, Enterprise Architectures, and IT Governance in Government. 10th conference on electronic government, EGOV 2011. Agosto 28 a Septiembre 02 de 2011. ISBN 978-3-642-22877-3. IFIP International Federation for Information Processing 2011 LNCS 6846, pp. 345–354; Sessions R., 2007 - “Comparison of the Top Four Enterprise Architecture Methodologies”, object watch, 2007, Revisado el 21 de Octubre de 2013. http://msdn.microsoft.com/en-us/library/bb466232.aspx; Seppänen V., Heikkilä J., & Liimatainen K. (2009). Key Issues in EA-implementation: Case study of two Finnish government agencies, 11th IEEE Conference on Commerce and Enterprise Computing (CEC’09). 20-23 Julio 2009.; Servicio Nacional de Aprendizaje SENA, (2012). Colombia. Estudio de mercado, oficina de sistemas – Arquitectura Empresarial, Recuperado (2013, noviembre 23) de http://contratacion.sena.edu.co/_file/solicitudes/2321_1.pdf; Sistema de Investigación, Desarrollo e Innovación, Ministerio Tecnologías e Información, (2012). Colombia, Documento de plan de acción Nodo de innovación en Arquitectura TI para Gobierno, Recuperado (2013, octubre 21) de http://vivedigital.gov.co/idi/wp-content/uploads/2012/07/Plan_de_Accion_NDI_Arquitectura_V2_0_0.pdf; Stephan Aier, 2012 - The role of organizational culture for grounding, management, guidance and effectiveness of enterprise architecture principles, Springer-Verlag Berlin Heidelberg 2012, University of St. Gallen , Switzerland.; Superintendencia Sociedades, (2012). Colombia, Resolución No. 511-004064 de 2012 de Superintendencia de Sociedades, Recuperado (2013, octubre 20) de http://www.supersociedades.gov.co/ss/drvisapi.dll?MIval=muestra&id_pag=33550&t=1; S. Lusa y D. Sensuse, 2011 - Enterprise Architecture Model For Implementation Knowledge Management System (KMS) - Sofian Lusa y Dana Indra Sensuse , University of Indonesia - Depok, Indonesia – IEEE 2011; Tambouris E., & Kaliva E. (2012). A reference requirements set for public service provision enterprise architectures, Springer. Software & Systems Modeling. ISSN: 1619-1374 (Online); Togaf v9, 2009 - The Open Group .La arquitectura abierta del Grupo Marco (TOGAF) versión 9 Enterprise Edition. 2009 (Online):\url{http://www.opengroup.org/architecture/togaf9-doc/arch/index.html /; The Open Group, 2013 - The Open Group Architecture Framework (TOGAF). Versión 9.1. Disponible en: http://pubs.opengroup.org/architecture/togaf9-doc/arch/; The Open Group Principles, 2013 - The Open Group Architecture Framework (TOGAF). Principles, Versión 9.1. Disponible en: http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap04.html; Tuo Zheng, Lei Zheng, 2013 - Examining e-government enterprise architecture research in China: A systematic approach and research agenda Government Information Quarterly 30 (2013) S59–S67.; U. Franke, D. Hook, J. Konig, R. Lagerstrom, 2009 - “ EAF2 – A Framework for Categorizing Enterprise Architecture Frameworks”, 10th ACIS International Conference on Software Engineering, pp. 327–633, 2009; Valtonen, K. & Leppanen M. (2009). Business Architecture Development at Public Administration – Insights from Government EA Method Engineering Project in Finland. Information Systems Development. ISBN: 978-0-387-84810-5 (Online) Pages 765-774; Valtonen K., Leppänen M., & Pulkkinen M. (2011). Enterprise Architecture Descriptions for Enhancing Local Government Transformation and Coherency Management. 15th IEEE International Enterprise Distributed Object Computing Conference Workshops. (EDOCW 2011). ISBN:9781457708695; Valtonen K., & Seppänen V. (2009). Government Enterprise Architecture Grid Adaptation in Finland. Proceedings of the 42nd Hawaii International Conference on System Sciences – 2009. IEEE Computer Society. ISBN: 978-0-7695-3450-3; Ville Seppänen, Jukka Heikkilä, Katja Liimatainen, 2009 - Key Issues in EA-implementation: Case study of two Finnish government agencies, 2009 IEEE Conference on Commerce and Enterprise Computing; http://hdl.handle.net/20.500.12749/3343; reponame:Repositorio Institucional UNAB

  6. 6

    Popis souboru: xx, 205 páginas; application/pdf

    Relation: Acevedo, A. (IDOM T. C. (2018). Modelo de madurez para la transformación digital. Bogotá, D.C.: MinTIC -Subdirección de Comercio Electrónico, INNpulsa Colombia - Desarrollo Empresarial, 44. https://camaraarmenia.org.co/wp-content/uploads/2020/08/Modelo-de-transformacióndigital.pdf; Adner, R., Puranam, P., & Zhu, F. (2019). What Is Different About Digital Strategy? From Quantitative to Qualitative Change. Strategy Science, 4(4), 253–261. https://doi.org/10.1287/stsc.2019.0099; Aghamiri, S., Karima, J., & Cavus, N. (2022). Advantages of Digital Transformation Models and Frameworks for Business: A Systematic Literature Review. International Journal of Advanced Computer Science and Applications, 13(12). https://doi.org/10.14569/IJACSA.2022.0131206; Agostino, D., & Costantini, C. (2021). A measurement framework for assessing the digital transformation of cultural institutions: the Italian case. Meditari Accountancy Research. https://doi.org/10.1108/MEDAR-02-2021-1207; Albrecht, E., & Brummett, C. M. (2021). If you cannot measure it, you cannot improve it. Anaesthesia, 76(10), 1304–1307. https://doi.org/10.1111/anae.15480; Alcácer, V., & Cruz-Machado, V. (2019). Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems. Engineering Science and Technology, an International Journal, 22(3), 899–919. https://doi.org/10.1016/j.jestch.2019.01.006; Alekseev, A. N., Lobova, S. V., Bogoviz, A. V., & Ragulina, Y. V. (2019). Digitalization of the russian energy sector: state of the art and potential for future research. International Journal of Energy Economics and Policy, 9(5), 274–280. https://doi.org/10.32479/ijeep.7673; Alkan, D. P. (2020). Re-Shaping Business Strategy in the Era of Digitization. In Handbook of Research on Strategic Fit and Design in Business Ecosystems (pp. 76–97). https://doi.org/10.4018/978-1-7998-1125-1.ch004; Almasri, H., ZAKUAN, N., AMER, M. S., & MAJID, M. R. (2021). A developed systematic literature review procedure with application in the field of digital transformation. Studies of Applied Economics, 39(4). https://doi.org/10.25115/eea.v39i4.4559; AlMulhim, A. F. (2021). Smart supply chain and firm performance: the role of digital technologies. Business Process Management Journal, 27(5), 1353–1372. https://doi.org/10.1108/BPMJ-12- 2020-0573; Ambrosio da Silva, I., Cesar Macedo Barbalho, S., Adam, T., Heine, I., & Schmitt, R. (2021). Industry 4.0 Readiness: a new framework for maturity evaluation based on a bibliometric study of scientific articles from 2001 to 2020. DYNA, 88(218), 101–109. https://doi.org/10.15446/dyna.v88n218.92543; Anderson, C., & William, E. (2018). Digital Maturity Model - Achieving digital maturity to drive growth. Deloitte. https://www2.deloitte.com/content/dam/Deloitte/global/Documents/TechnologyMedia-Telecommunications/deloitte-digital-maturity-model.pdf; ANDI. (2019). Informe de la encuesta de transformacion digital 2019. Asociación Nacional de Industriales. http://www.andi.com.co/Uploads/ANALISIS - ENCUESTA DE TRANSFORMACIÓN DIGITAL 2019 - ANDI.pdf; ANDI. (2022). Colombia un país digital. Asociación Nacional de Industriales. https://www.andi.com.co/Uploads/02 PINZON 19052022 Panoransformación Digital en Colombia ILS VF SPGAMG.pdf; Appio, F. P., Frattini, F., Petruzzelli, A. M., & Neirotti, P. (2021). Digital Transformation and Innovation Management: A Synthesis of Existing Research and an Agenda for Future Studies. Journal of Product Innovation Management, 38(1), 4–20. https://doi.org/10.1111/jpim.12562; Archibugi, D. (2017). Blade Runner economics: Will innovation lead the economic recovery? Research Policy, 46(3), 535–543. https://doi.org/10.1016/j.respol.2016.01.021; Ashok, M., Madan, R., Joha, A., & Sivarajah, U. (2022). Ethical framework for Artificial Intelligence and Digital technologies. International Journal of Information Management, 62, 102433. https://doi.org/10.1016/j.ijinfomgt.2021.102433; Babkin, A., Tashenova, L., Mamrayeva, D., & Makhmudova, G. (2020). Digital platforms for industrial clusters and enterprises. Proceedings of the 2nd International Scientific Conference on Innovations in Digital Economy: SPBPU IDE-2020, 1–7. https://doi.org/10.1145/3444465.3444486; Bai, C., Quayson, M., & Sarkis, J. (2021). COVID-19 pandemic digitization lessons for sustainable development of micro-and small- enterprises. Sustainable Production and Consumption, 27(1), 1989–2001. https://doi.org/10.1016/j.spc.2021.04.035; Becker, J., Knackstedt, R., & Pöppelbuß, J. (2009). Developing Maturity Models for IT Management. Business & Information Systems Engineering, 1(3), 213–222. https://doi.org/10.1007/s12599- 009-0044-5; Becker, W., Ulrich, P., & Vogt, M. (2013). Digitalisierung im Mittelstand-Ergebnisbericht einer OnlineUmfrage. Univ., Lehrstuhl Für Betriebswirtschaftslehre, Insbes. Unternehmensführung Und Controlling. https://fis.unibamberg.de/bitstream/uniba/1505/1/BBB192DigiOnlineUmfrseA2.pdf; Bellantuono, N., Nuzzi, A., Pontrandolfo, P., & Scozzi, B. (2021). Digital transformation models for the i4.0 transition: Lessons from the change management literature. Sustainability (Switzerland), 13(23). https://doi.org/10.3390/su132312941; Berger, R. (2015). The digital transformation of industry. The Study Commissioned by the Federation of German Industries (BDI), Munich. https://bdi.eu/media/presse/publikationen/informationund-telekommunikation/Digital_Transformation.pdf; Berghaus, S., & Back, A. (2016). Stages in digital business transformation: results of an empirical maturity study. Mediterranean Conference on Information Systems (MCIS), (Paper 22), 1–17. https://core.ac.uk/download/pdf/301370037.pdf; Berghaus, S., Back, A., & Kaltenrieder, B. (2016). Digital maturity & transformation report 2016. Institut Für Wirtschaftsinformatik, Universität St.Gallen. https://www.digitaleschweiz.ch/wpcontent/uploads/2016/06/digital-maturity-transformation-report-2016-mit-best-practices.pdf; Berghaus, S., Back, A., & Kaltenrieder, B. (2017). Digital Maturity & Transformation Report 2017. Institut Für Wirtschaftsinformatik, Universität St.Gallen. https://office-roxx.de/wpcontent/uploads/2019/01/digital-maturity-transformation-report-2017.pdf; Bertello, A., Ferraris, A., Bresciani, S., & De Bernardi, P. (2021). Big data analytics (BDA) and degree of internationalization: the interplay between governance of BDA infrastructure and BDA capabilities. Journal of Management and Governance, 25(4), 1035–1055. https://doi.org/10.1007/s10997-020-09542-w; Bordeleau, F.-È., & Felden, C. (2019). After the plan: An exploration of the digitalization application barriers. 25th Americas Conference on Information Systems, AMCIS 2019.; Bouncken, R., & Barwinski, R. (2021). Shared digital identity and rich knowledge ties in global 3D printing—A drizzle in the clouds? Global Strategy Journal, 11(1), 81–108. https://doi.org/10.1002/gsj.1370; Brennen, J. S., & Kreiss, D. (2016). Digitalization. In The International Encyclopedia of Communication Theory and Philosophy (pp. 1–11). Wiley. https://doi.org/10.1002/9781118766804.wbiect111; Brown, N., & Brown, I. (2019). From digital business strategy to digital transformation - How?: A systematic literature review. PervasiveHealth: Pervasive Computing Technologies for Healthcare. https://doi.org/10.1145/3351108.3351122; Brozzi, R., Riedl, M., & Matta, D. (2020). Key Readiness Indicators to Assess the Digital Level of Manufacturing SMEs. Procedia CIRP, 96, 201–206. https://doi.org/10.1016/j.procir.2021.01.075; Calle, A. D. La, Freije, I., Ugarte, J. V., & Larrinaga, M. Á. (2020). Measuring the impact of digital capabilities on product-service innovation in Spanish industries. International Journal of Business Environment, 11(3), 254. https://doi.org/10.1504/IJBE.2020.110904; Caputo, F., Cillo, V., Candelo, E., & Liu, Y. (2019). Innovating through digital revolution. Management Decision, 57(8), 2032–2051. https://doi.org/10.1108/MD-07-2018-0833; Carrijo, P., Alturas, B., & Pedrosa, I. (2021). Analysis of Digital Transformation Maturity Models %7C Análise de modelos de maturidade deTransformação Digital. Iberian Conference on Information Systems and Technologies, CISTI. https://doi.org/10.23919/CISTI52073.2021.9476644; Castells, M. (2010). The Information Age Economy, Society, and Culture . Volume I The Rise of the Network Society. John Wiley & Sons Ltd.; Catlin, T., Scanlan, J., & Willmott, P. (2015). Raising your digital quotient. McKinsey Q. http://www.eurasiancommission.org/ru/act/dmi/workgroup/materials/Pages/Бизнес-среда в цифровом мире/Доклады консалтинговых агентств/Mckinsey_Raising your Digital Quotient_2016.pdf; CEPAL. (2018). Datos, algoritmos y políticas: la redefinición del mundo digital (LC/CMSI.6/4). In Comisión Económica para América Latina y el Caribe (CEPAL). Publicación de las Naciones Unidas. https://repositorio.cepal.org/bitstream/handle/11362/43477/7/S1800053_es.pdf; CEPAL. (2021). Tecnologías digitales para un nuevo futuro (LC/TS.2021/43). In Comisión Económica para América Latina y el Caribe (CEPAL). Publicación de las Naciones Unidas. https://repositorio.cepal.org/bitstream/handle/11362/46816/1/S2000961_es.pdf; CEPAL. (2022a). Un camino digital para el desarrollo sostenible de América Latina y el Caribe (LC/CMSI.8/3). In Comisión Económica para América Latina y el Caribe (CEPAL). Publicación de las Naciones Unidas. https://repositorio.cepal.org/bitstream/handle/11362/48460/4/S2200899_es.pdf; CEPAL. (2022b). Hacia la transformación del modelo de desarrollo en América Latina y el Caribe: producción, inclusión y sostenibilidad (LC/SES.39/3-P). In Comisión Económica para América Latina y el Caribe (CEPAL). Publicación de las Naciones Unidas. https://doi.org/10.18356/9789210055857; Chanias, S., & Hess, T. (2016). Understanding digital transformation strategy formation: insights from Europe’s automotive industry. Pacific Asia Conference on Information Systems, PACIS 2016 - Proceedings. Pacific Asia Conference on Information Systems, 296. https://aisel.aisnet.org/pacis2016/296; Chaparro-Peláez, J., Acquila-Natale, E., Hernández-García, Á., & Iglesias-Pradas, S. (2020). The Digital Transformation of the Retail Electricity Market in Spain. Energies, 13(8), 2085. https://doi.org/10.3390/en13082085; Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., & Yin, B. (2018). Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges. IEEE Access, 6, 6505–6519. https://doi.org/10.1109/ACCESS.2017.2783682; Chen, N., Sun, D., & Chen, J. (2022). Digital transformation, labour share, and industrial heterogeneity. Journal of Innovation & Knowledge, 7(2), 100173. https://doi.org/10.1016/j.jik.2022.100173; Cheng, Y., Zhou, X., & Li, Y. (2023). The effect of digital transformation on real economy enterprises’ total factor productivity. International Review of Economics & Finance, 85, 488–501. https://doi.org/10.1016/j.iref.2023.02.007; Chou, Y.-C., Hao-Chun Chuang, H., & Shao, B. B. M. (2014). The impacts of information technology on total factor productivity: A look at externalities and innovations. International Journal of Production Economics, 158, 290–299. https://doi.org/10.1016/j.ijpe.2014.08.003; Christensen, C., Schmitt, M. K., Larsen, M. S. S., & Heidemann Lassen, A. (2022). The Effect of Digital Maturity on Strategic Approaches to Digital Transformation. In Lecture Notes in Mechanical Engineering (pp. 754–761). https://doi.org/10.1007/978-3-030-90700-6_86; Clerck, J. (2017). Digitization, digitalization, digital and transformation: the differences. I-SCOOP. https://www.i-scoop.eu/digital-transformation/digitization-digitalization-digital-transformationdisruption/; Colli, M., Madsen, O., Berger, U., Møller, C., Wæhrens, B. V., & Bockholt, M. (2018). Contextualizing the outcome of a maturity assessment for Industry 4.0. IFAC-PapersOnLine, 51(11), 1347– 1352. https://doi.org/10.1016/j.ifacol.2018.08.343; Collin, J., Hiekkanen, K., Korhonen, J., The Heel, M., Itälä, T., & Helenius, M. (2015). IT Leadership in Transition-The Impact of digitalization on Finnish Organization. Research Report, Aalto University. Department of Computer Science.; Consoli, D. (2012). Literature analysis on determinant factors and the impact of ICT in SMEs. Procedia – Social and Behavioral Sciences, 62, 93–97.; Creswell, J. W. (2014). Research Desing. Qualitative, quantitative and mixed methods approaches. SAGE Publications, Inc.; Creswell, John W., & Creswell, J. D. (2018). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (Fifth edit). SAGE Publications, Inc.; Crittenden, W. F., Biel, I. K., & Lovely, W. A. (2019). Embracing Digitalization: Student Learning and New Technologies. Journal of Marketing Education, 41(1), 5–14. https://doi.org/10.1177/0273475318820895; DAFP. (2016). Decreto 415 de 2016. Departamento Administrativo de La Función Pública (DAFP). http://es.presidencia.gov.co/normativa/normativa/DECRETO 415 DEL 07 DE MARZO DE 2016.pdf; Davis, N., & O’Halloran, D. (2018). La cuarta revolución industrial impulsa la globalización 4.0. Foro Económico Mundial. https://es.weforum.org/agenda/2018/11/la-cuarta-revolucion-industrialimpulsa-la-globalizacion-4-0/; De Carolis, A., Macchi, M., Negri, E., & Terzi, S. (2017). A maturity model for assessing the digital readiness of manufacturing companies. In IFIP Advances in Information and Communication Technology (Vol. 513). https://doi.org/10.1007/978-3-319-66923-6_2; Dedehayir, O., Ortt, J. R., & Seppänen, M. (2017). Disruptive change and the reconfiguration of innovation ecosystems. Journal of Technology Management & Innovation, 12(3), 9–21. https://doi.org/10.4067/S0718-27242017000300002; Delgosha, M. S., Saheb, T., & Hajiheydari, N. (2020). Modelling the asymmetrical relationships between digitalisation and sustainable competitiveness: a cross-country configurational analysis. Information Systems Frontiers. https://doi.org/https://doi.org/10.1007/s10796- 020- 10029-0; Deloitte. (2018). Digital Maturity Model Achieving digital maturity to drive growth. Deloitte Digital. https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Technology-MediaTelecommunications/deloitte-digital-maturity-model.pdf; Demlehner, Q., & Laumer, S. (2020). Why Context Matters: Explaining the Digital Transformation of the Manufacturing Industry and the Role of the Industry’s Characteristics in It. Pacific Asia Journal of the Association for Information Systems, 12(3), 57–81. https://doi.org/10.17705/1pais.12303; Dethine, B., Enjolras, M., & Monticolo, D. (2020). Digitalization and SMEs’ Export Management: Impacts on Resources and Capabilities. Technology Innovation Management Review, 10(4), 18–34. https://doi.org/10.22215/timreview/1344; Devereux, M. P., & Vella, J. (2018). Debate: Implications of Digitalization for International Corporate Tax Reform. Intertax, 46(6), 550–559. https://kluwerlawonline.com/journalarticle/Intertax/46.6/TAXI2018056; Dini, M., Gligo, N., & Patiño, A. (2021). Transformación digital de las mipymes: Elementos para el diseño de políticas. Documentos de Proyectos (LC/TS.2021/99), Santiago, Comisión Económica Para América Latina y El Caribe (CEPAL), 61. https://repositorio.cepal.org/bitstream/handle/11362/47183/1/S2100372_es.pdf; DNP, D. N. de P. (2018). Plan Nacional de Desarrollo 2018-2022: Pacto por Colombia, pacto por la equidad. Departamento Nacional de Planeación. Departamento Nacional de Planeación; DNP, D. N. de P. (2019). COPES 3975: Política nacional para la transformación digital e inteligencia artificial. https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/3975.pdf; DNP, D. N. de P. (2023). Plan Nacional de Desarrollo 2023-2026: Colombia potencia mundial de la vida. Departamento Nacional de Planeación. https://colaboracion.dnp.gov.co/CDT/portalDNP/PND-2023/2023-05-04-bases-plan-nacionalde-inversiones-2022-2026.pdf; Dosi, G., & Virgillito, M. E. (2019). Whither the evolution of the contemporary social fabric? New technologies and old socio‐economic trends. International Labour Review, 158(4), 593–625. https://doi.org/10.1111/ilr.12145; Eden, R., Burton-Jones, A., Casey, V., & Draheim, M. (2019). Digital Transformation Requires Workforce Transformation. MIS Quarterly Executive, 18(1). https://doi.org/10.17705/2msqe.00005; Eling, M., & Lehmann, M. (2018). The Impact of Digitalization on the Insurance Value Chain and the Insurability of Risks. The Geneva Papers on Risk and Insurance - Issues and Practice, 43(3), 359–396. https://doi.org/10.1057/s41288-017-0073-0; Epicoco, M. (2021). Technological Revolutions and Economic Development: Endogenous and Exogenous Fluctuations. Journal of the Knowledge Economy, 12(3), 1437–1461. https://doi.org/10.1007/s13132-020-00671-z; Ernstsen, S. N., Whyte, J., Thuesen, C., & Maier, A. (2021). How Innovation Champions Frame the Future: Three Visions for Digital Transformation of Construction. Journal of Construction Engineering and Management, 147(1), 05020022. https://doi.org/10.1061/(ASCE)CO.1943- 7862.0001928; Escorsa, P., & Valls, J. (2005). Tecnología e Innovación en la empresa (2nd ed.). Editorial Alfaomega.; Farías Gaytán, S.-C., Ramirez-Montoya, M.-S., & Aguaded, I. (2020). Research plan on the digital transformation of faculty to advance to the global era. ACM International Conference Proceeding Series, 1048–1052. https://doi.org/10.1145/3434780.3436634; Feliciano-Cestero, M. M., Ameen, N., Kotabe, M., Paul, J., & Signoret, M. (2023). Is digital transformation threatened? A systematic literature review of the factors influencing firms’ digital transformation and internationalization. Journal of Business Research, 157, 113546. https://doi.org/10.1016/j.jbusres.2022.113546; Felippes, B., da Silva, I., Barbalho, S., Adam, T., Heine, I., & Schmitt, R. (2022). 3D-CUBE readiness model for industry 4.0: technological, organizational, and process maturity enablers. Production & Manufacturing Research, 10(1), 875–937. https://doi.org/10.1080/21693277.2022.2135628; Frank, A. G., Mendes, G. H. S., Ayala, N. F., & Ghezzi, A. (2019). Servitization and Industry 4.0 convergence in the digital transformation of product firms: A business model innovation perspective. Technological Forecasting and Social Change, 141, 341–351. https://doi.org/10.1016/j.techfore.2019.01.014; Freeman, C., & Perez, C. (1988). Structural crises of adjustment, business cycles and investment behaviour. In G. Dosi et al. (Eds.),Technical change and economic theory (pp. 38–66). Francis Pinter; Friedrich, R., Gröne, F., Koster, A., & Le Merle, M. (2011). Measuring industry digitization: Leaders and laggards in the digital economy. https://www.strategyand.pwc.com/gx/en/insights/2002- 2013/measuring-industry-digitization/strategyand-measuring-industry-digitization-leaderslaggards-digital-economy.pdf; Fujii-Takamoto, B., & Langford, G. (2022). Digital Transformation can Threaten your Organizational Survival without Digital Self-Awareness. PICMET 2022 - Portland International Conference on Management of Engineering and Technology: Technology Management and Leadership in Digital Transformation - Looking Ahead to Post-COVID Era, Proceedings. https://doi.org/10.23919/PICMET53225.2022.9882832; Gaffley, G., & Pelser, T. G. (2021). Developing a digital transformation model to enhance the strategy development process for leadership in the South African manufacturing sector. South African Journal of Business Management, 52(1). https://doi.org/10.4102/sajbm.v52i1.2357; Galvis-Lista, E. A., & Sánchez-Torres, J. M. (2014). Modelo de Referencia de Procesos de Gestión de Conocimiento aplicable a Organizaciones Desarrolladoras de Software del Contexto Colombiano. November, 270. https://doi.org/10.13140/2.1.3185.1207; Gebayew, C., Hardini, I. R., Panjaitan, G. H. A., Kurniawan, N. B., & Suhardi. (2018). A Systematic Literature Review on Digital Transformation. 2018 International Conference on Information Technology Systems and Innovation (ICITSI), 260–265. https://doi.org/10.1109/ICITSI.2018.8695912; Gebre-Mariam, M., & Bygstad, B. (2019). Digitalization mechanisms of health management information systems in developing countries. Information and Organization, 29(1), 1–22. https://doi.org/10.1016/j.infoandorg.2018.12.002; Ghobakhloo, M., & Fathi, M. (2019). Corporate survival in Industry 4.0 era: the enabling role of leandigitized manufacturing. Journal of Manufacturing Technology Management, 31(1), 1–30. https://doi.org/10.1108/JMTM-11-2018-0417; Ghobakhloo, M., & Iranmanesh, M. (2021). Digital transformation success under Industry 4.0: a strategic guideline for manufacturing SMEs. Journal of Manufacturing Technology Management, ahead-of-p(ahead-of-print). https://doi.org/10.1108/JMTM-11-2020-0455; Ghosh, S., Hughes, M., Hodgkinson, I., & Hughes, P. (2022). Digital transformation of industrial businesses: A dynamic capability approach. Technovation, 113, 102414. https://doi.org/10.1016/j.technovation.2021.102414; Gileva, T. A., Galimova, M. P., Babkin, A. V, & Gorshenina, M. E. (2021). Strategic management of industrial enterprise digital maturity in a global economic space of the ecosystem economy. IOP Conference Series: Earth and Environmental Science, 816(1), 012022. https://doi.org/10.1088/1755-1315/816/1/012022; Gill, M., & VanBoskirk, S. (2016). Digital Maturity Model 4.0. Benchmarks: Digital Transformation Playbook. Forrester Research, Inc. https://dixital.cec.es/wpcontent/uploads/presentacions/presentacion06.pdf; Gils, B. van, & Weigand, H. (2020). Towards Sustainable Digital Transformation. 2020 IEEE 22nd Conference on Business Informatics (CBI), 1, 104–113. https://doi.org/10.1109/CBI49978.2020.00019; Gimpel, H., Hosseini, S., Xaver, R., Huber, R., Probst, L., Röglinger, M., & Faisst, U. (2018). Structuring Digital Transformation: A Framework of Action Fields and its Application at ZEISS. Journal of Information Technology, 19(1), 31–54. https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1726&context=jitta; GipuzKoa Berritzen - Innobasque. (2011). Roadmapping : Una herramienta para definir estrategias de I + D + i de éxito. Agencia Vasca de La Innovación, 32.; Gobble, M. M. (2018). Digitalization, Digitization, and Innovation. Research-Technology Management, 61(4), 56–59. https://doi.org/10.1080/08956308.2018.1471280; Gökalp, E., & Martinez, V. (2021). Digital transformation capability maturity model enabling the assessment of industrial manufacturers. Computers in Industry, 132, 103522. https://doi.org/10.1016/j.compind.2021.103522; Gollhardt, T., Halsbenning, S., Hermann, A., Karsakova, A., & Becker, J. (2020). Development of a Digital Transformation Maturity Model for IT Companies. 2020 IEEE 22nd Conference on Business Informatics (CBI), 1, 94–103. https://doi.org/10.1109/CBI49978.2020.00018; González-Varona, J. M., López-Paredes, A., Poza, D., & Acebes, F. (2021). Building and development of an organizational competence for digital transformation in SMEs. Journal of Industrial Engineering and Management, 14(1), 15–24. https://doi.org/10.3926/jiem.3279; Gordon, R. J. (2013). Is U.S. Economic Growth Over?faltering innovation Confronts the Six headwinds. Voprosy Ekonomiki, 4, 49–67. https://doi.org/10.32609/0042-8736-2013-4-49-67; Gunsberg, D., Callow, B., Ryan, B., Suthers, J., Baker, P. A., & Richardson, J. (2018). Applying an organisational agility maturity model. Journal of Organizational Change Management, 31(6), 1315–1343. https://doi.org/10.1108/JOCM-10-2017-0398; Guo, X., Li, M., Wang, Y., & Mardani, A. (2023). Does digital transformation improve the firm’s performance? From the perspective of digitalization paradox and managerial myopia. Journal of Business Research, 163, 113868. https://doi.org/10.1016/j.jbusres.2023.113868; Hagberg, J., Sundstrom, M., & Egels-Zandén, N. (2016). The digitalization of retailing: an exploratory framework. International Journal of Retail & Distribution Management, 44(7), 694–712. https://doi.org/10.1108/IJRDM-09-2015-0140; Hanelt, A., Bohnsack, R., Marz, D., & Antunes Marante, C. (2021). A Systematic Review of the Literature on Digital Transformation: Insights and Implications for Strategy and Organizational Change. Journal of Management Studies, 58(5), 1159–1197. https://doi.org/10.1111/joms.12639; Haryanti, T., Rakhmawati, N. A., & Subriadi, A. P. (2023). The Extended Digital Maturity Model. Big Data and Cognitive Computing, 7(1), 17. https://doi.org/10.3390/bdcc7010017; Hellge, V., Schröder, D., & Bosse, C. (2019). Der Readiness-Check Digitalisierung Ein Instrument zur Bestimmung der digitalen Reife von KMU. Mittelstand 4.0-Kompetenzzentrum Kaiserslautern. https://kompetenzzentrum-kaiserslautern.digital/wpcontent/uploads/2019/01/Broschüre_Readiness_Check_Digitalisierung_Januar_2019_final.p df; Henriette, E., Feki, M., & Boughzala, I. (2015). The Shape of Digital Transformation: A Systematic Literature Review. MCIS 2015 Proceedings, 10. https://aisel.aisnet.org/mcis2015/10; Heredia, J., Castillo-Vergara, M., Geldes, C., Carbajal Gamarra, F. M., Flores, A., & Heredia, W. (2022). How do digital capabilities affect firm performance? The mediating role of technological capabilities in the “new normal.” Journal of Innovation & Knowledge, 7(2), 100171. https://doi.org/10.1016/j.jik.2022.100171; Hess, T., Matt, C., Benlian, A., & Wiesböck, F. (2016). Options for formulating a digital transformation strategy. MIS Quarterly Executive, 15(2), 123–139, ISSN 15401960.; Holmström, J., Holweg, M., Lawson, B., Pil, F. K., & Wagner, S. M. (2019). The digitalization of operations and supply chain management: Theoretical and methodological implications. Journal of Operations Management, 65(8), 728–734. https://doi.org/10.1002/joom.1073; Horlach, B., Drews, P., Schirmer, I., & Boehmann, T. (2017). Increasing the Agility of IT Delivery: Five Types of Bimodal IT Organization. https://doi.org/10.24251/HICSS.2017.656; Ifenthaler, D., & Egloffstein, M. (2020). Development and Implementation of a Maturity Model of Digital Transformation. TechTrends, 64(2), 302–309. https://doi.org/10.1007/s11528-019- 00457-4; Ifenthaler, Dirk, & Egloffstein, M. (2020). Development and Implementation of a Maturity Model of Digital Transformation. TechTrends, 64(2), 302–309. https://doi.org/10.1007/s11528-019- 00457-4; Isaev, E., Korovkina, N., & Tabakova, M. (2018). Evaluation of the readiness of a company’s IT department for digital business transformation. Business Informatics, 2018(2), 55–64. https://doi.org/10.17323/1998-0663.2018.2.55.64; Ishfaq, R., Davis-Sramek, E., & Gibson, B. (2021). Digital supply chains in omnichannel retail: A conceptual framework. Journal of Business Logistics. https://doi.org/10.1111/jbl.12277; Ismagilova, L. A., Gileva, T. A., Galimova, M. P., Sitnikova, L. V., & Gilev, G. A. (2019). The digital transformation trajectory of industrial enterprises. Proceedings of the 33rd International Business Information Management Association Conference, IBIMA 2019: Education Excellence and Innovation Management through Vision 2020, 2033–2045.; Jonathan, G. M., Rusu, L., & Van Grembergen, W. (2021). Business-IT Alignment and Digital Transformation: Setting A Research Agenda. In 29th International Conference on Information Systems Development. Association for Information Systems (AIS).; Jonathan, Gideon Mekonnen, Yalew, S. D., Gebremeskel, B. K., Rusu, L., & Perjons, E. (2023). IT Alignment: A Path Towards Digital Transformation Success. Procedia Computer Science, 219, 471–478. https://doi.org/10.1016/j.procs.2023.01.314; Kääriäinen, J., Pussinen, P., Saari, L., Kuusisto, O., Saarela, M., & Hänninen, K. (2021). Applying the positioning phase of the digital transformation model in practice for SMEs: toward systematic development of digitalization. International Journal of Information Systems and Project Management, 8(4), 24–43. https://doi.org/10.12821/ijispm080402; Kamalaldin, A., Linde, L., Sjödin, D., & Parida, V. (2020). Transforming provider-customer relationships in digital servitization: A relational view on digitalization. Industrial Marketing Management, 89, 306–325. https://doi.org/10.1016/j.indmarman.2020.02.004; Kane, G. C., Palmer, D., Nguyen Phillips, A., Kiron, D., & Buckley, N. (2016). Aligning the Organization for Its Digital Future. MIT Sloan Management Review and Deloitte University Press, (58180), 1–27. https://www2.deloitte.com/content/dam/insights/us/articles/mit-smrdeloitte-digital-transformation-strategy/2016_MIT_DeloitteAligningDigitalFuture.pdf; Kane, M., Crooks, T., & Cohen, A. (1999). Validating measures of performance. Educ. Meas.: Issues Pract.; Kane, M. T. (2006). Validation. Educ. Meas.; Karagiannaki, A., Vergados, G., & Fouskas, K. (2017). The impact of digital transformation in the financial services industry: Insights from an open innovation initiative in fintech in Greece. In Mediterranean Conference on Information Systems (MCIS). Association For Information Systems.; Khan, S. (2017). Leadership in the Digital Age – a study on the effects of digitalization on top management leadership (PDF) (Thesis). Stockholm Business School.; Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering – A systematic literature review. Information and Software Technology, 51(1), 7–15. https://doi.org/10.1016/j.infsof.2008.09.009; KPMG. (2016). Digital auf der Höhe der Zeit? KPMG. https://assets.kpmg/content/dam/kpmg/pdf/2016/04/digital-readiness-assessment-03-16.PDF; Lee, M., Yun, J., Pyka, A., Won, D., Kodama, F., Schiuma, G., Park, H., Jeon, J., Park, K., Jung, K., Yan, M.-R., Lee, S., & Zhao, X. (2018). How to Respond to the Fourth Industrial Revolution, or the Second Information Technology Revolution? Dynamic New Combinations between Technology, Market, and Society through Open Innovation. Journal of Open Innovation: Technology, Market, and Complexity, 4(3), 21. https://doi.org/10.3390/joitmc4030021; Lenka, S., Parida, V., & Wincent, J. (2017). Digitalization Capabilities as Enablers of Value CoCreation in Servitizing Firms. Psychology & Marketing, 34(1), 92–100. https://doi.org/10.1002/mar.20975; Leonardus, W., Wasono, M., Alamsjah, F., Elidjen, & Sasmoko. (2018). Digital transformation in the age of industry 4.0: Acceleration of transformational performance through business model innovation and co-creation strategy in indonesian ict firms %7C Transformación digital en la era de la industria 4.0: aceleración del rend. Opcion, 34(86), 2145–2159.; Lerch, C., & Gotsch, M. (2015). Digitalized Product-Service Systems in Manufacturing Firms: A Case Study Analysis. Research-Technology Management, 58(5), 45–52. https://doi.org/10.5437/08956308X5805357; Leyh, C., Schäffer, T., Bley, K., & Bay, L. (2017). The Application of the Maturity Model SIMMI 4.0 in Selected Enterprises. Twenty-Third Americas Conference on Information Systems, Boston. https://tu-dresden.de/bu/wirtschaft/winf/isih/ressourcen/dateien/isih_team/pdfs_team/Leyh-etal-2017-_-The-Application-of-the-Maturity-Model-SIMMI-4-0.pdf?lang=de; Leyh, C., Schäffer, T., Bley, K., & Forstenhäusler, S. (2016). SIMMI 4.0 – A Maturity Model for Classifying the Enterprise-wide IT and Software Landscape Focusing on Industry 4.0. 1297– 1302. https://doi.org/10.15439/2016F478; Li, F. (2020). The digital transformation of business models in the creative industries: A holistic framework and emerging trends. Technovation, 92–93. https://doi.org/10.1016/j.technovation.2017.12.004; Li, Feng. (2020). The digital transformation of business models in the creative industries: A holistic framework and emerging trends. Technovation, 92–93, 102012. https://doi.org/10.1016/j.technovation.2017.12.004; Lichtblau, K., & et al. (2017). Study: Industrie 4.0 Readiness. http://www.impulsstiftung.de/%0Adocuments/3581372/4875835/Industrie+4.0+Readniness+IMPULS+Studie+O ktober+2015.%0Apdf/447a6187-9759-4f25-b186-b0f5eac69974; Lichtblau, K., Stich, V., Bertenrath, R., Blum, M., Bleider, M., Millack, A., Schmitt, K., Schmitz, E., & Schröter, M. (2015). IMPULS - Industrie 4.0-Readiness. Impuls-Stiftung Des VDMA, AachenKöln. https://www.vdma.org/viewer/-/v2article/render/1084566; Liere-Netheler, K., Packmohr, S., & Vogelsang, K. (2018). Drivers of Digital Transformation in Manufacturing. https://doi.org/10.24251/HICSS.2018.493; Lorenzo, O. (2016). Cultura Digital: Construyendo nuevos comportamientos y habitos en la organización para maximizar el potencial de la tecnología. Boletin de Estudios Económicos, 71(217), 71–83. https://www.researchgate.net/publication/301297558_CULTURA_DIGITAL_CONSTRUYEND O_NUEVOS_COMPORTAMIENTOS_Y_HABITOS_EN_LA_ORGANIZACION_PARA_MAXI MIZAR_EL_POTENCIAL_DE_LA_TECNOLOGIA_DIGITAL_CULTURE_BUILDING_NEW_O RGANIZATIONAL_BEHAVIORS_AND_HABITS_TO_MAXIMI; Lorenzo Ochoa, O. (2016). Modelos de madurez digital: ¿En qué consisten y qué podemos aprender de ellos? Boletín de Estudios Económicos, 72(219), 573–590. file:///C:/Users/Monica Pelegrina/Downloads/BEEMadurezDigitalOLorenzo.pdf; Lundvall, B.-Å. (2017). Is there a technological fix for the current global stagnation? Research Policy, 46(3), 544–549. https://doi.org/10.1016/j.respol.2016.06.011; Machekhina, O. N. (2017). Digitalization of education as a trend of its modernization and reforming. https://www.semanticscholar.org/paper/Digitalization-of-education-as-a-trend-of-its-andMachekhina/3c78b5205e2d1b386d79de6b40af9ceb1628fb02; Maedche, A., Vom Brocke, J., & Hevner, A. (2017). Designing the Digital Transformation: 12th International Conference, DESRIST 2017.; Mahraz, M.-I., Benabbou, L., & Berrado, A. (2019). A systematic literature review of digital transformation. Proceedings of the International Conference on Industrial Engineering and Operations Management, 917–931.; Maltaverne, B. (2017). Digital transformation of Procurement: a good abuse of language? http://www.thedigitaltransformationpeople.com/; Manochehri, N. N., Al-Esmail, R., & Ashrafi, R. (2012). Examining the impact of information and communication technologies (ICT) on enterprise practices: a preliminary perspective from Qatar. The Electronic Journal on Information Systems in Developing Countries (EJISDC), 51(3), 1–16.; Manotti, J., Sanasi, S., Cavallo, A., Ghezzi, A., & Rangone, A. (2020). Digital innovation: A bibliometric review and research agenda. Proceedings of the European Conference on Innovation and Entrepreneurship, ECIE, 2020-Septe, 369–375. https://doi.org/10.34190/EIE.20.116; Marjanovic, U., Rakic, S., & Lalic, B. (2019). Digital Servitization: The Next “Big Thing” in Manufacturing Industries. In IFIP Advances in Information and Communication Technology (Vol. 566, pp. 510–517). https://doi.org/10.1007/978-3-030-30000-5_63; Martín-Peña, M.-L., Sánchez-López, J.-M., & Díaz-Garrido, E. (2019). Servitization and digitalization in manufacturing: the influence on firm performance. Journal of Business & Industrial Marketing, 35(3), 564–574. https://doi.org/10.1108/JBIM-12-2018-0400; Matt, C., Hess, T., & Benlian, A. (2015). Digital Transformation Strategies. Business & Information Systems Engineering, 57(5), 339–343. https://doi.org/10.1007/s12599-015-0401-5; Maxwell, L., & McCain, T. A. (1997). Gateway or gatekeeper: The implications of copyright and digitalization on education. Communication Education, 46(3), 141–157. https://doi.org/10.1080/03634529709379087; Maydanova, S., & Ilin, I. (2019). Strategic approach to global company digital transformation. Proceedings of the 33rd International Business Information Management Association Conference, IBIMA 2019: Education Excellence and Innovation Management through Vision 2020, 8818–8833.; Mihardjo, L. W. W., Sasmoko, S., Alamsjah, F., & Elidjen, E. (2019). Digital leadership role in developing business model innovation and customer experience orientation in industry 4.0. Management Science Letters, 9(11), 1749–1762. https://doi.org/10.5267/j.msl.2019.6.015; Mihova, T., & Chukalov, K. (2019). Digital business models in industrial enterprises. IOP Conference Series: Materials Science and Engineering, 618(1). https://doi.org/10.1088/1757- 899X/618/1/012074; MinTIC. (2019a). G.GEN.03 Guía general de un proceso de Arquitectura Empresarial. In Viceministerio de Economía Digital, Dirección de Gobierno Digital. Versión 2.2, Octubre 2019. Ministerio de Tecnologías de la Información y las Comunicaciones (MinTIC). https://mintic.gov.co/arquitecturati/630/articles-9435_Guia_Proceso.pdf; MinTIC. (2019b). MAE.G.GEN.01 – Documento Maestro del Modelo de Arquitectura Empresarial. In Viceministerio de Economía Digital, Dirección de Gobierno Digital. Versión 1, Octubre 2019. Ministerio de Tecnologías de la Información y las Comunicaciones (MinTIC). https://www.mintic.gov.co/arquitecturati/630/articles-144764_recurso_pdf.pdf; MinTIC. (2019c). Marco de Referencia de Arquitectura v. 2.0. Arquitectura TI Colombia, Ministerio de Tecnologías de La Información y Las Comunicaciones (MinTIC). https://www.mintic.gov.co/arquitecturati/630/w3-propertyvalue-8118.html; MinTIC. (2019d). MGGTI.G.GEN.01 – Documento Maestro del Modelo de Gestión y Gobierno de TI. In Viceministerio de Economía Digital, Dirección de Gobierno Digital. Versión 1, Octubre 2019. Ministerio de Tecnologías de la Información y las Comunicaciones (MinTIC). https://www.mintic.gov.co/arquitecturati/630/articles-144767_recurso_pdf.pdf; MinTIC. (2019e). MGPTI.G.GEN.01 – Documento Maestro del Modelo de Gestión de Proyectos TI. In Viceministerio de Economía Digital, Dirección de Gobierno Digital. Versión 1, Octubre 2019. https://www.mintic.gov.co/arquitecturati/630/articles-144766_recurso_pdf.pdf; MinTIC. (2020). Marco de la Transformación Digital para el Estado Colombiano. In Viceministerio de Economía Digital, Dirección de Gobierno Digital. Versión 1, Julio 2020. Ministerio de Tecnologías de la Información y las Comunicaciones (MinTIC). https://mintic.gov.co/portal/715/articles-149186_recurso_1.pdf; MinTIC, M. de T. de la I. y las C. (2018). Manual de Gobierno Digital. Ministerio de Tecnologías de la Información y las Comunicaciones (MinTIC). https://gobiernodigital.mintic.gov.co/692/channels-594_manual_gd.pdf; MinTIC, M. de T. de la I. y las C. (2022). MinTIC expide el Decreto 1263 de 2022 para definir los lineamientos y estándares aplicables a la transformación digital pública. Transformación Digital. https://www.mintic.gov.co/portal/inicio/Sala-de-prensa/Noticias/238232:MinTICexpide-el-Decreto-1263-de-2022-para-definir-los-lineamientos-y-estandares-aplicables-a-latransformacion-digital-publica; Morakanyane, R., Grace, A., & O’Reilly, P. (2017). Conceptualizing Digital Transformation in Business Organizations: A Systematic Review of Literature. Digital Transformation – From Connecting Things to Transforming Our Lives, 427–443. https://doi.org/10.18690/978-961- 286-043-1.30; Morley, J., Widdicks, K., & Hazas, M. (2018). Digitalisation, energy and data demand: The impact of Internet traffic on overall and peak electricity consumption. Energy Research & Social Science, 38, 128–137. https://doi.org/10.1016/j.erss.2018.01.018; Motta, J., Moreno, H., & Ascúa, R. (2019). Industria 4.0 en miPYMES manufactureras de la Argentina, Documentos de Proyectos (LC/TS.2019/93), Santiago. Comisión Económica Para América Latina y El Caribe (CEPAL).; Mullins, J., & Komisar, R. (2011). MEASURING UP: DASHBOARDING FOR INNOVATORS. Business Strategy Review, 22(1), 7–16. https://doi.org/10.1111/j.1467-8616.2011.00723.x; Nadler, D. A., & Tushman, M. L. (1980). A model for diagnosing organizational behavior. Organizational Dynamics, 9(2), 35–51. https://doi.org/10.1016/0090-2616(80)90039-X; Nambisan, S., Wright, M., & Feldman, M. (2019). The digital transformation of innovation and entrepreneurship: Progress, challenges and key themes. Research Policy, 48(8), 103773. https://doi.org/10.1016/j.respol.2019.03.018; Nasiri, M., Saunila, M., Ukko, J., Rantala, T., & Rantanen, H. (2020). Shaping Digital Innovation Via Digital-related Capabilities. Information Systems Frontiers. https://doi.org/10.1007/s10796- 020-10089-2; Ndou, A. T., Madonsela, N. S., & Twala, B. (2020). The era of digital technology: Analysis of factors contributing to economic growth and sustainability. Proceedings of the International Conference on Industrial Engineering and Operations Management, 59, 1109–1123.; Nerima, M., & Ralyté, J. (2021). Towards a Digital Maturity Balance Model for Public Organizations. In Lecture Notes in Business Information Processing: Vol. 415 LNBIP. https://doi.org/10.1007/978-3-030-75018-3_20; Newman, M. (2017). Digital Maturity Model (DMM) A blueprint for digital transformation. TM Forum. https://www.tmforum.org/wp-content/uploads/2017/05/DMM-WP-2017-Web.pdf; Núñez de Schilling, E. (2011). Gestión tecnológica en la empresa: definición de sus objetivos fundamentales. Revista de Ciencias Sociales (RCS), 17(1), 156–166.; Open Roads. (2017). Introduction to Open Digital Maturity Model. https://de.scribd.com/document/362559576/170810-Introduction-to-Open-Digital-MaturityModel-for-release-V2R9-pdf#download; Pan, W., Xie, T., Wang, Z., & Ma, L. (2022). Digital economy: An innovation driver for total factor productivity. Journal of Business Research, 139, 303–311. https://doi.org/10.1016/j.jbusres.2021.09.061; Pappas, I. O., Mikalef, P., Giannakos, M. N., Krogstie, J., & Lekakos, G. (2018). Big data and business analytics ecosystems: Paving the way towards digital transformation and sustainable societies. Information Systems and E-Business Management, 16(3), 479–491.; Parida, V., Sjödin, D. R., Lenka, S., & Wincent, J. (2015). Developing Global Service Innovation Capabilities: How Global Manufacturers Address the Challenges of Market Heterogeneity. Research-Technology Management, 58(5), 35–44. https://doi.org/10.5437/08956308X5805360; Paritala, P. K., Manchikatla, S., & Yarlagadda, P. K. D. V. (2017). Digital Manufacturing- Applications Past, Current, and Future Trends. Procedia Engineering, 174, 982–991. https://doi.org/10.1016/j.proeng.2017.01.250; Parviainen, P., Tihinen, M., Kääriäinen, J., & Teppola, S. (2017). Tackling the digitalization challenge: How to benefit from digitalization in practice. International Journal of Information Systems and Project Management, 5, 63–77. https://doi.org/http://dx.doi.org/10.12821/ijispm050104; Peng, Y., & Tao, C. (2022). Can digital transformation promote enterprise performance? —From the perspective of public policy and innovation. Journal of Innovation & Knowledge, 7(3), 100198. https://doi.org/10.1016/j.jik.2022.100198; Perez, C. (2010). Technological revolutions and techno-economic paradigms. Cambridge Journal of Economics, 34(1), 185–202. https://doi.org/10.1093/cje/bep051; Perez, Carlota. (2013). Unleashing a golden age after the financial collapse: Drawing lessons from history. Environmental Innovation and Societal Transitions, 6, 9–23. https://doi.org/10.1016/j.eist.2012.12.004; Peter, M. K. (2017). KMU-Transformation. Als KMU die Digitale Transformation erfolgreich umsetzen. Forschungsresultate und Praxisleitfaden. FHNW Fachhochschule Nordwestschweiz Hochschule Für Wirtschaft. https://kmu-transformation.ch/digitale-ausgabe/; Peyman, A., Faraby, N., Rossmann, A., Steimel, B., & Wichmann, K. (2014). Digital Transformation Report - eine empirische Studie. Köln. Neuland GmbH & Co. KG. https://www.wiwo.de/downloads/10773004/1/DTA_Report_neu.pdf; Piccinini, E., Gregory, R. W., & Kolbe, L. M. (2015). Changes in the Producer-Consumer Relationship - Towards Digital Transformation. Wirtschaftsinformatik Proceedings 2015, 109. https://aisel.aisnet.org/wi2015/109; Porter, M. E. (2002). Ventaja Competitiva, creación y sostenimiento de un desempeño superior (2da ed.). Compañía Editorial Continental (CECSA).; Proença, D., & Borbinha, J. (2016). Maturity Models for Information Systems - A State of the Art. Procedia Computer Science, 100, 1042–1049. https://doi.org/10.1016/j.procs.2016.09.279; PwC Colombia, & CINTEL. (2021). Digital Way Colombia 2021: Análisis de la transformación digital de las empresas Colombianas ganadoras del Premio de Transformación Digital. Consulting PwC Colombia. https://www.pwc.com/co/es/advisory/Tecnologia/digital-way/files/digital-waycolombia-2021-pwc-cintel.pdf; Queiroz, M. M., Fosso Wamba, S., Machado, M. C., & Telles, R. (2020). Smart production systems drivers for business process management improvement. Business Process Management Journal, 26(5), 1075–1092. https://doi.org/10.1108/BPMJ-03-2019-0134; Rachinger, M., Rauter, R., Müller, C., Vorraber, W., & Schirgi, E. (2019). Digitalization and its influence on business model innovation. Journal of Manufacturing Technology Management, 30(8), 1143–1160. https://doi.org/10.1108/JMTM-01-2018-0020; Reis, J., Amorim, M., Melão, N., Cohen, Y., & Rodrigues, M. (2020). Digitalization: A Literature Review and Research Agenda (pp. 443–456). https://doi.org/10.1007/978-3-030-43616-2_47; Remane, G., Hanelt, A., Wiesboeck, F., & Kolbe, L. (2017). Digital maturity in traditional industries– an exploratory analysis. Proceedings of the 25th European Conference on Information Systems (ECIS). https://www.researchgate.net/publication/316687803_DIGITAL_MATURITY_IN_TRADITION AL_INDUSTRIES_-_AN_EXPLORATORY_ANALYSIS; Reyes, J. F., Morocho, V., & Cedillo, P. (2022). Applying Maturity Models in Organizations for Digital Transformation: A Comparative Study. In Smart Innovation, Systems and Technologies (Vol. 252, pp. 721–731). https://doi.org/10.1007/978-981-16-4126-8_64; Riascos González, J. A. (2006). De la estructura por funciones al enfoque basado en procesos y a la visión sistémica de la organizació. In Revista Ciencias Estratégicas (Vol. 14, Issue 15).; Ringenson, T., Höjer, M., Kramers, A., & Viggedal, A. (2018). Digitalization and Environmental Aims in Municipalities. Sustainability, 10(4), 1278. https://doi.org/10.3390/su10041278; Rodríguez-Abitia, G., & Bribiesca-Correa, G. (2021). Assessing digital transformation in universities. Future Internet, 13(2), 1–17. https://doi.org/10.3390/fi13020052; Rodríguez-Abitia, Guillermo, & Bribiesca-Correa, G. (2021). Assessing Digital Transformation in Universities. Future Internet, 13(2), 52. https://doi.org/10.3390/fi13020052; Rogers, D. L. (2016). The Digital Transformation Playbook - Rethink Your Business for the Digital Age. Columbia University Press.; Romero, D., Flores, M., Herrera, M., & Resendez, H. (2019). Five Management Pillars for Digital Transformation Integrating the Lean Thinking Philosophy. 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), 1–8. https://doi.org/10.1109/ICE.2019.8792650; Rossmann, A. (2018). Digital Maturity: Conceptualization and Measurement Mode. ICIS 2018 Proceedings., 8. https://www.researchgate.net/profile/Alexander-Rossmann2/publication/345760193_Digital_Maturity_Conceptualization_and_Measurement_Model/links /5face798299bf18c5b6a0a20/Digital-Maturity-Conceptualization-and-Measurement-Model.pdf; Rozo, D., Moreira, J., & van Sinderen, M. (2020). Examining enterprise architecture for digital transformation. CEUR Workshop Proceedings, 2900.; Saleh, A., & Awny, M. M. (2020). Digital transformation strategy framework. Towards the Digital World and Industry X.0 - Proceedings of the 29th International Conference of the International Association for Management of Technology, IAMOT 2020, 1207–1219.; Salume, P. K., Barbosa, M. W., Pinto, M. R., & Sousa, P. R. (2021). Key dimensions of digital maturity: A study with retail sector companies in Brazil %7C DimensÕes-chave da maturidade digital: Um estudo com empresas do setor de varejo no Brasil. Revista de Administracao Mackenzie, 22(6). https://doi.org/10.1590/1678-6971/ERAMD210071; Salviotti, G., Gaur, A., & Pennarola, F. (2019). Strategic factors enabling digital maturity: an extended survey. The 13th Mediterranean Conference on Information Systems (MCIS), 1–13. https://aisel.aisnet.org/mcis2019/15; Sánchez-Torres, J. M., & Miles, I. (2017). The role of future-oriented technology analysis in eGovernment: a systematic review. European Journal of Futures Research, 5(1). https://doi.org/10.1007/S40309-017-0131-7; Satalkina, L., & Steiner, G. (2020). Digital entrepreneurship and its role in innovation systems: A systematic literature review as a basis for future research avenues for sustainable transitions. Sustainability (Switzerland), 12(7). https://doi.org/10.3390/su12072764; Schäfer, D., Rossmann, A., Vogel, R., & Wichmann, K. (2015). Digital Transformation Report 2015. Köln. WirtschaftsWoche & Neuland, 1–75.; Schallmo, D., Williams, C. A., & Boardman, L. (2017). Digital transformation of business models — Best practice, enablers, and roadmap. International Journal of Innovation Management, 21(08), 1740014. https://doi.org/10.1142/S136391961740014X; Schlaepfer, R., Von Radowitz, K., Koch, M., & Merkofer, P. (2017). Digital future readiness - How do companies prepare for the opportunities and challenges of digitalisation? Deloitte. https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/consumer-business/ch-cip-enswiss-transformation.pdf; Schuchmann, D., & Seufert, S. (2015). Corporate Learning in Times of Digital Transformation: A Conceptual Framework and Service Portfolio for the Learning Function in Banking Organisations. International Journal of Advanced Corporate Learning (IJAC), 8(1), 31. https://doi.org/10.3991/ijac.v8i1.4440; Schuh, G., Anderl, R., Gausemeier, J., ten Hompel, M., & Wolfgang Wahlster. (2017). Industrie 4.0 Maturity Index Managing the Digital Transformation of Companies. Acatech STUDY. https://en.acatech.de/publication/industrie-4-0-maturity-index-managing-the-digitaltransformation-of-companies/; Schumacher, A., Erol, S., & Sihn, W. (2016). A Maturity Model for Assessing Industry 4.0 Readiness and Maturity of Manufacturing Enterprises. Procedia CIRP, 52, 161–166. https://doi.org/10.1016/j.procir.2016.07.040; Schumpeter, J. A. (1939). Business cycles. A theoretical, historical and statistical analysis of the capitalistprocess. McGraw-Hill Book Co.; Schwab, K. (2017). The fourth industrial revolution. Crown Business. https://doi.org/10.5555/3137529; Schwab, Klaus. (2016). The fourth industrial revolution. https://law.unimelb.edu.au/__data/assets/pdf_file/0005/3385454/SchwabThe_Fourth_Industrial_Revolution_Klaus_S.pdf; Schwertner, K. (2017). Digital transformation of business. Trakia Journal of Science, 15(Suppl.1), 388–393. https://doi.org/10.15547/tjs.2017.s.01.065; Serinikli, N. (2020). Transformation of Business With Digital Processes. In Handbook of Research on Strategic Fit and Design in Business Ecosystems (pp. 53–75). https://doi.org/10.4018/978- 1-7998-1125-1.ch003; Sewpersadh, N. S. (2023). Disruptive business value models in the digital era. Journal of Innovation and Entrepreneurship, 12(1), 2. https://doi.org/10.1186/s13731-022-00252-1; Seyedghorban, Z., Samson, D., & Tahernejad, H. (2020). Digitalization opportunities for the procurement function: pathways to maturity. International Journal of Operations & Production Management, 40(11), 1685–1693. https://doi.org/10.1108/IJOPM-04-2020-0214; Shahi, C., & Sinha, M. (2021). Digital transformation: challenges faced by organizations and their potential solutions. International Journal of Innovation Science, 13(1), 17–33. https://doi.org/10.1108/IJIS-09-2020-0157; Sheng, X., Guo, S., & Chang, X. (2022). Managerial myopia and firm productivity: Evidence from China. Finance Research Letters, 49, 103083. https://doi.org/10.1016/j.frl.2022.103083; Sierra, Y. (2022). Transformación digital en Colombia según el MinTIC (2022). Lemontech Blog. https://blog.lemontech.com/transformacion-digital-colombia/; Soares, N., Monteiro, P., Duarte, F. J., & Machado, R. J. (2021). Extended Maturity Model for Digital Transformation. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 12952 LNCS. https://doi.org/10.1007/978-3-030-86973-1_13; Sousa-Zomer, T. T., Neely, A., & Martinez, V. (2020). Digital transforming capability and performance: a microfoundational perspective. International Journal of Operations & Production Management, 40(7/8), 1095–1128. https://doi.org/10.1108/IJOPM-06-2019-0444; Sousa, M. J., Cruz, R., Rocha, Á., & Sousa, M. (2019). Innovation Trends for Smart Factories: A Literature Review. In Advances in Intelligent Systems and Computing (Vol. 930, pp. 689–698). https://doi.org/10.1007/978-3-030-16181-1_65; Srai, J. S., & Lorentz, H. (2019). Developing design principles for the digitalisation of purchasing and supply management. Journal of Purchasing and Supply Management, 25(1), 78–98. https://doi.org/10.1016/j.pursup.2018.07.001; Steinmueller, W. E. (2017). Science fiction and innovation: A response. Research Policy, 46(3), 550– 553. https://doi.org/10.1016/j.respol.2016.07.009; Strutynska, I., Dmytrotsa, L., Kozbur, H., Melnyk, L., & Olha, H. (2020). Developing practical recommendations for increasing the level of digital business transformation index. CEUR Workshop Proceedings, 2732, 351–362.; Sturgeon, T. J. (2021). Upgrading strategies for the digital economy. Global Strategy Journal, 11(1), 34–57. https://doi.org/10.1002/gsj.1364; Taruta, A., & Gatautisa, R. (2014). ICT impact on SMEs performance. Procedia - Social and Behavioral Sciences, 110, 1218 – 1225.; Tarute, A., Duobiene, J., Kloviene, L., Vitkauskaite, E., & Varaniute, V. (2018). Identifying factors affecting digital transformation of SMEs. Proceedings of the International Conference on Electronic Business (ICEB), 2018-Decem, 373–381.; Tashakkori, A., & Teddlie, C. (2009). Integrating Qualitative and Quantitative Approaches to Research. In The SAGE Handbook of Applied Social Research Methods (pp. 283–317). SAGE Publications, Inc. https://doi.org/10.4135/9781483348858.n9; Teichert, R. (2019). Digital Transformation Maturity: A Systematic Review of Literature. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67(6), 1673–1687. https://doi.org/10.11118/actaun201967061673; Teubner, R. A. (2019). An Exploration into IT Programs and Their Management: Findings From Multiple Case Study Research. Information Systems Management, 36(1), 40–56. https://doi.org/10.1080/10580530.2018.1553648; Thordsen, T., & Bick, M. (2021). Towards a holistic digital maturity model. International Conference on Information Systems, ICIS 2020 - Making Digital Inclusive: Blending the Local and the Global.; Thordsen, Tristan, Murawski, M., & Bick, M. (2020). How to Measure Digitalization? A Critical Evaluation of Digital Maturity Models (pp. 358–369). https://doi.org/10.1007/978-3-030-44999- 5_30; Thorseng, A. A., & Grisot, M. (2017). Digitalization as institutional work: a case of designing a tool for changing diabetes care. Information Technology & People, 30(1), 227–243. https://doi.org/10.1108/ITP-07-2015-0155; Tiller, S. R. (2011). Effective Business Governance. Leadership and Management in Engineering, 11(3), 253–257. https://doi.org/10.1061/(ASCE)LM.1943-5630.0000128; Tortora, D., Chierici, R., Farina Briamonte, M., & Tiscini, R. (2021). ‘I digitize so I exist’. Searching for critical capabilities affecting firms’ digital innovation. Journal of Business Research, 129, 193–204. https://doi.org/10.1016/j.jbusres.2021.02.048; Tylecote, A. (2019). Biotechnology as a new techno-economic paradigm that will help drive the world economy and mitigate climate change. Research Policy, 48(4), 858–868. https://doi.org/10.1016/j.respol.2018.10.001; Usai, A., Fiano, F., Messeni Petruzzelli, A., Paoloni, P., Farina Briamonte, M., & Orlando, B. (2021). Unveiling the impact of the adoption of digital technologies on firms’ innovation performance. Journal of Business Research, 133, 327–336. https://doi.org/10.1016/j.jbusres.2021.04.035; Valdez-de-Leon, O. (2016). A digital maturity model for telecommunications service providers. Technology Innovation Management Review, 6(8), 19–32. https://timreview.ca/sites/default/files/article_PDF/Valdez-deLeon_TIMReview_August2016.pdf; Valenduc, G., & Vendramin, P. (2017). Digitalisation, between disruption and evolution. Transfer: European Review of Labour and Research, 23(2), 121–134. https://doi.org/10.1177/1024258917701379; van Steenbergen, M., Bos, R., Brinkkemper, S., van de Weerd, I., & Bekkers, W. (2010). The Design of Focus Area Maturity Models (pp. 317–332). https://doi.org/10.1007/978-3-642-13335-0_22; Veiga de Cabo, J., De La Fuente Díez, E., & Zimmermann Verdejo, M. (2008). Modelos de estudios en investigación aplicada: conceptos y criterios para el diseño. Medicina y Seguridad Del Trabajo, 54(210). https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0465- 546X2008000100011; Velasco Chaves, R., Ordóñez Arias, C., & Restrepo Sánchez, M. (2020). Analítica. INNpulsa Colombia. Micomercio. https://innpulsacolombia.com/sites/default/files/documentos-recursospdf/Analitica_II (1).pdf; Venkateswaran, V., & Jyotishi, A. (2017). Digital Strategy Performance Differential Between Government and Private Sector: An New Institutional Economics Perspective. 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), 1– 5. https://doi.org/10.1109/ICCIC.2017.8524567; Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Qi Dong, J., Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisciplinary reflection and research agenda. Journal of Business Research, 122, 889–901. https://doi.org/10.1016/j.jbusres.2019.09.022; Verhovnik, J., & Duh, E. S. (2021). The importance of Industry 4.0 and digital transformation for SMEs %7C Pomen Industrije 4.0 in digitalne transformacije za mikro, mala in srednje velika podjetja. Elektrotehniski Vestnik/Electrotechnical Review, 88(3), 147–149.; Voss, M., Jaspert, D., Ahlfeld, C., & Sucke, L. (2023). Developing a digital maturity model for the sales processes of industrial projects. Journal of Personal Selling & Sales Management, 1–21. https://doi.org/10.1080/08853134.2022.2151014; Wade, M., & Shan, J. (2020). Covid-19 Has Accelerated Digital Transformation, but May Have Made it Harder Not Easier. MIS Quarterly Executive, 19(3), 213–220. https://aisel.aisnet.org/misqe/vol19/iss3/7; Wade, Michael, & Shan, J. (2020). Covid-19 Has Accelerated Digital Transformation, but May Have Made it Harder Not Easier. MIS Quarterly Executive, 213–220. https://doi.org/10.17705/2msqe.00034; Wallner, J., & KPMG. (2016). New “Digital Readiness Assessment” from 2b AHEAD and KPMG. 2b AHEAD ThinkTank. https://www.zukunft.business/foresight/trendanalysen/analyse/digitalreadiness-assessment-von-2b-ahead-und-kpmg/; Wang, S., Wan, J., Li, D., & Zhang, C. (2016). Implementing Smart Factory of Industrie 4.0: An Outlook. International Journal of Distributed Sensor Networks, 12(1), 3159805. https://doi.org/10.1155/2016/3159805; Weking, J., Stöcker, M., Kowalkiewicz, M., Böhm, M., & Krcmar, H. (2020). Leveraging industry 4.0 – A business model pattern framework. International Journal of Production Economics, 225, 107588. https://doi.org/10.1016/j.ijpe.2019.107588; Wendler, R. (2014). Development of the organizational agility maturity model. Federated Conference on Computer Science and Information Systems (FedCSIS), 1197–1206.; Wendler, Roy. (2012). The maturity of maturity model research: A systematic mapping study. Information and Software Technology, 54(12), 1317–1339. https://doi.org/10.1016/j.infsof.2012.07.007; Wessel, L., Baiyere, A., Ologeanu-Taddei, R., Cha, J., & Blegind Jensen, T. (2021). Unpacking the Difference Between Digital Transformation and IT-Enabled Organizational Transformation. Journal of the Association for Information Systems, 22(1), 102–129. https://doi.org/10.17705/1jais.00655; Westerman, G. (2016). Why digital transformation needs a heart. MIT Sloan Management Review, 58(1), ISSN 15329194.; Westerman, G., Bonnet, D., & McAfee, A. (2014). The nine elements of digital transformation. MIT Sloan Management Review, 55(3), 1–6.; Westerman, G., Calméjane, C., Bonnet, D., Ferraris, P., & McAfee, A. (2011). Digital Transformation: A roadmap for billion-dollar organizations. MIT Center for Digital Business and Capgemini Consulting, 1, 1–68. https://www.capgemini.com/wpcontent/uploads/2017/07/Digital_Transformation__A_Road-Map_for_BillionDollar_Organizations.pdf; Westerman, G., Tannou, M., Bonnet, D., Ferraris, P., & McAfee, A. (2012). The digital advantage: how digital leaders outperform their peers in every industry. MITSloan Manag. Capgemini Consult, 2, 2–23. https://www.capgemini.com/wpcontent/uploads/2017/07/The_Digital_Advantage__How_Digital_Leaders_Outperform_their_ Peers_in_Every_Industry.pdf; Yamamoto, S. (2020). A Strategic Map for Digital Transformation. Procedia Computer Science, 176, 1374–1381. https://doi.org/10.1016/j.procs.2020.09.147; Yoo, Y., Lyytinen, K., Thummadi, V., & Weiss, A. (2010). Unbounded Innovation with Digitalization : A Case of Digital Camera. Proceedings of the Annual Meeting of the Academy of Management, AOM 2010.; Zhai, H., Yang, M., & Chan, K. C. (2022). Does digital transformation enhance a firm’s performance? Evidence from China. Technology in Society, 68, 101841. https://doi.org/10.1016/j.techsoc.2021.101841; https://repositorio.unal.edu.co/handle/unal/84991; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/

  7. 7

    Popis souboru: application/pdf

    Relation: [Bac99] Back S., Liebowitz J., Prasad S.Y., Granger M. Intelligent Agents for Knowledge Management — Toward Intelligent Web-Based Collaboration within Virtual Teams. In: Liebowitz J.(ed.), Knowledge Management Handbook. CRC Press, 1999; [Bon88] Bond A.H., Gasser L. (eds.) Readings in Distributed Artificial Intelligence. Morgan Kaufmann. 1988.; [Bra97] Bradshaw, J. (ed.). Software Agents. AAAI Press/ The MIT Press. 1997; [Bur96] Burmeister B. Models and Methodology for Agent Oriented Analysis and Design. Working Notes of the KI?96 Workshop on Agent — Oriented Programming and Distributed Systems. 1996; [Co196] Collinot A., Drogoul A., Benhamou P. Agent Oriented Design of a Soccer Robot Team. In Proceedings of the Second International Conference on MultiAgent Systems (ICMAS-96), pages 41-47, 1996.; [COL97] Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnología - “Francisco José de Caldas” — Colciencias. Plan Estratégico del Programa Nacional de Electrónica, Telecomunicaciones e Informática. 1997.; [Dec97] Decker K., Sycara K., Williamson M., Middle-Agents for the Internet. In: Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI-97), Jan. 1997.; [Din97.] d'Inverno M., Fisher M., Lomuscio A., Luck M., de Rijke M., Ryan M., Wooldridge M. Formalisms for Multi-Agent Systems. The Knowledge Engineering Review, vol. 12, num. 3, 1997; [Eva00] Evans, P. Y Wurster, T. S. Volando en pedacitos.: Como se transforma la estrategia de negocios en la nueva economía de la información. Oxford University Press México, 2000; [Fin97] Finin T., Labrour Y., Mayfield J. KQLM as an Agent Communication Language. In Software Engineering, Bradshaw J. M. (ed). AAAI Press. 1997; [Gla96] Glaser N. Contribution to Knowledge Modelling in a Multiagent Framework: The CoMoMAS Approach. Tesis Doctoral L*Universtité Henri Poincaré, Nancy I, France. 1996; [Hay94] Hayes-Roth, B. et. al. Direct Improvisation, Technical Report No. KSL-94-61, Stanford Univ., 1994.; [Hoa95] Hoare C. A, R. Communicating Sequential Processes. Prentice-Hall International. 1985.; [Huh97] Huhns M., Singh, M. P. Agents and Multiagent Systems: Themes, Approaches and Challenges. In Readings in Agents, chapter 1. Morgan Kaufmann Publishers. 1997; [Ig198] Iglesias C. A. Definición de una Metodología para el Desarrollo de Sistemas Multiagente. Tesis Doctoral. Universidad Politécnica de Madrid. Departamento de Ingeniería de Sistemas Telemáticos. 1998.; [JeSW98] Jennings N.R., Sycara K., Wooldridge M. A Roadmap of Agent Research and Development. Autonomous Agents and Multi-Agent Systems Journal. Kluwer Academic Pubs., vol. 1, num. 1, pages 7-38, 1998.; [Kin96] Kinny D., Georgeff M., Rao A. A Methodology and Modelling Technique for Systems of BDI Agents. In Van de Velde and Perram, editors, Agents Breaking Away: Proceedings of the Seventh European Workshop on Modelling Autonomous Agents in a Multi-Agent World. LNAI, vol 1038, pages 56-71, Springer Verlag, 1996.; [Lar96] Larsen P. G., Fitzgerald J., Brookes T. Applying Formal Specification in Industry. IEEE Software. Volume 13, number 7, pages 48-56. 1996.; [Mac95] MacKenzie, D.C.; Cameron, J.M.; Arkin, R.C, Specification and Execution of Multiagent Missions, Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, vol, 3, pp. 51- 58, Aug. 1995; [Ma99] Ma M. Agents in E-Commerce. Communication of the ACM, vol. 42, num. 3, pages 79 -80, 1999; [Mae99] Macs P., Guttman R., Moukas A. G. Agents that Buy and Sell. Communication of the ACM, vol. 42, num. 3, pages 81-91. 1999; [Mur98] Murugesan, S. Intelligent Agents on the Internet and Web, http://btewebsh.macarthur.uws.edu.au/san/; [Neg97] Negroponte N. Agents: From Direct Manipulation to Delegation. In Software Agents. J. Bradshaw (ed.). pp 57-66. 1997; [Non99] Nonaka, I; Takeuchi, H. La organización creadora de conocimiento. Oxford University Press, México, 1999; [Nor97] Norman, D. How Might People Interact with Agents?. In: Software Agents, J. Bradshaw (ed.). pp 49-56. 1997; [Nwa96] Nwana, H.S. Sofware Agents: An Overview. Knowledge Engineering Review, vol. 11, num.3, pages 205-244. 1996.; [O*"L97] O”Leary D. E. The Internet, Intranets, and the Al Renaissance. IEEE Computer, vol. 30, num. 1, pages 71 - 78. 1997; [Omi00] Omicini A. SODA: Societies and Infrastructures in the Analysis and Design of Agent-Based Systems. In Ciancarini P. and Wooldridge M., editors; Agent-Oriented Software Engineering — Proceedings of the First International Workshop (AOSE 2000). Springer-Verlag. 2000.; [Rum99] Rumbaugh J., Jacobson I., Booch G. The Unified Modeling Language Reference Manual. Addison-Wesley. 1999.; [Sch00] Schreiber G., Akkermans H. et al. Knowledge Engineering and Management. The MIT Press. 2000.; [Stu98] Studer R., Benjamins V.R., Fensel, D. Knowledge engineering, principles and methods. Data and Knowledge Engineering, vol. 25, pages 161-197, 1998.; [Str97] Strader, T.J. The Impact of Electronic Commerce on Consumer and Organizational Costs, College of Commerce and Business Admin., Univ. Of Illinois at Urbana Champaign, May 1997.; [Wii98] Wiig, K.M. Perspectives on Introducing Enterprise Knowledge Management. Proc. Of the 2" Int. Conf. On Practical Aspects of Knowledge Management, Basel, Suiza, Oct. 1998.; F[Woo00] Wood M., DeLoach S. An Overview of the Multiagent Systems Engineering Methodology. In Ciancarini P. and Wooldridge M., editors, AgentOriented Software Engineering — Proceedings of the First International Workshop (AOSE 2000). Springer-Verlag. 2000.; [Woo95] Wooldridge J., Jennings N. Intelligent Agents: Theory and Practice, The Knowledge Engineering Review, vol. 10, num. 2, pages 115-152. 1995.; [Woo96] Wooldridge M., Jennings N. The GAIA Methodology for Agent-Oriented Analysis and Design. Kluwer Academic Publishers. 1996.; [Woo96a] Woodcock J., Davies J. Using Z. Prentice-Hall International. 1996.; [Woo00a] Wooldridge M. Reasoning about Rational Agents. The MIT Press. 2000.; [Woo00b] Wooldridge M., Ciancarini P. Agent-Oriented Software Engineering: the State of the Art. In First International Workshop on Agent-Oriented Software Engineering. Lecture Notes in Computer Science, vol.1957, pages 1 — 28. 2000.; http://hdl.handle.net/20.500.12749/25703; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co

  8. 8

    Zdroj: Revista Colombiana de Computación; Vol. 2 Núm. 2 (2001): Revista Colombiana de Computación; 1-21

    Popis souboru: application/pdf

    Relation: https://revistas.unab.edu.co/index.php/rcc/article/view/1114/1085; https://revistas.unab.edu.co/index.php/rcc/article/view/1114; I. Aaen and C. Sørensen, A CASE of Great Expectations. Scandinavian Journal of Information Systems, 3(1):3-23, 1991.; I. Aaen; A. Siltanen; C. Sørensen and V.P. Tahvanainen, A Tale of Two Countries - CASE Experiences and Expectations. In: The Impact of Computer Technologies on Information Systems Development, Proceedings from IFIP WG 8.2 Working Conference Minneapolis, Amsterdam, pp. 253-261, 1992.; I. Aaen, CASE User Satisfaction - Impact Evaluations in User Organizations. In: CASE '93 - Sixth International Workshop on Computer-Aided Software Engineering, IEEE Computer Society, Singapore, 1993.; I. Aaen, Problems in CASE Introduction: Experiences from User Organizations. Information and Software Technology, 36(11):643-654, 1994.; T. Bruckhaus; N. Madhavji; I. Janssen and J. Henshaw, The Impact of Tools on Software Productivity. IEEE Software, September:29-38, 1996.; P.Y.K. Chau, An empirical investigation on factors affecting the acceptance of CASE by systems developers. Information and Management, 30:269-280, 1996.; I. Chiavenato. Introducción a la Teoría General de la Administración. McGraw Hill Interamericana S.A., Bogotá, 1997.; B. Curtis, The CASE for Process. In: The Impact of Computer Technologies on Information Systems Development, Proceedings from IFIP WG 8.2 Working Conference Minneapolis, Amsterdam, pp. 133-142, 1992.; L. Dávalos; M. Martínez; F. Jiménez; M. Calecca; R. Peñaranda; M. González; M. Boza; S. Freije; K. Betancourt and J. Alcácer. Situación presente del Estado Zulia. In: IESA, C.A. 19 (ed.), Proyecto Zulia: Competitividad para el desarrollo, Ediciones IESA, C.A., Caracas, pp. 1-47, 1999.; V. De Freitas. Factores que inciden en la adopción de las herramientas CASE en las organizaciones venezolanas, MSc. Thesis, Universidad Simón Bolívar, Enero 1997.; M. Díaz; M. Pérez and T. Rojas, A proposal of indicator for the evaluation of CASE tools. In: Proceedings of the International Conference on Information Systems Analysis and Synthesis ISAS’98, Orlando, pp. 127-134, 1998.; W. French and C. Bell. Organization Development Behavioral Science Interventions for Organization Improvement. Prentice-Hall Inc., Englewood Cliffs, 1996.; R. Hernández; C. Fernández and P. Baptista. Metodología de la Investigación. McGraw Hill Interamericana S.A., Mexico DF, 1998.; J. Iivari, Why Are CASE Tools Not Used?. Communications of the ACM, 39(10):94-103, 1996.; V.S. Lai, A contingency examination of CASE-task fit on software developer’s performance. European Journal of Information Systems, 8:27-39, 1999.; F. Losavio; A. Matteo and M. Pérez. CASE Integration Approaches and a Proposal for Object Oriented CASE Environment. Reporte Técnico del Centro de Ingeniería de Software y Sistemas (ISYS), Universidad Central de Venezuela, Junio 1996.; L. Mathiassen and C. Sørensen, Managing CASE Introduction: Beyond Software Process Maturity. In: Proceedings of the 1994 ACM SIGCPR Conference, Virginia, pp. 242-248, 1994.; L. Mathiassen and C. Sørensen, The Capability Maturity Model and CASE. Journal of Information Systems, 6(3):195-208, 1996.; B. Mcnurlin and R.J. Sprague. Information systems management in practice. Prentice-Hall, Inc., Upper Saddle River, 1998.; L. Mendoza; T. Rojas and M. Pérez, The Venezuelan Organizations behavior in front of the CASE tools selection. In: Proceedings of The 4 th World Multiconference on Systemics, Cybernetics and Informatics SCI 2000, Orlando, Vol. 2, pp. 517-522, 2000.; Microsoft Corporation (2000) Microsoft Encarta 2000 Encyclopaedia. Redmond, Washington.; A. Nelson and J. Rottman, Before and after CASE adoption. Information and Management, 31:193-202, 1996.; W.J. Orlikowski, CASE Tools as Organizational Change: Investigating Incremental and Radical Changes in Systems Development. MIS Quarterly, 17(3):309-340, 1993.; G. Premkumar and M. Potter, Adoption of Computer Aided Software Engineering (CASE) Technology: an Innovation Adoption Perspective. DATABASE Advances, 26(2&3):105-123, 1995.; T. Rojas; M. Pérez and L. Mendoza, Improvement of the Process of Development of the Information Systems through a Proposal of Organizational Indicators to Evaluate Case Tools. In: Proceedings of the Fifth Americas Conference on Information Systems AMCIS 1999, Milwaukee, pp. 761-763, 1999.; T. Rojas; M. Pérez; A. Grimán; M. Ortega and A. Díaz, Selecting CASE tools: A Decision model. Revista de la Facultad de Ingeniería de la UCV, 15(2):15-29, 2000.; T. Rojas; L. Mendoza and M. Pérez, Organizational Indicators to Compared CASE tools in Venezuela Revista de la Facultad de Ingeniería de la UCV, 16(2):8-30, 2001.; B. Smyth, Understanding CASE Success: A Basis For Ongoing CASE Adoption. In: 7 th European Conference on Information Systems, Copenhagen, 1999.; I. Sommerville Software engineering. Addison-Wesley Publishing Company, Reading, 1998.; C. Sørensen, What Influences Regular CASE Use In Organizations? – An Empirical Based Model. Scandinavian Journal of Information Systems, 5(1):25-50, 1993.; L. Valaer and R. Babb. Choosing a User Interface Development Tool. IEEE Software, July/August:29-39, 1997.; O. Viloria and T. Rojas, Variables que afectan la asimilación de las herramientas CASE en las organizaciones venezolanas. Revista Venezolana de Gestión Tecnológica, 17(2):81-94, 1996.; http://hdl.handle.net/20.500.12749/9071; instname:Universidad Autónoma de Bucaramanga UNAB; repourl:https://repository.unab.edu.co

  9. 9

    Popis souboru: application/pdf; application/octet-stream

    Relation: Contreras Mora, José Wilson (2013). Prototipo de arquitectura empresarial para la dirección de admisiones y registro académico de la UNAB, sobre las fases: preliminar, A, B y C del FRAMEWORK TOGAF MODELADO CON CASEWISE. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB; © 2010 Gartner, Inc. (2013, May) Magic Quadrant for Enterprise Architecture Tools 28 Octubre 2010. [Online]. http://www.gartner.com/DisplayDocument?id=1459313&ref=%27g_fromdoc%27; © 2010 Gartner, Inc. (2013, May) Magic Quadrant for Enterprise Architecture Tools 28 Octubre 2010. [Online]. http://www.gartner.com/DisplayDocument?id=1459313&ref='g_fromdoc'; © 2010 Gartner, Inc. (2013, May) troux. [Online]. http://www.troux.com/outgoing/gartner_mq_2010.pdf; © 2011 Gartner, Inc. (2013, May) Magic Quadrant for Enterprise Architecture Tools 3 Noviembre 2011. [Online]. http://www.gartner.com/DisplayDocument?id=1839614&ref=%27g_fromdoc%27; © 2012 Gartner, Inc. (2013, May) Magic Quadrant for Enterprise Architecture Tools 31 October 2012. [Online]. http://www.gartner.com/DisplayDocument?id=2219916&ref=%27g_fromdoc%27; © 2012 Gartner, Inc. (2013, May) Magic Quadrant for Enterprise Architecture Tools 31 Octubre 2012. [Online]. http://www.gartner.com/technology/reprints.do?id=1-1CVXD3X&ct=121119&utm_content=c26292b9-8692-4afe-9fec-28e9315d6a34; © 2012 Gartner, Inc. (2013, May) online.ist.psu.ed. [Online]. https://online.ist.psu.edu/sites/ist873/files/t12_magic_quadrant.pdf; © 2013 Ellucian Company L.P. and its affiliates. (2012, Nov.) Ellucian. [Online]. http://www.ellucian.com/; © Casewise Ltd 2013. (2013, May) About us. [Online]. http://www.casewise.com/about-us; © Casewise Ltd 2013. (2013, May) Business Analyst / Architect. [Online]. http://www.casewise.com/solutions/role/business-analyst-architect; © Casewise Ltd 2013. (2013, May) Casewise Models & Frameworks. [Online]. http://www.casewise.com/products/models-and-frameworks; © Casewise Ltd 2013. (2013, May) Central & Local Gov't, Public Sector & Not-For-Profit. [Online]. http://www.casewise.com/solutions/industry/central-local-government-public-sector-not-for-profit; © Casewise Ltd 2013. (2013, May) Enterprise Architecture. [Online]. http://www.casewise.com/solutions/discipline/enterprise-architecture; © Casewise Ltd 2013. (2013, May) gartner leader. [Online]. http://www.casewise.com/gartner-leader/; © Casewise Ltd 2013. (2013, May) global vision. [Online]. http://www.casewise.com/about-us/global-vision; © Casewise Ltd 2013. (2013, May) modeler. [Online]. http://www.casewise.com/products/modeler; © Casewise Ltd 2013. (2013, May) products. [Online]. http://www.casewise.com/products; © Casewise Ltd 2013. (2013, May) solutions. [Online]. http://www.casewise.com/solutions; © Casewise Ltd 2013. (2013, May) TOGAF 8 Extension. [Online]. http://www.casewise.com/support-and-downloads/downloads/togaf-8; © TeleManagement Forum. 1988-2012. (2013, May) TM Forum. [Online]. http://www.tmforum.org/; Arquitectura Empresarial en Acción. (2013, May) Los Diferentes Roles del Arquitecto. [Online]. http://arquitecturaempresarialcali.wordpress.com/2010/12/05/los-diferentes-roles-del-arquitecto/; Claudia Isabel Caceres Becerra. (2012, Junio) Representación textual de una Arquitectura Empresarial elaborada con Archimate para facilitar el análisis de información, usando XADL. Trabajo de Grado - UNAB.; Copyright © 1999-2011 The Open Group, All Rights Reserved. (2013, May) Architecture Governance. [Online]. http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap50.html; Daniel Minoli, "Introduction: Enterprise Architecture and Technology Trends," in Enterprise Architecture A to Z, CRC Press, Ed. Boca Ratón, Fl., Estados Unidos: Auerbach Publications, 2008, ch. 1, pp. 3-31.; Dirección de admisiones y registro académico UNAB. (2013, Apr.) Presentación Admisiones y Registro Académico Institucional. Presentación MS PowerPoint.; Erika María González Escobar and Jorge Wilmar Álzate. (2012, Aug.) Arquitectura Empresarial en acción. [Online]. http://arquitecturaempresarialcali.wordpress.com/2010/12/05/los-diferentes-roles-del-arquitecto/; Garthner Gruop. (2012, Julio) IT Glossary Defining The IT Industry. [Online]. http://www.gartner.com/it-glossary/enterprise-architecture-ea/; IBM developerWorks and Thiago Souza Mendes Guimarães. (2013, May) 21 principles of enterprise architecture for the financial sector. [Online]. http://www.ibm.com/developerworks/rational/library/enterprise-architecture-financial-sector/enterprise-architecture-financial-sector-pdf.pdf; Jesus Perez Cota Managing Partner BPMC Group. (2013, May) slideshare. [Online]. http://www.slideshare.net/jperezcota/casewise-corporate-modeler; John A. Zachman, "A Framework for Information Systems Architecture," IBM Systems Journal, vol. 26, no. 3, 1987.; John A. Zachman, "Business Systems Planning and Business Information Control Study: A comparisment," IBM Systems Journal, vol. 21, no. 3, pp. 31-53, 1982.; Kiran Garimella, Michael Lees, and Bruce Williams, "Defining Business Process," in BPM Basics FOR DUMmIES, Software AG Special Edition ed. Indianapolis, EE.UU: Wiley Publishing, 2008, ch. 1, pp. 5-10.; Kiran Garimella, Michael Lees, and Bruce Williams, "The Business Drivers of BPM," in BPM Basics FOR DUMmIES. Indianapolis, EE.UU: Wiley Publishing, Inc., 2008, ch. 2, pp. 11-14.; Kiran Garimella, Michael Lees, and Bruce Williams, "The Functional Goals of BPM," in BPM Basics FOR DUMmIES. Indianapolis, EE.UU: Wiley Publishing, Inc., 2008, ch. 3, pp. 15-22.; Kiran Garimella, Michael Lees, and Bruce Williams, BPM Basics FOR DUMmIES, Software AG Special Edition ed. Indianapolis, Indiana: Wiley Publishing, 2008.; Leon Kappelman, The SIM Guide to Enterprise Architecture, Leon Kappelman, Ed. Boca Ratón, Estados Unidos: CRC Press, 2010.; Leonard Greski. (2013, May) Architecture and governance magazine. [Online]. http://architectureandgovernance.com/content/business-capability-modeling-theory-practice&prev=/search%3Fq%3DEvaluate%2BBusiness%2BCapabilities%26start%3D10%26sa%3DN%26biw%3D1920%26bih%3D942; Martín Darío Arango Serna, Jesús Enrique Londoño Salazar, and Julián Andrés Zapata Cortés, "Arquitectura empresarial - una visión general," Revista Ingenierías Universidad de Medellín, vol. 9, no. 16, p. 11, Junio 2010.; Mike Rosen. (2013, June) 10 Key Skills Architects Must Have to Deliver Value. 10_key_skills_architects.; Ministerio de Educación Nacional - MEN. (2013, Apr.) Sistema Nacional de Información de la Educación Superior - SNIES. [Online]. http://snies.mineducacion.gov.co/consultasnies/institucion/buscar.jsp?control=0.054486014773978075; Óscar Barros V., Arquitectura y Diseño de Procesos de Negocios, Serie Gestión ed. Chile, 2007.; Pedro Bonillo. (2013, June) Revista de Gestão da Tecnologia e Sistemas de Informação. [Online]. http://www.tecsi.fea.usp.br/Revistatecsi/edicoesanteriores/v03n02-2006/v03n02-2006/a04v03n02/v3n2a4.htm; SAP Deutschland AG & Co. KG. (2013, May) Enterprise Architecture – Organizational Structure. paper.; Steven Wright. (2013, June) Steve Wright's Home Page. [Online]. http://home.comcast.net/~stevendwright/ArchRoles.htm; The Open Group Copyright © 1999-2011. (2013, June) Architecture Skills Framework. [Online]. http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap20.html; The Open Group Copyright © 1999-2011. (2013, June) Business Transformation Readiness Assessment. [Online]. http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap30.html; The Open Group. (2012, Julio) Part I, Core Concepts. [Online]. http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap02.html; The Open Group. (2012, Julio) Part I, Definitions. [Online]. http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap03.html; The Open Group. (2012, Julio) Part I, Introduction. [Online]. http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap01.html; The Open Group. (2012, Julio) Part II, Introduction to the ADM. [Online]. http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap05.html; The Open Group. (2012, Julio) Part II, Phase A: Architecture Vision. [Online]. http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap07.html; The Open Group. (2012, Julio) Part II, Phase B: Business Architecture. [Online]. http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap08.html; The Open Group. (2012, Julio) Part II, Preliminary Phase. [Online]. http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap06.html; Universidad Autónoma de Bucaramanga. (2012, Julio) Campus - CSU Octavio Cadena Gómez. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/campus/csu; Universidad Autónoma de Bucaramanga. (2012, Julio) Campus - El Bosque. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/campus/campus-bosque; Universidad Autónoma de Bucaramanga. (2012, Julio) Campus - El Jardín. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/campus/campus-jardin; Universidad Autónoma de Bucaramanga. (2012, Julio) Campus - El Tejar. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/campus/campus-tejar; Universidad Autónoma de Bucaramanga. (2012, Julio) Campus - Ubicación. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/campus/ubicacion; Universidad Autónoma de Bucaramanga. (2012, Julio) Ejes Estratégicos Plan De Desarrollo 2007-2012. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/ejes-estrategico; Universidad Autónoma de Bucaramanga. (2012, Julio) Gestión de Calidad - Calidad Educativa. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/gestion-de-la-calidad/calidad-educativa; Universidad Autónoma de Bucaramanga. (2012, Julio) Misión. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/mision; Universidad Autonoma de Bucaramanga. (2012, Julio) Política de Calidad. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/gestion-de-la-calidad/politica-de-calidad; Universidad Autónoma de Bucaramanga. (2012, Julio) Portal UNAB. [Online]. http://www.unab.edu.co/portal/page/portal/UNAB; Universidad Autónoma de Bucaramanga. (2012, Julio) Presentación Institucional. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/presentacion; Universidad Autónoma de Bucaramanga. (2012, Julio) Síntesis Proyecto Educativo Institucional. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/proyecto-educativo/sintesis; Universidad Autónoma de Bucaramanga. (2012, Julio) UNAB en Cifras Servicios Tecnológicos. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/unab-en-cifras/ServiciosTecnologicos; Universidad Autónoma de Bucaramanga. (2012, Julio) Valores UNAB. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/valores; Universidad Autónoma de Bucaramanga. (2012, Julio) Visión. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/vision; http://hdl.handle.net/20.500.12749/3383; reponame:Repositorio Institucional UNAB

  10. 10

    Geografické téma: Colombia

    Popis souboru: application/pdf

    Relation: Teik-Cheng Lim. (2011) Nanosensors Theory and Applications in Industry, Healthcare and Defense. Boca Raton: Taylor and Francis Group, LLC. T. Pradeep. (2008) Nano: The Essentials Understanding Nanoscience and Nanotechnology. New York: McGraw-Hill.; Ahmed Busnaina. (2007) Nanomanfacturing Handbook. Boca Raton: Taylor and Francis Group, LLC.; Renzo Tomellini (2004) La nanotecnología. Innovaciones para el mundo del mañana. Luxemburgo: Comisión Europea; http://www.ijitee.org/attachments/File/v3i4/D1199093413.pdf; http://www.nano.gov/you/nanotechnology-benefits; http://blogs.creamoselfuturo.com/nano-tecnologia/; http://www.ehu.eus/sgi/software-de-calculo/siesta#informacingeneral; Fundación Española para la Ciencia y la Tecnología, FECYT (2009) NANOCIENCIA Y NANOTECNOLOGÍA Entre la ciencia ficción del presente y la tecnología del futuro. España: Fundación Española para la Ciencia y la Tecnología.; http://www.idepa.es/sites/web/idepaweb/Repositorios/galeria_descargas_idepa/AplicacionesIndustriales_Nanotecnologia.pdf; http://www.euroresidentes.com/futuro/nanotecnologia/diccionario/nanomateriales.htm; http://catarina.udlap.mx/u_dl_a/tales/documentos/leip/vega_m_d/indice.html PABLO R. HERNÁNDEZ RODRÍGUEZ Bioelectrónica, Departamento de Ingeniería Eléctrica, CINVESTAV IPN, México; Martinez, Pau & Marín, Pedro. “Diseño y estudio de una máquina de electrospinning”. Tomado de la red en Abril de 2017. Disponible en Internet: https://upcommons.upc.edu/pfc/bitstream/2099.1/7123/4/03_Mem%C3%B2ria.pdf; Jaimes Moreno, Edgar Mauricio. “Electroestimulador inteligente y sistema de clonación artificial de sensores de movimiento y control adaptativo-predictivo, por 143 143 acupuntura con agujas-electrodos y transmisión inalámbrica, evaluado en un diseño de prototipo construido”. Universidad Autónoma de Bucaramanga. 2009.; Siti Fatimah Abd Rahman, Nor Azah Yusof, Uda Hashim, M. Nuzaihan Md Nor. “Design and Fabrication of Silicon Nanowire based Sensor”. Institute of Advanced Technology, Universiti Putra Malaysia. 2013.; Rodriguez Pacheco, Jorge Humberto. “Prototipo automatizado para la implementacion de la técnica “electrospinning” en aplicaciones farmacológicas”. Universidad Autónoma de Bucaramanga. 2010.; Asgar, Z., Kodakara, S., & Lilja, D. (2005). Fault-tolerant image processing using stochastic logic (Tech. Rep.). Retrieved from http://www.zasgar.net/zain/publications/publications.php; Bryant, R., & Chen, Y. (1995). Verification of arithmetic circuits with binary moment diagrams. In Proceedings of the 32nd Design Automation Conference (DAC ’95), San Francisco (pp.535-541).; DeHon, A. (2005). Nanowire-based programmable architectures. ACM Journal on Emerging Technologies in Computing Systems, 1(2), 109–162. doi:10.1145/1084748.1084750; FENA. (2006). Mission statement. Retrieved from http://www.fena.org; Qian, W, Backes, J, Riedel, M. (2009). The synthesis of stochastic Circuits for Nanoscale Computation; [ADAM 94] ADAMI, C., Learning and complexity in genetic auto¬adaptive systems. California Institute of Technology, 1994.; [ADEL 95] ADELI, H., Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems. John Wiley and Sons, Inc, 1995; S. A. Pérez. 2002. “Diseño de Sistemas Digitales con VHDL”. Ed. Thomson. Neil H. E. Weste and Kamran Eshraghian. Principles of CMOS VLSI Design. Addison-Wesley, 2nd edition, 1994; Xilinx Inc., 2100 Logic Drive, San Jose, CA 95124. The Programmable Gate ArrayData Book, 1991.; National Acdemy of Science. Panel on Scientific and Medical Aspects of Human Cloning. August 7, 2001; Vera, F. (2006). “Sistema Electrónico de clonación Artificial de un Sensor de Viscocidad Basado en Hardware Evolutivo.” Universidad de Pamplona; WINTER, D. A. Biomechanics and Motor Control of Human Movement. Warterloo: Warterloo Press, 1991.; Pedro Carlos Russi. Estudo De Um Modelo Dinâmico Para Avaliação Física Do Corpo Humano. Faculdade de Engenharia de Guaratinguetá da Universidade Estadual Paulista. Sao Paulo. Brasil; Sistema electrónico de clonacion artificial de un sensor de viscosidad basado en hardware evolutivo. Fredy Vera Perez trabajo de grado para optar por el título de ingeniero electrónico. Universidad de Pamplona. 2006; Muñoz Antonio F. Sensorica e instrumentación, Mecánica de Alta precisión. . Pueblo y educación. 1997; Maneiro Malavé Ninoska. Algoritmos genéticos aplicados al problema cuadrático de asignación de facilidades. Departamento de Investigación Operativa, Escuela de Ingeniería Industrial, Universidad de Carabobo, Valencia. Venezuela. Febrero 2002; Faustino, A, Muñoz, Mariela. (2010). “Algoritmos y Sistemas Genéticos Aplicados en sistema de control en Tiempo Real Obtenido por Clonación Artificial para Prótesis Mecatrónica de Piel Artificial con Nanopartículas.”. Universidad Autónoma de Bucaramanga y Universidad del Cauca, Colombia; Beneficios de la Nanotecnología: Presentación. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/nanotecnologia_benecios.html; Caro Bejarano, José (2012). Los riesgos mundiales en el 2012 según el foro económico mundial. ieee.es. Tomado de la red en Abril de 2015. URL: http://www.ieee.es/Galerias/chero/docs_informativos/2012/DIEEEI06-2012_ForoEconomicoMundial_RiesgosGlobales2012_MJCaro_v2.pdf; García Díaz, J. (2006). Normalización sobre Nanotecnologías. AENOR, p. 26-28. Tomado de la red en Abril de 2015. URL: http://www.nanospain.org/les/Working%20Groups/NanoSpain_WGIndustrial_Normalizacion.pdf; José Luis Carrillo Aguado. Cómo es la Nanotecnología según la FDA. Perdiositasenlinea.org. Tomado de la red en Abril de 2015. URL: 145 145 http://www.periodistasenlinea.org/modules.php?op=modload&name=News&le=article&sid=23516; Marquez, J. (2008). Nanobioética, nanobiopolítica y nanotecnología. Revista Salud Uninorte. 24 (1), 140-157. Tomado de la red en Abril de 2015. URL: http://rcienticas.uninorte.edu.co/index.php/salud/article/view/3824/2435; Organización de las Naciones Unidas para la Agricultura y la Alimentación y Organización mundial de la salud. Reunión Conjunta FAO/OMS de Expertos acerca de la aplicación de la nanotecnología en los sectores alimentario y agropecuario: posibles consecuencias para la inocuidad de los alimentos. Informe. Consultado en http://www.fao.org/docrep/015/i1434s/i1434s00.pdf; Panorama y perspectivas de la nanotecnología. Revista Virtual Pro, Agosto 2009 (91), pp17-18. Tomado de la red en Abril de 2015. URL: http://www.revistavirtualpro.com/revista/index.php?ed=2009-08-01&pag=17; Riesgos de la Nanotecnología. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/riesgos_nanotecnologia.htm; Creus Sole, A. “Instrumentación Industrial”. 7 ed., México: Alfaomega, 2005; Delgado, A. Inteligencia Artificial y Minirobots. Ecoe Ediciones, 1998; Ghosh, A. N. R. Pal, and S. K. Pal, "Self-organization for object extraction using a multilayer neural network and fuzziness measures," IEEE Transactions on Fuzzy Systems, vol. 1, pp. 54-58, 1993.; CARDENAS, J., Diseño Geométrico de Carreteras, Primera Edición, Ecoe Ediciones, 2011.; CARREÑO, Y., Investigación de Sistemas de Control Inteligente del Tráfico Vehicular y Desarrollo de Instrumentación de Alta Precisión de Parámetros Asociados al Monitoreo, Mando y Control Automáticos de Carreteras Urbanas. Programa Jóvenes Investigadores e Innovadores "Virginia Gutiérrez de Pineda Colciencias, Colombia 2011; MONTEJO, A., Ingeniería de Pavimentos. Fundamentos, Estudios Básicos y Diseño, Tercera Edición, Tomo 1, Universidad Católica de Colombia, 2010; C. J. Lin, C. H. Chen, and C. T. Lin, "Efficient self-evolving evolutionary learning for neurofuzzy inference systems," IEEE Transactions on Fuzzy Systems, vol. 16, pp. 1476- 1490, 2008.; D. Goldberg. Genetics Algorithms in Search, Optimization and Machine Learning. Massachusetts: Addison-Wesley Reading, 1983; D. Nauck, F. Klawonn, and R. Kruse, "Foundations of neuro-fuzzy systems," Chichester,U.K.: Wiley, 1997.; D. Valdez, “Automatización en el área de bodega en una empresa de correo y mensajería para lograr una mayor productividad”. M.S. tesis, Universidad De San Carlos De Guatemala, Guatemala, 2005; F. E. Cellier, Continuous System Modeling. New York, 1991; F. Munoz, “Sistemas de control inteligentes de la planta de viscorreduccion basados en la clonacion artificial de un sensor de viscosidad y parámetros asociados”; G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B. Rosen, "Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps," IEEE Transactions on Neural Networks, vol. 3, pp. 698-713, 1992; H. Boudouda, H. Seridi H. Akdag. “The Fuzzy Possibilistic C-Means Classifier”, Asian Journal of Infomation Technology, Vol. 4, no 11, pp. 981-985, 2005.; H. Ishibuchi, M. Nii, and T. Murata, "Linguistic rule extraction from neural networks and genetic-algorithm-based rule selection," in IEEE International Conference on Neural Networks - Conference Proceedings, Houston, TX, USA, 1997, pp. 2390-2395.; H. R. Berenji and P. Khedkar, "Learning and tuning fuzzy logic controllers through reinforcements," IEEE Transactions on Neural Networks, vol. 3, pp. 724-740, 1992.; H. Takagi, N. Suzuki, T. Koda, and Y. Kojima, "Neural networks designed on approximate reasoning architecture and their applications," IEEE Transactions on Neural http://www.unipamplona.edu.co/unipamplona/hermesoft/portalIG/home_2/recursos/investigacion/contenidos/01102007/sistemas_control_inteligente.jsp. [Consultado 20 Marzo 2013].; I. Lache, F. Muñoz, “Investigación de nuevos prototipos de sensores y sistema de control por clonación artificial, basados en técnicas de inteligencia artificial” [En línea]. Disponible: http://ivanovichlache.googlepages.com/PaperPamILS.doc [Consultado 3 Febrero 2013; J. Castro, J. Padilla y E. Romero, “Metodología para realizar una automatización utilizando PLC,” Impulso, Revista De Electrónica, Eléctrica Y Sistemas Computacionales, Departamento de Eléctrica y Electrónica del Instituto Tecnológico de Sonora, vol. 1, nro. 1, pp. 18-21, 2005; J. J. Buckley and Y. Hayashi, "Fuzzy neural networks: A survey," Fuzzy Sets andSystems, vol. 66, pp. 1-13, 1994.; J. J. Hopfield and D. W. Tank, "'Neural' computation of decisions in optimization problems," Biological Cybernetics, vol. 52, pp. 141-152, 1985.; J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities," Proceedings of the National Academy of Sciences of the United States of America, vol. 79, pp. 2554-2558, 1982.; J. M. Keller and D. J. Hunt, "Incorporating fuzzy membership functions into the perceptron algorithm," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-7, pp. 693-699, 1985; J. M. Keller and H. Tahani, "Implementation of conjunctive and disjunctive fuzzy logic rules with neural networks," International Journal of Approximate Reasoning, vol. 6, pp.221-240, 1992.; J. M. Keller, R. Krishnapuram, and F. C.-H. Rhee, "Evidence aggregation networks for fuzzy logic inference," IEEE Transactions on Neural Networks, vol. 3, pp. 761-769,1992; J. Rissanen, "Modeling by shortest data description," Automatica, vol. 14, pp. 465-471, 1978; J.-S. R. Jang, "ANFIS: adaptive-network-based fuzzy inference system," IEEE Transactions on Systems, Man and Cybernetics, vol. 23, pp. 665-685, 1993; J.S.R. Jang, N. Gulley, Natick. Fuzzy Logic Toolbox. MS, Mathworks, 2000; K. J. Aström and P. Eykhoff, "System identification-A survey," Automatica, vol. 7, pp. 123-162, 1971; K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop, "Neural networks for control systems - A survey," Automatica, vol. 28, pp. 1083-1112, 1992; K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks," IEEE Transactions on Neural Networks, vol. 1, pp. 4-27, 1990.; L. Ljung and Z.-D. Yuan, "Asymptotic Properties of Black-Box Identification of Transfer Functions," IEEE Transactions on Automatic Control, vol. AC-30, pp. 514-530, 1985.; L. Ljung, "System Identification: Theory for the User.," New Jersey: Prentice-Hall, 1999.; L.-X. Wang and J. M. Mendel, "Fuzzy basis functions, universal approximation, and orthogonal least-squares learning," IEEE Transactions on Neural Networks, vol. 3, pp. 807-814, 1992; Muñoz Mariela, Muñoz F, (2010). Diseño De Un Sistema De Control Basado en Clonación Artificial, ISSN: 1692-7257 Revista Tecnologías Avanzada Universidad de Pamplona, Colombia; N. K. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction," IEEE Transactions on Fuzzy Systems, vol. 10, pp. 144-154, 2002; N. K. Sinha and B. Kuszta, Modeling and identification of dynamic systems: Springer,1983. Networks, vol. 3, pp. 752-760, 1992; P. Angelov P. Filev, “An approach to online identification of Takagi-Sugeno fuzzy models”, IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(1), pp. 484-498, 2004.; P. Eykhoff, "System Identification," John Wiley, 1974; Q. Song and N. K. Kasabov, "NFI: A neuro-fuzzy inference method for transductive reasoning," IEEE Transactions on Fuzzy Systems, vol. 13, pp. 799-808, 2005; Q. Song and N. Kasabov, "TWNFI - a transductive neuro-fuzzy inference system with weighted data normalization for personalized modeling," Neural Networks, vol. 19, pp. 1591-1596, 2006; R. Babuska, Fuzzy Modeling for Control: Kluwer Academic Publishers, 1998; R. Haber and H. Unbehauen, "Structure identification of nonlinear dynamic systems - Asurvey on input/output approaches," Automatica, vol. 26, pp. 651-677, 1990.; R. J. Oentaryo, M. Pasquier, and C. Quek, "GenSoFNN-Yager: A novel brain-inspired generic self-organizing neuro-fuzzy system realizing Yager inference," Expert Systems with Applications, vol. 35, pp. 1825-1840; R. Johansson, "System Modeling and Identification," in Information and System Sciences New Jersey: Prentice Hall, 1993; S. C. Lee and E. T. Lee, "Fuzzy neural networks," Mathematical Biosciences, vol. 23, pp. 151-177, 1975; S. K. Pal and S. Mitra, "Multilayer perceptron, fuzzy sets, and classification," IEEE Transactions on Neural Networks, vol. 3, pp. 683-697, 1992; S. Mitra and S. K. Pal, "Fuzzy multi-layer perceptron, inferencing and rule generation," IEEE Transactions on Neural Networks, vol. 6, pp. 51-63, 19; S. Mitra and Y. Hayashi, "Neuro-fuzzy rule generation: survey in soft computing framework," IEEE Transactions on Neural Networks, vol. 11, pp. 748-768, 2000.; S. Mitra, "Fuzzy MLP based expert system for medical diagnosis," Fuzzy Sets and Systems, vol. 65, pp. 285-296, 1994; S.J. Derby, “Design of Automatic Machinery”, New York: Marcel Dekker, 2005; T. Calonge, L. Alonso, and R. Ralha, "Transputer implementations of a multilayer perceptron used for speech-recognition task," Microcomputer Applications, vol. 16, pp.64-69, 1997.; T. Kohonen, "The self-organizing map," Proceedings of the IEEE, vol. 78, pp. 1464-1480, 1990; T. Söderström and P. Stoica, "System Identification," New York: Prentice Hall, 1989.; U.K.: Wiley, 1997.; W. A. Farag, V. H. Quintana, and G. Lambert-Torres, "A genetic-based neuro-fuzzy approach for modeling and control of dynamical systems," IEEE Transactions on Neural Networks, vol. 9, pp. 756-767, 1998; W. L. Tung and C. Quek, "eFSM - A novel online neural-fuzzy semantic memory model," IEEE Transactions on Neural Networks, vol. 21, pp. 136-157, 2010.; Y. Hayashi, J. J. Buckley, and E. Czogala, "Fuzzy neural network with fuzzy signals and weights," International Journal of Intelligent Systems, vol. 8, pp. 527-537, 1993; Automatización de las vías, carreteras e inteligencia de automoviles – Pölliita Fänii http://pollitafannimecatronica.wordpress.com/2011/12/08/automatizacion-de-las-vias-carreteras-e-inteligencia-de-automoviles; Carreteras, Análisis de Tráfico – Vaisala http://es.vaisala.com/sp/roads/applications/trafficanalysis/Pages/default.as; La DGT trabaja en un proyecto para instaurar en España sistemas inteligentes de comunicación entre el vehículo y la vía – Lukor 150 150 http://www.lukor.com/ordenadores/11012301.htm; Sistemas inteligentes de transporte ¿Realidad o Ficción? – Circula Seguro http://www.circulaseguro.com/vehiculos-y-tecnologia/sistemas-inteligentes-de-transporte-ficcion-o-realidad; Sistemas inteligentes de transporte http://www.google.com.co/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&ved=0CFEQFjAH&url=http%3A%2F%2Fwww.iies.es%2Fattachment%2F115765%2F&ei=yS5GUfTzLIrW0gGF3YDIBw&usg=AFQjCNF2RLjXUUjDjor9B-xqi5tlblePbw&bvm=bv.43828540,d.eWU&cad=rja; CICNetwork – Ciencia y Tecnología http://www.cicnetwork.es/upload/pdf/revistas/CN1.p; BARROSO OLIVEIA, Luis Manuel. Automatização e controlo de um sistema de electrospinning [en línea]. Universidade do Minho, Escola de Engenharia. Octubre de 2011. Disponible en Internet: https://repositorium.sdum.uminho.pt/bitstream/1822/16498/1/pg16155_TESE_MEM.pdf; DUQUE SÁNCHEZ, Lina Marcela; RODRÍGUEZ, Leonardo y LÓPEZ, Marcos. Electrospinning: La Era de las Nanofibras [en línea]. En: Revista Iberoamericana de Polímeros Volumen 14(1), Enero de 2013; Siti Fatimah Abd Rahman, Nor Azah Yusof, Uda Hashim, M. Nuzaihan Md Nor. “Design and Fabrication of Silicon Nanowire based Sensor”. Institute of Advanced Technology, Universiti Putra Malaysia. 2013; Qian, W, Backes, J, Riedel, M. (2009). The synthesis of stochastic Circuits for Nanoscale Computation.; Rodríguez Pacheco, Jorge Humberto. “Prototipo automatizado para la implementacion de la técnica “electrospinning” en aplicaciones farmacológicas”. Universidad Autónoma de Bucaramanga. 2010.; MANTILLA, Oscar Alberto. Diseño y Construcción de un Prototipo Electro-mecánico para la Implementación de la Técnica " Electrospinning " en Aplicaciones Farmacológicas. Junio de 2006.; Jie Chen y Hua Li, “Design Methodology for Hardware-efficient Fault-tolerant Nanoscale Circuits”, en IEEE International Symposium on Circuits and Systems’ 2006; USERO, Rafael y SUÁREZ, Natalia. Electrospinning de poliesteramidas Biodegradables [en línea]. 2010. [Citado 3 feb 2016] Disponible en Internet; MUÑOZ, A.F., Aplicación de los algoritmos genéticos en la identificación y control de bioprocesos por clonación artificial. IEEE Transactions on Systems, Man, and Cybernetic V 19 No. 2 58-76, 1998; MUÑOZ, A.F., Tecnología de clonación artificial on-line de sensores y controladores. Oficina Internacional de Invenciones, Patentes y Marcas, República de Cuba. Registros No. 7-789735, 2000; ADAMI, C., Learning and complexity in genetic auto¬adaptive systems. California Institute of Technology, 1994; ADELI, H., Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems. John Wiley and Sons, Inc, 1995.; Vera, F. “Sistema Electrónico de clonación Artificial de un Sensor de Viscocidad Basado en Hardware Evolutivo.” Universidad de Pamplona. 2006; Faustino, A, Muñoz, Mariela. (2010). “Algoritmos y Sistemas Genéticos Aplicados en sistema de control en Tiempo Real Obtenido por Clonación Artificial para Prótesis Mecatrónica de Piel Artificial con Nanopartículas.”. Universidad Autónoma de Bucaramanga y Universidad del Cauca, Colombia.; Beneficios de la Nanotecnología: Presentación. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/nanotecnologia_bene¬cios.htm; Caro Bejarano, José (2012). Los riesgos mundiales en el 2012 según el foro económico mundial. ieee.es. Tomado de la red en abril de 2015. URL: http://www.ieee.es/Galerias/-chero/docs_informativos/2012/DIEEEI06-2012_ForoEconomicoMundial_RiesgosGlobales2012_MJCaro_v2.pdf; García Díaz, J. (2006). Normalización sobre Nanotecnologías. AENOR, p. 26-28. Tomado de la red en Abril de 2015. URL: http://www.nanospain.org/-les/Working%20Groups/NanoSpain_WGIndustrial_Normalizacion.pdf; José Luis Carrillo Aguado. Cómo es la Nanotecnología según la FDA. Perdiositasenlinea.org. Tomado de la red en abril de 2015. URL: http://www.periodistasenlinea.org/modules.php?op=modload&name=News&-le=article&sid=23516; Marquez, J. (2008). Nanobioética, nanobiopolítica y nanotecnología. Revista Salud Uninorte. 24 (1), 140-157. Tomado de la red en Abril de 2015. URL: http://rcienti-cas.uninorte.edu.co/index.php/salud/article/view/3824/2435; Ingeniería en Nanotecnología. Upb. Tomado de la red en Mayo 17 de 2015. URL: http://www.upb.edu.co/portal/page?_pageid=1054,53529575&_dad=portal&_schema=PORTAL; GALVIS, Dalya Julieth. Sistema de electroestimulación por tecnología de fabricación de electrohilado. Noviembre de 2014; GAMBOA, Wilsón., MANTILLA, O., CASTILLO, V., Producción de micro y nano fibras a partir de la técnica “Electrospinning” para aplicaciones farmacológicas. Agosto, 2007, vol. 053, 1-4; J. Chen, J. Mundy, Y. Bai, S. Chan, P. Petrica, y R. I. Bahar, “A probabilistic approach to nano-computing,” En Proceedings of the Second Workshop on Non-Silicon Computing, San Diego, CA, Junio 2003.; K. N. Patel, I. L. Markov, y J. P. Hayes, “Evaluating circuit reliability under probabilistic gate-level fault models,” en IEEE International Workshop on Logic and Synthesis, 2003.; MODELAJE Y SIMULACION MULTIFISICA DE UN SENSOR DE GAS DE Sno2 EN COVENTORWARE™. Andrés Felipe Méndez Jiménez, Alba Ávila Bernal. Departamento de Ingeniería Eléctrica y Electrónica, Universidad de los Andes. Bogota, Colombia. Noviembre de 2005; MEMORIAS I SEMINARIO INTERNACIONAL DE NANOTECNOLOGÍA UDES 2011.; HERSEL U., DAHMEN C., KESSLER H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. Vol. 24, 2003, p. 4385-4415; DOSHI, Jayesh., RENEKER, Darrell H. Electrospinning process and applications of electrospun fibers: Journal of Electrostatic. Agosto, 1995, vol. 35. 151-160.; J.S.R Jang y Sun C.T(1993) Funcional Equivalence Berween Radial Basis Funtion Networks and Fuzzy Inference Systems. IEEE Transactions on Neuronal Networks.; K.F. Man and K.S. Tang Genetic Algorithms for Control and Signal Processing Department of Electronic Engineering City University of Hong Kong; Haber and H. Unbehauen, "Structure identification of nonlinear dynamic systems – A survey on input/output approaches," Automatica, vol. 26, pp. 651-677, 1990; Delgado Alberto Rule Based System with DNA Chip Proceedings of the 2003 IEEE International Symposium on Intelligent Control Houston, Texas October 5-8, 2003; D. Frenkel, B. Smit, Understanding Molecular Simulations software SIESTA: from algorithms to applications, Academic Press (1996; Huifei Rao, Jie Chen, Changhong Yu, Woon Tiong and others Ensemble Dependent Matrix Methodology for Probabilistic-Based Fault-tolerant Nanoscale Circuit Design; Muñoz Antonio F NUEVOS MÉTODOS Y PROCEDIMIENTOS DE ALTA PRECISIÓN APLICADO A PAVIMENTOS Y VÍA CERTIFICADO DE REGISTRO DE SOPORTE LÓGICO – SOFTWARE TÉCNICAS DE INTELIGENCIA ARTIFICIAL BASADOS EN ALGORITMOS GEN ÉTICOS PARA DETERMINAR EL DESEMPEÑO A PARTIR DE LOS PARÁMETROS DE COMPORTAMIENTO Libro - Tomo – Partida 13-40-467 Fecha Registro 03-Feb-2014; Durakbasa et PUC Río Brasil CERTIFICADO DE DERECHO DE AUTOR Registro 0410263/CA Fuzzy Logic Measurement Nanosystems d; Entrenamientos. “Fitness y electroestimulación”. Tomado de la red en Agosto de 2014. URL: http://www.entrenamientos.org/entrenamiento-fisico/item/70-fitness-y-electroestimulacion; Entrenamientos. “Entrenamiento físico y electroestimulación”. Tomado de la red en Agosto de 2014. URL: http://www.entrenamientos.org/entrenamiento-fisico/item/47-electroestimulacion; Martinez, Pau & Marín, Pedro. “Diseño y estudio de una máquina de electrospinning”. Tomado de la red en Agosto Septiembre de 2014. URL: https://upcommons.upc.edu/pfc/bitstream/2099.1/7123/4/03_Mem%C3%B2ria.pdf; Jaimes Moreno, Edgar Mauricio. “Electroestimulador inteligente y sistema de clonación artificial de sensores de movimiento y control adaptativo-predictivo, por acupuntura con agujas-electrodos y transmisión inalámbrica, evaluado en un diseño de prototipo construido”. Universidad Autónoma de Bucaramanga. 2009; Rodriguez Pacheco, Jorge Humberto. “Prototipo automatizado para la implementacion de la técnica “electrospinning” en aplicaciones farmacológicas”. Universidad Autónoma de Bucaramanga. 2010; FENA. (2006). Mission statement. Retrieved from http://www.fena.org Qian, W, Backes, J, Riedel, M. (2009). The synthesis of stochastic Circuits for Nanoscale Computation.; MUÑOZ, A.F., Aplicación de los algoritmos genéticos en la identificación y control de bioprocesos por clonación artificial. IEEE Transactions on Systems, Man, and Cybernetic V 19 No. 2 58-76, 19; MUÑOZ, A.F., Equipo de control genético de la composición en medios continuos on-line. Oficina Internacional de Invenciones, Patentes y Marcas, República de Cuba. Registros No. 7-789734, 2001; ADELI, H., Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems. John Wiley and Sons, Inc, 1995; Vera, F. (2006). “Sistema Electrónico de clonación Artificial de un Sensor de Viscocidad Basado en Hardware Evolutivo.” Universidad de Pamplona. WINTER, D. A. Biomechanics and Motor Control of Human Movement. Warterloo: Warterloo Press, 1991.; Maneiro Malavé Ninoska. Algoritmos genéticos aplicados al problema cuadrático de asignación de facilidades. Departamento de Investigación Operativa, Escuela de Ingeniería Industrial, Universidad de Carabobo, Valencia. Venezuela. Febrero 2; Faustino, A, Muñoz, Mariela. (2010). “Algoritmos y Sistemas Genéticos Aplicados en sistema de control en Tiempo Real Obtenido por Clonación Artificial para Prótesis Mecatrónica de Piel Artificial con Nanopartículas.”. Universidad Autónoma de Bucaramanga y Universidad del Cauca, Colomb; Beneficios de la Nanotecnología: Presentación. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/nanotecnologia_benecios.htm; García Díaz, J. (2006). Normalización sobre Nanotecnologías. AENOR, p. 26-28. Tomado de la red en Abril de 2015. URL: 157 157 http://www.nanospain.org/les/Working%20Groups/NanoSpain_WGIndustrial_Normalizacion.pdf; José Luis Carrillo Aguado. Cómo es la Nanotecnología según la FDA. Perdiositasenlinea.org. Tomado de la red en Abril de 2015. URL: http://www.periodistasenlinea.org/modules.php?op=modload&name=News&le=article&sid=23516; Panorama y perspectivas de la nanotecnología. Revista Virtual Pro, Agosto 2009 (91), pp17-18. Tomado de la red en Abril de 2015. URL: http://www.revistavirtualpro.com/revista/index.php?ed=2009-08-01&pag=17 Riesgos de la Nanotecnología. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/riesgos_nanotecnologia.htm; D. Olea, S.S. Alexandre, P. Amo-Ochoa, A. Guijarro, F. de Jesús, J.M. Soler, P.J. de Pablo, F. Zamora, J. Gómez Herrero, Advanced Materials 2005, 17, 1761-176; “Assembling of Dimeric Entities of Cd(II) with 6-Mercaptopurine to Afford One dimensional Coordination Polymers: Synthesis and Scanning Probe Microscopy Characterization”. P. Amo-Ochoa, M.I. Rodríguez-Tapiador, O. Castillo, D. Olea, A. Guijarro, S.S. Alexandre, J. Gómez-Herrero, F. Zamora, Inorganic Chemistry 2006, 45, 7642-7650.; “Electrical Conductivity in Platinum-Dimer Columns”. A. Guijarro, O. Castillo, A. Calzolari, P. J. Sanz Miguel, C. J. Gómez-García, R. di Felice, F. Zamora, Inorganic Chemistry 2008, 47, 9736-9738.; “Organization of Cordination Polymers on Surfaces by Direct Sublimation”. L. Welte, U. García-Couceiro, O. Castillo, D. Olea, C. Polop, A. Guijarro, A. Luque, J.; M. Gómez-Rodríguez, J. Gómez Herrero, F. Zamora, Advanced Materials 2009, 21, 2025-2028.; “Nanofibers generated by spontaneous self-assembly on surfaces of individual bimetallic building blocks”. R. Mas-Ballesté, R. Gonzalez-Prieto, A. Guijarro, M. A. Fernández, F. Zamora, Dalton Transactions 2009, Submitted; “MMX as conductors from single crystals to nanostructures”. A. Guijarro, O. Castillo, L. Welte, A. Calzolari, P. J. Sanz Miguel, C. J. Gómez-García, D. Olea, R. di Felice, J. Gómez-Herrero, F. Zamora, Journal of the American Chemical Society 2009, Subm; Ozin, G.; Arsenault, A. C. “Nanochemistry, A Chemical Aproach to Nanomaterials” RSC Publishing, 2005; página web http://www.intel.com, marzo 2009. 3 (a) Gates, B. D. Chem. Rev. 2005, 105, 1171-1196 (b) Barth, J. V. Nature 2005, 437,671-679.; Bibliografía Software Molecular workbench Charles Xie. SPORE, Science Prize for Online Resources in Education; http://www.sciencemag.org/site/special/spore/; Pryor. R. W. Multiphysics Modeling Using COMSOL: A First Principles Approach (Jones and Bartlett Publishers, Sudbury, MA, 2009).; Bridson, C. R. Batty, Science 330, 1756 (2010). Abstract/FREE Full Text; Finkelstein N. D. et al., Phys. Rev. Spec. Top. Phys. Educ. Res. 1, 010103 (2005). CrossRef; Klahr,L. M. Triona, C. Williams, J. Res. Sci. Teach. 44, 183 (2007). CrossRefWeb of Scie; Leach A. R., Molecular Modeling: Principles and Applications (Pearson Education, Upper Saddle River, NJ, ed.2, 2001). D. C. Rappaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, Cambridge,1997; N. Watanabe, M. Tsukada, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62, (2 Pt B), 2914 (2000). CrossRefPubMed; R. Feynman, J. Microelectromech. Syst. 1, 60 (1992). CrossRef; W. H. Schmidt, C. C. McKnight, S. A. Raizen , A Splintered Vision: An Investigation of U.S. Science and Mathematics Education (Kluwer Academic Press, Boston, MA, 1997).; National Research Council, Conceptual Framework for New Science Education Standards, update 7,March 2011; http://www7.nationalacademies.org/bose/Standards_Framework_Homepage.html. Y. B. Kafai, Games Cult. 1, 36 (2006).; William Humphrey, Andrew Dalke, and Klaus Schulten. VMD - Visual Molecular Dynamics. J. Mol. Graphics, 14:33-38, 199; Rajeev Sharma, Michael Zeller, Vladimir I. Pavlovic, Thomas S. Huang, Zion Lo, Stephen Chu, Yunxin Zhao, James C. Phillips, and Klaus Schulten. Speech/gesture interface to a visual-computing environment. IEEE Comp. Graph. App., 20:29-37, 2000.; Simon Cross, Michelle M. Kuttell, John E. Stone, and James E. Gain. Visualization of cyclic and multi-branched molecules with VMD. J. Mol. Graph. Model., 28:131-139, 2009.; John E. Stone, Axel Kohlmeyer, Kirby L. Vandivort, and Klaus Schulten. Immersive molecular visualization and interactive modeling with commodity hardware. Lect. Notes in Comp. Sci., 6454:382-393, 2010.; John E. Stone, Kirby L. Vandivort, and Klaus Schulten. Immersive out-of-core visualization of large-size and long-timescale molecular dynamics trajectories. Lect. Notes in Comp. Sci., 6939:1-12, 2011.; John E. Stone, William R. Sherman, and Klaus Schulten. Immersive molecular visualization with omnidirectional stereoscopic ray tracing and remote rendering. 2016 IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW), pages 1048-1057, 2016; Michael Zeller, James C. Phillips, Andrew Dalke, William Humphrey, Klaus Schulten, Rajeev Sharma, T. S. Huang, V. I. Pavlovic, Y. Zhao, Z. Lo, and S. Chu. A visual computing environment for very large scale biomolecular modeling. In Proceedings of the 1997 IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), pages 3-12. IEEE Computer Society Press, 1997; John E. Stone, Justin Gullingsrud, Paul Grayson, and Klaus Schulten. A system for interactive molecular dynamics simulation. In John F. Hughes and Carlo H. Séquin, editors, 2001 ACM Symposium on Interactive 3D Graphics, pages 191-194, New York, 2001. ACM SIGGRAPH.; Matthieu Chavent, Tyler Reddy, Joseph Goose, Anna Caroline E. Dahl, John E. Stone, Bruno Jobard, and Mark S.P. Sansom. Methodologies for the analysis of instantaneous lipid diffusion in MD simulations of 161 161 large membrane systems. Faraday Discuss., 169:455-475, 2014.; Benjamin G. Levine, John E. Stone, and Axel Kohlmeyer. Fast analysis of molecular dynamics trajectories with graphics processing units-radial distribution function histogramming. J. Comp. Phys., 230:3556-3569, 2011.; John Stone and Mark Underwood. Rendering of numerical flow simulations using MPI. In Second MPI Developer's Conference, pages 138-141. IEEE Computer Society Technical Committee on Distributed Processing, IEEE Computer Society Press, 1996.; John E. Stone. An Efficient Library for Parallel Ray Tracing and Animation. Master's thesis, Computer Science Department, University of Missouri-Rolla, April 1998.; John E. Stone, Barry Isralewitz, and Klaus Schulten. Early experiences scaling VMD molecular visualization and analysis jobs on Blue Waters. In Extreme Scaling Workshop (XSW), 2013, pages 43-50, Aug. 2013; I. Wald, G. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers, J. Gunther, and P. Navratil. OSPRay - a CPU ray tracing framework for scientific visualization. IEEE Transactions on Visualization and Computer Graphics, 23(1):1-1, 20; John E. Stone, James C. Phillips, Peter L. Freddolino, David J. Hardy, Leonardo G. Trabuco, and Klaus Schulten. Accelerating molecular modeling applications with graphics processors. J. Comp. Chem., 28:2618-2640, 2007.; John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone, and James C. Phillips. GPU computing. Proc. IEEE, 96:879-899, 2008; Christopher I. Rodrigues, David J. Hardy, John E. Stone, Klaus Schulten, and Wen-mei W. Hwu. GPU acceleration of cutoff pair potentials for molecular modeling applications. In CF'08: Proceedings of the 2008 conference on Computing Frontiers, pages 273-282, New York, NY, USA, 2008. AC; David J. Hardy, John E. Stone, and Klaus Schulten. Multilevel summation of electrostatic potentials using graphics processing units. J. Paral. Comp., 35:164-177, 2009.; Volodymyr Kindratenko, Jeremy Enos, Guochun Shi, Michael Showerman, Galen Arnold, John E. Stone, James Phillips, and Wen-mei Hwu. GPU clusters for high performance computing. In Cluster Computing and Workshops, 2009. CLUSTER '09. IEEE International Conference on, pages 1-8, 2009; John E. Stone, David J. Hardy, Ivan S. Ufimtsev, and Klaus Schulten. GPU-accelerated molecular modeling coming of age. J. Mol. Graph. Model., 29:116-125, 2010; John E. Stone, David Gohara, and Guochun Shi. OpenCL: A parallel programming standard for heterogeneous computing systems. Comput. in Sci. and Eng., 12:66-73, 2010.; Jeremy Enos, Craig Steffen, Joshi Fullop, Michael Showerman, Guochun Shi, Kenneth Esler, Volodymyr Kindratenko, John E. Stone, and James C. Phillips. Quantifying the impact of GPUs on performance and energy efficiency in HPC clusters. In International Conference on Green Computing, pages 317-324, 2010.; John E. Stone, David J. Hardy, Barry Isralewitz, and Klaus Schulten. GPU algorithms for molecular modeling. In Jack Dongarra, David A. Bader, and Jakub Kurzak, editors, Scientific Computing with Multicore and Accelerators, chapter 16, pages 351-371. Chapman & Hall/CRC Press, 2011; David J. Hardy, Zhe Wu, James C. Phillips, John E. Stone, Robert D. Skeel, and Klaus Schulten. Multilevel summation method for electrostatic force evaluation. J. Chem. Theor. Comp., 11:766-779, 201; John E. Stone, Ryan McGreevy, Barry Isralewitz, and Klaus Schulten. GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting. Faraday Discuss., 169:265-283, 2014; Abhishek Singharoy, Ivan Teo, Ryan McGreevy, John E. Stone, Jianhua Zhao, and Klaus Schulten. Molecular dynamics-based refinement and validation with Resolution Exchange MDFF for sub-5 Å cryo-electron microscopy maps. eLife, 10.7554/eLife.16105, 2016. (66 pages).; John E. Stone, Juan R. Perilla, C. Keith Cassidy, and Klaus Schulten. GPU-accelerated molecular dynamics clustering analysis with OpenACC. In Robert Farber, editor, Parallel Programming with OpenACC, pages 215-240. Morgan Kaufmann, Cambridge, MA, 2016; John E. Stone, Jan Saam, David J. Hardy, Kirby L. Vandivort, Wen-mei W. Hwu, and Klaus Schulten. High performance computation and interactive display of molecular orbitals on GPUs and multi-core CPUs. In Proceedings of the 2nd Workshop on General-Purpose Processing on Graphics Processing Units, ACM International Conference Proceeding Series, volume 383, pages 9-18, New York, NY, USA, 2009. ACM.; John E. Stone, David J. Hardy, Jan Saam, Kirby L. Vandivort, and Klaus Schulten. GPU-accelerated computation and interactive display of molecular orbitals. In Wen-mei Hwu, editor, GPU Computing Gems, chapter 1, pages 5-18. Morgan Kaufmann Publishers, 2011; John E. Stone, Michael J. Hallock, James C. Phillips, Joseph R. Peterson, Zaida Luthey-Schulten, and Klaus Schulten. Evaluation of emerging energy-efficient heterogeneous computing platforms for biomolecular and cellular simulation workloads. 2016 IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW), pages 89-100, 2016.; John E. Stone, Antti-Pekka Hynninen, James C. Phillips, and Klaus Schulten. Early experiences porting the NAMD and VMD molecular simulation and analysis software to GPU-accelerated OpenPOWER platforms. Lect. Notes in Comp. Sci., 9945:188-206, 2016; Michael Krone, John E. Stone, Thomas Ertl, and Klaus Schulten. Fast visualization of Gaussian density surfaces for molecular dynamics and particle system trajectories. In EuroVis - Short Papers 2012, pages 67-71, 2012; Elijah Roberts, John E. Stone, and Zaida Luthey-Schulten. Lattice microbes: High-performance stochastic simulation method for the reaction-diffusion master equation. J. Comp. Chem., 34:245-255, 2013.; Structures et fonctions des molécules biologiques. Utilisations pédagogiques des visualisations tridimensionnelles avec Rasmol. J. Barrère, J-Y Dupont and N. Salamé. INRP, 1997, 128 pages.; Surprising similarities in structure comparison. Jean-François Gilbrat, Thomas Madej, and Stephen H. Bryant. Current Opinion in Structural Biology 6:377-385, 1996. A review of early results of searcing for similarities in structure, regardless of sequence similarities. Describes the Vector Alignment Search Tool (VAST) provided by the US National Center for Biotechnology Information; GlaxoWellcome and MDL become entangled in the Web, by John Hodgson, Nature Biotechnology 14:690, June 1996. This article concerning RasMol and Chime is full of errors. See the editorial comment; A Dynamic Look at Structures: WWW-Entrez and the Molecular Modeling Database, by Christopher W. V. Hogue, Hitomi Ohkawa and Stephen H. Bryant. Trends in Biochemical Sciences, 21:226-9, 1996. All PDB files have been converted to the WWW-Entrez format ASN.1. This format can handle a broader range of 3D structural information, including for example models from electron microscopy. WWW-Entrez links 3D structural information with GenBank sequences and MEDLINE abstracts. Related structures can be identified. Kinemage animations are generated automatically to reveal information buried in PDB files, such as thermal factors, disordered zones, and multiple NMR models.; RasMol: Biomolecular graphics for all, by Roger A. Sayle and E. James Milner-White, Trends in Biochemical Sciences 20(Sept):374-376, 1995. RasMol was first widely distributed via the Internet in June, 1993, but this is the original paper publication describing RasMol; Hyperactive Molecules and the World-Wide-Web Information System, by Omer Casher, Gudge K. Chandramohan, Martin J. Hargreaves, Christopher Leach, Peter Murray-Rust, Henry S. Rzepa, Roger A. Sayle and Benjamin J. Whitaker. J. Chem. Soc., Perkin Trans. 2, 1995, 7. This paper proposes sharing chemical data too bulky for journal publication via World Wide Web. To accomplish this, it introduces various new chemical MIME (Multipurpose Internet Mail Extension) types, including chemical/x-csml for the Chemical Structure Markup Language which can be understood by RasMol; Software for viewing biomolecules in three dimensions on the Internet, by Alvaro Sanchez-Ferrer, Estrella Nunez-Delicado, and Roque Bru, Trends in Biochemical Sciences 20(July):286-288, 1995.Compares RasMol 2.5, pdVwin, Pkin_2_4/Mage_2_4, Hyperchem 3; Utilisations pédagogiques des visualisations tridimensionelles de molécules en biologie, by J. Barrère, J.-Y. Dupont, and N. Salamé, in Images numériques dan l'enseignement des sciences, Journées d'études CNAM, June 1995, J. C. Le Touzé and N. Salamé, eds., Institut Nationale de Recherche Pédagogique, pp. 87-93. A brief introduction to the use of RasMol for educational molecular visualization of DNA and proteins, touching on hemoglobin and the active site of carboxypeptidase. Illustrated.; Kinemages: make your own molecules for teaching, by Charles W. Sokolik, Trends in Biochemical Sciences 20(March):122-4, 1995; Kinemages -- simple macromolecular graphics for interactive teaching and publication, by David C. Richardson and Jane S. Richardson, Trends in Biochemical Sciences 19(March):135-8, 1994.; CPK models are very informative during the process of putting them together, but the completed models all look alike. Computer versions of CPK models have successfully imitated their appearance and most of their disadvantages (the fact that the inside is completely hidden, and the difficulty of identifying an atom or group), without, so far, imitating the real virtue of CPK's, which is the physical "feel" for the bumps, constraints, and degrees of freedom one obtains by manipulating them.; The Kinemage: A tool for scientific communication, by David C. Richardson, and Jane S. Richardson, Protein Science 1:3-9, 1992; Feynman. R, There’s Plenty of Room at the Bottom, American Physical Society, 1959. H.D. Gilbert, Miniaturization Reinhold Publishing Corp, N.Y, 1961,282. http://www.zyvex.com/nanotech/feynman.html. 2 N. Taniguchi, “On the Basic Concept of Nanotechnology”, Proc.Intl.Conf.Prod.Eng, Tokyo 1974, 18. 3 T. Theis, D. Parr, P. Binks, J. Ying, K. E.; Drexler, E. Schepers, K. Mullis, C. Bai, J. J. Boland, R. Langer, P. Dobson, C. N. R. Rao, M. Ferrari, , Nat.Nanotech. 2006,1,8. 4 J. J. Ramsden, Nanotechnology: An Introduction, Elsevier, Amsterdam, 2011. 5 (a) G. Binnig, H. Rohrer, IBM Journal of Research and Development 1986,30,355. (b) G.; Binnig, H. Rohrer, Rev. Mod. Phys. 1987, 59,615. 6 D. Eigler, E. Schweizer, Nature 1990,344,.524. 7 167 167 http://researcher.watson.ibm.com/researcher/view_group.php?id=4245 8 (a) C. P. Poole Jr., F. J.; Owens, Introduction To Nanotechnology, John Wiley & Sons, New Yersey, 2003. (b) R. Kelsall, I. W. Hamley, M. Geoghegan, Nanoscale Science and Technology, John Wiley & Sons, UK, 2005. 9 (a) M. Pagliaro, Nano-Age: How Nanotechnology Changes our Future, Wiley-VCH, Weinheim 2010 (b) J. J. Ramsden, Applied Nanotechnology. The Conversion of Research Results to Products, Elsevier, Amsterdam, 2014; V.V. Pokropivny, V.V. Skorokhod, Mater.Sci.Eng.C 2007,27,990. (b) K. Ariga, M. Li, G. J. Richards, J. P. Hill, J. Nanosci.Nanotechnol.2011,11,1. 11 (a) M. Wautelet, Eur. J. Phys. 2001; E. Roduner, Chem. Soc. Rev. 2006, 35, 583. (c) G. Hodes, Adv. Mater. 2007, 19, 639. 12 C. Baia, M. Liub, Nano Today 2012,7,258. 13 (a) B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, Chem. Rev. 2005, 105, 1171. (b) M. J. Köhler, W. Fritzsche, Nanotechnology: An Introduction to Nanostructuring Techniques, 2nd Ed., Wiley-VCH, Weinheim, 2007.; The Royal Society & The Royal Academy of Engineering, Nanoscience and nanotechnologies: opportunities and uncertainties, London, 2004 (http://www.nanotec.org.uk/finalReport.htm).; T. Ito, S. Okazaki, Nature 2000,406,1027.; Basnar, I. Willner, Small 2009,5,28; G. Cao, Nanostructures and nanomaterials, Imperial College Press, London, UK, 2009.; Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, J. N. Coleman, Science 2013,340,1420; http://hdl.handle.net/20.500.12749/7272; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co

  11. 11

    Popis souboru: pdf; application/pdf

    Relation: L. Coffey, P. Gallager, O. Horgan, D. Desmond, and M. MacLachlan. “Psychosocial adjustment to diabetes‐related lower limb amputation”. Oxford, Diabetic Medicine, 2009, pp.1063–1067.; DANE. “Censo de Población y Viviendas 2018”. Bogotá, D.C, Departamento Administrativo Nacional de Estadística, 2018.; D. Silverthorn, “Fisiología humana: un enfoque integrado” , 4ta ed, reimp- Bogotá - Panamericána, 2009.; K.J. Zuo, and J. L. Olson. “The evolution of functional hand replacement”: From iron prostheses to hand transplantation. Plastic Surgery, 22(1), 44-51, 2014.; D. Foord. “CHANGES IN TECHNOLOGIES AND MEANINGS OF UPPER LIMB PROSTHETICS: PART I-FROM ANCIENT EGYPT TO EARLY MODERN EUROPE”. In MEC Symposium Conference, July 2020.; K. Ashmore, S. Cialdella, A. Giuffrida, E. Kon, M. Marcacci, and B. Di Matteo. “ArtiFacts: Gottfried “Götz” von Berlichingen—The “Iron Hand” of the Renaissance”. Clinical Orthopaedics and Related Research®, 477(9), 2002-2004, 2019.; K. Moore, and A. Dalley. “Clinically oriented anatomy”. 7ª ed, UK, Wolters Klawer, 2013.; Àngels. (2017, Jan 16). “Cómo se llaman los huesos de la mano” [Online]. Available at:https://www.mundodeportivo.com/uncomo/educacion/articulo/como-se-llaman-los-huesos-de-la-mano-40009.html.; B. Maat, G. Smit, D. Plettenburg, and P. Breedveld. “Passive prosthetic hands and tools: A literature review”. Prosthetics and orthotics international, 42(1), 66-74, 2018.; A. Chadwell, L. Kenney, S. Thies, A. Galpin, and J. Head. “The reality of myoelectric prostheses: understanding what makes these devices difficult for some users to control”. Frontiers in neurorobotics, 10, 7, 2016.; T. Fujimaki et al., “Prevalence of floating toe and its relationship with static postural stability in children: The Yamanashi adjunct study of the Japan Environment and Children’s Study (JECS-Y),” PLoS One, vol. 16, no. 3 March, pp. 1–8, 2021, doi:10.1371/journal.pone.0246010.; L. A. Luengas-C, D. C. Toloza, and L. F. Wanumen, “Utilización de la Teoría de la Información para evaluar el comportamiento de la estabilidad estática en amputaciones transtibiales,” RISTI - Rev. Ibérica Sist. e Tecnol. Informação, vol. 40, no. 12, pp. 15–30, 2020, doi:10.17013/risti.40.15–30.; B. Olsen et al., “The Relationship Between Hip Strength and Postural Stability in Collegiate Athletes Who Participate in Lower Extremity Dominant Sports,” Int. J. Sports Phys. Ther., vol. 16, no. 1, pp. 64–71, 2021, doi:10.26603/001c.18817.; L. A. Luengas C. and D. C. Toloza, Análisis de estabilidad en amputados transtibiales unilaterales. Bogota: UD Editorial, 2019.; M. F. Peydro de Moya, J. M. Baydal, and M. J. Vivas, “Evaluación y rehabilitación del equilibrio mediante posturografía,” Rehabilitación, vol. 39, no. 6, pp. 315–323, 2005.; L. A. Luengas-C, J. López, and G. Sánchez Prieto, “Comportamiento de rangos articulares con alineación en amputados transtibiales,” Visión Electrónica Más que un estado sólido, vol. 1, no. 1, pp. 48–52, 2018.; A. Ruhe, R. Fejer, and B. Walker, “The test-retest reliability of centre of pressure measures in bipedal static task conditions - A systematic review of the literature,” Gait and Posture, vol. 32, no. 4. pp. 436–445, Oct. 2010, doi:10.1016/j.gaitpost.2010.09.012.; P. Schubert, M. Kirchner, S. Dietmar, and C. T. Haas, “About the structure of posturography: Sampling duration, parametrization, focus of attention (part I),” J. Biomed. Sci. Eng., vol. 5, pp. 496–507, 2012, doi: http://dx.doi.org/10.4236/jbise.2012.59062.; F. Martínez-Solís et al., “Algorithm to estimate the knee angle in normal gait: trajectory generation approach to intelligent transfemoral prosthesis,” Rev. Mex. Ing. Biomédica, vol. 37, no. 3, pp. 221–233, Sep. 2016, doi:10.17488/RMIB.37.3.7.; S. A. Ahmadi et al., “Towards computerized diagnosis of neurological stance disorders: data mining and machine learning of posturography and sway,” J. Neurol., vol. 266, no. s1, pp. 108–117, 2019, doi:10.1007/s00415-019-09458-y.; L. A. Luengas-C, “Computational Method to Verify Static Alignment of Transtibial Prosthesis,” Biomed. J. Sci. Tech. Res., vol. 31, no. 2, Oct. 2020, doi:10.26717/bjstr.2020.31.005074.; J. R. Chagdes, S. Rietdyk, M. H. Jeffrey, N. Z. Howard, and A. Raman, “Dynamic stability of a human standing on a balance board,” J. Biomech., vol. 46, no. 15, 2013, doi:10.1016/j.jbiomech.2013.08.012.; L. A. Luengas-C. and D. C. Toloza, “Frequency and Spectral Power Density Analysis of the Stability of Amputees Subjects,” TecnoLógicas, vol. 23, no. 48, pp. 1–16, 2020, doi: https://doi.org/10.22430/22565337.1453.; L. Verdichio, “Equilibrio y dominancia,” Universidad FASTA, 2016.; J. C. Segovia Martínez and J. C. Legido Arce, “Valores podoestabilométricos en la población deportiva infantil,” UNIVERSIDAD COMPLUTENSE DE MADRID, 2009.; B. Ristevski and M. Chen, “Big Data Analytics in Medicine and Healthcare,” J. Integr. Bioinform., vol. 15, no. 3, pp. 1–5, 2018, doi:10.1515/jib-2017-0030.; P. Schubert and M. Kirchner, “Ellipse area calculations and their applicability in posturography,” Gait Posture, vol. 39, no. 1, pp. 518–522, 2014, doi:10.1016/j.gaitpost.2013.09.001.; M. Duarte and S. M. Freitas, “Revision of posturography based on force plate for balance evaluation,” Rev. Bras. Fisioter., vol. 14, no. 3, pp. 183–192, 2010, doi: S1413-35552010000300003 [pii].; M. Duarte, “Comments on ‘ellipse area calculations and their applicability in posturography’ (schubert and kirchner, vol.39, pages 518-522, 2014),” Gait Posture, vol. 41, no. 1, pp. 44–45, 2015, doi:10.1016/j.gaitpost.2014.08.008.; M. Gómez, J. Serna, and L. Vélez, “Diagnosis of bearing with mechanical vibrations and virtual instruments,” Visión Electrónica Más que un estado sólido, vol. 8, no. 2, pp. 107–113, 2014.; Novel.de, “The pedar® system,” Novel GmbH, 2019. http://www.novel.de/novelcontent/pedar (accessed May 11, 2014).; D. A. Winter, Biomechanics and motor control of human movement, 4th ed. New Jersey: John Wiley & sons, Inc, 2009.; A. Bottaro, M. Casadio, P. G. Morasso, and V. Sanguineti, “Body sway during quiet standing: Is it the residual chattering of an intermittent stabilization process?,” in Human Movement Science, 2005, vol. 24, no. 4, pp. 588–615, doi:10.1016/j.humov.2005.07.006.; R. T. Disler et al., “Factors impairing the postural balance in COPD patients and its influence upon activities of daily living,” Eur. Respir. J., vol. 15, no. 1, 2019.; Bomberos Colombia. (2016). Guía para Certificar Equipos de Búsqueda y Rescate Urbano en los Cuerpos de Bomberos de Colombia. Disponible en: https://bomberos.mininterior.gov.co/sites/default/files/guia_final_bomberos_colombia_2017_.pdf.; Brigham and Women’s Hospital. (2019). Signos vitales (temperatura corporal, pulso, frecuencia respiratoria y presión arterial). Disponible en: https://healthlibrary.brighamandwomens.org/spanish/diseasesconditions/adult/NonTraumatic/85,P03963.; Catalogo de la Salud. (s.f). Monitoreo de signos vitales. Disponible en: https://www.catalogodelasalud.com/ficha-producto/Monitores-de-pacientes+102363.; CNN. (2012). Un dispositivo inalámbrico para monitorear signos vitales. Disponible en: https://cnnespanol.cnn.com/2012/05/25/un-dispositivo-inalambrico-para-monitorear-signos-vitales/.; OMS. (s.f). Terremotos. Disponible en: https://www.who.int/hac/techguidance/ems/earthquakes/es/.; OMS. (2017). 10 datos sobre la seguridad vial en el mundo – Organización Mundial de la Salud (OMS). Disponible en: https://www.who.int/features/factfiles/roadsafety/es/.; Ramírez López, L. J., Marín López, A. F., & Cifuentes Sanabria, Y. P. (2015). Aplicación de la biotelemetría para tres signos vitales. Ciencia Y Poder Aéreo, 10(1), 179-186. https://doi.org/10.18667/cienciaypoderaereo.428.; Rosenberg D. (2009). ICONIX Process for Embedded Systems - A roadmap for embedded system development using SysML. Tomado de: https://community.sparxsystems.com/white-papers/616-88iconix-process-for-embedded-systems-a-roadmap-for-embedded-system-development-using-sysml.; Salazar-Arbelaez, Gabriel. (2018). Terremotos y salud: lecciones y recomendaciones. Salud Pública de México, 60(Supl. 1), 6-15. https://doi.org/10.21149/9445.; SUMMA 112. (s.f). Módulo 7 Actuación ante Accidentes con Múltiples Víctimas y Catástrofes. Incidentes NBQR. Rescate sanitario. Manuel de enfermería. Disponible en: http://www.madrid.org/cs/Satellite?blobcol=urldata&blobheader=application%2Fpdf&blobheadername1=Content-Disposition&blobheadervalue1=filename%3DModulo+7.pdf&blobkey=id&blobtable=MungoBlobs&blobwhere=1352868957600&ssbinary=true.; Tecnológico de Monterrey. (2011). Sistema para la visualización de signos vitales con dispositivos móviles utilizando tecnología Bluetooth. Disponible en: https://repositorio.tec.mx/bitstream/handle/11285/632321/33068001111800.pdf?sequence=1&isAllowed=y.; UdeA. (2016). Monitor de signos vitales vestible. UdeA – Universidad de Antioquía, Medellín, Colombia. Disponible en: http://www.udea.edu.co/wps/portal/udea/web/inicio/extension/portafoliotecnologico/articulos/Monitor_de_signos_vitales_vestible.; Udistrital. (2018). Monitoreo remoto de signos corporales y transmisión de datos y alertas a una aplicación instalada en un smartphone. Udistrital – Universidad Distrital Francisco José de Caldas. Disponible en: https://repository.udistrital.edu.co/bitstream/handle/11349/13383/SarmientoG%C3%B3mezOscar2018.pdf?sequence=2&isAllowed=y.; Volcano Discovery. (2021). Informe de terremotos en todo el mundo por enero 2021. Disponible en: https://www.volcanodiscovery.com/es/earthquakes/monthly/news/118160/Informe-de-terremotos-en-todo-el-mundo-por-enero-2021.html.; A. F. Calvo Salcedo, A. Bejarano Martínez, y A. Castillo González, “Diseño prototipo de una red de sensores inalámbricos", Visión Electrónica, vol. 12, no. 1, pp. 43-50, 2018. https://doi.org/10.14483/22484728.13405.; E. Y. Rodríguez, L. F. Pedraza Martínez, y D. A. López Sarmiento, “Desarrollo y evaluación de un sistema de comunicación remota para el monitoreo de una máquina sopladora de botellas", Visión Electrónica, vol. 5, no. 1, pp. 89-102, 2011. https://doi.org/10.14483/22484728.3517.; T. Salamanca, “Prototipo para monitorización de signos vitales en espacios confinados", Visión Electrónica, vol. 12, no. 1, pp. 83-88, 2018. https://doi.org/10.14483/22484728.13401 [18] Volcano Discovery. (2021). Informe de terremotos en todo el mundo por enero 2021. Disponible en: https://www.volcanodiscovery.com/es/earthquakes/monthly/news/118160/Informe-de-terremotos-en-todo-el-mundo-por-enero-2021.html.; W. Enríquez, P. Nazate, y O. Marcillo, “Prototipo DAS basado en FPGA de 12 canales para monitoreo geodinámico", Visión Electrónica, vol. 12, no. 1, pp. 73-82, 2018. https://doi.org/10.14483/22484728.13782.; Y. Baquero, Z. Alezones Campos, y H. Borrero Guerrero, “Robot móvil controlado por comandos de voz LPC-DTW”, Visión Electrónica, vol. 5, no. 1, pp. 15-25, 2011. https://doi.org/10.14483/22484728.3524.; Cardona, O. (2007). La gestión del riesgo colectivo. Un marco conceptual que encuentra sustento en una ciudad laboratorio. Red de Estudios Sociales en Prevención de Desastres en América Latina.; Cardona, O. D., García, A. C., Mattingly, S., Trujillo, E. G. C., & Vega, D. F. P. (2003). Plan de emergencias de Manizales. Alcaldía de Manizales–Oficina Municipal para la Prevención y Atención de Desastres-OMPAD. Manizales.; Castro, F.D. (2008). Metodología de projeto centrada na casa da qualidade. Tesis de maestría, universidade federal rio grande do sul, Porto Alegre, Brasil.; Chowdhury, T. J., Elkin, C., Devabhaktuni, V., Rawat, D. B., & Oluoch, J. (2016). Advances on localization techniques for wireless sensor networks: A survey. Computer Networks, 110, 284-305.; Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., & Mankodiya, K. (2017). Towards fog-driven IoT eHealth: promises and challenges of IoT in medicine and healthcare. Future Generation Computer Systems.; García, A. M., & Castaño Dávila, A. C. (2013). SIG de deslizamientos para el departamento de Caldas.; Keipi, K., Mora-Castro, S., & Bastidas, P. (2005). Gestión de riesgo de amenazas naturales en proyectos de desarrollo: Lista de preguntas de verificación (" Checklist"). Inter-American Development Bank.; Kim, T., Ramos, C., & Mohammed, S. (2017). Smart City and IoT. Elsevier.; Lavell, A. (2001). Sobre la gestión del riesgo: apuntes hacia una definición. Biblioteca Virtual en Salud de Desastres-OPS. Consultado el, 4.; Liu, L., Guo, C., Li, J., Xu, H., Zhang, J., & Wang, B. (2016). Simultaneous life detection and localization using a wideband chaotic signal with an embedded tone. Sensors, 16(11), 1866.; Lomotey, R. K., Pry, J., & Sriramoju, S. (2017). Wearable IoT data stream traceability in a distributed health information system. Pervasive and Mobile Computing.; Morral, G., & Bianchi, P. (2016). Distributed on-line multidimensional scaling for self-localization in wireless sensor networks. Signal Processing, 120, 88-98.; Novák, D., Švecová, M., & Kocur, D. (2017). Multiple Person Localization Based on Their Vital Sign Detection Using UWB Sensor. In Microwave Systems and Applications. InTech.; Pahl, G., & Beitz, W. (2013). Engineering design: a systematic approach. Springer Science & Business Media.; Rising, L., & Janoff, N. S. (2000). The Scrum software development process for small teams. IEEE software, (4), 26-32.; Schwaber, K., & Sutherland, J. (2013). The definitive guide to Scrum: The rules of the game. online], Scrum. org, http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf. [Visitada en agosto de 2015].; Shalloway A, Bain S, Pugh K and Kolsky A. 2011. Essential Skills for the agile developer. A guide to better programming and desing. Ed. Addison-Wesley.; UNGRD (2017). Boletín de prensa 131, Unidad atención de riesgos y desastres. Tras avalancha en manizales, continúan los trabajos de recuperación.; J. Hartvigsen et al., “What low back pain is and why we need to pay attention,” Lancet, vol. 391, no. 10137, pp. 2356–2367, 2018, doi:10.1016/S0140-6736(18)30480-X.; A. Cieza, K. Causey, K. Kamenov, S. W. Hanson, S. Chatterji, and T. Vos, “Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019,” Lancet, vol. 396, no. 10267, pp. 2006–2017, 2020, doi:10.1016/S0140-6736(20)32340-0.; A. M. Briggs et al., “Musculoskeletal Health Conditions Represent a Global Threat to Healthy Aging: A Report for the 2015 World Health Organization World Report on Ageing and Health,” Gerontologist, vol. 56, pp. S243–S255, 2016, doi:10.1093/geront/gnw002.; (OMS) Organizacion Mundial de la Salud, “Rehabilitación,” 2020. https://www.who.int/es/news-room/fact-sheets/detail/rehabilitation.; (OMS) Organizacion Mundial de la Salud, “Rehabilitation 2030 Initiative.” https://www.who.int/initiatives/rehabilitation-2030.; F. A. Abdulla, S. Alsaadi, M. I. R. Sadat-Ali, F. Alkhamis, H. Alkawaja, and S. Lo, “Effects of pulsed low-frequency magnetic field therapy on pain intensity in patients with musculoskeletal chronic low back pain: Study protocol for a randomised double-blind placebo-controlled trial,” BMJ Open, vol. 9, no. 6, pp. 1–9, 2019, doi:10.1136/bmjopen-2018-024650.; H. Hu et al., “Promising application of Pulsed Electromagnetic Fields (PEMFs) in musculoskeletal disorders,” Biomed. Pharmacother., vol. 131, p. 110767, 2020, doi:10.1016/j.biopha.2020.110767.; J. D. Z. Guillot, “La magnetoterapia y su aplicación en la medicina,” Rev. Cuba. Med. Gen. Integr., vol. 18, no. 1, pp. 60–72, 2002.; (OMS) Organización Mundial de la Salud, “Campos electromagnéticos (CEM).” https://www.who.int/peh-emf/about/WhatisEMF/es/ (accessed Apr. 10, 2021).; E. Alonso Fustel, R. Garcia Vázquez, and C. Onaindia Olalde, “Campos electromagnéticos y efectos en salud.” Bizkaia, Vasco, 2012.; M. O. Mattsson and M. Simkó, “Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz,” Medical Devices: Evidence and Research, vol. 12. Dove Medical Press Ltd, pp. 347–368, 2019, doi:10.2147/MDER.S214152.; N. Bachl, G. Ruoff, B. Wessner, and H. Tschan, “Electromagnetic Interventions in Musculoskeletal Disorders,” Clinics in Sports Medicine, vol. 27, no. 1. pp. 87–105, Jan. 2008, doi:10.1016/j.csm.2007.10.006.; T. Paolucci, L. Pezzi, A. M. Centra, N. Giannandrea, R. G. Bellomo, and R. Saggini, “Electromagnetic field therapy: A rehabilitative perspective in the management of musculoskeletal pain – A systematic review,” J. Pain Res., vol. 13, pp. 1385–1400, 2020, doi:10.2147/JPR.S231778.; J. Multanen, A. Häkkinen, P. Heikkinen, H. Kautiainen, S. Mustalampi, and J. Ylinen, “Pulsed electromagnetic field therapy in the treatment of pain and other symptoms in fibromyalgia: A randomized controlled study,” Bioelectromagnetics, vol. 39, no. 5, pp. 405–413, 2018, doi:10.1002/bem.22127.; H. Mohajerani, F. Tabeie, F. Vossoughi, E. Jafari, and M. Assadi, “Effect of pulsed electromagnetic field on mandibular fracture healing: A randomized control trial, (RCT),” J. Stomatol. Oral Maxillofac. Surg., vol. 120, no. 5, pp. 390–396, Nov. 2019, doi:10.1016/j.jormas.2019.02.022.; A. M. Elshiwi, H. A. Hamada, D. Mosaad, I. M. A. Ragab, G. M. Koura, and S. M. Alrawaili, “Effect of pulsed electromagnetic field on nonspecific low back pain patients: a randomized controlled trial,” Brazilian J. Phys. Ther., vol. 23, no. 3, pp. 244–249, 2019, doi:10.1016/j.bjpt.2018.08.004.; H. L. Casalechi et al., “Acute effects of photobiomodulation therapy and magnetic field on functional mobility in stroke survivors: a randomized, sham-controlled, triple-blind, crossover, clinical trial,” Lasers Med. Sci., vol. 35, no. 6, pp. 1253–1262, 2020, doi:10.1007/s10103-019-02898-y.; L. Kopacz, Z. Ciosek, H. Gronwald, P. Skomro, R. Ardan, and D. Lietz-Kijak, “Comparative Analysis of the Influence of Selected Physical Factors on the Level of Pain in the Course of Temporomandibular Joint Disorders,” Pain Res. Manag., vol. 2020, 2020, doi:10.1155/2020/1036306.; E. Hattapoğlu, İ. Batmaz, B. Dilek, M. Karakoç, S. Em, and R. Çevik, “Efficiency of pulsed electromagnetic fields on pain, disability, anxiety, depression, and quality of life in patients with cervical disc herniation: A randomized controlled study,” Turkish J. Med. Sci., vol. 49, no. 4, pp. 1095–1101, 2019, doi:10.3906/sag-1901-65.; G. L. Bagnato, G. Miceli, N. Marino, D. Sciortino, and G. F. Bagnato, “Pulsed electromagnetic fields in knee osteoarthritis: A double blind, placebo-controlled, randomized clinical trial,” Rheumatol. (United Kingdom), vol. 55, no. 4, pp. 755–762, 2016, doi:10.1093/rheumatology/kev426.; L. Chen et al., “Effects of pulsed electromagnetic field therapy on pain, stiffness and physical function in patients with knee osteoarthritis: A systematic review and meta-analysis of randomized controlled trials,” J. Rehabil. Med., vol. 51, no. 11, pp. 821–827, 2019, doi:10.2340/16501977-2613.; T. Paolucci et al., “Efficacy of extremely low-frequency magnetic field in fibromyalgia pain: A pilot study,” J. Rehabil. Res. Dev., vol. 53, no. 6, pp. 1023–1034, 2016, doi:10.1682/JRRD.2015.04.0061.; A. El Zohiery, Y. El Miedany, T. Elserry, O. El Shazly, and S. Galal, “Impact of electromagnetic field exposure on pain, severity, functional status and depression in patients with primary fibromyalgia syndrome,” Egypt. Rheumatol., no. xxxx, pp. 0–4, 2020, doi:10.1016/j.ejr.2020.10.001.; C. L. Ross, I. Syed, T. L. Smith, and B. S. Harrison, “The regenerative effects of electromagnetic field on spinal cord injury,” Electromagn. Biol. Med., vol. 36, no. 1, pp. 74–87, 2017, doi:10.3109/15368378.2016.1160408.; T. Pesqueira, R. Costa-Almeida, and M. E. Gomes, “Magnetotherapy: The quest for tendon regeneration,” J. Cell. Physiol., vol. 233, no. 10, pp. 6395–6405, 2018, doi:10.1002/jcp.26637.; G. Vicenti et al., “Biophysical stimulation of the knee with PEMFs: from bench to bedside,” J. Biol. Regul. Homeost. Agents, vol. 32, no. 6, pp. 23–28, 2018.; K. Iwasa and A. H. Reddi, “Pulsed Electromagnetic Fields and Tissue Engineering of the Joints,” Tissue Engineering - Part B: Reviews, vol. 24, no. 2. Mary Ann Liebert Inc., pp. 144–154, Apr. 01, 2018, doi:10.1089/ten.teb.2017.0294.; A. Madroñero De La Cal, “Importancia de los aplicadores de campo magnético en los tratamientos electroterapéuticos en las personas mayores,” Rev. Esp. Geriatr. Gerontol., vol. 38, no. 6, pp. 355–368, 2003, doi:10.1016/s0211-139x(03)74917-8.; T. Wang et al., “Pulsed electromagnetic fields: promising treatment for osteoporosis,” Osteoporos. Int., vol. 30, no. 2, pp. 267–276, 2019, doi:10.1007/s00198-018-04822-6.; X. sheng Qiu, X. gang Li, and Y. xin Chen, “Pulsed electromagnetic field (PEMF): A potential adjuvant treatment for infected nonunion,” Med. Hypotheses, vol. 136, Mar. 2020, doi:10.1016/j.mehy.2019.109506.; J. Taradaj, M. Ozon, R. Dymarek, B. Bolach, K. Walewicz, and J. Rosinczuk, “Impact of selected magnetic fields on the therapeutic effect in patients with lumbar discopathy: A prospective, randomized, single-blinded, and placebo-controlled clinical trial,” Adv. Clin. Exp. Med., vol. 27, no. 5, pp. 649–666, 2018, doi:10.17219/acem/68690.; J. Zwolińska, M. Gąsior, E. Śniezek, and A. Kwolek, “The use of magnetic fields in treatment of patients with rheumatoid arthritis. Review of the literature,” Reumatologia, vol. 54, no. 4, pp. 201–206, 2016, doi:10.5114/reum.2016.62475.; Z. Wu et al., “Efficacy and safety of the pulsed electromagnetic field in osteoarthritis: A meta-analysis,” BMJ Open, vol. 8, no. 12, Dec. 2018, doi:10.1136/bmjopen-2018-022879.; L. Mori, “EFICACIA DE LA MAGNETOTERAPIA EN LA DISMINUCION DEL DOLOR EN ADULTOS MAYORES CON OSTEOARTROSIS CENTRO DE MEDICINA COMPLEMENTARIA ESSALUD TRUJILLO,” Tesis - Universidad Cesar Vallejo - Trujillo Perú, vol. 0, no. 12. p. Pág. 89-95-95, 2019, doi:10.5354/0717-8883.1986.23781.; K. Marycz, K. Kornicka, and M. Röcken, “Static Magnetic Field (SMF) as a Regulator of Stem Cell Fate – New Perspectives in Regenerative Medicine Arising from an Underestimated Tool,” Stem Cell Rev. Reports, vol. 14, no. 6, pp. 785–792, 2018, doi:10.1007/s12015-018-9847-4.; N. Kamei, N. Adachi, and M. Ochi, “Magnetic cell delivery for the regeneration of musculoskeletal and neural tissues,” Regen. Ther., vol. 9, pp. 116–119, 2018, doi:10.1016/j.reth.2018.10.001.; A. Catalano, S. Loddo, F. Bellone, C. Pecora, A. Lasco, and N. Morabito, “Pulsed electromagnetic fields modulate bone metabolism via RANKL/OPG and Wnt/β-catenin pathways in women with postmenopausal osteoporosis: A pilot study,” Bone, vol. 116. pp. 42–46, 2018, doi:10.1016/j.bone.2018.07.010.; H. Okano, H. Ishiwatari, A. Fujimura, and K. Watanuki, “The physiological influence of alternating current electromagnetic field exposure on human subjects,” 2017 IEEE Int. Conf. Syst. Man, Cybern. SMC 2017, vol. 2017-Janua, pp. 2442–2447, 2017, doi:10.1109/SMC.2017.8122989.; A. Maziarz et al., “How electromagnetic fields can influence adult stem cells: Positive and negative impacts,” Stem Cell Res. Ther., vol. 7, no. 1, 2016, doi:10.1186/s13287-016-0312-5.; E. I. Waldorff, N. Zhang, and J. T. Ryaby, “Pulsed electromagnetic field applications: A corporate perspective,” J. Orthop. Transl., vol. 9, pp. 60–68, 2017, doi:10.1016/j.jot.2017.02.006.; A. M. Nayback-Beebe, L. H. Yoder, B. J. Goff, S. Arzola, and C. Weidlich, “The effect of pulsed electromagnetic frequency therapy on health-related quality of life in military service members with chronic low back pain,” Nurs. Outlook, vol. 65, no. 5, pp. S26–S33, 2017, doi:10.1016/j.outlook.2017.07.012.; T. Klüter et al., “Electromagnetic transduction therapy and shockwave therapy in 86 patients with rotator cuff tendinopathy: A prospective randomized controlled trial,” Electromagn. Biol. Med., vol. 37, no. 4, pp. 175–183, 2018, doi:10.1080/15368378.2018.1499030.; J. Pasek, T. Pasek, K. Sieroń-Stołtny, G. Cieślar, and A. Sieroń, “Electromagnetic fields in medicine – The state of art,” Electromagn. Biol. Med., vol. 35, no. 2, pp. 170–175, Apr. 2016, doi:10.3109/15368378.2015.1048549.; A. Hochsprung, S. Escudero-Uribe, A. J. Ibáñez-Vera, and G. Izquierdo-Ayuso, “Effectiveness of monopolar dielectric transmission of pulsed electromagnetic fields for multiple sclerosis–related pain: A pilot study,” Neurologia, 2018, doi:10.1016/j.nrl.2018.03.003.; A. B. Camacho, Y. A. P. Borrego, M. J. R. Matas, V. S. León, L. M. Mateos, and A. Oliviero, “Protocolo terapéutico del dolor con técnicas de estimulación no invasiva,” Med., vol. 12, no. 75, pp. 4451–4454, 2019, doi:10.1016/j.med.2019.03.026.; J. Arabloo et al., “Health technology assessment of magnet therapy for relieving pain,” Med. J. Islam. Repub. Iran, vol. 31, no. 1, pp. 184–188, 2017, doi:10.18869/mjiri.31.31.; J. Chudorlinski and L. Ksiazek, “Medical device for physical therapy with a magnetic field and light,” 2019 Appl. Electromagn. Mod. Eng. Med. PTZE 2019, pp. 22–25, 2019, doi:10.23919/PTZE.2019.8781742.; J. Chudorlinski and L. Ksiazek, “Signals for magnetic field therapy and a method for their preparation,” 2018 Appl. Electromagn. Mod. Tech. Med. PTZE 2018, pp. 29–32, 2018, doi:10.1109/PTZE.2018.8503080.; A. Krawczyk, P. Murawski, and E. Korzeniewska, “New Magnetotherapeutical Device,” pp. 2–5, 2017.; Samuel K Au, Jeff Weber, and Hugh Herr. Biomechanical design of a powered ankle-foot prosthesis. In Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on, pages 298–303. IEEE, 2007.; Rouse, Elliott Jay; Mooney, Luke M.; Martinez-Villalpando, Ernesto C.; Herr, Hugh M. "Clutchable Series-Elastic Actuator: Design of a Robotic Knee Prosthesis for Minimum Energy Consumption". 13th International Conference on Rehabilitation Robotics, ICORR 2013.; Samuel K Au and Hugh M Herr. Powered ankle-foot prosthesis. IEEE Robotics & Automation Magazine, 15(3), 2008.; Dong, D., Ge, W., Liu, S., Xia, F., & Sun, Y. (2017). Design and optimization of a powered ankle-foot prosthesis using a geared five-bar spring mechanism. International Journal of Advanced Robotic Systems, 14(3), 1729881417704545.; Andrew K LaPre, Ryan D Wedge, Brian R Umberger, and Frank C Sup. Preliminary study of a robotic foot-ankle prosthesis with active alignment. In Rehabilitation Robotics (ICORR), 2017 International Conference on, pages 1299–1304. IEEE, 2017.; Maurice LeBlanc. Give hope-give a hand. The LN-4 Prosthetic Hand, 2014, 2008.; Dianbiao Dong, Wenjie Ge, Shumin Liu, Fan Xia, and Yuanxi Sun. Design and optimization of a powered ankle-foot prosthesis using a geared five-bar spring mechanism. International Journal of Advanced Robotic Systems, 14(3):1729881417704545, 2017.; Samuel K Au, Jeff Weber, and Hugh Herr. Powered ankle–foot prosthesis improves walking metabolic economy. IEEE Transactions on Robotics, 25(1):51–66, 2009.; Arthur D Kuo. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective. Human movement science, 26(4):617–656, 2007.; Mary M Rodgers. Dynamic biomechanics of the normal foot and ankle during walking and running. Physical therapy, 68(12):1822–1830, 1988.; Tan Thang Nguyen, Thanh-Phong Dao, and Shyh-Chour Huang. Bio- mechanical design of a novel six dof compliant prosthetic ankle-foot 2.0 for rehabilitation of amputee. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pages V05AT08A013–V05AT08A013. Ameri- can Society of Mechanical Engineers, 2017.; Joana Alves, Eurico Seabra, César Ferreira, Cristina P Santos, and Luís Paulo Reis. Design and dynamic modelling of an ankle-foot prosthesis for humanoid robot. In Autonomous Robot Systems and Competitions (ICARSC), 2017 IEEE International Conference on, pages 128–133. IEEE, 2017.; Lei Ren, Richard K Jones, and David Howard. Predictive modelling of human walking over a complete gait cycle. Journal of biomechanics, 40(7):1567–1574, 2007.; SK Au and H Herr. Initial experimental study on dynamic interaction between an amputee and a powered ankle-foot prosthesis. In Workshop on dynamic walking: Mechanics and control of human and robot locomotion, page 1, 2006.; Samuel K Au, Hugh Herr, Jeff Weber, and Ernesto C Martinez- Villalpando. Powered ankle-foot prosthesis for the improvement of amputee ambulation. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, pages 3020–3026. IEEE, 2007.; Grimmer, M., Eslamy, M., Gliech, S., & Seyfarth, A. (2012, May). A comparison of parallel-and series elastic elements in an actuator for mimicking human ankle joint in walking and running. In 2012 IEEE International Conference on Robotics and Automation (pp. 2463-2470). IEEE.; Soren Shashikant, 2017. Mechanical Leg. https://grabcad.com/library/mechanical-leg-2.; Guy Rouleau, 2014. From SolidWorks to SimMechanics Posted in July 10, 2014. Simulink & Model-Based Design. https://blogs.mathworks.com/simulink/2014/07/10/from-solidworks-to-simmechanics/.; Eilenberg, M. F., Geyer, H., & Herr, H. (2010). Control of a powered ankle–foot prosthesis based on a neuromuscular model. IEEE transactions on neural systems and rehabilitation engineering, 18(2), 164-173.; L. Agudelo, “La discapacidad en Colombia: una mirada global,” Revista Colombiana de Medicina Física y Rehabilitación, p. 16, 2012.; D. A. N. de E. (DANE), “Boletín Censo General 2005 DISCAPACIDAD-COLOMBIA,” 2005. Accessed: Oct. 08, 2020. [Online]. Available: https://www.dane.gov.co/files/censos/libroCenso2005nacional.pdf.; Ministerio de Salud y Protección Social, “Sala situacional de las Personas con Discapacidad,” 2019. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/MET/sala-situacional-discapacidad2019-2-vf.pdf (accessed Feb. 25, 2021).; MINISTERIO DE SALUD Y PROTECCIÓN SOCIAL, Resolución 2968 DE 2015. República de Colombia: Ministerio de Salud y Protección Social, 2015, pp. 1–16.; Ministerio de Salud y Protección Social, Decreto Número 4725 DE 2005. República de Colombia: Ministerio de Protección Social, 2005, pp. 1–31.; N. Dechev, W. L. Cleghorn, and S. Naumann, “Multiple finger, passive adaptive grasp prosthetic hand,” Mech. Mach. Theory, vol. 36, no. 10, pp. 1157–1173, Oct. 2001, doi:10.1016/S0094-114X(01)00035-0.; R. I. Flores Luna, “Repositorio de Tesis DGBSDI: Diseño de protesis mecatronica de mano,” Universidad Nacional Autónoma de México, 2007.; S. R. Kashef, S. Amini, and A. Akbarzadeh, “Robotic hand: A review on linkage-driven finger mechanisms of prosthetic hands and evaluation of the performance criteria,” Mechanism and Machine Theory, vol. 145. Elsevier Ltd, p. 103677, Mar. 01, 2020, doi:10.1016/j.mechmachtheory.2019.103677.; L. Roselia, P. León, and E. Luz González Muñoz, Rosalío Ávila Chaurand Dimensiones antropométricas de población latinoamericana. 2007.; M. Monar and L. Murillo, “DISEÑO Y CONSTRUCCIÓN DE UNA PRÓTESIS BIÓNICA DE MANO DE 7 GRADOS DE LIBERTAD UTILIZANDO MATERIALES INTELIGENTES Y CONTROL MIOELÉCTRICO ADAPTADA PARA VARIOS PATRONES DE SUJECIÓN,” Universidad de las Fuerzas Armadas, Latacunga, 2015.; J. Zhang, B. Wang, C. Zhang, Y. Xiao, and M. Y. Wang, “An EEG/EMG/EOG-Based Multimodal Human-Machine Interface to Real-Time Control of a Soft Robot Hand,” Front. Neurorobot., vol. 13, no. 7, p. 7, Mar. 2019, doi:10.3389/fnbot.2019.00007.; K. P. Biswajeet Champaty, Suraj Nayak, “Development of an Electrooculogram-based Human-Computer Interface for Hands-Free Control of Assistive Devices,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 4S, p. 11, 2019.; E. Camargo Casallas, L. A. Luengas C., y M. Balaguera, “Respuesta a carga de una prótesis transtibial con elementos infinitos durante el apoyo y balanceo", Visión Electrónica, vol. 6, no. 2, pp. 82-92, 2012.; Q. Huang et al., “An EOG-based wheelchair robotic arm system for assisting patients with severe spinal cord injuries,” J. Neural Eng, vol. 16, 2019, doi:10.1088/1741-2552/aafc88.; S. D and R. R. M, “A high performance asynchronous EOG speller system,” Biomed. Signal Process. Control, vol. 59, p. 101898, May 2020, doi:10.1016/j.bspc.2020.101898.; A. López, M. Fernández, H. Rodríguez, F. Ferrero, and O. Postolache, “Development of an EOG-based system to control a serious game,” Meas. J. Int. Meas. Confed., vol. 127, pp. 481–488, Oct. 2018, doi:10.1016/j.measurement.2018.06.017.; O. F. Avilés, R. D. Hernández, J. L. Loaiza, and J. M. Rosário, “Simulation model of an anthropomorphic hand,” Int. J. Appl. Eng. Res., vol. 11, no. 23, pp. 11114–11120, 2016, Accessed: Oct. 11, 2020. [Online]. Available: https://www.researchgate.net/publication/312979011_Simulation_Model_of_an_Anthropomorphic_Hand.; O. F. A. Sánchez, R. Gutiérrez, A. J. U. Quevedo, and J. M. Rosario, “(PDF) Antrohopomorphic Grippers - Modelling, Analysis and Implementation,” 2015. https://www.researchgate.net/publication/228090516_Antrhopomorphic_Grippers_-_Modelling_Analysis_and_Implementation (accessed Oct. 11, 2020).; A. Sharma, W. Niu, C. L. Hunt, G. Lévay, R. R. Kaliki, and N. Thakor, “Augmented Reality Prosthesis Training Setup for Motor Skill Enhancement,” 2019.; Y. Tsepkovskiy, L. Antonov, C. Kocev, F. Palis, and N. Shoylev, “DEVELOPMENT OF A 3D AND VRML VIRTUAL HAND MODELS FOR DIFFERENT MECHANICAL GRIPPER,” 2008.; S. T. Vite, C. F. Domínguez Velasco, J. B. Reséndiz Rodríguez, A. Hernández Valencia, y M. Ángel Padilla Castañeda, “Simulador de reparación de aneurismas cerebrales para entrenamiento médico Visión Electrónica, vol. 12, no. 1, pp. 51-57, 2018. https://doi.org/10.14483/22484728.13399.; F. J. Badesa et al., “Physiological responses during hybrid BNCI control of an upper-limb exoskeleton,” Sensors (Switzerland), vol. 19, no. 22, Nov. 2019, doi:10.3390/s19224931.; M. R. Cutkosky, “On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks,” IEEE Trans. Robot. Autom., vol. 5, no. 3, pp. 269–279, 1989, doi:10.1109/70.34763.; “Anexo A Norma DIN 33 402.”; J. F. Guerrero Martínez, “INGENIERÍA BIOMÉDICA Tema 2 Bioseñales 2.1. Introducción,” 2010.; L. Atanelov, S. A. Stiens, and M. A. Young, “History of physical medicine and rehabilitation and its ethical dimensions”, AMA journal of ethics, vol. 17, no. 6, pp. 568–574, 2015. DOI:10.1001/journalofethics.2015.17.6.mhst1-1506 URL: https://journalofethics.ama-assn.org/article/history-physical-medicine-and-rehabilitation-and-its-ethical-dimensions/2015-06.; M. C. Garcia and T. Vieira, “Surface electromyography: Why, when and how to use it”, Revista andaluza de medicina del deporte, vol. 4, no. 1, pp.17–28, 2011. URL: https://www.elsevier.es/es-revista-revista-andaluza-medicina-del-deporte-284-articulo-surface-electromyography-why-when-how-X1888754611201253.; J. C. Guerrero Pupo, I. Amell Muñoz, and R. Cañedo Andalia, “Tecnología, tecnología médica y tecnología de la salud: algunas consideraciones básicas”, Acimed, vol. 12, no. 4, pp. 1–1, 2004. URL: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1024-94352004000400007.; J. A. A. Londoño, E. C. Bravo, and J. F. C. García, “Aplicación de tecnologías de rehabilitación robótica en niños con lesión del miembro superior”, Revista Salud UIS, vol. 49, no. 1, pp. 103–114, 2017. DOI: http://dx.doi.org/10.18273/revsal.v49n1-2017010 URL: http://www.scielo.org.co/scielo.php?pid=S0121-08072017000100103&script=sci_abstract&tlng=es.; F. Salvuci and R. Kohanoff, Tecnologías de rehabilitación. Wiley-Interscience, 2016.; A. Merlo and I. Campanini, “Technical aspects of surface electromyography for clinicians”, The open rehabilitation journal, vol. 3, no. 1, 2010. DOI:10.2174/1874943701003010098 URL: https://benthamopen.com/ABSTRACT/TOREHJ-3-98 [7]. F. J. Juan, “Utilidad de la electromiografía de superficie en rehabilitación” URL: https://www.researchgate.net/profile/Francisco_Juan-Garcia/publication/316588275_UTILIDAD_DE_LA_ELECTROMIOGRAFIA_DE_SUPERFICIE_EN_REHABILITACION/links/5905b86c4585152d2e957860/UTILIDAD-DE-LA-ELECTROMIOGRAFIA-DE-SUPERFICIE-EN-REHABILITACION.pdf.; J. W. Meklenburg, S. K. Patrick, and S. D. Jung, “Surface electromyogram simulator for myoelectric prosthesis testing,” 2010. URL: https://digitalcommons.wpi.edu/mqp-all/1402/.; Merletti Roberto, and Dario Farina. Surface electromyography: physiology, engineering, and applications. Piscataway, NJ: IEEE Press, 2016, online. ISBN: 9781119082934, DOI:10.1002/9781119082934.; E. Guzmán, G. Méndez, “Electromiografía en las Ciencias de la Rehabilitación”, Salud Uninorte, Vol 3, no. 3, pp 753-765, 2018.; WOLFRAM S., y PACKARD N. H. Two-dimensional Cellular Autómata. J. Statist. Phys. 38, 1985.; MUÑOZ CASTAÑO, J. D., Artículo: Autómatas Celulares y Física Digital, en: Memorias del Primer Congreso Colombiano de Neuro Computación. Santa fe de Bogotá, D. C.: Academia Colombiana de Ciencias Exactas, Físicas y Naturales, p 28. ISBN 958-9205- 17-8. 1996.; HERNÁNDEZ, J. C., Algunas Generalizaciones en Autómatas Celulares. México: Consejo Nacional de Ciencia y Tecnología – CONACYT, 2008.; JUÁREZ, G. Teoría del Campo Promedio En Autómatas Celulares Similares a "The Game Of Life". México: Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 2000.; CUEVAS, E., ZALDÍVAR, D., & PÉREZ, M., Procesamiento digital de imágenes con MATLAB y Simulink. México: Alfaomega Grupo Editor; RA-MA Editorial. 2010.; MUÑOZ, M. A., Privacidad y ocultación de información digital ESTEGANOGRAFÍA protegiendo y atacando redes informáticas. Madrid, Bogotá., España, Colombia: Ra-ma, Ediciones de la U. 2017; PONCE, C., P. Inteligencia Artificial con aplicaciones a la ingeniería. México: Alfa Omega Grupo Editor. 2010.; WOLFRAM S., Cellular automata as simple self-organizing systems. Pasadena: Caltech prepint CAL-68-938. 1982.; ESPÍNOLA, M. Clasificación de Imágenes de Satélite mediante Autómatas Celulares. Almería: Universidad de Almería. 2011.; MOORE, E. F. Machine Models Of Self-Reproduction. U.S.A.: Proceedings of Symposia in Applied Mathematics. 1963.; GUERRERO, C. Á. “RapaNui – Isla de Pascua”. RapaNui, Chile. 20/06/2018.; CHEDDAD, A., CONDELL, J., CURRAN, K., & MCKEVITT, P. Digital image steganography: Survey and analysis of current methods. Northern Ireland: School of Computing and Intelligent Systems, University of Ulster at Magee. Signal Processing, 90 (3), 26. Obtenido de EL SEVIER, 2010.; DE LA CRUZ FRANCO, A. Implementación de un Algoritmo Computacional para Esteganografía basado en técnicas del bit menos significativo. Chetumal, México: Universidad de Quintana Roo. 2017.; VÁZQUEZ, J. I., & OLIVER, J. Evolución de Autómatas Celulares utilizando Algoritmos Genéticos. Bilbao, España: Universidad de Deusto. 2008.; MIRI, A., FAEZ, K. Adaptive Image Steganography based on transform domain via Genetic Algorithm. Tehran, Iran: Department of Electrical Engineering, Amirkabir University of Technology. Optika, 145, 10. Obtenido de EL SEVIER, 2017.; MUKJERJEE, S., ROY, S., & SANYAL, G. Image Steganography Using Mid Position Value Technique. Durgapur, India: National Institute of Technology Durgapur. Procedia Computer Science, 132, 7. Obtenido de EL SEVIER, 2018.; WESTFELD, A., PFIZMANN, A. Attacks on Steganographic System. Dresden, Germany: Department of Computer Science, Dresden University of Technology. Information Hiding, 15. 1999.; CABALLERO, H. Cálculo de la dispersión de pixels en imágenes RGB para Esteganografía con base en la teoría fractal. Toluca de Lerdo, México: Facultad de Ingeniería, Universidad Autónoma de México. 2020.; FRIDRICH, J., GOLJAN, M., & DU, R. Reliable Detection of LSB steganography in color and grayscale images. Binghamton, U.S.A.: Department of Electrical and Computer Engineering, Binghamton University, 7. 2002.; D. Galeano and I. Electr, “Robótica Médica,” p. 21.; J. Cornejo, J. A. Cornejo Aguilar, and J. P. Perales Villarroel, “Innovaciones Internacionales En Robótica Médica Para Mejorar El Manejo Del Paciente En Perú,” Rev. la Fac. Med. Humana, vol. 19, no. 4, pp. 105–113, 2019, doi:10.25176/rfmh.v19i4.2349.; E. Saraee, A. Joshi, and M. Betke, “A therapeutic robotic system for the upper body based on the Proficio robotic arm,” Int. Conf. Virtual Rehabil. ICVR, vol. 2017-June, 2017, doi:10.1109/ICVR.2017.8007498.; M. A. Soleimani, H. Zohoor, A. R. F. Yakhdani, M. Heravi, and E. Mohammadi, “Designing, Prototyping, and Controlling a Portable Rehabilitation Robot for the Shoulder Physiotherapy and Training,” ICRoM 2019 - 7th Int. Conf. Robot. Mechatronics, no. ICRoM, pp. 281–284, 2019, doi:10.1109/ICRoM48714.2019.9071844.; M. R. Sarder, F. Ahmed, and B. A. Shakhar, “Design and implementation of a lightweight telepresence robot for medical assistance,” ECCE 2017 - Int. Conf. Electr. Comput. Commun. Eng., pp. 779–783, 2017, doi:10.1109/ECACE.2017.7913008.; R. R. Murphy, D. Riddle, and E. Rasmussen, “Robot-assisted medical reachback: A survey of how medical personnel expect to interact with rescue robots,” Proc. - IEEE Int. Work. Robot Hum. Interact. Commun., pp. 301–306, 2004, doi:10.1109/roman.2004.1374777.; M. Cardona, F. Cortez, A. Palacios, and K. Cerros, “Mobile robots application against covid-19 pandemic,” 2020 Ieee Andescon, Andescon 2020, 2020, doi:10.1109/ANDESCON50619.2020.9272072.; R. M. Nope-Giraldo et al., “Mechatronic Systems Design of ROHNI-1: Hybrid Cyber-Human Medical Robot for COVID-19 Health Surveillance at Wholesale-Supermarket Entrances,” Pan Am. Heal. Care Exch. PAHCE, vol. 2021-May, 2021, doi:10.1109/GMEPE/PAHCE50215.2021.9434874.; P. Manikandan, G. Ramesh, G. Likith, D. Sreekanth, and G. Durga Prasad, “Smart Nursing Robot for COVID-19 Patients,” 2021 Int. Conf. Adv. Comput. Innov. Technol. Eng. ICACITE 2021, vol. 7, pp. 839–842, 2021, doi:10.1109/ICACITE51222.2021.9404698.; Coronavirus: 12 aspectos en los que cambiará radicalmente nuestras vidas”: BBC News, mayo 2020. https://www.bbc.com/mundo/noticias-52512680.; UN. “La enfermedad del coronavirus, una emergencia de salud mundial”. Naciones Unidas. https://www.un.org/es/coronavirus.; “Medidas tomadas por el gobierno.” GOV.CO. Fronteras, marzo 2020. https://coronaviruscolombia.gov.co/Covid19/acciones/acciones-de-fronteras.html.; “Cómo se propaga el COVID-19”. Centros para el Control y la Prevención de Enfermedades, julio 2021. https://espanol.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html.; OMS. “Protéjase a sí mismo y a los demás contra la COVID-19”. Organización Mundial de la Salud. Octubre 2020. https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019/advice-for-public.; M. A. Vivas. “Medidas para la reactivación económica en Colombia-Decreto 580 de 2021. Consultor Salud, junio 2021. https://consultorsalud.com/medidas-para-la-reactivacion-economica/.; C.R. Colombiana. “Consejos de autocuidado y prevención COVID-19”. Cruz Roja Colombiana. https://www.cruzrojacolombiana.org/consejos-de-autocuidado-y-prevencion/.; Cinco protocolos que se usan a diario y que no sirven contra el Covid”. Portafolio, febrero de 2021. https://www.portafolio.co/economia/cinco-protocolos-covid-19-que-no-sirven-contra-el-coronavirus-549048.; “Empresas deberán adaptar protocolo de bioseguridad de Minsalud a sus actividades”. Minsalud, abril 2020. https://www.minsalud.gov.co/Paginas/Empresas-deberan-adaptar-protocolo-de-bioseguridad-de-Minsalud-a-sus-actividades.aspx.; I. J. Molina Pineda. “¿Por qué el coronavirus se propaga ahora con tanta velocidad?”. BBC News, noviembre 2020. https://www.bbc.com/mundo/noticias-54794713.; “COVID-19: novedades científicas”. Instituto de Salud Global Barcelona, noviembre 2021. https://www.isglobal.org/covid-19-novedades-cientificas.; Lionex. “Proximiti-i”. Lionex. 2020. https://lionex.co/proximiti-i.; “La solución digital más confiable del mundo para mitigar la propagación de COVID-19”. KINEXON, 2020. https://kinexon.com/technology/safetag/.; “Coronavirus: el plan de Apple y Google para rastrear el covid-19 desde tu teléfono”. BBC News, abril 2020. https://www.bbc.com/mundo/noticias-52251843.; “Nissan incorporó un nuevo Dispositivo de Distanciamiento Físico para toda su red de concesionarios”. La Nación, marzo 2021. https://www.lanacion.com.ar/lifestyle/nissan-incorporo-un-nuevo-dispositivo-de-distanciamiento-fisico-para-toda-su-red-de-concesionarios-nid11032021/.; “Analítica de detección de tapabocas, para una reapertura segura”. SAC Seguridad, 2020. https://sacseguridad.com/iss-analitica-deteccion-tapabocas-termica/.; W. Yan. “¿Llevas puesta la mascarilla? Un software de reconocimiento está listo para checar si las personas cumplen con el correcto uso”. National Geographic, septiembre 2020. https://www.nationalgeographicla.com/ciencia/2020/09/software-reconocimiento-mascarillas.; K1T671TM-3XF”. HIKVISION, 2020. https://www.hikvision.com/es-la/products/Access-Control-Products/Face-Recognition-Terminals/Ultra-Series/ds-k1t671tm-3xf-/?q=ds-k1t671tm-3xf&position=5.; “SOLIDWORKS. Qué es y para qué sirve”. SolidBi. https://solid-bi.es/solidworks/.; “Sensor de distancia SHARP GP2Y0A02YK0F”. Naylamp Mechatronics. https://naylampmechatronics.com/sensores-proximidad/204-sensor-de-distancia-infrarrojo-sharp-gp2y0a02.html.; “Sensor ultrasónico HC-SR04”. Naylamp Mechatronics. https://naylampmechatronics.com/sensores-proximidad/10-sensor-ultrasonido-hc-sr04.html.; “Sensor de temperatura TMP36”. Prometec. https://www.prometec.net/sensor-tmp36/.; “Comprensión del reconocimiento facial mediante el algoritmo LBPH”. Analytics Vidhya, julio 2021. https://www.analyticsvidhya.com/blog/2021/07/understanding-face-recognition-using-lbph-algorithm/.; Y. M. Shum. “Situación Global Mobile 2020”. YS social media, 2020. https://yiminshum.com/mobile-movil-app-2020/.; F. Cortez, J. Cercado Mancero, A. Vera Lorenti, and E. Valle Flores, “Un panorama de las energías renovables en el Mundo, Latinoamérica y Colombia,” Espacios, vol. 39, p. 10, 2018.; G. A. Zapata and J. A. Valencia, “Guía práctica para la aplicación de los incentivos tributarios de la Ley 1715 de 2014,” Colombia.; J. Faiz and A. Nematsaberi, “Linear electrical generator topologies for direct-drive marine wave energy conversion- an overview,” IET Renew. Power Gener., vol. 11, no. 9, pp. 1163–1176, 2017.; X. Wang, F. Chen, R. Zhu, G. Yang, and C. Zhang, “A Review of the Design and Control of Free-Piston Linear Generator,” Energies, vol. 11, no. 8, p. 2179, 2018.; H. Chen, S. Zhao, H. Wang, and R. Nie, “A Novel Single-Phase Tubular Permanent Magnet Linear Generator,” IEEE Trans. Appl. Supercond., vol. 30, no. 4, pp. 2–6, 2020.; R. Guo, H. Yu, T. A. O. Xia, Z. Shi, W. Zhong, and X. Liu, “A Simplified Subdomain Analytical Model for the Design and Analysis of a Tubular Linear Permanent Magnet Oscillation Generator,” IEEE Access, vol. 6, pp. 42355–42367, 2018.; H. M. Zapata, F. A. Cabrera, M. A. Perez, C. A. Silva, and W. Jara, “Model of a permanent magnet linear generator,” IECON Proc. (Industrial Electron. Conf., vol. 2019-Octob, pp. 6992–6997, 2019.; H. Jing, N. Maki, T. Ida, and M. Izumi, “Electrical design of large-scale tubular PM linear generators for wave energy conversion,” IEEJ Trans. Electr. Electron. Eng., vol. 12, pp. S113–S119, 2017.; R. M. Korbekandi, N. J. Baker, and D. Wu, “A study of translator length in a tubular linear electrical machine designed for use in alinear combustion joule engine,” 2019 12th Int. Symp. Linear Drives Ind. Appl. LDIA 2019, pp. 1–6, 2019.; Y. Sun, Z. Xu, Q. Zhang, J. Lu, and L. Liu, “A Tubular Single-Phase Linear Generator with an Axially Magnetized PM Mover for Free-Piston Engines,” IEEJ Trans. Electr. Electron. Eng., vol. 16, no. 1, pp. 139–146, 2021.; J. Kim, J. Y. Kim, and J. B. Park, “Design and optimization of a 8kW linear generator for a direct-drive point absorber,” Ocean. 2013 MTS/IEEE - San Diego An Ocean Common, pp. 1–6, 2013.; S. Arslan and S. A. Oy, “Design and optimization of tube type interior permanent magnets generator for free piston applications,” TEM J., vol. 6, no. 2, pp. 214–221, 2017.; H. J.R. and T. J. E. Miller, Design of brushless permanetn magnet machines, vol. 732, no. 1. USA: Magna physycs publishing & Oxford University Press, 2010.; J. Zhang, H. Yu, and Z. Shi, “Analysis of a PM linear generator with double translators for complementary energy generation platform,” Energies, vol. 12, no. 24, 2019.; A. Musolino, R. Rizzo, and M. Raugi, “A semi-analytical model for the analysis of a Permanent Magnet tubular linear generator,” 2015 Int. Conf. Renew. Energy Res. Appl. ICRERA 2015, vol. 54, no. 1, pp. 1513–1517, 2015.; S. A. Nasar, “Permanent-Magnet Linear Alternators Part II: Design Guidelines,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-23, no. 1, pp. 79–82, 1987.; H. M. Quintero, E. R. Trujillo, and G. M. Tarazona Bermudez, “EVOLUTION OF WIND POWER TECHNOLOGY.” [Online]. Available: www.tjprc.org.; H. Montaña Quintero, E. Rivas Trujillo, and G. M. Tarazona, “TRENDS ON WIND POWER ELECTRIC GENERATORS,” vol. 15, no. 17, 2020, [Online]. Available: www.arpnjournals.com.; M. Abril Martínez, L. Carolina, R. Rodríguez, U. Militar, N. Granada, and D. P. Cuero, “Estado Del Arte Sobre Materiales Utilizados Para La Fabricación De Las Palas De Turbinas Eólicas Offshore.”; N. Javahiraly, A. Chakari, L. Calegari, and P. Meyrueis, “Determination of solid materials rigidity modulus by a new nondestructive optical method,” Optics & Laser Technology, vol. 36, no. 3, pp. 239–243, Apr. 2004, doi:10.1016/J.OPTLASTEC.2003.09.002.; I. M. Bragado, “Física General,” 2013.; H. A. Gonzáles - D. H. Meza, “LA IMPORTANCIA DEL MÉTODO EN LA SELECCION DE MATERIALES,” vol. 4, no. ISSN 0122-1701, 2004.; “Colección: LAS CIENCIAS NATURALES Y LA MATEMATICAS,” 2010.; Y. Jiang, B. Song, J. Hu, H. Liang, and S. Rao, “Time-dependent reliability of corroded circular steel tube structures: Characterization of statistical models for material properties,” Structures, vol. 33, pp. 792–803, Oct. 2021, doi:10.1016/J.ISTRUC.2021.04.091.; H. Zhang, B. Zhang, Q. Gao, J. Song, and G. Han, “A review on microstructures and properties of graphene-reinforced aluminum matrix composites fabricated by friction stir processing,” Journal of Manufacturing Processes, vol. 68, pp. 126–135, Aug. 2021, doi:10.1016/J.JMAPRO.2021.07.023.; W. Zhang, X. Zhang, Z. Qin, W. Zhang, and R. Yang, “Mechanical and flame retardant performance of fiberglass-reinforced polysilsesquioxane interpenetrated with poly(ethylene glycol)-urethane,” Composites Part A: Applied Science and Manufacturing, vol. 149, p. 106490, Oct. 2021, doi:10.1016/J.COMPOSITESA.2021.106490.; A. Zavdoveev et al., “Effect of heat treatment on the mechanical properties and microstructure of HSLA steels processed by various technologies,” Materials Today Communications, vol. 28, p. 102598, Sep. 2021, doi:10.1016/J.MTCOMM.2021.102598.; G. Kumar Sharma and B. Nidhi Vats, “A comparative study on mechanical and tribological properties of different grades of tool steels,” Materials Today: Proceedings, Mar. 2021, doi:10.1016/J.MATPR.2021.02.275.; F. Tariq and P. Bhargava, “Stress–strain curves and mechanical properties of corrosion damaged super ductile reinforcing steel,” Structures, vol. 33, pp. 1532–1543, Oct. 2021, doi:10.1016/J.ISTRUC.2021.05.039.; B. Nie, S. Xu, Z. Zhang, and A. Li, “Surface morphology characteristics and mechanical properties of corroded cold-formed steel channel sections,” Journal of Building Engineering, vol. 42, p. 102786, Oct. 2021, doi:10.1016/J.JOBE.2021.102786.; I. J. Delfin, F. Madrid, and R. Martínez Sánchez, “Tesis: EFECTO DE LA CERIA (CeO 2 ) EN LA MICROESTRUCTURA Y PROPIEDADES MECÁNICAS DE UNA ALEACIÓN DE ALUMINIO 2024 Que como requisito presenta.”; A. Baradeswaran and A. E. Perumal, “Wear and mechanical characteristics of Al 7075/graphite composites,” Composites Part B: Engineering, vol. 56, pp. 472–476, Jan. 2014, doi:10.1016/J.COMPOSITESB.2013.08.073.; P. Chakrapani and T. S. A. Suryakumari, “Mechanical properties of aluminium metal matrix composites-A review,” Materials Today: Proceedings, vol. 45, pp. 5960–5964, Jan. 2021, doi:10.1016/J.MATPR.2020.09.247.; N. Kumar, A. Bharti, and K. K. Saxena, “A re-investigation: Effect of powder metallurgy parameters on the physical and mechanical properties of aluminium matrix composites,” Materials Today: Proceedings, vol. 44, pp. 2188–2193, Jan. 2021, doi:10.1016/J.MATPR.2020.12.351.; B. Zhou, B. Liu, S. Zhang, R. Lin, Y. Jiang, and X. Lan, “Microstructure evolution of recycled 7075 aluminum alloy and its mechanical and corrosion properties,” Journal of Alloys and Compounds, vol. 879, p. 160407, Oct. 2021, doi:10.1016/J.JALLCOM.2021.160407.; M. Barhoumi, N. Sfina, M. Said, and S. Znaidia, “Elastic and mechanical properties of aluminium and silicon carbide using density functional theory and beyond,” Solid State Communications, vol. 334–335, p. 114369, Aug. 2021, doi:10.1016/J.SSC.2021.114369.; E. M. Ruiz Navas and B. Ruiz Palenzuela, “Sintering of Aluminum Alloys. Processing and Properties,” Encyclopedia of Materials: Metals and Allloys, pp. 343–352, Jan. 2022, doi:10.1016/B978-0-12-819726-4.00114-9.; Ankur, A. Bharti, D. Prasad, N. Kumar, and K. K. Saxena, “A Re-investigation: Effect of various parameter on mechanical properties of copper matrix composite fabricated by powder metallurgy,” Materials Today: Proceedings, vol. 45, pp. 4595–4600, Jan. 2021, doi:10.1016/J.MATPR.2021.01.009.; A. Agrawal and R. Mirzaeifar, “Copper-graphene composites; developing the MEAM potential and investigating their mechanical properties,” Computational Materials Science, vol. 188, p. 110204, Feb. 2021, doi:10.1016/J.COMMATSCI.2020.110204.; S. Thapliyal and A. Mishra, “Machine learning classification-based approach for mechanical properties of friction stir welding of copper,” Manufacturing Letters, vol. 29, pp. 52–55, Aug. 2021, doi:10.1016/J.MFGLET.2021.05.010.; J. Chi et al., “Titanium alloy components fabrication by laser depositing TA15 powders on TC17 forged plate: Microstructure and mechanical properties,” Materials Science and Engineering: A, vol. 818, p. 141382, Jun. 2021, doi:10.1016/J.MSEA.2021.141382.; D. Liović, M. Franulović, and D. Kozak, “Material models and mechanical properties of titanium alloys produced by selective laser melting,” Procedia Structural Integrity, vol. 31, pp. 86–91, Jan. 2021, doi:10.1016/J.PROSTR.2021.03.014.; J. Aguilar Pozzer and E. Guzowski, “Guía didáctica Materiales y materias primas.”; M. Z. R. Khan, S. K. Srivastava, and M. K. Gupta, “A state-of-the-art review on particulate wood polymer composites: Processing, properties and applications,” Polymer Testing, vol. 89, p. 106721, Sep. 2020, doi:10.1016/J.POLYMERTESTING.2020.106721.; C. Wu, N. Vahedi, A. P. Vassilopoulos, and T. Keller, “Mechanical properties of a balsa wood veneer structural sandwich core material,” Construction and Building Materials, vol. 265, p. 120193, Dec. 2020, doi:10.1016/J.CONBUILDMAT.2020.120193.; F. Tian, L. Chen, and X. Xu, “Dynamical mechanical properties of wood-high density polyethylene composites filled with recycled rubber,” Journal of Bioresources and Bioproducts, vol. 6, no. 2, pp. 152–159, May 2021, doi:10.1016/J.JOBAB.2021.02.007.; J. F. Shackelford, “Introducción a la ciencia de materiales para ingenieros 6a edición.”; S. Velu, J. K. Joseph, M. Sivakumar, V. K. Bupesh Raja, K. Palanikumar, and N. Lenin, “Experimental investigation on the mechanical properties of carbon-glass-jute fiber reinforced epoxy hybrid composites,” Materials Today: Proceedings, vol. 46, pp. 3566–3571, Jan. 2021, doi:10.1016/J.MATPR.2021.01.333.; W. Chen, Q. Meng, H. Hao, J. Cui, and Y. Shi, “Quasi-static and dynamic tensile properties of fiberglass/epoxy laminate sheet,” Construction and Building Materials, vol. 143, pp. 247–258, Jul. 2017, doi:10.1016/J.CONBUILDMAT.2017.03.074.; S. Y. Voronina, T. A. Shalygina, V. D. Voronchikhin, A. Y. Vlasov, A. N. Ovchinnikov, and N. N. Grotskaya, “Data for determining the surface properties of carbon fiber in contact interaction with polymeric binders,” Data in Brief, vol. 35, p. 106847, Apr. 2021, doi:10.1016/J.DIB.2021.106847.; C. Colombo and L. Vergani, “Influence of delamination on fatigue properties of a fibreglass composite,” Composite Structures, vol. 107, no. 1, pp. 325–333, Jan. 2014, doi:10.1016/J.COMPSTRUCT.2013.07.028.; L. Wang, J. Zhang, X. Yang, C. Zhang, W. Gong, and J. Yu, “Flexural properties of epoxy syntactic foams reinforced by fiberglass mesh and/or short glass fiber,” Materials & Design, vol. 55, pp. 929–936, Mar. 2014, doi:10.1016/J.MATDES.2013.10.065.; J. Viña, J. Bonhomme, V. Mollón, I. Viña, and A. Argüelles, “Mechanical properties of fibreglass and carbon-fibre reinforced polyetherimide after twenty years of outdoor environmental aging in the city of Gijón (Spain),” Composites Communications, vol. 22, p. 100522, Dec. 2020, doi:10.1016/J.COCO.2020.100522.; A. Armanfard and G. W. Melenka, “Experimental evaluation of carbon fibre, fibreglass and aramid tubular braided composites under combined tension–torsion loading,” Composite Structures, vol. 269, p. 114049, Aug. 2021, doi:10.1016/J.COMPSTRUCT.2021.114049.; Z. Sun et al., “Temperature-dependent mechanical properties of polyetherimide composites reinforced by graphene oxide-coated short carbon fibers,” Composite Structures, vol. 270, p. 114075, Aug. 2021, doi:10.1016/J.COMPSTRUCT.2021.114075.; V. Amigó, J. J. Payá, M. D. Salvador, J. M. Monzó, F. Segovia, and V. Borrachero, “MATERIALES COMPUESTOS 05.”; S. C. Das et al., “On the use of wood charcoal filler to improve the properties of natural fiber reinforced polymer composites,” Materials Today: Proceedings, vol. 44, pp. 926–929, Jan. 2021, doi:10.1016/J.MATPR.2020.10.808.; S. Yousef, S. P. Subadra, P. Griškevičius, S. Varnagiris, D. Milcius, and V. Makarevicius, “Superhydrophilic functionalized graphene/fiberglass/epoxy laminates with high mechanical, impact and thermal performance and treated by plasma,” Polymer Testing, vol. 90, p. 106701, Oct. 2020, doi:10.1016/J.POLYMERTESTING.2020.106701.; P. Karthick, A. A. E. Andrews, K. Subbareddy, K. Basha, V. Harshavardhan, and S. G. S. K. Reddy, “Investigation of mandatory properties of NaOH – KMnO4 Treated Banana/Fiberglass Hybrid Composite,” Materials Today: Proceedings, vol. 37, no. Part 2, pp. 63–66, Jan. 2021, doi:10.1016/J.MATPR.2020.03.072.; S. Saroj, S. Nayak, and D. Kumar Jesthi, “Effect of hybridization of carbon/glass/flax/kenaf fibre composite on flexural and impact properties,” Materials Today: Proceedings, Apr. 2021, doi:10.1016/J.MATPR.2021.03.094.; H. A. S. y. M. A. P., «ANÁLISIS DE TECNOLOGÍAS DE MEDICIÓN DE NIVEL DE TANQUES DE PRODUCTOS USADOS EN LA INDUSTRIA PETROLERA,» 5 Diciembre 2003. [En línea]. Available: https://repositorio.utb.edu.co/bitstream/handle/20.500.12585/3407/0024835.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; C. A. V. AGUILAR, «DISEÑO DE UN SISTEMA DE MONITOREO DE NIVEL DE LOS TANQUES DE EMERGENCIA DE EMCALI TELECOMUNICACIONES,» 9 Diciembre 2013. [En línea]. Available: https://red.uao.edu.co/bitstream/handle/10614/5683/T03722.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; A. A. Naranjo, «Diseño de control de nivel por medio de una medición continua en los tanques de almacenamiento de ACPM en la empresa de Colcafe S.A.,» 7 Marzo 2018. [En línea]. Available: https://repositorio.itm.edu.co/bitstream/handle/20.500.12622/3975/Rep_Itm_pre_Arbelaez.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; P. R. Martín, «¿Qué es una central de generación eléctrica diésel?,» 11 Junio 2020. [En línea]. Available: https://www.tecnatom.es/blog/que-es-una-central-de-generacion-electrica-diesel/. [Último acceso: 26 Septiembre 2021].; F. O. C. GUERRERO, «GENERACIÓN DE ENERGÍA ELÉCTRICA CON UN MOTOR DE COMBUSTIÓN INTERNA USANDO BIODIESEL DE ACEITE DE PIÑÓN (Jatropha curcas),» 2015. [En línea]. Available: https://repositorio.lamolina.edu.pe/bitstream/handle/UNALM/2152/P06-C118-T.pdf?sequence=1&isAllowed=y. [Último acceso: 26 Septiembre 2021].; El pensante.com , «¿Qué es el ACPM?,» E-Cultura Group, 7 Abril 2016. [En línea]. Available: https://elpensante.com/que-es-el-acpm/. [Último acceso: 25 Septiembre 2021].; D. Plaza, «El gasóleo o gasoil: propiedades y tipos,» motor.es, s.f. [En línea]. Available: https://www.motor.es/que-es/gasoil#:~:text=Es%20un%20hidrocarburo%20l%C3%ADquido%20que,carbono%20por%2026%20de%20hidr%C3%B3geno). [Último acceso: 25 Septiembre 2021].; C. Ribeiro, «Cómo funciona la medición automática de combustible en los tanques y cómo su estación puede beneficiarse,» 9 Agosto 2017. [En línea]. Available: https://blog.gilbarco.com/latam/como-funciona-la-medicion-automatica-de-combustible-en-los-tanques. [Último acceso: 25 Septiembre 2021].; Nation Unies, «Prescriptions uniformes relatives à l’homologation des véhicules en ce qui concerne,» 16 Octubre 1995. [En línea]. Available: https://unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/r083r4f.pdf. [Último acceso: 25 Septiembre 2021].; U.S. Environmental Protection Agency, «Code Of Federal Regulations Part 1065—Engine-Testing Procedures.,» 17 Septiembre 2021. [En línea]. Available: https://www.ecfr.gov/recent-changes?search%5Bhierarchy%5D%5Btitle%5D=16&search%5Blast_modified_after%5D=2021-09-10. [Último acceso: 25 Septirmbre 2021].; Code Of Federal Regulations, «VEHICLE-TESTING PROCEDURES,» 28 Abril 2014. [En línea]. Available: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-U/part-1066. [Último acceso: 25 Septiembre 2021].; L. B. M. y. H. C. F. Melissa Ávila Dávila, «Análisis gravimétrico y volumétrico,» 26 Agosto 2011. [En línea]. Available: https://www.monografias.com/trabajos89/analisis-gravimetrico-y-volumetrico/analisis-gravimetrico-y-volumetrico.shtml. [Último acceso: 27 Septienbre 2021].; C. B. ,. J. G. H. Richard D Burke, «Critical evaluation of on-engine fuel consumption measurement,» Automobile Engineering, vol. 225, nº 6, p. 829–844, Junio 2011.; O. NUNIGE, «EVALUACION Y COMPARACION DE METODOS DE MEDICION CONSUMO DE COMBUSTIBLE PARA LABORATORIO Y RUTA EN UN VEHICULO LIVIANO,» 2018. [En línea]. Available: http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/9465/T629.2538%20N972.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; W. E. L. C. F. d. R. Cesar V. Vargas, «Sistemas de Comunicación Inalámbrica MIMO - OFDM,» RevActaNova, vol. 3, nº 4, pp. 750-760, 2007.; F. E. Vargas Silva, «Sistema Digital De Medición De Nivel De Combustible En El Tanque Del Generador Para El Radar De ESUFA.,» 7 Noviembre 2019. [En línea]. Available: https://catalogosibfa.hosted.exlibrisgroup.com/exlibris/aleph/a23_1/apache_media/NIK8N7VLBTRRSKEGTLYUM76FF5BIB8.pdf. [Último acceso: 26 Septiembre 2021].; Quonty, «Tecnología inalámbrica, ¿cuáles son las redes y los dispositivos que más la utilizan?,» 21 Febrero 2018. [En línea]. Available: https://www.quonty.com/blog/tecnologia-inalambrica/. [Último acceso: 27 Septiembre 2021].; Morales, «Qué es la transmisión Wifi,» 11 Octubre 2019. [En línea]. Available: https://www.ticarte.com/contenido/que-es-la-transmision-wifi. [Último acceso: 27 Septiembre 2021].; J. Borlongan, «Cómo funciona la tecnología WiFi,» s.f. [En línea]. Available: https://techlandia.com/funciona-tecnologia-wifi-como_10752/. [Último acceso: 27 Septiembre 2021].; runestone.academy, «¿Qué es programación?,» s.f. [En línea]. Available: https://runestone.academy/runestone/static/pythoned/Introduction/QueEsProgramacion.html. [Último acceso: 28 Septiembre 2021].; aprendiendoarduino.wordpress.com, «Programación Arduino,» 23 Enero 2017. [En línea]. Available: https://aprendiendoarduino.wordpress.com/2017/01/23/programacion-arduino-5/. [Último acceso: 28 Septiembre 2021].; Arduino.cl, «Software de Arduino,» Enero 2019. [En línea]. Available: https://arduino.cl/programacion/. [Último acceso: 28 Septiembre 2021].; Arduino, «Arduino UNO,» s.f. [En línea]. Available: https://arduino.cl/arduino-uno/. [Último acceso: 27 Septiembre 2021].; L. LLAMAS, «MEDIR DISTANCIA CON ARDUINO Y SENSOR DE ULTRASONIDOS HC-SR04,» 16 Junio 2015. [En línea]. Available: https://www.luisllamas.es/medir-distancia-con-arduino-y-sensor-de-ultrasonidos-hc-sr04/. [Último acceso: 27 Septiembre 2021].; naylampmechatronics.com, «SENSOR ULTRASONIDO HC-SR04,» s.f. [En línea]. Available: https://naylampmechatronics.com/sensores-proximidad/10-sensor-ultrasonido-hc-sr04.html. [Último acceso: 27 Septiembre 2021].; L. Llamas, «COMUNICACIÓN INALÁMBRICA A 2.4GHZ CON ARDUINO Y NRF24L01,» 8 Diciembre 2016. [En línea]. Available: https://www.luisllamas.es/comunicacion-inalambrica-a-2-4ghz-con-arduino-y-nrf24l01/. [Último acceso: 28 Septiembre 2021].; robots-argentina.com.ar, «Arduino: Comunicación inalámbrica con NRF24L01,» 25 Diciembre 2019. [En línea]. Available: http://robots-argentina.com.ar/didactica/arduino-comunicacion-inalambrica-con-nrf24l01/. [Último acceso: 28 Septiembre 2021].; the Secretary of the Air Force, «TECHNICAL AND MANAGERIAL REFERENCE FOR MOTOR VEHICLE MAINTENANCE,» Published Under Authority, USA, 2004.; B. R. Serra, «VOLUMEN DE UN PRISMA RECTANGULAR,» 2014. [En línea]. Available: https://www.universoformulas.com/matematicas/geometria/volumen-prisma-rectangular/. [Último acceso: 28 Septiembre 2021].; extraconversion.com, «Metros Cúbicos a US Galones Líquidos Calculadora de Conversión,» s.f. [En línea]. Available: http://extraconversion.com/es/volumen/metros-cubicos/metros-cubicos-a-us-galones-liquidos.html. [Último acceso: 28 Septiembre 2021].; J. C. Najar Pacheco, «Exposición del activo más valioso de la organización, la “información", Visión Electrónica, vol. 11, no. 1, pp. 107-115, 2017. https://doi.org/10.14483/22484728.12345.; Clincy, V., & Shahriar, H., Web Application Firewall: Network Security Models and Configuration. Proceedings - International Computer Software and Applications Conference, 1, 835–836. https://doi.org/10.1109/COMPSAC.2018.00144, 2018.; C. Ping. "A second-order SQL injection detection method". Digital Object Identifier System. https://doi.org/10.1109/ITNEC.2017.8285104, 2018.; Tovar Valencia, O. (s. f.). INYECCIÓN DE SQL, TIPOS DE ATAQUES Y PREVENCION EN ASP.NET-C#. Universidad Piloto de Colombia. http://polux.unipiloto.edu.co:8080/00002026.pdf.; Rajashree, A. K., Sherekar, S. S., & Thakare, V. M. Detection of SQL injection attacks by removing the parameter values of SQL query. IEEE Conference Publication %7C IEEE Xplore. https://ieeexplore.ieee.org/document/8398896, 2018.; Gestión, Tecnología. Uso de apps y visitas a sitios web de alto riesgo subieron 161% debido a COVID. Gestión Tecnología. https://gestion.pe/tecnologia/uso-de-apps-y- visitas-a-sitios-web-de-alto-riesgo-subieron-161-debido-a-covid-noticia/, 2020.; Castillo, A., OWASP Top 1 - Ataques por Inyección SQL. Seguridad Ofensiva. https://seguridad-ofensiva.com/blog/owasp-top-10/owasp-top-1/, 2020.; A7:2017-Cross-Site Scripting (XSS) %7C OWASP, https://owasp.org/www-project-top-ten/2017/A7_2017-Cross-Site_Scripting_(XSS), 2017.; Vulnerabilidades OWASP - Ciberseguridad informática - Seguridad informática para Empresas. (n.d.). https://antimalwares.es/tecnologias/vulnerabilidades-owasp.; W. A. Barbosa y D. A. Buelvas Peñarredonda, “Implementación de redes privadas virtuales en la mediana empresa", Visión Electrónica, vol. 4, no. 2, pp. 106-121, 2010. https://revistas.udistrital.edu.co/index.php/visele/article/view/282/5573.; N. A. Gómez-Cruz and C. E. Maldonado, “Sistemas bio-inspirados: un marco teórico para la ingeniería de sistemas complejos,” Ing. Sist. complejos. Compil. las Conf. Present. en la Cuarta Asam. la Red Cart. Ing., p., 2011.; Y. Leidy, O. López, D. Guillermo, and B. Benavides, “Plataformas Bionpiradas Tipo Lego En Un Ambiente Conocido.”; Y. Jian and Y. Li, “Research on intelligent cognitive function enhancement of intelligent robot based on ant colony algorithm,” Cogn. Syst. Res., vol. 56, pp. 203–212, 2019, doi:10.1016/j.cogsys.2018.12.014.; L. M. Layos, E. L. Mundo, and D. E. L. A. S. Hormigas, “HORMIGAS,” 2006.; J. Rolando, C. López, N. Johanna Hernández Suárez, A. Del Pilar, and R. Tibaduiza, “Sistema de transporte y embalaje utilizando robótica cooperativa basada en teoría de colonias de hormigas mediante plataforma Mindstorm de LEGO® Transportation and Packaging System Using Cooperative Robotics Based on Theory of Ants Colonies Using Platform,” vol. 6, no. 1, pp. 60–71, 2015, doi:10.14483/udistrital.jour.redes.2015.1.a04.; Jaffe, “Evolucion de Sistemas de Comunicacion Quimico en Hormigas (Hymenoptera: Formicidae),” Folia Entomológica Mexicana, vol. 61. pp. 189–203, 1984.; Y. Leidy, O. López, G. Duvan, and B. Benavides, “Implementación de un sistema multirobot basado en el comportamiento de las hormigas.”; M. Dc and G. Motor, “Tank Mobile Platform Instrution Manual,” no. 112.; Alibaba.com. (2021). Professional Outdoor Solar Powered Automatic Weather Station. Tomado de: https://www.alibaba.com/product-detail/Professional-Outdoor-Solar-Powered-Automatic-Weather_60492093064.html.; BBC. (2021). River flooding - causes and management. Tomado de: https://www.bbc.co.uk/bitesize/guides/zx9kfrd/revision/1#:~:text=Flooding%20occurs%20when%20a%20river,interactions%20can%20increase%20the%20risk.; Bourdeau-Brien, M., & Kryzanowski, L. (2020). Natural disasters and risk aversion. Journal of Economic Behavior & Organization, 177, 818–835. Tomado de: https://doi.org/https://doi.org/10.1016/j.jebo.2020.07.007.; Boustan, L. P., Kahn, M. E., Rhode, P. W., & Yanguas, M. L. (2020). The effect of natural disasters on economic activity in US counties: A century of data. Journal of Urban Economics, 118, 103257. Tomado de: https://doi.org/https://doi.org/10.1016/j.jue.2020.103257.; Campo, P. A., Zafra K. (2013). SISTEMA ELECTRÓNICO INALÁMBRICO DE ALERTA TEMPRANA Y MONITOREO DEL COMPORTAMIENTO DEL NIVEL DE LOS RÍOS DE BAJO COSTO (Tesis de grado). Universidad San Buenaventura de Cali. Tomado de: http://bibliotecadigital.usbcali.edu.co/bitstream/10819/2144/1/Sistema_Electronico_Inalambrico_Monitoreo_Campo_2013.pdf.; Cao, H., & Wachowicz, M. (2019). The design of an IoT-GIS platform for performing automated analytical tasks. Computers, Environment and Urban Systems, 74, 23–40. Tomado de: https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2018.11.004.; CEPAL. (2018). Situación de las estadísticas e indicadores de eventos extremos y desastres. Tomado de: https://www.cepal.org/sites/default/files/presentations/2018-06-2areu-expertos-ea-4_2-cepal-pleonard.pdf.; Colombia Reports. (2020). Fatal landslide blocks road between Colombia’s capital and Medellin. Tomado de: https://colombiareports.com/fatal-landslide-blocks-road-between-colombias-capital-and-medellin/.; Confluence. (2021). Sensor T/H/CE de suelo CERES - IoT. Tomado de: https://nazaries.atlassian.net/wiki/spaces/IOT/pages/4654272/Sensor+T+H+CE+de+suelo+CERES.; CORTOLIMA. (s.f). Pérdida de suelos. Corporación Autónoma Regional del Tolima. Tomado de: https://www.cortolima.gov.co/sites/default/files/images/stories/centro_documentos/pom_totare/diagnostico/m_212perdida_de_suelos_totare.pdf.; Datos abiertos. (2021). Gov.co - Datos abiertos. Tomado de: https://www.datos.gov.co/.; Dorado, J.E. (2020). SISTEMA DE MONITOREO Y CONTROL DE ALERTA TEMPRANA DEL DESBORDAMIENTO DE UN RÍO (Tesis de grado). Universidad Piloto de Colombia. Tomado de: http://repository.unipiloto.edu.co/bitstream/handle/20.500.12277/7475/TESIS%20DE%20GRADO.pdf?sequence=1&isAllowed=y.; Duan, X., Bai, Z., Rong, L., Li, Y., Ding, J., Tao, Y., Li, J., Li, J., & Wang, W. (2020). Investigation method for regional soil erosion based on the Chinese Soil Loss Equation and high-resolution spatial data: Case study on the mountainous Yunnan Province, China. CATENA, 184, 104237. Tomado de: https://doi.org/https://doi.org/10.1016/j.catena.2019.104237.; FAO (Food and Agriculture Organization of the United Nations). (s.f). Lang & Water. Universal Soil Loss Equation. Tomado de: http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1236441/.; FloodList. (2017). Colombia – 11 Departments Hit by Heavy Rain, Floods and Landslides. Tomado de: http://floodlist.com/america/colombia-11-departments-floods-march-2017.; FloodList. (2020). Colombia – Rains Trigger Deadly Landslide in Antioquia. Tomado de: http://floodlist.com/america/colombia-landslide-floods-antioquia-november-2020.; Humanitarian RESPONSE. (2018). Colombia: Snapshot Desastres Naturales 2017 - OCHA Services. Tomado de: https://www.humanitarianresponse.info/en/operations/colombia/infographic/colombia-snapshot-desastres-naturales-2017.; IDEAM. S.f. Datos IDEAM. IDEAM: Instituto de Hidrología, Meteorología y Estudios Ambientales. Tomado de: http://www.ideam.gov.co/.; Insurance Information Institute (iii). (2019). Current graph - World Natural Catastrophes, 2019. Tomado de: https://www.iii.org/graph-archive/96134.; Jimenez N, A. (2005). LA INVESTIGACIÓN DE SUELOS EROSIONADOS: MÉTODOS E ÍNDICES DE DIAGNÓSTICO. Minería y Geología, vol. 21, num 2, 2005, pp. 1-18. Tomado de: https://www.redalyc.org/pdf/2235/223516049002.pdf.; Kamatchi Sundari, V., Nithyashri, J., Kuzhaloli, S., Subburaj, J., Vijayakumar, P., & Subha Hency Jose, P. (2021). Comparison analysis of IoT based industrial automation and improvement of different processes – review. Materials Today: Proceedings. Tomado de: https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.338.; Kong, D., Lin, Z., Wang, Y., & Xiang, J. (2021). Natural disasters and analysts’ earnings forecasts. Journal of Corporate Finance, 66, 101860. Tomado de: https://doi.org/https://doi.org/10.1016/j.jcorpfin.2020.101860.; Local Government Association. (s.f). Flood risk and flood risk management. Tomado de: https://www.local.gov.uk/topics/severe-weather/flooding/flood-and-coastal-erosion-risk-management/flood-risk-and-flood-risk.; McIvor, I., Youjun, H., Daoping, L., Eyles, G., & Pu, Z. (2014). Agroforestry: Conservation Trees and Erosion Prevention (N. K. B. T.-E. of A. and F. S. Van Alfen (ed.); pp. 208–221). Academic Press. Tomado de: https://doi.org/https://doi.org/10.1016/B978-0-444-52512-3.00247-3.; NETWORKWORLD. (2020). What is IoT? The internet of things explained. Tomado de: https://www.networkworld.com/article/3207535/what-is-iot-the-internet-of-things-explained.html.; Newark. (2014). A Brief History of Single Board Computers - electronicdesign. Tomado de: https://www.newark.com/wcsstore/ExtendedSitesCatalogAssetStore/cms/asset/pdf/americas/common/NE14-ElectronicDesignUncovered-Dec14.pdf.; OCHA. (2018). COLOMBIA Desastres Naturales 2017. Tomado de: https://www.humanitarianresponse.info/sites/www.humanitarianresponse.info/files/documents/files/20180420_snapshot_desastres_naturales_2017_-_v2.pdf.; OMM. (2016). Laboratorio virtual de la OMM para la enseñanza y formación en meteorología satelital. OMM - Organización Meteorológica Mundial. Tomado de: https://public.wmo.int/es/resources/bulletin/laboratorio-virtual-de-la-omm-para-la-ense%C3%B1anza-y-formaci%C3%B3n-en-meteorolog%C3%ADa.; Organización Mundial de la Salud (OMS). (s.f). Acción sanitaria en las crisis humanitarias - Inundaciones. Tomado de: https://www.who.int/hac/techguidance/ems/floods/es/.; Organización Mundial de la Salud (OMS). (s.f). Acción sanitaria en las crisis humanitarias - Corrimientos de tierra. Tomado de: https://www.who.int/hac/techguidance/ems/landslides/es/.; Organization of American States (OAS). (s.f). La erosión hídrica y las crecidas. Tomado de: https://www.oas.org/dsd/publications/Unit/oea23s/ch16.htm.; Osenga, E. C., Arnott, J. C., Endsley, K. A., & Katzenberger, J. W. (2019). Bioclimatic and Soil Moisture Monitoring Across Elevation in a Mountain Watershed: Opportunities for Research and Resource Management. Water Resources Research, 55(3), 2493–2503. Tomado de: https://doi.org/https://doi.org/10.1029/2018WR023653.; Paulino, Â., Guimarães, L., & Shiguemori, E. (2019). Hybrid Adaptive Computational Intelligence-based Multisensor Data Fusion applied to real-time UAV autonomous navigation. INTELIGENCIA ARTIFICIAL, 22, 162–195. Tomado de: https://doi.org/10.4114/intartif.vol22iss63pp162-195.; Pellet, C. and Hauck, C. (2017) Monitoring soil moisture from middle to high elevation in Switzerland: set-up and first results from the SOMOMOUNT network, Hydrol. Tomado de: Earth Syst. Sci., 21, 3199–3220, https://doi.org/10.5194/hess-21-3199-2017.; PreventivoWeb. (s.f). Disaster Data & statistics. Tomado de: https://www.preventionweb.net/knowledgebase/disaster-statistics.; R2D3. (s.f). A visual introduction to machine learning. Tomado de: http://www.r2d3.us/visual-intro-to-machine-learning-part-1/.; Raspberrypi. (s.f). Raspberry Pi 3 Model B+. Tomado de: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/.; Reggio, G., Leotta, M., Cerioli, M., Spalazzese, R., & Alkhabbas, F. (2020). What are IoT systems for real? An experts’ survey on software engineering aspects. Internet of Things, 12, 100313. Tomado de: https://doi.org/https://doi.org/10.1016/j.iot.2020.100313.; Scikit-learn.org. (2021). Scikit-learn machine learning in python. Tomado de: https://scikit-learn.org/stable/index.html.; sdxcentral. (s.f). IoT Definitions & Basics. Tomado de: https://www.sdxcentral.com/5g/iot/definitions/.; Thangamani, T., Prabha, R., Prasad, M., Kumari, U., KV, R., & Abidin, S. (2021). IoT Defense Machine Learning: Emerging Solutions and Future Problems. Microprocessors and Microsystems, 104043. Tomado de: https://doi.org/https://doi.org/10.1016/j.micpro.2021.104043.; Thibaud, M., Chi, H., Zhou, W., & Piramuthu, S. (2018). Internet of Things (IoT) in high-risk Environment, Health and Safety (EHS) industries: A comprehensive review. Decision Support Systems, 108, 79–95. Tomado de: https://doi.org/https://doi.org/10.1016/j.dss.2018.02.005.; towards data science. (2017). Types of Machine Learning Algorithms You Should Know. Tomado de: https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861.; UNGRD. 2018. Implementación del Sistema Nacional de información para la gestión del riesgo de desastres. Tomado de: http://portal.gestiondelriesgo.gov.co/Documents/Proyectos-Inversion/2015/proyecto_sistema_integrado_informacion_2015_2018.pdf.; Universidad de Chile. (s.f). Laboratorio de Meteorología (LM - DGF). Tomado de: http://uchile.cl/i91300.; University, C. for H. and R. R.-C.-C., University, C. for I. E. S. I. N.-C.-C., & Bank, I. B. for R. and D.-T. W. (2005). Global Multihazard Mortality Risks and Distribution. NASA Socioeconomic Data and Applications Center (SEDAC). Tomado de: https://doi.org/10.7927/H41J97NM.; University, C. for H. and R. R.-C.-C., University, C. for I. E. S. I. N.-C.-C., & Bank, I. B. for R. and D.-T. W. (2005). Global Landslide Mortality Risks and Distribution. NASA Socioeconomic Data and Applications Center (SEDAC). Tomado de: https://doi.org/10.7927/H4JH3J4N.; Waze. (2021). Acerca de Waze: Mapas con datos de tráfico en tiempo real. Tomado de: https://www.waze.com/es/about.; World Health Organization. (s.f). Lanslides. Tomado de: https://www.who.int/health-topics/landslides#tab=tab_2.; Zhang, H., Zhang, R., Qi, F., Liu, X., Niu, Y., Fan, Z., Zhang, Q., Li, J., Yuan, L., Song, Y., Yang, S., & Yao, X. (2018). The CSLE model based soil erosion prediction: Comparisons of sampling density and extrapolation method at the county level. CATENA, 165, 465–472. Tomado de: https://doi.org/https://doi.org/10.1016/j.catena.2018.02.007.; E. A. Avila Gomez, A. M. Martinez Daza, y S. A. Pinzon, “Estado de arte sobre infraestructura telemática para el teletrabajo", Visión Electrónica, vol. 11, no. 2, pp. 261-278, 2017.; F. E. Pineda Torres y A. de J. Chica Leal, “Propuesta de un estimador de fallas usando fracciones coprimas", Visión Electrónica, vol. 9, no. 2, pp. 172-181, 2015. https://doi.org/10.14483/22484728.11025.; F. N. Giraldo Ramos, F. Gonzalez, y E. Camargo Casallas, “Algoritmos de procesamiento de imágenes satelitales con tranformada Hough", Visión Electrónica, vol. 5, no. 2, pp. 26-41, 2011. https://doi.org/10.14483/22484728.3568.; H. J. Eslava Blanco, N. Serrano P., y F. A. Castro, “Sistema de alerta de riesgos en hogares mediante SMS”, Visión Electrónica, vol. 6, no. 2, pp. 15-30, 2012. https://doi.org/10.14483/22484728.3883.; J. O. Castellanos Millán, V. H. Amarillo Calvo, y R. M. Poveda Chaves, “Problema de asignación quadrática (pac) sobre gpu a través de una pga maestro-esclavo”, Visión Electrónica, vol. 10, no. 2, pp. 179-183, 2016.; J. C. Najar-Pacheco, J. A. Bohada-Jaime, y W. Y. Rojas-Moreno, “Vulnerabilidades en el internet de las cosas", Visión Electrónica, vol. 13, no. 2, pp. 312-321, 2019.; J. A. Londoño Alzate, A. Fonseca Velásquez, y E. A. Delgadillo, “Laboratorios remotos: estudio de caso con una planta térmica didáctica", Visión Electrónica, vol. 12, no. 2, pp. 265-277, 2018. https://doi.org/10.14483/22484728.14263.; J. Cortina, J. López-Lezama, And N. Muñoz-Galeano, “Metaheurísticas Aplicadas Al Problema De Interdicción En Sistemas De Potencia,” Inf. Tecnológica, Vol. 29, No. 2, Pp. 73–88, Mar. 2018, Doi:10.4067/S0718-07642018000200073.; C. A. Mora, “Problema De Interdicción De La Red Eléctrica.” Universidad Distrital Francisco José De Caldas, Bogotá, D. C., P. 16, 2020, [Online]. Available: Https://Drive.Google.Com/File/D/1qxg7pvhy1dndz9sgr0qug4ldnyzmpi5-/View?Usp=Sharing.; B. Mundial And Colombia, Análisis De La Gestión Del Riesgo De Desastres En Colombia, Primera. Bogotá, D. C.: Equilatero, 2012.; V. A. Gómez, R. A. Peña, And C. Hernández, “Identificación Y Localización De Fallas En Sistemas De Distribución Con Medidores De Calidad Del Servicio De Energía Eléctrica,” Inf. Tecnol., Vol. 23, No. 2, Pp. 109–116, 2012, Doi:10.4067/S0718-07642012000200013.; F. Olivari, “Diseño, Construcción Y Prueba De Un Sensor Sísmico Para Edificaciones.” Valparaiso, Nov. 2017, Accessed: Nov. 11, 2020. [Online]. Available: Http://Opac.Pucv.Cl/Pucv_Txt/Txt-2500/Ucc2795_01.Pdf.; C. Bonilla And Y. Gonzales, “Dispositivo De Adquisición De Señales Sísmicas”, Visión Electrónica, 2019, Accessed: Nov. 11, 2020. [Online]. Available: Http://Repository.Udistrital.Edu.Co/Bitstream/11349/22441/1/Bonillaseguracamilaalejandra2019.Pdf.; F. Torres And K. Chaca, “Diseño E Implementación De Un Digitalizador Sísmico De 4 Canales Con Acceso Ip,” Universidad De Cuenca, 2015.; D. García, J. Rio, D. Toma, And M. Blanco, “Array Sísmico Inalámbrico Y De Parámetros Ambientales Para La Caracterización De Precursores De Actividad Volcánica,” Universitat Politecnica De Catalunya, 2017.; Á. Herrera, “Prototipo Hardware De Bajo Coste Para La Alerta Sísmica Temprana Local,” 2016.; G. Martinez, “Diseño Y Construcción De Un Prototipo De Detección De Fallas Serie Para Disminuir El Tiempo De Interrupciones En El Sistema Eléctrico De Distribución,” Escuela Politécnica Nacional, 2019.; V. A. Gómez, R. A. Peña, And C. Hernández, “Identificación Y Localización De Fallas En Sistemas De Distribución Con Medidores De Calidad Del Servicio De Energía Eléctrica,” Inf. Tecnol., Vol. 23, No. 2, Pp. 109–116, 2012, Doi:10.4067/S0718-07642012000200013.; "Redes Sin", Xm, 2020, Accessed: Dic. 9, 2020. [En línea]. Available: Https://Www.Xm.Com.Co/Paginas/Transmision/Redes-Sistema-Interconectado-Nacional.Aspx.; R. Chokshi, “MPU-6000 and MPU-6050 Register Map and Descriptions Revision 4.0 MPU-6000/MPU-6050 Register Map and Descriptions,” MPU-6000 MPU-6050 Regist. Map Descr., vol. 1, no. 408, p. 48, 2012.N. Wolfberg, “Storage and retrieval for image and video databases”, SPIE Proceedings, pp. 27-32, 1993.; InvenSense Inc., “MPU-9150 Register Map and Descriptions,” vol. 1, no. 408, pp. 1–52, 2013.; “Raspberry pi foundation", Raspberrypi.org, 2020. [En linea]. Disponible en: https://www.raspberrypi.org.; VMware, “¿Qué son las redes definidas por software (SDN)? %7C Glosario de VMware %7C ES.” https://www.vmware.com/es/topics/glossary/content/software-defined-networking.html (accessed Sep. 22, 2021).; Citrix, “¿Qué son las redes definidas por software (SDN)? - Citrix Mexico.” https://www.citrix.com/es-mx/solutions/app-delivery-and-security/what-is-software-defined-networking.html (accessed Sep. 22, 2021).; M. Marchetti, “The road to riches,” Sales Mark. Manag., vol. 150, no. 10, p. 128, 2013, doi:10.2307/j.ctvc77cz1.22.; M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Software-Defined Networking Security: Pros and Cons,” IEEE Commun. Mag., vol. 53, no. September, pp. 48–54, 2015, doi:10.1109/MCOM.2015.7120048.; A. Feghali, R. Kilany, and M. Chamoun, “SDN security problems and solutions analysis,” Int. Conf. Protoc. Eng. ICPE 2015 Int. Conf. New Technol. Distrib. Syst. NTDS 2015 - Proc., 2015, doi:10.1109/NOTERE.2015.7293514.; S. Sidhu and H. Gupta, “A Security Mechanism for Software Defined Vulnerabilities,” 2019 4th International Conference on Information Systems and Computer Networks, ISCON 2019, pp. 59–62, 2019, doi:10.1109/ISCON47742.2019.9036247.; A. Pradhan and R. Mathew, “Solutions to Vulnerabilities and Threats in Software Defined Networking (SDN),” Procedia Comput. Sci., vol. 171, no. 2019, pp. 2581–2589, 2020, doi:10.1016/j.procs.2020.04.280.; F. W. Sanabria Navarro, J. G. Bustos, and W. E. Castellanos Hernández, “Adaptive video transmission over software defined networks,” Visión electrónica, vol. 13, no. 1, pp. 152–161, Feb. 2019, doi:10.14483/22484728.14398.; J. C. Najar Pacheco, “Exposición del activo más valioso de la organización, la ‘información,’” Visión electrónica, vol. 11, no. 1, pp. 107–115, Jun. 2017, doi:10.14483/22484728.12345.; A. M. Felicísimo, «Conceptos básicos, modelos y simulación.,» 2009. [En línea]. Available: http://www6. uniovi. es/~ feli/CursoMDT/Tema_1. pdf. [Último acceso: 10 Agosto 2021].; N. M. Chirinos y S. R. González, «Consideraciones teórico-epistémicas acerca del concepto de modelo,» Telos, vol. 13, nº 1, pp. 51-64, 2011.; E. López Moreno, Construcción de ciudades más equitativas. Políticas públicas para la inclusión en América Latina., Bogotá: CAF, 2014.; J. Linares-García, A. Hernández-Quirama y H. M. Rojas-Betancur, «Accesibilidad espacial e inclusión social: experiencias de ciudades incluyentes en Europa y Latinoamérica,» Civilizar: Ciencias Sociales y Humanas, vol. 18, nº 35, pp. 115-128, 2018.; É. A. López López y É. L. Álvarez-Aros, «Estrategia en ciudades inteligentes e inclusión social del adulto mayor,» Paakat: Revista de Tecnología y Sociedad, vol. 11, nº 20, pp. 1-29, 2021.; J. A. IREGUI DUARTE, «INCLUSIÓN DIGITAL: UN ANÁLISIS DE LA ESTRATEGIA DE TELETRABAJO EN BOGOTÁ,» PONTIFICIA UNIVERSIDAD JAVERIANA, BOGOTÁ D.C., 2018.; CMSI, «Declaración de Principios. Construir la Sociedad de la Información: un desafío global para el nuevo milenio,» CMSI, Ginebra, 2004.; K. Frey, «Gobernanza electrónica urbana e inclusión digital: experiencias en ciudades europeas y brasileñas,» Nueva Sociedad, nº 196, pp. 109-124, 2005.; D. Dávila, «Inclusión digital en colombia: Un análisis del plan vive digital I,» Pontificia Universidad Javeriana, Bogotá D.C., 2017.; F. Duarte y H. F. Pires, «INCLUSIÓN DIGITAL, TRES CONCEPTOS CLAVE: CONECTIVIDAD, ACCESIBILIDAD, COMUNICABILIDAD,» REVISTA ELECTRÓNICA DE RECURSOS EN INTERNET SOBRE GEOGRAFÍA Y CIENCIAS SOCIALES, nº 150, 2011.; E. Van der Klift y N. Kunc, «Beyond benevolence: Friendship and the politics of help,» de Creativity and collaborative learning: A practical guide to empowering students and teachers, Baltimore, Paul Brookes, 1994, pp. 391-401.; M. Sapon-Shevin, «La inclusión real: Una perspectiva de justicia social,» Revista de Investigación en Educación, vol. 3, nº 11, pp. 71-85, 2013.; G. A. Toledo, «Accesibilidad digital para usuarios con limitaciones visuales,» Universidad Nacional de la Plata, 2012.; Comisión Europea, «Aprovechar las TIC para la acción social: un programa de voluntariado digital,» Unión Europea, Luxemburgo, 2014.; E. M. Tapia, E. Munguia, «Activity recognition in the home setting using simple and ubiquitous sensors,» de international conference on pervasive computing, Berlin, Heidelberg, Springer Berlin Heidelberg, 2004, pp. 158--175.; C. Liming et al, «Sensor-based activity recognition,» IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, nº 6, pp. 790 - 808, 2012.; N. Wei et al, «Human activity detection and recognition for video surveillance,» de 2004 IEEE International Conference on Multimedia and Expo (ICME), IEEE, 2004, pp. 719--722.; M. S. Ryoo, «Human activity prediction: Early recognition of ongoing activities from streaming videos,» de 2011 International Conference on Computer Vision, IEEE, 2011, pp.; M. S. Ryoo, «Human activity prediction: Early recognition of ongoing activities from streaming videos,» de 2011 International Conference on Computer Vision, IEEE, 2011, pp. 1036--1043.; R. Nishkam, D. Nikhil et al., «Activity recognition from accelerometer data,» de Aaai, 2005, pp. 1541--1546.; Intille, L. Bao and S. S., «Activity recognition from user-annotated acceleration data,» de International conference on pervasive computing, 2004.; N. Belapurkar, S. Sagar and A. Baris, «The Case for Ambient Sensing for Human Activity Detection,» de Proceedings of the 8th International Conference on the Internet of Things, New, York, 2018.; D. Anguita et al, International workshop on ambient assisted living, Springer, 2012.; E. Kim, S. Helal and D. Cook, «Human activity recognition and pattern discovery,» IEEE Pervasive Computing/IEEE Computer Society [and] IEEE Communications Society, vol. 9, nº1, p. 48, 2010.; B. P. Clarkson, Life patterns: structure from wearable sensors, Massachusetts Institute of Technology, 2002.; J. Shotton, T. Sharp et al., «Real-time Human Pose Recognition in Parts from Single Depth Images,» Commun. ACM, vol. 56, nº 1, pp. 116--124, 2013.; R. Poppe, «A survey on vision-based human action recognition,» Image and vision computing, vol. 28, nº 6, pp. 976--990, 2010.; J. K Aggarwal and M. S. Ryoo, «Human activity analysis: A review,» ACM Computing Surveys (CSUR), vol. 43, nº 3, p. 16, 2011.; D. Weinland, R. Ronfard and Ed Boyer, «A survey of vision-based methods for actionrepresentation, segmentation and recognition,» Computer vision and image understanding, vol. 115, nº 2, pp. 224 -- 241, 2011.; V. Argyriou, M. Petrou and S. Barsky, «Photometric stereo with an arbitrary number of illuminants,» Computer Vision and Image Understanding, vol. 14, nº 8, pp. 887--900, 2010.; R. Chavarriaga, H. Sagha et al, «The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition,» Pattern Recognition Letters, vol. 34, nº 15, pp. 2033--2042, 2013.; T. Plötz, N. Y. Hammerla and P. Oliver, «Feature Learning for Activity Recognition in Ubiquitous Computing» de Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, AAAI Press, 2011, pp. 1729--1734.; A. Ferscha and F. Mattern, Pervasive Computing: Second International Conference, PERVASIVE 2004, Linz, Vienna: Springer, 2004.; N. Ravi, D. Nikhil et al, «Activity recognition from accelerometer data,» de Aaai, 2005, pp. 1541--1546.; L. B. a. S. Intille, «Activity recognition from user-annotated acceleration data,» de International conference on pervasive computing, 2004.; G. Z. Yang, and M. Yacoub, Body Sensor Networks. 2006, London: Springer, 2006.[22]. D. Anguita, A. Ghio et al, «A Public Domain Dataset for Human Activity Recognition using Smartphones,» de 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), 2013.; D. Roggen, K. Forster at al, «OPPORTUNITY: Towards opportunistic activity and context recognition systems,» de 2009 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks \& Workshops, 2009.; A. M. Khan, Y-K. Lee et al, «Human activity recognition via an accelerometer-enabled smartphone using kernel discriminant analysis,» de 2010 5th international conference on future information technology, 2010.; J. Reyes-Ortiz, L. Oneto et al, «Transition-aware human activity recognition using smartphones,» Transition-aware human activity recognition using smartphones, vol. 171, pp. 754--767, 2016.; S. I. Yang and S. B. Cho, «Recognizing human activities from accelerometer and physiological sensors,» de 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008.; R. Poovandran, «Human activity recognition for video surveillance,» de 2008 IEEE International Symposium on Circuits and Systems, 2008.; C. T. a. V. Hlavac, «Pose primitive based human action recognition in videos or still images,» de 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.; J. S. Caros, O. Chetelat, P. Celka et al, «Very low complexity algorithm for ambulatory activity classification,» de EMBEC, 2005.; M. F. Bin Abdullah et al, «Classification Algorithms in Human Activity Recognition using Smartphones,» World Academy of Science, Engineering and Technology International Journal of Biomedical and Biological Engineering, vol. 6, nº 1, 2012.; O. D. Lara and M. A. Labrador, «A survey on human activity recognition using wearable sensors,» pp. 1192-1209, 2013.; N. Robertson and I. Reid, «A general method for human activity recognition in video,» Computer Vision and Image Understanding, vol. 104, nº 2-3, pp. 232--248, 2006.; C. Thurau and V Hlavac, «Pose primitive based human action recognition in videos or still images,» de 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.; R. Poovsndran, «Human activity recognition for video surveillance,» de 2008 IEEE International Symposium on Circuits and Systems, 2008.; W. Niu, J. Long, D. Han and W. Yuan-Fang , «Human Activity Detection and Recognition for Video Surveillance,» 2004 IEEE International Conference on Multimedia and Expo (ICME), vol. 1, pp. 719-722, 2004.; J. M. Ermes, J. Parkka, J. Mantyjarvi, and I. Korhonen, «Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions,» TITB, vol. 12, nº 1, pp. 20--26, 2008.; X. Long, B. Yin and R. M. Aarts, «Singleaccelerometer-based daily physical activity classification,» de EMBS, 2009.; D. Karantonis, M. Narayanan, M. Mathier, et al, «Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring,» TITB, vol. 10, nº 1, pp. 156-167, 2006.; E. Heinz, K. Kunze, M. Gruber et al, «Using wearable sensors for Real-Time recognition tasks in games of martial arts - an initial experiment,» de GIC´06, 2006.; H. Markus, H. Takafumi, et al, «Chi-ball, an interactive device assisting martial arts,» de CHI´03, 2003.; J. Liao,Y. Bi and C. Nugent , «Activity recognition for smart Homes using Dempster-Shafer theory of evidence based on a revised lattice structure,» de 2010 Sixth International Conference on Intelligent Environments, 2010.; F. Cicirelli,G. Fortino, A. giordano et al, «On the design of smar homes framework for activyty recpgnition in home environment,» journal of medical systems, vol. 40, nº 9, p. 200, 2016.; S. C. Mukhopadhyay, «Wearable sensors for human activity monitoring: A review,» IEEE Sensors Journal, vol. 15, p. 1321–1330, 2015.; A. Reiss and D. Stricker, «Introducing a new benchmarked dataset for activity monitoring,» de International Symposium on Wearable Computers, 2012.; W. H. Wu, A. A. Bui, M.A. Batalin et al, «MEDIC: medical embedded device for individualized care,» Artificial Intelligence in Medicine, vol. 42, nº 2, pp. 137-152, 2008.; E. V. Someren, B. Vonk, W. Thijssen, J. Speelman et al, «A new actigraph for long-term registration of the duration and intensity of tremor and movement,» Biomedical Engineering, vol. 45, nº 3, pp. 386395, 1998.; D. J. Walker, P. S. Heslop, C. J. Plummer, et al, «A continuous patient activity,» Physiological Measurement, vol. 18, nº 1, pp. 49-59, 1997.; N. Hu, Z. Lou, G. Englebienne and B. Kröse, B., «Learning to Recognize Human Activities from Soft Labeled Data,» de Robotics: Science and Systems X, Berkeley, 2014.; G. Wu and S. Xue, «Portable preimpact fall detector with inertial sensors,» Neural Systems and Rehabilitation Engineering IEEE Transactions on,, vol. 16, nº 2, p. 178–183, 2008.; H. J. Busser, J. Ott, R. C. van Lummel et al, «Ambulatory monitoring of children’s activity,» Medical Engineering & Physics, vol. 19, nº 5, pp. 440-445, 1997.; B. G. Steele, B. Belza, K. Cain, C. Warms,, «Bodies in motion: Monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease,» Rehabilitation Research and Development, vol. 40, nº 5, 2003.; S. Bosch, M. Marin-Perianu, et al, «Keep on moving! activity monitoring and stimulation using wireless sensor networks,» de European Conference on Smart Sensing and Context, 2009.; F. Chen, Q. Zhong and F. Cannella, «Hand gesture modeling and recognition for human and robot interactive assembly using hidden markov models,» International Journal of Advanced Robotic Systems, vol. 12, nº 4, p. 48, 2015.; Ministerio de Minas y Energía, [En línea]. Available: https://www.minenergia.gov.co/ [Ultimo acceso: 24 agosto 2021].; Instituto de Planificación y Promoción de Soluciones Energéticas para Zonas no Interconectadas IPSE, [En línea]. Available: https://ipse.gov.co/ [Último acceso: 24 08 2021].; Unidad de Planeación Minero-Energética, [En línea]. Available: https://www1.upme.gov.co/Paginas/default.aspx [Último acceso: 24 08 2021].; Comisión de Regulación de Energía y Gas, [En línea]. Available: https://www.creg.gov.co/ [Último acceso: 6 septiembre 2021].; La Cámara Colombiana de Energía, [En línea]. Available: https://www.ccenergia.org.co/ [Ultimo acceso: 08 septiembre 2021].; Fondo de Energías No Convencionales y Gestión Eficiente de la Energía [En línea]. Available: https://fenoge.com/ [Último acceso: 7 septiembre 2021].; A. M. M. H. A. Al Hasib, «A Comparative Study of the Performance and Security Issues of AES and RSA Cryptography,» de Convergence Information Technology, International Conference, Finlandia, 2008.; Shamir R.L. Rivest and L. Adleman, (1978). A Method for Obtaining Digital Signatures and PublicKey Cryptosystems, Magazine Communications of the ACM, 1978.Volumen 21 págs. 120–126. https://doi.org/10.1145/359340.359342.; Castro Lechtaler, A., Cipriano, M., García, E., Liporace, J., Maiorano, A., Malvacio, E. and Tapia, N., (2021). Estudio de técnicas de criptoanálisis.XXI Workshop de Investigadores en Ciencias de la Computación. [online] Sedici.unlp.edu.ar. Available at: http://sedici.unlp.edu.ar/handle/10915/77269.; J. C. Mendoza T, «Universidad Politecnica Salesiana de Ecuador,» [En línea]. Available: https://dspace.ups.edu.ec/bitstream/123456789/8185/1/Demostraci%C3%B3n%20de%20cifrado%2 0sim%C3%A9trico%20y%20asim%C3%A9trico.pdf.; W. Dent, «Hybrid Cryptography,» 3 Junio 2009. [En línea]. Available: https://eprint.iacr.org/2004/210.ps.; Escobar Molero Gabriel. (2011). Clúster de alto rendimiento en un cloud: ejemplo de aplicación en criptoanálisis de funciones hash. Universidad de Almería. pg 60. http://repositorio.ual.es/bitstream/handle/10835/1202/PFC.pdf?sequence=1.; A. Pousa, «Universidad Nacional de la Plata,» Diciembre 2011. [En línea]. Available: https://postgrado.info.unlp.edu.ar/wp-content/uploads/2014/07/Pousa_Adrian.pdf.; A. Lenstra, «Key Lengths,» [En línea]. Available: https://infoscience.epfl.ch/record/164539/files/NPDF-32.pdf.; R. Avinash, A. Potnis, S. Kumar, P. Dwivedy y S. Soofi, «Internation Journal Of Engineering Research and Applications,» Agosto 2017. [En línea]. Available: http://www.ijera.com/papers/Vol7_issue8/Part-1/O0708019094.pdf.; A. Faget, «What are Cryptographic Signatures? %7C Introduction to the Most Common Schemes,» 14 Noviembre 2018. [En línea]. Available: https://coindoo.com/what-are-cryptographic-signaturesintroduction-to-the-most-common-schemes/.; Goldreich, O. (2000). Modern Cryptography, Probabilistic Proofs and Pseudorandomness (Second Edition - author's copy). Springer.pag 1-2, consultado en http://www.wisdom.weizmann.ac.il/~oded/PDF/mcppp-v2.pdf.; Muñoz, R., Muñoz, R., & completo, V. (2021). Algoritmo RSA en aplicación web. Retrieved 12 July 2021, from http://criptografiaverm1.blogspot.com/2013/07/tarea-5-algoritmo-rsa-en-aplicacionweb.html.; Eslava Blanco, H. J., Rocha, J. F., & Morales, J. I. (2011). Estudio de tráfico sobre una plataforma de virtualización. Visión electrónica, 5(2), 78-94. https://doi.org/10.14483/22484728.3572.; Congreso de Colombia. ley 1636 de 2013.; Lei Chen and Nansheng Yao, "Publishing Linked Data from relational databases using traditional views," 2010 3rd International Conference on Computer Science and Information Technology, 2010, pp. 9-12, doi:10.1109/ICCSIT.2010.5563576.; Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M. A., Saggion, H., Petrak, J., Li, Y., y Peters, W. (2017). Text Processing with GATE (Version 6).; C. Gardent and S. Narayan Multiple Adjunction in Feature-Based Tree-Adjoining Grammar In Computational Linguistics, Volume 41, Issue 1 - March 2015.; LM Vilches-Blázquez, B Villazón-Terrazas, O Corcho, A Gómez-Pérez. International Journal of Digital Earth 7 (7), 554-575, 2014.; R. Jessop, “El Futuro del Estado Capitalista”, Madrid: Ed. Catarata, Pag.124,2007.; M. Castells e Himanen, “Modelos de Desarrollo en la Era Global de la Información: Construcción de un Marco Analítico” en Castells e Himanen “reconceptualización del desarrollo en la era global de la información”. Santiago de Chile: FCE, Pag. 27, 2017.; C. H. Caicedo y A. Smida, “Intensidad informacional para la longitudinalidad asistencial en sistemas de salud", Visión Electrónica, vol. 10, no. 1, pp. 83-95, 2016. https://doi.org/10.14483/22484728.11612.; J. Van Dijck, “La Cultura de la Conectividad”, Siglo XXI. Bs. A. Pag 268, 2016.; S. Zuboff, “Atrapados en la era del capitalismo de Vigilancia y la Economía Predictiva”, El Espectador, p. 20, enero 10, 2020.; P. Virno, “Cuando el Verbo se hace Carne”. Madrid: Mapas, p.20, 2005.; E. Sadin, “La Siliconización del Mundo”, Bs As: Caja Negra, p.108, 2018.; M. Doueihi, “La Gran Conversión Digital”, Bs. As.: F.C.E. p. 21, 2010.; R. Echeverría. “Ontología del Lenguaje”, Chile: JC Sáez editor, Pag. 24 1997.; J.F. Lyotard, “La condition postmoderne: rapport sur le savoir”. París: Minuit, 1979.; O. Dallera, “La sociedad como sistema de comunicación. La teoría sociológica de Niklas Luhmann en 30 lecciones”, Buenos Aires: editorial Biblos, 2012.; S. Rozas,” Lenguaje y performatividad”, Psicología, Conocimiento y Sociedad, vol 6, no.2, pp. 280-298, 2016.; J. L. Austin, “Cómo hacer cosas con palabras”, Barcelona: Paidós, 1982.; S. Belli, R. Harré, L. Íñiguez, “Emociones en la tecnociencia: la performance de la velocidad”, Prisma Social, 3, pp. 1-41, 2009.; A. Heller, “Sociología de la vida cotidiana”, J. F. Yvars y E. Pérez Nadal (trads.). Barcelona: Península, 1977.; L. F. Aguilar, “En torno del concepto de racionalidad de Max Weber”, en l. Olivé, “Racionalidad Ensayos sobre la racionalidad en ética y política, ciencia y tecnología”, México: Siglo XXI Editores, Coediciones Temas: Ética, Filosofía política, Instituto de Investigaciones Filosóficas, 1988.; M. Weber, “El problema de la irracionalidad en las ciencias sociales”, Madrid: Tecnos, 192 p. 1985.; N. Luhmann, “Organización y decisión. Autopoiesis, acción y entendimiento comunicativo”, Rubí (Barcelona): Anthropos, 2005.; C.H., Caicedo E, “Fortalecimiento de la Gestión de la Investigación y la Extensión, condición para el avance del Sistema Nacional de Innovación”. Documento presentado como requisito para cambio de categoría de Profesor Asistente a Profesor Asociado, Bogotá: Facultad de Ingeniería de la Universidad Nacional de Colombia, 2006.; J. March, H. A. Simon, “Teoría de la organización”, Barcelona: Ariel Economía, 1980.; Joffre, Aurégan, Chédotel y Tellier, “Le Management Stratégique per le Projet”, París: Economica, P.45, 2006.; J. Neré, “Le Management de Projet”, Paris: Puf, p.4, 2015.; Garel, Giard y Midler, “Faire de la Recherche en Management de Projet”, París: FNEGE, Vuibert, p.1, 2004.; AMBROSE, W., Parallel translation of Riemannian curvature. Ann. of Math., 64, 337363. 1956.; APOSTOL TOM, Calculus vol. 1 y 2. Segunda edición. Reverté. 1982.; BERGER - GAUDUCHON - MAZET, Le Spectre d′une Varieté Rie- mannianne. Springer - Verlag. New York. 1971.; DO CARMO, M., Differential Geometry of Curves and Super- faces. Printece - Hall, New Jersy. 1976.; DO CARMO, M., Geometría Riemanniana. 2a Ed. Rio de Janeiro. Brasil. 1988.; CARTAN, E., Lecons sur la Géométrie des Espaces de Riemann (2‘eme édition). Paris, Gauthier-Villard. 1951.; FOMENKO, A. T., Symplectic Geometry. Moscuw. 1998.; FRANKEL, T., The Geometry of Physics. Cambrige University. 2001.; GALLOT-HULLIN-LAFONTAINE, Riemannian Geometry. 2a ed., Springer. 1990.; GUILLEMIN & POLLACK, Differential Topology. Prentice - Hall. 1974.; LIPSCHUTS MARTIN, Differential Geometry. Mc Graw-Hill. 1969. (Hay versión en Español).; HOWARDS H., HUTCHINGS M., MORGAN F., The isoperimetric Problem on surfaces. Monthly, vol. 106, Number 5, (1999) 430 - 439.; LIMA, ELON LARGE, Curso de Análise. Vol. 1 y 2. Terceira Ed. IMPA-Brasil. 1981.; MUNKRES JAMES, TOPOLOGY a first course. Prentice-Hall.New Jersey. 1975. (Hay versión en Español).; MUNKRES JAMES, Elements of Algebraic Topology. Addison- Wesley. 1984.; MYERS, S. B., Riemannian manifolds with positive mean cur- vatura. Duke Math. J., 8, 401-404. 1941.; NASH, J. F., The imbedding problem for Riemannian manifolds. Ann. of. Math., 63, 2063. 1956.; O’NEILL, B., Semi-Riemannianan Geometry: Aplication to Rela- tivity. University of California. Los Angeles California. Academic Press. 1983. 468 páginas.; POOR, W., Differential Geometric Structures. Dover Publications. New York. 1981.; RIEMANN, B.,Über die Hypothesen, welche der Geometrie zu Grunde liegen. Nature, 8 (183-184), 14-17, 36, 37. 1854.; SPIVAK, M., A comprehensive Introduction to DIFFERENTIAL GEOMETRY. Publish or Perish. 1990. 2.785 páginas en 5 volumenes.; SPIVAK, M., Cálculo en Variedades. Reverté. 1975.; WARNER F. W., Foundations of Differentiable Manifolds and Lie Groups. Springer. 1983.; A. Mouthon, “Los Beneficios de la Inteligencia Artificial,” 2017. https://www.eleconomista.es/firmas/noticias/8716667/11/17/Beneficios-de-la-inteligencia-artificial.html (accessed May 06, 2021).; A. Garcia-Serrano and S. Ossowski, “Inteligencia Artificial Distribuida y Sistemas Multiagentes,” Inteligencia Artificial, vol. 2, no. 6, pp. 1–6, 1998, doi:10.4114/ia.v2i6.614.; A. Turing, “Mind a Quarterly Review of Psychology and Philosophy,” Mind, vol. 8, no. 2, pp. 145– 166, 1899, doi:10.1093/mind/VIII.2.145.; M. A. Salichs, M. Malfaz, and J. F. Gorostiza, “Toma de Decisiones en Robótica,” Revista Iberoamericana de Automática e Informática Industrial RIAI, vol. 7, no. 4, pp. 5–16, 2010, doi:10.1016/s1697-7912(10)70055-8.; M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “Describing textures in the wild,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3606–3613, 2014, doi:10.1109/CVPR.2014.461.; Tensorflow, “TensorFlow 2 Detection Model Zoo.” https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo. md (accessed May 05, 2021).; L. F. Mahecha, N. F. Conde, H. Vacca-González, “Implementación de Redes Neuronales y Procesamiento de Imágenes en el Movimiento de Robots Modulares Tipo Cadena. SOMI XXXV Congreso de Instrumentación CDMX, México, 27 al 29 de octubre de 2021.; R. A. Valdesueiro, “Muestreo digital”, p. 12.; A. Hashemi Fath, F. Madanifar, y M. Abbasi, “Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems”, Petroleum, vol. 6, núm. 1, pp. 80–91, mar. 2020, doi:10.1016/j.petlm.2018.12.002.; L. O. González Salcedo, A. P. Guerrero Zúñiga, S. Delvasto Arjona, y A. L. E. Will, “Artificial Neural Model based on radial basis function networks used for prediction of compressive strength of fiber-reinforced concrete mixes”, Cien.Ing.Neogranadina, vol. 29, núm. 2, pp. 37–52, jun. 2019, doi:10.18359/rcin.3737.; A. Sudou, P. Hartono, R. Saegusa, y S. Hashimoto, “Signal reconstruction from sampled data using neural network”, en Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing, Martigny, Switzerland, 2002, pp. 707–715, doi:10.1109/NNSP.2002.1030082.; A. Ugena, “THE NEWTON NEURAL NET: A NEW APPROXIMATING NETWORK”, Int. J. of Pure and Appl. Math., vol. 82, núm. 4, feb. 2013, doi:10.12732/ijpam.v82i4.13.; N. M. Khan, “Audio Signal Reconstruction Using Cartesian Genetic Programming Evolved Artificial Neural Network (CGPANN)”, p. 6.; L. H. C. Casallas, E. H. M. Alfonso, y M. L. C. Martínez, “Clasificación de Plasmodium Falciparum por estadio en cultivos sincrónicos de eritrocitos”, Visión electrónica, vol. 5, núm. 1, Art. núm. 1, may 2011, doi:10.14483/22484728.3519.; J. A. P. Plaza, D. R. Zapata, y A. T. Tascón, “Implementación de redes neuronales utilizando dispositivos lógicos programables”, Visión electrónica, vol. 1, núm. 1, Art. núm. 1, jun. 2008, doi:10.14483/22484728.250.; O. L. Ramos, D. A. Rojas, y L. A. Góngora, “Reconocimiento de patrones de habla usando MFCC y RNA”, Visión electrónica, vol. 10, núm. 1, Art. núm. 1, jun. 2016, doi:10.14483/22484728.11712.; E. J. G. Monterroza, “Reconocimiento de primitivas 3D, usando autocorrelación y ANFIS”, Visión electrónica, vol. 1, núm. 1, Art. núm. 1, 2008, doi:10.14483/22484728.251.; L. F. P. Martínez, Ó. F. C. Camargo, y J. E. Roa, “Estudio comparativo de técnicas artificiales para la predicción de una serie de tiempo caótica”, Visión electrónica, vol. 2, núm. 2, Art. núm. 2, dic. 2008, doi:10.14483/22484728.792.; A. E. Díaz y L. A. Calderón, “Modelo tridimensional de extremidad inferior basado en imágenes de resonancia magnética”, Visión electrónica, vol. 3, núm. 1, Art. núm. 1, jun. 2009, doi:10.14483/22484728.686.; Ahl´en, J., Sundgren, D., Bengtsson, E.: Application of underwater hyperspectraldata for color correction purposes. Pattern Recognition and Image Analysis 17 (3 2007). https://doi.org/10.1134/S105466180701021X .; Arnold-Bos, A., Malkasse, J.P., Kervern, G.: A preprocessing framework for auto- matic underwater images denoising (3 2005), https://hal.archives-ouvertes.fr/hal- 00494314.; Bazeille, S., Quidu, I., Jaulin, L., Malkasse, J.P.: Automatic underwater image preprocessing. Proceedings of CMM’06 (4 2006).; Cetto, A.M.: La luz: en la naturaleza y en el laboratorio. Fondo de Cultura Econ´omica (2019).; Chambah, M., Semani, D., Renouf, A., Coutellemont, P., Rizzi, A.: Underwa- ter color constancy: Enhancement of automatic live fish recognition (2004), https://hal.archivesouvertes.fr/hal-00263734.; Iqbal, K., Odetayo, M., James, A., Salam, R.A., Talib, A.Z.H.: Enhancing the low quality images using unsupervised colour correction method. IEEE (10 2010). https://doi.org/10.1109/ICSMC.2010.5642311.; Jaffe, J.: Computer modeling and the design of optimal underwater imaging systems. IEEE Journal of Oceanic Engineering 15 (4 1990). https://doi.org/10.1109/48.50695.; McGlamery, B.L.: A computer model for underwater camera systems (3 1980). https://doi.org/10.1117/12.958279.; Schechner, Y., Karpel, N.: Recovery of underwater visibility and structure by polarization analysis. IEEE Journal of Oceanic Engineering 30 (7 2005). https://doi.org/10.1109/JOE.2005.850871.; Sears, F.W., Zemansky, M.W., Young, H.D., Freedman, R.A., Flores Flores, V.A., Rubio Ponce, A.: Fisica universitaria. Addison-Wesley; Pearson Educacion, Mexico (2009), oCLC: 991818413.; Serway, R.A.: Física para ciencias e ingenieria. McGraw-Hill, Mexico (2002), oCLC: 807250137.; Trucco, E., Olmos-Antillon, A.: Self-tuning underwater image restoration. IEEE Journal of Oceanic Engineering 31 (4 2006). https://doi.org/10.1109/JOE.2004.836395.; Wikipedia: Patron de muar´e — wikipedia, la enciclopedia libre (2020).; Pérez, M. A. A. (2009). Espacios De Color RGB, HSI Y Sus Generalizaciones A NDimensiones. PhD thesis, InstitutoNacional de Astrofísica, Óptica y Electrónica.; O. Ronneberger, P. Fischer, y T. Brox, «U-Net: Convolutional Networks for Biomedical Image Segmentation», CoRR, vol. abs/1505.04597, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1505.04597.; V. Badrinarayanan, A. Kendall, y R. Cipolla, «SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation», CoRR, vol. abs/1511.00561, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1511.00561.; S. Liu y W. Deng, «Very deep convolutional neural network based image classification using small training sample size», en 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), 2015, pp. 730-734. doi:10.1109/ACPR.2015.7486599.; J. Long, E. Shelhamer, y T. Darrell, «Fully Convolutional Networks for Semantic Segmentation», CoRR, vol. abs/1411.4038, 2014, [En línea]. Disponible en: http://arxiv.org/abs/1411.4038.; C. Szegedy et al., «Going Deeper with Convolutions», CoRR, vol. abs/1409.4842, 2014, [En línea]. Disponible en: http://arxiv.org/abs/1409.4842.; H. Zhao, J. Shi, X. Qi, X. Wang, y J. Jia, «Pyramid Scene Parsing Network», CoRR, vol. abs/1612.01105, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1612.01105.; K. He, X. Zhang, S. Ren, y J. Sun, «Deep Residual Learning for Image Recognition», CoRR, vol. abs/1512.03385, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1512.03385.; L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, y A. L. Yuille, «DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs», IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, n.o 4, pp. 834-848, 2018, doi:10.1109/TPAMI.2017.2699184.; L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, y A. L. Yuille, «DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs», CoRR, vol. abs/1606.00915, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1606.00915.; L.-C. Chen, G. Papandreou, F. Schroff, y H. Adam, «Rethinking Atrous Convolution for Semantic Image Segmentation», CoRR, vol. abs/1706.05587, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1706.05587.; R. Girshick, J. Donahue, T. Darrell, y J. Malik, «Rich feature hierarchies for accurate object detection and semantic segmentation». 2014.; R. Girshick, «Fast R-CNN». 2015.; S. Ren, K. He, R. Girshick, y J. Sun, «Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks». 2016.; T.-Y. Lin, P. Goyal, R. Girshick, K. He, y P. Dollor, «Focal Loss for Dense Object Detection». 2018.; W. Liu et al., «SSD: Single Shot MultiBox Detector», Lect. Notes Comput. Sci., p. 21-37, 2016, doi:10.1007/978-3-319-46448-0_2.; J. Redmon y A. Farhadi, «YOLO: Real-Time Object Detection». 2018.; J. Redmon y A. Farhadi, «YOLO9000: Better, Faster, Stronger». 2016.; J. Redmon y A. Farhadi, «YOLOv3: An Incremental Improvement». 2018.; F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, y K. Keutzer, «SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \textless1MB model size», CoRR, vol. abs/1602.07360, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1602.07360.; A. G. Howard et al., «MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications», CoRR, vol. abs/1704.04861, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1704.04861.; M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, y L.-C. Chen, «Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation», CoRR, vol. abs/1801.04381, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1801.04381.; G. Huang, S. Liu, L. van der Maaten, y K. Q. Weinberger, «CondenseNet: An Efficient DenseNet using Learned Group Convolutions», CoRR, vol. abs/1711.09224, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1711.09224.; X. Zhang, X. Zhou, M. Lin, y J. Sun, «ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices», CoRR, vol. abs/1707.01083, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1707.01083.; N. Ma, X. Zhang, H.-T. Zheng, y J. Sun, «ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design», CoRR, vol. abs/1807.11164, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1807.11164.; M. Tan, B. Chen, R. Pang, V. Vasudevan, y Q. V. Le, «MnasNet: Platform-Aware Neural Architecture Search for Mobile», CoRR, vol. abs/1807.11626, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1807.11626.; M. Tan y Q. V. Le, «EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks», CoRR, vol. abs/1905.11946, 2019, [En línea]. Disponible en: http://arxiv.org/abs/1905.11946.; M. Cordts et al., «The Cityscapes Dataset for Semantic Urban Scene Understanding». 2016.; J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, y L. Fei-Fei, «ImageNet: A Large-Scale Hierarchical Image Database», 2009.; K. C. L. Wong, M. Moradi, H. Tang, y T. F. Syeda-Mahmood, «3D Segmentation with Exponential Logarithmic Loss for Highly Unbalanced Object Sizes», CoRR, vol. abs/1809.00076, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1809.00076.; M. Willett, “Lessons of the SolarWinds Hack,” Survival (Lond)., vol. 63, no. 2, 2021, doi:10.1080/00396338.2021.1906001.; H. S. Lallie et al., “Cyber security in the age of COVID-19: A timeline and analysis of cyber-crime and cyber-attacks during the pandemic,” Comput. Secur., vol. 105, 2021, doi:10.1016/j.cose.2021.102248.; J. Aguirre, CURSO DE SEGURIDAD INFORMÁTICA Y CRIPTOGRAFÍA, vol. 3.1. 2003.; E. Biham and A. Shamir, “Differential cryptanalysis of DES-like cryptosystems,” J. Cryptol., vol. 4, no. 1, 1991, doi:10.1007/BF00630563.; J. Daemen and V. Rijmen, “AES proposal: Rijndael,” no. December, 1999.; N. Velasquez and N. Pineda, “Diseño e Implementacion de un Prototipo Criptoprocesador AES-Rijndael en FPGA,” Universidad de Los Llanos, 2007.; A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, and A. Poschmann, “PRESENT: An Ultra-Lightweight Block Cipher.; J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw, “The LED block cipher,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2011, vol. 6917 LNCS, doi:10.1007/978-3-642-23951-9_22.; F. Velásquez and J. F. Castaño, “Cryptographic Implementations for Fpga,” Rev. Visión Electron., vol. 5, no. 1, pp. 26–37, 2011.; F. Velásquez and J. A. Castaño, “Implementation of binary finite fields towers of extension 2,” Rev. Visión Electrónica, vol. 7, no. 2, pp. 89–96, 2013.; W. Enríquez, P. Nazate, and O. Marcillo, “Prototipo DAS basado en FPGA de 12 canales para monitoreo geodinámico,” Visión electrónica, vol. 12, no. 1, pp. 73–82, 2018, doi:10.14483/22484728.13782.; C. A. HERNANDEZ and E. JACINTO, “a New Methodology in the Design of Digital Filters Fir on Fpga,” Rev. Visión Electron., vol. 3, no. 2, pp. 40–47, 2009.; L. W. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, “THE SIMON AND SPECK FAMILIES OF LIGHTWEIGHT BLOCK CIPHERS,” Natl. Secur. Agency, p. 42, 2013.; P. Maene and I. Verbauwhede, “Single-cycle implementations of block ciphers,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9542, pp. 131–147, 2016, doi:10.1007/978-3-319-29078-2_8.; S. Abed, R. Jaffal, B. J. Mohd, and M. Alshayeji, “FPGA modeling and optimization of a SIMON lightweight block cipher,” Sensors (Switzerland), vol. 19, no. 4, 2019, doi:10.3390/s19040913.; A. Shahverdi, M. Taha, and T. Eisenbarth, “Lightweight Side Channel Resistance: Threshold Implementations of Simon,” IEEE Trans. Comput., vol. 66, no. 4, pp. 661–671, 2017, doi:10.1109/TC.2016.2614504.; S. B. Basturk, C. E. J. Dancer, and T. McNally, “High-throughput Configurable SIMON Architecture for Flexible Security,” Pharmacol. Res., p. 104743, 2020, doi:10.1016/j.mejo.2021.105085.; A. Muthumari et al., “High security for de-duplicated big data using optimal SIMON Cipher,” Comput. Mater. Contin., vol. 67, no. 2, pp. 1863–1879, 2021, doi:10.32604/cmc.2021.013614.; W. Diehl, A. Abdulgadir, J. P. Kaps, and K. Gaj, “Comparing the cost of protecting selected lightweight block ciphers against differential power analysis in low-cost FPGAs,” Computers, vol. 7, no. 2, pp. 128–135, 2018, doi:10.3390/computers7020028.; FAO, «Objetivos de Desarrollo Sostenible», Agenda 2030 para el desarrollo sostenible, 2021. http://www.fao.org/sustainable-development-goals/overview/fao-and-post-2015/sustainableagriculture/es/.; G. Spencer, Fundamentos de Acuaponía. 2018.; R. Adhikari, S. Rauniyar, N. Pokhrel, A. Wagle, T. Komai, y S. R. Paudel, «Nitrogen recovery via aquaponics in Nepal: current status, prospects, and challenges», SN Appl. Sci., vol. 2, n.o 7, 2020, doi:10.1007/s42452-020-2996-5.; P. Carneiro, A. Maria, M. Nunes, y R. Ujimoto, «Aquaponia: produção sustentável de peixes e vegetais», en Embrapa Tabuleiros Costeiros, 2015.; A. Caldas, I. Castillo, S. Prado, L. Rosales, y L. Vargas, «Diseño y construcción de sistemas acuapónicos a pequeña escala para familias de la región Piura», Pirhua, p. 205, 2019, [En línea]. Disponible en: https://pirhua.udep.edu.pe/handle/11042/4285.; C. M. Correa y J. F. Valencia, «Configuración de un control de temperatura en un sistema embebido de bajo costo, usando herramientas de inteligencia artificial y el internet de las cosas», Rev. Iber. Sist. y Tecnol. Inf., n.o 34, pp. 68-84, 2019, doi:10.17013/risti.34.68-84.; V. Jahnavi y S. Ahamed, «Red inteligente de sensores inalámbricos para invernaderos automatizados», IETE J. Res., vol. 61, n.o 2, pp. 180-185, 2015.; I. Lee y K. Lee, «The Internet of Things (IoT): Applications, investments, and challenges for enterprises», Bus. Horiz., vol. 58, n.o 4, pp. 431-440, 2015, doi:10.1016/j.bushor.2015.03.008.; E. Barrientos, D. Rico, L. A. Coronel, y F. R. Cuesta, «Granja inteligente: Definición de infraestructura basada en internet de las cosas, IpV6 y redes definidas por software», Rev. Ibérica Sist. e Tecnol. Informação, vol. E17, pp. 183-197, 2019.; F. Simanca, J. Paez, J. Cortés, E. Díaz, y J. Palacio, «Sistema de riego para cultivos controlado mediante una aplicación de IoT», Rev. Ibérica Sist. e Tecnol. Inf., pp. 410-424, 2020, [En línea]. Disponible en: www.estudioscualitativos.ec.; E. A. Q. Montoya, S. F. J. Colorado, W. Y. C. Muñoz, y G. E. C. Golondrino, «Propuesta de una Arquitectura para Agricultura de Precisión Soportada en IoT», RISTI - Rev. Iber. Sist. e Tecnol. Inf., n.o 24, pp. 39-56, 2017, doi:10.17013/risti.24.39-56.; S. M. A. Aguirre, D. R. M. Rivadeneira, L. R. G. Torrealba, L. D. N. Erazo, F. I. Rivas-Echeverría, y D. M. R. Albarran, «Metodología para el almacenamiento y visualización de datos masivos en invernadero basado en el Internet de las Cosas IoT.», Rev. Ibérica Sist. e Tecnol. Informação, n.o E15, pp. 1-12, 2018, [En línea]. Disponible en: https://search.proquest.com/docview/2041143320?accountid=134127%0Ahttp://link.periodicos.capes. gov.br/sfxlcl41?url_ver=Z39.882004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&genre=unknown&sid=ProQ:ProQ%3Ahightechjournals& atitle=Metodología+para+el+almacenam; G. E. Chanchí, L. M. Sierra, y W. Y. Campo, «Propuesta de una plataforma académica portable para la construcción de microservicios en entornos de IoT», Rev. Ibérica Sist. e Tecnol. Informação, n.o E27, pp. 1-13, 2020.; J. A. Brenes Carranza, A. Martínez Porras, C. U. Quesada López, y M. Jenkins Coronas, «Sistemas de apoyo a la toma de decisiones que usan inteligencia artificial en la agricultura de precisión», Rev. Ibérica Sist. y Tecnol. la Inf. núm E28, pp. 217-229, n.o 28, pp. 217-230, 2020.; A. Bárta, P. Soucek, V. Bozhynov, y P. Urbanová, «Automatic Multiparameter Acuisition in Aquaponics Systems», en 5th International Work-Conference, IWBBIO 2017 Granada, Spain, April 26– 28, 2017, Proceedings, Part II, 1.a ed., Springer, Ed. Granada, 2017, pp. 712-725.; O. A. O. Valero, P. A. R. Trujillo, N. L. M. Valderrama, M. E. de Oliveira, y A. R. B. Tech, «Monitoreo remoto automatizado de calidad del agua en sistemas acuapónicos en Sao Paulo, Brasil», Rev. Ibérica Sist. e Tecnol. Informação, n.o E31, pp. 223-235, 2020, [En línea]. Disponible en: http://ezproxy.unal.edu.co/scholarly-journals/monitoreo-remoto-automatizado-de-calidad-delagua/docview/2468684076/se-2?accountid=137090.; K. J. Keesman, O. Körner, K. Wagner, J. U. Urban, D. Karimanzira, y S. Rauschenbach, Thomas , Goddek, «Aquaponics Systems Modelling», en Aquaponics Food Production Systems, 1.a ed., Springer, Ed. Cham, 2019, pp. 273-299.; A. Ahmed, S. Zulfiqar, A. Ghandar, Y. Chen, M. Hanai, y G. Theodoropoulos, «Digital Twin Technology for Aquaponics: Towards Optimizing Food Production with Dynamic Data Driven Application Systems», en Methods and Applications for Modeling and Simulation of Complex Systems. 19th Asia Simulation Conference, AsiaSim 2019 Singapore, October 30 – November 1, 2019 Proceedings, Singapur: Springer, 2019, pp. 3-14.; Haryanto, M. Ulum, A. F. Ibadillah, R. Alfita, K. Aji, y R. Rizkyandi, «Smart aquaponic system based Internet of Things (IoT)», J. Phys. Conf. Ser., vol. 1211, n.o 1, 2019, doi:10.1088/17426596/1211/1/012047.; M. Dayahna Caro M., E. Romero-Riaño, M. Alexandra Espinosa C, y C. D. Guerrero, «Evaluando contribuciones de usabilidad en soluciones TIC-IOT para la agricultura: Una perspectiva desde la bibliometría», RISTI - Rev. Iber. Sist. e Tecnol. Inf., vol. 2020, n.o E28, pp. 681-692, 2020, [En línea]. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.085081040306&partnerID=40&md5=f59611d7803425f519635fe4470fdaca.; P. Rituay Trujillo, N. L. Murga Valderrama, M. D. P. Bustos Chavéz, P. Chauca Valqui, y J.-A. Campos Trigoso, «Evolución y tendencias investigativas de tecnologías aplicadas en los agronegocios : una revisión sistemática de la literatura», Iber. J. Inf. Syst. Technol., vol. 39, pp. 189-199, 2021.; S. F. Mejía S., L. Y. Flóres G., y C. D. Guerrero S., «Desarrollo tecnológico del IoT en el sector de la agricultura : una visión desde el análisis de patentes», Rev. Ibérica Sist. e Tecnol. Informação, n.o 28, pp. 375-386, 2020.; L. A. Rodríguez-umaña, «efectos de la variación de caudal sobre los niveles de amonio , nitrato y pH de un prototipo de cultivo acuapónico Evaluation of the effects of varying water flow on the levels of Ammonium , Nitrate and Ph of a prototype aquaponic system . Avaliação dos e», vol. 7, n.o 2, pp. 126-138, 2016.; M. Eck, K. Oliver, y M. H. Jijakli, «Nutrient Cycling in Aquaponics Systems», en Aquaponics Food Production Systems, 1ra ed., S. Goddek, A. Joyce, B. Kotzen, y G. Burnell M., Eds. Switzerland: Springer Nature Switzerland, 2020, pp. 231-246.; M. Á. Barrera Pérez, N. Y. Serrato Losada, E. Rojas Sánchez, y G. Mancilla Gaona, «Estado del arte en redes definidas por software (SDN)», Visión Electrónica, vol. 13, n.o 1, pp. 178-194, 2019, doi: https://doi.org/10.14483/22484728.14424.; J. C. Najar-Pacheco, J. A. Bohada-Jaime, y W. Y. Rojas-Moreno, «Vulnerabilidades en el internet de las cosas», Visión Electrónica, vol. 13, n.o 2, pp. 312-321, 2019, doi: https://doi.org/10.14483/22484728.14424.; J. A. Londoño Alzate, A. Fonseca Velásquez, y E. A. Delgadillo, «Laboratorios remotos: estudio de caso con una planta térmica didáctica», Visión Electrónica, vol. 12, n.o 2, pp. 265-277, 2018, doi: https://doi.org/10.14483/22484728.14263.; I. J. Donado Romero y J. C. Villamizar Rincón, «“Metodología para estandarización de componentes SCADA bajo normas ISA», Visión Electrónica, vol. 12, n.o 1, pp. 14-21, 2018, doi: https://doi.org/10.14483/22484728.13402.; O. L. Quintero, H. Medina, y E. A. Pineda Muñoz, «Automatización para dosificación de reactivos en clasificación de carbón», Visión Electrónica, vol. 11, n.o 1, pp. 45-54, 2017, doi: https://doi.org/10.14483/22484728.10995.; C. González, D. Zamara, S. R. González B, I. F. Mondragón B, y M. Moreno, «Inspección no invasiva de Physalis peruviana usando técnicas (Vir/Nir)», Visión Electrónica, vol. 10, n.o 1, pp. 22-28, 2016, doi: https://doi.org/10.14483/22484728.11702.; L. E. Galindo C, A. A. Aguilera, y L. A. Rojas Castellar, «Automatización en la industria de bolígrafos: El caso del estampado», Visión Electrónica, vol. 5, n.o 1, pp. 103-113, 2011, doi: https://doi.org/10.14483/22484728.3512.; A. Garcia Chacon, J. L. Martínez Rodríguez, y E. Y. Torres Castro, «Automatización de procesos en el sector plásticos: el caso de una inyectora», Visión Electrónica, vol. 2, n.o 2, pp. 52-63, 2008, [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/796.; Zamora Musa, Ronald, y “Laboratorios Remotos: Actualidad y Tendencias Futuras." Scientia Et Technica XVII, no. 51 (2012):113-118. Redalyc, https://www.redalyc.org/articulo.oa?id=84923910017.; C. I. Jiménez, «Propuesta pedagógica para el uso de laboratorios virtuales como actividad complementaria en las asignaturas teórico-prácticas,» Revista Mexicana De Investigación Educativa, 2014.; Nacional, M. d. (2 de septiembre de 2020). Ministerio de Educación Nacional. Obtenido de https://www.mineducacion.gov.co/1759/w3-article-400640.html?_noredirect=1.; Ramírez, E. A. (2014). Una Mirada Crítica al Papel de las TIC en la Educación Superior. Ibagué: Universidad del Tolima; A. F. Reinoso López y J. C. Forero Jiménez, «Diseño e implementación de un laboratorio con características de acceso remoto orientado hacia el calentamiento de agua» Universidad Distrital Francisco José de Caldas, Bogotá, 2021.; N. LabVIEW, «NI home,» [En línea]. Available: https://www.ni.com/academic/students/learnlabview/esa/environment.htm.; S. C. Giselle, «Laboratorio virtual y remoto, aprendiendo a través de la experimentación, » Universidad Tecnológica Nacional, 2017.; Heradio, R. et al. Virtual and remote labs in education: A bibliometric analysis. Computers & Education, Volume 98, 2016, Pages 14-3.; Unai H.J.; Javier G. Zubia. Remote measurement and instrumentation laboratory for training in real analog electronic experiments. Measurement, Volume 82, 2016, Pages 123-134.; B.R. Poorna chandra, K.P. Geevarghese, K.V. Gangadharan. Design and Implementation of Remote Mechatronics Laboratory for e-Learning Using LabVIEW and Smartphone and Cross-platform Communication Toolkit (SCCT), Procedia Technology, Volume 14, 2014, Pages 108-115.; Van Wylen, G. J.; Sonntag, R. E. Fundamentals of Classical Thermodynamics. Ed. John Wiley & Sons: Singapore, 3ra. edición, 1985.; Petrescu, R. V. V., Aversa, R., Apicella, A., Mirsayar, M., Kozaitis, S., Abu-Lebdeh, T. y Tiberiu Petrescu, F. I. (2017). The Inverse Kinematics of the Plane System 2-3 in a Mechatronic MP2R System, by a Trigonometric Method. Journal of Mechatronics and Robotics, 1(2), 75–87. https://doi.org/10.3844/jmrsp.2017.75.87.; Y Sethi, S. P., Sriskandarajah, C., Sorger, G., Blazewicz, J. y Kubiak, W. (1992). Sequencing of parts and robot moves in a robotic cell. International Journal of Flexible Manufacturing Systems, 4(3-4), 331–358. https://doi.org/10.1007/bf01324886.; Blazewicz, J., Eiselt, H.A., Finke, G., Laporte, G., Weglarz, J., 1991. Scheduling tasks and vehicles in a flexible manufacturing system. International Journal of Flexible Manufacturing Systems 4, 5–16.; Deuerlein, C., Müller, F., Seßner, J., Heß, P., & Franke, J. (2021). Improved design flexibility of open robot cells through tool-center-point monitoring. Procedia CIRP, 100, 295–300. https://doi.org/10.1016/j.procir.2021.05.069.; Veiga, G., Pires, J. N. y Nilsson, K. (2009). Experiments with service-oriented architectures for industrial robotic cells programming. Robotics and Computer-Integrated Manufacturing, 25(4-5), 746– 755. https://doi.org/10.1016/j.rcim.2008.09.001.; Zhao, Q., Sun, M., Cui, M., Yu, J., Qin, Y., & Zhao, X. (2015). Robotic Cell Rotation Based on the Minimum Rotation Force. IEEE Transactions on Automation Science and Engineering, 12(4), 1504– 1515. https://doi.org/10.1109/tase.2014.2360220.; G. Michalos, S. Makris, P. Tsarouchi, T. Guasch, D. Kontovrakis, G. Chryssolouris, Design Considerations for Safe Human-robot Collaborative Workplaces, in: Understanding the life cycle implications of manufacturing, 2015, pp. 248–253.; E. Magrini, F. Ferraguti, A.J. Ronga, F. Pini, A. de Luca, F. Leali, Human-robot coexistence and interaction in open industrial cells, in: Journal of Robotics and Computer-Integrated Manufacturing, 2019, p. 101846.; datasheet PCA9685PW. (2009, 16 de julio). DigChip IC database.; Zamora Navarro, F. J., & Valiente Cristancho, A. (2015). Tasa de muestreo ADC en microcontroladores avanzados de 8 bits. Visión electrónica, 9(1), 128-138. https://doi.org/10.14483/22484728.11022.; García-Guerrero, E., Inzunza-González, E., López-Bonilla, O., Cárdenas-Valdez, J., & TleloCuautle, E. (2020). Randomness improvement of chaotic maps for image encryption in a wireless communication scheme using PIC-microcontroller via Zigbee channels. Chaos, Solitons & Fractals, 133, 109646. https://doi.org/10.1016/j.chaos.2020.109646.; I2C - Puerto, Introducción, trama y protocolo - HETPRO/TUTORIALES. (s. f.). HETPRO/TUTORIALES. https://hetpro-store.com/TUTORIALES/i2c/.; Z. Boric and B. Markovic, "The talking thermometer simulator based on the DS1820 sensor and PIC18F45K22 microcontroller," 2012 20th Telecommunications Forum (TELFOR), 2012, pp. 544-547, doi:10.1109/TELFOR.2012.6419268.; Corke, P. I. (1996). A robotics toolbox for MATLAB. IEEE Robotics and Automation Magazine, 3(1), 24–32. https://doi.org/10.1109/100.486658.; Y. Fang and X. Chen, "Design and Simulation of UART Serial Communication Module Based on VHDL," 2011 3rd International Workshop on Intelligent Systems and Applications, 2011, pp. 1-4, doi:10.1109/ISA.2011.5873448.; Calderón Acero, J., & Parra Garzón, I. V. (2010). Controladores difusos en microcontroladores: software para diseño e implementación. Visión electrónica, 4(2), 64-76. https://doi.org/10.14483/22484728.273.; D’Souza, A., Vijayakumar, S., & Schaal, S. (2001). Learning inverse kinematics. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium (Cat. No.01CH37180). Published. https://doi.org/10.1109/iros.2001.973374.; R. Junge, B. König, M. Villarroel, T. Komives, and M. H. Jijakli, “Strategic points in aquaponics,” Water (Switzerland). 2017, doi:10.3390/w9030182.; C. Maucieri et al., “Life cycle assessment of a micro aquaponic system for educational purposes built using recovered material,” J. Clean. Prod., vol. 172, pp. 3119–3127, 2018, doi: https://doi.org/10.1016/j.jclepro.2017.11.097.; B. König, J. Janker, T. Reinhardt, M. Villarroel, and R. Junge, “Analysis of aquaponics as an emerging technological innovation system,” J. Clean. Prod., 2018, doi:10.1016/j.jclepro.2018.01.037.; Z. Hu, J. W. Lee, K. Chandran, S. Kim, A. C. Brotto, and S. K. Khanal, “Effect of plant species on nitrogen recovery in aquaponics,” Bioresour. Technol., vol. 188, pp. 92–98, 2015, doi: https://doi.org/10.1016/j.biortech.2015.01.013.; W. Kloas et al., “A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts,” Aquac. Environ. Interact., 2015, doi:10.3354/aei00146.; C. Maucieri et al., “Life cycle assessment of a micro aquaponic system for educational purposes built using recovered material,” J. Clean. Prod., 2018, doi:10.1016/j.jclepro.2017.11.097.; Y. Wei, W. Li, D. An, D. Li, Y. Jiao, and Q. Wei, “Equipment and Intelligent Control System in Aquaponics: A Review,” IEEE Access. 2019, doi:10.1109/ACCESS.2019.2953491.; Z. M. Gichana, D. Liti, H. Waidbacher, W. Zollitsch, S. Drexler, and J. Waikibia, “Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation,” Aquaculture International. 2018, doi:10.1007/s10499-018-0303-x.; W. A. Lennard and B. V. Leonard, “A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic test system,” Aquac. Int., 2006, doi:10.1007/s10499-006-9053-2.; I. Pinheiro et al., “Aquaponic production of Sarcocornia ambigua and Pacific white shrimp in biofloc system at different salinities,” Aquaculture, 2020, doi:10.1016/j.aquaculture.2019.734918.; Z. Schmautz et al., “Tomato productivity and quality in aquaponics: Comparison of three hydroponic methods,” Water (Switzerland), 2016, doi:10.3390/w8110533.; J. Dalsgaard, I. Lund, R. Thorarinsdottir, A. Drengstig, K. Arvonen, and P. B. Pedersen, “Farming different species in RAS in Nordic countries: Current status and future perspectives,” Aquac. Eng., vol. 53, pp. 2–13, 2013, doi: https://doi.org/10.1016/j.aquaeng.2012.11.008.; J. Suhl et al., Prospects and challenges of double recirculating aquaponic systems (DRAPS) for intensive plant production, vol. 1227. 2018.; H. R. Roosta and M. Hamidpour, “Effects of foliar application of some macro- and micronutrients on tomato plants in aquaponic and hydroponic systems,” Sci. Hortic. (Amsterdam)., vol. 129, no. 3, pp. 396–402, 2011, doi: https://doi.org/10.1016/j.scienta.2011.04.006.; Y. Fang et al., “Improving nitrogen utilization efficiency of aquaponics by introducing algalbacterial consortia,” Bioresour. Technol., vol. 245, pp. 358–364, 2017, doi: https://doi.org/10.1016/j.biortech.2017.08.116.; B. S. Cerozi and K. Fitzsimmons, “Phosphorus dynamics modeling and mass balance in an aquaponics system,” Agric. Syst., vol. 153, pp. 94–100, 2017, doi: https://doi.org/10.1016/j.agsy.2017.01.020.; D. Karimanzira, K. J. Keesman, W. Kloas, D. Baganz, and T. Rauschenbach, “Dynamic modeling of the INAPRO aquaponic system,” Aquac. Eng., vol. 75, pp. 29–45, 2016, doi: https://doi.org/10.1016/j.aquaeng.2016.10.004.; C. Lee and Y.-J. Wang, “Development of a cloud-based IoT monitoring system for Fish metabolism and activity in aquaponics,” Aquac. Eng., vol. 90, p. 102067, 2020, doi: https://doi.org/10.1016/j.aquaeng.2020.102067.; M. Manju, V. Karthik, S. Hariharan, and B. Sreekar, “Real time monitoring of the environmental parameters of an aquaponic system based on internet of things,” 2017, doi:10.1109/ICONSTEM.2017.8261342.; A. R. Yanes, P. Martinez, and R. Ahmad, “Towards automated aquaponics: A review on monitoring, IoT, and smart systems,” Journal of Cleaner Production. 2020, doi:10.1016/j.jclepro.2020.121571.; K. S. Khan, R. Kunz, J. Kleijnen, and G. Antes, “Five steps to conducting a systematic review,” J. R. Soc. Med., vol. 96, no. 3, pp. 118–121, 2003, doi:10.1258/jrsm.96.3.118.; M. Petticrew, “Petticrew_2001_Myths_Misconceptions,” vol. 322, no. January, 2001.; J. Mori and R. Smith, “Transmission of waterborne fish and plant pathogens in aquaponics and their control with physical disinfection and filtration: A systematized review,” Aquaculture. 2019, doi:10.1016/j.aquaculture.2019.02.009.; A. S. Oladimeji, S. O. Olufeagba, V. O. Ayuba, S. G. Sololmon, and V. T. Okomoda, “Effects of different growth media on water quality and plant yield in a catfish-pumpkin aquaponics system,” J. King Saud Univ. - Sci., vol. 32, no. 1, pp. 60–66, 2020, doi:10.1016/j.jksus.2018.02.001.; M. N. Mamatha and S. N. Namratha, “Design & implementation of indoor farming using automated aquaponics system,” 2017, doi:10.1109/ICSTM.2017.8089192.; P. Boonrawd, S. Nuchitprasitchai, and Y. Nilsiam, “Aquaponics Systems Using Internet of Things,” 2020, doi:10.1007/978-3-030-44044-2_5.; R. Calone et al., “Improving water management in European catfish recirculating aquaculture systems through catfish-lettuce aquaponics,” Sci. Total Environ., vol. 687, pp. 759–767, 2019, doi: https://doi.org/10.1016/j.scitotenv.2019.06.167.; J. P. Mandap et al., “Oxygen Monitoring and Control System Using Raspberry Pi as Network Backbone,” TENCON 2018 - 2018 IEEE Reg. 10 Conf., no. October, pp. 1381–1386, 2018.; S. E. Wortman, “Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system,” Sci. Hortic. (Amsterdam)., vol. 194, pp. 34–42, 2015, doi: https://doi.org/10.1016/j.scienta.2015.07.045.; S. Y. Choi and A. M. Kim, “Development of indoor aquaponics control system using a computational thinking-based convergence instructional model,” Univers. J. Educ. Res., 2019, doi:10.13189/ujer.2019.071509.; S. Goddek and O. Körner, “A fully integrated simulation model of multi-loop aquaponics: A case study for system sizing in different environments,” Agric. Syst., 2019, doi:10.1016/j.agsy.2019.01.010.; W. Vernandhes, N. S. Salahuddin, A. Kowanda, and S. P. Sari, “Smart aquaponic with monitoring and control system based on IoT,” Proc. 2nd Int. Conf. Informatics Comput. ICIC 2017, vol. 2018-Janua, pp. 1–6, 2018, doi:10.1109/IAC.2017.8280590.; D. Karimanzira and T. Rauschenbach, “Enhancing aquaponics management with IoT-based Predictive Analytics for efficient information utilization,” Inf. Process. Agric., vol. 6, no. 3, pp. 375– 385, 2019, doi: https://doi.org/10.1016/j.inpa.2018.12.003.; A. M. Nagayo, C. Mendoza, E. Vega, R. K. S. Al Izki, and R. S. Jamisola, “An automated solar-powered aquaponics system towards agricultural sustainability in the Sultanate of Oman,” 2017 IEEE Int. Conf. Smart Grid Smart Cities, ICSGSC 2017, pp. 42–49, 2017, doi:10.1109/ICSGSC.2017.8038547.; D. Pantazi, S. Dinu, and S. Voinea, “The smart aquaponics greenhouse – an interdisciplinary educational laboratory,” Rom. Reports Phys., 2019.; A. Tumbaco y B. Daniela, «Optimización del proceso productivo para incrementar la Utilidad en Mundo Verde, » Universidad de Guayaquil Facultad de Ciencias Administrativas, Guayaquil, Ecuador, 2017.; J. Montero y S. Cecilia, «Invernadero para la, » Institut de Recerca i Tecnología Agroalimentaries de Cabrils, España, 2008.; G. Ramón y F. Rodríguez, «Algoritmo De Navegación Reactiva De Robots, » Universidad de Almería, España, 2015.; K. Yingchun y S. Yue, «A Greenhouse Temperature and Humidity Controller Based on MIMO Fuzzy System, » International Conference on Intelligent System Design and Engineering Application, nº 1, pp. 35-39, 2010.; S. A. Giraldo, R. C. Castaño, C. Flesch y J. E. Normey-Rico, «Multivariable Greenhouse Control Using the Filtered Smith Predictor, » Journal of Control, Automation and Electrical Systems, vol. 27, nº 4, pp. 349-358, 2016.; M. Heidari, «Climate Control of An Agricultural Greenhouse by Using Fuzzy Logic SelfTuning PID Approach, » Proceedings of the 23rd International Conference on Automation & Computing, University of Huddersfield, 2017.; J. G. Jurado, «diseño de sistemas de control multivariable por desacoplo con controladores PID, » madrid, 2012.; M. Ajit K, Introduction to Control Engineering Modeling, Analysis and Desing, NEW AGE INTERNATIONAL PUBLISHERS, 2006.; M. G. Martínez, «Síntesis de controladores robustos mediante el análisis de la compatibilidad de especificaciones e incertidumbre, » Tesis de Grado- Universidad Pública de Navarra, 2001.; C. H. Houpis, S. N. Sheldon y J. J. D’Azzo, Linear Control System Analysis and Design: Fifth Edition, London: Revised and Expanded., 2003.; J. Elso, M. G. Martínez y M. Garcia-Sanz, «Quantitative Feedback Control for Multivariable Model Matching and Disturbance Rejection, » International Journal of Robust and Nonlinear Control, vol. 1, nº 27, pp. 121-134, 2017.; M. Gil-Martínez y M. García-Sanz, «Simultaneous meeting of robust control specifications in QFT, » International Journal of Robust and Nonlinear Control, vol. 7, nº 13, p. 643–656., 2003.; Y. Chait y O. Yaniv, «Multi-Input/Single-Output Computer-Aided Control Design Using the Quantitative Feedback Theory, » International Journal of Robust and Nonlinear Control, vol. 1, nº 3, pp. 47-54, 1993; Z. Hu, W. Wan and K. Harada, "Designing a Mechanical Tool for Robots With Two-Finger Parallel Grippers," in IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2981-2988, July 2019, doi:10.1109/LRA.2019.2924129.; L. Berscheid, T. Rühr and T. Kröger, "Improving Data Efficiency of Self-supervised Learning for Robotic Grasping," 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 2125-2131, doi:10.1109/ICRA.2019.8793952.; Y. Domae, A. Noda, T. Nagatani and W. Wan, "Robotic General Parts Feeder: Bin-picking, Regrasping, and Kitting," 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 5004-5010, doi:10.1109/ICRA40945.2020.9197056.; J. H. Sanchez, W. Amanhoud, A. Billard and M. Bouri, "Foot Control of a Surgical Laparoscopic Gripper via 5DoF Haptic Robotic Platform: Design, Dynamics and Haptic Shared Control," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 1255912566, doi:10.1109/ICRA48506.2021.9561887.; S. Ainetter and F. Fraundorfer, "End-to-end Trainable Deep Neural Network for Robotic Grasp Detection and Semantic Segmentation from RGB," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 13452-13458, doi:10.1109/ICRA48506.2021.9561398.; S. K. Rajput, A. Kaushal, R. K. Singh and A. K. Sharma, "A Study and Fabrication of SMA based 3D Printed Adaptive Gripper," 2021 Smart Technologies, Communication and Robotics (STCR), 2021, pp. 1-5, doi:10.1109/STCR51658.2021.9588838.; C. Son and S. Kim, "A Shape Memory Polymer Adhesive Gripper For Pick-and-Place Applications," 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 10010-10016, doi:10.1109/ICRA40945.2020.9197511.; S. D. Liyanage, A. M. Mazid and P. Dzitac, "An Innovative Whisker Tactile Sensor for Intelligent Robotic Grasping," IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, 2021, pp. 1-6, doi:10.1109/IECON48115.2021.9589765.; T. V. Prabhu, P. V. Manivannan, D. Roy and Yathishkumar, "A robust tactile sensor matrix for intelligent grasping of objects using robotic grippers," 2021 International Symposium of Asian Control Association on Intelligent Robotics and Industrial Automation (IRIA), 2021, pp. 400-405, doi:10.1109/IRIA53009.2021.9588669.; G. Hwang, J. Park, D. S. D. Cortes, K. Hyeon and K. -U. Kyung, "Electroadhesion-Based High-Payload Soft Gripper With Mechanically Strengthened Structure," in IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 642-651, Jan. 2022, doi:10.1109/TIE.2021.3053887.; J. Guo, J. -H. Low, X. Liang, J. S. Lee, Y. -R. Wong and R. C. H. Yeow, "A Hybrid Soft Robotic Surgical Gripper System for Delicate Nerve Manipulation in Digital Nerve Repair Surgery," in IEEE/ASME Transactions on Mechatronics, vol. 24, no. 4, pp. 1440-1451, Aug. 2019, doi:10.1109/TMECH.2019.2924518.; C.I. Basson, G. Bright y A.J. Walker. “Testing flexible grippers for geometric and surface grasping conformity in reconfigurable assembly systems.” En: South African Journal of Industrial Engineering 29.1 (2018), pags. 128 -142. ISSN: 2224-7890.; Festo AG & Co.KG. “MultiChoiceGripper”. En: Variable gripping based on human hand (2018).; https://ultimaker.com/es/software/ultimaker-cura, consultado Noviembre de 2021.; IFR, “Definition of Industrial Robot.” [Online]. Available: https://ifr.org/industrial-robots. [Accessed: 15-Sep-2021].; A. A. Malik and A. Bilberg, “Collaborative robots in assembly: A practical approach for tasks distribution,” Procedia CIRP, vol. 81, pp. 665–670, Jan. 2019.; P. Andhare and S. Rawat, “Pick and place industrial robot controller with computer vision,” Proc. - 2nd Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2016, Feb. 2017.; J. Iqbal, Z. H. Khan, and A. Khalid, “Prospects of robotics in food industry,” Food Sci. Technol., vol. 37, no. 2, pp. 159–165, May 2017.; K. H. Tantawi, A. Sokolov, and O. Tantawi, “Advances in Industrial Robotics: From Industry 3.0 Automation to Industry 4.0 Collaboration,” TIMES-iCON 2019 - 2019 4th Technol. Innov. Manag. Eng. Sci. Int. Conf., Dec. 2019.; J. J. Vaca González, C. A. Peña Caro, and H. Vacca González, “Cinemática inversa de robot serial utilizando algoritmo genético basado en MCDS,” Rev. Tecnura, vol. 19, no. 44, p. 33, Apr. 2015.; O. A. Vivas Alban, M. F. Piamba Mamián, and Y. E. Otaya Bravo, “Diseño y construcción de una interfaz háptica de seis grados de libertad,” Tecnura, vol. 21, no. 54, pp. 33–40, Oct. 2017.; C. Ma, Y. Zhang, J. Cheng, B. Wang, and Q. Zhao, “Inverse kinematics solution for 6R serial manipulator based on RBF neural network,” Int. Conf. Adv. Mechatron. Syst. ICAMechS, vol. 0, pp. 350–355, Jul. 2016.; V. Noppeney, T. Boaventura, and A. Siqueira, “Task-space impedance control of a parallel Delta robot using dual quaternions and a neural network,” J. Brazilian Soc. Mech. Sci. Eng. 2021 439, vol. 43, no. 9, pp. 1–11, Aug. 2021.; M. Meghana et al., “Hand gesture recognition and voice-controlled robot,” Mater. Today Proc., vol. 33, pp. 4121–4123, Jan. 2020.; P. M. Reddy, S. P. Kalyan Reddy, G. R. Sai Karthik, and B. K. Priya, “Intuitive Voice Controlled Robot for Obstacle, Smoke and Fire Detection for Physically Challenged People,” Proc. 4th Int. Conf. Trends Electron. Informatics, ICOEI 2020, pp. 763–767, Jun. 2020.; G. Y. Luo, M. Y. Cheng, and C. L. Chiang, “Vision-based 3-D object pick-And-place tasks of industrial manipulator,” 2017 Int. Autom. Control Conf. CACS 2017, vol. 2017-November, pp. 1–7, Feb. 2018.; M. Zhao, Y. Peng, L. Li, and X. Qiao, “Detection and classification manipulator system for apple based on machine vision and optical technology,” ASABE 2020 Annu. Int. Meet., pp. 1-, 2020.; Annoni, Federico. 2000. “Sistemas de Sujecion y Soporte.” Journal of Petrology 369(1): 1689– 99. http://dx.doi.org/10.1016/j.jsames.2011.03.003%0Ahttps://doi.org/10.1016/j.gr.2017.08.001%0Ahtt p://dx.doi.org/10.1016/j.precamres.2014.12.018%0Ahttp://dx.doi.org/10.1016/j.precamres.2011.08. 005%0Ahttp://dx.doi.org/10.1080/00206814.2014.902757%0Ahttp://dx.“FT-TMH06.Pdf.”; Garzón, Yamid. 2020. “Sensores y Actuadores Introducción:” (2014): 1–32.; Hidai-go, Alfonso. 1987. “Construccion de Un Dinamometro Para Medir Fuerzas de Corte En La Operacion de Taladro.” Corporacion universitaria autonoma de occidente, programa de ingenieria.; Karabay, Sedat. 2007. “Analysis of Drill Dynamometer with Octagonal Ring Type Transducers for Monitoring of Cutting Forces in Drilling and Allied Process.” Materials and Design 28(2): 673–85.; Mohanraj, T., S. Shankar, R. Rajasekar, and M. S. Uddin. 2020. “Design, Development, Calibration, and Testing of Indigenously Developed Strain Gauge Based Dynamometer for Cutting Force Measurement in the Milling Process.” Journal of Mechanical Engineering and Sciences 14(2): 6594–6609.; Norton, Robert L. 2006. Diseño de Máquinas.; Ramírez, Luis Pablo. 2011. “Diseño De Un Dinamómetro Mediante El Método De Los Elementos Finitos.” Tendencias en Tecnología de Medición de Fuerza (6360).; Schmid, S Kalpakjian S R. 2002. ManufacturA, INGENIERÍA Y TecNOLOGÍA.; Setiyawan. 2013. 53 Journal of Chemical Information and Modeling Fundamentos de Manufactura Moderna 3edi Groover.; Morral, P. Metalurgía General, p. 1163, en Google Libros 2004.; Metalurgia general. II - F. R. Morral, P. Molera - Google Libros; Tecnitool. 2020. “DIFERENCIAS ENTRE LAS BROCAS DE TITANIO Y LAS DE COBALTO”. Diferencias entre broca acero rápido HSS con titanio y/o cobalto (tecnitool.es) demaquinasyherramientas1. 2010. “Partes de la broca”. De máquinas y herramientas. USAPartes Broca %7C De Máquinas y Herramientas (demaquinasyherramientas.com).; Esquivel R. 2017. “DISTINTOS TIPOS DE BROCAS PARA DISTINTOS TIPOS DE PROFESIONALES”. Revista Ferrepat. Distintos tipos de brocas para distintos tipos de profesionales (ferrepat.com).; Ingenieria mecánica y automotriz. 2020. “Qué es el Coeficiente de Poisson y cómo se calcula?”; ] Estudiantes metalografia. 2010. “Diagramas esfuerzo-deformación unitaria, convencional y real, para un material dúctil (acero) (no de escala)”. Universidad Tecnológica de Pereira.; Diagramas esfuerzo-deformación unitaria, convencional y real, para un material dúctil (acero) (no de escala) %7C METALOGRAFÍA – UNIVERSIDAD TECNOLÓGICA DE PEREIRA (utp.edu.co).; O. Herrera, A. Quino, B. Cabrera, “Control de cortinas”, noviembre 2021. [En línea]. Disponible en http://micro2verano2012.blogspot.com/2012/03/control-de-cortinas.html.; Fuenteelectronica.es, “Fotocelda – Control de dispositivos con la luz”, noviembre 2017. [En línea]. Disponible en: https://tuelectronica.es/fotocelda-control-de-dispositivos-con-la-luz/ [3] Electronicathidos, “Fotoresistencia LDR 5mm, 2 Mohms”, noviembre 2021. [En línea]. Disponible en: https://electronicathido.com/detallesProducto.php?id=MkxldEdPZ3AwbjNMUEV3aWdXb0pSdz09.; Real Academia Española,”Relé”, noviembre 2021.[En línea]. Disponible en: https://dle.rae.es/rel%C3%A9.; A.Perez-Paris,”RELÉS ELECTROMAGNÉTICOS Y ELECTRÓNICOS”, noviembre 2021 En línea]. Disponible en: http://www.vivatacademia.net/index.php/vivat/article/view/373/689.; Electro Club Didactic,”Potenciómetros (teoría y practica)”, noviembre 2021.[En línea]. Disponible en: http://www.electroclub.com.mx/2015/08/potenciometros-teoria-y-practica.html.; Chabonnier,”Potenciómetros”, noviembre 2021.[En línea]. Disponible en: https://deresistencias.com/wp-content/uploads/2020/08/Diagrama-en-blanco-64-1.png.; Pascual,J ,”Este gadget convierte tus viejas cortinas en cortinas inteligentes controladas con el móvil”,noviembre 2021 .[En línea]. Disponible en: https://computerhoy.com/noticias/life/gadgetconvierte-viejas-cortinas-cortinas-inteligentes-controladas-movil-516887.; Tecnología a tu alcance ,”¿Cómo hacer un circuito de apertura y cierre de cortinas?”,noviembre de 2021 .[En línea]. Disponible en: https://latecnologiaatualcance.com/como-hacer-un-circuito-deapertura-y-cierre-de-cortinas/.; Ruales.A ,”Diseño de puente Wheatstone para una fotoresistencia.”,noviembre de 2021.[En línea]. Disponible en: https://www.youtube.com/watch?v=Vz_6vPjn4Bo.; Figueiras.T ,”Cómo convertir el MOVIMIENTO ROTATORIO de un Motor en un MOVIMIENTO LINEAL”,noviembre de 2021 .[En línea]. Disponible en: https://youtu.be/WynJqz-hibA.; OMS, “Inocuidad de los alimentos”, 30/04 de 2020, [online]. Available at: https://www.who.int/es/news-room/fact-sheets/detail/food-safety.; Minsalud,” Enfermedades transmitidas por alimentos disminuyeron en 2020”,14/08/2020, [online]. Available at: https://www.minsalud.gov.co/Paginas/Enfermedades%20transmitidas%20por%20alimento s%20disminuyeron%20en%202020.aspx.; BES (Boletín Epidemiológico Semanal), “Vigilancia de brotes de enfermedades transmitidas por alimentos, Colombia, semana epidemiológica 31 de 2020”, 26/07 de 2020, [online]. Available at: https://www.ins.gov.co/buscador eventos/BoletinEpidemiologico/2020_Boletin_epidemiologico_semana_31.pdf.; BES (Boletín Epidemiológico Semanal),” Las enfermedades transmitidas por Alimentos-ETA”,23/12 de 2018, [online]. Available at: https://www.ins.gov.co/buscador eventos/boletinepidemiologico/2018%20bolet%C3%ADn%20epidemiol%C3%B3gico%20s emana%2052.pdf.; FAO, FIDA y PMA, Seguimiento de la seguridad alimentaria y la nutrición en apoyo de la Agenda 2030 para el Desarrollo Sostenible: Balance y perspectivas, 2016. [Online]. Available at: https://www.fao.org/3/i6188s/i6188s.pdf.; Ministerio de salud, Calidad e inocuidad de alimentos,15 de noviembre de 2021. [Online]. Available at: www.minsalud.gov.co/salud/Paginas/inocuidad-alimentos.aspx.; David K. Lewis,Method and apparatus for washing fruits and vegetables,2009. [Online]. Available at: patents.google.com/patent/US8293025B2/en?q=A23N12%2f02&oq=A23N12%2f02.; Garcia Portillo, M., 2015. Google Patents. [online] Patents.google.com. Available at: patents.google.com/patent/ES2544005A1/es?assignee=TECNIDEX&oq=TECNIDEX.; Di Pannini, H., 2011. Google Patents. [online] Patents.google.com. Available at:; J Goodale, R., 1975. US3880068A - Apparatus for washing and blanching of vegetables - Google Patents. [online] Patents.google.com. Available at: .; A Tiby, G., 1969. US3456659A - Apparatus for treating food articles - Google Patents. [online] Patents.google.com. Available at: .; Who.int, 2020.-"Inocuidad de los alimentos"-, [Online]. Available: .; Ministerio de salud, ABECÉ de la inocuidad de alimentos, 2017. [Online]. Available at: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/abc inocuidad.pdf.; E. I. Alimentos, Inocuidad alimentaria en América Latina, 2015. [Online]. Available: www.revistaialimentos.com/ediciones/edicion-19/inocuidad-alimentaria-en-america latina/>; Fao.org, CODEXALIMENTARIUS FAO-WHO, 1994 [online] Available at: www.fao.org/fao-who-codexalimentarius/es/> [Accessed 8 July 2021].; Fao.org. n.d. ,“Acerca del Codex %7C CODEXALIMENTARIUS FAO-WHO” ,not date, [online]. Available at: .; AJ Avances,” Normograma del Instituto Nacional de Vigilancia de Medicamentos y Alimentos, INVIMA”, 13 /12 de 2020, [online]. Available at: .; Miquel Mor,”¿aplicas biocidas? Descubre nueva formacion necesaria”, 29/10/2014, [online] Available at: .; LA VERDAD MULTIMEDIA, S.A,”Descontaminación superficial de alimentos que aumenta su vida útil”, 16/01 /2017,[online] Available at: .; Dirección Regional de Inocuidad de los Alimentos,”Guía para uso de cloro en desinfección de frutas y hortalizas de consumo fresco, equipos y superficies en establecimientos ”, 15/05/2019, [online] Available at:; Equipos, M., n.d. TRANSPORTADOR DE TORNILLO SIN FIN CHILE – MYP EQUIPOS. [online] Mypequipos.com. Available at: [Accessed 16 November 2021].; Intralogistica, I., 2018. Qué son las bandas transportadoras. [online] Irp intralogistica.com. Available at: [Accessed 16 November 2021].; Motorex. n.d. El uso de la faja transportadora en las industrias - Motorex. [online] Available at: [Accessed 16 November 2021].; Nittacorporation.com. n.d. Bandas transportadoras para alimentos. [online] Available at: .; Indomaxve.com. 2019. Conoce los tipos de Mangueras industriales que existen. [online] Available at: .; Blog de Ventageneradores. 2016. Tipos de Motobombas o Bombas de Agua: según tipos de aguas, caudal o presión. [online] Available at: .; GTE. n.d. Apuntes SEC. UIB. [online] Available at: .; Gecousb.com.ve. n.d. Motores 1LA7. [online] Available at: .; Appinventor.mit.edu. 2012. About Us. [online] Available at: .; Irdmailp.com. n.d. 37mm DC 12V Motor de Reducción de Velocidad Caja de Engranajes de Alta Fuerza de Tensión Motor Reductor de Velocidad 3.5/15/30/70RPM(70RPM). [online] Available at: .; López, S., 2020. Qué es Firebase: funcionalidades, ventajas y conclusiones. [online] DIGITAL55. Available at: .; Y. Rojas, K. Aguado, and I. González, “La nanomedicina y los sistemas de liberación de fármacos: ¿la (r)evolución de la terapia contra el cáncer?,” Educ. Quim., vol. 27, no. 4, pp. 286–291, 2016.; R. R. Wakaskar, “General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes,” J. Drug Target., vol. 26, no. 4, pp. 311–318, 2018.; B. Alfonso and C. Casado, “DENDRÍMEROS: MACROMOLÉCULAS VERSÁTILES CON INTERÉS INTERDISCIPLINAR,” J. Chem. Inf. Model., vol. 01, no. 01, pp. 1689–1699, 2016.; B. Haley and E. Frenkel, “Nanoparticles for drug delivery in cancer treatment,” Urol. Oncol. Semin. Orig. Investig., vol. 26, no. 1, pp. 57–64, 2008.; M. C. Urrejola et al., “Sistemas de Np Poliméricas II: Estructura, Métodos de Elaboración, Características, Propiedades, Biofuncionalización y Tecnologías de Auto-Ensamblaje Capa por Capa (Layer-by-Layer Self-Assembly),” Int. J. Morphol., vol. 36, no. 4, pp. 1463–1471, 2018.; F. Chávez, B. I. Olvera, A. Ganem, and D. Quintanar, “Liberación de sustancias lipofílicas a partir de nanocápsulas poliméricas,” J. Mex. Chem. Soc., vol. 46, no. 4, pp. 349–356, 2002.; Z. M. Avval et al., “Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application,” Drug Metab. Rev., vol. 52, no. 1, pp. 157–184, 2020.; L. Mohammed, H. G. Gomaa, D. Ragab, and J. Zhu, “Magnetic nanoparticles for environmental and biomedical applications: A review,” Particuology, vol. 30, pp. 1–14, 2017.; A. S. Lübbe et al., “Clinical experiences with magnetic drug targeting: A phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors,” Cancer Res., vol. 56, no. 20, pp. 4686– 4693, 1996.; H. D. Liu, W. Xu, S. G. Wang, and Z. J. Ke, “Hydrodynamic modeling of ferrofluid flow in magnetic targeting drug delivery,” Appl. Math. Mech. (English Ed., vol. 29, no. 10, pp. 1341–1349, 2008.; G. Zhang et al., “Oxygen-enriched Fe3O4/Gd2O3 nanopeanuts for tumor-targeting MRI and ROS-triggered dual-modal cancer therapy through platinum (IV) prodrugs delivery,” Chem. Eng. J., vol. 388, no. February, p. 124269, 2020.; S. Tong, H. Zhu, and G. Bao, “Magnetic iron oxide nanoparticles for disease detection and therapy,” Mater. Today, vol. 31, no. December, pp. 86–99, 2019.; M. Sosa, J. J. B. Alvarado, and J. L. Gonz, “Tecnicas biomagneticas y su comparacion con los metodos bioelectricos,” vol. 48, no. 5, pp. 490–500, 2002.; S. Bose and M. Banerjee, “Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling,” J. Magn. Magn. Mater., vol. 385, pp. 32–46, 2015.; M. Bartoszek and Z. Drzazga; “A study of magnetic anisotropy of blood cells,” vol. 197, pp. 573–575, 1999.; Y. Haik, V. Pai, and C. J. Chen, “Development of magnetic device for cell separation,” J. Magn. Magn. Mater., vol. 194, no. 1, pp. 254–261, 1999.; Z. Liu, Y. Zhu, R. R. Rao, J. R. Clausen, and C. K. Aidun, “Nanoparticle transport in cellular blood flow,” Comput. Fluids, vol. 172, pp. 609–620, 2018.; S. Y. Lee, M. Ferrari, and P. Decuzzi, “Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows,” Nanotechnology, vol. 20, no. 49, 2009.; G. A. Duncan and M. A. Bevan, “Computational design of nanoparticle drug delivery systems for selective targeting,” Nanoscale, vol. 7, no. 37, pp. 15332–15340, 2015.; K. Müller, D. A. Fedosov, and G. Gompper, “Margination of micro- and nano-particles in blood flow and its effect on drug delivery,” Sci. Rep., vol. 4, pp. 1–8, 2014.; Y. Haik, V. Pai, and C. J. Chen, “Apparent viscosity of human blood in a high static magnetic field,” J. Magn. Magn. Mater., vol. 225, no. 1–2, pp. 180–186, 2001.; S. Afkhami and Y. Renardy, “Ferrofluids and magnetically guided superparamagnetic particles in flows: a review of simulations and modeling,” J. Eng. Math., vol. 107, no. 1, pp. 231–251, 2017.; I. Rukshin, J. Mohrenweiser, P. Yue, and S. Afkhami, “Modeling superparamagnetic particles in blood flow for applications in magnetic drug targeting,” Fluids, vol. 2, no. 2, pp. 1–12, 2017.; M. O. Avilés, A. D. Ebner, H. Chen, A. J. Rosengart, M. D. Kaminski, and J. A. Ritter, “Theoretical analysis of a transdermal ferromagnetic implant for retention of magnetic drug carrier particles,” J. Magn. Magn. Mater., vol. 293, no. 1, pp. 605–615, 2005.; A. Hajiaghajani, S. Hashemi, and A. Abdolali, “Adaptable setups for magnetic drug targeting in human muscular arteries: Design and implementation,” J. Magn. Magn. Mater., vol. 438, pp. 173– 180, 2017.; V. R. Sharma, A. K. Sharma, V. Punj, and P. Priya, “Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: A focus on breast cancer,” Semin. Cancer Biol., vol. 59, no. July 2019, pp. 133–146, 2019.; M. E. Miller, Human Diseases and Yeast.Pdf, First edit. New York: Momentum Press Health, 2018.; A. S. Lübbe, C. Bergemann, W. Huhnt, T. Fricke, and H. Riess, “Lübbe1996_Preclinical,” pp. 4694–4701, 1996.; Lübbe., C. Bergemann, J. Brock, and D. G. McClure, “Physiological aspects in magnetic drug-targeting,” J. Magn. Magn. Mater., vol. 194, no. 1, pp. 149–155, 1999.; C. Alexiou et al., “Locoregional cancer treatment with magnetic drug targeting,” Cancer Res., vol. 60, no. 23, pp. 6641–6648, 2000.; C. Alexiou, A. Schmidt, R. Klein, P. Hulin, C. Bergemann, and W. Arnold, “Magnetic drug targeting: Biodistribution and dependency on magnetic field strength,” J. Magn. Magn. Mater., vol. 252, no. 1-3 SPEC. ISS., pp. 363–366, 2002.; K. Gitter and S. Odenbach, “Experimental investigations on a branched tube model in magnetic drug targeting,” J. Magn. Magn. Mater., vol. 323, no. 10, pp. 1413–1416, 2011.; M. G. Krukemeyer, V. Krenn, M. Jakobs, and W. Wagner, “Mitoxantrone-iron oxide biodistribution in blood, tumor, spleen, and liver - Magnetic nanoparticles in cancer treatment,” J. Surg. Res., vol. 175, no. 1, pp. 35–43, 2012.; M. M. Attar et al., “Thermal analysis of magnetic nanoparticle in alternating magnetic field on human HCT-116 colon cancer cell line,” Int. J. Hyperth., vol. 32, no. 8, pp. 858–867, 2016.; R. Eivazzadeh-Keihan, F. Radinekiyan, A. Maleki, M. Salimi Bani, Z. Hajizadeh, and S. Asgharnasl, “A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy,” Int. J. Biol. Macromol., vol. 140, pp. 407–414, 2019.; S. Shabestari Khiabani, M. Farshbaf, A. Akbarzadeh, and S. Davaran, “Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy,” Artif. Cells, Nanomedicine Biotechnol., vol. 45, no. 1, pp. 6–17, 2017.; K. T. Al-Jamal et al., “Magnetic Drug Targeting: Preclinical in Vivo Studies, Mathematical Modeling, and Extrapolation to Humans,” Nano Lett., vol. 16, no. 9, pp. 5652–5660, 2018.; M. Minbashi, A. A. Kordbacheh, A. Ghobadi, and V. V. Tuchin, “Optimization of power used in liver cancer microwave therapy by injection of Magnetic Nanoparticles (MNPs),” Comput. Biol. Med., vol. 120, no. February, p. 103741, 2020.; A. Nan, M. Suciu, I. Ardelean, M. Şenilă, and R. Turcu, “Characterization of the Nuclear Magnetic Resonance Relaxivity of Gadolinium Functionalized Magnetic Nanoparticles,” Anal. Lett., vol. 0, no. 0, pp. 1–16, 2020.; I. Cicha, S. Lyer, C. Alexiou, and C. D. Garlichs, “Nanomedicine in diagnostics and therapy of cardiovascular diseases: Beyond atherosclerotic plaque imaging,” Nanotechnol. Rev., vol. 2, no. 4, pp. 449–472, 2013.; M. Nahrendorf et al., “Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis,” Circulation, vol. 117, no. 3, pp. 379–387, 2008.; S. Jaimes, A. Gonzáles, C. Granados, D. Álvarez, and E. Espitia, “Redalyc.Nanotecnología: avances y expectativas en cirugía,” Rev. Colomb. Cirugía, vol. 27, pp. 158–166, 2012.; B. Méndez and C. Muñoz, “Nanochips y nanosensores para eldiagnóstico temprano de cáncer oral: una revisión,” no. 67, pp. 131–147, 2012.; D. Rodriguez, J. Moyano, and L. Roa, “Estudio por dinámica molecular browniana de np bajo efectos de Bs externos,” Ing. Mil., vol. 13, no. 9, pp. 90–98, 2018.; J. Gallo and C. Ossa, “Fabricación y caracterización de np de plata con potencial uso en el tratamiento del cáncer de piel,” Ing. y Desarro., vol. 37, no. 1, pp. 88–104, 2019.; J. Pantoja, “np magnéticas en flujo sanguíneo para tratamiento de cáncer,” Universidad Distrital Francisco José de Caldas, 2020.; https://hdl.handle.net/11349/31171; Universidad Distrital Francisco José de Caldas

  12. 12

    Popis souboru: application/pdf

    Relation: [1] C. U. ESPAÑOLAS, Analisis de las TIC en las Universidades Españolas. 2015. doi:10.1017/CBO9781107415324.004; [2] J. S. Rueda-Rueda, D. Rico-Bautista, and É. Flórez-Solano, “Education in ICT: Teaching to use, teaching to protect oneself and teaching to create [Educación en TIC: Enseñar a usar, enseñar a protegerse y enseñar a crear tecnología],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2019, no. 19, pp. 252–264, 2019.; [3] L. V. Glukhova, S. D. Syrotyuk, A. A. Sherstobitova, and S. V. Pavlova, Smart university development evaluation models, vol. 144. Springer Singapore, 2019. doi:10.1007/978-981-13-8260-4_47; [4] D. Rico-bautista, C. D. Guerrero, C. A. Collazos, and G. Maestre-góngora, “Smart University : A vision of technology adoption Universidad inteligente : Una visión de la adopción de la tecnología,” Revista Colombiana de Computación, vol. 22, no. 1, pp. 44–55, 2021, doi:10.29375/25392115.4153; [5] P. Pornphol and T. Tongkeo, “Transformation from a traditional university into a smart university,” Proceedings of the 6th International Conference on Information and Education Technology - ICIET ’18. ACM Press, pp. 144–148, 2018. doi:10.1145/3178158.3178167; [6] I. Staškevičiute and B. Neverauskas, “The intelligent university’s conceptual model,” Engineering Economics, vol. 4, no. 59, pp. 53–58, 2008, doi:10.5755/j01.ee.59.4.11563; [7] D. Rico-Bautista, C. D. Guerrero, C. A. Collazos, and G. Maestre-Gongora, “Maturity model of adoption of Information Technologies for universities: An approach from the Smart University perspective,” in 2021 16th Iberian Conference on Information Systems and Technologies (CISTI), Jun. 2021, pp. 1–6. doi:10.23919/CISTI52073.2021.9476468; [8] L. I. U. Xiong, “A Study on Smart Campus Model in the Era of Big Data,” Advances in Social Science, Education and Humanities Research, vol. 87, no. Icemeet 2016, pp. 919–922, 2017.; [9] D. Rico-Bautista, G. P. Maestre-Góngora, and C. D. Guerrero, “Smart university: Characterization of the current situation of intelligent technologies, based on two case studies [Caracterización de la situación actual de las tecnologías inteligentes para una universidad inteligente en Colombia/latinoamérica],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E27, pp. 484–501, 2020; [10] F. M. Pérez, J. V. B. Martínez, J. M. S. Bernabeu, I. L. Fonseca, and A. Fuster-Guilló, “Smart university: hacia una universidad más abierta.” 2016.; [11] D. Rico-Bautista, Y. Medina-Cárdenas, and C. D. Guerrero, “Smart University: A Review from the Educational and Technological View of Internet of Things,” in International Conference on Information Technology and Systems, ICITS 2019, vol. 918, P. M., F. C., and R. A., Eds. Systems and Informatics Department, Universidad Francisco de Paula Santander Ocaña, Algodonal Campus Vía Acolsure, Ocaña, 546551, Colombia: Springer Verlag, 2019, pp. 427–440. doi:10.1007/978-3-03011890-7_42; [12] J. P. Bakken, V. L. Uskov, S. V. Kuppili, A. V Uskov, N. Golla, and N. Rayala, Smart University: Conceptual Modeling and Systems’ Design, vol. 70. Cham: Springer International Publishing, 2018. doi:10.1007/978-3-319-59454-5.; [13] O. Akhrif, Y. E. B. El Idrissi, and N. Hmina, “Smart university: SOC-based study,” Proceedings of the 3rd International Conference on Smart City Applications - SCA ’18. ACM Press, 2018. doi:10.1145/3286606.3286798; [14] Aqeel-ur-Rehman, A. Z. Abbasi, and Z. A. Shaikh, “Building a Smart University Using RFID Technology,” in 2008 International Conference on Computer Science and Software Engineering, 2008, vol. 5, pp. 641–644. doi:10.1109/CSSE.2008.1528.; [15] K. Sargent, P. Hyland, and S. Sawang, “Factors influencing the adoption of information technology in a construction business,” Construction Economics and Building, vol. 12, no. 2, p. 86, Jun. 2012, doi:10.5130/AJCEB.v12i2.244; [16] S. Karkošková, “Towards Cloud Computing Management Model Based on ITIL Processes,” in Proceedings of the 2nd International Conference on Business and Information Management, Sep. 2018, pp. 1–5. doi:10.1145/3278252.3278265; [17] M. Comuzzi and A. Patel, “How organisations leverage: Big Data: A maturity model,” Industrial Management and Data Systems, vol. 116, no. 8, pp. 1468–1492, 2016, doi:10.1108/IMDS-12-20150495.; [18] N. V Semenova, E. A. Svyatkina, T. G. Pismak, and Z. Y. Polezhaeva, “The Realities of Smart Education in the Contemporary Russian Universities,” in Proceedings of the Internationsl Conference on Electronic Governance and Open Society: Challenges in Eurasia, 2017, pp. 48–52. doi:10.1145/3129757.3129767; [19] A. Fernández Martínez and F. Llorens Largo, Gobierno de las TI para universidades. 2016.; [20] C. Williams, D. Schallmo, K. Lang, and L. Boardman, “Digital Maturity Models for Small and Medium-sized Enterprises: A Systematic Literature Review,” ISPIM Conference Proceedings, no. June, pp. 1–15, 2019; [21] J. Rueda-Rueda, J. Manrique, and J. Cabrera Cruz, Internet de las Cosas en las Instituciones de Educación Superior. 2017.; [22] J. Becker, R. Knackstedt, and J. Pöppelbuß, “Developing Maturity Models for IT Management,” Business & Information Systems Engineering, vol. 1, no. 3, pp. 213–222, 2009, doi:10.1007/s12599009-0044-5.; [23] C. Heinemann and V. L. Uskov, “Smart University: Literature Review and Creative Analysis,” in Smart Universities, Germany: Springer International Publishing, 2018, pp. 11–46. doi:10.1007/978-3-31959454-5_2; [24] P. Rikhardsson and R. Dull, “An exploratory study of the adoption, application and impacts of continuous auditing technologies in small businesses,” International Journal of Accounting Information Systems, vol. 20, pp. 26–37, Apr. 2016, doi:10.1016/j.accinf.2016.01.003; [25] Y. C. Medina-Cárdenas and D. Rico-Bautista, “Strategic alignment under a technology management organizational approach: ITIL & ISO 20000,” Revista Tecnura, vol. 20, no. 1, pp. 82–94, 2016, doi:10.14483/22487638.11681; [26] D. Rico-Bautista et al., “Smart university: Strategic map since the adoption of technology [Universidad inteligente: Mapa estratégico desde la adopción de tecnología].,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E28, pp. 711–724, 2020.; [27] Dewar. Rico-Bautista, Y. Areniz Arévalo, and Y. C. Medina Cárdenas, “Strategic management appropriation: A question of organizational skills,” FACE: Revista de la Facultad de Ciencias Económicas y Empresariales, vol. 15, no. 2, pp. 71–80, Nov. 2015; [28] D. Rico-Bautista et al., “Smart university: Key factors for the adoption of internet of things and big data,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 201, no. 41, pp. 63–79, 2021, doi:10.17013/risti.41.63–79; [29] D. Rico-Bautista, C. A. Collazos, C. D. Guerrero, G. Maestre-Gongora, and Y. Medina-Cárdenas, “Latin American Smart University: Key Factors for a User-Centered Smart Technology Adoption Model,” in Sustainable Intelligent Systems, 2021, pp. 161–173. doi:10.1007/978-981-33-4901-8_1; [30] D. Rico-Bautista, Y. Medina-Cardenas, L. A. Coronel-Rojas, F. Cuesta-Quintero, G. Maestre-Gongora, and C. D. Guerrero, “Smart University: Key Factors for an Artificial Intelligence Adoption Model,” in Advances and Applications in Computer Science, Electronics and Industrial Engineering, vol. 1307, M. v. García, F. Fernández-Peña, and C. Gordón-Gallegos, Eds. Singapore: Springer Singapore, 2021, pp. 153–166. doi:10.1007/978-981-33-4565-2_10.; [31] D. Rico-Bautista, G. Maestre-Gongora, and C. D. Guerrero, “Smart University:IoT adoption model,” in 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), Jul. 2020, pp. 821–826. doi:10.1109/WorldS450073.2020.9210369. [32] D. Rico-Bautista, Y. Medina-Cardenas, Y. Areniz-Arevalo, E.; [32] D. Rico-Bautista, Y. Medina-Cardenas, Y. Areniz-Arevalo, E. Barrientos-Avendano, G. MaestreGongora, and C. D. Guerrero, “Smart University: Big Data adoption model,” in 2020 9th International Conference On Software Process Improvement (CIMPS), Oct. 2020, pp. 52–60. doi:10.1109/CIMPS52057.2020.9390151; [33] O. Akhrif, Y. E. B. El Idrissi, and N. Hmina, “Smart university, a new concept in the Internet of Things,” in Proceedings of the 3rd International Conference on Smart City Applications - SCA ’18, 2018, pp. 1– 6. doi:10.1145/3286606.3286798.; [34] C. de la república de Colombia, “Plan nacional de desarrollo 2014-2018,” 2015.; [35] Consejo Privado de Competitividad, “Informe nacional de competitividad 2017-2018,” p. 271, 2017, doi: ISSN 2016-1430; [36] P. Generales and C. De Calidad, “Modelo de acreditación CNA,” 2006; [37] L. Enrique and O. Silva, “La calidad de la universidad. Más allá de toda ambigüedad,” pp. 1–14, 1997; [38] A. Roa, “Hacia un modelo de aseguramiento de la calidad en la educación superior en Colombia: estándares básicos y acreditación de excelencia,” Educación superior, calidad y acreditación. Alfa Omega Colombiana, Bogotá, pp. 101–107, 2003; [39] Ministerio de Educación Nacional, “Propuesta metodológica para la distribución de recursos Artículo 87 de la Ley 30 de 1992 Vigencia 2013,” p. 6, 2013.; [40] M. Zapata-Ros, “La universidad inteligente La transición de los LMS a los Sistemas Inteligentes de Aprendizaje en Educación Superior The transition from Learning Management Systems (LMS) to Smart Learning Systems (SLS) in Higher Education,” RED. Revista de Educación a Distancia. Núm, vol. 57, no. 10, pp. 31–1, 2018, doi:10.6018/red/57/10; [41] J. Gómez, T. Jimenez, J. Gumbau, and F. Llorens, Universitic 2017 Análisis de las TIC en las Universidades Españolas. 2017; [42] F. Maciá, Smart University. Hacia una universidad más abierta, Primera. 2017.; [43] J. Gómez, T. Jimenez, J. Gumbau, and F. Llorens, “UNIVERSITIC 2016 Análisis de las TIC en las Universidades Españolas,” p. 150, 2016; Universidades Españolas,” p. 150, 2016. [44] ANUIES, Estado actual de las Tecnologías de la Información y las Comunicaciones en las Instituciones de Educación Superior en México. 2017.; [45] R. Padilla, S. Cadena, R. Enríquez, J. Córdova, and F. Lllorens, Estado de las tecnologías de la información y la comunicación en las universidades ecuatorianas. 2017.; [46] F. L. L. Antonio Fernández Martínez, Universitic Latam 2014, no. 1. 2014. doi:10.1007/s13398-0140173-7.2; [47] J. Valls, R. Villers, and G. Duque, Estado Actual de las Tecnologías de la Información y las Comunicaciones en las Instituciones de Educación Superior en México. 2016; [48] A. Whitmore, A. Agarwal, and L. Da Xu, “The Internet of Things—A survey of topics and trends,” Information Systems Frontiers, vol. 17, no. 2, pp. 261–274, 2015, doi:10.1007/s10796-014-9489-2; [49] N. Gershenfeld, R. Krikorian, and D. Cohen, The internet of things, vol. 291, no. 4. 2004. doi:10.1038/scientificamerican1004-76.; [50] C. (Software B. Williams, “Smart Systems,” Cybertalk, no. April, 2016; [51] O. Flauzac, C. Gonzalez, and F. Nolot, “New security architecture for IoT network,” in Procedia Computer Science, 2015, vol. 52, no. 1, pp. 1028–1033. doi:10.1016/j.procs.2015.05.099; [52] G. Maestre-Góngora, “Revisión de literatura sobre ciudades inteligentes: una perspectiva centrada en las TIC,” Ingeniare, vol. 19, no. 19, pp. 137–149, 2016.; [53] G. Perboli, A. De Marco, F. Perfetti, and M. Marone, “A New Taxonomy of Smart City Projects,” Transportation Research Procedia, vol. 3, pp. 470–478, 2014, doi:10.1016/j.trpro.2014.10; [54] L. Muñoz López, D. Proyecto, P. Antón Martínez, and S. Fernández Ciez, “Summary for Policymakers,” in Climate Change 2013 - The Physical Science Basis, Intergovernmental Panel on Climate Change, Ed. Cambridge: Cambridge University Press, 2015, pp. 1–30. doi:10.1017/CBO9781107415324.004.; [55] Y. Atif, S. S. Mathew, and A. Lakas, “Building a smart campus to support ubiquitous learning,” Journal of Ambient Intelligence and Humanized Computing, vol. 6, no. 2, pp. 223–238, 2015, doi:10.1007/s12652-014-0226-y; [56] E. M. Malatji, “The development of a smart campus - African universities point of view,” in 2017 8th International Renewable Energy Congress (IREC), Mar. 2017, pp. 1–5. doi:10.1109/IREC.2017.7926010; [57] A. Adamko, T. Kadek, and M. Kosa, “Intelligent and adaptive services for a smart campus,” in 5th IEEE Conference on Cognitive Infocommunications (CogInfoCom), Nov. 2014, pp. 505–509. doi:10.1109/CogInfoCom.2014.7020509; [58] Y. Khamayseh, W. Mardini, S. Aljawarneh, and M. B. Yassein, “Integration of Wireless Technologies in Smart University Campus Environment,” International Journal of Information and Communication Technology Education, vol. 11, no. 1, pp. 60–74, Jan. 2015, doi:10.4018/ijicte.2015010104.; [59] M. Rohs and J. Bohn, “Entry points into a smart campus environment - overview of the ETHOC system,” in 23rd International Conference on Distributed Computing Systems Workshops, 2003. Proceedings., 2003, pp. 260–266. doi:10.1109/ICDCSW.2003.1203564.; [60] S. Gul, M. Asif, S. Ahmad, M. Yasir, M. Majid, and M. S. A. Malik, “A Survey on role of Internet of Things in education,” IJCSNS International Journal of Computer Science and Network Security, vol. 17, no. 5, pp. 159–165, 2017; [61] L. Banica, E. Burtescu, and F. Enescu, “The impact of internet-of-things in higher education,” Scientific Bulletin-Economic Sciences, vol. 16, no. 1, pp. 53–59, 2017.; [62] D. Galego, C. Giovannella, and Ó. Mealha, “Determination of the Smartness of a University Campus: The Case Study of Aveiro,” Procedia - Social and Behavioral Sciences, vol. 223, pp. 147–152, 2016, doi:10.1016/j.sbspro.2016.05.336.; [63] R. Wendler, “The maturity of maturity model research: A systematic mapping study,” Information and Software Technology, vol. 54, no. 12, pp. 1317–1339, 2012, doi:10.1016/j.infsof.2012.07.007; [64] J. Fraser and S. Plewes, “Applications of a UX Maturity Model to Influencing HF Best Practices in Technology Centric Companies – Lessons from Edison,” Procedia Manufacturing, vol. 3, pp. 626–631, 2015, doi:10.1016/j.promfg.2015.07.285.; [65] J. Poeppelbuss, B. Niehaves, A. Simons, and J. Becker, “Maturity Models in Information Systems Research: Literature Search and Analysis,” Communications of the Association for Information Systems, vol. 29, no. 1, 2011, doi:10.17705/1cais.02927; [66] L. G. Pee and A. Kankanhalli, “A model of organisational knowledge management maturity based on people, process, and technology,” Journal of Information and Knowledge Management, vol. 8, no. 2, pp. 79–99, 2009, doi:10.1142/S0219649209002270; [67] L. Montañez Carrillo and J. P. Lis Gutiérrez, “A propósito de los modelos de madurez de gestión del conocimiento,” Revista Facultad de Ciencias Económicas, vol. 25, no. 2, pp. 63–81, 2017, doi:10.18359/rfce.3069; [68] F. Y. Hernández, R. I. Laguado, and J. P. Rodriguez, “Maturity analysis in project management in Colombian universities,” in Journal of Physics: Conference Series, 2018, vol. 1126, no. 1. doi:10.1088/1742-6596/1126/1/012055; [69] T. de Bruin, M. Rosemann, R. Freeze, and U. Kulkarni, “Understanding the main phases of developing a maturity assessment model,” 2005; [70] L. Lee‐Kelley, D. A. Blackman, and J. P. Hurst, “An exploration of the relationship between learning organisations and the retention of knowledge workers,” The Learning Organization, vol. 14, no. 3, pp. 204–221, Apr. 2007, doi:10.1108/09696470710739390.; [71] P. Jonsson and C. Wohlin, “An evaluation of k-nearest neighbour imputation using likert data,” in 10th International Symposium on Software Metrics, 2004. Proceedings., pp. 108–118. doi:10.1109/METRIC.2004.1357895; [72] J. Martínez Lozano, “Modelo de madurez en el dominio de los proyectos aplicado a organizaciones de gestión de proyectos en Medellín,” Universidad EAFIT, 2015.; [73] E. I. Pérez-Mergarejo, I. I. Pérez-Vergara, and Y. Rodríguez-Ruíz III, “Modelos de madurez y su idoneidad para aplicar en pequeñas y medianas empresas Maturity models and the suitability of its application in small and medium enterprises,” Ingeniería Industrial, vol. XXXV, no. 2, pp. 1815–5936, 2014, doi:10.1016/j.jag.2015.12.005.; [74] S. Marshall, “Change, technology and higher education: Are universities capable of organisational change?,” Australasian Journal of Educational Technology, vol. 26, no. 8, pp. 179–192, 2010, doi:10.14742/ajet.1018.; [75] C. L. Carvajal and A. M. Moreno, “The Maturity of Usability Maturity Models,” no. February, 2018, doi:10.1007/978-3-319-67383-7.; [76] T. C. Lacerda and C. G. von Wangenheim, “Systematic literature review of usability capability/maturity models,” Computer Standards and Interfaces, vol. 55, pp. 1339–1351, 2018, doi:10.1016/j.csi.2017.06.001; [77] J. Becker, B. Niehaves, J. Pöppelbuß, and A. Simons, “Maturity models in IS research,” 18th European Conference on Information Systems, ECIS 2010, 2010; [78] T. De Bruin, R. Freeze, U. Kaulkarni, and M. Rosemann, “Understanding the main phases of developing a maturity assessment model,” Australasian Chapter of the Association for Information Systems, pp. 8– 19, 2005, doi:10.1108/14637151211225225; [79] J. Becker, R. Knackstedt, and J. Pöppelbuß, “Developing maturity models for it management - A procedure model and its application [Entwicklung von reifegradmodellen für das it-management - VorgehensModell und praktische anwendung],” Business and Information Systems Engineering, vol. 51, no. 3, pp. 249–260, 2009, doi:10.1007/s11576-009-0167-9.; [80] J. Vuorio, J. Okkonen, and J. Viteli, “Enhancing user value of educational technology by three layer assessment,” in Proceedings of the 21st International Academic Mindtrek Conference, Sep. 2017, pp. 220–226. doi:10.1145/3131085.3131105.; [81] P. Martins and J. de S. D. Duarte, “Towards a Maturity Model for Higher Education Institutions,” Journal of Spatial and Organisational Dynamics, vol. 1, no. 1, 2013; [82] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “A gap analysis of Internet-of-Things platforms,” Computer Communications, vol. 89–90, 2016, doi:10.1016/j.comcom.2016.03.015; [83] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125–1142, 2017, doi:10.1109/JIOT.2017.2683200.; [84] M. A. Marotta, C. B. Both, J. Rochol, L. Z. Granville, and L. M. R. Tarouco, “Evaluating management architectures for Internet of Things devices,” IFIP Wireless Days, vol. 2015-Janua, no. January, 2015, doi:10.1109/WD.2014.7020811.; [85] T. Ara, P. Gajkumar Shah, and M. Prabhakar, “Internet of Things Architecture and Applications: A Survey,” Indian Journal of Science and Technology; Volume 9, Issue 45, December 2016, 2016.; [86] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: The internet of things architecture, possible applications and key challenges,” in Proceedings - 10th International Conference on Frontiers of Information Technology, FIT 2012, 2012, pp. 257–260. doi:10.1109/FIT.2012.53.; [87] J. I. Rodríguez Molano, C. E. Montenegro marín, J. M. Cueva Lovelle, J. Molano, C. Marin, and J. Cueva, “Introducción al Internet de las Cosas,” Redes de Ingeniería, vol. 6, no. 7, pp. 53–59, 2015, doi:10.14483/udistrital.jour.redes.2016.1.a04.; [88] T. Cao, X. Chen, R. Doss, J. Zhai, L. J. Wise, and Q. Zhao, “RFID ownership transfer protocol based on cloud,” Computer Networks, vol. 105, pp. 47–59, 2016, doi:10.1016/j.comnet.2016.05.017; [89] F. Maciá-Pérez, J. Berná-Martínez, J. Sánchez-Bernabéu, and I. Lorenzo, Smart university: hacia una universidad más abierta. Marcombo, 2016.; [90] S. Downes and C. E.-A. Campbell, “Smart University Utilising the Concept of the Internet of Things (IOT),” in 2018 UKSim-AMSS 20th International Conference on Computer Modelling and Simulation (UKSim), 2018, pp. 145–150. doi:10.1109/uksim.2018.00037.; [91] M. Zapata-ros, “La universidad inteligente La transición de los LMS a los Sistemas Inteligentes de Aprendizaje en Educación Superior The smart university,” vol. 57, no. 10, pp. 1–43, 2018.; [92] Y. S. Mitrofanova, A. A. Sherstobitova, and O. A. Filippova, Modeling the assessment of definition of a smart university infrastructure development level, vol. 144. Springer Singapore, 2019. doi:10.1007/978-981-13-8260-4_50; [93] S. Park and D. Ko, “Design of the Convergence Security Platform for Smart Universities,” vol. 3, no. 2. pp. 3–7, 2015.; [94] X. Cheng and R. Xue, “Construction of Smart Campus System Based on Cloud Computing,” Proceedings of the 2016 6th International Conference on Applied Science, Engineering and Technology (ICASET), vol. 77, no. Icaset, pp. 187–191, 2016, doi:10.2991/icaset-16.2016.37.; [95] A. Ben Rjab and S. Mellouli, “Smart cities in the era of artificial intelligence and internet of things,” no. 1, pp. 1–10, 2018, doi:10.1145/3209281.3209380; [96] S. Alqassemi, Y. K. Ever, and A. V. Rajan, “Maturity Level of Cloud Computing at HCT,” ITT 2017 - Information Technology Trends: Exploring Current Trends in Information Technology, Conference Proceedings, vol. 2018-Janua, no. Itt, pp. 5–8, 2018, doi:10.1109/CTIT.2017.8259558.; [97] C. N. Hung, M. D. Hwang, and Y. C. Liu, “Building a Maturity Model of Information Security Governance for Technological Colleges and Universities in Taiwan,” Applied Mechanics and Materials, vol. 284–287, pp. 3657–3661, 2013, doi:10.4028/www.scientific.net/amm.284-287.3657; [98] B. Sánchez-Torres, J. A. Rodríguez-Rodríguez, D. Rico-Bautista, and C. D. Guerrero, “Smart Campus: Trends in cybersecurity and future development,” Revista Facultad de Ingeniería, vol. 27, no. 47, pp. 93–101, Jan. 2018, doi:10.19053/01211129.v27.n47.2018.7807; [99] D. Rico-Bautista, Y. Medina-Cárdenas, and C. D. Guerrero, “Smart University: A Review from the Educational and Technological View of Internet of Things,” in International Conference on Information Technology and Systems, ICITS 2019, vol. 918, M. Paredes, C. Ferras, and A. Rocha, Eds. Systems and Informatics Department, Universidad Francisco de Paula Santander Ocaña, Algodonal Campus Vía Acolsure, Ocaña, 546551, Colombia: Springer Verlag, 2019, pp. 427–440. doi:10.1007/978-3-030-11890-7_42.; [100] D. Rico-Bautista, G. P. Maestre-Góngora, and C. D. Guerrero, “Smart university: Characterization of the current situation of intelligent technologies, based on two case studies [Caracterización de la situación actual de las tecnologías inteligentes para una universidad inteligente en Colombia/latinoamérica],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E27, pp. 484–501, 2020; [101] M. Ali and A. Majeed, “How Internet-of-Things ( IoT ) Making the University Campuses Smart ?,” pp. 646–648, 2018, doi:10.1109/CCWC.2018.8301774; [102] S. Hipwell, “Developing smart campuses #x2014; A working model,” 2014 International Conference on Intelligent Green Building and Smart Grid (IGBSG), pp. 1–6, 2014, doi:10.1109/IGBSG.2014.6835169.; [103] I. Staskeviciute and B. Neverauskas, “The Intelligent University’s Conceptual Model,” Inzinerine Ekonomika-Engineering Economics, no. 4, pp. 53–58, 2008; [104] J. Green, “The Internet of Things Reference Model,” Internet of Things World Forum, pp. 1–12, 2014; [105] S. Li, L. Da Xu, and S. Zhao, “The internet of things: a survey,” Information Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015, doi:10.1007/s10796-014-9492-7; [106] D. Airehrour, J. Gutierrez, and S. K. Ray, “Secure routing for internet of things: A survey,” Journal of Network and Computer Applications, vol. 66, 2016, doi:10.1016/j.jnca.2016.03.006; [107] Dewar. Rico-Bautista, Y. Medina-Cárdenas, and L. M. Santos Jaimes, “Ipsec de Ipv6 en la universidad de Pamplona,” Scientia Et Technica, vol. 2, no. 39, pp. 320–325, 2008, doi:10.22517/23447214.3239; [108] A. J. Jara, P. Moreno-Sanchez, A. F. Skarmeta, S. Varakliotis, and P. Kirstein, “IPv6 addressing proxy: Mapping native addressing from legacy technologies and devices to the internet of things (IPv6),” Sensors (Switzerland), vol. 13, no. 5, pp. 6687–6712, 2013, doi:10.3390/s130506687; [109] L. M. Santos and D. Rico-Bautista, “IPv6 en la Universidad de Pamplona: Estado del arte,” Scientia Et Technica, vol. XIII, pp. 415–420, 2007.; [110] T. Le Vinh, S. Bouzefrane, J. M. Farinone, A. Attar, and B. P. Kennedy, “Middleware to integrate mobile devices, sensors and cloud computing,” Procedia Computer Science, vol. 52, no. 1, pp. 234– 243, 2015, doi:10.1016/j.procs.2015.05.061.; [111] A. Kotsev, F. Pantisano, S. Schade, and S. Jirka, “Architecture of a service-enabled sensing platform for the environment,” Sensors (Switzerland), vol. 15, no. 2, pp. 4470–4495, 2015, doi:10.3390/s150204470; [112] M. Taneja and A. Davy, “Resource Aware Placement of Data Analytics Platform in Fog Computing,” Procedia Computer Science, vol. 97, pp. 153–156, 2016, doi:10.1016/j.procs.2016.08.295; [113] M. M. Rathore, A. Ahmad, and A. Paul, “Big Data and Internet of Things,” in Proceedings of the 2015 International Conference on Big Data Applications and Services - BigDAS ’15, 2015, vol. 20-23-Octo, pp. 58–65. doi:10.1145/2837060.2837067.; [114] M. Quwaider, M. Al-Alyyoub, and Y. Jararweh, “Cloud Support Data Management Infrastructure for Upcoming Smart Cities,” Procedia Computer Science, vol. 83, pp. 1232–1237, 2016, doi:10.1016/j.procs.2016.04.257.; [115] A. S. Yeole and D. R. Kalbande, “Use of Internet of Things (IoT) in Healthcare,” in Proceedings of the ACM Symposium on Women in Research 2016 - WIR ’16, 2016, vol. 21-22-Marc, pp. 71–76. doi:10.1145/2909067.2909079.; [116] S. V. Zanjal and G. R. Talmale, “Medicine Reminder and Monitoring System for Secure Health Using IOT,” in Physics Procedia, 2016, vol. 78, pp. 471–476. doi:10.1016/j.procs.2016.02.090; [117] D. Rico-Bautista, J. Rueda-Rueda, and S. Alvernia Acevedo, “Las TIC como agente social Una apuesta de la universidad Francisco de Paula Santander Ocaña,” in Simbiosis del aprendizaje con las tecnologías: experiencias innovadoras en el ámbito hispano, 2016, pp. 329–342.; [118] H. Aldowah, S. Ul Rehman, S. Ghazal, and I. Naufal Umar, “Internet of Things in Higher Education: A Study on Future Learning,” Journal of Physics: Conference Series, vol. 892, p. 012017, Sep. 2017, doi:10.1088/1742-6596/892/1/012017; [119] M. Coccoli, P. Maresca, and L. Stanganelli, “The role of big data and cognitive computing in the learning process,” Journal of Visual Languages and Computing, vol. 38, pp. 97–103, 2017, doi:10.1016/j.jvlc.2016.03.002; [120] J. Lobo and Dewar. Rico-Bautista, “Implementación de la seguridad del protocolo de internet versión 6,” Gerencia tecnológica informática, vol. 11, no. 29, pp. 35–46, 2012.; [121] B. Sánchez-Torres, J. A. Rodríguez-Rodríguez, D. W. Rico-Bautista, and C. D. Guerrero, “Smart Campus: Trends in cybersecurity and future development,” Revista Facultad de Ingeniería, vol. 27, no. 47, pp. 93–101, Jan. 2018, doi:10.19053/01211129.v27.n47.2018.7807; [122] Katz. Matías David, “Redes y seguridad,” Alfaomega grupo editor, no. Mexico, p. 87, 2013; [123] B. Aziz, “A formal model and analysis of an IoT protocol,” Ad Hoc Networks, vol. 36, pp. 49–57, Jan. 2016, doi:10.1016/J.ADHOC.2015.05.013; [124] N. Xiong, R. W. Liu, M. Liang, D. Wu, Z. Liu, and H. Wu, “Effective alternating direction optimization methods for sparsity-constrained blind image deblurring,” Sensors (Switzerland), vol. 17, no. 1, 2017, doi:10.3390/s17010174; [125] W. Mujun, “Smart Campus-Based Study on Optimization Model for the Computer Information Processing Technology in Universities and Colleges,” Revista de la Facultad de Ingeniería, vol. 32, no. 15, pp. 524–529, 2017; [126] M. Stočes, J. Vaněk, J. Masner, and J. Pavlík, “Internet of Things (IoT) in Agriculture - Selected Aspects,” Agris on-line Papers in Economics and Informatics, vol. VIII, no. 1, pp. 83–88, 2016, doi:10.7160/aol.2016.080108.; [127] K. Taylor et al., “Farming the Web of Things,” IEEE Intelligent Systems, vol. 28, no. 6, pp. 12–19, 2013, doi:10.1109/MIS.2013.102; [128] T. Arsan, “Smart Systems: From design to implementation of embedded Smart Systems,” in 2016 HONET-ICT, 2016, pp. 59–64. doi:10.1109/HONET.2016.7753420; [129] G. F. Hurlburt, J. Voas, and K. W. Miller, “The Internet of Things: A Reality Check,” IT Professional, vol. 14, no. June, pp. 56–59, 2012, doi:10.1109/MITP.2012.60.; [130] M. Weyrich and C. Ebert, “Reference architectures for the internet of things,” IEEE Software, vol. 33, no. 1, pp. 112–116, 2016, doi:10.1109/MS.2016.20.; [131] K. Dar, A. Taherkordi, H. Baraki, F. Eliassen, and K. Geihs, “A resource oriented integration architecture for the Internet of Things: A business process perspective,” Pervasive and Mobile Computing, vol. 20. pp. 145–159, 2015. doi:10.1016/j.pmcj.2014.11.0; [132] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Communications Surveys and Tutorials, vol. 17, no. 4, 2015, doi:10.1109/COMST.2015.2444095.; [133] D. Gagliardi, L. Schina, M. L. Sarcinella, G. Mangialardi, F. Niglia, and A. Corallo, “Information and communication technologies and public participation: interactive maps and value added for citizens,” Government Information Quarterly, vol. 34, no. 1, pp. 153–166, 2017, doi:10.1016/j.giq.2016.09.002.; [134] L. Tan, Lu Tan, and Neng Wang, “Future internet: The Internet of Things,” 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE), pp. V5-376-V5-380, 2010, doi:10.1109/ICACTE.2010.5579543; [135] European Technology Platform on Smart Systems Integration, Internet of Things in 2020. 2008. doi:10.1007/978-3-319-49736-5_2; [136] I. F. Akyildiz, S. Nie, S. C. Lin, and M. Chandrasekaran, “5G roadmap: 10 key enabling technologies,” Computer Networks, vol. 106, pp. 17–48, 2016, doi:10.1016/j.comnet.2016.06.010; [137] L. Atzori, A. Iera, and G. Morabito, “Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm,” Ad Hoc Networks, vol. 56, pp. 122–140, 2017, doi:10.1016/j.adhoc.2016.12.004; [138] M. Coccoli, A. Guercio, P. Maresca, and L. Stanganelli, “Smarter universities: A vision for the fast changing digital era,” Journal of Visual Languages & Computing, vol. 25, no. 6, pp. 1003–1011, Dec. 2014, doi:10.1016/j.jvlc.2014.09.007; [139] C. Heinemann and V. L. Uskov, Smart Universities, vol. 70. 2018. doi:10.1007/978-3-319-59454-5.; [140] M. Bertolli, G. Roark, S. Urrutia, and F. Chiodi, “Revisión de modelos de madurez en la medición del desempeño,” INGE CUC, vol. 13, no. 1, pp. 70–83, Jan. 2017, doi:10.17981/ingecuc.13.1.2017.07; [141] A. Acevedo, “Modelo de madurez para la transformación digital,” 2018.; [142] F. W. Van Dijk, F. Willem, J. Van Hillegersberg, and M. Daneva, “Van Dijk - Cloud maturity models,” 2017.; [143] D. Duarte and P. V. Martins, “A maturity model for higher education institutions,” CEUR Workshop Proceedings, vol. 731, pp. 25–45, 2011.; [144] F. W. Van Dijk, F. Willem, J. Van Hillegersberg, and M. Daneva, “Van Dijk - Cloud maturity models,” 2017.; [145] B. Henrik, “EVALUATION OF BIG DATA MATURITY MODELS - A BENCH- MARKING STUDY TO SUPPORT BIG DATA MATURITY AS- SESSMENT IN ORGANIZATIONS,” 2015; [146] M. Al-Ruithe and E. Benkhelifa, “Cloud data governance maturity model,” in Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing, Mar. 2017, pp. 1– 10. doi:10.1145/3018896.3036394; [147] I. Mitchell and S. Isherwood, Cloud adoption The definitive guide to a business technology revolution, Fujitsu Se. 2014. doi:10.1145/2554850.2555067; [148] B. White, H. Longenecker, P. Leidig, J. Reynolds, and D. Yarbrough, “Applicability of CMMI to the IS curriculum: a panel discussion,” Proceedings of the Information Systems Education Conference 2003, vol. 20, pp. 2–6, 2003; [149] C. Neuhauser, “A maturity model: Does it provide a path for online course design?,” Journal of Interactive Online Learning, vol. 3, no. 1, pp. 1–17, 2004; [150] I. Keshta, “A model for defining project lifecycle phases: Implementation of CMMI level 2 specific practice,” Journal of King Saud University - Computer and Information Sciences, Nov. 2019, doi:10.1016/j.jksuci.2019.10.013.; [151] E. Thompson et al., “Towards a learning process maturity model,” PhD Workshop 2004, vol. 9/2004, no. definition 3, pp. 8–16, 2004.; [152] S. Mattoon, B. Hensle, and J. Baty, “Cloud Computing Maturity Model Mattoon, S., Hensle, B., & Baty, J. (2011). Cloud Computing Maturity Model Guiding Success with Cloud Capabilities. Computing, (December), 13.Guiding Success with Cloud Capabilities,” Computing, no. December, p. 13, 2011.; [153] P. J. Schmidt, “Proposing a Cloud Computing Capability Maturity Model Proposing a Cloud Computing Capability Maturity Model,” 2015; [154] B. Henrik, “EVALUATION OF BIG DATA MATURITY MODELS - A BENCH- MARKING STUDY TO SUPPORT BIG DATA MATURITY AS- SESSMENT IN ORGANIZATIONS,” 2; [155] C. J. Galeano-Barrera, D. Bellón-Monsalve, S. A. Zabala-Vargas, E. Romero-Riaño, and V. uro-N. Duro-Novoa, “Identificación de los pilares que direccionan a una institución universitaria hacia un smart-campus,” Revista De Investigación, Desarrollo E Innovación, vol. 9, no. 1, pp. 127–145, 2018, doi:10.19053/20278306.v9.n1.2018.8511; [156] M. Coccoli, P. Maresca, L. Stanganelli, and A. Guercio, “An experience of collaboration using a PaaS for the smarter university model,” Journal of Visual Languages and Computing, vol. 31, pp. 275–282, 2015, doi:10.1016/j.jvlc.2015.10.014; [157] L. L. Ching, N. H. A. H. Malim, M. H. Husin, and M. M. Singh, “ICC - Smart university: reservation system with contactless technology,” in Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing - ICC ’17, 2017, p. 9. doi:10.1145/3018896.3018903; [158] W. Filho, J. B. Andrade Guerra, M. Mifsud, and R. Pretorius, Universities as Living Labs for sustainable development: A global perspective, vol. 26. 2017.; [159] O. Akhrif, Y. bouzekri el idrissi, and N. Hmina, “Enabling Smart Collaboration with Smart University Services,” 2019. doi:10.1145/3331453.3361311.; [160] O. Akhrif, C. Benfares, Y. El Bouzekri El Idrissi, and N. Hmina, “Collaborative learning services in the smart university environment,” ACM International Conference Proceeding Series, no. 3, 2019, doi:10.1145/3368756.3369020; [161] A. El Sayed, Š. Suad, Ć. Fuad, and A. Novali, New Technologies, Development and Application II, vol. 76. Cham: Springer International Publishing, 2020. doi:10.1007/978-3-030-18072-0.; [162] P. Pornphol and T. Tongkeo, “Transformation from a traditional university into a smart university,” in Proceedings of the 6th International Conference on Information and Education Technology, Jan. 2018, pp. 144–148. doi:10.1145/3178158.3178167; [163] O. J. Adeyemi, S. I. Popoola, A. A. Atayero, D. G. Afolayan, M. Ariyo, and E. Adetiba, “Exploration of daily Internet data traffic generated in a smart university campus,” Data in Brief, vol. 20, pp. 30–52, Oct. 2018, doi:10.1016/j.dib.2018.07.039; [164] M. V. López Cabrera, E. Hernandez-Rangel, G. P. Mejía Mejía, and J. L. Cerano Fuentes, “Factors that enable the adoption of educational technology in medical schools,” Educacion Medica, vol. 20, no. xx, pp. 3–9, 2019, doi:10.1016/j.edumed.2017.07.006; [165] J. Lin, H. Pu, Y. Li, and J. Lian, “Intelligent Recommendation System for Course Selection in Smart Education,” Procedia Computer Science, vol. 129, pp. 449–453, 2018, doi:10.1016/j.procs.2018.03.023.; [166] R. Bajaj and V. Sharma, “Smart Education with artificial intelligence based determination of learning styles,” Procedia Computer Science, vol. 132, pp. 834–842, 2018, doi:10.1016/j.procs.2018.05.095; [167] S. El Janati, A. Maach, and D. El Ghanami, “SMART education framework for adaptation content presentation,” Procedia Computer Science, vol. 127, pp. 436–443, 2018, doi:10.1016/j.procs.2018.01.141.; [168] P. Fraser, J. Moultrie, and M. Gregory, “The_use_of_maturity_models_grids_as_a_to.” Cambridge, Reino Unido, 2003. doi:10.1109 / IEMC.2002.1038431.; [169] C. M. Christensen, “The Innovator’s Dilemma,” Business, 1997, doi:10.1515/9783110215519.82; [170] C. M. Christensen, “The ongoing process of building a theory of disruption,” Journal of Product Innovation Management. 2006. doi:10.1111/j.1540-5885.2005.00180.x.; [171] M. Kuniavsky, “User Experience and HCI Section 1 : the boundaries of user experience,” HCI Handbook, pp. 1–37; [172] S. S. Rautaray and A. Agrawal, “Vision based hand gesture recognition for human computer interaction: a survey,” Artificial Intelligence Review, vol. 43, no. 1, pp. 1–54, 2012, doi:10.1007/s10462-012-93569.; [173] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and P. Tran-gia, “A Survey on Quality of Experience of HTTP Adaptive Streaming,” Ieee Communication Surveys & Tutorials, vol. 17, no. 1, pp. 469–492, 2015, doi:10.1109/COMST.2014.236094; [174] M. Turk, “Multimodal interaction: A review,” Pattern Recognition Letters, vol. 36, no. 1, pp. 189–195, 2014, doi:10.1016/j.patrec.2013.07.003; [175] H.-S. Yeo, B.-G. Lee, and H. Lim, “Hand tracking and gesture recognition system for human-computer interaction using low-cost hardware,” Multimedia Tools and Applications, vol. 74, no. 8, pp. 2687– 2715, Sep. 2015, doi:10.1007/s11042-013-1501-1; [176] K. Seaborn and D. I. Fels, “Gamification in theory and action: A survey,” International Journal of Human Computer Studies, vol. 74, pp. 14–31, 2015, doi:10.1016/j.ijhcs.2014.09.006.; [177] Y. Mengüç et al., “Wearable soft sensing suit for human gait measurement,” International Journal of Robotics Research, vol. 33, no. 14, pp. 1748–1764, 2014, doi:10.1177/0278364914543793; [178] D. González-Ortega, F. J. Díaz-Pernas, M. Martínez-Zarzuela, and M. Antón-Rodríguez, “A Kinectbased system for cognitive rehabilitation exercises monitoring,” Computer Methods and Programs in Biomedicine, vol. 113, no. 2, pp. 620–631, 2014, doi:10.1016/j.cmpb.2013.10.014; [179] S. Herath, M. Harandi, and F. Porikli, “Going deeper into action recognition: A survey,” Image and Vision Computing, vol. 60, pp. 4–21, Sep. 2017, doi:10.1016/j.imavis.2017.01.010; [180] C. Lallemand, G. Gronier, and V. Koenig, “User experience: A concept without consensus? Exploring practitioners’ perspectives through an international survey,” Computers in Human Behavior, vol. 43, pp. 35–48, Sep. 2015, doi:10.1016/j.chb.2014.10.048.; [181] P. K. Pisharady and M. Saerbeck, “Recent methods and databases in vision-based hand gesture recognition: A review,” Computer Vision and Image Understanding, vol. 141, pp. 152–165, Sep. 2015, doi:10.1016/j.cviu.2015.08.004.; [182] H. Cheng, L. Yang, and Z. Liu, “A Survey on 3D Hand Gesture Recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. PP, no. 99, p. 1, 2015, doi:10.1109/TCSVT.2015.2469551.; [183] P. Tsarouchi, S. Makris, and G. Chryssolouris, “Human – robot interaction review and challenges on task planning and programming,” International Journal of Computer Integrated Manufacturing, vol. 29, no. 8, pp. 916–931, Sep. 2016, doi:10.1080/0951192X.2015.1130251.; [184] J. Lorés and T. Granollers, “Ingeniería de la Usabilidad y de la Accesibilidad aplicada al diseño y desarrollo de sitios web,” no. May, pp. 3–7, 2004.; [185] J. Mariano and G. Romano, “Introducción a la IPO,” Metro, 2008; [186] T. Granollers, “Usability Evaluation with Heuristics . New Proposal from Integrating Two Trusted Sources 2 Combining Common Heuristic Sets,” pp. 1–16, 2018.; [187] L. Muñoz López, P. Antón Martínez, and S. Fernández Ciez, “Estudio y Guía metodológica sobre Ciudades Inteligentes,” 2015; [188] E. Ontiveros, D. Vizcaíno, and V. López Sabaer, Las ciudades del futuro : inteligentes , digitales y sostenibles futuro : inteligentes , digitales y sostenibles. 2016.; [189] E. Del and D. Une, “Norma Española Accesibilidad Universal en las Ciudades Inteligentes,” 2017.; [190] O. Iberoamericano, “Manual Iberoamericano de Indicadores de Educación Superior: Manual de Lima,” p. 88 p., 2016; [191] Ministerio de Modernización Innovación y Tecnología, “La Importancia de un Modelo de Planificación Estratégica para el Desarrollo de Ciudades Inteligentes,” p. 32, 2017; [192] P. Fernández, “Análisis de los factores de influencia en la adopción de herramientas colaborativas basadas en software social. Aplicación a entornos empresariales,” Universidad Politécnica de Madrid, 2015; [193] D. W. Rico-Bautista, “Conceptual framework for smart university,” Journal of Physics: Conference Series, vol. 1409, p. 012009, Nov. 2019, doi:10.1088/1742-6596/1409/1/012009.; [194] J. A. Parra Valencia, C. D. Guerrero, and D. Rico-Bautista, “IOT: una aproximación desde ciudad inteligente a universidad inteligente,” Revista Ingenio, vol. 13, no. 1, pp. 9–20, Jun. 2017, doi:10.22463/2011642X.2128.; [195] F. H. Cerdeira Ferreira and R. Mendes de Araujo, “Campus Inteligentes: Conceitos, aplicações, tecnologias e desafios.,” Relatórios Técnicos do DIA/UNIRIO, vol. 11, no. 1, pp. 4–19, 2018.; [196] D. Rico-Bautista, C. D. Guerrero, Y. Medina-Cárdenas, and A. García-Barreto, “Analysis of the potential value of technology: Case of universidad francisco de paula santander O; [197] D. Rico-Bautista, G. P. Maestre-Góngora, and C. D. Guerrero, “Caracterización de la situación actual de las tecnologías inteligentes para una Universidad inteligente en Colombia/Latinoamérica,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E27, pp. 484–501, 2020.; [198] D. Rico-Bautista et al., “Smart University: Strategic map since the adoption of technology,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E28, pp. 711–724, 2020; [199] D. Rico-Bautista et al., “Smart University: Key Factors for a Cloud Computing Adoption Model,” Lecture Notes in Networks and Systems, vol. 334, pp. 85–93, 2022, doi:10.1007/978-981-16-6369-7_8; [200] M. V. López Cabrera, E. Hernandez-Rangel, G. P. Mejía Mejía, and J. L. Cerano Fuentes, “Factores que facilitan la adopción de tecnología educativa en escuelas de medicina,” Educación Médica, vol. 20, pp. 3–9, Mar. 2019, doi:10.1016/j.edumed.2017.07.006; [202] A. V. Martín García, Á. García del Dujo, and J. M. Muñoz Rodríguez, “Factores determinantes de adopción de blended learning en educación superior. Adaptación del modelo UTAUT*,” Educación XX1, vol. 17, no. 2, May 2014, doi:10.5944/educxx1.17.2.11489; [203] M. Luzardo Briceño, B. E. Sandia Saldivia, A. S. Aguilar Jiménez, M. Macias Martínez, and J. Herrera Díaz, “Factores que influyen en la adopción de las Tecnologías de Información y Comunicación por parte de las universidades. Dimensión Enseñanza-Aprendizaje,” Educere, vol. 21, no. 68, pp. 143–153, 2017; [204] M. Frasquet Deltoro, A. Mollá Descals, and M. Eugenia Ruiz Molina, “Factores determinantes y consecuencias de la adopción del comercio electrónico B2C:una comparativa internacional,” Estudios Gerenciales, vol. 28, no. 123, pp. 101–120, Apr. 2012, doi:10.1016/S0123-5923(12)70207-3.; [205] D. Rico-Bautista et al., “Key Technology Adoption Indicators for Smart Universities: A Preliminary Proposal,” Lecture Notes in Networks and Systems, vol. 333, pp. 651–663, 2022, doi:10.1007/978-98116-6309-3_61.; [206] P. Hernández, R., Fernández, C. y Baptista, Libro Metodología de la Investigación 6ta edición SAMPIERI (PDF) %7C Metodologiaecs. 2014; [207] S. M. Takey and M. M. Carvalho, “Fuzzy front end of systemic innovations: A conceptual framework based on a systematic literature review,” Technological Forecasting and Social Change, vol. 111, pp. 97–109, Oct. 2016, doi:10.1016/j.techfore.2016.06.011; [208] P. Martins and J. de S. D. Duarte, “A Maturity Model for Higher Education Institutions,” Journal of Spatial and Organisational Dynamics , vol. 1, no. 1, 2013.; [209] Z. Liu, Y. Yin, W. Liu, and M. Dunford, “Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis,” Scientometrics, 2015, doi:10.1007/s11192-0141517-y.; [210] J. A. Wise, “The ecological approach to text visualization,” Journal of the American Society for Information Science, 1999, doi:10.1002/(SICI)1097-4571(1999)50:133.0.CO;2-4.; [211] J. E. Meissner, “VantagePoint,” Nursing, 1981, doi:10.1097/00152193-198101000-00010.; [212] L. Leydesdorff and T. Schank, “Dynamic animations of journal maps: Indicators of structural changes and interdisciplinary developments,” Journal of the American Society for Information Science and Technology, 2008, doi:10.1002/asi.20891; [213] “Science of Science (Sci2) Tool,” in Encyclopedia of Social Network Analysis and Mining, 2018. doi:10.1007/978-1-4939-7131-2_101025.; [214] N. J. Van Eck and L. Waltman, “VOSviewer: A computer program for bibliometric mapping,” 2009; [215] “Network Workbench Tool,” in Encyclopedia of Social Network Analysis and Mining, 2014. doi:10.1007/978-1-4614-6170-8_110035; [216] B. Vargas-Quesada and F. de Moya Aragón, Visualizing the structure of science. New York, NY, 2007.; [217] L. A. R. Hoeffner and R. P. Smiraglia, “Visualizing domain coherence: Social informatics as a case study,” 2014. doi:10.7152/acro.v23i1.14261.; [218] K. Fujita, Y. Kajikawa, J. Mori, and I. Sakata, “Detecting research fronts using different types of weighted citation networks,” Journal of Engineering and Technology Management - JET-M, vol. 32, pp. 129–146, 2014, doi:10.1016/j.jengtecman.2013.07.002.; [219] A. Angelakis and K. Galanakis, “A science-based sector in the making: the formation of the biotechnology sector in two regions,” Regional Studies, 2017, doi:10.1080/00343404.2016.1215601.; [220] A. Gaur, B. Scotney, G. Parr, and S. McClean, “Smart city architecture and its applications based on IoT,” in Procedia Computer Science, 2015, vol. 52, no. 1. doi:10.1016/j.procs.2015.05.122.; [221] R. Díaz-Díaz, L. Muñoz, and D. Pérez-González, “Business model analysis of public services operating in the smart city ecosystem: The case of SmartSantander,” Future Generation Computer Systems, 2017, doi:10.1016/j.future.2017.01.032.; [222] A. Sampri, A. Mavragani, and K. P. Tsagarakis, “Evaluating Google Trends as a Tool for Integrating the ‘Smart Health’ Concept in the Smart Cities’ Governance in USA,” Procedia Engineering, vol. 162, pp. 585–592, 2016, doi:10.1016/j.proeng.2016.11.104.; [223] U. Rosati and S. Conti, “What is a Smart City Project? An Urban Model or A Corporate Business Plan?,” Procedia - Social and Behavioral Sciences, vol. 223, pp. 968–973, 2016, doi:10.1016/j.sbspro.2016.05.332.; [224] C. M. et. Al, “Mapping Smart Cities in the EU,” European Parliament, pp. 23–49, 2015.; [225] G. P. Maestre Góngora, “Revisión de literatura sobre ciudades inteligentes: una perspectiva centrada en las TIC,” INGENIARE, no. 19, p. 137, Jul. 2015, doi:10.18041/1909-2458/ingeniare.19.531; [226] X. Nie, “Constructing Smart Campus Based on the Cloud Computing Platform and the Internet of Things,” 2013. doi:10.2991/iccsee.2013.395.; [227] M. Cata, “Smart university, a new concept in the Internet of Things,” in 2015 14th RoEduNet International Conference - Networking in Education and Research (RoEduNet NER), Sep. 2015, pp. 195–197. doi:10.1109/RoEduNet.2015.7311993; [228] V. A. F. Almeida, D. Doneda, and M. Monteiro, “Governance Challenges for the Internet of Things,” IEEE Internet Computing, vol. 19, no. 4, pp. 56–59, Jul. 2015, doi:10.1109/MIC.2015.86; [229] S. Thiel, J. Mitchell, and J. Williams, “Coordination or Collision? The Intersection of Diabetes Care, Cybersecurity, and Cloud-Based Computing,” Journal of Diabetes Science and Technology, vol. 11, no. 2, pp. 195–197, Mar. 2017, doi:10.1177/1932296816676189.; [230] E. Borgia, “The Internet of Things vision: Key features, applications and open issues,” Computer Communications, vol. 54, pp. 1–31, Dec. 2014, doi:10.1016/j.comcom.2014.09.008.; [231] A. Jara, P. Moreno-Sanchez, A. Skarmeta, S. Varakliotis, and P. Kirstein, “IPv6 Addressing Proxy: Mapping Native Addressing from Legacy Technologies and Devices to the Internet of Things (IPv6),” Sensors, vol. 13, no. 5, pp. 6687–6712, May 2013, doi:10.3390/s130506687.; [232] E. Chinkes, Las Tecnologías de la Información y la Comunicación Potenciando la Universidad del Siglo XXI: Claves para una política TIC universitaria, vol. 1. 2015. doi:10.1017/CBO9781107415324.004; [233] E. Chinkes, Potenciando la Universidad del Siglo XXI: Soluciones TIC para pensar la universidad del futuro. 2017; [234] RedCLARA, ACTAS TICAL 2016. 2016; [235] RedCLARA, ACTAS TICAL 2017. 2017; [236] RedCLARA, ACTAS TICAL 2018. 2018.; [237] RedCLARA, ACTAS TICAL 2019. 2019; [238] O. Akhri, Y. El Bouzekri El Idrissi, and N. Hmina, “Enabling smart collaboration with smart university services,” in ACM International Conference Proceeding Series, 2019. doi:10.1145/3331453.3361311.; [239] D. Rico-Bautista et al., “Smart university: Strategic map since the adoption of technology [Universidad inteligente: Mapa estratégico desde la adopción de tecnología],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E28, pp. 711–724, 2020; [240] M. de L. Sigg, J. L. V. Cisneros, S. V. Reyes, and J. A. R. Salcedo, “Explicación de la Adopción de Tecnologías de Información en Pequeñas Empresas Usando el Modelo del Usuario Perezoso: un Caso de Estudio,” Iberian Journal of Information Systems and Technologies, no. e1, pp. 91–104, Mar. 2014, doi:10.4304/risti.e1.91-104.; [241] L. O. S. A. Erasmus et al., “Adopción de las tecnologías infocomunicacionales (TI) en Docentes: actualizando enfoques.,” Revista Electrónica Teoría de la Educación. Educación y Cultura en La Sociedad de la Información., vol. 10, pp. 310–337, 2009; [242] P. Brous, M. Janssen, and P. Herder, “The dual effects of the Internet of Things (IoT): A systematic review of the benefits and risks of IoT adoption by organizations,” International Journal of Information Management, vol. 51, p. 101952, Apr. 2020, doi:10.1016/j.ijinfomgt.2019.05.008.; [243] J. Martín et al., “Review of IoT applications in agro-industrial and environmental fields,” vol. 142, no. 118, pp. 283–297, 2017, doi:10.1016/j.compag.2017.09.015.; [244] A. Abushakra and D. Nikbin, Knowledge Management in Organizations, vol. 1027. Cham: Springer International Publishing, 2019. doi:10.1007/978-3-030-21451-7; [245] D. Mourtzis, E. Vlachou, and N. Milas, “Industrial Big Data as a Result of IoT Adoption in Manufacturing,” Procedia CIRP, vol. 55, pp. 290–295, 2016, doi:10.1016/j.procir.2016.07.038.; [246] I. C. Ehie and M. A. Chilton, “Understanding the influence of IT/OT Convergence on the adoption of Internet of Things (IoT) in manufacturing organizations: An empirical investigation,” Computers in Industry, vol. 115, p. 103166, Feb. 2020, doi:10.1016/j.compind.2019.103166.; [247] L. Amodu, O. Odiboh, S. Usaini, D. Yartey, and T. Ekanem, “Data on security implications of the adoption of Internet of Things by public relations professionals,” Data in Brief, vol. 27, 2019, doi:10.1016/j.dib.2019.104663.; [248] H. Shaikh, M. S. Khan, Z. A. Mahar, M. Anwar, A. Raza, and A. Shah, “A Conceptual Framework for Determining Acceptance of Internet of Things (IoT) in Higher Education Institutions of Pakistan,” in 2019 International Conference on Information Science and Communication Technology (ICISCT), Mar. 2019, pp. 1–5. doi:10.1109/CISCT.2019.8777431.; [249] A. Abushakra and D. Nikbin, Knowledge Management in Organizations, vol. 1027. Cham: Springer International Publishing, 2019. doi:10.1007/978-3-030-21451-7.; [250] M. Mital, V. Chang, P. Choudhary, A. Papa, and A. K. Pani, “Adoption of Internet of Things in India: A test of competing models using a structured equation modeling approach,” Technological Forecasting and Social Change, vol. 136, pp. 339–346, 2018, doi:10.1016/j.techfore.2017.03.001.; [251] S. Lu and Y. P. Singh, “Scie enceDir rect ScienceDirect Analyz zing chal llenges t o Interne et of Thi ings ( IoT T ) adopt tion and ion : An Indian context c diffusi,” 2018, doi:10.1016/j.procs.2017.12.094; [252] Y. Kao, K. Nawata, and C. Huang, “An Exploration and Confirmation of the Factors Influencing Adoption of IoT-Based Wearable Fitness Trackers,” 2019.; [253] Y.-S. Kao, K. Nawata, and C.-Y. Huang, “An Exploration and Confirmation of the Factors Influencing Adoption of IoT-Based Wearable Fitness Trackers,” International Journal of Environmental Research and Public Health, vol. 16, no. 18, p. 3227, Sep. 2019, doi:10.3390/ijerph16183227.; [254] V. Venkatesh, J. Thong, and X. Xu, “Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead,” Journal of the Association for Information Systems, vol. 17, no. 5, pp. 328–376, May 2016, doi:10.17705/1jais.00428; [255] E. González Arza, “Validación de la Teoría Unificada de Aceptación y Uso de la Tecnología UTAUT en castellano en el ámbito de las consultas externas de la Red de Salud Mental de Bizkaia,” Universitat Oberta de Catalunya, 2013.; [256] T. Kr. Aune, H. Gjestland, J. Ø. Haagensen, B. Kittilsen, J. I. Skar, and H. Westengen, “Magnesium Alloys,” in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2003, pp. 1–19. doi:10.1002/14356007.a15_581; [257] P. Palos-Sanchez, A. Reyes-Menendez, and J. R. Saura, “Models of adoption of information technology and cloud computing in organizations,” Informacion Tecnologica, vol. 30, no. 3, pp. 3–12, 2019, doi:10.4067/S0718-07642019000300003; [258] P. Pinheiro, M. Aparicio, and C. Costa, “Adoption of cloud computing systems,” in Proceedings of the International Conference on Information Systems and Design of Communication - ISDOC ’14, 2014, pp. 127–131. doi:10.1145/2618168.2618188; [259] H. Vasudavan, K. Shanmugam, and H. A. Ahmada, “User Perceptions in Adopting Cloud Computing in Autonomous Vehicle,” in Proceedings of the 6th International Conference on Information Technology: IoT and Smart City - ICIT 2018, 2018, pp. 151–156. doi:10.1145/3301551.3301583; [260] F. Nikolopoulos and S. Likothanassis, “Using UTAUT2 for cloud computing technology acceptance modeling,” in Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing, Mar. 2017, no. March, pp. 1–6. doi:10.1145/3018896.3025153; [261] U. Nasir and M. Niazi, “Cloud computing adoption assessment model (CAAM),” in Proceedings of the 12th International Conference on Product Focused Software Development and Process Improvement - Profes ’11, 2011, vol. 44, no. 0, pp. 34–37. doi:10.1145/2181101.2181110.; [262] M. Al-Ruithe, E. Benkhelifa, and K. Hameed, “Current State of Cloud Computing Adoption – An Empirical Study in Major Public Sector Organizations of Saudi Arabia (KSA),” Procedia Computer Science, vol. 110, pp. 378–385, 2017, doi:10.1016/j.procs.2017.06.080; [263] P. Priyadarshinee, R. D. Raut, M. K. Jha, and B. B. Gardas, “Understanding and predicting the determinants of cloud computing adoption: A two staged hybrid SEM - Neural networks approach,” Computers in Human Behavior, vol. 76, pp. 341–362, Nov. 2017, doi:10.1016/j.chb.2017.07.027; [264] K. Njenga, L. Garg, A. K. Bhardwaj, V. Prakash, and S. Bawa, “The cloud computing adoption in higher learning institutions in Kenya: Hindering factors and recommendations for the way forward,” Telematics and Informatics, vol. 38, no. May, pp. 225–246, May 2019, doi:10.1016/j.tele.2018.10.007.; [265] I. Arpaci, “Antecedents and consequences of cloud computing adoption in education to achieve knowledge management,” Computers in Human Behavior, vol. 70, pp. 382–390, May 2017, doi:10.1016/j.chb.2017.01.024; [266] H. M. Sabi, F. E. Uzoka, K. Langmia, and F. N. Njeh, “Conceptualizing a model for adoption of cloud computing in education,” International Journal of Information Management, vol. 36, no. 2, pp. 183– 191, Apr. 2016, doi:10.1016/j.ijinfomgt.2015.11.010; [267] P. Palos-Sanchez, A. Reyes-Menendez, and J. R. Saura, “Modelos de Adopción de Tecnologías de la Información y Cloud Computing en las Organizaciones,” Información tecnológica, vol. 30, no. 3, pp. 3–12, Jun. 2019, doi:10.4067/S0718-07642019000300003; [268] M. Shorfuzzaman, M. S. Hossain, A. Nazir, G. Muhammad, and A. Alamri, “Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment,” Computers in Human Behavior, vol. 92, pp. 578–588, Mar. 2019, doi:10.1016/j.chb.2018.07.002; [269] F. P. S. Surbakti, W. Wang, M. Indulska, and S. Sadiq, “Factors influencing effective use of big data: A research framework,” Information & Management, vol. 57, no. 1, p. 103146, Jan. 2020, doi:10.1016/j.im.2019.02.001; [270] S. Das, “‘The Early Bird Catches the Worm - First Mover Advantage through IoT Adoption for Indian Public Sector Retail Oil Outlets,’” Journal of Global Information Technology Management, vol. 22, no. 4, pp. 280–308, Oct. 2019, doi:10.1080/1097198X.2019.1679588; [271] A. M. Al-Momani, M. A. Mahmoud, and M. S. Ahmad, “A Review of Factors Influencing Customer Acceptance of Internet of Things Services,” International Journal of Information Systems in the Service Sector, vol. 11, no. 1, pp. 54–67, Jan. 2019, doi:10.4018/IJISSS.2019010104; [272] D. Nikbin and A. Abushakra, “Internet of Things Adoption: Empirical Evidence from an Emerging Country,” in Communications in Computer and Information Science, 2019, pp. 348–352. doi:10.1007/978-3-030-21451-7_30; [273] B. Sivathanu, “Adoption of internet of things (IOT) based wearables for healthcare of older adults – a behavioural reasoning theory (BRT) approach,” Journal of Enabling Technologies, vol. 12, no. 4, pp. 169–185, Dec. 2018, doi:10.1108/JET-12-2017-0048; [274] A. M. Al-Momani, M. A. Mahmoud, and M. S. Ahmad, “Factors that Influence the Acceptance of Internet of Things Services by Customers of Telecommunication Companies in Jordan,” Journal of Organizational and End User Computing, vol. 30, no. 4, pp. 51–63, Oct. 2018, doi:10.4018/JOEUC.2018100104.; [275] E. E. Grandon, A. A. Ibarra, S. A. Guzman, P. Ramirez-Correa, and J. Alfaro-Perez, “Internet of Things: Factors that influence its adoption among Chilean SMEs,” in 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Jun. 2018, vol. 2018-June, pp. 1–6. doi:10.23919/CISTI.2018.8399183; [276] M. Tu, “An exploratory study of Internet of Things (IoT) adoption intention in logistics and supply chain management,” The International Journal of Logistics Management, vol. 29, no. 1, pp. 131–151, Feb. 2018, doi:10.1108/IJLM-11-2016-0274; [277] M. Trujillo Suárez, J. J. Aguilar, and C. Neira, “Los métodos más característicos del diseño centrado en el usuario -DCU-, adaptados para el desarrollo de productos materiales,” Iconofacto, vol. 12, no. 19, pp. 215–236, 2016, doi:10.18566/iconofact.v12.n19.a09.; [278] M. Greer and H. S. Harris, “User-Centered Design as a Foundation for Effective Online Writing Instruction,” Computers and Composition, vol. 49, no. 2017, pp. 14–24, 2018, doi:10.1016/j.compcom.2018.05.006; [278] M. Greer and H. S. Harris, “User-Centered Design as a Foundation for Effective Online Writing Instruction,” Computers and Composition, vol. 49, no. 2017, pp. 14–24, 2018, doi:10.1016/j.compcom.2018.05.006.; [279] Y. Han and M. Moghaddam, “Analysis of sentiment expressions for user-centered design,” Expert Systems with Applications, vol. 171, p. 114604, 2021, doi: https://doi.org/10.1016/j.eswa.2021.114604.; [280] T. Xu, Study on user experience design of mobile application interfaces, vol. 1018. Springer International Publishing, 2020. doi:10.1007/978-3-030-25629-6_80; [281] 2019 ISO Standard, “International Standard interactive systems,” Iso 9241-210:2019, vol. 2019, 2019.; [282] O. Ayalon and E. Toch, “User-Centered Privacy-by-Design: Evaluating the Appropriateness of Design Prototypes,” International Journal of Human Computer Studies, vol. 154, no. March, p. 102641, 2021, doi:10.1016/j.ijhcs.2021.102641; [283] M. François, F. Osiurak, A. Fort, P. Crave, and J. Navarro, “Usability and acceptance of truck dashboards designed by drivers: Two participatory design approaches compared to a user-centered design,” International Journal of Industrial Ergonomics, vol. 81, no. November 2019, p. 103073, 2021, doi:10.1016/j.ergon.2020.103073.; [284] A. C. Luis, T. E. M. Elizabeth, F. V. Jesús, R. U. M. Deyanira, and A. S. J., “Interacción HumanoComputadora,” pp. 195–232, 2016; [285] Ideo, “Diseño centrado en las personas,” 2019; [286] P. M. A. Desmet, H. Xue, and S. F. Fokkinga, “The Same Person Is Never the Same: Introducing MoodStimulated Thought/Action Tendencies for User-Centered Design,” She Ji, vol. 5, no. 3, pp. 167–187, 2019, doi:10.1016/j.sheji.2019.07.; [287] L. M. Kopf and J. Huh-Yoo, “A User-Centered Design Approach to Developing a Voice Monitoring System for Disorder Prevention,” Journal of Voice, vol. 3200, 2020, doi:10.1016/j.jvoice.2020.10.015; [288] L. Bu, C. H. Chen, K. K. H. Ng, P. Zheng, G. Dong, and H. Liu, “A user-centric design approach for smart product-service systems using virtual reality: A case study,” Journal of Cleaner Production, vol. 280, p. 124413, 2021, doi:10.1016/j.jclepro.2020.124413; [289] H. Khalajzadeh, T. Verma, A. J. Simmons, J. Grundy, M. Abdelrazek, and J. Hosking, “User-centred tooling for modelling of big data applications,” Proceedings - 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, MODELS-C 2020 - Companion Proceedings, pp. 31–35, 2020, doi:10.1145/3417990.3422004; [290] G. A. García-Mireles, M. Á. Moraga, and F. García, “Development of maturity models: A systematic literature review,” IET Seminar Digest, vol. 2012, no. 1, pp. 279–283, 2012, doi:10.1049/ic.2012.0036; [291] J. Wang and A. Moulden, “AI Trust Score: A User-Centered Approach to Building, Designing, and Measuring the Success of Intelligent Workplace Features,” Conference on Human Factors in Computing Systems - Proceedings, 2021, doi:10.1145/3411763.3443452.; [292] J. Escobar-Pérez and Á. Cuervo-Martínez, “Validez de contenido y juicio de expertos: una aproximación a su utilización,” Avances en medición, vol. 6, no. 1, pp. 27–36, 2008.; [293] G. C. Vázquez González, I. U. Jiménez Macías, and L. G. Juárez Hernández, “Construction-validation of the questionnaire: Maturity of knowledge management to educational innovation in universities,” Apertura, vol. 12, no. 1, Mar. 2020, doi:10.32870/Ap.v12n1.1767.; [294] J. Escobar and Á. Cuervo, “Validez de contenido y juicio de expertos: una aproximación a su utilización,” Polymer, 2008.; [295] J. S. Grant and L. L. Davis, “Selection and use of content experts for instrument development,” Research in Nursing & Health, vol. 20, no. 3, pp. 269–274, 1997, doi:10.1002/(sici)1098240x(199706)20:33.3.co;2-3; [296] R. Skjong and B. H. Wentworth, “Expert judgment and risk perception,” Proceedings of the International Offshore and Polar Engineering Conference, vol. 4, pp. 537–544, 2001.; [297] A. Raza, L. F. Capretz, and F. Ahmed, “An open source usability maturity model (OS-UMM),” Computers in Human Behavior, vol. 28, no. 4, pp. 1109–1121, 2012, doi:10.1016/j.chb.2012.01.018; [298] S. Beecham, T. Hall, C. Britton, M. Cottee, and A. Rainer, “Using an expert panel to validate a requirements process improvement model,” The journal of systems and software, vol. 76, pp. 251–275, 2005, doi:10.1016/j.jss.2004.06.004; [299] C. Shaoyong, T. Yirong, and L. Zhefu, “UNITA : A Reference Model of University IT Architecture,” ICCIS ’16: Proceedings of the 2016 International Conference on Communication and Information Systems, pp. 73–77, 2016, doi:10.1145/3023924.3023949; [300] H. Chaoui and I. Makdoun, “A new secure model for the use of cloud computing in big data analytics,” pp. 1–11, 2018, doi:10.1145/3018896.3018913; [301] S. Chaveesuk, P. Wutthirong, and W. Chaiyasoonthorn, “Cloud Computing Classroom Acceptance Model in Thailand Higher Education’s Institutes,” in Proceedings of the 2018 10th International Conference on Information Management and Engineering - ICIME 2018, 2018, pp. 141–145. doi:10.1145/3285957.3285989; [302] F. Nikolopoulos, “Using UTAUT2 for Cloud Computing Technology Acceptance Modeling,” no. 1995, 2017; [303] B. B. Rad, T. Diaby, and M. E. Rana, “Cloud Computing Adoption,” in Proceedings of the 2017 International Conference on E-commerce, E-Business and E-Government - ICEEG 2017, 2017, no. June, pp. 51–55. doi:10.1145/3108421.3108426; [304] E. H. Steele and I. R. Guzman, “Investigating the Role of Top Management and Institutional Pressures in Cloud Computing Adoption,” pp. 25–26, 2016.; [305] A. M. Shaaban, C. Schmittner, T. Gruber, G. Quirchmayr, and E. Schikuta, “CloudWoT - A Reference Model for Knowledge-based IoT Solutions,” 2018, doi:10.1145/3282373.3282400.; [306] M. Basingab, L. Rabelo, C. Rose, and E. Gutiérrez, “Business Modeling Based on Internet of Things : A Case Study of Predictive Maintenance Software Using ABS Model,” 2017, doi:10.1145/3018896.3018905; [307] M.-C. Vega-Hernández, M.-C. Patino-Alonso, and M.-P. Galindo-Villardón, “Multivariate characterization of university students using the ICT for learning,” Computers & Education, vol. 121, pp. 124–130, Jun. 2018, doi:10.1016/j.compedu.2018.03.004.; [308] u-planner, “U-planner,” 2019; [309] Bizagi, “Bizagi,” 2019; [309] Bizagi, “Bizagi,” 2019.; [310] Analytikus, “Analytikus,”; [311] Y. Medina and Dewar. Rico-Bautista, “Modelo de gestión de servicios para la universidad de Pamplona: ITIL,” Scientia Et Technica, vol. XIV, no. 39, pp. 314–319, 2008; [312] Y. Medina-Cárdenas and D. Rico- Bautista, “Modelo de gestión basado en el ciclo de vida del servicio de la Biblioteca de Infraestructura de Tecnologías de Información ( ITIL ),” Revista Virtual Universidad Católica del Norte, no. 27, pp. 1–21, 2009.; [313] M. V Bueno-Delgado, P. Pavón-Marino, A. De-Gea-García, and A. Dolón-García, “The Smart University Experience: An NFC-Based Ubiquitous Environment,” in 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, 2012, pp. 799–804. doi:10.1109/IMIS.2012.110; [314] O. A. Shvetsova, “Smart education in high school: New perspectives in global world,” in Proceedings of the 2017 International Conference “Quality Management, Transport and Information Security, Information Technologies”, IT and QM and IS 2017, 2017, pp. 688–691. doi:10.1109/ITMQIS.2017.8085917.; [315] T. Savov, V. Terzieva, K. Todorova, and P. Kademova-Katzarova, “CONTEMPORARY TECHNOLOGY SUPPORT FOR EDUCATION,” CBU International Conference Proceedings, vol. 5, pp. 802–806, Sep. 2017, doi:10.12955/cbup.v5.1029.; [316] A. M. Shaaban, C. Schmittner, T. Gruber, G. Quirchmayr, and E. Schikuta, “CloudWoT - A Reference Model for Knowledge-based IoT Solutions,” 2018, doi:10.1145/3282373.3282400.; [317] S. Chen, Y. Tang, and Z. Li, “UNITA: A reference model of university IT architecture,” in ACM International Conference Proceeding Series, 2016, pp. 73–77. doi:10.1145/3023924.3023949; [318] E. Barrientos-Avendaño and Y. Areniz-Arévalo, “Universidad inteligente: Oportunidades y desafíos desde la Industria 4.0,” Revista Ingenio UFPSO, vol. 16, no. 1, 2019, doi:10.22463/2011642X.2343.; [319] E. Barrientos-Avendaño, Y. Areniz-Arevalo, L. A. Coronel-Rojas, F. Cuesta-Quintero, and D. RicoBautista, “Industry foray model 4.0 applied to the food company your gourmet bread sas: Strategy for rebirth in the COVID-19 (SARS-CoV-2) pandemic [Modelo de incursión en la industria 4.0 aplicado a la compañía alimenticia tu pan gourmet sas: estrategia para el rena,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E34, pp. 436–449, 2020.; [320] C. D. Guerrero and D. Rico-Bautista, “Center for excellence and internet acquisition of things: A commitment to competitiveness from alliances between government, academia and productive sector [Centro de excelencia y apropiación en internet de las cosas: Una apuesta a la competitividad desde,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E28, pp. 615–628, 202; [321] D. Mourtzis, E. Vlachou, and N. Milas, “Industrial Big Data as a Result of IoT Adoption in Manufacturing,” Procedia CIRP, vol. 55, pp. 290–295, 2016, doi:10.1016/j.procir.2016.07.038.; [322] I. C. Ehie and M. A. Chilton, “Understanding the influence of IT/OT Convergence on the adoption of Internet of Things (IoT) in manufacturing organizations: An empirical investigation,” Computers in Industry, vol. 115, p. 103166, Feb. 2020, doi:10.1016/j.compind.2019.103166.; [323] H. Xu, “Application of Cloud Computing Information Processing System in Network Education,” in International Conference on Applications and Techniques in Cyber Intelligence, ATCI 2019, vol. 1017, A. J.H., C. K.-K.R., I. R., X. Z., and A. M., Eds. Dianchi College of Yunnan University, Kunming, 650000, China: Springer Verlag, 2020, pp. 1809–1815. doi:10.1007/978-3-030-25128-4_238; [324] Y. C. Medina Cárdenas, Y. Areniz Arévalo, and D. W. Rico Bautista, Modelo estratégico para la gestión tecnológica en la organización: plan táctico de la calidad (ITIL & ISO 20000), vol. 1. Instituto Tecnológico Metropolitano, 2016. doi:10.22430/9789585414006; [325] Y. Medina-Cárdenas and D. Rico-Bautista, “Model of Administration of Services for the Universidad of Pamplona: ITIL,” Scientia Et Technica Scientia et Technica Año XIV, vol. 14, no. 39, pp. 314–319, 2008; [326] R. D. Raut, P. Priyadarshinee, B. B. Gardas, and M. K. Jha, “Analyzing the factors influencing cloud computing adoption using three stage hybrid SEM-ANN-ISM (SEANIS) approach,” Technological Forecasting and Social Change, vol. 134, no. July 2017, pp. 98–123, Sep. 2018, doi:10.1016/j.techfore.2018.05.020; [327] R. El-Gazzar, E. Hustad, and D. H. Olsen, “Understanding cloud computing adoption issues: A Delphi study approach,” Journal of Systems and Software, vol. 118, pp. 64–84, Aug. 2016, doi:10.1016/j.jss.2016.04.061; [328] J. Cecil, “A Collaborative Manufacturing Approach supporting adoption of IoT Principles in Micro Devices Assembly,” Procedia Manufacturing, vol. 26, pp. 1265–1277, 2018, doi:10.1016/j.promfg.2018.07.141; [329] W. Hao, Z. Huang, and L. Shi, “Research on college students’ ideological and political education and daily performance evaluation model based on big data,” Journal of Advanced Oxidation Technologies, vol. 21, no. 2, 2018, doi:10.26802/jaots.2018.01625; [330] Y. H. Kim and J. Ahn, “A Study on the Application of Big Data to the Korean College Education System,” Procedia Computer Science, vol. 91, no. Itqm 2016, pp. 855–861, 2016, doi:10.1016/j.procs.2016.07.096; [331] T. G. Ramos, J. C. F. Machado, and B. P. V. Cordeiro, “Primary Education Evaluation in Brazil Using Big Data and Cluster Analysis,” Procedia Computer Science, vol. 55, no. Itqm, pp. 1031–1039, 2015, doi:10.1016/j.procs.2015.07.061; [332] R. H. Hamilton and W. A. Sodeman, “The questions we ask: Opportunities and challenges for using big data analytics to strategically manage human capital resources,” Business Horizons, vol. 63, no. 1, pp. 85–95, Jan. 2020, doi:10.1016/j.bushor.2019.10.001; [333] J. Wu, H. Li, L. Liu, and H. Zheng, “Adoption of big data and analytics in mobile healthcare market: An economic perspective,” Electronic Commerce Research and Applications, vol. 22, pp. 24–41, Mar. 2017, doi:10.1016/j.elerap.2017.02.002; [334] Z. Allam and Z. A. Dhunny, “On big data, artificial intelligence and smart cities,” Cities, vol. 89, no. January, pp. 80–91, Jun. 2019, doi:10.1016/j.cities.2019.01.032; [335] M. A. Goralski and T. K. Tan, “Artificial intelligence and sustainable development,” The International Journal of Management Education, vol. 18, no. 1, p. 100330, Mar. 2020, doi:10.1016/j.ijme.2019.100330.; [336] C. R. Deig, A. Kanwar, and R. F. Thompson, “Artificial Intelligence in Radiation Oncology,” Hematology/Oncology Clinics of North America, vol. 33, no. 6, pp. 1095–1104, Dec. 2019, doi:10.1016/j.hoc.2019.08.003; [337] M. Chassignol, A. Khoroshavin, A. Klimova, and A. Bilyatdinova, “Artificial Intelligence trends in education: a narrative overview,” Procedia Computer Science, vol. 136, pp. 16–24, 2018, doi:10.1016/j.procs.2018.08.233; [338] E. Barrientos-Avendaño, L. A. Coronel-Rojas, F. Cuesta-Quintero, and D. Rico-Bautista, “Store-tostore sales management system: Applying artificial intelligence techniques [Sistema de administración de ventas tienda a tienda: Aplicando técnicas de inteligencia artificial],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E27, pp. 677–689, 2020.; [339] A. Kankanhalli, Y. Charalabidis, and S. Mellouli, “IoT and AI for Smart Government: A Research Agenda,” Government Information Quarterly, vol. 36, no. 2, pp. 304–309, Apr. 2019, doi:10.1016/j.giq.2019.02.003; [340] A. Y. Sheikh and J. I. Fann, “Artificial Intelligence,” Thoracic Surgery Clinics, vol. 29, no. 3, pp. 339– 350, Aug. 2019, doi:10.1016/j.thorsurg.2019.03.011; [341] A. Haleem, M. Javaid, and I. H. Khan, “Current status and applications of Artificial Intelligence (AI) in medical field: An overview,” Current Medicine Research and Practice, vol. 9, no. 6, pp. 231–237, Nov. 2019, doi:10.1016/j.cmrp.2019.11.005; [342] T. Granollers i Saltiveri, “MPIu+a. Una metodología que integra la Ingeniería del Software, la Interacción Persona-Ordenador y la Accesibilidad en el contexto de equipos de desarrollo multidisciplinares,” 2004; [343] U. de Lleida, “Departament de Llenguatges i Sistemes Informàtics Universitat de Lleida Lleida, julio 2004,” Screen, 2004; [344] V. De Freitas, “Model of Maturity in Knowledge Management System, From a Holistic Approach,” Negotium, vol. Revista Ci, pp. 5–31, 2018; [345] F. RICHARDSON and G. LEóN, “Instrumento para determinar el nivel de madurez en la adopción de tecnologías escolar en la educación primaria en escuelas públicas de la República Dominicana,” 2019.; [346] L. C. Ñungo Pinzón, B. Torres González, and J. I. Palacios Osma, “Modelo de nivel de madurez para los procesos de emprendimiento en las pymes colombianas,” Ingeniería Solidaria, vol. 14, no. 26, Dec. 2018, doi:10.16925/in.v14i26.2456.; [347] L. v. Glukhova, S. D. Syrotyuk, A. A. Sherstobitova, and S. v. Pavlova, “Smart University Development Evaluation Models,” in Smart Innovation, Systems and Technologies, vol. 144, Springer Science and Business Media Deutschland GmbH, 2019, pp. 539–549. doi:10.1007/978-981-13-8260-4_47; [348] D. Lee, J. Gu, and H. Jung, “Process maturity models: Classification by application sectors and validities studies,” Journal of Software: Evolution and Process, vol. 31, no. 4, p. e2161, Apr. 2019, doi:10.1002/smr.2161.; [349] S. Beecham, T. Hall, and A. Rainer, “Defining a Requirements Process Improvement Model,” Software Quality Journal, vol. 13, no. 3, pp. 247–279, Sep. 2005, doi:10.1007/s11219-005-1752-9.; [350] U. Benjamín et al., “EVALUACIÓN DE LA MADUREZ DE LOS PRINCIPIOS LEAN EN PROYECTOS DE CONSTRUCCIÓN,” 2016; [351] M. Gina and P. M. Gongora, “FRAMEWORK DE GESTIÓN DE TECNOLOGÍAS DE INFORMACIÓN PARA CIUDADES INTELIGENTES: CASO COLOMBIANO TESIS DOCTORAL,” Barranquilla, 2017.; [352] L. C. Ñungo Pinzón, B. Torres González, and J. I. Palacios Osma, “Modelo de nivel de madurez para los procesos de emprendimiento en las pymes colombianas,” Ingeniería Solidaria, vol. 14, no. 26, 2018, doi:10.16925/in.v14i26.2456; [353] R. Morales Fernandez, J. A. Brieto Rojas, and J. A. Villaseñor Marcial, “CMMI - Capability Maturity Model Integration,” MIPRO 2008 - 31st International Convention Proceedings: Digital Economy - 5th ALADIN, Information Systems Security, Business Intelligence Systems, Local Government and Student Papers, vol. 5, no. Cmmi, pp. 229–234, 2008.; [354] E. Pérez Mergarejo, I. Pérez Vergara, and Y. Rodriguez Ruiz, “Modelos de madurez y su idoneidad para aplicar en pequeñas y medianas empresas / Maturity models and the suitability of its application in small and medium enterprises,” Ingeniería Industrial, vol. XXXV, no. 2, pp. 146–158, 20; [355] R. Galeano, “Diseño Hipermedia centrado en el usuario,” Universidad Pontificia Bolivariana, vol. 2, no. 4, pp. 1–15, 2008; [356] T. Granollers, “Diseño Centrado en el Usuario (DCU). El modelo MPlu+a,” p. 71, 2013; [357] M. Garreta Domingo and E. Mor Pera, “Diseño centrado en el usuario (I). Introducción,” El Profesional de la Informacion, vol. 12, no. 1, pp. 52–54, 2003, doi:10.1076/epri.12.1.52.19713.; [358] L. Perurena Cancio and M. Moráguez Bergues, “Usabilidad de los sitios Web, los métodos y las técnicas para la evaluación,” Usabilidad de los sitios Web, los métodos y las técnicas para la evaluación, vol. 24, no. 2, pp. 176–194, 2013; [359] E. E. Grandon, A. A. Ibarra, S. A. Guzman, P. Ramirez-Correa, and J. Alfaro-Perez, “Internet of Things: Factors that influence its adoption among Chilean SMEs,” in 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Jun. 2018, pp. 1–6. doi:10.23919/CISTI.2018.8399183.; [360] F. Authors, “An exploratory study of Internet of Things ( IoT ) adoption intention in logistics and supply chain management - a mixed research approach,” 2016; [361] P. Brous, M. Janssen, and P. Herder, “The dual effects of the Internet of Things ( IoT ): A systematic review of the benefits and risks of IoT adoption by organizations,” International Journal of Information Management, no. May, pp. 1–17, 2019, doi:10.1016/j.ijinfomgt.2019.05.008; [362] H. Shaikh, Z. A. Mahar, and A. Raza, “A Conceptual Framework for Determining Acceptance of Internet of Things ( IoT ) in Higher Education Institutions of Pakistan,” 2019 International Conference on Information Science and Communication Technology (ICISCT), pp. 1–5, 2019.; [363] M. Mital, P. Choudhary, V. Chang, A. Papa, and A. K. Pani, “Technological Forecasting & Social Change Adoption of Internet of Things in India : A test of competing models using a structured equation modeling approach,” Technological Forecasting & Social Change, pp. 1–8, 2017, doi:10.1016/j.techfore.2017.03.001; [364] S. Kang, H. B. Rn, E. Jung, and H. Hwang, “Survey on the demand for adoption of Internet of Things ( IoT ) -based services in hospitals : Investigation of nurses ’ perception in a tertiary university hospital,” Applied Nursing Research, vol. 47, no. May 2018, pp. 18–23, 2019, doi:10.1016/j.apnr.2019.03.005; [365] F. Authors, “Adoption of internet of things ( IOT ) based wearables for elderly healthcare – a behavioural reasoning theory ( BRT ) approach,” 2018, doi:10.1108/JET-12-2017-0048.; [366] R. BaÅ¡ková, Z. Struková, and M. Kozlovská, “Construction Cost Saving Through Adoption of IoT Applications in Concrete Works,” Lecture Notes in Civil Engineering, vol. 47, pp. 452–459, 2020, doi:10.1007/978-3-030-27011-7_57; [367] Y. Kao, K. Nawata, and C. Huang, “An Exploration and Confirmation of the Factors Influencing Adoption of IoT-Based Wearable Fitness Trackers,” 2019.; [368] M. Mital, P. Choudhary, V. Chang, A. Papa, and A. K. Pani, “Technological Forecasting & Social Change Adoption of Internet of Things in India : A test of competing models using a structured equation modeling approach,” Technological Forecasting & Social Change, pp. 1–8, 2017, doi:10.1016/j.techfore.2017.03.001; [369] M. Fahmideh and D. Zowghi, “An exploration of IoT platform development,” Information Systems, vol. 87, p. 101409, 2020, doi:10.1016/j.is.2019.06.005; [370] S. Kang, H. B. Rn, E. Jung, and H. Hwang, “Survey on the demand for adoption of Internet of Things ( IoT ) -based services in hospitals : Investigation of nurses ’ perception in a tertiary university hospital,” Applied Nursing Research, vol. 47, no. May 2018, pp. 18–23, 2019, doi:10.1016/j.apnr.2019.03.005; [371] M. Al-Emran, S. I. Malik, and M. N. Al-Kabi, “A Survey of Internet of Things (IoT) in Education: Opportunities and Challenges,” Studies in Computational Intelligence, vol. 846, pp. 197–209, 2020, doi:10.1007/978-3-030-24513-9_12; [372] H. Shaikh, Z. A. Mahar, and A. Raza, “A Conceptual Framework for Determining Acceptance of Internet of Things ( IoT ) in Higher Education Institutions of Pakistan,” 2019 International Conference on Information Science and Communication Technology (ICISCT), pp. 1–5, 2019.; [373] R. Scherer, F. Siddiq, and J. Tondeur, “The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education,” Computers and Education, vol. 128, pp. 13–35, 2019, doi:10.1016/j.compedu.2018.09.009.; [374] Y. S. Kao, K. Nawata, and C. Y. Huang, “An exploration and confirmation of the factors influencing adoption of IoT-basedwearable fitness trackers,” International Journal of Environmental Research and Public Health, vol. 16, no. 18, 2019, doi:10.3390/ijerph16183227.; [375] P. K. Paul, “Usability engineering and hci for promoting root-level social computation and informatics practice: A possible academic move in the indian perspective,” International Journal of Asian Business and Information Management, vol. 12, no. 2, pp. 96–109, 2021, doi:10.4018/IJABIM.20210401.oa6; [376] M. A. Castaño González, “Índice de madurez de transformación digital de las empresas Colombianas,” Cintel, pp. 1–36, 2016; [377] P. Pinheiro, M. Aparicio, and C. Costa, “Adoption of cloud computing systems,” in Proceedings of the International Conference on Information Systems and Design of Communication - ISDOC ’14, 2014, pp. 127–131. doi:10.1145/2618168.2618188; [378] H. Xu, International Conference on Applications and Techniques in Cyber Intelligence ATCI 2019, vol. 1017. Cham: Springer International Publishing, 2020. doi:10.1007/978-3-030-25128-4; [379] B. B. Rad, T. Diaby, and M. E. Rana, “Cloud Computing Adoption,” in Proceedings of the 2017 International Conference on E-commerce, E-Business and E-Government - ICEEG 2017, 2017, pp. 51– 55. doi:10.1145/3108421.3108426; [380] B. B. Rad, T. Diaby, and M. E. Rana, “Cloud Computing Adoption,” in Proceedings of the 2017 International Conference on E-commerce, E-Business and E-Government - ICEEG 2017, 2017, pp. 51– 55. doi:10.1145/3108421.3108426; [381] H. Vasudavan, K. Shanmugam, and H. A. Ahmada, “User Perceptions in Adopting Cloud Computing in Autonomous Vehicle,” in Proceedings of the 6th International Conference on Information Technology: IoT and Smart City - ICIT 2018, 2018, pp. 151–156. doi:10.1145/3301551.3301583; [382] D. S. Jat, M. S. Haodom, and A. Peters, “Relevance of Cloud Computing in Namibia,” in Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies - ICTCS ’16, 2016, pp. 1–4. doi:10.1145/2905055.2905301; [383] T. Branco, F. de Sá-Soares, and A. L. Rivero, “Key Issues for the Successful Adoption of Cloud Computing,” Procedia Computer Science, vol. 121, pp. 115–122, 2017, doi:10.1016/j.procs.2017.11.016.; [384] R. D. Raut, P. Priyadarshinee, B. B. Gardas, and M. K. Jha, “Analyzing the factors influencing cloud computing adoption using three stage hybrid SEM-ANN-ISM (SEANIS) approach,” Technological Forecasting and Social Change, vol. 134, no. July 2017, pp. 98–123, Sep. 2018, doi:10.1016/j.techfore.2018.05.020; [385] R. El-Gazzar, E. Hustad, and D. H. Olsen, “Understanding cloud computing adoption issues: A Delphi study approach,” Journal of Systems and Software, vol. 118, pp. 64–84, Aug. 2016, doi:10.1016/j.jss.2016.04.061; [386] D. S. Jat, M. S. Haodom, and A. Peters, “Relevance of Cloud Computing in Namibia,” in Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies - ICTCS ’16, 2016, pp. 1–4. doi:10.1145/2905055.29053; [387] M. Al-Ruithe, E. Benkhelifa, and K. Hameed, “Current State of Cloud Computing Adoption – An Empirical Study in Major Public Sector Organizations of Saudi Arabia (KSA),” Procedia Computer Science, vol. 110, pp. 378–385, 2017, doi:10.1016/j.procs.2017.06.080; [388] O. Sabri, “Measuring is Success Factors of Adopting Cloud Computing from Enterprise Overview,” in Proceedings of the The International Conference on Engineering & MIS 2015 - ICEMIS ’15, 2015, pp. 1–5. doi:10.1145/2832987.2832993; [389] F. Alharbi, A. Atkins, and C. Stanier, “Cloud Computing Adoption Readiness Assessment in Saudi Healthcare Organisations : A Strategic View,” 2017.; [390] U. Nasir and M. Niazi, “Cloud computing adoption assessment model (CAAM),” in Proceedings of the 12th International Conference on Product Focused Software Development and Process Improvement - Profes ’11, 2011, vol. 44, no. 0, pp. 34–37. doi:10.1145/2181101.2181110; [391] J. Cecil, “A Collaborative Manufacturing Approach supporting adoption of IoT Principles in Micro Devices Assembly,” Procedia Manufacturing, vol. 26, pp. 1265–1277, 2018, doi:10.1016/j.promfg.2018.07.141.; [392] R. F. El-gazzar, “An Overview of Cloud Computing Adoption Challenges in the Norwegian Context,” 2014.; [393] R. F. El-gazzar, “An Overview of Cloud Computing Adoption Challenges in the Norwegian Context,” 2014; [394] H. Hassan, “ScienceDirect ScienceDirect Organisational factors affecting cloud computing adoption in small and medium enterprises ( SMEs ) in service sector,” Procedia Computer Science, vol. 121, pp. 976–981, 2017, doi:10.1016/j.procs.2017.11.126; [395] I. Arpaci, “Antecedents and consequences of cloud computing adoption in education to achieve knowledge management,” Computers in Human Behavior, vol. 70, pp. 382–390, May 2017, doi:10.1016/j.chb.2017.01.024; [396] H. M. Sabi, F. E. Uzoka, K. Langmia, and F. N. Njeh, “Conceptualizing a model for adoption of cloud computing in education,” International Journal of Information Management, vol. 36, no. 2, pp. 183– 191, Apr. 2016, doi:10.1016/j.ijinfomgt.2015.11.010; [397] F. Gao and A. Sunyaev, “International Journal of Information Management Context matters : A review of the determinant factors in the decision to adopt cloud computing in healthcare,” International Journal of Information Management, vol. 48, no. February, pp. 120–138, 2019, doi:10.1016/j.ijinfomgt.2019.02.002.; [398] K. Njenga, L. Garg, A. K. Bhardwaj, V. Prakash, and S. Bawa, “The cloud computing adoption in higher learning institutions in Kenya: Hindering factors and recommendations for the way forward,” Telematics and Informatics, vol. 38, no. May, pp. 225–246, May 2019, doi:10.1016/j.tele.2018.10.007; [399] P. Priyadarshinee, R. D. Raut, M. K. Jha, and B. B. Gardas, “Understanding and predicting the determinants of cloud computing adoption: A two staged hybrid SEM - Neural networks approach,” Computers in Human Behavior, vol. 76, pp. 341–362, Nov. 2017, doi:10.1016/j.chb.2017.07.027.; [400] W. Hao, Z. Huang, and L. Shi, “Research on college students’ ideological and political education and daily performance evaluation model based on big data,” Journal of Advanced Oxidation Technologies, vol. 21, no. 2, 2018, doi:10.26802/jaots.2018.01625.; [401] J. Wu, H. Li, L. Liu, and H. Zheng, “Adoption of big data and analytics in mobile healthcare market: An economic perspective,” Electronic Commerce Research and Applications, vol. 22, pp. 24–41, Mar. 2017, doi:10.1016/j.elerap.2017.02.002; [402] Y. H. Kim and J. Ahn, “A Study on the Application of Big Data to the Korean College Education System,” Procedia Computer Science, vol. 91, no. Itqm 2016, pp. 855–861, 2016, doi:10.1016/j.procs.2016.07.096.; [403] M. Shorfuzzaman, M. S. Hossain, A. Nazir, G. Muhammad, and A. Alamri, “Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment,” Computers in Human Behavior, vol. 92, pp. 578–588, Mar. 2019, doi:10.1016/j.chb.2018.07.002; [403] M. Shorfuzzaman, M. S. Hossain, A. Nazir, G. Muhammad, and A. Alamri, “Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment,” Computers in Human Behavior, vol. 92, pp. 578–588, Mar. 2019, doi:10.1016/j.chb.2018.07.002. [404] T. G. Ramos, J. C. F. Machado, and B. P. V. Cordeiro, “Primary Education Evaluation in; [404] T. G. Ramos, J. C. F. Machado, and B. P. V. Cordeiro, “Primary Education Evaluation in Brazil Using Big Data and Cluster Analysis,” Procedia Computer Science, vol. 55, no. Itqm, pp. 1031–1039, 2015, doi:10.1016/j.procs.2015.07.061.; [405] R. H. Hamilton and W. A. Sodeman, “The questions we ask: Opportunities and challenges for using big data analytics to strategically manage human capital resources,” Business Horizons, vol. 63, no. 1, pp. 85–95, Jan. 2020, doi:10.1016/j.bushor.2019.10.001; [406] F. P. S. Surbakti, W. Wang, M. Indulska, and S. Sadiq, “Factors influencing effective use of big data: A research framework,” Information & Management, vol. 57, no. 1, p. 103146, Jan. 2020, doi:10.1016/j.im.2019.02.001; [407] U. D. Kumar, Analytics Education Ms Purvi Tiwari , Research Associates at DCAL , Indian Institute of Management. Elsevier Ltd, 2019. doi:10.1016/j.iimb.2019.10.014; [408] M. Zapata-ros, “La universidad inteligente La transición de los LMS a los Sistemas Inteligentes de Aprendizaje en Educación Superior The smart university,” vol. 57, no. 10, pp. 1–43, 2018.; [409] N. Mehta, A. Pandit, and S. Shukla, “Transforming Healthcare with Big Data Analytics and Artificial Intelligence: A Systematic Mapping Study,” Journal of Biomedical Informatics, p. 103311, 2019, doi:10.1016/j.jbi.2019.103311.; [410] J. A. Carrillo Ruiz et al., “Big Data En Los Entornos De Defensa Y Seguridad,” 2003.; [411] A. S. Leví, “Aproximación al Big Data . Análisis de su posible utilización en la universidad pública,” 2018; [412] Z. Allam and Z. A. Dhunny, “On big data, artificial intelligence and smart cities,” Cities, vol. 89, no. January, pp. 80–91, Jun. 2019, doi:10.1016/j.cities.2019.01.032; [413] M. A. Goralski and T. K. Tan, “Artificial intelligence and sustainable development,” The International Journal of Management Education, vol. 18, no. 1, p. 100330, Mar. 2020, doi:10.1016/j.ijme.2019.100330; [414] C. R. Deig, A. Kanwar, and R. F. Thompson, “Artificial Intelligence in Radiation Oncology,” Hematology/Oncology Clinics of North America, vol. 33, no. 6, pp. 1095–1104, Dec. 2019, doi:10.1016/j.hoc.2019.08.003; [415] M. Chassignol, A. Khoroshavin, A. Klimova, and A. Bilyatdinova, “Artificial Intelligence trends in education: a narrative overview,” Procedia Computer Science, vol. 136, pp. 16–24, 2018, doi:10.1016/j.procs.2018.08.233; [416] R. Bajaj and V. Sharma, “ScienceDirect ScienceDirect Smart Education with artificial intelligence based determination of Smart Education with artificial intelligence learning styles based determination of learning styles,” Procedia Computer Science, vol. 132, pp. 834–842, 2018, doi:10.1016/j.procs.2018.05.095; [417] A. Kankanhalli, Y. Charalabidis, and S. Mellouli, “IoT and AI for Smart Government: A Research Agenda,” Government Information Quarterly, vol. 36, no. 2, pp. 304–309, Apr. 2019, doi:10.1016/j.giq.2019.02.003; [418] A. Y. Sheikh and J. I. Fann, “Artificial Intelligence,” Thoracic Surgery Clinics, vol. 29, no. 3, pp. 339– 350, Aug. 2019, doi:10.1016/j.thorsurg.2019.03.011; [419] A. Blandford, “education : the potential offered by artificial intellige e tech s,” pp. 212–222, 1990; [420] A. Haleem, M. Javaid, and I. H. Khan, “Current status and applications of Artificial Intelligence (AI) in medical field: An overview,” Current Medicine Research and Practice, vol. 9, no. 6, pp. 231–237, Nov. 2019, doi:10.1016/j.cmrp.2019.11.005.; [421] I. y U. Ministerio de Ciencia, “Estrategia Española De I+D+I En Inteligencia Artificial,” p. 48, 2019; [422] J. G. Sierra Llorente, Y. A. Palmezano Córdoba, and B. S. Romero Mora, “CAUSAS QUE DETERMINAN LAS DIFICULTADES DE LA INCORPORACIÓN DE LAS TIC EN LAS AULAS DE CLASES - Causes that determine the difficulties in the onboarding process of ICT in classrooms,” Panorama, vol. 12, no. 22, pp. 31–41, 2018, doi:10.15765/pnrm.v12i22.1064; [423] MINTIC, “Análisis del sector dirección de gobierno digital,” Ministerio de las tecnologías de la información, vol. 57, no. 1, p. 31, 2019.; [424] H. A. Botello Peñaloza, O. E. Contreras Pacheco, and P. Avella. A. Cecilia, “Análisis empresarial de la influencia de las TIC en el desempeño de las empresas de servicios en Colombia,” Panorama, vol. 4, no. 8, pp. 3–15, 2013, doi:10.15765/pnrm.v4i8.57.; [425] M. E. Rojas Salgado, “Los recursos tecnológicos como soporte para la enseñanza de las ciencias naturales - Technological resources as support in natural sciences teaching,” Hamut’Ay, vol. 4, no. 1, p. 85, 2017, doi:10.21503/hamu.v4i1.1403; [426] Universidad Santo Tomás, “Documento Marco Tecnologías de la Información y la Comunicación,” 2015.; [427] F. I. Díazgranados et al., Uso De Recursos Educativos En Educación Superior. 2018. doi:10.2307/j.ctt2050wh0.7; [428] C. Alberto, F. Reboreda, C. Alberto, and F. Reboreda, “UD igital,” 2020; [429] D. Rico-Bautista, C. D. Guerrero, Y. Medina-Cárdenas, and A. García-Barreto, “Analysis of the potential value of technology: Case of universidad francisco de paula santander Ocaña [Análisis del valor potencial de la tecnología: Caso universidad francisco de paula santander Ocaña],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, no. E17, pp. 756–774, 2019; [430] D. Rico-Bautista and Y. Medina-Cárdenas, “Modelo institucional de autoevaluación y mejoramiento continuo: Proceso misional de investigación de la Universidad Francisco de Paula Santander Ocaña (UFPSO). Un caso de éxito,” Revista Iberoamericana CTS, vol. Abril, pp. 1–14, 2; [431] M. Arrieta, M. Sanguino, and C. Lobo, “Diseño de un plan estratégico de tecnologías de información para la Universidad Francisco de Paula Santander Ocaña,” 2015. [; [432] J. F. Rockart, “Chief executives define their own data needs.,” Harvard Business Review, 1979, doi: Article.; [433] M. Arrieta, M. Sanguino, and C. Lobo, “Diseño de un plan estratégico de tecnologías de información para la Universidad Francisco de Paula Santander Ocaña,” 2015.; [434] M. E. Porter, “Competitive Advantage,” Competitive Advantage: Creating and Sustaining Superior Performance. 1985. doi:10.1182/blood-2005-11-4354.; [435] D. S. Hidayat and D. I. Sensuse, “Knowledge Management Model for Smart Campus in Indonesia,” Data, vol. 7, no. 1, p. 7, Jan. 2022, doi:10.3390/data7010007; [436] V. Salazar Solano, J. M. Moreno Dena, I. S. Rojas Rodríguez, and L. A. Islas Olavarrieta, “Nivel de adopción de tecnologías de la información y la comunicación en empresas comercializadoras de mango en Nayarit – México,” Estudios Gerenciales, vol. 34, no. 148, pp. 292–304, Sep. 2018, doi:10.18046/j.estger.2018.148.2639; [437] S. Dalal, D. Khodyakov, R. Srinivasan, S. Straus, and J. Adams, “ExpertLens: A system for eliciting opinions from a large pool of non-collocated experts with diverse knowledge,” Technological Forecasting and Social; [438] S. Beecham, T. Hall, C. Britton, M. Cottee, and A. Rainer, “Using an expert panel to validate a requirements process improvement model,” Journal of Systems and Software, vol. 76, no. 3, pp. 251– 275, Jun. 2005, doi:10.1016/j.jss.2004.06.004.; [439] M. Kopyto, S. Lechler, H. A. von der Gracht, and E. Hartmann, “Potentials of blockchain technology in supply chain management: Long-term judgments of an international expert panel,” Technological Forecasting and Social Change, vol. 161, p. 120330, Dec. 2020, doi:10.1016/j.techfore.2020.120330; [440] L. A. Galicia Alarcón, J. A. Balderrama Trápaga, and R. Edel Navarro, “Content validity by experts judgment: Proposal for; [441] F. Sheikhshoaei, N. Naghshineh, S. Alidousti, M. Nakhoda, and H. Dehdarirad, “Development and validation of a measuring instrument for digital library maturity,” Library & Information Science Research, vol. 43, no. 3, p. 101101, Jul. 2021, doi:10.1016/j.lisr.2021.101101; [442] C. Á. Álvarez, “La relación teoría-práctica en los procesos de enseñanza-aprendizaje Theory-practice relationship in the processes of teaching and learning,” 2012.; [443] J. M. González-Varona, A. López-Paredes, J. Pajares, F. Acebes, and F. Villafáñez, “Aplicabilidad de los Modelos de Madurez de Business Intelligence a PYMES,” Direccion y Organizacion, no. 71, pp. 31–45, Jul. 2020, doi:10.37610/dyo.v0i71.577; [444] C. U. Españolas, “TIC 360o - Transformación Digital en la Universidad,” 2017; [445] L. F. Berdnikova, A. A. Sherstobitova, O. V. Schnaider, N. O. Mikhalenok, and O. E. Medvedeva, Smart university: Assessment models for resources and economic potential, vol. 144. Springer Singapore, 2019. doi:10.1007/978-981-13-8260-4_51; http://hdl.handle.net/20.500.12749/16730; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co

  13. 13

    Time: 2018-2022

    Popis souboru: application/pdf; text/html

    Relation: [1] FAO, “Buenas prácticas en la FAO: Sistematización de experiencias para el aprendizaje continuo,” vol. 13, p. 12, 2013, [Online]. Available: www.fao.org/docrep/meeting/021/ma061s.pdf.; [2] D. A’Zami, “Citizen-peasants : modernity , international relations and the problem of difference in,” University of Sussex.; [3] J. James, ICT4D: Information and Communication Technology for Development, vol. 61, no. 1. 2010.; [4] FAO, “Small family farms data portrait: Basic information document,” p. 15, 2017, [Online]. Available: http://www.fao.org/fileadmin/user_upload/smallholders_dataportrait/docs/Data_portrait_variables_description_new2.pdf.; [5] B. E. Graeub et al., “The State of Family Farms in the World,” World Dev., vol. 87, no. JUNE, pp. 1–15, 2016, doi:10.1016/j.worlddev.2015.05.012.; [6] J. A. Berdegué and R. Fuentealba, “The state of smallholders in agriculture in Latin America,” in New Directions for Smallholder Agriculture, no. March, IFAD, Ed. Roma: Oxford University Press, 2014, pp. 115–152.; [7] L. Joyanes Aguilar, Internet de las Cosas. Un futuro conectado. Alfaomega Grupo Editor, 2021.; [8] K. Xing, D. H. Cropley, M. L. Oppert, and C. Singh, Readiness for Digital Innovation and Industry 4.0 Transformation: Studies on Manufacturing Industries in the City of Salisbury. 2021.; [9] F. Lombo and C. Prada, “Censo Nacional Agropecuario Caracterización de los productores residentes en el área.”; [10] M. Springmann et al., “Options for keeping the food system within environmental limits,” Nature, vol. 562, no. 7728, pp. 519–525, 2018, doi:10.1038/s41586-018-0594-0.; [11] G. Rapsomanikis, G. Sylvester, O. de las N. U. para la A. y la A. FAO, I. F. P. R. I. IFPRI, and O. para la C. y el D. E. OCDE, Information and Communication Technology (ICT) in Agriculture A Report to the G20 Agricultural Deputies. 2017.; [12] F. Freire Carrera, O. Chadrina, J. Moreano Velasco, B. Torres Blacio, and Y. D. V. Garcia Orellana, “Prototipo de un sistema de riego automatizado en árboles de cacao (Theobroma cacao) controlado vía internet con dispositivos móviles,” Av. Investig. en Ing., vol. 16, no. 2, pp. 93–106, 2019, doi:10.18041/1794-4953/avances.2.5257.; [13] J. P. Tovar Soto, J. D. los S. Solórzano Suárez, A. Badillo Rodríguez, and G. O. Rodríguez Cainaba, “Internet de las cosas aplicado a la agricultura: estado actual,” Lámpsakos, no. 22. p. 86, 2019, doi:10.21501/21454086.3253.; [14] T. R. Wheeler and J. Braun, “Climate Change Impacts on Global Food Security,” Nat. Syst. Chang. Clim., vol. 341, no. August, pp. 508–513, 2013, doi: DOI:10.1126/science.1239402 ARTICLE.; [15] C. Lau, A. Javis, and J. Ramírez, “Agricultura colombiana: adaptación al cambio climático %7C Portal Sobre Conservación y Equidad Social CES,” CIAT Políticas en Síntesis No. 1, 2011. https://www.portalces.org/biblioteca/cambio-climatico/agricultura-colombiana-adaptacion-al-cambio-climatico (accessed May 27, 2019).; [16] A. D. Boursianis et al., “Advancing Rational Exploitation of Water Irrigation Using 5G-IoT Capabilities: The AREThOU5A Project,” 2019 IEEE 29th Int. Symp. Power Timing Model. Optim. Simulation, PATMOS 2019, pp. 127–132, 2019, doi:10.1109/PATMOS.2019.8862146.; [17] Organización para la Cooperación y el Desarrollo Económicos (OCDE), “A Framework for Rural Development. Rural 3.0,” People-Centred Rural Policy, p. 28, 2019, [Online]. Available: https://www.oecd.org/rural/rural-development-conference/documents/Rural-3.0-Policy-Highlights.pdf.; [18] M. O. Thomas, B. A. Onyimbo, and R. Logeswaran, “Usability Evaluation Criteria for Internet of Things,” Int. J. Inf. Technol. Comput. Sci., vol. 8, no. 12, pp. 10–18, 2016, doi:10.5815/ijitcs.2016.12.02.; [19] J. Š. Novák, J. Masner, J. Vaněk, P. Šimek, and K. Hennyeyová, “User experience and usability in agriculture-selected aspects for design systems,” Agris On-line Pap. Econ. Informatics, vol. 11, no. 4, pp. 75–83, 2019, doi:10.7160/aol.2019.110407.; [20] D. Fajardo, M. Mejía, L. Gómez, M. Matheu, and OXFAM en Colombia, “Radiografía de la desigualdad. LO QUE NOS DICE EL ÚLTIMO CENSO AGROPECUARIO SOBRE LA DISTRIBUCIÓN DE LA TIERRA EN COLOMBIA,” 2017. Accessed: Jun. 05, 2019. [Online]. Available: https://www-cdn.oxfam.org/s3fs-public/file_attachments/radiografia_de_la_desigualdad.pdf.; [21] S. Ziegler, BID (Banco Interamericano de desarrollo), Agricultura), IICA (Instituto Interamericano de Cooperación para la, and Microsoft, “Habilidades digitales en la ruralidad: un imperativo para reducir brechas en américa latina y el caribe,” 2021. [Online]. Available: http://repositorio.iica.int/handle/11324/14462?locale-attribute=es.; [22] J. M. Perez, Luchas campesinas y reforma agraria Luchas campesinas y reforma agraria, Primera Ed. Colombia, 2010.; [23] DNP (Departamento Nacional de Planeación), MINSALUD (Ministerio de Salud y Protección Social), and Departamento Administrativo de la Presidencia de la República, Documento CONPES 3999. 2020, pp. 1–163.; [24] Consejería Presidencial para los derechos humanos y asuntos Internacionales, “INFORME Y RECOMENDACIONES II Durante la pandemia del COVID-19 a la luz de los derechos humanos,” 2020.; [25] DANE (Departamento Administrativo Nacional de Estadística), “Mayoristas Boletín Semanal,” Feb. 16, 2021. https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/sistema-de-informacion-de-precios-sipsa/mayoristas-boletin-semanal-1 (accessed Mar. 04, 2021).; [26] J. F. C. Díaz del Castillo, “La intermediación como un impedimento al desarrollo del pequeño productor de Medellín,” Corpoica Cienc. y Tecnol. Agropecu., vol. 14, no. 1, p. 27, 2013, doi:10.21930/rcta.vol14_num1_art:264.; [27] H. H. Mann, Social Framework of Agriculture, 2nd ed. India, Middle East, England: Routledge, 2020.; [28] G. Rapsomanikis, “The economic lives of smallholder farmers,” Fao, vol. 4, no. 4, pp. 1–4, 2015, doi:10.5296/rae.v6i4.6320.; [29] Ó. A. Orozco and G. Llano Ramírez, “Sistemas de Información enfocados en tecnologías de agricultura de precisión y aplicables a la caña de azúcar, una revisión,” Rev. Ing. Univ. Medellín, vol. 15, no. 28, pp. 103–124, 2016, doi:10.22395/rium.v15n28a6.; [30] F. Ahmad et al., “A smart agricultural model by integrating IoT, mobile and cloud-based big data analytics,” Proc. 2017 Int. Conf. Intell. Comput. Control. I2C2 2017, vol. 2018-Janua, no. 1, pp. 1–5, Mar. 2018, doi:10.1109/I2C2.2017.8321902.; [31] J. Parra Delgadillo, “MIGRACIONES EN COLOMBIA (CIUDAD-CAMPO): ANÁLISIS AL NEORURALISMO Y LAS NUEVAS RURALIDADES EN LAS AFUERAS DE BOGOTÁ (CUNDINAMARCA).,” Universidad Externado de Colombia, 2018.; [32] R. Pardo, “Diagnóstico de la Juventud Rural en Colombia. Grupos de Diálogo Rural, una estrategia de incidencia,” Santiago de Chile, 2017. [Online]. Available: www.rimisp.org.; [33] M. T. De Ossa, J. E. Londoño, and A. Valencia-Arias, “Model of technology transfer from biomedical engineering: A case study [Modelo de Transferencia Tecnológica desde la Ingeniería Biomédica: un estudio de caso],” Inf. Tecnol., vol. 29, no. 1, pp. 83–90, 2018, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042253656&doi=10.4067%2FS0718-07642018000100010&partnerID=40&md5=13e130c77728abaf07cbe0831c57f992.; [34] T. Kyung Sung and D. V Gibson, “Knowledge and Technology Transfer: Levels and Key Factors.” Accessed: May 27, 2019. [Online]. Available: http://www.ic2.utexas.edu/ictpi/mirror/curitiba2000/papers/S04P04.PDF.; [35] ENTERPRISE IRELAND, “A REVIEW OF THE PERFORMANCE OF THE IRISH TECHNOLOGY TRANSFER SYSTEM 2007-2012,” 2012. Accessed: May 27, 2019. [Online]. Available: https://www.knowledgetransferireland.com/Reports-Publications/A-review-of-the-performance-of-the-Irish-technology-transfer-system-2007-2012.pdf.; [36] M. Susuki, “Finding the social, economic and technological barriers and opportunities in the developing countries for designing the technology transfer and innovation regime in climate change,” 2010.; [37] M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E. H. M. Aggoune, “Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk,” IEEE Access, vol. 7, pp. 129551–129583, 2019, doi:10.1109/ACCESS.2019.2932609.; [38] S. Shibusawa, “Precision Farming Approaches for Small Scale Farms,” IFAC Proc. Vol., vol. 34, no. 11, pp. 22–27, 2001, doi:10.1016/s1474-6670(17)34099-5.; [39] Grupo de alto nivel de expertos (HLPE), “Inversión en la agricultura a pequeña escala en favor de la seguridad alimentaria,” 2013.; [40] DANE (Departamento Administrativo Nacional de Estadística), “Encuesta Nacional de Calidad de Vida ECV 2019,” 2020. [Online]. Available: https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/calidad-de-vida-ecv/encuesta-nacional-de-calidad-de-vida-ecv-2019.; [41] ICANH (Instituto Colombiano de Antropología e Historia) and D. (Departamento A. N. de Estadística), “Elementos para la conceptualización de lo ‘campesino’ en Colombia,” 2017.; [42] S. Agrawal and D. Vieira, “A survey on Internet of Things - DOI 10.5752/P.2316-9451.2013v1n2p78,” Abakós, vol. 1, no. 2, pp. 291–319, 2013, doi:10.5752/P.2316-9451.2013v1n2p78.; [43] M. Hadžiali, A. Čolaković, and M. Hadžialić, “A Review of Enabling Technologies, Challenges, and Open Research Issues Internet of Things (IoT): A Review of Enabling Technologies, Challenges, and Open Research Issues,” Comput. Networks, vol. 144, pp. 17–39, 2018, doi:10.1016/j.comnet.2018.07.017.; [44] D. A. Norman and S. W. D. Draper, User Centered System Design. New perspectives on Human-Computer Interaction. CRC Press, 1986.; [45] E. Almirón, “EL AGUA COMO ELEMENTO VITAL EN EL DESARROLLO DEL HOMBRE,” Observatorio de políticas de derechos humanos de Mercosur. https://www.observatoriomercosur.org.uy/libro/el_agua_como_elemento_vital_en_el_desarrollo_del_hombre_17.php.; [46] FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura), “Sistemas de riego son vitales para la agricultura dominicana,” Agronoticias: Actualidad agropecuaria de América Latina y el Caribe, 2017. https://www.fao.org/in-action/agronoticias/detail/es/c/1027860/.; [47] IDEAM (Instituto de Hidrología Meteorología y Estudios Ambientales), “Estudio Nacional del Agua,” Bogotá, Colombia, 2010.; [48] J. Carrazón, “Manual práctico para el diseño de sistemas de minirriego,” Programa Espec. para la Segur. Aliment., vol. 9, no. 5, pp. 5876–5891, 2018.; [49] UNESCO-WWAP, “Agua para todos, agua para la vida,” United Nations, p. 36, 2003, [Online]. Available: http://www.un.org/esa/sustdev/sdissues/water/WWDR-spanish-129556s.pdf.; [50] UNESCO (Organización de las Naciones Unidas para la Educación la Ciencia y la Cultura), “GROUNDWATER Making the invisible visible,” Paris, 2022. [Online]. Available: https://www.unesco.org/reports/wwdr/2022/es/download.; [51] FAO, “Evapotranspiración del cultivo en condiciones estándar Introducción a la Evapotranspiración del Cultivo (ET c),” 2018, [Online]. Available: http://www.fao.org/3/x0490s/x0490s00.htm.; [52] IDEAM, J. Cadena, and M. Gómez, Validación de las fórmulas de Evapotranspiración de Referencia (ETo) para Colombia. Instituto de Hidrología Meteorología y Estudios Ambientales. 2017.; [53] SEPOR, Uso de la bandeja de vaporación Clase A para la propagación del riego. 2010.; [54] A. Ríos Hernández, Máquinas agrícolas, tracción animal y labores manuales. Cuba: Instituto de Mecanización Agrícola (INFOIIMA), 2012.; [55] M. Liotta, “Los Sistemas De Riego Por Goteo Y Microaspersion,” Inst. Nac. Tecnol. Agropecu. Argentina, pp. 1–26, 2004.; [56] M. A. Rapela, Fostering Innovation for Agriculture 4.0. Cham: Springer International Publishing, 2019.; [57] J. Demenois et al., “Barriers and Strategies to Boost Soil Carbon Sequestration in Agriculture,” Front. Sustain. Food Syst., vol. 4, 2020, doi:10.3389/fsufs.2020.00037.; [58] Y. Liu, X. Ma, L. Shu, G. P. Hancke, and A. M. Abu-Mahfouz, “From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges,” IEEE Trans. Ind. Informatics, vol. 17, no. 6, pp. 4322–4334, Jun. 2021, doi:10.1109/TII.2020.3003910.; [59] A. Cravero, D. Lagos, and R. Espinosa, “Big Data / IoT Use in Wine Production: A Systematic Mapping Study,” IEEE Lat. Am. Trans., vol. 16, no. 5, pp. 1476–1484, May 2018, doi:10.1109/TLA.2018.8408444.; [60] I. Froiz-Míguez et al., “Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on LoRa and LoRaWAN Sensor Nodes,” Sensors, vol. 20, no. 23, p. 6865, Nov. 2020, doi:10.3390/s20236865.; [61] W. Liping, “Study on Agricultural Products Logistics Mode in Henan Province of China,” in Software Engineering and Knowledge Engineering: Theory and Practice, 2012, pp. 635–640.; [62] S. Ramya, A. M. Swetha, and M. Doraipandian, “IoT Framework for Smart Irrigation using Machine Learning Technique,” J. Comput. Sci., vol. 16, no. 3, pp. 355–363, Mar. 2020, doi:10.3844/jcssp.2020.355.363.; [63] M. Raj et al., “A survey on the role of Internet of Things for adopting and promoting Agriculture 4.0,” J. Netw. Comput. Appl., vol. 187, no. May, p. 103107, 2021, doi:10.1016/j.jnca.2021.103107.; [64] D. M. Rodríguez, E. Bayona, and A. A. Rosado, “Summary of the internet of things and its application in agro-industrial production,” J. Phys. Conf. Ser., vol. 1409, p. 012018, Nov. 2019, doi:10.1088/1742-6596/1409/1/012018.; [65] S. Safdar, M. Mohsin, L. A. Khan, and W. Iqbal, “Leveraging the internet of things for smart waters: Motivation, enabling technologies and deployment strategies for Pakistan,” Proc. - 2018 IEEE SmartWorld, Ubiquitous Intell. Comput. Adv. Trust. Comput. Scalable Comput. Commun. Cloud Big Data Comput. Internet People Smart City Innov. SmartWorld/UIC/ATC/ScalCom/CBDCo, pp. 2117–2124, 2018, doi:10.1109/SmartWorld.2018.00354.; [66] S. I. Hassan, M. M. Alam, U. Illahi, M. A. Al Ghamdi, S. H. Almotiri, and M. M. Su’ud, “A Systematic Review on Monitoring and Advanced Control Strategies in Smart Agriculture,” IEEE Access, vol. 9, pp. 32517–32548, 2021, doi:10.1109/ACCESS.2021.3057865.; [67] A. Madruga Peláez, A. A. Estevez Pérez, R. S. López, I. Santana Ching, and C. M. García Algora, “Red de Sensores Inalámbricos para la Adquisición de Datos en Casas de Cultivo,” Ingeniería, vol. 24, no. 3, pp. 224–234, Sep. 2019, doi:10.14483/23448393.14437.; [68] Z. Irani et al., “Managing food security through food waste and loss: Small data to big data,” Comput. Oper. Res., vol. 98, pp. 367–383, Oct. 2018, doi:10.1016/j.cor.2017.10.007.; [69] R. Kondaveti, A. Reddy, and S. Palabtla, “Smart Irrigation System Using Machine Learning and IOT,” Proc. - Int. Conf. Vis. Towar. Emerg. Trends Commun. Networking, ViTECoN 2019, 2019, doi:10.1109/ViTECoN.2019.8899433.; [70] E. Nigussie, T. Olwal, G. Musumba, T. Tegegne, A. Lemma, and F. Mekuria, “IoT-based irrigation management for smallholder farmers in rural Sub-Saharan Africa,” Procedia Comput. Sci., vol. 177, pp. 86–93, 2020, doi:10.1016/j.procs.2020.10.015.; [71] X. Jiang et al., “Hybrid Low-Power Wide-Area Mesh Network for IoT Applications,” IEEE Internet Things J., vol. 8, no. 2, pp. 901–915, 2021, doi:10.1109/JIOT.2020.3009228.; [72] INTA and PROCISUR, “Sistemas y Metodologías pra asesoramiento a Regantes,” Manfredi, Córdoba (Argentina), 2010. [Online]. Available: https://inta.gob.ar/documentos/riego-sistemas-y-metodologias-para-asesoramiento-a-regantes.; [73] H. Jafarieh, “Technology Transfer to Developing Countries: A Quantative Approach,” 2001.; [74] M. Dubickis and E. Gaile-Sarkane, “Perspectives on Innovation and Technology Transfer,” Procedia - Soc. Behav. Sci., vol. 213, pp. 965–970, Dec. 2015, doi:10.1016/j.sbspro.2015.11.512.; [75] D. J. Sánchez Preciado, Developing Technology Transfer Processes in rural contexts : The case of Cauca in Colombia, vol. 4, no. 41. 2018.; [76] J. O. A. Palacio Niño, “Análisis de transferencia tecnológica para una adecuada implementación de contenidos educativos en el sistema de TDT interactiva en Colombia.” p. 234, 2011.; [77] T. Huang, “The technology transfer of the ICT curriculum in Taiwan.” pp. 407–422, 2013.; [78] J. . Behrman and W. A. Fisher, Overseas R&D Activity of Transnational Companies. Oelgeschlager, Gunn and Hain, Cambridge, 1980.; [79] M. Blomström, TRANSNATIONAL CORPORATIONS AND MANUFACTURING EXPORTS FROM DEVELOPING COUNTRIES. New York, New York, USA: United Nations Publications, 1990.; [80] J. Bhagwati, The New International Economic Order. Massachusetts: MIT Press, 1978.; [81] A. HASSAN and Y. Jamaluddin, “Exploring the Factors Affecting the ICT Technology Transfer Process: An Empirical Study in Libya,” Mod. Appl. Sci., vol. 10, no. 7, p. 156, 2016, doi:10.5539/mas.v10n7p156.; [82] A. K. Saini and V. KumarKhurana, “ICT Based Communication Systems as Enabler for Technology Transfer,” IEEE, pp. 90–99, 2016.; [83] J. Londoño, S. Restrepo, M. Rodríguez, F. Cuartas, and N. Viana, “Identificación De Tipos, Modelos Y Mecanismos De Transferencia Tecnológica Que Apalancan La Innovación,” Revista CINTEX, vol. 23, no. 2. pp. 13–23, 2018.; [84] J. A. Pineda Insuasti and A. S. Duarte Trujillo, “Modelo de transferencia de tecnología ecuatoriano: una revisión.” pp. 1–24, 2016.; [85] R. Barquin, “Some Introductory Notes on Transfer of Technology,” in Industrial Development and Technology Transfer, 1981.; [86] H. S. Lee, J. W. Lee, H. Y. Kim, H. J. Jo, and B. G. Lee, “Promising ICT Transfer Fields for Promotion of Micro-Startups Hye.” pp. 779–788, 2016.; [87] J. González Sabater, Manual transferencia de tecnología y conocimiento, 2nd ed. THE TRANSFER INSTITUTE, 2011.; [88] A. Corsi, R. N. Pagani, J. L. Kovaleski, and V. Luiz, “Technology transfer for sustainable development: Social impacts depicted and some other answers to a few questions,” J. Clean. Prod., p. 118522, 2019, doi:10.1016/j.jclepro.2019.118522.; [89] P. J. Buckley, “Some Aspects of Foreign Private Investment in the Manufacturing Sector of the Economy of the Irish Republic,” Econ. Soc. Rev, no. 5, pp. 301–321, 1974.; [90] A. GÜNSEL, “Research on Effectiveness of Technology Transfer from a Knowledge Based perspective,” in Procedia - Social and Behavioral Sciences, 2015, vol. 207, pp. 777–785, doi:10.1016/j.sbspro.2015.10.165.; [91] M. Ismail, S. R. Hamzah, and R. Bebenroth, “Differentiating knowledge transfer and technology transfer: What should an organizational manager need to know?,” Eur. J. Train. Dev., vol. 42, no. 9, pp. 611–628, 2018, doi:10.1108/EJTD-04-2018-0042.; [92] S. S. Da Silva, P. R. Feldmann, R. G. Spers, and M. D. Bambini, “Analysis of the process of technology transfer in public research institutions,” Innov. Manag. Rev., vol. 16, no. 4, pp. 375–390, 2019, doi:10.1108/inmr-05-2018-0024.; [93] P. J. Buckley, “New Forms of International Industrial Co-operation,” in The Economic Theory of the Multinational Enterprise, Macmillan, Ed. London: Buckley & Casson, 1985, pp. 39–59.; [94] D. O´Neil and C. Huff, “Ensuring universal acces to telecommunications technologies for all citizens: Equity vs Economic considerations.” STAS 98. Wiring the World: The Impact of Information Technology on Society. Proceedings of the 1998 International Symposium on Technology and Society, pp. 170–175, 1998.; [95] D. V. Gibson and R. W. Smilor, “Key variables in technology transfer: A field-study based empirical analysis,” J. Eng. Technol. Manag., vol. 8, no. 3–4, pp. 287–312, Dec. 1991, doi:10.1016/0923-4748(91)90015-J.; [96] Y. Acea Valdez, “La transferencia de tecnología en Cuba.” pp. 139–149, 2016.; [97] A. Corsi, F. F. De Souza, R. N. Pagani, and J. L. Kovaleski, Technology transfer oriented to sustainable development : proposal of a theoretical model based on barriers and opportunities, vol. 126, no. 6. Springer International Publishing, 2021.; [98] J. Arenas and D. González, “Technology Transfer Models and Elements in the University-Industry Collaboration,” Adm. Sci., vol. 8, no. 2, p. 19, 2018, doi:10.3390/admsci8020019.; [99] A. Hassan, M. Y. Jamaluddin, and K. M. Menshawi, “International technology transfer models: A comparison study,” Journal of Theoretical and Applied Information Technology, vol. 78, no. 1. pp. 95–108, 2015.; [100] E. C. Avendaño Sánchez, “El Uso De La Transferencia De Tecnología En El Sector Empresarial: De La Innovación a La Apropiación Del Saber,” Ekp, vol. 13, no. 3. pp. 1576–1580, 2017.; [101] F. ÖZSUNGUR, “Adaptation Approach to Technology Transfer Strategy,” Afro Eurasian Stud., vol. 7, no. 1, pp. 134–178, 2018, doi:10.33722/afes.471087.; [102] C. L. García Wagner, “Modelo conceptual para el funcionamiento de una Oficina de Transferencia de Tecnología en la Universidad del Quindío.” 2018.; [103] B. Metz, O. R. Davidson, J.-W. Martens, S. N. M. Van Rooijen, and L. Van Wie McGregory, “Methodological and Technological Issues in Technology Transfer,” 2000. Accessed: Jun. 17, 2019. [Online]. Available: www.cup.cam.ac.uk.; [104] R. H. Acker and D. M. Kammen, “The quiet (energy) revolution: analysing the dissemination of photovoltaic power systems in Kenya,” Energy Policy, vol. 24, no. 1, pp. 81–111, 1996.; [105] D. C. Rose et al., “Integrated farm management for sustainable agriculture: Lessons for knowledge exchange and policy,” Land use policy, vol. 81, no. April 2017, pp. 834–842, 2019, doi:10.1016/j.landusepol.2018.11.001.; [106] K. T. Moreno Suarez and E. L. Oviedo Bahamón, “Tipificación de la agricultura realizada por los integrantes de la Asociación de Productores Indígenas y Campesinos - ASPROINCA ubicada en el departamento de Caldas,” Corporación Universitaria Minuto de Dios - UNIMINUTO, 2017.; [107] E. L. Hyman, A. T. International, M. O. Donnell, G. Patterson, and J. Skibiak, “An Economic Analysis of Small-Scale Technologies for Palm Oil Extraction in Central and West Africa,” World Dev., vol. 18, no. 3, pp. 455–476, 1990.; [108] N. Clark and E. Clay, “The Dryland Research Project at lndore ( 1974-80 ) - an Institutional Innovation in Rural Technology Transfer,” J. Rural Stud., vol. 3, no. 2, pp. 159–173, 1987.; [109] K. M. Baker and R. L. Edmonds, “Transfer of Taiwanese ideas and technology to The Gambia, West Africa: a viable approach to rural development?,” Geogr. J., vol. 170, no. 3, pp. 189–211, 2004, [Online]. Available: https://www.jstor.org/stable/3451252.; [110] Unión Europea and IICA (Instituto Interamericano de Cooperación para la Agricultura), Sistemas de innovación agrícola en Centroamérica y Panamá: estrategias para el uso de buenas prácticas de transferencia tecnológica, Primera. San José, Costa Rica: IICA, 2016.; [111] G. A. Van Norman and R. Eisenkot, “Technology Transfer: From the Research Bench to Commercialization: Part 2: The Commercialization Process,” JACC Basic to Transl. Sci., vol. 2, no. 2, pp. 197–208, 2017, doi:10.1016/j.jacbts.2017.03.004.; [112] W. Keller, “International technology diffusion,” J. Econ. Lit., vol. 3, no. 42, pp. 752–783, 2004.; [113] M. Nabin, X. Nguyen, and P. Sgro, “On the Relationship Between Technology Transfer and Economic Growth in Asian,” World Econ., 2013, doi:10.1111/twec.12049.; [114] R. Thornton, “Los 90 y el nuevo siglo en los sistemas de extensión rural y transferencia de tecnología públicos en el Mercosur,” La Pampa, Argentina, 2011. [Online]. Available: https://inta.gob.ar/documentos/los-90-y-el-nuevo-siglo-en-los-sistemas-de-extension-rural-y-transferencia-de-tecnologia-publicos-en-el-mercosur.; [115] W. G. Delgado Munevar, “Caracterización del proceso de transferencia y adopción tecnológica de pequeños y medianos productores de cebolla (allium cepa l.) en el municipio de Pasca (Cundinamarca),” 2009, Accessed: May 27, 2019. [Online]. Available: https://repository.javeriana.edu.co/handle/10554/134.; [116] J. Ardila, Extensión rural para el desarrollo de la agricultura y la seguridad alimentaria, no. Aspectos conceptuales, situación y una visión de futuro. 2015.; [117] D. S. MacCarthy, J. Kihara, P. Masikati, and S. G. K. Adiku, “Decision support tools for site-specific fertilizer recommendations and agricultural planning in selected countries in sub-Sahara Africa,” Nutr. Cycl. Agroecosystems, vol. 110, no. 3, pp. 343–359, Apr. 2018, doi:10.1007/s10705-017-9877-3.; [118] C. Gamboa, G. Van den Broeck, and M. Maertens, “Smallholders’ Preferences for Improved Quinoa Varieties in the Peruvian Andes,” Sustainability, vol. 10, no. 10, p. 3735, Oct. 2018, doi:10.3390/su10103735.; [119] O. Oyinbo et al., “Farmers’ preferences for high-input agriculture supported by site-specific extension services: Evidence from a choice experiment in Nigeria,” Agric. Syst., vol. 173, no. June 2018, pp. 12–26, 2019, doi:10.1016/j.agsy.2019.02.003.; [120] M. Banković et al., “Teaching graduate students how to review research articles and respond to reviewer comments,” 2020, pp. 1–63.; [121] L. J. Catania, “The science and technologies of artificial intelligence (AI),” in Foundations of Artificial Intelligence in Healthcare and Bioscience, Elsevier, 2021, pp. 29–72.; [122] S. Vajjala, B. Majumder, A. Gupta, and H. Surana, Practical Natural Language Processing. A comprehensive Guide to Building Real-World NLP System. 2020.; [123] M. B. Hernández and J. M. Gómez, “Aplicaciones de Procesamiento de Lenguaje Natural,” Rev. Politécnica, vol. 32, no. 1, pp. 87–96, 2013, [Online]. Available: http://www.revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/32.; [124] J. C. Campbell, A. Hindle, and E. Stroulia, “Latent Dirichlet Allocation: Extracting Topics from Software Engineering Data,” Art Sci. Anal. Softw. Data, vol. 3, pp. 139–159, 2015, doi:10.1016/B978-0-12-411519-4.00006-9.; [125] R. Kulshrestha, “A Beginner’s Guide to Latent Dirichlet Allocation(LDA),” towardsdatascience.com, 2019. https://towardsdatascience.com/latent-dirichlet-allocation-lda-9d1cd064ffa2.; [126] T. Ganegedara, “Intuitive Guide to Latent Dirichlet Allocation,” towardsdatascience.com, 2018. https://towardsdatascience.com/light-on-math-machine-learning-intuitive-guide-to-latent-dirichlet-allocation-437c81220158.; [127] Z. Tong and H. Zhang, “A Text Mining Research Based on LDA Topic Modelling,” pp. 201–210, 2016, doi:10.5121/csit.2016.60616.; [128] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Hierarchical Dirichlet processes,” J. Am. Stat. Assoc., vol. 101, no. 476, pp. 1566–1581, 2006, doi:10.1198/016214506000000302.; [129] E. Coronado Sroka, “Don’t be Afraid of Nonparametric Topic Models,” towardsdatascience.com, 2020. https://towardsdatascience.com/dont-be-afraid-of-nonparametric-topic-models-d259c237a840.; [130] J. Xu, “Topic Modeling with LSA, PLSA, LDA y Ida2Vec,” medium.com, 2018. https://medium.com/nanonets/topic-modeling-with-lsa-psla-lda-and-lda2vec-555ff65b0b05.; [131] S. Baldassarri Santalucía, “Computación Afectiva: tecnología y emociones para mejorar la experiencia de usuario,” Rev. Inst. la Fac. Inform., vol. no. 3, pp. 14–15, 2016.; [132] M. Soegaard and R. Friss Dam, Encyclopedia of Human -Computer Interaction, 3rd ed. THE INTERACTION DESIGN FOUNDATION.; [133] N. Eyar and R. Hoover, How to Build Habit-Forming Products. Penguin Randowm house LLC, 2014.; [134] N. Norman, The design of everyday things. New York, New York, USA: Basic Books, 2013.; [135] M. G. Domingo and E. M. Pera, “Diseño centrado en el usuario,” Diseño centrado en el usuario, vol. 2, no. 4, 2017.; [136] INTERACTION DESIGN FOUNDATION, “What is User Centered Design? %7C Interaction Design Foundation.” https://www.interaction-design.org/literature/topics/user-centered-design (accessed May 28, 2019).; [137] Design Council, “Design Methods Step 1: Discover,” Design Council, 2015. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-1-discover/.; [138] Design Council, “Design Methods Step 2: Define,” Design Council, 2018. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-2-define/.; [139] Design Council, “Design Methods Step 3: Develop,” Design Council, 2018. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-3-develop/.; [140] Design Council, “Design Methods Step 4: Deliver,” 2018. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-4-deliver/.; [141] K. Rodden, H. Hutchinson, and X. Fu, “Measuring the user experience on a large scale,” in Proceedings of the 28th international conference on Human factors in computing systems - CHI ’10, 2010, p. 2395, doi:10.1145/1753326.1753687.; [142] S. Sastoque, C. Narváez, and G. Garnica, “Metodología para la construcción de Interfaces Gráficas Centradas en el Usuario,” 2016.; [143] INTERACTION DESIGN FOUNDATION, “What is Design Thinking and Why Is It So Popular?” .; [144] I. Young, Practical Empathy for collaboration and creativity in your Work. Rosenfeld, 2015.; [145] C. D. Batson, “These Things Called Empathy: Eight Related but Distinct Phenomena,” in The Social Neuroscience of Empathy, The MIT Press, 2009, pp. 3–16.; [146] T. Wiseman, “A concept analysis of empathy,” J. Adv. Nurs., vol. 23, no. 6, pp. 1162–1167, Jun. 1996, doi:10.1046/j.1365-2648.1996.12213.x.; [147] B. A. Aubert, A. Schroeder, and J. Grimaudo, “IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology,” Decis. Support Syst., vol. 54, no. 1, pp. 510–520, Dec. 2012, doi:10.1016/j.dss.2012.07.002.; [148] S. O. Somers and L. Stapleton, “A Human-Centred approach to e-Agricultural systems,” IFAC-PapersOnLine, vol. 48, no. 24, pp. 213–218, Jan. 2015, doi:10.1016/J.IFACOL.2015.12.085.; [149] S. Somers and L. Stapleton, “e-Agricultural innovation using a human-centred systems lens, proposed conceptual framework,” AI Soc., vol. 29, no. 2, pp. 193–202, May 2014, doi:10.1007/s00146-013-0475-x.; [150] N. Theodorakopoulos, D. J. Snchez Preciado, and D. Bennett, “Transferring technology from university to rural industry within a developing economy context: The case for nurturing communities of practice,” Technovation, vol. 32, no. 9–10, pp. 550–559, 2012, doi:10.1016/j.technovation.2012.05.001.; [151] P. S. Ahmed Awad Talb Altalb, Tadeusz Filipek, “The role of extension in the transfer and adoption of agricultural technology,” J. Int. Agric. Ext. Educ., vol. 03, no. 05, pp. 63–68, 2015.; [152] G. Sylvester, SUCCESS STORIES ON INFORMATION AND COMMUNICATION TECHNOLOGIES FOR AGRICULTURE AND RURAL DEVELOPMENT. Bangkok: FAO, 2015.; [153] C. Leeuwis and A. Van den Ban, Communication for Rural Innovation : Rethinking Agricultural Extension, 3rd ed. Hoboken, United States: John Wiley & Sons, Ltd, 2007.; [154] P. Figueroa, P. Castillo, V. Vrsalovic, D. Gálvez, and S. Diez-de-medina, “Technology Transfer from Academia to Rural Communities : The Case of Caprines in vitro Fecundation and Local Livestock Market in Tamarugal Province in Chile,” vol. 8, no. 4, pp. 186–194, 2013, [Online]. Available: https://scielo.conicyt.cl/pdf/jotmi/v8n4/art17.pdf.; [155] S. O. Somers and L. Stapleton, “A Human-Centred approach to e-Agricultural systems,” IFAC-PapersOnLine, vol. 48, no. 24, pp. 213–218, Jan. 2015, doi:10.1016/j.ifacol.2015.12.085.; [156] J. Mwangi, “the Role of Extension in the Transfer and Adoption of Agricultural Technologies,” J. Int. Agric. Ext. Educ., vol. 5, no. 1, 1998, doi:10.5191/jiaee.1998.05108.; [157] W. Muzari, W. Gatsi, and S. Muvhunzi, “The Impacts of Technology Adoption on Smallholder Agricultural Productivity in Sub-Saharan Africa: A Review,” J. Sustain. Dev., vol. 5, no. 8, pp. 69–77, 2012, doi:10.5539/jsd.v5n8p69.; [158] B. E. Swanson, “Global Review of Good Agricultural Extension and Advisory Practices,” Food Agric. Organ. United Nations, p. 82345, 2008, [Online]. Available: https://www.fao.org/3/i0261e/i0261e00.htm.; [159] L. Kuhl, “Technology transfer and adoption for smallholder climate change adaptation: opportunities and challenges,” Clim. Dev., vol. 12, no. 4, pp. 353–368, 2020, doi:10.1080/17565529.2019.1630349.; [160] A. Hassan, M. Y. Jamaluddin, and A. Queiri, “Technology transfer model for the Libyan information and communication industry,” J. Teknol., vol. 78, no. 8, pp. 99–100, 2016, doi:10.11113/jt.v78.5872.; [161] A. Espinosa, J. Pineda, O. Ortega, A. J. Author, R. Sarmiento, and G. W. Archibold Taylor, “Trends, Challenges and Opportunities for IoT in Smallholder Agriculture Sector: An Evaluation from the Perspective of Good Practices,” in Trends and Applications in Information Systems and Technologies, SPRINGER, 2021, pp. 293–301.; [162] G. Natarajan and L. Ashok Kumar, “Implementation of IoT based smart village for the rural development,” Int. J. Mech. Eng. Technol., vol. 8, no. 8, pp. 1212–1222, 2017.; [163] G. Carrión, M. Huerta, and B. Barzallo, “Internet of Things (IoT) Applied to an Urban Garden,” in Proceedings - 2018 IEEE 6th International Conference on Future Internet of Things and Cloud, FiCloud 2018, 2018, pp. 155–161, doi:10.1109/FiCloud.2018.00030.; [164] D. Singh and A. Thakur, “Designing of smart drip irrigation system for remote hilly areas,” PDGC 2018 - 2018 5th Int. Conf. Parallel, Distrib. Grid Comput., vol. 8, no. 1, pp. 90–94, 2018, doi:10.1109/PDGC.2018.8745934.; [165] N. Ananthi, J. Divya, M. Divya, and V. Janani, “IoT based smart soil monitoring system for agricultural production,” Proc. - 2017 IEEE Technol. Innov. ICT Agric. Rural Dev. TIAR 2017, vol. 2018-Janua, pp. 209–214, 2018, doi:10.1109/TIAR.2017.8273717.; [166] K. P. Satamraju, K. Shaik, and N. Vellanki, “RURAL BRIDGE: A novel system for smart and co-operative farming using IoT architecture,” IMPACT 2017 - Int. Conf. Multimedia, Signal Process. Commun. Technol., no. 1, pp. 22–26, 2018, doi:10.1109/MSPCT.2017.8363966.; [167] K. A. Shah, M. Patel, M. Khasakiya, S. Kazi, and P. Khalasi, “CESIS: Cost-effective and self-regulating irrigation system,” in Lecture Notes on Data Engineering and Communications Technologies, vol. 27, Springer, Cham, 2019, pp. 167–181.; [168] T. S. Sondhi, A. R. Sambhaji, and K. Sharmila Banu, “InFEvoS: Integrated farming evolution system,” Int. J. Recent Technol. Eng., vol. 7, no. 6, pp. 932–936, 2019.; [169] U. J. L. dos Santos, G. Pessin, C. A. da Costa, and R. da Rosa Righi, “AgriPrediction: A proactive internet of things model to anticipate problems and improve production in agricultural crops,” Comput. Electron. Agric., vol. 161, no. July, pp. 202–213, 2019, doi:10.1016/j.compag.2018.10.010.; [170] M. Mancini et al., “An open source and low-cost internet of things-enabled service for irrigation management,” Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., vol. 2019-Octob, pp. 1714–1719, 2019, doi:10.1109/SMC.2019.8914230.; [171] C. C. Baseca, S. Sendra, J. Lloret, and J. Tomas, “A smart decision system for digital farming,” Agronomy, vol. 9, no. 5, 2019, doi:10.3390/agronomy9050216.; [172] P. Visconti, R. de Fazio, P. Primiceri, D. Cafagna, S. Strazzella, and N. I. Giannoccaro, “A solar-powered fertigation system based on low-cost wireless sensor network remotely controlled by farmer for irrigation cycles and crops growth optimization,” Int. J. Electron. Telecommun., vol. 66, no. 1, pp. 59–68, 2020, doi:10.24425/ijet.2019.130266.; [173] D. P. Holzworth et al., “Agricultural production systems modelling and software: Current status and future prospects,” Environ. Model. Softw., vol. 72, no. 1, pp. 276–286, Oct. 2015, doi:10.1016/j.envsoft.2014.12.013.; [175] A. Tendolkar and S. Ramya, “CareBro (Personal Farm Assistant):An IoT based Smart Agriculture with Edge Computing,” MPCIT 2020 - Proc. IEEE 3rd Int. Conf. "Multimedia Process. Commun. Inf. Technol., pp. 97–102, 2020, doi:10.1109/MPCIT51588.2020.9350481.; [176] P. L. Ramirez Izolan et al., “Low-Cost Fog Computing Platform for Soil Moisture Management,” Int. Conf. Inf. Netw., vol. 2020-Janua, pp. 499–504, 2020, doi:10.1109/ICOIN48656.2020.9016572.; [177] J. D. Borrero and A. Zabalo, “An autonomous wireless device for real-time monitoring of water needs,” Sensors (Switzerland), vol. 20, no. 7, pp. 1–16, 2020, doi:10.3390/s20072078.; [178] N. A. A. Abdellah and N. Thangadurai, “Real Time Application of IoT for the Agriculture in the Field along with Machine Learning Algorithm,” Proc. 2020 Int. Conf. Comput. Control. Electr. Electron. Eng. ICCCEEE 2020, 2021, doi:10.1109/ICCCEEE49695.2021.9429606.; [179] S. Casadei, F. Peppoloni, F. Ventura, R. Teodorescu, D. Dunea, and N. Petrescu, “Application of smart irrigation systems for water conservation in Italian farms,” Environ. Sci. Pollut. Res., vol. 28, no. 21, pp. 26488–26499, 2021, doi:10.1007/s11356-021-12524-6.; [180] F. J. Ruiz Ortega, K. Esquivel Murillo, D. O. Rodríguez Martinez, M. E. Rodríguez Torres, and R. Duarte Ramírez, “INTERNET DE LAS COSAS (IoT), UNA ALTERNATIVA PARA EL CUIDADO DEL AGUA,” Pist. Educ., vol. 40, no. 130, pp. 2318–2330, 2018.; [181] A. F. Jimenez, E. F. Herrera, B. V. Ortiz, A. Ruiz, and P. F. Cardenas, “Inference System for Irrigation Scheduling with an Intelligent Agent,” in Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II, J. C. Corrales, P. Angelov, and J. A. Iglesias, Eds. Cham: Springer International Publishing, 2019, pp. 1–20.; [182] J. D. Franco-Ramirez, T. A. Ramirez-Delreal, A. Garate-Garcia, M. A. Ruiz, and D. Villanueva-Vasquez, “MOSyG: Monitoring system for germination chamber using fuzzy control based on cloudino-IoT and FIWARE,” 2019 IEEE Int. Autumn Meet. Power, Electron. Comput. ROPEC 2019, no. Ropec, 2019, doi:10.1109/ROPEC48299.2019.9057127.; [183] J. A. Laverde Mena and C. G. Laverde Mena, “Internet de las cosas aplicado en la agricultura ecuatoriana: Una propuesta para sistemas de riego,” Rev. Dilemas Contemp., vol. 148, pp. 148–162, 2021.; [184] E. Gutierrez Leon, J. E. Montiel Arguijo, C. Carreto Arellano, and F. R. Menchaca García, “Propuesta de sistema de gestión inteligente basado en IoT para hidroponia,” Res. Comput. Sci., vol. 148, no. 10, pp. 219–233, 2019, doi:10.13053/rcs-148-10-19.; [185] F. A. Capraro Fuentes, S. R. Tosetti, and P. L. Campillo, “Sensor Network for Monitoring and Fault Detection in Drip Irrigation Systems Based on Embedded Systems,” IEEE Lat. Am. Trans., vol. 18, no. 2, pp. 383–391, 2020, doi:10.1109/TLA.2020.9085294.; [186] A. Oliveira-Jr et al., “IoT Sensing Platform as a Driver for Digital Farming in Rural Africa,” Sensors, vol. 20, no. 12, p. 3511, Jun. 2020, doi:10.3390/s20123511.; [187] J. Rodríguez-Robles, Á. Martin, S. Martin, J. A. Ruipérez-Valiente, and M. Castro, “Autonomous sensor network for rural agriculture environments, low cost, and energy self-charge,” Sustain., vol. 12, no. 15, 2020, doi:10.3390/SU12155913.; [188] A. Cabarcas, C. Arrieta, D. Cermeno, H. Leal, R. Mendoza, and C. Rosales, “Irrigation system for precision agriculture supported in the measurement of environmental variables,” Proc. - 2019 7th Int. Eng. Sci. Technol. Conf. IESTEC 2019, no. March 2020, pp. 671–676, 2019, doi:10.1109/IESTEC46403.2019.00125.; [189] M. J. Ibarra, E. Alcarraz, O. Tapia, Y. P. Atencio, Y. Mamani-Coaquira, and H. A. Huillcen Baca, “NFT-I technique using IoT to improve hydroponic cultivation of lettuce,” Proc. - Int. Conf. Chil. Comput. Sci. Soc. SCCC, vol. 2020-Novem, 2020, doi:10.1109/SCCC51225.2020.9281277.; [190] Superintendencia de Industria y Comercio (SIC), “¿Qué se puede patentar?,” Superintenedencia de Industria y Comercio (SIC), 2021. https://www.sic.gov.co/node/44#:~:text=Se protegen los inventos que consistan en productos,,un procedimiento para la obtención de un producto.; [191] H. Ben Salem and T. Smith, “Feeding strategies to increase small ruminant production in dry environments,” Small Rumin. Res., vol. 77, no. 2–3, pp. 174–194, 2008, doi:10.1016/j.smallrumres.2008.03.008.; [192] D. Singh and A. Thakur, “Advancing Rational Exploitation of Water Irrigation Using 5G-IoT Capabilities: The AREThOU5A project,” PDGC 2018 - 2018 5th Int. Conf. Parallel, Distrib. Grid Comput., vol. 8, no. 1, pp. 90–94, 2018, doi:10.1109/PDGC.2018.8745934.; [193] R. Torres-Sanchez, H. Navarro-Hellin, A. Guillamon-Frutos, R. San-Segundo, M. C. Ruiz-Abellón, and R. Domingo-Miguel, “A decision support system for irrigation management: Analysis and implementation of different learning techniques,” Water (Switzerland), vol. 12, no. 2, 2020, doi:10.3390/w12020548.; [194] S. Athani, C. Tejeshwar, M. M. Patil, P. Patil, and R. Kulkarni, “Soil moisture monitoring using IoT enabled arduino sensors with neural networks for improving soil management for farmers and predict seasonal rainfall for planning future harvest in North Karnataka - India,” Int. Conf. I-SMAC (IoT Soc. Mobile, Anal. Cloud), pp. 43–48, 2017.; [195] J. J. Dethier and A. Effenberger, “Agriculture and development: A brief review of the literature,” Econ. Syst., vol. 36, no. 2, pp. 175–205, 2012, doi:10.1016/j.ecosys.2011.09.003.; [196] M. Bures, “Internet of Things: Current Challenges in the Quality Assurance and Testing Methods.” Accessed: Nov. 22, 2018. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/1805/1805.01241.pdf.; [197] K. Pernapati, “IoT Based Low Cost Smart Irrigation System,” in Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT 2018, 2018, pp. 1312–1315, doi:10.1109/ICICCT.2018.8473292.; [198] T. W. Zougmore, S. Malo, F. Kagembega, and A. Togueyini, “Low cost IoT solutions for agricultures fish farmers in Afirca: A case study from Burkina Faso,” ICSCC 2018 - 1st Int. Conf. Smart Cities Communities, 2018, doi:10.1109/SCCIC.2018.8584549.; [199] E. Beza, L. Kooistra, P. Reidsma, P. Poortvliet, M. Belay, and B. Bijen, “Exploring farmers’ intentions to adopt mobile Short Message Service (SMS) for citizen science in agriculture,” j, vol. 151, 2018, doi:10.1016/j.compag.2018.06.015.; [200] K. Lova Raju and V. Vijayaraghavan, “IoT and Cloud hinged Smart Irrigation System for Urban and Rural Farmers employing MQTT Protocol,” ICDCS 2020 - 2020 5th Int. Conf. Devices, Circuits Syst., pp. 71–75, 2020, doi:10.1109/ICDCS48716.2020.243551.; [201] W. A. K. L. Sanjula, K. T. W. Kavinda, M. A. K. Malintha, W. M. D. L. Wijesuriya, S. Lokuliyana, and R. De Silva, “Automated water-gate controlling system for paddy fields,” ICAC 2020 - 2nd Int. Conf. Adv. Comput. Proc., pp. 61–66, 2020, doi:10.1109/ICAC51239.2020.9357312.; [202] S. Hernando Mejía, “MODELO DE DECISIÓN PARA LA SELECCIÓN DE SOLUCIONES IoT APOYANDO LA TRANSFERENCIA TECNOLÓGICA EN ZONAS RURALES DE SANTANDER,” 2020.; [203] M. D. Caro Meza, “Diseño de directrices para la evaluación de interfaces en soluciones IOT implementadas en zonas rurales santandereanas: apoyando la transferencia tecnológica desde la perspectiva de usabilidad,” Universidad Autónoma de Bucaramanga, 2020.; [204] A. C. Martínez Pinzón and K. J. Villamizar Calderón, “FRAMEWORK CONCEPTUAL PARA DESARROLLO DE INTERFACES MÓVILES EN SOLUCIONES IOT QUE PERMITAN APROPIACIÓN TECNOLÓGICA EN ZONAS RURALES ALEDAÑAS AL MUNICIPIO DE BUCARAMANGA DESDE LA PERSPECTIVA DE UX,” Universidad Autónoma de Bucaramanga, 2020.; [205] D. F. Aceros Orduz, “PROTOTIPO DE UNA RUTA TECNOLOGICA PARA EL IOT, ENFOCADA EN LAS TECNOLOGÍAS DE RIEGO, PARA LOS AGRICULTORES DE PEQUEÑA ESCALA EN COLOMBIA,” Universidad Autónoma de Bucaramanga, 2020.; [206] C. A. Meneses Montana and karen S. Prada Jaimes, “Empleando elementos reconocibles como potencializador del uso de internet en zonas rurales: una investigación desde la experiencia de usuario en pequeños productores agrícolas de Santander,” Universiad Autónoma de Bucaramanga, 2020.; [207] A. F. Rincón Benavides and E. A. Martinez Zavala, “Climagro: diseño de un mapa de ruta de tecnologías IOT empleadas en entornos rurales para el monitoreo del clima, dirigido para los pequeños productores campesinos de Santander, mediante técnicas de text mining e inteligencia artificial,” Universidad Autónoma de Bucaramanga, 2020.; [208] J. E. Duarte Pineda and O. M. Ortega Pineda, “Farmia: Diseño de arquitectura IOT orientado a desarrolladores para la inclusión de tecnologías de internet de las cosas aplicadas a la Agro rotación de cultivos de acuerdo con el plan estratégico presentado por GPS Santander: Caso de estudio Villanueva, ,” Universidad Autónoma de Bucaramanga, 2020.; [209] O. Y. Patiño Hernández, “KAKAW: Modelo de inteligencia artificial para la identificación de actores y su relación en el sector cacaotero de Santander,” Universidad Autónoma de Bucaramanga, 2020.; [210] A. F. Herrera Duarte, “Propuesta metodológica para la evaluación de modelos de transferencia tecnológica TIC en la agricultura de los pequeños productores campesinos de la región de Santander,” Universidad Autónoma de Bucaramanga, 2020.; [211] F. J. Vargas Pérez and A. P. Verdugo Beltrán, “Desarrollo de un prototipo funcional de red sensórica IoT para el monitoreo de variables en suelos agrícolas de la finca el Oasis de la Vereda Llanadas, municipio de Los Santos (Santander),” Universidad Autónoma de Bucaramanga, 2021.; [212] N. E. Castillo Suta, “Desarrollo de un modelo de transferencia y apropiación de tecnologías del internet de las cosas para los agricultores colombianos de pequeña escala – AGRIOT,” Universidad Autónoma de Bucaramanga, 2021.; [213] C. Kamienski et al., “Smart water management platform: IoT-based precision irrigation for agriculture,” Sensors (Switzerland), vol. 19, no. 2, 2019, doi:10.3390/s19020276.; [214] B. Edwards et al., “mAgri Design Toolkit: User-centered design for mobile agriculture,” p. 186, 2014, [Online]. Available: https://www.comminit.com/ict-4-development/content/magri-design-toolkit-user-centered-design-mobile-agriculture.; [215] E. J. M. Arruda Filho and R. Roy Dholakia, “Hedonismo como um fator de decisão e uso tecnológico,” Rev. Bras. Gest. Negocios, vol. 15, no. 48, pp. 343–361, 2013, doi:10.7819/rbgn.v15i48.1407.; [216] C. N. Jiménez-Hernández, O. F. Castellanos-Domínguez, and E. M. Villa-Enciso, “La gestión de tecnologías emergentes en el ámbito universitario,” TecnoLógicas, no. 26, p. 145, 2011, doi:10.22430/22565337.57.; [217] DANE (Departamento Administrativo Nacional de Estadística) and MADR (Ministerio de Agricultura y Desarrollo Rural), “Censo Nacional Agropecuario 2014,” 2015.; [218] M. A. Espinosa, E. Romero R., L. Y. Flórez G., and C. D. Guerrero, “DANDELION: Propuesta metodológica para recopilación y análisis de información de artículos científicos. Un enfoque desde la bibliometría y la revisión sistemática de la literatura,” RISTI - Rev. Iber. Sist. e Tecnol. Inf., vol. 28, pp. 110–122, 2020, [Online]. Available: https://search.proquest.com/openview/e3b85a7260c758fd943bc4d5a0447f13/1?pq-origsite=gscholar&cbl=1006393.; [219] J. R. Fraenkel, N. E. Wallen, and H. H. Hyun, How to design and evaluate research in education, vol. 1, no. 1. McGraw: Hill Education, 2012.; [220] Unidad Administrativa Especial de Catastro Distrital -Gerencia IDECA, “Metodología para la Analítica de datos,” pp. 1–34, 2019, [Online]. Available: www.ideca.gov.co.; [221] P. Chapman et al., CRISP-DM 1.0. SPSS, 2000.; [222] E. Romero-riaño, C. D. Guerrero-santander, and H. E. Martínez-ardila, “Agronomy research co-authorship networks in agricultural innovation systems Redes de coautoría en investigación sobre agronomía en sistemas de innovación agrícola,” Rev. UIS Ing., vol. 20, no. 1, pp. 161–175, 2021, doi:10.18273/revuin.v20n1-2021015.; [223] G. Ko, J. K. Routray, and M. M. Ahmad, “ICT infrastructure for rural community sustainability,” Community Dev., vol. 50, no. 1, pp. 51–72, Jan. 2019, doi:10.1080/15575330.2018.1557720.; [224] V. A. Eras Moreira, “EVALUACIÓN DE IMPACTO DE TRANSFERENCIA DE TECNOLOGÍA AGROPECUARIA EN LA PROVINCIA DE IMBABURA: CANTONES COTACACHI, PIMAMPIRO E IBARRA,” 2014.; [225] S.-R. Cipriano Juárez, “La agricultura y el problema del agua en la provincia de alicante,” a Vueltas Con La Agric. Una Act. Económica Necesaria Y Marginada, 2010.; [226] J. A. Ocampo, “Misión para la transformación del campo,” Misión para la Transform. del campo, p. 46, 2014, doi:10.1007/s13398-014-0173-7.2.; [227] P. S. Birthal and P. K. Joshi, “Smallholder Farmers’ Access to Markets for High-Value Agricultural Commodities in India,” Case Stud. Food Policy Dev. Ctries., pp. 51–60, 2019, doi:10.7591/9780801466373-007.; [228] D. J. Quiroga-Parra, J. Torrent-Sellens, and C. P. Murcia Zorrilla, “Usos de las TIC en América Latina: Una caracterización,” Ingeniare, vol. 25, no. 2, pp. 289–305, 2017, doi:10.4067/S0718-33052017000200289.; [229] M. Taylor and S. Bhasme, “Model farmers, extension networks and the politics of agricultural knowledge transfer,” J. Rural Stud., vol. 64, no. September, pp. 1–10, 2018, doi:10.1016/j.jrurstud.2018.09.015.; [230] ITU (International Telecommunication Union), El ecosistema digital y la masificación de las tecnologías de la información y las comunicaciones en Paraguay.; [231] MTC, “Misión para la transformación del campo - Diagnóstico económico del campo colombiano,” Inf. la Misión para la Transform. del Campo, p. 63, 2015.; [232] A. Sharma, A. Bailey, and I. Fraser, “Technology Adoption and Pest Control Strategies Among UK Cereal Farmers: Evidence from Parametric and Nonparametric Count Data Models,” J. Agric. Econ., vol. 62, no. 1, pp. 73–92, Feb. 2011, doi:10.1111/j.1477-9552.2010.00272.x.; [233] J. Sollleiro R., R. Castañón I., J. González C., J. Aguilar-Ávila, and N. Aguilar G., “Identificación de buenas prácticas de extensionismo, transferencia de tecnología e innovación para el sector agroalimentario de méxico.,” no. April, p. 57, 2017.; [234] Y. Valencia Villegas and Y. Sepúlveda Casadiego, “Implementación de sensores en los sistemas de riego automatizado,” Dec. 2019. doi:10.22490/ECAPMA.3417.; [235] R. Oad and P. King, “Irrigation system design for management in mountainous areas,” Irrig. Drain. Syst., vol. 5, no. 3, pp. 213–228, Aug. 1991, doi:10.1007/BF01112500.; [236] Á. Penagos, C. Ospina, C. Quesada, and F. Castellanos, “Una mirada al mercado laboral rural colombiano y un acercamiento a los posibles efectos de la pandemia,” RIMISP Cent. Latinoam. para el Desarro. Rural, 2020, [Online]. Available: https://www.rimisp.org/documentos/informes/una-mirada-al-mercado-laboral-rural-colombiano-y-un-acercamiento-a-los-posibles-efectos-de-la-pandemia/.; [237] J. Wadsworth and B. Carlisle, “TECHNOLOGY AND ITS CONTRIBUTION TO PRO-POOR AGRICULTURAL DEVELOPMENT,” UK, 2005. Accessed: May 20, 2019. [Online]. Available: http://www.fao.org/3/a-at358e.pdf.; [238] P. Martinez Corral, “Orígenes de la exclusión digital en el campo colombiano: abordaje sobre la política de telecomunicaciones sociales,” Poliantea, vol. 11, no. 21, p. 195, 2016, doi:10.15765/plnt.v11i21.709.; [239] F. Castillo Blanco, Historia de la Cultura Campesina Santandereana y su arraigo en el departamento de Santander, Primera. Bucaramanga, Colombia: Gobernación de Santander, 2012.; [240] P. Šimek, J. Vaněk, and J. Pavlík, “Usability of UX Methods in Agrarian Sector - Verification,” Agris On-line Pap. Econ. Informatics, vol. 7, no. 3, pp. 49–56, 2015, doi:10.7160/aol.2015.070305. [241] E. Gerónimo Bautista and R. Calderón García, “La formación de talento e innovación a través de la vinculación y los modelos de hélice basados en la sociedad del conocimiento,” RIDE Rev. Iberoam. para la Investig. y el Desarro. Educ., vol. 10, no. 20, Apr. 2020, doi:10.23913/ride.v10i20.641.; [241] E. Gerónimo Bautista and R. Calderón García, “La formación de talento e innovación a través de la vinculación y los modelos de hélice basados en la sociedad del conocimiento,” RIDE Rev. Iberoam. para la Investig. y el Desarro. Educ., vol. 10, no. 20, Apr. 2020, doi:10.23913/ride.v10i20.641.; [242] D. Rotolo, D. Hicks, and B. R. Martin, “What is an emerging technology?,” Res. Policy, vol. 44, no. 10, pp. 1827–1843, Dec. 2015, doi:10.1016/J.RESPOL.2015.06.006.; [243] G. Fortino, C. Savaglio, G. Spezzano, and M. Zhou, “Internet of Things as System of Systems: A Review of Methodologies, Frameworks, Platforms, and Tools,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 51, no. 1, pp. 223–236, 2021, doi:10.1109/TSMC.2020.3042898.; [244] D. Kayisire and J. Wei, “ICT Adoption and Usage in Africa: Towards an Efficiency Assessment,” Inf. Technol. Dev., vol. 22, no. 4, pp. 630–653, 2016, doi:10.1080/02681102.2015.1081862.; [245] M. Dayahna Caro M., E. Romero-Riaño, M. Alexandra Espinosa C, and C. D. Guerrero, “Evaluando contribuciones de usabilidad en soluciones TIC-IOT para la agricultura: Una perspectiva desde la bibliometría,” RISTI - Rev. Iber. Sist. e Tecnol. Inf., vol. 2020, no. E28, pp. 681–692, 2020, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081040306&partnerID=40&md5=f59611d7803425f519635fe4470fdaca.; [246] S. K. Gawali and M. K. Deshmukh, “Energy autonomy in IoT technologies,” Energy Procedia, vol. 156, no. September 2018, pp. 222–226, 2019, doi:10.1016/j.egypro.2018.11.132.; [247] M. Tahir, Q. Mamoon Ashraf, and M. Dabbagh, “Towards Enabling Autonomic Computing in IoT Ecosystem,” in 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Aug. 2019, pp. 646–651, doi:10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00122.; [248] J. Lukkien, “A systems of systems perspective on the internet of things,” ACM SIGBED Rev., vol. 13, no. 3, pp. 56–62, 2016, doi:10.1145/2983185.2983195.; [249] G. Fortino, A. Guerrieri, G. M. P. O’Hare, and A. Ruzzelli, “A flexible building management framework based on wireless sensor and actuator networks,” J. Netw. Comput. Appl., vol. 35, no. 6, pp. 1934–1952, Nov. 2012, doi:10.1016/j.jnca.2012.07.016.; [250] P. Desai, A. Sheth, and P. Anantharam, “Semantic Gateway as a Service Architecture for IoT Interoperability,” in 2015 IEEE International Conference on Mobile Services, Jun. 2015, pp. 313–319, doi:10.1109/MobServ.2015.51.; [251] A. Katasonov, O. Kaykova, O. Khriyenko, S. Nikitin, and V. Terziyan, “Smart semantic middleware for the internet of things,” ICINCO 2008 - Proc. 5th Int. Conf. Informatics Control. Autom. Robot., vol. ICSO, no. May 2014, pp. 169–178, 2008.; [252] G. Codeluppi, A. Cilfone, L. Davoli, and G. Ferrari, “VegIoT Garden: A modular IoT Management Platform for Urban Vegetable Gardens,” 2019 IEEE Int. Work. Metrol. Agric. For. MetroAgriFor 2019 - Proc., pp. 121–126, 2019, doi:10.1109/MetroAgriFor.2019.8909228.; [253] G. Codeluppi, A. Cilfone, L. Davoli, and G. Ferrari, “LoRaFarM: A LoRaWAN-Based Smart Farming Modular IoT Architecture,” Sensors, vol. 20, no. 7, p. 2028, Apr. 2020, doi:10.3390/s20072028.; [254] K. Yelamarthi, M. S. Aman, and A. Abdelgawad, “An application-driven modular IoT architecture,” Wirel. Commun. Mob. Comput., vol. 2017, 2017, doi:10.1155/2017/1350929.; [255] M. Benammar, A. Abdaoui, S. Ahmad, F. Touati, and A. Kadri, “A Modular IoT Platform for Real-Time Indoor Air Quality Monitoring,” Sensors, vol. 18, no. 2, p. 581, Feb. 2018, doi:10.3390/s18020581.; [256] K. Douzis, S. Sotiriadis, E. G. M. Petrakis, and C. Amza, “Modular and generic IoT management on the cloud,” Futur. Gener. Comput. Syst., vol. 78, pp. 369–378, Jan. 2018, doi:10.1016/j.future.2016.05.041.; [257] INTERACTION DESIGN FOUNDATION, “Useful, Usable, and Used: Why They Matter to Designers,” 2021. https://www.interaction-design.org/literature/article/useful-usable-and-used-why-they-matter-to-designers.; [258] J. M. Antonini, “Health Effects Associated with Welding,” in Comprehensive Materials Processing, Elsevier, 2014, pp. 49–70.; [259] D. McQuillen, “‘Taking Usability Offline,’” Darwin Magazine, 2003.; [260] M. Blusi, K. Asplund, and M. Jong, “Older family carers in rural areas: experiences from using caregiver support services based on Information and Communication Technology (ICT),” Eur. J. Ageing, vol. 10, no. 3, pp. 191–199, Sep. 2013, doi:10.1007/s10433-013-0260-1.; [261] B. Momir, I. Petroman, E. C. Constantin, A. Mirea, and D. Marin, “The Importance of Cross-Cultural Knowledge,” Procedia - Soc. Behav. Sci., vol. 197, pp. 722–729, Jul. 2015, doi:10.1016/j.sbspro.2015.07.077.; [262] A. N., “Where to Start and What to Consider?,” in Usability and Internationalization of Information Technology, N. Aykin, Ed. CRC Press, 2005.; [263] S. Vanka and D. Klein, “Colortool: An Information Tool for Cross Cultural Design,” Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 39, no. 5, pp. 341–345, Oct. 1995, doi:10.1177/154193129503900510.; [264] M. W. Azeem, A. Tariq, F. J. Sheikh, M. A. Butt, I. Tariq, and H. M. Shahid, “Cultural effects on metaphor design,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9186, no. August, pp. 113–121, 2015, doi:10.1007/978-3-319-20886-2_11.; [265] G. S. Choi, R. Oehlmann, H. Dalke, and D. Cottington, “Discovering Color Semantics as a Chance for Developing Cross-Cultural Design Frameworks,” in Social Intelligence Design 2007 CTIT, 2007, pp. 926–933.; [266] S. Vanka and D. Klein, “Colortool: An Information Tool for Cross Cultural Design,” Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 39, no. 5, pp. 341–345, Oct. 1995, doi:10.1177/154193129503900510.; [267] J. Thornborrow and S. Wareing, Patterns in language. An introduction to language and literary style. Routledge, 2019.; [268] P. Tiwari and K. Sorathia, “Visualising and systematizing a per-poor ICT intervention for Rural and Semi-urban Mothers in India,” in Proceedings of the 7th International Symposium on Visual Information Communication and Interaction - VINCI ’14, 2014, pp. 129–138, doi:10.1145/2636240.2636856.; [269] Yann, “UX Design for Agriculture in Africa: Case Study from Zambia,” YUX, 2019. https://yux.design/ux-design-agriculture-africa-case-study-zambia.; [270] V. K. Kool and R. Agrawal, “Technology and Hedonism,” in Psychology of Technology, Cham: Springer International Publishing, 2016, pp. 253–304.; [271] J. S. Martínez García, “El habitus. Una revisión analítica,” Rev. Int. Sociol., vol. 75, no. 3, p. 067, Sep. 2017, doi:10.3989/ris.2017.75.3.15.115.; [272] B. R. Belland, “Using the theory of habitus to move beyond the study of barriers to technology integration,” Comput. Educ., vol. 52, no. 2, pp. 353–364, 2009, doi:10.1016/j.compedu.2008.09.004.; [273] L.-A. Sutherland and I. Darnhofer, “Of organic farmers and ‘good farmers’: Changing habitus in rural England,” J. Rural Stud., vol. 28, no. 3, pp. 232–240, Jul. 2012, doi:10.1016/j.jrurstud.2012.03.003.; [274] O. Prokopenko, O. Kudrina, and V. Omelyanenko, “Analysis of ICT Application in Technology Transfer Management within Industry 4.0 Conditions (Education Based Approach),” CEUR Workshop Proc., vol. 2105, pp. 258–273, 2018.; [275] S. Heo, S. Song, J. Kim, and H. Kim, “RT-IFTTT: Real-Time IoT Framework with Trigger Condition-Aware Flexible Polling Intervals,” Proc. - Real-Time Syst. Symp., vol. 2018-Janua, pp. 266–276, 2018, doi:10.1109/RTSS.2017.00032.; [276] C. Dodd, M. Adam, and C. Dodd, “Designing User Interfaces for the Elderly : A Systematic Literature Review,” pp. 1–12, 2017, [Online]. Available: https://aisel.aisnet.org/acis2017/61.; [277] T. Walsh and P. Nurkka, “Approaches to cross-cultural design: Two case studies with UX web-surveys,” Proc. 24th Aust. Comput. Interact. Conf. OzCHI 2012, pp. 633–642, 2012, doi:10.1145/2414536.2414632.; [278] K. Finn and J. Johnson, “Designing for an aging population: Toward universal design,” Conf. Hum. Factors Comput. Syst. - Proc., vol. 07-12-May-, no. May, pp. 1011–1012, 2016, doi:10.1145/2851581.2856669.; [279] INTERACTION DESIGN FOUNDATION, “Accessibility.” https://www.interaction-design.org/literature/topics/accessibility.; [280] P. Štrukelj, “Technology, Wealth and Modern Management of Technology,” Manag. Glob. Transitions, vol. 10, no. 1, pp. 29–49, 2012.; [281] IEA, ITU, UNESCO (Organización de las Naciones Unidas para la Educación la Ciencia y la Cultura), UNOOSA, and WIPO, “Science , technology and innovation and intellectual property rights : The vision for development Thematic Think Piece,” 2012.; [282] D. M. Dueñas Quintero and L. A. Páez Guevara, “CONSTRUCCIÓN DE LA AGENDA INVESTIGACIÓN PARA EL SECTOR AGROINDUSTRIAL EN EL DEPARTAMENTO DE BOYACÁ: IDENTIFICACIÓN DE LÍNEAS DE INVESTIGACIÓN,” Rev. Tumbaga, vol. 1, no. 11, 2016.; [283] World Summit on the Information Society, “WSIS/SDGs Matrix WSIS Forum 2018: Outcomes Linking WSIS Action lines with the Sustainable Development Goals,” 2018. [Online]. Available: https://www.itu.int/net4/wsis/forum/2018/Files/documents/outcomes/WSISForum2018_WSIS-SDGSMatrix.pdf.; [284] D. A. Delgado, C. M. Cocha, J. E. García, and G. K. Gonzales, “Metodologías de diseño centrado en las personas: Experiencia vereda La Yunga y Río Hondo, Popayán, Colombia,” Rev. Espac., vol. 41, no. 36, pp. 0–2, 2020.; [285] S. Bhattacharya, J. Glazer, and D. E. . Sappington, “Licensing and the sharing of knowledge in research joint ventures,” J. Econ. Theory, vol. 56, no. 1, pp. 43–69, Feb. 1992, doi:10.1016/0022-0531(92)90068-S.; [286] J. P. Lane, “Understanding Technology Transfer,” Assist. Technol., vol. 11, no. 1, pp. 5–19, 1999, doi:10.1080/10400435.1999.10131981; [287] E. G. García, “Análisis de buenas prácticas en transferencia de tecnología en el sector TIC,” 2013.; [288] ITU (International Telecommunication Union), ANSI, and DIAL, Construir aldeas inteligentes: un plan de trabajo Proyecto piloto en el Níger. ITUPublicaciones, 2020.; [289] Ministerio de Ciencia Tecnología e Innovación Productiva (Argentina), “Guía de buenas prácticas en gestión de la transferencia de tecnología y de la propiedad intelectual en instituciones y organismos del sistema nacional de ciencia, tenología e innovación,” pp. 3–63, 2012.; [290] S. Salazar and P. Henr, Guía para la gestión de la propiedad en consorcios intelectual regionales de investigación agrícola. San José, Costa Rica: https://www.fontagro.org/es/publicaciones/publicaciones-fontagro/gui-para-la-gestion-de-la-propiedad-intelectual-en-consorcios-regionales-de-investigac/, 2013.; [291] A. Jaime, M. L. Lizarazo, and H. E. Martinez, “Buenas Prácticas en Transferencia de Tecnología en el Mundo,” 2016, [Online]. Available: https://www.researchgate.net/publication/309728561_Buenas_Practicas_en_Transferencia_de_Tecnologia_en_el_Mundo.; [292] NASA, “Plan for Accelerating Technology Transfer at NASA,” 2012.; [293] D. A. Comstock and D. Lockney, “NASA’s legacy of technology transfer and prospects for future benefits,” A Collect. Tech. Pap. - AIAA Sp. 2007 Conf., vol. 3, no. September, pp. 2969–2978, 2007, doi:10.2514/6.2007-6283.; [294] D. A. Maluf, T. Okimura, and M. Gurram, “NASA technology transfer system,” Proc. - 4th IEEE Int. Conf. Sp. Mission Challenges Inf. Technol. SMC-IT 2011, pp. 111–117, 2011, doi:10.1109/SMC-IT.2011.27.; [295] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin, “A model for technology transfer in practice,” IEEE Softw., vol. 23, no. 6, pp. 88–95, 2006, doi:10.1109/MS.2006.147.; [296] V. R. Basili, M. K. Daskalantonakis, and R. H. Yacobellis, “Technology transfer at Motorola,” IEEE Softw., vol. 11, no. 2, pp. 70–76, Mar. 1994, doi:10.1109/52.268959.; [297] H. L. Pieterse and M. W. Pretorius, “A MODEL FOR TELECOMMUNICATION TECHNOLOGY TRANSFER AND DIFFUSION INTO THE RURAL AREAS OF SOUTH AFRICA,” South African J. Ind. Eng., vol. 13, no. 1, pp. 119–129, Jan. 2012, doi:10.7166/13-1-322.; [298] A. Shiri, “Introduction to Modern Information Retrieval (2nd edition),” Libr. Rev., vol. 53, no. 9, pp. 462–463, 2004, doi:10.1108/00242530410565256.; [299] J. A. Sheikh, H. S. Dar, and F. J. Sheikh, “Usability guidelines for designing knowledge base in rural areas towards women empowerment,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8519 LNCS, no. PART 3, pp. 462–469, 2014, doi:10.1007/978-3-319-07635-5_45.; [300] A. Lodhi, “Usability heuristics as an assessment parameter: For performing usability testing,” in ICSTE, 2010, pp. 256–259.; [301] W. A. R. W. M. Isa et al., “Engineering rural informatics using agile user centered design,” in 2014 2nd International Conference on Information and Communication Technology (ICoICT), May 2014, pp. 367–372, doi:10.1109/ICoICT.2014.6914093.; [302] S. Adhy, B. Noranita, R. Kusumaningrum, P. W. Wirawan, D. D. Prasetya, and F. Zaki, “Usability testing of weather monitoring on a web application,” in 2017 1st International Conference on Informatics and Computational Sciences (ICICoS), Nov. 2017, pp. 131–136, doi:10.1109/ICICOS.2017.8276350.; [303] S. Wyche, T. R. Dillahunt, N. Simiyu, and S. Alaka, “‘if god gives me the chance i will design my own phone’: Exploring mobile phone repair and postcolonial approaches to design in rural Kenya,” UbiComp 2015 - Proc. 2015 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput., no. September, pp. 463–473, 2015, doi:10.1145/2750858.2804249.; [304] A. A. Adesina and J. Baidu-Forson, “Farmer’s perpections and adoption of new agricultural technology: evidence from analysis in Burkina Faso and Guiena, West Africa,” Agric. Econ., no. 13, pp. 1–9, 1995, doi:10.14358/PERS.81.6.451.; [305] F. Ssozi-Mugarura, E. Blake, and U. Rivett, “Codesigning with communities to support rural water management in Uganda,” CoDesign, vol. 13, no. 2, pp. 110–126, Apr. 2017, doi:10.1080/15710882.2017.1310904.; [307] B. Dhehibi, U. Rudiger, H. P. Moyo, and M. Z. Dhraief, “Agricultural technology transfer preferences of smallholder farmers in Tunisia’s arid regions,” Sustain., vol. 12, no. 1, 2020, doi:10.3390/SU12010421.; [308] D. Teka, Y. Dittrich, and M. Kifle, “Usability challenges in an Ethiopian software development organization,” in Proceedings of the 9th International Workshop on Cooperative and Human Aspects of Software Engineering, May 2016, pp. 114–120, doi:10.1145/2897586.2897604.; [309] P. S. Dey et al., “Assessment of Sustainable Agriculture Practices in Uttarakhand, India,” IEEE Reg. 10 Humanit. Technol. Conf. R10-HTC, vol. 2020-Decem, 2020, doi:10.1109/R10-HTC49770.2020.9357012.; [310] R. Augusto Sales Dantas, M. Vasconcelos da Gama Neto, I. Dimitry Zyrianoff, and C. Alberto Kamienski, “The SWAMP Farmer App for IoT-based Smart Water Status Monitoring and Irrigation Control,” in 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Nov. 2020, pp. 109–113, doi:10.1109/MetroAgriFor50201.2020.9277588.; [311] Corporacion PBA, Manual del facilitador rural Métodos y herramientas para ayudar a campesinos a conseguir sus metas. 2011.; [312] DANE (Departamento Administrativo Nacional de Estadística), “Censo Nacional Agropecuario Bogotá,” 2014.; [313] DANE (Departamento Administrativo Nacional de Estadística), Censo Nacional Agropecuario, Tomo 3 - Mapas. 2015.; [314] A. González-Cárdenas and L. A. Paipilla-Pardo, “Misión para la Transformación del Campo : Síntesis y algunas reflexiones,” Revista Palmas, Bogotá, Colombia, pp. 57–78, 2015.; [315] P. A. Aremu, I. N. Kolo, A. K. Gana, and F. A. Adelere, “The Crucial Role of Extension Workers In Agricultural Technologies Transfer and Adoption,” Glob. Adv. Res. J. Food Sci. Technol., vol. 4, no. 2, pp. 14–18, 2015.; [316] K. Kuutti, T. Jokela, M. Nieminen, and P. Jokela, “Assessing Human-Centred Design Processes in Product Development by Using the INUSE Maturity Model,” IFAC Proc. Vol., vol. 31, no. 26, pp. 89–94, Sep. 1998, doi:10.1016/S1474-6670(17)40074-7.; [317] S. B. Azumah, S. A. Donkoh, and J. A. Awuni, “The perceived effectiveness of agricultural technology transfer methods: Evidence from rice farmers in Northern Ghana,” Cogent Food Agric., vol. 4, no. 1, pp. 1–11, 2018, doi:10.1080/23311932.2018.1503798.; [318] K. A. Mottaleb, “Perception and adoption of a new agricultural technology: Evidence from a developing country,” Technol. Soc., vol. 55, no. April, pp. 126–135, 2018, doi:10.1016/j.techsoc.2018.07.007.; [319] D. J. Mayhew, The Usability Engineering Lifecycle: A Practitioner’s Handbook for User Interface Design (Interactive Technologies), Primera. London, United Kingdom: Morgan Kaufmann Publishers, 1999.; [320] S. Merzouk, A. Cherkaoui, A. Marzak, and S. Nawal, “IoT methodologies: Comparative study,” Procedia Comput. Sci., vol. 175, pp. 585–590, 2020, doi:10.1016/j.procs.2020.07.084.; [321] V. Sachdeva and L. Chung, “Handling non-functional requirements for big data and IOT projects in Scrum,” in 2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence, Jan. 2017, pp. 216–221, doi:10.1109/CONFLUENCE.2017.7943152.; [322] B. Vogel, B. Peterson, and B. Emruli, “Prototyping for Internet of Things with Web Technologies: A Case on Project-Based Learning using Scrum,” in 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), Jul. 2019, pp. 300–305, doi:10.1109/COMPSAC.2019.10223.; [323] K. Rose, S. Eldridge, and L. Chapin, “La internet de las Cosas — Una breve reseña,” 2015. https://www.internetsociety.org/es/resources/doc/2015/iot-overview.; [324] O. Elijah, S. Member, T. Abdul Rahman, I. Orikumhi, C. Yen Leow, and M. Nour Hindia, “An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges,” IEEE INTERNET THINGS J., vol. 5, no. 5, 2018, doi:10.1109/JIOT.2018.2844296.; [325] ITU (International Telecommunication Union), “Overview of the Internet of Things,” 2015. http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=Y.2060.; [326] E. Oriwoh and M. Conrad, “Towards a Definition of the Internet of Things (IoT),” Int. J. Internet Things, vol. 4, no. 1, pp. 1–5, 2015.; [327] U. S. Department of Labors, “National Census of Fatal Occupational Injuries Summary,” 2021.; [328] Minciencias, “Documento de Política Nacional de Ciencia, Tecnología e Innovación N° 1602: Actores del Sistema Nacional de Ciencia, Tecnología e Innovación.,” pp. 6–9, 2018.; [329] J. N. Rodriguez and S. J. Camacho, “¿Quiénes son los campensinos colombianos hoy? Universidad, Ciencia y desarrollo. Universidad del Rosario,” Universidad, Ciencia y desarrollo. Universidad del Rosario. p. 1,2, 2013, [Online]. Available: http://www.urosario.edu.co/campesinos-colombianos/.; [330] A. C. Machado Silvia Botello M, “Serie de documentos de trabajo - La Agricultura Familiar en Colombia,” 2013, [Online]. Available: www.rimisp.org.; [331] M. Chiriboga, “Desafios de la pequeña agricultura familiar frente a la globalización,” Perspect. Rural., pp. 9–24, 1997.; [332] R. Chapman, T. Slaymaker, W. Paper, R. Chapman, and T. Slaymaker, “ICTs and Rural Development: Review of the Literature, Current Interventions and Opportunities for Action,” 2002.; [333] T. Havemann and V. Muccione, “Mechanisms for agricultural climate change mitigation incentives for smallholders. CCAFS Report no. 6.,” 2011. [Online]. Available: www.ccafs.cgiar. org.; [334] M. E. Londoño Escobar, A. M. Lozano Hurtado, O. Gómez Martínez, carlos A. Ramirez López, and J. Solano Castrillón, Prácticas sociales campesinas. El caso Monterrey Buga, Valle del Cauca - Colombia, Primera Ed. Bogotá, Colombia: Corporación Universitaria Minuto de Dios - UNIMINUTO, 2019.; [335] Centro de Innovación pública digital, “Tecnologías emergentes,” 2021. https://centrodeinnovacion.mintic.gov.co/es/blogs/tecnologias-emergentes.; [336] Vicepresidencia de Innovación y Transformación Digital and Grupo Bancolombia, “Internet de las Cosas: ¿cómo lo ha adoptado Colombia?,” 2018. https://www.grupobancolombia.com/wps/portal/empresas/capital-inteligente/tendencias/innovacion/iot-como-lo-ha-adoptado-colombia.; [337] M. Danquah, “Technology transfer, adoption of technology and the efficiency of nations: Empirical evidence from sub Saharan Africa,” Technol. Forecast. Soc. Change, vol. 131, no. December 2016, pp. 175–182, 2018, doi:10.1016/j.techfore.2017.12.007.; [338] D. J. Sánchez Preciado, B. Claes, and N. Theodorakopoulos, “Transferring intermediate technologies to rural enterprises in developing economies : A conceptual framework,” in Prometheus, Informa UK Limited.; [339] B. Biagini, L. Kuhl, K. S. Gallagher, and C. Ortiz, “Technology transfer for adaptation,” Nat. Clim. Chang., vol. 4, no. 9, pp. 828–834, 2014, doi:10.1038/nclimate2305.; [340] S. O. N. Somers and L. Stapleton, “A Human-Centred approach to e-Agricultural systems,” IFAC-PapersOnLine, vol. 48, no. 24, pp. 213–218, 2015, doi:10.1016/j.ifacol.2015.12.085.; [341] J. A. Sheikh, H. S. Dar, and F. J. Sheikh, “Usability Guidelines for Designing Knowledge Base in Rural Areas,” 2014, pp. 462–469.; [342] A. . Valdés Cuervo, Familia y Desarrollo. Intervenciones en terapia familiar. México: Manual Moderno, 2007.; [343] K. Prins, Proceso y producto. Un balance. Lima, Perú: Escuela para el desarrollo, 1996.; [344] FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura), Training of Farmers Programme South Asia. FAO Regional Office for Asia and the Pacific, 2011.; [345] M. E. Nogueira and M. Urcola, “La agricultura familiar en el marco de los programas de desarrollo rural del FIDA en el norte argentino (1991-2014),” Ager, vol. 2015, no. 19, pp. 7–44, 2015, doi:10.4422/ager.2015.01.; [346] C. J. Romera, F. E. Forero Suárez, and J. A. Ruiz Hernández, “Technology and design for rural development: A methodological proposal and a pilot experience in two Colombian municipalities,” Ager, vol. 2017, no. 23, pp. 27–57, 2017, doi:10.4422/ager.2017.03.; [347] RIMISP (Centro Latinoamericano para el Desarrollo Rural), “Misión para la transformación del campo. Estrategia de Implementación del Programa de Desarrollo Rural Integral con Enfoque Territorial,” Bogotá, Colombia, 2014. [Online]. Available: https://www.dnp.gov.co/programas/agricultura/Paginas/mision-para-la-transformacion-del-campo-colombiano.aspx.; [348] M. Docampo Rama, H. De Ridder, and H. Bouma, “Technology generation and age in using layered user interfaces,” Gerontechnology, vol. 1, no. 1, 2001, doi:10.4017/gt.2001.01.01.003.00.; [349] R. Sackmann and O. Winkler, “Technology generations revisited: The internet generation,” Gerontechnology, vol. 11, no. 4, pp. 493–503, 2013, doi:10.4017/gt.2013.11.4.002.00.; [350] M. Chesher and W. Skok, “Roadmap for successful information technology transfer for small businesses,” Proc. ACM SIGCPR Conf., pp. 16–22, 2000, doi:10.1145/333334.333338.; [351] P. R. Childs, Mechanical Design Engineering Handbook, Second Edi., vol. 1999, no. December. Oxford, United Kingdom: Elsevier Ltd., 2019.; [352] Y. Bai and Q. Bai, “Subsea Pipelines,” in Subsea Engineering Handbook, 2019, pp. 919–940.; [353] M. F. Maradei García and F. M. Espinel Correal, Ergonomía para el Diseño, Primera. Bucaramanga, Colombia: Universidad Industrial de Santander - Escuela de Diseño Industrial, 2009.; [354] R. Gacula Pineda, Technology in Culture: A Theoretical Discourse on Convergence in Human-Technology Interaction, no. May. 2014.; [355] K. Dorst and N. Cross, “Creativity in the design process: Co-evolution of problem-solution,” Des. Stud., vol. 22, no. 5, pp. 425–437, 2001, doi:10.1016/S0142-694X(01)00009-6.; [356] OMPI, “¿Qué es la Propiedad Intelectual ?,” p. 23, 2005, [Online]. Available: https://cerlalc.org/wp-content/uploads/documentos-de-interes/odai/ODAI_DOCUMENTOS_DE_INTERES_Que_es_la_propiedad_intelectual_V1.pdf.; [357] Universidad EAFIT, “Mecanismos de protección de la propiedad intelectual,” Propiedad Intelectual. https://www.eafit.edu.co/institucional/propiedad-intelectual/Paginas/mecanismos-de-proteccion.aspx.; [358] G. Oh, D. Kim, S. Kim, and S. Rhew, “A Quality Evaluation Technique of RFID Middleware in Ubiquitous Computing,” in 2006 International Conference on Hybrid Information Technology, Nov. 2006, pp. 730–735, doi:10.1109/ICHIT.2006.253690.; [359] V. Nassar, “Common criteria for usability review,” Work, vol. 41, pp. 1053–1057, 2012, doi:10.3233/WOR-2012-0282-1053.; [360] N. Maalel, E. Natalizio, A. Bouabdallah, P. Roux, and M. Kellil, “Reliability for Emergency Applications in Internet of Things,” in 2013 IEEE International Conference on Distributed Computing in Sensor Systems, May 2013, pp. 361–366, doi:10.1109/DCOSS.2013.40.; [361] C. Prehofer, “From the Internet of Things to Trusted Apps for Things,” in 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Aug. 2013, pp. 2037–2042, doi:10.1109/GreenCom-iThings-CPSCom.2013.381.; [362] N. Nikmehr and M. Doroodchi, “New paradigm in evaluating usability of E-learning system,” in 2008 International Conference on Innovations in Information Technology, Dec. 2008, pp. 347–351, doi:10.1109/INNOVATIONS.2008.4781683.; [363] S. Jimenez-Fernandez, P. de Toledo, and F. del Pozo, “Usability and Interoperability in Wireless Sensor Networks for Patient Telemonitoring in Chronic Disease Management,” IEEE Trans. Biomed. Eng., vol. 60, no. 12, pp. 3331–3339, Dec. 2013, doi:10.1109/TBME.2013.2280967.; [364] N. Bevan, “Measuring usability as quality of use,” Softw. Qual. J., vol. 4, no. 2, pp. 115–130, Jun. 1995, doi:10.1007/BF00402715.; [365] FAO, Guía para la implementación de Centros Demostrativos de Capacitación CDC con enfoque agroecológico. 2016.; [366] M. M. Zinnah, J. L. Compton, and A. A. Adesina, “Research-Extension-Farmer Linkages within the Context of the Generation, Transfer and Adoption of Improved Mangrove Swamp Rice Technology in West Africa.,” Q. J. Int. Agric., vol. 32, no. 2, pp. 201–214, 1993.; [367] J. W. Creswell and V. L. Plano Clark, Designing and Conducting Mixed methods Research, Tercera. USA: Sage Publishing, 2017.; [368] C. Narrod, D. Roy, and I. Food, “The Role of Public-Private Partnerships and Collective Action in Ensuring Smallholder Participation in High Value Fruit and Vegetable Supply Chains,” Role Public-Private Partnerships Collect. Action Ensuring Smallhold. Particip. High Value Fruit Veg. Supply Chain., no. 70, 2007, doi:10.2499/capriwp70.; [369] L. Ermakova, F. Bordignon, N. Turenne, and M. Noel, “Is the Abstract a Mere Teaser? Evaluating Generosity of Article Abstracts in the Environmental Sciences,” Front. Res. Metrics Anal., vol. 3, May 2018, doi:10.3389/frma.2018.00016.; [370] CEPAL (Comisión Económica para América Latina y el Caribe), Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, and IICA (Instituto Interamericano de Cooperación para la Agricultura), Perspectivas de la agricultura y del desarrollo rural en las Américas: una mirada hacia América Latina y el Caribe 2017-2018. San José, Costa Rica, 2017.; [371] H. Zhang, Y. Cai, and Z. Li, “Towards a typology of university technology transfer organizations in China: evidences from Tsinghua University,” Triple Helix, vol. 5, no. 1, 2018, doi:10.1186/s40604-018-0061-9.; [372] A. Li, “Technology transfer in China–Africa relation: myth or reality.” Transnational corporations review, pp. 183–195, 2016.; [373] C. N. A. Iris, “TIERRAS, AGROPRODUCCIÓN Y CULTIVOS ILÍCITOS EN COLOMBIA,” p. 35, 2019.; [374] A. J. Paz Cardona, “Un millón de hogares campesinos en Colombia tienen menos tierra que una vaca,” Apr. 18, 2018.; [375] Ministerio de Agricultura de Chile, “Nuevo Modelo para un Sistema de Extensión y Transferencia Tecnológica en el Sector Silvoagropecuario Chileno,” 2014.; [376] CGIAR, “Transforming agriculture and food innovation systems to win the race to zero - 1391948,” Nov. 17, 2017. https://globalmeet.webcasts.com/starthere.jsp?ei=1391948&tp_key=b17757b8fa (accessed Mar. 07, 2021).; [377] IICA (Instituto Interamericano de Cooperación para la Agricultura), “Elementos para una hoja de ruta conjunta. Evento 4. %7C Facebook,” Evento 4 del Ciclo de foros virtuales: Reducción de #BrechaDigital en las Zonas Rurales de América Latina y El Caribe: Hacia una revolución agrícola digital, Feb. 22, 2020. https://m.facebook.com/story.php?story_fbid=262820852158961&id=436831050034 (accessed Mar. 07, 2021).; [378] M. B. Hernández and J. M. Gómez, “Aplicaciones de Procesamiento de Lenguaje Natural,” Rev. Politécnica, vol. 32, no. 1, pp. 87–96, 2013.; [379] D. H. Flórez Martínez, A. Morales Castañeda, and C. P. Uribe Galvis, Megatendencias en investigación, desarrollo e innovación para el sector agropecuario colombiano: perspectivas, estrategias y visiones de futuro, vol. I. Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), 2018.; [380] FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura) and OCDE (Organización para la Cooperación y el Desarrollo Económicos), OCDE/FAO Perspectivas Agrícolas 2019-2028 - Enfoque Especial: America Latina. Roma: OECD Publishing, 2019.; [381] L. Boer and J. Donovan, “Provotypes for participatory innovation,” in Proceedings of the Designing Interactive Systems Conference on - DIS ’12, 2012, p. 388, doi:10.1145/2317956.2318014.; https://apolo.unab.edu.co/es/persons/rom%C3%A1n-eduardo-sarmiento-porras; http://hdl.handle.net/20.500.12749/19092; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co

  14. 14

    Popis souboru: application/pdf; application/octet-stream

    Relation: Casas Castañeda, Sara Lucía, Albornoz Balaguera, Carlos Alberto, Barrera Sanabria, Gareth (2005). Aplicación de la metodología de desarrollo ingenia y técnicas de web semántica en la implementación de un cuaderno electrónico de investigaciones. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB; BARRERA Sanabria Gareth, Rodríguez Buitrago Carolina. Aplicación de una metodología orientada a agentes en la implantación de un sistema de reserva de vuelos. Universidad Autónoma de Bucaramanga. Facultad de Ingeniería de Sistemas, 2001; BRAY, J. Paoli, C. M. Sperberg-McQueen, Nore Markup Language (XML) 1.0 (Second Edition). Disponible en: http://www.w3.org/TR/REC-xml.html W3C Recommendation 6 October 2000.; CASAS Castañeda Casas Castañeda Norma Judith, Quintanilla Diana Patricia. Tesis Diseño e implementación de un prototipo de comercio electrónico utilizando un paradigma orientado a agentes. Universidad Autónoma de Bucaramanga. Facultad de Ingeniería de Sistemas, 2002; CASTELFRANCHI, C. Guarantees for autonomy. En : Cognitive Agent Architecture. (1995). Citado por : IGLESIAS FERNÁNDEZ, Carlos Ángel. Definición de una metodología para el desarrollo de sistemas multiagente. España, 1998, 321 p. Tesis (Doctoral). Universidad Politécnica de Madrid. Departamento de Ingeniería de Sistemas Telemáticos.; CONNOLLY, F. van Harmelen, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein. DAML+OIL Reference Description. W3C Note 18 December 2001. Disponible en http://www.w3.org/TR/daml+oil-reference.; DEAN, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Language 1.0 Reference W3C Working Draft 29 July 2002. Disponible en http://www.w3.org/TR/owl-ref.; DECKER, S. Keith:Environment Centered Analysis and Design of Coordination Mechanisms. Informe. Department of Computer Science, University of Massachusetts. 1995; DIAZ Silva José Fabián, Murillo Anderson. Diseño e implementación de un prototipo de mercado virtual utilizando la tecnología de agentes. Universidad Autónoma de Bucaramanga. Facultad de Ingeniería de Sistemas, 2003.; ELLIOTTE Rusty Harold. XML Bible 3ra edición isbn: 076454986-3 February 2004; EURESCOM. MESSAGE: Methodology for engineering systems of software agents. Initial methodology. Technical Report P907-D1, EURESCOM. January 2000; EURESCOM. MESSAGE: Methodology for engineering systems of software agents (Final). Technical Report P907-TI1, EURESCOM. December 2001; FERBER, J. y Gutknecht, O.: A Meta-Model for the Analysis and Design of Organizations in Multi-Agent Systems. Actas de conferencia. Proceedings of the Third International Conference on Multi-Agent Systems (ICMAS98), IEEE CS Press. 1998.; GALLIERS, J. A theoretical framework for computer models of cooperative dialogue, acknowledging multiagent conflict. Tesis (PhD). Open University Uk. Citado por : IGLESIAS FERNÁNDEZ, Carlos Ángel. Definición de una metodología para el desarrollo de sistemas multiagente. 321 p. Tesis (Doctoral). Universidad Politécnica de Madrid. Departamento de Ingeniería de Sistemas Telemáticos. España, julio 1998; GARCIA Juan Carlos. Buscadores inteligentes de información basados en la tecnología de agentes móviles. Universidad Autónoma de Bucaramanga. Facultad de Ingeniería de Sistemas, 2001.; GEIST, Al. Design of The DOE2000 Electronic Notebook : The Electronic Notebook Architecture. Berkeley California. December 1997; GILBERT, N. 1-85728-305-8, UCL Press, London, Artificial Societies: the Computer Simulation of Social Life. February 1995; GOMEZ, J. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial. No.18, pp. 51-63. ISSN: 1137-3601. © AEPIA (http://www.aepia.dsic.upv.es/). Metodologías para el desarrollo de Sistemas multi-agente Jorge J. Gómez Sanz 2003; GUTTMAN, R. H. y A. G. Moukas The Knowledge Engineering Review, Cambridge University Press, 0269-8889, Editado por Simons Parsons y Adele E. Howe, "Agent-mediated electronic commerce: a survey", , 1998, 147-159.; HYACINTH, Nwana. Software agents: An overview [online]. Disponible en: http://labs.bt.com/proyects/agents/publish/papers/review.html [cited 25 august 2004]; IBM Agent Building and Learning Environment (ABLE). [online] Available from World Wide Web: [cited 15 february 2004]; IGLESIAS Fernández, Carlos Ángel et al. Analysis and design of multiagent systems using MAS – CommonKADS. Valladolid, España. (1999); 15 p.; JENNINGS, J. International Journal of Cooperative Information Systems, World Scientific Publishing Co., 0218-8430, Editado por M. P. Papazoglou, "Agent-based busines process management.", N. R. April 1996.; D’INVERNO, Mark y Michael Luck, 3-540-41975-6, Springer, Understanding Agent Systems. March 2001; JACOBSON, I., Booch, G. y Rumbaugh, J.: El Proceso Unificado de Desarrollo de Software. Libro completo. Addison Wesley. 303-3792000. January 2000; MALONE, T. W. and Crowston, K., The Interdisciplinary Study of Coordination, ACM Computing Survey, vol. 26, no. 1, pp. 87-119, Mar.1994; MARTINEZ Eduardo, Prieto William y Freddy Pico. Prototipo de aplicación de comercio electrónico utilizando la metodología Gaia al desarrollo de software orientado a agentes. Universidad Autónoma de Bucaramanga. Facultad de Ingeniería de Sistemas, 2002.; MYERS, James D., Elena S. Mendoza , Bonnie Hoopes. A collaborative electronic laboratory notebook , Pacific Northwest, National Laboratory PO Box 999 Richland, WA 99352 USA; MONTAGÚ Castro, María Clemencia, Vargas Mayorga, Jorge Leonardo. Tesis Aplicación de la metodología ingenias en la implentación de un prototipo de Supply Chain Manageme. Universidad Autónoma de Bucaramanga. Facultad de Ingeniería de Sistemas, 2004; NEWELL, A. and Simons, H. A., GPS: A program that simulates Human Thought, en Computers and Thought. Mc Graw Hill, 1963.; O. LASSILLA, O., R. R. Swick. Resource Description Framework (RDF) Model and Syntax Specification. W3C Recommendation 22 February 1999. Available at http://www.w3.org/TR/REC-rdf-syntax.; PERRY, Bruce W. Java Servlet & JSP Cookbook . Publisher : O'Reilly Pub Date : January 2004 ISBN : 0-596-00572-5 Pages : 746; RAO, A y M. Georgeff. Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference, Morgan Kaufmann, San Mateo, 1-55860-262-3, Editado por B. Nebel, C. Rich, y W. Swartout, "An abstract architecture for rational agents, 1992.; RICH, E. y Knight, K.: Artificial Intelligence. Libro completo. McGraw-Hill. 1990; ROSENSCHEIN, J and GENESERETH, M. Deals among rational agents. En : Proceedings of the ninth International join conference on artificial intelligent. (1985); RUSELL, S. y Norvig, P: Artificial Intelligence: a modern approach. Libro completo. Prentice Hall. 1995.; SYCARA, K., Klusch, M., idof, S., and Lu, J., Dynamic Service Matchmaking among Agents in Open Information Environments, Journal ACM SIGMOD Record, Special Issue on Semantic Interoperability in Global Information Systems, 1999; TIMBERNERS-LEE, J. Hendler, O Lassila. Fascinating facts about Tim Berners-Lee inventor of the World Wide Web. The Semantic Web 12-589-6587-AK25, http://www.ideafinder.com/history/inventors/berners-lee.htm Scientific American, May 2001; WAGNER G. Agent-Oriented Analysis and Design of Organizational Information Systems. In Proc. of Fourth IEEE International Baltic Workshop on Databases and Information Systems, Vilnius (Lithua-nia), May 2000.; Wim Coulier: Belgacom Project Leader & Responsible for Dissemination. Disponible en: http://www.eurescom.de/~public-webspace/P900-series/P907 May 23, 2000; WHITAKER, R.:Self-Organization, Autopoiesis, and Enterprises. ACM SIGGROUP. http://www.acm.org/siggroup/auto/Main.html; WOOLDRIDGE, Michael et al. 0-471-49691-X, Agent – oriented software engineering for Internet applications. An introduction to Multiagent Systems October 2002.; WOOLDRIDGE and N. R. Jennings. Agent theories, architectures, and languages: A survey. In M. Wooldridge and N. R. Jennings, editors, Intelligent Agents: Theories, Architectures, and Languages (LNAI Volume 890), Springer-Verlag: Heidelberg, Germany, Jan. 1995.; Workflow Management Coalition:The Workflow Management Coalition Specification: Workflow Management Coalition Terminology & Glossary. Informe. 1999; http://hdl.handle.net/20.500.12749/1325; reponame:Repositorio Institucional UNAB

  15. 15

    Popis souboru: pdf; application/pdf

    Relation: H. Y. Vivian-Ip, A. Abrishami, P. W. H. Peng, J. Wong, and F. Chung, “Predictors of Postoperative Pain and Analgesic Consumption: A Qualitative Systematic review”, Anesthesiology, vol. 111, no. 3, pp. 657–677, september 2009. https://doi.org/10.1097/ALN.0b013e3181aae87a.; O. L. Elvir-Lazo and P. F. White, “Postoperative pain management after ambulatory surgery: role of multimodal analgesia”, Anesthesiology Clinics, vol. 28, no. 2, pp. 217–224, june 2010. https://doi.org/10.1016/j.anclin.2010.02.011.; American Academy of Pain Medicine, “Get the facts on pain”. [Online]. Available at:http://www.painmed.org/patientcenter/facts-on-pain/.; P. J. Mathew and J. L. Mathew, “Assessment and management of pain in infants”,Postgraduate Medical Journal, vol. 79, no. 934, pp. 438–43, august 2003. http://dx.doi.org/10.1136/pmj.79.934.438.; M. Clarett, “Escalas de evaluación de dolor y protocolo de analgesia en terapia intensiva”,Clínica y Maternidad Suizo Argentina Instituto Argentino de Diagnóstico y Tratamiento, Buenos Aires, Argentina, 2012.; L. J. Duhn and J. M. Medves, “A systematic integrative review of infant pain assessmenttools”, Advance in Neonatal Care, vol. 4, no. 3, pp. 126–140, june 2004. 10.1016/j.adnc.2004.04.005.; R. Slater, A. Cantarella, L. Franck, J. Meek, and M. Fitzgerald, “How Well Do Clinical PainAssessment Tools Reflect Pain in Infants?” PLoS Medicine, vol. 5, no. 6, p. e129, june 2008. https://doi.org/10.1371/journal.pmed.0050129.; N. C. de Knegt. et al., “Behavioral Pain Indicators in People With Intellectual Disabilities: ASystematic Review”, The Journal of Pain, vol. 14, no. 9, pp. 885–896, september 2013. https://doi.org/10.1016/j.jpain.2013.04.016.; G. Zamzmi. et al., “An approach for automated multimodal analysis of infants’ pain”, in 201623rd International Conference on Pattern Recognition (ICPR), pp. 4148–4153, 2016.; V. Guruswamy, “Assessment of pain in nonverbal children”, Association of PaediatricAnaesthetists of Great Britain and Ireland, vol. APA Leeds, no. 41st Annual Scientific Meeting in Leeds, p. 33, 2014.; Registered Nurses’ Association of Ontario, Assessment and management of pain, vol. 3.Toronto, Canada, 2013.; R. Srouji, S. Ratnapalan, and S. Schneeweiss, “Pain in Children: Assessment andNonpharmacological Management”, International Journal of Pediatrics, july 2010. https://doi.org/10.1155/2010/474838.; K. Brand and A. Al-Rais, “Pain assessment in children”, Anaesthesia and Intensive CareMedicine, vol. 20, no. 6, pp. 314–317, june 2019. https://doi.org/10.1016/j.mpaic.2019.03.003.; D. Freund and B. N. Bolick, “Assessing a Child’s Pain”, AJN, American Journal of Nursing,vol. 119, no. 5, pp. 34–41, may 2019. 10.1097/01.NAJ.0000557888.65961.c6.; M. Pérez, G. A. Cavanzo Nisso, and F. Villavisán Buitrago, “Sistema embebido de detecciónde movimiento mediante visión artificial ", Visión Electrónica, vol. 12, no. 1, pp. 97-101, 2018. https://doi.org/10.14483/22484728.15087.; J. F. Pantoja Benavides, F. N. Giraldo Ramos, Y. S. Rubio Valderrama, and V. M. RojasLara, “Segmentación de imágenes utilizando campos aleatorios de Markov", Visión Electrónica, vol. 4, no. 2, pp. 5-16, 2010. https://doi.org/10.14483/22484728.432.; J. Forero C., C. Bohórquez, and V. H. Ruiz, “Medición automatizada de piezas torneadasusando visión artificial", Visión Electrónica, vol. 7, no. 2, pp. 36-44, 2013. https://doi.org/10.14483/22484728.5507.; S. Brahnam, C.-F. Chuang, R. S. Sexton, and F. Y. Shih, “Machine assessment of neonatalfacial expressions of acute pain”, Decision Support System, vol. 43, no. 4, pp. 1242–1254, august 2007. https://doi.org/10.1016/j.dss.2006.02.004.; A. Beltramini, K. Milojevic, and D. Pateron, “Pain Assessment in Newborns, Infants, andChildren”, Pediatric. Annals, vol. 46, no. 10, pp. e387–e395, october 2017. https://doi.org/10.3928/19382359-20170921-03.; X. Cong, J. M. McGrath, R. M. Cusson, and D. Zhang, “Pain Assessment and Measurementin Neonates: An Ipdated Review”, Advances in Neonatal Care, vol. 13, no. 6, pp. 379–395, december 2013. 10.1097/ANC.0b013e3182a41452.; C. L. von Baeyer and L. J. Spagrud, “Systematic review of observational (behavioral)measures of pain for children and adolescents aged 3 to 18 years”, Pain, vol. 127, no. 1–2, pp. 140–150, january 2007. https://doi.org/10.1016/j.pain.2006.08.014.; J. Zieliński, M. Morawska-Kochman, and T. Zatoński, “Pain assessment and managementin children in the postoperative period: A review of the most commonly used postoperative pain assessment tools, new diagnostic methods and the latest guidelines for postoperative pain therapy in children”, Advances in Clinical and Experimental Medicine, vol. 29, no. 3, pp. 365–374, febrary 2020. 10.17219/acem/112600.; C. Greco and C. Berde, “Pain Management in Children”, Gregory’s Pediatric Anesthesia,Wiley, pp. 929–954, 2020. https://doi.org/10.1002/9781119371533.ch37.; G. Zamzmi, R. Kasturi, D. Goldgof, R. Zhi, T. Ashmeade, and Y. Sun, “A Review ofAutomated Pain Assessment in Infants: Features, Classification Tasks, and Databases,” IEEE Reviews in Biomedical. Engineering, vol. 11, pp. 77–96, noviembre 2017. 10.1109/RBME.2017.2777907.; T. Voepel-Lewis, J. Zanotti, J. A. Dammeyer, and S. Merkel, “Reliability and Validity of theFace, Legs, Activity, Cry, Consolability Behavioral Tool in Assessing Acute Pain in Critically Ill Patients”, American Journal of Critical Care, vol. 19, no. 1, pp. 55–61, january 2010. https://doi.org/10.4037/ajcc2010624.; G. Guillen, “Digital Image Processing with Python and OpenCV”, Sensor Projects withRaspberry Pi, Springer, pp. 97–140, 2019. https://doi.org/10.1007/978-1-4842-5299-4_5.; Momtahina, R. Hossain, M. M. Rahman, and O. A. Tania, “Image Capturing and AutomaticFace Recognition”, Dhaka, Bangladesh, 2019.; O. Subea and G. Suciu, “Facial Analysis Method for Pain Detection”, InternationalConference on Future Access Enablers of Ubiquitous and Intelligent Infrastructures, pp. 167–180, 2019. https://doi.org/10.1007/978-3-030-23976-3_17.; D. E. King, “Dlib-ml: A Machine Learning Toolkit”, The Journal of Machine LearningResearch, vol. 10, pp. 1755–1758, december 2009. 10.1145/1577069.1755843.; K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”,Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. [Online]. Available at: https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html.; O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition”, Proceedings of theBritish Machine Vision Conference (BMVC), vol. 1, no. 3, p. 6, september 2015. https://dx.doi.org/10.5244/C.29.41.; S. J. Pan and Q. Yang, “A Survey on Transfer Learning”, IEEE Transactions on knowledgeand data engineering, vol. 22, no. 10, pp. 1345-1359, october 2010. 10.1109/TKDE.2009.191.; F. Zhuang. et al., “A Comprehensive Survey on Transfer Learning”, Proceedings of theIEEE, pp. 1-34, july 2019. 10.1109/JPROC.2020.3004555.; H.-W. Ng, V. D. Nguyen, V. Vonikakis, and S. Winkler, “Deep Learning for EmotionRecognition on Small Datasets using Transfer Learning”, Proceedings of the 2015 ACM on International Conference on Multimodal Interaction (ICMI ’15), pp. 443–449, november 2015. https://doi.org/10.1145/2818346.2830593.; W. Ding et al., “Audio and face video emotion recognition in the wild using deep neuralnetworks and small datasets”, Proceedings of the 18th ACM International Conference on Multimodal Interaction (ICMI ’1), pp. 506–513, october 2016. https://doi.org/10.1145/2993148.2997637.; K. Zhang, L. Tan, Z. Li, and Y. Qiao, “Gender and smile classification using deepconvolutional neural networks”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. [Online]. Available at: https://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/html/Zhang_Gender_and_Smile_CVPR_2016_paper.html.; V. Campos, A. Salvador, B. Jou, X. Giró-i-Nieto and B. Jou, “Diving Deep into Sentiment:Understanding Fine-tuned CNNs for Visual Sentiment Prediction”, Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia (ASM '15), pp. 57-62, october 2015. https://doi.org/10.1145/2813524.2813530.; H. Ding, S. K. Zhou, and R. Chellappa, “FaceNet2ExpNet: Regularizing a Deep FaceRecognition Net for Expression Recognition”, 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 118–126, june 2017. 10.1109/FG.2017.23.; F. Wang et al., “Regularizing face verification nets for pain intensity regression,” in 2017IEEE International Conference on Image Processing (ICIP), pp. 1087–1091, september 2017. 10.1109/ICIP.2017.8296449.; M. S. Hossain and G. Muhammad, “Emotion recognition using deep learning approach fromaudio–visual emotional big data,” Information Fusion, vol. 49, pp. 69–78, september 2019. https://doi.org/10.1016/j.inffus.2018.09.008.; “Una herramienta nueva de aprendizaje automático predice con exactitud el cáncer depróstataIndustriaMedimaging.es.”[Online].Available:https://www.medimaging.es/industria/articles/294777132/una-herramienta-nueva-de-aprendizaje-automatico-predice-con-exactitud-el-cancer-de-prostata.html. [Accessed: 06-Nov-2020].; N. A. Ram, “Clasificadores supervisados del cáncer de próstata a partir de imágenes deresonancia magnética en magnetic resonance images in T2 sequences .,” no. June, pp. 19–22, 2019.; Ramírez; N, Aparicio; E, Gómez; E, “SUPERVISED CLASSIFIERS OF PROSTATECANCER. A GEOMETRIC STUDY ON MAGNETIC RESONANCE IMAGES T2 WEIGHTED (T2W), BY DIFFUSION (DWI-ADC),” Congr. Int. electrónica, Control y telecomunicaciones, vol. 51, no. 1, p. 51, 2018.; J. C. Batlle et al., “Diagnóstico del cáncer de próstata mediante espectroscopia deresonancia magnetica endorectal,” Arch. Esp. Urol., vol. 59, no. 10, pp. 953–963, 2006.; "Diferenciación entre prostatitis y cáncer de próstata utilizando el sistema PI-RADS %7C.”[Online]. Available: https://cbseram.com/2016/06/22/diferenciacion-entre-prostatitis-y-cancer-de-prostata-utilizando-el-sistema-pi-rads/. [Accessed: 06-Nov-2020]; T. Hambrock et al., “Prospective assessment of prostate cancer aggressiveness using 3-Tdiffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort,” Eur. Urol., vol. 61, no. 1, pp. 177–184, 2012.; 7]“Cáncer de Próstata - SEOM: Sociedad Española de Oncología Médica © 2019.” [Online].Available: https://seom.org/info-sobre-el-cancer/prostata?showall=1. [Accessed: 06-Nov-2020].; A. B. Rosenkrantz and S. S. Taneja, “Radiologist, be aware: Ten pitfalls that confound theinterpretation of multiparametric prostate MRI,” American Journal of Roentgenology, vol. 202, no. 1. pp. 109–120, Jan-2014.; "The Radiology Assistant : Prostate Cancer - PI-RADS v2.” [Online]. Available:https://radiologyassistant.nl/abdomen/prostate/prostate-cancer-pi-rads-v2. [Accessed: 05-Nov-2020].; P. Guzmán F and A. Messina, “Cáncer de próstata, el problema del diagnóstico ¿Es laresonancia multiparamétrica de próstata la solución?,” Rev. Chil. Radiol., vol. 25, no. 2, pp. 60–66, 2019.; I. Robles, Identificacion de Biomarcadores Predictivos ,Pronosticos y de Respuesta alCancer de Prostata. 2018.; J. I. Díaz, “Matemáticas y Ciencias de la Salud,” pp. 65–67, 2005.; R. Cuocolo et al., “Machine learning applications in prostate cancer magnetic resonanceimaging,” Eur. Radiol. Exp., vol. 3, no. 1, 2019.; S. L. Goldenberg, G. Nir, and S. E. Salcudean, “A new era: artificial intelligence andmachine learning in prostate cancer,” Nat. Rev. Urol., vol. 16, no. 7, pp. 391–403, 2019.; S. Yoo, I. Gujrathi, M. A. Haider, and F. Khalvati, “Prostate Cancer Detection using DeepConvolutional Neural Networks,” Sci. Rep., vol. 9, no. 1, pp. 1–10, 2019.; I. Simon, C. R. Pound, A. W. Partin, J. Q. Clemens, and W. A. Christens-Barry, “Automatedimage analysis system for detecting boundaries of live prostate cancer cells,” Cytometry, vol. 31, no. 4, pp. 287–294, 1998.; S. Sarkar and S. Das, “A Review of Imaging Methods for Prostate Cancer Detection,”Biomed. Eng. Comput. Biol., vol. 7s1, p. BECB.S34255, 2016.; Christian, R., Juan, F. O., y-Alejandro, M. C. (2018). Detección precoz de cáncer depróstata: Controversias y recomendaciones actuales. Revista Médica Clínica Las Condes, 29(2), 128–135. https://doi.org/10.1016/j.rmclc.2018.02.013.; Hambrock, T., Hoeks, C., Hulsbergen-Van De Kaa, C., Scheenen, T., Futterer, J.,Bouwense, S., . Barentsz, J. (2012). Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. European Urology, 61(1), 177–184. https://doi.org/10.1016/j.eururo.2011.08.042.; Nguyen, K., Sabata, B., Jain, A. K. (2012). Prostate cancer grading: Gland segmentationand structural features. Pattern Recognition Letters, 33(7), 951–961. https://doi.org/10.1016/j.patrec.2011.10.001.; Ng, Y.-M. H. Diagnosis of sheet metal stamping processes base on 3-D thermal energydistribution. IEEE Transactions on automation science and engineering. Pp, 22-30. Jan. 2007.; Prakash Surya. 3D mapping of surface temperature using thermal stereo. 9th InternationalConference on Control, Automation, Robotics and Vision. ICARCV 2006. Pp, 1- 4. 5-8 Dec. 2006.; Fan, Y., X. Li, et al. (2009). "3D numerical simulation on temperature field and flow field inthe tuyere of blast furnace (BF) based on the fluent software." Tezhong Zhuzao Ji Youse Hejin/Special Casting and Nonferrous Alloys 29(4): 324-326.; Cornacchia, T. P. M., E. B. Las Casas, et al. (2010). "3D finite element analysis on estheticindirect dental restorations under thermal and mechanical loading." Medical and Biological Engineering and Computing: 1-7.; Chethan, Y. D., Ravindra, H. V., gowda, Y. T., & Bharath Kumar, S. (2015). Machine Visionfor Tool Status Monitoring in Turning Inconel 718 using Blob Analysis. In Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2015.07.124.; Siddhpura, A., & Paurobally, R. (2013). A review of flank wear prediction methods for toolcondition monitoring in a turning process. International Journal of Advanced Manufacturing Technology, 65(1–4), 371–393. https://doi.org/10.1007/s00170-012-4177-1.; Azimi, S. M., Britz, D., Engstler, M., & Fritz, M. (2018). Advanced Steel MicrostructureClassification by Deep Learning Methods. Scientifics Reports, 8, 1–14.; Kesireddy, A., & Mccaslin, S. (2015). Using Mathematica to Accurately Approximate thePercent Area of Grains and Phases in Digital Metallographic Images. Lecture Notes in Electrical Engineering, 313. https://doi.org/10.1007/978-3-319-06773-5.; Kesireddy, A., & McCaslin, S. (2015). Application of Image Processing Techniques to theIdentification of Phases in Steel Metallographich Specimens. Lecture Notes in Electrical Engineering, 312. https://doi.org/10.1007/978-3-319-06764-3.; E. J. Guerra Monterroza, “Reconocimiento de primitivas 3D, usando autocorrelación yANFIS", Visión Electrónica, vol. 1, no. 1, pp. 56-61,2008. https://revistas.udistrital.edu.co/index.php/visele/article/view/251.; Forero C., J., Bohórquez, C., & Ruiz, V. H. (2013). Medición automatizada de piezastorneadas usando visión artificial. Visión electrónica, 7(2), 36-44.https://doi.org/10.14483/22484728.5507.; Forero C., J., Gaitán, D., & Martínez, H. (2018). Recolector autónomo de bolas de tenismediante vision artificial. Visión electrónica, 7(2), 36-44. https://doi.org/10.14483/issn.2248-4728.; S. Andreo, «Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water,» Iaea Trs, Austria, 2000.; Sociedad Española de Oncología Médica SEOM, 2020. [En línea]. Available: https://seom.org/. [Último acceso: 03 2020].; Instituto Nacional de Salud, Observatorio Nacional de Salud, «Primer Informe ONS, aspectos relacionados con la frecuencia de uso de los servicios de salud, mortalidad y discapacidad en Colombia,» Imprenta Nacional de Colombia, Bogotá D.C., 2011.; F. SALVAT, J. M. FERNÁNDEZ-VAREA y J. SEMPAU, PENELOPE-2006: A code system for Monte Carlo simulation of electron and photon transport, Barcelona: OECD, 2006.; Computerized Imaging Reference Systems CIRS, Manual Tissue Simulation & Phantom Technology, Norfolk, Virginia, 2017.; A. Brosed, Fundamentos de física médica, vol. 1, Madrid: ADI, 2011.; H. Andreo, Fundamentals of ionizing radiation dosimetry, 2017.; Agostinelli, «Simulation toolkit, Nuclear instruments and methods in physics,» sciencedirect, vol. 506, nº 3, pp. 250- 303, 2003.; Ministerio de Salud y Protección Social, «https://www.minsalud.gov.co,» 25 Marzo 2020. [En línea]. Available: https://www.minsalud.gov.co/salud/publica/PET/Documents/Circular%2019.pdf.pdf. [Último acceso: 8 11 2020].; Asociación Colombiana de Infectologia, «Consenso colombiano de atención, diagnóstico y manejo de la infección,» Revista de la Asociación Colombiana de Infectologia, vol. 24, nº 3, pp. 20-21, 2020.; L. Gamboa O, «Atlas de mortalidad por cancer en Colombia,» Instituto Nacional de Cancerologia, vol. 1, nº 4, 2017.; G. de Fernicola, «Arsénico en el agua de bebida: un problema de salud pública,» Revista Brasileira de Ciências Farmacêuticas, vol. 39, nº 4, pp. 365-372, 2003.; J. C. Ramirez, «Tomografía computarizada por rayos X: fundamentos y actualidad,» Revista Ingeniería Biomédica, vol. 2, nº 4, 2008.; l.R.Raudales Díaz, «IMÁGENES DIAGNÓSTICAS: CONCEPTOS Y GENERALIDADES,» Revista Facultad Ciencias Médicas, vol. 1, nº 1, pp. 35-43, 2014.; A. P. Montenegro, «Repositorio Pontificia Universidad Javeriana,» 19 07 2019. [En línea]. Available: https://repository.javeriana.edu.co/handle/10554/44080. [Último acceso: 14 11 2020].; A. Amer, T. Marchant, J. Sykes, J. Czajka y C. Moore,, «Imaging doses from the Elekta Synergy X-ray cone beam CT system,» The British Journal of Radiology, vol. 80, nº 954, p.476–482, 2007.; CSN, «Interaccion de la radiación con la materia,» 2013. [En línea]. Available:http://csn.ciemat.es/MDCSN/recursos/ficheros_md/133100241_2411200913036.pdf.; A. Brosed, Fundamentos De Fisica Medica, vol. 2, ADI, 2012.; E. B. Podgorsak, Radiaton Physics for Medical Physicists, 2 ed., Springer, 2010.; CIRS, «IMRT Thorax Phantom,» [En línea]. Available: www.cirsinc.com. [Último acceso: 22 02 2020].; A. Castillo, «Caracteristicas del sistema de IGRT de ELEKTA,» Grupo CROASA, Granada.; Elekta AB, «Elekta Synergy Digital accelerator for advanced IGRT,» 2017. [En línea]. Available: https://www.elekta.com/radiotherapy/treatment-delivery-systems/elekta- synergy/. [Último acceso: 14 11 2020].; C. David, «Estudio de la viabilidad de las imágenes de CBCT para planeación de tratamientos,» Pontificia Universidad Javeriana, Bogotá, 2020.; J. Allison, «Geant4 Developments and Applications,» IEEE TRANSACTIONS ON NUCLEAR SCIENCE, vol. 53, 2006.; J DeMarco, «A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms,» PHYSICS IN MEDICINE ANDBIOLOGY, nº 50, p. 3989–4004, 2005.; O. Apostolakis, «The Geant4 Simulation Toolkit and Applications For the Geant4 Collaboration,» NATO Science for Peace and Security Series B: Physics and Biophysics, 2008.; C. Giraldo, «Desarrollo y aplicaciones de GEANT4 para radioterapia y microdosimetria en detectores y circuitos integrados,» 04 2011. [En línea]. Available: https://idus.us.es/handle/11441/15762. [Último acceso: 14 11 2020].; Geant4 Collaboration, Book For Application Developers, Geant4 Collaboration, 2017.; P. Montenegro, «Repositorio Pontificia Universidad Javeriana,» 19 07 2019. [En línea].Available: https://repository.javeriana.edu.co/handle/10554/44080. [Último acceso: 14 10 2020].; M. Mostazo Caro, «Interacción Radiación-Materia Conceptos B ásico,» de Técnicas Experimentales Avanzadas, 2013, pp. 4-6.; C. Vidal Silva and L. Pavesi Farriol, “Desarrollo De Un Sistema De Adquisición Y TratamientoDe Señales Electrocardiográficas,” Rev. Fac. Ing. - Univ. Tarapacá, vol. 13, no. 1, pp. 39–46, 2005, doi:10.4067/s0718-13372005000100005.; C. Correa Flórez, R. Bolaños Ocampo, and A. Escobar, “Análisis de esquemas de filtradoanálogo para señales ecg.,” Sci. Tech., vol. 5, no. 37, pp. 103–108, 2007.; Tortora, Gerald. Derrickson, Bryan. 2006. Principios de Anatomía y Fisiología. 11ª. Edición.Editorial Médica Panamericana. México DF. México. Cap 20.; M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep learning for cybersecurity intrusion detection: Approaches, datasets, and comparative study,” J. Inf. Secur. Appl., vol. 50, p. 102419, 2020, doi:10.1016/j.jisa.2019.102419.; G. Zeng, Y. He, Z. Yu, X. Yang, R. Yang, and L. Zhang, “Preparation of novel high copperions removal membranes by embedding organosilane-functionalized multi-walled carbon nanotube,” J. Chem. Technol. Biotechnol., vol. 91, no. 8, pp. 2322–2330, 2016, doi:10.1002/jctb.4820.; T. Park, Introduction to digital signal processing. Singapore: World Scientific, 2010.; M. O. Alzate, “Clasificación de Arritmias Cardíacas usando Transformada Waveleth - tesispregrado.pdf,” 2003.; A. D. E. Maquina and C. O. N. Interfaz, “Mediante Aprendizaje De Máquina Con Interfaz aUsuario Model of Dynamic Classification of Arrhythmias Cardiac By,” Leonardo, vol. 16, pp. 86–95, 2006.; A. Behrad and K. Faez, “New method for QRS-wave recognition in ECG using MART neuralnetwork,” ANZIIS 2001 - Proc. 7th Aust. New Zeal. Intell. Inf. Syst. Conf., no. November, pp. 291–296, 2001, doi:10.1109/ANZIIS.2001.974093.; M. Mitrokhin, A. Kuzmin, N. Mitrokhina, S. Zakharov, and M. Rovnyagin, “Deep learningapproach for QRS wave detection in ECG monitoring,” 11th IEEE Int. Conf. Appl. Inf. Commun. Technol. AICT 2017 - Proc., pp. 1–3, 2019, doi:10.1109/ICAICT.2017.8687235.; I. A. Tarmizi, S. S. N. A. S. Hassan, U. K. Ngah, and W. P. W. Ibrahim, “A journal of realpeak recognition of electrocardiogram (ECG) signals using neural network,” 2012 2nd Int. Conf. Digit. Inf. Commun. Technol. its Appl. DICTAP 2012, pp. 504–510, 2012, doi:10.1109/DICTAP.2012.6215429.; M. Llamedo and J. P. Martínez, “Clasificación de ECG basada en Características de Escala, Dirección y Ritmo,” Caseib 2009, pp. 2–5, 2009.; E. D. A. Botter, C. L. Nascimento, and T. Yoneyama, “A neural network with asymmetricbasis functions for feature extraction of ECG P waves,” IEEE Trans. Neural Networks, vol. 12, no. 5, pp. 1252–1255, 2001, doi:10.1109/72.950154.; S. H. El-Khafif and M. A. El-Brawany, “Artificial Neural Network-Based Automated ECGSignal Classifier,” ISRN Biomed. Eng., vol. 2013, pp. 1–6, 2013, doi:10.1155/2013/261917.; N. Maglaveras, T. Stamkopoulos, K. Diamantaras, C. Pappas, and M. Strintzis, “ECGpattern recognition and classification using non-linear transformations and neural networks: A review,” Int. J. Med. Inform., vol. 52, no. 1–3, pp. 191–208, 1998, doi:10.1016/S1386-5056(98)00138-5.; C. Rose-Gómez and M. Serna-Encinas, “Procesamiento del Electrocardiograma para laDetección de Cardiopatías,” Researchgate.Net, no. May, pp. 3–6, 2015, [Online]. Available: http://enc2014.cicese.mx/Memorias/paper_19.pdf%5Cnhttps://www.researchgate.net/profile/Cesar_Rose/publication/277324231_Procesamiento_del_Electrocardiograma_para_la_Deteccion_de_Cardiopatias/links/5567b77d08aeab77721eac2b.pdf.; S. Jiménez Serrano, “Clasificación automática de registros ECG para la detección deFibrilación Auricular y otros ritmos cardíacos,” 2018, [Online]. Available: https://riunet.upv.es:443/handle/10251/111113.; S. G. Artis, R. G. Mark, and G. B. Moody, “Detection of atrial fibrillation using artificial neuralnetworks,” Comput. Cardiol., pp. 173–176, 1992, doi:10.1109/cic.1991.169073.; J. Wang and W. Lu, “A method of electrocardiogram classification based on neural network,”Chinese J. Biomed. Eng., vol. 14, no. 4, pp. 306–311, 1995.; M. Hammad, A. Maher, K. Wang, F. Jiang, and M. Amrani, “Detection of abnormal heartconditions based on characteristics of ECG signals,” Meas. J. Int. Meas. Confed., vol. 125, pp. 634–644, 2018, doi:10.1016/j.measurement.2018.05.033.; T. H. Chen, Z. Yu, L. Q. Han, P. Y. Guo, and X. Y. He, “The sorting method of ECG signalsbased on neural network,” 2nd Int. Conf. Bioinforma. Biomed. Eng. iCBBE 2008, pp. 543–546, 2008, doi:10.1109/ICBBE.2008.132.; Taylor GJ. 150 Practice ECGs: Interpretation and Review. Blackwell Science, 2002. ISBN0-632-04623-6.; Committee on Engineering Education, "Educating the Engineer of 2020: AdaptingEngineering Education to New the Century", NAE, pp. 1-209, 2010. Available at: http://www.nap.edu/catalog/11338.html.; World Health Organization, “World health statistics overview 2019: monitoring health for theSDGs, sustainable development goals”, Geneva: World Health Organization; pp. 1-28, 2019 (WHO/DAD/2019.1). License: CC BY-NC-SA 3.0 IGO.; World Health Organization, “Human resources for medical devices, the role of biomedicalengineers”. Geneva: World Health Organization; pp.: 1-240, 2017. License: CCBY-NC- SA 3.0 IGO.; J. Sappey and S. Relf, “Digital Technology Education and its Impact on Traditional AcademicLists and Practice”. J. Univ. Teach. & Lear. Pract. 7(1), 7(3), 2007.; J. Candle-Valdés, “The challenges of the Cuban new university”. Paper presented at thePedagogy 2007, Havana, Cuba, pp. 1-14, feb. 2007.; K. M. Galotti, et al., “To New Way of Assessing Ways of Knowing: The Attitudes TowardsThinking and Learning Survey (ATTLS)”. Sex Lists, 40(9/10), 745-766, 1999.; Ministerio de Educación Superior, Documento Ejecutivo Plan de Estudio: IngenieríaBiomédica, MES, La Habana, Cuba, págs. 1-10, 15 julio, 2017.; T. T. Bekele, “Motivation and Satisfaction in Internet-Supported Learning Environments: ToReview”. Educ. Tech. & Soc., 13(2), 116-127, 2009.; S. N. Karagiannis, “The Conflicts Between Science Research and Teaching in HigherEducation: An Academic's Perspective”. J. Teach. and Lear. Higher Educ., 21(1), 75-83, 2010.; R. Garrote and T. Pettersson. “The use of learning management systems: A LongitudinalCase Study”. Eleed, 8. 2011.; R. Hernández-Sampieri y otros, “Metodología de la Investigación. 6ta Ed., Ed. McGraw-HillEducation. México D. F., págs. 1- 634, 2014.; R. N. Strickland, Image-Processing Techniques for Tumor Detection, Boca Raton, Florida: CRC Press, 2002.; J. Thirumaran y S. Shylaja, «Medical Image Processing – An Introduction,» International Journal of Science and Research (IJSR), vol. 4, nº 11, pp. 1197-1199., 2015.; F. Ballester y J. M. Udías, «Física Nuclear y Medicina,» Rev Esp Fís, vol. 22, nº 1, pp. 29- 36, 2008.; P. Mildenberger, M. Eichelberg y E. Martin, «Introduction to the DICOM standard,» European Radiology, vol. 12, p. 920–927, 2002.; C. E. J. Kahn, J. A. Carrino, M. J. Flynn, D. J. Peck y S. C. Horii, «DICOM and Radiology: Past, Present, and Future,» TECHNOLOGY TALK, vol. 4, nº 9, pp. 652-657, 2007.; A. P. Bhagat y M. Atique, «Medical images: Formats, compression techniques and DICOM image retrieval a survey,» 2012 International Conference on Devices, Circuits and Systems (ICDCS), pp. 172-176, 2012.; D. P. Hanson y R. A. Robb, «Chapter 45 - Three-Dimensional Visualization in Medicine and Biology,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 755-784.; El Hospital, Reconstrucción 3D de la anatomía humana a partir de imágenes médicas obtenidas por ayuda diagnóstica, 2016.; J. M. Selman R., «Aplicaciones clínicas del procesamiento digital,» Revista Médica Clínica Las Condes, vol. 15, nº 2, 2004.; M. Solaiyappan, «Chapter 44 - Visualization Pathways in Biomedicine,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 729-753.; J. Rogowska, «Chapter 5 - Overview and Fundamentals of Medical Image Segmentation,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 73- 90.; A. Escobar Díaz y L. A. Calderón, «Modelo tridimensional de extremidad inferior basado en imágenes de resonancia magnética,» Visión electrónica, vol. 3, nº 1, pp. 4-15, 2009.; DICOM Library & medDream, «Dicom Library (Modality CT),» 2011. [En línea]. Available: https://www.dicomlibrary.com/.; L. Atanelov, S. A. Stiens, and M. A. Young, “History of physical medicine and rehabilitationand its ethical dimensions”, AMA journal of ethics, vol. 17, no. 6, pp. 568–574, 2015. DOI:10.1001/journalofethics.2015.17.6.mhst1-1506 URL: https://journalofethics.ama-assn.org/article/history-physical-medicine-and-rehabilitation-and-its-ethical-dimensions/2015-06; M. C. Garcia and T. Vieira, “Surface electromyography: Why, when and how to use it”,Revista andaluza de medicina del deporte, vol. 4, no. 1, pp.17–28, 2011. URL: https://www.elsevier.es/es-revista-revista-andaluza-medicina-del-deporte-284-articulo-surface-electromyography-why-when-how-X1888754611201253.; J. C. Guerrero Pupo, I. Amell Muñoz, and R. Cañedo Andalia, “Tecnología, tecnologíamédica y tecnología de la salud: algunas consideraciones básicas”, Acimed, vol. 12, no. 4, pp. 1–1, 2004. URL: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1024-94352004000400007.; J. A. A. Londoño, E. C. Bravo, and J. F. C. García, “Aplicación de tecnologías derehabilitación robótica en niños con lesión del miembro superior”, Revista Salud UIS, vol. 49, no. 1, pp. 103–114, 2017. DOI: http://dx.doi.org/10.18273/revsal.v49n1-2017010 URL: http://www.scielo.org.co/scielo.php?pid=S012108072017000100103&script=sci_abstract&tlng=es.; F. Salvuci and R. Kohanoff, Tecnologías de rehabilitación. Wiley-Interscience, 2016.; A. Merlo and I. Campanini, “Technical aspects of surface electromyography for clinicians”,The open rehabilitation journal, vol. 3, no. 1, 2010. DOI:10.2174/1874943701003010098 URL: https://benthamopen.com/ABSTRACT/TOREHJ-3-98.; F. J. Juan, “Utilidad de la electromiografía de superficie en rehabilitación” URL:https://www.researchgate.net/profile/Francisco_Juan-Garcia/publication/316588275_UTILIDAD_DE_LA_ELECTROMIOGRAFIA_DE_SUPERFICIE_EN_REHABILITACION/links/5905b86c4585152d2e957860/UTILIDAD-DE-LA-ELECTROMIOGRAFIA-DE-SUPERFICIE-EN-REHABILITACION.pdf.; J. W. Meklenburg, S. K. Patrick, and S. D. Jung, “Surface electromyogram simulator formyoelectric prosthesis testing,” 2010. URL: https://digitalcommons.wpi.edu/mqp-all/1402/.; Merletti Roberto, and Dario Farina. Surface electromyography: physiology, engineering, andapplications. Piscataway, NJ: IEEE Press, 2016, online. ISBN: 9781119082934, DOI:10.1002/9781119082934.; E. Guzmán, G. Méndez, “Electromiografía en las Ciencias de la Rehabilitación”, SaludUninorte, Vol 3, no. 3, pp 753-765, 2018.; W. A. Marrison, “Apparatus for converting radiant energy to electromechanical energy”, U.S.,Patent 2919358, Dec. 29, 1959. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/e7/ce/c2/f8074398301da9/US2919358.pdf.; D. M. Chapin, C. S. Fuller and G. L. Pearson, “Solar energy converting apparatus”, U.S.,Patent US2780765, Feb. 5, 1957. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/36/ee/af/d21dacd3884160/US2780765.pdf.; H. E. Hall, “Solar motor”, U.S., Patent US3296469, Ene. 3, 1967. [En línea]. Disponible en:https://patentimages.storage.googleapis.com/7e/58/b3/09cf657161e51f/US3296469.pdf.; B. Sepp, “Rotating advertising device”, U.S., Patent US3325930, Ene. 20, 1967. [En línea].Disponible en: https://patentimages.storage.googleapis.com/2e/14/de/57d7f191d20af2/US3325930.pdf.; Y. Nakamats, “Apparatus for converting radiant energy such as light or heat directly intoturning force”, Japón, Patent US4634343, Ene. 6, 1987. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/78/4e/a0/414270d9bad0e0/US4634343.pdf.; H. Izawa, “Solar Energy Motor”, Japan. Patent 4751413, Jun. 14, 1988. [En línea]. Disponibleen: https://patentimages.storage.googleapis.com/3f/8b/a3/9e59494a100d1e/US4751413.pdf.; G. J. Shea, “Solar energy magnetic resonance motor”, U.S., Patent US5408167, Abr. 18,1995. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/77/c4/f7/c12b523e12bfdc/US5408167.pdf.; A. Coty, “Automatically switched photovoltaic motor”, Francia, Patent WO2010082007A3,Jul. 22, 2010. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/36/8f/25/4c5399bdb634a4/WO2010082007A3.pdf.; W. Amrhein, H. Mitterhofer, E. Marth, G. Bramerdorfer, “Aufbau eines Mendocino-Motors”,Ene 2018 [En línea]. Disponible en: http://www.bis0uhr.de/projekte/magnet/projektseminar.pdf.; T. Kornher, M. Noebels, J. Roeller, S. Schwieger, F. Weller, “Mendocino-Motor”, Feb 2018[En línea]. Disponible en: https://ap.physik.uni-konstanz.de/projektpraktikum/PP2011/Bericht_Mendocinomotor.pdf.; Z. Novák, M. Hofreiter. “Mendocino motor and a different approaches to its control”,Proceedings of 15th International Conference MECHATRONIKA, Prague, pp. 1-6, 2012. [En línea]. Disponible en: https://ieeexplore.ieee.org/document/6415075.; C.M. Estupiñán, J.P. Puerto-Reyes, M. A. Beltrán, “Desarrollo de un motor mendocinocomo herramienta de enseñanza en la aplicación de energías renovables y generación de alternativas energéticas”, Revista Loggin, vol. 1, no. 1, pp. 78-89, 2017.; K. Berger, et al, “Solar Electric Motor on Superconducting Bearings: Design and Tests inLiquid Nitrogen" en IEEE sobre aplicaciones de superconductividad, vol. 27, no. 4, pp. 1-5, Jun. 2017, https://doi.org/10.1109/TASC.2016.2642140.; Fawzi Boufatah. “Réalisation d’un moteur à énergie solaire sur paliers supraconducteurs”,2016, hal-01824246. [En línea]. Disponible en: https://hal.univ-lorraine.fr/hal-01824246/document.; W. K. Lane, “Light emitting unit for continuous light production”, U.S., PatentUS20130141900A1, Jun. 6, 2013. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/f6/89/60/242f9861427fb1/US20130141900A1.pdf.; Supermagnete, “Anillo imán”, Nov, 2019. [En línea]. Disponible en: https://www.supermagnete.de/eng/ring-magnets-neodymium/ring-magnet-25mm-4.2mm-5mm_R-25-04-05-N.; Supermagnete, “Disco magnético autoadhesivo” noviembre de 2019. [En línea]. Disponibleen: https://www.supermagnete.de/eng/adhesive-magnets-neodymium/disc-magnet-self-adhesive-25mm-2mm_S-25-02-FOAM?group=discs.; Supermagnete, “Bloque imán” diciembre de 2019. [En línea]. Disponible en: https://www.supermagnete.de/eng/block-magnets-neodymium/block-magnet-40mm-20mm-10mm_Q-40-20-10-N.; H. Polo, A. Valencia, J. Roldan, J.Diaz, “Evaluación de la seguridad estructural de unsistema de seguimiento solar en Colombia”, Colombia, Universidad Distrital Francisco José de Caldas, Oct. 06, 2013. [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/5522.; D. Gomez, J. Leal, H. Montaña, A. Sanchez, “Detección de posición a partir de la mediciónde un campo magnético”, Colombia, Universidad Distrital Francisco José de Caldas, Ene. 01, 2013. [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/4397.; A. Nataraj and B. Ramasamy, "Modeling and FEA analysis of axial flux PMG for low speedwind turbine applications," 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), pp. 1-5, Kollam, 2017. doi:10.1109/TAPENERGY.2017.8397290.; M. Carrillo, C. Claudio y A. Mayorga, “Caracterización de un generador de flujo axial paraaplicaciones en energía eólica,” Revista de Ciencia y Tecnología, INGENIUS, N°19, pp. 19-28, 2018. https://doi.org/10.17163/ings.n19.2018.02.; S. S. Laxminarayan, M. Singh, A. H. Saifee and A. Mital, “Design, Modeling and Simulationof Variable Speed Axial Flux Permanent Magnet Wind Generator”, ELSEVIER, Sustainable Energy Technologies and Assessments, India, 2017. https://doi.org/10.1016/j.seta.2017.01.004.; G. Ahmad and U. Amin, “Design, Construction and Study of Small-Scale Vertical Axis WindTurbine based on a Magnetically Levitated Axial Flux Permanent Magnet Generator”, ELSEVIER, Renewable Energy, 2016. https://doi.org/10.1016/j.renene.2016.08.027.; M. Castillo García, “Diseño Electromagnético de un Generador Eléctrico para Turbina Eólicade 100 kW”, trabajo de fin de grado, Universidad Politécnica de Madrid, Madrid, España, 2017. http://oa.upm.es/49261/1/TFG_MONTANA_CASTILLO_GARCIA.pdf.; C. F. González Velázquez, “Optimización de Banco de Pruebas y Sistema de Monitoreo deAerogenerador de Baja Potencia”, trabajo de fin de tecnólogo, Centro de Ingeniería y Desarrollo Industrial, Santiago de Querétaro, 2017. http://cidesi.repositorioinstitucional.mx/jspui/handle/1024/269.; J. Kappatou, G. Zalokostas and D. Spytatos, “3-D FEM Analysis, Prototyping and Tests ofan Axial Flux Permanent-Magnet Wind Generator,” Energies, Greece, 2017. https://doi.org/10.3390/en10091269.; R. D. Chavan and V. N. Bapat, "The study of different topologies of Axial Flux PermanentMagnet generator," IEEE, 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), pp. 202-206, Pune, 2016. doi:10.1109/ICACDOT.2016.7877579.; T. Asefi, J. Faiz and M. A. Khan, “Design of Dual Rotor Axial Flux Permanent MagnetGenerators with Ferrite and Rare-Earth Magnets”, IEEE, 18th International Power Electronics and Motion Control Conference (PEMC), Budapest, 2018. doi:10.1109/EPEPEMC.2018.8522004.; Yicheng Chen, Pragasen Pillay and A. Khan, "PM wind generator comparison of differenttopologies," IEEE; Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting., pp. 1405-1412 vol.3, Seattle, WA, USA, 2004. doi:10.1109/IAS.2004.1348606.; R. Rusmana, A. A. Melkias, N. Nurrohman and I. M. W. Kastawan, “Voltage GenerationCharacteristics of an Axial Flux Permanent Magnet (AFPM) Generator”, IOP Conference Series: Materials Science and Engineering, ICIEVE, Indonesia, 2019. doi:10.1088/1757-899X/830/4/042019; I. M. W. Kastawan and Rusmana, “Voltage Generation of Three-Phase Double SidedInternal Stator Axial Flux Permanent Magnet (AFPM) Generator”, IOP Conference Series: Materials Science and Engineering, 1st Annual Applied Science and Engineering Conference, Indonesia, 2017, doi:10.1088/1757-899X/180/1/012105.; H. Gör and E. Kurt, “Preliminary Studies of a New Permanent Magnet Generator (PMG)with the Axial and Radial Flux Morphology”, ELSEVIER, ScienceDirect, Turkey, 2016. https://doi.org/10.1016/j.ijhydene.2015.12.195.; H. Gor and E. Kurt, “Waveform Characteristics and Losses of a New Double Sided Axialand Radial Flux Generator”, ELSEVIER, ScienceDirect, Turkey, 2015. https://doi.org/10.1016/j.ijhydene.2015.12.172.; A. Habib, H. Che, N. Rahim, M. Tousizadeh and E. Sulaiman, “A fully coreless Multi-StatorMulti-Rotor (MSMR) AFPM generator with combination of conventional and Halbach magnet arrays,” Alexandria Engineering Journal, vol n. 59, Issue 2, pp 589-600, April 2020. https://doi.org/10.1016/j.aej.2020.01.039.; N. Georgiev, “Study of Three-Phase Axial Flux Generators”, IEEE, 20th InternationalSymposium on Electrical Apparatus and Technologies (SIELA), Bourgas, 2018. doi:10.1109/SIELA.2018.8447093.; E. Celik, H. Gör, N. Öztürk and E. Kurt, “Application of Artificial Neural Network to EstimatePower Generation and Efficiency of a New Axial Flux Permanent Magnet Synchronous Generator”, ELSEVIER, ScienceDirect, Turkey, 2017. https://doi.org/10.1016/j.ijhydene.2017.01.168.; M. R. Minaz and M. Celebi, “Design and Analysis of a New Axial Flux Coreless PMSG withThree Rotors and Double Stators”, ELSEVIER, Results in Physics, Turkey, 2016. https://doi.org/10.1016/j.rinp.2016.10.026.; M. Dranca, M. Chirca and S. Breban, “Comparative Design Analysis of Axial FluxPermanent Magnet Direct-Drive Wind Generators”, IEEE, The 11st International Symposium on Advanced Topics in Electrical Engineering, Technical University of Cluj-Napoca, Romania, 2019. doi:10.1109/ATEE.2019.8724928.; N. E. Lastra, “Diseño y Construcción de un Generador de Flujo Axial con ImanesPermanentes de Bajo Costo para Aplicaciones Eólicas”, ResearchGate, 2019, https://www.researchgate.net/publication/336071436_Diseno_y_Construccion_de_un_Generador_de_Flujo_Axial_con_Imanes_Permanentes_de_Bajo_Costo_para_Aplicaciones_Eolicas.; A. Rasekh, P. Sergeant and L. Vierendeels, “Fully Predictive Heat Transfer CoefficientModeling of an Axial Flux Permanent Magnet Synchronous Machine with Geometrical Parameters of the Magnets”, ELSEVIER, Applied Thermal Engineering, Ghent University, Belgium, 2016. https://doi.org/10.1016/j.applthermaleng.2016.09.019.; M. Irfan, R. F. Ariyanto, L. Syafaah, A. Faruq and N. Subeki, “Stator Slotted Design of AxialFlux Permanent Magnet Generator for Low-Speed Turbine”, IOP Conference Series: Materials Science and Engineering, ICEAT, Indonesia, 2020. doi:10.1088/1757-899X/821/1/012027.; H. Polinder, “2 - Principles of electrical design of permanent magnet generators for directdrive renewable energy systems,” Woodhead Publishing Limited, Delft University of Technology, pp. 30-50, The Netherlands, 2013. doi:10.1533/9780857097491.1.30.; V. N. Antipov, A. D. Grozov and A. V. Ivanova, “Design and Analysis of a New Axial FluxPermanent Magnet Synchronous Generator for Wind”, IOP Conference Series: Materials Science and Engineering, International Scientific Electric Power Conference, Russia, 2019. doi:10.1016/j.rinp.2016.10.026.; M.M. Radulescu, S. Breban and M. Chirca, “Novel topologies of low-speed axial-fluxpermanent- magnet micro-wind generator,” The 18 th National Conference on Electrical Drives, CNAE 2016, Acta Electrotechnica, vol. 57, n° 3-4, Special Issue, 2016. doi:10.4283/JMAG.2014.19.3.273.; B. J. Chalmers and E. Spooner, "An axial-flux permanent-magnet generator for a gearlesswind energy system," in IEEE Transactions on Energy Conversion, vol. 14, no. 2, pp. 251-257, June 1999. doi:10.1109/60.766991.; A. R. Dehghanzadeh, V. Behjat and M. R. Banaei, “Dynamic Modeling of Wind TurbineBased Axial Flux Permanent Magnetic Synchronous Generator Connected to the Grid with Switch Reduced Converter”, ELSEVIER, Ain Shams Engineering Journal, Azarbaijan Shahid Madani University, Iran, 2015. https://doi.org/10.1016/j.asej.2015.11.002.; N. Radwan-Praglowska, D. Borkowski and T. Wegiel, "Model of coreless axial fluxpermanent magnet generator," 2017 International Symposium on Electrical Machines (SME), pp. 1-6, Naleczow, 2017. doi:10.1109/ISEM.2017.7993568.; S. Khan, S. Amin and S. S. Hussain Bukhari, “Design and Comparative PerformanceAnalysis of Inner Rotor and Inner Stator Axial Flux Permanent Magnet Synchronous Generator for Wind Turbine Applications”, IEEE, International Conference on Computing-iCoMET, Sukkur IBA University, Pakistan, 2019. doi:10.1109/ICOMET.2019.8673537.; L. Wei, T. Nakamura and K. Imai, “Development and Optimization of Low-Speed and High-Efficiency Permanent Magnet Generator for Micro Hydro-Electrical Generation System”, ELSEVIER, Renewable Energy, Kyoto University, Japan, 2019. https://doi.org/10.1016/j.renene.2019.09.049.; M. Ardestani, N. Arish and H. Yaghobi, “A New HTS Dual Stator Linear Permanent MagnetVernier Machine with Halbach Array for Wave Energy Conversion”, ELSEVIER, Physyca C: Superconductivity and its Applications, Semman University, Iran, 2019. https://doi.org/10.1016/j.physc.2019.1353593.; P. Khatri and X. Wang, “Comprehensive Review of a Linear electrical Generator for OceanWave Energy Conversion”, IET Renewable Power Generation, IET, Vol. 14, Lss. 6, pp. 949-958, February, 2020. doi:10.1049/iet-rpg.2019.0624.; O. S. Muñoz Muñoz, “Dimensionamiento electromagnético de un Generador Lineal para laConversión de Energía Undimotriz de Acuerdo a las Características del Océano Pacífico Colombiano”, trabajo de fin de grado, Universidad del Valle, Colombia, 2020.; C. García Saiz, “Diseño, Dimensionado y Simulación de un Generador Lineal para elDesarrollo de una Boya de Generación de Energía Undimotriz”, trabajo de fin de grado, Universidad de Cantabria, España, 2015. https://repositorio.unican.es/xmlui/handle/10902/7332.; A. García Villalmanzo, “Diseño de un Motor Lineal de Reluctancia Autoconmutado conImanes Permanentes”, trabajo de fin de grado, Universidad Rovira I Virgili, Tarragona, 2017. http://deeea.urv.cat/public/PROPOSTES/pub/pdf/2459pub.pdf.; A. Shiri and A. Shoulaie, “End Effect Braking Force Reduction in High-Speed Single-SidedLinear Induction Machine”, ELSEVIER, Energy Conversion and Management, Iran University of Science and Technology, Iran, 2012. https://doi.org/10.1016/j.enconman.2011.11.014.; X. Chen, S. Zheng, J. Li, G. T. Ma and F. Yen, “A Linear Induction Motor with a CoatedConductor Superconducting Secondary”, ELSEVIER, Physyca C: Superconductivity and its Applications, Southwest Jiaotong University, China, 2017. https://doi.org/10.1016/j.physc.2018.04.002.; SS. Rathore, S. Mishra, M. K. Paswan and Sanjay, “A Review on Design and Developmentof Free Piston Linear Generators in Hybrid Vehicles”, IOP Conference Series: Materials Science and Engineering, ICCEMME, India, 2019. doi:10.1088/1757-899X/691/1/012053.; Y. Gao, S. Shao, H. Zou, M. Tang, H. Xu and C. Tian, “A Fully Floating System for WaveEnergy Converter with Direct-Driven Linear Generator”, ELSEVIER, Energy, Beijing, China, 2015. https://doi.org/10.1016/j.energy.2015.11.072.; J. F. Fortes, L. M. Ferraz and I. E. Chabu, “Optimized Double Sided Linear Generator forWave Energy in Sao Paulo’s Coast”, 7th International Conference on Ocean Energy (ICOE), Polytechnic School of University of Sao Paulo, France, 2018. https://www.icoe-conference.com/publication/optimized-double-sided-linear-generator-for-wave-energy-in-sao-paulo-s-coast/.; V. Boscaino, G. Cipriani, V. Di Dio, V. Franzitta and M. Trapanense, “Experimental Testand Simulations on a Linear Generator-Based Prototype of a Wave Energy Conversion System Designed with a Reliability-Oriented Approach”, MDPI, Sustainability, University or Palermo, 2017. doi:10.3390/su9010098.; O. Farrok, M. R. Islam, Y. G. Guo and J. G. Zhu, “Design and Analysis of a NovelLightweight Translator Permanent Magnet Linear Generator for Oceanic Wave Energy Conversion”, IEEE, 2015. doi:10.1109/TMAG.2017.2713770.; K. Cruz, F. Dator, J. Ong, N. Bumanlag and M. C. Pacis, “Harnessing of Wave Energy usingAxially Magnetized Linear Generator with Data Logger using Gizduino Microcontroller”, IOP Conference Series: Journal of Physics: Conference Series, CEEPE, Mapua University, Philippines, 2019. doi:10.1088/1742-6596/1304/1/012013.; A. Tapia-Hernández, M. Ponce-Silva, N. Mondragón-Escamilla y L. Hernández-González,“Impacto de la Geometría en el Efecto Fin de Generadores Lineales”, Información Tecnológica, Vol.27, No. 4, pp. 133-138, México, Agosto, 2016. http://dx.doi.org/10.4067/S0718-07642016000400014.; P. Naderi, M. Heidary and M. Vahedi, “Performance Analysis of Ladder-Secondary-LinearInduction Motor with Two Different Secondary Types using Magnetic Equivalent Circuit”, ELSEVIER, ISA Transactions, Shahid Beheshti University, Iran, 2020. https://doi.org/10.1016/j.isatra.2020.03.013.; Y. Xu, X. Xue, Y. Wang and M. Ai, “Performance Characteristics of Compressed Air-Driven-Free-Piston Linear Generator (FPLG) System – A Simulation Study”, ELSEVIER, Applied Thermal Engineering, 2019. https://doi.org/10.1016/j.applthermaleng.2019.114013.; J. Xi, Z. Dong, P. Liu and H. Ding, “Modeling and Identification of Iron-less PMLSM EndEffects for Reducing Ultra-Low-Velocity Fluctuations of Ultra-precision Air Bearing Linear Motion Stage”, ELSEVIER, Precision Engineering, Shanghai Jiaotong University, China, 2017. https://doi.org/10.1016/j.precisioneng.2017.01.016.; X. Luo, C. Zhang, S. Wang, E. Zio and X. Wang, “Modeling and Analysis of Mover Gaps inTubular Moving-Magnet Linear Oscillating Motors”, ELSEVIER, Chinese Journal of Aeronautics, Chinese Society of Aeronautics ans Astronautics & Beihang University, China, 2017. https://doi.org/10.1016/j.cja.2017.11.008; K. S. Rama Rao, T. Sunderan and M. Ref’at Adiris, “Performance and Design Optimizationof Two Model Based Wave Energy Permanent Magnet Linear Generators”, ELSEVIER, Renewable Energy, 2016. https://doi.org/10.1016/j.renene.2016.07.019.; M. F. M Naafi, T. Ibrahim, N. M. Nor and M. A. Firdaus bin M. Hamim, “Design and Modellingof a Portable Pico Linear Generator for Wave Energy Conversion System”, Applied Mechanics and Materials, Vol. 785, pp. 300-304, Malaysia, 2015. https://doi.org/10.4028/www.scientific.net/AMM.785.300.; W. Rentería Palacios, “Diseño y Evaluación Electromagnética de un Motor Síncrono Linealde Imanes Permanentes en Disposición Halbach”, trabajo de fin de máster, Universidad Autónoma de Occidente, Colombia, 2018. https://hdl.handle.net/10614/10454.; J. Kim, J. Y. Kim and J. B. Park, “Design and Optimization of a 8kW Linear Generator for aDirect-Drive Point Absorber”, IEEE, Yonsei University, Seoul, Korea, 2013. doi:10.23919/OCEANS.2013.6741125.; W. Li, T.W. Ching and K.T. Chau, “Design and Analysis of a New Parallel-Hybrid-ExcitedLinear Vernier Machine for Oceanic Wave Power Generation”, ELSEVIER, Applied Energy, China, 2017. https://doi.org/10.1016/j.apenergy.2017.09.061.; L. Huang, J. Liu, H. Yu, R. Qu, H. Chen and H. Fang, “Winding Configuration andPerformance Investigation of a Tubular Superconducting Flux-Switching Linear Generator”, IEEE, Transactions on Applied Superconductivity, Vol. 25, No. 3, 2015. doi:10.1109/TASC.2014.2382877.; X. Liu, H. Yu, Z. Shi, T. Xia and M. Hu, “Electromagnetic-Fluid-Thermal Field Calculationand Analysis of a Permanent Magnet Linear Motor”, ELSEVIER, Applied Thermal engineering, Southeast University, China, 2017. https://doi.org/10.1016/j.applthermaleng.2017.10.066.; 288; CREG - Comisión de Regulación de Energía y Gas, «Regulación Aplicable al Biogás,» Comisión de Regulación de Energía y Gas, 2009.; O. Harker, «Presentación del proyecto - Prototipo de Sistema de generación de energía eléctrica a partir de residuos sólidos,» Colciencias, Fusagasugá, 2019.; I. Vera, J. Martínez, M. Estrada y A. Ortiz, «Potencial de generación de biogás y energía eléctrica Parte I: excretas de ganado bovino y porcino,» Ingeniería Investigación y Tecnología, vol. 15, nº 3, pp. 429-436, 2014. Doi: https://doi.org/10.1016/S1405- 7743(14)70352-X.; I. D. B. Sierra, «Actualización del Plan de Gestión Integral de Residuos Sólidos PGIRS de Fusagasugá,» Alcaldía de Fusagasugá, Fusagasugá, 2017.; L. D. Romero, «EL ESPECTADOR,» Tratar las basuras, lucha contrarreloj, 18 Junio 2015. [En línea]. Available: https://www.elespectador.com/noticias/bogota/tratar-basuras-lucha- contrarreloj-articulo-567135. [Último acceso: 13 abril 2020].; J. Niemczewska y G. Kolodziejak, «Landfill Gas Energy Technologies,» Instytut Nafty I Gazu, Cracovia, 2010. Disponible: https://www.globalmethane.org/Data/1022_LFG-Handbook.pdf.; R. Bove y P. Lunghi, «Electric power generation from landfill gas using traditional,» Energy Conversion and Management, vol. 47, p. 11, 2006. Doi: https://doi.org/10.1016/j.enconman.2005.08.017.; G. Blanco, E. Santalla, V. Córdoba y A. Levy, «Generación de electricidad a partir de biogás capturado de residuos sólidos urbanos: Un análisis teórico-práctico,» División de Energía: Banco Interamericano de Desarrollo, Buenos Aires, 2017. Disponible: https://publications.iadb.org/publications/spanish/document/Generación-de-electricidad- a-partir-de-biogás-capturado-de-residuos-sólidos-urbanos-Un-análisis-teórico- práctico.pdf.; Cogenera Mexico, «COGENERA MEXICO,» 2012. [En línea]. Available: http://www.cogeneramexico.org.mx/menu.php?m=77. [Último acceso: 5 Junio 2020].; ICONTEC, «Norma Técnica Colombiana GTC-24 "Gestión Ambiental. Residuos Sólidos. Guía para la separación en la fuente".,» Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), 2009.; Universidad de Cundinamarca, «Anexo 1. Protocolo para el manejo y pretratamiento de los RSO de la Plaza de Mercado del municipio de Fusagasugá.,» Anexos convocatoria Colciencias 829 - 2018 , Fusagasugá , 2020.; A. Andrade, A. Restrepo y J. Tibaquirá, «Estimación de biogás de relleno sanitario, caso de estudio: Colombia,» Entre ciencia e ingeniería, vol. 12, pp. 40-47, 2018. Doi: http://dx.doi.org/10.31908/19098367.3701.; Aqualimpia Engineering , «Aqualimpia,» [En línea]. Available:https://www.aqualimpia.com/biodigestores/biogas-purificacion/. [Último acceso: 22 05 2020].; W. Lema, «DESOTEC Actived Carbon,» 14 05 2014. [En línea]. Available: https://www.desotec.com/es/carbonologia/casos/eliminaci-n-del-sulfuro-de-hidr-geno-en- el-biog-s-parte-1. [Último acceso: 2020].; COLCIENCIAS, «Presentación del proyecto - Prototipo de Sistema de generación de energía eléctrica a partir de residuos sólidos,» Fusagasugá, 2019.; “El papel de la ciencia y la tecnología en la sociedad de conocimiento,” OCyT. https://www.ocyt.org.co/el-papel-de-la-ciencia-y-la-tecnologia-en-la-sociedad-de conocimiento/ (accessed Oct. 27, 2020).; A. Kapoor, S. I. Bhat, S. Shidnal, and A. Mehra, “Implementation of IoT (Internet of Things) and Image processing in smart agriculture,” in 2016 International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), Bengaluru, India, Oct. 2016, pp. 21–26, doi:10.1109/CSITSS.2016.7779434.; J. Zhou, D. Xiao, and M. Zhang, “Feature Correlation Loss in Convolutional Neural Networks for Image Classification,” in 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, Mar. 2019, pp. 219–223, doi:10.1109/ITNEC.2019.8729534.; T. Treebupachatsakul and S. Poomrittigul, “Bacteria Classification using Image Processing and Deep learning,” in 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), JeJu, Korea (South), Jun. 2019, pp. 1–3, doi:10.1109/ITC-CSCC.2019.8793320.; S. Dutta Gupta and A. K. Pattanayak, “Intelligent image analysis (IIA) using artificial neural network (ANN) for non-invasive estimation of chlorophyll content in micropropagated plants of potato,” Vitro Cell. Dev. Biol. - Plant, vol. 53, no. 6, pp. 520–526, Dec. 2017, doi:10.1007/s11627-017-9825-6.; A. M. Moreno-Jiménez, S. Loza-Cornejo, and M. Ortiz-Morales, “Efecto de luz LED sobresemillas de Capsicum annuum L. var. serrano,” vol. 17, no. 3, p. 7, 2017.; A. Rojas, “Flora Urbana Del Área Metropolitana De Bucaramanga,” Innovaciencia Fac.Cienc. Exactas Físicas Nat., vol. 5, no. 1 S1, Dec. 2017, doi:10.15649/2346075X.454.; A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with DeepConvolutional Neural Networks,” in Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–1105.; Y. A. Arévalo Ortega, S. R. Corredor Vargas y G. A. Higuera Castro, «Análisis forense con herramientas de hacking en dispositivos android,» Visión Electrónica, vol. 13, nº 1, pp. 162-177, 2019.; L. iyuan y H. Wenfeng, «Development of Puzzle Game for IOS Platform Based on Unity3D,» de 3rd International Conference on Applied Computing and Information Technology/2nd International Conference on Computational Science and Intelligence (ACIT-CSI), 2015.; A. Lima y E. A. da Costa, «Experimental Approach of the Asymptotic Computational Complexity of Shaders for Mobile Devices with OpenGL ES,» de Brazilian Symposium on Computer Games and Digital Entertainment, 2014.; B. J. Cox, The objective-C environment: past, present, and future, 1987.; G. Bournoutian y A. Orailoglu, «On-device objective-C application optimization framework for high-performance mobile processors,» de Design, Automation & Test in Europe Conference & Exhibition (DATE), 2014.; R. Rawlings, «bjective-C: an object-oriented language for pragmatists,» de Colloquium on Applications of Object-Oriented Programming, 1989.; G. Song, S. Ren, D. Zhang, K. Liu, Y. Sun y X. A. Wang, «Research on War Strategy Games on Mobile Phone based on Cocos2d-JS,» de 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2015.; S. Guozhi, R. Shuxia, Z. Dakun, L. Kunliang, S. Yumeng y A. W. Xu, «Research on War Strategy Games on Mobile Phone,» 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 151-155, 2015.; B. A. Brady, A. K. Jones y I. S. Kourtev, «Efficient CAD development for emerging technologies using Objective-C and Cocoa,» de International Conference on Electronics, Circuits and Systems, 2004, 2004.; C. W. Cho, C. P. Hong, J. C. Piao, Y. K. Lim y S. D. Kim, «Performance optimization of 3D applications by OpenGL ES library hooking in mobile devices,» de 13th International Conference Computer and Information Science (ICIS), 2014 IEEE/ACIS , 2014.; J. C. Piao, C. W. Cho, C. G. Kim, B. Burgstaller y S. D. Kim, «An Adaptive LOD Setting Methodology with OpenGL ES Library on Mobile Devices,» de International Conference on Convergence and Security (ICITCS), 2014.; F. A. Manrique Suarez, L. C. Velásquez Rodríguez y G. M. Tarazona Bermúdez, «Estado del arte sobre aplicaciones móviles: caso de estudio enfocado a estudiantes universitarios en Bogotá, Colombia,» Visión Electrónica, vol. 11, nº 2, pp. 279-288, 2017.; R. Besas, R. O. Atienza, T. Tai y R. Cruz, «An implementation of a structured and highly engaging learning environment on educational games for elementary education,» de IT in Medicine and Education (ITME), 2011.; C. Carter, Q. Mehdi y T. Hartley, «Navigational techniques to improve usability and user experience in RPG games,» de 17th International Conference on Computer Games (CGAMES), 2012.; C. Le Marc, J. P. Mathieu, M. Pallot y S. Richir, «Serious gaming: From learning experience towards User Experience,» de International Technology Management Conference (ICE), 2010.; S. F. Hsiao, S. Y. Li y K. H. Tsao, «Low-power and high-performance design of OpenGL ES 2.0 graphics processing unit for mobile applications,» de International Conference on Digital Signal Processing (DSP) , 2015.; S. F. Hsiao, P. H. Wu, C. S. Wen y L. Y. Chen, «Design of a programmable vertex processor in OpenGL ES 2.0 mobile graphics processing units,» de International Symposium on VLSI Design, Automation, and Test (VLSI-DAT), 2013.; X. Zhao y X. Huang, «A general solution of script-based fragment animation,» de 6th IEEE International ConferenceSoftware Engineering and Service Science (ICSESS), 2015.; L. Wang, «Design and Implementation of Four Arithmetic Operations Learning Games in Primary Mathematics Based on cocos2d-js,» 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE), pp. 595-598, 2018.; M. P. A. Balayan, V. V. B. Conoza, J. M. M. Tolentino, R. C. Solamo y R. P. Feria, «On evaluating skillville: An educational mobile game on visual perception skills. In Information, Intelligence, Systems and Applications,» de The 5th International Conference IISA 2014,, 2014.; B. Cassidy, G. Stringer y M. H. Yap, «Mobile Framework for Cognitive Assessment: Trail Making Test and Reaction Time Test,» de Computer and Information Technology (CIT), 2014.; Y. Lu, W. Gao y F. Wu, «Efficient background video coding with static sprite generation and arbitrary-shape spatial prediction techniques,» Transactions on Circuits and Systems for Video Technology, vol. 13, nº 5, pp. 394-405, 2013.; Cocos2D-x, «ARCHITECTURE OVERVIEW,» [En línea]. Available: http://www.cocos2d-x.org/wiki/Engine_Architecture. [Último acceso: 14 02 2016].; Y. Lu, Y. Liu y S. Dey, «loud mobile 3D display gaming user experience modeling and optimization by asymmetric graphics rendering,» IEEE Journal of Selected Topics in Signal Processing, vol. 9, nº 3, pp. 517-532, 2015.; S. Arefin Riffat, F. Harun y T. Hassan, «An Interactive Tele-Medicine System via Android Application,» Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA), pp. 148-152, 2020.; Y. Liu, H. Dar y R. Sharp, «Mobile Gamer Modelling and Game Performance Preference Measurement,» IEEE Conference on Games (CoG), pp. 632-635, 2020.; J. C. Piao, C. W. Cho, C. G. Kim, B. Burgstaller y S. D. Kim, «An adaptive LOD setting methodology with OpenGL ES library on mobile devices,» de IT Convergence and Security (ICITCS), 2014.; E. C. Chan y B. G. , «Appendix B: Introduction to Objective-C Programming in iPhone,» de Introduction to Wireless Localization: With iPhone SDK Examples, pp. 261-304.; Simulation Study on Duoplasmatron With Optimization of Ion Beam Extraction System S.Park and Y. Kim. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 45, NO. 6, JUNE 2017 955.; Aceleradores de partículas: Modelos para su diseño y la dinámica del haz MODELIZACIÓNAPLICADA A LA INGENIERÍA. R. Strangis. CYCLOTOPE, Houston, Texas, Estados Unidos. Junio 2011.; Presente y futuro de la implantación iónica: se describe la naturaleza, características,ventajas y desventajas de los tratamientos de superficie por implantación iónica; además el actual estado de desarrollo de esta tecnología, sus aplicaciones y las previsiones de su evolución en los próximos años. T. Rodríguez. 1998.; Modificación superficial de un acero AISI SAE 1045 mediante la implantación de iones denitrógeno y titanio. D. V. Salinas, D. Y. Peña y L. F. Chinchilla. Universidad Industrial de Santander UIS. Universidad Pontificia Bolivariana UPB. Julio 2011.; Microcavity engineering by plasma immersion ion implantation, Materials Chemistry andPhysics. P. K. Chu and N. W. Cheung. 57, 1998, 1-16.; A review of recent developments in ion implantation for metallurgical application. Se realizaeste trabajo o proyecto con el objetivo de identificar oportunidades para la aplicación industrial de la implantación iónica. R. Hutchings. 1994.; Experimental investigation on corrosion and hardness of ion implanted AISI 316L stainlesssteel. Materials & design technology. V. Muthukumaran. 2010.; Una mirada a los medios para diagnóstico por imágenes desde la educación médica. L.Esquivel Sosa, Y. Fleites García y Y. Jiménez González. EDUMECENTRO 2018;10(1): ISSN 2077-2874 RNPS 2234 Santa Clara ene.-mar.; La revolución científico-técnica y su impacto en las ciencias médicas. M. Hernández Pino.La Habana: Universidad Virtual de Salud Manuel Fajardo. 6 Sep 2016.; Imágenes Médicas: adquisición, análisis, procesamiento e interpretación. G. Passariello yF.Mora. Eds. Venezuela: Equinoccio, Ediciones de la Universidad Simón Bolívar;1995.; IMÁGENES DIAGNÓSTICAS: CONCEPTOS Y GENERALIDADES DIAGNOSTICIMAGES: CONCEPTS AND GENERALITIES I. R. Raudales Díaz. Rev. Fac. Cienc. Méd. Enero -Junio 2014.; Getting started in clinical radiology from image to diagnosis. G. W. Eastman, C. Wald andJ.Crossin. Germany: Thieme; 2005.; «Organización Mundial de la Salud,» 1 febrero 2018. [En línea]. Available:http://www.who.int/es/newsroom/fact-sheets/detail/cancer.; El Cáncer. J. G. de la Garza Salazar y P. Juárez Sánchez. Universidad Autónoma de NuevoLeón. Centro, Monterrey, Nuevo León, México, C.P. 64000 Primera edición, 2014.; Hadronterapia. J. L. Herranz, E. Herraiz, S. Vicente, J. España, J. L. Cal-Gonzalez y J. M.Udías. Primer Encuentro Complutense para la Divulgación en Física Nuclear y de Partículas [Internet]. gfn; 2008.; Proton Therapy: state of the art and clinical applications. I. López Moranchel and P. I.Maurelos Castell, 1). Centro de Formación Profesional San Juan de Dios, GENUD Toledo Research Group. (Universidad de Castilla-La Mancha). REVISTA OFICIAL DE LA SOCIEDAD ESPAÑOLA DE ENFERMERÍA ONCOLÓGICA. 2019.; Proton Therapy. A. R. Smith. Med Phys. 26 de enero de 2009 [citado 20 de abril de2019];36(2):556-68.; The risk of radiation-induced second cancers in the high to medium dose region: acomparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors. M. Moteabbed, T. I. Yock, H. Paganetti. Phys Medicina Biol [Internet]. 21 de junio de 2014 [citado 20 de abril de 2019];59(12):2883-99. D.; A Sealed-Accelerator-Tube Neutron Generator for Boron Neutron Capture TherapyApplication. K. N. Leung, Y. Lee, J. M. Verbeke, J. Vujic, M. D. Williams, L. K. Wu, N. Zahir. Lawrence Berkeley National Laboratory University of California Berkeley Berkeley USA Nuclear Engineering Department. La jolla, CA septiembre 1998.; Evaluación Preliminar de la Aceleración de D en un Generador de Neutrones D-DCompacto de Alto Flujo. J. A. Cifuentes Parada, Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Física Bogotá D.C., Colombia 2019.; Physics. D. Halliday and R. Resnick. Wiley; Part 2 edition, 1978.; Educational Applets: https://www.falstad.com/vector2de, https://www.falstad.com/vector3de.; M. Sereday, M. Damiano, and S. Lapertosa, “Amputaciones de Miembros Inferiores endiabéticos y no diabéti-cos en el ámbito hospitalario,” Alad(Asociación Larinoamericana de Diabetes), pp. 9–15, 2009, [Online]. Available: http://www.revistaalad.com.ar/pdfs/0905_Amp_de_Miem.pdf.; C. Quintero Quiroz, A. Jaramillo Zapata, M. T. De Ossa Jiménez, and P. A. Villegas Bolaños,“Estudio descriptivo de condiciones del muñón en personas usuarias de prótesis de miembros inferiores,” Rev. Colomb. Médicina Física y Rehabil., vol. 25, no. 2, pp. 94–103, 2018, doi:10.28957/rcmfr.v25n2a1.; L. H. Lugo and G. Desarrollador, “Guía de Práctica Clínica.”; O. Horgan and M. M. A. C. Lachlan, “Psychosocial adjustment to lower-limb amputation : Areview,” 2004, doi:10.1080/09638280410001708869.; B. L. Martín, M. Jesús, and P. Hernández-Rico, “Amputación.”; "Convocatoria para proyectos de Ciencia, Tecnología e Innovación y su contribución a losretos de país- 2018 %7C Convocatoria 808 %7C COLCIENCIAS.” https://www.colciencias.gov.co/convocatorias/investigacion/convocatoria-para-proyectos-ciencia-tecnologia-e-innovacion-y-su-0 (accessed Aug. 04, 2019).; W. L. Childers, R. S. Kistenberg, and R. J. Gregor, “The Biomechanics of Cycling with aTranstibial Amputation: Recommendations for Prosthetic Design and Direction for Future Research,” Prosthet. Orthot. Int., vol. 33, no. 3, pp. 256–271, Sep. 2009, doi:10.1080/03093640903067234.; I. Pinilla Giménez, “Juego serio para terapias de rehabilitación motora y cognitiva conrealidad virtual,” 2017, Accessed: Aug. 29, 2019. [Online]. Available: http://uvadoc.uva.es/handle/10324/23073.; G. Fiedler, J. Akins, R. Cooper, S. Munoz, and R. A. Cooper, “Rehabilitation of People withLower-Limb Amputations,” Curr. Phys. Med. Rehabil. Reports, vol. 2, no. 4, pp. 263–272, Dec. 2014, doi:10.1007/s40141-014-0068-8.; Prodalca, “Rodillo personal trainer con regulador de esfuerzo,” 2019. https://prodalca.com.co/producto/rodillo-personal-trainer-con-regulador-de-esfuerzo/.; C. Sun and Z. Qing, “Design and Construction of a Virtual Bicycle Simulator for EvaluatingSustainable Facilities Design,” Adv. Civ. Eng., vol. 2018, 2018, doi:10.1155/2018/5735820.; T. Instruments and I. Sloa, “Chapter 16 Active Filter Design Techniques Excerpted from OpAmps for Everyone Literature Number: SLOD006A.”; L. Xiong et al., “IMU-based automated vehicle slip angle and attitude estimation aided byvehicle dynamics,” Sensors (Switzerland), vol. 19, no. 8, 2019, doi:10.3390/s19081930.; Arduino Uno Rev3 %7C Arduino Official Store.” https://store.arduino.cc/usa/arduino-uno-rev3.; S. Sanghani, Stumps and Cranks: An Introduction to Amputee Cycling.; M. Ambrož, “Raspberry Pi as a low-cost data acquisition system for human poweredvehicles,” Meas. J. Int. Meas. Confed., vol. 100, pp. 7–18, 2017, doi:10.1016/j.measurement.2016.12.037.; F. Villarreal, “Introducción a los modelos de pronósticos,” Univ. Nac. del Sur, pp. 1–121,2016.; “pySerial 3.0 documentation.” https://pythonhosted.org/pyserial/.; “python-drawnow: MATLAB-like drawnow to easily update a figure.” https://github.com/stsievert/python-drawnow.; J. D. Rairan-Antolines and J. M. Fonseca-Gómez, “Algoritmo para la aproximación de lavelocidad de giro de un eje mediante un encoder incremental,” Ing. y Univ., vol. 17, no. 2, pp. 293–309, 2013.; MinSalud, “33 mil personas al año mueren de Cáncer en Colombia.” https://www.minsalud.gov.co/Paginas/33-mil-personas-al-año-mueren-de-Cáncer-en-Colombia.aspx.; D. Raúl Pefaur, “Imaginología actual del cáncer pulmonar,” Rev. Médica Clínica Las Condes, vol. 24, no. 1, pp. 44–53, 2013, doi: https://doi.org/10.1016/S0716-8640(13)70128-7.; C. R. José Miguel, “Estado actual del tratamiento del cáncer pulmonar,” Rev. Médica Clínica Las Condes, vol. 24, no. 4, pp. 611–625, 2013, doi: https://doi.org/10.1016/S0716-8640(13)70200-1.; Society American Cancer, “Cancer Statistics Center,” 2020. https://cancerstatisticscenter.cancer.org/?_ga=2.68534866.2102841857.1593652002-2027832360.1593652002#!/.; Diariopresente.mx, “Google desarrolla algoritmo que detecta el cáncer de pulmón,” 2018. [Online]. Available: https://www.diariopresente.mx/actualidad/google-desarrolla-algoritmo-que-detecta-el-cancer-de-pulmon/218050.; M. F. Abbod, J. W. F. Catto, D. A. Linkens, and F. C. Hamdy, “Application of ArtificialIntelligence to the Management of Urological Cancer,” J. Urol., vol. 178, no. 4, pp. 1150–1156, 2007, doi: https://doi.org/10.1016/j.juro.2007.05.122.; J. M. Purswani, A. P. Dicker, C. E. Champ, M. Cantor, and N. Ohri, “Big Data From SmallDevices: The Future of Smartphones in Oncology,” Semin. Radiat. Oncol., vol. 29, no. 4, pp. 338–347, 2019, doi: https://doi.org/10.1016/j.semradonc.2019.05.008.; K. Cieślak, “Professional psychological support and psychotherapy methods for oncologypatients. Basic concepts and issues,” Reports Pract. Oncol. Radiother., vol. 18, no. 3, pp. 121–126, 2013, doi: https://doi.org/10.1016/j.rpor.2012.08.002.; H. Contreras, “Teoria de la Computacion para Ingeniería de Sistemas: Un enfoque practico.”Caracas: Saber, Ula. V, 2012, [Online]. Available: https://d1wqtxts1xzle7.cloudfront.net/39872592/tema1.pdf?1447177931=&response-content-disposition=inline%3B+filename%3DTema1.pdf&Expires=1594305464&Signature=Fe86rqeud4Y7osvWzUUhOYTIZCaL-k~pJaar2XxVbujlot-4xV9wYpduKdxkZ5zHaSPhUOCcpH1v0k7Y5shbONvWqbXmdTzdO.; A. GALIPIENSO, M. ISABEL, M. A. CAZORLA QUEVEDO, O. Colomina Pardo, F.ESCOLANO RUIZ, and M. A. LOZANO ORTEGA, Inteligencia artificial: modelos, técnicas y áreas de aplicación. Editorial Paraninfo, 2003.; J. V. González, O. A. V. Arenas, and V. V. González, “Semiología de los signos vitales:Una mirada novedosa a un problema vigente,” Arch. Med., vol. 12, no. 2, pp. 221–240, 2012, [Online]. Available: https://www.redalyc.org/pdf/2738/273825390009.pdf.; Liip.care, “Liip Smart Monitor,” 2019. https://liip.care/es/.; Welchallyn.com, “Equipos de signos vitales,” 2018.; Welchallyn.com, “Equipos de signos vitales,” 2018. https://www.welchallyn.com/content/welchallyn/latam/es/products/categories/patient-monitoring/vital-signs-devices.html#.; Scikit-learn.org, “Scikit-learn machine learning in python,” 2019. https://scikit-learn.org/stable/index.html.; Cancer Treatment Centers of America, “Lung cancer stages,” 2020. https://www.cancercenter.com/cancer-types/lung-cancer/stages.; NIH (Instituto Nacional del Cáncer), “¿Qué es el cancer?,” 2015. https://www.cancer.gov/espanol/cancer/naturaleza/que-es%0A.; Roger S. Pressman. (2010). Ingeniería del Software Un enfoque práctico. Vol. 3, SéptimaEdición. pp. 70.; Castro, F.D. (2008). Metodologia de projeto centrada na casa da qualidade. Tesis deMaestría, universidade federal rio grande do sul, Porto Alegre, Brasil.; Pahl, G., & Beits, W. (2013). Engineering design: a systematic approach. Springer ScienceBusiness Media.; R. De Armas, A. Alfonso, y L. Rojas, “Tomografía local con bases daubechies", VisiónElectrónica, vol. 9, no. 2, pp. 300-311, 2015.; C. H. Caicedo y A. Smida, “Intensidad informacional para la longitudinalidad asistencial ensistemas de salud", Visión Electrónica, vol. 10, no. 1, pp. 83-95, 2016. https://doi.org/10.14483/22484728.11612.; J. R. Torres Castillo, J. S. Pérez Lomelí, E. Camargo Casallas, y M. Ángel PadillaCastañeda, “Dispositivo háptico vibrotáctil inalámbrico para asistencia de actividades motoras", Visión Electrónica, vol. 12, no. 1, pp. 58-64, 2018. https://doi.org/10.14483/22484728.13310.; N. W. S. US Department of Commerce, NOAA, “Your National Weather Service: Evolvingto Build a Weather-Ready Nation,” 2017. https://www.weather.gov/about/wrn (accessed Oct. 17, 2020).; NOAA,“AboutOur Agency %7C National Oceanic and AtmosphericAdministration.” https://www.noaa.gov/about-our-agency (accessed Oct. 17, 2020).; NOAA, “Marina y aviación %7C Administración Nacional Oceánica y Atmosférica,” 2020.https://www.noaa.gov/marine-aviation (accessed Oct. 25, 2020).; N. NESDIS, “About %7C NOAA National Environmental Satellite, Data, and Information Service(NESDIS),” 2019. https://www.nesdis.noaa.gov/content/about (accessed Oct. 25, 2020).; NOAA,“Gráficos %7C Administración Nacional Oceánica yAtmosférica,”2020. https://www.noaa.gov/charting (accessed Oct. 25, 2020).; NOAA,“Educación Administración Nacional Oceánica y Atmosférica,”2019. https://www.noaa.gov/education (accessed Oct. 25, 2020).; N. N. O. and A. A. US Department of Commerce, “National Oceanic and AtmosphericAdministration (NOAA) Staff Directory Page,” 2018.; N. O. and A. A. US Department of Commerce, “NOAA’s National Ocean Service,” 2019.; R. Weiher, “Assessing the Economic & Social Benefits of NOAA Data,” 2008. Accessed:Nov. 19, 2020. [Online]. Available: https://www.oecd.org/sti/ieconomy/40066192.pdf.; H. Kite-Powell, “Estimating Economic Benefits from NOAA PORTS ® Information: A CaseStudy of Houston,” 2007. Accessed: Nov. 19, 2020. [Online]. Available: https://tidesandcurrents.noaa.gov/publications/EstimatingEconomicBenefitsfromNOAAPORTSIn formation_Houston-Galveston.pdf.; NASA, “Órbitas de Satélites,” 2020. https://scool.larc.nasa.gov/Spanish/orbits-sp.html(accessed Oct. 17, 2020).; N. OSPO, “GOES Status - Office of Satellite and Product Operations,” Aug. 15, 2019.https://www.ospo.noaa.gov/Operations/GOES/status.html (accessed Oct. 17, 2020).; N.OSPO, “POES Operational Status- POESStatus- OSPO,”Mar. 22, 2019. https://www.ospo.noaa.gov/Operations/POES/status.html (accessed Oct. 19, 2020).; NOAA, “NOAA Readies GOES-15 and GOES-14 for Orbital Storage %7C NOAA NationalEnvironmental Satellite, Data, and Information Service (NESDIS),” Jan. 29, 2020. https://www.nesdis.noaa.gov/content/noaa-readies-goes-15-and-goes-14-orbital-storage (accessed Oct. 17, 2020).; N. OSPO, “Suomi-NPP Operational Status - Office of Satellite and Product Operations,”Apr. 14, 2016. https://www.ospo.noaa.gov/Operations/SNPP/status.html (accessed Oct. 19, 2020).; X. Zou and X. Tian, “COMPARISON OF ATMS STRIPING NOISE BETWEEN NOAA-20AND S- NPP Xiaolei Zou and Xiaoxu Tian Earth System Science Interdisciplinary Center , University of Maryland , College Park , MD 20740,” IEEE Int. Geosci. Remote Sens. Symp., pp. 3105–3108, 2018, doi:10.1109/IGARSS.2018.8517482.; X. Tian, X. Zou, and N. Sun, “COMPARISON OF RO-ESTIMATED ATMS BIASESBETWEEN NOAA-20 AND S-NPP Earth System Science Interdisciplinary Center , University of Maryland , College Park , MD 20740 Earth Resources Technology ( ERT ), Inc ., Laurel , MD20707 , USA,” IEEE Int. Geosci. Remote Sens. Symp., pp. 3101–3104, 2018, doi:10.1109/IGARSS.2018.8519416.; W. Wang, C. Cao, Y. Bai, S. Blonski, and M. A. Schull, “Assessment of the NOAA S-NPPVIIRS geolocation reprocessing improvements,” Remote Sens., vol. 9, no. 10, 2017, doi:10.3390/rs9100974.; N. NESDIS, “Imágenes del sector: América del Sur - Norte - NOAA / NESDIS / STAR,”2020. https://www.star.nesdis.noaa.gov/GOES/sector.php?sat=G16&sector=nsa (accessed Oct. 17, 2020).; S. A. Buehler, V. O. John, A. Kottayil, M. Milz, and P. Eriksson, “Efficient radiative transfersimulations for a broadband infrared radiometer-Combining a weighted mean of representative frequencies approach with frequency selection by simulated annealing,” J. Quant. Spectrosc. Radiat. Transf., vol. 111, no. 4, pp. 602–615, 2010, doi:10.1016/j.jqsrt.2009.10.018.; U.S. DEPARTMENT OF COMERCE, National Oceanic and Atmospheric Adminitration,and and National Environmental Satellite, Data, “National Oceanic and Atmospheric Administration User’s Guide for Building and Operating Environmental Satellite Receiving Stations,” Feb. 2009. Accessed: Oct.17,2020. [Online]. Available: https://noaasis.noaa.gov/NOAASIS/pubs/Users_GuideBuilding_Receive_Stations_March_2009.pdf.; J. Mitola, “The Software Radio Architecture,” Softw. Radio Technol., vol. 33, no. May, pp.26–38, 2009, doi:10.1109/9780470546444.ch1.; V. Dascal, P. Dolea, O. Cristea, and P. Tudor, “Advanced Vhf Ground Station for NoaaWeather Satellite Apt Image Reception,” Acta Tech. Napocensis, vol. 53, no. 3, pp. 1–7, 2012.; C. Bosquez, A. Ramos, and L. Noboa, “System for receiving NOAA meteorological satelliteimages using software defined radio,” Proc. 2016 IEEE ANDESCON, ANDESCON 2016, pp. 0– 3, 2016, doi:10.1109/ANDESCON.2016.7836233.; C. Velasco and C. Tipantuna, “Meteorological picture reception system using softwaredefined radio (SDR),” 2017 IEEE 2nd Ecuador Tech. Chapters Meet. ETCM 2017, vol. 2017-Janua, pp. 1–6, 2017, doi:10.1109/ETCM.2017.8247551.; E. B. Mikkelsen, “The Design of a Low Cost Beacon Receiver System using SoftwareDefined Radio,” Inst. Elektron. og telekommunikasjo, no. July, pp. 1–83, 2009, [Online]. Available: https://hdl.handle.net/11250/2369478.; D. J. M. Peralta, D. S. Dos Santos, A. Tikami, W. A. Dos Santos, and E. W. R. Pereira,“Satellite telemetry and image reception with software defineradio applied to space outreach projects in brazil,” An. Acad. Bras. Cienc., vol. 90, no. 3, pp. 3175–3184, 2018, doi:10.1590/0001- 3765201820170955.; A. G. C. Guerra, A. S. Ferreira, M. Costa, D. Nodar-López, and F. Aguado Agelet,“Integrating small satellite communication in an autonomous vehicle network: A case for oceanography,” Acta Astronaut., vol. 145, no. November 2017, pp. 229–237, 2018, doi:10.1016/j.actaastro.2018.01.022.; J. Lee Min, “Decoding Signals From Weather Satellites Using Software Defined Radio,”Electron.Theses Diss., vol. 3, no. 2, pp. 1–70, 2018, doi:10.18041/2382-3240/saber.2010v5n1.2536.; Icom, “INSTRUCTON MANUAL iPCR1500 iPCR2500,” Screen. Icom, Osaka, pp. 45–49,2006, [Online]. Available: http://www.icomamerica.com/es/products/receivers/pc/pcr1500/default.aspx.; National Instruments, “SPECIFICATIONS USRP-2920,” Jul. 13, 2017. https://www.ni.com/pdf/manuals/375839c.pdf (accessed Oct. 19, 2020).; RTL-SDR, “RTL-SDR Blog V3 Datasheet,” Feb. 2018. Accessed: Oct. 19, 2020. [Online].Available: https://www.rtl-sdr.com/wp-content/uploads/2018/02/RTL-SDR-Blog-V3- Datasheet.pdf.; N. Crisan and L. Cremene, “NOAA Signal Decoding And Image Processing Using GNU-Radio,” Acta Tech. Napocensis, vol. 49, no. 4, pp. 1–5, 2012.; D. Aguirre and P. R. Yanyachi, “Design of a parabolic patch antenna in band L, with doublelayer and air substrate, for weather satellite reception,” 2017 6th Int. Conf. Futur. Gener. Commun. Technol. FGCT 2017, pp. 10–14, 2017, doi:10.1109/FGCT.2017.8103395.; Y. Rafsyam, Z. Indra, E. E. Khairas, Jonifan, and W. A. Karimah, “Design of Double CrossDipole Antenna as NOAA Satellite Signal Receiver for Monitor Cloud Conditions Application,” J.Phys. Conf. Ser., vol. 1364, no. 1, 2019, doi:10.1088/1742-6596/1364/1/012059.; M. Fathurahman, Zulhelman, A. Maulana, and M. Widyawati, “Design and Development ofDipole Antenna for NOAA Satellite Image Acquisition System and Processing,” J. Phys. Conf. Ser., vol. 1364, no. 1, 2019, doi:10.1088/1742-6596/1364/1/012025.; F. P. A. Escobedo, H. R. Alvarez, H. Salazar, C. G. R. Percing, and R. L. J. M. De Oca,“Low cost optimization method of a double cross antenna satellite reception system for the processing and improvement of meteorological satellite signals and images NOAA 15-18-19,” Proc. 2019 IEEE 1st Sustain. Cities Lat. Am. Conf. SCLA 2019, pp. 1–6, 2019, doi:10.1109/SCLA.2019.8905749.; A. E. Quiroz-Olivares, N. I. Vargas-Cuentas, G. W. Zarate Segura, and A. Roman-Gonzalez, “Low-cost and portable ground station for the reception of NOAA satellite images,”Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 5, pp. 450–454, 2019, doi:10.14569/ijacsa.2019.0100557.; M. L. Keefer et al., “Evaluating the NOAA Coastal and Marine Ecological ClassificationStandard in estuarine systems: A Columbia River Estuary case study,” Estuar. Coast. Shelf Sci., vol. 78, no. 1, pp. 89–106, 2008, doi:10.1016/j.ecss.2007.11.020.; A. K. Mitra, P. K. Kundu, A. K. Sharma, and S. K. Roy Bhowmik, “A neural networkapproach for temperature retrieval from AMSU-a measurements onboard NOAA-15 and NOAA-16 satellites and a case study during Gonu cyclone,” Atmosfera, vol. 23, no. 3, pp. 225–239, 2010.; D. J. Schneider and M. J. Pavolonis, “ADVANCES IN VOLCANO MONITORING : THEROLE OF JPSS INSTRUMENTS U . S . Geological Survey-Alaska Volcano Observatory , Anchorage , AK NOAA Cooperative Institute for Meteorological Satellite Studies , Madison , WI,” IEEE Int. Geosci. Remote Sens. Symp., pp. 2798–2801, 2017, doi:10.1109/IGARSS.2017.8127579.; C. Muñoz, P. Acevedo, S. Salvo, G. Fagalde, and F. Vargas, “Detección de incendiosforestales utilizando imágenes NOAA/16-LAC en la Región de la Araucanía, Chile,” Bosque, vol. 28, no. 2, pp. 119–128, 2007, doi:10.4067/s0717-92002007000200004.; L. Carro-Calvo, C. Casanova-Mateo, J. Sanz-Justo, J. L. Casanova-Roque, and S.Salcedo- Sanz, “Efficient prediction of total column ozone based on support vector regression algorithms, numerical models and Suomi-satellite data,” Atmosfera, vol. 30, no. 1, pp. 1–10, 2017, doi:10.20937/ATM.2017.30.01.01.; A. Antón, R. Martínez, M. A. Salas, and A. Torre, “Performance analysis andimplementation of spatial and blind beamforming algorithms for tracking leo satellites with adaptive antenna arrays,” in European Conference on Antennas and Propagation, EuCAP 2009, Proceedings, 2009, pp. 216–220.; S. Soisuvarn, Z. Jelenak, P. S. Chang, Q. Zhu, and G. Sindic-Rancic, “Validation of noaa’snear real-time ascat ocean vector winds,” Int. Geosci. Remote Sens. Symp., vol. 1, no. 1, pp. 118–121, 2008, doi:10.1109/IGARSS.2008.4778807.; A. Huang, L. Gumley, K. Strabala, S. Mindock, R. Garcia, and G. Martin, “COMMUNITYSATELLITE PROCESSING PACKAGE FROM DIRECT BROADCAST : PROVIDING REAL- TIME SATELLITE DATA TO EVERY CORNER OF THE WORLD Space Science and Engineering Center ( SSEC ) Cooperative Institute for Meteorological Studies ( CIMSS ) University of Wisconsin,” IEEE Int. Geosci. Remote Sens. Symp., pp. 5532–5535, 2016, doi:10.1109/IGARSS.2016.7730443.; K. R. Al-Rawi and J. L. Casanova, “APLICACIÓN DE LAS REDES NEURONALES PARAEL CONTROL Y SEGUIMIENTO EN TIEMPO REAL DE LOS INCENDIOS FORESTALES MEDIANTE IMÁGENES NOAA-AVHRR,” in TELEDETECCION. Avances y Aplicaciones.VIII Congreso Nacional de teledeteccion, 1999, no. January, pp. 244–247.; Organización Meteorología Mundial, “IDEAM se fortalece en monitoreo y seguimiento dehuracanes (IDEAM, Columbia) %7C Organización Meteorológica Mundial,” Feb. 07, 2013. https://public.wmo.int/es/media/news-from-members/ideam-se-fortalece-en-monitoreo-y- seguimiento-de-huracanes-ideam-columbia (accessed Oct. 26, 2020). [49] IDEAM, “VISOR DE IMÁGENES SATÉLITALES - IDEAM.” http://www.pronosticosyalertas.gov.co/imagsatelital-portlet/html/imagsatelital/view.jsp (accessed Oct. 26, 2020).; NOAA, “National Oceanic and Atmospheric Administration %7C U.S. Department ofCommerce.” https://www.noaa.gov/ (accessed Oct. 26, 2020). IDEAM, “IDEAM - IDEAM.” http://www.ideam.gov.co/ (accessed Oct. 26, 2020).; J. S. M. G, J. E. Ar, and M. L. Su, “Comparacion De Herramientas De Software Para LaCoordinacion Internacional Del Roe En La Orbita Geoestacionaria,” Visión Electrónica algo más que un estado sólido, vol. 9, no. 1, pp. 5–12, 2016, doi:10.14483/22484728.11009.; Google Cloud, “Weather, climate big data from NOAA now in cloud %7C Google Cloud Blog,”Dec.19, 2019. https://cloud.google.com/blog/products/data-analytics/weather-climate-big-data-from-noaa-now-in-cloud (accessed Oct. 26, 2020).; Amazon Web Services, “Registry of Open Data on AWS,” Dec. 19, 2019.https://registry.opendata.aws/collab/noaa/ (accessed Oct. 26, 2020).; NOAA, “Cloud platforms unleash full potential of NOAA’s environmental data %7C NationalOceanic and Atmospheric Administration,” Dec. 19, 2019. https://www.noaa.gov/media-release/cloud- platforms-unleash-full-potential-of-noaa-s-environmental-data (accessed Oct. 26, 2020).; J. A. Niño, L. Y. Martínez y F. H. Fernández “Mano robótica como alternativa para laenseñanza de conceptos de programación en Arduino”, Revista Colombiana de Tecnologías de Avanzada, vol. 2, no. 28, pp. 132 - 139, may 2016.; C. Flores-Vázquez, A. Rojas y K. Trejo, “Operación remota de un robot móvil usando unteléfono inteligente” INGENIUS, núm. 17, 2017.; A. Cerón, “Sistemas robóticos teleoperados” Ciencia e Ingeniería Neogranadiana, no. 15,pp. 62-72, 2005.; A. M. Rivera, L. A. O’Farril, C. Miguélez, P. Martínez y I. O. Benítez “Caracterización del ez-robot para su utilización en la robótica educativa”, Serie Científica de la Universidad de las Ciencias Informáticas, vol. 12, no. 11, pp. 73 - 80, nov 2019.; M. G. da Silva, C. S. González “PequeBot: Propuesta de un Sistema Ludificado de RobóticaEducativa para la Educación Infantil”, Actas del V Congreso Internacional de Videojuegos y Educación (CIVE'17), 2017.; A. Marroquín, A. Gómez y A. Paz “Design and implementation of Explorer Mobile Robotcontrolled remotely using IoT Technology”, 2017.; R. Batista, " Diseño e implementación de un sistema de iluminación inteligente de interiores”, tesis Eng., Universidad Tecnológica de La Habana “José A. Echeverría” CUJAE, La Habana, Cuba, 2019.; S. Companioni, "Procesamiento de imágenes, obtenidas por un vehículo autónomo, para elreconocimiento de daños en cultivos ”, tesis Eng, Universidad Tecnológica de La Habana “José A.Echeverría” CUJAE, La Habana, Cuba, 2020.; J. A. Licona, “Diseño y desarrollo de un robotmóvil a bajo costo para niños: EcateBot”, thesisEng, Universidad Autónoma del estado de México, México D.F, México, 2019.; R. A. Moreno, Desarrollo de aplicaciones para Android usando MIT App Inventor 2, 1eraed. Bogotá: Autoedición, 2016.; L. A. Velazco, "Diseño de un sistema de control basado en linealización por realimentaciónpara robot móvil tipo Ackerman con velocidad variable y movimiento en doble sentido describiendo trayectorias óptimas " thesis MSc, Pontificia Universidad Católica del Perú, Lima, Perú, 2019.; C. Vázquez, "Framework de comunicaciones para robótica educativa, distributiva ycolaborativa” thesis Eng, Universidad de Extremadura, Badajoz, España, 2019.; L. Rodríguez, "Diseño e implementación de una Estación Meteorológica para la agriculturabasada en Arduino", thesis Eng, Universidad Tecnológica de La Habana “José A. Echeverría” CUJAE, La Habana, Cuba, 2019.; D. Higuera, J. Guzmán, A. Rojas “Implementando las metodologías steam y abp en laenseñanza de la física mediante Arduino”, III Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y Móvil AmITIC, pp 133 – 137, 2019.; J.M. Nova, " Diseño y desarrollo de una aplicación para monitorear la concentración deCO y CH4 en dispositivos móviles Android". thesis Eng, Universidad Pontificia Bolivariana, Bucaramanga, Colombia, 2018.; ECDRUM. “Circuito – inversión de giro de un motor de CD con relés”, 2018, [Online]Available at http: //ecdrumdownload.blogspot.com. “Manual de la GoPro H9”, 2017, [Online] Available at http: //www.google.com.; R. a. markets, «Research and Markets,» 2020.[En línea]. Available: https://www.globenewswire.com/news-release/2020/03/18/2002434/0/en/IoT-in-the-Global-Retail-Market-2020-2025-Analyzed-by-Platform-Hardware-Service-Application-and-Region.html. [Último acceso: 4 7 2020].; H. T. a. S. Dustdar, «Principles for Engineering IoT Cloud Systems,» IEEE Cloud Computing, vol. II, nº 2, pp. 68-76, 2015.; A. Rahmani, N. K. Thanigaivelan, T. N. Gia, J. Granados, B. Negash, P. Liljeberg y H. Tenhunen, «Smart e-Health Gateway :,» Consumer Communications and Networking Conference (CCNC), 12th Annual IEEE, pp. 826-834, 2015.; P. Desai, A. Sheth y P. Anantharam, «Semantic Gateway as a Service Architecture for IoT Interoperability,» 2015 IEEE International Conference on Mobile Services, pp. 313-319, 2015.; A. A. Sánchez Martín, E. González Guerrero y L. E. Barreto Santamaría, «Prospective integration between Environmental Intelligence (AMI), Data Analytics (DA), and Internet of Things (IoT),» 2019 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI ), pp. 1-6, 2019.; I. A. M. M. J.-M. R. J.-C. T. M. Berrouyne, «A Model-Driven Approach to Unravel the Interoperability Problem of the Internet of Things,» de Barolli, L., Amato, F., Moscato, F., Enokido, T., & Takizawa, M. (Eds.). (2020). Advanced Information Networking and Applications. Advances in Intelligent Systems and Computing. doi:10.1007/978-3-030-44041-1 , Caserta, Italia, 2020.; D. Yacchirema y C. E. Palau Salvador, «Smart IoT Gateway for Heterogeneous Devices Interoperability,» IEEE Latin America Transactions, vol. 14, nº 8, pp. 3900-3906, 2016.; C. Dergarabedian, «La fuerte apuesta de Samsung a la Internet de las cosas para simplificar la vida cotidiana de los usuarios,» iProfesional, 10 Enero 2018.; OpenIoT Consortium, «Open Source cloud solution for the Internet of Things,» OpenIoT, 1 Septiembre 2019. [En línea]. Available: http://www.openiot.eu/. [Último acceso: 02Marzo 2020].; E. González Guerrero, L. E. Barreto Santamaría y A. A. Sánchez Martín, «Integrated Model AmI-IoT-DA for Care of Elderly People,» de Advances in Computing. CCC 2018, Bogotá, 2018.; N. Al-Oudat, A. Aljaafreh, M. Saleh y M. Alaqtash, «IoT-Based Home and Community Energy Management System in Jordan,» Tafila Technical University, vol. CLX, pp. 142-148, 2019.; F. Herrera Araújo, M. A. Ardila Lara, E. Gutiérrez Gil y D. Herrera Téllez, «ODS en Colombia: Los retos para 2030,» Programa de las Naciones Unidas para el Desarrollo -PNUD-, Bogotá, 2018.; M. Unis, A. Nettsträter, F. Iml, J. Stefa, C. S. D. Suni, A. Salinas y U. Sapienza, «Internet of Things-Architecture IoT-A Final architectural reference model for the IoT,» 2013.; F. Leiva, «La agricultura de precisión: una producción más sostenible y competitiva con visión futurista,» VIII Congreso de la Sociedad Colombiana de Fitomejoramiento y Producción de Cultivos, vol. 93, nº 997-1006, p. 7, 2003.; F. A. Urbano Molano, «Wireless Sensor Networks Applied to Optimization in Precision Agriculture for Coffee Crops in Colombia,» Journal de Ciencia e Ingenier´ıa, vol. 5, nº 1, pp. 46-52, 2013.; IERC, «IoT Semantic Interoperability:Research Challenges, Best,» 2011.; M. MARJANI, F. NASARUDDIN, A. GANI, A. KARIM, I. A. TARGIO HASHEM, A. SIDDIQA y . I. YAQOOB, «Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges,» IEEE Access, vol. V, nº 2, p. 15, 2017.; W. Ruíz Martínez , Y. Díaz Gutiérrez, R. Ferro Escobar y L. Pallares, «Application of the Internet of Things through a Network of Wireless Sensors ina Coffee Crop for Monitoring and Control its Environmental Variables,» TecnoLógicas, vol. 22, nº 46, pp. 2-17, 2019.; C. A. Barry, «Choosing Qualitative Data Analysis Software: Atlas/ti and Nudist Compared,» Sociological Research Online, vol. III, nº 3, p. 16–28, 1998.; J. Macias, H. Pinilla, W. Castellanos y J. D. Alvarado, «Sistema de monitoreo de variables ambientales usando IOT,» Tech Fest, 2019.; J. Macías, H. Pinilla, W. Castellanos, J. D. Alvarado y A. Sánchez, «DISEÑO E IMPLEMENTACIÓN DE UN GATEWAY IOT MULTIPROTOCOLO,» 14° CONGRESO INTERNACIONAL DE ELECTRÓNICA, CONTROL Y TELECOMUNICACIONES, vol. 13, pp. 179-198, 2019.; A. A. Sánchez Martín, L. E. Barreto Santamaría, J. J. Ochoa Ortiz y S. E. Villanueva Navarro, «EMULADOR PARA DESARROLLO DE PROYECTOS IOT Y ANALITICAS DE DATOS,» de XII Congreso Internacional de Electrónica, Control y Telecomunicaciones, Bogota, 2019.; allmeteo, «Agro IoT Weather Sensor: AN AFFORDABLE SOLUTION FOR DISTRIBUTED WEATHER MONITORING FOR AGRICULTURE, FARMING & WINE YARDS.,» BARANI DESIGN Technologies s.r.o., 2018. [En línea]. Available: https://www.allmeteo.com/agriculture-iot-weather-station. [Último acceso: 02 03 2020].; LEMKEN, «LEMKEN: The Agrovision Company,» LEMKEN , 2020. [En línea]. Available: https://smartfarming.lemken.com/en/. [Último acceso: 02 03 2020].; RIGADO, «Cascade IoT Gateway: Edge Bluetooth® connectivity & secure data processing,» RIGADO, 2016-2020. [En línea]. Available: https://www.rigado.com/cascade-iot-gateway/. [Último acceso: 02 03 2020].; NXP Semiconductors, «IoT Gateway Solution: Complete development platform that brings together the building blocks for secure, production-ready IoT systems,» NXP Semiconductors, 2006-2020. [En línea]. Available: https://www.nxp.com/design/designs/iot-gateway-solution:IOT-GATEWAY-SOLUTION.[Último acceso: 02 03 2020].; Google, Google Big Query Analytics, United States of America : John Wiley & Sons, Inc., 2014.; P. P. Ray, «A survey of IoT cloud platforms,» Future Computing and Informatics Journal, vol. 1, nº 1-2, pp. 35-46, 2016.; J. C. Najar-Pacheco, J. A. Bohada-Jaime y W. Y. Rojas-Moreno, «Vulnerabilidades en el internet de las cosas,» Visión Electrónica, vol. 13, nº 2, pp. 312-321, 2019.; K. Husenovic, I. Bedi, and S. Maddens, Sentando las bases para la 5G: Oportunidades ydesafíos. ITU, 2018 [Online]. Available: https://www.itu.int/dms_pub/itu-d/opb/pref/D-PREF-BB.5G_01-2018-PDF-S.pdf; GSMA, “Study on Socio-Economic Benefits of 5G Services Provided in mmWave Bands.”Reportes GSMA, 2018 [Online]. Available: https://www.gsma.com/spectrum/wp-content/uploads/2019/10/mmWave-5G-benefits.pdf.; 5G Américas, Identificación de habilitadores para redes 4G y 5G en América Latina. 2020[Online]. Available: https://brechacero.com/wp-content/uploads/2020/04/WP-Identificaci%C3%B3n-de-habilitadores-para-la-implementaci%C3%B3n-de-redes-4G-y-5G-en-Am%C3%A9rica-Latina.pdf.; GSMA, The Mobile Economy. GSM Association, 2020 [Online]. Available:https://www.gsma.com/mobileeconomy/wpcontent/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf.; N. Vyakaranam and S. Dilip Krishna, “5G: Network As A Service - How 5G enables thetelecom operators to lease out their network,” 22-Mar-2018. [Online]. Available: https://netmanias.com/en/?m=view&id=blog&no=13311. [Accessed: 20-Nov-2020].; J. C. Martínez, J de J. Rugeles y E. P. Estupiñán. “Análisis de ocupación espectral bandaGSM 850 en Bogotá”. Visión Electrónica, algo más que un estado sólido, Vol. 12, No. 1, 5-13, enero-junio 2018. https://doi.org/10.14483/22484728.14801.; Ericsson, “5G architecture next mobile technology %7C Whitepaper,” 01-Jan-2017. [Online].Available: https://www.ericsson.com/en/reports-and-papers/white-papers/5g-systems--enabling-the-transformation-of-industry-and-society. [Accessed: 18-Nov-2020].; H. Ekström, “Non-standalone and Standalone: two paths to 5G,” 2019. [Online]. Available:https://www.ericsson.com/en/blog/2019/7/standalone-and-non-standalone-5g-nr-two-5g tracks. [Accessed: 16-Oct-2020].; 3 GPP, “Release 15 Description,” 3rd Generation Partnership Project (3GPP), 2019 [Online]Available:https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3389.; L. Casaccia, “Propelling 5G forward: A closer look at 3GPP Release 16.” 07-Jul-2020[Online]. Available: https://www.qualcomm.com/news/onq/2020/07/07/propelling-5g-forward-closer-look-3gpp-release-16. [Accessed: 12-Oct-2020].; M. Clark, C. Vanoli, and A. Smith, Abrir sendas hacia 5G. ITU News Magazine, 2017[Online]. Available: https://www.itu.int/en/itunews/Documents/2017/2017-02/2017_ITUNews02-es.pdf.; GSMA, “Espectro 5G Postura de la GSMA sobre política pública,” GSMA, 2018 [Online].Available: https://www.gsma.com/latinamerica/wp-content/uploads/2019/03/5G-Spectrum-Positions-SPA.pdf. [Accessed: 05-Oct-2020].; 5G Américas, Análisis de las recomendaciones de espectro de la UIT en América Latina.White Papers 5G Américas, 2019, p. 6-21 [Online]. Available: https://brechacero.com/wp-content/uploads/2019/08/ES-Analisis-de-las-Recomendaciones-de-Espectro-de-la-UIT-en-America-Latina-2019-vf.pdf.; 5G Américas, Espectro para 5G: Banda 3,5 GHZ en América Latina. 2019 [Online].Available: https://brechacero.com/wp-content/uploads/2019/06/3.5-GHz-esp-ok.pdf.; Poder Legislativo, "Ley No. 14.235," Centro De Información Oficial, Ago 3, 1974.; Council of State, "ACT of 2004 No.151," Official Gazette of the Republic of Suriname, 2004.; QoSi, “Etude de la qualité d’expérience des opérateurs mobiles en Guyane Francaise,”Publicaciones QoSi, Francia, 2019 [Online]. Available: https://www.5gmark.com/news/2019/Barometre_4Gmark_Guyane_2019.pdf. [Accessed: 17-Jul-2020].; F. Staff. (Jul 8,). Claro, de Carlos Slim, iniciará la carrera del 5G en Brasil. Available:https://www.forbes.com.mx/tecnologia-claro-slim-5g-brasil/.; Telesur. (s.f.). 5G - Beyond Connectivity. Available: https://www.telesur.sr/5g/.; NOKIA. (Apr 10,). ANTEL and Nokia make the first 5G call on a commercial network inLatin America. Available: https://www.nokia.com/about-us/news/releases/2019/04/10/antel-and-nokia-make-the-first-5g-call-on-a-commercial-network-in-latin-america/.; ENACOM, "LEY ARGENTINA DIGITAL," Boletín Oficial De La Republica De Argentina,Dec 19, 2014.; Secretaría de Tecnologías de la Información, "Documento base sobre la identificación dedesafíos y necesidades de Espectro Radioeléctrico en Argentina," Boletin Oficial De La Republica De Argentina, pp. 1-36, 2019.; Asamblea Legislativa Plurinacional, "Ley General de Telecomunicaciones, Tecnologías dela Información y Comunicación" Gaceta Oficial De Bolivia, Ago 8, 2011.; Agencia Boliviana Espacial, "Satélite TUPAC KATARI," 2019.; Poder Legislativo, "Ley No. 13.879," Diario Oficial De La Unión, vol. 1, Oct 4, 2019.; ANATEL, “Anatel aprova consulta pública para implementar o 5G,” 06-Feb-2020. [Online].Available: https://www.anatel.gov.br/institucional/component/content/article/171-manchete/2491-anatel-aprova-consulta-publica-para-licitar-faixas-de-frequencias-para-o-5g. [Accessed: 20-May-2020].; SUBTEL, "CONSULTA PÚBLICA SOBRE PLAN NACIONAL 5G PARA CHILE," 2018.; SUBTEL. (Jan 14,). Consulta Pública 5G: Gobierno licitará cuatro bandas para generarmayor competencia y eficiencia espectral en el mercado móvil. Available: https://www.subtel.gob.cl/consulta-publica-5g-gobierno-licitara-cuatro-bandas-para-generar-mayor-competencia-y-eficiencia-espectral-en-el-mercado-movil/.; MINTIC, Plan 5G Colombia. Colombia: Planes Nacionales del MINTIC, 2019.; 5G Américas, “Temas en Regulación de Telecomunicaciones: Ecuador,” Publicaciones 5GAméricas, 2019 [Online]. Available: https://brechacero.com/white-papers/. [Accessed: 26-Jul-2020].; PUC, "ACT NO. 18- TELECOMMUNICATIONS ACT," The Official Gazette, Ago 5, 2016.; F. D'Almeida and D. Margot, La Evolución De Las Telecomunicaciones Móviles EnAmérica Latina Y El Caribe. (Publicaciones BID ed.) 20182.; Poder Legislativo, "LEY No. 642 DE TELECOMUNICACIONES," Gaceta Oficial De LaRepública Del Paraguay, 1995.; J. M. Perrotta, "Conatel pone fecha al 5G en Paraguay para después de 2024,"TeleSemana.Com, Jun 11, 2020. Available: http://www.telesemana.com/blog/2020/06/11/conatel-pone-fecha-al-5g-en-paraguay-para-despues-de-2024/.; OSIPTEL, "Reporte estadístico" Publicaciones OSIPTEL, Perú, Abril. 2020.; J. O. Prats Cabrera and P. Puig Gabarró, La gobernanza de las telecomunicaciones: Haciala economía digital. 2017, pp. 49–51 [Online]. Available: https://publications.iadb.org/es/node/14083.; LEY ORGÁNICA DE TELECOMUNICACIONES, "LEY ORGÁNICA DE TELECOMUNICACIONES," Gaceta Oficial De Venezuela, Feb 7, 2011.; N. Larocca, "Venezuela presenta una penetración 4G que la región alcanzó en 2016," Mar1, 2019. Available: http://www.telesemana.com/blog/2019/03/01/venezuela-presenta-una-penetracion-4g-que-la-region-alcanzo-en-2016/.; ARCEP, La régulation de l’Arcep au service des territoires connectés. 2020 [Online].Available: https://www.arcep.fr/collectivites/larcep-et-les-territoires.htm.; J. E. Garcia Orjuela, “Descripcion planta de tratamiento de agua - Icononzo, Tolima,” J.Chem. Inf. Model., 2014.; Gobernación del Tolima, “Estadísticas 2011-2014,” BMC Public Health, vol. 5, no. 1, pp.1–8, 2017.; J. E. Garcia Orjuela, “Propuesta de reducción de cargas contaminantes en el municipiode Icononzo, Tolima.” 2018.; Gobernación del Tolima, “Municipio de Icononzo,” 2019. [Online]. Available:https://www.tolima.gov.co/publicaciones/21123/municipio-de-icononzo/. [Accessed: 26-Apr-2020].; "Clima promedio en Icononzo, Colombia, durante todo el año - Weather Spark.” [Online].Available: https://es.weatherspark.com/y/23362/Clima-promedio-en-Icononzo-Colombia-durante-todo-el-año. [Accessed: 26-Apr-2020].; “Ósmosis Inversa %7C SEFILTRA %7C Expertos en purificación de fluidos.” [Online]. Available:https://www.sefiltra.com/productos/osmosis-inversa/. [Accessed: 21-Nov-2020].; S. L. Sanderson, E. Roberts, J. Lineburg, and H. Brooks, “Fish mouths as engineeringstructures for vortical cross-step filtration,” Nat. Commun., vol. 7, Mar. 2016.; “Las barbas de las ballenas.” [Online]. Available: https://universomarino.com/2011/02/04/las-barbas-de-las-ballenas/. [Accessed: 26-Apr-2020].; "PROCEDIMIENTO PARA LA OBTENCIÓN DE M ICROPIBRAS DE QUERATINA APARTIR DE RESIDUOS GANADEROS’ DESCRIPCIÓN Objeto de la Invención,” Jul. 2006.; R. D. E. Estudios and E. N. Psicolox, “Plumas: Implicancia ambiental y uso en la industriaagropecuaria,” vol. 21, no. 3, pp. 225–237, 2013.; I. E. Roca Girón, “Estudio de las propiedades y aplicaciones industriales del polietilenode alta densidad (PEAD),” J. Chem. Inf. Model., vol. 12 Suppl 1, no. 9, pp. 1–29, 2005.; 12]“Filtración (II): selección del equipo de filtrado %7C iAgua.” [Online]. Available:https://www.iagua.es/blogs/miguel-angel-monge-redondo/filtracion-ii-seleccion-equipo-filtrado. [Accessed: 26-Apr-2020].; ATDI, «5G: A revolution in evolution, even in 2017,» de RadioExpo, 2017.; MinTic, «Boletin trimestral de las Tic: Cifras Segundo Trimestre de 2019,» Ministerio de Tecnologías de la Información y las Comunicaciones , 2020.; CRC, «Reporte de industria sector TIC 2016,» Comisión de regulación de las comunicaciones, 2017.; Gupta , A., & Jha , R., «A Survey of 5G Network: Architecture and Emerging Technologies,» IEEE Access, pp. 1206-1032, 2015.; K. E. Requena, D. M. Rozo y J. E. Arévalo, «Radiopropagation simulations comparison in millimeter waves frequencies for fifth generation (5G) mobile networks,» Actas de Ingeniería, pp. 97-105, 2017.; A. Durán Barrado, «Estudio y caracterización del canal y de la propagación en ondas milimétricas, orientada a su utilización en redes de comunicaciones móviles 5g.,» ETSIT UPM, 2017.; K. E. REQUENA Barrera y D. M. Rozo Moreno, «Análisis de desempeño de la propagación de señales en redes móviles de quinta generación (5g) en bandas de frecuencias de ondas milimétricas (mmwaves) empleando la herramienta de simulación ics telecom,» FUAC, 2017.; J. E. Arévalo Peña & R. A. González Bustamante, «Radiopropagation Performance Analysis Simulations ofMassive MIMO Configurations in 28 GHz,» CEUR-WS, p. 4, 2018.; P. Missud, «Extrayendo Clutter de imagenes Multiespectrales de Landsat 8,» ATDI, 2013.; Google,«Google Maps,» Google, 01 07 2018. [En línea].Available: https://www.google.com/maps. [Último acceso: 21 10 2020].; ITU, «Recomendación UIT-R P.526,» ITU, 2018.; IDEAM, «ideam.gov.co,» 31 05 2002. [En línea]. Available:https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.526-14-201801-I!!PDF-S.pdf.; M. Montoya Rendon, P. Zapata Saldarriaga & M. Correa Ochoa, «Contaminación ambiental por PM10 dentro y fuera del domicilio y capacidad respiratoria en Puerto Nare, Colombia,» salud pública, pp. 113-115, 2013.; CRC, «Áreas de cobertura del servicio,» Comisión de Regulación de Comunicaciones, 20 03 2009. [En línea]. Available: https://www.crcom.gov.co/es/pagina/reas-de-cobertura- del-servicio. [Último acceso: 21 10 2020].; ITU, «Guidelines for evaluation of radio interface technologies for IMT-2020,» ITU, 2017.; ITU, «UIT-R M.1073-1,» ITU, 1997.; Camino L. García. (2016). Enseñar con TIC: Nuevas y renovadas metodologías para laenseñanza superior. © 2016, CINEP/IPC. pp 26-27.; Charles Kadushin. (diciembre 2013). Comprender las redes sociales. Teorías, conceptosy hallazgos. Primera Edición. Moltalbán, 8. 28014 Madrid. pp. 93-95.; Roger S. Pressman. (2010). Ingeniería del Software Un enfoque práctico. Vol. 3, SéptimaEdición. pp. 70 Sitios web.; ICFES. (2019) Resultados de las pruebas ICFES. http://www2.icfesinteractivo.gov.co/resultadossaber2016web/pages/publicacionResultados/agregados/saber11/agregadosSecretarias.jsf#Noback button.; Juan Carlos Mejía Llanos (21 de marzo, 2019) Estadísticas de redes sociales 2019:USUARIOS DE FACEBOOK, TWITTER, INSTAGRAM, YOUTUBE, LINKEDIN, WHATSAPP Y OTROS. https://www.juancmejia.com/marketing-digital/estadisticas-de-redessocialesusuarios-de-facebook-instagram-linkedin-twitter-whatsapp-y-otrosinfografia/#Informe_detallado_usuarios_redes_sociales_WeAreSocial_y_Hootsuite (5 de mayo de 2019).; Psicología-Onlie (20 de agosto 2018) Teorías del aprendizaje según Brunner.https://www.psicologia-online.com/teorias-del-aprendizaje-segun-bruner-2605.html.; Revista Médica Clínica Las Condes (enero-febrero, 2015) Impacto de las redes socialese internet en la adolescencia: aspectos positivos y negativos. https://www.sciencedirect.com/science/article/pii/S0716864015000048#bib0005.; TeleMedellin (28 de septiembre, 2018) Preocupación por déficit de ingenieros enColombia. https://telemedellin.tv/deficit-ingenieros-colombia/284852/.; UNESCO (21 de septiembre, 2017) SERVICIO DE PRENSA: 617 millones de niños yadolescentes no están recibiendo conocimientos mínimos en lectura y matemática. http://www.unesco.org/new/es/mediaservices/singleview/news/617_million_children_and_adolescents_not_getting_the_minimum/.; Walter, L., Gallegos, Arias, & Huerta, Adriana Oblitas. (2014). Aprendizaje pordescubrimiento vs. Aprendizaje significativo: Un experimento en el curso de historia de la psicología. Boletim - Academia Paulista de Psicologia, 34(87), 455-471. http://pepsic.bvsalud.org/scielo.php?script=sci_arttext&pid=S1415711X2014000200010&lng=pt&tlng=es.Artículos.; L. A. Luengas, G. Sánchez, y S. M. Cárdenas, “Nuevas herramientas pedagógicas:laboratorio virtual", Visión Electrónica, vol. 9, no. 2, pp. 277-284,2015. https://doi.org/10.14483/22484728.11034.; M. Vergel Ortega, O. L. Rincón Leal, y L. A. Jaimes Contreras, “Prototipos electrónicosen el desarrollo de pensamientos formales", Visión Electrónica, vol. 9, no. 2, pp. 182-193, 2015. https://doi.org/10.14483/22484728.11026.; J. F. Pastrán Beltrán y F. Pinzón Herrera, “Software libre: una estrategia para aprendera factorizar ", Visión Electrónica, vol. 9, no. 1, pp. 139-148,2015. https://doi.org/10.14483/22484728.11024.; R. López Gonzalez, “Genealogía de cambio conceptual en la enseñanza de la ciencia",Visión Electrónica, vol. 1, no. 1, pp. 88-92, 2008. https://doi.org/10.14483/22484728.255.; F. P. Rodriguez, A. R. Torres, y H. Vacca, “Estudio con análisis por elementos finitos desistemas análogos circuitales en física", Visión Electrónica, vol. 6, no. 1, pp. 98-103, 2012. https://doi.org/10.14483/22484728.3750.; R. Lopez, “La propedéutica y el discurso sobre las tecnologías", Visión Electrónica, vol.7, no. 1, pp. 178-187, 2013. https://doi.org/10.14483/22484728.4399.; Arquitectura, L., Negocios, A. De, & Salimbeni, S. (2017). La Arquitectura Empresarial y elAnálisis de Negocios.; Basyarudin. (2018). Диф нарушениямиNo Title. Высшей Нервной Деятельности, 2, 227–249.; Clavijo, S., & Vera, A. (2013). Inversion en infraestructura.7–14.; CoronApp, la aplicación para que conocer la evolución del coronavirus - Rumble. (n.d.).Retrieved May 8, 2020, from https://rumble.com/embed/ubedx.v6h0k3/?rel=0.; Dashboard Coronavirus COVID-19 (Mobile). (n.d.). Retrieved May 8, 2020, from https://www.arcgis.com/apps/opsdashboard/index.html#/85320e2ea5424dfaaa75ae62e5c06e61.; Dussan, H., & Garzon, K. (2017). DIAGNÓSTICO PARA LA CREACIÓN DE UN MODELO BAJO LA ARQUITECTURA ORGANIZACIONAL TOGAF APLICADO EN LAS DEPENDENCIAS TIC DE LA UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS. 1–126.; Gasto en investigación y desarrollo (% del PIB) %7C Data. (n.d.). etrieved May 8, 2020, from https://datos.bancomundial.org/indicador/GB.XPD.RSDV.GD.ZS?name_desc=false&view=map.; Gobernanza Territorial, Identificación De Fortalezas, Áreas De. (2013).; González Campo, C. H., & Lozano Oviedo, J. (2020). Propuesta para la definición de la arquitectura empresarial. Dimensión Empresarial, 18((1)). https://doi.org/10.15665/dem.v18i(1).2109 Palacios-Urgilés, F. G., & Campoverde-Molina, M. A. (2019).; Análisis de la arquitectura empresarial como oportunidad de mejora en las microempresas de la ciudad de Cuenca. Dominio de Las Ciencias, 5(3), 487. https://doi.org/10.23857/dc.v5i3.949.; Ministerio de Tecnologías de la Información y las Comunicaciones. (2016). G . GEN . 03 . Guía General de un Proceso de Arquitectura Empresarial. 1–41. Retrieved from http://www.mintic.gov.co/arquitecturati/630/articles- 9435_Guia_Proceso.pdf.; PIB-real segundo trimestre de 2019 y revisión de pronósticos. (n.d.). Retrieved May 8, 2020,from https://www.larepublica.co/analisis/sergio-clavijo- 500041/pib-real-segundo-trimestre-de-2019-y-revision- de-pronosticos-2900103 PND. (2018). Bases del Plan Nacional de Desarrollo.; Presupuesto y estados financieros. (n.d.). Retrieved May 10, 2020, fromhttps://www.dane.gov.co/index.php/servicios-al-ciudadano/tramites/transparencia-y-acceso-a-la- informacion-publica/presupuesto-general- asignado#presupuesto-general.; Saboya, N., Loaiza, O., & Lévano, D. (2018). Diseño de un modelo de arquitecturaempresarial para publicaciones científicas basado en adm - Togaf 9.0. Retrieved May 10, 2020, from https://www.redalyc.org/jatsRepo/4676/467655911004/ html/index.html.; Carlo Batini y Monica Scannapieco, DATA AND INFORMATION QUALITY, I.Switzerland: Springer International Publishing, 2016.; C. Sammut y G. I. Webb, Eds., Encyclopedia of Machine Learning and Data Mining.Boston, MA: Springer US, 2017.; «Who we are - Eurostat». https://ec.europa.eu/eurostat/about/who-we-are (accedidoago. 23, 2020).; B. G. Grow y 2020 January 24, «Data Quality Predictions for 2020», Transforming Datawith Intelligence. https://tdwi.org/articles/2020/01/24/diq-all-data-quality-predictions-for- 2020.aspx (accedido ago. 21, 2020).; T. C. Redman, «Bad Data Costs the U.S. $3 Trillion Per Year», Harvard BusinessReview, sep. 22, 2016.; B. G. Grow y 2018 July 6, «Reducing the Impact of Bad Data on Your Business»,Transforming Data with Intelligence. https://tdwi.org/articles/2018/07/06/diq-all-reducing-the-impact-of-bad- data.aspx (accedido ago. 21, 2020).; B. G. Grow y 2019 May 3, «Data Quality Best Practices for Today’s Data- DrivenOrganization», Transforming Data with Intelligence. https://tdwi.org/articles/2019/05/03/diq-all-data-quality-best-practices-for- data-driven-organizations.aspx (accedido ago. 23, 2020).; C. W. Fisher y B. R. Kingma, «Criticality of data quality as exemplified in two disasters»,Inf. Manage., vol. 39, n.o 2, pp. 109-116, dic. 2001, doi:10.1016/S0378-7206(01)00083-0.; crodwflower, «2016 DATA SCIENCE REPORT», 2016.; S. Lohr, «For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights», The NewYork Times, ago. 17, 2014.; «ISO 9000:2015(en), Quality management systems — Fundamentals and vocabulary».https://www.iso.org/obp/ui/#iso:std:45481:en (accedido ago. 23, 2020).; C. Batini y M. Scannapieco, «Data Quality Dimensions», en Data and Information Quality,Springer, Cham, 2016, pp. 21-51.; «NORMAS ISO 25000». https://iso25000.com/index.php/normas-iso-25000 (accedidomar. 23, 2019).; C. Batini y M. Scannapieco, «Activities for Information Quality», en Data and InformationQuality, Springer, Cham, 2016, pp. 155-175.; C. Batini y M. Scannapieco, «Object Identification», en Data and Information Quality,Springer, Cham, 2016, pp. 177-215.; Tejada S, Knoblock C, Minton S, Learning object identification rules for informationintegration. 2001.; 2014 January 21, «New Techniques Detect Anomalies in Big Data», Transforming Datawith Intelligence. https://tdwi.org/articles/2014/01/21/detecting-big-data-anomalies.aspx (accedido ago. 26, 2020).; J. Taylor, «Clean your data with unsupervised machine learning», Towards Data Science,dic. 01, 2018. https://towardsdatascience.com/clean-your- data-with-unsupervised-machine-learning-8491af733595 (accedido mar. 17, 2019).; I. Taleb, H. T. E. Kassabi, M. A. Serhani, R. Dssouli, y C. Bouhaddioui.; I. Taleb, H. T. E. Kassabi, M. A. Serhani, R. Dssouli, y C. Bouhaddioui, «Big Data Quality: A Quality Dimensions Evaluation», en 2016 Intl IEEE Conferences on Ubiquitous Intelligence Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), jul. 2016, pp. 759-765, doi:10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0122.; H. Liu, T. K. A. Kumar, y J. P. Thomas, «Cleaning Framework for Big Data -Object Identification and Linkage», en 2015 IEEE International Congress on Big Data, jun.2015, pp. 215-221, doi:10.1109/BigDataCongress.2015.38.; «LEILA - Librería de calidad de datos — documentación de LEILA - 0.1». https://ucd-dnp.github.io/leila/ (accedido ago. 27, 2020).; H. Müller y J.-C. Freytag, «Problems, Methods, and Challenges in Comprehensive DataCleansing», p. 23.; «Google Colaboratory». https://colab.research.google.com/notebooks/welcome.ipynb?hl=es-419 (accedido jun. 29, 2020).; hrasheed-msft, «¿Qué es Azure HDInsight?» https://docs.microsoft.com/es- es/azure/hdinsight/hdinsight-overview (accedido abr. 27, 2020).; S. F. Fernández, J. M. C. Sánchez, A. Córdoba, y A. C. Largo, Estadística Descriptiva.ESIC Editorial, 2002.; F. Sidi, P. H. Shariat Panahy, L. S. Affendey, M. A. Jabar, H. Ibrahim, y A. Mustapha, «Dataquality: A survey of data quality dimensions», en 2012 International Conference on Information Retrieval Knowledge Management, mar. 2012, pp. 300-304,doi:10.1109/InfRKM.2012.6204995.; J. Wang, C. Zhang, X. Wu, H. Qi and J. Wang, «SVM-OD: A New SVM Algorithm forOutlier Detection - Google Académico», presentado en Proc. ICDM’03 Workshop Foundations and New Directions of Data Mining, 2003, Accedido: ago. 24, 2020. [En línea]. Disponible en: https://scholar.google.com/scholar?hl=es&as_sdt=0,5&q=SVM- OD%3A+A+New+SVM+Algorithm+for+Outlier+Detection&btnG=.; «Factores que afectan el peso y la salud %7C NIDDK», National Institute of Diabetes andDigestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/informacion-de-la- salud/control-de-peso/informacion-sobre-sobrepeso-obesidad- adultos/factores-afectan (accedido may 16, 2020).; Lean Yu, Shouyang Wang, y K. K. Lai, «An integrated data preparation scheme for neuralnetwork data analysis», IEEE Trans. Knowl. Data Eng., vol. 18, n.o 2, pp. 217-230, feb. 2006, doi:10.1109/TKDE.2006.22.; Sumithra V.S,Subu Surendran, «A Review of Various Linear and Non LinearDimensionality Reduction Techniques», Int. J. Comput. Sci. Inf. Technol., vol. 6.; D. Chicco y G. Jurman, «The advantages of the Matthews correlation coefficient (MCC)over F1 score and accuracy in binary classification evaluation», BMC Genomics, vol. 21, n.o 1, p.6, ene. 2020, doi:10.1186/s12864-019-6413-7.; Katrakazas, E. Michelaraki, M. Sekadakis, and G. Yannis, “A descriptive analysis of the effect of the COVID-19 pandemic on driving behavior and road safety,” Transp. Res. Interdiscip. Perspect., vol. 7, 2020, doi:10.1016/j.trip.2020.100186.; P. Pereira and J. Pais, “Main flexible pavement and mix design methods in Europe andchallenges for the development of an European method,” J. Traffic Transp. Eng. (English Ed., vol. 4, no. 4, pp. 316–346, 2017, doi:10.1016/j.jtte.2017.06.001.; A. P. Singh, A. Sharma, R. Mishra, M. Wagle, and A. K. Sarkar, “Pavement conditionassessment using soft computing techniques,” Int. J. Pavement Res. Technol., 2018.; Z. Zhang, Q. Liu, Q. Wu, H. Xu, P. Liu, and M. Oeser, “Damage evolution of asphalt mixtureunder freeze-thaw cyclic loading from a mechanical perspective,” Int. J. Fatigue, vol. 142, no. June 2020, pp. 1–9, 2021, doi:10.1016/j.ijfatigue.2020.105923.; K. B. Bai Kamara, E. Ganjian, and M. Khorami, “The effect of quarry waste dust andreclaimed asphalt filler in hydraulically bound mixtures containing plasterboard gypsum and GGBS,” J. Clean. Prod., vol. 279, 2021, doi:10.1016/j.jclepro.2020.123584.; D. M. Kusumawardani and Y. D. Wong, “The influence of aggregate shape properties onaggregate packing in porous asphalt mixture (PAM),” Constr. Build. Mater., vol. 255, 2020, doi:10.1016/j.conbuildmat.2020.119379.; T. M. Al Rousan, “Characterization of aggregate shape properties using a computerautomated system,” Texas A&M University, 2004.; C. García-González, J. Yepes, and M. A. Franesqui, “Geomechanical characterization ofvolcanic aggregates for paving construction applications and correlation with the rock properties,” Transp. Geotech., vol. 24, no. January, 2020, doi:10.1016/j.trgeo.2020.100383.; J. Hu and P. Stroeven, “Shape characterization of concrete aggregate,” Image Anal. Stereol.,vol. 25, no. 1, pp. 43–53, 2006, doi:10.5566/ias.v25.p43-53.; T. Roussillon, H. Piégay, I. Sivignon, L. Tougne, and F. Lavigne, “Automatic computationof pebble roundness using digital imagery and discrete geometry,” Comput. Geosci., vol. 35, no. 10, pp. 1992–2000, 2009, doi:10.1016/j.cageo.2009.01.013.; J. Zhang, X. Yang, W. Li, S. Zhang, and Y. Jia, “Automatic detection of moisture damagesin asphalt pavements from GPR data with deep CNN and IRS method,” Autom. Constr., vol. 113, no. September 2019, 2020, doi:10.1016/j.autcon.2020.103119.; L. Pei et al., “Pavement aggregate shape classification based on extreme gradientboosting,” Constr. Build. Mater., vol. 256, 2020, doi:10.1016/j.conbuildmat.2020.119356.; K. A. Ghuzlan, M. T. Obaidat, and M. M. Alawneh, “Cellular-phone-based computer visionsystem to extract shape properties of coarse aggregate for asphalt mixtures,” Eng. Sci. Technol. an Int. J., vol. 22, no. 3, pp. 767–776, 2019, doi:10.1016/j.jestch.2019.02.003.; J. Kim, B. S. Park, S. I. Woo, and Y. T. Choi, “Evaluation of ballasted-track condition basedon aggregate-shape characterization,” Constr. Build. Mater., vol. 232, 2020, doi:10.1016/j.conbuildmat.2019.117082.; O. J. Reyes-ortiz, M. Mejía, and J. S. Useche-Castelblanco, “Aggregate segmentation ofasphaltic mixes using digital image,” Bull. Polish Acad. Sci. Tech. Sci., vol. 67, no. 2, pp. 279–287, 2019.; S. M. E. Harb, N. Ashidi, M. Isa, and S. A. Salamah, “Improved image magnificationalgorithm based on Otsu,” Comput. Electr. Eng. J., vol. 46, pp. 338–355, 2015.; J. V. C. I. R, C. Sha, J. Hou, and H. Cui, “A robust 2D Otsu ’ s thresholding method in imagesegmentation q,” J. Vis. Commun. Image R. J., vol. 41, pp. 339–351, 2016.; O. J. Reyes-Ortiz, M. Mejia, and J. S. Useche-Castelblanco, “Digital image analysis appliedin asphalt mixtures for sieve size curve reconstruction and aggregate distribution homogeneity,” Int. J. Pavement Res. Technol., 2020, doi:10.1007/s42947-020-0315-6.; S. Yu, S. Jia, and C. Xu, “Convolutional neural networks for hyperspectral imageclassification,” Neurocomputing, vol. 219, pp. 88–98, 2017.; V. C. Janoo, “Quantification of shape, angularity, and surface texture of base coursematerials,” 1998.; E. Masad, T. M. Al Rousan, J. Button, and D. Little, Test Methods for CharacterizingAggregate Shape, Texture, and Angularity. United States of America, 2007.; E. dos S. Silva et al., “Evaluation of macro and micronutrient elements content from softdrinks using principal component analysis and Kohonen self-organizing maps,” Food Chem., vol. 273, no. May 2018, pp. 9–14, 2019, doi:10.1016/j.foodchem.2018.06.021.; B. Yang, S. Yang, J. Zhang, and D. Li, “Optimizing random searches on three-dimensionallattices,” Phys. A Stat. Mech. its Appl., vol. 501, pp. 120–125, Jul. 2018, doi:10.1016/J.PHYSA.2018.02.100.; Diego Heras, “Clasificador de imágenes de frutas basado en inteligencia artificial”, KillkanaTécnica, Vol. 1, no. 2, pp. 21-30, 2017.; SicTransCore Latinoamérica, Sic TransCore Sistemas de Identificación y control vehicular,2019. [Online]. Disponible en: https://www.sictranscore.com/.; V. M. Arévalo, J. González, G. Ambrosio, La Librería De Visión Artificial Opencv AplicaciónA La Docencia E Investigación, Dep.Sis. y Aut. Universidad de Málaga, España. [Online]. Disponible en: http://mapir.isa.uma.es/varevalo/drafts/arevalo2004lva1.pdf.; Bastián Nicolás Carvajal Ahumada, Reconocimiento Fotográfico De Patentes, Facultad deIngeniería, Pontificia Universidad Católica De Valparaíso, Valparaíso, Ciudad de Chile, 2018.; Guerra Monterroza, E. J. (2008). Reconocimiento de primitivas 3D, usando autocorrelación yANFIS. Visión electrónica, 1(1), 56-61. https://doi.org/10.14483/22484728.251.; Giraldo Ramos, F. N., Gonzalez, F., & Camargo Casallas, E. (2011). “Algoritmos deprocesamiento de imágenes satelitales con transformada Hough. Visión electrónica, 5(2), 26-41. https://doi.org/10.14483/22484728.3568.; Jiménez Moreno, R., Martínez Baquero, J. E., & Rodríguez Umaña, L. A. (2018). Sistemaautomático de clasificación de peces. Visión electrónica, 12(2), 258-264.https://doi.org/10.14483/22484728.14265.; A. Daneels and W. Salter, “WHAT IS SCADA?,” in International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, pp. 339–343, Accessed: Sep. 20, 2019. [Online]. Available: http://cds.cern.ch/record/532624/files/mc1i01.pdf.; Wikipedia, “Distributed control system,” 2019. https://en.wikipedia.org/wiki/Distributed_control_system (accessed Sep. 29, 2019).; R. Hunzinger, Scada fundamentals and applications in the IoT, 1st ed. Wiley Telecom, 2017.; S. Ray, Y. Jin, and A. Raychowdhury, “The Changing Computing Paradigm with Internet of Things: A Tutorial Introduction,” IEEE Des. Test, vol. 33, no. 2, pp. 76–96, 2016, doi:10.1109/MDAT.2016.2526612.; A. Bhatia, Z. Yusuf, D. Ritter, and N. Hunke, “Who Will Win the IoT Platform Wars?,” BCG Perspect., p. 6, 2017, [Online]. Available: https://image-src.bcg.com/Images/BCG-Who-Will-Win-the-IoT-Platform-Wars-June-2017_2_tcm58-162424.pdf.; L. Doron and Netafim, “The core results of the FIGARO project: the Platform,” in InternationalFIGARO Conference, 19 September 2016, Brussels, Belgium, 2016, [Online]. Available: http://www.figaro-irrigation.net/fileadmin/user_upload/figaro/docs/Lior_2_NET_FIGARO_project_summary.pdf.; A. (Eastern P. Chalimov, “IoT in Agriculture: 5 Technology Use Cases for Smart Farming(and 4 Challenges to Consider),” 2018. https://easternpeak.com/blog/iot-in-agriculture-5-technology-use-cases-for-smart-farming-and-4-challenges-to-consider/ (accessed Mar. 21, 2020).; L. Xiamen Ursalink Technology Co., “IoT-based Smart Irrigation,” 2019.https://www.ursalink.com/en/solution/agriculture/smart-irrigation (accessed May 30, 2020).; O. Pandithurai, S. Aishwarya, B. Aparna, and K. Kavitha, “Agro-tech: A digital model formonitoring soil and crops using internet of things (IOT),” ICONSTEM 2017 - Proc. 3rd IEEE Int. Conf. Sci. Technol. Eng. Manag., vol. 2018-Janua, pp. 342–346, 2018, doi:10.1109/ICONSTEM.2017.8261306.; A. N. Nassar A.S., Montasser A.H., “Smart Aquaponics System for Industrial Internet ofThings (IIoT),” Proc. Int. Conf. Adv. Intell. Syst. Informatics, vol. 639, no. 1, pp. 855–864, 2018, doi:10.1007/978-3-319-64861-3.; R. Nageswara Rao and B. Sridhar, “IoT based smart crop-field monitoring and automationirrigation system,” Proc. 2nd Int. Conf. Inven. Syst. Control. ICISC 2018, no. Icisc, pp. 478–483, 2018, doi:10.1109/ICISC.2018.8399118.; S. Bakalis et al., “Perspectives from CO+RE: How COVID-19 changed our food systemsand food security paradigms,” Curr. Res. Food Sci., vol. 3, pp. 166–172, 2020, doi:10.1016/j.crfs.2020.05.003.; J. M. Talavera et al., “Review of IoT applications in agro-industrial and environmental fields,”Comput. Electron. Agric., vol. 142, no. 118, pp. 283–297, 2017, doi:10.1016/j.compag.2017.09.015.; Wikipedia, “Druckschalter,” Wikipedia, 2013. https://de.wikipedia.org/wiki/Druckschalter#/media/Datei:Druckschalter_PSD_30.jpg (accessed Jun. 30, 2020).; P. IoT, “PARTICLE IoT-BORON,” 2019. https://docs.particle.io/datasheets/cellular/boron-datasheet/ (accessed Oct. 19, 2019).; The ThingsBoard Authors, “Smart farming and smart agriculture solutions,” ThingsBoard.io,2020. https://thingsboard.io/smart-farming/ (accessed Jun. 20, 2020).; A. Joseph Fernando, “How Africa Is Promoting Agricultural Innovations and Technologiesamidst the COVID-19 Pandemic,” Mol. Plant, vol. 13, no. 10, pp. 1345–1346, 2020, doi:10.1016/j.molp.2020.08.003.; E. Vargas, A. Guillermo Correa, P. C. souza, N. Rodrigues de Baptestini, F. Machado Zaidan y I. Ramos, "Avaliação da homogeneidade da expansão dos grãos de café torrados" de VIII Simpósio de Pesquisa dos Cafés do Brasil, novembro 2013.; Giraldo Cerón, A. F. "Tan cerca y tan lejos de la agricultura 4.0 en Colombia". Revista Universidad EAFIT, 55(175), 78-85.2020.; O. L. Ocampo López y L. M. Álvarez Herrera, «Tendencia de la producción y el consumo del café en Colombia,» Apuntes del CENES, vol. 36, nº 64, pp. 139-165, julio -diciembre 2017.; G. I. Puerta Quintero, Investigador Científico III y Centro Nacional deInvestigaciones, «COMPOSICIÓN QUÍMICA DE UNA TAZA DE CAFÉ,» Ciencia, tecnología e innovación para la caficultura colombiana, MANIZALES , 2011.; Samodro, Bayu, et al. "Maintaining the Quality and Aroma of Coffee with Fuzzy Logic Coffee Roasting Machine." IOP Conference Series: Earth and Environmental Science. Vol. 426. No. 1. IOP Publishing, 2020.; Fadri, R. A., et al. "Review of coffee roasting process and formation of acrylamide related to health." Journal of Applied Agricultural Science and Technology 3.1 (2019): 129-145.; Botero Lopez, Santiago, and Muhammad Salman Chaudhry. "Designing an Efficient Supply Chain for Specialty Coffee from Caldas-Colombia." (2020).; Suarez-Peña, Javier Andrés, et al. "Machine Learning for Cup Coffee Quality Prediction from Green and Roasted Coffee Beans Features." Workshop on Engineering Applications. Springer, Cham, 2020.; Putra, Satya Andika, Umi Hanifah, and Mirwan Ardiansyah Karim. "Theoretical study of fluidization and heat transfer on fluidized bed coffee roaster." AIP Conference Proceedings. Vol. 2097. No. 1. AIP Publishing LLC, 2019.; Benitez O, Campo-Ceballos D, «Evaluación de la calidad el café tostado utilizando herramientas de procesamiento digital de imágenes», ACCB, vol. 1, n.º 30, pp. 32-43, dic. 2018.; Meana, Vanessa Rose L., Nazer Sarapeo P. Kimkiman, and Alvin C. Dulay. "Design, Fabrication, and Performance Evaluation of a Batch-Type Fluidized Bed Coffee Roaster for Small-Scale Coffee Growers." Mountain Journal of Science and Interdisciplinary Research (formerly Benguet State University Research Journal) 79.2 (2019): 90-97.; Buesaquillo Imbaquingo, Luis Darío. Sistema de control para mejorar el desempeño de una máquina tostadora de café. BS thesis. 2019.; Abdul. Ghani, Nur Hamizah, et al. "Development of a novel 2D single coffee bean model and comparison with a 3D model under varying heating profiles." Journal ofFood Process Engineering 42.4 (2019).; Campo Ceballos D, et al. "Herramientas de cv para evaluar el color y matiz del café tostado: el color del café tostado y su relación con las propiedades organolépticas".EAE. 68 páginas. 2018.; N. Reddy, N. Maheshwari, D. K. Sahu, y G. K. Ananthasuresh, «Miniature CompliantGrippers With Vision-Based Force Sensing», IEEE Transactions on Robotics, vol. 26, no. 5, pp. 867–877, Oct. 2010.; Barraza, A., Rúa, J., Sosa, J., Yime, E., & Roldan, J. (2015). Modelado dinámico delmanipulador serial Mitsubishi Movemaster RV-M1 usando SolidWorks. Revista de la facultad de Ingenierías Físicas Mecánicas, 49-62.; Benbelkacem, Y., & Mohd-Mokhtar, R. (26-29 de Noviembre de 2012). Explicit kinematicmodel of the Mitsubishi RV-M1 robot arm. IEEE, 404-409. Obtenido de http://ieeexplore.ieee.org/document/6466627/.; Carrasco, B., & Alberto, J. (2015). Integración de un UAV (vehículo aéreo no tripulado)en la plataforma robótica ARGOS.; DARMOUL Saber. Reality for Manufacturing: A Robotic Cell Case Study. Department ofIndustrial Engineering. King Saud University. Saudi Arabia. 7pag. 2015.; Research on Assembly Modeling Process Based on Virtual Manufacturing InteractiveApplication Technology. School of Mechanical and Electronic Engineering. Wuhan University of Technology. Wuhan, China. 5 pág. 2017.; Forero, J., Hurtado, L., & Ruiz, V. (Febrero de 2015). Visión electrónica, Más que unestado sólido. Arquitectura paralela robótica: modelado y simulación con siemens NX. Recuperado el 10 de agosto de 2015, de http://revistas.udistrital.edu.co/ojs/index.php/visele/article/view/11018.; Marcu, C., Lazea, G., Herle, S., Robotin, R., & Tamas, L. (2010 de junio de 25). IEEEexplore Digital Library, 3D graphical simulation of an articulated serial manipulator based on kinematic models. Recuperado el 10 de Agosto de 2017, de http://ieeexplore.ieee.org/abstract/document/5524593/.; Luengas, L. A., Sánchez, G., & Cárdenas, S. M. (2015). Nuevas herramientaspedagógicas: laboratorio virtual. Visión electrónica, 9(2), 277-284.https://revistas.udistrital.edu.co/index.php/visele/article/view/11034.; Luengas, L. A., Rincón López, D. A., & Galeano, K. J. (2010). Realidad virtual noinmersiva: instrumentos electrónicos de aplicación educativa. Visión electrónica, 4(1), 94-105.https://revistas.udistrital.edu.co/index.php/visele/article/view/275.; K. Cacua, O. Amell y L. Olmos, "Estudio comparativo entre las propiedades decombustión de la mezcla biogás-aire normal y biogás-aire enriquecido con oxígeno", Revista Ingeniería e Investigación, vol. 1, pp. 233-241, 2011.; R. Liriano, Aplicación de biofertilizantes como alternativa nutricional, ambiental y económica en la agricultura urbana, España: Universidad de Girona, 2005.; A. Padilla y J. Rivero, "Producción de Biogás y compost a partir de Residuos Orgánicos recolectados del complejo arqueológico Huaca de la Luna", Ciencia y Tecnología, vol. 1, pp. 29-43, 2016.; L. O. González Salcedo y Y. Olaya Arboleda, Fundamentos para el diseño de Biodigestores, Departamento de Ingeniería, 2009.; M. T. Madigan, J. M. Martinko y J. Parker, Biología de los microorganismos, 10 ed, 2004.; A. Pulido y J. Espitia, Diseño e implementación de un sistema de supervisión, monitoreo y control de temperatura, presión y tiempo de proceso en un sistema de digestión anaerobia de biomasa (contenido ruminal bovino) a escala de laboratorio, Bogotá: Universidad Distrital Francisco José de Caldas, 2016.; G. Bastin, "On-line estimation and adaptive control of bioreactors", Elsevier, vol. 1, 2013.; S. Hassam, E. Ficara, A. Leva y J. Harmand, "A generic and systematic procedure to derive a simplified model from the anaerobic digestion model No. 1 (ADM1)", Biochemical Engineering Journal, pp. 99, 193-203, 2015.; E. Ficara, S. Hassam, A. Allegrini, A. Leva, F. Malpei y G. Ferretti, "Anaerobic digestion models: a comparative study. IFAC Proceedings.", vol. 45(2), pp. 1052- 1057, 2012.; J. A. Jiménez, G. Pomboza y J. A. Holgado, «El gesto aplicado al control de dispositivosen,» Jornadas SARTECO, Ecuador, 2017.; O. F. Olivera, J. A. Cuervo, y F. N. Giraldo Ramos, “Sistema de control de posición angularaplicado a dispositivos RF", Visión Electrónica, vol. 5, no. 2, pp. 42-58, 2011.; T. G. Zimmerman, J. Lanier, C. Blanchard, S. Bryson, and Y. Harvill, “A hand gestureinterface device,” ACM SIGCHI Bull., vol. 17, no. SI, pp. 189 192, 1986.; Omega engineering, «Omega ENGINEERING,» es.omega.com, [En línea]. Available:https://es.omega.com/prodinfo/acelerometro.html. [Último acceso: 11 08 2019].; tdk, «Datasheet MPU60XX,» [En línea]. Available: https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf. [Último acceso: 11 08 2020].; Naylamp Mechatronics, «Naylamp Mechatronics,» Naylamp Mechatronics, [En línea].Available:https://naylampmechatronics.com/blog/45_Tutorial-MPU6050-Acelerómetro-y-Giros copio.html. [Último acceso: 11 08 2019].; Arduino, «arduino.cl,» arduino.cl, [En línea]. Available: http://arduino.cl/arduino-nano/.[Último acceso: 15 08 2019].; J. J. M. Fuentes, Fundamentos de radiación y radiocomunicación, Sevilla: Departamentode Teoría de la Señal y Comunicaciones, 2012.; J. Vargas, G. Poveda y V. Martinez, «Dispositivo inalámbrico para el control de,»ESPACIOS, vol. 39, nº 45, p. 9, 2018.; M. A. Arenas, J. M. Palomares, L. Girard, J. Olivares y J. M., «Diseño y Construcciónde un Guante de Datos mediante Sensores de Flexibilidad y acelerómetro,» researchgate, España, 2011.; K. K. Abgaryan and I. S. Kolbin, “Calculation of Heat Transfer in NanosizedHeterostructures,” Russ. Microelectron., vol. 48, no. 8, pp. 559–563, 2019, doi:10.1134/S1063739719080031.; A. R. Shabaan, S. M. El-Metwally, M. M. A. Farghaly, and A. A. Sharawi, “PID and fuzzylogic optimized control for temperature in infant incubators,” 2013 Proc. Int. Conf. Model. Identif. Control. ICMIC 2013, no. Icmic, pp. 53–59, 2013.; D. M. Ovalle M and L. F. Cómbita A., “Teaching basic control concepts with a home-madethermal system,” IEEE Glob. Eng. Educ. Conf. EDUCON, no. April, pp. 739–744, 2014, doi:10.1109/EDUCON.2014.6826176.; S. A. Adnan, A. Muhammad, and Z. Shareef, “Development of a low cost thermalfeedback system for basic control education,” Proc. 14th IEEE Int. Multitopic Conf. 2011, INMIC 2011, pp. 228–232, 2011, doi:10.1109/INMIC.2011.6151478.; R. Urbieta Parrazales, “Diseño, Simulación y Construcci?n de un Control PID Aplicado aun Sistema Térmico,” Polibits, vol. 15, pp. 11–19, 1995, doi:10.17562/pb-15-2.; C. Close, Modeling and Analysis of Dynamic Systems. 2002.; F. Navas, “DISEÑO Y CONSTRUCCION DE CAJA DE TRANSFERENCIA DE CALOR (GUARDED HOT BOX ),” 2007.; J. Bravo, G. López, R. Rodríguez, and F. J. Sabina, “Acerca de la homogeneización ypropiedades efectivas de la ecuación del calor On homogenization and effective properties of the heat equation Resumen,” pp. 149–159, 2013.; E. Significativas, Electrónica : teoría de circuitos y dispositivos electrónicos.; P. E. Allen, Operational amplifiers and linear integrated circuits, vol. 71, no. 9. 2008.; N. Ruangpayoongsak, J. Sumroengrit, & M. Leanglum, “A floating waste scooperrobot on water surface”, In 2017 17th International Conference on Control, Automation and Systems (ICCAS), pp. 1543-1548, IEEE, October 2017.; I Baturone, Robótica: manipuladores y robots móviles. Marcombo, 2005.; P. Jorge-Sanz, "Robots industriales colaborativos: una nueva forma de trabajo",Seguridad y Salud en el trabajo 95, pp. 6-10, 2018.; H. Thomas, S. Bensch. "Understandable robots-what, why, and how." Paladyn,Journal of Behavioral Robotics 9,pp. 110-123. no. 1, 2018.; B. Andrew, E. F. Buffie, and L.F. Zanna. "Robots, growth, and inequality." Finance &Development 53, pp. 10-13, no. 3, 2016.; S. Martínez, A. Carvajal, D. Loza, A. Ibarra, and L. Segura. "Collaborative two-armrobotic torso for the development of an assembly process." In 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), pp. 1-6. IEEE, 2017.; T.I., Getting Started MSP430G2553 Value Line LaunchPad Workshop Series, [Enlínea]. Disponible en: https://training.ti.com/getting-started-msp430g2553-launchpad-part-1.; D. Anderson, G. Constante, and T. Arrigoni. "Arquitetura FPGAs CPLDs da Xilinx."; Creus-Solé, “Instrumentación industrial”, 8va. ed. México: Alfaomega Grupo Editor, 2011.; M. A. Pérez-García, et al., “Instrumentación electrónica”, Madrid: Thomson, 2004.; Manuel, et al., “Instrumentación virtual adquisición, procesado y análisis de señales”,1era ed. Barcelona: UPC, 2001.; O. F. Corredor, et al. “Diseño e implementación de filtros digitales”. Visión electrónica,vol. 3, no. 1, pp. 55-56,2009. https://doi.org/10.14483/22484728.691.; Silicon Labs, “Using microcontrollers in digital signal processing applications”. AN219, Rev. 0.2 8/08. https://www.silabs.com/documents/public/application-notes/an219.pdf.; Hernández y E. Jacinto, “Una nueva metodología en el diseño de filtros digitales FIR sobre FPGA”. Visión electrónica, vol. 3, no. 2, pp. 40-47, 2009. https://doi.org/10.14483/22484728.2834.; V. M. Gómez, et al. “Diagnóstico de rodamientos con vibraciones mecánicas einstrumentos virtuales”. Visión electrónica, vol. 8, no. 2, pp. 107-113, 2014. https://doi.org/10.14483/22484728.9881.; National Instruments, “Strain gauge measurement - A tutorial”, Aplication Note 078, 2018.; J. Horn y G. Gleason, “Weigh Scale Applications for the MCP3551”, AN1030 Microchip, 2006.; F. Quiles-Latorre, et al., “Diseño del interfaz de una balanza electrónica basada en una celda de carga,” en Libro de catas SAAAEI2018, Córdoba, pp. 272-277, 2018.; J. Hernández-Jiménez y M. Fabela-Gallegos, “Diseño y construcción de un prototipo para determinar el peso de vehículos ligeros en movimiento”, 2004.; Rice Lake Weighing Systems, “Load cell and weigh module handbook”, 2017.; OIML, “Metrological regulation of load cells”, OIML R 60-1, 2017.; National Instruments, “User guide and specifications NI USB-6008/6009”, 2007. C. E. Pardo-Beainy, “Instrumentación Virtual, Control y Adquisición de Datos para Unidades de Cuidados Intensivos”, 2007.; G. Tem, “Concurso en Ingeniería de Control 2020,” 2020.; G. G. Slabaugh, “Computing Euler angles from a rotation matrix,” denoted as TRTAImplement. from httpwww starfireresearch comservicesjava3dsamplecodeFlorinE ulers html, vol. 6, no. 2000, pp. 1–6, 1999.; L. Euler, “Formvlae generales pro translatione qvacvnqvve corporvm rigidor,” NoviCommentarii academiae scientiarum Petropolitanae, vol. 20. pp. 189–207, 1776.; D. Entwurf, “Der Entwurf linearer Regelungssysteme im Zustandsraum,” vol. 1, no. 8,1972.; D. D. E. I. Eléctrica and J. P. S. V, “Desarrollo de software para inspección técnica deuna aplicación CPM,” 2017.; S. C. C. Navarrete, “Control avanzado de un sistema de refrigeración,” 2019.; "Measures of controlled system performance.” [Online]. Available: http://www.online-courses.vissim.us/Strathclyde/measures_of_controlled_system_pe.htm. [Accessed: 20-Nov-2020].; Á. Valera Fernández, Modelado y control en el espacio de estados. 2016.; O. A. Esquivel Flores, “Análisis de observabilidad y controlabilidad para sistemasdiferenciaslmente planos. Aplicación a un sistema de oscilaciones de calcio,” p. 107, 2007.; J. Ángel and S. Blanco, “Diseño en el Espacio de Estados,” pp. 1–9, 2017.; https://hdl.handle.net/11349/31383; Universidad Distrital Francisco José de Caldas.

  16. 16

    Geografické téma: Colombia, UNAB Campus Bucaramanga

    Popis souboru: application/pdf; application/octet-stream

    Relation: Ahrend, U., Aleksy, M., Berning, M., Gebhardt, J., Mendoza, F., & Schulz, D. (2021). Sensors as the Basis for Digitalization: New Approaches in Instrumentation, IoT-concepts, and 5G. Internet of Things, 100406. https://doi.org/https://doi.org/10.1016/j.iot.2021.100406; Akhter, F., Siddiquei, H. R., Alahi, M. E. E., & Mukhopadhyay, S. C. (2021). Design and Development of an IoT-enabled Portable Phosphate Detection System in Water for Smart Agriculture. Sensors and Actuators A: Physical, 112861. https://doi.org/https://doi.org/10.1016/j.sna.2021.112861; Al-Turjman, F. (2020). The Cloud in Iot-Enabled Spaces. In CRC Press.; Alahi, M. E. E., Mukhopadhyay, S. C., & Burkitt, L. (2018). Imprinted polymer coated impedimetric nitrate sensor for real- time water quality monitoring. Sensors and Actuators B: Chemical, 259, 753–761. https://doi.org/10.1016/j.snb.2017.12.104; Albano, M., Ferreira, L. L., Pinho, L. M., & Alkhawaja, A. R. (2015). Computer Standards & Interfaces Message-oriented middleware for smart grids. Computer Standards & Interfaces, 38, 133–143. https://doi.org/10.1016/j.csi.2014.08.002; Alcaldía de Bogota. (2021). Documentos para Agua: Agua Para el Consumo Humano.; Algore, M. (2021). Machine Learning With Python: The Definitive Tool to Improve Your Python Programming and Deep Learning to Take You to The Next Level of Coding and Algorithms Optimization.; Alley, E. R. (2006). Water Quality Control Handbook. In Environment (Second). McGraw Hill. https://doi.org/10.1036/0071467602; Amato, A., Cozzolino, G., Maisto, A., & Pelosi, S. (2021). Monitoring Airplanes Faults Through Business Intelligence Tools (pp. 224–234). https://doi.org/10.1007/978-3-030-61105-7_22; Arévalo-Gómez, M. Á., Carrillo-Zambrano, E., Herrera-Quintero, L. F., & Chavarriaga, J. (2018). Water wells monitoring solution in rural zones using IoT approaches and cloud-based real-time databases. Proceedings of the Euro American Conference on Telematics and Information Systems - EATIS ’18, 1–5. https://doi.org/10.1145/3293614.3293659; Arévalo Junco, A. D. (2019). Prototipo de un sistema de monitoreo de calidad del agua subterránea en instalaciones de captación de una localidad rural del municipio de Tibaná-Boyacá. Universidad Piloto de Colombia.; Aspin, A. (2020). Pro Power BI Desktop. Apress. https://doi.org/10.1007/978-14842-5763-0; Aznil Ab Aziz, M., Abas, M. F., Anwar Abu Bashri, M. K., Saad, N. M., & Ariff, M. H. (2019). Evaluating IoT based passive water catchment monitoring system data acquisition and analysis. Bulletin of Electrical Engineering and Informatics, 8(4). https://doi.org/10.11591/eei.v8i4.1583; Badii, M., Guillen, A., Rodríguez, C., Lugo, O., Aguilar, J., & Acuña, M. (2015). Pérdida de Biodiversidad: Causas y Efectos Biodiversity Loss: Causes and Factors. Daena: International Journal of Good Conscience, 10(2), 156–174; Bagali, M. U., & Thangadurai, N. (2021). NavIC/GNSS receiver based integrated transport monitoring system using embedded system. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.11.080; Bahadori, A., & Smith,Bahadori, A., & Smith, S. T. (2016). A. In Dictionary of Environmental Engineering and Wastewater Treatment (pp. 1–37). Springer International Publishing. https://doi.org/10.1007/978-3-319-26261-1_1; Baird, R. B., Rice, E. W., & Posavec, S. (2017). Standard Methods For The Examination Of Water And Wastewater 23th. In Amer Public Health Assn; Balachandar, S., & Chinnaiyan, R. (2020). Reliable pharma cold chain monitoring and analytics through Internet of Things Edge. In Emergence of Pharmaceutical Industry Growth with Industrial IoT Approach (pp. 133–161). Elsevier. https://doi.org/10.1016/B978-0-12-819593-2.00005-4; Bastião Silva, L. A., Costa, C., & Oliveira, J. L. (2013). A common API for delivering services over multi-vendor cloud resources. Journal of Systems and Software, 86(9), 2309–2317. https://doi.org/10.1016/j.jss.2013.04.037; Bastidas, S. E. C., & Plata, R. A. D. (2020). Sistema IoT con UAV y GPR para Identificar Zonas Con Aguas Subterráneas en el Departamento de la GuajiraColombia. Encuentro Internacional de Educación En Ingeniería; Beigi, N. K., Partov, B., & Farokhi, S. (2018). Real-time cloud robotics in practical smart city applications. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 2017-Octob, 1–5. https://doi.org/10.1109/PIMRC.2017.8292655; Boehm, B. (2004). Balancing Agility and Discipline: A Guide for the Perplexed. https://doi.org/10.1007/978-3-540-24675-6_1; Boeker, M., Vach, W., & Motschall, E. (2013). Google Scholar as replacement for systematic literature searches: Good relative recall and precision are not enough. BMC Medical Research Methodology, 13(1). https://doi.org/10.1186/1471-2288-13-131; Boyd, C. E. (2020). Water Quality. Springer International Publishing. https://doi.org/10.1007/978-3-030-23335-8; Burbano Ordoñez, C. Y., & others. (2017). Implementación de una red de sensores inalámbricos LPWAN mediante módulos LoRa para el monitoreo de la calidad del agua en 2 ríos. Universidad Distrital Francisco José de Caldas.; Burgos Galeano, C. A., Lafont Álvarez, K., & Estrada Palencia, P. A. (2018). Análisis comparativo de indicadores de la calidad del agua del rio Sinú municipio de Montería, Córdoba. Modum, 55–64.; Caballero-Flores, R. (2019). Análisis de errores en las medidas. https://digibuo.uniovi.es/dspace/bitstream/handle/10651/52857/ANÁLISIS DE ERRORES EN LA MEDIDA_RCF.pdf?sequence=1; Caho-Rodríguez, C. A., & López-Barrera, E. A. (2017). Determinación del Índice de Calidad de Agua para el sector occidental del humedal Torca-Guaymaral empleando las metodologías UWQI y CWQI. Producción + Limpia, 12(2), 35– 49. https://doi.org/10.22507/pml.v12n; Camacho Botero, L. A. (2020). La paradoja de la disponibilidad de agua de mala calidad en el sector rural colombiano. Revista de Ingeniería, 49(49), 38–51. https://doi.org/10.16924/revinge.49.6; Cao, H., Guo, Z., Wang, S., Cheng, H., & Zhan, C. (2020). Intelligent wide-area water quality monitoring and analysis system exploiting unmanned surface vehicles and ensemble learning. Water (Switzerland), 12(3). https://doi.org/10.3390/w12030681; Carminati, M., Turolla, A., Mezzera, L., Di Mauro, M., Tizzoni, M., Pani, G., Zanetto, F., Foschi, J., & Antonelli, M. (2020). A Self-Powered Wireless Water Quality Sensing Network Enabling Smart Monitoring of Biological and Chemical Stability in Supply Systems. Sensors, 20(4), 1125. https://doi.org/10.3390/s20041125; Carrasco Mantilla, W. (2016). Estado del arte del agua y saneamiento rural en Colombia. Revista de Ingeniería, 0(44), 46. https://doi.org/10.16924/riua.v0i44.923; CEPAL. (2013). Agua para el Siglo XXI para América del Sur. Journal of Chemical Information and Modeling, 53(9), 1689–1699.; Chang, J. F. (2006). Business Process Management Systems. Strategy and Implementation. Taylor & Francis Group; Chen, G., & Kotz, D. (2000). A Survey of Context-Aware Mobile Computing Research. Time, 3755(TR2000-381), 1–16. https://doi.org/10.1.1.140.3131; Chin Roemer, R., & Borchardt, R. (2015). Meaningful Metrics: A 21st Century Librarian’s Guide to Bibliometrics, Altmetrics, and Research Impact. Association of College and Research Libraries; Climent, E., Pelegri-Sebastia, J., Sogorb, T., Talens, J., & Chilo, J. (2017). Development of the MOOSY4 eNose IoT for Sulphur-Based VOC Water Pollution Detection. Sensors, 17(8), 1917. https://doi.org/10.3390/s17081917; Coetzee, L., & Eksteen, J. (2011). The Internet of Things - promise for the future? An introduction. In In IST-Africa Conference Proceedings. IEEE.; Conagua. (2010). Capítulo 3. Usos del Agua. Estadísticas Del Agua En México, Edición 2010, 61–76; Copeland, D. B. (2017). Rails, Angular, Postgres, and Bootstrap: Powerful, Effective, Efficient, Full-Stack Web Development; Cordeiro, L., Mar, C., Valentin, E., Cruz, F., Patrick, D., Barreto, R., & Lucena, V. (2008). An agile development methodology applied to embedded control software under stringent hardware constraints. ACM SIGSOFT Software Engineering Notes, 33(1), 1. https://doi.org/10.1145/1344452.1344459; Cotruvo, J. A. (2018). Drinking water quality and contaminants guidebook. Taylor & Francis; Cressie, N., & Wikle, C. K. (2011). Statistics for Spatio-Temporal Data. John Wiley and Sons; CVS. (2020). Cobertura geográfica Departamento de Córdoba.; DANE. (2018). Censo Nacional de Población y censo nacional de vivienda Vivienda. DANE, Publicacion Para Todos, 66. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-ypoblacion/censo-nacional-de-poblacion-y-vivenda-2018/cuantos-somos; Darwish, M., & Ouda, A. (2015). Evaluation of an OAuth 2 . 0 Protocol Implementation for Web Server Applications. 2015 International Conference and Workshop on Computing and Communication (IEMCON), 2–5.; De Bellis, N. (2009). Bibliometrics and Citation Analysis; from the Science Citation Index to Cybermetrics. The Scarecrow Press, Inc.; De León-Peña, R., & Vargas-Lombardo, M. (2017). OpenID connect and digital identity security. Revista de Iniciación Científica, 3(2), 94–99; Díaz Porras, K. P. (2019). El oro azul y su gestión de pérdidas en Colombia. Módulo Arquitectura CUC, 23(1), 9–22. https://doi.org/10.17981/mod.arq.cuc.23.1.2019.01; Dow, C. (2020). Hands-On Edge Analytics with Azure IoT: Design and Develop IoT Applications with Edge Analytical Solutions Including Azure IoT Edge. Packt Publishing Ltd.; Dürr, C., & Vie, J.-J. (2021). Competitive Programming in Python: 128 Algorithms to Develop your Coding Skills. In Cambridge University Press. https://doi.org/10.1017/9781108591928; Edmondson, V., Cerny, M., Lim, M., Gledson, B., Lockley, S., & Woodward, J. (2018). A smart sewer asset information model to enable an ‘Internet of Things’ for operational wastewater management. Automation in Construction, 91, 193–205. https://doi.org/10.1016/j.autcon.2018.03.003; Ehrenmueller-Jensen, M. (2020). Self-Service AI with Power BI Desktop. In SelfService AI with Power BI Desktop. Apress. https://doi.org/10.1007/978-1-48426231-3; Emerson, S., Choi, Y. K., Hwang, D. Y., Kim, K. S., & Kim, K. H. (2015). An OAuth based authentication mechanism for IoT networks. International Conference on ICT Convergence 2015: Innovations Toward the IoT, 5G, and Smart Media Era, ICTC 2015, 1072–1074. https://doi.org/10.1109/ICTC.2015.7354740; Escobar Roberto, L. A., & Gutierrez Ramirez, N. (2020). Implementación de un sistema electrónico de monitoreo de la calidad del agua para un estanque piscícola. Universidad Distrital Francisco José de Caldas; Espake, P. (2015). Learning Heroku Postgres. Packt Publishing; Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37–54.; Foro Económico Mundial. (2019). Informe de riesgos mundiales 2019 14.a edición.; García, S., Luengo, J., & Herrera, F. (2015). Data Preprocessing in Data Mining. In Intelligent Systems Reference Library (Vol. 72). Springer International Publishing. https://doi.org/10.1007/978-3-319-10247-4; Geetha, S., & Gouthami, S. (2016). Internet of things enabled real time water quality monitoring system. Smart Water, 2(1), 1. https://doi.org/10.1186/s40713-017-0005-y; Gingras, Y. (2016). Bibliometrics and Research Evaluation: Uses and Abuses (History and Foundations of Information Science). The MIT Press.; Global Water. (2019). Water Quality. In Instrumentation Resource Book (pp. 54– 101). http://www.globalw.com/downloads/Catalog/WaterQuality.pdf; Gorchev, H. G., & Ozolins, G. (1984). WHO guidelines for drinking- water quality. WHO Chronicle, 38(3), 104–108.; Goyal, H. R., Ghanshala, K. K., & Sharma, S. (2021a). Flash flood risk management modeling in indian cities using IoT based reinforcement learning. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2021.01.072; Goyal, H. R., Ghanshala, K. K., & Sharma, S. (2021b). Recommendation based rescue operation model for flood victim using smart IoT devices. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.12.959; Greenfeld, D. R., & Greenfeld, A. R. (2020). Django Crash Course.; Greengard, S. (2015). The Internet of Things; Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. https://doi.org/10.1016/j.future.2013.01.010; Gupta, A. (2013). Java EE 7 Essentials: Enterprise Developer Handbook (M. Loukides & M. Blanchette (eds.); First Edit). O’Reilly Media, Inc. https://doi.org/10.1007/978-1-4302-4426-4; Guzmán, B. L., Nava, G., & Díaz, P. (2015). La calidad del agua para consumo humano y su asociación con la morbimortalidad en Colombia, 2008-2012. Biomedica, 35(3), 177–190. https://doi.org/10.7705/biomedica.v35i0.2511; Hakim, W. L., Hasanah, L., Mulyanti, B., & Aminudin, A. (2019). Characterization of turbidity water sensor SEN0189 on the changes of total suspended solids in the water. Journal of Physics: Conference Series, 1280, 022064. https://doi.org/10.1088/1742-6596/1280/2/022064; Havinek, P. (2009). Risk Management of Water Supply and Sanitation Systems (P. Hlavinek, C. Popovska, J. Marsalek, I. Mahrikova, & T. Kukharchyk (eds.)). Springer Netherlands. https://doi.org/10.1007/978-90-481-2365-0; Hill, C. A., Biemer, P. P., Buskirk, T. D., Japec, L., Kirchner, A., Kolenikov, S., & Lyberg, L. E. (2021). Big Data Meets Survey Science: A Collection of Innovative Methods. In Wiley Series in Survey Methodology. Wiley; Hlavinek, P. (2020). Management of Water Quality and Quantity (M. Zelenakova, P. Hlavínek, & A. M. Negm (eds.)). Springer International Publishing. https://doi.org/10.1007/978-3-030-18359-2; Hoyos Botero, C. (2000). Un modelo para investigación documental (Señal Editora (ed.)).; Hu, Z., & Liu, L. (2018). Prediction of water pollution by nutrients based on eutrophication evaluation. Chemical Engineering Transactions, 71, 667–672. https://doi.org/10.3303/CET1871112; IGAC. (2017). Mapas Departamentales Físico Políticos. Instituto Geográfico Agustín Codazzi.; Islam, M., Ashraf, F., Alam, T., Misran, N., & Mat, K. (2018). A Compact Ultrawideband Antenna Based on Hexagonal Split-Ring Resonator for pH Sensor Application. Sensors, 18(9), 2959. https://doi.org/10.3390/s18092959; James, S. (2016). An Introduction to Data Analysis using Aggregation Functions in R. In An Introduction to Data Analysis using Aggregation Functions in R. Springer International Publishing. https://doi.org/10.1007/978-3-319-46762-7; Jia, T., Zhao, X., Wang, Z., Gong, D., & Ding, G. (2016). Model Transformation and Data Migration from Relational Database to MongoDB. 2016 IEEE International Congress on Big Data (BigData Congress), 60–67. https://doi.org/10.1109/BigDataCongress.2016.16; John, V., & Liu, X. (2017). A Survey of Distributed Message Broker Queues; Kachroud, M., Trolard, F., Kefi, M., Jebari, S., & Bourrié, G. (2019). Water quality indices: Challenges and application limits in the literature. Water (Switzerland), 11(2), 1–26. https://doi.org/10.3390/w11020361; Kaur, H., Singh, S. P., Bhatnagar, S., & Solanki, A. (2021). Chapter 10 - Intelligent Smart Home Energy Efficiency Model Using Artificial Intelligence and Internet of Things (G. Kaur, P. Tomar, & M. B. T.-A. I. to S. P. I. of T. I. Tanque (eds.); pp. 183–210). Academic Press. https://doi.org/https://doi.org/10.1016/B978-012-818576-6.00010-1; Kim, H. (2021). Software Engineering in IoT, Big Data, Cloud and Mobile Computing (H. Kim & R. Lee (eds.); Vol. 930). Springer International Publishing. https://doi.org/10.1007/978-3-030-64773-; Kothari, N., Shreemali, J., Chakrabarti, P., & Poddar, S. (2021). Design and implementation of IoT sensor based drinking water quality measurement system. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.12.1142; Lai, C. S., Lai, L. L., & Lai, Q. H. (2021). Smart Grids and Big Data Analytics for Smart Cities. In Smart Grids and Big Data Analytics for Smart Cities. Springer International Publishing. https://doi.org/10.1007/978-3-030-52155-4; Larson, B. (2019). Data Analysis with Microsoft Power BI. McGraw-Hill Education.; Lea, P. (2018). Internet of Things for Architects: Architecting IoT solutions by implementing sensors, communication infrastructure, edge computing, analytics, and security. Packt Publishing; Lea, P. (2020). IoT and Edge Computing for Architects.; Lee, R. (2020). Big Data, Cloud Computing, and Data Science Engineering (R. Lee (ed.); Vol. 844). Springer International Publishing. https://doi.org/10.1007/9783-030-24405-7; Leke, C. A., & Marwala, T. (2019). Deep Learning and Missing Data in Engineering Systems (Vol. 48). Springer International Publishing. https://doi.org/10.1007/978-3-030-01180-2; Lima-Rodrigues, L. M. S., & Rodrigues, D. A. (2020). Agenda 2030. Quaestio - Revista de Estudos Em Educação, 22(3), 721–739. https://doi.org/10.22483/2177-5796.2020v22n3p721-739; Little, R. J. A., & Rubin, D. B. (2019). Statistical Analysis with Missing Data. In Wiley Series in Probability and Statistics. John Wiley & Sons; Livelihoods & Natural Resource Man, International Water & Sanitation C, Centre for Economic and Social Stu, & Watershed Support Services & Activ. (2014). Sustainable Water and Sanitation Services. In Sustainable Water and Sanitation Services: The Life-Cycle Cost Approach to Planning and Management. Routledge. https://doi.org/10.4324/9780203521670; Loucks, D. P., & van Beek, E. (2017). Water resource systems planning and management: An introduction to methods, models, and applications. In Water Resource Systems Planning and Management: An Introduction to Methods, Models, and Applications. https://doi.org/10.1007/978-3-319-44234-1; Ma, H., & Wang, J. (2021). The 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy. In J. MacIntyre, J. Zhao, & X. Ma (Eds.), Advances in Intelligent Systems and Computing (Vol. 1282). Springer International Publishing. https://doi.org/10.1007/978-3-03062743-0; Megargel, A., Shankararaman, V., & Walker, D. K. (2020). Software Engineering in the Era of Cloud Computing (M. Ramachandran & Z. Mahmood (eds.)). Springer International Publishing. https://doi.org/10.1007/978-3-030-33624-0; Melé, A. (2020). Django 3 By Example: Build powerful and reliable Python web applications from scratch (3th ed.). PACKT Publishing; Melendez Gelvez, I., Quijano Parra, A., & Pardo Perez, E. (2015). Actividad genotóxica de aguas antes y despues de clorar en la planta de potabilización Empopamplona. Bistua Revista De La Facultad De Ciencias Basicas, 13(2), 12. https://doi.org/10.24054/01204211.v2.n2.2015.1795; Meneses, H. W. P., García, J. P. M., & Sánchez, M. E. L. (2018). AQUASMART, La Solución Mecatrónica al Manejo de Recursos Hídricos. Encuentro Internacional de Educación En Ingeniería.; Micheli, G. De. (2020). Embedded, Cyber-Physical, and IoT Systems. In S. S. Bhattacharyya, M. Potkonjak, & S. Velipasalar (Eds.), Embedded, CyberPhysical, and IoT Systems. Springer International Publishing. https://doi.org/10.1007/978-3-030-16949-7; Decreto número 1575 de 2007, 14 (2007).; Ministerio de la protección social, & Ministerio de Ambiente, V. y D. T. (2007). Resolución 2115/2007. Gaceta Oficial, 23.; Minteer, A. (2017). Analytics for the Internet of Things (IoT): Intelligent analytics for your intelligent devices. Packt Publishing; Mirzavand, R., Honari, M., Laribi, B., Khorshidi, B., Sadrzadeh, M., & Mousavi, P. (2018). An Unpowered Sensor Node for Real-Time Water Quality Assessment (Humic Acid Detection). Electronics, 7(10), 231. https://doi.org/10.3390/electronics710023; Mishra, V., Kumar, T., Bhalla, K., & Patil, M. M. (2018). SuJAL: Design and Development of IoT-Based Real-Time Lake Monitoring System. 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C), 1–4. https://doi.org/10.1109/CIMCA.2018.8739; Mitsa, T. (2010). Temporal Data Mining. Chapman and Hall/CRC. https://doi.org/10.1201/9781420089776; Molenberghs, G., Fitzmaurice, G., Kenward, M., Tsiatis, B., & Verbeke, G. (2015). Handbook of Missing Data Methodology. In G. Molenberghs, G. Fitzmaurice, M. G. Kenward, & A. Tsiatis (Eds.), Handbook of Missing Data Methodology. Chapman and Hall/CRC. https://doi.org/10.1201/b17622; Morales García, J., Peñuela Meneses, W., & Leyes Sánchez, M. (2018). Aquasmart, la solución mecatrónica al manejo de recursos hídricos. Encuentro Internacional de Educación En Ingeniería ACOFI, 1–7.; Moreno Arboleda, F. J., Quintero Rendón, J. E., & Rueda Vásquez, R. (2016). Una comparación de rendimiento entre Oracle y MongoDB. Ciencia e Ingeniería Neogranadina, 26(1), 109. https://doi.org/10.18359/rcin.1669; Munirathinam, S. (2021). Drift Detection Analytics for IoT Sensors. Procedia Computer Science, 180, 903–912. https://doi.org/https://doi.org/10.1016/j.procs.2021.01.341; Musa, P., Sugeru, H., & Mufza, H. F. (2019). An intelligent applied Fuzzy Logic to prediction the Parts per Million (PPM) as hydroponic nutrition on the based Internet of Things (IoT). 2019 Fourth International Conference on Informatics and Computing (ICIC), 1–7. https://doi.org/10.1109/ICIC47613.2019.8985712; Naqvi, S., Yfantidou, S., & Zimányi, E. (2017). Advanced Databases. Time Series Databases and InfluxDB. In Universite libre de Bruxelles.; Norris, D. J. (2020). Machine Learning with the Raspberry Pi: Experiments with Data and Computer Vision. Apress. https://doi.org/10.1007/978-1-4842-5174-4; Núñez-Blanco, Y., Ramírez-Cerpa, E., & Sánchez-Comas, A. (2020). Revisión de sistemas de telemetría en ríos: propuesta para el río Magdalena, Barranquilla, Colombia. Tecnología y Ciencias Del Agua, 11(5), 298–343. https://doi.org/10.24850/j-tyca-2020-05-08; Ojha, A. (2020). Sensors in Water Pollutants Monitoring: Role of Material (D. Pooja, P. Kumar, P. Singh, & S. Patil (eds.)). Springer Singapore. https://doi.org/10.1007/978-981-15-0671-0; OMS. (2006). Guidelines for drinking- water qualit; OMS, O. M. D. L. S., & UNICEF, F. de las N. U. para la I. (2017). Progresos en materia de agua potable, saneamiento e higiene. In Organización Mundial de la Salud.; Organización Mundial de La Salud. (2011). Guías para la calidad del agua de consumo humano. Organización Mundial de La Salud, 4, 608.; Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLOS Medicine, 18(3), e1003583. https://doi.org/10.1371/journal.pmed.1003583; Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., MayoWilson, E., McDonald, S., … McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ, 372, n160. https://doi.org/10.1136/bmj.n160; Parameswari, M., & Moses, M. B. (2018). Online measurement of water quality and reporting system using prominent rule controller based on aqua care-IOT. Design Automation for Embedded Systems, 22(1–2), 25–44. https://doi.org/10.1007/s10617-017-9187-7; Particle. (2020). Quick Start: ARGON. Particle.Io.; Pilicita Garrido, A., Borja López, Y., & Gutiérrez Constante, G. (2020). Rendimiento de MariaDB y PostgreSQL. Revista Científica y Tecnológica UPSE, 7(2), 09– 16. https://doi.org/10.26423/rctu.v7i2.538; Poongodi, T., Rathee, A., Indrakumari, R., & Suresh, P. (2020). Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm. In S.-L. Peng, S. Pal, & L. Huang (Eds.), Intelligent Systems Reference Library. Springer International Publishing. https://doi.org/10.1007/978-3-030-33596-0; Poza Luján, J. L. (2012). Proposed smart control distributed architecture based on service quality policies. Doctoral thesis. Universidad Politécnica de Valencia; Prashanth, D. S., Patel, G., & Bharathi, B. (2017). Research and development of a mobile based women safety application with real-time database and datastream network. 2017 International Conference on Circuit ,Power and Computing Technologies (ICCPCT), 1–5. https://doi.org/10.1109/ICCPCT.2017.8074261; Programa de las Naciones Unidas para el Desarrollo. (2015). Objetivos de Desarrollo del Milenio. In Humanismo y Trabajo Social: Vols 5 (93-101).; Puig, V., Ocampo-Martínez, C., Pérez, R., Cembrano, G., Quevedo, J., & Escobet, T. (Eds.). (2017). Real-time Monitoring and Operational Control of DrinkingWater Systems. Springer International Publishing. https://doi.org/10.1007/9783-319-50751-4; Quintana Fajardo, B. F., & Sarabia Caffroni, J. J. (2018). Arquitectura para el sistema de monitoreo de la calidad del agua de los caños y lagos internos del Distrito de Cartagena de Indias soportada en tecnologías de internet de las cosas. Universidad de Cartagena; Rad, R. (2018). Power BI Service Content. In Pro Power BI Architecture (pp. 29– 57). Apress. https://doi.org/10.1007/978-1-4842-4015-1_3; Raghuvanshi, A., & Singh, U. K. (2020). Internet of Things for smart cities- security issues and challenges. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.10.849; Rajanna, R. R., Natarajan, S., & Vittal, P. R. (2018). An IoT Wi-Fi Connected Sensor For Real Time Heart Rate Variability Monitoring. 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C), 1–4. https://doi.org/10.1109/CIMCA.2018.8739323; Ratnaparkhi, S., Khan, S., Arya, C., Khapre, S., Singh, P., Diwakar, M., & Shankar, A. (2020). Smart agriculture sensors in IOT: A review. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.138; Ray, P. P., Dash, D., & De, D. (2019). Internet of things-based real-time model study on e-healthcare: Device, message service and dew computing. Computer Networks, 149, 226–239. https://doi.org/10.1016/j.comnet.2018.12.006; Asamblea General de las Naciones Unidas, Naciones Unidas 3 (2010).; Rethlefsen, M. L., Kirtley, S., Waffenschmidt, S., Ayala, A. P., Moher, D., Page, M. J., & Koffel, J. B. (2021). PRISMA-S: an extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Systematic Reviews, 10(1), 39. https://doi.org/10.1186/s13643-020-01542-z; Rey Graña, C., & Ramil Diaz, M. (2011). Series temporales. Introduccion a La Estadistica Descriptiva. Segunda Edicion, 85–105. https://doi.org/10.4272/978-84-9745-167-3.ch4; Rojo-Nieto, E., & Montoto, T. (2017). Basuras marinas, plásticos y microplásticos orígenes, impactos y consecuencias de una amenaza global. Ecologistas en Acción; Rondero, C., & Font, V. (2015). Articulación de la complejidad matemática de la media aritmética. Ensenanza de Las Ciencias, 33(2), 29–49. https://doi.org/10.5565/rev/ensciencias.1386; Ruiz, C. A., Salazar, D. M., & Rodríguez González, N. (2020). La prestación de los servicios de agua potable y saneamiento básico en Colombia análisis y prospectiva. In Investigaciones y productos CID; Ruiz, C. A., Salazar, D. M., & Rodríguez, N. (2020). The provision of drinking water and basic sanitation services in Colombia: analysis and prospective. Documentos FCE-CID Escuela de Economía, 34, 1–86. www.fce.unal.edu.co/centro-editorial/documentos.html; Ruiz Peláez, J. G., & Rodríguez Malagón, M. N. (2015). Población y muestra. Epidemiología Clínica: Investigación Clínica Aplicada, 62–66.; Russo, C., Ramón, H., Alonso, N., Cicerchia, B., Esnaola, L., & Tessore, J. P. (2015). Tratamiento Masivo de Datos Utilizando Técnicas de Machine Learning Resumen Contexto Introducción. 131–134; Samaranayake, P., Ramanathan, K., & Laosirihongthong, T. (2017). Implementing industry 4.0 — A technological readiness perspective. 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 529–533. https://doi.org/10.1109/IEEM.2017.8289947; Saravanan, K., Anusuya, E., Kumar, R., & Son, L. H. (2018). Real-time water quality monitoring using Internet of Things in SCADA. Environmental Monitoring and Assessment, 190(9). https://doi.org/10.1007/s10661-018-6914x; Schwaber, K. (2004). Agile Project Management with Scrum (Vol. 7, Issue CMM). https://doi.org/10.1201/9781420084191-c2; Seamark, P., & Martens, T. (2019). Pro Dax with Power Bi: Business Intelligence with Powerpivot and SQL Server Analysis Services Tabular. Apress. https://doi.org/10.1007/978-1-4842-4897-3; Sebastian, A. (2020). Smart Systems and IoT: Innovations in Computing. In A. K. Somani, R. S. Shekhawat, A. Mundra, S. Srivastava, & V. K. Verma (Eds.), Smart Innovation, Systems and Technologies. Springer Singapore. https://doi.org/10.1007/978-981-13-8406-6; Serpanos, D., & Wolf, M. (2018). Internet-of-Things (IoT) Systems. In Internet-ofThings (IoT) Systems. Springer International Publishing. https://doi.org/10.1007/978-3-319-69715-4; Serrano Castaño, C. E. (2002). Modelo integral para el profesional en ingeniería (Universidad del Cauca (Ed.)).; Shaw, P. (2013). Postgres Succinctly. In Syncfusion Inc; Sierra, C. A. (2011). Calidad del Agua. Evaluación y diagnóstico. In Journal of Chemical Information and Modeling. https://repository.udem.edu.co/handle/11407/2568; Siow, E., Tiropanis, T., & Hall, W. (2018). Analytics for the Internet of Things. ACM Computing Surveys, 51(4), 1–36. https://doi.org/10.1145/3204947; Spandana, K., & Rao, V. R. S. (2018). Internet of Things (Iot) Based smart water quality monitoring system. International Journal of Engineering and Technology(UAE), 7(3), 259–262. https://doi.org/10.14419/ijet.v7i3.6.14985; Suresh, A., Nandagopal, M., Pethuru Raj, Neeba, E. A., & Lin, J.-W. (2020). Industrial IoT Application Architectures and Use Cases. Auerbach Publications.; Suseendran, G., & Balaganesh, D. (2021). Smart cattle health monitoring system using IoT sensors. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2021.01.873; Sutradhar, B. C. (2013). ISS-2012 Proceedings Volume On Longitudinal Data Analysis Subject to Measurement Errors, Missing Values, and/or Outliers (B. C. Sutradhar (Ed.); Vol. 211). Springer New York. https://doi.org/10.1007/9781-4614-6871-4; Tanwar, S. (2020). Fog Data Analytics for IoT Applications: Next Generation Process Model with State of the Art Technologies (S. Tanwar (Ed.); Vol. 76). Springer Singapore. https://doi.org/10.1007/978-981-15-6044-6; The Government Office for Science. (2014). The IoT: making the most of the Second Digital Revolution. WordLink, 1–40. https://doi.org/GS/14/1230; Torres Pardo, J. C. (2017). Definition of a Reference Architecture for Information Systems in Ubiquitous Wireless Sensor Networks based on quality of service. Master’s Degree Option Work. Universidad Nacional de Colombia; Tukey, J. W. (1962). The Future of Data Analysis. The annals of mathematical statistics.; UNESCO. (2015). El Crecimiento Insostenible Y La Creciente Demanda Mundial De Agua. Wwdr, 12; UNESCO. (2019). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2019. No dejar a nadie atrás. In Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura; UNESCO. (2020). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2020. In Agua y Cambio Climático; Urrútia, G., & Bonfill, X. (2010). Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Medicina Clínica, 135(11), 507–511. https://doi.org/10.1016/j.medcli.2010.01.015; van Eck, N. J., & Waltman, L. (2011). Text mining and visualization using VOSviewer. Text Mining and Visualization, 1–5.; van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053–1070. https://doi.org/10.1007/s11192-017-2300-7; Vélez, A., & Calvo, G. (1992). La investigación documental. Estado del arte y del conocimiento. Análisis de la investigación en la formación de investigadores. Universidad de la Sabana; Viegas, V., Pereira, J. M. D., Girao, P., Postolache, O., & Salgado, R. (2018). IoT applied to Environmental Monitoring in Oysters’ Farms. 2018 International Symposium in Sensing and Instrumentation in IoT Era (ISSI), 1–5. https://doi.org/10.1109/ISSI.2018.8538136; Vikesland, P. J. (2018). Nanosensors for water quality monitoring. Nature Nanotechnology, 13(8), 651–660. https://doi.org/10.1038/s41565-018-0209-9; Viloria, A., Acuña, G. C., Alcázar Franco, D. J., Hernández-Palma, H., Fuentes, J. P., & Rambal, E. P. (2019). Integration of Data Mining Techniques to PostgreSQL Database Manager System. Procedia Computer Science, 155, 575–580. https://doi.org/10.1016/j.procs.2019.08.080; Wade, R. (2020). Advanced Analytics in Power BI with R and Python. Apress. https://doi.org/10.1007/978-1-4842-5829-3; Water-quality engineering in natural systems: fate and transport processes in the water environment. (2013). Choice Reviews Online, 50(12), 50-6781-50–6781. https://doi.org/10.5860/choice.50-6781; Weber, R. H., & Weber, R. (2010). Internet of Things. In Development. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-11710-7; Weiser, M. (1991). The computer for the 21st century. Scientific American (International Edition), 265(3), 66–75. https://doi.org/10.1038/scientificamerican0991-94; Wolf, W. H. W. H. (1994). Hardware-software co-design of embedded systems. Proceedings of the IEEE, 82(7), 967–989. https://doi.org/10.1109/5.293155; Wong, B. P., & Kerkez, B. (2016). Real-time environmental sensor data: An application to water quality using web services. Environmental Modelling & Software, 84, 505–517. https://doi.org/10.1016/j.envsoft.2016.07.020; World Health Organization. (2019). Safe water, better health. In Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO; Wortham, R. H. (2020). Transparency for Robots and Autonomous Systems. The Institution of Engineering and Technology; Yanes, A. R., Martinez, P., & Ahmad, R. (2020). Towards automated aquaponics: A review on monitoring, IoT, and smart systems. Journal of Cleaner Production, 263, 121571. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.121571; Zelenakova, M., Hlavínek, P., & Negm, A. M. (2020). Management of Water Quality and Quantity. Springer International Publishing. https://doi.org/10.1007/978-3-030-18359-2; Ziegler, A. (2014). In-situ Materials Characterization (A. Ziegler, H. Graafsma, X. F. Zhang, & J. W. M. Frenken (Eds.); Vol. 193). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-45152-2; Zimányi, E., Sakr, M., & Lesuisse, A. (2020). MobilityDB: A Mobility Database Based on PostgreSQL and PostGIS. ACM Transactions on Database Systems, 45(4), 1–42. https://doi.org/10.1145/3406534; Zou, Q., Xiong, Q., Li, Q., Yi, H., Yu, Y., & Wu, C. (2020). A water quality prediction method based on the multi-time scale bidirectional long short-term memory network. Environmental Science and Pollution Research, 27(14), 16853– 16864. https://doi.org/10.1007/s11356-020-08087-7; http://hdl.handle.net/20.500.12749/15481; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co

  17. 17

    Zdroj: Revista Colombiana de Computación; Vol. 8 Núm. 1 (2007): Revista Colombiana de Computación; 1-19

    Popis souboru: application/pdf

    Relation: https://revistas.unab.edu.co/index.php/rcc/article/view/1043/1016; https://revistas.unab.edu.co/index.php/rcc/article/view/1043; ACM, AIS, IEEE-CS. Computing Curricula 2005. Overview Report. Draft. http://www.acm.org/education/curricula.html (descargado el 16 de Mayo de 2005).; Olave C. Yesid A. y Gómez F. Luis Carlos. Sistemas de Información: Un acercamiento a la disciplina. Revista Universidad Eafit, 41(138) 29-43, 2005.; Andrade Hugo, Dyner Isaac, Espinosa Angela, López Garay Hernán, Sotaquirá Ricardo. Pensamiento sistémico: Diversidad en búsqueda de unidad. Ediciones UIS. 2001.; Hirschheim, R. y Klein, H.K. Four Paradigms of Information Systems Development. Communications of the ACM, 32(10) 1199-1216, 1989.; Checkland Peter y Scholes Jim. La metodología de sistemas suevas de acción. Editorial Limusa. 1994; Checkland Peter. Pensamiento de sistemas, práctica de sistemas. Editorial Limusa. 2000; Jackson Michael C. Systems approaches to management. Kluwer Academic Plenum Publishers. 2000.; López Garay Hernán. Extending Checkland's Phenomenological Approach to Information Systems. En: Cabo Jeimy J. Critical Reflections on Information Systems: A Systemic Approach. Newport University, 2003.; Checkland Peter. A 30-Year Retrospective. En: Systems Thinking, Systems Practice. John Wiley & Sons. Nueva Edición. 1999.; Checkland Peter y Holwell Sue. Information, Systems and Information Systems. John Wiley and Sons. 1998.; Fuenmayor Ramsés. Interpretando organizaciones. Una teoría sistémico-interpretativa de organizaciones. Editorial Universidad de los Andes. 2001; Morgan Gareth. Imágenes de la organización. Editorial Alfa omega. 1996.; Anthony R.A. Planning and control systems: a framework for analysis. Hardvard University Press. 1965.; Abril Gonzalo. Teoría General de la Información. Ediciones Cátedra. 1997; Davis Gordon y Olson Margarethe. Sistemas de Información Gerencial. McGraw Hill. 1987.; Johansen Oscar. Introducción a la teoría general de sistemas. Editorial Limusa. 1997.; Laudon Kenneth C. y Laudon Jane P. Sistemas de Información Gerencial. Editorial Prentice Hall. 2.002.; González C. Gustavo. Asesores en sistemas y desarrollo: Los nuevos Humanistas. Ediciones Uniandes. 2.003.; Maturana H. y Varela F. El árbol del conocimiento. Editorial Universitaria. 1984.; López Garay Hernán. ¿Modelado sistémico o diseño de medios de revelado?. Primera Conferencia Colombiana sobre Modelamiento Sistémico. Universidad Industrial de Santander. s.f.; Fuenmayor R. y López Garay H. The scene for interpretative systemology. Systems Practice. 4(5). 1991.; Fuenmayor R. The roots of reductionism. Systems Practice. 4(5). 1991.; Fuenmayor R. the self-referential structure of an everyday living situation: A phenomelogical ontology for interpretative systemology. Systems Practice. 4(5). 1991.; Fuenmayor R. Truth and openness: An epistemology for interpretative systemology, Systems Practice. 4(5). 1991.; Olave C. Yesid A. y Gómez F. Luis Carlos. La Naturaleza Sistémica de los Sistemas de Información. Una amplicación conceptual del enfoque teórico y práctico para su diseño. Tesis en desarrollo para optar por el título de Magíster en Informática. Grupo de Investigación STI. Universidad Industrial de Santander.; http://hdl.handle.net/20.500.12749/9002; instname:Universidad Autónoma de Bucaramanga UNAB; repourl:https://repository.unab.edu.co

  18. 18

    Popis souboru: application/pdf

    Relation: Information Systems Foundations: The Role of Design Science - ANU. (n.d.). Retrieved October 30, 2019, from http://pressfiles. anu.edu.au/downloads/press/p121911/html/ch06.xhtml?referer=261&page=10; A Global Framework of Reference on Digital Literacy Skills for Indicator 4.4.2. (2018). http://www.uis.unesco.org; Adolph, M. (2009). Mobile Applications. http://www.economist.com/businessfinance/displayStory.cfm?story_id=13832338; Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T; Albirini, A. (2006). Cultural Perceptions: The Missing Element in the Implementation of ICT in Developing Countries. International Journal of Education and Development Using ICT.; Alicia Casanueva López, Constantino Pérez Vega, J. M. Z. S. de la M. (2007). Sistemas de telecomunicación; Alimentación, agricultura y desarrollo rural : temas actuales y emergentes para el análisis económico y la investigación de políticas (CUREMIS II). (2004). FAO.; Amazon. (n.d.). iPhone Size; Arango, C., Huertas, M., Sánchez, C., Arango Lozano, C. A., Sánchez, V., Camelo, C., & Sojo, J. (219 C.E.). 1218 Centennials: Generación sin etiquetas (U. Jorge T; ARCILA BARBOSA, V. N. (2015). INFLUENCIA DE LOS GREMIOS EMPRESARIALES EN COLOMBIA; ÁVILA CRUZ, H. C., & CORTÉS DÍAZ, J. C. (2016). GUÍA PARA LA REALIZACIÓN DE APLICACIONES MÓVILES EN LOS SISTEMAS OPERATIVOS ANDROID E iOS. Universidad Distrital - Francisco José Caldas; Banco, E., & Palmer, N. (n.d.). Las TIC y la agricultura en el contexto del “crecimiento verde” Ndubuisi Ekekwe, Institución Africana de Tecnología; Bandura, A. (2001). Social Cognitive Theory: An Agentic Perspective. Annual Review of Psychology, 52(1), 1–26. https://doi.org/10.1146/annurev.psych.52.1.1; Barrio, A. M. (2018). INTERNET DE LAS COSAS.; Baz Alonso, A., Ferreira Artime, I., Álvarez Rodríguez, M., & García Baniello, R. (n.d.). Dispositivos móviles; Berdegué, J. A., & Fuentealba, R. (2011). Latin America: The State of Smallholders in Agriculture. In Conference on New Directions for Smallholder Agriculture. https://doi.org/10.1093/acprof; Berger, B. (2018). HEDONIC INFORMATION SYSTEMS : WHAT WE KNOW AND WHA T WE DON ’ T KNOW. Twenty-Sixth European Conference on Information Systems (ECIS2018).; Boletín técnico. (n.d.).; Bongiovanni, R., Chartuni Mantovani, E., Best, S., & Roel, Á. (2006). AGRICULTURA DE PRECISIÓN: Integrando conocimientos para una agricultura moderna y susten; Bongiwe Nyambi, P. (2014). EXPLORING USER EXPERIENCE (UX) FACTORS FOR ICTD SERVICES [University of Fort Hare]. http://libdspace.ufh.ac.za/bitstream/handle/20.500.11837/270/M Sc %28Computer Sc%29 Dissertation NYAMBI, PB - 2015.pdf?sequence=1&isAllowed=y; Bourdieu, P. (1977). Outline of a Theory of Practice. Cambridge University Press. https://doi.org/10.1017/CBO9780511812507; Bourdieu, P. (1981). SOCIOLOGÍA Y CULTURA. In Revue Française de Sociologie (Vol. 22, Issue 4). https://doi.org/10.2307/332081; Bourdieu, P. (1999). Meditaciones pascalianas. Anagrama.; Cheney, P. H., Mann, R. I., & Amoroso, D. L. (1986). Organizational Factors Affecting the Success of End-User Computing. Journal of Management Information Systems, 3(1), 65–80. https://doi.org/10.1080/07421222.1986.11517755; Clark, J. (2016). What is the Internet of Things, and how does it work? https://www.ibm.com/blogs/internet-of-things/what-is-the-iot/; Collazos, C. A., Granollers, T., Gil, R., Guerrero, L. A., & Ochoa, S. F. (2010). Multicultural aspects in HCI-curricula. Procedia - Social and Behavioral Sciences, 2(2), 1584–1587. https://doi.org/10.1016/j.sbspro.2010.03.240; Compeau, D. R., & Higgins, C. A. (1995). Computer Self-Efficacy: Development of a Measure and Initial Test. MIS Quarterly, 19(2), 189. https://doi.org/10.2307/249; Congreso de Colombia. (2000). LEY 599 DE 2000. http://www.secretariasenado.gov.co/senado/basedoc/ley_0599_2000.; Congreso de Colombia. (2009a). LEY 1273 DE 2009.; Congreso de Colombia. (2009b). LEY 1286 DE 2009. http://www.suinjuriscol. gov.co/viewDocument.asp?ruta=Leyes/1676840; Congreso de la República de Colombia. (2008). LEY ESTATUTARIA 1266 DE 2008. http://www.secretariasenado.gov.co/senado/basedoc/ley_1266_2008.html; Conner, M. (2001). Health Behaviors. In International Encyclopedia of the Social & Behavioral Sciences (pp. 6506–6512). Elsevier. https://doi.org/10.1016/B0-08- 043076-7/03871-7; Constaín, S. (2019). Sentido de urgencia: Cerrar la brecha digital - Ministerio de Tecnologías de la Información y las Comunicaciones. https://www.mintic.gov.co/portal/inicio/Sala-de-Prensa/Columnas-Ministra- TIC/82174:Sentido-de-urgencia-Cerrar-la-brecha-dig; Corpas, I. (2010). Experiencia religiosa y lenguaje religioso: aproximación teol; Corporación Colombia Digital Medición Brecha Digital Regional Contrato MINTIC 508 de 2014. (n.d.); Cuello, J., & Vittone, J. (2013). Diseño visual. In Diseñando apps para móvil; DANE- Departamento Administrativo Nacional de Estadística. (2018). Serie de proyecciones de población 2018-2023 con desagregación nacional, departamental y área (cabecera – centros poblados y rural disperso), por grupos quinquenales de edad y sexo; DANE. (2016). 3er Censo Nacional Agropecuario. In Ministerio de agricultura (Vol. 2).; Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982–1003. https://doi.org/10.1287/mnsc.35.8.982; Departamento Nacional de Planeación. (n.d.). DOCUMENTO CONPES 3670.; Departamento Nacional de Planeación. (2013). DOCUMENTO CONPES SOCIAL; Departamento Nacional de Planeación. (2014). DOCUMENTO CONPES 173 DNP DE 2014; Departamento Nacional de Planeación. (2015). MISIÓN PARA LA TRANSFORMACIÓN DEL CAMPO; Departamento Nacional de Planeación. (2018). EVALUACIÓN DE LOS PROGRAMAS DEL PLAN VIVE DIGITAL PARA LA GENTE FINANCIADOS CON RECURSOS DEL FONDO DE TECNOLOGÍAS DE LA INFORMACIÓN Y LAS COMUNICACIONES (FONTIC); Derboven, J., Geerts, D., & De Grooff, D. (2016). The tactics of everyday practice: A semiotic approach to appropriation. Interaction Design and Architecture(S), 29(1), 99– 120.; Dey, B., & Binsardi, B. (2016). Appropriation of Mobile Telephony at the Bottom of the Pyramid. In ICTs in Developing Countries (pp. 97–110). Palgrave Macmillan UK. https://doi.org/10.1057/9781137469502_6; Dey, B., Newman, D., & Prendergast, R. (2011). Analysing appropriation and usability in social and occupational lives: An investigation of Bangladeshi farmers’ use of mobile telephony. Information Technology and People, 24(1), 46–63. https://doi.org/10.1108/09593841111109413; Díaz-Sarmiento, C., López-Lambraño, M., & Roncallo-Lafont, L. (2017). Entendiendo las generaciones: una revisión del concepto, clasificación y características distintivas de los Baby Boomers, X Y Millennials. Clío América, 11(22). https://doi.org/10.21676/23897848.2440; Dirección de Apropiación de TIC - Ministerio de Tecnologías de la Información y las Comunicaciones. (n.d.). Retrieved November 1, 2019, from https://mintic.gov.co/portal/604/w3-propertyvalue-547.html?_noredirect=1; Duran, J. B., Llull, U. R., Cinthya, A., & Sandoval, U. (2011). El uso de las TICs y la Brecha Digital entre adultos y adolescentes . Primer avance de resultados. January.; Ekwonwune, E. N., Egwuonwu, D. U., Elebri, L. C., & Uka, K. K. (2017). ICT as an Instrument of Enhanced Banking System. Journal of; ESCOLA D’ ART I SUPERIOR DE DISSENY DE VIC. (n.d.). PSICOLOGIA DEL COLOR.; Espinosa C, M. A., Romero Riaño, E., Flórez G, L. Y., & Guerrero D, C. D. (2019). DANDELION: Propuesta metodológica para recopilación y análisis de información de artículos científicos. Un enfoque desde la bibliometría y la revisión sistemática de la literatura; Espinosa, R. (2018). BENCHMARKING: qué es, tipos, etapas y ejemplos.; FAO. (2013). Agricultores pequeños y familiares. Vías de La Sustentabilidad, 1–4. http://www.fao.org/3/ar588s/ar588s.pdf; Finck, N. (2011). UX Disciplines. https://es.slideshare.net/nickf/the-ux-disciplines/17; Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research; Fulton, C., & McGuinness, C. (2016). Your Learning in a Digital World. In Digital Detectives (pp. 9–17). Elsevier. https://doi.org/10.1016/b978-0-08-100124-0.00002-7; Gannon, M., & Pillai, R. (2010). Understanding Global Cultures: Metaphorical Journeys Through 29 Nations, Clusters of Nations, Continents, and Diversity. SAGE Publications, Inc. https://doi.org/10.4135/9781452224886; Ghezzi, A., Rangone, A., Balocco, R., & Renga, F. (2010). A Strategy-Technology- Regulation-User-Context model for Mobile Location-Based Services market activation analysis. ICMB and GMR 2010 - 2010 9th International Conference on Mobile Business/2010 9th Global Mobility Roundtable, July 2018, 280–288. https://doi.org/10.1109/ICMB-GMR.2010.49; Gowrisankaran, G., & Stavins, J. (2002). Network Externalities and Technology Adoption: Lessons from Electronic Payments. https://doi.org/10.3386/w8943; Granolers, T. (2018). Usability Evaluation with Heuristics, Beyond Nielsen’s List. ACHI 2018: The Eleventh International Conference on Advances in Computer-Human; Guimaraes, T., & Gupta, Y. P. (1987). Personal computing and support services. Omega, 15(6), 467–475. https://doi.org/10.1016/0305-0483(87)90004; Hamrick, K. S. (2003). Rural America, Briefly. Amber Waves, 51–51. https://doi.org/10.22004/AG.ECON.130864; Harris, C. G., & Achora, J. C. (2018). Designing ICT for Agriculture (ICT4A) Innovations for Smallholder Farmers. Proceedings of the XIX International Conference on Human Computer Interaction - Interacción 2018, 1–9. https://doi.org/10.1145/3233824.323383; Hart, L. G., Larson, E. H., & Lishner, D. M. (2005). Rural definitions for health policy and research. In American Journal of Public Health (Vol. 95, Issue 7, pp. 1149–1155). https://doi.org/10.2105/AJPH.2004.042432; Hassenzahl, M., & Tractinsky, N. (2006). User experience - A research agenda. Behaviour and Information Technology, 25(2), 91–97. https://doi.org/10.1080/01449290500330331; Hekkert, P. (2006). Design aesthetics : principles of pleasure in design Design aesthetics : principles of pleasure in design. Psychology Science, 48(June 2006), 157–172. http://www.pabst-publishers.de/psychology-science/2-2006/06_Hekkert.pdf; Hernández Rodríguez, C., & Cano Flores, M. (2017). LA IMPORTANCIA DEL BENCHMARKING COMO HERRAMIENTA PARA INCREMENTAR LA CALIDAD EN EL SERVICIO EN LAS ORGANIZACIONES; Herselman, M. (2003). ICT in Rural Areas in South Africa: Various Case Studies. Proceedings of the 2003 InSITE Conference, January 2003. https://doi.org/10.28945/2680; ICTs For Small-Scale Farmers: A Game Changing Approach to Climate Smart Agriculture in Latin America %7C Colombia and Honduras %7C UNFCCC. (n.d.). Retrieved December 21, 2019, from https://unfccc.int/climate-action/momentum-for-change/ictsolutions/ icts-for-small-scale-farmers-a-game-changing-approach-to-climate-smartagriculture- in-latin-america; Igbaria, M. (1994). An examination of the factors contributing to microcomputer technology acceptance. Accounting, Management and Information Technologies, 4(4), 205–224. https://doi.org/10.1016/0959-8022(94)90023-X; Igbaria, M., & Parasuraman, S. (1989). A Path Analytic Study of Individual Characteristics, Computer Anxiety and Attitudes toward Microcomputers. Journal of Management, 15(3), 373–388. https://doi.org/10.1177/014920638901500302; Imani, B., Hajalizadeh, A., Jahangiri, A., Heydarvand, M., Eftekhar ardebili, K., & Ebrahimi, E. (n.d.). The Challenges of ICT Development in Rural Area Case study: Village Aleni,Meshkin Shahr in Ardebil Province. Australian Journal of Basic and 164 Applied Sciences.; Imenda, S. (2014). Is There a Conceptual Difference between Theoretical and Conceptual Frameworks? In J Soc Sci (Vol. 38, Issue 2).; Interaction Design Foundation. (n.d.). What is Human-Computer Interaction (HCI)? . Retrieved February 11, 2020, from https://www.interactiondesign. org/literature/topics/human-computer-interaction; International Organization for Standardization (ISO). (2001). ISO/IEC 14598-6:2001 Software engineering — Product evaluation — Part 6: Documentation of evaluation modules.; International Organization for Standardization (ISO). (2004). ISO/IEC GUIDE 2:2004 Standardization and related activities — General vocabulary; International Organization for Standardization (ISO). (2011a). ISO/IEC 25040:2011 Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — Evaluation process.; International Organization for Standardization (ISO). (2011b). ISO / IEC 25010: 2011 Ingeniería de sistemas y software - Requisitos y evaluación de calidad de sistemas y software (SQuaRE) - Modelos de calidad de sistemas y s; International Organization for Standardization (ISO). (2012). ISO/IEC 25041:2012 Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — Evaluation guide for developers, acquirers and independent evaluators.; International Organization for Standardization (ISO). (2014a). ISO/IEC 25000:2014 Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — Guide to SQuaRE; International Organization for Standardization (ISO). (2014b). ISO/IEC 25001:2014 Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — Planning and manage; International Organization for Standardization (ISO). (2016a). ISO/IEC 25022:2016 Systems and software engineering — Systems and software quality requirements and evaluation (SQuaRE) — Measurement of quality in u; International Organization for Standardization (ISO). (2016b). ISO/IEC 25023:2016 Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — Measurement of system and software product quality. https://www.iso.org/standard/35747.html; International Organization for Standardization (ISO). (2018). ISO 9241-11:2018 Ergonomics of human-system interaction — Part 11: Usability: Definitions and concepts; International Organization for Standardization (ISO). (2019). ISO 9241-210:2019 165 Ergonomics of human-system interaction — Part 210: Human - centred design for interactive systems. https://www.iso.org/standard/77520.html; Isabirye, N., Flowerday, S. V., Nanavati, A., & von Solms, R. (2015). Building Technology Trust in a Rural Agricultural e-Marketplace: A User Requirements Perspective. The Electronic Journal of Information Systems in Developing Countries, 70(1), 1–20. https://doi.org/10.1002/j.1681-4835.2015.tb00504.x; ITU Telecommunication Development Sector (ITU-D). (n.d.). Telecommunications/ ICTs for rural and remote areas; Ives, B., Olson, M. H., & Baroudi, J. J. (1983). The measurement of user information satisfaction. Communications of the ACM, 26(10), 785–793. https://doi.org/10.1145/358413.358430; Jabareen, Y. (2009). Building a Conceptual Framework: Philosophy, Definitions, and Procedure. International Journal of Qualitative Methods, 8(4), 49–62. https://doi.org/10.1177/160940690900800406; Jiang, Y., de Bruijn, O., & De Angeli, A. (2009). The Perception of Cultural Differences in Online Self-presentation (pp. 672–685). https://doi.org/10.1007/978-3-642-03655- 2_74; Kandachar, P., & Halme, M. (2008). Sustainability challenges and solutions at the base of the pyramid [electronic resource] : business, technology and the poor / edited by Prabhu Kandachar and Minna Halme. January. http://ra.ocls.ca/ra/login.aspx?url=http://search.ebscohost.com/login.aspx?direct=true &db=cat00912a&AN=cclc.305104&site=edslive% 5Cnhttp://ra.ocls.ca/ra/login.aspx?inst=conestoga&url=http://gse.publisher.ingen taconnect.com/content/glbj/scsbp/20; Khokhar, M. F., Ejaz, H., Asif Butt, T., Iftikhar, S., Muzaffer, U., Illyas, A., Mustafa, F. U., Mushtaq, A., Ahmad, U., & Asghar, U. (2014). Enhancement of usability for farmers: User interface for rural community. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8519 LNCS(PART 3), 574–582. https://doi.org/10.1007/978-3-319- 07635-5_55; Knight, W. (2019). UX for Developers: How to Integrate User-Centered Design Principles Into Your Day-to-Day Development Work-Westley Knight. https://doi.org/10.1007/978-1-4842-4227-8; LaMorte, W. W. (2019a). The Social Cognitive Theory.; LaMorte, W. W. (2019b). The Theory of Planned Behavior. Boston University School of Public Health; Le Beux, Y. (2019). UX design for Agriculture in Africa : case study from Zambia.; Leveau, L., Bénel, A., Cahier, J.-P., Pinet, F., Salembier, P., Soulignac, V., & Bergez, J.-E. 166 (2019). Information and Communication Technology (ICT) and the Agroecological Transition. In Agroecological Transitions: From Theory to Practice in Local Participatory Design (pp. 263–287). Springer International Publishing. https://doi.org/10.1007/978-3-030-01953-2_12; Lexico - Universidad de OXFORD. (n.d.). User Experience %7C Meaning of User Experience. Retrieved February 11, 2020, from https://www.lexico.com/definition/user_expe; Leyes desde 1992 - Vigencia expresa y control de constitucionalidad [LEY_0388_1997]. (n.d.). Retrieved November 1, 2019, from http://www.secretariasenado.gov.co/senado/basedoc/ley_0388_1997.html; Leyes desde 1992 - Vigencia expresa y control de constitucionalidad [LEY_1341_2009]. (n.d.). Retrieved November 1, 2019, from http://www.secretariasenado.gov.co/senado/basedoc/ley_1341_2009.html; Libelium. (n.d.). Libelium Smart World Infographic. Retrieved February 13, 2020, from http://www.libelium.com/libelium-smart-world-infographic-smart-cities-internet-ofthings; Maksimovic, M. (2018). Greening the Future: Green Internet of Things (G-IoT) as a Key Technological Enabler of Sustainable Development (pp. 283–313). https://doi.org/10.1007/978-3-319-60435-0_12; Martínez, R., Trucco, D., & Palma, A. (n.d.). El analfabetismo funcional en América Latina y el Caribe Panorama y principales desafíos de política; Medhi, I., Patnaik, S., Brunskill, E., Gautama, S. N. N., Thies, W., & Toyama, K. (2011). Designing mobile interfaces for novice and low-literacy users. ACM Transactions on Computer-Human Interaction, 18(1), 1–28. https://doi.org/10.1145/1959022.1959024; Microsoft. (2019). Design and code Windows apps; Miles B., M., & Huberman, M. A. (1994). Qualitative Data Analysis: An Expanded Sourcebook.; Milhausen, R. R., Reece, M., & Perera, B. (2006). A theory‐based approach to understanding sexual behavior at Mardi Gras. Journal of Sex Research, 43(2), 97–106. https://doi.org/10.1080/00224490609552304; Mimiaga, M. J., Reisner, S. L., Reilly, L., Soroudi, N., & Safren, S. A. (2009). Individual interventions. In HIV Prevention (pp. 203–239). Elsevier. https://doi.org/10.1016/B978-0-12-374235-3.00008-X; Min, Q., Ji, S., & Qu, G. (2008). Mobile Commerce User Acceptance Study in China: A Revised UTAUT Model. Tsinghua Science and Technology, 13(3), 257–264. https://doi.org/10.1016/S1007-0214(08)70042-7; MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL. (n.d.). Plan Estratégico de Tecnologías de Información y Comunicación Sectorial. https://www.minagricultura.gov.co/Documents/PETI_Sector_Agropecuario.pdf; MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL. (2018). DECRETO PEQUEÑO PRODUCTOR; Ministerio de Comercio Industria y Turismo. (2010). Guía Turística Colombia,Santander. https://cdn.colombia.com/docs/turismo/sitios-turisticos/santander/santander.pdf; Ministerio de Comunicaciones de la República de Colombia. (2008). Plan Nacional de Tecnologías de la Información y las Comunicaciones; Ministerio de Tecnologías de la Información y las Comunicaciones. (n.d.). Guía de estilo y usabilidad - LI.SIS.07 - Arquitectura TI. Retrieved February 13, 2020, from https://mintic.gov.co/arquitecturati/630/w3-article-8724.htm; Ministerio de Tecnologías de la Información y las Comunicaciones. (2015). DECRETO No1078 DE 2015 26 MAY 2015.; Ministerio de Tecnologías de la Información y las Comunicaciones. (2018). DECRETO No1008 DE 14 JUN 2018.; Misaki, E. (2019). The Experience of Chamwino Small-Scale Farmers on the Use of Smartphone in Farming Business, Tanzania (pp. 593–605). https://doi.org/10.1007/978-3-030-18400-1_49; Montiel Torres, M. (2019). (PDF) LAS CIENCIAS SOCIALES Y LA AGENDA NACIONAL Reflexiones y propuestas desde las Ciencias Sociales XIII Conocimiento, ciencia e innovación: contribuciones e impactos a la problemática social. https://www.researchgate.net/publication/330336534_LAS_CIENCIAS_SOCIALES_ Y_LA_AGENDA_NACIONAL_Reflexiones_y_propuestas_desde_las_Ciencias_Soci ales_XIII_Conocimiento_ciencia_e_innovacion_contribuciones_e_impactos_a_la_pro blematica_social#page=129; Moore, G., & Benbasat, I. (1991). Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Information Systems Research; Mora Holguín, H., Salas, N. A., García, J. M., Rincón, S. Z., & Mejía, L. E. (n.d.). USABILIDAD DE TIC Y CONSUMO DIGITAL EN EL SECTOR AGROPECUARIO COLOMBIANO; Morales Wu, J. A. (2019). Aceptación y uso académico del IPAD en la Facultad de Comunicaciones de una universidad privada de Lima. Universidad Peruana Cayetano Heredia. http://repositorio.upch.edu.pe/handle/upch/6570; Morgan, J. (2014). A Simple Explanation Of “The Internet Of Things.” https://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-internetthings- that-anyone-can-understand/#37e8504a1d09; Morville, P. (2004). UX Honeycomb; Mueller, K. J., Coburn, A. F., Mackinney, A. C., Mcbride, T. D., Slifkin, R. T., & Wakefield, M. K. (2007). Rural Policy Research Institute Health Panel Choosing 168 Rural Definitions: Implications for Health Policy. March; Mugisha, A., Nankabirwa, V., Tylleskär, T., & Babic, A. (2019). A usability design checklist for Mobile electronic data capturing forms: the validation process. BMC Medical Informatics and Decision Making, 19(1), 4. https://doi.org/10.1186/s12911- 018-0718-3; Mumtaz, S. (2000). Factors affecting teachers’ use of information and communications technology: A review of the literature. Journal of Information Technology for Teacher Education, 9(3), 319–342. https://doi.org/10.1080/14759390000200; Necesidad y tendencias de carreras TIC, ¿qué hay en el mercado? - Ministerio de Tecnologías de la Información y las Comunicaciones. (n.d.). Retrieved November 1, 2019, from https://www.mintic.gov.co/portal/604/w3-article- 64030.html?_noredirect=1; Nelson, D. L. (1990). Individual Adjustment to Information-Driven Technologies: A Critical Review; Newton, H. (1998). Newton’s telecom dictionary : the official dictionary of telecommunications. Flatiron Pub; Nielsen, J. (1997). The Difference Between Web Design and GUI Design.; Norman, D. (2014). The design of everyday things. In Choice Reviews Online (Vol. 51, Issue 10). https://doi.org/10.5860/choice.51-5559; Noticias ONU. (2020). Coronavirus, hambre, América Latina, recesión; Ntawanga, F., & Coleman, A. (2015). A lightweight mobile e-procurement solution for rural small scale traders implemented using a living lab approach. 2015 IST-Africa Conference, 1–10. https://doi.org/10.1109/ISTAFRICA.2015.7190550; Connor, R. (2018). Using Exercise Psychology: Theory of Planned Behaviour.; Ochoa Duarte, A., Forero Pachón, A. M., & Cangrejo, L. D. (2012). Actualidad y tendencias de la Agricultura de Precisión; Olushola, T., & Abiola, J. O. (2016). The Efficacy of Technology Acceptance Model: A Review of Applicable Theoretical Models in Information Technology Researches. Journal of Research in Business and Management.; ORACLE. (n.d.). What Is the Internet of Things (IoT)? Retrieved February 13, 2020, from https://www.oracle.com/internet-of-things/what-is-iot.html; Oreglia, E., Liu, Y., & Zhao, W. (2011). Designing for emerging rural users. Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems - CHI ’11, 1433. https://doi.org/10.1145/1978942.1979152; Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO. (n.d.). Cerrar la brecha digital en el medio rural. Retrieved February 11, 2020, from http://www.fao.org/spanish/newsroom/news/2002/9209-es.html; Organización de Naciones Unidas (ONU). (n.d.). ¿QUÉ SON LOS OBJETIVOS DE 169 DESARROLLO SOSTENIBLE? https://ww; Otero, E. de D. (2004). La guía Caja Madrid para el arte ahora mismo; Otero Torres, E., Rodríguez Hernández, H., & Rodríguez Duarte, M. A. (2016). Derechos y políticas culturales en el Departamento de Santander – Colombia 2008-2011. https://dialnet.unirioja.es/servlet/articulo?codigo=6798812; Ovalles V, F. A. (2006). INTRODUCCIÓN A LA AGRICULTURA DE PRECISIÓN. Revista Digital CENIAP; Park, J., Han, S. H., Kim, H. K., Cho, Y., & Park, W. (2013). Developing Elements of User Experience for Mobile Phones and Services: Survey, Interview, and Observation Approaches. Human Factors and Ergonomics in Manufacturing & Service Industries, 23(4), 279–293. https://doi.org/10.1002/hfm.203; Pejovic, V., & Skarlatidou, A. (2020). Understanding Interaction Design Challenges in Mobile Extreme Citizen Science. International Journal of Human–Computer Interaction, 36(3), 251–270. https://doi.org/10.1080/10447318.2019.1630934; Pepe, E. (2008). Tipografía Expresiva (Redargenta).; Plan Estratégico Departamental de Ciencia, Tecnología e Innovación. (2020).; Programa de las Naciones Unidas para el Desarollo PNUD. (2011). Informe Nacional de Desarrollo Humano 2011.; Pucillo, F., & Cascini, G. (2014). A framework for user experience, needs and affordances. Design Studies, 35(2), 160–179. https://doi.org/10.1016/j.destud.2013.10.; República de Colombia. (2016). CONSTITUCIÓN POLÍTICA DE COLOMBIA 1991.; Resolución 1704 de 2002 Ministerio de Comunicaciones. (n.d.). Retrieved November 1, 2019, from https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=9139; Rocco, S. T., & Plakhotnik, S. M. (2009). Literature reviews, conceptual frameworks, and theoretical frameworks: Terms, functions, and distinctions. In Human Resource Development Review (Vol. 8, Issue 1, pp. 120–130). SAGE Publications Ltd. https://doi.org/10.1177/1534484309332617; Rodríguez Fuentes, J. D. (n.d.). PROPUESTA NORMATIVA PARA APLICACIONES MÓVILES EN COLOMBIA: DERECHOS Y DEBERES DE ACTORES INVOLUCRADOS EN LA CREACIÓN Y GESTIÓN DE APLICACIONES NATIVAS.; Rogers, E. M., Singhal, A., & Quinlan, M. M. (1971). Diffusion of innovations. In An Integrated Approach to Communication Theory and Research, Third Edition. https://doi.org/10.4324/9780203710753-35; Rumata, V. M. (2018). The Influence of Internet Information-Communication Skills and Overloads towards ICT Rural Adoption. 2018 International Conference on ICT for Rural Development (IC-ICTRuDev), 154–157. 170 https://doi.org/10.1109/ICICTR.2018.8706845; Servicios de Telecomunicaciones - Ministerio de Tecnologías de la Información y las Comunicaciones. (n.d.). Retrieved November 1, 2019, from https://www.mintic.gov.co/portal/604/w3-article-5237.html?_noredirect=1; Skuse, A. (2001). Information Communication Technologies, Poverty and Empowerment.; Soegaard, M. (n.d.). Usability: A part of the User Experience %7C Interaction Design Foundation. Retrieved February 13, 2020, from https://www.interactiondesign. org/literature/article/usability-a-part-of-the-user-experien; Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bodirsky, B. L., Lassaletta, L., de Vries, W., Vermeulen, S. J., Herrero, M., Carlson, K. M., Jonell, M., Troell, M., DeClerck, F., Gordon, L. J., Zurayk, R., Scarborough, P., Rayner, M., Loken, B., Fanzo, J., … Willett, W. (2018). Options for keeping the food system within environmental limits. Nature, 562(7728), 519–525. https://doi.org/10.1038/s41586- 018-0594-0; SRIFA, P., & POOKEAMKAM, W. (2017). Development of Printed Media with Augmented Reality Technology for the Farmers in Rural Areas Nakhon Nayok Provinces, Thailand. Turkish Online Journal of Educational Technology, 175–179; Stephanidis, C., Salvendy, G., Antona, M., Chen, J. Y. C., Dong, J., Duffy, V. G., Fang, X., Fidopiastis, C., Fragomeni, G., Fu, L. P., Guo, Y., Harris, D., Ioannou, A., Jeong, K. ah (Kate), Konomi, S., Krömker, H., Kurosu, M., Lewis, J. R., Marcus, A., … Zhou, J. (2019). Seven HCI Grand Challenges. International Journal of Human-Computer Interaction. https://doi.org/10.1080/10447318.2019.1619259; Stratigea, A. (2011). ICTs for rural development: potential applications and barriers involved. Netcom, 25-3/4, 179–204. https://doi.org/10.4000/netcom.14; Stull, E. (2018). User Experience Principles for Managers, Writers, Designers, and Developers-UX Fundamentals for Non-UX Professionals. https://doi.org/10.1007/978- 1-4842-3811-0; Suárez Restrepo, N. del C., & Tobasura Acuña, I. (2008). THE RURAL AREA: AN UNFINISHED “FIELD.”; Sultana, S., Hasan, S., Mahmud, K. R., Alam, S. M. R., & Ahmed, S. I. (2019). “Shada Baksho”: a hardware device to explore the fears of using mobile phones among the rural women of Bangladesh. Proceedings of the Tenth International Conference on Information and Communication Technologies and Development - ICTDX ’19, 1–4. https://doi.org/10.1145/3287098.3287132; Taherdoost, H. (2018). A review of technology acceptance and adoption models and theories. Procedia Manufacturing, 22, 960–967. https://doi.org/10.1016/j.promfg.2018.03.137; Taluja, Y. (2014). Android Development in the Rural World: A How To Guide. 171 https://blog.atlan.com/team/android-development-guide-rural-world/; Tavakol, M., & Ghazinejad, M. (2011). Generation gap in macro-sociological approaches: a review of historical generation approaches and contrast with emphasis on the views of Mannheim and Bourdieu. 95–124.; Tecnósfera. (2015). Los 10 celulares usados que más se venden en Colombia; THE GLOBAL DEVELOPMENT RESEARCH CENTER. (n.d.). What are ICTs? Retrieved February 11, 2020, from http://www.gdrc.org/icts/what-is-icts.html; Thompson, R., Higgins, C., & Howell, J. (1991). Personal Computing Toward a Conceptual Model of Utilization. MIS Quarterly; Trendov, N. M., Varas, S., & Zeng, M. (2019). Digital technoligies in agriculture and rural areas. 26. http://www.fao.org/3/ca4887en/ca4887en.pdf; Triandis, H. C. (1977). Interpersonal behavior. Brooks/Cole Pub. Co.; Triandis, H. C. (1980). Values, Attitudes, and Interpersonal Behavior. Nebraska Symposium on Motivation; Tryon, W. W. (2014). Corollary Network Principles. In Cognitive Neuroscience and Psychotherapy (pp. 223–256). Elsevier. https://doi.org/10.1016/B978-0-12-420071- 5.00004-1; Vaezi, R., Mills, A., Chin, W., & Zafar, H. (2016). User Satisfaction Research in Information Systems: Historical Roots and Approaches. Communications of the Association for Information Systems, 38, 504–532. https://doi.org/10.17705/1CAIS.038127; Van den Ban, A. ., & Hawkins, H. S. (2000). Agricultural Extension.; van Huysen, T., Hansen, J., & Tall, A. (2018, January 1). Scaling up climate services for smallholder farmers: Learning from practice. Climate Risk Management, 22, 1–3. https://doi.org/10.1016/j.crm.2018.10.002; Venkatesh, Morris, Davis, & Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036; Venkatesh, Thong, & Xu. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157. https://doi.org/10.2307/41410412; Venkatesh, V., & Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Sciences, 39(2), 273–315. https://doi.org/10.1111/j.1540-5915.2008.00192.x; Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926; Vermeeren, A. P. O. S., Law, E. L.-C., Roto, V., Obrist, M., Hoonhout, J., & Väänänen- Vainio-Mattila, K. (2010). User experience evaluation methods. Proceedings of the 172 6th Nordic Conference on Human-Computer Interaction Extending Boundaries - NordiCHI ’10, 521. https://doi.org/10.1145/1868914.1868973; Webster, J., & Martocchio, J. J. (1992). Microcomputer Playfulness: Development of a Measure with Workplace Implications. MIS Quarterly, 16(2), 201. https://doi.org/10.2307/24; Weisse, M., & Goldman, E. D. (2019). The World Lost a Belgium-sized Area of Primary Rainforests Last Year. World Resources Institute; Woon, I. M. ., & Pee, L. G. (2004). Behavioral Factors Affecting Internet Abuse in the Workplace – An Empirical Investigation. SIGHCI 2004 Proceedings. 5. https://aisel.aisnet.org/sighci200; Wu, B., & Zhang, L. (2013). Farmer innovation diffusion via network building: a case of winter greenhouse diffusion in China. Agriculture and Human Values, 30(4), 641– 651. https://doi.org/10.1007/s10460-013-9438-6; Wu, Y.-L., Tao, Y.-H., & Yang, P.-C. (2008). The use of unified theory of acceptance and use of technology to confer the behavioral model of 3G mobile telecommunication users. Journal of Statistics and Management Systems, 11(5), 919–949. https://doi.org/10.1080/09720510.2008.10701351; Zampati, F. (2019). Does data mean power for smallholder farmers? https://blogs.worldbank.org/opendata/does-data-mean-power-smallholder-farmers; Zender, M., & Cassedy, A. (2014). (mis)understanding: icon comprehension in different cultural contexts. Visible Language, p68-95. 28p.; Zhenwei Qiang, C., Kuek, S. C., Dymond, A., & Esselaar, S. (2011). Mobil Applications for Agriculture and Rural Development; http://hdl.handle.net/20.500.12749/12085; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co

  19. 19

    Geografické téma: Medellín, Colombia

    Popis souboru: 14 páginas; application/pdf

    Relation: 116; 79; 103; 31; Innovar; Aceto, G., Persico, V., & Pescapé, A. (2018). The role of Information and Communication Technologies in healthcare: taxonomies, perspectives, and challenges. Journal of Network and Computer Applications, 107, 125-154, https://doi.org/10.1016/j.jnca.2018.02.008; Aguirre, D. A. (2005). Reflexiones acerca de la competencia comunicativa profesional. Educación Médica Superior, 19(3), 1-10. http:// scielo.sld.cu/pdf/ems/v19n3/ems04305.pdf; Aguirre, N., Camacho. Y., Carvajal, M. P., Domínguez, J., Garzón, P., Guevara, L., … Rodríguez, M. (2018). Historia clínica electrónica en Bogotá: percepciones desde la atención primaria. Revista Salud Bosque, 8(2), 35-48. http://dx.doi.org/10.18270/rsb.v8i1.2492; Ashtari, S., & Bellamy, A. (2020). Factors impacting use of health it applications: Predicting nurses’ perception of performance, International Journal of Healthcare Information Systems and Informatics (ijhisi), 14(4), 33-55. https://doi.org/10.4018/ IJHISI.2019100103; Bansler, J. P., & Havn, E. (2004). Technology-use mediation. Making sense of electronic communication in an organizational context. Scandinavian Journal of Information Systems, 16, 57-84. https:// doi.org/10.1145/1027232.1027255; Barrett, M., Grant, D., & Wailes, N. (2006) ict and organizational change: Introduction to the special issue. The Journal of Applied Behavioral Science, 42(1), 6-22, https://doi. org/10.1177/0021886305285299; Bourgeois, D. (2014). Information systems for business and beyond. Saylor Foundationhttps://resources.saylor.org/wwwresources/archived/site/textbooks/Information%20Systems%20for%20Business%20and%20Beyond.pdf; Bushelle-Edghill, J., Brown, L., & Dong, S. (2017). An examination of ehr implementation impacts on patient-flow. Health Policy and Technology, 6(1), 114-120. https://doi.org/10.1016/j.hlpt.2016.11.005; Correa Ospina, M. L., & Díaz Pinzón, B. H. (2018). Capacidad en tecnologías de la información y desempeño organizacional: un estudio en el contexto colombiano. Innovar, 28(69), 99-116. https://doi. org/10.15446/innovar.v28n69.71699; Fagerström, C., Tuvesson, H., Axelsson, L., & Nilsson, L. (2017). The role of ict in nursing practice: An integrative literature review of the Swedish context. Scandinavian Journal of Caring Sciences, 31(3), 434-448. https://doi.org/10.1111/scs.12370; Farfán, G. M. (2013). Características de los registros de enfermería que hacen parte de expedientes de un tribunal de enfermería (Trabajo de grado). Pontificia Universidad Javeriana, Bogotá, Colombia. http://purl.org/coar/access_right/c_abf2 .; Flick, C., Zamani, E., Carsten, B., & Brem A. (2020). The future of ict for health and ageing: Unveiling ethical and social issues through horizon scanning foresight. Technological Forecasting and Social Change, 155, 119995. https://doi.org/10.1016/j. techfore.2020.119995; Galeano, E. (2004). Diseño de proyectos en la investigación cualitativa. Medellín: Fondo Editorial Universidad eafit.; Gonzales-Miranda, D., Ocampo-Salazar, C., & Gentilin, M. (2018). Organizational studies in Latin America. a literature review (2000- 2014). Innovar, 28(67), 89-109. https://doi.org/10.15446/innovar.v28n67.68615; Gutiérrez, V. A., Aguilar, J. J., & Medina, J. E. (2019). Cambio organizacional, institucional y tecnológico: una aproximación desde la teoría actor-red y el trabajo institucional. Cuadernos de Administración, 32(59). https://doi.org/10.11144/Javeriana.cao32-59.coit; Haluza, D., & Jungwirth, D. (2015). ict and the future of health care: Aspects of health promotion, International Journal of Medical Informatics, 84(1), 48-57. https://doi.org/10.1016/j. ijmedinf.2014.09.005; Harerimana, A., & Mtshali, N. (2020). Using exploratory and confirmatory factor analysis to understand the role of technology in nursing education, Nurse Education Today, 92, 104490. https://doi. org/10.1016/j.nedt.2020.104490; Health Level Seven International. (2019). About HL7. https://www.hl7. org/about/index.cfm?ref=nav; Hemmat, M., Ayatollahi, H., Maleki, M. R., & Saghafi, F. (2017). Future research in health information technology: A review. Perspectives in Health Information Management, 14(Winter), 1b. https://www. ncbi.nlm.nih.gov/pmc/articles/PMC5430110/; Leonardi, P. M., & Barley, S. R. (2010). What’s under construction here? Social action, materiality, and power in constructivist studies of technology and organizing. Academy of Management Annals, 4(1), 1-51. https://doi.org/10.1080/19416521003654160; Minota, T., & Cardona, D. (2016). Evolución de la historia clínica electrónica en el sector salud en Colombia. Quid, (27), 41-47. https://revistas.proeditio.com/iush/quid/article/view/1216; Mokel, M., & Canty, L. (2020). Educational outcomes of an online educational intervention teaching cultural competency to graduate nursing students. Nurse Education in Practice, 46, 102832. https:// doi.org/10.1016/j.nepr.2020.102832; Nery, V. de F., Franco, K. S., & Neiva, E. R. (2019). Attributes of the organizational change and its influence on attitudes toward organizational change and well-being at work: A longitudinal study. The Journal of Applied Behavioral Science, 55(4), 477-496. https:// doi.org/10.1177/0021886319848125; Omotosho, A., Ayegba, P., Emuoyibofarhe, J., & Meinel, C. (2019). Current state of ict in healthcare delivery in developing countries. International Journal of Online and Biomedical Engineering (ijoe), 15(8), 91-107. http://doi.org/10.3991/ijoe.v15i08.10294; Orlikowski, W. (1996). Improvising organizational transformation over time: A situated change perspective. Information Systems Research, 7(1), 63-92. https://doi.org/10.1287/isre.7.1.63; Orlikowski, W. & Scott, S. (2008). Sociomateriality: Challenging the separation of technology, work and organization. Academy of Management Annals. 2(1), (433-474). https://doi.org/10.5465/19416 520802211644; Papa, M., Daniels, T. & Spiker, B. (2008). Information technology. En Organizational Communication: Perspectives and Trends (pp. 161-192). Thousand Oaks: Sage Publications. http://dx.doi. org/10.4135/9781483329239.n7; Pettigrew, A. M., Woodman, R. W., & Cameron, K. S. (2001). Studying organizational change and development: Challenges for future research. The Academy of Management Journal, 44, 697-713. https://doi.org/10.5465/3069411; Ponelis, S. R. (2015). Using interpretive qualitative case studies for exploratory research in doctoral studies: A case of information systems research in small and medium enterprises. International Journal of Doctoral Studies, 10, 535-550. https://doi.org/10.28945/2339; Revilla, J. C., & Tovar, F. (2011). El control organizacional en el siglo xxi: en busca del trabajador autodisciplinado. Reis, 135, 47-68. http:// dx.doi.org/10.5477/cis/reis.135.47; Romero, J., Matamoros, S., & Campo, C. A. (2013). Sobre el cambio organizacional. Una revisión bibliográfica. Innovar, 23(50), 35-52. https://revistas.unal.edu.co/index.php/innovar/article/view/ 40572; Scott, S. V., & Orlikowski, W. J. (2014). Entanglements in practice: Performing anonymity through social media. mis Quarterly, 38(3), 873-893.; Svensson, A. (2020). Identifying motives for implementing eHealth by using activity theory. Sustainability, 12,1-11. https://doi. org/10.3390/su12041298; Tabares, J. (2017). El rol de la tecnología en las organizaciones productivas. En D. Gonzales-Miranda (Ed.), Organizaciones. Aproximaciones teóricas desde los estudios organizacionales (pp. 181-202). Medellín: Editorial Universidad eafit; Tabares, J., Correa, S. A., Herrera, J. M., & Loaiza, S. A. (2018). Mediación del uso de tecnologías de información en una organización de salud colombiana. Psicoperspectivas, 17(3), 1-12. http://doi. org/10.5027/psicoperspectivas-Vol17-Issue3-fulltext-1347; Taylor, S. J., & Bogdan, R. (1984). Introducción a los métodos cualitativos de investigación. Barcelona: Paidós.; Triantafillou, P. (2017). Making electronic health records support quality management: A narrative review. International Journal of Medical Informatics, 104, 105-119. http://dx.doi.org/10.1016/j. ijmedinf.2017.03.003; Trigg, R. H. & Bødker, S. (1994). From implementation to design: Tailoring and the emergence of systematization in cscw. En Proceedings of the Conference on Computer Supported Cooperative Work (October, Chapel Hill, NC), 44-54. https://doi. org/10.1145/192844.192869; Tsoukas H., & Chia, R. (2002). On organizational becoming: Rethinking organizational change. Organization Science, 13(5), 459-599. http://dx.doi.org/10.1287/orsc.13.5.567.7810; Urra, E., Jana, A., & García, M. (2011). Algunos aspectos esenciales del pensamiento de Jean Watson y su teoría de cuidados. Ciencia y Enfermería, 17(3), 11-22. http://dx.doi.org/10.4067/ S0717-95532011000300002; Van de Ven, A., & Poole, M. S. (1995). Explaining development and change in organizations. The Academy of Management Review, 20(3), 510-540. https://doi.org/10.2307/258786; VanHeuvelen, J., & Grace, M., (2020). Occupational heterogeneity in healthcare workers’ misgivings about organizational change. Work and Occupations, 47(3), 280-313, https://doi. org/10.1177/0730888420919144; Volkoff, O., Strong, D., & Elmes, M. (2007). Technological embeddedness and organizational change. Organization Science, 18(5), 749-883. http://dx.doi.org/10.1287/orsc.1070.0288; Walsham, G. (2006). Doing interpretive research. European Journal of Information Systems, 15(3), 320-330. https://doi.org/10.1057/ palgrave.ejis.3000589; Webb, L, Clough, J., O’Reilly, D., Wilmott, D., & Witham, G. (2017). The utility and impact of information communication technology (ict) for pre-registration nurse education: A narrative synthesis systematic review. Nurse Education Today, 48, 160-171, https://doi. org/10.1016/j.nedt.2016.10.007; Weick, K. E. (1995). Sensemaking in organizations. Thousand Oaks - Londres: Sage Publications.; Yuan, L. (2016). Rethinking organizational change: Implications from the Chinese Shi 势. Frontiers of Philosophy in China, 11(4), 540-555. https://doi.org/10.3868/s030-005-016-0039-1; Yunis, M., Tarhini, A., & Kassar, A. (2018). The role of ict and innovation in enhancing organizational performance: The catalysing effect of corporate entrepreneurship, Journal of Business Research, 88, 344- 356. https://doi.org/10.1016/j.jbusres.2017.12.030; https://dspace.tdea.edu.co/handle/tdea/2757

  20. 20

    Popis souboru: xvi, 57 páginas; application/pdf

    Relation: Abdel-Halim, I T.; Fahmy, H M A.; Bahaa-Eldin, A M.: Agent-based trusted on-demand routing protocol for mobile ad-hoc networks. En: Wireless Networks 21 (2014), Nr. 2, p. 467–483; Anderegg, Luzi; Eidenbenz, Stephan: Ad hoc-VCG: a truthful and cost-efficient routing protocol for mobile ad hoc networks with selfish agents. En: Proceedings of the 9th annual international conference on Mobile computing and networking, 2003, p. 245–259; Ashwin, M; Kamalraj, S; Azath, M: Weighted Clustering Trust Model for Mobile Ad Hoc Networks. En: Wireless Personal Communications 94 (2017), Nr. 4, p. 2203– 2212; Axelrod, Robert; Hamilton, William D.: The evolution of cooperation. En: science 211 (1981), Nr. 4489, p. 1390–1396; Ayday, E; Fekri, F: An Iterative Algorithm for Trust Management and Adversary Detection for Delay-Tolerant Networks. En: IEEE Transactions on Mobile Computing 11 (2012), Nr. 9, p. 1514–1531; Bansal, Sorav; Baker, Mary: Observation-based cooperation enforcement in ad hoc networks. En: arXiv preprint cs/0307012 (2003); Bauer, Paul C.: Conceptualizing trust and trustworthiness. (2017); Bauer, Paul C.; Keusch, Florian; Kreuter, Frauke: Trust and cooperative behavior: Evidence from the realm of data-sharing. En: PloS one 14 (2019), Nr. 8, p. e0220115; Bisen, D; Sharma, S: An enhanced performance through agent-based secure approach for mobile ad hoc networks. En: International Journal of Electronics 105 (2018), Nr. 1, p. 116–136; Buchegger, Sonja; Le Boudec, Jean-Yves: Performance analysis of the CONFI- DANT protocol. En: Proceedings of the 3rd ACM international symposium on Mobile ad hoc networking & computing, 2002, p. 226–236; Chatterjee, P; Sengupta, I; Ghosh, S K.: STACRP: A secure trusted auction oriented clustering based routing protocol for MANET. En: Cluster Computing 15 (2012), Nr. 3, p. 303–320; Fadel, Etimad; Gungor, Vehbi C.; Nassef, Laila; Akkari, Nadine; Malik, MG A.; Almasri, Suleiman; Akyildiz, Ian F.: A survey on wireless sensor networks for smart grid. En: Computer Communications 71 (2015), p. 22–33; Fitzek, F.H.P.; Katz, M.D.: Cooperation in wireless networks: Principles and applications: Real egoistic behavior is to cooperate! Springer, 2006. – 1–641 p. – cited By 186; Friedman, Linda W.; Friedman, Hershey H.: Analyzing simulation output using the bootstrap method. En: Simulation 64 (1995), Nr. 2, p. 95–100; Gera, P; Garg, K; Misra, M: Trust-based multi-path routing for enhancing data security in MANETs. En: International Journal of Network Security 16 (2014), Nr. 2, p. 102–111; Gershenson, Carlos; Heylighen, Francis: When can we call a system self-organizing? En: European Conference on Artificial Life Springer, 2003, p. 606–614; Ghosekar, Pravin; Katkar, Girish; Ghorpade, Pradip: Mobile ad hoc networking: imperatives and challenges. En: IJCA Special issue on MANETs 3 (2010), p. 153–158; Hanbali, Ahmad; Ibrahim, Mouhamad; Simon, Vilmos; Varga, Endre; Carreras, Iacopo: A Survey of Message Diffusion Protocols in Mobile Ad Hoc Networks, 2008; Hardin, Garrett: The tragedy of the commons. En: science 162 (1968), Nr. 3859, p. 1243–1248; He, Qi; Wu, Dapeng; Khosla, Pradeep: SORI: A secure and objective reputation-based incentive scheme for ad-hoc networks. En: 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No. 04TH8733) Vol. 2 IEEE, 2004, p. 825–830; Hegde, S B.; Babu, B S.; Venkataram, P: A Cognitive Theory-based Opportunistic Resource-Pooling Scheme for Ad hoc Networks. En: Journal of Intelligent Systems 26 (2017), Nr. 1, p. 47–68; Hilbe, Christian; Šimsa, Štěpán; Chatterjee, Krishnendu; Nowak, Martin A.: Evolution of cooperation in stochastic games. En: Nature 559 (2018), Nr. 7713, p. 246–249; Jayanand, A; Chenthil Kumaran, N: Trusted and authentication based routing security for MANET. En: International Journal of Applied Engineering Research 10 (2015), Nr. 1, p. 105–120; Katz, M.; Lucani, D.E.; Seeling, P.: Mobile clouds as the building blocks of shareconomy: Sharing resources locally and widely. En: IEEE Vehicular Technology Magazine 9 (2014), Nr. 3, p. 63–71; Li, W; Parker, J; Joshi, A: Security through collaboration and trust in MANETs. En: Mobile Networks and Applications 17 (2012), Nr. 3, p. 342–352; Loo, Jonathan; Mauri, Jaime L.; Ortiz, Jesus H.: Mobile ad hoc networks: current status and future trends. CRC Press, 2016; Mandhare, V V.; Thool, V R.; Manthalkar, R R.: QoS Routing enhancement using metaheuristic approach in mobile ad-hoc network. En: Computer Networks 110 (2016), p. 180–191. – ISSN 1389–1286; Mani, P; Kamalakkannan, P: Conviction based packet promotion scheme for efficient detection of selfish nodes in mobile Ad Hoc networks. En: International Review on Computers and Software 9 (2014), Nr. 2, p. 212–218; Marias, Giannis F.; Georgiadis, Panagiotis; Flitzanis, D; Mandalas, K: Cooperation enforcement schemes for MANETs: A survey. En: Wireless Communications and Mobile Computing 6 (2006), Nr. 3, p. 319–332; Mejia, Angela M.: Evolución genética de estrategias para modelos de confianza en redes móviles ad-hoc basados en teoría de juegos. 2010. – unpublished thesis; Mejia, M; Peña, N; Muñoz, J L.; Esparza, O; Alzate, M A.: A game theoretic trust model for on-line distributed evolution of cooperation inMANETs. En: Journal of Network and Computer Applications 34 (2011), Nr. 1, p. 39–51; Mertens, J-F; Neyman, Abraham: Stochastic games. En: International Journal of Game Theory 10 (1981), Nr. 2, p. 53–66; Michiardi, Pietro; Molva, Refik: Core: a collaborative reputation mechanism to enforce node cooperation in mobile ad hoc networks. En: Advanced communications and multimedia security. Springer, 2002, p. 107–121; Myerson, Roger B.: Game theory. Harvard university press, 2013; Ninu, S B.; Behin Sam, S: A collaborative Intrusion Detection System for manet using data mining technique. En: ARPN Journal of Engineering and Applied Sciences 13 (2018), Nr. 14, p. 4387–4392; Ochoa, Gabriela: Setting the mutation rate: Scope and limitations of the 1/L heuristic. En: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, 2002, p. 495–502; Pariselvam, S; Parvathi, R M S.: Trust based security mechanism for service discovery in MANET. En: Journal of Theoretical and Applied Information Technology 56 (2013), Nr. 2, p. 226–234; Pouyan, A A.; Yadollahzadeh Tabari, M: FPN-SAODV: using fuzzy petri nets for securing AODV routing protocol in mobile Ad hoc network. En: International Journal of Communication Systems 30 (2017), Nr. 1; Rajeshwar, J; Narsimha, G: Secure way routing protocol for mobile ad hoc network. En: Wireless Networks 23 (2017), Nr. 2, p. 345–354; Rapoport, Anatol; Chammah, Albert M.; Orwant, Carol J.: Prisoner’s dilemma: A study in conflict and cooperation. Vol. 165. University of Michigan press, 1965; Raychaudhuri, Dipankar; Gerla, Mario: Emerging wireless technologies and the future mobile internet. Cambridge University Press, 2011; Mandayam, Narayan B.: Frontiers of wireless and mobile communications. En: Proceedings of the IEEE 100 (2012), Nr. 4, p. 824–840; Reddy, V B.; Venkataraman, S; Negi, A: A dynamic trust evolution model for MANETs based on mobility. En: International Journal of Ad Hoc and Ubiquitous Computing 28 (2018), Nr. 4, p. 230–246; Roughgarden, Tim: Algorithmic game theory. En: Communications of the ACM 53 (2010), Nr. 7, p. 78–86; Saha, H N.; Singh, R; Bhattacharyya, D; Banerjee, P K.: Modified Fidelity Based On-Demand Secure (MFBOD) Routing Protocol in Mobile Ad-Hoc Network. En: Foundations of Computing and Decision Sciences 40 (2015), Nr. 4, p. 267–298; Shannon, Claude E.: A mathematical theory of communication. En: ACM SIGMO- BILE mobile computing and communications review 5 (2001), Nr. 1, p. 3–55; Sridhar, S; Nagaraju, V; Bapu, B R T.; Shankar, R; Anitha, R: Trusted and optimized routing in mobile ad-hoc networks emphasizing quality of service. En: Applied Mathematics and Information Sciences 12 (2018), Nr. 3, p. 655–663; Thorat, S A.; Kulkarni, P J.: Opportunistic Routing in Presence of Selfish Nodes for MANET. En: Wireless Personal Communications 82 (2015), Nr. 2, p. 689–708; Tonguz, Ozan K.; Ferrari, Gianluigi: A communication-theoretic approach to ad hoc wireless networking. En: 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks Vol. 2 IEEE, 2006, p. 715–722; Vega, Diego A.; Ospina, Juan P.; Latorre, Julian F.; Ortiz, Jorge E.: An adaptive trust model for achieving emergent cooperation in ad hoc networks. En: Current Trends in Semantic Web Technologies: Theory and Practice. Springer, 2019, p. 85–100; Vekaria, Kanta; Clack, Chris: Selective crossover in genetic algorithms: An empirical study. En: International Conference on Parallel Problem Solving from Nature Springer, 1998, p. 438–447; Wooldridge, Michael: An introduction to multiagent systems. John Wiley & Sons, 2009; Yang, Hao; Shu, James; Meng, Xiaoqiao; Lu, Songwu: SCAN: self-organized network-layer security in mobile ad hoc networks. En: IEEE Journal on Selected Areas in Communications 24 (2006), Nr. 2, p. 261–273; Zhang, Qing; Yu, Ting; Irwin, Keith: A Classification Scheme for Trust Functions in Reputation-Based Trust Management. En: ISWC Workshop on Trust, Security, and Reputation on the Semantic Web Vol. 127 Citeseer, 2004; Zhang, Yujun; Yan, Tan; Tian, Jie; Hu, Qi; Wang, Guiling; Li, Zhongcheng: TOHIP: A topology-hiding multipath routing protocol in mobile ad hoc networks. En: Ad Hoc Networks 21 (2014), p. 109–122. – ISSN 1570–8705; Zhong, Sheng; Chen, Jiang; Yang, Yang R.: Sprite: A simple, cheat-proof, credit-based system for mobile ad-hoc networks. En: IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No. 03CH37428) Vol. 3 IEEE, 2003, p. 1987–1997; https://repositorio.unal.edu.co/handle/unal/80614; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/