Search Results - acm: c.: computer systems organizacion/c.1: process architecture/c.1.4: parallel architecture*
-
1
Authors: et al.
Contributors: et al.
Subject Terms: Systems engineer, Technological innovations, Agriculture commoditie, Smallholder, Rural, Colombia, Crop rotation, IOT, Good practices, Architecture, Farming, Internet, Crops, Cultivation techniques, Ingeniería de sistemas, Innovaciones tecnológicas, Agricultura, Cultivos, Técnicas de cultivos, Producto agrícola, Granja, Rotación de cultivos, Buenas prácticas, Arquitectura
Subject Geographic: Colombia, UNAB Campus Bucaramanga
File Description: application/pdf
Relation: [1] United Nations, “La población mundial sigue en aumento, aunque sea cada vez más vieja %7C Noticias ONU,” Jun. 17, 2019. https://news.un.org/es/story/2019/06/1457891 (accessed Mar. 25, 2020).; [2] Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, “Agricultura mundial: Hacia los años 2015/2030,” 2015, [Online]. Available: http://www.fao.org/3/y3557s/y3557s03.htm; [3] V. Ricciardi, N. Ramankutty, Z. Mehrabi, L. Jarvis, and B. Chookolingo, “How much of the world’s food do smallholders produce?,” Glob. Food Sec., vol. 17, no. January, pp. 64–72, 2018, doi:10.1016/j.gfs.2018.05.002.; [4] Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, “The impact of disasters on agriculture,” p. 28, 2017.; [5] Government of Canada, “Causes of climate change - Canada.ca,” Mar. 28, 2019.https://www.canada.ca/en/environment-climatechange/services/climate-change/causes.html (accessed Mar. 25, 2020).; [6] K. Amadeo, “Heat Waves and Their Effect on the Economy,” Aug. 13, 2019. https://www.thebalance.com/heat-wave-causes-list-effect-on-the-economy4173881 (accessed Mar. 25, 2020).; [7] D. Carrington, N. , Kommenda, P. Gutiérrez, and C. Levett, “One football pitch of forest lost every second in 2017, data reveals %7C Environment %7C The Guardian,” Jun. 27, 2018. https://www.theguardian.com/environment/nginteractive/2018/jun/27/one-football-pitch-of-forest-lost-every-second-in2017-data-reveals (accessed Mar. 25, 2020).; [8] World Metereological Organization, “Climate change and desertifi cation,” p. 4, 2007; [9] Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, “FAO: Agricultura comercial generó casi el 70 % de la deforestación en América Latina %7C FAO,” Jul. 18, 2016. http://www.fao.org/americas/noticias/ver/es/c/425614/ (accessed Mar. 25, 2020).; [10] Mongabay Latam, “La ganadería extensiva está acabando con los bosques en Colombia,” El Espectador, Jan. 26, 2017. https://blogs.elespectador.com/medio-ambiente/mongabay-latam/laganaderia-extensiva-esta-acabando-los-bosques-colombia (accessed Mar. 25, 2020).; [11] CÁMARA DE COMERCIO DE BUCARAMANGA, “Cámara de Comercio de Bucaramanga - [ Blog - En Santander más de 500 mil hectáreas son destinadas a la agricultura ],” Apr. 26, 2018. https://www.camaradirecta.com/noticias//en-santander-mas-de-500-milhectareas-son-destinadas-a-la-agricultura/ (accessed Mar. 25, 2020).; [12] R. Bongiovanni, E. Chartuni, S. Best, and Á. Roel, Agricultura de Presición: Integrando Conocimentos para una Agricultura Moderna y Sustentable, vol. 10. 2006; [13] Banco Mundial, “La innovación agrícola y la tecnología son la clave para reducir la pobreza en los países en desarrollo, según un informe del Banco Mundial,” Sep. 16, 2019. https://www.bancomundial.org/es/news/pressrelease/2019/09/16/agricultural-innovation-technology-hold-key-to-povertyreduction-in-developing-countries-says-world-bank-report (accessed Mar. 25, 2020).; [14] Portafolio, “La apuesta para convertir a Colombia en una de las despensas del mundo %7C Economía %7C Portafolio,” Jun. 08, 2019. https://www.portafolio.co/economia/la-apuesta-para-convertir-a-colombia-enuna-de-las-despensas-del-mundo-530405 (accessed Mar. 25, 2020).; [15] Tepro Consultores, “La agricultura intensiva podría ser la solución al reto alimentario,” 2018. https://tepro.es/la-agricultura-intensiva-podria-ser-lasolucion-al-reto-alimentario/ (accessed Mar. 10, 2020).; [16] Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, The impact of disasters on agriculture and food security. 2017; [17] Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, “La seguridad alimentaria futura del mundo peligra debido a múltiples desafíos,” 2017. http://www.fao.org/news/story/es/item/471772/icode/.; [18] Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, “Nueva enfermedad por coronavirus (COVID-19). Preguntas frecuentes: pandemia del COVID-19, su impacto en la alimentación y la agricultura,” 2020. http://www.fao.org/2019-ncov/q-and-a/impact-on-food-and-agriculture/es/ (accessed May 01, 2020).; [19] J. Didier Ruiz, “Academia comprometida con el agro desde la investigación,” 2018. https://www.agronegocios.co/analisis/john-didier-ruiz2706349/academia-comprometida-con-el-agro-desde-la-investigacion2706324 (accessed Mar. 25, 2020).; [20] J. F. Naomi, R. A. Theepavishal, K. . Madhuaravindh, and V. Tharuneshwar, “A soil quality analysis and an efficient irrigation system using agro-sensors,” Int. J. Eng. Adv. Technol., vol. 8, no. 5, pp. 703–706, 2019; [21] J. A. Castillo F and E. Amézquita C., “Erosión hídrica y degradación de suelos en laderas andinas,” Rev. Tec. científica la Esc. Nac. ciencias For., vol. 20, 2008; [22] Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, “Buenas prácticas en la FAO: Sistematización de experiencias para el aprendizaje continuo,” Organ. las Nac. Unidas para la Aliment. y la Agric. FAO, vol. 13, pp. 1–12, 2013, [Online]. Available: http://www.fao.org/docrep/018/ap784s/ap784s.pdf%0Ahttp://www.hhv.gob.pe /estadistica/2013/cext_anual_2013.pdf.; [23] H. Sumnall, “Get Ready For Connected . Cattle?,” ABI Research, May 24, 2019. https://www.abiresearch.com/blogs/2019/05/24/get-ready-connectedcattle/ (accessed May 06, 2020).; [24] Cenicafe, “La acidez del suelo, una limitante común para la producción de café,” Av. Técnicos Cenicafé, vol. 466, no. 12, pp. 1–12, 2016, doi: 0120-0178; [25] GLOBE, “Protocolo de Temperatura del Suelo,” Suelo, pp. 1–17, 2005.; [26] B. Sanou and S. Grindeanu, “GSR-18 BEST PRACTICE GUIDELINES ON NEW REGULATORY FRONTIERS TO ACHIEVE DIGITAL TRANSFORMATION,” ITU (International Telecommun. Union), pp. 1–8, 2018, [Online]. Available: https://www.itu.int/net4/ITUD/CDS/GSR/2018/documents/Guidelines/GSR-18_BPG_Final-E.PDF; [27] A. A. L. O. S. P. Rurales, “Alcanzando a los pobres rurales,” World Bank, p. 36, 2001, [Online]. Available: http://documents.worldbank.org/curated/en/890441468764052052/pdf/30411 0SPANISH01ary01see0also0267631.pdf.; [28] W. B. Group, “Internet of things: The New Government to Business Platform: A REVIEW OF OPPORTUNITIES, PRACTICES, AND CHALLENGES,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7768 LNCS, pp. 257–282, 2017, doi:10.1007/978-3-64241569-2-13; [29] OECD, “The Internet of Things - Seizing the Benefits and Addressing the Challenges,” OECD Digit. Econ. Pap., no. 252, pp. 4–11, 2016, [Online]. Available: http://search.proquest.com/docview/1797548811?accountid=8144%5Cnhttp: //sfx.aub.aau.dk/sfxaub?url_ver=Z39.882004&rft_val_fmt=info:ofi/fmt:kev:mtx:book&genre=unknown&sid=ProQ:ABI %2FINFORM+Global&atitle=&title=THE+INTERNET+OF+THINGS+SEIZING +THE+BENEFITS+AND; [30] Consultora de Transformación Digital - INCIPY, “Internet of things (IoT) en la transformación digital de las empresas,” 2015; [31] Internet Society, “La internet de las cosas - Una breve reseña,” 2015; [32] Canneye Docs, “Getting Started.” https://developers.mydevices.com/cayenne/docs/getting-started/ (accessed Apr. 14, 2020).; [33] Electronilab, “Electronilab Store,” 2020.; [34] Rapsberry PI Foundation, “About Us,” 2020. https://www.raspberrypi.org/about/ (accessed Apr. 14, 2020).; [35] R. Asenjo, S. González, F. Corbera, and Á. Navarro, “La plataforma Raspberry Pi como base para la coordinación vertical,” 2017.; [36] M. M. Macías, C. J. G. Orellana, H. M. G. Velasco, and A. G. Manso, “La plataforma MBED para la enseñanza de la electrónica aplicada al diseño de productos,” XI Congr. Tecnol. Aprendiz. y Enseñanza la Electrónica, 2014; [37] Canneye Docs, “Cayenne MQTT API,” 2020. https://developers.mydevices.com/cayenne/docs/cayenne-mqtt-api/.; [38] X. Mi and X. Wang, “An Empirical Characterization of IFTTT : Ecosystem, Usage, and Performance,” 2017, doi:10.1145/3131365.3131369; [39] Blynk, “Blynk,” 2020. https://blynk.io; [40] V. Shymanskyy, “Supported Hardware,” 2019. https://github.com/blynkkk/blynkkk.github.io/blob/master/SupportedHardware .md; [41] FIWOO, “FIWOO, la plataforma IoT basada en FIWARE,” 2019. https://www.fiwoo.eu/.; [42] FIWOO, “Conecta tus datos. FIWOO: El cerebro de tu organización,” 2019. https://www.fiwoo.eu/caracteristicas-tecnicas; [43] Node-RED, “Node-RED,” 2020. https://nodered.org/ (accessed May 02, 2020).; [44] Agricultures, “Sensores en tiempo real,” 2019. https://agriculturers.com/sensores-en-tiempo-real/.; [45] Canal Comstor, “6 tipos de sensores para aplicación en la internet de las cosas,” 2017. https://blogmexico.comstor.com/6-tipos-de-sensores-paraaplicacion-en-la-internet-de-las-cosas.; [46] PRISMAB, “Sensores de suelo para agricultura de precisión,” 2019. https://prismab.com/sensores-de-suelo-para-agricultura-de-precision/ (accessed Apr. 28, 2020).; [47] MisterComapardor, “Tipos de Internet: conoce todos las redes que existen,” Jan. 21, 2019. https://www.mistercomparador.com/noticias/tipos-deconexion-a-internet/ (accessed Nov. 13, 2020).; [48] A. D. Alcudia León, “Descripción general de ADSL,” Universidad de las Américas Puebla - UDLAP, 2005; [49] Cables y Componentes para Comunicaciones S.L., “Fibra óptica: Diferentes tipos y aplicaciones.,” Bogotá, Colombia, 2019.; [50] S. Juliá, “Ventajas de la fibra óptica sobre el cable de cobre,” Gadae Netweb, 2019. https://www.gadae.com/blog/ventajas-de-la-fibra-optica-sobre-el-cablede-cobre; [51] Comisión de Regulación de Comunicaciones - CRC, “Redes Móviles en Colombia,” Bogotá, Colombia, 2019.; [52] A. Lamelas Torrijos, “¿Qué es WiMAX? ¿Cómo funciona WiMAX?,” pp. 1–15, 2006, [Online]. Available: https://www.dipbadajoz.es/agenda/tablon/jornadaWIFI/doc/tecnologias_wifi_wmax.pdf.; [53] A. Carmona, “Planificación mediante Atoll de Red WiMAX móvil para los centros de la Universidad de Sevilla,” 2008, [Online]. Available: http://bibing.us.es/proyectos/abreproy/11677/fichero/Volumen+1%252F3.WiMAX.pdf; [54] J. Pianchiche Añapa, “Internet de alta velocidad para comunidades rurales,” Universidad San Francisco de Quito, 2016.; [55] J. C. Gonzalez Islas, “Comunicación vía Internet sobre la Plataforma satelital,” Universidad Autónoma del Estado de Hidalgo, 2006.; [56] D. López Aznar, J. Caraballo, and J. S. Artal-Sevil, “Desarrollo de una Aplicación Wireless basada en Tecnología Bluetooth .,” 2010; [57] Zigbee Alliance, “Sobre Nosotros. El abanderado del open IoT,” 2020. https://zigbeealliance.org/es/sobre-nosotros; [58] Zigbee Alliance, “Zigbee: La solución full-stack que entrelaza todos sus dispositivos inteligentes.,” 2020, [Online]. Available: https://zigbeealliance.org/es/solución/Zigbeeb; [59] Universidad Nacional Autónoma de México - UNAM, “CAPÍTULO 3: ESTÁNDAR IEEE 802.15.4 ‘REDES ZIGBEE,’” Ciudad de México (MX).; [60] J. C. Triana Useche and R. E. Rodriguez Leguizamo, “Prototipo de solución IoT con tecnología ‘LoRa’ en monitoreo de cultivos agrícolas.,” Universidad Francisco José de Caldas, 2018; [61] A. Torres and J. C. Ponces, “Inteligencia Artificial,” Iniciat. Latinoam. Libr. Texto Abiertos, no. March, 2014, doi:10.13140/2.1.3720.0960; [62] L. J. Sandoval, “Algoritmos de aprendizaje automático para análisis y predicción de datos,” Repositorio Digital de Ciencia y Cultura de El Salvador - REDICCES, San Salvador (SV), pp. 36–40, 2018; [63] F. Parra, “Estadística y Machine Learning con R,” BOOKDOWN., 2019.; [64] G. Julián, “Las redes neuronales: qué son y por qué están volviendo,” 2016. https://www.xataka.com/robotica-e-ia/las-redes-neuronales-que-son-y-porque-estan-volviendo.; [65] B. M. Åkesson and H. T. Toivonen, “A neural network model predictive controller,” J. Process Control, vol. 16, no. 9, pp. 937–946, 2006, doi:10.1016/j.jprocont.2006.06.001.; [66] O. Ramiro, M. Segura, and M. Villalba, “Predicción del tráfico de una red inalámbrica basada en redes neuronales artificiales mediante el algoritmode Levenberg-Marquardt,” Desarro. e innovación en Ing., vol. 4, pp. 27–36, 2019, [Online]. Available: https://www.researchgate.net/profile/Edgar_Serna_M/publication/339177129 _Desarrollo_e_innovacion_en_ingenieria_4_ed/links/5e42a2f4458515072d9 1c468/Desarrollo-e-innovacion-en-ingenieria-4-ed.pdf#page=30.; [67] J. Hernandez and J. Rodriguez, “Algoritmos de Retropropagación con restricciones para la estimación de parámetros de curvas de titulación,” Cienc. e Ing., vol. 39, no. 1, pp. 13–26, 2018; [68] P. A. Blanco, “Algoritmo de Retropropagación,” 2014.; [69] C. Hernández Herrero, “Aplicación de Técnicas de Web Scraping al Boletín Oficial de Castilla y León (BOCyL),” Universidad de Valladolid, 2014; [70] N. Villaverde Medina, “Nuevas técnicas estadísticas: Text Mining en Web,” Universidade Da Coruña, 2017.; [71] J. Callejo González, “Herramienta de Text Mining aplicado a textos cortos y redes sociales,” Universidad de Cantábira, 2016; [72] Global Plan Santander, “GPS %7C Global Plan Santander.” https://www.globalplansantander.com/ (accessed Nov. 18, 2020).; [73] National Geographic, “10 datos que debes saber sobre el café.” https://www.ngenespanol.com/gastronomia/10-datos-que-debes-sabersobre-el-cafe/ (accessed Nov. 18, 2020).; [74] Federación Nacional de Cafeteros, “Café de Santander.” https://santander.federaciondecafeteros.org/cafe-de-santander/ (accessed Nov. 18, 2020).; [75] Federación Nacional de cafeteros - Fedecafe, “Descripción del proceso productivo y del beneficio del café. Guía tecnológica del cultivo.,” Guía Ambient. para el Sect. Cafe., pp. 51–80, 2006, [Online]. Available: https://www.federaciondecafeteros.org/static/files/8Capitulo6.pdf; [76] EcuRed, “Cacao.” https://www.ecured.cu/Cacao#Caracter.C3.ADsticas_generales (accessed Nov. 18, 2020).; [77] Vanguardia Liberal, “Cacao de Santander, sigue destacándose en producción y sabor .” https://www.vanguardia.com/economia/local/cacao-de-santandersigue-destacandose-en-produccion-y-sabor-YM1619504 (accessed Nov. 18, 2020).; [78] X. González, “‘TENEMOS 176.050 HECTÁREAS SEMBRADAS DE CACAO’, PRESIDENTE DE FEDECACAO,” AgroNegocios, 2019. https://www.agronegocios.co/agricultura/tenemos-176050-hectareassembradas-de-cacao-eduard-baquero-lopez-presidente-ejecutivo-defedecacao-2923404.; [79] Federación Nacional De Cacaoteros - Fedecacao, “Guía ambiental para el cultivo del cacao,” pp. 1–126, 2013.; [80] X. González, “‘TENEMOS 176.050 HECTÁREAS SEMBRADAS DE CACAO’, PRESIDENTE DE FEDECACAO,” AgroNegocios, 2019; [81] EcuRed, “Limón Tahití.” https://www.ecured.cu/Limón_Tahití#Descripci.C3.B3n (accessed Nov. 18, 2020).; [82] C. P. Ardila Jaimes, L. K. Prieto López, and M. J. Rodríguez Galeano, “Cosecha de Limón Tahití (Citrus Latifolia Tanaka),” 2018.; [83] X. González, “Santander, principal productor de limón tahití del país con 83% de participación,” AgroNegocios, 2018. https://www.agronegocios.co/agricultura/santander-principal-productor-delimon-tahiti-del-pais-con-83-de-participacion-2773458. [b; [84] Negocios Pyme, “El arte de cultivar limón tahití.” [Online]. Available: https://www.grupobancolombia.com/wps/wcm/connect/562d575b-9b624648-ae92-3471e355b166/el-arte-de-cultivar-limóntahití.pdf?MOD=AJPERES&CVID=moJG1PV; [85] Departamento Administrativo Nacional de Estadística - DANE, “Cultivo del limón o lima Tahití (Citrus latifolia Tanaka) frente a los efectos de las condiciones climáticas adversas,” 2015. [Online]. Available: https://www.grupobancolombia.com/wps/wcm/connect/f017197a-425a-4b7d8a23-308b7871e4f0/cultivo-limon-condicionesclimaticas.pdf?MOD=AJPERES&CVID=moLXHgk; [86] S. L. Interempresas Media, “Aguacate - Información general,” 2020. https://www.frutas-hortalizas.com/Frutas/Presentacion-Aguacate.html (accessed Nov. 18, 2020).; [87] Vanguardia Liberal, “Santander con tierras aptas para sembrar aguacate hass %7C Vanguardia.com.” https://www.vanguardia.com/economia/local/santandertiene-tierras-aptas-para-sembrar-aguacate-hass-HEvl438438 (accessed Nov. 18, 2020).; [88] W. Granados Pérez and J. C. Valencia Rincón, “Cadena de Aguacate. Indicadores e Instrumentos Generales,” 2018. [Online]. Available: https://imgcdn.larepublica.co/cms/2018/09/26180443/Aguacate.pdf?w=auto.; [89] W. Granados Pérez and J. C. Valencia Rincón, “Cadena de Aguacate. Indicadores e Instrumentos Generales,” 2018; [90] Fondo para el Financiamiento del Sector Agropecuario - FINAGRO, “Ficha de inteligencia Aguacate,” 2018. [Online]. Available: https://www.finagro.com.co/sites/default/files/node/basicpage/files/ficha_aguacate_version_ii.pdf.; [91] E. Mejía Vélez, “Aguacate: Persea americana Miller,” Monografìa de cultivos: Bayer CropScience, p. 10, 2011; [92] C. N. Esguerra Yara and D. Guarín Cardona, “Guía técnica ambiental para la producción de aguacate ‘persea americana’ en sus variedades lorena y choquette bajo un sistema de silvopastoreo en la vereda cerro gordo del municipio de mariquita en el departamento del tolima,” Resultados de búsqueda Resultado web con enlaces de partes del sitio Universidad Distrital Francisco José de Caldas, 2016.; [93] E. Mejía Vélez, “Aguacate: Persea americana Miller,” Monografìa de cultivos: Bayer CropScience, p. 10, 2011; [94] Fondo para el Financiamiento del Sector Agropecuario - FINAGRO, “Ficha de inteligencia Aguacate,” 2018.; [95] J. A. Díaz Arbeláez, “Las 5 claves en el cultivo del aguacate,” Crop Science - Colombia, 2018. https://www.cropscience.bayer.co/Centro-deNoticias/Noticias/2018/09/Cinco-claves-Aguacate.aspx (accessed May 08, 2020).; [96] Lactalis Puleva S.L., “La piña es un fruto tropical rico en potasio y bajo en calorias.” https://www.lechepuleva.es/aprende-a-cuidarte/tu-alimentacion-dela-a-z/p/pina (accessed Nov. 18, 2020).; [97] J. Guillermo Zuluaga, “Producción de piña llegaría a más 950 mil toneladas en 2018, calcula MinAgricultura,” Ministerio de Agricultura y Desarrollo Rural, 2018. https://www.minagricultura.gov.co/noticias/Paginas/Producción-depiña-llegaría-a-más-950-mil-toneladas-en-2018,-calcula-MinAgricultura-.aspx (accessed May 08, 2020).; [98] Gobernación de Santander, “Piña santandereana, ‘sello de calidad’ en los mercados internacionales,” 2019. http://www.santander.gov.co/index.php/actualidad/item/3503-pinasantandereana-sello-de-calidad-en-los-mercados-internacionales (accessed May 08, 2020).; [99] A. García and M. Rodriguez, “Proyecto ‘Colombia, Costa Rica, Nicaragua: Reduciendo el Escurrimiento de Plaguicidas al mar Caribe’ Manual de Buenas Prácticas Agrícolas para la producción de piña en Costa Rica,” 2011. [Online]. Available: (Viceministra de Agricultura).; [100] J. A. Sanchez E, “Manual para la produccion de una piña de calidad,” Manual, vol. 0, no. 0, pp. 2–41, 2012, doi:10.1016/j.arcmed.2011.12.001.; [101] M. Urbina Chavarría, “Manual Técnico: Buenas prácticas para el cultivo de Piña,” 2012.; [102] Oracle, “Protocol Layers and the OSI Model.” https://docs.oracle.com/cd/E19683-01/806-4075/ipov-7/index.html (accessed Nov. 05, 2020).; [103] Cloudflare, “What Is The OSI Model?” https://www.cloudflare.com/learning/ddos/glossary/open-systemsinterconnection-model-osi/ (accessed Nov. 05, 2020).; [104] S. Chaitanya, “Computer Network TCP/IP model.” https://beginnersbook.com/2019/04/computer-network-tcp-ip-model/ (accessed Nov. 09, 2020).; [105] Traxco, “Análisis de suelos para determinar una buena fertilización,” Oct. 16, 2015. https://www.traxco.es/blog/produccion-agricola/analisis-de-suelos (accessed Nov. 05, 2020).; [106] L. M. Rincón Suarez, “Caracterización fisicoquímica de algunos suelos de la zona de los municipios de Villanueva y Barichara – Santander,” vol. 2, no. 5, pp. 1–179, 2010, [Online]. Available: http://tangara.uis.edu.co/biblioweb/tesis/2010/134435.pdf; [107] Departamento Administrativo Nacional de Estadística - DANE, “COLOMBIA - Censo Nacional de Población y Vivienda,” 2018. http://microdatos.dane.gov.co/index.php/catalog/643/study-description (accessed Nov. 09, 2020).; [108] Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, “Portal de Suelos de la FAO.” http://www.fao.org/soils-portal/soilsurvey/clasificacion-de-suelos/sistemas-numericos/propiedades-quimicas/es/ (accessed Nov. 02, 2020).; [109] Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, “CAPÍTULO 2: FACTORES QUE CONDICIONAN LA PRODUCCIÓN.” http://www.fao.org/3/s8630s/s8630s04.htm (accessed Nov. 02, 2020).; [110] J. R. Celestrini, C. A. S. Santos, R. N. Rocha, J. G. Pereira Filho, E. B. Saleme, and R. V. Andreão, “An architecture and its tools for integrating IoT and BPMN in agriculture scenarios,” Proc. ACM Symp. Appl. Comput., vol. Part F1477, pp. 824–831, 2019, doi:10.1145/3297280.3297361; [111] M. Caluva, “¿Qué son los sensores? Sensores Industriales.” https://sites.google.com/site/654sensoresindustriales/home/-quee-son-lossensores (accessed Nov. 02, 2020).; [112] A. Triantafyllou, P. Sarigiannidis, and S. Bibi, “Precision agriculture: A remote sensing monitoring system architecture,” Inf., vol. 10, no. 11, 2019, doi:10.3390/info10110348.; [113] M. S. Farooq, S. Riaz, A. Abid, K. Abid, and M. A. Naeem, “A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming,” IEEE Access, vol. 7, pp. 156237–156271, 2019, doi:10.1109/ACCESS.2019.2949703; [114] M. Abbasi, M. H. Yaghmaee, and F. Rahnama, “Internet of Things in agriculture: A survey,” Proc. 3rd Int. Conf. Internet Things Appl. IoT 2019, pp. 1–12, 2019, doi:10.1109/IICITA.2019.8808839; [115] Arduino, “Arduino - HomePage.” https://www.arduino.cc/en/IoT/HomePage (accessed Nov. 02, 2020).; [116] Arduino Official Store, “Arduino Nano 33 IoT.” https://store.arduino.cc/usa/nano-33-iot (accessed Nov. 09, 2020).; [117] Arduino Official Store, “Arduino MKR FOX 1200 (Europe only).” https://store.arduino.cc/usa/arduino-mkrfox1200 (accessed Nov. 09, 2020).; [118] Arduino Official Store, “Arduino MKR WAN 1300 (LoRa connectivity) .” https://store.arduino.cc/usa/mkr-wan-1300 (accessed Nov. 09, 2020).; [119] Arduino Official Store, “Arduino MKR GSM 1400.” https://store.arduino.cc/usa/mkr-gsm-1400 (accessed Nov. 09, 2020).; [120] Arduino Official Store, “Arduino MKR WiFi 1010.” https://store.arduino.cc/usa/mkr-wifi-1010 (accessed Nov. 09, 2020).; [121] Arduino Official Store, “Arduino MKR NB 1500.” https://store.arduino.cc/usa/arduino-mkr-nb-1500 (accessed Nov. 09, 2020).; [122] Arduino Official Store, “Arduino MKR Vidor 4000.” https://store.arduino.cc/usa/mkr-vidor-4000 (accessed Nov. 09, 2020).; [123] Arduino Official Store, “ARDUINO UNO WiFi REV2.” https://store.arduino.cc/usa/arduino-uno-wifi-rev2 (accessed Nov. 09, 2020).; [124] F. J. Ferrández-Pastor, J. M. García-Chamizo, M. Nieto-Hidalgo, and J. MoraMartínez, “Precision agriculture design method using a distributed computing architecture on internet of things context,” Sensors (Switzerland), vol. 18, no. 6, Jun. 2018, doi:10.3390/s18061731; [125] M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E. H. M. Aggoune, “Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk,” IEEE Access, vol. 7, pp. 129551–129583, 2019, doi:10.1109/ACCESS.2019.2932609.; [126] GeeksforGeeks, “Difference between 32-bit and 64-bit operating systems ,” Oct. 07, 2020. https://www.geeksforgeeks.org/difference-32-bit-64-bitoperating-systems/ (accessed Nov. 06, 2020).; [127] Rapsberry PI Foundation, “Raspberry Pi 4 Model B.” https://www.raspberrypi.org/products/raspberry-pi-4-modelb/?resellerType=home (accessed Nov. 06, 2020).; [128] Rapsberry PI Foundation, “Download Raspberry Pi OS for Raspberry Pi.” https://www.raspberrypi.org/downloads/raspberry-pi-os/ (accessed Nov. 09, 2020).; [129] R. Velasco, “Raspberry Pi OS (Raspbian), Linux optimizado para Raspberry Pi,” SoftZone, May 29, 2020. https://www.softzone.es/programas/linux/raspberry-pi-os/ (accessed Nov. 09, 2020).; [130] OffSec Services Limited, “Official Kali Linux Downloads.” https://www.kali.org/downloads/ (accessed Nov. 09, 2020).; [131] OffSec Services Limited, “Which Image Should I Download? %7C Kali Linux Documentation.” https://www.kali.org/docs/introduction/what-image-todownload/ (accessed Nov. 09, 2020).; [132] J. P. B.C., “Requisitos Mínimos ~ Kali Linux.” https://sisopekalil.blogspot.com/2017/11/requisitos-minimos.html (accessed Nov. 09, 2020); [133] GetMyOS, “Kali Linux 2020.3 (August, 2020) Desktop 32-bit 64-bit ISO Disk Image Download - GetMyOS.Com.” https://www.getmyos.com/kali-linux 148 2020-3-august-2020-desktop-32-bit-64-bit-iso-disk-image-download (accessed Nov. 09, 2020).; [134] Fedora Docs, “Fedora on Raspberry Pi.” https://docs.fedoraproject.org/enUS/quick-docs/raspberry-pi/ (accessed Nov. 09, 2020).; [135] Fedora Docs, “Architectures/ARM/Raspberry Pi.” https://fedoraproject.org/wiki/Architectures/ARM/Raspberry_Pi#Prerequisites (accessed Nov. 09, 2020).; [136] Fedora Docs, “2. Requirements.” https://docs.fedoraproject.org/enUS/Fedora/20/html/Installation_Quick_Start_Guide/Requirements.html (accessed Nov. 09, 2020).; [137] GetMyOS, “Fedora 29 (Oct, 2018) Desktop All Editions (64-bit, Live) ISO Disk Image Free Download .” https://www.getmyos.com/fedora-29-desktop-alleditions (accessed Nov. 09, 2020).; [138] GetMyOS, “Fedora .” https://www.getmyos.com/name/fedora (accessed Nov. 09, 2020).; [139] Microsoft Docs, “Suggested Prototype Boards - Windows IoT.” https://docs.microsoft.com/en-us/windows/iotcore/tutorials/quickstarter/PrototypeBoards (accessed Nov. 09, 2020).; [140] Bytesnap, “Windows 10 IoT Core: what you need to know.” https://www.bytesnap.com/windows-10-iot-core-what-you-need-to-know/# (accessed Nov. 09, 2020).; [141] C. Trum, “Is Windows 10 IoT a Suitable Replacement for Windows Embedded?,” Fierce Electronics, 2016. https://www.fierceelectronics.com/components/windows-10-iot-a-suitablereplacement-for-windows-embedded (accessed Nov. 09, 2020).; [142] Ubuntu Core documentation, “What is Ubuntu Core?” https://core.docs.ubuntu.com/en/guides/intro/what-is-core (accessed Nov. 09, 2020).; [143] Ubuntu Core documentation, “Supported platforms.” https://core.docs.ubuntu.com/en/platforms (accessed Nov. 09, 2020).; [144] Ubuntu Core documentation, “Basic installation.” https://ubuntu.com/server/docs/installation (accessed Nov. 09, 2020).; [145] Community Help Wiki Ubuntu, “Installation/SystemRequirements.” https://help.ubuntu.com/community/Installation/SystemRequirements (accessed Nov. 09, 2020).; [146] RISC OS Open, “Raspberry Pi.” https://www.riscosopen.org/content/downloads/raspberry-pi (accessed Nov. 09, 2020).; [147] Arch Linux ARM, “Arch Linux ARM.” https://archlinuxarm.org/ (accessed Nov. 09, 2020).; [148] BeagleBoard, “BeagleBoard.org Latest Firmware Images.” http://beagleboard.org/latest-images (accessed Nov. 09, 2020).; [149] Debian docs, “3.4. Cumplir los requisitos mínimos de hardware.” https://www.debian.org/releases/jessie/i386/ch03s04.html.es (accessed Nov. 09, 2020).; [150] Oracle, “What Is a Database.” https://www.oracle.com/database/what-isdatabase.html (accessed Nov. 06, 2020).; [151] S. Amghar, S. Cherdal, and S. Mouline, “Which NoSQL database for IoT applications?,” in 2018 International Conference on Selected Topics in Mobile and Wireless Networking, MoWNeT 2018, Aug. 2018, pp. 131–137, doi:10.1109/MoWNet.2018.8428922; [152] E. Mitreva and K. Kaloyanova, “NoSQL Solutions to Handle Big Data,” Proc. Dr. Conf. MIE, no. September 2013, pp. 77–86, 2013; [153] K. Sachs, I. Petrov, and P. Guerrero (Eds.), From Active Data Management to Event-Based Systems and More, vol. 6462. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.; [154] D. A. Pereira, W. Ourique de Morais, and E. Pignaton de Freitas, “NoSQL realtime database performance comparison,” Int. J. Parallel, Emergent Distrib. Syst., vol. 33, no. 2, pp. 144–156, Mar. 2018, doi:10.1080/17445760.2017.1307367.; [155] K. Ramamritham, “Real-time databases,” Distrib. Parallel Databases, vol. 1, no. 2, pp. 199–226, Apr. 1993, doi:10.1007/BF01264051; [156] K. Ahmad, M. S. Alam, and N. I. Udzir, “Security of NoSQL Database Against Intruders,” Recent Patents Eng., vol. 13, no. 1, pp. 5–12, Feb. 2019, doi:10.2174/1872212112666180731114714; [157] S. Li et al., “Geospatial big data handling theory and methods: A review and research challenges,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 115. Elsevier B.V., pp. 119–133, May 01, 2016, doi:10.1016/j.isprsjprs.2015.10.012.; [158] B. Krishnamachari, D. Estrin, and S. Wicker, “The Impact of Data Aggregation in Wireless Sensor Networks,” Jul. 2012. Accessed: Nov. 06, 2020. [Online]. Available: https://www.researchgate.net/publication/2837759_The_Impact_of_Data_Ag gregation_in_Wireless_Sensor_Networks; [159] M. V, “Comparative Study of NoSQL Document, Column Store Databases and Evaluation of Cassandra,” Int. J. Database Manag. Syst., vol. 6, no. 4, pp. 11– 26, Aug. 2014, doi:10.5121/ijdms.2014.6402; [160] E. Tang and Y. Fan, “Performance comparison between five NoSQL databases,” in Proceedings - 2016 7th International Conference on Cloud Computing and Big Data, CCBD 2016, Jul. 2017, pp. 105–109, doi:10.1109/CCBD.2016.030.; [161] Rapsberry Pi Foundation, “Raspberry Pi Zero W.” https://www.raspberrypi.org/products/raspberry-pi-zerow/?resellerType=home (accessed Nov. 09, 2020).; [162] Rapsberry Pi Foundation, “Raspberry Pi 3 Model B.” https://www.raspberrypi.org/products/raspberry-pi-3-modelb/?resellerType=home (accessed Nov. 09, 2020).; [163] Rapsberry Pi Foundation, “Raspberry Pi 3 Model B+.” https://www.raspberrypi.org/products/raspberry-pi-3-model-bplus/?resellerType=home (accessed Nov. 09, 2020).; [164] Rapsberry Pi Foundation, “Raspberry Pi 3 Model A+.” https://www.raspberrypi.org/products/raspberry-pi-3-model-aplus/?resellerType=home (accessed Nov. 09, 2020).; [165] Rapsberry Pi Foundation, “Raspberry Pi 4.” https://www.raspberrypi.org/products/raspberry-pi-4-modelb/?resellerType=home (accessed Nov. 09, 2020).; [166] BeagleBone, “BeagleBoard.org.” https://beagleboard.org/bone (accessed Nov. 09, 2020).; [167] BeagleBone, “SanCloud BeagleBone Enhanced.” https://beagleboard.org/enhanced (accessed Nov. 09, 2020).; [168] BeagleBone, “BeagleBone Black Wireless.” http://beagleboard.org/blackwireless (accessed Nov. 09, 2020).; [169] BeagleBone, “SeeedStudio BeagleBone Green Wireless.” https://beagleboard.org/green-wireless (accessed Nov. 09, 2020).; [170] Raspberry Pi Foundation, “Raspberry Pi Zero.” https://www.raspberrypi.org/products/raspberry-pi-zero/?resellerType=home (accessed Nov. 09, 2020).; [171] Raspberry Pi Foundation, “Raspberry Pi 1 Model A+.” https://www.raspberrypi.org/products/raspberry-pi-1-model-aplus/?resellerType=home (accessed Nov. 09, 2020).; [172] Raspberry Pi Foundation, “Raspberry Pi 1 Model B+.” https://www.raspberrypi.org/products/raspberry-pi-1-model-bplus/?resellerType=home (accessed Nov. 09, 2020).; [173] Raspberry Pi Foundation, “Raspberry Pi 2 Model B.” https://www.raspberrypi.org/products/raspberry-pi-2-modelb/?resellerType=home (accessed Nov. 09, 2020).; [174] BeagleBoard, “PocketBeagle.” http://beagleboard.org/pocket (accessed Nov. 09, 2020).; [175] BeagleBone, “BeagleBone Original.” https://beagleboard.org/bone-original (accessed Nov. 09, 2020).; [176] WhatIs.com, “What is ARM processor?,” Jan. 2015. https://whatis.techtarget.com/definition/ARM-processor (accessed Nov. 08, 2020).; [177] K. Du, Z. Sun, F. Zheng, J. Chu, and J. Ma, “MONITORING SYSTEM FOR WHEAT METEOROLOGICAL DISASTERS USING WIRELESS SENSOR NETWORKS,” in 2017 Spokane, Washington July 16 - July 19, 2017, 2017, pp. 1-, doi:10.13031/aim.201700055.; [178] J. Bauer and N. Aschenbruck, “Design and implementation of an agricultural monitoring system for smart farming,” in 2018 IoT Vertical and Topical Summit on Agriculture - Tuscany, IOT Tuscany 2018, Jun. 2018, pp. 1–6, doi:10.1109/IOT-TUSCANY.2018.8373022.; [179] GSMA, “5G Spectrum GSMA Public Policy Position,” Mar. 2020. Accessed: Nov. 08, 2020. [Online]. Available: https://www.gsma.com/spectrum/wpcontent/uploads/2020/03/5G-Spectrum-Positions.pdf; [180] J. C. Guillermo, A. García-Cedeño, D. Rivas-Lalaleo, M. Huerta, and R. Clotet, 151 “IoT Architecture Based on Wireless Sensor Network Applied to Agricultural Monitoring: A Case of Study of Cacao Crops in Ecuador,” in Advances in Intelligent Systems and Computing, 2019, vol. 893, pp. 42–57, doi:10.1007/978-3-030-04447-3_3.; [181] F. Ferrández-Pastor, J. García-Chamizo, M. Nieto-Hidalgo, J. Mora-Pascual, and J. Mora-Martínez, “Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture,” Sensors, vol. 16, no. 7, p. 1141, Jul. 2016, doi:10.3390/s16071141; [182] AG Electrónica, “Sigfox: La red del IoT .” https://agelectronica.blog/2019/09/18/sigfox-la-red-del-iot/ (accessed Nov. 10, 2020).; [183] X. Muñoz, “Tecnología Sigfox,” DSET ENERGY. http://www.dsetenergy.com/2019/06/05/tecnologia-sigfox/ (accessed Nov. 10, 2020).; [184] R. Irons-Mclean, A. Sabella, and M. Yannuzzi, “IoT and Security Standards and Best Practices,” Orchestrating and Automating Security for the Internet of Things: Delivering Advanced Security Capabilities from Edge to Cloud for IoT, 2019; [185] B. Condori and G. Teodor, “El internet de las cosas IoT,” UNIVERSIDAD NACIONAL DE EDUCACIÓN, Lima, 2019.; [186] S. Ziegler et al., “IoT6 - Moving to an IPv6-based future IoT,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2013, vol. 7858 LNCS, pp. 161–172, doi:10.1007/978-3-642-38082-2_14.; [187] Ministerio de Tecnologías de la Información y las Comunicaciones - TIC, “IPV6.” https://www.mintic.gov.co/portal/inicio/Micrositios/IPV6/ (accessed Nov. 08, 2020).; [188] S. C. Constaín Rengifo, J. Castro Sierra, C. Rozo Bolaños, L. V. Cristancho Cruz; [189] T. Romario Bhattacharyya and D. M. Pushpalatha, “Routing protocols for internet of things: a survey,” Int. J. Eng. Technol., vol. 7, no. 2.4, p. 196, Mar. 2018, doi:10.14419/ijet.v7i2.4.13038.; [190] M. Zhao, A. Kumar, P. H. Joo Chong, and R. Lu, “A comprehensive study of RPL and P2P-RPL routing protocols: Implementation, challenges and opportunities,” Peer-to-Peer Netw. Appl., vol. 10, no. 5, pp. 1232–1256, Sep. 2017, doi:10.1007/s12083-016-0475-; [191] B. An, J. S. Lee, N. S. Kim, and D. H. Kim, “CARP: A cooperative-aided routing protocol in mobile ad-hoc wireless sensor networks,” in International Conference on Advanced Communication; [192] M. Singh and S. Kumar, “A Survey: Ad-hoc on Demand Distance Vector (AODV) Protocol,” Int. J. Comput. Appl., vol. 161, no. 1, pp. 38–44, Mar. 2017, doi:10.5120/ijca2017913109.; [193] J. V. V. Sobral, J. J. P. C. Rodrigues, R. A. L. Rabêlo, K. Saleem, and V. Furtado, “LOADng-IoT: An Enhanced Routing Protocol for Internet of Things 152 Applications over Low Power Networks,” Sensors, vol. 19, no. 1, p. 150, Jan. 2019, doi:10.3390/s19010150.; [194] H. Narra, Y. Cheng, E. Çetinkaya, J. Rohrer, and J. Sterbenz, “DestinationSequenced Distance Vector (DSDV) Routing Protocol Implementation in ns3,” Nov. 2012, doi:10.4108/icst.simutools.2011.2455; [195] T. Clausen and P. Jacquet, “Optimized link state routing protocol (OLSR),” no. August 2015, 2003, [Online]. Available: https://www.rfc-editor.org/info/rfc3626; [196] A. Balchunas, “Routing Information Protocol-RIP,” 2012. Accessed: Nov. 08, 2020. [Online]. Available: http://www.routeralley.com.; [197] A. Balchunas, “IGRP (Interior Gateway Routing Protocol),” 2012. Accessed: Nov. 08, 2020. [Online]. Available: http://www.routeralley.com.; [198] A. Balchunas, “Enhanced Interior Gateway Routing Protocol-EIGRP,” 2007. Accessed: Nov. 08, 2020. [Online]. Available: http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a0080 093f07.shtml#eigrp_work; [199] T. Salman, “Networking Protocols and Standards for Internet of Things,” Nov. 2015. Accessed: Nov. 08, 2020. [Online]. Available: http://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html1.; [200] S. Görmüş and A. Faruk Yavuz, “A protocol for Internet of Things : IETF 6TİSCH - IEEE Conference Publication,” 2017, Accessed: Nov. 08, 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7960606; [201] A. Triantafyllou, P. Sarigiannidis, and T. D. Lagkas, “Network protocols, schemes, and mechanisms for internet of things (IoT): Features, open challenges, and trends,” Wirel. Commun. Mob. Comput., vol. 2018, 2018, doi:10.1155/2018/5349894. [; [202] HiveMQ Team, “Getting Started with MQTT,” Apr. 24, 2020. https://www.hivemq.com/blog/how-to-get-started-with-mqtt/ (accessed Nov. 08, 2020).; [203] S. Aiyagari et al., “AMQP A General-Purpose Middleware Standard.” Accessed: Nov. 08, 2020. [Online]. Available: https://www.immagic.com/eLibrary/ARCHIVES/TECH/AMQP_US/A080219O. pdf; [204] R. Fielding et al., “Hypertext Transfer Protocol -- HTTP/1.1,” [Online]. Available: https://www.w3.org/Protocols/HTTP/1.1/rfc2616.pdf.; [205] Google Cloud, “Cloud IoT Core .” https://cloud.google.com/iot-core?hl=es (accessed Nov. 13, 2020).; [206] Cloud IoT Core Documentation, “Publishing over the MQTT bridge .” https://cloud.google.com/iot/docs/how-tos/mqtt-bridge?hl=es#iot-core-mqttauth-run-python (accessed Nov. 13, 202; [207] Google Cloud, “Publica mensajes en temas.” https://cloud.google.com/pubsub/docs/publisher?hl=es-419#rest (accessed Nov. 13, 2020).; [208] Google Cloud, “Guías prácticas.” https://cloud.google.com/functions/docs/how-to (accessed Nov. 13, 2020).; [209] Google Cloud, “Usa la interfaz de supervisión de Dataflow.” https://cloud.google.com/data; [210] Google Cloud, “Guías de inicio rápido %7C Documentación de Cloud Bigtable.” https; [211] Google Cloud, “Guía de inicio rápido %7C BigQuery ML .” https://cloud.google.com/bigquery-ml/docs/bigqueryml-web-ui-start?hl=es (accessed Nov. 13, 2020).; [212] Google Cloud, “BigQuery Omni for multi-cloud data analytics.” https://cloud.google.com/blog/p; [213] Google Cloud, “Guía de inicio rápido para usar Data Studio %7C BI Engine .” https://cloud.google.com/bi-engine/docs/getting-started-data-studio?hl=es (accessed Nov. 13, 2020).; [214] Google Cloud, “Le damos la bienvenida a Data Studio - Ayuda de Data Studio.” https://support.google.com/datastudio/answer/6283323?hl=es (accessed Nov. 13, 2020).; [215] Google Cloud, “Documentación de Datalab .” https://cloud.google.com/datalab/docs?hl=es (accessed Nov. 13, 2020).; [216] Google Cloud, “Obtén predicciones en línea %7C AI Platform Prediction.” https://cloud.google.com/ai-platform/prediction/docs/online-predict?hl=es419#python (accessed Nov. 13, 2020).; [217] Microsoft Azure, “Azure IoT: plataforma de Internet de las cosas.” https://azure.microsoft.com/es-es/overview/iot/ (accessed Nov. 18, 2020).; [219] Microsoft Docs, “Introducción a Azure IoT Hub.” https://docs.microsoft.com/es-es/azure/iot-hub/about-iot-hub (accessed Nov. 18, 2020; [221] Microsoft Docs, “Introduction to Azure Stream Analytics.” https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analyticsintroduction (accessed Nov. 18, 2020; [222] Microsoft Docs, “Azure Functions documentation.” https://docs.microsoft.com/en-us/azure/azure-functions/ (accessed Nov. 18, 2020).; [223] Microsoft Docs, “Introduction to Azure Storage - Cloud storage on Azure.” https://docs.microsoft.com/en-us/azure/storage/common/storageintroduction?toc=%2Fazure%2Fstorage%2Fblobs%2Ftoc.json (accessed Nov. 18, 2020; [224] Microsoft Docs, “Azure Logic Apps documentation.” https://docs.microsoft.com/en-us/azure/logic-apps/ (accessed Nov. 18, 2020).; [225] Microsoft Docs, “Introduction to Azure Cosmos DB.” https://docs.microsoft.com/en-us/azure/cosmos-db/introduction (accessed Nov. 18, 2020; [226] Microsoft Docs, “Azure Synapse Analytics (formerly SQL DW) architecture - Azure Synapse Analytics.” https://docs.microsoft.com/en-us/azure/synapseanalytics/sql-data-warehouse/massively-parallel-processing-mpparchitecture (accessed Nov. 18, 2020).; [227] Microsoft Docs, “What is Azure Machine Learning.” https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-isazure-ml (accessed Nov. 18, 2020; [228] IBM Cloud Documentation, “Product architecture.” https://www.ibm.com/support/knowledgecenter/SSQP8H/iot/overview/archite cture.html (accessed Nov. 18, 2020).; [229] IBM Cloud Documentation, “Getting started with Watson IoT Platform Starter.” https://cloud.ibm.com/docs/IoT-starter (accessed Nov. 18, 2020).; [230] IBM Cloud Documentation, “Overview of IBM® Watson IoT Platform Analytics.” https://www.ibm.com/support/knowledgecenter/SSQP8H/iot/analytics/as_ove rview.html (accessed Nov. 18, 2020).; [231] IBM Cloud Documentation, “Iniciación a IBM Cloudant.” https://cloud.ibm.com/docs/Cloudant?topic=Cloudant-getting-started-withcloudant#prereqs (accessed Nov. 18, 2020); [232] IBM Cloud Documentation, “Visión general de las conexiones.” https://cloud.ibm.com/docs/Db2whc?topic=Db2whc-connect_ov (accessed Nov. 18, 2020).; [233] IBM Cloud Documentation, “Acerca de IBM Cloud Object Storage.” https://cloud.ibm.com/docs/cloud-object-storage?topic=cloud-object-storageabout-ibm-cloud-object-storage (accessed Nov. 18, 2020).; [234] IBM Cloud Documentation, “Iniciación a App ID.” https://cloud.ibm.com/docs/appid?topic=appid-getting-started (accessed Nov. 18, 2020).; [235] IBM Cloud Documentation, “Guía de inicio Cómo empezar.” https://cloud.ibm.com/docs/EventStreams?topic=EventStreamsgetting_started (accessed Nov. 18, 2020).; [236] GTI España, “Cómo empezar con Alibaba Cloud.” https://www.gti.es/eses/Cloud-Publica-CSP/Paginas/Alibaba-Cloud.aspx.; [237] Alibaba Cloud Documentation Center, “Elastic Compute Service Product Introduction,” Nov. 2020.; [238] Alibaba Cloud Documentation Center, “What is Simple Application Server? .” https://www.alibabacloud.com/help/docdetail/58612.htm?spm=a2c63.l28256.a3.1.97aa3c2c15D4Hw (accessed Nov. 10, 2020); [239] Alibaba Cloud Documentation Center, “What is E-HPC,” 2018, Sep. . https://www.alibabacloud.com/help/docdetail/57677.htm?spm=a2c63.l28256.a3.1.2f875c6bgYvJe2 (accessed Nov. 10, 2020); [240] Alibaba Cloud, “Batch Compute: Massive Simultaneous Batch Processing.” https://www.alibabacloud.com/products/batchcompute?spm=a3c0i.11270126.5942891490.11.12105f93q2ky6o (accessed Nov. 10, 2020; [241] Alibaba Cloud Documentation Center, “Container Service for Kubernetes Product Introduction,” 2020; [242] Alibaba Cloud Documentation Center, “What is Elastic Container Instance - Product Introduction.” https://www.alibabacloud.com/help/docdetail/89129.htm?spm=a2c63.l28256.a3.1.52bf3b03HHIPaS (accessed Nov. 10, 2020); [243] Alibaba Cloud Documentation Center, “What is Web+? - Product Introduction,” Dec. 19, 2019. https://www.alibabacloud.com/help/docdetail/115432.htm?spm=a3c0i.15177720.9469901820.1.13542cf0RIeGxy (accessed Nov. 10, 2020).; [244] Alibaba Cloud, “Web App Service Web App .” https://www.alibabacloud.com/product/webx?spm=a3c0i.11270126.5942891 490.15.77b75f93uuV1a3 (accessed Nov. 10, 2020); [245] Alibaba Cloud, “Function Compute: Fully Hosted and Serverless Running Environment.” https://www.alibabacloud.com/products/functioncompute?spm=a3c0i.7954052.3156523820.146.14601cbbEWtbC4 (accessed Nov. 12, 2020).; [246] Alibaba Cloud Documentation Center, “Auto Scaling Product Introduction,” 202; [247] Alibaba Cloud Documentation Center, “Virtual Private Cloud Product Introduction,” 2020.; [248] Alibaba Cloud, “VPN Gateway: Connection between a VPC and Your Data Center.” https://www.alibabacloud.com/product/vpngateway?spm=a3c0i.228914.3156523820.147.19727ddfPrElH1 (accessed Nov. 12, 2020).; [249] Alibaba Cloud Documentation Center, “Alibaba Cloud VPN Gateway Product Overview.”; [250] Alibaba Cloud Documentation Center, “Alibaba Cloud 阿里云公共DNS Product Introduction.”; [251] Alibaba Cloud Documentation Center, “Alibaba Cloud 物联网平台 Product Introduction.”; [252] Alibaba Cloud, “IoT Platform: Connect to Devices via Data Transmission.” https://www.alibabacloud.com/product/iot?spm=a3c0i.11270126.315652382 0.dnavproductiot1.66f45f93GZad1X (accessed Nov. 12, 202; [253] Alibaba Cloud, “Link IoT Edge: Empower Your Business with Edge Capabilities - Alibaba Cloud.” https://www.alibabacloud.com/product/linkiotedge?spm=a3c0i.253693.31565 23820.dnavproductiot2.4e5c2a4cA9q8Gy (accessed Nov. 12, 2020).; [254] Alibaba Cloud Documentation Center, “Alibaba Cloud 物联网边缘计算 Product 156 Introduction.” https://static-aliyun-doc.oss-cnhangzhou.aliyuncs.com/download%2Fpdf%2F69086%2FProduct_Introductio n_intl_enUS.pdf?spm=a2c63.l28256.a3.1.73405ad877L02O&file=download%2Fpdf%; [255] Amazon Web Services Documentation, “¿Qué es FreeRTOS?” https://docs.aws.amazon.com/es_es/freertos/latest/userguide/what-isfreertos.html (accessed Nov. 12, 2020).; [256] Amazon Web Services, “FreeRTOS, sistema operativo con funcionamiento en tiempo real para microcontroladores .” https://aws.amazon.com/es/freertos/?nc2=type_a (accessed Nov. 12, 2020); [258] Amazon Web Services, “Información general sobre AWS IoT Core.” https://aws.amazon.com/es/iot-core/?nc2=type_a (accessed Nov. 12, 2020).; [259] Amazon Web Services Documentation, “¿Qué es AWS IoT Analytics? .” https://docs.aws.amazon.com/es_es/iotanalytics/latest/userguide/welcome.ht ml (accessed Nov. 12, 2020; [260] Amazon Web Services, “AWS IoT Analytics - Análisis para dispositivos compatibles con IoT; [261] Amazon Web Services Documentation, “AWS IoT Device Defender.” https://docs.aws.amazon.com/es_es/iot/latest/developerguide/devicedefender.html (accessed Nov. 12, 2; [262] Amazon Web Services, “AWS IoT Device Defender.” https://aws.amazon.com/es/iot-device-defender/?nc2=type_a (accessed Nov. 12, 2020); [263] Amazon Web Services Documentation, “Administración de dispositivos con AWS IoT.” https://docs.aws.amazon.com/es_es/iot/latest/developerguide/iotthing-management.html (accessed Nov. 12, 2020).; [264] Amazon Web Services, “AWS IoT Device Management .” https://aws.amazon.com/es/iot-device-management/?nc2=type_a (accessed Nov. 12, 2020; [265] Amazon Web Services Documentation, “¿Qué es AWS IoT Events?” https://docs.aws.amazon.com/es_es/iotevents/latest/developerguide/what-isiotevents.html (accessed Nov. 12, 202; [266] Amazon Web Services, “Detecte y responda a eventos de IoT.” https://aws.amazon.com/es/iot-events/?nc2=type_a (accessed Nov. 12, 2020; [267] Amazon Web Services Documentation, “¿Qué es AWS IoT Greengrass? .” https://docs.aws.amazon.com/es_es/greengrass/latest/developerguide/whatis-gg.html (accessed Nov. 12, 2020; [268] Amazon Web Services, “AWS IoT Greengrass.” https://aws.amazon.com/es/greengrass/?nc2=type_a (accessed Nov. 12, 2020; [269] Amazon Web Services Documentation, “¿Qué es AWS IoT SiteWise?” https://docs.aws.amazon.com/es_es/iot-sitewise/latest/userguide/what-issitewise.html (accessed Nov. 12, 2020).; [270] Amazon Web Services, “AWS IoT SiteWise.” https://aws.amazon.com/es/iotsitewise/?nc2=type_a (accessed Nov. 12, 20; [271] Oracle Cloud Infrastructure Documentation, “Overview of API Gateway.” https://docs.cloud.oracle.com/enus/iaas/Content/APIGateway/Concepts/apigatewayoverview.htm; [272] Oracle Cloud Infrastructure Documentation, “Overview of Archive Storage.” https://docs.cloud.oracle.com/enus/iaas/Content/Archive/Concepts/archivestorageoverview.htm (accessed Nov. 12, 2020; [273] Oracle Cloud Infrastructure Documentation, “Overview of Data Transfer Service.” https://docs.cloud.oracle.com/enus/iaas/Content/DataTransfer/Concepts/overview.htm (accessed Nov. 12, 2020); [274] Oracle Cloud Infrastructure Documentation, “Oracle Database Cloud.” https://docs.cloud.oracle.com/enus/iaas/Content/DataTransfer/Concepts/overview.h; [275] Oracle Cloud Infrastructure Documentation, “Visión general del servicio DNS.” https://docs.cloud.oracle.com/esww/iaas/Content/DNS/Concepts/dnszonemanagement.htm (accessed Nov. 12, 2020). [276] Oracle; [276] Oracle Cloud Infrastructure Documentation, “Overview of Resource Manager.” https://docs.cloud.oracle.com/enus/iaas/Content/ResourceManager/Concepts/resourcemanager.htm (accessed Nov. 12, 202; [277] Oracle Cloud Infrastructure Documentation, “Oracle Internet of Things Cloud Service.” https://docs.oracle.com/en/cloud/paas/iot-cloud/ (accessed Nov. 12, 2020)B; [278] Universidad Computense de Madrid, “Niveles de madurez tecnológica – Technology Readiness Levels (TRLs),” Feb. 20, 2016. https://oficinaeuropea.ucm.es/noticias/item/141-niveles-de-madureztecnologica-technology-readiness-levels-trls (accessed Nov. 12, 2020; http://hdl.handle.net/20.500.12749/13601; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Availability: https://hdl.handle.net/20.500.12749/13601
-
2
Authors: et al.
Contributors: et al.
Subject Terms: Redes neuronales convolucionales, Termodinámica, Diseño de prótesis, Diseño de prototipos, Algoritmos, Generadores eléctricos, Tendencias tecnológicas, Bioingeniería, Bioingeniería -- Congresos, conferencias, etc. -- Memorias, Energía -- Congresos, Sistemas de control inteligente -- Congresos, Procesamiento de señales -- Congresos, Automatización -- Congresos, etc. -- Memoria, Desarrollo de prototipos -- Congresos, Ingeniería biomédica -- Congresos, Redes eléctricas -- Congresos, Tecnologías de la información y de la comunicación -- Congresos, Procesamiento digital de imágenes -- Congresos, Redes neuronales (Computadores) -- Congresos, Nanotecnología -- Congresos, Telecomunicaciones -- Congresos, Convolutional Neural Networks, Thermodynamics, Prosthesis design
File Description: pdf; application/pdf
Relation: L. Coffey, P. Gallager, O. Horgan, D. Desmond, and M. MacLachlan. “Psychosocial adjustment to diabetes‐related lower limb amputation”. Oxford, Diabetic Medicine, 2009, pp.1063–1067.; DANE. “Censo de Población y Viviendas 2018”. Bogotá, D.C, Departamento Administrativo Nacional de Estadística, 2018.; D. Silverthorn, “Fisiología humana: un enfoque integrado” , 4ta ed, reimp- Bogotá - Panamericána, 2009.; K.J. Zuo, and J. L. Olson. “The evolution of functional hand replacement”: From iron prostheses to hand transplantation. Plastic Surgery, 22(1), 44-51, 2014.; D. Foord. “CHANGES IN TECHNOLOGIES AND MEANINGS OF UPPER LIMB PROSTHETICS: PART I-FROM ANCIENT EGYPT TO EARLY MODERN EUROPE”. In MEC Symposium Conference, July 2020.; K. Ashmore, S. Cialdella, A. Giuffrida, E. Kon, M. Marcacci, and B. Di Matteo. “ArtiFacts: Gottfried “Götz” von Berlichingen—The “Iron Hand” of the Renaissance”. Clinical Orthopaedics and Related Research®, 477(9), 2002-2004, 2019.; K. Moore, and A. Dalley. “Clinically oriented anatomy”. 7ª ed, UK, Wolters Klawer, 2013.; Àngels. (2017, Jan 16). “Cómo se llaman los huesos de la mano” [Online]. Available at:https://www.mundodeportivo.com/uncomo/educacion/articulo/como-se-llaman-los-huesos-de-la-mano-40009.html.; B. Maat, G. Smit, D. Plettenburg, and P. Breedveld. “Passive prosthetic hands and tools: A literature review”. Prosthetics and orthotics international, 42(1), 66-74, 2018.; A. Chadwell, L. Kenney, S. Thies, A. Galpin, and J. Head. “The reality of myoelectric prostheses: understanding what makes these devices difficult for some users to control”. Frontiers in neurorobotics, 10, 7, 2016.; T. Fujimaki et al., “Prevalence of floating toe and its relationship with static postural stability in children: The Yamanashi adjunct study of the Japan Environment and Children’s Study (JECS-Y),” PLoS One, vol. 16, no. 3 March, pp. 1–8, 2021, doi:10.1371/journal.pone.0246010.; L. A. Luengas-C, D. C. Toloza, and L. F. Wanumen, “Utilización de la Teoría de la Información para evaluar el comportamiento de la estabilidad estática en amputaciones transtibiales,” RISTI - Rev. Ibérica Sist. e Tecnol. Informação, vol. 40, no. 12, pp. 15–30, 2020, doi:10.17013/risti.40.15–30.; B. Olsen et al., “The Relationship Between Hip Strength and Postural Stability in Collegiate Athletes Who Participate in Lower Extremity Dominant Sports,” Int. J. Sports Phys. Ther., vol. 16, no. 1, pp. 64–71, 2021, doi:10.26603/001c.18817.; L. A. Luengas C. and D. C. Toloza, Análisis de estabilidad en amputados transtibiales unilaterales. Bogota: UD Editorial, 2019.; M. F. Peydro de Moya, J. M. Baydal, and M. J. Vivas, “Evaluación y rehabilitación del equilibrio mediante posturografía,” Rehabilitación, vol. 39, no. 6, pp. 315–323, 2005.; L. A. Luengas-C, J. López, and G. Sánchez Prieto, “Comportamiento de rangos articulares con alineación en amputados transtibiales,” Visión Electrónica Más que un estado sólido, vol. 1, no. 1, pp. 48–52, 2018.; A. Ruhe, R. Fejer, and B. Walker, “The test-retest reliability of centre of pressure measures in bipedal static task conditions - A systematic review of the literature,” Gait and Posture, vol. 32, no. 4. pp. 436–445, Oct. 2010, doi:10.1016/j.gaitpost.2010.09.012.; P. Schubert, M. Kirchner, S. Dietmar, and C. T. Haas, “About the structure of posturography: Sampling duration, parametrization, focus of attention (part I),” J. Biomed. Sci. Eng., vol. 5, pp. 496–507, 2012, doi: http://dx.doi.org/10.4236/jbise.2012.59062.; F. Martínez-Solís et al., “Algorithm to estimate the knee angle in normal gait: trajectory generation approach to intelligent transfemoral prosthesis,” Rev. Mex. Ing. Biomédica, vol. 37, no. 3, pp. 221–233, Sep. 2016, doi:10.17488/RMIB.37.3.7.; S. A. Ahmadi et al., “Towards computerized diagnosis of neurological stance disorders: data mining and machine learning of posturography and sway,” J. Neurol., vol. 266, no. s1, pp. 108–117, 2019, doi:10.1007/s00415-019-09458-y.; L. A. Luengas-C, “Computational Method to Verify Static Alignment of Transtibial Prosthesis,” Biomed. J. Sci. Tech. Res., vol. 31, no. 2, Oct. 2020, doi:10.26717/bjstr.2020.31.005074.; J. R. Chagdes, S. Rietdyk, M. H. Jeffrey, N. Z. Howard, and A. Raman, “Dynamic stability of a human standing on a balance board,” J. Biomech., vol. 46, no. 15, 2013, doi:10.1016/j.jbiomech.2013.08.012.; L. A. Luengas-C. and D. C. Toloza, “Frequency and Spectral Power Density Analysis of the Stability of Amputees Subjects,” TecnoLógicas, vol. 23, no. 48, pp. 1–16, 2020, doi: https://doi.org/10.22430/22565337.1453.; L. Verdichio, “Equilibrio y dominancia,” Universidad FASTA, 2016.; J. C. Segovia Martínez and J. C. Legido Arce, “Valores podoestabilométricos en la población deportiva infantil,” UNIVERSIDAD COMPLUTENSE DE MADRID, 2009.; B. Ristevski and M. Chen, “Big Data Analytics in Medicine and Healthcare,” J. Integr. Bioinform., vol. 15, no. 3, pp. 1–5, 2018, doi:10.1515/jib-2017-0030.; P. Schubert and M. Kirchner, “Ellipse area calculations and their applicability in posturography,” Gait Posture, vol. 39, no. 1, pp. 518–522, 2014, doi:10.1016/j.gaitpost.2013.09.001.; M. Duarte and S. M. Freitas, “Revision of posturography based on force plate for balance evaluation,” Rev. Bras. Fisioter., vol. 14, no. 3, pp. 183–192, 2010, doi: S1413-35552010000300003 [pii].; M. Duarte, “Comments on ‘ellipse area calculations and their applicability in posturography’ (schubert and kirchner, vol.39, pages 518-522, 2014),” Gait Posture, vol. 41, no. 1, pp. 44–45, 2015, doi:10.1016/j.gaitpost.2014.08.008.; M. Gómez, J. Serna, and L. Vélez, “Diagnosis of bearing with mechanical vibrations and virtual instruments,” Visión Electrónica Más que un estado sólido, vol. 8, no. 2, pp. 107–113, 2014.; Novel.de, “The pedar® system,” Novel GmbH, 2019. http://www.novel.de/novelcontent/pedar (accessed May 11, 2014).; D. A. Winter, Biomechanics and motor control of human movement, 4th ed. New Jersey: John Wiley & sons, Inc, 2009.; A. Bottaro, M. Casadio, P. G. Morasso, and V. Sanguineti, “Body sway during quiet standing: Is it the residual chattering of an intermittent stabilization process?,” in Human Movement Science, 2005, vol. 24, no. 4, pp. 588–615, doi:10.1016/j.humov.2005.07.006.; R. T. Disler et al., “Factors impairing the postural balance in COPD patients and its influence upon activities of daily living,” Eur. Respir. J., vol. 15, no. 1, 2019.; Bomberos Colombia. (2016). Guía para Certificar Equipos de Búsqueda y Rescate Urbano en los Cuerpos de Bomberos de Colombia. Disponible en: https://bomberos.mininterior.gov.co/sites/default/files/guia_final_bomberos_colombia_2017_.pdf.; Brigham and Women’s Hospital. (2019). Signos vitales (temperatura corporal, pulso, frecuencia respiratoria y presión arterial). Disponible en: https://healthlibrary.brighamandwomens.org/spanish/diseasesconditions/adult/NonTraumatic/85,P03963.; Catalogo de la Salud. (s.f). Monitoreo de signos vitales. Disponible en: https://www.catalogodelasalud.com/ficha-producto/Monitores-de-pacientes+102363.; CNN. (2012). Un dispositivo inalámbrico para monitorear signos vitales. Disponible en: https://cnnespanol.cnn.com/2012/05/25/un-dispositivo-inalambrico-para-monitorear-signos-vitales/.; OMS. (s.f). Terremotos. Disponible en: https://www.who.int/hac/techguidance/ems/earthquakes/es/.; OMS. (2017). 10 datos sobre la seguridad vial en el mundo – Organización Mundial de la Salud (OMS). Disponible en: https://www.who.int/features/factfiles/roadsafety/es/.; Ramírez López, L. J., Marín López, A. F., & Cifuentes Sanabria, Y. P. (2015). Aplicación de la biotelemetría para tres signos vitales. Ciencia Y Poder Aéreo, 10(1), 179-186. https://doi.org/10.18667/cienciaypoderaereo.428.; Rosenberg D. (2009). ICONIX Process for Embedded Systems - A roadmap for embedded system development using SysML. Tomado de: https://community.sparxsystems.com/white-papers/616-88iconix-process-for-embedded-systems-a-roadmap-for-embedded-system-development-using-sysml.; Salazar-Arbelaez, Gabriel. (2018). Terremotos y salud: lecciones y recomendaciones. Salud Pública de México, 60(Supl. 1), 6-15. https://doi.org/10.21149/9445.; SUMMA 112. (s.f). Módulo 7 Actuación ante Accidentes con Múltiples Víctimas y Catástrofes. Incidentes NBQR. Rescate sanitario. Manuel de enfermería. Disponible en: http://www.madrid.org/cs/Satellite?blobcol=urldata&blobheader=application%2Fpdf&blobheadername1=Content-Disposition&blobheadervalue1=filename%3DModulo+7.pdf&blobkey=id&blobtable=MungoBlobs&blobwhere=1352868957600&ssbinary=true.; Tecnológico de Monterrey. (2011). Sistema para la visualización de signos vitales con dispositivos móviles utilizando tecnología Bluetooth. Disponible en: https://repositorio.tec.mx/bitstream/handle/11285/632321/33068001111800.pdf?sequence=1&isAllowed=y.; UdeA. (2016). Monitor de signos vitales vestible. UdeA – Universidad de Antioquía, Medellín, Colombia. Disponible en: http://www.udea.edu.co/wps/portal/udea/web/inicio/extension/portafoliotecnologico/articulos/Monitor_de_signos_vitales_vestible.; Udistrital. (2018). Monitoreo remoto de signos corporales y transmisión de datos y alertas a una aplicación instalada en un smartphone. Udistrital – Universidad Distrital Francisco José de Caldas. Disponible en: https://repository.udistrital.edu.co/bitstream/handle/11349/13383/SarmientoG%C3%B3mezOscar2018.pdf?sequence=2&isAllowed=y.; Volcano Discovery. (2021). Informe de terremotos en todo el mundo por enero 2021. Disponible en: https://www.volcanodiscovery.com/es/earthquakes/monthly/news/118160/Informe-de-terremotos-en-todo-el-mundo-por-enero-2021.html.; A. F. Calvo Salcedo, A. Bejarano Martínez, y A. Castillo González, “Diseño prototipo de una red de sensores inalámbricos", Visión Electrónica, vol. 12, no. 1, pp. 43-50, 2018. https://doi.org/10.14483/22484728.13405.; E. Y. Rodríguez, L. F. Pedraza Martínez, y D. A. López Sarmiento, “Desarrollo y evaluación de un sistema de comunicación remota para el monitoreo de una máquina sopladora de botellas", Visión Electrónica, vol. 5, no. 1, pp. 89-102, 2011. https://doi.org/10.14483/22484728.3517.; T. Salamanca, “Prototipo para monitorización de signos vitales en espacios confinados", Visión Electrónica, vol. 12, no. 1, pp. 83-88, 2018. https://doi.org/10.14483/22484728.13401 [18] Volcano Discovery. (2021). Informe de terremotos en todo el mundo por enero 2021. Disponible en: https://www.volcanodiscovery.com/es/earthquakes/monthly/news/118160/Informe-de-terremotos-en-todo-el-mundo-por-enero-2021.html.; W. Enríquez, P. Nazate, y O. Marcillo, “Prototipo DAS basado en FPGA de 12 canales para monitoreo geodinámico", Visión Electrónica, vol. 12, no. 1, pp. 73-82, 2018. https://doi.org/10.14483/22484728.13782.; Y. Baquero, Z. Alezones Campos, y H. Borrero Guerrero, “Robot móvil controlado por comandos de voz LPC-DTW”, Visión Electrónica, vol. 5, no. 1, pp. 15-25, 2011. https://doi.org/10.14483/22484728.3524.; Cardona, O. (2007). La gestión del riesgo colectivo. Un marco conceptual que encuentra sustento en una ciudad laboratorio. Red de Estudios Sociales en Prevención de Desastres en América Latina.; Cardona, O. D., García, A. C., Mattingly, S., Trujillo, E. G. C., & Vega, D. F. P. (2003). Plan de emergencias de Manizales. Alcaldía de Manizales–Oficina Municipal para la Prevención y Atención de Desastres-OMPAD. Manizales.; Castro, F.D. (2008). Metodología de projeto centrada na casa da qualidade. Tesis de maestría, universidade federal rio grande do sul, Porto Alegre, Brasil.; Chowdhury, T. J., Elkin, C., Devabhaktuni, V., Rawat, D. B., & Oluoch, J. (2016). Advances on localization techniques for wireless sensor networks: A survey. Computer Networks, 110, 284-305.; Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., & Mankodiya, K. (2017). Towards fog-driven IoT eHealth: promises and challenges of IoT in medicine and healthcare. Future Generation Computer Systems.; García, A. M., & Castaño Dávila, A. C. (2013). SIG de deslizamientos para el departamento de Caldas.; Keipi, K., Mora-Castro, S., & Bastidas, P. (2005). Gestión de riesgo de amenazas naturales en proyectos de desarrollo: Lista de preguntas de verificación (" Checklist"). Inter-American Development Bank.; Kim, T., Ramos, C., & Mohammed, S. (2017). Smart City and IoT. Elsevier.; Lavell, A. (2001). Sobre la gestión del riesgo: apuntes hacia una definición. Biblioteca Virtual en Salud de Desastres-OPS. Consultado el, 4.; Liu, L., Guo, C., Li, J., Xu, H., Zhang, J., & Wang, B. (2016). Simultaneous life detection and localization using a wideband chaotic signal with an embedded tone. Sensors, 16(11), 1866.; Lomotey, R. K., Pry, J., & Sriramoju, S. (2017). Wearable IoT data stream traceability in a distributed health information system. Pervasive and Mobile Computing.; Morral, G., & Bianchi, P. (2016). Distributed on-line multidimensional scaling for self-localization in wireless sensor networks. Signal Processing, 120, 88-98.; Novák, D., Švecová, M., & Kocur, D. (2017). Multiple Person Localization Based on Their Vital Sign Detection Using UWB Sensor. In Microwave Systems and Applications. InTech.; Pahl, G., & Beitz, W. (2013). Engineering design: a systematic approach. Springer Science & Business Media.; Rising, L., & Janoff, N. S. (2000). The Scrum software development process for small teams. IEEE software, (4), 26-32.; Schwaber, K., & Sutherland, J. (2013). The definitive guide to Scrum: The rules of the game. online], Scrum. org, http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf. [Visitada en agosto de 2015].; Shalloway A, Bain S, Pugh K and Kolsky A. 2011. Essential Skills for the agile developer. A guide to better programming and desing. Ed. Addison-Wesley.; UNGRD (2017). Boletín de prensa 131, Unidad atención de riesgos y desastres. Tras avalancha en manizales, continúan los trabajos de recuperación.; J. Hartvigsen et al., “What low back pain is and why we need to pay attention,” Lancet, vol. 391, no. 10137, pp. 2356–2367, 2018, doi:10.1016/S0140-6736(18)30480-X.; A. Cieza, K. Causey, K. Kamenov, S. W. Hanson, S. Chatterji, and T. Vos, “Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019,” Lancet, vol. 396, no. 10267, pp. 2006–2017, 2020, doi:10.1016/S0140-6736(20)32340-0.; A. M. Briggs et al., “Musculoskeletal Health Conditions Represent a Global Threat to Healthy Aging: A Report for the 2015 World Health Organization World Report on Ageing and Health,” Gerontologist, vol. 56, pp. S243–S255, 2016, doi:10.1093/geront/gnw002.; (OMS) Organizacion Mundial de la Salud, “Rehabilitación,” 2020. https://www.who.int/es/news-room/fact-sheets/detail/rehabilitation.; (OMS) Organizacion Mundial de la Salud, “Rehabilitation 2030 Initiative.” https://www.who.int/initiatives/rehabilitation-2030.; F. A. Abdulla, S. Alsaadi, M. I. R. Sadat-Ali, F. Alkhamis, H. Alkawaja, and S. Lo, “Effects of pulsed low-frequency magnetic field therapy on pain intensity in patients with musculoskeletal chronic low back pain: Study protocol for a randomised double-blind placebo-controlled trial,” BMJ Open, vol. 9, no. 6, pp. 1–9, 2019, doi:10.1136/bmjopen-2018-024650.; H. Hu et al., “Promising application of Pulsed Electromagnetic Fields (PEMFs) in musculoskeletal disorders,” Biomed. Pharmacother., vol. 131, p. 110767, 2020, doi:10.1016/j.biopha.2020.110767.; J. D. Z. Guillot, “La magnetoterapia y su aplicación en la medicina,” Rev. Cuba. Med. Gen. Integr., vol. 18, no. 1, pp. 60–72, 2002.; (OMS) Organización Mundial de la Salud, “Campos electromagnéticos (CEM).” https://www.who.int/peh-emf/about/WhatisEMF/es/ (accessed Apr. 10, 2021).; E. Alonso Fustel, R. Garcia Vázquez, and C. Onaindia Olalde, “Campos electromagnéticos y efectos en salud.” Bizkaia, Vasco, 2012.; M. O. Mattsson and M. Simkó, “Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz,” Medical Devices: Evidence and Research, vol. 12. Dove Medical Press Ltd, pp. 347–368, 2019, doi:10.2147/MDER.S214152.; N. Bachl, G. Ruoff, B. Wessner, and H. Tschan, “Electromagnetic Interventions in Musculoskeletal Disorders,” Clinics in Sports Medicine, vol. 27, no. 1. pp. 87–105, Jan. 2008, doi:10.1016/j.csm.2007.10.006.; T. Paolucci, L. Pezzi, A. M. Centra, N. Giannandrea, R. G. Bellomo, and R. Saggini, “Electromagnetic field therapy: A rehabilitative perspective in the management of musculoskeletal pain – A systematic review,” J. Pain Res., vol. 13, pp. 1385–1400, 2020, doi:10.2147/JPR.S231778.; J. Multanen, A. Häkkinen, P. Heikkinen, H. Kautiainen, S. Mustalampi, and J. Ylinen, “Pulsed electromagnetic field therapy in the treatment of pain and other symptoms in fibromyalgia: A randomized controlled study,” Bioelectromagnetics, vol. 39, no. 5, pp. 405–413, 2018, doi:10.1002/bem.22127.; H. Mohajerani, F. Tabeie, F. Vossoughi, E. Jafari, and M. Assadi, “Effect of pulsed electromagnetic field on mandibular fracture healing: A randomized control trial, (RCT),” J. Stomatol. Oral Maxillofac. Surg., vol. 120, no. 5, pp. 390–396, Nov. 2019, doi:10.1016/j.jormas.2019.02.022.; A. M. Elshiwi, H. A. Hamada, D. Mosaad, I. M. A. Ragab, G. M. Koura, and S. M. Alrawaili, “Effect of pulsed electromagnetic field on nonspecific low back pain patients: a randomized controlled trial,” Brazilian J. Phys. Ther., vol. 23, no. 3, pp. 244–249, 2019, doi:10.1016/j.bjpt.2018.08.004.; H. L. Casalechi et al., “Acute effects of photobiomodulation therapy and magnetic field on functional mobility in stroke survivors: a randomized, sham-controlled, triple-blind, crossover, clinical trial,” Lasers Med. Sci., vol. 35, no. 6, pp. 1253–1262, 2020, doi:10.1007/s10103-019-02898-y.; L. Kopacz, Z. Ciosek, H. Gronwald, P. Skomro, R. Ardan, and D. Lietz-Kijak, “Comparative Analysis of the Influence of Selected Physical Factors on the Level of Pain in the Course of Temporomandibular Joint Disorders,” Pain Res. Manag., vol. 2020, 2020, doi:10.1155/2020/1036306.; E. Hattapoğlu, İ. Batmaz, B. Dilek, M. Karakoç, S. Em, and R. Çevik, “Efficiency of pulsed electromagnetic fields on pain, disability, anxiety, depression, and quality of life in patients with cervical disc herniation: A randomized controlled study,” Turkish J. Med. Sci., vol. 49, no. 4, pp. 1095–1101, 2019, doi:10.3906/sag-1901-65.; G. L. Bagnato, G. Miceli, N. Marino, D. Sciortino, and G. F. Bagnato, “Pulsed electromagnetic fields in knee osteoarthritis: A double blind, placebo-controlled, randomized clinical trial,” Rheumatol. (United Kingdom), vol. 55, no. 4, pp. 755–762, 2016, doi:10.1093/rheumatology/kev426.; L. Chen et al., “Effects of pulsed electromagnetic field therapy on pain, stiffness and physical function in patients with knee osteoarthritis: A systematic review and meta-analysis of randomized controlled trials,” J. Rehabil. Med., vol. 51, no. 11, pp. 821–827, 2019, doi:10.2340/16501977-2613.; T. Paolucci et al., “Efficacy of extremely low-frequency magnetic field in fibromyalgia pain: A pilot study,” J. Rehabil. Res. Dev., vol. 53, no. 6, pp. 1023–1034, 2016, doi:10.1682/JRRD.2015.04.0061.; A. El Zohiery, Y. El Miedany, T. Elserry, O. El Shazly, and S. Galal, “Impact of electromagnetic field exposure on pain, severity, functional status and depression in patients with primary fibromyalgia syndrome,” Egypt. Rheumatol., no. xxxx, pp. 0–4, 2020, doi:10.1016/j.ejr.2020.10.001.; C. L. Ross, I. Syed, T. L. Smith, and B. S. Harrison, “The regenerative effects of electromagnetic field on spinal cord injury,” Electromagn. Biol. Med., vol. 36, no. 1, pp. 74–87, 2017, doi:10.3109/15368378.2016.1160408.; T. Pesqueira, R. Costa-Almeida, and M. E. Gomes, “Magnetotherapy: The quest for tendon regeneration,” J. Cell. Physiol., vol. 233, no. 10, pp. 6395–6405, 2018, doi:10.1002/jcp.26637.; G. Vicenti et al., “Biophysical stimulation of the knee with PEMFs: from bench to bedside,” J. Biol. Regul. Homeost. Agents, vol. 32, no. 6, pp. 23–28, 2018.; K. Iwasa and A. H. Reddi, “Pulsed Electromagnetic Fields and Tissue Engineering of the Joints,” Tissue Engineering - Part B: Reviews, vol. 24, no. 2. Mary Ann Liebert Inc., pp. 144–154, Apr. 01, 2018, doi:10.1089/ten.teb.2017.0294.; A. Madroñero De La Cal, “Importancia de los aplicadores de campo magnético en los tratamientos electroterapéuticos en las personas mayores,” Rev. Esp. Geriatr. Gerontol., vol. 38, no. 6, pp. 355–368, 2003, doi:10.1016/s0211-139x(03)74917-8.; T. Wang et al., “Pulsed electromagnetic fields: promising treatment for osteoporosis,” Osteoporos. Int., vol. 30, no. 2, pp. 267–276, 2019, doi:10.1007/s00198-018-04822-6.; X. sheng Qiu, X. gang Li, and Y. xin Chen, “Pulsed electromagnetic field (PEMF): A potential adjuvant treatment for infected nonunion,” Med. Hypotheses, vol. 136, Mar. 2020, doi:10.1016/j.mehy.2019.109506.; J. Taradaj, M. Ozon, R. Dymarek, B. Bolach, K. Walewicz, and J. Rosinczuk, “Impact of selected magnetic fields on the therapeutic effect in patients with lumbar discopathy: A prospective, randomized, single-blinded, and placebo-controlled clinical trial,” Adv. Clin. Exp. Med., vol. 27, no. 5, pp. 649–666, 2018, doi:10.17219/acem/68690.; J. Zwolińska, M. Gąsior, E. Śniezek, and A. Kwolek, “The use of magnetic fields in treatment of patients with rheumatoid arthritis. Review of the literature,” Reumatologia, vol. 54, no. 4, pp. 201–206, 2016, doi:10.5114/reum.2016.62475.; Z. Wu et al., “Efficacy and safety of the pulsed electromagnetic field in osteoarthritis: A meta-analysis,” BMJ Open, vol. 8, no. 12, Dec. 2018, doi:10.1136/bmjopen-2018-022879.; L. Mori, “EFICACIA DE LA MAGNETOTERAPIA EN LA DISMINUCION DEL DOLOR EN ADULTOS MAYORES CON OSTEOARTROSIS CENTRO DE MEDICINA COMPLEMENTARIA ESSALUD TRUJILLO,” Tesis - Universidad Cesar Vallejo - Trujillo Perú, vol. 0, no. 12. p. Pág. 89-95-95, 2019, doi:10.5354/0717-8883.1986.23781.; K. Marycz, K. Kornicka, and M. Röcken, “Static Magnetic Field (SMF) as a Regulator of Stem Cell Fate – New Perspectives in Regenerative Medicine Arising from an Underestimated Tool,” Stem Cell Rev. Reports, vol. 14, no. 6, pp. 785–792, 2018, doi:10.1007/s12015-018-9847-4.; N. Kamei, N. Adachi, and M. Ochi, “Magnetic cell delivery for the regeneration of musculoskeletal and neural tissues,” Regen. Ther., vol. 9, pp. 116–119, 2018, doi:10.1016/j.reth.2018.10.001.; A. Catalano, S. Loddo, F. Bellone, C. Pecora, A. Lasco, and N. Morabito, “Pulsed electromagnetic fields modulate bone metabolism via RANKL/OPG and Wnt/β-catenin pathways in women with postmenopausal osteoporosis: A pilot study,” Bone, vol. 116. pp. 42–46, 2018, doi:10.1016/j.bone.2018.07.010.; H. Okano, H. Ishiwatari, A. Fujimura, and K. Watanuki, “The physiological influence of alternating current electromagnetic field exposure on human subjects,” 2017 IEEE Int. Conf. Syst. Man, Cybern. SMC 2017, vol. 2017-Janua, pp. 2442–2447, 2017, doi:10.1109/SMC.2017.8122989.; A. Maziarz et al., “How electromagnetic fields can influence adult stem cells: Positive and negative impacts,” Stem Cell Res. Ther., vol. 7, no. 1, 2016, doi:10.1186/s13287-016-0312-5.; E. I. Waldorff, N. Zhang, and J. T. Ryaby, “Pulsed electromagnetic field applications: A corporate perspective,” J. Orthop. Transl., vol. 9, pp. 60–68, 2017, doi:10.1016/j.jot.2017.02.006.; A. M. Nayback-Beebe, L. H. Yoder, B. J. Goff, S. Arzola, and C. Weidlich, “The effect of pulsed electromagnetic frequency therapy on health-related quality of life in military service members with chronic low back pain,” Nurs. Outlook, vol. 65, no. 5, pp. S26–S33, 2017, doi:10.1016/j.outlook.2017.07.012.; T. Klüter et al., “Electromagnetic transduction therapy and shockwave therapy in 86 patients with rotator cuff tendinopathy: A prospective randomized controlled trial,” Electromagn. Biol. Med., vol. 37, no. 4, pp. 175–183, 2018, doi:10.1080/15368378.2018.1499030.; J. Pasek, T. Pasek, K. Sieroń-Stołtny, G. Cieślar, and A. Sieroń, “Electromagnetic fields in medicine – The state of art,” Electromagn. Biol. Med., vol. 35, no. 2, pp. 170–175, Apr. 2016, doi:10.3109/15368378.2015.1048549.; A. Hochsprung, S. Escudero-Uribe, A. J. Ibáñez-Vera, and G. Izquierdo-Ayuso, “Effectiveness of monopolar dielectric transmission of pulsed electromagnetic fields for multiple sclerosis–related pain: A pilot study,” Neurologia, 2018, doi:10.1016/j.nrl.2018.03.003.; A. B. Camacho, Y. A. P. Borrego, M. J. R. Matas, V. S. León, L. M. Mateos, and A. Oliviero, “Protocolo terapéutico del dolor con técnicas de estimulación no invasiva,” Med., vol. 12, no. 75, pp. 4451–4454, 2019, doi:10.1016/j.med.2019.03.026.; J. Arabloo et al., “Health technology assessment of magnet therapy for relieving pain,” Med. J. Islam. Repub. Iran, vol. 31, no. 1, pp. 184–188, 2017, doi:10.18869/mjiri.31.31.; J. Chudorlinski and L. Ksiazek, “Medical device for physical therapy with a magnetic field and light,” 2019 Appl. Electromagn. Mod. Eng. Med. PTZE 2019, pp. 22–25, 2019, doi:10.23919/PTZE.2019.8781742.; J. Chudorlinski and L. Ksiazek, “Signals for magnetic field therapy and a method for their preparation,” 2018 Appl. Electromagn. Mod. Tech. Med. PTZE 2018, pp. 29–32, 2018, doi:10.1109/PTZE.2018.8503080.; A. Krawczyk, P. Murawski, and E. Korzeniewska, “New Magnetotherapeutical Device,” pp. 2–5, 2017.; Samuel K Au, Jeff Weber, and Hugh Herr. Biomechanical design of a powered ankle-foot prosthesis. In Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on, pages 298–303. IEEE, 2007.; Rouse, Elliott Jay; Mooney, Luke M.; Martinez-Villalpando, Ernesto C.; Herr, Hugh M. "Clutchable Series-Elastic Actuator: Design of a Robotic Knee Prosthesis for Minimum Energy Consumption". 13th International Conference on Rehabilitation Robotics, ICORR 2013.; Samuel K Au and Hugh M Herr. Powered ankle-foot prosthesis. IEEE Robotics & Automation Magazine, 15(3), 2008.; Dong, D., Ge, W., Liu, S., Xia, F., & Sun, Y. (2017). Design and optimization of a powered ankle-foot prosthesis using a geared five-bar spring mechanism. International Journal of Advanced Robotic Systems, 14(3), 1729881417704545.; Andrew K LaPre, Ryan D Wedge, Brian R Umberger, and Frank C Sup. Preliminary study of a robotic foot-ankle prosthesis with active alignment. In Rehabilitation Robotics (ICORR), 2017 International Conference on, pages 1299–1304. IEEE, 2017.; Maurice LeBlanc. Give hope-give a hand. The LN-4 Prosthetic Hand, 2014, 2008.; Dianbiao Dong, Wenjie Ge, Shumin Liu, Fan Xia, and Yuanxi Sun. Design and optimization of a powered ankle-foot prosthesis using a geared five-bar spring mechanism. International Journal of Advanced Robotic Systems, 14(3):1729881417704545, 2017.; Samuel K Au, Jeff Weber, and Hugh Herr. Powered ankle–foot prosthesis improves walking metabolic economy. IEEE Transactions on Robotics, 25(1):51–66, 2009.; Arthur D Kuo. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective. Human movement science, 26(4):617–656, 2007.; Mary M Rodgers. Dynamic biomechanics of the normal foot and ankle during walking and running. Physical therapy, 68(12):1822–1830, 1988.; Tan Thang Nguyen, Thanh-Phong Dao, and Shyh-Chour Huang. Bio- mechanical design of a novel six dof compliant prosthetic ankle-foot 2.0 for rehabilitation of amputee. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pages V05AT08A013–V05AT08A013. Ameri- can Society of Mechanical Engineers, 2017.; Joana Alves, Eurico Seabra, César Ferreira, Cristina P Santos, and Luís Paulo Reis. Design and dynamic modelling of an ankle-foot prosthesis for humanoid robot. In Autonomous Robot Systems and Competitions (ICARSC), 2017 IEEE International Conference on, pages 128–133. IEEE, 2017.; Lei Ren, Richard K Jones, and David Howard. Predictive modelling of human walking over a complete gait cycle. Journal of biomechanics, 40(7):1567–1574, 2007.; SK Au and H Herr. Initial experimental study on dynamic interaction between an amputee and a powered ankle-foot prosthesis. In Workshop on dynamic walking: Mechanics and control of human and robot locomotion, page 1, 2006.; Samuel K Au, Hugh Herr, Jeff Weber, and Ernesto C Martinez- Villalpando. Powered ankle-foot prosthesis for the improvement of amputee ambulation. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, pages 3020–3026. IEEE, 2007.; Grimmer, M., Eslamy, M., Gliech, S., & Seyfarth, A. (2012, May). A comparison of parallel-and series elastic elements in an actuator for mimicking human ankle joint in walking and running. In 2012 IEEE International Conference on Robotics and Automation (pp. 2463-2470). IEEE.; Soren Shashikant, 2017. Mechanical Leg. https://grabcad.com/library/mechanical-leg-2.; Guy Rouleau, 2014. From SolidWorks to SimMechanics Posted in July 10, 2014. Simulink & Model-Based Design. https://blogs.mathworks.com/simulink/2014/07/10/from-solidworks-to-simmechanics/.; Eilenberg, M. F., Geyer, H., & Herr, H. (2010). Control of a powered ankle–foot prosthesis based on a neuromuscular model. IEEE transactions on neural systems and rehabilitation engineering, 18(2), 164-173.; L. Agudelo, “La discapacidad en Colombia: una mirada global,” Revista Colombiana de Medicina Física y Rehabilitación, p. 16, 2012.; D. A. N. de E. (DANE), “Boletín Censo General 2005 DISCAPACIDAD-COLOMBIA,” 2005. Accessed: Oct. 08, 2020. [Online]. Available: https://www.dane.gov.co/files/censos/libroCenso2005nacional.pdf.; Ministerio de Salud y Protección Social, “Sala situacional de las Personas con Discapacidad,” 2019. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/MET/sala-situacional-discapacidad2019-2-vf.pdf (accessed Feb. 25, 2021).; MINISTERIO DE SALUD Y PROTECCIÓN SOCIAL, Resolución 2968 DE 2015. República de Colombia: Ministerio de Salud y Protección Social, 2015, pp. 1–16.; Ministerio de Salud y Protección Social, Decreto Número 4725 DE 2005. República de Colombia: Ministerio de Protección Social, 2005, pp. 1–31.; N. Dechev, W. L. Cleghorn, and S. Naumann, “Multiple finger, passive adaptive grasp prosthetic hand,” Mech. Mach. Theory, vol. 36, no. 10, pp. 1157–1173, Oct. 2001, doi:10.1016/S0094-114X(01)00035-0.; R. I. Flores Luna, “Repositorio de Tesis DGBSDI: Diseño de protesis mecatronica de mano,” Universidad Nacional Autónoma de México, 2007.; S. R. Kashef, S. Amini, and A. Akbarzadeh, “Robotic hand: A review on linkage-driven finger mechanisms of prosthetic hands and evaluation of the performance criteria,” Mechanism and Machine Theory, vol. 145. Elsevier Ltd, p. 103677, Mar. 01, 2020, doi:10.1016/j.mechmachtheory.2019.103677.; L. Roselia, P. León, and E. Luz González Muñoz, Rosalío Ávila Chaurand Dimensiones antropométricas de población latinoamericana. 2007.; M. Monar and L. Murillo, “DISEÑO Y CONSTRUCCIÓN DE UNA PRÓTESIS BIÓNICA DE MANO DE 7 GRADOS DE LIBERTAD UTILIZANDO MATERIALES INTELIGENTES Y CONTROL MIOELÉCTRICO ADAPTADA PARA VARIOS PATRONES DE SUJECIÓN,” Universidad de las Fuerzas Armadas, Latacunga, 2015.; J. Zhang, B. Wang, C. Zhang, Y. Xiao, and M. Y. Wang, “An EEG/EMG/EOG-Based Multimodal Human-Machine Interface to Real-Time Control of a Soft Robot Hand,” Front. Neurorobot., vol. 13, no. 7, p. 7, Mar. 2019, doi:10.3389/fnbot.2019.00007.; K. P. Biswajeet Champaty, Suraj Nayak, “Development of an Electrooculogram-based Human-Computer Interface for Hands-Free Control of Assistive Devices,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 4S, p. 11, 2019.; E. Camargo Casallas, L. A. Luengas C., y M. Balaguera, “Respuesta a carga de una prótesis transtibial con elementos infinitos durante el apoyo y balanceo", Visión Electrónica, vol. 6, no. 2, pp. 82-92, 2012.; Q. Huang et al., “An EOG-based wheelchair robotic arm system for assisting patients with severe spinal cord injuries,” J. Neural Eng, vol. 16, 2019, doi:10.1088/1741-2552/aafc88.; S. D and R. R. M, “A high performance asynchronous EOG speller system,” Biomed. Signal Process. Control, vol. 59, p. 101898, May 2020, doi:10.1016/j.bspc.2020.101898.; A. López, M. Fernández, H. Rodríguez, F. Ferrero, and O. Postolache, “Development of an EOG-based system to control a serious game,” Meas. J. Int. Meas. Confed., vol. 127, pp. 481–488, Oct. 2018, doi:10.1016/j.measurement.2018.06.017.; O. F. Avilés, R. D. Hernández, J. L. Loaiza, and J. M. Rosário, “Simulation model of an anthropomorphic hand,” Int. J. Appl. Eng. Res., vol. 11, no. 23, pp. 11114–11120, 2016, Accessed: Oct. 11, 2020. [Online]. Available: https://www.researchgate.net/publication/312979011_Simulation_Model_of_an_Anthropomorphic_Hand.; O. F. A. Sánchez, R. Gutiérrez, A. J. U. Quevedo, and J. M. Rosario, “(PDF) Antrohopomorphic Grippers - Modelling, Analysis and Implementation,” 2015. https://www.researchgate.net/publication/228090516_Antrhopomorphic_Grippers_-_Modelling_Analysis_and_Implementation (accessed Oct. 11, 2020).; A. Sharma, W. Niu, C. L. Hunt, G. Lévay, R. R. Kaliki, and N. Thakor, “Augmented Reality Prosthesis Training Setup for Motor Skill Enhancement,” 2019.; Y. Tsepkovskiy, L. Antonov, C. Kocev, F. Palis, and N. Shoylev, “DEVELOPMENT OF A 3D AND VRML VIRTUAL HAND MODELS FOR DIFFERENT MECHANICAL GRIPPER,” 2008.; S. T. Vite, C. F. Domínguez Velasco, J. B. Reséndiz Rodríguez, A. Hernández Valencia, y M. Ángel Padilla Castañeda, “Simulador de reparación de aneurismas cerebrales para entrenamiento médico Visión Electrónica, vol. 12, no. 1, pp. 51-57, 2018. https://doi.org/10.14483/22484728.13399.; F. J. Badesa et al., “Physiological responses during hybrid BNCI control of an upper-limb exoskeleton,” Sensors (Switzerland), vol. 19, no. 22, Nov. 2019, doi:10.3390/s19224931.; M. R. Cutkosky, “On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks,” IEEE Trans. Robot. Autom., vol. 5, no. 3, pp. 269–279, 1989, doi:10.1109/70.34763.; “Anexo A Norma DIN 33 402.”; J. F. Guerrero Martínez, “INGENIERÍA BIOMÉDICA Tema 2 Bioseñales 2.1. Introducción,” 2010.; L. Atanelov, S. A. Stiens, and M. A. Young, “History of physical medicine and rehabilitation and its ethical dimensions”, AMA journal of ethics, vol. 17, no. 6, pp. 568–574, 2015. DOI:10.1001/journalofethics.2015.17.6.mhst1-1506 URL: https://journalofethics.ama-assn.org/article/history-physical-medicine-and-rehabilitation-and-its-ethical-dimensions/2015-06.; M. C. Garcia and T. Vieira, “Surface electromyography: Why, when and how to use it”, Revista andaluza de medicina del deporte, vol. 4, no. 1, pp.17–28, 2011. URL: https://www.elsevier.es/es-revista-revista-andaluza-medicina-del-deporte-284-articulo-surface-electromyography-why-when-how-X1888754611201253.; J. C. Guerrero Pupo, I. Amell Muñoz, and R. Cañedo Andalia, “Tecnología, tecnología médica y tecnología de la salud: algunas consideraciones básicas”, Acimed, vol. 12, no. 4, pp. 1–1, 2004. URL: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1024-94352004000400007.; J. A. A. Londoño, E. C. Bravo, and J. F. C. García, “Aplicación de tecnologías de rehabilitación robótica en niños con lesión del miembro superior”, Revista Salud UIS, vol. 49, no. 1, pp. 103–114, 2017. DOI: http://dx.doi.org/10.18273/revsal.v49n1-2017010 URL: http://www.scielo.org.co/scielo.php?pid=S0121-08072017000100103&script=sci_abstract&tlng=es.; F. Salvuci and R. Kohanoff, Tecnologías de rehabilitación. Wiley-Interscience, 2016.; A. Merlo and I. Campanini, “Technical aspects of surface electromyography for clinicians”, The open rehabilitation journal, vol. 3, no. 1, 2010. DOI:10.2174/1874943701003010098 URL: https://benthamopen.com/ABSTRACT/TOREHJ-3-98 [7]. F. J. Juan, “Utilidad de la electromiografía de superficie en rehabilitación” URL: https://www.researchgate.net/profile/Francisco_Juan-Garcia/publication/316588275_UTILIDAD_DE_LA_ELECTROMIOGRAFIA_DE_SUPERFICIE_EN_REHABILITACION/links/5905b86c4585152d2e957860/UTILIDAD-DE-LA-ELECTROMIOGRAFIA-DE-SUPERFICIE-EN-REHABILITACION.pdf.; J. W. Meklenburg, S. K. Patrick, and S. D. Jung, “Surface electromyogram simulator for myoelectric prosthesis testing,” 2010. URL: https://digitalcommons.wpi.edu/mqp-all/1402/.; Merletti Roberto, and Dario Farina. Surface electromyography: physiology, engineering, and applications. Piscataway, NJ: IEEE Press, 2016, online. ISBN: 9781119082934, DOI:10.1002/9781119082934.; E. Guzmán, G. Méndez, “Electromiografía en las Ciencias de la Rehabilitación”, Salud Uninorte, Vol 3, no. 3, pp 753-765, 2018.; WOLFRAM S., y PACKARD N. H. Two-dimensional Cellular Autómata. J. Statist. Phys. 38, 1985.; MUÑOZ CASTAÑO, J. D., Artículo: Autómatas Celulares y Física Digital, en: Memorias del Primer Congreso Colombiano de Neuro Computación. Santa fe de Bogotá, D. C.: Academia Colombiana de Ciencias Exactas, Físicas y Naturales, p 28. ISBN 958-9205- 17-8. 1996.; HERNÁNDEZ, J. C., Algunas Generalizaciones en Autómatas Celulares. México: Consejo Nacional de Ciencia y Tecnología – CONACYT, 2008.; JUÁREZ, G. Teoría del Campo Promedio En Autómatas Celulares Similares a "The Game Of Life". México: Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 2000.; CUEVAS, E., ZALDÍVAR, D., & PÉREZ, M., Procesamiento digital de imágenes con MATLAB y Simulink. México: Alfaomega Grupo Editor; RA-MA Editorial. 2010.; MUÑOZ, M. A., Privacidad y ocultación de información digital ESTEGANOGRAFÍA protegiendo y atacando redes informáticas. Madrid, Bogotá., España, Colombia: Ra-ma, Ediciones de la U. 2017; PONCE, C., P. Inteligencia Artificial con aplicaciones a la ingeniería. México: Alfa Omega Grupo Editor. 2010.; WOLFRAM S., Cellular automata as simple self-organizing systems. Pasadena: Caltech prepint CAL-68-938. 1982.; ESPÍNOLA, M. Clasificación de Imágenes de Satélite mediante Autómatas Celulares. Almería: Universidad de Almería. 2011.; MOORE, E. F. Machine Models Of Self-Reproduction. U.S.A.: Proceedings of Symposia in Applied Mathematics. 1963.; GUERRERO, C. Á. “RapaNui – Isla de Pascua”. RapaNui, Chile. 20/06/2018.; CHEDDAD, A., CONDELL, J., CURRAN, K., & MCKEVITT, P. Digital image steganography: Survey and analysis of current methods. Northern Ireland: School of Computing and Intelligent Systems, University of Ulster at Magee. Signal Processing, 90 (3), 26. Obtenido de EL SEVIER, 2010.; DE LA CRUZ FRANCO, A. Implementación de un Algoritmo Computacional para Esteganografía basado en técnicas del bit menos significativo. Chetumal, México: Universidad de Quintana Roo. 2017.; VÁZQUEZ, J. I., & OLIVER, J. Evolución de Autómatas Celulares utilizando Algoritmos Genéticos. Bilbao, España: Universidad de Deusto. 2008.; MIRI, A., FAEZ, K. Adaptive Image Steganography based on transform domain via Genetic Algorithm. Tehran, Iran: Department of Electrical Engineering, Amirkabir University of Technology. Optika, 145, 10. Obtenido de EL SEVIER, 2017.; MUKJERJEE, S., ROY, S., & SANYAL, G. Image Steganography Using Mid Position Value Technique. Durgapur, India: National Institute of Technology Durgapur. Procedia Computer Science, 132, 7. Obtenido de EL SEVIER, 2018.; WESTFELD, A., PFIZMANN, A. Attacks on Steganographic System. Dresden, Germany: Department of Computer Science, Dresden University of Technology. Information Hiding, 15. 1999.; CABALLERO, H. Cálculo de la dispersión de pixels en imágenes RGB para Esteganografía con base en la teoría fractal. Toluca de Lerdo, México: Facultad de Ingeniería, Universidad Autónoma de México. 2020.; FRIDRICH, J., GOLJAN, M., & DU, R. Reliable Detection of LSB steganography in color and grayscale images. Binghamton, U.S.A.: Department of Electrical and Computer Engineering, Binghamton University, 7. 2002.; D. Galeano and I. Electr, “Robótica Médica,” p. 21.; J. Cornejo, J. A. Cornejo Aguilar, and J. P. Perales Villarroel, “Innovaciones Internacionales En Robótica Médica Para Mejorar El Manejo Del Paciente En Perú,” Rev. la Fac. Med. Humana, vol. 19, no. 4, pp. 105–113, 2019, doi:10.25176/rfmh.v19i4.2349.; E. Saraee, A. Joshi, and M. Betke, “A therapeutic robotic system for the upper body based on the Proficio robotic arm,” Int. Conf. Virtual Rehabil. ICVR, vol. 2017-June, 2017, doi:10.1109/ICVR.2017.8007498.; M. A. Soleimani, H. Zohoor, A. R. F. Yakhdani, M. Heravi, and E. Mohammadi, “Designing, Prototyping, and Controlling a Portable Rehabilitation Robot for the Shoulder Physiotherapy and Training,” ICRoM 2019 - 7th Int. Conf. Robot. Mechatronics, no. ICRoM, pp. 281–284, 2019, doi:10.1109/ICRoM48714.2019.9071844.; M. R. Sarder, F. Ahmed, and B. A. Shakhar, “Design and implementation of a lightweight telepresence robot for medical assistance,” ECCE 2017 - Int. Conf. Electr. Comput. Commun. Eng., pp. 779–783, 2017, doi:10.1109/ECACE.2017.7913008.; R. R. Murphy, D. Riddle, and E. Rasmussen, “Robot-assisted medical reachback: A survey of how medical personnel expect to interact with rescue robots,” Proc. - IEEE Int. Work. Robot Hum. Interact. Commun., pp. 301–306, 2004, doi:10.1109/roman.2004.1374777.; M. Cardona, F. Cortez, A. Palacios, and K. Cerros, “Mobile robots application against covid-19 pandemic,” 2020 Ieee Andescon, Andescon 2020, 2020, doi:10.1109/ANDESCON50619.2020.9272072.; R. M. Nope-Giraldo et al., “Mechatronic Systems Design of ROHNI-1: Hybrid Cyber-Human Medical Robot for COVID-19 Health Surveillance at Wholesale-Supermarket Entrances,” Pan Am. Heal. Care Exch. PAHCE, vol. 2021-May, 2021, doi:10.1109/GMEPE/PAHCE50215.2021.9434874.; P. Manikandan, G. Ramesh, G. Likith, D. Sreekanth, and G. Durga Prasad, “Smart Nursing Robot for COVID-19 Patients,” 2021 Int. Conf. Adv. Comput. Innov. Technol. Eng. ICACITE 2021, vol. 7, pp. 839–842, 2021, doi:10.1109/ICACITE51222.2021.9404698.; Coronavirus: 12 aspectos en los que cambiará radicalmente nuestras vidas”: BBC News, mayo 2020. https://www.bbc.com/mundo/noticias-52512680.; UN. “La enfermedad del coronavirus, una emergencia de salud mundial”. Naciones Unidas. https://www.un.org/es/coronavirus.; “Medidas tomadas por el gobierno.” GOV.CO. Fronteras, marzo 2020. https://coronaviruscolombia.gov.co/Covid19/acciones/acciones-de-fronteras.html.; “Cómo se propaga el COVID-19”. Centros para el Control y la Prevención de Enfermedades, julio 2021. https://espanol.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html.; OMS. “Protéjase a sí mismo y a los demás contra la COVID-19”. Organización Mundial de la Salud. Octubre 2020. https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019/advice-for-public.; M. A. Vivas. “Medidas para la reactivación económica en Colombia-Decreto 580 de 2021. Consultor Salud, junio 2021. https://consultorsalud.com/medidas-para-la-reactivacion-economica/.; C.R. Colombiana. “Consejos de autocuidado y prevención COVID-19”. Cruz Roja Colombiana. https://www.cruzrojacolombiana.org/consejos-de-autocuidado-y-prevencion/.; Cinco protocolos que se usan a diario y que no sirven contra el Covid”. Portafolio, febrero de 2021. https://www.portafolio.co/economia/cinco-protocolos-covid-19-que-no-sirven-contra-el-coronavirus-549048.; “Empresas deberán adaptar protocolo de bioseguridad de Minsalud a sus actividades”. Minsalud, abril 2020. https://www.minsalud.gov.co/Paginas/Empresas-deberan-adaptar-protocolo-de-bioseguridad-de-Minsalud-a-sus-actividades.aspx.; I. J. Molina Pineda. “¿Por qué el coronavirus se propaga ahora con tanta velocidad?”. BBC News, noviembre 2020. https://www.bbc.com/mundo/noticias-54794713.; “COVID-19: novedades científicas”. Instituto de Salud Global Barcelona, noviembre 2021. https://www.isglobal.org/covid-19-novedades-cientificas.; Lionex. “Proximiti-i”. Lionex. 2020. https://lionex.co/proximiti-i.; “La solución digital más confiable del mundo para mitigar la propagación de COVID-19”. KINEXON, 2020. https://kinexon.com/technology/safetag/.; “Coronavirus: el plan de Apple y Google para rastrear el covid-19 desde tu teléfono”. BBC News, abril 2020. https://www.bbc.com/mundo/noticias-52251843.; “Nissan incorporó un nuevo Dispositivo de Distanciamiento Físico para toda su red de concesionarios”. La Nación, marzo 2021. https://www.lanacion.com.ar/lifestyle/nissan-incorporo-un-nuevo-dispositivo-de-distanciamiento-fisico-para-toda-su-red-de-concesionarios-nid11032021/.; “Analítica de detección de tapabocas, para una reapertura segura”. SAC Seguridad, 2020. https://sacseguridad.com/iss-analitica-deteccion-tapabocas-termica/.; W. Yan. “¿Llevas puesta la mascarilla? Un software de reconocimiento está listo para checar si las personas cumplen con el correcto uso”. National Geographic, septiembre 2020. https://www.nationalgeographicla.com/ciencia/2020/09/software-reconocimiento-mascarillas.; K1T671TM-3XF”. HIKVISION, 2020. https://www.hikvision.com/es-la/products/Access-Control-Products/Face-Recognition-Terminals/Ultra-Series/ds-k1t671tm-3xf-/?q=ds-k1t671tm-3xf&position=5.; “SOLIDWORKS. Qué es y para qué sirve”. SolidBi. https://solid-bi.es/solidworks/.; “Sensor de distancia SHARP GP2Y0A02YK0F”. Naylamp Mechatronics. https://naylampmechatronics.com/sensores-proximidad/204-sensor-de-distancia-infrarrojo-sharp-gp2y0a02.html.; “Sensor ultrasónico HC-SR04”. Naylamp Mechatronics. https://naylampmechatronics.com/sensores-proximidad/10-sensor-ultrasonido-hc-sr04.html.; “Sensor de temperatura TMP36”. Prometec. https://www.prometec.net/sensor-tmp36/.; “Comprensión del reconocimiento facial mediante el algoritmo LBPH”. Analytics Vidhya, julio 2021. https://www.analyticsvidhya.com/blog/2021/07/understanding-face-recognition-using-lbph-algorithm/.; Y. M. Shum. “Situación Global Mobile 2020”. YS social media, 2020. https://yiminshum.com/mobile-movil-app-2020/.; F. Cortez, J. Cercado Mancero, A. Vera Lorenti, and E. Valle Flores, “Un panorama de las energías renovables en el Mundo, Latinoamérica y Colombia,” Espacios, vol. 39, p. 10, 2018.; G. A. Zapata and J. A. Valencia, “Guía práctica para la aplicación de los incentivos tributarios de la Ley 1715 de 2014,” Colombia.; J. Faiz and A. Nematsaberi, “Linear electrical generator topologies for direct-drive marine wave energy conversion- an overview,” IET Renew. Power Gener., vol. 11, no. 9, pp. 1163–1176, 2017.; X. Wang, F. Chen, R. Zhu, G. Yang, and C. Zhang, “A Review of the Design and Control of Free-Piston Linear Generator,” Energies, vol. 11, no. 8, p. 2179, 2018.; H. Chen, S. Zhao, H. Wang, and R. Nie, “A Novel Single-Phase Tubular Permanent Magnet Linear Generator,” IEEE Trans. Appl. Supercond., vol. 30, no. 4, pp. 2–6, 2020.; R. Guo, H. Yu, T. A. O. Xia, Z. Shi, W. Zhong, and X. Liu, “A Simplified Subdomain Analytical Model for the Design and Analysis of a Tubular Linear Permanent Magnet Oscillation Generator,” IEEE Access, vol. 6, pp. 42355–42367, 2018.; H. M. Zapata, F. A. Cabrera, M. A. Perez, C. A. Silva, and W. Jara, “Model of a permanent magnet linear generator,” IECON Proc. (Industrial Electron. Conf., vol. 2019-Octob, pp. 6992–6997, 2019.; H. Jing, N. Maki, T. Ida, and M. Izumi, “Electrical design of large-scale tubular PM linear generators for wave energy conversion,” IEEJ Trans. Electr. Electron. Eng., vol. 12, pp. S113–S119, 2017.; R. M. Korbekandi, N. J. Baker, and D. Wu, “A study of translator length in a tubular linear electrical machine designed for use in alinear combustion joule engine,” 2019 12th Int. Symp. Linear Drives Ind. Appl. LDIA 2019, pp. 1–6, 2019.; Y. Sun, Z. Xu, Q. Zhang, J. Lu, and L. Liu, “A Tubular Single-Phase Linear Generator with an Axially Magnetized PM Mover for Free-Piston Engines,” IEEJ Trans. Electr. Electron. Eng., vol. 16, no. 1, pp. 139–146, 2021.; J. Kim, J. Y. Kim, and J. B. Park, “Design and optimization of a 8kW linear generator for a direct-drive point absorber,” Ocean. 2013 MTS/IEEE - San Diego An Ocean Common, pp. 1–6, 2013.; S. Arslan and S. A. Oy, “Design and optimization of tube type interior permanent magnets generator for free piston applications,” TEM J., vol. 6, no. 2, pp. 214–221, 2017.; H. J.R. and T. J. E. Miller, Design of brushless permanetn magnet machines, vol. 732, no. 1. USA: Magna physycs publishing & Oxford University Press, 2010.; J. Zhang, H. Yu, and Z. Shi, “Analysis of a PM linear generator with double translators for complementary energy generation platform,” Energies, vol. 12, no. 24, 2019.; A. Musolino, R. Rizzo, and M. Raugi, “A semi-analytical model for the analysis of a Permanent Magnet tubular linear generator,” 2015 Int. Conf. Renew. Energy Res. Appl. ICRERA 2015, vol. 54, no. 1, pp. 1513–1517, 2015.; S. A. Nasar, “Permanent-Magnet Linear Alternators Part II: Design Guidelines,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-23, no. 1, pp. 79–82, 1987.; H. M. Quintero, E. R. Trujillo, and G. M. Tarazona Bermudez, “EVOLUTION OF WIND POWER TECHNOLOGY.” [Online]. Available: www.tjprc.org.; H. Montaña Quintero, E. Rivas Trujillo, and G. M. Tarazona, “TRENDS ON WIND POWER ELECTRIC GENERATORS,” vol. 15, no. 17, 2020, [Online]. Available: www.arpnjournals.com.; M. Abril Martínez, L. Carolina, R. Rodríguez, U. Militar, N. Granada, and D. P. Cuero, “Estado Del Arte Sobre Materiales Utilizados Para La Fabricación De Las Palas De Turbinas Eólicas Offshore.”; N. Javahiraly, A. Chakari, L. Calegari, and P. Meyrueis, “Determination of solid materials rigidity modulus by a new nondestructive optical method,” Optics & Laser Technology, vol. 36, no. 3, pp. 239–243, Apr. 2004, doi:10.1016/J.OPTLASTEC.2003.09.002.; I. M. Bragado, “Física General,” 2013.; H. A. Gonzáles - D. H. Meza, “LA IMPORTANCIA DEL MÉTODO EN LA SELECCION DE MATERIALES,” vol. 4, no. ISSN 0122-1701, 2004.; “Colección: LAS CIENCIAS NATURALES Y LA MATEMATICAS,” 2010.; Y. Jiang, B. Song, J. Hu, H. Liang, and S. Rao, “Time-dependent reliability of corroded circular steel tube structures: Characterization of statistical models for material properties,” Structures, vol. 33, pp. 792–803, Oct. 2021, doi:10.1016/J.ISTRUC.2021.04.091.; H. Zhang, B. Zhang, Q. Gao, J. Song, and G. Han, “A review on microstructures and properties of graphene-reinforced aluminum matrix composites fabricated by friction stir processing,” Journal of Manufacturing Processes, vol. 68, pp. 126–135, Aug. 2021, doi:10.1016/J.JMAPRO.2021.07.023.; W. Zhang, X. Zhang, Z. Qin, W. Zhang, and R. Yang, “Mechanical and flame retardant performance of fiberglass-reinforced polysilsesquioxane interpenetrated with poly(ethylene glycol)-urethane,” Composites Part A: Applied Science and Manufacturing, vol. 149, p. 106490, Oct. 2021, doi:10.1016/J.COMPOSITESA.2021.106490.; A. Zavdoveev et al., “Effect of heat treatment on the mechanical properties and microstructure of HSLA steels processed by various technologies,” Materials Today Communications, vol. 28, p. 102598, Sep. 2021, doi:10.1016/J.MTCOMM.2021.102598.; G. Kumar Sharma and B. Nidhi Vats, “A comparative study on mechanical and tribological properties of different grades of tool steels,” Materials Today: Proceedings, Mar. 2021, doi:10.1016/J.MATPR.2021.02.275.; F. Tariq and P. Bhargava, “Stress–strain curves and mechanical properties of corrosion damaged super ductile reinforcing steel,” Structures, vol. 33, pp. 1532–1543, Oct. 2021, doi:10.1016/J.ISTRUC.2021.05.039.; B. Nie, S. Xu, Z. Zhang, and A. Li, “Surface morphology characteristics and mechanical properties of corroded cold-formed steel channel sections,” Journal of Building Engineering, vol. 42, p. 102786, Oct. 2021, doi:10.1016/J.JOBE.2021.102786.; I. J. Delfin, F. Madrid, and R. Martínez Sánchez, “Tesis: EFECTO DE LA CERIA (CeO 2 ) EN LA MICROESTRUCTURA Y PROPIEDADES MECÁNICAS DE UNA ALEACIÓN DE ALUMINIO 2024 Que como requisito presenta.”; A. Baradeswaran and A. E. Perumal, “Wear and mechanical characteristics of Al 7075/graphite composites,” Composites Part B: Engineering, vol. 56, pp. 472–476, Jan. 2014, doi:10.1016/J.COMPOSITESB.2013.08.073.; P. Chakrapani and T. S. A. Suryakumari, “Mechanical properties of aluminium metal matrix composites-A review,” Materials Today: Proceedings, vol. 45, pp. 5960–5964, Jan. 2021, doi:10.1016/J.MATPR.2020.09.247.; N. Kumar, A. Bharti, and K. K. Saxena, “A re-investigation: Effect of powder metallurgy parameters on the physical and mechanical properties of aluminium matrix composites,” Materials Today: Proceedings, vol. 44, pp. 2188–2193, Jan. 2021, doi:10.1016/J.MATPR.2020.12.351.; B. Zhou, B. Liu, S. Zhang, R. Lin, Y. Jiang, and X. Lan, “Microstructure evolution of recycled 7075 aluminum alloy and its mechanical and corrosion properties,” Journal of Alloys and Compounds, vol. 879, p. 160407, Oct. 2021, doi:10.1016/J.JALLCOM.2021.160407.; M. Barhoumi, N. Sfina, M. Said, and S. Znaidia, “Elastic and mechanical properties of aluminium and silicon carbide using density functional theory and beyond,” Solid State Communications, vol. 334–335, p. 114369, Aug. 2021, doi:10.1016/J.SSC.2021.114369.; E. M. Ruiz Navas and B. Ruiz Palenzuela, “Sintering of Aluminum Alloys. Processing and Properties,” Encyclopedia of Materials: Metals and Allloys, pp. 343–352, Jan. 2022, doi:10.1016/B978-0-12-819726-4.00114-9.; Ankur, A. Bharti, D. Prasad, N. Kumar, and K. K. Saxena, “A Re-investigation: Effect of various parameter on mechanical properties of copper matrix composite fabricated by powder metallurgy,” Materials Today: Proceedings, vol. 45, pp. 4595–4600, Jan. 2021, doi:10.1016/J.MATPR.2021.01.009.; A. Agrawal and R. Mirzaeifar, “Copper-graphene composites; developing the MEAM potential and investigating their mechanical properties,” Computational Materials Science, vol. 188, p. 110204, Feb. 2021, doi:10.1016/J.COMMATSCI.2020.110204.; S. Thapliyal and A. Mishra, “Machine learning classification-based approach for mechanical properties of friction stir welding of copper,” Manufacturing Letters, vol. 29, pp. 52–55, Aug. 2021, doi:10.1016/J.MFGLET.2021.05.010.; J. Chi et al., “Titanium alloy components fabrication by laser depositing TA15 powders on TC17 forged plate: Microstructure and mechanical properties,” Materials Science and Engineering: A, vol. 818, p. 141382, Jun. 2021, doi:10.1016/J.MSEA.2021.141382.; D. Liović, M. Franulović, and D. Kozak, “Material models and mechanical properties of titanium alloys produced by selective laser melting,” Procedia Structural Integrity, vol. 31, pp. 86–91, Jan. 2021, doi:10.1016/J.PROSTR.2021.03.014.; J. Aguilar Pozzer and E. Guzowski, “Guía didáctica Materiales y materias primas.”; M. Z. R. Khan, S. K. Srivastava, and M. K. Gupta, “A state-of-the-art review on particulate wood polymer composites: Processing, properties and applications,” Polymer Testing, vol. 89, p. 106721, Sep. 2020, doi:10.1016/J.POLYMERTESTING.2020.106721.; C. Wu, N. Vahedi, A. P. Vassilopoulos, and T. Keller, “Mechanical properties of a balsa wood veneer structural sandwich core material,” Construction and Building Materials, vol. 265, p. 120193, Dec. 2020, doi:10.1016/J.CONBUILDMAT.2020.120193.; F. Tian, L. Chen, and X. Xu, “Dynamical mechanical properties of wood-high density polyethylene composites filled with recycled rubber,” Journal of Bioresources and Bioproducts, vol. 6, no. 2, pp. 152–159, May 2021, doi:10.1016/J.JOBAB.2021.02.007.; J. F. Shackelford, “Introducción a la ciencia de materiales para ingenieros 6a edición.”; S. Velu, J. K. Joseph, M. Sivakumar, V. K. Bupesh Raja, K. Palanikumar, and N. Lenin, “Experimental investigation on the mechanical properties of carbon-glass-jute fiber reinforced epoxy hybrid composites,” Materials Today: Proceedings, vol. 46, pp. 3566–3571, Jan. 2021, doi:10.1016/J.MATPR.2021.01.333.; W. Chen, Q. Meng, H. Hao, J. Cui, and Y. Shi, “Quasi-static and dynamic tensile properties of fiberglass/epoxy laminate sheet,” Construction and Building Materials, vol. 143, pp. 247–258, Jul. 2017, doi:10.1016/J.CONBUILDMAT.2017.03.074.; S. Y. Voronina, T. A. Shalygina, V. D. Voronchikhin, A. Y. Vlasov, A. N. Ovchinnikov, and N. N. Grotskaya, “Data for determining the surface properties of carbon fiber in contact interaction with polymeric binders,” Data in Brief, vol. 35, p. 106847, Apr. 2021, doi:10.1016/J.DIB.2021.106847.; C. Colombo and L. Vergani, “Influence of delamination on fatigue properties of a fibreglass composite,” Composite Structures, vol. 107, no. 1, pp. 325–333, Jan. 2014, doi:10.1016/J.COMPSTRUCT.2013.07.028.; L. Wang, J. Zhang, X. Yang, C. Zhang, W. Gong, and J. Yu, “Flexural properties of epoxy syntactic foams reinforced by fiberglass mesh and/or short glass fiber,” Materials & Design, vol. 55, pp. 929–936, Mar. 2014, doi:10.1016/J.MATDES.2013.10.065.; J. Viña, J. Bonhomme, V. Mollón, I. Viña, and A. Argüelles, “Mechanical properties of fibreglass and carbon-fibre reinforced polyetherimide after twenty years of outdoor environmental aging in the city of Gijón (Spain),” Composites Communications, vol. 22, p. 100522, Dec. 2020, doi:10.1016/J.COCO.2020.100522.; A. Armanfard and G. W. Melenka, “Experimental evaluation of carbon fibre, fibreglass and aramid tubular braided composites under combined tension–torsion loading,” Composite Structures, vol. 269, p. 114049, Aug. 2021, doi:10.1016/J.COMPSTRUCT.2021.114049.; Z. Sun et al., “Temperature-dependent mechanical properties of polyetherimide composites reinforced by graphene oxide-coated short carbon fibers,” Composite Structures, vol. 270, p. 114075, Aug. 2021, doi:10.1016/J.COMPSTRUCT.2021.114075.; V. Amigó, J. J. Payá, M. D. Salvador, J. M. Monzó, F. Segovia, and V. Borrachero, “MATERIALES COMPUESTOS 05.”; S. C. Das et al., “On the use of wood charcoal filler to improve the properties of natural fiber reinforced polymer composites,” Materials Today: Proceedings, vol. 44, pp. 926–929, Jan. 2021, doi:10.1016/J.MATPR.2020.10.808.; S. Yousef, S. P. Subadra, P. Griškevičius, S. Varnagiris, D. Milcius, and V. Makarevicius, “Superhydrophilic functionalized graphene/fiberglass/epoxy laminates with high mechanical, impact and thermal performance and treated by plasma,” Polymer Testing, vol. 90, p. 106701, Oct. 2020, doi:10.1016/J.POLYMERTESTING.2020.106701.; P. Karthick, A. A. E. Andrews, K. Subbareddy, K. Basha, V. Harshavardhan, and S. G. S. K. Reddy, “Investigation of mandatory properties of NaOH – KMnO4 Treated Banana/Fiberglass Hybrid Composite,” Materials Today: Proceedings, vol. 37, no. Part 2, pp. 63–66, Jan. 2021, doi:10.1016/J.MATPR.2020.03.072.; S. Saroj, S. Nayak, and D. Kumar Jesthi, “Effect of hybridization of carbon/glass/flax/kenaf fibre composite on flexural and impact properties,” Materials Today: Proceedings, Apr. 2021, doi:10.1016/J.MATPR.2021.03.094.; H. A. S. y. M. A. P., «ANÁLISIS DE TECNOLOGÍAS DE MEDICIÓN DE NIVEL DE TANQUES DE PRODUCTOS USADOS EN LA INDUSTRIA PETROLERA,» 5 Diciembre 2003. [En línea]. Available: https://repositorio.utb.edu.co/bitstream/handle/20.500.12585/3407/0024835.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; C. A. V. AGUILAR, «DISEÑO DE UN SISTEMA DE MONITOREO DE NIVEL DE LOS TANQUES DE EMERGENCIA DE EMCALI TELECOMUNICACIONES,» 9 Diciembre 2013. [En línea]. Available: https://red.uao.edu.co/bitstream/handle/10614/5683/T03722.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; A. A. Naranjo, «Diseño de control de nivel por medio de una medición continua en los tanques de almacenamiento de ACPM en la empresa de Colcafe S.A.,» 7 Marzo 2018. [En línea]. Available: https://repositorio.itm.edu.co/bitstream/handle/20.500.12622/3975/Rep_Itm_pre_Arbelaez.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; P. R. Martín, «¿Qué es una central de generación eléctrica diésel?,» 11 Junio 2020. [En línea]. Available: https://www.tecnatom.es/blog/que-es-una-central-de-generacion-electrica-diesel/. [Último acceso: 26 Septiembre 2021].; F. O. C. GUERRERO, «GENERACIÓN DE ENERGÍA ELÉCTRICA CON UN MOTOR DE COMBUSTIÓN INTERNA USANDO BIODIESEL DE ACEITE DE PIÑÓN (Jatropha curcas),» 2015. [En línea]. Available: https://repositorio.lamolina.edu.pe/bitstream/handle/UNALM/2152/P06-C118-T.pdf?sequence=1&isAllowed=y. [Último acceso: 26 Septiembre 2021].; El pensante.com , «¿Qué es el ACPM?,» E-Cultura Group, 7 Abril 2016. [En línea]. Available: https://elpensante.com/que-es-el-acpm/. [Último acceso: 25 Septiembre 2021].; D. Plaza, «El gasóleo o gasoil: propiedades y tipos,» motor.es, s.f. [En línea]. Available: https://www.motor.es/que-es/gasoil#:~:text=Es%20un%20hidrocarburo%20l%C3%ADquido%20que,carbono%20por%2026%20de%20hidr%C3%B3geno). [Último acceso: 25 Septiembre 2021].; C. Ribeiro, «Cómo funciona la medición automática de combustible en los tanques y cómo su estación puede beneficiarse,» 9 Agosto 2017. [En línea]. Available: https://blog.gilbarco.com/latam/como-funciona-la-medicion-automatica-de-combustible-en-los-tanques. [Último acceso: 25 Septiembre 2021].; Nation Unies, «Prescriptions uniformes relatives à l’homologation des véhicules en ce qui concerne,» 16 Octubre 1995. [En línea]. Available: https://unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/r083r4f.pdf. [Último acceso: 25 Septiembre 2021].; U.S. Environmental Protection Agency, «Code Of Federal Regulations Part 1065—Engine-Testing Procedures.,» 17 Septiembre 2021. [En línea]. Available: https://www.ecfr.gov/recent-changes?search%5Bhierarchy%5D%5Btitle%5D=16&search%5Blast_modified_after%5D=2021-09-10. [Último acceso: 25 Septirmbre 2021].; Code Of Federal Regulations, «VEHICLE-TESTING PROCEDURES,» 28 Abril 2014. [En línea]. Available: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-U/part-1066. [Último acceso: 25 Septiembre 2021].; L. B. M. y. H. C. F. Melissa Ávila Dávila, «Análisis gravimétrico y volumétrico,» 26 Agosto 2011. [En línea]. Available: https://www.monografias.com/trabajos89/analisis-gravimetrico-y-volumetrico/analisis-gravimetrico-y-volumetrico.shtml. [Último acceso: 27 Septienbre 2021].; C. B. ,. J. G. H. Richard D Burke, «Critical evaluation of on-engine fuel consumption measurement,» Automobile Engineering, vol. 225, nº 6, p. 829–844, Junio 2011.; O. NUNIGE, «EVALUACION Y COMPARACION DE METODOS DE MEDICION CONSUMO DE COMBUSTIBLE PARA LABORATORIO Y RUTA EN UN VEHICULO LIVIANO,» 2018. [En línea]. Available: http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/9465/T629.2538%20N972.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; W. E. L. C. F. d. R. Cesar V. Vargas, «Sistemas de Comunicación Inalámbrica MIMO - OFDM,» RevActaNova, vol. 3, nº 4, pp. 750-760, 2007.; F. E. Vargas Silva, «Sistema Digital De Medición De Nivel De Combustible En El Tanque Del Generador Para El Radar De ESUFA.,» 7 Noviembre 2019. [En línea]. Available: https://catalogosibfa.hosted.exlibrisgroup.com/exlibris/aleph/a23_1/apache_media/NIK8N7VLBTRRSKEGTLYUM76FF5BIB8.pdf. [Último acceso: 26 Septiembre 2021].; Quonty, «Tecnología inalámbrica, ¿cuáles son las redes y los dispositivos que más la utilizan?,» 21 Febrero 2018. [En línea]. Available: https://www.quonty.com/blog/tecnologia-inalambrica/. [Último acceso: 27 Septiembre 2021].; Morales, «Qué es la transmisión Wifi,» 11 Octubre 2019. [En línea]. Available: https://www.ticarte.com/contenido/que-es-la-transmision-wifi. [Último acceso: 27 Septiembre 2021].; J. Borlongan, «Cómo funciona la tecnología WiFi,» s.f. [En línea]. Available: https://techlandia.com/funciona-tecnologia-wifi-como_10752/. [Último acceso: 27 Septiembre 2021].; runestone.academy, «¿Qué es programación?,» s.f. [En línea]. Available: https://runestone.academy/runestone/static/pythoned/Introduction/QueEsProgramacion.html. [Último acceso: 28 Septiembre 2021].; aprendiendoarduino.wordpress.com, «Programación Arduino,» 23 Enero 2017. [En línea]. Available: https://aprendiendoarduino.wordpress.com/2017/01/23/programacion-arduino-5/. [Último acceso: 28 Septiembre 2021].; Arduino.cl, «Software de Arduino,» Enero 2019. [En línea]. Available: https://arduino.cl/programacion/. [Último acceso: 28 Septiembre 2021].; Arduino, «Arduino UNO,» s.f. [En línea]. Available: https://arduino.cl/arduino-uno/. [Último acceso: 27 Septiembre 2021].; L. LLAMAS, «MEDIR DISTANCIA CON ARDUINO Y SENSOR DE ULTRASONIDOS HC-SR04,» 16 Junio 2015. [En línea]. Available: https://www.luisllamas.es/medir-distancia-con-arduino-y-sensor-de-ultrasonidos-hc-sr04/. [Último acceso: 27 Septiembre 2021].; naylampmechatronics.com, «SENSOR ULTRASONIDO HC-SR04,» s.f. [En línea]. Available: https://naylampmechatronics.com/sensores-proximidad/10-sensor-ultrasonido-hc-sr04.html. [Último acceso: 27 Septiembre 2021].; L. Llamas, «COMUNICACIÓN INALÁMBRICA A 2.4GHZ CON ARDUINO Y NRF24L01,» 8 Diciembre 2016. [En línea]. Available: https://www.luisllamas.es/comunicacion-inalambrica-a-2-4ghz-con-arduino-y-nrf24l01/. [Último acceso: 28 Septiembre 2021].; robots-argentina.com.ar, «Arduino: Comunicación inalámbrica con NRF24L01,» 25 Diciembre 2019. [En línea]. Available: http://robots-argentina.com.ar/didactica/arduino-comunicacion-inalambrica-con-nrf24l01/. [Último acceso: 28 Septiembre 2021].; the Secretary of the Air Force, «TECHNICAL AND MANAGERIAL REFERENCE FOR MOTOR VEHICLE MAINTENANCE,» Published Under Authority, USA, 2004.; B. R. Serra, «VOLUMEN DE UN PRISMA RECTANGULAR,» 2014. [En línea]. Available: https://www.universoformulas.com/matematicas/geometria/volumen-prisma-rectangular/. [Último acceso: 28 Septiembre 2021].; extraconversion.com, «Metros Cúbicos a US Galones Líquidos Calculadora de Conversión,» s.f. [En línea]. Available: http://extraconversion.com/es/volumen/metros-cubicos/metros-cubicos-a-us-galones-liquidos.html. [Último acceso: 28 Septiembre 2021].; J. C. Najar Pacheco, «Exposición del activo más valioso de la organización, la “información", Visión Electrónica, vol. 11, no. 1, pp. 107-115, 2017. https://doi.org/10.14483/22484728.12345.; Clincy, V., & Shahriar, H., Web Application Firewall: Network Security Models and Configuration. Proceedings - International Computer Software and Applications Conference, 1, 835–836. https://doi.org/10.1109/COMPSAC.2018.00144, 2018.; C. Ping. "A second-order SQL injection detection method". Digital Object Identifier System. https://doi.org/10.1109/ITNEC.2017.8285104, 2018.; Tovar Valencia, O. (s. f.). INYECCIÓN DE SQL, TIPOS DE ATAQUES Y PREVENCION EN ASP.NET-C#. Universidad Piloto de Colombia. http://polux.unipiloto.edu.co:8080/00002026.pdf.; Rajashree, A. K., Sherekar, S. S., & Thakare, V. M. Detection of SQL injection attacks by removing the parameter values of SQL query. IEEE Conference Publication %7C IEEE Xplore. https://ieeexplore.ieee.org/document/8398896, 2018.; Gestión, Tecnología. Uso de apps y visitas a sitios web de alto riesgo subieron 161% debido a COVID. Gestión Tecnología. https://gestion.pe/tecnologia/uso-de-apps-y- visitas-a-sitios-web-de-alto-riesgo-subieron-161-debido-a-covid-noticia/, 2020.; Castillo, A., OWASP Top 1 - Ataques por Inyección SQL. Seguridad Ofensiva. https://seguridad-ofensiva.com/blog/owasp-top-10/owasp-top-1/, 2020.; A7:2017-Cross-Site Scripting (XSS) %7C OWASP, https://owasp.org/www-project-top-ten/2017/A7_2017-Cross-Site_Scripting_(XSS), 2017.; Vulnerabilidades OWASP - Ciberseguridad informática - Seguridad informática para Empresas. (n.d.). https://antimalwares.es/tecnologias/vulnerabilidades-owasp.; W. A. Barbosa y D. A. Buelvas Peñarredonda, “Implementación de redes privadas virtuales en la mediana empresa", Visión Electrónica, vol. 4, no. 2, pp. 106-121, 2010. https://revistas.udistrital.edu.co/index.php/visele/article/view/282/5573.; N. A. Gómez-Cruz and C. E. Maldonado, “Sistemas bio-inspirados: un marco teórico para la ingeniería de sistemas complejos,” Ing. Sist. complejos. Compil. las Conf. Present. en la Cuarta Asam. la Red Cart. Ing., p., 2011.; Y. Leidy, O. López, D. Guillermo, and B. Benavides, “Plataformas Bionpiradas Tipo Lego En Un Ambiente Conocido.”; Y. Jian and Y. Li, “Research on intelligent cognitive function enhancement of intelligent robot based on ant colony algorithm,” Cogn. Syst. Res., vol. 56, pp. 203–212, 2019, doi:10.1016/j.cogsys.2018.12.014.; L. M. Layos, E. L. Mundo, and D. E. L. A. S. Hormigas, “HORMIGAS,” 2006.; J. Rolando, C. López, N. Johanna Hernández Suárez, A. Del Pilar, and R. Tibaduiza, “Sistema de transporte y embalaje utilizando robótica cooperativa basada en teoría de colonias de hormigas mediante plataforma Mindstorm de LEGO® Transportation and Packaging System Using Cooperative Robotics Based on Theory of Ants Colonies Using Platform,” vol. 6, no. 1, pp. 60–71, 2015, doi:10.14483/udistrital.jour.redes.2015.1.a04.; Jaffe, “Evolucion de Sistemas de Comunicacion Quimico en Hormigas (Hymenoptera: Formicidae),” Folia Entomológica Mexicana, vol. 61. pp. 189–203, 1984.; Y. Leidy, O. López, G. Duvan, and B. Benavides, “Implementación de un sistema multirobot basado en el comportamiento de las hormigas.”; M. Dc and G. Motor, “Tank Mobile Platform Instrution Manual,” no. 112.; Alibaba.com. (2021). Professional Outdoor Solar Powered Automatic Weather Station. Tomado de: https://www.alibaba.com/product-detail/Professional-Outdoor-Solar-Powered-Automatic-Weather_60492093064.html.; BBC. (2021). River flooding - causes and management. Tomado de: https://www.bbc.co.uk/bitesize/guides/zx9kfrd/revision/1#:~:text=Flooding%20occurs%20when%20a%20river,interactions%20can%20increase%20the%20risk.; Bourdeau-Brien, M., & Kryzanowski, L. (2020). Natural disasters and risk aversion. Journal of Economic Behavior & Organization, 177, 818–835. Tomado de: https://doi.org/https://doi.org/10.1016/j.jebo.2020.07.007.; Boustan, L. P., Kahn, M. E., Rhode, P. W., & Yanguas, M. L. (2020). The effect of natural disasters on economic activity in US counties: A century of data. Journal of Urban Economics, 118, 103257. Tomado de: https://doi.org/https://doi.org/10.1016/j.jue.2020.103257.; Campo, P. A., Zafra K. (2013). SISTEMA ELECTRÓNICO INALÁMBRICO DE ALERTA TEMPRANA Y MONITOREO DEL COMPORTAMIENTO DEL NIVEL DE LOS RÍOS DE BAJO COSTO (Tesis de grado). Universidad San Buenaventura de Cali. Tomado de: http://bibliotecadigital.usbcali.edu.co/bitstream/10819/2144/1/Sistema_Electronico_Inalambrico_Monitoreo_Campo_2013.pdf.; Cao, H., & Wachowicz, M. (2019). The design of an IoT-GIS platform for performing automated analytical tasks. Computers, Environment and Urban Systems, 74, 23–40. Tomado de: https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2018.11.004.; CEPAL. (2018). Situación de las estadísticas e indicadores de eventos extremos y desastres. Tomado de: https://www.cepal.org/sites/default/files/presentations/2018-06-2areu-expertos-ea-4_2-cepal-pleonard.pdf.; Colombia Reports. (2020). Fatal landslide blocks road between Colombia’s capital and Medellin. Tomado de: https://colombiareports.com/fatal-landslide-blocks-road-between-colombias-capital-and-medellin/.; Confluence. (2021). Sensor T/H/CE de suelo CERES - IoT. Tomado de: https://nazaries.atlassian.net/wiki/spaces/IOT/pages/4654272/Sensor+T+H+CE+de+suelo+CERES.; CORTOLIMA. (s.f). Pérdida de suelos. Corporación Autónoma Regional del Tolima. Tomado de: https://www.cortolima.gov.co/sites/default/files/images/stories/centro_documentos/pom_totare/diagnostico/m_212perdida_de_suelos_totare.pdf.; Datos abiertos. (2021). Gov.co - Datos abiertos. Tomado de: https://www.datos.gov.co/.; Dorado, J.E. (2020). SISTEMA DE MONITOREO Y CONTROL DE ALERTA TEMPRANA DEL DESBORDAMIENTO DE UN RÍO (Tesis de grado). Universidad Piloto de Colombia. Tomado de: http://repository.unipiloto.edu.co/bitstream/handle/20.500.12277/7475/TESIS%20DE%20GRADO.pdf?sequence=1&isAllowed=y.; Duan, X., Bai, Z., Rong, L., Li, Y., Ding, J., Tao, Y., Li, J., Li, J., & Wang, W. (2020). Investigation method for regional soil erosion based on the Chinese Soil Loss Equation and high-resolution spatial data: Case study on the mountainous Yunnan Province, China. CATENA, 184, 104237. Tomado de: https://doi.org/https://doi.org/10.1016/j.catena.2019.104237.; FAO (Food and Agriculture Organization of the United Nations). (s.f). Lang & Water. Universal Soil Loss Equation. Tomado de: http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1236441/.; FloodList. (2017). Colombia – 11 Departments Hit by Heavy Rain, Floods and Landslides. Tomado de: http://floodlist.com/america/colombia-11-departments-floods-march-2017.; FloodList. (2020). Colombia – Rains Trigger Deadly Landslide in Antioquia. Tomado de: http://floodlist.com/america/colombia-landslide-floods-antioquia-november-2020.; Humanitarian RESPONSE. (2018). Colombia: Snapshot Desastres Naturales 2017 - OCHA Services. Tomado de: https://www.humanitarianresponse.info/en/operations/colombia/infographic/colombia-snapshot-desastres-naturales-2017.; IDEAM. S.f. Datos IDEAM. IDEAM: Instituto de Hidrología, Meteorología y Estudios Ambientales. Tomado de: http://www.ideam.gov.co/.; Insurance Information Institute (iii). (2019). Current graph - World Natural Catastrophes, 2019. Tomado de: https://www.iii.org/graph-archive/96134.; Jimenez N, A. (2005). LA INVESTIGACIÓN DE SUELOS EROSIONADOS: MÉTODOS E ÍNDICES DE DIAGNÓSTICO. Minería y Geología, vol. 21, num 2, 2005, pp. 1-18. Tomado de: https://www.redalyc.org/pdf/2235/223516049002.pdf.; Kamatchi Sundari, V., Nithyashri, J., Kuzhaloli, S., Subburaj, J., Vijayakumar, P., & Subha Hency Jose, P. (2021). Comparison analysis of IoT based industrial automation and improvement of different processes – review. Materials Today: Proceedings. Tomado de: https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.338.; Kong, D., Lin, Z., Wang, Y., & Xiang, J. (2021). Natural disasters and analysts’ earnings forecasts. Journal of Corporate Finance, 66, 101860. Tomado de: https://doi.org/https://doi.org/10.1016/j.jcorpfin.2020.101860.; Local Government Association. (s.f). Flood risk and flood risk management. Tomado de: https://www.local.gov.uk/topics/severe-weather/flooding/flood-and-coastal-erosion-risk-management/flood-risk-and-flood-risk.; McIvor, I., Youjun, H., Daoping, L., Eyles, G., & Pu, Z. (2014). Agroforestry: Conservation Trees and Erosion Prevention (N. K. B. T.-E. of A. and F. S. Van Alfen (ed.); pp. 208–221). Academic Press. Tomado de: https://doi.org/https://doi.org/10.1016/B978-0-444-52512-3.00247-3.; NETWORKWORLD. (2020). What is IoT? The internet of things explained. Tomado de: https://www.networkworld.com/article/3207535/what-is-iot-the-internet-of-things-explained.html.; Newark. (2014). A Brief History of Single Board Computers - electronicdesign. Tomado de: https://www.newark.com/wcsstore/ExtendedSitesCatalogAssetStore/cms/asset/pdf/americas/common/NE14-ElectronicDesignUncovered-Dec14.pdf.; OCHA. (2018). COLOMBIA Desastres Naturales 2017. Tomado de: https://www.humanitarianresponse.info/sites/www.humanitarianresponse.info/files/documents/files/20180420_snapshot_desastres_naturales_2017_-_v2.pdf.; OMM. (2016). Laboratorio virtual de la OMM para la enseñanza y formación en meteorología satelital. OMM - Organización Meteorológica Mundial. Tomado de: https://public.wmo.int/es/resources/bulletin/laboratorio-virtual-de-la-omm-para-la-ense%C3%B1anza-y-formaci%C3%B3n-en-meteorolog%C3%ADa.; Organización Mundial de la Salud (OMS). (s.f). Acción sanitaria en las crisis humanitarias - Inundaciones. Tomado de: https://www.who.int/hac/techguidance/ems/floods/es/.; Organización Mundial de la Salud (OMS). (s.f). Acción sanitaria en las crisis humanitarias - Corrimientos de tierra. Tomado de: https://www.who.int/hac/techguidance/ems/landslides/es/.; Organization of American States (OAS). (s.f). La erosión hídrica y las crecidas. Tomado de: https://www.oas.org/dsd/publications/Unit/oea23s/ch16.htm.; Osenga, E. C., Arnott, J. C., Endsley, K. A., & Katzenberger, J. W. (2019). Bioclimatic and Soil Moisture Monitoring Across Elevation in a Mountain Watershed: Opportunities for Research and Resource Management. Water Resources Research, 55(3), 2493–2503. Tomado de: https://doi.org/https://doi.org/10.1029/2018WR023653.; Paulino, Â., Guimarães, L., & Shiguemori, E. (2019). Hybrid Adaptive Computational Intelligence-based Multisensor Data Fusion applied to real-time UAV autonomous navigation. INTELIGENCIA ARTIFICIAL, 22, 162–195. Tomado de: https://doi.org/10.4114/intartif.vol22iss63pp162-195.; Pellet, C. and Hauck, C. (2017) Monitoring soil moisture from middle to high elevation in Switzerland: set-up and first results from the SOMOMOUNT network, Hydrol. Tomado de: Earth Syst. Sci., 21, 3199–3220, https://doi.org/10.5194/hess-21-3199-2017.; PreventivoWeb. (s.f). Disaster Data & statistics. Tomado de: https://www.preventionweb.net/knowledgebase/disaster-statistics.; R2D3. (s.f). A visual introduction to machine learning. Tomado de: http://www.r2d3.us/visual-intro-to-machine-learning-part-1/.; Raspberrypi. (s.f). Raspberry Pi 3 Model B+. Tomado de: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/.; Reggio, G., Leotta, M., Cerioli, M., Spalazzese, R., & Alkhabbas, F. (2020). What are IoT systems for real? An experts’ survey on software engineering aspects. Internet of Things, 12, 100313. Tomado de: https://doi.org/https://doi.org/10.1016/j.iot.2020.100313.; Scikit-learn.org. (2021). Scikit-learn machine learning in python. Tomado de: https://scikit-learn.org/stable/index.html.; sdxcentral. (s.f). IoT Definitions & Basics. Tomado de: https://www.sdxcentral.com/5g/iot/definitions/.; Thangamani, T., Prabha, R., Prasad, M., Kumari, U., KV, R., & Abidin, S. (2021). IoT Defense Machine Learning: Emerging Solutions and Future Problems. Microprocessors and Microsystems, 104043. Tomado de: https://doi.org/https://doi.org/10.1016/j.micpro.2021.104043.; Thibaud, M., Chi, H., Zhou, W., & Piramuthu, S. (2018). Internet of Things (IoT) in high-risk Environment, Health and Safety (EHS) industries: A comprehensive review. Decision Support Systems, 108, 79–95. Tomado de: https://doi.org/https://doi.org/10.1016/j.dss.2018.02.005.; towards data science. (2017). Types of Machine Learning Algorithms You Should Know. Tomado de: https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861.; UNGRD. 2018. Implementación del Sistema Nacional de información para la gestión del riesgo de desastres. Tomado de: http://portal.gestiondelriesgo.gov.co/Documents/Proyectos-Inversion/2015/proyecto_sistema_integrado_informacion_2015_2018.pdf.; Universidad de Chile. (s.f). Laboratorio de Meteorología (LM - DGF). Tomado de: http://uchile.cl/i91300.; University, C. for H. and R. R.-C.-C., University, C. for I. E. S. I. N.-C.-C., & Bank, I. B. for R. and D.-T. W. (2005). Global Multihazard Mortality Risks and Distribution. NASA Socioeconomic Data and Applications Center (SEDAC). Tomado de: https://doi.org/10.7927/H41J97NM.; University, C. for H. and R. R.-C.-C., University, C. for I. E. S. I. N.-C.-C., & Bank, I. B. for R. and D.-T. W. (2005). Global Landslide Mortality Risks and Distribution. NASA Socioeconomic Data and Applications Center (SEDAC). Tomado de: https://doi.org/10.7927/H4JH3J4N.; Waze. (2021). Acerca de Waze: Mapas con datos de tráfico en tiempo real. Tomado de: https://www.waze.com/es/about.; World Health Organization. (s.f). Lanslides. Tomado de: https://www.who.int/health-topics/landslides#tab=tab_2.; Zhang, H., Zhang, R., Qi, F., Liu, X., Niu, Y., Fan, Z., Zhang, Q., Li, J., Yuan, L., Song, Y., Yang, S., & Yao, X. (2018). The CSLE model based soil erosion prediction: Comparisons of sampling density and extrapolation method at the county level. CATENA, 165, 465–472. Tomado de: https://doi.org/https://doi.org/10.1016/j.catena.2018.02.007.; E. A. Avila Gomez, A. M. Martinez Daza, y S. A. Pinzon, “Estado de arte sobre infraestructura telemática para el teletrabajo", Visión Electrónica, vol. 11, no. 2, pp. 261-278, 2017.; F. E. Pineda Torres y A. de J. Chica Leal, “Propuesta de un estimador de fallas usando fracciones coprimas", Visión Electrónica, vol. 9, no. 2, pp. 172-181, 2015. https://doi.org/10.14483/22484728.11025.; F. N. Giraldo Ramos, F. Gonzalez, y E. Camargo Casallas, “Algoritmos de procesamiento de imágenes satelitales con tranformada Hough", Visión Electrónica, vol. 5, no. 2, pp. 26-41, 2011. https://doi.org/10.14483/22484728.3568.; H. J. Eslava Blanco, N. Serrano P., y F. A. Castro, “Sistema de alerta de riesgos en hogares mediante SMS”, Visión Electrónica, vol. 6, no. 2, pp. 15-30, 2012. https://doi.org/10.14483/22484728.3883.; J. O. Castellanos Millán, V. H. Amarillo Calvo, y R. M. Poveda Chaves, “Problema de asignación quadrática (pac) sobre gpu a través de una pga maestro-esclavo”, Visión Electrónica, vol. 10, no. 2, pp. 179-183, 2016.; J. C. Najar-Pacheco, J. A. Bohada-Jaime, y W. Y. Rojas-Moreno, “Vulnerabilidades en el internet de las cosas", Visión Electrónica, vol. 13, no. 2, pp. 312-321, 2019.; J. A. Londoño Alzate, A. Fonseca Velásquez, y E. A. Delgadillo, “Laboratorios remotos: estudio de caso con una planta térmica didáctica", Visión Electrónica, vol. 12, no. 2, pp. 265-277, 2018. https://doi.org/10.14483/22484728.14263.; J. Cortina, J. López-Lezama, And N. Muñoz-Galeano, “Metaheurísticas Aplicadas Al Problema De Interdicción En Sistemas De Potencia,” Inf. Tecnológica, Vol. 29, No. 2, Pp. 73–88, Mar. 2018, Doi:10.4067/S0718-07642018000200073.; C. A. Mora, “Problema De Interdicción De La Red Eléctrica.” Universidad Distrital Francisco José De Caldas, Bogotá, D. C., P. 16, 2020, [Online]. Available: Https://Drive.Google.Com/File/D/1qxg7pvhy1dndz9sgr0qug4ldnyzmpi5-/View?Usp=Sharing.; B. Mundial And Colombia, Análisis De La Gestión Del Riesgo De Desastres En Colombia, Primera. Bogotá, D. C.: Equilatero, 2012.; V. A. Gómez, R. A. Peña, And C. Hernández, “Identificación Y Localización De Fallas En Sistemas De Distribución Con Medidores De Calidad Del Servicio De Energía Eléctrica,” Inf. Tecnol., Vol. 23, No. 2, Pp. 109–116, 2012, Doi:10.4067/S0718-07642012000200013.; F. Olivari, “Diseño, Construcción Y Prueba De Un Sensor Sísmico Para Edificaciones.” Valparaiso, Nov. 2017, Accessed: Nov. 11, 2020. [Online]. Available: Http://Opac.Pucv.Cl/Pucv_Txt/Txt-2500/Ucc2795_01.Pdf.; C. Bonilla And Y. Gonzales, “Dispositivo De Adquisición De Señales Sísmicas”, Visión Electrónica, 2019, Accessed: Nov. 11, 2020. [Online]. Available: Http://Repository.Udistrital.Edu.Co/Bitstream/11349/22441/1/Bonillaseguracamilaalejandra2019.Pdf.; F. Torres And K. Chaca, “Diseño E Implementación De Un Digitalizador Sísmico De 4 Canales Con Acceso Ip,” Universidad De Cuenca, 2015.; D. García, J. Rio, D. Toma, And M. Blanco, “Array Sísmico Inalámbrico Y De Parámetros Ambientales Para La Caracterización De Precursores De Actividad Volcánica,” Universitat Politecnica De Catalunya, 2017.; Á. Herrera, “Prototipo Hardware De Bajo Coste Para La Alerta Sísmica Temprana Local,” 2016.; G. Martinez, “Diseño Y Construcción De Un Prototipo De Detección De Fallas Serie Para Disminuir El Tiempo De Interrupciones En El Sistema Eléctrico De Distribución,” Escuela Politécnica Nacional, 2019.; V. A. Gómez, R. A. Peña, And C. Hernández, “Identificación Y Localización De Fallas En Sistemas De Distribución Con Medidores De Calidad Del Servicio De Energía Eléctrica,” Inf. Tecnol., Vol. 23, No. 2, Pp. 109–116, 2012, Doi:10.4067/S0718-07642012000200013.; "Redes Sin", Xm, 2020, Accessed: Dic. 9, 2020. [En línea]. Available: Https://Www.Xm.Com.Co/Paginas/Transmision/Redes-Sistema-Interconectado-Nacional.Aspx.; R. Chokshi, “MPU-6000 and MPU-6050 Register Map and Descriptions Revision 4.0 MPU-6000/MPU-6050 Register Map and Descriptions,” MPU-6000 MPU-6050 Regist. Map Descr., vol. 1, no. 408, p. 48, 2012.N. Wolfberg, “Storage and retrieval for image and video databases”, SPIE Proceedings, pp. 27-32, 1993.; InvenSense Inc., “MPU-9150 Register Map and Descriptions,” vol. 1, no. 408, pp. 1–52, 2013.; “Raspberry pi foundation", Raspberrypi.org, 2020. [En linea]. Disponible en: https://www.raspberrypi.org.; VMware, “¿Qué son las redes definidas por software (SDN)? %7C Glosario de VMware %7C ES.” https://www.vmware.com/es/topics/glossary/content/software-defined-networking.html (accessed Sep. 22, 2021).; Citrix, “¿Qué son las redes definidas por software (SDN)? - Citrix Mexico.” https://www.citrix.com/es-mx/solutions/app-delivery-and-security/what-is-software-defined-networking.html (accessed Sep. 22, 2021).; M. Marchetti, “The road to riches,” Sales Mark. Manag., vol. 150, no. 10, p. 128, 2013, doi:10.2307/j.ctvc77cz1.22.; M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Software-Defined Networking Security: Pros and Cons,” IEEE Commun. Mag., vol. 53, no. September, pp. 48–54, 2015, doi:10.1109/MCOM.2015.7120048.; A. Feghali, R. Kilany, and M. Chamoun, “SDN security problems and solutions analysis,” Int. Conf. Protoc. Eng. ICPE 2015 Int. Conf. New Technol. Distrib. Syst. NTDS 2015 - Proc., 2015, doi:10.1109/NOTERE.2015.7293514.; S. Sidhu and H. Gupta, “A Security Mechanism for Software Defined Vulnerabilities,” 2019 4th International Conference on Information Systems and Computer Networks, ISCON 2019, pp. 59–62, 2019, doi:10.1109/ISCON47742.2019.9036247.; A. Pradhan and R. Mathew, “Solutions to Vulnerabilities and Threats in Software Defined Networking (SDN),” Procedia Comput. Sci., vol. 171, no. 2019, pp. 2581–2589, 2020, doi:10.1016/j.procs.2020.04.280.; F. W. Sanabria Navarro, J. G. Bustos, and W. E. Castellanos Hernández, “Adaptive video transmission over software defined networks,” Visión electrónica, vol. 13, no. 1, pp. 152–161, Feb. 2019, doi:10.14483/22484728.14398.; J. C. Najar Pacheco, “Exposición del activo más valioso de la organización, la ‘información,’” Visión electrónica, vol. 11, no. 1, pp. 107–115, Jun. 2017, doi:10.14483/22484728.12345.; A. M. Felicísimo, «Conceptos básicos, modelos y simulación.,» 2009. [En línea]. Available: http://www6. uniovi. es/~ feli/CursoMDT/Tema_1. pdf. [Último acceso: 10 Agosto 2021].; N. M. Chirinos y S. R. González, «Consideraciones teórico-epistémicas acerca del concepto de modelo,» Telos, vol. 13, nº 1, pp. 51-64, 2011.; E. López Moreno, Construcción de ciudades más equitativas. Políticas públicas para la inclusión en América Latina., Bogotá: CAF, 2014.; J. Linares-García, A. Hernández-Quirama y H. M. Rojas-Betancur, «Accesibilidad espacial e inclusión social: experiencias de ciudades incluyentes en Europa y Latinoamérica,» Civilizar: Ciencias Sociales y Humanas, vol. 18, nº 35, pp. 115-128, 2018.; É. A. López López y É. L. Álvarez-Aros, «Estrategia en ciudades inteligentes e inclusión social del adulto mayor,» Paakat: Revista de Tecnología y Sociedad, vol. 11, nº 20, pp. 1-29, 2021.; J. A. IREGUI DUARTE, «INCLUSIÓN DIGITAL: UN ANÁLISIS DE LA ESTRATEGIA DE TELETRABAJO EN BOGOTÁ,» PONTIFICIA UNIVERSIDAD JAVERIANA, BOGOTÁ D.C., 2018.; CMSI, «Declaración de Principios. Construir la Sociedad de la Información: un desafío global para el nuevo milenio,» CMSI, Ginebra, 2004.; K. Frey, «Gobernanza electrónica urbana e inclusión digital: experiencias en ciudades europeas y brasileñas,» Nueva Sociedad, nº 196, pp. 109-124, 2005.; D. Dávila, «Inclusión digital en colombia: Un análisis del plan vive digital I,» Pontificia Universidad Javeriana, Bogotá D.C., 2017.; F. Duarte y H. F. Pires, «INCLUSIÓN DIGITAL, TRES CONCEPTOS CLAVE: CONECTIVIDAD, ACCESIBILIDAD, COMUNICABILIDAD,» REVISTA ELECTRÓNICA DE RECURSOS EN INTERNET SOBRE GEOGRAFÍA Y CIENCIAS SOCIALES, nº 150, 2011.; E. Van der Klift y N. Kunc, «Beyond benevolence: Friendship and the politics of help,» de Creativity and collaborative learning: A practical guide to empowering students and teachers, Baltimore, Paul Brookes, 1994, pp. 391-401.; M. Sapon-Shevin, «La inclusión real: Una perspectiva de justicia social,» Revista de Investigación en Educación, vol. 3, nº 11, pp. 71-85, 2013.; G. A. Toledo, «Accesibilidad digital para usuarios con limitaciones visuales,» Universidad Nacional de la Plata, 2012.; Comisión Europea, «Aprovechar las TIC para la acción social: un programa de voluntariado digital,» Unión Europea, Luxemburgo, 2014.; E. M. Tapia, E. Munguia, «Activity recognition in the home setting using simple and ubiquitous sensors,» de international conference on pervasive computing, Berlin, Heidelberg, Springer Berlin Heidelberg, 2004, pp. 158--175.; C. Liming et al, «Sensor-based activity recognition,» IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, nº 6, pp. 790 - 808, 2012.; N. Wei et al, «Human activity detection and recognition for video surveillance,» de 2004 IEEE International Conference on Multimedia and Expo (ICME), IEEE, 2004, pp. 719--722.; M. S. Ryoo, «Human activity prediction: Early recognition of ongoing activities from streaming videos,» de 2011 International Conference on Computer Vision, IEEE, 2011, pp.; M. S. Ryoo, «Human activity prediction: Early recognition of ongoing activities from streaming videos,» de 2011 International Conference on Computer Vision, IEEE, 2011, pp. 1036--1043.; R. Nishkam, D. Nikhil et al., «Activity recognition from accelerometer data,» de Aaai, 2005, pp. 1541--1546.; Intille, L. Bao and S. S., «Activity recognition from user-annotated acceleration data,» de International conference on pervasive computing, 2004.; N. Belapurkar, S. Sagar and A. Baris, «The Case for Ambient Sensing for Human Activity Detection,» de Proceedings of the 8th International Conference on the Internet of Things, New, York, 2018.; D. Anguita et al, International workshop on ambient assisted living, Springer, 2012.; E. Kim, S. Helal and D. Cook, «Human activity recognition and pattern discovery,» IEEE Pervasive Computing/IEEE Computer Society [and] IEEE Communications Society, vol. 9, nº1, p. 48, 2010.; B. P. Clarkson, Life patterns: structure from wearable sensors, Massachusetts Institute of Technology, 2002.; J. Shotton, T. Sharp et al., «Real-time Human Pose Recognition in Parts from Single Depth Images,» Commun. ACM, vol. 56, nº 1, pp. 116--124, 2013.; R. Poppe, «A survey on vision-based human action recognition,» Image and vision computing, vol. 28, nº 6, pp. 976--990, 2010.; J. K Aggarwal and M. S. Ryoo, «Human activity analysis: A review,» ACM Computing Surveys (CSUR), vol. 43, nº 3, p. 16, 2011.; D. Weinland, R. Ronfard and Ed Boyer, «A survey of vision-based methods for actionrepresentation, segmentation and recognition,» Computer vision and image understanding, vol. 115, nº 2, pp. 224 -- 241, 2011.; V. Argyriou, M. Petrou and S. Barsky, «Photometric stereo with an arbitrary number of illuminants,» Computer Vision and Image Understanding, vol. 14, nº 8, pp. 887--900, 2010.; R. Chavarriaga, H. Sagha et al, «The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition,» Pattern Recognition Letters, vol. 34, nº 15, pp. 2033--2042, 2013.; T. Plötz, N. Y. Hammerla and P. Oliver, «Feature Learning for Activity Recognition in Ubiquitous Computing» de Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, AAAI Press, 2011, pp. 1729--1734.; A. Ferscha and F. Mattern, Pervasive Computing: Second International Conference, PERVASIVE 2004, Linz, Vienna: Springer, 2004.; N. Ravi, D. Nikhil et al, «Activity recognition from accelerometer data,» de Aaai, 2005, pp. 1541--1546.; L. B. a. S. Intille, «Activity recognition from user-annotated acceleration data,» de International conference on pervasive computing, 2004.; G. Z. Yang, and M. Yacoub, Body Sensor Networks. 2006, London: Springer, 2006.[22]. D. Anguita, A. Ghio et al, «A Public Domain Dataset for Human Activity Recognition using Smartphones,» de 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), 2013.; D. Roggen, K. Forster at al, «OPPORTUNITY: Towards opportunistic activity and context recognition systems,» de 2009 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks \& Workshops, 2009.; A. M. Khan, Y-K. Lee et al, «Human activity recognition via an accelerometer-enabled smartphone using kernel discriminant analysis,» de 2010 5th international conference on future information technology, 2010.; J. Reyes-Ortiz, L. Oneto et al, «Transition-aware human activity recognition using smartphones,» Transition-aware human activity recognition using smartphones, vol. 171, pp. 754--767, 2016.; S. I. Yang and S. B. Cho, «Recognizing human activities from accelerometer and physiological sensors,» de 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008.; R. Poovandran, «Human activity recognition for video surveillance,» de 2008 IEEE International Symposium on Circuits and Systems, 2008.; C. T. a. V. Hlavac, «Pose primitive based human action recognition in videos or still images,» de 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.; J. S. Caros, O. Chetelat, P. Celka et al, «Very low complexity algorithm for ambulatory activity classification,» de EMBEC, 2005.; M. F. Bin Abdullah et al, «Classification Algorithms in Human Activity Recognition using Smartphones,» World Academy of Science, Engineering and Technology International Journal of Biomedical and Biological Engineering, vol. 6, nº 1, 2012.; O. D. Lara and M. A. Labrador, «A survey on human activity recognition using wearable sensors,» pp. 1192-1209, 2013.; N. Robertson and I. Reid, «A general method for human activity recognition in video,» Computer Vision and Image Understanding, vol. 104, nº 2-3, pp. 232--248, 2006.; C. Thurau and V Hlavac, «Pose primitive based human action recognition in videos or still images,» de 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.; R. Poovsndran, «Human activity recognition for video surveillance,» de 2008 IEEE International Symposium on Circuits and Systems, 2008.; W. Niu, J. Long, D. Han and W. Yuan-Fang , «Human Activity Detection and Recognition for Video Surveillance,» 2004 IEEE International Conference on Multimedia and Expo (ICME), vol. 1, pp. 719-722, 2004.; J. M. Ermes, J. Parkka, J. Mantyjarvi, and I. Korhonen, «Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions,» TITB, vol. 12, nº 1, pp. 20--26, 2008.; X. Long, B. Yin and R. M. Aarts, «Singleaccelerometer-based daily physical activity classification,» de EMBS, 2009.; D. Karantonis, M. Narayanan, M. Mathier, et al, «Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring,» TITB, vol. 10, nº 1, pp. 156-167, 2006.; E. Heinz, K. Kunze, M. Gruber et al, «Using wearable sensors for Real-Time recognition tasks in games of martial arts - an initial experiment,» de GIC´06, 2006.; H. Markus, H. Takafumi, et al, «Chi-ball, an interactive device assisting martial arts,» de CHI´03, 2003.; J. Liao,Y. Bi and C. Nugent , «Activity recognition for smart Homes using Dempster-Shafer theory of evidence based on a revised lattice structure,» de 2010 Sixth International Conference on Intelligent Environments, 2010.; F. Cicirelli,G. Fortino, A. giordano et al, «On the design of smar homes framework for activyty recpgnition in home environment,» journal of medical systems, vol. 40, nº 9, p. 200, 2016.; S. C. Mukhopadhyay, «Wearable sensors for human activity monitoring: A review,» IEEE Sensors Journal, vol. 15, p. 1321–1330, 2015.; A. Reiss and D. Stricker, «Introducing a new benchmarked dataset for activity monitoring,» de International Symposium on Wearable Computers, 2012.; W. H. Wu, A. A. Bui, M.A. Batalin et al, «MEDIC: medical embedded device for individualized care,» Artificial Intelligence in Medicine, vol. 42, nº 2, pp. 137-152, 2008.; E. V. Someren, B. Vonk, W. Thijssen, J. Speelman et al, «A new actigraph for long-term registration of the duration and intensity of tremor and movement,» Biomedical Engineering, vol. 45, nº 3, pp. 386395, 1998.; D. J. Walker, P. S. Heslop, C. J. Plummer, et al, «A continuous patient activity,» Physiological Measurement, vol. 18, nº 1, pp. 49-59, 1997.; N. Hu, Z. Lou, G. Englebienne and B. Kröse, B., «Learning to Recognize Human Activities from Soft Labeled Data,» de Robotics: Science and Systems X, Berkeley, 2014.; G. Wu and S. Xue, «Portable preimpact fall detector with inertial sensors,» Neural Systems and Rehabilitation Engineering IEEE Transactions on,, vol. 16, nº 2, p. 178–183, 2008.; H. J. Busser, J. Ott, R. C. van Lummel et al, «Ambulatory monitoring of children’s activity,» Medical Engineering & Physics, vol. 19, nº 5, pp. 440-445, 1997.; B. G. Steele, B. Belza, K. Cain, C. Warms,, «Bodies in motion: Monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease,» Rehabilitation Research and Development, vol. 40, nº 5, 2003.; S. Bosch, M. Marin-Perianu, et al, «Keep on moving! activity monitoring and stimulation using wireless sensor networks,» de European Conference on Smart Sensing and Context, 2009.; F. Chen, Q. Zhong and F. Cannella, «Hand gesture modeling and recognition for human and robot interactive assembly using hidden markov models,» International Journal of Advanced Robotic Systems, vol. 12, nº 4, p. 48, 2015.; Ministerio de Minas y Energía, [En línea]. Available: https://www.minenergia.gov.co/ [Ultimo acceso: 24 agosto 2021].; Instituto de Planificación y Promoción de Soluciones Energéticas para Zonas no Interconectadas IPSE, [En línea]. Available: https://ipse.gov.co/ [Último acceso: 24 08 2021].; Unidad de Planeación Minero-Energética, [En línea]. Available: https://www1.upme.gov.co/Paginas/default.aspx [Último acceso: 24 08 2021].; Comisión de Regulación de Energía y Gas, [En línea]. Available: https://www.creg.gov.co/ [Último acceso: 6 septiembre 2021].; La Cámara Colombiana de Energía, [En línea]. Available: https://www.ccenergia.org.co/ [Ultimo acceso: 08 septiembre 2021].; Fondo de Energías No Convencionales y Gestión Eficiente de la Energía [En línea]. Available: https://fenoge.com/ [Último acceso: 7 septiembre 2021].; A. M. M. H. A. Al Hasib, «A Comparative Study of the Performance and Security Issues of AES and RSA Cryptography,» de Convergence Information Technology, International Conference, Finlandia, 2008.; Shamir R.L. Rivest and L. Adleman, (1978). A Method for Obtaining Digital Signatures and PublicKey Cryptosystems, Magazine Communications of the ACM, 1978.Volumen 21 págs. 120–126. https://doi.org/10.1145/359340.359342.; Castro Lechtaler, A., Cipriano, M., García, E., Liporace, J., Maiorano, A., Malvacio, E. and Tapia, N., (2021). Estudio de técnicas de criptoanálisis.XXI Workshop de Investigadores en Ciencias de la Computación. [online] Sedici.unlp.edu.ar. Available at: http://sedici.unlp.edu.ar/handle/10915/77269.; J. C. Mendoza T, «Universidad Politecnica Salesiana de Ecuador,» [En línea]. Available: https://dspace.ups.edu.ec/bitstream/123456789/8185/1/Demostraci%C3%B3n%20de%20cifrado%2 0sim%C3%A9trico%20y%20asim%C3%A9trico.pdf.; W. Dent, «Hybrid Cryptography,» 3 Junio 2009. [En línea]. Available: https://eprint.iacr.org/2004/210.ps.; Escobar Molero Gabriel. (2011). Clúster de alto rendimiento en un cloud: ejemplo de aplicación en criptoanálisis de funciones hash. Universidad de Almería. pg 60. http://repositorio.ual.es/bitstream/handle/10835/1202/PFC.pdf?sequence=1.; A. Pousa, «Universidad Nacional de la Plata,» Diciembre 2011. [En línea]. Available: https://postgrado.info.unlp.edu.ar/wp-content/uploads/2014/07/Pousa_Adrian.pdf.; A. Lenstra, «Key Lengths,» [En línea]. Available: https://infoscience.epfl.ch/record/164539/files/NPDF-32.pdf.; R. Avinash, A. Potnis, S. Kumar, P. Dwivedy y S. Soofi, «Internation Journal Of Engineering Research and Applications,» Agosto 2017. [En línea]. Available: http://www.ijera.com/papers/Vol7_issue8/Part-1/O0708019094.pdf.; A. Faget, «What are Cryptographic Signatures? %7C Introduction to the Most Common Schemes,» 14 Noviembre 2018. [En línea]. Available: https://coindoo.com/what-are-cryptographic-signaturesintroduction-to-the-most-common-schemes/.; Goldreich, O. (2000). Modern Cryptography, Probabilistic Proofs and Pseudorandomness (Second Edition - author's copy). Springer.pag 1-2, consultado en http://www.wisdom.weizmann.ac.il/~oded/PDF/mcppp-v2.pdf.; Muñoz, R., Muñoz, R., & completo, V. (2021). Algoritmo RSA en aplicación web. Retrieved 12 July 2021, from http://criptografiaverm1.blogspot.com/2013/07/tarea-5-algoritmo-rsa-en-aplicacionweb.html.; Eslava Blanco, H. J., Rocha, J. F., & Morales, J. I. (2011). Estudio de tráfico sobre una plataforma de virtualización. Visión electrónica, 5(2), 78-94. https://doi.org/10.14483/22484728.3572.; Congreso de Colombia. ley 1636 de 2013.; Lei Chen and Nansheng Yao, "Publishing Linked Data from relational databases using traditional views," 2010 3rd International Conference on Computer Science and Information Technology, 2010, pp. 9-12, doi:10.1109/ICCSIT.2010.5563576.; Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M. A., Saggion, H., Petrak, J., Li, Y., y Peters, W. (2017). Text Processing with GATE (Version 6).; C. Gardent and S. Narayan Multiple Adjunction in Feature-Based Tree-Adjoining Grammar In Computational Linguistics, Volume 41, Issue 1 - March 2015.; LM Vilches-Blázquez, B Villazón-Terrazas, O Corcho, A Gómez-Pérez. International Journal of Digital Earth 7 (7), 554-575, 2014.; R. Jessop, “El Futuro del Estado Capitalista”, Madrid: Ed. Catarata, Pag.124,2007.; M. Castells e Himanen, “Modelos de Desarrollo en la Era Global de la Información: Construcción de un Marco Analítico” en Castells e Himanen “reconceptualización del desarrollo en la era global de la información”. Santiago de Chile: FCE, Pag. 27, 2017.; C. H. Caicedo y A. Smida, “Intensidad informacional para la longitudinalidad asistencial en sistemas de salud", Visión Electrónica, vol. 10, no. 1, pp. 83-95, 2016. https://doi.org/10.14483/22484728.11612.; J. Van Dijck, “La Cultura de la Conectividad”, Siglo XXI. Bs. A. Pag 268, 2016.; S. Zuboff, “Atrapados en la era del capitalismo de Vigilancia y la Economía Predictiva”, El Espectador, p. 20, enero 10, 2020.; P. Virno, “Cuando el Verbo se hace Carne”. Madrid: Mapas, p.20, 2005.; E. Sadin, “La Siliconización del Mundo”, Bs As: Caja Negra, p.108, 2018.; M. Doueihi, “La Gran Conversión Digital”, Bs. As.: F.C.E. p. 21, 2010.; R. Echeverría. “Ontología del Lenguaje”, Chile: JC Sáez editor, Pag. 24 1997.; J.F. Lyotard, “La condition postmoderne: rapport sur le savoir”. París: Minuit, 1979.; O. Dallera, “La sociedad como sistema de comunicación. La teoría sociológica de Niklas Luhmann en 30 lecciones”, Buenos Aires: editorial Biblos, 2012.; S. Rozas,” Lenguaje y performatividad”, Psicología, Conocimiento y Sociedad, vol 6, no.2, pp. 280-298, 2016.; J. L. Austin, “Cómo hacer cosas con palabras”, Barcelona: Paidós, 1982.; S. Belli, R. Harré, L. Íñiguez, “Emociones en la tecnociencia: la performance de la velocidad”, Prisma Social, 3, pp. 1-41, 2009.; A. Heller, “Sociología de la vida cotidiana”, J. F. Yvars y E. Pérez Nadal (trads.). Barcelona: Península, 1977.; L. F. Aguilar, “En torno del concepto de racionalidad de Max Weber”, en l. Olivé, “Racionalidad Ensayos sobre la racionalidad en ética y política, ciencia y tecnología”, México: Siglo XXI Editores, Coediciones Temas: Ética, Filosofía política, Instituto de Investigaciones Filosóficas, 1988.; M. Weber, “El problema de la irracionalidad en las ciencias sociales”, Madrid: Tecnos, 192 p. 1985.; N. Luhmann, “Organización y decisión. Autopoiesis, acción y entendimiento comunicativo”, Rubí (Barcelona): Anthropos, 2005.; C.H., Caicedo E, “Fortalecimiento de la Gestión de la Investigación y la Extensión, condición para el avance del Sistema Nacional de Innovación”. Documento presentado como requisito para cambio de categoría de Profesor Asistente a Profesor Asociado, Bogotá: Facultad de Ingeniería de la Universidad Nacional de Colombia, 2006.; J. March, H. A. Simon, “Teoría de la organización”, Barcelona: Ariel Economía, 1980.; Joffre, Aurégan, Chédotel y Tellier, “Le Management Stratégique per le Projet”, París: Economica, P.45, 2006.; J. Neré, “Le Management de Projet”, Paris: Puf, p.4, 2015.; Garel, Giard y Midler, “Faire de la Recherche en Management de Projet”, París: FNEGE, Vuibert, p.1, 2004.; AMBROSE, W., Parallel translation of Riemannian curvature. Ann. of Math., 64, 337363. 1956.; APOSTOL TOM, Calculus vol. 1 y 2. Segunda edición. Reverté. 1982.; BERGER - GAUDUCHON - MAZET, Le Spectre d′une Varieté Rie- mannianne. Springer - Verlag. New York. 1971.; DO CARMO, M., Differential Geometry of Curves and Super- faces. Printece - Hall, New Jersy. 1976.; DO CARMO, M., Geometría Riemanniana. 2a Ed. Rio de Janeiro. Brasil. 1988.; CARTAN, E., Lecons sur la Géométrie des Espaces de Riemann (2‘eme édition). Paris, Gauthier-Villard. 1951.; FOMENKO, A. T., Symplectic Geometry. Moscuw. 1998.; FRANKEL, T., The Geometry of Physics. Cambrige University. 2001.; GALLOT-HULLIN-LAFONTAINE, Riemannian Geometry. 2a ed., Springer. 1990.; GUILLEMIN & POLLACK, Differential Topology. Prentice - Hall. 1974.; LIPSCHUTS MARTIN, Differential Geometry. Mc Graw-Hill. 1969. (Hay versión en Español).; HOWARDS H., HUTCHINGS M., MORGAN F., The isoperimetric Problem on surfaces. Monthly, vol. 106, Number 5, (1999) 430 - 439.; LIMA, ELON LARGE, Curso de Análise. Vol. 1 y 2. Terceira Ed. IMPA-Brasil. 1981.; MUNKRES JAMES, TOPOLOGY a first course. Prentice-Hall.New Jersey. 1975. (Hay versión en Español).; MUNKRES JAMES, Elements of Algebraic Topology. Addison- Wesley. 1984.; MYERS, S. B., Riemannian manifolds with positive mean cur- vatura. Duke Math. J., 8, 401-404. 1941.; NASH, J. F., The imbedding problem for Riemannian manifolds. Ann. of. Math., 63, 2063. 1956.; O’NEILL, B., Semi-Riemannianan Geometry: Aplication to Rela- tivity. University of California. Los Angeles California. Academic Press. 1983. 468 páginas.; POOR, W., Differential Geometric Structures. Dover Publications. New York. 1981.; RIEMANN, B.,Über die Hypothesen, welche der Geometrie zu Grunde liegen. Nature, 8 (183-184), 14-17, 36, 37. 1854.; SPIVAK, M., A comprehensive Introduction to DIFFERENTIAL GEOMETRY. Publish or Perish. 1990. 2.785 páginas en 5 volumenes.; SPIVAK, M., Cálculo en Variedades. Reverté. 1975.; WARNER F. W., Foundations of Differentiable Manifolds and Lie Groups. Springer. 1983.; A. Mouthon, “Los Beneficios de la Inteligencia Artificial,” 2017. https://www.eleconomista.es/firmas/noticias/8716667/11/17/Beneficios-de-la-inteligencia-artificial.html (accessed May 06, 2021).; A. Garcia-Serrano and S. Ossowski, “Inteligencia Artificial Distribuida y Sistemas Multiagentes,” Inteligencia Artificial, vol. 2, no. 6, pp. 1–6, 1998, doi:10.4114/ia.v2i6.614.; A. Turing, “Mind a Quarterly Review of Psychology and Philosophy,” Mind, vol. 8, no. 2, pp. 145– 166, 1899, doi:10.1093/mind/VIII.2.145.; M. A. Salichs, M. Malfaz, and J. F. Gorostiza, “Toma de Decisiones en Robótica,” Revista Iberoamericana de Automática e Informática Industrial RIAI, vol. 7, no. 4, pp. 5–16, 2010, doi:10.1016/s1697-7912(10)70055-8.; M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “Describing textures in the wild,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3606–3613, 2014, doi:10.1109/CVPR.2014.461.; Tensorflow, “TensorFlow 2 Detection Model Zoo.” https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo. md (accessed May 05, 2021).; L. F. Mahecha, N. F. Conde, H. Vacca-González, “Implementación de Redes Neuronales y Procesamiento de Imágenes en el Movimiento de Robots Modulares Tipo Cadena. SOMI XXXV Congreso de Instrumentación CDMX, México, 27 al 29 de octubre de 2021.; R. A. Valdesueiro, “Muestreo digital”, p. 12.; A. Hashemi Fath, F. Madanifar, y M. Abbasi, “Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems”, Petroleum, vol. 6, núm. 1, pp. 80–91, mar. 2020, doi:10.1016/j.petlm.2018.12.002.; L. O. González Salcedo, A. P. Guerrero Zúñiga, S. Delvasto Arjona, y A. L. E. Will, “Artificial Neural Model based on radial basis function networks used for prediction of compressive strength of fiber-reinforced concrete mixes”, Cien.Ing.Neogranadina, vol. 29, núm. 2, pp. 37–52, jun. 2019, doi:10.18359/rcin.3737.; A. Sudou, P. Hartono, R. Saegusa, y S. Hashimoto, “Signal reconstruction from sampled data using neural network”, en Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing, Martigny, Switzerland, 2002, pp. 707–715, doi:10.1109/NNSP.2002.1030082.; A. Ugena, “THE NEWTON NEURAL NET: A NEW APPROXIMATING NETWORK”, Int. J. of Pure and Appl. Math., vol. 82, núm. 4, feb. 2013, doi:10.12732/ijpam.v82i4.13.; N. M. Khan, “Audio Signal Reconstruction Using Cartesian Genetic Programming Evolved Artificial Neural Network (CGPANN)”, p. 6.; L. H. C. Casallas, E. H. M. Alfonso, y M. L. C. Martínez, “Clasificación de Plasmodium Falciparum por estadio en cultivos sincrónicos de eritrocitos”, Visión electrónica, vol. 5, núm. 1, Art. núm. 1, may 2011, doi:10.14483/22484728.3519.; J. A. P. Plaza, D. R. Zapata, y A. T. Tascón, “Implementación de redes neuronales utilizando dispositivos lógicos programables”, Visión electrónica, vol. 1, núm. 1, Art. núm. 1, jun. 2008, doi:10.14483/22484728.250.; O. L. Ramos, D. A. Rojas, y L. A. Góngora, “Reconocimiento de patrones de habla usando MFCC y RNA”, Visión electrónica, vol. 10, núm. 1, Art. núm. 1, jun. 2016, doi:10.14483/22484728.11712.; E. J. G. Monterroza, “Reconocimiento de primitivas 3D, usando autocorrelación y ANFIS”, Visión electrónica, vol. 1, núm. 1, Art. núm. 1, 2008, doi:10.14483/22484728.251.; L. F. P. Martínez, Ó. F. C. Camargo, y J. E. Roa, “Estudio comparativo de técnicas artificiales para la predicción de una serie de tiempo caótica”, Visión electrónica, vol. 2, núm. 2, Art. núm. 2, dic. 2008, doi:10.14483/22484728.792.; A. E. Díaz y L. A. Calderón, “Modelo tridimensional de extremidad inferior basado en imágenes de resonancia magnética”, Visión electrónica, vol. 3, núm. 1, Art. núm. 1, jun. 2009, doi:10.14483/22484728.686.; Ahl´en, J., Sundgren, D., Bengtsson, E.: Application of underwater hyperspectraldata for color correction purposes. Pattern Recognition and Image Analysis 17 (3 2007). https://doi.org/10.1134/S105466180701021X .; Arnold-Bos, A., Malkasse, J.P., Kervern, G.: A preprocessing framework for auto- matic underwater images denoising (3 2005), https://hal.archives-ouvertes.fr/hal- 00494314.; Bazeille, S., Quidu, I., Jaulin, L., Malkasse, J.P.: Automatic underwater image preprocessing. Proceedings of CMM’06 (4 2006).; Cetto, A.M.: La luz: en la naturaleza y en el laboratorio. Fondo de Cultura Econ´omica (2019).; Chambah, M., Semani, D., Renouf, A., Coutellemont, P., Rizzi, A.: Underwa- ter color constancy: Enhancement of automatic live fish recognition (2004), https://hal.archivesouvertes.fr/hal-00263734.; Iqbal, K., Odetayo, M., James, A., Salam, R.A., Talib, A.Z.H.: Enhancing the low quality images using unsupervised colour correction method. IEEE (10 2010). https://doi.org/10.1109/ICSMC.2010.5642311.; Jaffe, J.: Computer modeling and the design of optimal underwater imaging systems. IEEE Journal of Oceanic Engineering 15 (4 1990). https://doi.org/10.1109/48.50695.; McGlamery, B.L.: A computer model for underwater camera systems (3 1980). https://doi.org/10.1117/12.958279.; Schechner, Y., Karpel, N.: Recovery of underwater visibility and structure by polarization analysis. IEEE Journal of Oceanic Engineering 30 (7 2005). https://doi.org/10.1109/JOE.2005.850871.; Sears, F.W., Zemansky, M.W., Young, H.D., Freedman, R.A., Flores Flores, V.A., Rubio Ponce, A.: Fisica universitaria. Addison-Wesley; Pearson Educacion, Mexico (2009), oCLC: 991818413.; Serway, R.A.: Física para ciencias e ingenieria. McGraw-Hill, Mexico (2002), oCLC: 807250137.; Trucco, E., Olmos-Antillon, A.: Self-tuning underwater image restoration. IEEE Journal of Oceanic Engineering 31 (4 2006). https://doi.org/10.1109/JOE.2004.836395.; Wikipedia: Patron de muar´e — wikipedia, la enciclopedia libre (2020).; Pérez, M. A. A. (2009). Espacios De Color RGB, HSI Y Sus Generalizaciones A NDimensiones. PhD thesis, InstitutoNacional de Astrofísica, Óptica y Electrónica.; O. Ronneberger, P. Fischer, y T. Brox, «U-Net: Convolutional Networks for Biomedical Image Segmentation», CoRR, vol. abs/1505.04597, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1505.04597.; V. Badrinarayanan, A. Kendall, y R. Cipolla, «SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation», CoRR, vol. abs/1511.00561, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1511.00561.; S. Liu y W. Deng, «Very deep convolutional neural network based image classification using small training sample size», en 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), 2015, pp. 730-734. doi:10.1109/ACPR.2015.7486599.; J. Long, E. Shelhamer, y T. Darrell, «Fully Convolutional Networks for Semantic Segmentation», CoRR, vol. abs/1411.4038, 2014, [En línea]. Disponible en: http://arxiv.org/abs/1411.4038.; C. Szegedy et al., «Going Deeper with Convolutions», CoRR, vol. abs/1409.4842, 2014, [En línea]. Disponible en: http://arxiv.org/abs/1409.4842.; H. Zhao, J. Shi, X. Qi, X. Wang, y J. Jia, «Pyramid Scene Parsing Network», CoRR, vol. abs/1612.01105, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1612.01105.; K. He, X. Zhang, S. Ren, y J. Sun, «Deep Residual Learning for Image Recognition», CoRR, vol. abs/1512.03385, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1512.03385.; L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, y A. L. Yuille, «DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs», IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, n.o 4, pp. 834-848, 2018, doi:10.1109/TPAMI.2017.2699184.; L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, y A. L. Yuille, «DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs», CoRR, vol. abs/1606.00915, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1606.00915.; L.-C. Chen, G. Papandreou, F. Schroff, y H. Adam, «Rethinking Atrous Convolution for Semantic Image Segmentation», CoRR, vol. abs/1706.05587, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1706.05587.; R. Girshick, J. Donahue, T. Darrell, y J. Malik, «Rich feature hierarchies for accurate object detection and semantic segmentation». 2014.; R. Girshick, «Fast R-CNN». 2015.; S. Ren, K. He, R. Girshick, y J. Sun, «Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks». 2016.; T.-Y. Lin, P. Goyal, R. Girshick, K. He, y P. Dollor, «Focal Loss for Dense Object Detection». 2018.; W. Liu et al., «SSD: Single Shot MultiBox Detector», Lect. Notes Comput. Sci., p. 21-37, 2016, doi:10.1007/978-3-319-46448-0_2.; J. Redmon y A. Farhadi, «YOLO: Real-Time Object Detection». 2018.; J. Redmon y A. Farhadi, «YOLO9000: Better, Faster, Stronger». 2016.; J. Redmon y A. Farhadi, «YOLOv3: An Incremental Improvement». 2018.; F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, y K. Keutzer, «SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \textless1MB model size», CoRR, vol. abs/1602.07360, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1602.07360.; A. G. Howard et al., «MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications», CoRR, vol. abs/1704.04861, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1704.04861.; M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, y L.-C. Chen, «Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation», CoRR, vol. abs/1801.04381, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1801.04381.; G. Huang, S. Liu, L. van der Maaten, y K. Q. Weinberger, «CondenseNet: An Efficient DenseNet using Learned Group Convolutions», CoRR, vol. abs/1711.09224, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1711.09224.; X. Zhang, X. Zhou, M. Lin, y J. Sun, «ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices», CoRR, vol. abs/1707.01083, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1707.01083.; N. Ma, X. Zhang, H.-T. Zheng, y J. Sun, «ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design», CoRR, vol. abs/1807.11164, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1807.11164.; M. Tan, B. Chen, R. Pang, V. Vasudevan, y Q. V. Le, «MnasNet: Platform-Aware Neural Architecture Search for Mobile», CoRR, vol. abs/1807.11626, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1807.11626.; M. Tan y Q. V. Le, «EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks», CoRR, vol. abs/1905.11946, 2019, [En línea]. Disponible en: http://arxiv.org/abs/1905.11946.; M. Cordts et al., «The Cityscapes Dataset for Semantic Urban Scene Understanding». 2016.; J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, y L. Fei-Fei, «ImageNet: A Large-Scale Hierarchical Image Database», 2009.; K. C. L. Wong, M. Moradi, H. Tang, y T. F. Syeda-Mahmood, «3D Segmentation with Exponential Logarithmic Loss for Highly Unbalanced Object Sizes», CoRR, vol. abs/1809.00076, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1809.00076.; M. Willett, “Lessons of the SolarWinds Hack,” Survival (Lond)., vol. 63, no. 2, 2021, doi:10.1080/00396338.2021.1906001.; H. S. Lallie et al., “Cyber security in the age of COVID-19: A timeline and analysis of cyber-crime and cyber-attacks during the pandemic,” Comput. Secur., vol. 105, 2021, doi:10.1016/j.cose.2021.102248.; J. Aguirre, CURSO DE SEGURIDAD INFORMÁTICA Y CRIPTOGRAFÍA, vol. 3.1. 2003.; E. Biham and A. Shamir, “Differential cryptanalysis of DES-like cryptosystems,” J. Cryptol., vol. 4, no. 1, 1991, doi:10.1007/BF00630563.; J. Daemen and V. Rijmen, “AES proposal: Rijndael,” no. December, 1999.; N. Velasquez and N. Pineda, “Diseño e Implementacion de un Prototipo Criptoprocesador AES-Rijndael en FPGA,” Universidad de Los Llanos, 2007.; A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, and A. Poschmann, “PRESENT: An Ultra-Lightweight Block Cipher.; J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw, “The LED block cipher,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2011, vol. 6917 LNCS, doi:10.1007/978-3-642-23951-9_22.; F. Velásquez and J. F. Castaño, “Cryptographic Implementations for Fpga,” Rev. Visión Electron., vol. 5, no. 1, pp. 26–37, 2011.; F. Velásquez and J. A. Castaño, “Implementation of binary finite fields towers of extension 2,” Rev. Visión Electrónica, vol. 7, no. 2, pp. 89–96, 2013.; W. Enríquez, P. Nazate, and O. Marcillo, “Prototipo DAS basado en FPGA de 12 canales para monitoreo geodinámico,” Visión electrónica, vol. 12, no. 1, pp. 73–82, 2018, doi:10.14483/22484728.13782.; C. A. HERNANDEZ and E. JACINTO, “a New Methodology in the Design of Digital Filters Fir on Fpga,” Rev. Visión Electron., vol. 3, no. 2, pp. 40–47, 2009.; L. W. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, “THE SIMON AND SPECK FAMILIES OF LIGHTWEIGHT BLOCK CIPHERS,” Natl. Secur. Agency, p. 42, 2013.; P. Maene and I. Verbauwhede, “Single-cycle implementations of block ciphers,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9542, pp. 131–147, 2016, doi:10.1007/978-3-319-29078-2_8.; S. Abed, R. Jaffal, B. J. Mohd, and M. Alshayeji, “FPGA modeling and optimization of a SIMON lightweight block cipher,” Sensors (Switzerland), vol. 19, no. 4, 2019, doi:10.3390/s19040913.; A. Shahverdi, M. Taha, and T. Eisenbarth, “Lightweight Side Channel Resistance: Threshold Implementations of Simon,” IEEE Trans. Comput., vol. 66, no. 4, pp. 661–671, 2017, doi:10.1109/TC.2016.2614504.; S. B. Basturk, C. E. J. Dancer, and T. McNally, “High-throughput Configurable SIMON Architecture for Flexible Security,” Pharmacol. Res., p. 104743, 2020, doi:10.1016/j.mejo.2021.105085.; A. Muthumari et al., “High security for de-duplicated big data using optimal SIMON Cipher,” Comput. Mater. Contin., vol. 67, no. 2, pp. 1863–1879, 2021, doi:10.32604/cmc.2021.013614.; W. Diehl, A. Abdulgadir, J. P. Kaps, and K. Gaj, “Comparing the cost of protecting selected lightweight block ciphers against differential power analysis in low-cost FPGAs,” Computers, vol. 7, no. 2, pp. 128–135, 2018, doi:10.3390/computers7020028.; FAO, «Objetivos de Desarrollo Sostenible», Agenda 2030 para el desarrollo sostenible, 2021. http://www.fao.org/sustainable-development-goals/overview/fao-and-post-2015/sustainableagriculture/es/.; G. Spencer, Fundamentos de Acuaponía. 2018.; R. Adhikari, S. Rauniyar, N. Pokhrel, A. Wagle, T. Komai, y S. R. Paudel, «Nitrogen recovery via aquaponics in Nepal: current status, prospects, and challenges», SN Appl. Sci., vol. 2, n.o 7, 2020, doi:10.1007/s42452-020-2996-5.; P. Carneiro, A. Maria, M. Nunes, y R. Ujimoto, «Aquaponia: produção sustentável de peixes e vegetais», en Embrapa Tabuleiros Costeiros, 2015.; A. Caldas, I. Castillo, S. Prado, L. Rosales, y L. Vargas, «Diseño y construcción de sistemas acuapónicos a pequeña escala para familias de la región Piura», Pirhua, p. 205, 2019, [En línea]. Disponible en: https://pirhua.udep.edu.pe/handle/11042/4285.; C. M. Correa y J. F. Valencia, «Configuración de un control de temperatura en un sistema embebido de bajo costo, usando herramientas de inteligencia artificial y el internet de las cosas», Rev. Iber. Sist. y Tecnol. Inf., n.o 34, pp. 68-84, 2019, doi:10.17013/risti.34.68-84.; V. Jahnavi y S. Ahamed, «Red inteligente de sensores inalámbricos para invernaderos automatizados», IETE J. Res., vol. 61, n.o 2, pp. 180-185, 2015.; I. Lee y K. Lee, «The Internet of Things (IoT): Applications, investments, and challenges for enterprises», Bus. Horiz., vol. 58, n.o 4, pp. 431-440, 2015, doi:10.1016/j.bushor.2015.03.008.; E. Barrientos, D. Rico, L. A. Coronel, y F. R. Cuesta, «Granja inteligente: Definición de infraestructura basada en internet de las cosas, IpV6 y redes definidas por software», Rev. Ibérica Sist. e Tecnol. Informação, vol. E17, pp. 183-197, 2019.; F. Simanca, J. Paez, J. Cortés, E. Díaz, y J. Palacio, «Sistema de riego para cultivos controlado mediante una aplicación de IoT», Rev. Ibérica Sist. e Tecnol. Inf., pp. 410-424, 2020, [En línea]. Disponible en: www.estudioscualitativos.ec.; E. A. Q. Montoya, S. F. J. Colorado, W. Y. C. Muñoz, y G. E. C. Golondrino, «Propuesta de una Arquitectura para Agricultura de Precisión Soportada en IoT», RISTI - Rev. Iber. Sist. e Tecnol. Inf., n.o 24, pp. 39-56, 2017, doi:10.17013/risti.24.39-56.; S. M. A. Aguirre, D. R. M. Rivadeneira, L. R. G. Torrealba, L. D. N. Erazo, F. I. Rivas-Echeverría, y D. M. R. Albarran, «Metodología para el almacenamiento y visualización de datos masivos en invernadero basado en el Internet de las Cosas IoT.», Rev. Ibérica Sist. e Tecnol. Informação, n.o E15, pp. 1-12, 2018, [En línea]. Disponible en: https://search.proquest.com/docview/2041143320?accountid=134127%0Ahttp://link.periodicos.capes. gov.br/sfxlcl41?url_ver=Z39.882004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&genre=unknown&sid=ProQ:ProQ%3Ahightechjournals& atitle=Metodología+para+el+almacenam; G. E. Chanchí, L. M. Sierra, y W. Y. Campo, «Propuesta de una plataforma académica portable para la construcción de microservicios en entornos de IoT», Rev. Ibérica Sist. e Tecnol. Informação, n.o E27, pp. 1-13, 2020.; J. A. Brenes Carranza, A. Martínez Porras, C. U. Quesada López, y M. Jenkins Coronas, «Sistemas de apoyo a la toma de decisiones que usan inteligencia artificial en la agricultura de precisión», Rev. Ibérica Sist. y Tecnol. la Inf. núm E28, pp. 217-229, n.o 28, pp. 217-230, 2020.; A. Bárta, P. Soucek, V. Bozhynov, y P. Urbanová, «Automatic Multiparameter Acuisition in Aquaponics Systems», en 5th International Work-Conference, IWBBIO 2017 Granada, Spain, April 26– 28, 2017, Proceedings, Part II, 1.a ed., Springer, Ed. Granada, 2017, pp. 712-725.; O. A. O. Valero, P. A. R. Trujillo, N. L. M. Valderrama, M. E. de Oliveira, y A. R. B. Tech, «Monitoreo remoto automatizado de calidad del agua en sistemas acuapónicos en Sao Paulo, Brasil», Rev. Ibérica Sist. e Tecnol. Informação, n.o E31, pp. 223-235, 2020, [En línea]. Disponible en: http://ezproxy.unal.edu.co/scholarly-journals/monitoreo-remoto-automatizado-de-calidad-delagua/docview/2468684076/se-2?accountid=137090.; K. J. Keesman, O. Körner, K. Wagner, J. U. Urban, D. Karimanzira, y S. Rauschenbach, Thomas , Goddek, «Aquaponics Systems Modelling», en Aquaponics Food Production Systems, 1.a ed., Springer, Ed. Cham, 2019, pp. 273-299.; A. Ahmed, S. Zulfiqar, A. Ghandar, Y. Chen, M. Hanai, y G. Theodoropoulos, «Digital Twin Technology for Aquaponics: Towards Optimizing Food Production with Dynamic Data Driven Application Systems», en Methods and Applications for Modeling and Simulation of Complex Systems. 19th Asia Simulation Conference, AsiaSim 2019 Singapore, October 30 – November 1, 2019 Proceedings, Singapur: Springer, 2019, pp. 3-14.; Haryanto, M. Ulum, A. F. Ibadillah, R. Alfita, K. Aji, y R. Rizkyandi, «Smart aquaponic system based Internet of Things (IoT)», J. Phys. Conf. Ser., vol. 1211, n.o 1, 2019, doi:10.1088/17426596/1211/1/012047.; M. Dayahna Caro M., E. Romero-Riaño, M. Alexandra Espinosa C, y C. D. Guerrero, «Evaluando contribuciones de usabilidad en soluciones TIC-IOT para la agricultura: Una perspectiva desde la bibliometría», RISTI - Rev. Iber. Sist. e Tecnol. Inf., vol. 2020, n.o E28, pp. 681-692, 2020, [En línea]. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.085081040306&partnerID=40&md5=f59611d7803425f519635fe4470fdaca.; P. Rituay Trujillo, N. L. Murga Valderrama, M. D. P. Bustos Chavéz, P. Chauca Valqui, y J.-A. Campos Trigoso, «Evolución y tendencias investigativas de tecnologías aplicadas en los agronegocios : una revisión sistemática de la literatura», Iber. J. Inf. Syst. Technol., vol. 39, pp. 189-199, 2021.; S. F. Mejía S., L. Y. Flóres G., y C. D. Guerrero S., «Desarrollo tecnológico del IoT en el sector de la agricultura : una visión desde el análisis de patentes», Rev. Ibérica Sist. e Tecnol. Informação, n.o 28, pp. 375-386, 2020.; L. A. Rodríguez-umaña, «efectos de la variación de caudal sobre los niveles de amonio , nitrato y pH de un prototipo de cultivo acuapónico Evaluation of the effects of varying water flow on the levels of Ammonium , Nitrate and Ph of a prototype aquaponic system . Avaliação dos e», vol. 7, n.o 2, pp. 126-138, 2016.; M. Eck, K. Oliver, y M. H. Jijakli, «Nutrient Cycling in Aquaponics Systems», en Aquaponics Food Production Systems, 1ra ed., S. Goddek, A. Joyce, B. Kotzen, y G. Burnell M., Eds. Switzerland: Springer Nature Switzerland, 2020, pp. 231-246.; M. Á. Barrera Pérez, N. Y. Serrato Losada, E. Rojas Sánchez, y G. Mancilla Gaona, «Estado del arte en redes definidas por software (SDN)», Visión Electrónica, vol. 13, n.o 1, pp. 178-194, 2019, doi: https://doi.org/10.14483/22484728.14424.; J. C. Najar-Pacheco, J. A. Bohada-Jaime, y W. Y. Rojas-Moreno, «Vulnerabilidades en el internet de las cosas», Visión Electrónica, vol. 13, n.o 2, pp. 312-321, 2019, doi: https://doi.org/10.14483/22484728.14424.; J. A. Londoño Alzate, A. Fonseca Velásquez, y E. A. Delgadillo, «Laboratorios remotos: estudio de caso con una planta térmica didáctica», Visión Electrónica, vol. 12, n.o 2, pp. 265-277, 2018, doi: https://doi.org/10.14483/22484728.14263.; I. J. Donado Romero y J. C. Villamizar Rincón, «“Metodología para estandarización de componentes SCADA bajo normas ISA», Visión Electrónica, vol. 12, n.o 1, pp. 14-21, 2018, doi: https://doi.org/10.14483/22484728.13402.; O. L. Quintero, H. Medina, y E. A. Pineda Muñoz, «Automatización para dosificación de reactivos en clasificación de carbón», Visión Electrónica, vol. 11, n.o 1, pp. 45-54, 2017, doi: https://doi.org/10.14483/22484728.10995.; C. González, D. Zamara, S. R. González B, I. F. Mondragón B, y M. Moreno, «Inspección no invasiva de Physalis peruviana usando técnicas (Vir/Nir)», Visión Electrónica, vol. 10, n.o 1, pp. 22-28, 2016, doi: https://doi.org/10.14483/22484728.11702.; L. E. Galindo C, A. A. Aguilera, y L. A. Rojas Castellar, «Automatización en la industria de bolígrafos: El caso del estampado», Visión Electrónica, vol. 5, n.o 1, pp. 103-113, 2011, doi: https://doi.org/10.14483/22484728.3512.; A. Garcia Chacon, J. L. Martínez Rodríguez, y E. Y. Torres Castro, «Automatización de procesos en el sector plásticos: el caso de una inyectora», Visión Electrónica, vol. 2, n.o 2, pp. 52-63, 2008, [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/796.; Zamora Musa, Ronald, y “Laboratorios Remotos: Actualidad y Tendencias Futuras." Scientia Et Technica XVII, no. 51 (2012):113-118. Redalyc, https://www.redalyc.org/articulo.oa?id=84923910017.; C. I. Jiménez, «Propuesta pedagógica para el uso de laboratorios virtuales como actividad complementaria en las asignaturas teórico-prácticas,» Revista Mexicana De Investigación Educativa, 2014.; Nacional, M. d. (2 de septiembre de 2020). Ministerio de Educación Nacional. Obtenido de https://www.mineducacion.gov.co/1759/w3-article-400640.html?_noredirect=1.; Ramírez, E. A. (2014). Una Mirada Crítica al Papel de las TIC en la Educación Superior. Ibagué: Universidad del Tolima; A. F. Reinoso López y J. C. Forero Jiménez, «Diseño e implementación de un laboratorio con características de acceso remoto orientado hacia el calentamiento de agua» Universidad Distrital Francisco José de Caldas, Bogotá, 2021.; N. LabVIEW, «NI home,» [En línea]. Available: https://www.ni.com/academic/students/learnlabview/esa/environment.htm.; S. C. Giselle, «Laboratorio virtual y remoto, aprendiendo a través de la experimentación, » Universidad Tecnológica Nacional, 2017.; Heradio, R. et al. Virtual and remote labs in education: A bibliometric analysis. Computers & Education, Volume 98, 2016, Pages 14-3.; Unai H.J.; Javier G. Zubia. Remote measurement and instrumentation laboratory for training in real analog electronic experiments. Measurement, Volume 82, 2016, Pages 123-134.; B.R. Poorna chandra, K.P. Geevarghese, K.V. Gangadharan. Design and Implementation of Remote Mechatronics Laboratory for e-Learning Using LabVIEW and Smartphone and Cross-platform Communication Toolkit (SCCT), Procedia Technology, Volume 14, 2014, Pages 108-115.; Van Wylen, G. J.; Sonntag, R. E. Fundamentals of Classical Thermodynamics. Ed. John Wiley & Sons: Singapore, 3ra. edición, 1985.; Petrescu, R. V. V., Aversa, R., Apicella, A., Mirsayar, M., Kozaitis, S., Abu-Lebdeh, T. y Tiberiu Petrescu, F. I. (2017). The Inverse Kinematics of the Plane System 2-3 in a Mechatronic MP2R System, by a Trigonometric Method. Journal of Mechatronics and Robotics, 1(2), 75–87. https://doi.org/10.3844/jmrsp.2017.75.87.; Y Sethi, S. P., Sriskandarajah, C., Sorger, G., Blazewicz, J. y Kubiak, W. (1992). Sequencing of parts and robot moves in a robotic cell. International Journal of Flexible Manufacturing Systems, 4(3-4), 331–358. https://doi.org/10.1007/bf01324886.; Blazewicz, J., Eiselt, H.A., Finke, G., Laporte, G., Weglarz, J., 1991. Scheduling tasks and vehicles in a flexible manufacturing system. International Journal of Flexible Manufacturing Systems 4, 5–16.; Deuerlein, C., Müller, F., Seßner, J., Heß, P., & Franke, J. (2021). Improved design flexibility of open robot cells through tool-center-point monitoring. Procedia CIRP, 100, 295–300. https://doi.org/10.1016/j.procir.2021.05.069.; Veiga, G., Pires, J. N. y Nilsson, K. (2009). Experiments with service-oriented architectures for industrial robotic cells programming. Robotics and Computer-Integrated Manufacturing, 25(4-5), 746– 755. https://doi.org/10.1016/j.rcim.2008.09.001.; Zhao, Q., Sun, M., Cui, M., Yu, J., Qin, Y., & Zhao, X. (2015). Robotic Cell Rotation Based on the Minimum Rotation Force. IEEE Transactions on Automation Science and Engineering, 12(4), 1504– 1515. https://doi.org/10.1109/tase.2014.2360220.; G. Michalos, S. Makris, P. Tsarouchi, T. Guasch, D. Kontovrakis, G. Chryssolouris, Design Considerations for Safe Human-robot Collaborative Workplaces, in: Understanding the life cycle implications of manufacturing, 2015, pp. 248–253.; E. Magrini, F. Ferraguti, A.J. Ronga, F. Pini, A. de Luca, F. Leali, Human-robot coexistence and interaction in open industrial cells, in: Journal of Robotics and Computer-Integrated Manufacturing, 2019, p. 101846.; datasheet PCA9685PW. (2009, 16 de julio). DigChip IC database.; Zamora Navarro, F. J., & Valiente Cristancho, A. (2015). Tasa de muestreo ADC en microcontroladores avanzados de 8 bits. Visión electrónica, 9(1), 128-138. https://doi.org/10.14483/22484728.11022.; García-Guerrero, E., Inzunza-González, E., López-Bonilla, O., Cárdenas-Valdez, J., & TleloCuautle, E. (2020). Randomness improvement of chaotic maps for image encryption in a wireless communication scheme using PIC-microcontroller via Zigbee channels. Chaos, Solitons & Fractals, 133, 109646. https://doi.org/10.1016/j.chaos.2020.109646.; I2C - Puerto, Introducción, trama y protocolo - HETPRO/TUTORIALES. (s. f.). HETPRO/TUTORIALES. https://hetpro-store.com/TUTORIALES/i2c/.; Z. Boric and B. Markovic, "The talking thermometer simulator based on the DS1820 sensor and PIC18F45K22 microcontroller," 2012 20th Telecommunications Forum (TELFOR), 2012, pp. 544-547, doi:10.1109/TELFOR.2012.6419268.; Corke, P. I. (1996). A robotics toolbox for MATLAB. IEEE Robotics and Automation Magazine, 3(1), 24–32. https://doi.org/10.1109/100.486658.; Y. Fang and X. Chen, "Design and Simulation of UART Serial Communication Module Based on VHDL," 2011 3rd International Workshop on Intelligent Systems and Applications, 2011, pp. 1-4, doi:10.1109/ISA.2011.5873448.; Calderón Acero, J., & Parra Garzón, I. V. (2010). Controladores difusos en microcontroladores: software para diseño e implementación. Visión electrónica, 4(2), 64-76. https://doi.org/10.14483/22484728.273.; D’Souza, A., Vijayakumar, S., & Schaal, S. (2001). Learning inverse kinematics. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium (Cat. No.01CH37180). Published. https://doi.org/10.1109/iros.2001.973374.; R. Junge, B. König, M. Villarroel, T. Komives, and M. H. Jijakli, “Strategic points in aquaponics,” Water (Switzerland). 2017, doi:10.3390/w9030182.; C. Maucieri et al., “Life cycle assessment of a micro aquaponic system for educational purposes built using recovered material,” J. Clean. Prod., vol. 172, pp. 3119–3127, 2018, doi: https://doi.org/10.1016/j.jclepro.2017.11.097.; B. König, J. Janker, T. Reinhardt, M. Villarroel, and R. Junge, “Analysis of aquaponics as an emerging technological innovation system,” J. Clean. Prod., 2018, doi:10.1016/j.jclepro.2018.01.037.; Z. Hu, J. W. Lee, K. Chandran, S. Kim, A. C. Brotto, and S. K. Khanal, “Effect of plant species on nitrogen recovery in aquaponics,” Bioresour. Technol., vol. 188, pp. 92–98, 2015, doi: https://doi.org/10.1016/j.biortech.2015.01.013.; W. Kloas et al., “A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts,” Aquac. Environ. Interact., 2015, doi:10.3354/aei00146.; C. Maucieri et al., “Life cycle assessment of a micro aquaponic system for educational purposes built using recovered material,” J. Clean. Prod., 2018, doi:10.1016/j.jclepro.2017.11.097.; Y. Wei, W. Li, D. An, D. Li, Y. Jiao, and Q. Wei, “Equipment and Intelligent Control System in Aquaponics: A Review,” IEEE Access. 2019, doi:10.1109/ACCESS.2019.2953491.; Z. M. Gichana, D. Liti, H. Waidbacher, W. Zollitsch, S. Drexler, and J. Waikibia, “Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation,” Aquaculture International. 2018, doi:10.1007/s10499-018-0303-x.; W. A. Lennard and B. V. Leonard, “A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic test system,” Aquac. Int., 2006, doi:10.1007/s10499-006-9053-2.; I. Pinheiro et al., “Aquaponic production of Sarcocornia ambigua and Pacific white shrimp in biofloc system at different salinities,” Aquaculture, 2020, doi:10.1016/j.aquaculture.2019.734918.; Z. Schmautz et al., “Tomato productivity and quality in aquaponics: Comparison of three hydroponic methods,” Water (Switzerland), 2016, doi:10.3390/w8110533.; J. Dalsgaard, I. Lund, R. Thorarinsdottir, A. Drengstig, K. Arvonen, and P. B. Pedersen, “Farming different species in RAS in Nordic countries: Current status and future perspectives,” Aquac. Eng., vol. 53, pp. 2–13, 2013, doi: https://doi.org/10.1016/j.aquaeng.2012.11.008.; J. Suhl et al., Prospects and challenges of double recirculating aquaponic systems (DRAPS) for intensive plant production, vol. 1227. 2018.; H. R. Roosta and M. Hamidpour, “Effects of foliar application of some macro- and micronutrients on tomato plants in aquaponic and hydroponic systems,” Sci. Hortic. (Amsterdam)., vol. 129, no. 3, pp. 396–402, 2011, doi: https://doi.org/10.1016/j.scienta.2011.04.006.; Y. Fang et al., “Improving nitrogen utilization efficiency of aquaponics by introducing algalbacterial consortia,” Bioresour. Technol., vol. 245, pp. 358–364, 2017, doi: https://doi.org/10.1016/j.biortech.2017.08.116.; B. S. Cerozi and K. Fitzsimmons, “Phosphorus dynamics modeling and mass balance in an aquaponics system,” Agric. Syst., vol. 153, pp. 94–100, 2017, doi: https://doi.org/10.1016/j.agsy.2017.01.020.; D. Karimanzira, K. J. Keesman, W. Kloas, D. Baganz, and T. Rauschenbach, “Dynamic modeling of the INAPRO aquaponic system,” Aquac. Eng., vol. 75, pp. 29–45, 2016, doi: https://doi.org/10.1016/j.aquaeng.2016.10.004.; C. Lee and Y.-J. Wang, “Development of a cloud-based IoT monitoring system for Fish metabolism and activity in aquaponics,” Aquac. Eng., vol. 90, p. 102067, 2020, doi: https://doi.org/10.1016/j.aquaeng.2020.102067.; M. Manju, V. Karthik, S. Hariharan, and B. Sreekar, “Real time monitoring of the environmental parameters of an aquaponic system based on internet of things,” 2017, doi:10.1109/ICONSTEM.2017.8261342.; A. R. Yanes, P. Martinez, and R. Ahmad, “Towards automated aquaponics: A review on monitoring, IoT, and smart systems,” Journal of Cleaner Production. 2020, doi:10.1016/j.jclepro.2020.121571.; K. S. Khan, R. Kunz, J. Kleijnen, and G. Antes, “Five steps to conducting a systematic review,” J. R. Soc. Med., vol. 96, no. 3, pp. 118–121, 2003, doi:10.1258/jrsm.96.3.118.; M. Petticrew, “Petticrew_2001_Myths_Misconceptions,” vol. 322, no. January, 2001.; J. Mori and R. Smith, “Transmission of waterborne fish and plant pathogens in aquaponics and their control with physical disinfection and filtration: A systematized review,” Aquaculture. 2019, doi:10.1016/j.aquaculture.2019.02.009.; A. S. Oladimeji, S. O. Olufeagba, V. O. Ayuba, S. G. Sololmon, and V. T. Okomoda, “Effects of different growth media on water quality and plant yield in a catfish-pumpkin aquaponics system,” J. King Saud Univ. - Sci., vol. 32, no. 1, pp. 60–66, 2020, doi:10.1016/j.jksus.2018.02.001.; M. N. Mamatha and S. N. Namratha, “Design & implementation of indoor farming using automated aquaponics system,” 2017, doi:10.1109/ICSTM.2017.8089192.; P. Boonrawd, S. Nuchitprasitchai, and Y. Nilsiam, “Aquaponics Systems Using Internet of Things,” 2020, doi:10.1007/978-3-030-44044-2_5.; R. Calone et al., “Improving water management in European catfish recirculating aquaculture systems through catfish-lettuce aquaponics,” Sci. Total Environ., vol. 687, pp. 759–767, 2019, doi: https://doi.org/10.1016/j.scitotenv.2019.06.167.; J. P. Mandap et al., “Oxygen Monitoring and Control System Using Raspberry Pi as Network Backbone,” TENCON 2018 - 2018 IEEE Reg. 10 Conf., no. October, pp. 1381–1386, 2018.; S. E. Wortman, “Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system,” Sci. Hortic. (Amsterdam)., vol. 194, pp. 34–42, 2015, doi: https://doi.org/10.1016/j.scienta.2015.07.045.; S. Y. Choi and A. M. Kim, “Development of indoor aquaponics control system using a computational thinking-based convergence instructional model,” Univers. J. Educ. Res., 2019, doi:10.13189/ujer.2019.071509.; S. Goddek and O. Körner, “A fully integrated simulation model of multi-loop aquaponics: A case study for system sizing in different environments,” Agric. Syst., 2019, doi:10.1016/j.agsy.2019.01.010.; W. Vernandhes, N. S. Salahuddin, A. Kowanda, and S. P. Sari, “Smart aquaponic with monitoring and control system based on IoT,” Proc. 2nd Int. Conf. Informatics Comput. ICIC 2017, vol. 2018-Janua, pp. 1–6, 2018, doi:10.1109/IAC.2017.8280590.; D. Karimanzira and T. Rauschenbach, “Enhancing aquaponics management with IoT-based Predictive Analytics for efficient information utilization,” Inf. Process. Agric., vol. 6, no. 3, pp. 375– 385, 2019, doi: https://doi.org/10.1016/j.inpa.2018.12.003.; A. M. Nagayo, C. Mendoza, E. Vega, R. K. S. Al Izki, and R. S. Jamisola, “An automated solar-powered aquaponics system towards agricultural sustainability in the Sultanate of Oman,” 2017 IEEE Int. Conf. Smart Grid Smart Cities, ICSGSC 2017, pp. 42–49, 2017, doi:10.1109/ICSGSC.2017.8038547.; D. Pantazi, S. Dinu, and S. Voinea, “The smart aquaponics greenhouse – an interdisciplinary educational laboratory,” Rom. Reports Phys., 2019.; A. Tumbaco y B. Daniela, «Optimización del proceso productivo para incrementar la Utilidad en Mundo Verde, » Universidad de Guayaquil Facultad de Ciencias Administrativas, Guayaquil, Ecuador, 2017.; J. Montero y S. Cecilia, «Invernadero para la, » Institut de Recerca i Tecnología Agroalimentaries de Cabrils, España, 2008.; G. Ramón y F. Rodríguez, «Algoritmo De Navegación Reactiva De Robots, » Universidad de Almería, España, 2015.; K. Yingchun y S. Yue, «A Greenhouse Temperature and Humidity Controller Based on MIMO Fuzzy System, » International Conference on Intelligent System Design and Engineering Application, nº 1, pp. 35-39, 2010.; S. A. Giraldo, R. C. Castaño, C. Flesch y J. E. Normey-Rico, «Multivariable Greenhouse Control Using the Filtered Smith Predictor, » Journal of Control, Automation and Electrical Systems, vol. 27, nº 4, pp. 349-358, 2016.; M. Heidari, «Climate Control of An Agricultural Greenhouse by Using Fuzzy Logic SelfTuning PID Approach, » Proceedings of the 23rd International Conference on Automation & Computing, University of Huddersfield, 2017.; J. G. Jurado, «diseño de sistemas de control multivariable por desacoplo con controladores PID, » madrid, 2012.; M. Ajit K, Introduction to Control Engineering Modeling, Analysis and Desing, NEW AGE INTERNATIONAL PUBLISHERS, 2006.; M. G. Martínez, «Síntesis de controladores robustos mediante el análisis de la compatibilidad de especificaciones e incertidumbre, » Tesis de Grado- Universidad Pública de Navarra, 2001.; C. H. Houpis, S. N. Sheldon y J. J. D’Azzo, Linear Control System Analysis and Design: Fifth Edition, London: Revised and Expanded., 2003.; J. Elso, M. G. Martínez y M. Garcia-Sanz, «Quantitative Feedback Control for Multivariable Model Matching and Disturbance Rejection, » International Journal of Robust and Nonlinear Control, vol. 1, nº 27, pp. 121-134, 2017.; M. Gil-Martínez y M. García-Sanz, «Simultaneous meeting of robust control specifications in QFT, » International Journal of Robust and Nonlinear Control, vol. 7, nº 13, p. 643–656., 2003.; Y. Chait y O. Yaniv, «Multi-Input/Single-Output Computer-Aided Control Design Using the Quantitative Feedback Theory, » International Journal of Robust and Nonlinear Control, vol. 1, nº 3, pp. 47-54, 1993; Z. Hu, W. Wan and K. Harada, "Designing a Mechanical Tool for Robots With Two-Finger Parallel Grippers," in IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2981-2988, July 2019, doi:10.1109/LRA.2019.2924129.; L. Berscheid, T. Rühr and T. Kröger, "Improving Data Efficiency of Self-supervised Learning for Robotic Grasping," 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 2125-2131, doi:10.1109/ICRA.2019.8793952.; Y. Domae, A. Noda, T. Nagatani and W. Wan, "Robotic General Parts Feeder: Bin-picking, Regrasping, and Kitting," 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 5004-5010, doi:10.1109/ICRA40945.2020.9197056.; J. H. Sanchez, W. Amanhoud, A. Billard and M. Bouri, "Foot Control of a Surgical Laparoscopic Gripper via 5DoF Haptic Robotic Platform: Design, Dynamics and Haptic Shared Control," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 1255912566, doi:10.1109/ICRA48506.2021.9561887.; S. Ainetter and F. Fraundorfer, "End-to-end Trainable Deep Neural Network for Robotic Grasp Detection and Semantic Segmentation from RGB," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 13452-13458, doi:10.1109/ICRA48506.2021.9561398.; S. K. Rajput, A. Kaushal, R. K. Singh and A. K. Sharma, "A Study and Fabrication of SMA based 3D Printed Adaptive Gripper," 2021 Smart Technologies, Communication and Robotics (STCR), 2021, pp. 1-5, doi:10.1109/STCR51658.2021.9588838.; C. Son and S. Kim, "A Shape Memory Polymer Adhesive Gripper For Pick-and-Place Applications," 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 10010-10016, doi:10.1109/ICRA40945.2020.9197511.; S. D. Liyanage, A. M. Mazid and P. Dzitac, "An Innovative Whisker Tactile Sensor for Intelligent Robotic Grasping," IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, 2021, pp. 1-6, doi:10.1109/IECON48115.2021.9589765.; T. V. Prabhu, P. V. Manivannan, D. Roy and Yathishkumar, "A robust tactile sensor matrix for intelligent grasping of objects using robotic grippers," 2021 International Symposium of Asian Control Association on Intelligent Robotics and Industrial Automation (IRIA), 2021, pp. 400-405, doi:10.1109/IRIA53009.2021.9588669.; G. Hwang, J. Park, D. S. D. Cortes, K. Hyeon and K. -U. Kyung, "Electroadhesion-Based High-Payload Soft Gripper With Mechanically Strengthened Structure," in IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 642-651, Jan. 2022, doi:10.1109/TIE.2021.3053887.; J. Guo, J. -H. Low, X. Liang, J. S. Lee, Y. -R. Wong and R. C. H. Yeow, "A Hybrid Soft Robotic Surgical Gripper System for Delicate Nerve Manipulation in Digital Nerve Repair Surgery," in IEEE/ASME Transactions on Mechatronics, vol. 24, no. 4, pp. 1440-1451, Aug. 2019, doi:10.1109/TMECH.2019.2924518.; C.I. Basson, G. Bright y A.J. Walker. “Testing flexible grippers for geometric and surface grasping conformity in reconfigurable assembly systems.” En: South African Journal of Industrial Engineering 29.1 (2018), pags. 128 -142. ISSN: 2224-7890.; Festo AG & Co.KG. “MultiChoiceGripper”. En: Variable gripping based on human hand (2018).; https://ultimaker.com/es/software/ultimaker-cura, consultado Noviembre de 2021.; IFR, “Definition of Industrial Robot.” [Online]. Available: https://ifr.org/industrial-robots. [Accessed: 15-Sep-2021].; A. A. Malik and A. Bilberg, “Collaborative robots in assembly: A practical approach for tasks distribution,” Procedia CIRP, vol. 81, pp. 665–670, Jan. 2019.; P. Andhare and S. Rawat, “Pick and place industrial robot controller with computer vision,” Proc. - 2nd Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2016, Feb. 2017.; J. Iqbal, Z. H. Khan, and A. Khalid, “Prospects of robotics in food industry,” Food Sci. Technol., vol. 37, no. 2, pp. 159–165, May 2017.; K. H. Tantawi, A. Sokolov, and O. Tantawi, “Advances in Industrial Robotics: From Industry 3.0 Automation to Industry 4.0 Collaboration,” TIMES-iCON 2019 - 2019 4th Technol. Innov. Manag. Eng. Sci. Int. Conf., Dec. 2019.; J. J. Vaca González, C. A. Peña Caro, and H. Vacca González, “Cinemática inversa de robot serial utilizando algoritmo genético basado en MCDS,” Rev. Tecnura, vol. 19, no. 44, p. 33, Apr. 2015.; O. A. Vivas Alban, M. F. Piamba Mamián, and Y. E. Otaya Bravo, “Diseño y construcción de una interfaz háptica de seis grados de libertad,” Tecnura, vol. 21, no. 54, pp. 33–40, Oct. 2017.; C. Ma, Y. Zhang, J. Cheng, B. Wang, and Q. Zhao, “Inverse kinematics solution for 6R serial manipulator based on RBF neural network,” Int. Conf. Adv. Mechatron. Syst. ICAMechS, vol. 0, pp. 350–355, Jul. 2016.; V. Noppeney, T. Boaventura, and A. Siqueira, “Task-space impedance control of a parallel Delta robot using dual quaternions and a neural network,” J. Brazilian Soc. Mech. Sci. Eng. 2021 439, vol. 43, no. 9, pp. 1–11, Aug. 2021.; M. Meghana et al., “Hand gesture recognition and voice-controlled robot,” Mater. Today Proc., vol. 33, pp. 4121–4123, Jan. 2020.; P. M. Reddy, S. P. Kalyan Reddy, G. R. Sai Karthik, and B. K. Priya, “Intuitive Voice Controlled Robot for Obstacle, Smoke and Fire Detection for Physically Challenged People,” Proc. 4th Int. Conf. Trends Electron. Informatics, ICOEI 2020, pp. 763–767, Jun. 2020.; G. Y. Luo, M. Y. Cheng, and C. L. Chiang, “Vision-based 3-D object pick-And-place tasks of industrial manipulator,” 2017 Int. Autom. Control Conf. CACS 2017, vol. 2017-November, pp. 1–7, Feb. 2018.; M. Zhao, Y. Peng, L. Li, and X. Qiao, “Detection and classification manipulator system for apple based on machine vision and optical technology,” ASABE 2020 Annu. Int. Meet., pp. 1-, 2020.; Annoni, Federico. 2000. “Sistemas de Sujecion y Soporte.” Journal of Petrology 369(1): 1689– 99. http://dx.doi.org/10.1016/j.jsames.2011.03.003%0Ahttps://doi.org/10.1016/j.gr.2017.08.001%0Ahtt p://dx.doi.org/10.1016/j.precamres.2014.12.018%0Ahttp://dx.doi.org/10.1016/j.precamres.2011.08. 005%0Ahttp://dx.doi.org/10.1080/00206814.2014.902757%0Ahttp://dx.“FT-TMH06.Pdf.”; Garzón, Yamid. 2020. “Sensores y Actuadores Introducción:” (2014): 1–32.; Hidai-go, Alfonso. 1987. “Construccion de Un Dinamometro Para Medir Fuerzas de Corte En La Operacion de Taladro.” Corporacion universitaria autonoma de occidente, programa de ingenieria.; Karabay, Sedat. 2007. “Analysis of Drill Dynamometer with Octagonal Ring Type Transducers for Monitoring of Cutting Forces in Drilling and Allied Process.” Materials and Design 28(2): 673–85.; Mohanraj, T., S. Shankar, R. Rajasekar, and M. S. Uddin. 2020. “Design, Development, Calibration, and Testing of Indigenously Developed Strain Gauge Based Dynamometer for Cutting Force Measurement in the Milling Process.” Journal of Mechanical Engineering and Sciences 14(2): 6594–6609.; Norton, Robert L. 2006. Diseño de Máquinas.; Ramírez, Luis Pablo. 2011. “Diseño De Un Dinamómetro Mediante El Método De Los Elementos Finitos.” Tendencias en Tecnología de Medición de Fuerza (6360).; Schmid, S Kalpakjian S R. 2002. ManufacturA, INGENIERÍA Y TecNOLOGÍA.; Setiyawan. 2013. 53 Journal of Chemical Information and Modeling Fundamentos de Manufactura Moderna 3edi Groover.; Morral, P. Metalurgía General, p. 1163, en Google Libros 2004.; Metalurgia general. II - F. R. Morral, P. Molera - Google Libros; Tecnitool. 2020. “DIFERENCIAS ENTRE LAS BROCAS DE TITANIO Y LAS DE COBALTO”. Diferencias entre broca acero rápido HSS con titanio y/o cobalto (tecnitool.es) demaquinasyherramientas1. 2010. “Partes de la broca”. De máquinas y herramientas. USAPartes Broca %7C De Máquinas y Herramientas (demaquinasyherramientas.com).; Esquivel R. 2017. “DISTINTOS TIPOS DE BROCAS PARA DISTINTOS TIPOS DE PROFESIONALES”. Revista Ferrepat. Distintos tipos de brocas para distintos tipos de profesionales (ferrepat.com).; Ingenieria mecánica y automotriz. 2020. “Qué es el Coeficiente de Poisson y cómo se calcula?”; ] Estudiantes metalografia. 2010. “Diagramas esfuerzo-deformación unitaria, convencional y real, para un material dúctil (acero) (no de escala)”. Universidad Tecnológica de Pereira.; Diagramas esfuerzo-deformación unitaria, convencional y real, para un material dúctil (acero) (no de escala) %7C METALOGRAFÍA – UNIVERSIDAD TECNOLÓGICA DE PEREIRA (utp.edu.co).; O. Herrera, A. Quino, B. Cabrera, “Control de cortinas”, noviembre 2021. [En línea]. Disponible en http://micro2verano2012.blogspot.com/2012/03/control-de-cortinas.html.; Fuenteelectronica.es, “Fotocelda – Control de dispositivos con la luz”, noviembre 2017. [En línea]. Disponible en: https://tuelectronica.es/fotocelda-control-de-dispositivos-con-la-luz/ [3] Electronicathidos, “Fotoresistencia LDR 5mm, 2 Mohms”, noviembre 2021. [En línea]. Disponible en: https://electronicathido.com/detallesProducto.php?id=MkxldEdPZ3AwbjNMUEV3aWdXb0pSdz09.; Real Academia Española,”Relé”, noviembre 2021.[En línea]. Disponible en: https://dle.rae.es/rel%C3%A9.; A.Perez-Paris,”RELÉS ELECTROMAGNÉTICOS Y ELECTRÓNICOS”, noviembre 2021 En línea]. Disponible en: http://www.vivatacademia.net/index.php/vivat/article/view/373/689.; Electro Club Didactic,”Potenciómetros (teoría y practica)”, noviembre 2021.[En línea]. Disponible en: http://www.electroclub.com.mx/2015/08/potenciometros-teoria-y-practica.html.; Chabonnier,”Potenciómetros”, noviembre 2021.[En línea]. Disponible en: https://deresistencias.com/wp-content/uploads/2020/08/Diagrama-en-blanco-64-1.png.; Pascual,J ,”Este gadget convierte tus viejas cortinas en cortinas inteligentes controladas con el móvil”,noviembre 2021 .[En línea]. Disponible en: https://computerhoy.com/noticias/life/gadgetconvierte-viejas-cortinas-cortinas-inteligentes-controladas-movil-516887.; Tecnología a tu alcance ,”¿Cómo hacer un circuito de apertura y cierre de cortinas?”,noviembre de 2021 .[En línea]. Disponible en: https://latecnologiaatualcance.com/como-hacer-un-circuito-deapertura-y-cierre-de-cortinas/.; Ruales.A ,”Diseño de puente Wheatstone para una fotoresistencia.”,noviembre de 2021.[En línea]. Disponible en: https://www.youtube.com/watch?v=Vz_6vPjn4Bo.; Figueiras.T ,”Cómo convertir el MOVIMIENTO ROTATORIO de un Motor en un MOVIMIENTO LINEAL”,noviembre de 2021 .[En línea]. Disponible en: https://youtu.be/WynJqz-hibA.; OMS, “Inocuidad de los alimentos”, 30/04 de 2020, [online]. Available at: https://www.who.int/es/news-room/fact-sheets/detail/food-safety.; Minsalud,” Enfermedades transmitidas por alimentos disminuyeron en 2020”,14/08/2020, [online]. Available at: https://www.minsalud.gov.co/Paginas/Enfermedades%20transmitidas%20por%20alimento s%20disminuyeron%20en%202020.aspx.; BES (Boletín Epidemiológico Semanal), “Vigilancia de brotes de enfermedades transmitidas por alimentos, Colombia, semana epidemiológica 31 de 2020”, 26/07 de 2020, [online]. Available at: https://www.ins.gov.co/buscador eventos/BoletinEpidemiologico/2020_Boletin_epidemiologico_semana_31.pdf.; BES (Boletín Epidemiológico Semanal),” Las enfermedades transmitidas por Alimentos-ETA”,23/12 de 2018, [online]. Available at: https://www.ins.gov.co/buscador eventos/boletinepidemiologico/2018%20bolet%C3%ADn%20epidemiol%C3%B3gico%20s emana%2052.pdf.; FAO, FIDA y PMA, Seguimiento de la seguridad alimentaria y la nutrición en apoyo de la Agenda 2030 para el Desarrollo Sostenible: Balance y perspectivas, 2016. [Online]. Available at: https://www.fao.org/3/i6188s/i6188s.pdf.; Ministerio de salud, Calidad e inocuidad de alimentos,15 de noviembre de 2021. [Online]. Available at: www.minsalud.gov.co/salud/Paginas/inocuidad-alimentos.aspx.; David K. Lewis,Method and apparatus for washing fruits and vegetables,2009. [Online]. Available at: patents.google.com/patent/US8293025B2/en?q=A23N12%2f02&oq=A23N12%2f02.; Garcia Portillo, M., 2015. Google Patents. [online] Patents.google.com. Available at: patents.google.com/patent/ES2544005A1/es?assignee=TECNIDEX&oq=TECNIDEX.; Di Pannini, H., 2011. Google Patents. [online] Patents.google.com. Available at:; J Goodale, R., 1975. US3880068A - Apparatus for washing and blanching of vegetables - Google Patents. [online] Patents.google.com. Available at: .; A Tiby, G., 1969. US3456659A - Apparatus for treating food articles - Google Patents. [online] Patents.google.com. Available at: .; Who.int, 2020.-"Inocuidad de los alimentos"-, [Online]. Available: .; Ministerio de salud, ABECÉ de la inocuidad de alimentos, 2017. [Online]. Available at: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/abc inocuidad.pdf.; E. I. Alimentos, Inocuidad alimentaria en América Latina, 2015. [Online]. Available: www.revistaialimentos.com/ediciones/edicion-19/inocuidad-alimentaria-en-america latina/>; Fao.org, CODEXALIMENTARIUS FAO-WHO, 1994 [online] Available at: www.fao.org/fao-who-codexalimentarius/es/> [Accessed 8 July 2021].; Fao.org. n.d. ,“Acerca del Codex %7C CODEXALIMENTARIUS FAO-WHO” ,not date, [online]. Available at: .; AJ Avances,” Normograma del Instituto Nacional de Vigilancia de Medicamentos y Alimentos, INVIMA”, 13 /12 de 2020, [online]. Available at: .; Miquel Mor,”¿aplicas biocidas? Descubre nueva formacion necesaria”, 29/10/2014, [online] Available at: .; LA VERDAD MULTIMEDIA, S.A,”Descontaminación superficial de alimentos que aumenta su vida útil”, 16/01 /2017,[online] Available at: .; Dirección Regional de Inocuidad de los Alimentos,”Guía para uso de cloro en desinfección de frutas y hortalizas de consumo fresco, equipos y superficies en establecimientos ”, 15/05/2019, [online] Available at:; Equipos, M., n.d. TRANSPORTADOR DE TORNILLO SIN FIN CHILE – MYP EQUIPOS. [online] Mypequipos.com. Available at: [Accessed 16 November 2021].; Intralogistica, I., 2018. Qué son las bandas transportadoras. [online] Irp intralogistica.com. Available at: [Accessed 16 November 2021].; Motorex. n.d. El uso de la faja transportadora en las industrias - Motorex. [online] Available at: [Accessed 16 November 2021].; Nittacorporation.com. n.d. Bandas transportadoras para alimentos. [online] Available at: .; Indomaxve.com. 2019. Conoce los tipos de Mangueras industriales que existen. [online] Available at: .; Blog de Ventageneradores. 2016. Tipos de Motobombas o Bombas de Agua: según tipos de aguas, caudal o presión. [online] Available at: .; GTE. n.d. Apuntes SEC. UIB. [online] Available at: .; Gecousb.com.ve. n.d. Motores 1LA7. [online] Available at: .; Appinventor.mit.edu. 2012. About Us. [online] Available at: .; Irdmailp.com. n.d. 37mm DC 12V Motor de Reducción de Velocidad Caja de Engranajes de Alta Fuerza de Tensión Motor Reductor de Velocidad 3.5/15/30/70RPM(70RPM). [online] Available at: .; López, S., 2020. Qué es Firebase: funcionalidades, ventajas y conclusiones. [online] DIGITAL55. Available at: .; Y. Rojas, K. Aguado, and I. González, “La nanomedicina y los sistemas de liberación de fármacos: ¿la (r)evolución de la terapia contra el cáncer?,” Educ. Quim., vol. 27, no. 4, pp. 286–291, 2016.; R. R. Wakaskar, “General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes,” J. Drug Target., vol. 26, no. 4, pp. 311–318, 2018.; B. Alfonso and C. Casado, “DENDRÍMEROS: MACROMOLÉCULAS VERSÁTILES CON INTERÉS INTERDISCIPLINAR,” J. Chem. Inf. Model., vol. 01, no. 01, pp. 1689–1699, 2016.; B. Haley and E. Frenkel, “Nanoparticles for drug delivery in cancer treatment,” Urol. Oncol. Semin. Orig. Investig., vol. 26, no. 1, pp. 57–64, 2008.; M. C. Urrejola et al., “Sistemas de Np Poliméricas II: Estructura, Métodos de Elaboración, Características, Propiedades, Biofuncionalización y Tecnologías de Auto-Ensamblaje Capa por Capa (Layer-by-Layer Self-Assembly),” Int. J. Morphol., vol. 36, no. 4, pp. 1463–1471, 2018.; F. Chávez, B. I. Olvera, A. Ganem, and D. Quintanar, “Liberación de sustancias lipofílicas a partir de nanocápsulas poliméricas,” J. Mex. Chem. Soc., vol. 46, no. 4, pp. 349–356, 2002.; Z. M. Avval et al., “Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application,” Drug Metab. Rev., vol. 52, no. 1, pp. 157–184, 2020.; L. Mohammed, H. G. Gomaa, D. Ragab, and J. Zhu, “Magnetic nanoparticles for environmental and biomedical applications: A review,” Particuology, vol. 30, pp. 1–14, 2017.; A. S. Lübbe et al., “Clinical experiences with magnetic drug targeting: A phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors,” Cancer Res., vol. 56, no. 20, pp. 4686– 4693, 1996.; H. D. Liu, W. Xu, S. G. Wang, and Z. J. Ke, “Hydrodynamic modeling of ferrofluid flow in magnetic targeting drug delivery,” Appl. Math. Mech. (English Ed., vol. 29, no. 10, pp. 1341–1349, 2008.; G. Zhang et al., “Oxygen-enriched Fe3O4/Gd2O3 nanopeanuts for tumor-targeting MRI and ROS-triggered dual-modal cancer therapy through platinum (IV) prodrugs delivery,” Chem. Eng. J., vol. 388, no. February, p. 124269, 2020.; S. Tong, H. Zhu, and G. Bao, “Magnetic iron oxide nanoparticles for disease detection and therapy,” Mater. Today, vol. 31, no. December, pp. 86–99, 2019.; M. Sosa, J. J. B. Alvarado, and J. L. Gonz, “Tecnicas biomagneticas y su comparacion con los metodos bioelectricos,” vol. 48, no. 5, pp. 490–500, 2002.; S. Bose and M. Banerjee, “Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling,” J. Magn. Magn. Mater., vol. 385, pp. 32–46, 2015.; M. Bartoszek and Z. Drzazga; “A study of magnetic anisotropy of blood cells,” vol. 197, pp. 573–575, 1999.; Y. Haik, V. Pai, and C. J. Chen, “Development of magnetic device for cell separation,” J. Magn. Magn. Mater., vol. 194, no. 1, pp. 254–261, 1999.; Z. Liu, Y. Zhu, R. R. Rao, J. R. Clausen, and C. K. Aidun, “Nanoparticle transport in cellular blood flow,” Comput. Fluids, vol. 172, pp. 609–620, 2018.; S. Y. Lee, M. Ferrari, and P. Decuzzi, “Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows,” Nanotechnology, vol. 20, no. 49, 2009.; G. A. Duncan and M. A. Bevan, “Computational design of nanoparticle drug delivery systems for selective targeting,” Nanoscale, vol. 7, no. 37, pp. 15332–15340, 2015.; K. Müller, D. A. Fedosov, and G. Gompper, “Margination of micro- and nano-particles in blood flow and its effect on drug delivery,” Sci. Rep., vol. 4, pp. 1–8, 2014.; Y. Haik, V. Pai, and C. J. Chen, “Apparent viscosity of human blood in a high static magnetic field,” J. Magn. Magn. Mater., vol. 225, no. 1–2, pp. 180–186, 2001.; S. Afkhami and Y. Renardy, “Ferrofluids and magnetically guided superparamagnetic particles in flows: a review of simulations and modeling,” J. Eng. Math., vol. 107, no. 1, pp. 231–251, 2017.; I. Rukshin, J. Mohrenweiser, P. Yue, and S. Afkhami, “Modeling superparamagnetic particles in blood flow for applications in magnetic drug targeting,” Fluids, vol. 2, no. 2, pp. 1–12, 2017.; M. O. Avilés, A. D. Ebner, H. Chen, A. J. Rosengart, M. D. Kaminski, and J. A. Ritter, “Theoretical analysis of a transdermal ferromagnetic implant for retention of magnetic drug carrier particles,” J. Magn. Magn. Mater., vol. 293, no. 1, pp. 605–615, 2005.; A. Hajiaghajani, S. Hashemi, and A. Abdolali, “Adaptable setups for magnetic drug targeting in human muscular arteries: Design and implementation,” J. Magn. Magn. Mater., vol. 438, pp. 173– 180, 2017.; V. R. Sharma, A. K. Sharma, V. Punj, and P. Priya, “Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: A focus on breast cancer,” Semin. Cancer Biol., vol. 59, no. July 2019, pp. 133–146, 2019.; M. E. Miller, Human Diseases and Yeast.Pdf, First edit. New York: Momentum Press Health, 2018.; A. S. Lübbe, C. Bergemann, W. Huhnt, T. Fricke, and H. Riess, “Lübbe1996_Preclinical,” pp. 4694–4701, 1996.; Lübbe., C. Bergemann, J. Brock, and D. G. McClure, “Physiological aspects in magnetic drug-targeting,” J. Magn. Magn. Mater., vol. 194, no. 1, pp. 149–155, 1999.; C. Alexiou et al., “Locoregional cancer treatment with magnetic drug targeting,” Cancer Res., vol. 60, no. 23, pp. 6641–6648, 2000.; C. Alexiou, A. Schmidt, R. Klein, P. Hulin, C. Bergemann, and W. Arnold, “Magnetic drug targeting: Biodistribution and dependency on magnetic field strength,” J. Magn. Magn. Mater., vol. 252, no. 1-3 SPEC. ISS., pp. 363–366, 2002.; K. Gitter and S. Odenbach, “Experimental investigations on a branched tube model in magnetic drug targeting,” J. Magn. Magn. Mater., vol. 323, no. 10, pp. 1413–1416, 2011.; M. G. Krukemeyer, V. Krenn, M. Jakobs, and W. Wagner, “Mitoxantrone-iron oxide biodistribution in blood, tumor, spleen, and liver - Magnetic nanoparticles in cancer treatment,” J. Surg. Res., vol. 175, no. 1, pp. 35–43, 2012.; M. M. Attar et al., “Thermal analysis of magnetic nanoparticle in alternating magnetic field on human HCT-116 colon cancer cell line,” Int. J. Hyperth., vol. 32, no. 8, pp. 858–867, 2016.; R. Eivazzadeh-Keihan, F. Radinekiyan, A. Maleki, M. Salimi Bani, Z. Hajizadeh, and S. Asgharnasl, “A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy,” Int. J. Biol. Macromol., vol. 140, pp. 407–414, 2019.; S. Shabestari Khiabani, M. Farshbaf, A. Akbarzadeh, and S. Davaran, “Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy,” Artif. Cells, Nanomedicine Biotechnol., vol. 45, no. 1, pp. 6–17, 2017.; K. T. Al-Jamal et al., “Magnetic Drug Targeting: Preclinical in Vivo Studies, Mathematical Modeling, and Extrapolation to Humans,” Nano Lett., vol. 16, no. 9, pp. 5652–5660, 2018.; M. Minbashi, A. A. Kordbacheh, A. Ghobadi, and V. V. Tuchin, “Optimization of power used in liver cancer microwave therapy by injection of Magnetic Nanoparticles (MNPs),” Comput. Biol. Med., vol. 120, no. February, p. 103741, 2020.; A. Nan, M. Suciu, I. Ardelean, M. Şenilă, and R. Turcu, “Characterization of the Nuclear Magnetic Resonance Relaxivity of Gadolinium Functionalized Magnetic Nanoparticles,” Anal. Lett., vol. 0, no. 0, pp. 1–16, 2020.; I. Cicha, S. Lyer, C. Alexiou, and C. D. Garlichs, “Nanomedicine in diagnostics and therapy of cardiovascular diseases: Beyond atherosclerotic plaque imaging,” Nanotechnol. Rev., vol. 2, no. 4, pp. 449–472, 2013.; M. Nahrendorf et al., “Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis,” Circulation, vol. 117, no. 3, pp. 379–387, 2008.; S. Jaimes, A. Gonzáles, C. Granados, D. Álvarez, and E. Espitia, “Redalyc.Nanotecnología: avances y expectativas en cirugía,” Rev. Colomb. Cirugía, vol. 27, pp. 158–166, 2012.; B. Méndez and C. Muñoz, “Nanochips y nanosensores para eldiagnóstico temprano de cáncer oral: una revisión,” no. 67, pp. 131–147, 2012.; D. Rodriguez, J. Moyano, and L. Roa, “Estudio por dinámica molecular browniana de np bajo efectos de Bs externos,” Ing. Mil., vol. 13, no. 9, pp. 90–98, 2018.; J. Gallo and C. Ossa, “Fabricación y caracterización de np de plata con potencial uso en el tratamiento del cáncer de piel,” Ing. y Desarro., vol. 37, no. 1, pp. 88–104, 2019.; J. Pantoja, “np magnéticas en flujo sanguíneo para tratamiento de cáncer,” Universidad Distrital Francisco José de Caldas, 2020.; https://hdl.handle.net/11349/31171; Universidad Distrital Francisco José de Caldas
Availability: https://hdl.handle.net/11349/31171
-
3
Authors: et al.
Contributors: et al.
Subject Terms: Industrial automation, Industrial engineering, Technological change, Automatic control, Automatic machinery, Nanotechnology, Bibliographic research, High technology, Factories, Automatización industrial, Ingeniería industrial, Cambio tecnológico, Control automático, Maquinaria automática, Alta tecnología, Fábricas, Nanotecnología, Investigación bibliográfica
Subject Geographic: Colombia
File Description: application/pdf
Relation: Teik-Cheng Lim. (2011) Nanosensors Theory and Applications in Industry, Healthcare and Defense. Boca Raton: Taylor and Francis Group, LLC. T. Pradeep. (2008) Nano: The Essentials Understanding Nanoscience and Nanotechnology. New York: McGraw-Hill.; Ahmed Busnaina. (2007) Nanomanfacturing Handbook. Boca Raton: Taylor and Francis Group, LLC.; Renzo Tomellini (2004) La nanotecnología. Innovaciones para el mundo del mañana. Luxemburgo: Comisión Europea; http://www.ijitee.org/attachments/File/v3i4/D1199093413.pdf; http://www.nano.gov/you/nanotechnology-benefits; http://blogs.creamoselfuturo.com/nano-tecnologia/; http://www.ehu.eus/sgi/software-de-calculo/siesta#informacingeneral; Fundación Española para la Ciencia y la Tecnología, FECYT (2009) NANOCIENCIA Y NANOTECNOLOGÍA Entre la ciencia ficción del presente y la tecnología del futuro. España: Fundación Española para la Ciencia y la Tecnología.; http://www.idepa.es/sites/web/idepaweb/Repositorios/galeria_descargas_idepa/AplicacionesIndustriales_Nanotecnologia.pdf; http://www.euroresidentes.com/futuro/nanotecnologia/diccionario/nanomateriales.htm; http://catarina.udlap.mx/u_dl_a/tales/documentos/leip/vega_m_d/indice.html PABLO R. HERNÁNDEZ RODRÍGUEZ Bioelectrónica, Departamento de Ingeniería Eléctrica, CINVESTAV IPN, México; Martinez, Pau & Marín, Pedro. “Diseño y estudio de una máquina de electrospinning”. Tomado de la red en Abril de 2017. Disponible en Internet: https://upcommons.upc.edu/pfc/bitstream/2099.1/7123/4/03_Mem%C3%B2ria.pdf; Jaimes Moreno, Edgar Mauricio. “Electroestimulador inteligente y sistema de clonación artificial de sensores de movimiento y control adaptativo-predictivo, por 143 143 acupuntura con agujas-electrodos y transmisión inalámbrica, evaluado en un diseño de prototipo construido”. Universidad Autónoma de Bucaramanga. 2009.; Siti Fatimah Abd Rahman, Nor Azah Yusof, Uda Hashim, M. Nuzaihan Md Nor. “Design and Fabrication of Silicon Nanowire based Sensor”. Institute of Advanced Technology, Universiti Putra Malaysia. 2013.; Rodriguez Pacheco, Jorge Humberto. “Prototipo automatizado para la implementacion de la técnica “electrospinning” en aplicaciones farmacológicas”. Universidad Autónoma de Bucaramanga. 2010.; Asgar, Z., Kodakara, S., & Lilja, D. (2005). Fault-tolerant image processing using stochastic logic (Tech. Rep.). Retrieved from http://www.zasgar.net/zain/publications/publications.php; Bryant, R., & Chen, Y. (1995). Verification of arithmetic circuits with binary moment diagrams. In Proceedings of the 32nd Design Automation Conference (DAC ’95), San Francisco (pp.535-541).; DeHon, A. (2005). Nanowire-based programmable architectures. ACM Journal on Emerging Technologies in Computing Systems, 1(2), 109–162. doi:10.1145/1084748.1084750; FENA. (2006). Mission statement. Retrieved from http://www.fena.org; Qian, W, Backes, J, Riedel, M. (2009). The synthesis of stochastic Circuits for Nanoscale Computation; [ADAM 94] ADAMI, C., Learning and complexity in genetic auto¬adaptive systems. California Institute of Technology, 1994.; [ADEL 95] ADELI, H., Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems. John Wiley and Sons, Inc, 1995; S. A. Pérez. 2002. “Diseño de Sistemas Digitales con VHDL”. Ed. Thomson. Neil H. E. Weste and Kamran Eshraghian. Principles of CMOS VLSI Design. Addison-Wesley, 2nd edition, 1994; Xilinx Inc., 2100 Logic Drive, San Jose, CA 95124. The Programmable Gate ArrayData Book, 1991.; National Acdemy of Science. Panel on Scientific and Medical Aspects of Human Cloning. August 7, 2001; Vera, F. (2006). “Sistema Electrónico de clonación Artificial de un Sensor de Viscocidad Basado en Hardware Evolutivo.” Universidad de Pamplona; WINTER, D. A. Biomechanics and Motor Control of Human Movement. Warterloo: Warterloo Press, 1991.; Pedro Carlos Russi. Estudo De Um Modelo Dinâmico Para Avaliação Física Do Corpo Humano. Faculdade de Engenharia de Guaratinguetá da Universidade Estadual Paulista. Sao Paulo. Brasil; Sistema electrónico de clonacion artificial de un sensor de viscosidad basado en hardware evolutivo. Fredy Vera Perez trabajo de grado para optar por el título de ingeniero electrónico. Universidad de Pamplona. 2006; Muñoz Antonio F. Sensorica e instrumentación, Mecánica de Alta precisión. . Pueblo y educación. 1997; Maneiro Malavé Ninoska. Algoritmos genéticos aplicados al problema cuadrático de asignación de facilidades. Departamento de Investigación Operativa, Escuela de Ingeniería Industrial, Universidad de Carabobo, Valencia. Venezuela. Febrero 2002; Faustino, A, Muñoz, Mariela. (2010). “Algoritmos y Sistemas Genéticos Aplicados en sistema de control en Tiempo Real Obtenido por Clonación Artificial para Prótesis Mecatrónica de Piel Artificial con Nanopartículas.”. Universidad Autónoma de Bucaramanga y Universidad del Cauca, Colombia; Beneficios de la Nanotecnología: Presentación. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/nanotecnologia_benecios.html; Caro Bejarano, José (2012). Los riesgos mundiales en el 2012 según el foro económico mundial. ieee.es. Tomado de la red en Abril de 2015. URL: http://www.ieee.es/Galerias/chero/docs_informativos/2012/DIEEEI06-2012_ForoEconomicoMundial_RiesgosGlobales2012_MJCaro_v2.pdf; García Díaz, J. (2006). Normalización sobre Nanotecnologías. AENOR, p. 26-28. Tomado de la red en Abril de 2015. URL: http://www.nanospain.org/les/Working%20Groups/NanoSpain_WGIndustrial_Normalizacion.pdf; José Luis Carrillo Aguado. Cómo es la Nanotecnología según la FDA. Perdiositasenlinea.org. Tomado de la red en Abril de 2015. URL: 145 145 http://www.periodistasenlinea.org/modules.php?op=modload&name=News&le=article&sid=23516; Marquez, J. (2008). Nanobioética, nanobiopolítica y nanotecnología. Revista Salud Uninorte. 24 (1), 140-157. Tomado de la red en Abril de 2015. URL: http://rcienticas.uninorte.edu.co/index.php/salud/article/view/3824/2435; Organización de las Naciones Unidas para la Agricultura y la Alimentación y Organización mundial de la salud. Reunión Conjunta FAO/OMS de Expertos acerca de la aplicación de la nanotecnología en los sectores alimentario y agropecuario: posibles consecuencias para la inocuidad de los alimentos. Informe. Consultado en http://www.fao.org/docrep/015/i1434s/i1434s00.pdf; Panorama y perspectivas de la nanotecnología. Revista Virtual Pro, Agosto 2009 (91), pp17-18. Tomado de la red en Abril de 2015. URL: http://www.revistavirtualpro.com/revista/index.php?ed=2009-08-01&pag=17; Riesgos de la Nanotecnología. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/riesgos_nanotecnologia.htm; Creus Sole, A. “Instrumentación Industrial”. 7 ed., México: Alfaomega, 2005; Delgado, A. Inteligencia Artificial y Minirobots. Ecoe Ediciones, 1998; Ghosh, A. N. R. Pal, and S. K. Pal, "Self-organization for object extraction using a multilayer neural network and fuzziness measures," IEEE Transactions on Fuzzy Systems, vol. 1, pp. 54-58, 1993.; CARDENAS, J., Diseño Geométrico de Carreteras, Primera Edición, Ecoe Ediciones, 2011.; CARREÑO, Y., Investigación de Sistemas de Control Inteligente del Tráfico Vehicular y Desarrollo de Instrumentación de Alta Precisión de Parámetros Asociados al Monitoreo, Mando y Control Automáticos de Carreteras Urbanas. Programa Jóvenes Investigadores e Innovadores "Virginia Gutiérrez de Pineda Colciencias, Colombia 2011; MONTEJO, A., Ingeniería de Pavimentos. Fundamentos, Estudios Básicos y Diseño, Tercera Edición, Tomo 1, Universidad Católica de Colombia, 2010; C. J. Lin, C. H. Chen, and C. T. Lin, "Efficient self-evolving evolutionary learning for neurofuzzy inference systems," IEEE Transactions on Fuzzy Systems, vol. 16, pp. 1476- 1490, 2008.; D. Goldberg. Genetics Algorithms in Search, Optimization and Machine Learning. Massachusetts: Addison-Wesley Reading, 1983; D. Nauck, F. Klawonn, and R. Kruse, "Foundations of neuro-fuzzy systems," Chichester,U.K.: Wiley, 1997.; D. Valdez, “Automatización en el área de bodega en una empresa de correo y mensajería para lograr una mayor productividad”. M.S. tesis, Universidad De San Carlos De Guatemala, Guatemala, 2005; F. E. Cellier, Continuous System Modeling. New York, 1991; F. Munoz, “Sistemas de control inteligentes de la planta de viscorreduccion basados en la clonacion artificial de un sensor de viscosidad y parámetros asociados”; G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B. Rosen, "Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps," IEEE Transactions on Neural Networks, vol. 3, pp. 698-713, 1992; H. Boudouda, H. Seridi H. Akdag. “The Fuzzy Possibilistic C-Means Classifier”, Asian Journal of Infomation Technology, Vol. 4, no 11, pp. 981-985, 2005.; H. Ishibuchi, M. Nii, and T. Murata, "Linguistic rule extraction from neural networks and genetic-algorithm-based rule selection," in IEEE International Conference on Neural Networks - Conference Proceedings, Houston, TX, USA, 1997, pp. 2390-2395.; H. R. Berenji and P. Khedkar, "Learning and tuning fuzzy logic controllers through reinforcements," IEEE Transactions on Neural Networks, vol. 3, pp. 724-740, 1992.; H. Takagi, N. Suzuki, T. Koda, and Y. Kojima, "Neural networks designed on approximate reasoning architecture and their applications," IEEE Transactions on Neural http://www.unipamplona.edu.co/unipamplona/hermesoft/portalIG/home_2/recursos/investigacion/contenidos/01102007/sistemas_control_inteligente.jsp. [Consultado 20 Marzo 2013].; I. Lache, F. Muñoz, “Investigación de nuevos prototipos de sensores y sistema de control por clonación artificial, basados en técnicas de inteligencia artificial” [En línea]. Disponible: http://ivanovichlache.googlepages.com/PaperPamILS.doc [Consultado 3 Febrero 2013; J. Castro, J. Padilla y E. Romero, “Metodología para realizar una automatización utilizando PLC,” Impulso, Revista De Electrónica, Eléctrica Y Sistemas Computacionales, Departamento de Eléctrica y Electrónica del Instituto Tecnológico de Sonora, vol. 1, nro. 1, pp. 18-21, 2005; J. J. Buckley and Y. Hayashi, "Fuzzy neural networks: A survey," Fuzzy Sets andSystems, vol. 66, pp. 1-13, 1994.; J. J. Hopfield and D. W. Tank, "'Neural' computation of decisions in optimization problems," Biological Cybernetics, vol. 52, pp. 141-152, 1985.; J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities," Proceedings of the National Academy of Sciences of the United States of America, vol. 79, pp. 2554-2558, 1982.; J. M. Keller and D. J. Hunt, "Incorporating fuzzy membership functions into the perceptron algorithm," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-7, pp. 693-699, 1985; J. M. Keller and H. Tahani, "Implementation of conjunctive and disjunctive fuzzy logic rules with neural networks," International Journal of Approximate Reasoning, vol. 6, pp.221-240, 1992.; J. M. Keller, R. Krishnapuram, and F. C.-H. Rhee, "Evidence aggregation networks for fuzzy logic inference," IEEE Transactions on Neural Networks, vol. 3, pp. 761-769,1992; J. Rissanen, "Modeling by shortest data description," Automatica, vol. 14, pp. 465-471, 1978; J.-S. R. Jang, "ANFIS: adaptive-network-based fuzzy inference system," IEEE Transactions on Systems, Man and Cybernetics, vol. 23, pp. 665-685, 1993; J.S.R. Jang, N. Gulley, Natick. Fuzzy Logic Toolbox. MS, Mathworks, 2000; K. J. Aström and P. Eykhoff, "System identification-A survey," Automatica, vol. 7, pp. 123-162, 1971; K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop, "Neural networks for control systems - A survey," Automatica, vol. 28, pp. 1083-1112, 1992; K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks," IEEE Transactions on Neural Networks, vol. 1, pp. 4-27, 1990.; L. Ljung and Z.-D. Yuan, "Asymptotic Properties of Black-Box Identification of Transfer Functions," IEEE Transactions on Automatic Control, vol. AC-30, pp. 514-530, 1985.; L. Ljung, "System Identification: Theory for the User.," New Jersey: Prentice-Hall, 1999.; L.-X. Wang and J. M. Mendel, "Fuzzy basis functions, universal approximation, and orthogonal least-squares learning," IEEE Transactions on Neural Networks, vol. 3, pp. 807-814, 1992; Muñoz Mariela, Muñoz F, (2010). Diseño De Un Sistema De Control Basado en Clonación Artificial, ISSN: 1692-7257 Revista Tecnologías Avanzada Universidad de Pamplona, Colombia; N. K. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction," IEEE Transactions on Fuzzy Systems, vol. 10, pp. 144-154, 2002; N. K. Sinha and B. Kuszta, Modeling and identification of dynamic systems: Springer,1983. Networks, vol. 3, pp. 752-760, 1992; P. Angelov P. Filev, “An approach to online identification of Takagi-Sugeno fuzzy models”, IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(1), pp. 484-498, 2004.; P. Eykhoff, "System Identification," John Wiley, 1974; Q. Song and N. K. Kasabov, "NFI: A neuro-fuzzy inference method for transductive reasoning," IEEE Transactions on Fuzzy Systems, vol. 13, pp. 799-808, 2005; Q. Song and N. Kasabov, "TWNFI - a transductive neuro-fuzzy inference system with weighted data normalization for personalized modeling," Neural Networks, vol. 19, pp. 1591-1596, 2006; R. Babuska, Fuzzy Modeling for Control: Kluwer Academic Publishers, 1998; R. Haber and H. Unbehauen, "Structure identification of nonlinear dynamic systems - Asurvey on input/output approaches," Automatica, vol. 26, pp. 651-677, 1990.; R. J. Oentaryo, M. Pasquier, and C. Quek, "GenSoFNN-Yager: A novel brain-inspired generic self-organizing neuro-fuzzy system realizing Yager inference," Expert Systems with Applications, vol. 35, pp. 1825-1840; R. Johansson, "System Modeling and Identification," in Information and System Sciences New Jersey: Prentice Hall, 1993; S. C. Lee and E. T. Lee, "Fuzzy neural networks," Mathematical Biosciences, vol. 23, pp. 151-177, 1975; S. K. Pal and S. Mitra, "Multilayer perceptron, fuzzy sets, and classification," IEEE Transactions on Neural Networks, vol. 3, pp. 683-697, 1992; S. Mitra and S. K. Pal, "Fuzzy multi-layer perceptron, inferencing and rule generation," IEEE Transactions on Neural Networks, vol. 6, pp. 51-63, 19; S. Mitra and Y. Hayashi, "Neuro-fuzzy rule generation: survey in soft computing framework," IEEE Transactions on Neural Networks, vol. 11, pp. 748-768, 2000.; S. Mitra, "Fuzzy MLP based expert system for medical diagnosis," Fuzzy Sets and Systems, vol. 65, pp. 285-296, 1994; S.J. Derby, “Design of Automatic Machinery”, New York: Marcel Dekker, 2005; T. Calonge, L. Alonso, and R. Ralha, "Transputer implementations of a multilayer perceptron used for speech-recognition task," Microcomputer Applications, vol. 16, pp.64-69, 1997.; T. Kohonen, "The self-organizing map," Proceedings of the IEEE, vol. 78, pp. 1464-1480, 1990; T. Söderström and P. Stoica, "System Identification," New York: Prentice Hall, 1989.; U.K.: Wiley, 1997.; W. A. Farag, V. H. Quintana, and G. Lambert-Torres, "A genetic-based neuro-fuzzy approach for modeling and control of dynamical systems," IEEE Transactions on Neural Networks, vol. 9, pp. 756-767, 1998; W. L. Tung and C. Quek, "eFSM - A novel online neural-fuzzy semantic memory model," IEEE Transactions on Neural Networks, vol. 21, pp. 136-157, 2010.; Y. Hayashi, J. J. Buckley, and E. Czogala, "Fuzzy neural network with fuzzy signals and weights," International Journal of Intelligent Systems, vol. 8, pp. 527-537, 1993; Automatización de las vías, carreteras e inteligencia de automoviles – Pölliita Fänii http://pollitafannimecatronica.wordpress.com/2011/12/08/automatizacion-de-las-vias-carreteras-e-inteligencia-de-automoviles; Carreteras, Análisis de Tráfico – Vaisala http://es.vaisala.com/sp/roads/applications/trafficanalysis/Pages/default.as; La DGT trabaja en un proyecto para instaurar en España sistemas inteligentes de comunicación entre el vehículo y la vía – Lukor 150 150 http://www.lukor.com/ordenadores/11012301.htm; Sistemas inteligentes de transporte ¿Realidad o Ficción? – Circula Seguro http://www.circulaseguro.com/vehiculos-y-tecnologia/sistemas-inteligentes-de-transporte-ficcion-o-realidad; Sistemas inteligentes de transporte http://www.google.com.co/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&ved=0CFEQFjAH&url=http%3A%2F%2Fwww.iies.es%2Fattachment%2F115765%2F&ei=yS5GUfTzLIrW0gGF3YDIBw&usg=AFQjCNF2RLjXUUjDjor9B-xqi5tlblePbw&bvm=bv.43828540,d.eWU&cad=rja; CICNetwork – Ciencia y Tecnología http://www.cicnetwork.es/upload/pdf/revistas/CN1.p; BARROSO OLIVEIA, Luis Manuel. Automatização e controlo de um sistema de electrospinning [en línea]. Universidade do Minho, Escola de Engenharia. Octubre de 2011. Disponible en Internet: https://repositorium.sdum.uminho.pt/bitstream/1822/16498/1/pg16155_TESE_MEM.pdf; DUQUE SÁNCHEZ, Lina Marcela; RODRÍGUEZ, Leonardo y LÓPEZ, Marcos. Electrospinning: La Era de las Nanofibras [en línea]. En: Revista Iberoamericana de Polímeros Volumen 14(1), Enero de 2013; Siti Fatimah Abd Rahman, Nor Azah Yusof, Uda Hashim, M. Nuzaihan Md Nor. “Design and Fabrication of Silicon Nanowire based Sensor”. Institute of Advanced Technology, Universiti Putra Malaysia. 2013; Qian, W, Backes, J, Riedel, M. (2009). The synthesis of stochastic Circuits for Nanoscale Computation.; Rodríguez Pacheco, Jorge Humberto. “Prototipo automatizado para la implementacion de la técnica “electrospinning” en aplicaciones farmacológicas”. Universidad Autónoma de Bucaramanga. 2010.; MANTILLA, Oscar Alberto. Diseño y Construcción de un Prototipo Electro-mecánico para la Implementación de la Técnica " Electrospinning " en Aplicaciones Farmacológicas. Junio de 2006.; Jie Chen y Hua Li, “Design Methodology for Hardware-efficient Fault-tolerant Nanoscale Circuits”, en IEEE International Symposium on Circuits and Systems’ 2006; USERO, Rafael y SUÁREZ, Natalia. Electrospinning de poliesteramidas Biodegradables [en línea]. 2010. [Citado 3 feb 2016] Disponible en Internet; MUÑOZ, A.F., Aplicación de los algoritmos genéticos en la identificación y control de bioprocesos por clonación artificial. IEEE Transactions on Systems, Man, and Cybernetic V 19 No. 2 58-76, 1998; MUÑOZ, A.F., Tecnología de clonación artificial on-line de sensores y controladores. Oficina Internacional de Invenciones, Patentes y Marcas, República de Cuba. Registros No. 7-789735, 2000; ADAMI, C., Learning and complexity in genetic auto¬adaptive systems. California Institute of Technology, 1994; ADELI, H., Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems. John Wiley and Sons, Inc, 1995.; Vera, F. “Sistema Electrónico de clonación Artificial de un Sensor de Viscocidad Basado en Hardware Evolutivo.” Universidad de Pamplona. 2006; Faustino, A, Muñoz, Mariela. (2010). “Algoritmos y Sistemas Genéticos Aplicados en sistema de control en Tiempo Real Obtenido por Clonación Artificial para Prótesis Mecatrónica de Piel Artificial con Nanopartículas.”. Universidad Autónoma de Bucaramanga y Universidad del Cauca, Colombia.; Beneficios de la Nanotecnología: Presentación. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/nanotecnologia_bene¬cios.htm; Caro Bejarano, José (2012). Los riesgos mundiales en el 2012 según el foro económico mundial. ieee.es. Tomado de la red en abril de 2015. URL: http://www.ieee.es/Galerias/-chero/docs_informativos/2012/DIEEEI06-2012_ForoEconomicoMundial_RiesgosGlobales2012_MJCaro_v2.pdf; García Díaz, J. (2006). Normalización sobre Nanotecnologías. AENOR, p. 26-28. Tomado de la red en Abril de 2015. URL: http://www.nanospain.org/-les/Working%20Groups/NanoSpain_WGIndustrial_Normalizacion.pdf; José Luis Carrillo Aguado. Cómo es la Nanotecnología según la FDA. Perdiositasenlinea.org. Tomado de la red en abril de 2015. URL: http://www.periodistasenlinea.org/modules.php?op=modload&name=News&-le=article&sid=23516; Marquez, J. (2008). Nanobioética, nanobiopolítica y nanotecnología. Revista Salud Uninorte. 24 (1), 140-157. Tomado de la red en Abril de 2015. URL: http://rcienti-cas.uninorte.edu.co/index.php/salud/article/view/3824/2435; Ingeniería en Nanotecnología. Upb. Tomado de la red en Mayo 17 de 2015. URL: http://www.upb.edu.co/portal/page?_pageid=1054,53529575&_dad=portal&_schema=PORTAL; GALVIS, Dalya Julieth. Sistema de electroestimulación por tecnología de fabricación de electrohilado. Noviembre de 2014; GAMBOA, Wilsón., MANTILLA, O., CASTILLO, V., Producción de micro y nano fibras a partir de la técnica “Electrospinning” para aplicaciones farmacológicas. Agosto, 2007, vol. 053, 1-4; J. Chen, J. Mundy, Y. Bai, S. Chan, P. Petrica, y R. I. Bahar, “A probabilistic approach to nano-computing,” En Proceedings of the Second Workshop on Non-Silicon Computing, San Diego, CA, Junio 2003.; K. N. Patel, I. L. Markov, y J. P. Hayes, “Evaluating circuit reliability under probabilistic gate-level fault models,” en IEEE International Workshop on Logic and Synthesis, 2003.; MODELAJE Y SIMULACION MULTIFISICA DE UN SENSOR DE GAS DE Sno2 EN COVENTORWARE™. Andrés Felipe Méndez Jiménez, Alba Ávila Bernal. Departamento de Ingeniería Eléctrica y Electrónica, Universidad de los Andes. Bogota, Colombia. Noviembre de 2005; MEMORIAS I SEMINARIO INTERNACIONAL DE NANOTECNOLOGÍA UDES 2011.; HERSEL U., DAHMEN C., KESSLER H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. Vol. 24, 2003, p. 4385-4415; DOSHI, Jayesh., RENEKER, Darrell H. Electrospinning process and applications of electrospun fibers: Journal of Electrostatic. Agosto, 1995, vol. 35. 151-160.; J.S.R Jang y Sun C.T(1993) Funcional Equivalence Berween Radial Basis Funtion Networks and Fuzzy Inference Systems. IEEE Transactions on Neuronal Networks.; K.F. Man and K.S. Tang Genetic Algorithms for Control and Signal Processing Department of Electronic Engineering City University of Hong Kong; Haber and H. Unbehauen, "Structure identification of nonlinear dynamic systems – A survey on input/output approaches," Automatica, vol. 26, pp. 651-677, 1990; Delgado Alberto Rule Based System with DNA Chip Proceedings of the 2003 IEEE International Symposium on Intelligent Control Houston, Texas October 5-8, 2003; D. Frenkel, B. Smit, Understanding Molecular Simulations software SIESTA: from algorithms to applications, Academic Press (1996; Huifei Rao, Jie Chen, Changhong Yu, Woon Tiong and others Ensemble Dependent Matrix Methodology for Probabilistic-Based Fault-tolerant Nanoscale Circuit Design; Muñoz Antonio F NUEVOS MÉTODOS Y PROCEDIMIENTOS DE ALTA PRECISIÓN APLICADO A PAVIMENTOS Y VÍA CERTIFICADO DE REGISTRO DE SOPORTE LÓGICO – SOFTWARE TÉCNICAS DE INTELIGENCIA ARTIFICIAL BASADOS EN ALGORITMOS GEN ÉTICOS PARA DETERMINAR EL DESEMPEÑO A PARTIR DE LOS PARÁMETROS DE COMPORTAMIENTO Libro - Tomo – Partida 13-40-467 Fecha Registro 03-Feb-2014; Durakbasa et PUC Río Brasil CERTIFICADO DE DERECHO DE AUTOR Registro 0410263/CA Fuzzy Logic Measurement Nanosystems d; Entrenamientos. “Fitness y electroestimulación”. Tomado de la red en Agosto de 2014. URL: http://www.entrenamientos.org/entrenamiento-fisico/item/70-fitness-y-electroestimulacion; Entrenamientos. “Entrenamiento físico y electroestimulación”. Tomado de la red en Agosto de 2014. URL: http://www.entrenamientos.org/entrenamiento-fisico/item/47-electroestimulacion; Martinez, Pau & Marín, Pedro. “Diseño y estudio de una máquina de electrospinning”. Tomado de la red en Agosto Septiembre de 2014. URL: https://upcommons.upc.edu/pfc/bitstream/2099.1/7123/4/03_Mem%C3%B2ria.pdf; Jaimes Moreno, Edgar Mauricio. “Electroestimulador inteligente y sistema de clonación artificial de sensores de movimiento y control adaptativo-predictivo, por acupuntura con agujas-electrodos y transmisión inalámbrica, evaluado en un diseño de prototipo construido”. Universidad Autónoma de Bucaramanga. 2009; Rodriguez Pacheco, Jorge Humberto. “Prototipo automatizado para la implementacion de la técnica “electrospinning” en aplicaciones farmacológicas”. Universidad Autónoma de Bucaramanga. 2010; FENA. (2006). Mission statement. Retrieved from http://www.fena.org Qian, W, Backes, J, Riedel, M. (2009). The synthesis of stochastic Circuits for Nanoscale Computation.; MUÑOZ, A.F., Aplicación de los algoritmos genéticos en la identificación y control de bioprocesos por clonación artificial. IEEE Transactions on Systems, Man, and Cybernetic V 19 No. 2 58-76, 19; MUÑOZ, A.F., Equipo de control genético de la composición en medios continuos on-line. Oficina Internacional de Invenciones, Patentes y Marcas, República de Cuba. Registros No. 7-789734, 2001; ADELI, H., Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems. John Wiley and Sons, Inc, 1995; Vera, F. (2006). “Sistema Electrónico de clonación Artificial de un Sensor de Viscocidad Basado en Hardware Evolutivo.” Universidad de Pamplona. WINTER, D. A. Biomechanics and Motor Control of Human Movement. Warterloo: Warterloo Press, 1991.; Maneiro Malavé Ninoska. Algoritmos genéticos aplicados al problema cuadrático de asignación de facilidades. Departamento de Investigación Operativa, Escuela de Ingeniería Industrial, Universidad de Carabobo, Valencia. Venezuela. Febrero 2; Faustino, A, Muñoz, Mariela. (2010). “Algoritmos y Sistemas Genéticos Aplicados en sistema de control en Tiempo Real Obtenido por Clonación Artificial para Prótesis Mecatrónica de Piel Artificial con Nanopartículas.”. Universidad Autónoma de Bucaramanga y Universidad del Cauca, Colomb; Beneficios de la Nanotecnología: Presentación. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/nanotecnologia_benecios.htm; García Díaz, J. (2006). Normalización sobre Nanotecnologías. AENOR, p. 26-28. Tomado de la red en Abril de 2015. URL: 157 157 http://www.nanospain.org/les/Working%20Groups/NanoSpain_WGIndustrial_Normalizacion.pdf; José Luis Carrillo Aguado. Cómo es la Nanotecnología según la FDA. Perdiositasenlinea.org. Tomado de la red en Abril de 2015. URL: http://www.periodistasenlinea.org/modules.php?op=modload&name=News&le=article&sid=23516; Panorama y perspectivas de la nanotecnología. Revista Virtual Pro, Agosto 2009 (91), pp17-18. Tomado de la red en Abril de 2015. URL: http://www.revistavirtualpro.com/revista/index.php?ed=2009-08-01&pag=17 Riesgos de la Nanotecnología. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/riesgos_nanotecnologia.htm; D. Olea, S.S. Alexandre, P. Amo-Ochoa, A. Guijarro, F. de Jesús, J.M. Soler, P.J. de Pablo, F. Zamora, J. Gómez Herrero, Advanced Materials 2005, 17, 1761-176; “Assembling of Dimeric Entities of Cd(II) with 6-Mercaptopurine to Afford One dimensional Coordination Polymers: Synthesis and Scanning Probe Microscopy Characterization”. P. Amo-Ochoa, M.I. Rodríguez-Tapiador, O. Castillo, D. Olea, A. Guijarro, S.S. Alexandre, J. Gómez-Herrero, F. Zamora, Inorganic Chemistry 2006, 45, 7642-7650.; “Electrical Conductivity in Platinum-Dimer Columns”. A. Guijarro, O. Castillo, A. Calzolari, P. J. Sanz Miguel, C. J. Gómez-García, R. di Felice, F. Zamora, Inorganic Chemistry 2008, 47, 9736-9738.; “Organization of Cordination Polymers on Surfaces by Direct Sublimation”. L. Welte, U. García-Couceiro, O. Castillo, D. Olea, C. Polop, A. Guijarro, A. Luque, J.; M. Gómez-Rodríguez, J. Gómez Herrero, F. Zamora, Advanced Materials 2009, 21, 2025-2028.; “Nanofibers generated by spontaneous self-assembly on surfaces of individual bimetallic building blocks”. R. Mas-Ballesté, R. Gonzalez-Prieto, A. Guijarro, M. A. Fernández, F. Zamora, Dalton Transactions 2009, Submitted; “MMX as conductors from single crystals to nanostructures”. A. Guijarro, O. Castillo, L. Welte, A. Calzolari, P. J. Sanz Miguel, C. J. Gómez-García, D. Olea, R. di Felice, J. Gómez-Herrero, F. Zamora, Journal of the American Chemical Society 2009, Subm; Ozin, G.; Arsenault, A. C. “Nanochemistry, A Chemical Aproach to Nanomaterials” RSC Publishing, 2005; página web http://www.intel.com, marzo 2009. 3 (a) Gates, B. D. Chem. Rev. 2005, 105, 1171-1196 (b) Barth, J. V. Nature 2005, 437,671-679.; Bibliografía Software Molecular workbench Charles Xie. SPORE, Science Prize for Online Resources in Education; http://www.sciencemag.org/site/special/spore/; Pryor. R. W. Multiphysics Modeling Using COMSOL: A First Principles Approach (Jones and Bartlett Publishers, Sudbury, MA, 2009).; Bridson, C. R. Batty, Science 330, 1756 (2010). Abstract/FREE Full Text; Finkelstein N. D. et al., Phys. Rev. Spec. Top. Phys. Educ. Res. 1, 010103 (2005). CrossRef; Klahr,L. M. Triona, C. Williams, J. Res. Sci. Teach. 44, 183 (2007). CrossRefWeb of Scie; Leach A. R., Molecular Modeling: Principles and Applications (Pearson Education, Upper Saddle River, NJ, ed.2, 2001). D. C. Rappaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, Cambridge,1997; N. Watanabe, M. Tsukada, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62, (2 Pt B), 2914 (2000). CrossRefPubMed; R. Feynman, J. Microelectromech. Syst. 1, 60 (1992). CrossRef; W. H. Schmidt, C. C. McKnight, S. A. Raizen , A Splintered Vision: An Investigation of U.S. Science and Mathematics Education (Kluwer Academic Press, Boston, MA, 1997).; National Research Council, Conceptual Framework for New Science Education Standards, update 7,March 2011; http://www7.nationalacademies.org/bose/Standards_Framework_Homepage.html. Y. B. Kafai, Games Cult. 1, 36 (2006).; William Humphrey, Andrew Dalke, and Klaus Schulten. VMD - Visual Molecular Dynamics. J. Mol. Graphics, 14:33-38, 199; Rajeev Sharma, Michael Zeller, Vladimir I. Pavlovic, Thomas S. Huang, Zion Lo, Stephen Chu, Yunxin Zhao, James C. Phillips, and Klaus Schulten. Speech/gesture interface to a visual-computing environment. IEEE Comp. Graph. App., 20:29-37, 2000.; Simon Cross, Michelle M. Kuttell, John E. Stone, and James E. Gain. Visualization of cyclic and multi-branched molecules with VMD. J. Mol. Graph. Model., 28:131-139, 2009.; John E. Stone, Axel Kohlmeyer, Kirby L. Vandivort, and Klaus Schulten. Immersive molecular visualization and interactive modeling with commodity hardware. Lect. Notes in Comp. Sci., 6454:382-393, 2010.; John E. Stone, Kirby L. Vandivort, and Klaus Schulten. Immersive out-of-core visualization of large-size and long-timescale molecular dynamics trajectories. Lect. Notes in Comp. Sci., 6939:1-12, 2011.; John E. Stone, William R. Sherman, and Klaus Schulten. Immersive molecular visualization with omnidirectional stereoscopic ray tracing and remote rendering. 2016 IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW), pages 1048-1057, 2016; Michael Zeller, James C. Phillips, Andrew Dalke, William Humphrey, Klaus Schulten, Rajeev Sharma, T. S. Huang, V. I. Pavlovic, Y. Zhao, Z. Lo, and S. Chu. A visual computing environment for very large scale biomolecular modeling. In Proceedings of the 1997 IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), pages 3-12. IEEE Computer Society Press, 1997; John E. Stone, Justin Gullingsrud, Paul Grayson, and Klaus Schulten. A system for interactive molecular dynamics simulation. In John F. Hughes and Carlo H. Séquin, editors, 2001 ACM Symposium on Interactive 3D Graphics, pages 191-194, New York, 2001. ACM SIGGRAPH.; Matthieu Chavent, Tyler Reddy, Joseph Goose, Anna Caroline E. Dahl, John E. Stone, Bruno Jobard, and Mark S.P. Sansom. Methodologies for the analysis of instantaneous lipid diffusion in MD simulations of 161 161 large membrane systems. Faraday Discuss., 169:455-475, 2014.; Benjamin G. Levine, John E. Stone, and Axel Kohlmeyer. Fast analysis of molecular dynamics trajectories with graphics processing units-radial distribution function histogramming. J. Comp. Phys., 230:3556-3569, 2011.; John Stone and Mark Underwood. Rendering of numerical flow simulations using MPI. In Second MPI Developer's Conference, pages 138-141. IEEE Computer Society Technical Committee on Distributed Processing, IEEE Computer Society Press, 1996.; John E. Stone. An Efficient Library for Parallel Ray Tracing and Animation. Master's thesis, Computer Science Department, University of Missouri-Rolla, April 1998.; John E. Stone, Barry Isralewitz, and Klaus Schulten. Early experiences scaling VMD molecular visualization and analysis jobs on Blue Waters. In Extreme Scaling Workshop (XSW), 2013, pages 43-50, Aug. 2013; I. Wald, G. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers, J. Gunther, and P. Navratil. OSPRay - a CPU ray tracing framework for scientific visualization. IEEE Transactions on Visualization and Computer Graphics, 23(1):1-1, 20; John E. Stone, James C. Phillips, Peter L. Freddolino, David J. Hardy, Leonardo G. Trabuco, and Klaus Schulten. Accelerating molecular modeling applications with graphics processors. J. Comp. Chem., 28:2618-2640, 2007.; John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone, and James C. Phillips. GPU computing. Proc. IEEE, 96:879-899, 2008; Christopher I. Rodrigues, David J. Hardy, John E. Stone, Klaus Schulten, and Wen-mei W. Hwu. GPU acceleration of cutoff pair potentials for molecular modeling applications. In CF'08: Proceedings of the 2008 conference on Computing Frontiers, pages 273-282, New York, NY, USA, 2008. AC; David J. Hardy, John E. Stone, and Klaus Schulten. Multilevel summation of electrostatic potentials using graphics processing units. J. Paral. Comp., 35:164-177, 2009.; Volodymyr Kindratenko, Jeremy Enos, Guochun Shi, Michael Showerman, Galen Arnold, John E. Stone, James Phillips, and Wen-mei Hwu. GPU clusters for high performance computing. In Cluster Computing and Workshops, 2009. CLUSTER '09. IEEE International Conference on, pages 1-8, 2009; John E. Stone, David J. Hardy, Ivan S. Ufimtsev, and Klaus Schulten. GPU-accelerated molecular modeling coming of age. J. Mol. Graph. Model., 29:116-125, 2010; John E. Stone, David Gohara, and Guochun Shi. OpenCL: A parallel programming standard for heterogeneous computing systems. Comput. in Sci. and Eng., 12:66-73, 2010.; Jeremy Enos, Craig Steffen, Joshi Fullop, Michael Showerman, Guochun Shi, Kenneth Esler, Volodymyr Kindratenko, John E. Stone, and James C. Phillips. Quantifying the impact of GPUs on performance and energy efficiency in HPC clusters. In International Conference on Green Computing, pages 317-324, 2010.; John E. Stone, David J. Hardy, Barry Isralewitz, and Klaus Schulten. GPU algorithms for molecular modeling. In Jack Dongarra, David A. Bader, and Jakub Kurzak, editors, Scientific Computing with Multicore and Accelerators, chapter 16, pages 351-371. Chapman & Hall/CRC Press, 2011; David J. Hardy, Zhe Wu, James C. Phillips, John E. Stone, Robert D. Skeel, and Klaus Schulten. Multilevel summation method for electrostatic force evaluation. J. Chem. Theor. Comp., 11:766-779, 201; John E. Stone, Ryan McGreevy, Barry Isralewitz, and Klaus Schulten. GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting. Faraday Discuss., 169:265-283, 2014; Abhishek Singharoy, Ivan Teo, Ryan McGreevy, John E. Stone, Jianhua Zhao, and Klaus Schulten. Molecular dynamics-based refinement and validation with Resolution Exchange MDFF for sub-5 Å cryo-electron microscopy maps. eLife, 10.7554/eLife.16105, 2016. (66 pages).; John E. Stone, Juan R. Perilla, C. Keith Cassidy, and Klaus Schulten. GPU-accelerated molecular dynamics clustering analysis with OpenACC. In Robert Farber, editor, Parallel Programming with OpenACC, pages 215-240. Morgan Kaufmann, Cambridge, MA, 2016; John E. Stone, Jan Saam, David J. Hardy, Kirby L. Vandivort, Wen-mei W. Hwu, and Klaus Schulten. High performance computation and interactive display of molecular orbitals on GPUs and multi-core CPUs. In Proceedings of the 2nd Workshop on General-Purpose Processing on Graphics Processing Units, ACM International Conference Proceeding Series, volume 383, pages 9-18, New York, NY, USA, 2009. ACM.; John E. Stone, David J. Hardy, Jan Saam, Kirby L. Vandivort, and Klaus Schulten. GPU-accelerated computation and interactive display of molecular orbitals. In Wen-mei Hwu, editor, GPU Computing Gems, chapter 1, pages 5-18. Morgan Kaufmann Publishers, 2011; John E. Stone, Michael J. Hallock, James C. Phillips, Joseph R. Peterson, Zaida Luthey-Schulten, and Klaus Schulten. Evaluation of emerging energy-efficient heterogeneous computing platforms for biomolecular and cellular simulation workloads. 2016 IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW), pages 89-100, 2016.; John E. Stone, Antti-Pekka Hynninen, James C. Phillips, and Klaus Schulten. Early experiences porting the NAMD and VMD molecular simulation and analysis software to GPU-accelerated OpenPOWER platforms. Lect. Notes in Comp. Sci., 9945:188-206, 2016; Michael Krone, John E. Stone, Thomas Ertl, and Klaus Schulten. Fast visualization of Gaussian density surfaces for molecular dynamics and particle system trajectories. In EuroVis - Short Papers 2012, pages 67-71, 2012; Elijah Roberts, John E. Stone, and Zaida Luthey-Schulten. Lattice microbes: High-performance stochastic simulation method for the reaction-diffusion master equation. J. Comp. Chem., 34:245-255, 2013.; Structures et fonctions des molécules biologiques. Utilisations pédagogiques des visualisations tridimensionnelles avec Rasmol. J. Barrère, J-Y Dupont and N. Salamé. INRP, 1997, 128 pages.; Surprising similarities in structure comparison. Jean-François Gilbrat, Thomas Madej, and Stephen H. Bryant. Current Opinion in Structural Biology 6:377-385, 1996. A review of early results of searcing for similarities in structure, regardless of sequence similarities. Describes the Vector Alignment Search Tool (VAST) provided by the US National Center for Biotechnology Information; GlaxoWellcome and MDL become entangled in the Web, by John Hodgson, Nature Biotechnology 14:690, June 1996. This article concerning RasMol and Chime is full of errors. See the editorial comment; A Dynamic Look at Structures: WWW-Entrez and the Molecular Modeling Database, by Christopher W. V. Hogue, Hitomi Ohkawa and Stephen H. Bryant. Trends in Biochemical Sciences, 21:226-9, 1996. All PDB files have been converted to the WWW-Entrez format ASN.1. This format can handle a broader range of 3D structural information, including for example models from electron microscopy. WWW-Entrez links 3D structural information with GenBank sequences and MEDLINE abstracts. Related structures can be identified. Kinemage animations are generated automatically to reveal information buried in PDB files, such as thermal factors, disordered zones, and multiple NMR models.; RasMol: Biomolecular graphics for all, by Roger A. Sayle and E. James Milner-White, Trends in Biochemical Sciences 20(Sept):374-376, 1995. RasMol was first widely distributed via the Internet in June, 1993, but this is the original paper publication describing RasMol; Hyperactive Molecules and the World-Wide-Web Information System, by Omer Casher, Gudge K. Chandramohan, Martin J. Hargreaves, Christopher Leach, Peter Murray-Rust, Henry S. Rzepa, Roger A. Sayle and Benjamin J. Whitaker. J. Chem. Soc., Perkin Trans. 2, 1995, 7. This paper proposes sharing chemical data too bulky for journal publication via World Wide Web. To accomplish this, it introduces various new chemical MIME (Multipurpose Internet Mail Extension) types, including chemical/x-csml for the Chemical Structure Markup Language which can be understood by RasMol; Software for viewing biomolecules in three dimensions on the Internet, by Alvaro Sanchez-Ferrer, Estrella Nunez-Delicado, and Roque Bru, Trends in Biochemical Sciences 20(July):286-288, 1995.Compares RasMol 2.5, pdVwin, Pkin_2_4/Mage_2_4, Hyperchem 3; Utilisations pédagogiques des visualisations tridimensionelles de molécules en biologie, by J. Barrère, J.-Y. Dupont, and N. Salamé, in Images numériques dan l'enseignement des sciences, Journées d'études CNAM, June 1995, J. C. Le Touzé and N. Salamé, eds., Institut Nationale de Recherche Pédagogique, pp. 87-93. A brief introduction to the use of RasMol for educational molecular visualization of DNA and proteins, touching on hemoglobin and the active site of carboxypeptidase. Illustrated.; Kinemages: make your own molecules for teaching, by Charles W. Sokolik, Trends in Biochemical Sciences 20(March):122-4, 1995; Kinemages -- simple macromolecular graphics for interactive teaching and publication, by David C. Richardson and Jane S. Richardson, Trends in Biochemical Sciences 19(March):135-8, 1994.; CPK models are very informative during the process of putting them together, but the completed models all look alike. Computer versions of CPK models have successfully imitated their appearance and most of their disadvantages (the fact that the inside is completely hidden, and the difficulty of identifying an atom or group), without, so far, imitating the real virtue of CPK's, which is the physical "feel" for the bumps, constraints, and degrees of freedom one obtains by manipulating them.; The Kinemage: A tool for scientific communication, by David C. Richardson, and Jane S. Richardson, Protein Science 1:3-9, 1992; Feynman. R, There’s Plenty of Room at the Bottom, American Physical Society, 1959. H.D. Gilbert, Miniaturization Reinhold Publishing Corp, N.Y, 1961,282. http://www.zyvex.com/nanotech/feynman.html. 2 N. Taniguchi, “On the Basic Concept of Nanotechnology”, Proc.Intl.Conf.Prod.Eng, Tokyo 1974, 18. 3 T. Theis, D. Parr, P. Binks, J. Ying, K. E.; Drexler, E. Schepers, K. Mullis, C. Bai, J. J. Boland, R. Langer, P. Dobson, C. N. R. Rao, M. Ferrari, , Nat.Nanotech. 2006,1,8. 4 J. J. Ramsden, Nanotechnology: An Introduction, Elsevier, Amsterdam, 2011. 5 (a) G. Binnig, H. Rohrer, IBM Journal of Research and Development 1986,30,355. (b) G.; Binnig, H. Rohrer, Rev. Mod. Phys. 1987, 59,615. 6 D. Eigler, E. Schweizer, Nature 1990,344,.524. 7 167 167 http://researcher.watson.ibm.com/researcher/view_group.php?id=4245 8 (a) C. P. Poole Jr., F. J.; Owens, Introduction To Nanotechnology, John Wiley & Sons, New Yersey, 2003. (b) R. Kelsall, I. W. Hamley, M. Geoghegan, Nanoscale Science and Technology, John Wiley & Sons, UK, 2005. 9 (a) M. Pagliaro, Nano-Age: How Nanotechnology Changes our Future, Wiley-VCH, Weinheim 2010 (b) J. J. Ramsden, Applied Nanotechnology. The Conversion of Research Results to Products, Elsevier, Amsterdam, 2014; V.V. Pokropivny, V.V. Skorokhod, Mater.Sci.Eng.C 2007,27,990. (b) K. Ariga, M. Li, G. J. Richards, J. P. Hill, J. Nanosci.Nanotechnol.2011,11,1. 11 (a) M. Wautelet, Eur. J. Phys. 2001; E. Roduner, Chem. Soc. Rev. 2006, 35, 583. (c) G. Hodes, Adv. Mater. 2007, 19, 639. 12 C. Baia, M. Liub, Nano Today 2012,7,258. 13 (a) B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, Chem. Rev. 2005, 105, 1171. (b) M. J. Köhler, W. Fritzsche, Nanotechnology: An Introduction to Nanostructuring Techniques, 2nd Ed., Wiley-VCH, Weinheim, 2007.; The Royal Society & The Royal Academy of Engineering, Nanoscience and nanotechnologies: opportunities and uncertainties, London, 2004 (http://www.nanotec.org.uk/finalReport.htm).; T. Ito, S. Okazaki, Nature 2000,406,1027.; Basnar, I. Willner, Small 2009,5,28; G. Cao, Nanostructures and nanomaterials, Imperial College Press, London, UK, 2009.; Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, J. N. Coleman, Science 2013,340,1420; http://hdl.handle.net/20.500.12749/7272; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Availability: https://hdl.handle.net/20.500.12749/7272
-
4
Authors: et al.
Contributors: et al.
Subject Terms: Engineering, Agriculture Technology transfer (ATT), Smallholder farmer, Internet of things (IoT), Information systems, Electronic data processing, Computational linguistics, Agricultural technology, Agricultural development, Ingeniería, Sistemas de información, Procesamiento electrónico de datos, Linguística computacional, Tecnología agrícola, Desarrollo agrícola, Internet de las cosas (IoT), Transferencia de tecnología agrícola (TTA), Pequeños productores agricultores, Diseño centrado en el hombre (DCH)
Subject Geographic: Bucaramanga (Santander, Colombia), UNAB Campus Bucaramanga
Time: 2018-2022
File Description: application/pdf; text/html
Relation: [1] FAO, “Buenas prácticas en la FAO: Sistematización de experiencias para el aprendizaje continuo,” vol. 13, p. 12, 2013, [Online]. Available: www.fao.org/docrep/meeting/021/ma061s.pdf.; [2] D. A’Zami, “Citizen-peasants : modernity , international relations and the problem of difference in,” University of Sussex.; [3] J. James, ICT4D: Information and Communication Technology for Development, vol. 61, no. 1. 2010.; [4] FAO, “Small family farms data portrait: Basic information document,” p. 15, 2017, [Online]. Available: http://www.fao.org/fileadmin/user_upload/smallholders_dataportrait/docs/Data_portrait_variables_description_new2.pdf.; [5] B. E. Graeub et al., “The State of Family Farms in the World,” World Dev., vol. 87, no. JUNE, pp. 1–15, 2016, doi:10.1016/j.worlddev.2015.05.012.; [6] J. A. Berdegué and R. Fuentealba, “The state of smallholders in agriculture in Latin America,” in New Directions for Smallholder Agriculture, no. March, IFAD, Ed. Roma: Oxford University Press, 2014, pp. 115–152.; [7] L. Joyanes Aguilar, Internet de las Cosas. Un futuro conectado. Alfaomega Grupo Editor, 2021.; [8] K. Xing, D. H. Cropley, M. L. Oppert, and C. Singh, Readiness for Digital Innovation and Industry 4.0 Transformation: Studies on Manufacturing Industries in the City of Salisbury. 2021.; [9] F. Lombo and C. Prada, “Censo Nacional Agropecuario Caracterización de los productores residentes en el área.”; [10] M. Springmann et al., “Options for keeping the food system within environmental limits,” Nature, vol. 562, no. 7728, pp. 519–525, 2018, doi:10.1038/s41586-018-0594-0.; [11] G. Rapsomanikis, G. Sylvester, O. de las N. U. para la A. y la A. FAO, I. F. P. R. I. IFPRI, and O. para la C. y el D. E. OCDE, Information and Communication Technology (ICT) in Agriculture A Report to the G20 Agricultural Deputies. 2017.; [12] F. Freire Carrera, O. Chadrina, J. Moreano Velasco, B. Torres Blacio, and Y. D. V. Garcia Orellana, “Prototipo de un sistema de riego automatizado en árboles de cacao (Theobroma cacao) controlado vía internet con dispositivos móviles,” Av. Investig. en Ing., vol. 16, no. 2, pp. 93–106, 2019, doi:10.18041/1794-4953/avances.2.5257.; [13] J. P. Tovar Soto, J. D. los S. Solórzano Suárez, A. Badillo Rodríguez, and G. O. Rodríguez Cainaba, “Internet de las cosas aplicado a la agricultura: estado actual,” Lámpsakos, no. 22. p. 86, 2019, doi:10.21501/21454086.3253.; [14] T. R. Wheeler and J. Braun, “Climate Change Impacts on Global Food Security,” Nat. Syst. Chang. Clim., vol. 341, no. August, pp. 508–513, 2013, doi: DOI:10.1126/science.1239402 ARTICLE.; [15] C. Lau, A. Javis, and J. Ramírez, “Agricultura colombiana: adaptación al cambio climático %7C Portal Sobre Conservación y Equidad Social CES,” CIAT Políticas en Síntesis No. 1, 2011. https://www.portalces.org/biblioteca/cambio-climatico/agricultura-colombiana-adaptacion-al-cambio-climatico (accessed May 27, 2019).; [16] A. D. Boursianis et al., “Advancing Rational Exploitation of Water Irrigation Using 5G-IoT Capabilities: The AREThOU5A Project,” 2019 IEEE 29th Int. Symp. Power Timing Model. Optim. Simulation, PATMOS 2019, pp. 127–132, 2019, doi:10.1109/PATMOS.2019.8862146.; [17] Organización para la Cooperación y el Desarrollo Económicos (OCDE), “A Framework for Rural Development. Rural 3.0,” People-Centred Rural Policy, p. 28, 2019, [Online]. Available: https://www.oecd.org/rural/rural-development-conference/documents/Rural-3.0-Policy-Highlights.pdf.; [18] M. O. Thomas, B. A. Onyimbo, and R. Logeswaran, “Usability Evaluation Criteria for Internet of Things,” Int. J. Inf. Technol. Comput. Sci., vol. 8, no. 12, pp. 10–18, 2016, doi:10.5815/ijitcs.2016.12.02.; [19] J. Š. Novák, J. Masner, J. Vaněk, P. Šimek, and K. Hennyeyová, “User experience and usability in agriculture-selected aspects for design systems,” Agris On-line Pap. Econ. Informatics, vol. 11, no. 4, pp. 75–83, 2019, doi:10.7160/aol.2019.110407.; [20] D. Fajardo, M. Mejía, L. Gómez, M. Matheu, and OXFAM en Colombia, “Radiografía de la desigualdad. LO QUE NOS DICE EL ÚLTIMO CENSO AGROPECUARIO SOBRE LA DISTRIBUCIÓN DE LA TIERRA EN COLOMBIA,” 2017. Accessed: Jun. 05, 2019. [Online]. Available: https://www-cdn.oxfam.org/s3fs-public/file_attachments/radiografia_de_la_desigualdad.pdf.; [21] S. Ziegler, BID (Banco Interamericano de desarrollo), Agricultura), IICA (Instituto Interamericano de Cooperación para la, and Microsoft, “Habilidades digitales en la ruralidad: un imperativo para reducir brechas en américa latina y el caribe,” 2021. [Online]. Available: http://repositorio.iica.int/handle/11324/14462?locale-attribute=es.; [22] J. M. Perez, Luchas campesinas y reforma agraria Luchas campesinas y reforma agraria, Primera Ed. Colombia, 2010.; [23] DNP (Departamento Nacional de Planeación), MINSALUD (Ministerio de Salud y Protección Social), and Departamento Administrativo de la Presidencia de la República, Documento CONPES 3999. 2020, pp. 1–163.; [24] Consejería Presidencial para los derechos humanos y asuntos Internacionales, “INFORME Y RECOMENDACIONES II Durante la pandemia del COVID-19 a la luz de los derechos humanos,” 2020.; [25] DANE (Departamento Administrativo Nacional de Estadística), “Mayoristas Boletín Semanal,” Feb. 16, 2021. https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/sistema-de-informacion-de-precios-sipsa/mayoristas-boletin-semanal-1 (accessed Mar. 04, 2021).; [26] J. F. C. Díaz del Castillo, “La intermediación como un impedimento al desarrollo del pequeño productor de Medellín,” Corpoica Cienc. y Tecnol. Agropecu., vol. 14, no. 1, p. 27, 2013, doi:10.21930/rcta.vol14_num1_art:264.; [27] H. H. Mann, Social Framework of Agriculture, 2nd ed. India, Middle East, England: Routledge, 2020.; [28] G. Rapsomanikis, “The economic lives of smallholder farmers,” Fao, vol. 4, no. 4, pp. 1–4, 2015, doi:10.5296/rae.v6i4.6320.; [29] Ó. A. Orozco and G. Llano Ramírez, “Sistemas de Información enfocados en tecnologías de agricultura de precisión y aplicables a la caña de azúcar, una revisión,” Rev. Ing. Univ. Medellín, vol. 15, no. 28, pp. 103–124, 2016, doi:10.22395/rium.v15n28a6.; [30] F. Ahmad et al., “A smart agricultural model by integrating IoT, mobile and cloud-based big data analytics,” Proc. 2017 Int. Conf. Intell. Comput. Control. I2C2 2017, vol. 2018-Janua, no. 1, pp. 1–5, Mar. 2018, doi:10.1109/I2C2.2017.8321902.; [31] J. Parra Delgadillo, “MIGRACIONES EN COLOMBIA (CIUDAD-CAMPO): ANÁLISIS AL NEORURALISMO Y LAS NUEVAS RURALIDADES EN LAS AFUERAS DE BOGOTÁ (CUNDINAMARCA).,” Universidad Externado de Colombia, 2018.; [32] R. Pardo, “Diagnóstico de la Juventud Rural en Colombia. Grupos de Diálogo Rural, una estrategia de incidencia,” Santiago de Chile, 2017. [Online]. Available: www.rimisp.org.; [33] M. T. De Ossa, J. E. Londoño, and A. Valencia-Arias, “Model of technology transfer from biomedical engineering: A case study [Modelo de Transferencia Tecnológica desde la Ingeniería Biomédica: un estudio de caso],” Inf. Tecnol., vol. 29, no. 1, pp. 83–90, 2018, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042253656&doi=10.4067%2FS0718-07642018000100010&partnerID=40&md5=13e130c77728abaf07cbe0831c57f992.; [34] T. Kyung Sung and D. V Gibson, “Knowledge and Technology Transfer: Levels and Key Factors.” Accessed: May 27, 2019. [Online]. Available: http://www.ic2.utexas.edu/ictpi/mirror/curitiba2000/papers/S04P04.PDF.; [35] ENTERPRISE IRELAND, “A REVIEW OF THE PERFORMANCE OF THE IRISH TECHNOLOGY TRANSFER SYSTEM 2007-2012,” 2012. Accessed: May 27, 2019. [Online]. Available: https://www.knowledgetransferireland.com/Reports-Publications/A-review-of-the-performance-of-the-Irish-technology-transfer-system-2007-2012.pdf.; [36] M. Susuki, “Finding the social, economic and technological barriers and opportunities in the developing countries for designing the technology transfer and innovation regime in climate change,” 2010.; [37] M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E. H. M. Aggoune, “Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk,” IEEE Access, vol. 7, pp. 129551–129583, 2019, doi:10.1109/ACCESS.2019.2932609.; [38] S. Shibusawa, “Precision Farming Approaches for Small Scale Farms,” IFAC Proc. Vol., vol. 34, no. 11, pp. 22–27, 2001, doi:10.1016/s1474-6670(17)34099-5.; [39] Grupo de alto nivel de expertos (HLPE), “Inversión en la agricultura a pequeña escala en favor de la seguridad alimentaria,” 2013.; [40] DANE (Departamento Administrativo Nacional de Estadística), “Encuesta Nacional de Calidad de Vida ECV 2019,” 2020. [Online]. Available: https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/calidad-de-vida-ecv/encuesta-nacional-de-calidad-de-vida-ecv-2019.; [41] ICANH (Instituto Colombiano de Antropología e Historia) and D. (Departamento A. N. de Estadística), “Elementos para la conceptualización de lo ‘campesino’ en Colombia,” 2017.; [42] S. Agrawal and D. Vieira, “A survey on Internet of Things - DOI 10.5752/P.2316-9451.2013v1n2p78,” Abakós, vol. 1, no. 2, pp. 291–319, 2013, doi:10.5752/P.2316-9451.2013v1n2p78.; [43] M. Hadžiali, A. Čolaković, and M. Hadžialić, “A Review of Enabling Technologies, Challenges, and Open Research Issues Internet of Things (IoT): A Review of Enabling Technologies, Challenges, and Open Research Issues,” Comput. Networks, vol. 144, pp. 17–39, 2018, doi:10.1016/j.comnet.2018.07.017.; [44] D. A. Norman and S. W. D. Draper, User Centered System Design. New perspectives on Human-Computer Interaction. CRC Press, 1986.; [45] E. Almirón, “EL AGUA COMO ELEMENTO VITAL EN EL DESARROLLO DEL HOMBRE,” Observatorio de políticas de derechos humanos de Mercosur. https://www.observatoriomercosur.org.uy/libro/el_agua_como_elemento_vital_en_el_desarrollo_del_hombre_17.php.; [46] FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura), “Sistemas de riego son vitales para la agricultura dominicana,” Agronoticias: Actualidad agropecuaria de América Latina y el Caribe, 2017. https://www.fao.org/in-action/agronoticias/detail/es/c/1027860/.; [47] IDEAM (Instituto de Hidrología Meteorología y Estudios Ambientales), “Estudio Nacional del Agua,” Bogotá, Colombia, 2010.; [48] J. Carrazón, “Manual práctico para el diseño de sistemas de minirriego,” Programa Espec. para la Segur. Aliment., vol. 9, no. 5, pp. 5876–5891, 2018.; [49] UNESCO-WWAP, “Agua para todos, agua para la vida,” United Nations, p. 36, 2003, [Online]. Available: http://www.un.org/esa/sustdev/sdissues/water/WWDR-spanish-129556s.pdf.; [50] UNESCO (Organización de las Naciones Unidas para la Educación la Ciencia y la Cultura), “GROUNDWATER Making the invisible visible,” Paris, 2022. [Online]. Available: https://www.unesco.org/reports/wwdr/2022/es/download.; [51] FAO, “Evapotranspiración del cultivo en condiciones estándar Introducción a la Evapotranspiración del Cultivo (ET c),” 2018, [Online]. Available: http://www.fao.org/3/x0490s/x0490s00.htm.; [52] IDEAM, J. Cadena, and M. Gómez, Validación de las fórmulas de Evapotranspiración de Referencia (ETo) para Colombia. Instituto de Hidrología Meteorología y Estudios Ambientales. 2017.; [53] SEPOR, Uso de la bandeja de vaporación Clase A para la propagación del riego. 2010.; [54] A. Ríos Hernández, Máquinas agrícolas, tracción animal y labores manuales. Cuba: Instituto de Mecanización Agrícola (INFOIIMA), 2012.; [55] M. Liotta, “Los Sistemas De Riego Por Goteo Y Microaspersion,” Inst. Nac. Tecnol. Agropecu. Argentina, pp. 1–26, 2004.; [56] M. A. Rapela, Fostering Innovation for Agriculture 4.0. Cham: Springer International Publishing, 2019.; [57] J. Demenois et al., “Barriers and Strategies to Boost Soil Carbon Sequestration in Agriculture,” Front. Sustain. Food Syst., vol. 4, 2020, doi:10.3389/fsufs.2020.00037.; [58] Y. Liu, X. Ma, L. Shu, G. P. Hancke, and A. M. Abu-Mahfouz, “From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges,” IEEE Trans. Ind. Informatics, vol. 17, no. 6, pp. 4322–4334, Jun. 2021, doi:10.1109/TII.2020.3003910.; [59] A. Cravero, D. Lagos, and R. Espinosa, “Big Data / IoT Use in Wine Production: A Systematic Mapping Study,” IEEE Lat. Am. Trans., vol. 16, no. 5, pp. 1476–1484, May 2018, doi:10.1109/TLA.2018.8408444.; [60] I. Froiz-Míguez et al., “Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on LoRa and LoRaWAN Sensor Nodes,” Sensors, vol. 20, no. 23, p. 6865, Nov. 2020, doi:10.3390/s20236865.; [61] W. Liping, “Study on Agricultural Products Logistics Mode in Henan Province of China,” in Software Engineering and Knowledge Engineering: Theory and Practice, 2012, pp. 635–640.; [62] S. Ramya, A. M. Swetha, and M. Doraipandian, “IoT Framework for Smart Irrigation using Machine Learning Technique,” J. Comput. Sci., vol. 16, no. 3, pp. 355–363, Mar. 2020, doi:10.3844/jcssp.2020.355.363.; [63] M. Raj et al., “A survey on the role of Internet of Things for adopting and promoting Agriculture 4.0,” J. Netw. Comput. Appl., vol. 187, no. May, p. 103107, 2021, doi:10.1016/j.jnca.2021.103107.; [64] D. M. Rodríguez, E. Bayona, and A. A. Rosado, “Summary of the internet of things and its application in agro-industrial production,” J. Phys. Conf. Ser., vol. 1409, p. 012018, Nov. 2019, doi:10.1088/1742-6596/1409/1/012018.; [65] S. Safdar, M. Mohsin, L. A. Khan, and W. Iqbal, “Leveraging the internet of things for smart waters: Motivation, enabling technologies and deployment strategies for Pakistan,” Proc. - 2018 IEEE SmartWorld, Ubiquitous Intell. Comput. Adv. Trust. Comput. Scalable Comput. Commun. Cloud Big Data Comput. Internet People Smart City Innov. SmartWorld/UIC/ATC/ScalCom/CBDCo, pp. 2117–2124, 2018, doi:10.1109/SmartWorld.2018.00354.; [66] S. I. Hassan, M. M. Alam, U. Illahi, M. A. Al Ghamdi, S. H. Almotiri, and M. M. Su’ud, “A Systematic Review on Monitoring and Advanced Control Strategies in Smart Agriculture,” IEEE Access, vol. 9, pp. 32517–32548, 2021, doi:10.1109/ACCESS.2021.3057865.; [67] A. Madruga Peláez, A. A. Estevez Pérez, R. S. López, I. Santana Ching, and C. M. García Algora, “Red de Sensores Inalámbricos para la Adquisición de Datos en Casas de Cultivo,” Ingeniería, vol. 24, no. 3, pp. 224–234, Sep. 2019, doi:10.14483/23448393.14437.; [68] Z. Irani et al., “Managing food security through food waste and loss: Small data to big data,” Comput. Oper. Res., vol. 98, pp. 367–383, Oct. 2018, doi:10.1016/j.cor.2017.10.007.; [69] R. Kondaveti, A. Reddy, and S. Palabtla, “Smart Irrigation System Using Machine Learning and IOT,” Proc. - Int. Conf. Vis. Towar. Emerg. Trends Commun. Networking, ViTECoN 2019, 2019, doi:10.1109/ViTECoN.2019.8899433.; [70] E. Nigussie, T. Olwal, G. Musumba, T. Tegegne, A. Lemma, and F. Mekuria, “IoT-based irrigation management for smallholder farmers in rural Sub-Saharan Africa,” Procedia Comput. Sci., vol. 177, pp. 86–93, 2020, doi:10.1016/j.procs.2020.10.015.; [71] X. Jiang et al., “Hybrid Low-Power Wide-Area Mesh Network for IoT Applications,” IEEE Internet Things J., vol. 8, no. 2, pp. 901–915, 2021, doi:10.1109/JIOT.2020.3009228.; [72] INTA and PROCISUR, “Sistemas y Metodologías pra asesoramiento a Regantes,” Manfredi, Córdoba (Argentina), 2010. [Online]. Available: https://inta.gob.ar/documentos/riego-sistemas-y-metodologias-para-asesoramiento-a-regantes.; [73] H. Jafarieh, “Technology Transfer to Developing Countries: A Quantative Approach,” 2001.; [74] M. Dubickis and E. Gaile-Sarkane, “Perspectives on Innovation and Technology Transfer,” Procedia - Soc. Behav. Sci., vol. 213, pp. 965–970, Dec. 2015, doi:10.1016/j.sbspro.2015.11.512.; [75] D. J. Sánchez Preciado, Developing Technology Transfer Processes in rural contexts : The case of Cauca in Colombia, vol. 4, no. 41. 2018.; [76] J. O. A. Palacio Niño, “Análisis de transferencia tecnológica para una adecuada implementación de contenidos educativos en el sistema de TDT interactiva en Colombia.” p. 234, 2011.; [77] T. Huang, “The technology transfer of the ICT curriculum in Taiwan.” pp. 407–422, 2013.; [78] J. . Behrman and W. A. Fisher, Overseas R&D Activity of Transnational Companies. Oelgeschlager, Gunn and Hain, Cambridge, 1980.; [79] M. Blomström, TRANSNATIONAL CORPORATIONS AND MANUFACTURING EXPORTS FROM DEVELOPING COUNTRIES. New York, New York, USA: United Nations Publications, 1990.; [80] J. Bhagwati, The New International Economic Order. Massachusetts: MIT Press, 1978.; [81] A. HASSAN and Y. Jamaluddin, “Exploring the Factors Affecting the ICT Technology Transfer Process: An Empirical Study in Libya,” Mod. Appl. Sci., vol. 10, no. 7, p. 156, 2016, doi:10.5539/mas.v10n7p156.; [82] A. K. Saini and V. KumarKhurana, “ICT Based Communication Systems as Enabler for Technology Transfer,” IEEE, pp. 90–99, 2016.; [83] J. Londoño, S. Restrepo, M. Rodríguez, F. Cuartas, and N. Viana, “Identificación De Tipos, Modelos Y Mecanismos De Transferencia Tecnológica Que Apalancan La Innovación,” Revista CINTEX, vol. 23, no. 2. pp. 13–23, 2018.; [84] J. A. Pineda Insuasti and A. S. Duarte Trujillo, “Modelo de transferencia de tecnología ecuatoriano: una revisión.” pp. 1–24, 2016.; [85] R. Barquin, “Some Introductory Notes on Transfer of Technology,” in Industrial Development and Technology Transfer, 1981.; [86] H. S. Lee, J. W. Lee, H. Y. Kim, H. J. Jo, and B. G. Lee, “Promising ICT Transfer Fields for Promotion of Micro-Startups Hye.” pp. 779–788, 2016.; [87] J. González Sabater, Manual transferencia de tecnología y conocimiento, 2nd ed. THE TRANSFER INSTITUTE, 2011.; [88] A. Corsi, R. N. Pagani, J. L. Kovaleski, and V. Luiz, “Technology transfer for sustainable development: Social impacts depicted and some other answers to a few questions,” J. Clean. Prod., p. 118522, 2019, doi:10.1016/j.jclepro.2019.118522.; [89] P. J. Buckley, “Some Aspects of Foreign Private Investment in the Manufacturing Sector of the Economy of the Irish Republic,” Econ. Soc. Rev, no. 5, pp. 301–321, 1974.; [90] A. GÜNSEL, “Research on Effectiveness of Technology Transfer from a Knowledge Based perspective,” in Procedia - Social and Behavioral Sciences, 2015, vol. 207, pp. 777–785, doi:10.1016/j.sbspro.2015.10.165.; [91] M. Ismail, S. R. Hamzah, and R. Bebenroth, “Differentiating knowledge transfer and technology transfer: What should an organizational manager need to know?,” Eur. J. Train. Dev., vol. 42, no. 9, pp. 611–628, 2018, doi:10.1108/EJTD-04-2018-0042.; [92] S. S. Da Silva, P. R. Feldmann, R. G. Spers, and M. D. Bambini, “Analysis of the process of technology transfer in public research institutions,” Innov. Manag. Rev., vol. 16, no. 4, pp. 375–390, 2019, doi:10.1108/inmr-05-2018-0024.; [93] P. J. Buckley, “New Forms of International Industrial Co-operation,” in The Economic Theory of the Multinational Enterprise, Macmillan, Ed. London: Buckley & Casson, 1985, pp. 39–59.; [94] D. O´Neil and C. Huff, “Ensuring universal acces to telecommunications technologies for all citizens: Equity vs Economic considerations.” STAS 98. Wiring the World: The Impact of Information Technology on Society. Proceedings of the 1998 International Symposium on Technology and Society, pp. 170–175, 1998.; [95] D. V. Gibson and R. W. Smilor, “Key variables in technology transfer: A field-study based empirical analysis,” J. Eng. Technol. Manag., vol. 8, no. 3–4, pp. 287–312, Dec. 1991, doi:10.1016/0923-4748(91)90015-J.; [96] Y. Acea Valdez, “La transferencia de tecnología en Cuba.” pp. 139–149, 2016.; [97] A. Corsi, F. F. De Souza, R. N. Pagani, and J. L. Kovaleski, Technology transfer oriented to sustainable development : proposal of a theoretical model based on barriers and opportunities, vol. 126, no. 6. Springer International Publishing, 2021.; [98] J. Arenas and D. González, “Technology Transfer Models and Elements in the University-Industry Collaboration,” Adm. Sci., vol. 8, no. 2, p. 19, 2018, doi:10.3390/admsci8020019.; [99] A. Hassan, M. Y. Jamaluddin, and K. M. Menshawi, “International technology transfer models: A comparison study,” Journal of Theoretical and Applied Information Technology, vol. 78, no. 1. pp. 95–108, 2015.; [100] E. C. Avendaño Sánchez, “El Uso De La Transferencia De Tecnología En El Sector Empresarial: De La Innovación a La Apropiación Del Saber,” Ekp, vol. 13, no. 3. pp. 1576–1580, 2017.; [101] F. ÖZSUNGUR, “Adaptation Approach to Technology Transfer Strategy,” Afro Eurasian Stud., vol. 7, no. 1, pp. 134–178, 2018, doi:10.33722/afes.471087.; [102] C. L. García Wagner, “Modelo conceptual para el funcionamiento de una Oficina de Transferencia de Tecnología en la Universidad del Quindío.” 2018.; [103] B. Metz, O. R. Davidson, J.-W. Martens, S. N. M. Van Rooijen, and L. Van Wie McGregory, “Methodological and Technological Issues in Technology Transfer,” 2000. Accessed: Jun. 17, 2019. [Online]. Available: www.cup.cam.ac.uk.; [104] R. H. Acker and D. M. Kammen, “The quiet (energy) revolution: analysing the dissemination of photovoltaic power systems in Kenya,” Energy Policy, vol. 24, no. 1, pp. 81–111, 1996.; [105] D. C. Rose et al., “Integrated farm management for sustainable agriculture: Lessons for knowledge exchange and policy,” Land use policy, vol. 81, no. April 2017, pp. 834–842, 2019, doi:10.1016/j.landusepol.2018.11.001.; [106] K. T. Moreno Suarez and E. L. Oviedo Bahamón, “Tipificación de la agricultura realizada por los integrantes de la Asociación de Productores Indígenas y Campesinos - ASPROINCA ubicada en el departamento de Caldas,” Corporación Universitaria Minuto de Dios - UNIMINUTO, 2017.; [107] E. L. Hyman, A. T. International, M. O. Donnell, G. Patterson, and J. Skibiak, “An Economic Analysis of Small-Scale Technologies for Palm Oil Extraction in Central and West Africa,” World Dev., vol. 18, no. 3, pp. 455–476, 1990.; [108] N. Clark and E. Clay, “The Dryland Research Project at lndore ( 1974-80 ) - an Institutional Innovation in Rural Technology Transfer,” J. Rural Stud., vol. 3, no. 2, pp. 159–173, 1987.; [109] K. M. Baker and R. L. Edmonds, “Transfer of Taiwanese ideas and technology to The Gambia, West Africa: a viable approach to rural development?,” Geogr. J., vol. 170, no. 3, pp. 189–211, 2004, [Online]. Available: https://www.jstor.org/stable/3451252.; [110] Unión Europea and IICA (Instituto Interamericano de Cooperación para la Agricultura), Sistemas de innovación agrícola en Centroamérica y Panamá: estrategias para el uso de buenas prácticas de transferencia tecnológica, Primera. San José, Costa Rica: IICA, 2016.; [111] G. A. Van Norman and R. Eisenkot, “Technology Transfer: From the Research Bench to Commercialization: Part 2: The Commercialization Process,” JACC Basic to Transl. Sci., vol. 2, no. 2, pp. 197–208, 2017, doi:10.1016/j.jacbts.2017.03.004.; [112] W. Keller, “International technology diffusion,” J. Econ. Lit., vol. 3, no. 42, pp. 752–783, 2004.; [113] M. Nabin, X. Nguyen, and P. Sgro, “On the Relationship Between Technology Transfer and Economic Growth in Asian,” World Econ., 2013, doi:10.1111/twec.12049.; [114] R. Thornton, “Los 90 y el nuevo siglo en los sistemas de extensión rural y transferencia de tecnología públicos en el Mercosur,” La Pampa, Argentina, 2011. [Online]. Available: https://inta.gob.ar/documentos/los-90-y-el-nuevo-siglo-en-los-sistemas-de-extension-rural-y-transferencia-de-tecnologia-publicos-en-el-mercosur.; [115] W. G. Delgado Munevar, “Caracterización del proceso de transferencia y adopción tecnológica de pequeños y medianos productores de cebolla (allium cepa l.) en el municipio de Pasca (Cundinamarca),” 2009, Accessed: May 27, 2019. [Online]. Available: https://repository.javeriana.edu.co/handle/10554/134.; [116] J. Ardila, Extensión rural para el desarrollo de la agricultura y la seguridad alimentaria, no. Aspectos conceptuales, situación y una visión de futuro. 2015.; [117] D. S. MacCarthy, J. Kihara, P. Masikati, and S. G. K. Adiku, “Decision support tools for site-specific fertilizer recommendations and agricultural planning in selected countries in sub-Sahara Africa,” Nutr. Cycl. Agroecosystems, vol. 110, no. 3, pp. 343–359, Apr. 2018, doi:10.1007/s10705-017-9877-3.; [118] C. Gamboa, G. Van den Broeck, and M. Maertens, “Smallholders’ Preferences for Improved Quinoa Varieties in the Peruvian Andes,” Sustainability, vol. 10, no. 10, p. 3735, Oct. 2018, doi:10.3390/su10103735.; [119] O. Oyinbo et al., “Farmers’ preferences for high-input agriculture supported by site-specific extension services: Evidence from a choice experiment in Nigeria,” Agric. Syst., vol. 173, no. June 2018, pp. 12–26, 2019, doi:10.1016/j.agsy.2019.02.003.; [120] M. Banković et al., “Teaching graduate students how to review research articles and respond to reviewer comments,” 2020, pp. 1–63.; [121] L. J. Catania, “The science and technologies of artificial intelligence (AI),” in Foundations of Artificial Intelligence in Healthcare and Bioscience, Elsevier, 2021, pp. 29–72.; [122] S. Vajjala, B. Majumder, A. Gupta, and H. Surana, Practical Natural Language Processing. A comprehensive Guide to Building Real-World NLP System. 2020.; [123] M. B. Hernández and J. M. Gómez, “Aplicaciones de Procesamiento de Lenguaje Natural,” Rev. Politécnica, vol. 32, no. 1, pp. 87–96, 2013, [Online]. Available: http://www.revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/32.; [124] J. C. Campbell, A. Hindle, and E. Stroulia, “Latent Dirichlet Allocation: Extracting Topics from Software Engineering Data,” Art Sci. Anal. Softw. Data, vol. 3, pp. 139–159, 2015, doi:10.1016/B978-0-12-411519-4.00006-9.; [125] R. Kulshrestha, “A Beginner’s Guide to Latent Dirichlet Allocation(LDA),” towardsdatascience.com, 2019. https://towardsdatascience.com/latent-dirichlet-allocation-lda-9d1cd064ffa2.; [126] T. Ganegedara, “Intuitive Guide to Latent Dirichlet Allocation,” towardsdatascience.com, 2018. https://towardsdatascience.com/light-on-math-machine-learning-intuitive-guide-to-latent-dirichlet-allocation-437c81220158.; [127] Z. Tong and H. Zhang, “A Text Mining Research Based on LDA Topic Modelling,” pp. 201–210, 2016, doi:10.5121/csit.2016.60616.; [128] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Hierarchical Dirichlet processes,” J. Am. Stat. Assoc., vol. 101, no. 476, pp. 1566–1581, 2006, doi:10.1198/016214506000000302.; [129] E. Coronado Sroka, “Don’t be Afraid of Nonparametric Topic Models,” towardsdatascience.com, 2020. https://towardsdatascience.com/dont-be-afraid-of-nonparametric-topic-models-d259c237a840.; [130] J. Xu, “Topic Modeling with LSA, PLSA, LDA y Ida2Vec,” medium.com, 2018. https://medium.com/nanonets/topic-modeling-with-lsa-psla-lda-and-lda2vec-555ff65b0b05.; [131] S. Baldassarri Santalucía, “Computación Afectiva: tecnología y emociones para mejorar la experiencia de usuario,” Rev. Inst. la Fac. Inform., vol. no. 3, pp. 14–15, 2016.; [132] M. Soegaard and R. Friss Dam, Encyclopedia of Human -Computer Interaction, 3rd ed. THE INTERACTION DESIGN FOUNDATION.; [133] N. Eyar and R. Hoover, How to Build Habit-Forming Products. Penguin Randowm house LLC, 2014.; [134] N. Norman, The design of everyday things. New York, New York, USA: Basic Books, 2013.; [135] M. G. Domingo and E. M. Pera, “Diseño centrado en el usuario,” Diseño centrado en el usuario, vol. 2, no. 4, 2017.; [136] INTERACTION DESIGN FOUNDATION, “What is User Centered Design? %7C Interaction Design Foundation.” https://www.interaction-design.org/literature/topics/user-centered-design (accessed May 28, 2019).; [137] Design Council, “Design Methods Step 1: Discover,” Design Council, 2015. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-1-discover/.; [138] Design Council, “Design Methods Step 2: Define,” Design Council, 2018. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-2-define/.; [139] Design Council, “Design Methods Step 3: Develop,” Design Council, 2018. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-3-develop/.; [140] Design Council, “Design Methods Step 4: Deliver,” 2018. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-4-deliver/.; [141] K. Rodden, H. Hutchinson, and X. Fu, “Measuring the user experience on a large scale,” in Proceedings of the 28th international conference on Human factors in computing systems - CHI ’10, 2010, p. 2395, doi:10.1145/1753326.1753687.; [142] S. Sastoque, C. Narváez, and G. Garnica, “Metodología para la construcción de Interfaces Gráficas Centradas en el Usuario,” 2016.; [143] INTERACTION DESIGN FOUNDATION, “What is Design Thinking and Why Is It So Popular?” .; [144] I. Young, Practical Empathy for collaboration and creativity in your Work. Rosenfeld, 2015.; [145] C. D. Batson, “These Things Called Empathy: Eight Related but Distinct Phenomena,” in The Social Neuroscience of Empathy, The MIT Press, 2009, pp. 3–16.; [146] T. Wiseman, “A concept analysis of empathy,” J. Adv. Nurs., vol. 23, no. 6, pp. 1162–1167, Jun. 1996, doi:10.1046/j.1365-2648.1996.12213.x.; [147] B. A. Aubert, A. Schroeder, and J. Grimaudo, “IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology,” Decis. Support Syst., vol. 54, no. 1, pp. 510–520, Dec. 2012, doi:10.1016/j.dss.2012.07.002.; [148] S. O. Somers and L. Stapleton, “A Human-Centred approach to e-Agricultural systems,” IFAC-PapersOnLine, vol. 48, no. 24, pp. 213–218, Jan. 2015, doi:10.1016/J.IFACOL.2015.12.085.; [149] S. Somers and L. Stapleton, “e-Agricultural innovation using a human-centred systems lens, proposed conceptual framework,” AI Soc., vol. 29, no. 2, pp. 193–202, May 2014, doi:10.1007/s00146-013-0475-x.; [150] N. Theodorakopoulos, D. J. Snchez Preciado, and D. Bennett, “Transferring technology from university to rural industry within a developing economy context: The case for nurturing communities of practice,” Technovation, vol. 32, no. 9–10, pp. 550–559, 2012, doi:10.1016/j.technovation.2012.05.001.; [151] P. S. Ahmed Awad Talb Altalb, Tadeusz Filipek, “The role of extension in the transfer and adoption of agricultural technology,” J. Int. Agric. Ext. Educ., vol. 03, no. 05, pp. 63–68, 2015.; [152] G. Sylvester, SUCCESS STORIES ON INFORMATION AND COMMUNICATION TECHNOLOGIES FOR AGRICULTURE AND RURAL DEVELOPMENT. Bangkok: FAO, 2015.; [153] C. Leeuwis and A. Van den Ban, Communication for Rural Innovation : Rethinking Agricultural Extension, 3rd ed. Hoboken, United States: John Wiley & Sons, Ltd, 2007.; [154] P. Figueroa, P. Castillo, V. Vrsalovic, D. Gálvez, and S. Diez-de-medina, “Technology Transfer from Academia to Rural Communities : The Case of Caprines in vitro Fecundation and Local Livestock Market in Tamarugal Province in Chile,” vol. 8, no. 4, pp. 186–194, 2013, [Online]. Available: https://scielo.conicyt.cl/pdf/jotmi/v8n4/art17.pdf.; [155] S. O. Somers and L. Stapleton, “A Human-Centred approach to e-Agricultural systems,” IFAC-PapersOnLine, vol. 48, no. 24, pp. 213–218, Jan. 2015, doi:10.1016/j.ifacol.2015.12.085.; [156] J. Mwangi, “the Role of Extension in the Transfer and Adoption of Agricultural Technologies,” J. Int. Agric. Ext. Educ., vol. 5, no. 1, 1998, doi:10.5191/jiaee.1998.05108.; [157] W. Muzari, W. Gatsi, and S. Muvhunzi, “The Impacts of Technology Adoption on Smallholder Agricultural Productivity in Sub-Saharan Africa: A Review,” J. Sustain. Dev., vol. 5, no. 8, pp. 69–77, 2012, doi:10.5539/jsd.v5n8p69.; [158] B. E. Swanson, “Global Review of Good Agricultural Extension and Advisory Practices,” Food Agric. Organ. United Nations, p. 82345, 2008, [Online]. Available: https://www.fao.org/3/i0261e/i0261e00.htm.; [159] L. Kuhl, “Technology transfer and adoption for smallholder climate change adaptation: opportunities and challenges,” Clim. Dev., vol. 12, no. 4, pp. 353–368, 2020, doi:10.1080/17565529.2019.1630349.; [160] A. Hassan, M. Y. Jamaluddin, and A. Queiri, “Technology transfer model for the Libyan information and communication industry,” J. Teknol., vol. 78, no. 8, pp. 99–100, 2016, doi:10.11113/jt.v78.5872.; [161] A. Espinosa, J. Pineda, O. Ortega, A. J. Author, R. Sarmiento, and G. W. Archibold Taylor, “Trends, Challenges and Opportunities for IoT in Smallholder Agriculture Sector: An Evaluation from the Perspective of Good Practices,” in Trends and Applications in Information Systems and Technologies, SPRINGER, 2021, pp. 293–301.; [162] G. Natarajan and L. Ashok Kumar, “Implementation of IoT based smart village for the rural development,” Int. J. Mech. Eng. Technol., vol. 8, no. 8, pp. 1212–1222, 2017.; [163] G. Carrión, M. Huerta, and B. Barzallo, “Internet of Things (IoT) Applied to an Urban Garden,” in Proceedings - 2018 IEEE 6th International Conference on Future Internet of Things and Cloud, FiCloud 2018, 2018, pp. 155–161, doi:10.1109/FiCloud.2018.00030.; [164] D. Singh and A. Thakur, “Designing of smart drip irrigation system for remote hilly areas,” PDGC 2018 - 2018 5th Int. Conf. Parallel, Distrib. Grid Comput., vol. 8, no. 1, pp. 90–94, 2018, doi:10.1109/PDGC.2018.8745934.; [165] N. Ananthi, J. Divya, M. Divya, and V. Janani, “IoT based smart soil monitoring system for agricultural production,” Proc. - 2017 IEEE Technol. Innov. ICT Agric. Rural Dev. TIAR 2017, vol. 2018-Janua, pp. 209–214, 2018, doi:10.1109/TIAR.2017.8273717.; [166] K. P. Satamraju, K. Shaik, and N. Vellanki, “RURAL BRIDGE: A novel system for smart and co-operative farming using IoT architecture,” IMPACT 2017 - Int. Conf. Multimedia, Signal Process. Commun. Technol., no. 1, pp. 22–26, 2018, doi:10.1109/MSPCT.2017.8363966.; [167] K. A. Shah, M. Patel, M. Khasakiya, S. Kazi, and P. Khalasi, “CESIS: Cost-effective and self-regulating irrigation system,” in Lecture Notes on Data Engineering and Communications Technologies, vol. 27, Springer, Cham, 2019, pp. 167–181.; [168] T. S. Sondhi, A. R. Sambhaji, and K. Sharmila Banu, “InFEvoS: Integrated farming evolution system,” Int. J. Recent Technol. Eng., vol. 7, no. 6, pp. 932–936, 2019.; [169] U. J. L. dos Santos, G. Pessin, C. A. da Costa, and R. da Rosa Righi, “AgriPrediction: A proactive internet of things model to anticipate problems and improve production in agricultural crops,” Comput. Electron. Agric., vol. 161, no. July, pp. 202–213, 2019, doi:10.1016/j.compag.2018.10.010.; [170] M. Mancini et al., “An open source and low-cost internet of things-enabled service for irrigation management,” Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., vol. 2019-Octob, pp. 1714–1719, 2019, doi:10.1109/SMC.2019.8914230.; [171] C. C. Baseca, S. Sendra, J. Lloret, and J. Tomas, “A smart decision system for digital farming,” Agronomy, vol. 9, no. 5, 2019, doi:10.3390/agronomy9050216.; [172] P. Visconti, R. de Fazio, P. Primiceri, D. Cafagna, S. Strazzella, and N. I. Giannoccaro, “A solar-powered fertigation system based on low-cost wireless sensor network remotely controlled by farmer for irrigation cycles and crops growth optimization,” Int. J. Electron. Telecommun., vol. 66, no. 1, pp. 59–68, 2020, doi:10.24425/ijet.2019.130266.; [173] D. P. Holzworth et al., “Agricultural production systems modelling and software: Current status and future prospects,” Environ. Model. Softw., vol. 72, no. 1, pp. 276–286, Oct. 2015, doi:10.1016/j.envsoft.2014.12.013.; [175] A. Tendolkar and S. Ramya, “CareBro (Personal Farm Assistant):An IoT based Smart Agriculture with Edge Computing,” MPCIT 2020 - Proc. IEEE 3rd Int. Conf. "Multimedia Process. Commun. Inf. Technol., pp. 97–102, 2020, doi:10.1109/MPCIT51588.2020.9350481.; [176] P. L. Ramirez Izolan et al., “Low-Cost Fog Computing Platform for Soil Moisture Management,” Int. Conf. Inf. Netw., vol. 2020-Janua, pp. 499–504, 2020, doi:10.1109/ICOIN48656.2020.9016572.; [177] J. D. Borrero and A. Zabalo, “An autonomous wireless device for real-time monitoring of water needs,” Sensors (Switzerland), vol. 20, no. 7, pp. 1–16, 2020, doi:10.3390/s20072078.; [178] N. A. A. Abdellah and N. Thangadurai, “Real Time Application of IoT for the Agriculture in the Field along with Machine Learning Algorithm,” Proc. 2020 Int. Conf. Comput. Control. Electr. Electron. Eng. ICCCEEE 2020, 2021, doi:10.1109/ICCCEEE49695.2021.9429606.; [179] S. Casadei, F. Peppoloni, F. Ventura, R. Teodorescu, D. Dunea, and N. Petrescu, “Application of smart irrigation systems for water conservation in Italian farms,” Environ. Sci. Pollut. Res., vol. 28, no. 21, pp. 26488–26499, 2021, doi:10.1007/s11356-021-12524-6.; [180] F. J. Ruiz Ortega, K. Esquivel Murillo, D. O. Rodríguez Martinez, M. E. Rodríguez Torres, and R. Duarte Ramírez, “INTERNET DE LAS COSAS (IoT), UNA ALTERNATIVA PARA EL CUIDADO DEL AGUA,” Pist. Educ., vol. 40, no. 130, pp. 2318–2330, 2018.; [181] A. F. Jimenez, E. F. Herrera, B. V. Ortiz, A. Ruiz, and P. F. Cardenas, “Inference System for Irrigation Scheduling with an Intelligent Agent,” in Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II, J. C. Corrales, P. Angelov, and J. A. Iglesias, Eds. Cham: Springer International Publishing, 2019, pp. 1–20.; [182] J. D. Franco-Ramirez, T. A. Ramirez-Delreal, A. Garate-Garcia, M. A. Ruiz, and D. Villanueva-Vasquez, “MOSyG: Monitoring system for germination chamber using fuzzy control based on cloudino-IoT and FIWARE,” 2019 IEEE Int. Autumn Meet. Power, Electron. Comput. ROPEC 2019, no. Ropec, 2019, doi:10.1109/ROPEC48299.2019.9057127.; [183] J. A. Laverde Mena and C. G. Laverde Mena, “Internet de las cosas aplicado en la agricultura ecuatoriana: Una propuesta para sistemas de riego,” Rev. Dilemas Contemp., vol. 148, pp. 148–162, 2021.; [184] E. Gutierrez Leon, J. E. Montiel Arguijo, C. Carreto Arellano, and F. R. Menchaca García, “Propuesta de sistema de gestión inteligente basado en IoT para hidroponia,” Res. Comput. Sci., vol. 148, no. 10, pp. 219–233, 2019, doi:10.13053/rcs-148-10-19.; [185] F. A. Capraro Fuentes, S. R. Tosetti, and P. L. Campillo, “Sensor Network for Monitoring and Fault Detection in Drip Irrigation Systems Based on Embedded Systems,” IEEE Lat. Am. Trans., vol. 18, no. 2, pp. 383–391, 2020, doi:10.1109/TLA.2020.9085294.; [186] A. Oliveira-Jr et al., “IoT Sensing Platform as a Driver for Digital Farming in Rural Africa,” Sensors, vol. 20, no. 12, p. 3511, Jun. 2020, doi:10.3390/s20123511.; [187] J. Rodríguez-Robles, Á. Martin, S. Martin, J. A. Ruipérez-Valiente, and M. Castro, “Autonomous sensor network for rural agriculture environments, low cost, and energy self-charge,” Sustain., vol. 12, no. 15, 2020, doi:10.3390/SU12155913.; [188] A. Cabarcas, C. Arrieta, D. Cermeno, H. Leal, R. Mendoza, and C. Rosales, “Irrigation system for precision agriculture supported in the measurement of environmental variables,” Proc. - 2019 7th Int. Eng. Sci. Technol. Conf. IESTEC 2019, no. March 2020, pp. 671–676, 2019, doi:10.1109/IESTEC46403.2019.00125.; [189] M. J. Ibarra, E. Alcarraz, O. Tapia, Y. P. Atencio, Y. Mamani-Coaquira, and H. A. Huillcen Baca, “NFT-I technique using IoT to improve hydroponic cultivation of lettuce,” Proc. - Int. Conf. Chil. Comput. Sci. Soc. SCCC, vol. 2020-Novem, 2020, doi:10.1109/SCCC51225.2020.9281277.; [190] Superintendencia de Industria y Comercio (SIC), “¿Qué se puede patentar?,” Superintenedencia de Industria y Comercio (SIC), 2021. https://www.sic.gov.co/node/44#:~:text=Se protegen los inventos que consistan en productos,,un procedimiento para la obtención de un producto.; [191] H. Ben Salem and T. Smith, “Feeding strategies to increase small ruminant production in dry environments,” Small Rumin. Res., vol. 77, no. 2–3, pp. 174–194, 2008, doi:10.1016/j.smallrumres.2008.03.008.; [192] D. Singh and A. Thakur, “Advancing Rational Exploitation of Water Irrigation Using 5G-IoT Capabilities: The AREThOU5A project,” PDGC 2018 - 2018 5th Int. Conf. Parallel, Distrib. Grid Comput., vol. 8, no. 1, pp. 90–94, 2018, doi:10.1109/PDGC.2018.8745934.; [193] R. Torres-Sanchez, H. Navarro-Hellin, A. Guillamon-Frutos, R. San-Segundo, M. C. Ruiz-Abellón, and R. Domingo-Miguel, “A decision support system for irrigation management: Analysis and implementation of different learning techniques,” Water (Switzerland), vol. 12, no. 2, 2020, doi:10.3390/w12020548.; [194] S. Athani, C. Tejeshwar, M. M. Patil, P. Patil, and R. Kulkarni, “Soil moisture monitoring using IoT enabled arduino sensors with neural networks for improving soil management for farmers and predict seasonal rainfall for planning future harvest in North Karnataka - India,” Int. Conf. I-SMAC (IoT Soc. Mobile, Anal. Cloud), pp. 43–48, 2017.; [195] J. J. Dethier and A. Effenberger, “Agriculture and development: A brief review of the literature,” Econ. Syst., vol. 36, no. 2, pp. 175–205, 2012, doi:10.1016/j.ecosys.2011.09.003.; [196] M. Bures, “Internet of Things: Current Challenges in the Quality Assurance and Testing Methods.” Accessed: Nov. 22, 2018. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/1805/1805.01241.pdf.; [197] K. Pernapati, “IoT Based Low Cost Smart Irrigation System,” in Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT 2018, 2018, pp. 1312–1315, doi:10.1109/ICICCT.2018.8473292.; [198] T. W. Zougmore, S. Malo, F. Kagembega, and A. Togueyini, “Low cost IoT solutions for agricultures fish farmers in Afirca: A case study from Burkina Faso,” ICSCC 2018 - 1st Int. Conf. Smart Cities Communities, 2018, doi:10.1109/SCCIC.2018.8584549.; [199] E. Beza, L. Kooistra, P. Reidsma, P. Poortvliet, M. Belay, and B. Bijen, “Exploring farmers’ intentions to adopt mobile Short Message Service (SMS) for citizen science in agriculture,” j, vol. 151, 2018, doi:10.1016/j.compag.2018.06.015.; [200] K. Lova Raju and V. Vijayaraghavan, “IoT and Cloud hinged Smart Irrigation System for Urban and Rural Farmers employing MQTT Protocol,” ICDCS 2020 - 2020 5th Int. Conf. Devices, Circuits Syst., pp. 71–75, 2020, doi:10.1109/ICDCS48716.2020.243551.; [201] W. A. K. L. Sanjula, K. T. W. Kavinda, M. A. K. Malintha, W. M. D. L. Wijesuriya, S. Lokuliyana, and R. De Silva, “Automated water-gate controlling system for paddy fields,” ICAC 2020 - 2nd Int. Conf. Adv. Comput. Proc., pp. 61–66, 2020, doi:10.1109/ICAC51239.2020.9357312.; [202] S. Hernando Mejía, “MODELO DE DECISIÓN PARA LA SELECCIÓN DE SOLUCIONES IoT APOYANDO LA TRANSFERENCIA TECNOLÓGICA EN ZONAS RURALES DE SANTANDER,” 2020.; [203] M. D. Caro Meza, “Diseño de directrices para la evaluación de interfaces en soluciones IOT implementadas en zonas rurales santandereanas: apoyando la transferencia tecnológica desde la perspectiva de usabilidad,” Universidad Autónoma de Bucaramanga, 2020.; [204] A. C. Martínez Pinzón and K. J. Villamizar Calderón, “FRAMEWORK CONCEPTUAL PARA DESARROLLO DE INTERFACES MÓVILES EN SOLUCIONES IOT QUE PERMITAN APROPIACIÓN TECNOLÓGICA EN ZONAS RURALES ALEDAÑAS AL MUNICIPIO DE BUCARAMANGA DESDE LA PERSPECTIVA DE UX,” Universidad Autónoma de Bucaramanga, 2020.; [205] D. F. Aceros Orduz, “PROTOTIPO DE UNA RUTA TECNOLOGICA PARA EL IOT, ENFOCADA EN LAS TECNOLOGÍAS DE RIEGO, PARA LOS AGRICULTORES DE PEQUEÑA ESCALA EN COLOMBIA,” Universidad Autónoma de Bucaramanga, 2020.; [206] C. A. Meneses Montana and karen S. Prada Jaimes, “Empleando elementos reconocibles como potencializador del uso de internet en zonas rurales: una investigación desde la experiencia de usuario en pequeños productores agrícolas de Santander,” Universiad Autónoma de Bucaramanga, 2020.; [207] A. F. Rincón Benavides and E. A. Martinez Zavala, “Climagro: diseño de un mapa de ruta de tecnologías IOT empleadas en entornos rurales para el monitoreo del clima, dirigido para los pequeños productores campesinos de Santander, mediante técnicas de text mining e inteligencia artificial,” Universidad Autónoma de Bucaramanga, 2020.; [208] J. E. Duarte Pineda and O. M. Ortega Pineda, “Farmia: Diseño de arquitectura IOT orientado a desarrolladores para la inclusión de tecnologías de internet de las cosas aplicadas a la Agro rotación de cultivos de acuerdo con el plan estratégico presentado por GPS Santander: Caso de estudio Villanueva, ,” Universidad Autónoma de Bucaramanga, 2020.; [209] O. Y. Patiño Hernández, “KAKAW: Modelo de inteligencia artificial para la identificación de actores y su relación en el sector cacaotero de Santander,” Universidad Autónoma de Bucaramanga, 2020.; [210] A. F. Herrera Duarte, “Propuesta metodológica para la evaluación de modelos de transferencia tecnológica TIC en la agricultura de los pequeños productores campesinos de la región de Santander,” Universidad Autónoma de Bucaramanga, 2020.; [211] F. J. Vargas Pérez and A. P. Verdugo Beltrán, “Desarrollo de un prototipo funcional de red sensórica IoT para el monitoreo de variables en suelos agrícolas de la finca el Oasis de la Vereda Llanadas, municipio de Los Santos (Santander),” Universidad Autónoma de Bucaramanga, 2021.; [212] N. E. Castillo Suta, “Desarrollo de un modelo de transferencia y apropiación de tecnologías del internet de las cosas para los agricultores colombianos de pequeña escala – AGRIOT,” Universidad Autónoma de Bucaramanga, 2021.; [213] C. Kamienski et al., “Smart water management platform: IoT-based precision irrigation for agriculture,” Sensors (Switzerland), vol. 19, no. 2, 2019, doi:10.3390/s19020276.; [214] B. Edwards et al., “mAgri Design Toolkit: User-centered design for mobile agriculture,” p. 186, 2014, [Online]. Available: https://www.comminit.com/ict-4-development/content/magri-design-toolkit-user-centered-design-mobile-agriculture.; [215] E. J. M. Arruda Filho and R. Roy Dholakia, “Hedonismo como um fator de decisão e uso tecnológico,” Rev. Bras. Gest. Negocios, vol. 15, no. 48, pp. 343–361, 2013, doi:10.7819/rbgn.v15i48.1407.; [216] C. N. Jiménez-Hernández, O. F. Castellanos-Domínguez, and E. M. Villa-Enciso, “La gestión de tecnologías emergentes en el ámbito universitario,” TecnoLógicas, no. 26, p. 145, 2011, doi:10.22430/22565337.57.; [217] DANE (Departamento Administrativo Nacional de Estadística) and MADR (Ministerio de Agricultura y Desarrollo Rural), “Censo Nacional Agropecuario 2014,” 2015.; [218] M. A. Espinosa, E. Romero R., L. Y. Flórez G., and C. D. Guerrero, “DANDELION: Propuesta metodológica para recopilación y análisis de información de artículos científicos. Un enfoque desde la bibliometría y la revisión sistemática de la literatura,” RISTI - Rev. Iber. Sist. e Tecnol. Inf., vol. 28, pp. 110–122, 2020, [Online]. Available: https://search.proquest.com/openview/e3b85a7260c758fd943bc4d5a0447f13/1?pq-origsite=gscholar&cbl=1006393.; [219] J. R. Fraenkel, N. E. Wallen, and H. H. Hyun, How to design and evaluate research in education, vol. 1, no. 1. McGraw: Hill Education, 2012.; [220] Unidad Administrativa Especial de Catastro Distrital -Gerencia IDECA, “Metodología para la Analítica de datos,” pp. 1–34, 2019, [Online]. Available: www.ideca.gov.co.; [221] P. Chapman et al., CRISP-DM 1.0. SPSS, 2000.; [222] E. Romero-riaño, C. D. Guerrero-santander, and H. E. Martínez-ardila, “Agronomy research co-authorship networks in agricultural innovation systems Redes de coautoría en investigación sobre agronomía en sistemas de innovación agrícola,” Rev. UIS Ing., vol. 20, no. 1, pp. 161–175, 2021, doi:10.18273/revuin.v20n1-2021015.; [223] G. Ko, J. K. Routray, and M. M. Ahmad, “ICT infrastructure for rural community sustainability,” Community Dev., vol. 50, no. 1, pp. 51–72, Jan. 2019, doi:10.1080/15575330.2018.1557720.; [224] V. A. Eras Moreira, “EVALUACIÓN DE IMPACTO DE TRANSFERENCIA DE TECNOLOGÍA AGROPECUARIA EN LA PROVINCIA DE IMBABURA: CANTONES COTACACHI, PIMAMPIRO E IBARRA,” 2014.; [225] S.-R. Cipriano Juárez, “La agricultura y el problema del agua en la provincia de alicante,” a Vueltas Con La Agric. Una Act. Económica Necesaria Y Marginada, 2010.; [226] J. A. Ocampo, “Misión para la transformación del campo,” Misión para la Transform. del campo, p. 46, 2014, doi:10.1007/s13398-014-0173-7.2.; [227] P. S. Birthal and P. K. Joshi, “Smallholder Farmers’ Access to Markets for High-Value Agricultural Commodities in India,” Case Stud. Food Policy Dev. Ctries., pp. 51–60, 2019, doi:10.7591/9780801466373-007.; [228] D. J. Quiroga-Parra, J. Torrent-Sellens, and C. P. Murcia Zorrilla, “Usos de las TIC en América Latina: Una caracterización,” Ingeniare, vol. 25, no. 2, pp. 289–305, 2017, doi:10.4067/S0718-33052017000200289.; [229] M. Taylor and S. Bhasme, “Model farmers, extension networks and the politics of agricultural knowledge transfer,” J. Rural Stud., vol. 64, no. September, pp. 1–10, 2018, doi:10.1016/j.jrurstud.2018.09.015.; [230] ITU (International Telecommunication Union), El ecosistema digital y la masificación de las tecnologías de la información y las comunicaciones en Paraguay.; [231] MTC, “Misión para la transformación del campo - Diagnóstico económico del campo colombiano,” Inf. la Misión para la Transform. del Campo, p. 63, 2015.; [232] A. Sharma, A. Bailey, and I. Fraser, “Technology Adoption and Pest Control Strategies Among UK Cereal Farmers: Evidence from Parametric and Nonparametric Count Data Models,” J. Agric. Econ., vol. 62, no. 1, pp. 73–92, Feb. 2011, doi:10.1111/j.1477-9552.2010.00272.x.; [233] J. Sollleiro R., R. Castañón I., J. González C., J. Aguilar-Ávila, and N. Aguilar G., “Identificación de buenas prácticas de extensionismo, transferencia de tecnología e innovación para el sector agroalimentario de méxico.,” no. April, p. 57, 2017.; [234] Y. Valencia Villegas and Y. Sepúlveda Casadiego, “Implementación de sensores en los sistemas de riego automatizado,” Dec. 2019. doi:10.22490/ECAPMA.3417.; [235] R. Oad and P. King, “Irrigation system design for management in mountainous areas,” Irrig. Drain. Syst., vol. 5, no. 3, pp. 213–228, Aug. 1991, doi:10.1007/BF01112500.; [236] Á. Penagos, C. Ospina, C. Quesada, and F. Castellanos, “Una mirada al mercado laboral rural colombiano y un acercamiento a los posibles efectos de la pandemia,” RIMISP Cent. Latinoam. para el Desarro. Rural, 2020, [Online]. Available: https://www.rimisp.org/documentos/informes/una-mirada-al-mercado-laboral-rural-colombiano-y-un-acercamiento-a-los-posibles-efectos-de-la-pandemia/.; [237] J. Wadsworth and B. Carlisle, “TECHNOLOGY AND ITS CONTRIBUTION TO PRO-POOR AGRICULTURAL DEVELOPMENT,” UK, 2005. Accessed: May 20, 2019. [Online]. Available: http://www.fao.org/3/a-at358e.pdf.; [238] P. Martinez Corral, “Orígenes de la exclusión digital en el campo colombiano: abordaje sobre la política de telecomunicaciones sociales,” Poliantea, vol. 11, no. 21, p. 195, 2016, doi:10.15765/plnt.v11i21.709.; [239] F. Castillo Blanco, Historia de la Cultura Campesina Santandereana y su arraigo en el departamento de Santander, Primera. Bucaramanga, Colombia: Gobernación de Santander, 2012.; [240] P. Šimek, J. Vaněk, and J. Pavlík, “Usability of UX Methods in Agrarian Sector - Verification,” Agris On-line Pap. Econ. Informatics, vol. 7, no. 3, pp. 49–56, 2015, doi:10.7160/aol.2015.070305. [241] E. Gerónimo Bautista and R. Calderón García, “La formación de talento e innovación a través de la vinculación y los modelos de hélice basados en la sociedad del conocimiento,” RIDE Rev. Iberoam. para la Investig. y el Desarro. Educ., vol. 10, no. 20, Apr. 2020, doi:10.23913/ride.v10i20.641.; [241] E. Gerónimo Bautista and R. Calderón García, “La formación de talento e innovación a través de la vinculación y los modelos de hélice basados en la sociedad del conocimiento,” RIDE Rev. Iberoam. para la Investig. y el Desarro. Educ., vol. 10, no. 20, Apr. 2020, doi:10.23913/ride.v10i20.641.; [242] D. Rotolo, D. Hicks, and B. R. Martin, “What is an emerging technology?,” Res. Policy, vol. 44, no. 10, pp. 1827–1843, Dec. 2015, doi:10.1016/J.RESPOL.2015.06.006.; [243] G. Fortino, C. Savaglio, G. Spezzano, and M. Zhou, “Internet of Things as System of Systems: A Review of Methodologies, Frameworks, Platforms, and Tools,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 51, no. 1, pp. 223–236, 2021, doi:10.1109/TSMC.2020.3042898.; [244] D. Kayisire and J. Wei, “ICT Adoption and Usage in Africa: Towards an Efficiency Assessment,” Inf. Technol. Dev., vol. 22, no. 4, pp. 630–653, 2016, doi:10.1080/02681102.2015.1081862.; [245] M. Dayahna Caro M., E. Romero-Riaño, M. Alexandra Espinosa C, and C. D. Guerrero, “Evaluando contribuciones de usabilidad en soluciones TIC-IOT para la agricultura: Una perspectiva desde la bibliometría,” RISTI - Rev. Iber. Sist. e Tecnol. Inf., vol. 2020, no. E28, pp. 681–692, 2020, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081040306&partnerID=40&md5=f59611d7803425f519635fe4470fdaca.; [246] S. K. Gawali and M. K. Deshmukh, “Energy autonomy in IoT technologies,” Energy Procedia, vol. 156, no. September 2018, pp. 222–226, 2019, doi:10.1016/j.egypro.2018.11.132.; [247] M. Tahir, Q. Mamoon Ashraf, and M. Dabbagh, “Towards Enabling Autonomic Computing in IoT Ecosystem,” in 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Aug. 2019, pp. 646–651, doi:10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00122.; [248] J. Lukkien, “A systems of systems perspective on the internet of things,” ACM SIGBED Rev., vol. 13, no. 3, pp. 56–62, 2016, doi:10.1145/2983185.2983195.; [249] G. Fortino, A. Guerrieri, G. M. P. O’Hare, and A. Ruzzelli, “A flexible building management framework based on wireless sensor and actuator networks,” J. Netw. Comput. Appl., vol. 35, no. 6, pp. 1934–1952, Nov. 2012, doi:10.1016/j.jnca.2012.07.016.; [250] P. Desai, A. Sheth, and P. Anantharam, “Semantic Gateway as a Service Architecture for IoT Interoperability,” in 2015 IEEE International Conference on Mobile Services, Jun. 2015, pp. 313–319, doi:10.1109/MobServ.2015.51.; [251] A. Katasonov, O. Kaykova, O. Khriyenko, S. Nikitin, and V. Terziyan, “Smart semantic middleware for the internet of things,” ICINCO 2008 - Proc. 5th Int. Conf. Informatics Control. Autom. Robot., vol. ICSO, no. May 2014, pp. 169–178, 2008.; [252] G. Codeluppi, A. Cilfone, L. Davoli, and G. Ferrari, “VegIoT Garden: A modular IoT Management Platform for Urban Vegetable Gardens,” 2019 IEEE Int. Work. Metrol. Agric. For. MetroAgriFor 2019 - Proc., pp. 121–126, 2019, doi:10.1109/MetroAgriFor.2019.8909228.; [253] G. Codeluppi, A. Cilfone, L. Davoli, and G. Ferrari, “LoRaFarM: A LoRaWAN-Based Smart Farming Modular IoT Architecture,” Sensors, vol. 20, no. 7, p. 2028, Apr. 2020, doi:10.3390/s20072028.; [254] K. Yelamarthi, M. S. Aman, and A. Abdelgawad, “An application-driven modular IoT architecture,” Wirel. Commun. Mob. Comput., vol. 2017, 2017, doi:10.1155/2017/1350929.; [255] M. Benammar, A. Abdaoui, S. Ahmad, F. Touati, and A. Kadri, “A Modular IoT Platform for Real-Time Indoor Air Quality Monitoring,” Sensors, vol. 18, no. 2, p. 581, Feb. 2018, doi:10.3390/s18020581.; [256] K. Douzis, S. Sotiriadis, E. G. M. Petrakis, and C. Amza, “Modular and generic IoT management on the cloud,” Futur. Gener. Comput. Syst., vol. 78, pp. 369–378, Jan. 2018, doi:10.1016/j.future.2016.05.041.; [257] INTERACTION DESIGN FOUNDATION, “Useful, Usable, and Used: Why They Matter to Designers,” 2021. https://www.interaction-design.org/literature/article/useful-usable-and-used-why-they-matter-to-designers.; [258] J. M. Antonini, “Health Effects Associated with Welding,” in Comprehensive Materials Processing, Elsevier, 2014, pp. 49–70.; [259] D. McQuillen, “‘Taking Usability Offline,’” Darwin Magazine, 2003.; [260] M. Blusi, K. Asplund, and M. Jong, “Older family carers in rural areas: experiences from using caregiver support services based on Information and Communication Technology (ICT),” Eur. J. Ageing, vol. 10, no. 3, pp. 191–199, Sep. 2013, doi:10.1007/s10433-013-0260-1.; [261] B. Momir, I. Petroman, E. C. Constantin, A. Mirea, and D. Marin, “The Importance of Cross-Cultural Knowledge,” Procedia - Soc. Behav. Sci., vol. 197, pp. 722–729, Jul. 2015, doi:10.1016/j.sbspro.2015.07.077.; [262] A. N., “Where to Start and What to Consider?,” in Usability and Internationalization of Information Technology, N. Aykin, Ed. CRC Press, 2005.; [263] S. Vanka and D. Klein, “Colortool: An Information Tool for Cross Cultural Design,” Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 39, no. 5, pp. 341–345, Oct. 1995, doi:10.1177/154193129503900510.; [264] M. W. Azeem, A. Tariq, F. J. Sheikh, M. A. Butt, I. Tariq, and H. M. Shahid, “Cultural effects on metaphor design,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9186, no. August, pp. 113–121, 2015, doi:10.1007/978-3-319-20886-2_11.; [265] G. S. Choi, R. Oehlmann, H. Dalke, and D. Cottington, “Discovering Color Semantics as a Chance for Developing Cross-Cultural Design Frameworks,” in Social Intelligence Design 2007 CTIT, 2007, pp. 926–933.; [266] S. Vanka and D. Klein, “Colortool: An Information Tool for Cross Cultural Design,” Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 39, no. 5, pp. 341–345, Oct. 1995, doi:10.1177/154193129503900510.; [267] J. Thornborrow and S. Wareing, Patterns in language. An introduction to language and literary style. Routledge, 2019.; [268] P. Tiwari and K. Sorathia, “Visualising and systematizing a per-poor ICT intervention for Rural and Semi-urban Mothers in India,” in Proceedings of the 7th International Symposium on Visual Information Communication and Interaction - VINCI ’14, 2014, pp. 129–138, doi:10.1145/2636240.2636856.; [269] Yann, “UX Design for Agriculture in Africa: Case Study from Zambia,” YUX, 2019. https://yux.design/ux-design-agriculture-africa-case-study-zambia.; [270] V. K. Kool and R. Agrawal, “Technology and Hedonism,” in Psychology of Technology, Cham: Springer International Publishing, 2016, pp. 253–304.; [271] J. S. Martínez García, “El habitus. Una revisión analítica,” Rev. Int. Sociol., vol. 75, no. 3, p. 067, Sep. 2017, doi:10.3989/ris.2017.75.3.15.115.; [272] B. R. Belland, “Using the theory of habitus to move beyond the study of barriers to technology integration,” Comput. Educ., vol. 52, no. 2, pp. 353–364, 2009, doi:10.1016/j.compedu.2008.09.004.; [273] L.-A. Sutherland and I. Darnhofer, “Of organic farmers and ‘good farmers’: Changing habitus in rural England,” J. Rural Stud., vol. 28, no. 3, pp. 232–240, Jul. 2012, doi:10.1016/j.jrurstud.2012.03.003.; [274] O. Prokopenko, O. Kudrina, and V. Omelyanenko, “Analysis of ICT Application in Technology Transfer Management within Industry 4.0 Conditions (Education Based Approach),” CEUR Workshop Proc., vol. 2105, pp. 258–273, 2018.; [275] S. Heo, S. Song, J. Kim, and H. Kim, “RT-IFTTT: Real-Time IoT Framework with Trigger Condition-Aware Flexible Polling Intervals,” Proc. - Real-Time Syst. Symp., vol. 2018-Janua, pp. 266–276, 2018, doi:10.1109/RTSS.2017.00032.; [276] C. Dodd, M. Adam, and C. Dodd, “Designing User Interfaces for the Elderly : A Systematic Literature Review,” pp. 1–12, 2017, [Online]. Available: https://aisel.aisnet.org/acis2017/61.; [277] T. Walsh and P. Nurkka, “Approaches to cross-cultural design: Two case studies with UX web-surveys,” Proc. 24th Aust. Comput. Interact. Conf. OzCHI 2012, pp. 633–642, 2012, doi:10.1145/2414536.2414632.; [278] K. Finn and J. Johnson, “Designing for an aging population: Toward universal design,” Conf. Hum. Factors Comput. Syst. - Proc., vol. 07-12-May-, no. May, pp. 1011–1012, 2016, doi:10.1145/2851581.2856669.; [279] INTERACTION DESIGN FOUNDATION, “Accessibility.” https://www.interaction-design.org/literature/topics/accessibility.; [280] P. Štrukelj, “Technology, Wealth and Modern Management of Technology,” Manag. Glob. Transitions, vol. 10, no. 1, pp. 29–49, 2012.; [281] IEA, ITU, UNESCO (Organización de las Naciones Unidas para la Educación la Ciencia y la Cultura), UNOOSA, and WIPO, “Science , technology and innovation and intellectual property rights : The vision for development Thematic Think Piece,” 2012.; [282] D. M. Dueñas Quintero and L. A. Páez Guevara, “CONSTRUCCIÓN DE LA AGENDA INVESTIGACIÓN PARA EL SECTOR AGROINDUSTRIAL EN EL DEPARTAMENTO DE BOYACÁ: IDENTIFICACIÓN DE LÍNEAS DE INVESTIGACIÓN,” Rev. Tumbaga, vol. 1, no. 11, 2016.; [283] World Summit on the Information Society, “WSIS/SDGs Matrix WSIS Forum 2018: Outcomes Linking WSIS Action lines with the Sustainable Development Goals,” 2018. [Online]. Available: https://www.itu.int/net4/wsis/forum/2018/Files/documents/outcomes/WSISForum2018_WSIS-SDGSMatrix.pdf.; [284] D. A. Delgado, C. M. Cocha, J. E. García, and G. K. Gonzales, “Metodologías de diseño centrado en las personas: Experiencia vereda La Yunga y Río Hondo, Popayán, Colombia,” Rev. Espac., vol. 41, no. 36, pp. 0–2, 2020.; [285] S. Bhattacharya, J. Glazer, and D. E. . Sappington, “Licensing and the sharing of knowledge in research joint ventures,” J. Econ. Theory, vol. 56, no. 1, pp. 43–69, Feb. 1992, doi:10.1016/0022-0531(92)90068-S.; [286] J. P. Lane, “Understanding Technology Transfer,” Assist. Technol., vol. 11, no. 1, pp. 5–19, 1999, doi:10.1080/10400435.1999.10131981; [287] E. G. García, “Análisis de buenas prácticas en transferencia de tecnología en el sector TIC,” 2013.; [288] ITU (International Telecommunication Union), ANSI, and DIAL, Construir aldeas inteligentes: un plan de trabajo Proyecto piloto en el Níger. ITUPublicaciones, 2020.; [289] Ministerio de Ciencia Tecnología e Innovación Productiva (Argentina), “Guía de buenas prácticas en gestión de la transferencia de tecnología y de la propiedad intelectual en instituciones y organismos del sistema nacional de ciencia, tenología e innovación,” pp. 3–63, 2012.; [290] S. Salazar and P. Henr, Guía para la gestión de la propiedad en consorcios intelectual regionales de investigación agrícola. San José, Costa Rica: https://www.fontagro.org/es/publicaciones/publicaciones-fontagro/gui-para-la-gestion-de-la-propiedad-intelectual-en-consorcios-regionales-de-investigac/, 2013.; [291] A. Jaime, M. L. Lizarazo, and H. E. Martinez, “Buenas Prácticas en Transferencia de Tecnología en el Mundo,” 2016, [Online]. Available: https://www.researchgate.net/publication/309728561_Buenas_Practicas_en_Transferencia_de_Tecnologia_en_el_Mundo.; [292] NASA, “Plan for Accelerating Technology Transfer at NASA,” 2012.; [293] D. A. Comstock and D. Lockney, “NASA’s legacy of technology transfer and prospects for future benefits,” A Collect. Tech. Pap. - AIAA Sp. 2007 Conf., vol. 3, no. September, pp. 2969–2978, 2007, doi:10.2514/6.2007-6283.; [294] D. A. Maluf, T. Okimura, and M. Gurram, “NASA technology transfer system,” Proc. - 4th IEEE Int. Conf. Sp. Mission Challenges Inf. Technol. SMC-IT 2011, pp. 111–117, 2011, doi:10.1109/SMC-IT.2011.27.; [295] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin, “A model for technology transfer in practice,” IEEE Softw., vol. 23, no. 6, pp. 88–95, 2006, doi:10.1109/MS.2006.147.; [296] V. R. Basili, M. K. Daskalantonakis, and R. H. Yacobellis, “Technology transfer at Motorola,” IEEE Softw., vol. 11, no. 2, pp. 70–76, Mar. 1994, doi:10.1109/52.268959.; [297] H. L. Pieterse and M. W. Pretorius, “A MODEL FOR TELECOMMUNICATION TECHNOLOGY TRANSFER AND DIFFUSION INTO THE RURAL AREAS OF SOUTH AFRICA,” South African J. Ind. Eng., vol. 13, no. 1, pp. 119–129, Jan. 2012, doi:10.7166/13-1-322.; [298] A. Shiri, “Introduction to Modern Information Retrieval (2nd edition),” Libr. Rev., vol. 53, no. 9, pp. 462–463, 2004, doi:10.1108/00242530410565256.; [299] J. A. Sheikh, H. S. Dar, and F. J. Sheikh, “Usability guidelines for designing knowledge base in rural areas towards women empowerment,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8519 LNCS, no. PART 3, pp. 462–469, 2014, doi:10.1007/978-3-319-07635-5_45.; [300] A. Lodhi, “Usability heuristics as an assessment parameter: For performing usability testing,” in ICSTE, 2010, pp. 256–259.; [301] W. A. R. W. M. Isa et al., “Engineering rural informatics using agile user centered design,” in 2014 2nd International Conference on Information and Communication Technology (ICoICT), May 2014, pp. 367–372, doi:10.1109/ICoICT.2014.6914093.; [302] S. Adhy, B. Noranita, R. Kusumaningrum, P. W. Wirawan, D. D. Prasetya, and F. Zaki, “Usability testing of weather monitoring on a web application,” in 2017 1st International Conference on Informatics and Computational Sciences (ICICoS), Nov. 2017, pp. 131–136, doi:10.1109/ICICOS.2017.8276350.; [303] S. Wyche, T. R. Dillahunt, N. Simiyu, and S. Alaka, “‘if god gives me the chance i will design my own phone’: Exploring mobile phone repair and postcolonial approaches to design in rural Kenya,” UbiComp 2015 - Proc. 2015 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput., no. September, pp. 463–473, 2015, doi:10.1145/2750858.2804249.; [304] A. A. Adesina and J. Baidu-Forson, “Farmer’s perpections and adoption of new agricultural technology: evidence from analysis in Burkina Faso and Guiena, West Africa,” Agric. Econ., no. 13, pp. 1–9, 1995, doi:10.14358/PERS.81.6.451.; [305] F. Ssozi-Mugarura, E. Blake, and U. Rivett, “Codesigning with communities to support rural water management in Uganda,” CoDesign, vol. 13, no. 2, pp. 110–126, Apr. 2017, doi:10.1080/15710882.2017.1310904.; [307] B. Dhehibi, U. Rudiger, H. P. Moyo, and M. Z. Dhraief, “Agricultural technology transfer preferences of smallholder farmers in Tunisia’s arid regions,” Sustain., vol. 12, no. 1, 2020, doi:10.3390/SU12010421.; [308] D. Teka, Y. Dittrich, and M. Kifle, “Usability challenges in an Ethiopian software development organization,” in Proceedings of the 9th International Workshop on Cooperative and Human Aspects of Software Engineering, May 2016, pp. 114–120, doi:10.1145/2897586.2897604.; [309] P. S. Dey et al., “Assessment of Sustainable Agriculture Practices in Uttarakhand, India,” IEEE Reg. 10 Humanit. Technol. Conf. R10-HTC, vol. 2020-Decem, 2020, doi:10.1109/R10-HTC49770.2020.9357012.; [310] R. Augusto Sales Dantas, M. Vasconcelos da Gama Neto, I. Dimitry Zyrianoff, and C. Alberto Kamienski, “The SWAMP Farmer App for IoT-based Smart Water Status Monitoring and Irrigation Control,” in 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Nov. 2020, pp. 109–113, doi:10.1109/MetroAgriFor50201.2020.9277588.; [311] Corporacion PBA, Manual del facilitador rural Métodos y herramientas para ayudar a campesinos a conseguir sus metas. 2011.; [312] DANE (Departamento Administrativo Nacional de Estadística), “Censo Nacional Agropecuario Bogotá,” 2014.; [313] DANE (Departamento Administrativo Nacional de Estadística), Censo Nacional Agropecuario, Tomo 3 - Mapas. 2015.; [314] A. González-Cárdenas and L. A. Paipilla-Pardo, “Misión para la Transformación del Campo : Síntesis y algunas reflexiones,” Revista Palmas, Bogotá, Colombia, pp. 57–78, 2015.; [315] P. A. Aremu, I. N. Kolo, A. K. Gana, and F. A. Adelere, “The Crucial Role of Extension Workers In Agricultural Technologies Transfer and Adoption,” Glob. Adv. Res. J. Food Sci. Technol., vol. 4, no. 2, pp. 14–18, 2015.; [316] K. Kuutti, T. Jokela, M. Nieminen, and P. Jokela, “Assessing Human-Centred Design Processes in Product Development by Using the INUSE Maturity Model,” IFAC Proc. Vol., vol. 31, no. 26, pp. 89–94, Sep. 1998, doi:10.1016/S1474-6670(17)40074-7.; [317] S. B. Azumah, S. A. Donkoh, and J. A. Awuni, “The perceived effectiveness of agricultural technology transfer methods: Evidence from rice farmers in Northern Ghana,” Cogent Food Agric., vol. 4, no. 1, pp. 1–11, 2018, doi:10.1080/23311932.2018.1503798.; [318] K. A. Mottaleb, “Perception and adoption of a new agricultural technology: Evidence from a developing country,” Technol. Soc., vol. 55, no. April, pp. 126–135, 2018, doi:10.1016/j.techsoc.2018.07.007.; [319] D. J. Mayhew, The Usability Engineering Lifecycle: A Practitioner’s Handbook for User Interface Design (Interactive Technologies), Primera. London, United Kingdom: Morgan Kaufmann Publishers, 1999.; [320] S. Merzouk, A. Cherkaoui, A. Marzak, and S. Nawal, “IoT methodologies: Comparative study,” Procedia Comput. Sci., vol. 175, pp. 585–590, 2020, doi:10.1016/j.procs.2020.07.084.; [321] V. Sachdeva and L. Chung, “Handling non-functional requirements for big data and IOT projects in Scrum,” in 2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence, Jan. 2017, pp. 216–221, doi:10.1109/CONFLUENCE.2017.7943152.; [322] B. Vogel, B. Peterson, and B. Emruli, “Prototyping for Internet of Things with Web Technologies: A Case on Project-Based Learning using Scrum,” in 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), Jul. 2019, pp. 300–305, doi:10.1109/COMPSAC.2019.10223.; [323] K. Rose, S. Eldridge, and L. Chapin, “La internet de las Cosas — Una breve reseña,” 2015. https://www.internetsociety.org/es/resources/doc/2015/iot-overview.; [324] O. Elijah, S. Member, T. Abdul Rahman, I. Orikumhi, C. Yen Leow, and M. Nour Hindia, “An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges,” IEEE INTERNET THINGS J., vol. 5, no. 5, 2018, doi:10.1109/JIOT.2018.2844296.; [325] ITU (International Telecommunication Union), “Overview of the Internet of Things,” 2015. http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=Y.2060.; [326] E. Oriwoh and M. Conrad, “Towards a Definition of the Internet of Things (IoT),” Int. J. Internet Things, vol. 4, no. 1, pp. 1–5, 2015.; [327] U. S. Department of Labors, “National Census of Fatal Occupational Injuries Summary,” 2021.; [328] Minciencias, “Documento de Política Nacional de Ciencia, Tecnología e Innovación N° 1602: Actores del Sistema Nacional de Ciencia, Tecnología e Innovación.,” pp. 6–9, 2018.; [329] J. N. Rodriguez and S. J. Camacho, “¿Quiénes son los campensinos colombianos hoy? Universidad, Ciencia y desarrollo. Universidad del Rosario,” Universidad, Ciencia y desarrollo. Universidad del Rosario. p. 1,2, 2013, [Online]. Available: http://www.urosario.edu.co/campesinos-colombianos/.; [330] A. C. Machado Silvia Botello M, “Serie de documentos de trabajo - La Agricultura Familiar en Colombia,” 2013, [Online]. Available: www.rimisp.org.; [331] M. Chiriboga, “Desafios de la pequeña agricultura familiar frente a la globalización,” Perspect. Rural., pp. 9–24, 1997.; [332] R. Chapman, T. Slaymaker, W. Paper, R. Chapman, and T. Slaymaker, “ICTs and Rural Development: Review of the Literature, Current Interventions and Opportunities for Action,” 2002.; [333] T. Havemann and V. Muccione, “Mechanisms for agricultural climate change mitigation incentives for smallholders. CCAFS Report no. 6.,” 2011. [Online]. Available: www.ccafs.cgiar. org.; [334] M. E. Londoño Escobar, A. M. Lozano Hurtado, O. Gómez Martínez, carlos A. Ramirez López, and J. Solano Castrillón, Prácticas sociales campesinas. El caso Monterrey Buga, Valle del Cauca - Colombia, Primera Ed. Bogotá, Colombia: Corporación Universitaria Minuto de Dios - UNIMINUTO, 2019.; [335] Centro de Innovación pública digital, “Tecnologías emergentes,” 2021. https://centrodeinnovacion.mintic.gov.co/es/blogs/tecnologias-emergentes.; [336] Vicepresidencia de Innovación y Transformación Digital and Grupo Bancolombia, “Internet de las Cosas: ¿cómo lo ha adoptado Colombia?,” 2018. https://www.grupobancolombia.com/wps/portal/empresas/capital-inteligente/tendencias/innovacion/iot-como-lo-ha-adoptado-colombia.; [337] M. Danquah, “Technology transfer, adoption of technology and the efficiency of nations: Empirical evidence from sub Saharan Africa,” Technol. Forecast. Soc. Change, vol. 131, no. December 2016, pp. 175–182, 2018, doi:10.1016/j.techfore.2017.12.007.; [338] D. J. Sánchez Preciado, B. Claes, and N. Theodorakopoulos, “Transferring intermediate technologies to rural enterprises in developing economies : A conceptual framework,” in Prometheus, Informa UK Limited.; [339] B. Biagini, L. Kuhl, K. S. Gallagher, and C. Ortiz, “Technology transfer for adaptation,” Nat. Clim. Chang., vol. 4, no. 9, pp. 828–834, 2014, doi:10.1038/nclimate2305.; [340] S. O. N. Somers and L. Stapleton, “A Human-Centred approach to e-Agricultural systems,” IFAC-PapersOnLine, vol. 48, no. 24, pp. 213–218, 2015, doi:10.1016/j.ifacol.2015.12.085.; [341] J. A. Sheikh, H. S. Dar, and F. J. Sheikh, “Usability Guidelines for Designing Knowledge Base in Rural Areas,” 2014, pp. 462–469.; [342] A. . Valdés Cuervo, Familia y Desarrollo. Intervenciones en terapia familiar. México: Manual Moderno, 2007.; [343] K. Prins, Proceso y producto. Un balance. Lima, Perú: Escuela para el desarrollo, 1996.; [344] FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura), Training of Farmers Programme South Asia. FAO Regional Office for Asia and the Pacific, 2011.; [345] M. E. Nogueira and M. Urcola, “La agricultura familiar en el marco de los programas de desarrollo rural del FIDA en el norte argentino (1991-2014),” Ager, vol. 2015, no. 19, pp. 7–44, 2015, doi:10.4422/ager.2015.01.; [346] C. J. Romera, F. E. Forero Suárez, and J. A. Ruiz Hernández, “Technology and design for rural development: A methodological proposal and a pilot experience in two Colombian municipalities,” Ager, vol. 2017, no. 23, pp. 27–57, 2017, doi:10.4422/ager.2017.03.; [347] RIMISP (Centro Latinoamericano para el Desarrollo Rural), “Misión para la transformación del campo. Estrategia de Implementación del Programa de Desarrollo Rural Integral con Enfoque Territorial,” Bogotá, Colombia, 2014. [Online]. Available: https://www.dnp.gov.co/programas/agricultura/Paginas/mision-para-la-transformacion-del-campo-colombiano.aspx.; [348] M. Docampo Rama, H. De Ridder, and H. Bouma, “Technology generation and age in using layered user interfaces,” Gerontechnology, vol. 1, no. 1, 2001, doi:10.4017/gt.2001.01.01.003.00.; [349] R. Sackmann and O. Winkler, “Technology generations revisited: The internet generation,” Gerontechnology, vol. 11, no. 4, pp. 493–503, 2013, doi:10.4017/gt.2013.11.4.002.00.; [350] M. Chesher and W. Skok, “Roadmap for successful information technology transfer for small businesses,” Proc. ACM SIGCPR Conf., pp. 16–22, 2000, doi:10.1145/333334.333338.; [351] P. R. Childs, Mechanical Design Engineering Handbook, Second Edi., vol. 1999, no. December. Oxford, United Kingdom: Elsevier Ltd., 2019.; [352] Y. Bai and Q. Bai, “Subsea Pipelines,” in Subsea Engineering Handbook, 2019, pp. 919–940.; [353] M. F. Maradei García and F. M. Espinel Correal, Ergonomía para el Diseño, Primera. Bucaramanga, Colombia: Universidad Industrial de Santander - Escuela de Diseño Industrial, 2009.; [354] R. Gacula Pineda, Technology in Culture: A Theoretical Discourse on Convergence in Human-Technology Interaction, no. May. 2014.; [355] K. Dorst and N. Cross, “Creativity in the design process: Co-evolution of problem-solution,” Des. Stud., vol. 22, no. 5, pp. 425–437, 2001, doi:10.1016/S0142-694X(01)00009-6.; [356] OMPI, “¿Qué es la Propiedad Intelectual ?,” p. 23, 2005, [Online]. Available: https://cerlalc.org/wp-content/uploads/documentos-de-interes/odai/ODAI_DOCUMENTOS_DE_INTERES_Que_es_la_propiedad_intelectual_V1.pdf.; [357] Universidad EAFIT, “Mecanismos de protección de la propiedad intelectual,” Propiedad Intelectual. https://www.eafit.edu.co/institucional/propiedad-intelectual/Paginas/mecanismos-de-proteccion.aspx.; [358] G. Oh, D. Kim, S. Kim, and S. Rhew, “A Quality Evaluation Technique of RFID Middleware in Ubiquitous Computing,” in 2006 International Conference on Hybrid Information Technology, Nov. 2006, pp. 730–735, doi:10.1109/ICHIT.2006.253690.; [359] V. Nassar, “Common criteria for usability review,” Work, vol. 41, pp. 1053–1057, 2012, doi:10.3233/WOR-2012-0282-1053.; [360] N. Maalel, E. Natalizio, A. Bouabdallah, P. Roux, and M. Kellil, “Reliability for Emergency Applications in Internet of Things,” in 2013 IEEE International Conference on Distributed Computing in Sensor Systems, May 2013, pp. 361–366, doi:10.1109/DCOSS.2013.40.; [361] C. Prehofer, “From the Internet of Things to Trusted Apps for Things,” in 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Aug. 2013, pp. 2037–2042, doi:10.1109/GreenCom-iThings-CPSCom.2013.381.; [362] N. Nikmehr and M. Doroodchi, “New paradigm in evaluating usability of E-learning system,” in 2008 International Conference on Innovations in Information Technology, Dec. 2008, pp. 347–351, doi:10.1109/INNOVATIONS.2008.4781683.; [363] S. Jimenez-Fernandez, P. de Toledo, and F. del Pozo, “Usability and Interoperability in Wireless Sensor Networks for Patient Telemonitoring in Chronic Disease Management,” IEEE Trans. Biomed. Eng., vol. 60, no. 12, pp. 3331–3339, Dec. 2013, doi:10.1109/TBME.2013.2280967.; [364] N. Bevan, “Measuring usability as quality of use,” Softw. Qual. J., vol. 4, no. 2, pp. 115–130, Jun. 1995, doi:10.1007/BF00402715.; [365] FAO, Guía para la implementación de Centros Demostrativos de Capacitación CDC con enfoque agroecológico. 2016.; [366] M. M. Zinnah, J. L. Compton, and A. A. Adesina, “Research-Extension-Farmer Linkages within the Context of the Generation, Transfer and Adoption of Improved Mangrove Swamp Rice Technology in West Africa.,” Q. J. Int. Agric., vol. 32, no. 2, pp. 201–214, 1993.; [367] J. W. Creswell and V. L. Plano Clark, Designing and Conducting Mixed methods Research, Tercera. USA: Sage Publishing, 2017.; [368] C. Narrod, D. Roy, and I. Food, “The Role of Public-Private Partnerships and Collective Action in Ensuring Smallholder Participation in High Value Fruit and Vegetable Supply Chains,” Role Public-Private Partnerships Collect. Action Ensuring Smallhold. Particip. High Value Fruit Veg. Supply Chain., no. 70, 2007, doi:10.2499/capriwp70.; [369] L. Ermakova, F. Bordignon, N. Turenne, and M. Noel, “Is the Abstract a Mere Teaser? Evaluating Generosity of Article Abstracts in the Environmental Sciences,” Front. Res. Metrics Anal., vol. 3, May 2018, doi:10.3389/frma.2018.00016.; [370] CEPAL (Comisión Económica para América Latina y el Caribe), Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, and IICA (Instituto Interamericano de Cooperación para la Agricultura), Perspectivas de la agricultura y del desarrollo rural en las Américas: una mirada hacia América Latina y el Caribe 2017-2018. San José, Costa Rica, 2017.; [371] H. Zhang, Y. Cai, and Z. Li, “Towards a typology of university technology transfer organizations in China: evidences from Tsinghua University,” Triple Helix, vol. 5, no. 1, 2018, doi:10.1186/s40604-018-0061-9.; [372] A. Li, “Technology transfer in China–Africa relation: myth or reality.” Transnational corporations review, pp. 183–195, 2016.; [373] C. N. A. Iris, “TIERRAS, AGROPRODUCCIÓN Y CULTIVOS ILÍCITOS EN COLOMBIA,” p. 35, 2019.; [374] A. J. Paz Cardona, “Un millón de hogares campesinos en Colombia tienen menos tierra que una vaca,” Apr. 18, 2018.; [375] Ministerio de Agricultura de Chile, “Nuevo Modelo para un Sistema de Extensión y Transferencia Tecnológica en el Sector Silvoagropecuario Chileno,” 2014.; [376] CGIAR, “Transforming agriculture and food innovation systems to win the race to zero - 1391948,” Nov. 17, 2017. https://globalmeet.webcasts.com/starthere.jsp?ei=1391948&tp_key=b17757b8fa (accessed Mar. 07, 2021).; [377] IICA (Instituto Interamericano de Cooperación para la Agricultura), “Elementos para una hoja de ruta conjunta. Evento 4. %7C Facebook,” Evento 4 del Ciclo de foros virtuales: Reducción de #BrechaDigital en las Zonas Rurales de América Latina y El Caribe: Hacia una revolución agrícola digital, Feb. 22, 2020. https://m.facebook.com/story.php?story_fbid=262820852158961&id=436831050034 (accessed Mar. 07, 2021).; [378] M. B. Hernández and J. M. Gómez, “Aplicaciones de Procesamiento de Lenguaje Natural,” Rev. Politécnica, vol. 32, no. 1, pp. 87–96, 2013.; [379] D. H. Flórez Martínez, A. Morales Castañeda, and C. P. Uribe Galvis, Megatendencias en investigación, desarrollo e innovación para el sector agropecuario colombiano: perspectivas, estrategias y visiones de futuro, vol. I. Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), 2018.; [380] FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura) and OCDE (Organización para la Cooperación y el Desarrollo Económicos), OCDE/FAO Perspectivas Agrícolas 2019-2028 - Enfoque Especial: America Latina. Roma: OECD Publishing, 2019.; [381] L. Boer and J. Donovan, “Provotypes for participatory innovation,” in Proceedings of the Designing Interactive Systems Conference on - DIS ’12, 2012, p. 388, doi:10.1145/2317956.2318014.; https://apolo.unab.edu.co/es/persons/rom%C3%A1n-eduardo-sarmiento-porras; http://hdl.handle.net/20.500.12749/19092; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Availability: https://hdl.handle.net/20.500.12749/19092
-
5
Authors: et al.
Contributors: et al.
Subject Terms: Procesamiento de imagenes, Simulación, Energía, Sensores, Sistemas inteligentes, Inteligencia artificial, TIC, Cobertura 5G, Plataformas Web, Procesamiento digital de señales, Prototipos, Automatización, Control, Tecnologías remotas, Bioingeniería -- Congresos, conferencias, etc. -- Memorias, Energía -- Congresos, Sistemas de control inteligente -- Congresos, Procesamiento de señales -- Congresos, Automatización -- Congresos, etc. -- Memoria, Desarrollo de prototipos -- Congresos, Ingeniería biomédica -- Congresos, Tecnologías de la información y de la comunicación -- Congresos, Procesamiento digital de imágenes -- Congresos, Redes neuronales (Computadores) -- Congresos, Matemáticas -- Enseñanza -- Congresos, Inteligencia artificial -- Congresos
File Description: pdf; application/pdf
Relation: H. Y. Vivian-Ip, A. Abrishami, P. W. H. Peng, J. Wong, and F. Chung, “Predictors of Postoperative Pain and Analgesic Consumption: A Qualitative Systematic review”, Anesthesiology, vol. 111, no. 3, pp. 657–677, september 2009. https://doi.org/10.1097/ALN.0b013e3181aae87a.; O. L. Elvir-Lazo and P. F. White, “Postoperative pain management after ambulatory surgery: role of multimodal analgesia”, Anesthesiology Clinics, vol. 28, no. 2, pp. 217–224, june 2010. https://doi.org/10.1016/j.anclin.2010.02.011.; American Academy of Pain Medicine, “Get the facts on pain”. [Online]. Available at:http://www.painmed.org/patientcenter/facts-on-pain/.; P. J. Mathew and J. L. Mathew, “Assessment and management of pain in infants”,Postgraduate Medical Journal, vol. 79, no. 934, pp. 438–43, august 2003. http://dx.doi.org/10.1136/pmj.79.934.438.; M. Clarett, “Escalas de evaluación de dolor y protocolo de analgesia en terapia intensiva”,Clínica y Maternidad Suizo Argentina Instituto Argentino de Diagnóstico y Tratamiento, Buenos Aires, Argentina, 2012.; L. J. Duhn and J. M. Medves, “A systematic integrative review of infant pain assessmenttools”, Advance in Neonatal Care, vol. 4, no. 3, pp. 126–140, june 2004. 10.1016/j.adnc.2004.04.005.; R. Slater, A. Cantarella, L. Franck, J. Meek, and M. Fitzgerald, “How Well Do Clinical PainAssessment Tools Reflect Pain in Infants?” PLoS Medicine, vol. 5, no. 6, p. e129, june 2008. https://doi.org/10.1371/journal.pmed.0050129.; N. C. de Knegt. et al., “Behavioral Pain Indicators in People With Intellectual Disabilities: ASystematic Review”, The Journal of Pain, vol. 14, no. 9, pp. 885–896, september 2013. https://doi.org/10.1016/j.jpain.2013.04.016.; G. Zamzmi. et al., “An approach for automated multimodal analysis of infants’ pain”, in 201623rd International Conference on Pattern Recognition (ICPR), pp. 4148–4153, 2016.; V. Guruswamy, “Assessment of pain in nonverbal children”, Association of PaediatricAnaesthetists of Great Britain and Ireland, vol. APA Leeds, no. 41st Annual Scientific Meeting in Leeds, p. 33, 2014.; Registered Nurses’ Association of Ontario, Assessment and management of pain, vol. 3.Toronto, Canada, 2013.; R. Srouji, S. Ratnapalan, and S. Schneeweiss, “Pain in Children: Assessment andNonpharmacological Management”, International Journal of Pediatrics, july 2010. https://doi.org/10.1155/2010/474838.; K. Brand and A. Al-Rais, “Pain assessment in children”, Anaesthesia and Intensive CareMedicine, vol. 20, no. 6, pp. 314–317, june 2019. https://doi.org/10.1016/j.mpaic.2019.03.003.; D. Freund and B. N. Bolick, “Assessing a Child’s Pain”, AJN, American Journal of Nursing,vol. 119, no. 5, pp. 34–41, may 2019. 10.1097/01.NAJ.0000557888.65961.c6.; M. Pérez, G. A. Cavanzo Nisso, and F. Villavisán Buitrago, “Sistema embebido de detecciónde movimiento mediante visión artificial ", Visión Electrónica, vol. 12, no. 1, pp. 97-101, 2018. https://doi.org/10.14483/22484728.15087.; J. F. Pantoja Benavides, F. N. Giraldo Ramos, Y. S. Rubio Valderrama, and V. M. RojasLara, “Segmentación de imágenes utilizando campos aleatorios de Markov", Visión Electrónica, vol. 4, no. 2, pp. 5-16, 2010. https://doi.org/10.14483/22484728.432.; J. Forero C., C. Bohórquez, and V. H. Ruiz, “Medición automatizada de piezas torneadasusando visión artificial", Visión Electrónica, vol. 7, no. 2, pp. 36-44, 2013. https://doi.org/10.14483/22484728.5507.; S. Brahnam, C.-F. Chuang, R. S. Sexton, and F. Y. Shih, “Machine assessment of neonatalfacial expressions of acute pain”, Decision Support System, vol. 43, no. 4, pp. 1242–1254, august 2007. https://doi.org/10.1016/j.dss.2006.02.004.; A. Beltramini, K. Milojevic, and D. Pateron, “Pain Assessment in Newborns, Infants, andChildren”, Pediatric. Annals, vol. 46, no. 10, pp. e387–e395, october 2017. https://doi.org/10.3928/19382359-20170921-03.; X. Cong, J. M. McGrath, R. M. Cusson, and D. Zhang, “Pain Assessment and Measurementin Neonates: An Ipdated Review”, Advances in Neonatal Care, vol. 13, no. 6, pp. 379–395, december 2013. 10.1097/ANC.0b013e3182a41452.; C. L. von Baeyer and L. J. Spagrud, “Systematic review of observational (behavioral)measures of pain for children and adolescents aged 3 to 18 years”, Pain, vol. 127, no. 1–2, pp. 140–150, january 2007. https://doi.org/10.1016/j.pain.2006.08.014.; J. Zieliński, M. Morawska-Kochman, and T. Zatoński, “Pain assessment and managementin children in the postoperative period: A review of the most commonly used postoperative pain assessment tools, new diagnostic methods and the latest guidelines for postoperative pain therapy in children”, Advances in Clinical and Experimental Medicine, vol. 29, no. 3, pp. 365–374, febrary 2020. 10.17219/acem/112600.; C. Greco and C. Berde, “Pain Management in Children”, Gregory’s Pediatric Anesthesia,Wiley, pp. 929–954, 2020. https://doi.org/10.1002/9781119371533.ch37.; G. Zamzmi, R. Kasturi, D. Goldgof, R. Zhi, T. Ashmeade, and Y. Sun, “A Review ofAutomated Pain Assessment in Infants: Features, Classification Tasks, and Databases,” IEEE Reviews in Biomedical. Engineering, vol. 11, pp. 77–96, noviembre 2017. 10.1109/RBME.2017.2777907.; T. Voepel-Lewis, J. Zanotti, J. A. Dammeyer, and S. Merkel, “Reliability and Validity of theFace, Legs, Activity, Cry, Consolability Behavioral Tool in Assessing Acute Pain in Critically Ill Patients”, American Journal of Critical Care, vol. 19, no. 1, pp. 55–61, january 2010. https://doi.org/10.4037/ajcc2010624.; G. Guillen, “Digital Image Processing with Python and OpenCV”, Sensor Projects withRaspberry Pi, Springer, pp. 97–140, 2019. https://doi.org/10.1007/978-1-4842-5299-4_5.; Momtahina, R. Hossain, M. M. Rahman, and O. A. Tania, “Image Capturing and AutomaticFace Recognition”, Dhaka, Bangladesh, 2019.; O. Subea and G. Suciu, “Facial Analysis Method for Pain Detection”, InternationalConference on Future Access Enablers of Ubiquitous and Intelligent Infrastructures, pp. 167–180, 2019. https://doi.org/10.1007/978-3-030-23976-3_17.; D. E. King, “Dlib-ml: A Machine Learning Toolkit”, The Journal of Machine LearningResearch, vol. 10, pp. 1755–1758, december 2009. 10.1145/1577069.1755843.; K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”,Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. [Online]. Available at: https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html.; O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition”, Proceedings of theBritish Machine Vision Conference (BMVC), vol. 1, no. 3, p. 6, september 2015. https://dx.doi.org/10.5244/C.29.41.; S. J. Pan and Q. Yang, “A Survey on Transfer Learning”, IEEE Transactions on knowledgeand data engineering, vol. 22, no. 10, pp. 1345-1359, october 2010. 10.1109/TKDE.2009.191.; F. Zhuang. et al., “A Comprehensive Survey on Transfer Learning”, Proceedings of theIEEE, pp. 1-34, july 2019. 10.1109/JPROC.2020.3004555.; H.-W. Ng, V. D. Nguyen, V. Vonikakis, and S. Winkler, “Deep Learning for EmotionRecognition on Small Datasets using Transfer Learning”, Proceedings of the 2015 ACM on International Conference on Multimodal Interaction (ICMI ’15), pp. 443–449, november 2015. https://doi.org/10.1145/2818346.2830593.; W. Ding et al., “Audio and face video emotion recognition in the wild using deep neuralnetworks and small datasets”, Proceedings of the 18th ACM International Conference on Multimodal Interaction (ICMI ’1), pp. 506–513, october 2016. https://doi.org/10.1145/2993148.2997637.; K. Zhang, L. Tan, Z. Li, and Y. Qiao, “Gender and smile classification using deepconvolutional neural networks”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. [Online]. Available at: https://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/html/Zhang_Gender_and_Smile_CVPR_2016_paper.html.; V. Campos, A. Salvador, B. Jou, X. Giró-i-Nieto and B. Jou, “Diving Deep into Sentiment:Understanding Fine-tuned CNNs for Visual Sentiment Prediction”, Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia (ASM '15), pp. 57-62, october 2015. https://doi.org/10.1145/2813524.2813530.; H. Ding, S. K. Zhou, and R. Chellappa, “FaceNet2ExpNet: Regularizing a Deep FaceRecognition Net for Expression Recognition”, 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 118–126, june 2017. 10.1109/FG.2017.23.; F. Wang et al., “Regularizing face verification nets for pain intensity regression,” in 2017IEEE International Conference on Image Processing (ICIP), pp. 1087–1091, september 2017. 10.1109/ICIP.2017.8296449.; M. S. Hossain and G. Muhammad, “Emotion recognition using deep learning approach fromaudio–visual emotional big data,” Information Fusion, vol. 49, pp. 69–78, september 2019. https://doi.org/10.1016/j.inffus.2018.09.008.; “Una herramienta nueva de aprendizaje automático predice con exactitud el cáncer depróstataIndustriaMedimaging.es.”[Online].Available:https://www.medimaging.es/industria/articles/294777132/una-herramienta-nueva-de-aprendizaje-automatico-predice-con-exactitud-el-cancer-de-prostata.html. [Accessed: 06-Nov-2020].; N. A. Ram, “Clasificadores supervisados del cáncer de próstata a partir de imágenes deresonancia magnética en magnetic resonance images in T2 sequences .,” no. June, pp. 19–22, 2019.; Ramírez; N, Aparicio; E, Gómez; E, “SUPERVISED CLASSIFIERS OF PROSTATECANCER. A GEOMETRIC STUDY ON MAGNETIC RESONANCE IMAGES T2 WEIGHTED (T2W), BY DIFFUSION (DWI-ADC),” Congr. Int. electrónica, Control y telecomunicaciones, vol. 51, no. 1, p. 51, 2018.; J. C. Batlle et al., “Diagnóstico del cáncer de próstata mediante espectroscopia deresonancia magnetica endorectal,” Arch. Esp. Urol., vol. 59, no. 10, pp. 953–963, 2006.; "Diferenciación entre prostatitis y cáncer de próstata utilizando el sistema PI-RADS %7C.”[Online]. Available: https://cbseram.com/2016/06/22/diferenciacion-entre-prostatitis-y-cancer-de-prostata-utilizando-el-sistema-pi-rads/. [Accessed: 06-Nov-2020]; T. Hambrock et al., “Prospective assessment of prostate cancer aggressiveness using 3-Tdiffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort,” Eur. Urol., vol. 61, no. 1, pp. 177–184, 2012.; 7]“Cáncer de Próstata - SEOM: Sociedad Española de Oncología Médica © 2019.” [Online].Available: https://seom.org/info-sobre-el-cancer/prostata?showall=1. [Accessed: 06-Nov-2020].; A. B. Rosenkrantz and S. S. Taneja, “Radiologist, be aware: Ten pitfalls that confound theinterpretation of multiparametric prostate MRI,” American Journal of Roentgenology, vol. 202, no. 1. pp. 109–120, Jan-2014.; "The Radiology Assistant : Prostate Cancer - PI-RADS v2.” [Online]. Available:https://radiologyassistant.nl/abdomen/prostate/prostate-cancer-pi-rads-v2. [Accessed: 05-Nov-2020].; P. Guzmán F and A. Messina, “Cáncer de próstata, el problema del diagnóstico ¿Es laresonancia multiparamétrica de próstata la solución?,” Rev. Chil. Radiol., vol. 25, no. 2, pp. 60–66, 2019.; I. Robles, Identificacion de Biomarcadores Predictivos ,Pronosticos y de Respuesta alCancer de Prostata. 2018.; J. I. Díaz, “Matemáticas y Ciencias de la Salud,” pp. 65–67, 2005.; R. Cuocolo et al., “Machine learning applications in prostate cancer magnetic resonanceimaging,” Eur. Radiol. Exp., vol. 3, no. 1, 2019.; S. L. Goldenberg, G. Nir, and S. E. Salcudean, “A new era: artificial intelligence andmachine learning in prostate cancer,” Nat. Rev. Urol., vol. 16, no. 7, pp. 391–403, 2019.; S. Yoo, I. Gujrathi, M. A. Haider, and F. Khalvati, “Prostate Cancer Detection using DeepConvolutional Neural Networks,” Sci. Rep., vol. 9, no. 1, pp. 1–10, 2019.; I. Simon, C. R. Pound, A. W. Partin, J. Q. Clemens, and W. A. Christens-Barry, “Automatedimage analysis system for detecting boundaries of live prostate cancer cells,” Cytometry, vol. 31, no. 4, pp. 287–294, 1998.; S. Sarkar and S. Das, “A Review of Imaging Methods for Prostate Cancer Detection,”Biomed. Eng. Comput. Biol., vol. 7s1, p. BECB.S34255, 2016.; Christian, R., Juan, F. O., y-Alejandro, M. C. (2018). Detección precoz de cáncer depróstata: Controversias y recomendaciones actuales. Revista Médica Clínica Las Condes, 29(2), 128–135. https://doi.org/10.1016/j.rmclc.2018.02.013.; Hambrock, T., Hoeks, C., Hulsbergen-Van De Kaa, C., Scheenen, T., Futterer, J.,Bouwense, S., . Barentsz, J. (2012). Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. European Urology, 61(1), 177–184. https://doi.org/10.1016/j.eururo.2011.08.042.; Nguyen, K., Sabata, B., Jain, A. K. (2012). Prostate cancer grading: Gland segmentationand structural features. Pattern Recognition Letters, 33(7), 951–961. https://doi.org/10.1016/j.patrec.2011.10.001.; Ng, Y.-M. H. Diagnosis of sheet metal stamping processes base on 3-D thermal energydistribution. IEEE Transactions on automation science and engineering. Pp, 22-30. Jan. 2007.; Prakash Surya. 3D mapping of surface temperature using thermal stereo. 9th InternationalConference on Control, Automation, Robotics and Vision. ICARCV 2006. Pp, 1- 4. 5-8 Dec. 2006.; Fan, Y., X. Li, et al. (2009). "3D numerical simulation on temperature field and flow field inthe tuyere of blast furnace (BF) based on the fluent software." Tezhong Zhuzao Ji Youse Hejin/Special Casting and Nonferrous Alloys 29(4): 324-326.; Cornacchia, T. P. M., E. B. Las Casas, et al. (2010). "3D finite element analysis on estheticindirect dental restorations under thermal and mechanical loading." Medical and Biological Engineering and Computing: 1-7.; Chethan, Y. D., Ravindra, H. V., gowda, Y. T., & Bharath Kumar, S. (2015). Machine Visionfor Tool Status Monitoring in Turning Inconel 718 using Blob Analysis. In Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2015.07.124.; Siddhpura, A., & Paurobally, R. (2013). A review of flank wear prediction methods for toolcondition monitoring in a turning process. International Journal of Advanced Manufacturing Technology, 65(1–4), 371–393. https://doi.org/10.1007/s00170-012-4177-1.; Azimi, S. M., Britz, D., Engstler, M., & Fritz, M. (2018). Advanced Steel MicrostructureClassification by Deep Learning Methods. Scientifics Reports, 8, 1–14.; Kesireddy, A., & Mccaslin, S. (2015). Using Mathematica to Accurately Approximate thePercent Area of Grains and Phases in Digital Metallographic Images. Lecture Notes in Electrical Engineering, 313. https://doi.org/10.1007/978-3-319-06773-5.; Kesireddy, A., & McCaslin, S. (2015). Application of Image Processing Techniques to theIdentification of Phases in Steel Metallographich Specimens. Lecture Notes in Electrical Engineering, 312. https://doi.org/10.1007/978-3-319-06764-3.; E. J. Guerra Monterroza, “Reconocimiento de primitivas 3D, usando autocorrelación yANFIS", Visión Electrónica, vol. 1, no. 1, pp. 56-61,2008. https://revistas.udistrital.edu.co/index.php/visele/article/view/251.; Forero C., J., Bohórquez, C., & Ruiz, V. H. (2013). Medición automatizada de piezastorneadas usando visión artificial. Visión electrónica, 7(2), 36-44.https://doi.org/10.14483/22484728.5507.; Forero C., J., Gaitán, D., & Martínez, H. (2018). Recolector autónomo de bolas de tenismediante vision artificial. Visión electrónica, 7(2), 36-44. https://doi.org/10.14483/issn.2248-4728.; S. Andreo, «Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water,» Iaea Trs, Austria, 2000.; Sociedad Española de Oncología Médica SEOM, 2020. [En línea]. Available: https://seom.org/. [Último acceso: 03 2020].; Instituto Nacional de Salud, Observatorio Nacional de Salud, «Primer Informe ONS, aspectos relacionados con la frecuencia de uso de los servicios de salud, mortalidad y discapacidad en Colombia,» Imprenta Nacional de Colombia, Bogotá D.C., 2011.; F. SALVAT, J. M. FERNÁNDEZ-VAREA y J. SEMPAU, PENELOPE-2006: A code system for Monte Carlo simulation of electron and photon transport, Barcelona: OECD, 2006.; Computerized Imaging Reference Systems CIRS, Manual Tissue Simulation & Phantom Technology, Norfolk, Virginia, 2017.; A. Brosed, Fundamentos de física médica, vol. 1, Madrid: ADI, 2011.; H. Andreo, Fundamentals of ionizing radiation dosimetry, 2017.; Agostinelli, «Simulation toolkit, Nuclear instruments and methods in physics,» sciencedirect, vol. 506, nº 3, pp. 250- 303, 2003.; Ministerio de Salud y Protección Social, «https://www.minsalud.gov.co,» 25 Marzo 2020. [En línea]. Available: https://www.minsalud.gov.co/salud/publica/PET/Documents/Circular%2019.pdf.pdf. [Último acceso: 8 11 2020].; Asociación Colombiana de Infectologia, «Consenso colombiano de atención, diagnóstico y manejo de la infección,» Revista de la Asociación Colombiana de Infectologia, vol. 24, nº 3, pp. 20-21, 2020.; L. Gamboa O, «Atlas de mortalidad por cancer en Colombia,» Instituto Nacional de Cancerologia, vol. 1, nº 4, 2017.; G. de Fernicola, «Arsénico en el agua de bebida: un problema de salud pública,» Revista Brasileira de Ciências Farmacêuticas, vol. 39, nº 4, pp. 365-372, 2003.; J. C. Ramirez, «Tomografía computarizada por rayos X: fundamentos y actualidad,» Revista Ingeniería Biomédica, vol. 2, nº 4, 2008.; l.R.Raudales Díaz, «IMÁGENES DIAGNÓSTICAS: CONCEPTOS Y GENERALIDADES,» Revista Facultad Ciencias Médicas, vol. 1, nº 1, pp. 35-43, 2014.; A. P. Montenegro, «Repositorio Pontificia Universidad Javeriana,» 19 07 2019. [En línea]. Available: https://repository.javeriana.edu.co/handle/10554/44080. [Último acceso: 14 11 2020].; A. Amer, T. Marchant, J. Sykes, J. Czajka y C. Moore,, «Imaging doses from the Elekta Synergy X-ray cone beam CT system,» The British Journal of Radiology, vol. 80, nº 954, p.476–482, 2007.; CSN, «Interaccion de la radiación con la materia,» 2013. [En línea]. Available:http://csn.ciemat.es/MDCSN/recursos/ficheros_md/133100241_2411200913036.pdf.; A. Brosed, Fundamentos De Fisica Medica, vol. 2, ADI, 2012.; E. B. Podgorsak, Radiaton Physics for Medical Physicists, 2 ed., Springer, 2010.; CIRS, «IMRT Thorax Phantom,» [En línea]. Available: www.cirsinc.com. [Último acceso: 22 02 2020].; A. Castillo, «Caracteristicas del sistema de IGRT de ELEKTA,» Grupo CROASA, Granada.; Elekta AB, «Elekta Synergy Digital accelerator for advanced IGRT,» 2017. [En línea]. Available: https://www.elekta.com/radiotherapy/treatment-delivery-systems/elekta- synergy/. [Último acceso: 14 11 2020].; C. David, «Estudio de la viabilidad de las imágenes de CBCT para planeación de tratamientos,» Pontificia Universidad Javeriana, Bogotá, 2020.; J. Allison, «Geant4 Developments and Applications,» IEEE TRANSACTIONS ON NUCLEAR SCIENCE, vol. 53, 2006.; J DeMarco, «A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms,» PHYSICS IN MEDICINE ANDBIOLOGY, nº 50, p. 3989–4004, 2005.; O. Apostolakis, «The Geant4 Simulation Toolkit and Applications For the Geant4 Collaboration,» NATO Science for Peace and Security Series B: Physics and Biophysics, 2008.; C. Giraldo, «Desarrollo y aplicaciones de GEANT4 para radioterapia y microdosimetria en detectores y circuitos integrados,» 04 2011. [En línea]. Available: https://idus.us.es/handle/11441/15762. [Último acceso: 14 11 2020].; Geant4 Collaboration, Book For Application Developers, Geant4 Collaboration, 2017.; P. Montenegro, «Repositorio Pontificia Universidad Javeriana,» 19 07 2019. [En línea].Available: https://repository.javeriana.edu.co/handle/10554/44080. [Último acceso: 14 10 2020].; M. Mostazo Caro, «Interacción Radiación-Materia Conceptos B ásico,» de Técnicas Experimentales Avanzadas, 2013, pp. 4-6.; C. Vidal Silva and L. Pavesi Farriol, “Desarrollo De Un Sistema De Adquisición Y TratamientoDe Señales Electrocardiográficas,” Rev. Fac. Ing. - Univ. Tarapacá, vol. 13, no. 1, pp. 39–46, 2005, doi:10.4067/s0718-13372005000100005.; C. Correa Flórez, R. Bolaños Ocampo, and A. Escobar, “Análisis de esquemas de filtradoanálogo para señales ecg.,” Sci. Tech., vol. 5, no. 37, pp. 103–108, 2007.; Tortora, Gerald. Derrickson, Bryan. 2006. Principios de Anatomía y Fisiología. 11ª. Edición.Editorial Médica Panamericana. México DF. México. Cap 20.; M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep learning for cybersecurity intrusion detection: Approaches, datasets, and comparative study,” J. Inf. Secur. Appl., vol. 50, p. 102419, 2020, doi:10.1016/j.jisa.2019.102419.; G. Zeng, Y. He, Z. Yu, X. Yang, R. Yang, and L. Zhang, “Preparation of novel high copperions removal membranes by embedding organosilane-functionalized multi-walled carbon nanotube,” J. Chem. Technol. Biotechnol., vol. 91, no. 8, pp. 2322–2330, 2016, doi:10.1002/jctb.4820.; T. Park, Introduction to digital signal processing. Singapore: World Scientific, 2010.; M. O. Alzate, “Clasificación de Arritmias Cardíacas usando Transformada Waveleth - tesispregrado.pdf,” 2003.; A. D. E. Maquina and C. O. N. Interfaz, “Mediante Aprendizaje De Máquina Con Interfaz aUsuario Model of Dynamic Classification of Arrhythmias Cardiac By,” Leonardo, vol. 16, pp. 86–95, 2006.; A. Behrad and K. Faez, “New method for QRS-wave recognition in ECG using MART neuralnetwork,” ANZIIS 2001 - Proc. 7th Aust. New Zeal. Intell. Inf. Syst. Conf., no. November, pp. 291–296, 2001, doi:10.1109/ANZIIS.2001.974093.; M. Mitrokhin, A. Kuzmin, N. Mitrokhina, S. Zakharov, and M. Rovnyagin, “Deep learningapproach for QRS wave detection in ECG monitoring,” 11th IEEE Int. Conf. Appl. Inf. Commun. Technol. AICT 2017 - Proc., pp. 1–3, 2019, doi:10.1109/ICAICT.2017.8687235.; I. A. Tarmizi, S. S. N. A. S. Hassan, U. K. Ngah, and W. P. W. Ibrahim, “A journal of realpeak recognition of electrocardiogram (ECG) signals using neural network,” 2012 2nd Int. Conf. Digit. Inf. Commun. Technol. its Appl. DICTAP 2012, pp. 504–510, 2012, doi:10.1109/DICTAP.2012.6215429.; M. Llamedo and J. P. Martínez, “Clasificación de ECG basada en Características de Escala, Dirección y Ritmo,” Caseib 2009, pp. 2–5, 2009.; E. D. A. Botter, C. L. Nascimento, and T. Yoneyama, “A neural network with asymmetricbasis functions for feature extraction of ECG P waves,” IEEE Trans. Neural Networks, vol. 12, no. 5, pp. 1252–1255, 2001, doi:10.1109/72.950154.; S. H. El-Khafif and M. A. El-Brawany, “Artificial Neural Network-Based Automated ECGSignal Classifier,” ISRN Biomed. Eng., vol. 2013, pp. 1–6, 2013, doi:10.1155/2013/261917.; N. Maglaveras, T. Stamkopoulos, K. Diamantaras, C. Pappas, and M. Strintzis, “ECGpattern recognition and classification using non-linear transformations and neural networks: A review,” Int. J. Med. Inform., vol. 52, no. 1–3, pp. 191–208, 1998, doi:10.1016/S1386-5056(98)00138-5.; C. Rose-Gómez and M. Serna-Encinas, “Procesamiento del Electrocardiograma para laDetección de Cardiopatías,” Researchgate.Net, no. May, pp. 3–6, 2015, [Online]. Available: http://enc2014.cicese.mx/Memorias/paper_19.pdf%5Cnhttps://www.researchgate.net/profile/Cesar_Rose/publication/277324231_Procesamiento_del_Electrocardiograma_para_la_Deteccion_de_Cardiopatias/links/5567b77d08aeab77721eac2b.pdf.; S. Jiménez Serrano, “Clasificación automática de registros ECG para la detección deFibrilación Auricular y otros ritmos cardíacos,” 2018, [Online]. Available: https://riunet.upv.es:443/handle/10251/111113.; S. G. Artis, R. G. Mark, and G. B. Moody, “Detection of atrial fibrillation using artificial neuralnetworks,” Comput. Cardiol., pp. 173–176, 1992, doi:10.1109/cic.1991.169073.; J. Wang and W. Lu, “A method of electrocardiogram classification based on neural network,”Chinese J. Biomed. Eng., vol. 14, no. 4, pp. 306–311, 1995.; M. Hammad, A. Maher, K. Wang, F. Jiang, and M. Amrani, “Detection of abnormal heartconditions based on characteristics of ECG signals,” Meas. J. Int. Meas. Confed., vol. 125, pp. 634–644, 2018, doi:10.1016/j.measurement.2018.05.033.; T. H. Chen, Z. Yu, L. Q. Han, P. Y. Guo, and X. Y. He, “The sorting method of ECG signalsbased on neural network,” 2nd Int. Conf. Bioinforma. Biomed. Eng. iCBBE 2008, pp. 543–546, 2008, doi:10.1109/ICBBE.2008.132.; Taylor GJ. 150 Practice ECGs: Interpretation and Review. Blackwell Science, 2002. ISBN0-632-04623-6.; Committee on Engineering Education, "Educating the Engineer of 2020: AdaptingEngineering Education to New the Century", NAE, pp. 1-209, 2010. Available at: http://www.nap.edu/catalog/11338.html.; World Health Organization, “World health statistics overview 2019: monitoring health for theSDGs, sustainable development goals”, Geneva: World Health Organization; pp. 1-28, 2019 (WHO/DAD/2019.1). License: CC BY-NC-SA 3.0 IGO.; World Health Organization, “Human resources for medical devices, the role of biomedicalengineers”. Geneva: World Health Organization; pp.: 1-240, 2017. License: CCBY-NC- SA 3.0 IGO.; J. Sappey and S. Relf, “Digital Technology Education and its Impact on Traditional AcademicLists and Practice”. J. Univ. Teach. & Lear. Pract. 7(1), 7(3), 2007.; J. Candle-Valdés, “The challenges of the Cuban new university”. Paper presented at thePedagogy 2007, Havana, Cuba, pp. 1-14, feb. 2007.; K. M. Galotti, et al., “To New Way of Assessing Ways of Knowing: The Attitudes TowardsThinking and Learning Survey (ATTLS)”. Sex Lists, 40(9/10), 745-766, 1999.; Ministerio de Educación Superior, Documento Ejecutivo Plan de Estudio: IngenieríaBiomédica, MES, La Habana, Cuba, págs. 1-10, 15 julio, 2017.; T. T. Bekele, “Motivation and Satisfaction in Internet-Supported Learning Environments: ToReview”. Educ. Tech. & Soc., 13(2), 116-127, 2009.; S. N. Karagiannis, “The Conflicts Between Science Research and Teaching in HigherEducation: An Academic's Perspective”. J. Teach. and Lear. Higher Educ., 21(1), 75-83, 2010.; R. Garrote and T. Pettersson. “The use of learning management systems: A LongitudinalCase Study”. Eleed, 8. 2011.; R. Hernández-Sampieri y otros, “Metodología de la Investigación. 6ta Ed., Ed. McGraw-HillEducation. México D. F., págs. 1- 634, 2014.; R. N. Strickland, Image-Processing Techniques for Tumor Detection, Boca Raton, Florida: CRC Press, 2002.; J. Thirumaran y S. Shylaja, «Medical Image Processing – An Introduction,» International Journal of Science and Research (IJSR), vol. 4, nº 11, pp. 1197-1199., 2015.; F. Ballester y J. M. Udías, «Física Nuclear y Medicina,» Rev Esp Fís, vol. 22, nº 1, pp. 29- 36, 2008.; P. Mildenberger, M. Eichelberg y E. Martin, «Introduction to the DICOM standard,» European Radiology, vol. 12, p. 920–927, 2002.; C. E. J. Kahn, J. A. Carrino, M. J. Flynn, D. J. Peck y S. C. Horii, «DICOM and Radiology: Past, Present, and Future,» TECHNOLOGY TALK, vol. 4, nº 9, pp. 652-657, 2007.; A. P. Bhagat y M. Atique, «Medical images: Formats, compression techniques and DICOM image retrieval a survey,» 2012 International Conference on Devices, Circuits and Systems (ICDCS), pp. 172-176, 2012.; D. P. Hanson y R. A. Robb, «Chapter 45 - Three-Dimensional Visualization in Medicine and Biology,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 755-784.; El Hospital, Reconstrucción 3D de la anatomía humana a partir de imágenes médicas obtenidas por ayuda diagnóstica, 2016.; J. M. Selman R., «Aplicaciones clínicas del procesamiento digital,» Revista Médica Clínica Las Condes, vol. 15, nº 2, 2004.; M. Solaiyappan, «Chapter 44 - Visualization Pathways in Biomedicine,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 729-753.; J. Rogowska, «Chapter 5 - Overview and Fundamentals of Medical Image Segmentation,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 73- 90.; A. Escobar Díaz y L. A. Calderón, «Modelo tridimensional de extremidad inferior basado en imágenes de resonancia magnética,» Visión electrónica, vol. 3, nº 1, pp. 4-15, 2009.; DICOM Library & medDream, «Dicom Library (Modality CT),» 2011. [En línea]. Available: https://www.dicomlibrary.com/.; L. Atanelov, S. A. Stiens, and M. A. Young, “History of physical medicine and rehabilitationand its ethical dimensions”, AMA journal of ethics, vol. 17, no. 6, pp. 568–574, 2015. DOI:10.1001/journalofethics.2015.17.6.mhst1-1506 URL: https://journalofethics.ama-assn.org/article/history-physical-medicine-and-rehabilitation-and-its-ethical-dimensions/2015-06; M. C. Garcia and T. Vieira, “Surface electromyography: Why, when and how to use it”,Revista andaluza de medicina del deporte, vol. 4, no. 1, pp.17–28, 2011. URL: https://www.elsevier.es/es-revista-revista-andaluza-medicina-del-deporte-284-articulo-surface-electromyography-why-when-how-X1888754611201253.; J. C. Guerrero Pupo, I. Amell Muñoz, and R. Cañedo Andalia, “Tecnología, tecnologíamédica y tecnología de la salud: algunas consideraciones básicas”, Acimed, vol. 12, no. 4, pp. 1–1, 2004. URL: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1024-94352004000400007.; J. A. A. Londoño, E. C. Bravo, and J. F. C. García, “Aplicación de tecnologías derehabilitación robótica en niños con lesión del miembro superior”, Revista Salud UIS, vol. 49, no. 1, pp. 103–114, 2017. DOI: http://dx.doi.org/10.18273/revsal.v49n1-2017010 URL: http://www.scielo.org.co/scielo.php?pid=S012108072017000100103&script=sci_abstract&tlng=es.; F. Salvuci and R. Kohanoff, Tecnologías de rehabilitación. Wiley-Interscience, 2016.; A. Merlo and I. Campanini, “Technical aspects of surface electromyography for clinicians”,The open rehabilitation journal, vol. 3, no. 1, 2010. DOI:10.2174/1874943701003010098 URL: https://benthamopen.com/ABSTRACT/TOREHJ-3-98.; F. J. Juan, “Utilidad de la electromiografía de superficie en rehabilitación” URL:https://www.researchgate.net/profile/Francisco_Juan-Garcia/publication/316588275_UTILIDAD_DE_LA_ELECTROMIOGRAFIA_DE_SUPERFICIE_EN_REHABILITACION/links/5905b86c4585152d2e957860/UTILIDAD-DE-LA-ELECTROMIOGRAFIA-DE-SUPERFICIE-EN-REHABILITACION.pdf.; J. W. Meklenburg, S. K. Patrick, and S. D. Jung, “Surface electromyogram simulator formyoelectric prosthesis testing,” 2010. URL: https://digitalcommons.wpi.edu/mqp-all/1402/.; Merletti Roberto, and Dario Farina. Surface electromyography: physiology, engineering, andapplications. Piscataway, NJ: IEEE Press, 2016, online. ISBN: 9781119082934, DOI:10.1002/9781119082934.; E. Guzmán, G. Méndez, “Electromiografía en las Ciencias de la Rehabilitación”, SaludUninorte, Vol 3, no. 3, pp 753-765, 2018.; W. A. Marrison, “Apparatus for converting radiant energy to electromechanical energy”, U.S.,Patent 2919358, Dec. 29, 1959. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/e7/ce/c2/f8074398301da9/US2919358.pdf.; D. M. Chapin, C. S. Fuller and G. L. Pearson, “Solar energy converting apparatus”, U.S.,Patent US2780765, Feb. 5, 1957. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/36/ee/af/d21dacd3884160/US2780765.pdf.; H. E. Hall, “Solar motor”, U.S., Patent US3296469, Ene. 3, 1967. [En línea]. Disponible en:https://patentimages.storage.googleapis.com/7e/58/b3/09cf657161e51f/US3296469.pdf.; B. Sepp, “Rotating advertising device”, U.S., Patent US3325930, Ene. 20, 1967. [En línea].Disponible en: https://patentimages.storage.googleapis.com/2e/14/de/57d7f191d20af2/US3325930.pdf.; Y. Nakamats, “Apparatus for converting radiant energy such as light or heat directly intoturning force”, Japón, Patent US4634343, Ene. 6, 1987. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/78/4e/a0/414270d9bad0e0/US4634343.pdf.; H. Izawa, “Solar Energy Motor”, Japan. Patent 4751413, Jun. 14, 1988. [En línea]. Disponibleen: https://patentimages.storage.googleapis.com/3f/8b/a3/9e59494a100d1e/US4751413.pdf.; G. J. Shea, “Solar energy magnetic resonance motor”, U.S., Patent US5408167, Abr. 18,1995. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/77/c4/f7/c12b523e12bfdc/US5408167.pdf.; A. Coty, “Automatically switched photovoltaic motor”, Francia, Patent WO2010082007A3,Jul. 22, 2010. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/36/8f/25/4c5399bdb634a4/WO2010082007A3.pdf.; W. Amrhein, H. Mitterhofer, E. Marth, G. Bramerdorfer, “Aufbau eines Mendocino-Motors”,Ene 2018 [En línea]. Disponible en: http://www.bis0uhr.de/projekte/magnet/projektseminar.pdf.; T. Kornher, M. Noebels, J. Roeller, S. Schwieger, F. Weller, “Mendocino-Motor”, Feb 2018[En línea]. Disponible en: https://ap.physik.uni-konstanz.de/projektpraktikum/PP2011/Bericht_Mendocinomotor.pdf.; Z. Novák, M. Hofreiter. “Mendocino motor and a different approaches to its control”,Proceedings of 15th International Conference MECHATRONIKA, Prague, pp. 1-6, 2012. [En línea]. Disponible en: https://ieeexplore.ieee.org/document/6415075.; C.M. Estupiñán, J.P. Puerto-Reyes, M. A. Beltrán, “Desarrollo de un motor mendocinocomo herramienta de enseñanza en la aplicación de energías renovables y generación de alternativas energéticas”, Revista Loggin, vol. 1, no. 1, pp. 78-89, 2017.; K. Berger, et al, “Solar Electric Motor on Superconducting Bearings: Design and Tests inLiquid Nitrogen" en IEEE sobre aplicaciones de superconductividad, vol. 27, no. 4, pp. 1-5, Jun. 2017, https://doi.org/10.1109/TASC.2016.2642140.; Fawzi Boufatah. “Réalisation d’un moteur à énergie solaire sur paliers supraconducteurs”,2016, hal-01824246. [En línea]. Disponible en: https://hal.univ-lorraine.fr/hal-01824246/document.; W. K. Lane, “Light emitting unit for continuous light production”, U.S., PatentUS20130141900A1, Jun. 6, 2013. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/f6/89/60/242f9861427fb1/US20130141900A1.pdf.; Supermagnete, “Anillo imán”, Nov, 2019. [En línea]. Disponible en: https://www.supermagnete.de/eng/ring-magnets-neodymium/ring-magnet-25mm-4.2mm-5mm_R-25-04-05-N.; Supermagnete, “Disco magnético autoadhesivo” noviembre de 2019. [En línea]. Disponibleen: https://www.supermagnete.de/eng/adhesive-magnets-neodymium/disc-magnet-self-adhesive-25mm-2mm_S-25-02-FOAM?group=discs.; Supermagnete, “Bloque imán” diciembre de 2019. [En línea]. Disponible en: https://www.supermagnete.de/eng/block-magnets-neodymium/block-magnet-40mm-20mm-10mm_Q-40-20-10-N.; H. Polo, A. Valencia, J. Roldan, J.Diaz, “Evaluación de la seguridad estructural de unsistema de seguimiento solar en Colombia”, Colombia, Universidad Distrital Francisco José de Caldas, Oct. 06, 2013. [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/5522.; D. Gomez, J. Leal, H. Montaña, A. Sanchez, “Detección de posición a partir de la mediciónde un campo magnético”, Colombia, Universidad Distrital Francisco José de Caldas, Ene. 01, 2013. [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/4397.; A. Nataraj and B. Ramasamy, "Modeling and FEA analysis of axial flux PMG for low speedwind turbine applications," 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), pp. 1-5, Kollam, 2017. doi:10.1109/TAPENERGY.2017.8397290.; M. Carrillo, C. Claudio y A. Mayorga, “Caracterización de un generador de flujo axial paraaplicaciones en energía eólica,” Revista de Ciencia y Tecnología, INGENIUS, N°19, pp. 19-28, 2018. https://doi.org/10.17163/ings.n19.2018.02.; S. S. Laxminarayan, M. Singh, A. H. Saifee and A. Mital, “Design, Modeling and Simulationof Variable Speed Axial Flux Permanent Magnet Wind Generator”, ELSEVIER, Sustainable Energy Technologies and Assessments, India, 2017. https://doi.org/10.1016/j.seta.2017.01.004.; G. Ahmad and U. Amin, “Design, Construction and Study of Small-Scale Vertical Axis WindTurbine based on a Magnetically Levitated Axial Flux Permanent Magnet Generator”, ELSEVIER, Renewable Energy, 2016. https://doi.org/10.1016/j.renene.2016.08.027.; M. Castillo García, “Diseño Electromagnético de un Generador Eléctrico para Turbina Eólicade 100 kW”, trabajo de fin de grado, Universidad Politécnica de Madrid, Madrid, España, 2017. http://oa.upm.es/49261/1/TFG_MONTANA_CASTILLO_GARCIA.pdf.; C. F. González Velázquez, “Optimización de Banco de Pruebas y Sistema de Monitoreo deAerogenerador de Baja Potencia”, trabajo de fin de tecnólogo, Centro de Ingeniería y Desarrollo Industrial, Santiago de Querétaro, 2017. http://cidesi.repositorioinstitucional.mx/jspui/handle/1024/269.; J. Kappatou, G. Zalokostas and D. Spytatos, “3-D FEM Analysis, Prototyping and Tests ofan Axial Flux Permanent-Magnet Wind Generator,” Energies, Greece, 2017. https://doi.org/10.3390/en10091269.; R. D. Chavan and V. N. Bapat, "The study of different topologies of Axial Flux PermanentMagnet generator," IEEE, 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), pp. 202-206, Pune, 2016. doi:10.1109/ICACDOT.2016.7877579.; T. Asefi, J. Faiz and M. A. Khan, “Design of Dual Rotor Axial Flux Permanent MagnetGenerators with Ferrite and Rare-Earth Magnets”, IEEE, 18th International Power Electronics and Motion Control Conference (PEMC), Budapest, 2018. doi:10.1109/EPEPEMC.2018.8522004.; Yicheng Chen, Pragasen Pillay and A. Khan, "PM wind generator comparison of differenttopologies," IEEE; Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting., pp. 1405-1412 vol.3, Seattle, WA, USA, 2004. doi:10.1109/IAS.2004.1348606.; R. Rusmana, A. A. Melkias, N. Nurrohman and I. M. W. Kastawan, “Voltage GenerationCharacteristics of an Axial Flux Permanent Magnet (AFPM) Generator”, IOP Conference Series: Materials Science and Engineering, ICIEVE, Indonesia, 2019. doi:10.1088/1757-899X/830/4/042019; I. M. W. Kastawan and Rusmana, “Voltage Generation of Three-Phase Double SidedInternal Stator Axial Flux Permanent Magnet (AFPM) Generator”, IOP Conference Series: Materials Science and Engineering, 1st Annual Applied Science and Engineering Conference, Indonesia, 2017, doi:10.1088/1757-899X/180/1/012105.; H. Gör and E. Kurt, “Preliminary Studies of a New Permanent Magnet Generator (PMG)with the Axial and Radial Flux Morphology”, ELSEVIER, ScienceDirect, Turkey, 2016. https://doi.org/10.1016/j.ijhydene.2015.12.195.; H. Gor and E. Kurt, “Waveform Characteristics and Losses of a New Double Sided Axialand Radial Flux Generator”, ELSEVIER, ScienceDirect, Turkey, 2015. https://doi.org/10.1016/j.ijhydene.2015.12.172.; A. Habib, H. Che, N. Rahim, M. Tousizadeh and E. Sulaiman, “A fully coreless Multi-StatorMulti-Rotor (MSMR) AFPM generator with combination of conventional and Halbach magnet arrays,” Alexandria Engineering Journal, vol n. 59, Issue 2, pp 589-600, April 2020. https://doi.org/10.1016/j.aej.2020.01.039.; N. Georgiev, “Study of Three-Phase Axial Flux Generators”, IEEE, 20th InternationalSymposium on Electrical Apparatus and Technologies (SIELA), Bourgas, 2018. doi:10.1109/SIELA.2018.8447093.; E. Celik, H. Gör, N. Öztürk and E. Kurt, “Application of Artificial Neural Network to EstimatePower Generation and Efficiency of a New Axial Flux Permanent Magnet Synchronous Generator”, ELSEVIER, ScienceDirect, Turkey, 2017. https://doi.org/10.1016/j.ijhydene.2017.01.168.; M. R. Minaz and M. Celebi, “Design and Analysis of a New Axial Flux Coreless PMSG withThree Rotors and Double Stators”, ELSEVIER, Results in Physics, Turkey, 2016. https://doi.org/10.1016/j.rinp.2016.10.026.; M. Dranca, M. Chirca and S. Breban, “Comparative Design Analysis of Axial FluxPermanent Magnet Direct-Drive Wind Generators”, IEEE, The 11st International Symposium on Advanced Topics in Electrical Engineering, Technical University of Cluj-Napoca, Romania, 2019. doi:10.1109/ATEE.2019.8724928.; N. E. Lastra, “Diseño y Construcción de un Generador de Flujo Axial con ImanesPermanentes de Bajo Costo para Aplicaciones Eólicas”, ResearchGate, 2019, https://www.researchgate.net/publication/336071436_Diseno_y_Construccion_de_un_Generador_de_Flujo_Axial_con_Imanes_Permanentes_de_Bajo_Costo_para_Aplicaciones_Eolicas.; A. Rasekh, P. Sergeant and L. Vierendeels, “Fully Predictive Heat Transfer CoefficientModeling of an Axial Flux Permanent Magnet Synchronous Machine with Geometrical Parameters of the Magnets”, ELSEVIER, Applied Thermal Engineering, Ghent University, Belgium, 2016. https://doi.org/10.1016/j.applthermaleng.2016.09.019.; M. Irfan, R. F. Ariyanto, L. Syafaah, A. Faruq and N. Subeki, “Stator Slotted Design of AxialFlux Permanent Magnet Generator for Low-Speed Turbine”, IOP Conference Series: Materials Science and Engineering, ICEAT, Indonesia, 2020. doi:10.1088/1757-899X/821/1/012027.; H. Polinder, “2 - Principles of electrical design of permanent magnet generators for directdrive renewable energy systems,” Woodhead Publishing Limited, Delft University of Technology, pp. 30-50, The Netherlands, 2013. doi:10.1533/9780857097491.1.30.; V. N. Antipov, A. D. Grozov and A. V. Ivanova, “Design and Analysis of a New Axial FluxPermanent Magnet Synchronous Generator for Wind”, IOP Conference Series: Materials Science and Engineering, International Scientific Electric Power Conference, Russia, 2019. doi:10.1016/j.rinp.2016.10.026.; M.M. Radulescu, S. Breban and M. Chirca, “Novel topologies of low-speed axial-fluxpermanent- magnet micro-wind generator,” The 18 th National Conference on Electrical Drives, CNAE 2016, Acta Electrotechnica, vol. 57, n° 3-4, Special Issue, 2016. doi:10.4283/JMAG.2014.19.3.273.; B. J. Chalmers and E. Spooner, "An axial-flux permanent-magnet generator for a gearlesswind energy system," in IEEE Transactions on Energy Conversion, vol. 14, no. 2, pp. 251-257, June 1999. doi:10.1109/60.766991.; A. R. Dehghanzadeh, V. Behjat and M. R. Banaei, “Dynamic Modeling of Wind TurbineBased Axial Flux Permanent Magnetic Synchronous Generator Connected to the Grid with Switch Reduced Converter”, ELSEVIER, Ain Shams Engineering Journal, Azarbaijan Shahid Madani University, Iran, 2015. https://doi.org/10.1016/j.asej.2015.11.002.; N. Radwan-Praglowska, D. Borkowski and T. Wegiel, "Model of coreless axial fluxpermanent magnet generator," 2017 International Symposium on Electrical Machines (SME), pp. 1-6, Naleczow, 2017. doi:10.1109/ISEM.2017.7993568.; S. Khan, S. Amin and S. S. Hussain Bukhari, “Design and Comparative PerformanceAnalysis of Inner Rotor and Inner Stator Axial Flux Permanent Magnet Synchronous Generator for Wind Turbine Applications”, IEEE, International Conference on Computing-iCoMET, Sukkur IBA University, Pakistan, 2019. doi:10.1109/ICOMET.2019.8673537.; L. Wei, T. Nakamura and K. Imai, “Development and Optimization of Low-Speed and High-Efficiency Permanent Magnet Generator for Micro Hydro-Electrical Generation System”, ELSEVIER, Renewable Energy, Kyoto University, Japan, 2019. https://doi.org/10.1016/j.renene.2019.09.049.; M. Ardestani, N. Arish and H. Yaghobi, “A New HTS Dual Stator Linear Permanent MagnetVernier Machine with Halbach Array for Wave Energy Conversion”, ELSEVIER, Physyca C: Superconductivity and its Applications, Semman University, Iran, 2019. https://doi.org/10.1016/j.physc.2019.1353593.; P. Khatri and X. Wang, “Comprehensive Review of a Linear electrical Generator for OceanWave Energy Conversion”, IET Renewable Power Generation, IET, Vol. 14, Lss. 6, pp. 949-958, February, 2020. doi:10.1049/iet-rpg.2019.0624.; O. S. Muñoz Muñoz, “Dimensionamiento electromagnético de un Generador Lineal para laConversión de Energía Undimotriz de Acuerdo a las Características del Océano Pacífico Colombiano”, trabajo de fin de grado, Universidad del Valle, Colombia, 2020.; C. García Saiz, “Diseño, Dimensionado y Simulación de un Generador Lineal para elDesarrollo de una Boya de Generación de Energía Undimotriz”, trabajo de fin de grado, Universidad de Cantabria, España, 2015. https://repositorio.unican.es/xmlui/handle/10902/7332.; A. García Villalmanzo, “Diseño de un Motor Lineal de Reluctancia Autoconmutado conImanes Permanentes”, trabajo de fin de grado, Universidad Rovira I Virgili, Tarragona, 2017. http://deeea.urv.cat/public/PROPOSTES/pub/pdf/2459pub.pdf.; A. Shiri and A. Shoulaie, “End Effect Braking Force Reduction in High-Speed Single-SidedLinear Induction Machine”, ELSEVIER, Energy Conversion and Management, Iran University of Science and Technology, Iran, 2012. https://doi.org/10.1016/j.enconman.2011.11.014.; X. Chen, S. Zheng, J. Li, G. T. Ma and F. Yen, “A Linear Induction Motor with a CoatedConductor Superconducting Secondary”, ELSEVIER, Physyca C: Superconductivity and its Applications, Southwest Jiaotong University, China, 2017. https://doi.org/10.1016/j.physc.2018.04.002.; SS. Rathore, S. Mishra, M. K. Paswan and Sanjay, “A Review on Design and Developmentof Free Piston Linear Generators in Hybrid Vehicles”, IOP Conference Series: Materials Science and Engineering, ICCEMME, India, 2019. doi:10.1088/1757-899X/691/1/012053.; Y. Gao, S. Shao, H. Zou, M. Tang, H. Xu and C. Tian, “A Fully Floating System for WaveEnergy Converter with Direct-Driven Linear Generator”, ELSEVIER, Energy, Beijing, China, 2015. https://doi.org/10.1016/j.energy.2015.11.072.; J. F. Fortes, L. M. Ferraz and I. E. Chabu, “Optimized Double Sided Linear Generator forWave Energy in Sao Paulo’s Coast”, 7th International Conference on Ocean Energy (ICOE), Polytechnic School of University of Sao Paulo, France, 2018. https://www.icoe-conference.com/publication/optimized-double-sided-linear-generator-for-wave-energy-in-sao-paulo-s-coast/.; V. Boscaino, G. Cipriani, V. Di Dio, V. Franzitta and M. Trapanense, “Experimental Testand Simulations on a Linear Generator-Based Prototype of a Wave Energy Conversion System Designed with a Reliability-Oriented Approach”, MDPI, Sustainability, University or Palermo, 2017. doi:10.3390/su9010098.; O. Farrok, M. R. Islam, Y. G. Guo and J. G. Zhu, “Design and Analysis of a NovelLightweight Translator Permanent Magnet Linear Generator for Oceanic Wave Energy Conversion”, IEEE, 2015. doi:10.1109/TMAG.2017.2713770.; K. Cruz, F. Dator, J. Ong, N. Bumanlag and M. C. Pacis, “Harnessing of Wave Energy usingAxially Magnetized Linear Generator with Data Logger using Gizduino Microcontroller”, IOP Conference Series: Journal of Physics: Conference Series, CEEPE, Mapua University, Philippines, 2019. doi:10.1088/1742-6596/1304/1/012013.; A. Tapia-Hernández, M. Ponce-Silva, N. Mondragón-Escamilla y L. Hernández-González,“Impacto de la Geometría en el Efecto Fin de Generadores Lineales”, Información Tecnológica, Vol.27, No. 4, pp. 133-138, México, Agosto, 2016. http://dx.doi.org/10.4067/S0718-07642016000400014.; P. Naderi, M. Heidary and M. Vahedi, “Performance Analysis of Ladder-Secondary-LinearInduction Motor with Two Different Secondary Types using Magnetic Equivalent Circuit”, ELSEVIER, ISA Transactions, Shahid Beheshti University, Iran, 2020. https://doi.org/10.1016/j.isatra.2020.03.013.; Y. Xu, X. Xue, Y. Wang and M. Ai, “Performance Characteristics of Compressed Air-Driven-Free-Piston Linear Generator (FPLG) System – A Simulation Study”, ELSEVIER, Applied Thermal Engineering, 2019. https://doi.org/10.1016/j.applthermaleng.2019.114013.; J. Xi, Z. Dong, P. Liu and H. Ding, “Modeling and Identification of Iron-less PMLSM EndEffects for Reducing Ultra-Low-Velocity Fluctuations of Ultra-precision Air Bearing Linear Motion Stage”, ELSEVIER, Precision Engineering, Shanghai Jiaotong University, China, 2017. https://doi.org/10.1016/j.precisioneng.2017.01.016.; X. Luo, C. Zhang, S. Wang, E. Zio and X. Wang, “Modeling and Analysis of Mover Gaps inTubular Moving-Magnet Linear Oscillating Motors”, ELSEVIER, Chinese Journal of Aeronautics, Chinese Society of Aeronautics ans Astronautics & Beihang University, China, 2017. https://doi.org/10.1016/j.cja.2017.11.008; K. S. Rama Rao, T. Sunderan and M. Ref’at Adiris, “Performance and Design Optimizationof Two Model Based Wave Energy Permanent Magnet Linear Generators”, ELSEVIER, Renewable Energy, 2016. https://doi.org/10.1016/j.renene.2016.07.019.; M. F. M Naafi, T. Ibrahim, N. M. Nor and M. A. Firdaus bin M. Hamim, “Design and Modellingof a Portable Pico Linear Generator for Wave Energy Conversion System”, Applied Mechanics and Materials, Vol. 785, pp. 300-304, Malaysia, 2015. https://doi.org/10.4028/www.scientific.net/AMM.785.300.; W. Rentería Palacios, “Diseño y Evaluación Electromagnética de un Motor Síncrono Linealde Imanes Permanentes en Disposición Halbach”, trabajo de fin de máster, Universidad Autónoma de Occidente, Colombia, 2018. https://hdl.handle.net/10614/10454.; J. Kim, J. Y. Kim and J. B. Park, “Design and Optimization of a 8kW Linear Generator for aDirect-Drive Point Absorber”, IEEE, Yonsei University, Seoul, Korea, 2013. doi:10.23919/OCEANS.2013.6741125.; W. Li, T.W. Ching and K.T. Chau, “Design and Analysis of a New Parallel-Hybrid-ExcitedLinear Vernier Machine for Oceanic Wave Power Generation”, ELSEVIER, Applied Energy, China, 2017. https://doi.org/10.1016/j.apenergy.2017.09.061.; L. Huang, J. Liu, H. Yu, R. Qu, H. Chen and H. Fang, “Winding Configuration andPerformance Investigation of a Tubular Superconducting Flux-Switching Linear Generator”, IEEE, Transactions on Applied Superconductivity, Vol. 25, No. 3, 2015. doi:10.1109/TASC.2014.2382877.; X. Liu, H. Yu, Z. Shi, T. Xia and M. Hu, “Electromagnetic-Fluid-Thermal Field Calculationand Analysis of a Permanent Magnet Linear Motor”, ELSEVIER, Applied Thermal engineering, Southeast University, China, 2017. https://doi.org/10.1016/j.applthermaleng.2017.10.066.; 288; CREG - Comisión de Regulación de Energía y Gas, «Regulación Aplicable al Biogás,» Comisión de Regulación de Energía y Gas, 2009.; O. Harker, «Presentación del proyecto - Prototipo de Sistema de generación de energía eléctrica a partir de residuos sólidos,» Colciencias, Fusagasugá, 2019.; I. Vera, J. Martínez, M. Estrada y A. Ortiz, «Potencial de generación de biogás y energía eléctrica Parte I: excretas de ganado bovino y porcino,» Ingeniería Investigación y Tecnología, vol. 15, nº 3, pp. 429-436, 2014. Doi: https://doi.org/10.1016/S1405- 7743(14)70352-X.; I. D. B. Sierra, «Actualización del Plan de Gestión Integral de Residuos Sólidos PGIRS de Fusagasugá,» Alcaldía de Fusagasugá, Fusagasugá, 2017.; L. D. Romero, «EL ESPECTADOR,» Tratar las basuras, lucha contrarreloj, 18 Junio 2015. [En línea]. Available: https://www.elespectador.com/noticias/bogota/tratar-basuras-lucha- contrarreloj-articulo-567135. [Último acceso: 13 abril 2020].; J. Niemczewska y G. Kolodziejak, «Landfill Gas Energy Technologies,» Instytut Nafty I Gazu, Cracovia, 2010. Disponible: https://www.globalmethane.org/Data/1022_LFG-Handbook.pdf.; R. Bove y P. Lunghi, «Electric power generation from landfill gas using traditional,» Energy Conversion and Management, vol. 47, p. 11, 2006. Doi: https://doi.org/10.1016/j.enconman.2005.08.017.; G. Blanco, E. Santalla, V. Córdoba y A. Levy, «Generación de electricidad a partir de biogás capturado de residuos sólidos urbanos: Un análisis teórico-práctico,» División de Energía: Banco Interamericano de Desarrollo, Buenos Aires, 2017. Disponible: https://publications.iadb.org/publications/spanish/document/Generación-de-electricidad- a-partir-de-biogás-capturado-de-residuos-sólidos-urbanos-Un-análisis-teórico- práctico.pdf.; Cogenera Mexico, «COGENERA MEXICO,» 2012. [En línea]. Available: http://www.cogeneramexico.org.mx/menu.php?m=77. [Último acceso: 5 Junio 2020].; ICONTEC, «Norma Técnica Colombiana GTC-24 "Gestión Ambiental. Residuos Sólidos. Guía para la separación en la fuente".,» Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), 2009.; Universidad de Cundinamarca, «Anexo 1. Protocolo para el manejo y pretratamiento de los RSO de la Plaza de Mercado del municipio de Fusagasugá.,» Anexos convocatoria Colciencias 829 - 2018 , Fusagasugá , 2020.; A. Andrade, A. Restrepo y J. Tibaquirá, «Estimación de biogás de relleno sanitario, caso de estudio: Colombia,» Entre ciencia e ingeniería, vol. 12, pp. 40-47, 2018. Doi: http://dx.doi.org/10.31908/19098367.3701.; Aqualimpia Engineering , «Aqualimpia,» [En línea]. Available:https://www.aqualimpia.com/biodigestores/biogas-purificacion/. [Último acceso: 22 05 2020].; W. Lema, «DESOTEC Actived Carbon,» 14 05 2014. [En línea]. Available: https://www.desotec.com/es/carbonologia/casos/eliminaci-n-del-sulfuro-de-hidr-geno-en- el-biog-s-parte-1. [Último acceso: 2020].; COLCIENCIAS, «Presentación del proyecto - Prototipo de Sistema de generación de energía eléctrica a partir de residuos sólidos,» Fusagasugá, 2019.; “El papel de la ciencia y la tecnología en la sociedad de conocimiento,” OCyT. https://www.ocyt.org.co/el-papel-de-la-ciencia-y-la-tecnologia-en-la-sociedad-de conocimiento/ (accessed Oct. 27, 2020).; A. Kapoor, S. I. Bhat, S. Shidnal, and A. Mehra, “Implementation of IoT (Internet of Things) and Image processing in smart agriculture,” in 2016 International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), Bengaluru, India, Oct. 2016, pp. 21–26, doi:10.1109/CSITSS.2016.7779434.; J. Zhou, D. Xiao, and M. Zhang, “Feature Correlation Loss in Convolutional Neural Networks for Image Classification,” in 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, Mar. 2019, pp. 219–223, doi:10.1109/ITNEC.2019.8729534.; T. Treebupachatsakul and S. Poomrittigul, “Bacteria Classification using Image Processing and Deep learning,” in 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), JeJu, Korea (South), Jun. 2019, pp. 1–3, doi:10.1109/ITC-CSCC.2019.8793320.; S. Dutta Gupta and A. K. Pattanayak, “Intelligent image analysis (IIA) using artificial neural network (ANN) for non-invasive estimation of chlorophyll content in micropropagated plants of potato,” Vitro Cell. Dev. Biol. - Plant, vol. 53, no. 6, pp. 520–526, Dec. 2017, doi:10.1007/s11627-017-9825-6.; A. M. Moreno-Jiménez, S. Loza-Cornejo, and M. Ortiz-Morales, “Efecto de luz LED sobresemillas de Capsicum annuum L. var. serrano,” vol. 17, no. 3, p. 7, 2017.; A. Rojas, “Flora Urbana Del Área Metropolitana De Bucaramanga,” Innovaciencia Fac.Cienc. Exactas Físicas Nat., vol. 5, no. 1 S1, Dec. 2017, doi:10.15649/2346075X.454.; A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with DeepConvolutional Neural Networks,” in Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–1105.; Y. A. Arévalo Ortega, S. R. Corredor Vargas y G. A. Higuera Castro, «Análisis forense con herramientas de hacking en dispositivos android,» Visión Electrónica, vol. 13, nº 1, pp. 162-177, 2019.; L. iyuan y H. Wenfeng, «Development of Puzzle Game for IOS Platform Based on Unity3D,» de 3rd International Conference on Applied Computing and Information Technology/2nd International Conference on Computational Science and Intelligence (ACIT-CSI), 2015.; A. Lima y E. A. da Costa, «Experimental Approach of the Asymptotic Computational Complexity of Shaders for Mobile Devices with OpenGL ES,» de Brazilian Symposium on Computer Games and Digital Entertainment, 2014.; B. J. Cox, The objective-C environment: past, present, and future, 1987.; G. Bournoutian y A. Orailoglu, «On-device objective-C application optimization framework for high-performance mobile processors,» de Design, Automation & Test in Europe Conference & Exhibition (DATE), 2014.; R. Rawlings, «bjective-C: an object-oriented language for pragmatists,» de Colloquium on Applications of Object-Oriented Programming, 1989.; G. Song, S. Ren, D. Zhang, K. Liu, Y. Sun y X. A. Wang, «Research on War Strategy Games on Mobile Phone based on Cocos2d-JS,» de 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2015.; S. Guozhi, R. Shuxia, Z. Dakun, L. Kunliang, S. Yumeng y A. W. Xu, «Research on War Strategy Games on Mobile Phone,» 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 151-155, 2015.; B. A. Brady, A. K. Jones y I. S. Kourtev, «Efficient CAD development for emerging technologies using Objective-C and Cocoa,» de International Conference on Electronics, Circuits and Systems, 2004, 2004.; C. W. Cho, C. P. Hong, J. C. Piao, Y. K. Lim y S. D. Kim, «Performance optimization of 3D applications by OpenGL ES library hooking in mobile devices,» de 13th International Conference Computer and Information Science (ICIS), 2014 IEEE/ACIS , 2014.; J. C. Piao, C. W. Cho, C. G. Kim, B. Burgstaller y S. D. Kim, «An Adaptive LOD Setting Methodology with OpenGL ES Library on Mobile Devices,» de International Conference on Convergence and Security (ICITCS), 2014.; F. A. Manrique Suarez, L. C. Velásquez Rodríguez y G. M. Tarazona Bermúdez, «Estado del arte sobre aplicaciones móviles: caso de estudio enfocado a estudiantes universitarios en Bogotá, Colombia,» Visión Electrónica, vol. 11, nº 2, pp. 279-288, 2017.; R. Besas, R. O. Atienza, T. Tai y R. Cruz, «An implementation of a structured and highly engaging learning environment on educational games for elementary education,» de IT in Medicine and Education (ITME), 2011.; C. Carter, Q. Mehdi y T. Hartley, «Navigational techniques to improve usability and user experience in RPG games,» de 17th International Conference on Computer Games (CGAMES), 2012.; C. Le Marc, J. P. Mathieu, M. Pallot y S. Richir, «Serious gaming: From learning experience towards User Experience,» de International Technology Management Conference (ICE), 2010.; S. F. Hsiao, S. Y. Li y K. H. Tsao, «Low-power and high-performance design of OpenGL ES 2.0 graphics processing unit for mobile applications,» de International Conference on Digital Signal Processing (DSP) , 2015.; S. F. Hsiao, P. H. Wu, C. S. Wen y L. Y. Chen, «Design of a programmable vertex processor in OpenGL ES 2.0 mobile graphics processing units,» de International Symposium on VLSI Design, Automation, and Test (VLSI-DAT), 2013.; X. Zhao y X. Huang, «A general solution of script-based fragment animation,» de 6th IEEE International ConferenceSoftware Engineering and Service Science (ICSESS), 2015.; L. Wang, «Design and Implementation of Four Arithmetic Operations Learning Games in Primary Mathematics Based on cocos2d-js,» 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE), pp. 595-598, 2018.; M. P. A. Balayan, V. V. B. Conoza, J. M. M. Tolentino, R. C. Solamo y R. P. Feria, «On evaluating skillville: An educational mobile game on visual perception skills. In Information, Intelligence, Systems and Applications,» de The 5th International Conference IISA 2014,, 2014.; B. Cassidy, G. Stringer y M. H. Yap, «Mobile Framework for Cognitive Assessment: Trail Making Test and Reaction Time Test,» de Computer and Information Technology (CIT), 2014.; Y. Lu, W. Gao y F. Wu, «Efficient background video coding with static sprite generation and arbitrary-shape spatial prediction techniques,» Transactions on Circuits and Systems for Video Technology, vol. 13, nº 5, pp. 394-405, 2013.; Cocos2D-x, «ARCHITECTURE OVERVIEW,» [En línea]. Available: http://www.cocos2d-x.org/wiki/Engine_Architecture. [Último acceso: 14 02 2016].; Y. Lu, Y. Liu y S. Dey, «loud mobile 3D display gaming user experience modeling and optimization by asymmetric graphics rendering,» IEEE Journal of Selected Topics in Signal Processing, vol. 9, nº 3, pp. 517-532, 2015.; S. Arefin Riffat, F. Harun y T. Hassan, «An Interactive Tele-Medicine System via Android Application,» Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA), pp. 148-152, 2020.; Y. Liu, H. Dar y R. Sharp, «Mobile Gamer Modelling and Game Performance Preference Measurement,» IEEE Conference on Games (CoG), pp. 632-635, 2020.; J. C. Piao, C. W. Cho, C. G. Kim, B. Burgstaller y S. D. Kim, «An adaptive LOD setting methodology with OpenGL ES library on mobile devices,» de IT Convergence and Security (ICITCS), 2014.; E. C. Chan y B. G. , «Appendix B: Introduction to Objective-C Programming in iPhone,» de Introduction to Wireless Localization: With iPhone SDK Examples, pp. 261-304.; Simulation Study on Duoplasmatron With Optimization of Ion Beam Extraction System S.Park and Y. Kim. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 45, NO. 6, JUNE 2017 955.; Aceleradores de partículas: Modelos para su diseño y la dinámica del haz MODELIZACIÓNAPLICADA A LA INGENIERÍA. R. Strangis. CYCLOTOPE, Houston, Texas, Estados Unidos. Junio 2011.; Presente y futuro de la implantación iónica: se describe la naturaleza, características,ventajas y desventajas de los tratamientos de superficie por implantación iónica; además el actual estado de desarrollo de esta tecnología, sus aplicaciones y las previsiones de su evolución en los próximos años. T. Rodríguez. 1998.; Modificación superficial de un acero AISI SAE 1045 mediante la implantación de iones denitrógeno y titanio. D. V. Salinas, D. Y. Peña y L. F. Chinchilla. Universidad Industrial de Santander UIS. Universidad Pontificia Bolivariana UPB. Julio 2011.; Microcavity engineering by plasma immersion ion implantation, Materials Chemistry andPhysics. P. K. Chu and N. W. Cheung. 57, 1998, 1-16.; A review of recent developments in ion implantation for metallurgical application. Se realizaeste trabajo o proyecto con el objetivo de identificar oportunidades para la aplicación industrial de la implantación iónica. R. Hutchings. 1994.; Experimental investigation on corrosion and hardness of ion implanted AISI 316L stainlesssteel. Materials & design technology. V. Muthukumaran. 2010.; Una mirada a los medios para diagnóstico por imágenes desde la educación médica. L.Esquivel Sosa, Y. Fleites García y Y. Jiménez González. EDUMECENTRO 2018;10(1): ISSN 2077-2874 RNPS 2234 Santa Clara ene.-mar.; La revolución científico-técnica y su impacto en las ciencias médicas. M. Hernández Pino.La Habana: Universidad Virtual de Salud Manuel Fajardo. 6 Sep 2016.; Imágenes Médicas: adquisición, análisis, procesamiento e interpretación. G. Passariello yF.Mora. Eds. Venezuela: Equinoccio, Ediciones de la Universidad Simón Bolívar;1995.; IMÁGENES DIAGNÓSTICAS: CONCEPTOS Y GENERALIDADES DIAGNOSTICIMAGES: CONCEPTS AND GENERALITIES I. R. Raudales Díaz. Rev. Fac. Cienc. Méd. Enero -Junio 2014.; Getting started in clinical radiology from image to diagnosis. G. W. Eastman, C. Wald andJ.Crossin. Germany: Thieme; 2005.; «Organización Mundial de la Salud,» 1 febrero 2018. [En línea]. Available:http://www.who.int/es/newsroom/fact-sheets/detail/cancer.; El Cáncer. J. G. de la Garza Salazar y P. Juárez Sánchez. Universidad Autónoma de NuevoLeón. Centro, Monterrey, Nuevo León, México, C.P. 64000 Primera edición, 2014.; Hadronterapia. J. L. Herranz, E. Herraiz, S. Vicente, J. España, J. L. Cal-Gonzalez y J. M.Udías. Primer Encuentro Complutense para la Divulgación en Física Nuclear y de Partículas [Internet]. gfn; 2008.; Proton Therapy: state of the art and clinical applications. I. López Moranchel and P. I.Maurelos Castell, 1). Centro de Formación Profesional San Juan de Dios, GENUD Toledo Research Group. (Universidad de Castilla-La Mancha). REVISTA OFICIAL DE LA SOCIEDAD ESPAÑOLA DE ENFERMERÍA ONCOLÓGICA. 2019.; Proton Therapy. A. R. Smith. Med Phys. 26 de enero de 2009 [citado 20 de abril de2019];36(2):556-68.; The risk of radiation-induced second cancers in the high to medium dose region: acomparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors. M. Moteabbed, T. I. Yock, H. Paganetti. Phys Medicina Biol [Internet]. 21 de junio de 2014 [citado 20 de abril de 2019];59(12):2883-99. D.; A Sealed-Accelerator-Tube Neutron Generator for Boron Neutron Capture TherapyApplication. K. N. Leung, Y. Lee, J. M. Verbeke, J. Vujic, M. D. Williams, L. K. Wu, N. Zahir. Lawrence Berkeley National Laboratory University of California Berkeley Berkeley USA Nuclear Engineering Department. La jolla, CA septiembre 1998.; Evaluación Preliminar de la Aceleración de D en un Generador de Neutrones D-DCompacto de Alto Flujo. J. A. Cifuentes Parada, Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Física Bogotá D.C., Colombia 2019.; Physics. D. Halliday and R. Resnick. Wiley; Part 2 edition, 1978.; Educational Applets: https://www.falstad.com/vector2de, https://www.falstad.com/vector3de.; M. Sereday, M. Damiano, and S. Lapertosa, “Amputaciones de Miembros Inferiores endiabéticos y no diabéti-cos en el ámbito hospitalario,” Alad(Asociación Larinoamericana de Diabetes), pp. 9–15, 2009, [Online]. Available: http://www.revistaalad.com.ar/pdfs/0905_Amp_de_Miem.pdf.; C. Quintero Quiroz, A. Jaramillo Zapata, M. T. De Ossa Jiménez, and P. A. Villegas Bolaños,“Estudio descriptivo de condiciones del muñón en personas usuarias de prótesis de miembros inferiores,” Rev. Colomb. Médicina Física y Rehabil., vol. 25, no. 2, pp. 94–103, 2018, doi:10.28957/rcmfr.v25n2a1.; L. H. Lugo and G. Desarrollador, “Guía de Práctica Clínica.”; O. Horgan and M. M. A. C. Lachlan, “Psychosocial adjustment to lower-limb amputation : Areview,” 2004, doi:10.1080/09638280410001708869.; B. L. Martín, M. Jesús, and P. Hernández-Rico, “Amputación.”; "Convocatoria para proyectos de Ciencia, Tecnología e Innovación y su contribución a losretos de país- 2018 %7C Convocatoria 808 %7C COLCIENCIAS.” https://www.colciencias.gov.co/convocatorias/investigacion/convocatoria-para-proyectos-ciencia-tecnologia-e-innovacion-y-su-0 (accessed Aug. 04, 2019).; W. L. Childers, R. S. Kistenberg, and R. J. Gregor, “The Biomechanics of Cycling with aTranstibial Amputation: Recommendations for Prosthetic Design and Direction for Future Research,” Prosthet. Orthot. Int., vol. 33, no. 3, pp. 256–271, Sep. 2009, doi:10.1080/03093640903067234.; I. Pinilla Giménez, “Juego serio para terapias de rehabilitación motora y cognitiva conrealidad virtual,” 2017, Accessed: Aug. 29, 2019. [Online]. Available: http://uvadoc.uva.es/handle/10324/23073.; G. Fiedler, J. Akins, R. Cooper, S. Munoz, and R. A. Cooper, “Rehabilitation of People withLower-Limb Amputations,” Curr. Phys. Med. Rehabil. Reports, vol. 2, no. 4, pp. 263–272, Dec. 2014, doi:10.1007/s40141-014-0068-8.; Prodalca, “Rodillo personal trainer con regulador de esfuerzo,” 2019. https://prodalca.com.co/producto/rodillo-personal-trainer-con-regulador-de-esfuerzo/.; C. Sun and Z. Qing, “Design and Construction of a Virtual Bicycle Simulator for EvaluatingSustainable Facilities Design,” Adv. Civ. Eng., vol. 2018, 2018, doi:10.1155/2018/5735820.; T. Instruments and I. Sloa, “Chapter 16 Active Filter Design Techniques Excerpted from OpAmps for Everyone Literature Number: SLOD006A.”; L. Xiong et al., “IMU-based automated vehicle slip angle and attitude estimation aided byvehicle dynamics,” Sensors (Switzerland), vol. 19, no. 8, 2019, doi:10.3390/s19081930.; Arduino Uno Rev3 %7C Arduino Official Store.” https://store.arduino.cc/usa/arduino-uno-rev3.; S. Sanghani, Stumps and Cranks: An Introduction to Amputee Cycling.; M. Ambrož, “Raspberry Pi as a low-cost data acquisition system for human poweredvehicles,” Meas. J. Int. Meas. Confed., vol. 100, pp. 7–18, 2017, doi:10.1016/j.measurement.2016.12.037.; F. Villarreal, “Introducción a los modelos de pronósticos,” Univ. Nac. del Sur, pp. 1–121,2016.; “pySerial 3.0 documentation.” https://pythonhosted.org/pyserial/.; “python-drawnow: MATLAB-like drawnow to easily update a figure.” https://github.com/stsievert/python-drawnow.; J. D. Rairan-Antolines and J. M. Fonseca-Gómez, “Algoritmo para la aproximación de lavelocidad de giro de un eje mediante un encoder incremental,” Ing. y Univ., vol. 17, no. 2, pp. 293–309, 2013.; MinSalud, “33 mil personas al año mueren de Cáncer en Colombia.” https://www.minsalud.gov.co/Paginas/33-mil-personas-al-año-mueren-de-Cáncer-en-Colombia.aspx.; D. Raúl Pefaur, “Imaginología actual del cáncer pulmonar,” Rev. Médica Clínica Las Condes, vol. 24, no. 1, pp. 44–53, 2013, doi: https://doi.org/10.1016/S0716-8640(13)70128-7.; C. R. José Miguel, “Estado actual del tratamiento del cáncer pulmonar,” Rev. Médica Clínica Las Condes, vol. 24, no. 4, pp. 611–625, 2013, doi: https://doi.org/10.1016/S0716-8640(13)70200-1.; Society American Cancer, “Cancer Statistics Center,” 2020. https://cancerstatisticscenter.cancer.org/?_ga=2.68534866.2102841857.1593652002-2027832360.1593652002#!/.; Diariopresente.mx, “Google desarrolla algoritmo que detecta el cáncer de pulmón,” 2018. [Online]. Available: https://www.diariopresente.mx/actualidad/google-desarrolla-algoritmo-que-detecta-el-cancer-de-pulmon/218050.; M. F. Abbod, J. W. F. Catto, D. A. Linkens, and F. C. Hamdy, “Application of ArtificialIntelligence to the Management of Urological Cancer,” J. Urol., vol. 178, no. 4, pp. 1150–1156, 2007, doi: https://doi.org/10.1016/j.juro.2007.05.122.; J. M. Purswani, A. P. Dicker, C. E. Champ, M. Cantor, and N. Ohri, “Big Data From SmallDevices: The Future of Smartphones in Oncology,” Semin. Radiat. Oncol., vol. 29, no. 4, pp. 338–347, 2019, doi: https://doi.org/10.1016/j.semradonc.2019.05.008.; K. Cieślak, “Professional psychological support and psychotherapy methods for oncologypatients. Basic concepts and issues,” Reports Pract. Oncol. Radiother., vol. 18, no. 3, pp. 121–126, 2013, doi: https://doi.org/10.1016/j.rpor.2012.08.002.; H. Contreras, “Teoria de la Computacion para Ingeniería de Sistemas: Un enfoque practico.”Caracas: Saber, Ula. V, 2012, [Online]. Available: https://d1wqtxts1xzle7.cloudfront.net/39872592/tema1.pdf?1447177931=&response-content-disposition=inline%3B+filename%3DTema1.pdf&Expires=1594305464&Signature=Fe86rqeud4Y7osvWzUUhOYTIZCaL-k~pJaar2XxVbujlot-4xV9wYpduKdxkZ5zHaSPhUOCcpH1v0k7Y5shbONvWqbXmdTzdO.; A. GALIPIENSO, M. ISABEL, M. A. CAZORLA QUEVEDO, O. Colomina Pardo, F.ESCOLANO RUIZ, and M. A. LOZANO ORTEGA, Inteligencia artificial: modelos, técnicas y áreas de aplicación. Editorial Paraninfo, 2003.; J. V. González, O. A. V. Arenas, and V. V. González, “Semiología de los signos vitales:Una mirada novedosa a un problema vigente,” Arch. Med., vol. 12, no. 2, pp. 221–240, 2012, [Online]. Available: https://www.redalyc.org/pdf/2738/273825390009.pdf.; Liip.care, “Liip Smart Monitor,” 2019. https://liip.care/es/.; Welchallyn.com, “Equipos de signos vitales,” 2018.; Welchallyn.com, “Equipos de signos vitales,” 2018. https://www.welchallyn.com/content/welchallyn/latam/es/products/categories/patient-monitoring/vital-signs-devices.html#.; Scikit-learn.org, “Scikit-learn machine learning in python,” 2019. https://scikit-learn.org/stable/index.html.; Cancer Treatment Centers of America, “Lung cancer stages,” 2020. https://www.cancercenter.com/cancer-types/lung-cancer/stages.; NIH (Instituto Nacional del Cáncer), “¿Qué es el cancer?,” 2015. https://www.cancer.gov/espanol/cancer/naturaleza/que-es%0A.; Roger S. Pressman. (2010). Ingeniería del Software Un enfoque práctico. Vol. 3, SéptimaEdición. pp. 70.; Castro, F.D. (2008). Metodologia de projeto centrada na casa da qualidade. Tesis deMaestría, universidade federal rio grande do sul, Porto Alegre, Brasil.; Pahl, G., & Beits, W. (2013). Engineering design: a systematic approach. Springer ScienceBusiness Media.; R. De Armas, A. Alfonso, y L. Rojas, “Tomografía local con bases daubechies", VisiónElectrónica, vol. 9, no. 2, pp. 300-311, 2015.; C. H. Caicedo y A. Smida, “Intensidad informacional para la longitudinalidad asistencial ensistemas de salud", Visión Electrónica, vol. 10, no. 1, pp. 83-95, 2016. https://doi.org/10.14483/22484728.11612.; J. R. Torres Castillo, J. S. Pérez Lomelí, E. Camargo Casallas, y M. Ángel PadillaCastañeda, “Dispositivo háptico vibrotáctil inalámbrico para asistencia de actividades motoras", Visión Electrónica, vol. 12, no. 1, pp. 58-64, 2018. https://doi.org/10.14483/22484728.13310.; N. W. S. US Department of Commerce, NOAA, “Your National Weather Service: Evolvingto Build a Weather-Ready Nation,” 2017. https://www.weather.gov/about/wrn (accessed Oct. 17, 2020).; NOAA,“AboutOur Agency %7C National Oceanic and AtmosphericAdministration.” https://www.noaa.gov/about-our-agency (accessed Oct. 17, 2020).; NOAA, “Marina y aviación %7C Administración Nacional Oceánica y Atmosférica,” 2020.https://www.noaa.gov/marine-aviation (accessed Oct. 25, 2020).; N. NESDIS, “About %7C NOAA National Environmental Satellite, Data, and Information Service(NESDIS),” 2019. https://www.nesdis.noaa.gov/content/about (accessed Oct. 25, 2020).; NOAA,“Gráficos %7C Administración Nacional Oceánica yAtmosférica,”2020. https://www.noaa.gov/charting (accessed Oct. 25, 2020).; NOAA,“Educación Administración Nacional Oceánica y Atmosférica,”2019. https://www.noaa.gov/education (accessed Oct. 25, 2020).; N. N. O. and A. A. US Department of Commerce, “National Oceanic and AtmosphericAdministration (NOAA) Staff Directory Page,” 2018.; N. O. and A. A. US Department of Commerce, “NOAA’s National Ocean Service,” 2019.; R. Weiher, “Assessing the Economic & Social Benefits of NOAA Data,” 2008. Accessed:Nov. 19, 2020. [Online]. Available: https://www.oecd.org/sti/ieconomy/40066192.pdf.; H. Kite-Powell, “Estimating Economic Benefits from NOAA PORTS ® Information: A CaseStudy of Houston,” 2007. Accessed: Nov. 19, 2020. [Online]. Available: https://tidesandcurrents.noaa.gov/publications/EstimatingEconomicBenefitsfromNOAAPORTSIn formation_Houston-Galveston.pdf.; NASA, “Órbitas de Satélites,” 2020. https://scool.larc.nasa.gov/Spanish/orbits-sp.html(accessed Oct. 17, 2020).; N. OSPO, “GOES Status - Office of Satellite and Product Operations,” Aug. 15, 2019.https://www.ospo.noaa.gov/Operations/GOES/status.html (accessed Oct. 17, 2020).; N.OSPO, “POES Operational Status- POESStatus- OSPO,”Mar. 22, 2019. https://www.ospo.noaa.gov/Operations/POES/status.html (accessed Oct. 19, 2020).; NOAA, “NOAA Readies GOES-15 and GOES-14 for Orbital Storage %7C NOAA NationalEnvironmental Satellite, Data, and Information Service (NESDIS),” Jan. 29, 2020. https://www.nesdis.noaa.gov/content/noaa-readies-goes-15-and-goes-14-orbital-storage (accessed Oct. 17, 2020).; N. OSPO, “Suomi-NPP Operational Status - Office of Satellite and Product Operations,”Apr. 14, 2016. https://www.ospo.noaa.gov/Operations/SNPP/status.html (accessed Oct. 19, 2020).; X. Zou and X. Tian, “COMPARISON OF ATMS STRIPING NOISE BETWEEN NOAA-20AND S- NPP Xiaolei Zou and Xiaoxu Tian Earth System Science Interdisciplinary Center , University of Maryland , College Park , MD 20740,” IEEE Int. Geosci. Remote Sens. Symp., pp. 3105–3108, 2018, doi:10.1109/IGARSS.2018.8517482.; X. Tian, X. Zou, and N. Sun, “COMPARISON OF RO-ESTIMATED ATMS BIASESBETWEEN NOAA-20 AND S-NPP Earth System Science Interdisciplinary Center , University of Maryland , College Park , MD 20740 Earth Resources Technology ( ERT ), Inc ., Laurel , MD20707 , USA,” IEEE Int. Geosci. Remote Sens. Symp., pp. 3101–3104, 2018, doi:10.1109/IGARSS.2018.8519416.; W. Wang, C. Cao, Y. Bai, S. Blonski, and M. A. Schull, “Assessment of the NOAA S-NPPVIIRS geolocation reprocessing improvements,” Remote Sens., vol. 9, no. 10, 2017, doi:10.3390/rs9100974.; N. NESDIS, “Imágenes del sector: América del Sur - Norte - NOAA / NESDIS / STAR,”2020. https://www.star.nesdis.noaa.gov/GOES/sector.php?sat=G16§or=nsa (accessed Oct. 17, 2020).; S. A. Buehler, V. O. John, A. Kottayil, M. Milz, and P. Eriksson, “Efficient radiative transfersimulations for a broadband infrared radiometer-Combining a weighted mean of representative frequencies approach with frequency selection by simulated annealing,” J. Quant. Spectrosc. Radiat. Transf., vol. 111, no. 4, pp. 602–615, 2010, doi:10.1016/j.jqsrt.2009.10.018.; U.S. DEPARTMENT OF COMERCE, National Oceanic and Atmospheric Adminitration,and and National Environmental Satellite, Data, “National Oceanic and Atmospheric Administration User’s Guide for Building and Operating Environmental Satellite Receiving Stations,” Feb. 2009. Accessed: Oct.17,2020. [Online]. Available: https://noaasis.noaa.gov/NOAASIS/pubs/Users_GuideBuilding_Receive_Stations_March_2009.pdf.; J. Mitola, “The Software Radio Architecture,” Softw. Radio Technol., vol. 33, no. May, pp.26–38, 2009, doi:10.1109/9780470546444.ch1.; V. Dascal, P. Dolea, O. Cristea, and P. Tudor, “Advanced Vhf Ground Station for NoaaWeather Satellite Apt Image Reception,” Acta Tech. Napocensis, vol. 53, no. 3, pp. 1–7, 2012.; C. Bosquez, A. Ramos, and L. Noboa, “System for receiving NOAA meteorological satelliteimages using software defined radio,” Proc. 2016 IEEE ANDESCON, ANDESCON 2016, pp. 0– 3, 2016, doi:10.1109/ANDESCON.2016.7836233.; C. Velasco and C. Tipantuna, “Meteorological picture reception system using softwaredefined radio (SDR),” 2017 IEEE 2nd Ecuador Tech. Chapters Meet. ETCM 2017, vol. 2017-Janua, pp. 1–6, 2017, doi:10.1109/ETCM.2017.8247551.; E. B. Mikkelsen, “The Design of a Low Cost Beacon Receiver System using SoftwareDefined Radio,” Inst. Elektron. og telekommunikasjo, no. July, pp. 1–83, 2009, [Online]. Available: https://hdl.handle.net/11250/2369478.; D. J. M. Peralta, D. S. Dos Santos, A. Tikami, W. A. Dos Santos, and E. W. R. Pereira,“Satellite telemetry and image reception with software defineradio applied to space outreach projects in brazil,” An. Acad. Bras. Cienc., vol. 90, no. 3, pp. 3175–3184, 2018, doi:10.1590/0001- 3765201820170955.; A. G. C. Guerra, A. S. Ferreira, M. Costa, D. Nodar-López, and F. Aguado Agelet,“Integrating small satellite communication in an autonomous vehicle network: A case for oceanography,” Acta Astronaut., vol. 145, no. November 2017, pp. 229–237, 2018, doi:10.1016/j.actaastro.2018.01.022.; J. Lee Min, “Decoding Signals From Weather Satellites Using Software Defined Radio,”Electron.Theses Diss., vol. 3, no. 2, pp. 1–70, 2018, doi:10.18041/2382-3240/saber.2010v5n1.2536.; Icom, “INSTRUCTON MANUAL iPCR1500 iPCR2500,” Screen. Icom, Osaka, pp. 45–49,2006, [Online]. Available: http://www.icomamerica.com/es/products/receivers/pc/pcr1500/default.aspx.; National Instruments, “SPECIFICATIONS USRP-2920,” Jul. 13, 2017. https://www.ni.com/pdf/manuals/375839c.pdf (accessed Oct. 19, 2020).; RTL-SDR, “RTL-SDR Blog V3 Datasheet,” Feb. 2018. Accessed: Oct. 19, 2020. [Online].Available: https://www.rtl-sdr.com/wp-content/uploads/2018/02/RTL-SDR-Blog-V3- Datasheet.pdf.; N. Crisan and L. Cremene, “NOAA Signal Decoding And Image Processing Using GNU-Radio,” Acta Tech. Napocensis, vol. 49, no. 4, pp. 1–5, 2012.; D. Aguirre and P. R. Yanyachi, “Design of a parabolic patch antenna in band L, with doublelayer and air substrate, for weather satellite reception,” 2017 6th Int. Conf. Futur. Gener. Commun. Technol. FGCT 2017, pp. 10–14, 2017, doi:10.1109/FGCT.2017.8103395.; Y. Rafsyam, Z. Indra, E. E. Khairas, Jonifan, and W. A. Karimah, “Design of Double CrossDipole Antenna as NOAA Satellite Signal Receiver for Monitor Cloud Conditions Application,” J.Phys. Conf. Ser., vol. 1364, no. 1, 2019, doi:10.1088/1742-6596/1364/1/012059.; M. Fathurahman, Zulhelman, A. Maulana, and M. Widyawati, “Design and Development ofDipole Antenna for NOAA Satellite Image Acquisition System and Processing,” J. Phys. Conf. Ser., vol. 1364, no. 1, 2019, doi:10.1088/1742-6596/1364/1/012025.; F. P. A. Escobedo, H. R. Alvarez, H. Salazar, C. G. R. Percing, and R. L. J. M. De Oca,“Low cost optimization method of a double cross antenna satellite reception system for the processing and improvement of meteorological satellite signals and images NOAA 15-18-19,” Proc. 2019 IEEE 1st Sustain. Cities Lat. Am. Conf. SCLA 2019, pp. 1–6, 2019, doi:10.1109/SCLA.2019.8905749.; A. E. Quiroz-Olivares, N. I. Vargas-Cuentas, G. W. Zarate Segura, and A. Roman-Gonzalez, “Low-cost and portable ground station for the reception of NOAA satellite images,”Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 5, pp. 450–454, 2019, doi:10.14569/ijacsa.2019.0100557.; M. L. Keefer et al., “Evaluating the NOAA Coastal and Marine Ecological ClassificationStandard in estuarine systems: A Columbia River Estuary case study,” Estuar. Coast. Shelf Sci., vol. 78, no. 1, pp. 89–106, 2008, doi:10.1016/j.ecss.2007.11.020.; A. K. Mitra, P. K. Kundu, A. K. Sharma, and S. K. Roy Bhowmik, “A neural networkapproach for temperature retrieval from AMSU-a measurements onboard NOAA-15 and NOAA-16 satellites and a case study during Gonu cyclone,” Atmosfera, vol. 23, no. 3, pp. 225–239, 2010.; D. J. Schneider and M. J. Pavolonis, “ADVANCES IN VOLCANO MONITORING : THEROLE OF JPSS INSTRUMENTS U . S . Geological Survey-Alaska Volcano Observatory , Anchorage , AK NOAA Cooperative Institute for Meteorological Satellite Studies , Madison , WI,” IEEE Int. Geosci. Remote Sens. Symp., pp. 2798–2801, 2017, doi:10.1109/IGARSS.2017.8127579.; C. Muñoz, P. Acevedo, S. Salvo, G. Fagalde, and F. Vargas, “Detección de incendiosforestales utilizando imágenes NOAA/16-LAC en la Región de la Araucanía, Chile,” Bosque, vol. 28, no. 2, pp. 119–128, 2007, doi:10.4067/s0717-92002007000200004.; L. Carro-Calvo, C. Casanova-Mateo, J. Sanz-Justo, J. L. Casanova-Roque, and S.Salcedo- Sanz, “Efficient prediction of total column ozone based on support vector regression algorithms, numerical models and Suomi-satellite data,” Atmosfera, vol. 30, no. 1, pp. 1–10, 2017, doi:10.20937/ATM.2017.30.01.01.; A. Antón, R. Martínez, M. A. Salas, and A. Torre, “Performance analysis andimplementation of spatial and blind beamforming algorithms for tracking leo satellites with adaptive antenna arrays,” in European Conference on Antennas and Propagation, EuCAP 2009, Proceedings, 2009, pp. 216–220.; S. Soisuvarn, Z. Jelenak, P. S. Chang, Q. Zhu, and G. Sindic-Rancic, “Validation of noaa’snear real-time ascat ocean vector winds,” Int. Geosci. Remote Sens. Symp., vol. 1, no. 1, pp. 118–121, 2008, doi:10.1109/IGARSS.2008.4778807.; A. Huang, L. Gumley, K. Strabala, S. Mindock, R. Garcia, and G. Martin, “COMMUNITYSATELLITE PROCESSING PACKAGE FROM DIRECT BROADCAST : PROVIDING REAL- TIME SATELLITE DATA TO EVERY CORNER OF THE WORLD Space Science and Engineering Center ( SSEC ) Cooperative Institute for Meteorological Studies ( CIMSS ) University of Wisconsin,” IEEE Int. Geosci. Remote Sens. Symp., pp. 5532–5535, 2016, doi:10.1109/IGARSS.2016.7730443.; K. R. Al-Rawi and J. L. Casanova, “APLICACIÓN DE LAS REDES NEURONALES PARAEL CONTROL Y SEGUIMIENTO EN TIEMPO REAL DE LOS INCENDIOS FORESTALES MEDIANTE IMÁGENES NOAA-AVHRR,” in TELEDETECCION. Avances y Aplicaciones.VIII Congreso Nacional de teledeteccion, 1999, no. January, pp. 244–247.; Organización Meteorología Mundial, “IDEAM se fortalece en monitoreo y seguimiento dehuracanes (IDEAM, Columbia) %7C Organización Meteorológica Mundial,” Feb. 07, 2013. https://public.wmo.int/es/media/news-from-members/ideam-se-fortalece-en-monitoreo-y- seguimiento-de-huracanes-ideam-columbia (accessed Oct. 26, 2020). [49] IDEAM, “VISOR DE IMÁGENES SATÉLITALES - IDEAM.” http://www.pronosticosyalertas.gov.co/imagsatelital-portlet/html/imagsatelital/view.jsp (accessed Oct. 26, 2020).; NOAA, “National Oceanic and Atmospheric Administration %7C U.S. Department ofCommerce.” https://www.noaa.gov/ (accessed Oct. 26, 2020). IDEAM, “IDEAM - IDEAM.” http://www.ideam.gov.co/ (accessed Oct. 26, 2020).; J. S. M. G, J. E. Ar, and M. L. Su, “Comparacion De Herramientas De Software Para LaCoordinacion Internacional Del Roe En La Orbita Geoestacionaria,” Visión Electrónica algo más que un estado sólido, vol. 9, no. 1, pp. 5–12, 2016, doi:10.14483/22484728.11009.; Google Cloud, “Weather, climate big data from NOAA now in cloud %7C Google Cloud Blog,”Dec.19, 2019. https://cloud.google.com/blog/products/data-analytics/weather-climate-big-data-from-noaa-now-in-cloud (accessed Oct. 26, 2020).; Amazon Web Services, “Registry of Open Data on AWS,” Dec. 19, 2019.https://registry.opendata.aws/collab/noaa/ (accessed Oct. 26, 2020).; NOAA, “Cloud platforms unleash full potential of NOAA’s environmental data %7C NationalOceanic and Atmospheric Administration,” Dec. 19, 2019. https://www.noaa.gov/media-release/cloud- platforms-unleash-full-potential-of-noaa-s-environmental-data (accessed Oct. 26, 2020).; J. A. Niño, L. Y. Martínez y F. H. Fernández “Mano robótica como alternativa para laenseñanza de conceptos de programación en Arduino”, Revista Colombiana de Tecnologías de Avanzada, vol. 2, no. 28, pp. 132 - 139, may 2016.; C. Flores-Vázquez, A. Rojas y K. Trejo, “Operación remota de un robot móvil usando unteléfono inteligente” INGENIUS, núm. 17, 2017.; A. Cerón, “Sistemas robóticos teleoperados” Ciencia e Ingeniería Neogranadiana, no. 15,pp. 62-72, 2005.; A. M. Rivera, L. A. O’Farril, C. Miguélez, P. Martínez y I. O. Benítez “Caracterización del ez-robot para su utilización en la robótica educativa”, Serie Científica de la Universidad de las Ciencias Informáticas, vol. 12, no. 11, pp. 73 - 80, nov 2019.; M. G. da Silva, C. S. González “PequeBot: Propuesta de un Sistema Ludificado de RobóticaEducativa para la Educación Infantil”, Actas del V Congreso Internacional de Videojuegos y Educación (CIVE'17), 2017.; A. Marroquín, A. Gómez y A. Paz “Design and implementation of Explorer Mobile Robotcontrolled remotely using IoT Technology”, 2017.; R. Batista, " Diseño e implementación de un sistema de iluminación inteligente de interiores”, tesis Eng., Universidad Tecnológica de La Habana “José A. Echeverría” CUJAE, La Habana, Cuba, 2019.; S. Companioni, "Procesamiento de imágenes, obtenidas por un vehículo autónomo, para elreconocimiento de daños en cultivos ”, tesis Eng, Universidad Tecnológica de La Habana “José A.Echeverría” CUJAE, La Habana, Cuba, 2020.; J. A. Licona, “Diseño y desarrollo de un robotmóvil a bajo costo para niños: EcateBot”, thesisEng, Universidad Autónoma del estado de México, México D.F, México, 2019.; R. A. Moreno, Desarrollo de aplicaciones para Android usando MIT App Inventor 2, 1eraed. Bogotá: Autoedición, 2016.; L. A. Velazco, "Diseño de un sistema de control basado en linealización por realimentaciónpara robot móvil tipo Ackerman con velocidad variable y movimiento en doble sentido describiendo trayectorias óptimas " thesis MSc, Pontificia Universidad Católica del Perú, Lima, Perú, 2019.; C. Vázquez, "Framework de comunicaciones para robótica educativa, distributiva ycolaborativa” thesis Eng, Universidad de Extremadura, Badajoz, España, 2019.; L. Rodríguez, "Diseño e implementación de una Estación Meteorológica para la agriculturabasada en Arduino", thesis Eng, Universidad Tecnológica de La Habana “José A. Echeverría” CUJAE, La Habana, Cuba, 2019.; D. Higuera, J. Guzmán, A. Rojas “Implementando las metodologías steam y abp en laenseñanza de la física mediante Arduino”, III Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y Móvil AmITIC, pp 133 – 137, 2019.; J.M. Nova, " Diseño y desarrollo de una aplicación para monitorear la concentración deCO y CH4 en dispositivos móviles Android". thesis Eng, Universidad Pontificia Bolivariana, Bucaramanga, Colombia, 2018.; ECDRUM. “Circuito – inversión de giro de un motor de CD con relés”, 2018, [Online]Available at http: //ecdrumdownload.blogspot.com. “Manual de la GoPro H9”, 2017, [Online] Available at http: //www.google.com.; R. a. markets, «Research and Markets,» 2020.[En línea]. Available: https://www.globenewswire.com/news-release/2020/03/18/2002434/0/en/IoT-in-the-Global-Retail-Market-2020-2025-Analyzed-by-Platform-Hardware-Service-Application-and-Region.html. [Último acceso: 4 7 2020].; H. T. a. S. Dustdar, «Principles for Engineering IoT Cloud Systems,» IEEE Cloud Computing, vol. II, nº 2, pp. 68-76, 2015.; A. Rahmani, N. K. Thanigaivelan, T. N. Gia, J. Granados, B. Negash, P. Liljeberg y H. Tenhunen, «Smart e-Health Gateway :,» Consumer Communications and Networking Conference (CCNC), 12th Annual IEEE, pp. 826-834, 2015.; P. Desai, A. Sheth y P. Anantharam, «Semantic Gateway as a Service Architecture for IoT Interoperability,» 2015 IEEE International Conference on Mobile Services, pp. 313-319, 2015.; A. A. Sánchez Martín, E. González Guerrero y L. E. Barreto Santamaría, «Prospective integration between Environmental Intelligence (AMI), Data Analytics (DA), and Internet of Things (IoT),» 2019 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI ), pp. 1-6, 2019.; I. A. M. M. J.-M. R. J.-C. T. M. Berrouyne, «A Model-Driven Approach to Unravel the Interoperability Problem of the Internet of Things,» de Barolli, L., Amato, F., Moscato, F., Enokido, T., & Takizawa, M. (Eds.). (2020). Advanced Information Networking and Applications. Advances in Intelligent Systems and Computing. doi:10.1007/978-3-030-44041-1 , Caserta, Italia, 2020.; D. Yacchirema y C. E. Palau Salvador, «Smart IoT Gateway for Heterogeneous Devices Interoperability,» IEEE Latin America Transactions, vol. 14, nº 8, pp. 3900-3906, 2016.; C. Dergarabedian, «La fuerte apuesta de Samsung a la Internet de las cosas para simplificar la vida cotidiana de los usuarios,» iProfesional, 10 Enero 2018.; OpenIoT Consortium, «Open Source cloud solution for the Internet of Things,» OpenIoT, 1 Septiembre 2019. [En línea]. Available: http://www.openiot.eu/. [Último acceso: 02Marzo 2020].; E. González Guerrero, L. E. Barreto Santamaría y A. A. Sánchez Martín, «Integrated Model AmI-IoT-DA for Care of Elderly People,» de Advances in Computing. CCC 2018, Bogotá, 2018.; N. Al-Oudat, A. Aljaafreh, M. Saleh y M. Alaqtash, «IoT-Based Home and Community Energy Management System in Jordan,» Tafila Technical University, vol. CLX, pp. 142-148, 2019.; F. Herrera Araújo, M. A. Ardila Lara, E. Gutiérrez Gil y D. Herrera Téllez, «ODS en Colombia: Los retos para 2030,» Programa de las Naciones Unidas para el Desarrollo -PNUD-, Bogotá, 2018.; M. Unis, A. Nettsträter, F. Iml, J. Stefa, C. S. D. Suni, A. Salinas y U. Sapienza, «Internet of Things-Architecture IoT-A Final architectural reference model for the IoT,» 2013.; F. Leiva, «La agricultura de precisión: una producción más sostenible y competitiva con visión futurista,» VIII Congreso de la Sociedad Colombiana de Fitomejoramiento y Producción de Cultivos, vol. 93, nº 997-1006, p. 7, 2003.; F. A. Urbano Molano, «Wireless Sensor Networks Applied to Optimization in Precision Agriculture for Coffee Crops in Colombia,» Journal de Ciencia e Ingenier´ıa, vol. 5, nº 1, pp. 46-52, 2013.; IERC, «IoT Semantic Interoperability:Research Challenges, Best,» 2011.; M. MARJANI, F. NASARUDDIN, A. GANI, A. KARIM, I. A. TARGIO HASHEM, A. SIDDIQA y . I. YAQOOB, «Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges,» IEEE Access, vol. V, nº 2, p. 15, 2017.; W. Ruíz Martínez , Y. Díaz Gutiérrez, R. Ferro Escobar y L. Pallares, «Application of the Internet of Things through a Network of Wireless Sensors ina Coffee Crop for Monitoring and Control its Environmental Variables,» TecnoLógicas, vol. 22, nº 46, pp. 2-17, 2019.; C. A. Barry, «Choosing Qualitative Data Analysis Software: Atlas/ti and Nudist Compared,» Sociological Research Online, vol. III, nº 3, p. 16–28, 1998.; J. Macias, H. Pinilla, W. Castellanos y J. D. Alvarado, «Sistema de monitoreo de variables ambientales usando IOT,» Tech Fest, 2019.; J. Macías, H. Pinilla, W. Castellanos, J. D. Alvarado y A. Sánchez, «DISEÑO E IMPLEMENTACIÓN DE UN GATEWAY IOT MULTIPROTOCOLO,» 14° CONGRESO INTERNACIONAL DE ELECTRÓNICA, CONTROL Y TELECOMUNICACIONES, vol. 13, pp. 179-198, 2019.; A. A. Sánchez Martín, L. E. Barreto Santamaría, J. J. Ochoa Ortiz y S. E. Villanueva Navarro, «EMULADOR PARA DESARROLLO DE PROYECTOS IOT Y ANALITICAS DE DATOS,» de XII Congreso Internacional de Electrónica, Control y Telecomunicaciones, Bogota, 2019.; allmeteo, «Agro IoT Weather Sensor: AN AFFORDABLE SOLUTION FOR DISTRIBUTED WEATHER MONITORING FOR AGRICULTURE, FARMING & WINE YARDS.,» BARANI DESIGN Technologies s.r.o., 2018. [En línea]. Available: https://www.allmeteo.com/agriculture-iot-weather-station. [Último acceso: 02 03 2020].; LEMKEN, «LEMKEN: The Agrovision Company,» LEMKEN , 2020. [En línea]. Available: https://smartfarming.lemken.com/en/. [Último acceso: 02 03 2020].; RIGADO, «Cascade IoT Gateway: Edge Bluetooth® connectivity & secure data processing,» RIGADO, 2016-2020. [En línea]. Available: https://www.rigado.com/cascade-iot-gateway/. [Último acceso: 02 03 2020].; NXP Semiconductors, «IoT Gateway Solution: Complete development platform that brings together the building blocks for secure, production-ready IoT systems,» NXP Semiconductors, 2006-2020. [En línea]. Available: https://www.nxp.com/design/designs/iot-gateway-solution:IOT-GATEWAY-SOLUTION.[Último acceso: 02 03 2020].; Google, Google Big Query Analytics, United States of America : John Wiley & Sons, Inc., 2014.; P. P. Ray, «A survey of IoT cloud platforms,» Future Computing and Informatics Journal, vol. 1, nº 1-2, pp. 35-46, 2016.; J. C. Najar-Pacheco, J. A. Bohada-Jaime y W. Y. Rojas-Moreno, «Vulnerabilidades en el internet de las cosas,» Visión Electrónica, vol. 13, nº 2, pp. 312-321, 2019.; K. Husenovic, I. Bedi, and S. Maddens, Sentando las bases para la 5G: Oportunidades ydesafíos. ITU, 2018 [Online]. Available: https://www.itu.int/dms_pub/itu-d/opb/pref/D-PREF-BB.5G_01-2018-PDF-S.pdf; GSMA, “Study on Socio-Economic Benefits of 5G Services Provided in mmWave Bands.”Reportes GSMA, 2018 [Online]. Available: https://www.gsma.com/spectrum/wp-content/uploads/2019/10/mmWave-5G-benefits.pdf.; 5G Américas, Identificación de habilitadores para redes 4G y 5G en América Latina. 2020[Online]. Available: https://brechacero.com/wp-content/uploads/2020/04/WP-Identificaci%C3%B3n-de-habilitadores-para-la-implementaci%C3%B3n-de-redes-4G-y-5G-en-Am%C3%A9rica-Latina.pdf.; GSMA, The Mobile Economy. GSM Association, 2020 [Online]. Available:https://www.gsma.com/mobileeconomy/wpcontent/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf.; N. Vyakaranam and S. Dilip Krishna, “5G: Network As A Service - How 5G enables thetelecom operators to lease out their network,” 22-Mar-2018. [Online]. Available: https://netmanias.com/en/?m=view&id=blog&no=13311. [Accessed: 20-Nov-2020].; J. C. Martínez, J de J. Rugeles y E. P. Estupiñán. “Análisis de ocupación espectral bandaGSM 850 en Bogotá”. Visión Electrónica, algo más que un estado sólido, Vol. 12, No. 1, 5-13, enero-junio 2018. https://doi.org/10.14483/22484728.14801.; Ericsson, “5G architecture next mobile technology %7C Whitepaper,” 01-Jan-2017. [Online].Available: https://www.ericsson.com/en/reports-and-papers/white-papers/5g-systems--enabling-the-transformation-of-industry-and-society. [Accessed: 18-Nov-2020].; H. Ekström, “Non-standalone and Standalone: two paths to 5G,” 2019. [Online]. Available:https://www.ericsson.com/en/blog/2019/7/standalone-and-non-standalone-5g-nr-two-5g tracks. [Accessed: 16-Oct-2020].; 3 GPP, “Release 15 Description,” 3rd Generation Partnership Project (3GPP), 2019 [Online]Available:https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3389.; L. Casaccia, “Propelling 5G forward: A closer look at 3GPP Release 16.” 07-Jul-2020[Online]. Available: https://www.qualcomm.com/news/onq/2020/07/07/propelling-5g-forward-closer-look-3gpp-release-16. [Accessed: 12-Oct-2020].; M. Clark, C. Vanoli, and A. Smith, Abrir sendas hacia 5G. ITU News Magazine, 2017[Online]. Available: https://www.itu.int/en/itunews/Documents/2017/2017-02/2017_ITUNews02-es.pdf.; GSMA, “Espectro 5G Postura de la GSMA sobre política pública,” GSMA, 2018 [Online].Available: https://www.gsma.com/latinamerica/wp-content/uploads/2019/03/5G-Spectrum-Positions-SPA.pdf. [Accessed: 05-Oct-2020].; 5G Américas, Análisis de las recomendaciones de espectro de la UIT en América Latina.White Papers 5G Américas, 2019, p. 6-21 [Online]. Available: https://brechacero.com/wp-content/uploads/2019/08/ES-Analisis-de-las-Recomendaciones-de-Espectro-de-la-UIT-en-America-Latina-2019-vf.pdf.; 5G Américas, Espectro para 5G: Banda 3,5 GHZ en América Latina. 2019 [Online].Available: https://brechacero.com/wp-content/uploads/2019/06/3.5-GHz-esp-ok.pdf.; Poder Legislativo, "Ley No. 14.235," Centro De Información Oficial, Ago 3, 1974.; Council of State, "ACT of 2004 No.151," Official Gazette of the Republic of Suriname, 2004.; QoSi, “Etude de la qualité d’expérience des opérateurs mobiles en Guyane Francaise,”Publicaciones QoSi, Francia, 2019 [Online]. Available: https://www.5gmark.com/news/2019/Barometre_4Gmark_Guyane_2019.pdf. [Accessed: 17-Jul-2020].; F. Staff. (Jul 8,). Claro, de Carlos Slim, iniciará la carrera del 5G en Brasil. Available:https://www.forbes.com.mx/tecnologia-claro-slim-5g-brasil/.; Telesur. (s.f.). 5G - Beyond Connectivity. Available: https://www.telesur.sr/5g/.; NOKIA. (Apr 10,). ANTEL and Nokia make the first 5G call on a commercial network inLatin America. Available: https://www.nokia.com/about-us/news/releases/2019/04/10/antel-and-nokia-make-the-first-5g-call-on-a-commercial-network-in-latin-america/.; ENACOM, "LEY ARGENTINA DIGITAL," Boletín Oficial De La Republica De Argentina,Dec 19, 2014.; Secretaría de Tecnologías de la Información, "Documento base sobre la identificación dedesafíos y necesidades de Espectro Radioeléctrico en Argentina," Boletin Oficial De La Republica De Argentina, pp. 1-36, 2019.; Asamblea Legislativa Plurinacional, "Ley General de Telecomunicaciones, Tecnologías dela Información y Comunicación" Gaceta Oficial De Bolivia, Ago 8, 2011.; Agencia Boliviana Espacial, "Satélite TUPAC KATARI," 2019.; Poder Legislativo, "Ley No. 13.879," Diario Oficial De La Unión, vol. 1, Oct 4, 2019.; ANATEL, “Anatel aprova consulta pública para implementar o 5G,” 06-Feb-2020. [Online].Available: https://www.anatel.gov.br/institucional/component/content/article/171-manchete/2491-anatel-aprova-consulta-publica-para-licitar-faixas-de-frequencias-para-o-5g. [Accessed: 20-May-2020].; SUBTEL, "CONSULTA PÚBLICA SOBRE PLAN NACIONAL 5G PARA CHILE," 2018.; SUBTEL. (Jan 14,). Consulta Pública 5G: Gobierno licitará cuatro bandas para generarmayor competencia y eficiencia espectral en el mercado móvil. Available: https://www.subtel.gob.cl/consulta-publica-5g-gobierno-licitara-cuatro-bandas-para-generar-mayor-competencia-y-eficiencia-espectral-en-el-mercado-movil/.; MINTIC, Plan 5G Colombia. Colombia: Planes Nacionales del MINTIC, 2019.; 5G Américas, “Temas en Regulación de Telecomunicaciones: Ecuador,” Publicaciones 5GAméricas, 2019 [Online]. Available: https://brechacero.com/white-papers/. [Accessed: 26-Jul-2020].; PUC, "ACT NO. 18- TELECOMMUNICATIONS ACT," The Official Gazette, Ago 5, 2016.; F. D'Almeida and D. Margot, La Evolución De Las Telecomunicaciones Móviles EnAmérica Latina Y El Caribe. (Publicaciones BID ed.) 20182.; Poder Legislativo, "LEY No. 642 DE TELECOMUNICACIONES," Gaceta Oficial De LaRepública Del Paraguay, 1995.; J. M. Perrotta, "Conatel pone fecha al 5G en Paraguay para después de 2024,"TeleSemana.Com, Jun 11, 2020. Available: http://www.telesemana.com/blog/2020/06/11/conatel-pone-fecha-al-5g-en-paraguay-para-despues-de-2024/.; OSIPTEL, "Reporte estadístico" Publicaciones OSIPTEL, Perú, Abril. 2020.; J. O. Prats Cabrera and P. Puig Gabarró, La gobernanza de las telecomunicaciones: Haciala economía digital. 2017, pp. 49–51 [Online]. Available: https://publications.iadb.org/es/node/14083.; LEY ORGÁNICA DE TELECOMUNICACIONES, "LEY ORGÁNICA DE TELECOMUNICACIONES," Gaceta Oficial De Venezuela, Feb 7, 2011.; N. Larocca, "Venezuela presenta una penetración 4G que la región alcanzó en 2016," Mar1, 2019. Available: http://www.telesemana.com/blog/2019/03/01/venezuela-presenta-una-penetracion-4g-que-la-region-alcanzo-en-2016/.; ARCEP, La régulation de l’Arcep au service des territoires connectés. 2020 [Online].Available: https://www.arcep.fr/collectivites/larcep-et-les-territoires.htm.; J. E. Garcia Orjuela, “Descripcion planta de tratamiento de agua - Icononzo, Tolima,” J.Chem. Inf. Model., 2014.; Gobernación del Tolima, “Estadísticas 2011-2014,” BMC Public Health, vol. 5, no. 1, pp.1–8, 2017.; J. E. Garcia Orjuela, “Propuesta de reducción de cargas contaminantes en el municipiode Icononzo, Tolima.” 2018.; Gobernación del Tolima, “Municipio de Icononzo,” 2019. [Online]. Available:https://www.tolima.gov.co/publicaciones/21123/municipio-de-icononzo/. [Accessed: 26-Apr-2020].; "Clima promedio en Icononzo, Colombia, durante todo el año - Weather Spark.” [Online].Available: https://es.weatherspark.com/y/23362/Clima-promedio-en-Icononzo-Colombia-durante-todo-el-año. [Accessed: 26-Apr-2020].; “Ósmosis Inversa %7C SEFILTRA %7C Expertos en purificación de fluidos.” [Online]. Available:https://www.sefiltra.com/productos/osmosis-inversa/. [Accessed: 21-Nov-2020].; S. L. Sanderson, E. Roberts, J. Lineburg, and H. Brooks, “Fish mouths as engineeringstructures for vortical cross-step filtration,” Nat. Commun., vol. 7, Mar. 2016.; “Las barbas de las ballenas.” [Online]. Available: https://universomarino.com/2011/02/04/las-barbas-de-las-ballenas/. [Accessed: 26-Apr-2020].; "PROCEDIMIENTO PARA LA OBTENCIÓN DE M ICROPIBRAS DE QUERATINA APARTIR DE RESIDUOS GANADEROS’ DESCRIPCIÓN Objeto de la Invención,” Jul. 2006.; R. D. E. Estudios and E. N. Psicolox, “Plumas: Implicancia ambiental y uso en la industriaagropecuaria,” vol. 21, no. 3, pp. 225–237, 2013.; I. E. Roca Girón, “Estudio de las propiedades y aplicaciones industriales del polietilenode alta densidad (PEAD),” J. Chem. Inf. Model., vol. 12 Suppl 1, no. 9, pp. 1–29, 2005.; 12]“Filtración (II): selección del equipo de filtrado %7C iAgua.” [Online]. Available:https://www.iagua.es/blogs/miguel-angel-monge-redondo/filtracion-ii-seleccion-equipo-filtrado. [Accessed: 26-Apr-2020].; ATDI, «5G: A revolution in evolution, even in 2017,» de RadioExpo, 2017.; MinTic, «Boletin trimestral de las Tic: Cifras Segundo Trimestre de 2019,» Ministerio de Tecnologías de la Información y las Comunicaciones , 2020.; CRC, «Reporte de industria sector TIC 2016,» Comisión de regulación de las comunicaciones, 2017.; Gupta , A., & Jha , R., «A Survey of 5G Network: Architecture and Emerging Technologies,» IEEE Access, pp. 1206-1032, 2015.; K. E. Requena, D. M. Rozo y J. E. Arévalo, «Radiopropagation simulations comparison in millimeter waves frequencies for fifth generation (5G) mobile networks,» Actas de Ingeniería, pp. 97-105, 2017.; A. Durán Barrado, «Estudio y caracterización del canal y de la propagación en ondas milimétricas, orientada a su utilización en redes de comunicaciones móviles 5g.,» ETSIT UPM, 2017.; K. E. REQUENA Barrera y D. M. Rozo Moreno, «Análisis de desempeño de la propagación de señales en redes móviles de quinta generación (5g) en bandas de frecuencias de ondas milimétricas (mmwaves) empleando la herramienta de simulación ics telecom,» FUAC, 2017.; J. E. Arévalo Peña & R. A. González Bustamante, «Radiopropagation Performance Analysis Simulations ofMassive MIMO Configurations in 28 GHz,» CEUR-WS, p. 4, 2018.; P. Missud, «Extrayendo Clutter de imagenes Multiespectrales de Landsat 8,» ATDI, 2013.; Google,«Google Maps,» Google, 01 07 2018. [En línea].Available: https://www.google.com/maps. [Último acceso: 21 10 2020].; ITU, «Recomendación UIT-R P.526,» ITU, 2018.; IDEAM, «ideam.gov.co,» 31 05 2002. [En línea]. Available:https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.526-14-201801-I!!PDF-S.pdf.; M. Montoya Rendon, P. Zapata Saldarriaga & M. Correa Ochoa, «Contaminación ambiental por PM10 dentro y fuera del domicilio y capacidad respiratoria en Puerto Nare, Colombia,» salud pública, pp. 113-115, 2013.; CRC, «Áreas de cobertura del servicio,» Comisión de Regulación de Comunicaciones, 20 03 2009. [En línea]. Available: https://www.crcom.gov.co/es/pagina/reas-de-cobertura- del-servicio. [Último acceso: 21 10 2020].; ITU, «Guidelines for evaluation of radio interface technologies for IMT-2020,» ITU, 2017.; ITU, «UIT-R M.1073-1,» ITU, 1997.; Camino L. García. (2016). Enseñar con TIC: Nuevas y renovadas metodologías para laenseñanza superior. © 2016, CINEP/IPC. pp 26-27.; Charles Kadushin. (diciembre 2013). Comprender las redes sociales. Teorías, conceptosy hallazgos. Primera Edición. Moltalbán, 8. 28014 Madrid. pp. 93-95.; Roger S. Pressman. (2010). Ingeniería del Software Un enfoque práctico. Vol. 3, SéptimaEdición. pp. 70 Sitios web.; ICFES. (2019) Resultados de las pruebas ICFES. http://www2.icfesinteractivo.gov.co/resultadossaber2016web/pages/publicacionResultados/agregados/saber11/agregadosSecretarias.jsf#Noback button.; Juan Carlos Mejía Llanos (21 de marzo, 2019) Estadísticas de redes sociales 2019:USUARIOS DE FACEBOOK, TWITTER, INSTAGRAM, YOUTUBE, LINKEDIN, WHATSAPP Y OTROS. https://www.juancmejia.com/marketing-digital/estadisticas-de-redessocialesusuarios-de-facebook-instagram-linkedin-twitter-whatsapp-y-otrosinfografia/#Informe_detallado_usuarios_redes_sociales_WeAreSocial_y_Hootsuite (5 de mayo de 2019).; Psicología-Onlie (20 de agosto 2018) Teorías del aprendizaje según Brunner.https://www.psicologia-online.com/teorias-del-aprendizaje-segun-bruner-2605.html.; Revista Médica Clínica Las Condes (enero-febrero, 2015) Impacto de las redes socialese internet en la adolescencia: aspectos positivos y negativos. https://www.sciencedirect.com/science/article/pii/S0716864015000048#bib0005.; TeleMedellin (28 de septiembre, 2018) Preocupación por déficit de ingenieros enColombia. https://telemedellin.tv/deficit-ingenieros-colombia/284852/.; UNESCO (21 de septiembre, 2017) SERVICIO DE PRENSA: 617 millones de niños yadolescentes no están recibiendo conocimientos mínimos en lectura y matemática. http://www.unesco.org/new/es/mediaservices/singleview/news/617_million_children_and_adolescents_not_getting_the_minimum/.; Walter, L., Gallegos, Arias, & Huerta, Adriana Oblitas. (2014). Aprendizaje pordescubrimiento vs. Aprendizaje significativo: Un experimento en el curso de historia de la psicología. Boletim - Academia Paulista de Psicologia, 34(87), 455-471. http://pepsic.bvsalud.org/scielo.php?script=sci_arttext&pid=S1415711X2014000200010&lng=pt&tlng=es.Artículos.; L. A. Luengas, G. Sánchez, y S. M. Cárdenas, “Nuevas herramientas pedagógicas:laboratorio virtual", Visión Electrónica, vol. 9, no. 2, pp. 277-284,2015. https://doi.org/10.14483/22484728.11034.; M. Vergel Ortega, O. L. Rincón Leal, y L. A. Jaimes Contreras, “Prototipos electrónicosen el desarrollo de pensamientos formales", Visión Electrónica, vol. 9, no. 2, pp. 182-193, 2015. https://doi.org/10.14483/22484728.11026.; J. F. Pastrán Beltrán y F. Pinzón Herrera, “Software libre: una estrategia para aprendera factorizar ", Visión Electrónica, vol. 9, no. 1, pp. 139-148,2015. https://doi.org/10.14483/22484728.11024.; R. López Gonzalez, “Genealogía de cambio conceptual en la enseñanza de la ciencia",Visión Electrónica, vol. 1, no. 1, pp. 88-92, 2008. https://doi.org/10.14483/22484728.255.; F. P. Rodriguez, A. R. Torres, y H. Vacca, “Estudio con análisis por elementos finitos desistemas análogos circuitales en física", Visión Electrónica, vol. 6, no. 1, pp. 98-103, 2012. https://doi.org/10.14483/22484728.3750.; R. Lopez, “La propedéutica y el discurso sobre las tecnologías", Visión Electrónica, vol.7, no. 1, pp. 178-187, 2013. https://doi.org/10.14483/22484728.4399.; Arquitectura, L., Negocios, A. De, & Salimbeni, S. (2017). La Arquitectura Empresarial y elAnálisis de Negocios.; Basyarudin. (2018). Диф нарушениямиNo Title. Высшей Нервной Деятельности, 2, 227–249.; Clavijo, S., & Vera, A. (2013). Inversion en infraestructura.7–14.; CoronApp, la aplicación para que conocer la evolución del coronavirus - Rumble. (n.d.).Retrieved May 8, 2020, from https://rumble.com/embed/ubedx.v6h0k3/?rel=0.; Dashboard Coronavirus COVID-19 (Mobile). (n.d.). Retrieved May 8, 2020, from https://www.arcgis.com/apps/opsdashboard/index.html#/85320e2ea5424dfaaa75ae62e5c06e61.; Dussan, H., & Garzon, K. (2017). DIAGNÓSTICO PARA LA CREACIÓN DE UN MODELO BAJO LA ARQUITECTURA ORGANIZACIONAL TOGAF APLICADO EN LAS DEPENDENCIAS TIC DE LA UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS. 1–126.; Gasto en investigación y desarrollo (% del PIB) %7C Data. (n.d.). etrieved May 8, 2020, from https://datos.bancomundial.org/indicador/GB.XPD.RSDV.GD.ZS?name_desc=false&view=map.; Gobernanza Territorial, Identificación De Fortalezas, Áreas De. (2013).; González Campo, C. H., & Lozano Oviedo, J. (2020). Propuesta para la definición de la arquitectura empresarial. Dimensión Empresarial, 18((1)). https://doi.org/10.15665/dem.v18i(1).2109 Palacios-Urgilés, F. G., & Campoverde-Molina, M. A. (2019).; Análisis de la arquitectura empresarial como oportunidad de mejora en las microempresas de la ciudad de Cuenca. Dominio de Las Ciencias, 5(3), 487. https://doi.org/10.23857/dc.v5i3.949.; Ministerio de Tecnologías de la Información y las Comunicaciones. (2016). G . GEN . 03 . Guía General de un Proceso de Arquitectura Empresarial. 1–41. Retrieved from http://www.mintic.gov.co/arquitecturati/630/articles- 9435_Guia_Proceso.pdf.; PIB-real segundo trimestre de 2019 y revisión de pronósticos. (n.d.). Retrieved May 8, 2020,from https://www.larepublica.co/analisis/sergio-clavijo- 500041/pib-real-segundo-trimestre-de-2019-y-revision- de-pronosticos-2900103 PND. (2018). Bases del Plan Nacional de Desarrollo.; Presupuesto y estados financieros. (n.d.). Retrieved May 10, 2020, fromhttps://www.dane.gov.co/index.php/servicios-al-ciudadano/tramites/transparencia-y-acceso-a-la- informacion-publica/presupuesto-general- asignado#presupuesto-general.; Saboya, N., Loaiza, O., & Lévano, D. (2018). Diseño de un modelo de arquitecturaempresarial para publicaciones científicas basado en adm - Togaf 9.0. Retrieved May 10, 2020, from https://www.redalyc.org/jatsRepo/4676/467655911004/ html/index.html.; Carlo Batini y Monica Scannapieco, DATA AND INFORMATION QUALITY, I.Switzerland: Springer International Publishing, 2016.; C. Sammut y G. I. Webb, Eds., Encyclopedia of Machine Learning and Data Mining.Boston, MA: Springer US, 2017.; «Who we are - Eurostat». https://ec.europa.eu/eurostat/about/who-we-are (accedidoago. 23, 2020).; B. G. Grow y 2020 January 24, «Data Quality Predictions for 2020», Transforming Datawith Intelligence. https://tdwi.org/articles/2020/01/24/diq-all-data-quality-predictions-for- 2020.aspx (accedido ago. 21, 2020).; T. C. Redman, «Bad Data Costs the U.S. $3 Trillion Per Year», Harvard BusinessReview, sep. 22, 2016.; B. G. Grow y 2018 July 6, «Reducing the Impact of Bad Data on Your Business»,Transforming Data with Intelligence. https://tdwi.org/articles/2018/07/06/diq-all-reducing-the-impact-of-bad- data.aspx (accedido ago. 21, 2020).; B. G. Grow y 2019 May 3, «Data Quality Best Practices for Today’s Data- DrivenOrganization», Transforming Data with Intelligence. https://tdwi.org/articles/2019/05/03/diq-all-data-quality-best-practices-for- data-driven-organizations.aspx (accedido ago. 23, 2020).; C. W. Fisher y B. R. Kingma, «Criticality of data quality as exemplified in two disasters»,Inf. Manage., vol. 39, n.o 2, pp. 109-116, dic. 2001, doi:10.1016/S0378-7206(01)00083-0.; crodwflower, «2016 DATA SCIENCE REPORT», 2016.; S. Lohr, «For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights», The NewYork Times, ago. 17, 2014.; «ISO 9000:2015(en), Quality management systems — Fundamentals and vocabulary».https://www.iso.org/obp/ui/#iso:std:45481:en (accedido ago. 23, 2020).; C. Batini y M. Scannapieco, «Data Quality Dimensions», en Data and Information Quality,Springer, Cham, 2016, pp. 21-51.; «NORMAS ISO 25000». https://iso25000.com/index.php/normas-iso-25000 (accedidomar. 23, 2019).; C. Batini y M. Scannapieco, «Activities for Information Quality», en Data and InformationQuality, Springer, Cham, 2016, pp. 155-175.; C. Batini y M. Scannapieco, «Object Identification», en Data and Information Quality,Springer, Cham, 2016, pp. 177-215.; Tejada S, Knoblock C, Minton S, Learning object identification rules for informationintegration. 2001.; 2014 January 21, «New Techniques Detect Anomalies in Big Data», Transforming Datawith Intelligence. https://tdwi.org/articles/2014/01/21/detecting-big-data-anomalies.aspx (accedido ago. 26, 2020).; J. Taylor, «Clean your data with unsupervised machine learning», Towards Data Science,dic. 01, 2018. https://towardsdatascience.com/clean-your- data-with-unsupervised-machine-learning-8491af733595 (accedido mar. 17, 2019).; I. Taleb, H. T. E. Kassabi, M. A. Serhani, R. Dssouli, y C. Bouhaddioui.; I. Taleb, H. T. E. Kassabi, M. A. Serhani, R. Dssouli, y C. Bouhaddioui, «Big Data Quality: A Quality Dimensions Evaluation», en 2016 Intl IEEE Conferences on Ubiquitous Intelligence Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), jul. 2016, pp. 759-765, doi:10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0122.; H. Liu, T. K. A. Kumar, y J. P. Thomas, «Cleaning Framework for Big Data -Object Identification and Linkage», en 2015 IEEE International Congress on Big Data, jun.2015, pp. 215-221, doi:10.1109/BigDataCongress.2015.38.; «LEILA - Librería de calidad de datos — documentación de LEILA - 0.1». https://ucd-dnp.github.io/leila/ (accedido ago. 27, 2020).; H. Müller y J.-C. Freytag, «Problems, Methods, and Challenges in Comprehensive DataCleansing», p. 23.; «Google Colaboratory». https://colab.research.google.com/notebooks/welcome.ipynb?hl=es-419 (accedido jun. 29, 2020).; hrasheed-msft, «¿Qué es Azure HDInsight?» https://docs.microsoft.com/es- es/azure/hdinsight/hdinsight-overview (accedido abr. 27, 2020).; S. F. Fernández, J. M. C. Sánchez, A. Córdoba, y A. C. Largo, Estadística Descriptiva.ESIC Editorial, 2002.; F. Sidi, P. H. Shariat Panahy, L. S. Affendey, M. A. Jabar, H. Ibrahim, y A. Mustapha, «Dataquality: A survey of data quality dimensions», en 2012 International Conference on Information Retrieval Knowledge Management, mar. 2012, pp. 300-304,doi:10.1109/InfRKM.2012.6204995.; J. Wang, C. Zhang, X. Wu, H. Qi and J. Wang, «SVM-OD: A New SVM Algorithm forOutlier Detection - Google Académico», presentado en Proc. ICDM’03 Workshop Foundations and New Directions of Data Mining, 2003, Accedido: ago. 24, 2020. [En línea]. Disponible en: https://scholar.google.com/scholar?hl=es&as_sdt=0,5&q=SVM- OD%3A+A+New+SVM+Algorithm+for+Outlier+Detection&btnG=.; «Factores que afectan el peso y la salud %7C NIDDK», National Institute of Diabetes andDigestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/informacion-de-la- salud/control-de-peso/informacion-sobre-sobrepeso-obesidad- adultos/factores-afectan (accedido may 16, 2020).; Lean Yu, Shouyang Wang, y K. K. Lai, «An integrated data preparation scheme for neuralnetwork data analysis», IEEE Trans. Knowl. Data Eng., vol. 18, n.o 2, pp. 217-230, feb. 2006, doi:10.1109/TKDE.2006.22.; Sumithra V.S,Subu Surendran, «A Review of Various Linear and Non LinearDimensionality Reduction Techniques», Int. J. Comput. Sci. Inf. Technol., vol. 6.; D. Chicco y G. Jurman, «The advantages of the Matthews correlation coefficient (MCC)over F1 score and accuracy in binary classification evaluation», BMC Genomics, vol. 21, n.o 1, p.6, ene. 2020, doi:10.1186/s12864-019-6413-7.; Katrakazas, E. Michelaraki, M. Sekadakis, and G. Yannis, “A descriptive analysis of the effect of the COVID-19 pandemic on driving behavior and road safety,” Transp. Res. Interdiscip. Perspect., vol. 7, 2020, doi:10.1016/j.trip.2020.100186.; P. Pereira and J. Pais, “Main flexible pavement and mix design methods in Europe andchallenges for the development of an European method,” J. Traffic Transp. Eng. (English Ed., vol. 4, no. 4, pp. 316–346, 2017, doi:10.1016/j.jtte.2017.06.001.; A. P. Singh, A. Sharma, R. Mishra, M. Wagle, and A. K. Sarkar, “Pavement conditionassessment using soft computing techniques,” Int. J. Pavement Res. Technol., 2018.; Z. Zhang, Q. Liu, Q. Wu, H. Xu, P. Liu, and M. Oeser, “Damage evolution of asphalt mixtureunder freeze-thaw cyclic loading from a mechanical perspective,” Int. J. Fatigue, vol. 142, no. June 2020, pp. 1–9, 2021, doi:10.1016/j.ijfatigue.2020.105923.; K. B. Bai Kamara, E. Ganjian, and M. Khorami, “The effect of quarry waste dust andreclaimed asphalt filler in hydraulically bound mixtures containing plasterboard gypsum and GGBS,” J. Clean. Prod., vol. 279, 2021, doi:10.1016/j.jclepro.2020.123584.; D. M. Kusumawardani and Y. D. Wong, “The influence of aggregate shape properties onaggregate packing in porous asphalt mixture (PAM),” Constr. Build. Mater., vol. 255, 2020, doi:10.1016/j.conbuildmat.2020.119379.; T. M. Al Rousan, “Characterization of aggregate shape properties using a computerautomated system,” Texas A&M University, 2004.; C. García-González, J. Yepes, and M. A. Franesqui, “Geomechanical characterization ofvolcanic aggregates for paving construction applications and correlation with the rock properties,” Transp. Geotech., vol. 24, no. January, 2020, doi:10.1016/j.trgeo.2020.100383.; J. Hu and P. Stroeven, “Shape characterization of concrete aggregate,” Image Anal. Stereol.,vol. 25, no. 1, pp. 43–53, 2006, doi:10.5566/ias.v25.p43-53.; T. Roussillon, H. Piégay, I. Sivignon, L. Tougne, and F. Lavigne, “Automatic computationof pebble roundness using digital imagery and discrete geometry,” Comput. Geosci., vol. 35, no. 10, pp. 1992–2000, 2009, doi:10.1016/j.cageo.2009.01.013.; J. Zhang, X. Yang, W. Li, S. Zhang, and Y. Jia, “Automatic detection of moisture damagesin asphalt pavements from GPR data with deep CNN and IRS method,” Autom. Constr., vol. 113, no. September 2019, 2020, doi:10.1016/j.autcon.2020.103119.; L. Pei et al., “Pavement aggregate shape classification based on extreme gradientboosting,” Constr. Build. Mater., vol. 256, 2020, doi:10.1016/j.conbuildmat.2020.119356.; K. A. Ghuzlan, M. T. Obaidat, and M. M. Alawneh, “Cellular-phone-based computer visionsystem to extract shape properties of coarse aggregate for asphalt mixtures,” Eng. Sci. Technol. an Int. J., vol. 22, no. 3, pp. 767–776, 2019, doi:10.1016/j.jestch.2019.02.003.; J. Kim, B. S. Park, S. I. Woo, and Y. T. Choi, “Evaluation of ballasted-track condition basedon aggregate-shape characterization,” Constr. Build. Mater., vol. 232, 2020, doi:10.1016/j.conbuildmat.2019.117082.; O. J. Reyes-ortiz, M. Mejía, and J. S. Useche-Castelblanco, “Aggregate segmentation ofasphaltic mixes using digital image,” Bull. Polish Acad. Sci. Tech. Sci., vol. 67, no. 2, pp. 279–287, 2019.; S. M. E. Harb, N. Ashidi, M. Isa, and S. A. Salamah, “Improved image magnificationalgorithm based on Otsu,” Comput. Electr. Eng. J., vol. 46, pp. 338–355, 2015.; J. V. C. I. R, C. Sha, J. Hou, and H. Cui, “A robust 2D Otsu ’ s thresholding method in imagesegmentation q,” J. Vis. Commun. Image R. J., vol. 41, pp. 339–351, 2016.; O. J. Reyes-Ortiz, M. Mejia, and J. S. Useche-Castelblanco, “Digital image analysis appliedin asphalt mixtures for sieve size curve reconstruction and aggregate distribution homogeneity,” Int. J. Pavement Res. Technol., 2020, doi:10.1007/s42947-020-0315-6.; S. Yu, S. Jia, and C. Xu, “Convolutional neural networks for hyperspectral imageclassification,” Neurocomputing, vol. 219, pp. 88–98, 2017.; V. C. Janoo, “Quantification of shape, angularity, and surface texture of base coursematerials,” 1998.; E. Masad, T. M. Al Rousan, J. Button, and D. Little, Test Methods for CharacterizingAggregate Shape, Texture, and Angularity. United States of America, 2007.; E. dos S. Silva et al., “Evaluation of macro and micronutrient elements content from softdrinks using principal component analysis and Kohonen self-organizing maps,” Food Chem., vol. 273, no. May 2018, pp. 9–14, 2019, doi:10.1016/j.foodchem.2018.06.021.; B. Yang, S. Yang, J. Zhang, and D. Li, “Optimizing random searches on three-dimensionallattices,” Phys. A Stat. Mech. its Appl., vol. 501, pp. 120–125, Jul. 2018, doi:10.1016/J.PHYSA.2018.02.100.; Diego Heras, “Clasificador de imágenes de frutas basado en inteligencia artificial”, KillkanaTécnica, Vol. 1, no. 2, pp. 21-30, 2017.; SicTransCore Latinoamérica, Sic TransCore Sistemas de Identificación y control vehicular,2019. [Online]. Disponible en: https://www.sictranscore.com/.; V. M. Arévalo, J. González, G. Ambrosio, La Librería De Visión Artificial Opencv AplicaciónA La Docencia E Investigación, Dep.Sis. y Aut. Universidad de Málaga, España. [Online]. Disponible en: http://mapir.isa.uma.es/varevalo/drafts/arevalo2004lva1.pdf.; Bastián Nicolás Carvajal Ahumada, Reconocimiento Fotográfico De Patentes, Facultad deIngeniería, Pontificia Universidad Católica De Valparaíso, Valparaíso, Ciudad de Chile, 2018.; Guerra Monterroza, E. J. (2008). Reconocimiento de primitivas 3D, usando autocorrelación yANFIS. Visión electrónica, 1(1), 56-61. https://doi.org/10.14483/22484728.251.; Giraldo Ramos, F. N., Gonzalez, F., & Camargo Casallas, E. (2011). “Algoritmos deprocesamiento de imágenes satelitales con transformada Hough. Visión electrónica, 5(2), 26-41. https://doi.org/10.14483/22484728.3568.; Jiménez Moreno, R., Martínez Baquero, J. E., & Rodríguez Umaña, L. A. (2018). Sistemaautomático de clasificación de peces. Visión electrónica, 12(2), 258-264.https://doi.org/10.14483/22484728.14265.; A. Daneels and W. Salter, “WHAT IS SCADA?,” in International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, pp. 339–343, Accessed: Sep. 20, 2019. [Online]. Available: http://cds.cern.ch/record/532624/files/mc1i01.pdf.; Wikipedia, “Distributed control system,” 2019. https://en.wikipedia.org/wiki/Distributed_control_system (accessed Sep. 29, 2019).; R. Hunzinger, Scada fundamentals and applications in the IoT, 1st ed. Wiley Telecom, 2017.; S. Ray, Y. Jin, and A. Raychowdhury, “The Changing Computing Paradigm with Internet of Things: A Tutorial Introduction,” IEEE Des. Test, vol. 33, no. 2, pp. 76–96, 2016, doi:10.1109/MDAT.2016.2526612.; A. Bhatia, Z. Yusuf, D. Ritter, and N. Hunke, “Who Will Win the IoT Platform Wars?,” BCG Perspect., p. 6, 2017, [Online]. Available: https://image-src.bcg.com/Images/BCG-Who-Will-Win-the-IoT-Platform-Wars-June-2017_2_tcm58-162424.pdf.; L. Doron and Netafim, “The core results of the FIGARO project: the Platform,” in InternationalFIGARO Conference, 19 September 2016, Brussels, Belgium, 2016, [Online]. Available: http://www.figaro-irrigation.net/fileadmin/user_upload/figaro/docs/Lior_2_NET_FIGARO_project_summary.pdf.; A. (Eastern P. Chalimov, “IoT in Agriculture: 5 Technology Use Cases for Smart Farming(and 4 Challenges to Consider),” 2018. https://easternpeak.com/blog/iot-in-agriculture-5-technology-use-cases-for-smart-farming-and-4-challenges-to-consider/ (accessed Mar. 21, 2020).; L. Xiamen Ursalink Technology Co., “IoT-based Smart Irrigation,” 2019.https://www.ursalink.com/en/solution/agriculture/smart-irrigation (accessed May 30, 2020).; O. Pandithurai, S. Aishwarya, B. Aparna, and K. Kavitha, “Agro-tech: A digital model formonitoring soil and crops using internet of things (IOT),” ICONSTEM 2017 - Proc. 3rd IEEE Int. Conf. Sci. Technol. Eng. Manag., vol. 2018-Janua, pp. 342–346, 2018, doi:10.1109/ICONSTEM.2017.8261306.; A. N. Nassar A.S., Montasser A.H., “Smart Aquaponics System for Industrial Internet ofThings (IIoT),” Proc. Int. Conf. Adv. Intell. Syst. Informatics, vol. 639, no. 1, pp. 855–864, 2018, doi:10.1007/978-3-319-64861-3.; R. Nageswara Rao and B. Sridhar, “IoT based smart crop-field monitoring and automationirrigation system,” Proc. 2nd Int. Conf. Inven. Syst. Control. ICISC 2018, no. Icisc, pp. 478–483, 2018, doi:10.1109/ICISC.2018.8399118.; S. Bakalis et al., “Perspectives from CO+RE: How COVID-19 changed our food systemsand food security paradigms,” Curr. Res. Food Sci., vol. 3, pp. 166–172, 2020, doi:10.1016/j.crfs.2020.05.003.; J. M. Talavera et al., “Review of IoT applications in agro-industrial and environmental fields,”Comput. Electron. Agric., vol. 142, no. 118, pp. 283–297, 2017, doi:10.1016/j.compag.2017.09.015.; Wikipedia, “Druckschalter,” Wikipedia, 2013. https://de.wikipedia.org/wiki/Druckschalter#/media/Datei:Druckschalter_PSD_30.jpg (accessed Jun. 30, 2020).; P. IoT, “PARTICLE IoT-BORON,” 2019. https://docs.particle.io/datasheets/cellular/boron-datasheet/ (accessed Oct. 19, 2019).; The ThingsBoard Authors, “Smart farming and smart agriculture solutions,” ThingsBoard.io,2020. https://thingsboard.io/smart-farming/ (accessed Jun. 20, 2020).; A. Joseph Fernando, “How Africa Is Promoting Agricultural Innovations and Technologiesamidst the COVID-19 Pandemic,” Mol. Plant, vol. 13, no. 10, pp. 1345–1346, 2020, doi:10.1016/j.molp.2020.08.003.; E. Vargas, A. Guillermo Correa, P. C. souza, N. Rodrigues de Baptestini, F. Machado Zaidan y I. Ramos, "Avaliação da homogeneidade da expansão dos grãos de café torrados" de VIII Simpósio de Pesquisa dos Cafés do Brasil, novembro 2013.; Giraldo Cerón, A. F. "Tan cerca y tan lejos de la agricultura 4.0 en Colombia". Revista Universidad EAFIT, 55(175), 78-85.2020.; O. L. Ocampo López y L. M. Álvarez Herrera, «Tendencia de la producción y el consumo del café en Colombia,» Apuntes del CENES, vol. 36, nº 64, pp. 139-165, julio -diciembre 2017.; G. I. Puerta Quintero, Investigador Científico III y Centro Nacional deInvestigaciones, «COMPOSICIÓN QUÍMICA DE UNA TAZA DE CAFÉ,» Ciencia, tecnología e innovación para la caficultura colombiana, MANIZALES , 2011.; Samodro, Bayu, et al. "Maintaining the Quality and Aroma of Coffee with Fuzzy Logic Coffee Roasting Machine." IOP Conference Series: Earth and Environmental Science. Vol. 426. No. 1. IOP Publishing, 2020.; Fadri, R. A., et al. "Review of coffee roasting process and formation of acrylamide related to health." Journal of Applied Agricultural Science and Technology 3.1 (2019): 129-145.; Botero Lopez, Santiago, and Muhammad Salman Chaudhry. "Designing an Efficient Supply Chain for Specialty Coffee from Caldas-Colombia." (2020).; Suarez-Peña, Javier Andrés, et al. "Machine Learning for Cup Coffee Quality Prediction from Green and Roasted Coffee Beans Features." Workshop on Engineering Applications. Springer, Cham, 2020.; Putra, Satya Andika, Umi Hanifah, and Mirwan Ardiansyah Karim. "Theoretical study of fluidization and heat transfer on fluidized bed coffee roaster." AIP Conference Proceedings. Vol. 2097. No. 1. AIP Publishing LLC, 2019.; Benitez O, Campo-Ceballos D, «Evaluación de la calidad el café tostado utilizando herramientas de procesamiento digital de imágenes», ACCB, vol. 1, n.º 30, pp. 32-43, dic. 2018.; Meana, Vanessa Rose L., Nazer Sarapeo P. Kimkiman, and Alvin C. Dulay. "Design, Fabrication, and Performance Evaluation of a Batch-Type Fluidized Bed Coffee Roaster for Small-Scale Coffee Growers." Mountain Journal of Science and Interdisciplinary Research (formerly Benguet State University Research Journal) 79.2 (2019): 90-97.; Buesaquillo Imbaquingo, Luis Darío. Sistema de control para mejorar el desempeño de una máquina tostadora de café. BS thesis. 2019.; Abdul. Ghani, Nur Hamizah, et al. "Development of a novel 2D single coffee bean model and comparison with a 3D model under varying heating profiles." Journal ofFood Process Engineering 42.4 (2019).; Campo Ceballos D, et al. "Herramientas de cv para evaluar el color y matiz del café tostado: el color del café tostado y su relación con las propiedades organolépticas".EAE. 68 páginas. 2018.; N. Reddy, N. Maheshwari, D. K. Sahu, y G. K. Ananthasuresh, «Miniature CompliantGrippers With Vision-Based Force Sensing», IEEE Transactions on Robotics, vol. 26, no. 5, pp. 867–877, Oct. 2010.; Barraza, A., Rúa, J., Sosa, J., Yime, E., & Roldan, J. (2015). Modelado dinámico delmanipulador serial Mitsubishi Movemaster RV-M1 usando SolidWorks. Revista de la facultad de Ingenierías Físicas Mecánicas, 49-62.; Benbelkacem, Y., & Mohd-Mokhtar, R. (26-29 de Noviembre de 2012). Explicit kinematicmodel of the Mitsubishi RV-M1 robot arm. IEEE, 404-409. Obtenido de http://ieeexplore.ieee.org/document/6466627/.; Carrasco, B., & Alberto, J. (2015). Integración de un UAV (vehículo aéreo no tripulado)en la plataforma robótica ARGOS.; DARMOUL Saber. Reality for Manufacturing: A Robotic Cell Case Study. Department ofIndustrial Engineering. King Saud University. Saudi Arabia. 7pag. 2015.; Research on Assembly Modeling Process Based on Virtual Manufacturing InteractiveApplication Technology. School of Mechanical and Electronic Engineering. Wuhan University of Technology. Wuhan, China. 5 pág. 2017.; Forero, J., Hurtado, L., & Ruiz, V. (Febrero de 2015). Visión electrónica, Más que unestado sólido. Arquitectura paralela robótica: modelado y simulación con siemens NX. Recuperado el 10 de agosto de 2015, de http://revistas.udistrital.edu.co/ojs/index.php/visele/article/view/11018.; Marcu, C., Lazea, G., Herle, S., Robotin, R., & Tamas, L. (2010 de junio de 25). IEEEexplore Digital Library, 3D graphical simulation of an articulated serial manipulator based on kinematic models. Recuperado el 10 de Agosto de 2017, de http://ieeexplore.ieee.org/abstract/document/5524593/.; Luengas, L. A., Sánchez, G., & Cárdenas, S. M. (2015). Nuevas herramientaspedagógicas: laboratorio virtual. Visión electrónica, 9(2), 277-284.https://revistas.udistrital.edu.co/index.php/visele/article/view/11034.; Luengas, L. A., Rincón López, D. A., & Galeano, K. J. (2010). Realidad virtual noinmersiva: instrumentos electrónicos de aplicación educativa. Visión electrónica, 4(1), 94-105.https://revistas.udistrital.edu.co/index.php/visele/article/view/275.; K. Cacua, O. Amell y L. Olmos, "Estudio comparativo entre las propiedades decombustión de la mezcla biogás-aire normal y biogás-aire enriquecido con oxígeno", Revista Ingeniería e Investigación, vol. 1, pp. 233-241, 2011.; R. Liriano, Aplicación de biofertilizantes como alternativa nutricional, ambiental y económica en la agricultura urbana, España: Universidad de Girona, 2005.; A. Padilla y J. Rivero, "Producción de Biogás y compost a partir de Residuos Orgánicos recolectados del complejo arqueológico Huaca de la Luna", Ciencia y Tecnología, vol. 1, pp. 29-43, 2016.; L. O. González Salcedo y Y. Olaya Arboleda, Fundamentos para el diseño de Biodigestores, Departamento de Ingeniería, 2009.; M. T. Madigan, J. M. Martinko y J. Parker, Biología de los microorganismos, 10 ed, 2004.; A. Pulido y J. Espitia, Diseño e implementación de un sistema de supervisión, monitoreo y control de temperatura, presión y tiempo de proceso en un sistema de digestión anaerobia de biomasa (contenido ruminal bovino) a escala de laboratorio, Bogotá: Universidad Distrital Francisco José de Caldas, 2016.; G. Bastin, "On-line estimation and adaptive control of bioreactors", Elsevier, vol. 1, 2013.; S. Hassam, E. Ficara, A. Leva y J. Harmand, "A generic and systematic procedure to derive a simplified model from the anaerobic digestion model No. 1 (ADM1)", Biochemical Engineering Journal, pp. 99, 193-203, 2015.; E. Ficara, S. Hassam, A. Allegrini, A. Leva, F. Malpei y G. Ferretti, "Anaerobic digestion models: a comparative study. IFAC Proceedings.", vol. 45(2), pp. 1052- 1057, 2012.; J. A. Jiménez, G. Pomboza y J. A. Holgado, «El gesto aplicado al control de dispositivosen,» Jornadas SARTECO, Ecuador, 2017.; O. F. Olivera, J. A. Cuervo, y F. N. Giraldo Ramos, “Sistema de control de posición angularaplicado a dispositivos RF", Visión Electrónica, vol. 5, no. 2, pp. 42-58, 2011.; T. G. Zimmerman, J. Lanier, C. Blanchard, S. Bryson, and Y. Harvill, “A hand gestureinterface device,” ACM SIGCHI Bull., vol. 17, no. SI, pp. 189 192, 1986.; Omega engineering, «Omega ENGINEERING,» es.omega.com, [En línea]. Available:https://es.omega.com/prodinfo/acelerometro.html. [Último acceso: 11 08 2019].; tdk, «Datasheet MPU60XX,» [En línea]. Available: https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf. [Último acceso: 11 08 2020].; Naylamp Mechatronics, «Naylamp Mechatronics,» Naylamp Mechatronics, [En línea].Available:https://naylampmechatronics.com/blog/45_Tutorial-MPU6050-Acelerómetro-y-Giros copio.html. [Último acceso: 11 08 2019].; Arduino, «arduino.cl,» arduino.cl, [En línea]. Available: http://arduino.cl/arduino-nano/.[Último acceso: 15 08 2019].; J. J. M. Fuentes, Fundamentos de radiación y radiocomunicación, Sevilla: Departamentode Teoría de la Señal y Comunicaciones, 2012.; J. Vargas, G. Poveda y V. Martinez, «Dispositivo inalámbrico para el control de,»ESPACIOS, vol. 39, nº 45, p. 9, 2018.; M. A. Arenas, J. M. Palomares, L. Girard, J. Olivares y J. M., «Diseño y Construcciónde un Guante de Datos mediante Sensores de Flexibilidad y acelerómetro,» researchgate, España, 2011.; K. K. Abgaryan and I. S. Kolbin, “Calculation of Heat Transfer in NanosizedHeterostructures,” Russ. Microelectron., vol. 48, no. 8, pp. 559–563, 2019, doi:10.1134/S1063739719080031.; A. R. Shabaan, S. M. El-Metwally, M. M. A. Farghaly, and A. A. Sharawi, “PID and fuzzylogic optimized control for temperature in infant incubators,” 2013 Proc. Int. Conf. Model. Identif. Control. ICMIC 2013, no. Icmic, pp. 53–59, 2013.; D. M. Ovalle M and L. F. Cómbita A., “Teaching basic control concepts with a home-madethermal system,” IEEE Glob. Eng. Educ. Conf. EDUCON, no. April, pp. 739–744, 2014, doi:10.1109/EDUCON.2014.6826176.; S. A. Adnan, A. Muhammad, and Z. Shareef, “Development of a low cost thermalfeedback system for basic control education,” Proc. 14th IEEE Int. Multitopic Conf. 2011, INMIC 2011, pp. 228–232, 2011, doi:10.1109/INMIC.2011.6151478.; R. Urbieta Parrazales, “Diseño, Simulación y Construcci?n de un Control PID Aplicado aun Sistema Térmico,” Polibits, vol. 15, pp. 11–19, 1995, doi:10.17562/pb-15-2.; C. Close, Modeling and Analysis of Dynamic Systems. 2002.; F. Navas, “DISEÑO Y CONSTRUCCION DE CAJA DE TRANSFERENCIA DE CALOR (GUARDED HOT BOX ),” 2007.; J. Bravo, G. López, R. Rodríguez, and F. J. Sabina, “Acerca de la homogeneización ypropiedades efectivas de la ecuación del calor On homogenization and effective properties of the heat equation Resumen,” pp. 149–159, 2013.; E. Significativas, Electrónica : teoría de circuitos y dispositivos electrónicos.; P. E. Allen, Operational amplifiers and linear integrated circuits, vol. 71, no. 9. 2008.; N. Ruangpayoongsak, J. Sumroengrit, & M. Leanglum, “A floating waste scooperrobot on water surface”, In 2017 17th International Conference on Control, Automation and Systems (ICCAS), pp. 1543-1548, IEEE, October 2017.; I Baturone, Robótica: manipuladores y robots móviles. Marcombo, 2005.; P. Jorge-Sanz, "Robots industriales colaborativos: una nueva forma de trabajo",Seguridad y Salud en el trabajo 95, pp. 6-10, 2018.; H. Thomas, S. Bensch. "Understandable robots-what, why, and how." Paladyn,Journal of Behavioral Robotics 9,pp. 110-123. no. 1, 2018.; B. Andrew, E. F. Buffie, and L.F. Zanna. "Robots, growth, and inequality." Finance &Development 53, pp. 10-13, no. 3, 2016.; S. Martínez, A. Carvajal, D. Loza, A. Ibarra, and L. Segura. "Collaborative two-armrobotic torso for the development of an assembly process." In 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), pp. 1-6. IEEE, 2017.; T.I., Getting Started MSP430G2553 Value Line LaunchPad Workshop Series, [Enlínea]. Disponible en: https://training.ti.com/getting-started-msp430g2553-launchpad-part-1.; D. Anderson, G. Constante, and T. Arrigoni. "Arquitetura FPGAs CPLDs da Xilinx."; Creus-Solé, “Instrumentación industrial”, 8va. ed. México: Alfaomega Grupo Editor, 2011.; M. A. Pérez-García, et al., “Instrumentación electrónica”, Madrid: Thomson, 2004.; Manuel, et al., “Instrumentación virtual adquisición, procesado y análisis de señales”,1era ed. Barcelona: UPC, 2001.; O. F. Corredor, et al. “Diseño e implementación de filtros digitales”. Visión electrónica,vol. 3, no. 1, pp. 55-56,2009. https://doi.org/10.14483/22484728.691.; Silicon Labs, “Using microcontrollers in digital signal processing applications”. AN219, Rev. 0.2 8/08. https://www.silabs.com/documents/public/application-notes/an219.pdf.; Hernández y E. Jacinto, “Una nueva metodología en el diseño de filtros digitales FIR sobre FPGA”. Visión electrónica, vol. 3, no. 2, pp. 40-47, 2009. https://doi.org/10.14483/22484728.2834.; V. M. Gómez, et al. “Diagnóstico de rodamientos con vibraciones mecánicas einstrumentos virtuales”. Visión electrónica, vol. 8, no. 2, pp. 107-113, 2014. https://doi.org/10.14483/22484728.9881.; National Instruments, “Strain gauge measurement - A tutorial”, Aplication Note 078, 2018.; J. Horn y G. Gleason, “Weigh Scale Applications for the MCP3551”, AN1030 Microchip, 2006.; F. Quiles-Latorre, et al., “Diseño del interfaz de una balanza electrónica basada en una celda de carga,” en Libro de catas SAAAEI2018, Córdoba, pp. 272-277, 2018.; J. Hernández-Jiménez y M. Fabela-Gallegos, “Diseño y construcción de un prototipo para determinar el peso de vehículos ligeros en movimiento”, 2004.; Rice Lake Weighing Systems, “Load cell and weigh module handbook”, 2017.; OIML, “Metrological regulation of load cells”, OIML R 60-1, 2017.; National Instruments, “User guide and specifications NI USB-6008/6009”, 2007. C. E. Pardo-Beainy, “Instrumentación Virtual, Control y Adquisición de Datos para Unidades de Cuidados Intensivos”, 2007.; G. Tem, “Concurso en Ingeniería de Control 2020,” 2020.; G. G. Slabaugh, “Computing Euler angles from a rotation matrix,” denoted as TRTAImplement. from httpwww starfireresearch comservicesjava3dsamplecodeFlorinE ulers html, vol. 6, no. 2000, pp. 1–6, 1999.; L. Euler, “Formvlae generales pro translatione qvacvnqvve corporvm rigidor,” NoviCommentarii academiae scientiarum Petropolitanae, vol. 20. pp. 189–207, 1776.; D. Entwurf, “Der Entwurf linearer Regelungssysteme im Zustandsraum,” vol. 1, no. 8,1972.; D. D. E. I. Eléctrica and J. P. S. V, “Desarrollo de software para inspección técnica deuna aplicación CPM,” 2017.; S. C. C. Navarrete, “Control avanzado de un sistema de refrigeración,” 2019.; "Measures of controlled system performance.” [Online]. Available: http://www.online-courses.vissim.us/Strathclyde/measures_of_controlled_system_pe.htm. [Accessed: 20-Nov-2020].; Á. Valera Fernández, Modelado y control en el espacio de estados. 2016.; O. A. Esquivel Flores, “Análisis de observabilidad y controlabilidad para sistemasdiferenciaslmente planos. Aplicación a un sistema de oscilaciones de calcio,” p. 107, 2007.; J. Ángel and S. Blanco, “Diseño en el Espacio de Estados,” pp. 1–9, 2017.; https://hdl.handle.net/11349/31383; Universidad Distrital Francisco José de Caldas.
Availability: https://hdl.handle.net/11349/31383
-
6
Authors: et al.
Contributors: et al.
Subject Terms: Robótica, Agentes inteligentes, Inteligencia artificial, Redes neuronales, Automatización, Bioingeniería, Platafomas web, Prótesis, TIC, Procesamiento de datos, Generadores de energía, Energía -- Congresos, conferencias, etc. -- Memorias, Bioingeniería -- Congresos, Sistemas de control inteligente -- Congresos, Procesamiento de señales -- Congresos, Automatización -- Congresos, Desarrollo de prototipos -- Congresos, Ingeniería biomédica -- Congresos, Tecnologías de la información y de la comunicación -- Congresos, Procesamiento digital de imágenes -- Congresos, Redes neuronales (Computadores) -- Congresos, Inteligencia artificial -- Congresos, Robotics, Intelligent agents, Artificial intelligence, Neural networks, Automation, Bioengineering
File Description: pdf; application/pdf
Relation: Congreso Internacional de Electrónica Control y Telecomunicaciones.; Borrero Guerrero, H., Baquero Velasquez, A.E., Barrero, J.F., Côco, D.Z., Risardi, J.C., Magalhães, D.V. and Becker, M., 2014. “Orientation (yaw) fuzzy controller applied to a car-like mobile robot prototype”. In 2014 IEEE 5th Colombian Workshop on Circuits and Systems (CWCAS). pp. 1–6. doi:10.1109/CWCAS.2014.6994603.; Higuti, V.A.H., Guerrero, H.B., Velasquez, A.E.B., Pinto, R., Tinelli, L.M., Magalhães, D.V. and Milori, D., 2015. “Lowcost embedded computer for mobile robot platform based on raspberry board”. In ABCM International Congress of Mechanical Egineering (Cobem2015), Rio de Janeiro, Brazil.; Guerrero, H.B., 2016. Desenvolvimento de um sistema de controle em um robô móvel agrícola em escala reduzida para deslocamento entre fileiras de plantio. Ph.D. thesis, Escola de Engenharia de São Carlos, Universidad de Sao Paulo.; Guerrero, H.B., 2016. Desenvolvimento de um sistema de controle em um robô móvel agrícola em escala reduzida para deslocamento entre fileiras de plantio. Ph.D. tesis, Escola de Engenharia de São Carlos, Universidad de Sao Paulo.; Ni, J., Wang, Y., Li, H. and Du, H., 2022. “Path tracking motion control method of tracked robot based on improved lqr control”. 2022 41st Chinese Control Conference (CCC). doi:10.23919/CCC55666.2022.9902113.; Ben Halima Abid, D., Allagui, N.Y. and Derbel, N., 2017. “Navigation and trajectory tracking of mobile robot based on kinematic pi controller”. In 2017 18th International Conference on Sciences and; Allagui, N.Y., Abid, D.B. and Derbel, N., 2019. “Autonomous navigation of mobile robot with combined fractional order pi and fuzzy logic controllers”. In 2019 16th International Multi-Conference on Systems, Signals Devices (SSD). pp. 78–83. Doi:10.1109/SSD.2019.8893176.; Lentin, J., 2018. “Robot operating system for absolute beginners”. Apress, Berkeley, CA.; Nevludov, I., Sychova, O., Reznichenko, O., Novoselov, S., Mospan, D. and Mospan, V., 2021. “Control system for agricultural robot based on ros”. 2021 IEEE International Conference on Modern Electrical and Energy Systems (MEES). pp. 1–6. doi:10.1109/MEES52427.2021.9598560.; Megalingam, R.K., Nagalla, D., Nigam, K., Gontu, V. and Allada, P.K., 2020. “Pid based locomotion of multi-terrain robot using ros platform”. 2020 Fourth International Conference on Inventive Systems and Control (ICISC). pp. 751–755. doi:10.1109/ICISC47916.2020.9171152.; Alam Bhuiyan, Ifte Khairul. (2017). LiDAR Sensor for Autonomous Vehicle. 10.13140/RG.2.2.16982.34887/1.; Lin, Z., Xiong, Y., Dai, H. and Xia, X., 2017. “An experimental performance evaluation of the orientation accuracy of four nine-axis mems motion sensors”. 2017 5th International Conference on Enterprise Systems (ES). pp. 185–189. doi:10.1109/ES.2017.37.; Henry, B.G., David, Q.Y., Estivent, C.M.J., Arbey, C.C.L., Alexis, C.R.Y. and Andrés, S.R., 2020. “Lidar readings based mobile robot wall-following task using a reactive fuzzy control system - a low-cost experimental approach”. URL https://hemeroteca.unad.edu.co/index.php/memorias/article/view/4201.; Guerrero, H.B., 2016. Desenvolvimento de um sistema de controle em um robô móvel agrícola em escala reduzida para deslocamento entre fileiras de plantio. Ph.D. tesis, Escola de Engenharia de São Carlos, Universidade de Sao Paulo.; S.N. Sivanandam, S. Sumathi. and S.N. Deepa, "Introduction to Fuzzy Logic using MATLAB", Springer-Verlag, Berlin, Germany, 2007.; M. Garcia Sanz and M. Motilva Casado, "Herramientas para el estudio de robots de cinemática paralela: Simulador y prototipo experimental," Revista Iberoamericana de Automática e Informática Industrial, RIAI, vol. 2, no. 2, pp. 73-81, 2005. https://polipapers.upv.es/index.php/RIAI/article/view/8064; A. I. Aureles Cabrera, Robot paralelo tipo STEWART para la rehabilitación de tobillo, Hidalgo, Mexico: Universidad Politécnica de Tulancingo, 2019. http://www.upt.edu.mx/Contenido/Investigacion/Contenido/TESIS/MAC/2019/MAC_T_2 019_01_AAC.pdf; Instituto de Investigación de Seguridad en la Conducción IOWA, «Simulador NADS - 1,» Univesidad de Iowa, 2023. [En línea]. Available: https://dsri.uiowa.edu/nads-1. [Último acceso: 02 2023].; SIMAERO, "AIRBUS A340 FFS," SIMAERO, 2023. [Online]. Available: https://www.sim.aero/a340/. [Último acceso 02 2023].; O. Altuzarra, Y. San Martín, E. Amezua and A. Hernández, "Motion pattern analysis of parallel kinematic machines: A case study," Robotics and Computer-Integrated Manufacturing, vol. 25, no. 2, pp. 432-440, 2009. https://doi.org/10.1016/j.rcim.2008.01.007; J. Fernandes and A. Selvakumar, "Kinematic and Dynamic Analysis of 3PUU Parallel Manipulator for Medical Applications," Procedia Computer Science, vol. 133, no. 1, pp. 604-611, 2018. https://doi.org/10.1016/j.procs.2018.07.091; I. Ben Hamida, M. Amine Laribi, A. Mlika, L. Romdhane, S. Zeghloul and G. Carbone, "Multi-Objective optimal design of a cable driven parallel robot for rehabilitation tasks," Mechanism and Machine Theory, vol. 156, no. 1, pp. 104-141, 2021. https://doi.org/10.1016/j.mechmachtheory.2020.104141; K. Duarte Barón and C. Borrás Pinilla, «Generalidades de robots paralelos,» Revista visión electrónica, algo más que un estado sólido, vol. 10, nº 1, pp. 1-11, 2016. https://doi.org/10.14483/22484728.11711; K. Duarte Barón, C. Borrás Pinilla and J. J. Gil Pelaez, «Dynamic analysis and simulation of computed torque control of a parallel robot 3SPS - 1U,» de IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellín, Colombia, 2019. https://doi.org/10.1109/CCAC.2019.8921238; C. Gosselin and J. Angeles, "Singularity analysis of closed-loop kinematic chains," IEEE Transactions on Robotics and Automation, vol. 6, no. 3, pp. 281-290, 1990. https://doi.org/10.1109/70.56660; J. Kardos, "Robust Computed Torque Method of Robot Tracking Control," in 22nd International Conference on Process Control (PC19), Strbske Pleso, Slovakia, 2019. https://doi.org/10.1109/PC.2019.8815088; C. Jun and W. Lin, "Track Tracking of Double Joint Robot Based on Sliding Mode Control," in IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE), Dalian, China, 2020. https://doi.org/10.1109/ICISCAE51034.2020.9236895; W. X. Xu, G. Z. Cao, Y. P. Zhang, J. C. Chen, D. P. Tan and Z. Q. Ling, "Adaptive backstepping sliding mode control of lower limb exoskele-ton robot based on combined double power reaching law," in 2th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Baishan, China, 2022. https://doi.org/10.1109/CYBER55403.2022.9907279; X. Chen, H. Chen, Y. Huang and Q. Huang, "Adaptability Control Towards Complex Ground Based on Fuzzy Logic for Humanoid Robots," IEEE Transactions on Fuzzy Systems, vol. 30, no. 6, pp. 1574-1584, 2022. https://doi.org/10.1109/TFUZZ.2022.3167458; D. Li, J. Pan, J. Liu, M. Wang and J. Yu, "Model Predictive Control Based Path Following of an Amphibious Robot," in 0th Chinese Control Conference (CCC), 2021. https://doi.org/10.23919/CCC52363.2021.9549348; Y. Zhang, L. Sol and Y. Zhang, "Research on Algorithm of Humanoid Robot Arm Control System Based on Fuzzy PID Control," in International Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS), Bristol, United Kingdom, 2022. https://doi.org/10.1109/AIARS57204.2022.00082; K. Duarte Barón and C. Borrás Pinilla, Analisis, diseño y simulacion de un control robusto para un robot paralelo de 3 grados de libertad, Bucaramanga, Colombia, Universidad Industrial de Santander, 2019. https://noesis.uis.edu.co/items/c91bc6a4-e228-44f8- 8ab4-33000e9e8688; J. J. Slotine and W. Li, Applied nonlinear control, New Jersey: Prentice Hall, 1991.; S. Iqbal and A. I. Bhatti, "Robust sliding-mode controller design for a stewart platform," in Proceedings of International Bhurban Conference on Applied Sciences, Islamabad, Pakistan, 2007. https://doi.org/10.1109/IBCAST.2007.4379924; C. Zhang and L. Zhang, "Kinematics analysis and workspace investigation of a novel 2- DOF parallel manipulator applied in vehicle driving simulator," Robotics and ComputerIntegrated Manufacturing, vol. 29, no. 2, pp. 113-120, 2013. https://doi.org/10.1016/j.rcim.2012.11.005; Hongwei Gao, Jin An, Chee Kai Chua, David Bourell, Che-Nan Kuo, Dawn T.H. Tan, 3D printed optics and photonics: Processes, materials and applications, Materials Today, 2023, ISSN 1369-7021, https://doi.org/10.1016/j.mattod.2023.06.019; C. Wu, L. Wu, G. Shang and H. Guo, "Application and Research of 3D Printing Technology in the Field of Architecture," 2021 4th International Conference on Electron Device and Mechanical Engineering (ICEDME), Guangzhou, China, 2021, pp. 71-74, https://doi.org/10.1109/ICEDME52809.2021.00024; Jens Oprel, Gerjan Wolterink, Jurnan Schilder, Gijs Krijnen, Novel 3D printed capacitive shear stress sensor, Additive Manufacturing, Volume 73, 2023, 103674, ISSN 2214- 8604, https://doi.org/10.1016/j.addma.2023.103674; Jun Ren, Fan Wu, Erwei Shang, Dongya Li, Yu Liu, 3D printed smart elastomeric foam with force sensing and its integration with robotic gripper, Sensors and Actuators A: Physical, Volume 349, 2023, 113998, ISSN 0924-4247, https://doi.org/10.1016/j.sna.2022.113998; Guo Liang Goh, Wai Yee Yeong, Jannick Altherr, Jingyuan Tan, Domenico Campolo, 3D printing of soft sensors for soft gripper applications, Materials Today: Proceedings, Volume 70, 2022, Pages 224-229, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2022.09.025; W. Zhang, J. Li, H. Liu and G. Jin, "Research on Embedded 3D Printing for Magnetic Soft Robots," 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, 2021, pp. 518-523, https://doi.org/10.1109/NEMS51815.2021.9451436; M. Abouelmajd, A. Bahlaoui, I. Arroub, M. Lagache and S. Belhouideg, "Mechanical Characterization of PLA Used in Manufacturing of 3D Printed Medical Equipment for COVID-19 Pandemic," 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), Kenitra, Morocco, 2020, pp. 1-5, https://doi.org/10.1109/ICECOCS50124.2020.9314444; S. Zhang, G. Xia, X. Hao, Y. Zhang, W. Chen and Z. Zhou, "Design Optimization and Simulation Analysis of Screw Extrusion 3D Printing Screw," 2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), Ma'anshan, China, 2022, pp. 400-404, https://doi.org/10.1109/WCMEIM56910.2022.10021447; B. B. Kanbur, S. Shen, Y. Zhou and F. Duan, "Neural network-integrated multiobjective optimization of the 3D-printed conformal cooling channels," 2020 5th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 2020, pp. 1-6, https://doi.org/10.23919/SpliTech49282.2020.9243730; D. Wang, H. Wang and Y. Wang, "Continuity Path Planning for 3D Printed Lightweight Infill Structures," 2021 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS), Shenyang, China, 2021, pp. 959-962, https://doi.org/10.1109/TOCS53301.2021.9688877; M. H. Ali, G. Yerbolat and S. Amangeldi, "Material Optimization Method in 3D Printing," 2018 IEEE International Conference on Advanced Manufacturing (ICAM), Yunlin, Taiwan, 2018, pp. 365-368, https://doi.org/10.1109/AMCON.2018.8614886; R F. Peng, "Prototyping to Mass Production: Automated CAD Model and G-Code Optimization Framework for Industrial 3D Printing," 2023 9th International Conference on Mechatronics and Robotics Engineering (ICMRE), Shenzhen, China, 2023, pp. 203- 206, https://doi.org/10.1109/ICMRE56789.2023.10106588; Mohit Bhayana, Jaswinder Singh, Ankit Sharma, Manish Gupta, A review on optimized FDM 3D printed Wood/PLA bio composite material characteristics, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.03.029; Aliza Rabinowitz, Paul M. DeSantis, Cemile Basgul, Hannah Spece, Steven M. Kurtz, Taguchi optimization of 3D printed short carbon fiber polyetherketoneketone (CFR PEKK), Journal of the Mechanical Behavior of Biomedical Materials, Volume 145, 2023, 105981, ISSN 1751-6161, https://doi.org/10.1016/j.jmbbm.2023.105981; Mihir Mogra, Ofer Asaf, Aaron Sprecher, Oded Amir, Design optimization of 3D printed concrete elements considering buildability, Engineering Structures, Volume 294, 2023, 116735, ISSN 0141-0296, https://doi.org/10.1016/j.engstruct.2023.116735; C. Wu, C. Dai, G. Fang, Y. -J. Liu and C. C. L. Wang, “General Support-Effective Decomposition for Multi-Directional 3-D Printing”, IEEE Transactions on Automation Science and Engineering, vol. 17, no. 2, pp. 599-610, April 2020, doi: https://doi.org/10.1109/TASE.2019.2938219; L. Cheng and A. To, “Part-scale build orientation optimization for minimizing residual stress and support volume for metal additive manufacturing: Theory and experimental validation,” Computer-Aided Design, vol. 113, pp. 1–23, Aug. 2019, doi: https://doi.org/10.1016/j.cad.2019.03.004; J. Jiang, X. Xu, and J. Stringer, “Optimization of process planning for reducing material waste in extrusion based additive manufacturing,” Robotics and Computer-Integrated Manufacturing, vol. 59, pp. 317–325, Oct. 2019, doi: https://doi.org/10.1016/j.rcim.2019.05.007; George E. P. Box. “Evolutionary Operation: A Method for Increasing Industrial Productivity.” Journal of the Royal Statistical Society. Series C (Applied Statistics) 6, no. 2 (1957): 81–101. https://doi.org/10.2307/2985505; J. C. Guacheta-Alba, S. Gonzalez, D. A. Nunez, M. Mauledoux, O. Aviles, "3D printing part orientation optimization: discrete approximation of support volume". International Journal of Electrical and Computer Engineering, vol 12. pp. 5958-5966, 2022. https://doi.org/10.11591/ijece.v12i6.pp5958-5966; L. Wing-Yue Geoffrey , M. Sharaf and N. Goldie, "Human-Robot Interaction for Rehabilitation Robots," in Robotic Assistive Technologies: Principles and Practice, Boca Raton, CRC Press, Taylor & Francis Group, 2017, pp. 26-27, 40.; C. Bodine, L. Sliker, M. Marquez, C. Clark, B. Burne and J. Sandstrum, "Social Assistive Robots for Children with Complex Disabilities," in Robotic Assitive Tecnologies: Principles and Practice, Boca Raton, CRC Press, Taylor & Francis Group, 2017, pp. 263, 295.; R. Baker, "Gait analysis methods in rehabilitation," J. Neuroeng. Rehabil., vol. 3, p. 4, 2006.; J. C. Pulido, C. Suárez-Mejías, J. C. González, A. Dueñas Ruiz, P. Ferrand Ferri, M. E. Martínez Sahuquillo, C. Echevarría Ruiz De Vargas, P. Infante-Cossio and C. L. Parra Calderón, "A Socially Assistive Robotic Platform for Upper-Limb Rehabilitation," IEEE ROBOTICS & AUTOMATION MAGAZINE, pp. 24-39, 2019.; G. Emre Cemal, C. YuJung and K. ChangHwan , "Imitation of Human Upper-Body Motions by Humanoid Robots," 16th International Conference on Ubiquitous Robots (UR), p. 24, 2019.; K. Darvish, L. Penco, J. Ramos, R. Cisneros, J. Pratt, E. Yoshida, S. Ivaldi and D. Pucci, "Teleoperation of Humanoid Robots: A Survey," Computer Science, pp. 1-21, 202.; J. Valčík, Similarity Models for Human Motion Data, Brno: Masaryk University, 2016.; P. Kopniak, "Motion capture using multiple Kinect controllers," Przeglad. Elektrotechniczny, 91(8), pp. 26-29, 2015.; L. L. Gómez Echeverry, A. M. Jaramillo Henao, M. A. Ruiz Molina, S. . M. Velásquez Restrepo, C. A. Páramo Velásquez and G. J. Silva Bolívar, "Human motion capture and analysis systems: a systematic review," PROSPECTIVA Vol. 16 - No. 2, pp. 24-34, 2018.; N. Ltda., Axis Neuron User Guide.; A. M. Norjasween, F. A. khtar Hanapiah, R. A. Abdul Rahman and H. Yussof, "Emergence of Socially Assistive Robotics in Rehabilitation for Children with Cerebral Palsy: A Review," International Journal of Advanced Robotic Systems, pp. 1-7, 2016.; S. Fojt˚u, "Nao Localization and Navigation Based on Sparse 3D Point Cloud Reconstruction," CZECH TECHNICAL UNIVERSITY IN PRAGUE, Praga, 2011.; Revista de Robots, "ROBOT NAO PARA EMPRESA Y EDUCACIÓN," Revista de Robots, 8 junio 2023. [Online]. Available: https://revistaderobots.com/robots-y-robotica/robot-naocaracteristicas-y-precio/?cn-reloaded=1. [Accessed 2023 junio 24].; University of Wisconsin-Madison, "Biovision BVH," 2023. [Online]. Available: https://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html.; B. Lutjens, "perc-neuron-ros-ur10," 2019. [Online]. Available: https://github.com/blutjens/perc_neuron_ros_ur10.; S. Haller, "perception-neuron-ros," 2017. [Online]. Available: https://github.com/smhaller/perception-neuron-ros.; O. Robotics, "Open Robotics," 2019. [Online]. Available: http://wiki.ros.org/nao.; C. Girard, D. Calderón de León, A. Arafat Lemus, V. Ferman and J. Fajardo, "A Motion Mapping System for Humanoids that Provides Immersive Teleprescence Experiences," Universidad Galileo, 2020.; B. M. Lütjens, "Real-Time Teleoperation of Industrial Robots with the Motion Capture System Perception Neuron," TECHNISCHE UNIVERSITÄT MÜNCHEN, Munich, 2017.; I. Almetwally and M. Mallem, "Real-time Tele-operation and Tele-walking of Humanoid Robot Nao using Kinect Depth Camera," IEEE, pp. 1-4, 2013.; C. Gu, L. Weicong, X. He, Z. Lei and Z. Mingming, "IMU-based motion capture system for rehabilitation applications: A systematic review," Biomimetic Intelligence and Robotics, vol. 3, no. 2, pp. 1-13, 2023.; Ministerio de Educación Nacional, «¿Cómo formular e implementar los resultados de aprendizaje?,» 2021. [En línea]. Available: https://www.mineducacion.gov.co/1780/articles-408425_recurso_5.pdf. [Último acceso: 12 septiembre 2023].; NASA, «Los Rovers del Marte,» 23 marzo 2021. [En línea]. Available: https://spaceplace.nasa.gov/mars-rovers/sp/. [Último acceso: 10 septiembre 2023].; J. J. Lugo, «Rover espacial SR-001 diseñado para descubrir nuevos mundos,» 2023. [En línea]. Available: https://ideasdi.com/diseno-transporte/rover-espacial-sr-001/. [Último acceso: 9 septiembre 2023].; TN, «La NASA diseñó un rover que hace rápel para desniveles de otros planetas,» 16 octubre 2020. [En línea]. Available: https://tn.com.ar/tecno/2020/10/16/la-nasadiseno-un-rover-que-hace-rapel-para-desniveles-de-otros-planetas/. [Último acceso: 12 septiembre 2023].; x. m. J. G. y. R. L. Christian Montaleza, «Diseño de un prototipo de robot con geometría Rocker-Bogie,» Enfoque UTE , vol. 13, nº 1, pp. 82-96, 2022.; M. R. H. S. y. M. Santos, «Primera aproximación de diseño de un rover minimalista bio-inspirado,» de XXXVII jornada de automatica, Madrid, 2016.; C. A. L. Talavera, «Diseño de un vehículo a tracción humana para participar en el NASA Human Rover Challenge,» 2022. [En línea]. Available: https://hdl.handle.net/20.500.12404/24409. [Último acceso: 9 septiembre 2023].; D. L. L. y. J. A. A. O. Diana Marcela Hernandez Rincón, «Diseño y construccion de un vehículo autónomo tipo rover -DIDAJO-,» 2005. [En línea]. Available: http://biblioteca.usbbog.edu.co:8080/Biblioteca/BDigital/37506.pdf. [Último acceso: 8 septiembre 2023].; H. . A. Carvajal Pulido, J. D. Bohórquez Guerra y G. Carrasquilla Mercado, «Diseño y construcción de un prototipo a escala de vehículo tipo rover no tripulado para la siembra, fumigación y transporte de productos agrícolas en terrenos irregulares del corregimiento de Berlín Santander,» junio 2021. [En línea]. Available: https://repository.unab.edu.co/handle/20.500.12749/14232. [Último acceso: 5 septiembre 2023].; Pavcowavin, «5 beneficios de usar tuberías PVC en tu casa,» 12 marzo 2021. [En línea]. Available: https://pavcowavin.com.co/blog/beneficios-de-usar-tuberiaspvc#:~:text=Las%20tuber%C3%ADas%20de%20policloruro%20de,como%20aguas %20lluvia%20y%20ventilaci%C3%B3n. [Último acceso: 6 septiembre 2023].; Electrotekmega, «Motor Reductor Faulhaber,» 2023. [En línea]. Available: https://electrotekmega.com/producto/motor-reductor-faulhaber/. [Último acceso: 10 septiembre 2023].; Mvelectronica, «Motorreductor Faulhaber Con Encoder De Velocidad 12v 64:1 120rpm 2342l012cr,» 2023. [En línea]. Available: https://mvelectronica.com/producto/motorreductor-faulhaber-con-encoder-develocidad-12v-64-1-120rpm-2342l012cr. [Último acceso: 2 septiembre 2023].; Arduino.cl, «Arduino Mega 2560,» 2023. [En línea]. Available: https://arduino.cl/producto/arduino-mega2560/#:~:text=Arduino%20Mega%20es%20una%20tarjeta,implementa%20el%20len guaje%20Processing%2FWiring. [Último acceso: 10 septiembre 2023].; Arduino Spain, «Arduino Mega características y specificaciones,» 14 julio 2023. [En línea]. Available: https://arduino-spain.site/arduino-mega/. [Último acceso: 12 septiembre 2023].; Naylampmechatronics, «TUTORIAL DE USO DEL MÓDULO L298N,» 2023. [En línea]. Available: https://naylampmechatronics.com/blog/11_tutorial-de-uso-delmodulo-l298n.html. [Último acceso: 12 septiembre 2023].; Eneka SA, «MÓDULOS COMUNICACIÓN,» 2023. [En línea]. Available: https://www.eneka.com.uy/robotica/modulos-comunicacion/m%C3%B3dulobluetooth-hc05- detail.html#:~:text=Este%20m%C3%B3dulo%20bluetooth%20nos%20permite,opera ci%C3%B3n%20de%20un%20puerto%20serial. [Último acceso: 5 septiembre 2023].; Ambientesoluciones, «PRODUCTOS / BATERÍAS AGM,» 2023. [En línea]. Available: https://www.ambientesoluciones.com/portal/producto/bateria-12v9ah#:~:text=Detalles%3A,y%20descarga%20lenta%20y%20profunda. [Último acceso: 12 septiembre 2023].; Mlstatic, «FL1290,» 2023. [En línea]. Available: https://http2.mlstatic.com/D_NQ_NP_718370-MLA48587476540_122021-O.webp. [Último acceso: 10 septiembre 2023].; Habacuc Flores, «DEVELOPMENT OF A ROVER VEHICLE WITH ROCKER-BOGIE SUSPENSION FOR AGRICULTURAL INSPECTION,» 5 octubre 2016. [En línea]. Available: https://www.youtube.com/watch?v=7B1DlB6RcLQ&t=29s. [Último acceso: 7 septiembre 2023].; F. Cugurullo, "Urban Artificial Intelligence: From Automation to Autonomy in the Smart City," 2020.; Y. Liu, Q. Shi, W. Guo, and W. Liao, "A Real-time, Mobile-object Detection Approach for Unmanned Aerial Vehicle Based Forest Fire Surveillance System," 2020.; P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, "A Review of YOLO Algorithm Developments," 2022.; R. C. U. Chiroma, "Vehicle detection, counting, and classification in traffic videos: A survey," IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 10, pp. 3773-3785, 2021.; M. A. H. Akhand, "Vehicle Recognition from License Plate Number using Deep Learning," arXiv preprint arXiv:1903.09203, 2019.; J. W. Coral López, C. A. Pulgarín Ortiz, S. E. Nope, and A. Barandica, "Identificación de camiones de carga en movimiento por visión artificial," Tesis de pregrado, Escuela de Ingeniería Eléctrica y Electrónica, Universidad del Valle.; Á. Ramajo Ballester, J. González Cepeda, J. M. Armingol Moreno, and A. de la Escalera Hueso, "Reidentificación de camiones mediante técnicas de deep learning," Informe técnico, Laboratorio de Sistemas Inteligentes, Universidad Carlos III de Madrid.; R. A. Gonzalez, R. E. Ferro, and D. Liberona, "Government and governance in intelligent cities, smart transportation study case in Bogotá Colombia," Ain Shams Engineering Journal, vol. 11, no. 1, pp. 25-34, 2020.; Unesco.org. (2023, abril 20). IA por el Planeta: Destacando las innovaciones de IA para la movilidad sostenible y las ciudades inteligentes. [En línea]. Disponible en: https://www.unesco.org/es/articles/ia-por-el-planeta-destacando-las-innovaciones-de-ia-parala-movilidad-sostenible-y-las-ciudades; Redalyc.org. (S/f). [En línea]. Disponible en: https://www.redalyc.org/journal/852/85259689013/html/. Recuperado el 7 de julio de 2023.; Gómez Zapata, C. A. (2019). "Reconocimiento de objetos del hogar, usando redes neuronales convolucionales para personas con discapacidad visual." Revista Científica de Ingeniería y Tecnología, 2(2), 1-10. Disponible en: https://dialnet.unirioja.es/descarga/articulo/7436051.pdf.; Murgui, J., & García-Sánchez, A. J. (2018). "Clasificación y reconocimiento de imágenes con redes neuronales para aplicaciones industriales." Disponible en: https://riunet.upv.es/bitstream/handle/10251/115464/Murgui.pdf?sequence=1; Olabe, X. B. (s/f). "Redes Neuronales Artificiales y Sus Aplicaciones." Disponible en: https://ocw.ehu.eus/pluginfile.php/40137/mod_resource/content/1/redes_neuro/contenidos/pd f/libro-del-curso.pdf. Recuperado el 8 de julio de 2023.; Ortiz, G., & Sánchez, A. I. (2020). "Emprendimiento y tecnologías de la información y la comunicación en Bogotá." Cuadernos de Administración, 36(67), 199-211.; Torres, J., & Acosta, H. (2019). "La innovación en el ecosistema emprendedor de Bogotá." Cuadernos de Administración, 35(64), 251-262.; Uribe, F., & Guzmán, J. (2021). "La colaboración público-privada en el fomento de la innovación en Bogotá: el caso de la identificación de objetos en el contexto vial." Revista Internacional de Gestión y Economía Aplicada, 11(1), 89-101.; Bogotá se destaca como una ciudad innovadora en el CityLab 2021. (2021). [En línea]. Disponible en: https://bogota.gov.co/internacional/bogota-se-destaca-como-una-ciudadinnovadora-en-el-citylab-2021; Ministerio de Transporte y Agencia Nacional de Seguridad Vial adoptan la metodología para establecer velocidad límite y reglamentan los planes de gestión de la velocidad %7C ANSV. (2023). [En línea]. Disponible en: https://ansv.gov.co/es/prensa-comunicados/9955; Parámetros e hiperparámetros en el Machine Learning %7C Codificando Bits. (2023). [En línea]. Disponible en: https://www.codificandobits.com/blog/parametros-hiperparametrosmachine-learning/; ¿Qué es el ajuste de hiperparámetros? - Explicación de los métodos de ajuste de hiperparámetros - AWS. (2023). [En línea]. Disponible en: https://aws.amazon.com/es/whatis/hyperparameter-tuning/; Análisis del flujo vehicular Generalidades. (s/f). [En línea]. Disponible en: https://sjnavarro.files.wordpress.com/2008/08/analisis-de-flujo-vehicular-cal-y-mayor.pdf; "INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO ESCOM “Cálculo del flujo vehicular mediante segmentación de imágenes.” (s/f). [En línea]. Disponible en: https://tesis.ipn.mx/bitstream/handle/123456789/21133/C%C3%A1lculo%20del%20flujo%20v ehicular%20mediante%20segmentaci%C3%B3n%20de%20im%C3%A1genes.pdf?sequence =5&isAllowed=y; Oscar Javier Reyes-Ortiz, Mejia, M., & Juan Sebastián Useche-Castelblanco. (2019). "TÉCNICAS DE INTELIGENCIA ARTIFICIAL UTILIZADAS EN EL PROCESAMIENTO DE IMÁGENES Y SU APLICACIÓN EN EL ANÁLISIS DE PAVIMENTOS." Revista EIA, 16(31), 189–207. Disponible en: https://www.redalyc.org/journal/1492/149258931014/html/; Secretaría Distrital de Movilidad. (2014). Movilidadbogota.gov.co. https://www.movilidadbogota.gov.co/web/; L. Salcedo, "YOLO (You Only Look Once): Detección de Objetos en Tiempo Real," Mi Diario Python, Mi Diario Python, 19 de septiembre de 2018. Disponible en: https://pythondiario.com/2018/09/yolo-you-only-look-once-deteccion-de.html [26] Y. Shao, D. Zhang, H. Chu, X. Zhang, and Y. Rao, "A Review of YOLO Object Detection Based on Deep Learning," 2021.; Konda et al., "Real-Time Traffic Sign Detection and Recognition Using YOLOv3 and OpenCV," 2020.; Bhasin, "Real-time Object Detection with YOLO, OpenCV and Python," 2019.; Suresh et al., "Object Detection with YOLO for Intelligent Traffic Monitoring System," 2020.; S. Siddiqui, "Traffic Sign Detection Using YOLO v3 with OpenCV," 2020.; Propia, "Esquema general de entrenamiento usado para reconocimiento de imágenes con YOLO," [Figura], 2023.; A. Sharma, J. Pathak, M. Prakash, and J. N. Singh, "Object Detection using OpenCV and Python," International Journal of Innovative Research in Computer and Communication Engineering, vol. 8, no. 6, pp. 2736-2741, 2020.; R. Fernandez, "Detección de rostros, caras y ojos con Haar Cascad," Cursos de Programación de 0 a Experto © Garantizados, 10 de enero de 2018. Disponible en: https://unipython.com/deteccion-rostros-caras-ojos-haar-cascad/; Administrador, "Como crear tu propio DETECTOR DE OBJETOS con Haar Cascade %7C Python y OpenCV," omes-va.com, OMES, 29 de julio de 2020. Disponible en: https://omesva.com/como-crear-tu-propio-detector-de-objetos-con-haar-cascade-python-y-opencv/; E. Ángel and J. Ambrogio, "ARTÍCULOS PRESENTADOS A RADI %7C TECNOLOGÍA DE LA INFORMACIÓN Y COMUNICACIÓN." Disponible en: https://confedi.org.ar/wpcontent/uploads/2020/12/Articulo1-RADI16.pdf; Propia, "Esquema general de entrenamiento usado para reconocimiento de imágenes con Haar Cascade," [Figura], 2023.; S. S. Rao, "Vehicle detection and identification using computer vision and deep learning techniques," IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 10, pp. 2827-2836, 2018.; M. E. Gavilán, "Procesamiento de Imágenes y Visión Artificial con MATLAB," MathWorks, 2021.; MathWorks, "Visión Artificial con MATLAB: Detección y seguimiento de objetos," MathWorks, 2013.; Propia, "Esquema general de entrenamiento usado para reconocimiento de imágenes con Visión por computadora sin usar Deep Learning," [Figura], 2023.; A. Jayasree, M. Vari, P. Vishnu, and S. Medimi, "A comparative study of YOLO and Haar Cascade algorithm for helmet and license plate detection of motorcycles," 2022. [En línea]. Disponible en: https://www.diva-portal.org/smash/get/diva2:1707864/FULLTEXT02; J. Lamichhane, J. Aubertot, G. Begg, A. Birch, P. Boonekamp, S. Dachbrodt, J. Grønbech, M. Hovmøller, J. Jensen, L. Jørgensen, J. Kiss, P. Kudsk, A. Moonen, J. Rasplus, M. Sattin, J. Streito, A. Messéan, “Networking of integrated pest management: A powerful approach to address common challenges in agriculture”, J. Crop Protection, vol. 89, no. 1, pp. 139- 151, 2016. Doi: https://doi.org/10.1016/j.cropro.2016.07.011.; S. Azfar, A. Nadeem, A. Basit, “Pest detection and control techniques using wireless sensor network: a review”, J. Entomology and Zoology Studies, vol 3, no. 2, pp. 92-99, Jan. 2015.; J. Pretty, Z. Bharucha, “Integrated pest management for sustainable intensification of agriculture in Asia and Africa”, Insects, vol 6, no. 1, pp. 152-182, Mar. 2015. Doi: https://doi.org/10.3390/insects6010152.; D. Arcega, W. Lee, C. Lu, Y. Wu, P. Shih, S. Chen, J. Chung, T. Lin, “Edge-based wireless imaging system for continuous monitoring of insect pests in a remote outdoor mango orchard”, Computers and Electronics in Agriculture, vol 211, no. 108019, 2023. Doi: https://doi.org/10.1016/j.compag.2023.; H. Zhang, T. Islam, W. Lio, “Integrated pest management programme for cereal blast fungus Magnaporthe oryzae”, J. Integrative Agriculture, vol 21, no. 12, pp. 3420-3433. 2022. Doi: https://doi.org/10.1016/j.jia.2022.08.056.; D. Rustia, L. Chiu, C. Lu, Y. Wu, S. Chen, J. Chung, J. Hsu, T. Lin, “Towards intelligent and integrated pest management through an AIoT-based monitoring system”, Pest. Manage. Sci., vol 78, no. 10, pp. 4288–4302, 2022. Doi: https://doi.org/10.1002/ps.7048.; I. Ahmad and K. Pothuganti, "Smart Field Monitoring using ToxTrac: A Cyber-Physical System Approach in Agriculture", 2020 International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, pp. 723-727, 2020. Doi:10.1109/ICOSEC49089.2020.9215282.; S. Cecchi, S. Spinsante, A. Terenzi, S. Orcioni, “A Smart Sensor-Based Measurement System for Advanced Bee Hive Monitoring”, Sensors, vol 20, no. 2726, pp. 1-20, 2020. Doi: https://doi.org/10.3390/s20092726.; F. Murphy, M. Magno, P. Whelan and E. Vici, "b+WSN: Smart beehive for agriculture, environmental, and honey bee health monitoring — Preliminary results and analysis," 2015 IEEE Sensors Applications Symposium (SAS), Zadar, Croatia, pp. 1-6, 2020. Doi:10.1109/SAS.2015.7133587.; P. Saha, V. Kumar, S. Kathuria, A. Gehlot, V. Pachouri and A. S. Duggal, “Precision Agriculture Using Internet of Things and Wireless Sensor Networks”, 2023 International Conference on Disruptive Technologies (ICDT), Greater Noida, India, pp. 519-522, 2023. Doi:10.1109/ICDT57929.2023.10150678.; R. Singh, R. Berkvens and M. Weyn, “Energy Efficient Wireless Communication for IoT Enabled Greenhouses”, 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India, pp. 885-887, 2020. Doi:10.1109/COMSNETS48256.2020.9027392.; F. Kiani and A. Seyyedabbasi, “Wireless Sensor Network and Internet of Things in Precision Agriculture”, International Journal of Advanced Computer Science and Applications, vol 9, no. 6, pp. 99-103, 2018. Doi: http://dx.doi.org/10.14569/IJACSA.2018.090614.; O. Savale, A. Managave, D. Ambekar, S. Sathe, “Internet of Things in Precision Agriculture using Wireless Sensor Networks”, International Journal Of Advanced Engineering & Innovative Technology, vol 2, no. 3, pp. 1-4, Dec. 2015.; A. Sawant, J. Adinarayana and S. Durbha, “KrishiSense: A semantically aware web enabled wireless sensor network system for precision agriculture applications”, 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, pp. 4090-4093, 2014. Doi:10.1109/IGARSS.2014.6947385.; C. Prakash, L. Singh, A. Gupta, S. Lohan, “Advancements in smart farming: A comprehensive review of IoT, wireless communication, sensors, and hardware for agricultural automation”, Sensors and Actuators A: Physical, vol 362, no. 114605, pp. 1- 25, 2023. Doi: https://doi.org/10.1016/j.sna.2023.114605.; H. Jawad, R. Nordin, S. Gharghan, A. Jawad, M. Ismail, “Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review”, Sensors, vol 17, no. 1781, pp. 1-4, 2017. Doi: https://doi.org/10.3390/s17081781.; E. Avşar, N. Mowla, “Wireless communication protocols in smart agriculture: A review on applications, challenges and future trends”, Ad Hoc Networks, vol 136, no. 102982, pp. 1- 25, 2022. Doi: https://doi.org/10.1016/j.adhoc.2022.102982.; V. Starčević, M. Simić, V. Risojević and Z. Babić, “Integrated video-based bee counting and multi-sensors platform for remote bee yard monitoring”, 21st International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, pp. 1-6, 2022. Doi:10.1109/INFOTEH53737.2022.9751284.; H. Remli, K. Wan, N. Ismail, A. González, J. Corchado, M. Mohamad, “Recent Advancements and Challenges of AIoT Application in Smart Agriculture: A Review”, Sensors, vol 23, no. 7, pp. 1-22, 2023. Doi: https://doi.org/10.3390/s23073752.; S. Qazi, B. Khawaja and Q. U. Farooq, “IoT-Equipped and AI-Enabled Next Generation Smart Agriculture: A Critical Review, Current Challenges and Future Trends”, in IEEE Access, vol 10, pp. 21219-21235, 2022. Doi:10.1109/ACCESS.2022.3152544.; A. AlZubi and K. Galyna, “Artificial Intelligence and Internet of Things for Sustainable Farming and Smart Agriculture”, in IEEE Access, vol 11, pp. 78686-78692, 2023. Doi:10.1109/ACCESS.2023.3298215.; G. Sagar, B. Aastha, K. Laxman, “An introduction of fall armyworm (Spodoptera frugiperda) with management strategies: a review paper”, Nippon Journal of Environmental Science, vol 1, no. 1010, pp. 1-12, 2020. Doi: https://doi.org/10.46266/njes.1010.; C. Nicolas, B. Naila and R. Amar, “Energy efficient Firmware Over The Air Update for TinyML models in LoRaWAN agricultural networks”, 2022 32nd International Telecommunication Networks and Applications Conference (ITNAC), Wellington, New Zealand, pp. 21-27, 2022. Doi:10.1109/ITNAC55475.2022.9998338.; B. Miles, E. Bourennane, S. Boucherkha, S. Chikhi, “A study of LoRaWAN protocol performance for IoT applications in smart agriculture”, Computer Communications, vol. 164, pp. 148-157, 2020. Doi: https://doi.org/10.1016/j.comcom.2020.10.009.; D. Davcev, K. Mitreski, S. Trajkovic, V. Nikolovski and N. Koteli, “IoT agriculture system based on LoRaWAN”, 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS), Imperia, Italy, pp. 1-4, 2018. Doi:10.1109/WFCS.2018.8402368.; J. Tovar, C. Pareja, O. García, L. Gutiérrez, “Performance evaluation of LoRa technology for implementation in rural areas”, Dyna, vol 88, no. 216, pp. 69-78, Feb. 2021. Doi:10.15446/dyna.v88n216.88258.; P. Supanirattisai, K. Pimpin, W. Srituravanich and N. Damrongplasit, “Smart Agriculture Monitoring and Management System using IoT-enabled Devices based on LoRaWAN”, 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), Phuket, Thailand, pp. 679-682, 2022. Doi:10.1109/ITCCSCC55581.2022.9894956.; Y.M. Bar-On, R. Phillips, R. Milo, “The biomass distribution on earth”, Proc. Natl. Acad. Sci. U. S. A. 115, 6506–6511. 2018. https://doi.org/10.1073/pnas.1711842115; A. P. Genoud, J. Torsiello, M. Belson y B.P. Thomas, “Entomological photonic sensors: Estimating insect population density, its uncertainty and temporal resolution from transit data”, Ecological Informatics, 61, 101186, 2021. https://doi.org/10.1016/j.ecoinf.2020.101186; Murciaplaza, 2021. [En línea]. Disponible en https://murciaplaza.com/plagasenfermedades-cultivos-region-provocaron-120-millones-perdidas-2020.; N. Ardila, EL TIEMPO. 2020. [En línea]. Disponible en https://www.eltiempo.com/colombia/otras-ciudades/plaga-de-langostas-cultivosarrasados-en-los-llanos-orientales-por-una-plaga-noticias-hoy-518744; M. Huerga y S. San Juan, “El control de las plagas en la agricultura argentina. Estudio sectorial Agrícola Rural Banco Mundial/Centro de inversiones FAO”, Argentina. 2005; M. Vargas y D. Alvear, “Agricultura limpia: manejo racional de plaguicidas para control de plagas en invernaderos” [en línea]. Disponible en https://biblioteca.inia.cl/handle/123456789/6089; G. A. Holguin, B. L. Lehman, L. A. Hull, V. P. Jones y J. Park, “Electronic traps for automated monitoring of insect populations”. IFAC Proceedings Volumes, 43(26), 49- 54. 2010. https://doi.org/10.3182/20101206-3-JP-3009.00008; I. Rigakis, K. Varikou, A. Nikolakakis, Z. Skarakis, N. Tatlas y I. Potamitis, “The e-funnel trap: Automatic monitoring of lepidoptera; a case study of tomato leaf miner”. Computers and Electronics in Agriculture, 185, 106154. 2021, https://doi.org/10.1016/j.compag.2021.106154; I. Potamitis, I. Rigakis, N. Vidakis, M. Petousis y M. Weber, “Affordable Bimodal Optical Sensors to Spread the Use of Automated Insect Monitoring”. J. Sens. 2018. Article ID 3949415: https://doi.org/10.1155/2018/3949415; M. Weber, M. Geier, I. Potamitis, C. Pruszynski, M. Doyle, A. Rose, M. Geismar y J. Encarnacao. “The BG-counter, the first operative automatic mosquito counting device for online mosquito monitoring: field tests and technical outlook”. AMCA 2017 83rd Annual Meeting, 2017, pp 57.; M. Preti, F. Verheggen, S. Angeli, “Insect pest monitoring with camera-equipped traps: strengths and limitations”. J. Pest. Sci. 2020. https://doi.org/10.1007/s10340-020- 01309-4; N. Flórián, L. Gránicz, V. Gergócs, F. Tóth, M. Dombos, M. “Detecting Soil Microarthropods with a Camera-Supported Trap”. Insects. 11 (244) 2020. https://doi.org/10.3390/insects11040244; A. Gutierrez, A. Ansuategi, L. Susperregi, C. Tubío, I. Ranki ́c, L. Lenˇza, “Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases”. J. Sens. 1–15. 2019, https://doi.org/10.1155/2019/5219471; E. Goldshtein, Y. Cohen, A. Hetzroni, Y. Gazit, D. Timar, L. Rosenfeld y A. Mizrach, “Development of an automatic monitoring trap for Mediterranean fruit fly (Ceratitis capitata) to optimize control applications frequency”. Computers and Electronics in Agriculture, 139, 115-125, 2017. https://doi.org/10.1016/j.compag.2017.04.022; B. Keswani, A. Mohapatra, A. Mohanty, A. Khanna, J. Rodriguez, D. Gupta, V. De Albuquerque, “Adapting weather conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms”. Neural Comput. Appl. 31: 277–292, 2019. https://doi.org/10.1007/s00521-018-3737-1; L. García, L. Parra, J.M. Jimenez, J. Lloret, P. Lorenz, “IoT-Based Smart Irrigation Systems: An Overview on the Recent Trends on Sensors and IoT Systems for Irrigation in Precision Agriculture”. Sensors, 20(4),1042, 2020, https://doi.org/10.3390/s20041042; F.A. Paredes-Sánchez, G. Rivera, V. Bocanegra-García, H. Y. Martínez-Padrón, M. Berrones-Morales, N. Niño-García y V. Herrera-Mayorga. “Advances in control strategies against Spodoptera Frugiperda. A review”. Molecules, 26(18), 5587, 2021. https://doi.org/10.3390/molecules26185587; Ecobertura., Spodoptera frugiperda (Smith) 2023. [En línea]. Disponible en https://ecobertura.es/spodoptera-frugiperda/; Weather Spark., 2023. Average Weather in Villavicencio, Colombia. [En línea]. Disponible en https://weatherspark.com/y/24273/Average-Weather-in-VillavicencioColombia-Year-Round; S. A. Vaca Vargas, “Automated greenhouse, instrumentation and fuzzy logic”, Visión Electrónica, vol. 14, no. 1, pp. 119–127, ene. 2020. https://doi.org/10.14483/22484728.15907; A. M. Molano-Gómez; A. F. Neira-Reyes; L. H. Correa-Salazar; E. Bernal-Alzate, “Topological alternatives for photovoltaic integration in rural areas”, Visión electrónica, vol. 13, no. 1, januaryjune 2019, pp. 24-32.; Wohlers, T. (2020). "Wohlers Report 2020: 3D Printing and Additive Manufacturing State of the Industry." Wohlers Associates, Inc.; McKinsey & Company. (2018). "The next frontiers for additive manufacturing." McKinsey Digital.; Stockholm Environment Institute, J. A. Vega Araújo, M. Muñoz Cabré, y Stockholm Environment Institute, «Energía solar y eólica en Colombia: panorama y resumen de políticas 2022», Stockholm Environment Institute, mar. 2023. doi:10.51414/sei2023.016.; Wohlers, T. (2019). "Wohlers Report 2019: 3D Printing and Additive Manufacturing State of the Industry." Wohlers Associates, Inc.; Chua, C. K., Leong, K. F., & Lim, C. S. (2014). "Rapid Prototyping: Principles and Applications." World Scientific Publishing Company.; Kruth, J. P., Leu, M. C., & Nakagawa, T. (2003). "Progress in additive manufacturing and rapid prototyping." CIRP Annals - Manufacturing Technology, 52(2), 525-540.; Gibson, I., Rosen, D. W., & Stucker, B. (2015). "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing." Springer.; Cooper, R. G. (2019). "Product Leadership: Pathways to Profitable Innovation." Basic Books.; Ulrich, K. T., & Eppinger, S. D. (2015). "Product Design and Development." McGraw-Hill Education.; L. L. Hurtado-Cortés, J. A. Forero-Casallas, y V. E. Ruiz-Rosas, “Tecnologías automatizadas implementadas en la FMS HAS200”, Visión Electrónica, vol. 16, no. 1, jun. 2022.; McGrath, R. G. (2020). "Seeing Around Corners: How to Spot Inflection Points in Business Before They Happen." Houghton Mifflin Harcourt.; H. Beltrán-Cicery, D. Rojas-Sarmiento, y F. Barrera-Prieto, “Implementation of a manufacturing cell in assembly of Hanoi tower”, Visión Electrónica, vol. 16, no. 2, sep. 2022.; A. L. Vargas, "El profesional de mercadeo en tiempos de Inteligencia Artificial," IBM Colombia, 2017. [Online]. Available: https://www.revistapym.com.co/articulos/mercadeo/10851/el-profesional-de-mercadeo-entiempos-de-inteligencia-artificial.; C. F. Villa Gómez, "Mercadeo e Inteligencia Artificial," La República, 2020. [Online]. Available: https://www.larepublica.co/analisis/carlos-fernando-villa-gomez-400403/mercadeoe-inteligencia-artificial-3048716.; "Con el impulso de la Inteligencia Artificial, Colombia podría triplicar su productividad y aumentar su PIB hasta un 6.8%," Microsoft Noticias, 2019. [Online]. Available: https://news.microsoft.com/es-xl/con-el-impulso-de-la-inteligencia-artificial-colombia-podriatriplicar-su-productividad-y-aumentar-su-pib-hasta-un-6-8/; H. Wong, "Avances y Problemas en la Inteligencia Artificial de Colombia 2022," LinkedIn, 2022. [Online]. Available: https://es.linkedin.com/pulse/avances-y-problemas-en-lainteligencia-artificial-de-colombia-wong.; "IA y ChatGPT transformarán las prácticas de mercadeo," Portafolio, 2023. [Online]. Available: https://www.portafolio.co/tendencias/ia-y-chatgpt-transformaran-las-practicas-demercadeo-577916.; P. T. Hernández, "El Marco Ético para la Inteligencia Artificial en Colombia: una oportunidad para implementar proyectos de IA que beneficien a toda la ciudadanía," 2022. [Online]. Available: https://www.ccit.org.co/articulos-tictac/el-marco-etico-para-la-inteligencia-artificialen-colombia-una-oportunidad-para-implementar-proyectos-de-ia-que-beneficien-a-toda-laciudadania/.; "Inteligencia artificial: definición, historia, usos, peligros," DataScientest, 2023. [Online]. Available: https://datascientest.com/es/inteligencia-artificial-definicion.; A. Flores, "Conoce la historia del marketing digital y su evolución hasta el día de hoy," Crehana, 2021. [Online]. Available: https://www.crehana.com/blog/transformaciondigital/historia-del-marketing-digital/.; "Evolución del internet y mercadotecnia digital," Preceden, 2023. [Online]. Available: https://www.preceden.com/timelines/841917-evoluci-n-del-internet-y-mercadotecnia-digital.; "Colombia se adhiere a acuerdo sobre Inteligencia Artificial ante los países de la OCDE," Mintic, 2019. [Online]. Available: https://www.ccb.org.co/Clusteres/Cluster-de-Software-yTI/Noticias/2019/Mayo-2019/Colombia-se-adhiere-a-acuerdo-sobre-Inteligencia-Artificialante-los-paises-de-la-OCDE.; A. de Ignacio, "La Inteligencia Artificial en el marketing digital," 2023. [Online]. Available: https://www.cyberclick.es/numerical-blog/la-inteligencia-artificial-en-el-marketing-digital.; Meisam Mahdavi, Mohammad S. Javadi, João P.S. Catalão, Integrated generationtransmission expansion planning considering power system reliability and optimal maintenance activities, International Journal of Electrical Power & Energy Systems, Volume 145, 2023, 108688, ISSN 0142- 0615,https://doi.org/10.1016/j.ijepes.2022.108688. (https://www.sciencedirect.com/science/article/pii/S0142061522006846); Long Ding, Hong Wang, Kai Kang, Kai Wang, A novel method for SIL verification based on system degradation using reliability block diagram, Reliability Engineering & System Safety, Volume 132, 2014, Pages 36-45, ISSN 0951-8320, https://doi.org/10.1016/j.ress.2014.07.005. (https://www.sciencedirect.com/science/article/pii/S0951832014001604); ISO 55001:2014 Asset Management. Management systems – RequirementsThe British Standards Institution. 2014.; B. Dhilon, “Applied Reliability and Quality Fundamentals, Methods and Procedures, New Jersey: Springer, 2007.; Mohsen Firouzi, Abouzar Samimi, Abolfazl Salami, Reliability evaluation of a composite power system in the presence of renewable generations, Reliability Engineering & System Safety, Volume 222, 2022, 108396, ISSN 0951-8320, https://doi.org/10.1016/j.ress.2022.108396. (https://www.sciencedirect.com/science/article/pii/S0951832022000710); R. Yajun and M. Xiurui, "The reliability evaluation of the power system containing wind farm using the improved state space partition method," 2014 International Conference on Power System Technology, Chengdu, China, 2014, pp. 36-41, doi:10.1109/POWERCON.2014.6993498.; S. Anbazhagan, N. Kumarappan, Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT, Energy Conversion and Management, Volume 78, 2014, Pages 711-719, ISSN 0196-8904, https://doi.org/10.1016/j.enconman.2013.11.031.; Xudong Fan, Xijin Zhang, Xiong Bill Yu, Uncertainty quantification of a deep learning model for failure rate prediction of water distribution networks, Reliability Engineering & System Safety, Volume 236, 2023,109088, ISSN 0951-8320, https://doi.org/10.1016/j.ress.2023.109088. (https://www.sciencedirect.com/science/article/pii/S0951832023000030); Wei Qiu, Qiu Tang, Zhaosheng Teng, Wenxuan Yao, Jun Qiu, Failure rate prediction of electrical meters based on weighted hierarchical Bayesian,Measurement, Volume 142, 2019, Pages 21-29, ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2019.04.062. (https://www.sciencedirect.com/science/article/pii/S026322411930380X; C.Ramírez, “Phyton para finanzas CURSO PRÁCTICO”, Bogotá: Ediciones de la U, pp.223-233,2021.; C.Ramírez, “Phyton para finanzas CURSO PRÁCTICO”, Bogotá: Ediciones de la U, pp.279-311,2021.; J. Stock, “Introducción a la econometría”, Madrid: Pearson educación S.A, pp.373- 411, 2012.; G. Box, “Time Series Analysis Forecasting and Control”, New Jersey: John Wiley & Sons Ltd, pp. 2-43, 2016.; S. Raschka, “Machine Learning con PyTorch y Scikit-Learn”, Madrid: Alphaeditorial, pp.290-307, 2023.; Yanhui CHEN, Mengmeng Ma, Yuye Zou, Forecasting hourly electricity demand with nonparametric functional data analysis,Procedia Computer Science, Volume 214, 2022, Pages 428-436, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2022.11.195. (https://www.sciencedirect.com/science/article/pii/S1877050922019056); Ye Zhu, Shiwen Xie, Yongfang Xie, Xiaofang Chen, Temperature prediction of aluminum reduction cell based on integration of dual attention LSTM for non-stationary subsequence and ARMA for stationary sub-sequences, Control Engineering Practice, Volume 138, 2023,105567, ISSN 0967-0661, https://doi.org/10.1016/j.conengprac.2023.105567. (https://www.sciencedirect.com/science/article/pii/S0967066123001363); Shao, Y., Zhang, D., Chu, H., Zhang, X., & Rao, Y. (2021). A Review of YOLO Object Detection Based on Deep Learning.; Bhasin, S. (2019). Real-time Object Detection with YOLO, OpenCV and Python.; Suresh et al. (2020). Object Detection with YOLO for Intelligent Traffic Monitoring System.; Liu, Y., Shi, Q., Guo, W., & Liao, W. (2020). A Real-time, Mobile-object Detection Approach for Unmanned Aerial Vehicle Based Forest Fire Surveillance System.; Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022). A Review of YOLO Algorithm Developments.; Mauro Tucci, A. B. (s/f). "YOLO-S: A Lightweight and Accurate YOLO-like Network for Small Target Selection in Aerial Imagery".; Sharma, A., Pathak, J., Prakash, M., & Singh, J. N. (2020). Object Detection using OpenCV and Python. International Journal of Innovative Research in Computer and Communication Engineering, 8(6), 2736-2741.; “Procesamiento de Imágenes y Visión Artificial con MATLAB Video,” Mathworks.com, 2021. https://la.mathworks.com/videos/image-processing-and-computer-vision-with-matlab1597884648964.html (accessed Jul. 25, 2023).; Ricardo Alirio Gonzalez, R. Ferro, and Daríoo Liberona, “Government and governance in intelligent cities, smart transportation study case in Bogotá Colombia,” vol. 11, no. 1, pp. 25– 34, Mar. 2020, doi: https://doi.org/10.1016/j.asej.2019.05.002.; Beatriz Elena Pineda, Claudia Helena Muñoz, & Gil, H. (2018). Aspectos relevantes de la movilidad y su relación con el medio ambiente en el Valle de Aburrá: una revisión. Ingeniería Y Desarrollo, 36(2), 489–508. https://www.redalyc.org/journal/852/85259689013/html/; IA por el Planeta: Destacando las innovaciones de IA para la movilidad sostenible y las ciudades inteligentes. (2023). Unesco.org. https://www.unesco.org/es/articles/ia-por-elplaneta-destacando-las-innovaciones-de-ia-para-la-movilidad-sostenible-y-las-ciudades; Gómez Zapata, C. A. (2019). Reconocimiento de objetos del hogar, usando redes neuronales convolucionales para personas con discapacidad visual. Revista Científica de Ingeniería y Tecnología, 2(2), 1-10. https://dialnet.unirioja.es/descarga/articulo/7436051.pdf.; Olabe, X. B. (s/f). REDES NEURONALES ARTIFICIALES Y SUS APLICACIONES. Ehu.eus. Recuperado el 8 de julio de 2023, de URL: https://ocw.ehu.eus/pluginfile.php/40137/mod_resource/content/1/redes_neuro/contenidos/pd f/libro-del-curso.pdf; Murgui, J., & García-Sánchez, A. J. (2018). Clasificación y reconocimiento de imágenes con redes neuronales para aplicaciones industriales. URL: https://riunet.upv.es/bitstream/handle/10251/115464/Murgui.pdf?sequence=1; Ortiz, G., & Sánchez, A. I. (2020). Emprendimiento y tecnologías de la información y la comunicación en Bogotá. Cuadernos de Administración, 36(67), 199-211.; Torres, J., & Acosta, H. (2019). La innovación en el ecosistema emprendedor de Bogotá. Cuadernos de Administración, 35(64), 251-262.; Uribe, F., & Guzmán, J. (2021). La colaboración público-privada en el fomento de la innovación en Bogotá: el caso de la identificación de objetos en el contexto vial. Revista Internacional de Gestión y Economía Aplicada, 11(1), 89-101.; Centro de Investigación de la Universidad Distrital Francisco José de Caldas. (2023). Udistrital.edu.co. https://revistas.udistrital.edu.co/index.php/visele/article/view/18942/18701; Chiroma, R. C. U. (2021). Vehicle detection, counting, and classification in traffic videos: A survey. IEEE Transactions on Intelligent Transportation Systems, 22(10), 3773-3785. [20] Rao, S. S. (2018). Vehicle detection and identification using computer vision and deep learning techniques. IEEE Transactions on Intelligent Transportation Systems, 19(10), 2827- 2836.; Akhand, M. A. H. (2019). Vehicle Recognition from License Plate Number using Deep Learning. arXiv preprint arXiv:1903.09203.; Sandra Milena García Ávila, Cristian Alexander Vega Camacho, José Vicente Cadena López, Ricardo Alirio González Bustamante, Paola Andrea Mateus Abaunza. (2021). Diseño y aplicación de una herramienta para identificar y clasificar motocicletas mediante una red neuronal convolucional. researchgate.net. URL: https://doi.org/ISBN:978-958-53278-6-3; valentynsichkar, “Traffic Signs Detection by YOLO v3, OpenCV, Keras,” Kaggle.com, Apr. 15, 2022. https://www.kaggle.com/code/valentynsichkar/traffic-signs-detection-by-yolo-v3- opencv-keras (accessed Jul. 25, 2023).; Motor Colombia. (2022, February 23). 7.270 muertos en accidentes de tránsito en 2021. Motor Colombia; Motor Colombia. URL: https://www.motor.com.co/industria/7.270-muertos-enaccidentes-de-transito-en-2021-20220124-0001.html; R. Jiménez Moreno, O. Avilés, y D. M. Ovalle, “Red neuronal convolucional para discriminar herramientas en robótica asistencial”, Vis. Electron., vol. 12, no. 2, pp. 208–214, oct. 2018. https://doi.org/10.14483/22484728.13996; L. L. Hurtado-Cortés y J. A. Forero-Casallas, “Identification and fault detection in actuator using NN-NARX”, Vis. Electron., vol. 2, no. 2, pp. 304–312, dic. 2019. https://doi.org/10.14483/22484728.18432; Propia. (2023). Fragmento del conjunto de imágenes de entrenamiento para YOLO [Figura].; Propia. (2023). Matriz de confusión de una capacitación sobre imágenes de Camiones. [Figura].; Propia. (2023). Curva de precisión-confianza para el entrenamiento de imágenes de Camiones. [Figura].; Propia. (2023). Salida "Results.png" sobre el entrenamiento de imágenes de Camiones. [Figura].; Propia. (2023). Salida "Train.png" sobre el entrenamiento de imágenes de Camiones. [Figura].; Propia. (2023). Salida "Val.png" sobre el entrenamiento para Camiones. [Figura]; Propia. (2023). Salida de los gráficos de correlación de etiquetas para el entrenamiento de imágenes de Camiones. [Figura].; Propia. (2023). Esquema de entrenamiento general utilizado para el reconocimiento de imágenes con YOLO. [Figura]; Anagnoste, Sorin. "Robotic Automation Process – The operating system for the digital enterprise" Proceedings of the International Conference on Business Excellence, vol.12, no.1, 2018, pp.54-69. https://doi.org/10.2478/picbe-2018-0007; C. T. Kaya, M. Turkyilmaz, & B. Birol, “Impact of RPA Technologies on Accounting Systems”. Muhasebe ve Finansman Dergisi, pp. 235–250, Apr. 2019, https://doi.org/10.25095/mufad.536083; Morgan.O’ Mara., “How Much Paper is Used in One Day”, Record Nations, blog. https://www.recordnations.com/blog/how-much-paper-is-used-in-one-day/; Thomas Teunissen. Success factors for RPA application in small and medium sized enterprises. University of Twente. From https://essay.utwente.nl/77592/1/Teunissen_BA_EEMCS.pdf; James Barlow. 2023. OCRmyPDF documentation. Read the Docs. From: https://ocrmypdf.readthedocs.io/en/latest/index.html; T Malathi, et al. 2021. An Experimental Performance Analysis on Robotics Process Automation (RPA) With Open Source OCR Engines: Microsoft Ocr And Google Tesseract OCR. IOP Conf. Ser.: Mater. Sci. Eng. 1059 012004. https://doi.org/10.1088/1757-899X/1059/1/012004; Arkadiusz Januszewski et al. 2021. Benefits of and Obstacles to RPA Implementation in Accounting Firms. Procedia Computer Science 192 (2021). 4672–4680. https://doi.org/10.1016/j.procs.2021.09.245; Madakam, Somayya, Holmukhe, Rajesh M., and Jaiswal, Durgesh Kumar. (2019). The Future Digital Work Force: Robotic Process Automation (RPA). JISTEM - Journal of Information Systems and Technology Managements, 16, e201916001.https://doi.org/10.4301/S1807-1775201916001; Ribeiro, J., Lima, R., Paiva, S. (2021). Document Classification in Robotic Process Automation Using Artificial Intelligence—A Preliminary Literature Review. In: Sharma, H., Gupta, M.K., Tomar, G.S., Lipo, W. (eds) Communication and Intelligent Systems. Lecture Notes in Networks and Systems, vol 204. Springer, Singapore. https://doi.org/10.1007/978-981-16-1089-9_18; Leslie Willcocks, John Hindle & Mary Lacity. 2019. Keys to RPA Success - Executive Research Report. Knowledge Capital Partners. From: https://engineering.report/Resources/Whitepapers/9a46b779-a4a1-4188-8a1deb769ba4fbb1_Keys-RPA-Success.pdf; J. C. Diaz, D. Zunino, y G. Nicolino, “Análisis de la extracción de datos personales sin autorización de un dispositivo IoT”, Visión Electrónica, vol. 16, no. 2, dic. 2022.; S. Scheuber, and M. Vanhoy, "Emotional and Neurological Responses to Timbre in Electric Guitar and Voice," Paper 10505, (2021 May.).; J. Stanhope, and P. Weinstein, “The human health effects of singing bowls: A systematic review”, Complementary therapies in medicine, 51, 102412, (2020 Apr.).; C. J. Bless, “Análisis de la actividad EEG durante una sesión de estimulación multisensorial en una sala Snoezelen”, Universidad de Valladolid. Escuela Técnica Superior de Ingenieros de Telecomunicación, 2020.; L. Gong, M. Li, T. Zhang, W. Chen, “EEG emotion recognition using attention-based convolutional transformer neural network”, Biomedical Signal Processing and Control, Vol. 84, 2023.; C. Zeng, W. Lin, N. Li, Y. Wen, Y. Wang, W. Jiang, J. Zhang, H. Zhong, X. Chen, W. Luo, et al. “Electroencephalography (EEG)-Based Neural Emotional Response to the Vegetation Density and Integrated Sound Environment in a Green Space”, Forests, 2021.; S. N. Safder, M. U. Akram, M. N. Dar, A. A. Khan, S. G. Khawaja, A. R. Subhani, I. K. Niazi, S. Gul, “Analysis of EEG signals using deep learning to highlight effects of vibration-based therapy on brain”, Biomedical Signal Processing and Control, Vol. 83, 2023.; A. E. Nieto-Vallejo, O. F. Ramírez-Pérez, L. E. Ballesteros-Arroyave, and A. Aragón, “Design of a Neurofeedback Training System for Meditation Based on EEG Technology”, Revista Facultad de Ingeniería, 30(55), 2021; H.Y. Huang & P.C. Lo (2019) EEG dynamics of experienced Zen meditation practitioners probed by complexity index and spectral measure, Journal of Medical Engineering & Technology, 33:4, 314-321, DOI:10.1080/03091900802602677.; F. Ramos-Argüelles, G. Morales, S. Egozcue, R.M. Pabón, M.T. Alonso, “Técnicas básicas de electroencefalografía: principios y aplicaciones clínicas”, vol. 32, 2009.; J. Zain, “El uso de cuencos tibetanos como recurso vibroacústico en Musicoterapia Receptiva”, XVIII Forum estadual de Musicoterapia, 2012.; A. Ramírez Sánchez, C. Espinosa Calderón, A. F. Herrera Montenegro, E. Espinosa Calderón, A. Ramírez Moyano, “Beneficios de la psicoeducación de entrenamiento en técnicas de relajación en pacientes con ansiedad”, Revista Enfermería Docente, 2014.; M. Tobal, “Actividad Cerebral y Deporte: Un Estudio Mediante Mapas de Actividad Eléctrica Cerebral”, Universidad Complutense de Madrid, 1992.; EMOTIV. (2023, 6 abril). EMOTIV Insight 2 with 5 Channel EEG Headset %7C EMOTIV. https://www.emotiv.com/product/emotiv-insight-5-channel-mobile-brainwear/.; Sánchez, M. A. C. Lozano, M. S. G. (2016). El sonido que sana: Manual práctico de sanación a través del sonido. LA ESFERA DE LOS LIBROS, S.L.; Singing Bowl Tones and Frequencies: Complete Guide (2022). (s. f.). Shanti Bowl. https://www.shantibowl.com/blogs/blog/singing-bowl-tones-and-frequencies-complete-guide; Torrades, S. (2007, 1 noviembre). Estrés y burn out. Definición y prevención %7C Offarm. de:https://www.elsevier.es/es-revista-offarm-4-articulo-estres-burn-out-definicion-prevencion13112896; Domingues Hirsch, C., Devos Barlem, E. L., De Almeida, L. K., Tomaschewski Barlem, J. G., Lerch Lunardi, V., & Marcelino Ramos, A. (2018). Stress triggers in the educational environment from the perspective of nursing students. Texto & Contexto Enfermagem, 27(1), e0370014.; Zárate Depraect, N. E., Soto Decuir, M. G., Castro Castro, M. L., & Quintero Salazar, J. R. (2017). Estrés académico en estudiantes universitarios: Medidas preventivas. Revista de Alta Tecnología y la Sociedad, 9(4), 92-98.; Barlett. (1991). Stereo Microphone Techniques. Stoneham, Massachusetts: Reed Publishing (USA).; Holman, T. (2008). Sourround Sound: Up And Running. Burlington, Massachusets: Elsevier Inc.; Howard, D., & Angus, J. (2000). Acoustics and Psychoacoustics (2nd ed.). Routledge. https://doi.org/10.4324/9780080498522.; Burrough, P. A., & McDonnell, R. A. (1998). Principles of geographical information systems (2a ed.). Clarendon Press.; D. S. Garzón-Ramírez, M. S. Sanabria-Guio, y J. D. Cely-Fajardo, “Geolocation system and vehicular analysis for motorcyclists”, Vis. Electron., vol. 2, no. 1, pp. 95–106, mar. 2019. https://doi.org/10.14483/22484728.18416; Home. (2022, abril 15). Open Geospatial Consortium. https://www.ogc.org; Google. (s/f-b). Google.com. Recuperado el 31 de agosto de 2023, de https://earth.google.com/; Documentation. (s/f). Qgis.org. Recuperado el 15 de septiembre de 2023, de https://www.qgis.org/en/docs/index.html; GDAL — GDAL documentation. (s/f). Gdal.org. Recuperado el 15 de septiembre de 2023, de https://gdal.org/; GIS mapping software, location intelligence & spatial analytics. (s/f). Esri.com. Recuperado el 15 de septiembre de 2023, de https://www.esri.com/enus/home; P. F. Martín-Gómez, J. E. Rangel-Díaz, J. O. Montoya-Gómez, y J. L. RubianoFernández, “Automation of greenhouse pesticide application: design and construction”, Visión Electrónica, vol. 2, no. 1, pp. 129–133, mar. 2019. https://doi.org/10.14483/22484728.18419; F. A. Molina-Guzmán, S. A. Torres-Castillo, G. A. López-Martínez, “Use of wastewater and waste from Colombian pacific for electrical generation”, Visión Electrónica, vol. 16, no. 1, 2022.; B. Smith, A., & Johnson, “Automated Fruit Classification for Quality Control,” J. Agric. Technol., vol. 10, no. 4, pp. 1015–1027, 2018.; C. G. Peñaranda, “ANÁLISIS DE COSTOS DE LA PRODUCCIÓN DE DURAZNO (PRUNUS PÉRSICA) EN LA PROVINCIA DE PAMPLONA (NORTE DE SANTANDER),” Rev. la Fac. Ciencias Económicas y Empres., pp. 145–162, 2012.; 2. Camara de Comercio de Medellín, “HERRAMIENTAS EMPRESARIALESAUTOMATIZACIÓN DE LOS PROCESOS INDUSTRIALES,” 2018. http://herramientas.camaramedellin.com.co/Inicio/Buenaspracticasempresariales/Bibliot ecaProduccónyOperaciones/Automatizaciondelosprocesosindustriales.aspx.; C. García, A. López, and F. Fernández, “Deep Learning-Based Fruit Recognition and Classification System for Precision Agriculture,” Comput. Electron. Agric., vol. 180, p. 105832, 2020.; R. Patel, A. Sharma, and S. Kumar, “Real-time Fruit Recognition and Grading System for Robotic Harvesting,” Comput. Electron. Agric., vol. 157, pp. 306–316, 2019.; M. Megajothi, C. Meenakshi, and R. Rajakumari, “Automation of Fruit Quality Analysis System,” in 2nd International Conference on Applied Soft Computing Techniques C., 2022, pp. 424–425.; W. M. Syahrir, A. Suryanti, and C. Connsynn, “Color grading in Tomato Maturity Estimator using image processing technique,” in 2009 2nd IEEE International Conference on Computer Science and Information Technology, 2009, pp. 276–280, doi:10.1109/ICCSIT.2009.5234497.; Z. Ma, J.-H. Xue, A. Leijon, Z.-H. Tan, Z. Yang, and J. Guo, “Decorrelation of Neutral Vector Variables: Theory and Applications,” IEEE Trans. Neural Networks Learn. Syst., vol. 29, no. 1, pp. 129–143, 2018, doi:10.1109/TNNLS.2016.2616445.; L. Zhang, J. Jia, G. Gui, X. Hao, W. Gao, and M. Wang, “Deep Learning Based Improved Classification System for Designing Tomato Harvesting Robot,” IEEE Access, vol. 6, pp. 67940–67950, 2018, doi:10.1109/ACCESS.2018.2879324.; J. Chen, Z. Liu, H. Wang, A. Núñez, and Z. Han, “Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network,” IEEE Trans. Instrum. Meas, vol. 67, no. 2, pp. 257–269, 2018.; H. Yu, Z.-H. Tan, Z. Ma, R. Martin, and J. Guo, “Spoofing detection in automatic speaker verification systems using DNN classifiers and dynamic acoustic features,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 10, pp. 4633–4644, 2018.; and Y. A. X. Sun, G. Gui, Y. Li, R. P. Liu, “A novel deep neural network with feature reuse for Internet of Things,” IEEE Internet Things.; B. S and U. J, “Deep fruit detection in orchards,” IEEE Int. Conf. Robot. Autom, no. May, pp. 3626–3633, 2017.; Vanguardia, “¿Como Puede la inteligencia artificial mejorar nuestras vidas?,” 2016. http://www.lavanguardia.com/vida/20161218/412710361329/como-puede-lainteligencia-artificial-mejorar-nuestras-vidas.html.; C. Oehninger, “El Impacto de la Robótica y la Automatización del Empleo en Uruguay,” 2018.; R. Terminio and E. Rimbau-Gilabert, “La digitalización del entorno de trabajo: la llegada de la robótica, la automatización y la inteligencia artificial (RAIA) desde el punto de vista de los Informal learning and work View project Creative industry network of entrepreneurs-CINet View project,” no. May, 2018, [Online]. Available: https://www.researchgate.net/publication/325059719.; D. BROUGHAM and J. HAAR, “Employee assessment of their technological redundancy,” Labour y Ind., 2017.; McKinsey And Company, “UN FUTURO QUE FUNCIONA: AUTOMATIZACIÓN, EMPLEO Y PRODUCTIVIDAD,” New York, 2017. doi:10.1787/agr_outlook-2017-3-es; Agua Libre. "Lo que necesitas saber sobre la Telemetría," 2021. Disponible en: https://agualibre.cl/telemetria-2/; D. J. Cardoso Ortegón and J. D. Ramírez Tovar, "Propuesta de un sistema de potabilización de aguas subterráneas, caso de estudio pozo finca el arbolito-ubicado en la vereda Caimanera en el municipio de el Espinal - Tolima teniendo en cuenta la caracterización física, química y microbiológica," Proyecto de grado, Universidad Piloto de Colombia, 2021. Disponible en: http://repository.unipiloto.edu.co/handle/20.500.12277/10116.; A. Jiménez, F. Velásquez, y S. Puente, “Sistema inteligente de prescripción de riego agrícola basado en redes de sensores y modelado de cultivos”, Visión Electrónica, vol. 17, no. 1, feb. 2023.; Digital Senses. "Telemetría y Monitoreo efectivo de Pozos de Agua," Disponible en: https://www.digitalsenses.io/medidores-de-pozos-de-agua/; E. M. González-Clavijo, J. C. Contreras-Niño, y H. J. Eslava-Blanco, “Automatización del vivero Semigar”, Visión Electrónica, vol. 16, no. 1, jun. 2022.; Integra Instrumentación. "Instalación de telemetría para pozos," Disponible en: https://integrainstrumentacion.cl/instalacion-de-telemetria-para-pozos/; F. C. Castañeda-Árias y K. S. Novoa-Roldan, “Remote crops: case study of critical variables”, Visión. Electrónica, vol. 16, no. 1, ene. 2022.; Nettra. "Monitoreo de pozos de extracción de agua subterránea," Disponible en: https://nettra.tech/monitoreo-de-pozos-de-extraccion-de-agua-subterranea/; B. Böttcher, J. Badinger, N. Moriz, and O. Niggemann, “Design of industrial automation systems — Formal requirements in the engineering process,” in 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), 2013, pp. 1–4. doi:10.1109/ETFA.2013.6648148.; N. Papakonstantinou, J. Karttunen, S. Sierla, and V. Vyatkin, “Design to automation continuum for industrial processes: ISO 15926 – IEC 61131 versus an industrial case,” in 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 2019, pp. 1207–1212. doi:10.1109/ETFA.2019.8869325.; J. E. Martinez Baquero, “Diseño y construcción de equipo automatizado para separar mezclas,” Visión Electrónica Más que un estado sólido, vol. 8, no. 2, pp. 87–93, 2014, [Online]. Available: https://revistas.udistrital.edu.co/index.php/visele/article/view/9880; M. A. Monzón Herrera, “Diseño de un sistema dedicado al monitoreo y automatización de parámetros de proceso en una línea de producción de cartones moldeados (Doctoral dissertation).,” Universidad de San Carlos de Guatemala, 2019.; C. M. Bustamante Álvarez, J. E. Martínez Baquero, and C. Torres Gómez, “SCADA System of Physicochemical Variables in a Mixture Separator,” Rev. Inge CUC, vol. 11, no. 1, pp. 85–98, 2015, doi:10.17981/ingecuc.11.1.2015.09.; F. G. Astudillo, “Diseño y simulación de un control automático para una cámara de fermentación de pan por medio de un automáta programable,” ESCUELA POLITÉCNICA NACIONAL, 2010. [Online]. Available: https://bibdigital.epn.edu.ec/handle/15000/2231; P. A. Quinteros, M. C. Zurita, N. C. Zambrano, and L. M. Esthela, “Automatización de los procesos industriales,” J. Bus. Entrep. Stud., vol. 4, no. 2, pp. 123–131, 2020, [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=7888290; F. F. Cando Herrera and G. F. Medina Lescano, “Implementación de un sistema de control y monitoreo de nivel de agua para el sistema de riego Chambo –Guano en la provincia de Chimborazo,” 2021, [Online]. Available: https://www.dspace.espol.edu.ec/bitstream/123456789/56415/1/T-112772 Cando - Medina.pdf; J. D. Murcia Velez and L. F. Chacón Segura, “Diseño de un sistema automático de cultivo hidropónico para forraje verde,” Universidad de La Salle, 2018. [Online]. Available: https://ciencia.lasalle.edu.co/ing_automatizacionF.; P. Radu and L. Gheorghe, “Implementation of an automatic control system of technological process for disinfection of drinking water from treatment plants,” in Proceedings of 2012 IEEE International Conference on Automation, Quality and Testing, Robotics, 2012, pp. 144–149. doi:10.1109/AQTR.2012.6237691.; A. Chiavola, C. Di Marcantonio, M. D’Agostini, S. Leoni, and M. Lazzazzara, “A combined experimental-modeling approach for turbidity removal optimization in a coagulation– flocculation unit of a drinking water treatment plant,” J. Process Control, vol. 130, p. 103068, 2023, doi: https://doi.org/10.1016/j.jprocont.2023.103068.; E. A. Al-Sum, A. Sattar, and M. A. Aziz, “Automation of water treatment plants and its application in power and desalination plants,” Desalination, vol. 92, no. 1–3, 1993, doi:10.1016/0011-9164(93)80087-4.; H. Gulhan et al., “Use of water treatment plant sludge in high-rate activated sludge systems: A techno-economic investigation,” Sci. Total Environ., vol. 901, p. 166431, 2023, doi: https://doi.org/10.1016/j.scitotenv.2023.166431.; A. Ortega Ramírez, L. Cáceres Durán, and L. Castiblanco Molina, “INTRODUCCIÓN AL USO DE COAGULANTES NATURALES EN LOS PROCESOS DE POTABILIZACIÓN DEL AGUA,” Rev. Ambient. Agua, aire y suelo., vol. 11, no. 2, pp. 1–14, 2020, doi: https://doi.org/10.24054/aaas.v11i2.873.; H. A. Díaz Therán, M. Hincapié, L. Montoya, L. Galeano, A. Balaguera, and G. Carvajal, “Evaluación de la sostenibilidad para un sistema individual de potabilización de agua encomunidades rurales a través de la metodología de ACV,” in Encuentro Internacional de Educación en Ingeniería, 2023, 2023, p. 3128. [Online]. Available: 10.26507/paper.3128; R. C. Urban, L. Y. K. Nakada, and R. de L. Isaac, “A system dynamics approach for largescale water treatment plant sludge management: A case study in Brazil,” J. Clean. Prod., vol. 419, p. 138105, 2023, doi: https://doi.org/10.1016/j.jclepro.2023.138105.; N. Unidas, “Objetivo 6: Garantizar la disponibilidad de agua y su gestión sostenible y el saneamiento para todos.,” OBJETIVOS DE DESARROLLO SOSTENIBLE, 2015. https://www.un.org/sustainabledevelopment/es/water-and-sanitation/; C. J. Macuada, A. M. Oddershede, and L. E. Quezada, “DM methodology for automating technology system in water treatment plants,” in 2018 7th International Conference on Computers Communications and Control (ICCCC), 2018, pp. 265–269. doi:10.1109/ICCCC.2018.8390469.; M. Alissa, S. Al-Harahshah, and M. Ibrahim, “Monitoring of Surface Water Quality in King Talal Dam Using GIS: A Case Study,” Iraqi Geol. J., vol. 56, no. 2, pp. 36–47, 2023, doi:10.46717/igj.56.2A.3ms-2023-7-12.; F. Villacís Chimborazo and W. . Zambrano Vélez, “AUTOMATIZACIÓN DEL PROCESO DE TRATAMIENTO DE AGUAS RESIDUALES EN TECNOVA S . A .”,” Universidad Politécnica Salesiana. Ecuador, 2013. [Online]. Available: https://dspace.ups.edu.ec/handle/123456789/4118; M. Portección Social and M. Ambiente Vivienda y Desarrollo Territorial, Resolución 2115 de 2007, vol. 1. 2007, p. 23. [Online]. Available: https://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Legislac ión_del_agua/Resolución_2115.pdf.; Ministerio de Desarrollo Económico, “RAS 2000, Titulo A - Aspectos generales de los sistemas de agua potable y saneamiento básico. Ministerio de Vivienda Ciudad y Territorio Colombia,” Reglam. Técnico Del Sect. Agua Potable Y Saneam. Basico, p. 114, 2000.; G. Corporación Alemana, “Manual para la cloración del agua en sistemas de abastecimiento de agua potable en el ambito rural,” Corporación Alem. para la Coop. Int., p. 91, 2017, [Online]. Available: https://sswm.info/sites/default/files/reference_attachments/GIZ 2017. Manual para la cloración del agua en sistemas de abastecimiento de agua potable.pdf; AGUAVIVA, “Sistema de Acueducto,” 2021. https://www.aguavivaesp.gov.co/acueducto/; Anyasi, T. A., Jideani, A. I. O., & Mchau, G. (2013). Functional properties and postharvest utilization of commercial and noncommercial banana cultivars. Comprehensive Reviews in Food Science and Food Safety, 12(5), 509-522. https://doi.org/10.1111/1541-4337.12025; Al-Dairi, M., Pathare, P. B., Al-Yahyai, R., Jayasuriya, H. P. W., & Al-Attabi, Z. (2023). Postharvest Quality, Technologies, and Strategies to Reduce losses along the supply Chain of Banana: a review. Trends in Food Science and Technology, 134, 177-191. https://doi.org/10.1016/j.tifs.2023.03.003; S. A. Vaca Vargas, O. L. García Navarrete, y M. A. Colorado Gómez, “Diseño y construcción de un sistema acuapónico automatizado para cultivo acuaponico NFT de Carpa Roja y Lechuga Crespa”, Visión Electrónica, vol. 17, no. 1, ene. 2023.; Lidyce, Q. L. (s. f.). Elementos teóricos y prácticos sobre la bioimpedancia eléctrica en salud.http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1025- 02552016000500014; Caicedo-Eraso, J.C., Díaz-Arango, F.O., & Osorio-Alturo, A. (2019). Espectroscopia de impedancia eléctrica aplicada al control de la calidad en la industria alimentaria. http://www.scielo.org.co/pdf/ccta/v21n1/0122-8706-ccta-21-01-00100.pdf; Montes, L.M., Mejía-Gutiérrez, L.F., & Caicedo-Eraso, J.C. (2021). Espectroscopia de impedancia eléctrica, una herramienta para aplicaciones biotecnológicas con Lactobacillus casei ATCC 393. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123- 34752021000100055; Ocampo Hernández, Ó.H., Ruiz Villa, C.A., Aristizábal Botero, W., Olarte Echeverri, G., Gallego, P.A. (2017). Caracterización del tejido columnar del cérvix mediante espectroscopia de impedancia eléctrica y modelado computacional. Biosalud. https://www.semanticscholar.org/paper/216f9823cf95e0f9043636a052f656c4d318eed1; García Bello, J., Batista Luna, T., & Rodríguez de la Cruz, N. (2023). Principios básicos y uso en medicina de la espectroscopia de impedancia. Revista Cubana de Medicina Militar, 52(2), e02302316. Recuperado de https://revmedmilitar.sld.cu/index.php/mil/article/view/2316/1772; Carreño, A., & Gómez, C. (2013). Procesamiento de tejido de cuello uterino para estudio piloto de detección temprana de cáncer cervical basado en espectroscopia de impedancia eléctrica.; N. A. Ramírez-Pérez, L. E. Aparicio-Pico, y C. A. Pérez-Triana, “Medición sobre MRI para diagnóstico de cáncer de próstata”, Visión Electrónica, vol. 14, no. 2, pp. 196–206, jul. 2020. https://doi.org/10.14483/22484728.17965; Li, Yunhua; Cai, Chaozhi; Lee, Kok-Meng; Teng, Fengjian “A novel cascade temperature control system for a high-speed heat-airflow wind tunnel”, IEEE/ASME Transactions on Mechatronics, volumen 18, Issue 4, pages 1310 - 1319, 2013. https://doi:10.1109/TMECH.2013.2262077; Cai, Chaozhi; Li, Yunhua; Dong, Sujun, “Experimental Study on Gas Temperature Control for a High-Speed Heat-Airflow Wind Tunnel”, Journal of Aerospace Engineering, vol. 29, Issue. 6, nov 2016. https://doi.org/10.14483/22487638.6071; J. H. Fresneda-Alarcón, A. Escobar-Diaz, H. Vacca-González, y G. J. Rincón-Aponte, “Modelamiento e implementación de una planta térmica”, Visión Electrónica, vol. 15, no. 1, pp. 94–103, feb. 2021. https://doi.org/10.14483/22484728.17470; J. G. Ascanio-Villabona, B. E. Tarazona-Romero, y C. L. Sandoval, “Study of the behavior of the photovoltaic panel according to the installed surface”, Visión Electrónica, vol. 16, no. 2, dic. 2022.; LIU, Wei; ZHOU, Mengde, “An active damping vibration control system for wind tunnel models”, Chinese Journal of Aeronautics, vol. 32, pp. 2109-2120, sept 2019. https://doi.org/10.1016/j.cja.2019.04.014; Huang, Rui; Zhao, Yonghui; Hu, Haiyan, “Wind-Tunnel tests for active flutter control and closed-loop flutter identification”, AIAA Journal, vol. 54, Issue 7, pp. 2089-2099, 2016. https://doi.org/10.2514/1.J054649; FEEDBACK PT 326 Process Trainer User manual (e-lab) Crowborough, E. Sussex, England, 1999.; FEEDBACK Industry - PT 326 Process Trainer owner guide Crowborough, E. Sussex, England, 1999.; C. B. S. Dutra, F. K. Mendonca, G. C. Sousa, and N. G. Bonacorso, "Retrofitting of a plain table plotter for printed circuit boards prototyping," in Power Electronics Conference, 2009. COBEP '09. Brazilian, 2009, pp. 1027-1032.; K. Salonitis and S. Vatousianos, "Experimental Investigation of the Plasma Arc Cutting Process," Procedia CIRP, vol. 3, pp. 287-292, // 2012.; Lida Pan; Xiangkun Guo; Yan Luan; Hongliang Wang, “Design and realization of cutting simulation function of digital twin system of CNC machine tool”, Procedia Computer Science, vol. 183, pp. 261-266, 2021. https://doi.org/ https://doi.org/10.1016/j.procs.2021.02.057; A.M. Madni, C.C. Madni, S.D. Lucero, “Leveraging digital twin technology in modelbased systems engineering”, Systems, vol. 7, 2019. https://doi.org/ https://doi.org/10.3390/systems7010007; Ran, Meng, “Research on the key Technology of contour error control of machine tool based on digital twin”, ACM International Conference Proceeding Series, pp. 1070- 1075, dec 2022. https://doi.org/10.1145/3584376.3584567; Yu. G. KabaldinL, “Digital Twin for 3D Printing on CNC Machines”, Russian Engineering Research, vol. 39, pp. 848-851, 2019. https:// doiorg.bdigital.udistrital.edu.co/10.3103/S1068798X19100101; Hershberger, R. E., Morales, A. & Siegfried, J. D. Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals. Genet. Med. 12, 655–667 (2010). This review article provides a wide and detailed overview of clinical and genetic issues in specific types of genetic DCM.; Hershberger, R.E.; Hedges, D.J.; Morales, A. Dilated cardiomyopathy: The complexity of a diverse genetic architecture. Nat. Rev. Cardiol. 2013, 10, 531–547.; Antunes M de O, Scudeler TL. Hypertrophic cardiomyopathy. IJC Hear Vasc. 2020;27:100503.; Teekakirikul P, Zhu W, Huang HC, Fung E. Hypertrophic cardiomyopathy: An overview of genetics and management. Biomolecules. 2019;9(12):1–11.; Maron BJ. Clinical Course and Management of Hypertrophic Cardiomyopathy. N Engl J Med. 2018;379(7):655–68.; Maron, B. J. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113, 1807–1816 (2006).; Elliott, P. et al. Classification of the cardiomyopathies: a position statement from the european society of cardiology working group on myocardial and pericardial diseases. Eur. Heart J. 29, 270–276 (2007).; Richardson, P. et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation 93, 841–842 (1996); Rostán, S., Smiliansky, N., & Vaucher, A. (2020). Miocardiopatía por Influenza A H1N1. Reporte de un caso clínico. Revista Uruguaya De Medicina Interna, 5(3), 26-30. https://doi.org/10.26445/05.03.4; Galarza, G., Moreno, J., & Vasquez, G., (2021). Miocardiopatia secundaria a influenza. Revista Médica Vozandes, 32(1), 84-87. DOI:10.48018/rmv.v32.i1.2; Z. Wang, H. Shen, Y. Liu, Y. Cheng, R. Zhang, X. Wang, and A. L. Yuille, “Improving the accuracy of medical diagnosis with causal machine learning,” Nature Communications, vol. 11, no. 1, p. 18310, 2020.; M. M. Ahsan and Z. Siddique, “Machine learning-based heart disease diagnosis: A systematic literature review,” Artificial Intelligence in Medicine, vol. 128, p. 102289, 2022. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0933365722000549; A. Kumar and A. Singla, “Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda,” Journal of Ambient Intelligence and Humanized Computing, vol. 14, no. 7, pp. 1–28, 2022.; U. S. Acharya, S. Kulkarni, and P. Raju, “Artificial intelligence appliedto cardiomyopathies: Is it time for clinical application?” IEEE Access, vol. 10, pp. 16 264–16 282, 2022.; A. Regueiro Gómez, C. B. Busoch Morlán, C. Regueiro Busoch, y R. J. Díaz Martínez, “Biomedical Engineering: experiences in the research formation with MOODLE”, Visión Electrónica, vol. 14, no. 2, pp. 152–158, jul. 2020.; B. Forero, K. Velásquez, R. Hernández, y E. Mejía, “Simulation of transradial prosthesis using Virtual Reality Environment and electrooculography (EOG) signals for grip therapy”, Vis. Electrónica, vol. 16, no. 2, ago. 2022.; D. Sánchez-L., G. Sánchez, y L. A. Luengas-C., “Static postural stability: analysis in time and frequency through the development of a software tool”, Visión Electrónica, vol. 17, no. 1, abr. 2023.; J. L. Gerardo‐Nava, et al. "Transformative Materials to Create 3D Functional Human Tissue Models In Vitro in a Reproducible Manner." Advanced Healthcare Materials (2023): 2301030. doi.org/10.1002/adhm.202301030; C. Vesga-Castro, et al. “Contractile force assessment methods for in vitro skeletal muscle tissues.” eLife vol. 11 e77204. doi:10.7554/eLife.77204; K. Budde, J. Zimmermann, E. Neuhaus, M. Schröder, A. M. Uhrmacher and U. van Rienen, "Requirements for Documenting Electrical Cell Stimulation Experiments for Replicability and Numerical Modeling," 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 2019, pp. 1082-1088, doi:10.1109/EMBC.2019.8856863.; A.M. Kasper, et al. “Mimicking exercise in three-dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation.” Journal of cellular physiology vol. 233,3 (2018): 1985-1998. doi:10.1002/jcp.25840; M. Flaibani, et al. “Muscle differentiation and myotubes alignment is influenced by micropatterned surfaces and exogenous electrical stimulation.” Tissue engineering. Part A vol. 15,9 (2009): 2447-57. doi:10.1089/ten.tea.2008.0301; Fernández‐Costa, Juan M., et al. "Training‐on‐a‐Chip: A Multi‐Organ Device to Study the Effect of Muscle Exercise on Insulin Secretion in Vitro." Advanced Materials Technologies. vol. 8, no 7, p. 2200873 (2023). doi.org/10.1002/admt.202200873; Zhang, Xiaoning, et al. "Complex refractive indices measurements of polymers in visible and near-infrared bands." Applied optics. vol. 59, no 8, p. 2337-2344 (2020). Doi:org/10.1364/AO.383831; J. Fukushima, et al. “Effect of Aspect Ratio on the Permittivity of Graphite Fiber in Microwave Heating.” Materials (Basel, Switzerland) vol. 11,1 169. 22 Jan. 2018, doi:10.3390/ma11010169; K. K. Ravikumar, and K.K. Palanivelu. "Dielectric properties of natural rubber composites filled with graphite." Materials Today: Proceedings 16 (2019): 1338-1343. doi.org/10.1016/j.matpr.2019.05.233; S. Chen. “Dielectric constant measurement of P3HT, polystyrene, and polyethylene”, PhD. thesis., Faculty of Science and Engineering, 2017.; X. Y. Qi, et al. “Enhanced electrical conductivity in polystyrene nanocomposites at ultralow graphene content.” ACS applied materials & interfaces vol. 3,8 (2011): 3130-3. doi:10.1021/am200628c:10; K. Gadonna, et al. "Study of gas heating by a microwave plasma torch." Journal of Modern Physics. vol. 3, no 10, p. 1603. (2012): Doi.org/10.4236/jmp.2012.330198; E. Seran, et al. "What we can learn from measurements of air electric conductivity in 222Rn‐rich atmosphere." Earth and Space Science. vol. 4, no 2, p. 91-106 (2017). doi.org/10.1002/2016EA000241; K. Izdihar, et al. "Structural, mechanical, and dielectric properties of polydimethylsiloxane and silicone elastomer for the fabrication of clinical-grade kidney phantom." Applied Sciences. vol. 11, no 3, p. 1172 (2021). DOI:10.3390/app11031172; A. Müller, M. C. Wapler, and U. Wallrabe. "A quick and accurate method to determine the Poisson's ratio and the coefficient of thermal expansion of PDMS." Soft Matter. vol. 15, no 4, p. 779-784 (2019). DOI:10.1039/C8SM02105H; AZoM.com. (n.d.). Properties: Carbon - Graphite Materials. 2012.; Polystyrene %7C Designerdata. (n.d.). https://designerdata.nl/materials/plastics/thermoplastics/polystyrene; Poisson’s Ratio. (n.d.). https://polymerdatabase.com/polymer%20physics/Poisson%20Table.html; S, Shauheen, et al. “The elastic modulus of Matrigel as determined by atomic force microscopy.” Journal of structural biology. vol. 167, no 3, p. 216-219. doi:10.1016/j.jsb.2009.05.005; J.J. Vaca-González, et al. "Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid–Gelatin injectable hydrogels." Bioelectrochemistry. vol. 134, p. 107536 (2020). doi:10.1016/j.bioelechem.2020.107536; G. Agrawal, et al. “Skeletal muscle-on-a-chip: an in vitro model to evaluate tissue formation and injury.” Lab on a chip vol. 17,20 (2017): 3447-3461. doi:10.1039/c7lc00512a; G.; Renganathan et al., “ETH Library Foot Biomechanics with Emphasis on the Plantar Pressure Sensing: A Review Foot Biomechanics with Emphasis on the Plantar Pressure Sensing: A Review,” in Revolutions in Product Design for Healthcare, D. S. and Innovation, Ed. Singapore: Springer, 2022.; A. K. Buldt, J. J. Allan, K. B. Landorf, and H. B. Menz, “The relationship between foot posture and plantar pressure during walking in adults: A systematic review,” Gait and Posture, vol. 62. 2018, doi:10.1016/j.gaitpost.2018.02.026.; C. Deng, W. Tang, L. Liu, B. Chen, M. Li, and Z. L. Wang, “Self -Powered Insole Plantar Pressure Mapping System,” Adv. Funct. Mater., vol. 28, no. 29, Jul. 2018, doi:10.1002/ADFM.201801606.; J. L. Chen et al., “Plantar Pressure-Based Insole Gait Monitoring Techniques for Diseases Monitoring and Analysis: A Review,” Adv. Mater. Technol., vol. 7, no. 1, p. 2100566, Jan. 2022, doi:10.1002/ADMT.202100566.; Q. Zhang, Y. L. Wang, Y. Xia, X. Wu, T. V. Kirk, and X. D. Chen, “A low-cost and highly integrated sensing insole for plantar pressure measurement,” Sens. Bio-Sensing Res., vol. 26, 2019, doi:10.1016/j.sbsr.2019.100298.; J. F. Hafer, M. W. Lenhoff, J. Song, J. M. Jordan, M. T. Hannan, and H. J. Hillstrom, “Reliability of plantar pressure platforms,” Gait Posture, vol. 38, no. 3, 2013, doi:10.1016/j.gaitpost.2013.01.028.; H. Deepashini, B. Omar, A. Paungmali, N. Amaramalar, H. Ohnmar, and J. Leonard, “An insight into the plantar pressure distribution of the foot in clinical practice: Narrative review,” Polish Annals of Medicine, vol. 21, no. 1. 2014, doi:10.1016/j.poamed.2014.03.003.; K. Hébert-Losier and L. Murray, “Reliability of centre of pressure, plantar pressure, and plantar-flexion isometric strength measures: A systematic review,” Gait and Posture, vol. 75. 2020, doi:10.1016/j.gaitpost.2019.09.027.; P. R. Cavanagh, F. G. Hewitt, and J. E. Perry, “In-shoe plantar pressure measurement: a review,” The Foot, vol. 2, no. 4. 1992, doi:10.1016/0958-2592(92)90047-S.; X. Li, K. Wang, Y. L. Wang, and K. C. Wang, “Plantar pressure measurement system based on piezoelectric sensor: a review,” Sensor Review, vol. 42, no. 2. 2022, doi:10.1108/SR-09-2021-0333.; A. Ciniglio, A. Guiotto, F. Spolaor, and Z. Sawacha, “The design and simulation of a 16- sensors plantar pressure insole layout for different applications: From sports to clinics, a pilot study,” Sensors, vol. 21, no. 4, 2021, doi:10.3390/s21041450.; L. Luengas- Contreras.,and L. Wanumen-Silva. "Modelos computacionales en la posturografía". Tecnura, vol. 26, no. 73, 2022, 30-48. https://doi.org/10.14483/22487638.18060; R. de Fazio, E. Perrone, R. Velázquez, M. De Vittorio, and P. Visconti, “Development of a self-powered piezo-resistive smart insole equipped with low-power ble connectivity for remote gait monitoring,” Sensors, vol. 21, no. 13, 2021, doi:10.3390/s21134539.; H. Muhedinovic and D. Boskovic, “Design of iot solution for velostat footprint pressure sensor system,” in Lecture Notes of the Institute for Computer Sciences, SocialInformatics and Telecommunications Engineering, LNICST, 2016, vol. 187, doi:10.1007/978-3-319-51234-1_30.; AICMA, «Estadísticas de víctimas». Accedido: 26 de octubre de 2023. [En línea]. Disponible en: https://www.accioncontraminas.gov.co/Estadisticas/Paginas/Estadisticasde-Victimas.aspx; G. R. Hurley, R. McKenney, M. Robinson, M. Zadravec, y M. R. Pierrynowski, «The role of the contralateral limb in below-knee amputee gait», Prosthet Orthot Int, vol. 14, n.o 1, Art. n.o 1, abr. 1990, doi:10.3109/03093649009080314.; M. S. Pinzur, «The Effect of Prosthetic Alignment on Relative Limb Loading in Persons with Transtibial Amputation: A Preliminary Report», p. 5, 1995.; R. Gailey, «Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use», The Journal of Rehabilitation Research and Development, vol. 45, n.o 1, Art. n.o 1, dic. 2008, doi:10.1682/JRRD.2006.11.0147.; T. Kobayashi, M. S. Orendurff, y D. A. Boone, «Dynamic alignment of transtibial prostheses through visualization of socket reaction moments», Prosthetics and orthotics international, vol. 39, n.o 6, Art. n.o 6, 2015.; D. A. Boone et al., «Perception of socket alignment perturbations in amputees with transtibial prostheses», The Journal of Rehabilitation Research and Development, vol. 49, n.o 6, Art. n.o 6, 2012, doi:10.1682/JRRD.2011.08.0143.; H. Hashimoto, T. Kobayashi, F. Gao, y M. Kataoka, «A proper sequence of dynamic alignment in transtibial prosthesis: insight through socket reaction moments», Sci Rep, vol. 13, n.o 1, Art. n.o 1, ene. 2023, doi:10.1038/s41598-023-27438-1; S. L. Delp et al., «OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement», IEEE Transactions on Biomedical Engineering, vol. 54, n.o 11, Art. n.o 11, nov. 2007, doi:10.1109/TBME.2007.901024.; F. De Groote, A. L. Kinney, A. V. Rao, y B. J. Fregly, «Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem», Ann Biomed Eng, vol. 44, n.o 10, Art. n.o 10, oct. 2016, doi:10.1007/s10439-016-1591-9.; G. Serrancoli et al., «Subject-Exoskeleton Contact Model Calibration Leads to Accurate Interaction Force Predictions», IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, n.o 8, pp. 1597-1605, ago. 2019, doi:10.1109/TNSRE.2019.2924536.; S. Miller y Y. V. Weddingen, «Modeling Flexible Bodies with Simscape Multibody Software», 2017. Accedido: 10 de agosto de 2023. [En línea]. Disponible en: https://la.mathworks.com/content/dam/mathworks/tag-team/Objects/s/Modeling-FlexibleBodies-Simscape-Multibody-171122.pdf; M. Ackermann y A. J. van den Bogert, «Optimality Principles for Model-Based Prediction of Human Gait», J Biomech, vol. 43, n.o 6, Art. n.o 6, abr. 2010, doi:10.1016/j.jbiomech.2009.12.012.; T. W. Dorn, J. M. Wang, J. L. Hicks, y S. L. Delp, «Predictive Simulation Generates Human Adaptations during Loaded and Inclined Walking», PLOS ONE, vol. 10, n.o 4, Art. n.o 4, abr. 2015, doi:10.1371/journal.pone.0121407.; C. L. Dembia, N. A. Bianco, A. Falisse, J. L. Hicks, y S. L. Delp, «OpenSim Moco: Musculoskeletal optimal control», PLOS Computational Biology, vol. 16, n.o 12, p. e1008493, dic. 2020, doi:10.1371/journal.pcbi.1008493.; L. Nolan, A. Wit, K. Dudziñski, A. Lees, M. Lake, y M. Wychowañski, «Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees», Gait Posture, vol. 17, n.o 2, pp. 142-151, abr. 2003, doi:10.1016/s0966-6362(02)00066-8.; L. Nolan y A. Lees, «The functional demands on the intact limb during walking for active transfemoral and transtibial amputees», Prosthetics & Orthotics International, vol. 24, n.o 2, pp. 117-125, ago. 2000, doi:10.1080/03093640008726534.; W. Herzog, B. M. Nigg, L. J. Read, y E. Olsson, «Asymmetries in ground reaction force patterns in normal human gait», Medicine & Science in Sports & Exercise, vol. 21, n.o 1, p. 110, feb. 1989.; M. Roerdink, S. Roeles, S. C. H. van der Pas, O. Bosboom, y P. J. Beek, «Evaluating asymmetry in prosthetic gait with step-length asymmetry alone is flawed», Gait & Posture, vol. 35, n.o 3, pp. 446-451, mar. 2012, doi:10.1016/j.gaitpost.2011.11.005.; M. Roerdink y P. J. Beek, «Understanding Inconsistent Step-Length Asymmetries Across Hemiplegic Stroke Patients: Impairments and Compensatory Gait», Neurorehabil Neural Repair, vol. 25, n.o 3, pp. 253-258, mar. 2011, doi:10.1177/1545968310380687.; GP Fishwick, “Una introducción a Opensimulator y aplicaciones M&S basadas en agentes de entornos virtuales”, en Simulation Conference (WSC), Actas del invierno de 2009, diciembre de 2009, págs. 177 a 183,64.; Linden Research, Inc. Disponible en: http://lindenlab.com; M. Barbulescu, M. Marinescu, O. Grigoriu, G. Neculoiu, V. Sandulescu e I. Halcu, "GNU,GPL en el estudio de programas del campo de la ingeniería de sistemas", en Roedunet International Conference (RoEduNet), 10 de junio de 2011, pp. 1 –4.; Visor Hippo OpenSim, disponible: http://mjmlabs.com/viewer; Visor RealXtend, disponible: http://realxtend.org; M. Pattal, Y. Li y J. Zeng, “Web 3.0: ¡una verdadera web personal! Más oportunidades y más amenazas”, en Aplicaciones, servicios y tecnologías móviles de próxima generación, 2009. NGMAST '09. Tercera Internacional, Conferencia sobre, septiembre de 2009, pp. 125 –128.; McLeod, S. A; Piaget “Cognitive Theory” (en inglés). Simply Psychology. Consultado el 18 de marzo 2023.; Bronkart, J. P. y otros (1985). Vigotsky aujourd’hui. París: Delachaux & Niestlé. Consultado el 18 de marzo 2023; Bruner, J. (1980). Investigación sobre el desarrollo cognitivo. España: Pablo del Río.; Papert, S., & Harel, I. (2002). Situar el construccionismo. Alajuela: INCAE.; Ausubel, D. P. (2002). Adquisición y retención del conocimiento. Una perspectiva cognitiva. Barcelona: Ed. Paidós.; Athanassopoulos, N. Capítulo 7: Estudio comparativo del desarrollo de las inteligencias múltiples en alumnos que cursan o no estudios de danza en un conservatorio. innovando en educación.; Lave, J. (1991). Situating learning in communities of practice. En H. Resnick, S. Levine, & S. Teasley (Eds.), Perspective on socially shared cognition (pp.63-82). Washington, Estados Unidos: American Psycological Association.; Von Glasersfeld, E. 1984. An introduction to radical constructivism. En: P. Watzlawick. Theinvented reality. New York: Norton, pp. 17-40; MIT Media Lab (2016). Professor Emeritus Seymour Papert, pioneer of constructionist learning, dies at 88. MIT News, en http://news.mit.edu/2016/seymourpapertpioneer-of- constructionist-learning-dies-0801; Desarrollo de una aplicación con PLC Siemens, https://educatia.com.co/programacion-plc-logo-siemens-grafcet-a-ladder/; W. A. Bhat, A. Alzahrani, and M. A. Wani, “Can computer forensic tools be trusted in digital investigations?” Science and Justice, vol. 61, no. 2, pp. 198–203, Mar. 2021, [Online]. Disponible en: 10.1016/j.scijus.2020.10.002.; B. K. Akcam, “Forensic Science International we should give special mention to the observance of secrecy in the automotive industry in case of security relevant systems Digitizing Forensic Laboratories: The Turkish Criminal Police Laboratories Case.”; L. Xu, B. Wang, L. Wang, D. Zhao, X. Han, and S. Yang, “PLC-SEIFF: A programmable logic controller security incident forensics framework based on automatic construction of security constraints,” Computers and Security, vol. 92, May 2020, [Online]. Disponible en: 10.1016/j.cose.2020.101749.; M. I. Cohen, D. Bilby, and G. Caronni, “Distributed forensics and incident response in the enterprise,” in Digital Investigation, 2011, vol. 8, no. SUPPL. [Online]. Disponible en: 10.1016/j.diin.2011.05.012.; C. J. Courtney Mustaphi et al., “Guidelines for reporting and archiving 210Pb sediment chronologies to improve fidelity and extend data lifecycle,” Quaternary Geochronology, vol. 52, pp. 77–87, Jun. 2019, [Online]. Disponible en: 10.1016/j.quageo.2019.04.003.; P. Lutta, M. Sedky, M. Hassan, U. Jayawickrama, and B. Bakhtiari Bastaki, “The complexity of internet of things forensics: A state-of-the-art review,” Forensic Science International: Digital Investigation, vol. 38. Elsevier Ltd, Sep. 01, 2021. [Online]. Disponible en: 10.1016/j.fsidi.2021.301210.; W. Halboob, R. Mahmod, N. I. Udzir, and M. D. T. Abdullah, “Privacy levels for computer forensics: Toward a more efficient privacy-preserving investigation,” in Procedia Computer Science, 2015, vol. 56, no. 1, pp. 370–375. doi:10.1016/j.procs.2015.07.222.; G. Ma, Z. Wang, L. Zou, and Q. Zhang, “Computer forensics model based on evidence ring and evidence chain,” in Procedia Engineering, 2011, vol. 15, pp. 3663–3667.; M. Saadoon, S. H. Siti, H. Sofian, H. H. M. Altarturi, Z. H. Azizul, and N. Nasuha, “Fault tolerance in big data storage and processing systems: A review on challenges and solutions,” Ain Shams Engineering Journal, vol. 13, no. 2. Ain Shams University, Mar. 01, 2022.; D. Closser and E. Bou-Harb, “A live digital forensics approach for quantum mechanical computers,” Forensic Science International: Digital Investigation, vol. 40, p. 301341, Apr. 2022; G. Koorey, S. McMillan, and A. Nicholson, “Incident Management and Network Performance,” in Transportation Research Procedia, 2015, vol. 6, pp. 3–16.; K. Barik, S. Das, K. Konar, B. Chakrabarti Banik, and A. Banerjee, “Exploring user requirements of network forensic tools,” Global Transitions Proceedings, vol. 2, no. 2, pp. 350–354, Nov. 2021.; A. M. Marshall, “Digital forensic tool verification: An evaluation of options for establishing trustworthiness,” Forensic Science International: Digital Investigation, vol. 38, Sep. 2021.; T. Wu, F. Breitinger, and S. O’Shaughnessy, “Digital forensic tools: Recent advances and enhancing the status quo,” Forensic Science International: Digital Investigation, vol. 34, Sep. 2020.; W. A. Bhat, A. AlZahrani, and M. A. Wani, “Can computer forensic tools be trusted in digital investigations?” Science and Justice, vol. 61, no. 2, pp. 198–203, Mar. 2021.; A. Daniel D and S. E. Roslin, “Data validation and integrity verification for trust-based data aggregation protocol in WSN,” Microprocessors and Microsystems, vol. 80. Elsevier B.V., Feb. 01, 2021.; J. Tian and X. Jing, “Cloud data integrity verification scheme for associated tags,” Computers and Security, vol. 95, Aug. 2020.; C. Yang, F. Zhao, X. Tao, and Y. Wang, “Publicly verifiable outsourced data migration scheme supporting efficient integrity checking,” Journal of Network and Computer Applications, vol. 192, Oct. 2021.; Q. Zhao, S. Chen, Z. Liu, T. Baker, and Y. Zhang, “Blockchain-based privacypreserving remote data integrity checking scheme for IoT information systems,” Information Processing and Management, vol. 57, no. 6, Nov. 2020.; K. Porter, R. Nordvik, F. Toolan, and S. Axelsson, “Timestamp prefix carving for filesystem metadata extraction,” Forensic Science International: Digital Investigation, vol. 38, Sep. 2021.; R. Nordvik, K. Porter, F. Toolan, S. Axelsson, and K. Franke, “Generic Metadata Time Carving,” Forensic Science International: Digital Investigation, vol. 33, Jul. 2020.; M. Kiweler, M. Looso, and J. Graumann, “MARMoSET – Extracting Publication-ready Mass Spectrometry Metadata from RAW Files,” Molecular and Cellular Proteomics, vol. 18, no. 8, pp. 1700–1702, 2019.; N. K. Booker, P. Knights, J. D. Gates, and R. E. Clegg, “Applying principal component analysis (PCA) to the selection of forensic analysis methodologies,” Engineering Failure Analysis, vol. 132, Feb. 2022.; J. W. Ma, T. Czerniawski, and F. Leite, “An application of metadata-based image retrieval system for facility management,” Advanced Engineering Informatics, vol. 50, Oct. 2021.; L.E. Aparicio, “Informe Diagnóstico del estado actual de uso de las historias clínicas en hospitales de Bogotá”, 2010.; B. Schneier. Beyind Fear: Thinking Sensibly about Security in an Uncertain World. Copernicus Books, New York, NY, 2003.; R. Campbell, J. Al-Muhtadi, P. Naldurg, G. Sampemane, and M. Mickunas. Towards Security of Privacy for Pervasive Computing. En Proceedings of the International Symposium on Software Security, LNCS 2603, páginas 1-15, Springer-Verlag, 2002.; D. Garlan, D. Siewiprek, A. Smailagic, and P. Steenkiste. Project AURA: Toward Distraction-Free Pervasive Computing. IEEE Pervasive computing, 1(2):22-31, 2002.; M. Ulrich Legacy Systems: Transformation Strategies. Prentice Hall PTR, 2002.; J. H. Saltzer, D. P. Reed, and D.D. Clark. End-to-End Arguments in System Desing. ACM transactions on Computer Systems, 2(4):277-288, 1984.; Presentación del libro “Seguridad: una Introducción” Dr. MANUTA, Giovanni. Consultor y profesor de seguridad Cranfield University. Revista de Seguridad Corporativa. http//: www.seguridadcorporativa.org.; BORGHELLO. Cristian F. Tesis Seguridad Informática: Sus implicaciones e implementación. [En línea]. Junio 2001, (Citado nov., 05, 2004). Disponible en Internet:; FISHER ROYAL P. “Seguridad en los temas informáticos, Madrid; p 85, 1998.; JIMENEZ, José Alfredo. Evolución Seguridad de un Sistema de Información. [en línea]. Noviembre 2001, (Citado mar., 16, 2005). Disponible en Internet:; CALVO, Rafael Fernández. Glosario básico inglés-español para usuarios. [En línea]. Febrero 2000, (Citado mar., 16, 2005). Disponible en Internet:; ARDITA, Julio Cesar. Director de Cybsec S.A. Security System y ex-Hacker. Entrevista personal realizada el día 15 de enero del 2001 en Instalaciones de Cybsec S.A. http//: www.cybsec.com; MERLAT, Máximo. PAZ, Gonzalo. SOSA, Matias. MARTINEZ, Marcelo. Seguridad Informática: Hackers. [En línea]. Julio 2003. (Citado mar., 16, 2005). Disponible en Internet: http.//www.Seguridad InformáticaHackerilustrados_com.htm; KEITHE J. Jones, Superutilidades Hackers. México D.F: Mac Graw Hill, 2003, p. 282-288.; SUÑER, Francisco José. Hacker. [En línea]. Julio 2004. (Citado abr., 15, 2005). Disponible en Internet:< http://www.ciencia-ficcion.com/glosario/hacker.htm>; CANO. Jeimy. V Encuesta Nacional sobre Seguridad Informática en Colombia. [En línea]. Enero 2005, (Citado jul., 25, 2005). Disponible en Internet:; MENDEZ. Carlos E. Metodología Diseño y Desarrollo del Proceso de Investigación. Bogotá: Mc Graw Hill, 2005.; M. Bano, A. Qayyum, R. N. Bin Rais, and S. S. A. Gilani, “Soft-Mesh: A Robust Routing Architecture for Hybrid SDN and Wireless Mesh Networks,” IEEE Access, vol. 9, pp. 87715–87730, 2021, doi:10.1109/ACCESS.2021.3089020.; S. Kemp, “Digital in 2018: World’s internet users pass the 4 billion mark - We Are Social UK,” 2018. https://wearesocial.com/uk/blog/2018/01/global-digital-report-2018/ (accessed Sep. 01, 2023).; Z. Latif, K. Sharif, F. Li, M. Karim, and Y. Wang, “A Comprehensive Survey of Interface Protocols for Software Defined Networks,” 2019.; M. Paliwal and K. K. Nagwanshi, “Effective Flow Table Space Management Using PolicyBased Routing Approach in Hybrid SDN Network,” IEEE Access, vol. 10, pp. 59806– 59820, 2022, doi:10.1109/ACCESS.2022.3180333.; “Management, Control and Data plane - Cisco Community.” https://community.cisco.com/t5/switching/management-control-and-data-plane/tdp/2803553 (accessed Sep. 02, 2023).; “Management, Control, and Data Planes in Network Devices and Systems « ipSpace.net blog,” 2013. https://blog.ipspace.net/2013/08/management-control-and-data-planesin.html (accessed Mar. 12, 2023).; H. Farag, “CCNA-SEC Lec#4 %7C Securing Data Plane – Network-Masters,” 2017. https://networkmasters.wordpress.com/2017/01/27/ccna-sec-lec4-securing-data-plane/ (accessed Mar. 12, 2023).; “Difference Between Data Plane Vs Control Plane - Route XP Private Network Services.” https://www.routexp.com/2020/03/difference-between-data-plane-vs.html (accessed Mar. 12, 2023).; “Cisco SDN: Control Plane e Data Plane - Cisco Community.” https://community.cisco.com/t5/blogs-routing-y-switching/cisco-sdn-control-plane-edata-plane/ba-p/4655704 (accessed Sep. 02, 2023).; M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software defined networking: State of the art and research challenges,” 2014, doi:10.1016/j.comnet.2014.07.004.; C. Chaudet and Y. Haddad, “Wireless software defined networks: Challenges and opportunities,” 2013 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, COMCAS 2013, 2013, doi:10.1109/COMCAS.2013.6685237.; J. F. G. Orrego and J. P. U. Duque, “Throughput and delay evaluation framework integrating SDN and IEEE 802.11s WMN,” 2017 IEEE 9th Latin-American Conference on Communications, LATINCOM 2017, vol. 2017-January, pp. 1–6, Dec. 2017, doi:10.1109/LATINCOM.2017.8240186.; A. Drescher, “A Survey of Software-Defined Wireless Networks”, Accessed: Sep. 02, 2023. [Online]. Available: http://www.cse.wustl.edu/~jain/cse574-14/ftp/sdwn/index.html; D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015, doi:10.1109/JPROC.2014.2371999.; F. D. O. Silva, J. H. D. S. Pereira, P. F. Rosa, and S. T. Kofuji, “Enabling future internet architecture research and experimentation by using software defined networking,” Proceedings - European Workshop on Software Defined Networks, EWSDN 2012, pp. 73–78, 2012, doi:10.1109/EWSDN.2012.24.; E. Haleplidis and S. Salsano, “Overview of RFC7426: SDN Layers and Architecture Terminology - IEEE Software Defined Networks,” 2017. https://sdn.ieee.org/newsletter/september-2017/overview-of-rfc7426-sdn-layers-andarchitecture-terminology (accessed Feb. 18, 2023).; J. Espinoza, “Las API en Ambientes de Controladores de Red — Serie SDN №2 %7C by Jesus Espinoza %7C Medium,” 2021. https://jesuseduardoespinoza.medium.com/las-api-enambientes-de-controladores-de-red-serie-sdn-2-75139f6a10a2 (accessed Mar. 13, 2023).; J. E. Cáceres Guevara and C. A. Casilimas Fajardo, “Arquitectura y funcionamiento de redes definidas por software (SDN),” Repositorio Universidad Distrital Francisco José de Caldas, 2022.; “Open Networking Foundation.” https://opennetworking.org/ (accessed Sep. 07, 2023).; “Overview of Northbound Interfaces - eSight 21.0 Operation Guide 07 - Huawei.” https://support.huawei.com/enterprise/es/doc/EDOC1100208263/8ac892ef/northboundinterfaces (accessed Mar. 13, 2023).; D. J. Ramos Suavita, “Análisis de vulnerabilidades a nivel de seguridad en redes SDN para los planos de control y plano de datos,” Universidad Militar Nueva Granada, 2021, Accessed: Nov. 05, 2022. [Online]. Available: https://repository.unimilitar.edu.co/bitstream/handle/10654/41314/RamosSuavitaDairon Javier2022.pdf?sequence=1&isAllowed=y; L. Zhu, M. M. Karim, K. Sharif, F. Li, X. Du, and M. Guizani, “SDN Controllers: Benchmarking & Performance Evaluation,” Feb. 2019, [Online]. Available: http://arxiv.org/abs/1902.04491; D. Dudhal, “Performance Evaluation of SDN Controllers using Cbench and Iperf %7C by Disha Dudhal %7C Medium,” 2022. https://medium.com/@dishadudhal/performanceevaluation-of-sdn-controllers-using-cbench-and-iperf-e9296f63115c (accessed Apr. 30, 2023).; R. Kumar, M. Atulkar, and N. Kumar, Performance Comparison of Ryu and Floodlight Controllers in Different SDN Topologies. 2019.; R. Ramadhan, N. Armi, R. Magdalena, G. N. Nurkahfi, and M. M. M. Dinata, “QoS Performance of Software Define Network Using Open Network Operating System Controller,” in Proceeding - 2020 International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications, ICRAMET 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 124–128. doi:10.1109/ICRAMET51080.2020.9298662.; M. Z. Abdullah, N. A. Al-Awad, and F. W. Hussein, “Evaluating and Comparing the Performance of Using Multiple Controllers in Software Defined Networks,” Modern Education and Computer Science, vol. 8, pp. 27–34, 2019, doi:10.5815/ijmecs.2019.08.03.; A. Singh, N. Kaur, and H. Kaur, “Extensive performance analysis of OpenDayLight (ODL) and Open Network Operating System (ONOS) SDN controllers,” 2022, doi:10.1016/j.micpro.2022.104715.; “SDN Framework RYU Using OpenFlow 1.3 RYU project team”.; “ONOS - ONOS - Wiki.” https://wiki.onosproject.org/ (accessed Sep. 07, 2023).; H. Facchini, S. Perez, R. Blanchet, B. Roberti, and R. Azcarate, “Experimental performance contrast between SDN and traditional networks,” in 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021, Institute of Electrical and Electronics Engineers Inc., 2021. doi:10.1109/CHILECON54041.2021.9702982.; D. Bombal, “GNS3,” 2015. https://gns3.com/sdn-101-mininet-openflow-and-gns (accessed Sep. 07, 2023).; “OpenFlow.” https://wiki.wireshark.org/OpenFlow (accessed Sep. 08, 2023).; J. Mogul and S. Deering, “RFC 1191 - Path MTU discovery.” https://datatracker.ietf.org/doc/html/rfc1191 (accessed Sep. 07, 2023).; “Rendimiento del servicio de volumen en bloque.” https://docs.oracle.com/esww/iaas/Content/Block/Concepts/blockvolumeperformance.htm (accessed Sep. 07, 2023).; “Data Center Switches – Cisco Nexus - Cisco.” https://www.cisco.com/site/us/en/products/networking/cloud-networkingswitches/index.html (accessed Sep. 07, 2023).; “muestra la memoria virtual del sistema %7C Juniper Networks.” https://www.juniper.net/documentation/mx/es/software/junos/junos-overview/topics/ref/command/show-system-virtual-memory.html (accessed Sep. 07, 2023).; “Why Move to a Modern Network Operating System? White Paper - Cisco.” https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-xrsoftware/white-paper-c11-744829.html (accessed Sep. 04, 2023).; “Software-Defined Networking (SDN) Definition - Open Networking Foundation.” https://opennetworking.org/sdn-definition/ (accessed Sep. 03, 2023).; “threading — Thread-based parallelism — Python 3.11.5 documentation.” https://docs.python.org/3/library/threading.html (accessed Sep. 05, 2023).; 5gamericas, “5gamericas: Statistics - Latin America.” [Online]. Available: http://www.5gamericas.org/en/resources/statistics/statistics-latin-america/.; A. Navarro Cadavid, A. Arteaga, L. Vargas, J. Renteria, and M. Arciniegas, “Spectrum Monitoring System and Benchmarking of Mobile Networks Using Open Software Radios SIMONES,” IEEE Lat. Am. Trans., vol. 13, no. 11, pp. 3592–3597, 2015.; M. Iedema and H. Samra, Getting Started with OpenBTS. 2015.; A. Dubey, D. Vohra, K. Vachhani, and A. Rao, “Demonstration of vulnerabilities in GSM security with USRP B200 and open-source penetration tools,” in Proceedings - AsiaPacific Conference on Communications, APCC 2016, 2016, pp. 496–501.; B. Harmat et al., “The Security Implications of IMSI Catchers,” in International Conference on Security and Management (SAM’15), 2015, pp. 57–62.; Mesud Hadžialić; Mirko Škrbić; Kemal Huseinović; Irvin Kočan; Jasmin Mušović, “An Approach to Analyze Security of GSM Network,” 22nd Telecommun. forum TELFOR 2014, 2014.; S. Ghafoor, K. N. Brown, and C. J. Sreenan, “Experimental evaluation of a software defined radio-based prototype for a disaster response cellular network,” in Proceedings of the 2015 2nd International Conference on Information and Communication Technologies for Disaster Management, ICT-DM 2015, 2016, pp. 57–63.; K. Guevara, M. Rodriguez, N. Gallo, G. Velasco, K. Vasudeva, and I. Guvenc, “UAVbased GSM network for public safety communications,” in Conference Proceedings - IEEE SOUTHEASTCON, 2015, vol. 2015-June, no. June.; T. Di. Putri and T. Juhana, “Mobile-openbts implementation of natural disaster victims search,” in Proceedings - ICWT 2017: 3rd International Conference on Wireless and Telematics 2017, 2018, vol. 2017-July, pp. 149–154.; J. Mpala and G. Van Stam, “Open BTS, a GSM experiment in rural Zambia,” Africomm, Yaounde, Cameroon, pp. 1–9, 2012.; M. Zheleva, A. Paul, D. L. Johnson, and E. Belding, “Kwiizya: Local Cellular Network Services in Remote Areas,” in MobiSys, 2013, July, p. 417.; L. Angrisani, P. Daponte, and M. D'Apuzzo, “A measurement method based on time-frequency representations for testing GSM equipment,” IEEE Trans. Instrum. Meas., vol. 49, no. 5, pp. 1050–1056, 2000.; A. Aiello and D. Grimaldi, “Frequency error measurement in GMSK signals in a multipath propagation environment,” IEEE Trans. Instrum. Meas., vol. 52, no. 3, pp. 938–945, 2003.; K. Paul, “Introduction to GSM and GSM mobile RF transceiver derivation.; Union Internacional de Telecomunicaciones., “Definiciones de sistema radioeléctrico determinado por programas informáticos (RDI) y sistema radioeléctrico cognoscitivo (SRC),” vol. 2152, 2009.; T. ETSI Specification, “Digital cellular telecomm mmunications system (Phase e 2+) (GSM); GSM/EDGE Multiplexing and multiple access on the radio path (3GPP TS 45.0.002 version 13.3.1 Release 13).”; J. M. HUIDOBRO, Comunicaciones móviles: sistemas GSM, UMTS Y LTE, 2012th ed.; ETSI, Digital cellular telecommunications system (Phase 2+); Release independent frequency bands; Implementation guidelines (3GPP TS 05.14 version 7.2.0 Release 1998), vol. 0. 2001, pp. 0–31.; ETSI, Digital cellular telecommunications system (Phase 2+); Radio transmission and reception (3GPP TS 45.005 version 12.4.0 Release 12), vol. 0. 2008, pp. 0–40.; T. Specification, “ETSI TS 145 002,” vol. 0, pp. 0–112, 2014.; T. ETSI Specification, Technical Specification Group GSM/EDGE Radio Access Network; Digital cellular telecommunications system (Phase 2+); Modulation TS 05.04, vol. 0. 2003, pp. 1–28.; 3GPP, 3rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network; Digital cellular telecommunications system (Phase 2+); Radio subsystem synchronization. 1999.; ETSI, Digital cellular telecommunications system (Phase 2 and Phase 2+); Base Station System (BSS) equipment specification; Radio aspects (3GPP TS 11.21 version 8.6.0 Release 1999), vol. 0. 2008, pp. 0–40.; ETSI, EN 300 910 Digital cellular telecommunications system (Phase 2+); Radio transmission and reception (GSM 05.05 version 8.5.1 Release 1999), vol. 1. 1999, pp. 1– 10.; Keysight Technologies, “Understanding GSM/EDGE Transmitter and Receiver Measurements for Base Transceiver Stations and their Components.”; E. No. O. . U. S. A. Gbadamosi A. M. Aibinu, “Towards Independent Measurement of End to End Bit Error Rate in GSM Network,” pp. 1–4, 2014.; R. Communications, “Laboratory works in Radio Communications GSM Transceiver Measurements.” Prentice-Hall Inc, 1995.; T. ETSI Specification, 3GPP TS 05.05 3rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network; Radio transmission and reception, vol. 0. 2005.; E. Research, “USRP Hardware Driver and USRP Manual Version: 003.010.001.001-41- g6abf277.” [Online]. Available: http://openbts.org/hardware/.; R. Networks, C. C. Attribution-sharealike, and U. License, “OpenBTS Application Suite,” 2014; Agilent Technologies, “Making the Phase and Frequency Error Measurement.” [Online]. Available: http://literature.cdn.keysight.com/litweb/pdf/ads2001/vsaedgemeas/gsmmeas6.html.; D. Seidl et al., «The multiparameter station at Galeras Volcano (Colombia): concept and realization», Journal of Volcanology and Geothermal Research, vol. 125, n.o 1-2, pp. 1-12, 2003, doi:10.1016/s0377-0273(03)00075-1.; J. M, «Review of electric and magnetic fields accompanying seismic and volcanic activity», U.S. Geological Survey, vol. 18, n.o 5, pp. 441-475, 1997, doi:10.1023/A:1006500408086.; V. Surkov y V. Pilipenko, «Estimate of ULF electromagnetic noise caused by a fluid flow during seismic or volcano activity», Copernicus Publications, vol. 2, n.o 10, pp. 6475-6497, 2014, doi:10.5194/nhessd-2-6475-2014.; Y. Sasai et al., «Magnetic and electric field observations during the 2000 activity of Miyakejima volcano, Central Japan», Earth and Planetary Science Letters, vol. 203, n.o 2, pp. 769-777, 2002, doi:10.1016/S0012-821X(02)00857-9.; M. Valenciano, «Implementación de un radioenlace LPWAN con tecnología LoRa», Tesis, Universidad de Valladolid, Valladolid, 2022. [En línea]. Disponible en: https://uvadoc.uva.es/bitstream/handle/10324/57458/TFGG5892.pdf?sequence=1&isAllowed=y; R. Piyare, A. Murphy, M. Magno, y L. Benini, «On-Demand LoRa: Asynchronous TDMA for EnergyEfficient and Low Latency Communication in IoT», Sensors, vol. 18, n.o 3718, 2018, doi:10.3390/s18113718.; C. Guerrero, «Evaluación de los retardos en redes LoRaWAN multisalto con topología lineal», Tesis, Universidad Politécnica Nacional, Quito Ecuador, 2022.; H. Mahmood Jawad, R. Nordin, S. Kamel Gharghan, A. Mahmood Jawad, y Mahamod Ismail, «Energy-efficient wireless sensor networks for precision agriculture: A review», Sensors, vol. 17, n.o 8, p. 1781, 2017, doi:10.3390/s17081781.; R. Muñoz, «Modelado y evaluación de la eficiencia del estándar SCHC para el transporte de paquetes IP sobre LoRaWAN», Tesis Maestría, Universidad de Chile, Santiago de Chile, 2020. [En línea]. Disponible en: https://repositorio.uchile.cl/bitstream/handle/2250/177977/Modelado-y-evaluacion-de-laeficiencia-del-estandar-SCHC-para-el-transporte-de-paquetes-IP.pdf?sequence=1; W. Yong, L. Minzan, y Z. Man, «Remote-control system for greenhouse based on opensource hardware», IFAC, vol. 52, n.o 30, pp. 178-183, 2019, doi:10.1016/j.ifacol.2019.12.518.; L. Cilleruelo and A. Zubiaga, “Una aproximación a la Educación STEAM. Prácticas educativas en la encrucijada arte, ciencia y tecnología. Jornadas de Psicodidáctica, 18.,” 2014.; M. L. Matute Sánchez and C. R. Contreras Alvarado, “Diseño y desarrollo de un asistente robótico basado en sistemas embebidos y aplicaciones móviles como herramienta de soporte pedagógica para niños de uno a cinco años,” 2019.; E. Systems, “ESP8266EX,” 2023.; K. Arakadakis, P. Charalampidis, A. Makrogiannakis, and A. Fragkiadakis, “Firmware Over-the-air Programming Techniques for IoT Networks-A Survey,” ACM Comput. Surv., vol. 54, no. 9, pp. 1–24, 2022, doi:10.1145/3472292.; I. G. Juan, I. Garc, I. F. Milena, and I. G. Ezequiel, “Gestión de Redes Centralizado desde GNU / Linux,” Cordoba, 2021.; Y. T. Chávez Cujilán and J. M. Espinoza Ortíz, “Desarrollo de una plataforma web para el control y seguimiento de productos terminados en la empresa camaronera ambartex s.a. empleando la metodología kanban,” Universidad de Guayaquil, 2016.; M. docs Web, “Métodos de petición HTTP,” 2023. https://developer.mozilla.org/es/docs/Web/HTTP/Methods.; R. Pereira, C. de Souza, D. Patino, and J. Lata, “Platform for Distance Learning of Microcontrollers and Internet of Things; [Plataforma De Enseñanza a Distancia De Microcontroladores E Internet De Las Cosas],” Ingenius, vol. 2022, no. 28, pp. 53 – 62, 2022, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144095611&doi=10.17163%2Fings.n28.2022.05&partnerID=40&md5=cc9fd40b5b28 c66ac89ebf8f68ab3275.; M. Garduno-Aparicio, J. Rodriguez-Resendiz, G. Macias-Bobadilla, and S. Thenozhi, “A Multidisciplinary Industrial Robot Approach for Teaching Mechatronics-Related Courses,” IEEE Trans. Educ., vol. 61, no. 1, pp. 55–62, 2018, doi:10.1109/TE.2017.2741446.; P. Jacko et al., “Remote IoT Education Laboratory for Microcontrollers Based on the STM32 Chips,” Sensors, vol. 22, no. 4, 2022, doi:10.3390/s22041440.; Ð. Mijailović, A. Ðorđdević, M. Stefanovic, D. Vidojević, A. Gazizulina, and D. Projović, “A cloud-based with microcontroller platforms system designed to educate students within digitalization and the industry 4.0 paradigm,” Sustain., vol. 13, no. 22, 2021, doi:10.3390/su132212396.; J. Vega D, “Soporte para gestión remota ota sobre una picocelda GSM / GPRS OverThe-Air management on a GSM / GPRS picocell Graduado en Ingeniería de Tecnologías de Telecomunicación,” Universidad de Cantabria, 2014.; J. Molnár et al., “Weather Station IoT Educational Model Using Cloud Services,” JUCS - J. Univers. Comput. Sci., vol. 26, no. 11, pp. 1495–1512, Nov. 28AD, [Online]. Available: https://doi.org/10.3897/jucs.2020.079.; O. Velihorskyi, I. Nesterov, and M. Khomenko, “Remote Debugging of Embedded Systems in Stm32Cubemonitor,” pp. 22–25, 2020, doi:10.35598/mcfpga.2020.007.; G. Zhabelova, M. Vesterlund, S. Eschmann, Y. Berezovskaya, V. Vyatkin, and D. Flieller, “A Comprehensive Model of Data Center: From CPU to Cooling Tower,” IEEE Access, vol. 6, pp. 61254–61266, 2018, doi:10.1109/ACCESS.2018.2875623.; I. Marín, “un enfoque de neurociencia sobre la participación de los estudiantes en las clases de microcontroladores durante la pandemia covid19,” in 14a Conferencia Internacional Anual de Educación, Investigación e Innovación Actas JA - ICERI2021, pp. 5776-5783 urgencias-, doi:10.21125/iceri.2021.1303 Año anual - 2021.; S. P. De Araujo and L. Dias Souza, “STEAM Education y el Diseño de los modelos de aprendizaje MOE, TAS y COM,” i+Diseño. Rev. Científico-Académica Int. Innovación, Investig. y Desarro. en Diseño, vol. 17, pp. 23–34, 2022, doi:10.24310/idiseno.2022.v17i.15683.; E. Flores, “Ingenieria de Software,” 2021. https://ingenieriadesoftware.mex.tl/52666_Presentacion.html.; E. Inga, J. Inga, and A. Ortega, “Novel approach sizing and routing of wireless sensor networks for applications in smart cities,” Sensors, vol. 21, no. 14, pp. 1–17, 2021, doi:10.3390/s21144692.; T. Vince et al., “IoT implementation in remote measuring laboratory VMLab analyses,” J. Univers. Comput. Sci., vol. 26, no. 11, pp. 1402–1421, 2020, doi:10.3897/jucs.2020.074.; I. Olarte C and L. A. Rodriguez Umaña, “diseño de arquitectura estándar para la adquisición y transmisión de datos integrados en la automatización de cultivos acuaponicos,” Universidad Cooperativa de Colombia, 2022.; J. I. Vega Luna, F. J. Sánchez-Rangel, G. Salgado-Guzmán, J. F. Cosme-Aceves, V. N. Tapia-Vargas, and M. A. Lagos-Acosta, “Red de monitorización para automatizar el sistema de enfriamiento de un centro de datos,” Ingenius, no. 24, pp. 87–96, 2020, doi:10.17163/ings.n24.2020.09.; M. Rodríguez, S. Zafra y S. Ortega, «La revisión sistemática de la literatura científica y la necesidad de visualizar los resultados de las investigaciones.,» Revista Logos, Ciencia & Tecnología, vol. 7, nº 1, pp. 101-103, 2015.; M. Salcido, A. del Toro, N. Medina, F. RamÍrez, M. Gacia, A. Briceño y J. Jiménez, «Revisión sistemática: el más alto nivel de evidencia,» Orthotips AMOT, vol. 17, nº 4, pp. 217-22%7C, 2021.; B. Moreno, M. Muñoz, J. Cuellar, S. Domancic y J. Villanueva, «Revisiones Sistemáticas: definición y nociones básicas.,» Revista clínica de periodoncia, implantología y rehabilitación oral, vol. 11, nº 3, pp. 184-186, 2018.; C. Ierandi, L. Orihuela, I. Jurado, Á. Rodríguez Del Nozal y A. Tapia, «Revisión sistemática de la literatura en ingeniería de sistemas. Caso práctico: técnicas de estimación distribuida de sistemas ciberfísicos.,» Actas de las XXXVIII Jornadas de Automática, pp. 84-91, 2017.; H. García, «Conceptos fundamentales de las revisiones sistemáticas/metaanálisis.,» Urología colombiana, vol. 24, nº 1, pp. 28-34, 2015.; O. Beltrán, «Revisiones sistemáticas de la literatura.,» Revista colombiana de gastroenterología., vol. 20, nº 1, pp. 60-69, 2005.; C. Manterola, P. Astudillo, E. Arias y N. Claros, «Revisiones sistemáticas de la literatura. Qué se debe saber acerca de ellas.,» Cirugía española, vol. 91, nº 3, pp. 149-155, 2023.; L. Letelier, J. Manríquez y G. Rada, «Revisiones sistemáticas y metaanálisis:¿ son la mejor evidencia?,» Revista médica de Chile, vol. 133, nº 2, pp. 246-249, 2005.; OpenAI, «ChatGPT (Versión del 16 de octubre de 2023),» 2023. [En línea]. Available: https://chat.openai.com/.; G. Guevara, A. Verdesoto, S. Guevara y E. González, «Las Tecnologías de la Información y la Comunicación en la educación universitaria,» Revista Científica de Investigación actualización del mundo de las Ciencias, vol. 3, nº 3, pp. 409-422, 2019.; J. Cobo, «El concepto de tecnologías de la información. Benchmarking sobre las definiciones de las TIC en la sociedad del conocimiento.,» Revista de Estudios de Comunicación, vol. 14, nº 27, pp. 295-318, 2009.; Z. L. C. A. P. G. L. V. C. &. D. C. M. B. Aliaga, «Software educativo para favorecer la aprehensión de los contenidos de ingeniería de software,» Revista de Investigación en Tecnologías de la Información, pp. 5(9), 63-69., 2017.; B. Gros, El ordenador invisible. Hacia la apropiación del ordenador en la enseñanza, Barcelona, España: Editorial Gedisa, 2000.; S. Kumar, «Knowledge of software education,» Global Research Journal of Educaion, pp. 1-2, 2022.; H. Rosario N, «TIC EN AMBIENTES EDUCATIVOS,» Comunidad y Salud, vol. 5, nº 2, 2007.; ] U. IIEP, «Tecnologías de la información y la comunicación (TICs) en la educación,» IIEP Learning Portal, 22 Marzo 2023. [En línea]. Available: https://learningportal.iiep.unesco.org/es/fichas-praticas/mejorar-elaprendizaje/tecnologias-de-la-informacion-y-la-comunicacion-tics-en-la. [Último acceso: 5 Octubre 2023].; D. Correa y F. Pérez, «Los modelos pedagógicos: trayectos históricos,» Debates por la Historia., pp. 125-154, 2022.; B. Joyce y M. Weil, Los modelos de enseñanza., Madrid, España: Editorial Anaya, 1985.; F. García, «Los modelos didácticos como instrumento de análisis y de intervención en la realidad educativa.,» García Pérez, F. F. (2000). Los modelos didácticos como instrumento de análiBiblio 3w: Revista Bibliográfica de Geografía y Ciencias Sociales., pp. 1-12, 2000.; V. Niño, Metodología de la investigación. Diseño y ejecución., Bogotá, Colombia: Ediciones de la U, 2011.; G. Fidias, El proyecto de Investigación. Introducción a la metodología científica., Caracas, Venezuela: Editorial Episteme, CA., 2006.; L. Larriba, «La investigación de los modelos didácticos y de las estrategias de enseñanza.,» Enseñanza., pp. 73-88, 2001.; N. Romero y J. Moncada, «Modelo didáctico para la enseñanzade la educación ambiental en la Educación Superior Venezolana,» Revista de Pedagogía, pp. 443-476, 2007.; A. Brolpito, Digital Skills and Competence, and Digital and Online Learning., European Training Foundation., 2018.; O. Najar, «Tecnologías de la información y la comunicación aplicadas a la educación,» Praxis y Saber, vol. 7, nº 14, pp. 9-16, 2016.; E. Kispeter, What digital skills do adults need to succeed in the workplace now and in the next 10 years., Warwick Institute for Employement Research., 2018.; A. Gargallo, «La integración de las TIC en los procesos educativos y organizativos.,» Educar em Revista., vol. 34, nº 69, pp. 325-339, 2018.; J. Cabrero, Tecnología educativa. Diseño y utilización de medios en la enseñanza., Barcelona, España: Editorial Paidos, 2001.; L. Alvarez, Modelos de gestión, Bogotá: Fundación Universitaria del Área Andina, 2017.; T. Huertas, E. Suárez, M. Salgado, L. Jadán y B. Jiménez, «Diseño de un modelo de gestión. Base científica y práctica para su elaboración.,» Revista Universidad y Sociedad, 12(1), 165-177., vol. 12, nº 1, pp. 165-177, 2020.; L. Reginato, C. Pereira y R. Guerreiro, «Una investigacion sobre las caracteristicas del modelo de gestion: un estudio de caso.,» Reginato, L., Pereira, C. A., & Guerreiro, R. (2009). Una investigacion sobre las cara Iberoamerican journal of industrial engineering, vol. 1, nº 1, pp. 24-45, 2009.; L. Angulo, Gestión de ptoyectos. Bajo el enfoque del PMBOK, Lima: Editorial Macro, 215.; A. López y D. Lankenau, Administración de proyectos. La clave para la coordinación efectiva de actividades y recursos, México: Pearson, 2017.; R. Terrazas, «Modelo conceptual para la gestión de proyectos.,» Perspectivas, vol. 24, pp. 165-188, 2009.; A. Narvaez y R. Esperanza, «Modelos para la Gestión de Proyectos.,» Informador Técnico, vol. 71, pp. 53-58, 2007.; U. IIEP, «Tecnologías de la información y la comunicación (TICs) en la educación,» IIEP Learning Portal, 22 Marzo 2023. [En línea]. Available: https://learningportal.iiep.unesco.org/es/fichas-praticas/mejorar-elaprendizaje/tecnologias-de-la-informacion-y-la-comunicacion-tics-en-la. [Último acceso: 5 Octubre 2023].; J. A. Pineda Acero, «Diseño de proyectos educativos mediados por TIC: un marco de referencia,» Opción, vol. 32, nº 10, pp. 479-499, 2016.; UNESCO, Herramientas para la gestión de proyectos educativos con TIC, Buenos Aires: UNESCO, 2007.; E. H. Legresti, «Proyecto de incorporación de las TICs como herramienta de aprendizaje,» 2019.; D. &. C. S. L. Alan Neill, Procesos y fundamentos de la investigación científica. , 53(9)., Macha, Ecuador: Ediciones UTMACH, 2018.; A. Carli, La Ciencia como herramienta. Guía para la investigación y la realización de informes, monografías y tesis científicas., Buenos Aires: Editorial Biblos, 2008.; P. Suárez, Metodología de la investigación. Diseño y técnicas, Bogotá, Colombia: Orión Editores Ltda., 2004.; M. Medina, La investigación aplicada a proyectos. Identificación del proyecto y formulación de la investigación., Bogotá, Colombia: Ediciones Ántropos Ltda., 2007.; Aplicación y uso de drones: https://edu.gcfglobal.org/es/cultura-tecnologica/quees-un-dron-y-cuales-son-sus-usos/1/; Como funciona el Mapeo a partir de drones? : https://ts2.space/es/como-funcionael-sistema-de-mapeo-3d-de-un-dron/; Duarte, J. F., Galindo Gómez, S. F., Rodríguez Pupo, S., PayánDurán, L. F., & Velásquez-Rodrígue, C. E. (2022). Paso a paso para desarrollar innovaciones sociales. Documento Técnico del PCIS.; Hoyos Montoya, E. A., & de Souza Bías, E. (2021). [Título del artículo]. Recuperado dehttps://doi.org/10.22490/25394088.5609; UN (2022). Objetivos de Desarrollo Sosteninle Tomado de: https://www.un.org/sustainabledevelopment/es/waterand-sanitation/; MEN( 2022) titulado ORIENTACIONES CURRICULARES PARA EL ÁREA DETECNOLOGÍA E INFORMÁTICA EN LA EDUCACIÓN BÁSICA Y MEDIA https://www.colombiaaprende.edu.co/sites/default/files/files_public/2022- 11/Orientaciones_Curricures_Tecnologia.pdf; Secretaría de Ambiente. Bogotá está mejorando y en el Día Mundial de los Humedales reafirma su compromiso con estos ecosistemas. https://www.ambientebogota.gov.co/ (2022).; Cuellar, Y., Pérez, L. Modelado multitemporal y simulación de la dinámica compleja en humedales urbanos: el caso de Bogotá, Colombia. Representante científico 13 , 9374 (2023).https://doi.org/10.1038/s41598-023-36600-8; Ramsar. "Humedales urbanos: tierras preciadas, no terrenos baldíos ". https://www.ramsar.org/resources/publications (2018).; Das, N. y Mehrotra, S. Humedales en contextos urbanos: un caso de Bhoj Wetland. En 2021 Simposio internacional de geociencia y teledetección del IEEE IGARSS (págs. 6972-6975). IEEE(2021).; Van der Hammen, T. Los humedales de la Sabana: origen, evolución, degradación y restauración. en Los humedales de Bogotá y la Sabana, Conservación Internacional 19–51(2003).; Ramsar (2021). " Transformar la agricultura para sostener a las personas y mantener los humedales”. Tomado de: https://www.ramsar.org/sites/default/files/documents/library/rpb6_agriculture_s. pdf; Espínola Pérez, A. M. (2014). Clasificación de Imágenes de Satélite mediante AutómatasCelulares (Tesis doctoral). Universidad de Almería. Dirigida por Dr. D. Luis F. Iribarne Martínez, Dra. Dña. Rosa M. Ayala Palenzuela, y Dr. D. José Antonio Piedra Fernández.; He, W., Chen, S., Liu, X., & Chen, J. (2008). Water quality monitoring in a slightly-pollutedinland water body through remote sensing — Case study of the Guanting Reservoir in Beijing, China. Frontiers of Environmental Science & Engineering in China, 2, 163–171.; Carbonell Carrera, C., & Bermejo Asensio, L. A. (2017). Augmented reality as a digital teaching environment to develop spatial thinking. Cartography and Geographic Information Science, 44(3), 259-270. https://doi.org/10.1080/15230406.2016.1145556; Cuellar, Y., & Perez, L. (2023). Multitemporal modeling and simulation of the complex dynamics in urban wetlands: the case of Bogota, Colombia. Scientific Reports, 13, 9374.; Carbonell Carrera, C., & Bermejo Asensio, L. A. (2017). Augmented reality as a digital teachingenvironment to develop spatial thinking. Cartography and Geographic Information Science, 44(3), 259-270. https://doi.org/10.1080/15230406.2016.1145556; Alikhani, S., Nummi, P. & Ojala, A. Humedales urbanos: una revisión de los valores ecológicosy culturales. Agua 13 , 3301 (2021).; H. Mohapatra and S. I. Hosain, “Intermodal dispersion free few-mode (quadruple mode) fiber: A theoretical modelling,” Opt Commun, vol. 305, pp. 267–270, 2013, doi:10.1016/j.optcom.2013.05.018.; J. Tu, K. Long, and K. Saitoh, “Design and optimization of 3-mode×12-core dual-ring structured few-mode multi-core fiber,” Opt Commun, vol. 381, pp. 30–36, 2016, doi:10.1016/j.optcom.2016.06.049.; H. Zhu, Z. Cao, and Q. Shen, “Construction of the refractive index profiles for few-mode planar optical waveguides,” Opt Commun, vol. 260, no. 2, pp. 542–547, 2006, doi:10.1016/j.optcom.2005.11.011.; G. F. Fibers, H. Mohapatra, and S. I. Hosain, “Variational Approximations for LP l 1 Modes,” vol. 26, no. 4, pp. 372–375, 2014.; F. Ferreira, D. Fonseca, and H. Silva, “Design of few-mode fibers with up to 12 modes and low differential mode delay,” International Conference on Transparent Optical Networks, vol. 32, no. 3, pp. 353–360, 2014, doi:10.1109/ICTON.2014.6876696.; A. Rjeb, H. Seleem, H. Fathallah, and M. Machhout, “Design of 12 OAM-Graded index few mode fi bers for next generation short haul interconnect transmission,” Optical Fiber Technology, vol. 55, no. October 2019, p. 102148, 2020, doi:10.1016/j.yofte.2020.102148.; H. Kubota and T. Morioka, “Few-mode optical fiber for mode-division multiplexing,” Optical Fiber Technology, vol. 17, no. 5, pp. 490–494, 2011, doi:10.1016/j.yofte.2011.06.011.; J. Zhang and L. Mao, “Integrating multiple transportation modes into measures of spatial food accessibility,” J Transp Health, vol. 13, no. March, pp. 1–11, 2019, doi:10.1016/j.jth.2019.03.001.; A. E. Zhukov, V. A. Burdin, and A. V Bourdine, “Design of silica optical fibers with enlarged core diameter for a few-mode fiber optic links of onboard and industrial multiGigabit networks,” Procedia Eng, vol. 201, pp. 105–116, 2017, doi:10.1016/j.proeng.2017.09.675.; W. Jin et al., “Few-mode and large-mode-area fiber with circularly distributed cores,” Opt Commun, vol. 387, no. July 2016, pp. 79–83, 2017, doi:10.1016/j.optcom.2016.11.016.; J. Han and C. Qu, “Characterization of distributed mode crosstalk in few-mode fiber links with low MIMO complexity,” Physical Communication, vol. 25, pp. 310–314, 2017, doi:10.1016/j.phycom.2017.02.002.; S. Wei-Hua, X. Chuan-Xiang, and Y. Jing, “A new type of Few-mode Photonic Crystal Fiber with nearly-zero flattened Dispersion properties,” ICOCN 2017 - 16th International Conference on Optical Communications and Networks, vol. 2017-Novem, pp. 16–18, 2017, doi:10.1109/icocn.2017.8374406.; R. Miyazaki, M. Ohashi, H. Kubota, Y. Miyoshi, and N. Shibata, “Chromatic dispersion measurement of the high order mode in a few-mode fiber using an interferometric technique and a mode converter,” 2017 Opto-Electronics and Communications Conference, OECC 2017 and Photonics Global Conference, PGC 2017, vol. 2017- Novem, pp. 1–3, 2017, doi:10.1109/OECC.2017.8114866.; A. Marcos Aparicio, “Cable submarino, conexión DWDM entre continentes,” Sistema de Gestión de incidencias Open Source, 2017, [Online]. Available: http://oa.upm.es/48560/1/PFC_ANA_ISABEL_MARCOS_APARICIO.pdf; G. P. (Govind P. ) Agrawal, Fiber-optic communication systems. Wiley-Interscience, 2002.; S. Matthew, Elementos de electromagnetismo. 2009. doi: 10: 0-8400-5444-0.; D. Pozar, “Microwave Engineering 2nd Ed David Pozar,” pp. 1–736, 2008, [Online]. Available: papers2://publication/uuid/74B11176-09A2-4077-9BDE-1E89002D0735; R. Neri Vela and L. H. Porragas Beltrán, Líneas de transmisión, vol. 3, no. 2. 2012. doi:10.25009/uv.1998.124.; D. Gloge and E. A. J. Marcatili, “Multimode Theory of Graded-Core Fibers,” 1973.; M. Carmen. España Booquera, Comunicaciones ópticas : conceptos esenciales y resolución de ejercicios. Díaz de Santos, 2005. Accessed: Sep. 25, 2023. [Online]. Available: https://www.academia.edu/33300228/MAR%C3%8DA_CARMEN_ESPA%C3%91A_B OQUERA_COMUNICACIONES_%C3%93PTICAS_Conceptos_esenciales_y_resoluci %C3%B3n_de_ejercicios; K. Gomez, L. Goratti, F. Granelli, y T. Rasheed, «A Comparative Study of Scheduling Disciplines in 5G Systems for Emergency Communications», presentado en 1st International Conference on 5G for Ubiquitous Connectivity, Levi, Finland, 2014. doi:10.4108/icst.5gu.2014.257987.; K. Pedersen, G. Pocovi, J. Steiner, y A. Maeder, «Agile 5G Scheduler for Improved E2E Performance and Flexibility for Different Network Implementations», IEEE Commun. Mag., vol. 56, n.o 3, pp. 210-217, mar. 2018, doi:10.1109/MCOM.2017.1700517.; A. Akhtar y H. Arslan, «Downlink resource allocation and packet scheduling in multinumerology wireless systems», en 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Barcelona, abr. 2018, pp. 362-367. doi:10.1109/WCNCW.2018.8369012.; K. I. Pedersen, M. Niparko, J. Steiner, J. Oszmianski, L. Mudolo, y S. R. Khosravirad, «System Level Analysis of Dynamic User-Centric Scheduling for a Flexible 5G Design», en 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, dic. 2016, pp. 1-6. doi:10.1109/GLOCOM.2016.7842312.; S. A. AlQahtani and M. Alhassany, “Comparing different LTE scheduling schemes,” in 2013 9th international wireless communications and mobile computing conference (IWCMC), 2013, pp. 264–269.; T. Dikamba, “Downlink scheduling in 3GPP long term evolution (LTE),” 2011.; S. V. S. Prakash and M. Visali, “On demand SINR based scheduling algorithm (ODSSA) for mobile uplink communication in LTE networks,” in 2015 International Conference on Signal Processing and Communication Engineering Systems, 2015, pp. 453–457.; G. Muñoz, I. H. Solana, and M. Ángela, “Gestión de Recursos Radio en Redes Móviles Celulares Basadas en Tecnología OFDMA para la Provisión de QoS y Control de la Interferencia.”; C. So-In, R. Jain, y A. K. Tamimi, “A Deficit Round Robin with Fragmentation scheduler for IEEE 802.16e Mobile WiMAX”, en IEEE Sarnoff Symposium, 2009. SARNOFF ’09, 2009, pp. 1–7.; H. Fattah y C. Leung, “An Improved Round Robin Packet Scheduler for Wireless Networks”, International Journal of Wireless Information Networks, vol. 11, pp. 41–54, 2004.; J. Vihriala et al., «Numerology and frame structure for 5G radio access», en 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications; N. Siasi, A. Jaesim, A. Aldalbahi, y N. Ghani, «Link Failure Recovery in NFV for 5G and Beyond», en 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona, Spain, oct. 2019, pp. 144-148. doi:10.1109/WiMOB.2019.8923413.; D.-H. Kim, B.-H. Ryu, y C.-G. Kang, «Packet Scheduling Algorithm Considering a Minimum Bit Rate for Non-realtime Traffic in an OFDMA/FDD-Based Mobile Internet Access System», ETRI J., vol. 26, n.o 1, pp. 48-52, feb. 2004, doi:10.4218/etrij.04.0203.0005.; M. Yan, G. Feng, J. Zhou, Y. Sun, y Y.-C. Liang, «Intelligent Resource Scheduling for 5G Radio Access Network Slicing», IEEE Trans. Veh. Technol., vol. 68, n.o 8, pp. 7691- 7703, ago. 2019, doi:10.1109/TVT.2019.2922668.; A. A. Esswie y K. I. Pedersen, «Opportunistic Spatial Preemptive Scheduling for URLLC and eMBB Coexistence in Multi-User 5G Networks», IEEE Access, vol. 6, pp. 38451-38463, 2018, doi:10.1109/ACCESS.2018.2854292.; R. B. Abreu, G. Pocovi, T. H. Jacobsen, M. Centenaro, K. I. Pedersen, y T. E. Kolding, «Scheduling Enhancements and Performance Evaluation of Downlink 5G TimeSensitive Communications», IEEE Access, vol. 8, pp. 128106-128115, 2020, doi:10.1109/ACCESS.2020.3008598.; Z. Gu et al., «Knowledge-Assisted Deep Reinforcement Learning in 5G Scheduler Design: From Theoretical Framework to Implementation», ArXiv200908346 Cs Eess, feb. 2021, Accedido: feb. 06, 2021. [En línea]. Disponible en: http://arxiv.org/abs/2009.08346; Khaira, M. S., & Borkar, N. Y., «U.S. Patent No. 5,357,512. Washington, DC: U.S. Patent and Trademark Office.» 1994.; C. J. Katila, C. Buratti, M. D. Abrignani, y R. Verdone, «Neighbors-Aware Proportional Fair scheduling for future wireless networks with mixed MAC protocols», EURASIP J. Wirel. Commun. Netw., vol. 2017, n.o 1, p. 93, dic. 2017, doi:10.1186/s13638-017- 0875-6.; Humaira Rashid Khan, Fahd Sikandar Khan, Ahmed Shuja Syed, Javeed Akhtar, Chapter 27 - Nano-inks and their applications in packaging industries, Editor(s): Ram K. Gupta, Tuan Anh Nguyen, In Micro and Nano Technologies, Smart Multifunctional Nano-inks, Elsevier, 2023, Pages 687-698, ISBN 9780323911450, https://doi.org/10.1016/B978-0-323-91145-0.00015-3.; Muhammad Ifaz Shahriar Chowdhury, Yashdi Saif Autul, Sazedur Rahman, Md Enamul Hoque, 11 - Polymer nanocomposites for automotive applications, Editor(s): Md Enamul Hoque, Kumar Ramar, Ahmed Sharif, In Woodhead Publishing in Materials, Advanced Polymer Nanocomposites, Woodhead Publishing, 2022, Pages 267-317, ISBN 9780128244920, https://doi.org/10.1016/B978-0-12-824492-0.00010-6.; Harpreet Singh, Kirandeep Kaur, Role of nanotechnology in research fields: Medical sciences, military & tribology- A review on recent advancements, grand challenges and perspectives, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.02.061. (https://www.sciencedirect.com/science/article/pii/S2214785323005783); Priyanshi Saini, Kamalesu, Lalita, Manikanika, Review on nanotechnology “Impact on the food services industry”, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.04.377.; Aloysius F. Hepp, Jerry D. Harris, Allen W. Apblett, Andrew R. Barron, Chapter 17 - Commercialization of single-source precursors: Applications, intellectual property, and technology transfer, Editor(s): Allen W. Apblett, Andrew R. Barron, Aloysius F. Hepp, Nanomaterials via Single-Source Precursors, Elsevier, 2022, Pages 563-600, ISBN 9780128203408, https://doi.org/10.1016/B978-0-12-820340-8.00008-3.; Arkadiy Larionov, Yulia Larionova, Ludmila Selivanova, Regional Peculiarities of Energy Saving Development During the Exploitation of Housing and Underground Housing and Utility Sector Objects, Procedia Engineering, Volume 165, 2016, Pages 1229-1232, ISSN 1877-7058, https://doi.org/10.1016/j.proeng.2016.11.844.; Mahendra L. Shelar, Vinod B. Suryawanshi, Experimental investigation and characterization of the tensile and flexural properties of amine functionalized graphene enhanced nanocomposite prepregs, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.06.371.; A. B. Shivshambhu Kumar, "Potential applications of nanomaterials in oil and gas well cementing: Current status, challenges and prospects," Journal of Petroleum Science and Engineering, vol. 213, pp. 1-18, 2022.; L. Ivanov, O. Borisova and S. R. Miminova, "The inventions in nanotechnologies as practical solutions. Part I.," Nanotekhnologii v Stroitel'stve, vol. 11, no. 1, pp. 91-101, 2019.; F. A. Shilar, S. V. Ganachari y V. B. Patil, “Advancement of nano-based construction materials-A review”, Construction and Building Materials, vol. 359, pp. 1-41, 2022; M. Luna, J.J. Delgado, T. Montini, L.M.L. Almoraima Gil, P. Fornasiero and M.J. Mosquera, "Photocatalytic TiO2 nanosheets-SiO2 coatings on concrete and limestone: An enhancement of de-polluting and self-cleaning properties by nanoparticle design," Construction and Building Materials, vol. 338, pp. 1-13, 2022.; Z. Wang, Q. Yu, P. Feng and H. Brouwers, "Variation of self-cleaning performance of nano-TiO2 modified mortar caused by carbonation: From hydrates to carbonates," Cement and Concrete Research, vol. 158, pp. 1-15, 2022.; A. A. Firoozi, M. Naji, M. Dithinde and A. A. Firoozi, "A Review: Influence of Potential Nanomaterials for Civil Engineering Projects," Iranian Journal of Science and Technology, Transactions of Civil Engineering, vol. 45, p. 2057–2068, 2020.; A. A. Alizadehmojarad, X. Zhou, A. G. Beyene, K. E., Chacon, Y. Sung, R. Pinals, L. Vuković, "Binding Affinity and Conformational Preferences Influence Kinetic Stability of Short Oligonucleotides on Carbon Nanotubes," Advanced Materials Interfaces, vol. 7, no. 15, p. 2000353, 2020.; J. Tang, X. Wang, J. Zhang, J. Wang, W. Yin, D.S. Li, and T. Wu, "A chalcogenide-cluster-based semiconducting nanotube array with oriented photoconductive behavior," Nature Communications, vol. 12, no. 1, p. 4275, 2021.; A. S. Dahlan, "Smart and Functional Materials Based Nanomaterials in Construction Styles in Nano-Architecture," Silicon, vol. 11, pp. 1949-1953, 2019.; A. Adesina, "Overview of Workability and Mechanical Performance of Cement-Based Composites Incorporating Nanomaterials," Silicon, vol. 14, pp. 135-144, 2020.; A. M. Onaizi, G. F. Huseien, N. H. A. S. Lim, M. Amran and M. Samadi, "Effect of nanomaterials inclusion on sustainability of cement-based concretes: A comprehensive review," Construction and Building Materials, vol. 306, pp. 1-20, 2021.; A. Z. Aljenbaz y Ç. Çağnan, “Evaluation of Nanomaterials for Building Production within the Context of Sustainability”, European Journal of Sustainable Development, vol. 9, pp. 53-65, 2020.; P. D. Bonilla Nieto, J. S. Carrillo Sanabria, y J. R. Camargo López, “Solar energy manager with PSOC5LP”, Vis. Electron., vol. 13, n.º 1, pp. 112–122, ene. 2019. https://doi.org/10.14483/22484728.14426; D. J. Arcila Perozo, L. Y. López López, y K. S. Novoa Roldán, ”Robotic system based on ant behavior for optimizing shortest path finding”, Vis. Electron., vol. 17, n.º 1, abr. 2023.; Yener, S. C., & Mutlu, R. (2018). A microcontroller-based ECG signal generator design utilizing microcontroller PWM output and experimental ECG data. 2018 Electric Electronics, Computer Science, Biomedical Engineering’s’ Meeting, EBBT 2018, 1-4. https://doi.org/10.1109/EBBT.2018.8391465; Rangayyan, R. M. (2002). BIOMEDICAL SIGNAL ANALYSIS A Case-Study Approach.; León, F., Rodríguez Lozano, F. J., Cubero Fernández, A., Palomares, J. M., & Olivares, J. (2019). SysGpr: Sistema de generación de señales sintéticas pseudo-realistas. Revista Iberoamericana De Automática, 16 (3), 369-379.; Anowarul Fattah, S. (2012). Identifying the Motor Neuron Disease in EMG Signal Using Time and Frequency Domain Features with Comparison. Signal & Image Processing: An International Journal, 3 (2), 99-114. https://doi.org/10.5121/sipij.2012.3207; De Luca, C. J. (1979). Physiology and Mathematics of Myoelectric Signals. IEEE Transactions on Biomedical Engineering, BME-26 (6), 313-325. https://doi.org/10.1109/TBME.1979.326534; Selvan, V. A. (2011). Single-fiber EMG: A review. Ann Indian Acad Neurol.; Wu, J., Li, X., Liu, W., & Jane Wang, Z. (2019). SEMG Signal Processing Methods: A Review. Journal of Physics: Conference Series, 1237 (3). https://doi.org/10.1088/1742- 6596/1237/ 3/032008; Widodo, A., Puspitaningayu, P., Anifah, L., & Firmansyah, R. (2018). An ArdiunoSimulink Based ECG Waveform Generator. 2018 2nd Borneo International Conference on Ap- plied Mathematics and Engineering, BICAME 2018, 338-342. https://doi.org/10.1109/ BICAME45512.2018.1570504879; DALCAME. (2005). Electromiografía. http ://www.dalcame.com/emg.html#.X4o6m9BKjIV (accessed: 16.10.2020).; López Chávez, H. I. (2020). Detección de la LRD en el ritmo cardiaco. APUNTES DE CLASE. Mahabalagiri, A. K., Ahmed, K., & Schlereth, F. (2011). A novel approach for simulation, measurement and representation of surface EMG (sEMG) signals. Conference Record - Asilomar Conference on Signals, Systems and Computers, 476- 480. https://doi.org/10.1109/ACSSC.2011.6190045; Ruiz Rubio, R. (1999). Aplicaciones de las señales electromiográficas. http://www.encuentros.uma.es/encuentros53/aplicaciones.%20html#:∼:%20text=Las% 5C%20se%5C%C3%5C%B1ales%5C%20EMG%5C%20tienen%5C%20una%5C%20f recuencia%5C%20que%5C%20oscila%5C%20entre%5C%2050,ser%5C%20menor% 5C%20de%5C%20300%5C%20Hz. (accessed: 16.10.2020).; Tabernig, C., Acevedo, R., & Fernández, J. (2007). INFLUENCIA DE LA FATIGA MUSCULAR EN LA SEÑAL ELECTROMIOGRÁFICA DE MÚSCULOS ESTIMULADOS ELÉCTRICAMENTE. Revista EIA, 111-119.; Alvarés Osorio, L. (2007). Acondicionamiento de señales bioeléctricas. https://www.coursehero.com/file/p3rjpjoo/2-Tipos-de-se%5C%C3%5C%B1alesbioel%5C%C3%5C%A9ctricas-6-nervous-system-a-trav%5C%C3%5C%A9s-demotor-end-plates/(accessed: 16.10.2020).; Mcgill, K. C., Lateva, Z. C., & Marateb, H. R. (2005). EMGLAB. http://emglab.net/emglab/index.php; Nikolic, M. (2001). Detailed Analysis of Clinical Electromyography Signals EMG Decomposition, Findings and Firing Pattern Analysis in Controls and Patients with Myopathy and Amy- trophic Lateral Sclerosis [Tesis doctoral, Faculty of Health Science, University of Copenhagen].; Téllez, M., Mejía, J., López, H., & Hernández, C. (2020). Random Number Generator with LongRange Dependence and Multifractal Behavior Based on Memristor. Electronics, 9 (10). https://doi.org/10.3390/electronics9101607; Initial J. Barrios., Tratamiento del sindrome del tunel carpiano. estudio de un caso clinico, Available online: https://mbfisioterapia.wordpress.com/tag/tunel-carpiano/, 2012, (accessed on 27-08-2023).; Diego A. B. V. and Ferro R. E, Estudio de modelos propuestos para el nervio mediano sano y con síndrome de túnel carpiano. Available online: https://revistas.udistrital.edu.co/index.php/NoriaIE/article/view/16353/15643 , 2019, (accessed on 28-08-2023).; L. L. A., Síndrome del túnel del carpo, Available online: https://www.medigraphic.com/pdfs/orthotips/ot-2014/ot141g.pdf , 2014, (accessed on 28-08-2023). Revista Orthotips.; R. D. G. F and D. F, Síndrome del túnel carpiano carpal tunnel syndrome,Revista Habanera de Ciencias Médicas, vol. 13, pp. 728–741, 2014. [Online]. Available: http://scielo.sld.cu; M. E. D. Alguacil, A. C. Millán, R. L. Sánchez, A. M. Sánchez, M. F. Arrondo, and I. C. Hernández, Revisión bibliográfica síndrome del túnel carpiano. intervención enfermera. Available online: https://revistasanitariadeinvestigacion.com/revision-bibliograficasindrome-del-tunel-carpiano-intervencion-enfermera/ , 2022, (accessed on 29-08- 2023).; J. O. G, Síndrome de túnel carpiano y accidente de tráfico. https://www.peritajemedicoforense.com/OJEDA.htm#:∼:text=El%20S%C3%ADndrome %20de%20T%C3%%20BAnel%20Carpiano,a%20traumatismo%20sobre%20la%20mu %C3%B1eca, 2001, (accessed on 29-08-2023).; M. B. Tejedor, J. A. Cervera, R. G. Lahiguera, and A. L. Ferreres, Análisis de factores de riesgo laborales y no laborales en síndrome de túnel carpiano (stc) mediante análisis bivariante y multivariante, https://scielo.isciii.es/scielo.php?script=sci arttext&pid=S1132-62552016000300004, 2016, (accessed on 01-09-2023). Valencia. Revista Scielo.; A. M. R., Síndrome del túnel carpiano. revisión no sistemática de la literatura. https://revistas.unisanitas.edu.co/index.php/rms/article/view/436, 2019, (accessed on 01-09-2023). Revista Médica Sanitas.; G. C. G. P., A. F. G. E., and E. A. G. A., Síndrome del túnel del carpo. Revista morfología. https://revistas.unal.edu.co/index.php/morfolia/article/view/10857#:∼:text=El%20S%C 3%ADndrome%20del%20T%C3%BAnel%20de,causas%20locales,%20regionale s%20y%20sist%C3%A9micas., 2009, (accessed on 02-09-2023). Universidad Nacional de Colombia.; Y. A. M. M., L. V. C. S., and M. A. T. S., Prevalencia de signos y síntomas de síndrome del túnel carpiano y sus factores asociados, en empleados administrativos de la universidad santo tomás sede floridablanca, durante el semestre del 2016. https://repository.usta.edu.co/bitstream/handle/11634/10218/YohannaMirandaLizethcala-%202017.pdf?sequence=1&isAllowed=y, 2017, (accessed on 23-09-2023). Universidad Santo Tomás.; U. M. Vázquez, I. D. C. Carrera, A. Alonso-Calvete, and Y. González-González, Eficacia del kinesiotape en el síndrome del túnel carpiano. una revisión sistemática, https://scielo.isciii.es/scielo.php?pid=S1132- 62552022000100011&script=sciarttext&tlng=pt, 2022, accedido 6-09-2023.; E. Cabrera, “El coeficiente de correlacion de los rangos de spearman caracterizacion,”http://scielo.sld.cu/pdf/rhcm/v8n2/rhcm17209.pdf, 2009, accedido 8- 09-2023.; IBM, “Estadísticos de tablas cruzadas,” https://www.ibm.com/docs/es/spss-statistics/ saas?topic=crosstabs-statistics, 2021, accedido 8-09-2023.; H. L. J. Diego, E. C. Franklin, R. J. E, C. R. J. Gerardo, T. S. C. Andrés, A. T. M. Karina, C. S. S. Milena, and B. P. V. José, “Sobre el uso adecuado del coeficiente de correlación de pearson: definición, propiedades y suposiciones,” https://www.redalyc.org/journal/559/55963207025/55963207025.pdf, 2018, accedido 8- 09-2023.; S. I. M. Orlando, “Coeficiente de correlación; coeficiente de correlación de spearman; estadística; coeficiente de correlación por rangos,” http://repositorio.utn.edu.ec/handle/123456789/768, 2011, accedido 15-09-2023.; B. M.H., A. G. O.P, L. Serrato, and J. A. Garnica, “Correlación no-paramétrica y su aplicación en la investigaciones científica non-parametric correlation and its application in scientific research,” http://www.spentamexico.org/v9-n2/A5.9(2)31-40.pdf, 2014, accedido 15-09-2023.; NCAN National Center for Adaptative Neurotechnologies, Documentation 2nd Wadsworth BCI Dataset (P300 Evoked Potentials) Data Acquired Using BCI2000 P3 Speller Paradigm, 1, 2002.; M.S.S.T.N.H Yağan-Mussellim-Arslan-Çakar-Alp-Ozkan, "A new benchmark dataset for P300 ERP-based BCI applications", Digital Signal Processing, vol. 135, pp. 1-11, April 2023.https://doi.org/10.1016/j.dsp.2023.103950.; L. E. A. G. P. Korczowski-Ostaschenko-Andreev-Cattan-Coelho Rodrigues, et al. Brain Invaders calibration-less P300-based BCI using dry EEG electrodes Dataset, (bi2014a). [Research Report] GIPSA-lab. 2019. ffhal-02171575f; A. M. E. D. D. C. R. M. T. L. M. Gramfort-Luessi-Larson-Engemann-StrohmeierBrodbeck-Goj-Jas-Brooks-Parkkonen-Hämäläinen. MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience, 7(267):1–13, 2013. doi:10.3389/fnins.2013.00267.; Haghighatpanah, N., Amirfattahi, R., Abootalebi, V., & Nazari, B. (2012). A two stage single trial P300 detection algorithm based on independent component analysis and wavelet transforms. 2012 19th Iranian Conference of Biomedical Engineering (ICBME), 324-329.; Neda Haghighatpanah, Rasoul Amirfattahi, Vahid Abootalebi, and Behzad Nazari. A single channel-single trial p300 detection algorithm. In 2013 21st Iranian Conference on Electrical Engineering (ICEE), pages 1–5, 2013; S. K. Haider, A. Jiang, M. A. Jamshed, H. Pervaiz and S. Mumtaz, "Performance Enhancement in P300 ERP Single Trial by Machine Learning Adaptive Denoising Mechanism," in IEEE Networking Letters, vol. 1, no. 1, pp. 26-29, March 2019, doi:10.1109/LNET.2018.2883859.; Praveen Kumar Shukla, Rahul Kumar Chaurasiya, and Shrish Verma. Performance improvement of p300-based home appliances control classification using convolution neural network. Biomedical Signal Processing and Control, 63, 1 2021.; Samima, S., Sarma, M., Samanta, D. et al. Estimation and quantification of vigilance using ERPs and eye blink rate with a fuzzy model-based approach. Cogn Tech Work 21, 517–533 (2019). https://doi.org/10.1007/s10111-018-0533-8; A. Boudjella, M. Y. Boudjella and B. Bachir, "Epileptic Disease Prediction Using Graphic User Interface–Machine Learning Algorithm," 2022 7th International Conference on Image and Signal Processing and their Applications (ISPA), Mostaganem, Algeria, 2022, pp. 1-8, doi:10.1109/ISPA54004.2022.9786366.; Heras, J. M. (2019, noviembre 17). Precision, Recall, F1, Accuracy en clasificación. [Online] Iartificial.net. Available at https://www.iartificial.net/precision-recall-f1- accuracy-en-clasificacion/; C. F. Blanco-D ́ıaz, C. D. Guerrero-Méndez, and A. F. Ruiz-Olaya. Enhancing p300 detection using a band-selective filter bank for a visual p300 speller. IRBM, 44, 6 2023; E Solis-Escalante, G Gabriel Gentiletti, and O Yanez-Suarez. Single trial p300 detection based on the empirical mode decomposition. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 1157– 1160, 2006.; C. F. Blanco-D ́ıaz, C. D. Guerrero-M ́endez, and A. F. Ruiz-Olaya. Enhancing p300 detection using a band-selective filter bank for a visual p300 speller. IRBM, 44, 6 2023; R. A. Neira- Ricouz, " Fotografia Aerea", Tesis Ing, Universidad Austral de Chile, Valdivia, Chile, 2005.; D. I. Gómez, R. Castrillón, " Reconocimiento Automático De Ganado Bovino A Partir De Imágenes Aéreas Tomadas Con Drones: Un enfoque exploratorio", III Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y Móvil, 32-39, Pereira Colombia, 2019.; Airdroneview, 4 julio 2014, “Historia de la fotografía aérea”[Blog], [Online]. Recuperado de: https://airdroneview.com/2014/07/04/historia-de-la-fotografia-aerea/ .; F. Fernández García, " Fotografía aérea histórica e historia de la fotografía aérea en España”, Revista ERIA, Departamento de Geografía. Universidad de Oviedo, España, pp . 217-240, 2015.; M. Blanco Pérez. (2021). Fotografía aérea con tecnología drone. Tipología y aplicaciones. Discursos Fotograficos, 16(29), pp.76–101. https://doi.org/10.5433/1984-7939.2020v16n29p76; FJT Historia, medicina y otras artes, marzo 2016, “Las primeras fotografías aéreas de la Historia”[Blog],[Online]. Recuperado de: https://franciscojaviertostado.com/2016/03/14/las-primeras-fotografias-aereas-de-lahistoria/.; A Berrondo UrruzolaD. I, "Detección de carreteras en imágenes de reconocimiento remoto mediante deep", Grado en Ingeniería Informática Computación, Univeridad del pais vasco, Facultad de informatica, 2020.; A. Yasin Yiğit, A. Kocatepe, " Automatic road detection from orthophoto images", mersin photogrametri journal, 2(1); 10-17, e ISSN 2687-654X, 2020 .; Chaki, N., Shaikh, S.H., Saeed, K. (2014). A Comprehensive Survey on Image Binarization Techniques. In: Exploring Image Binarization Techniques. Studies in Computational Intelligence, vol 560. Springer, New Delhi. https://doi.org/10.1007/978- 81-322-1907-1_2; RAE, diccionario real academia de la lengua española, actualización 2022, “consulta del termino correlación”[Online]. Recuperado de: https://dle.rae.es/correlaci%C3%B3n?m=form; Máxima formación, julio 2020, “¿Qué Es La Correlación Estadística Y Cómo Interpretarla?”, [Blog], [Online]. Recuperado de: https://dle.rae.es/correlaci%C3%B3n?m=form; P. Sinha, B. Horgan, R. Ewing, E. Rampe, M. Lapotre, M. Nachon, M. Thorpe, A. Rudolph, C. Bedford, K. Maso2, E. Champion, P. Gray, E. Reid, M. Faragalli, “Decorrelation stretches(dcs) of visible images as a tool for sedimentary provenance investigationson earth and mars”, NTRS - NASA Technical Reports Server, March 16, 2020; Farrand, W. H., J. F. Bell III, J. R. Johnson, M. S. Rice, B. L. Jolliff, and R. E. Arvidson (2014), “Observations of rock spectral classes by the Opportunity rover’s Pancam on northern Cape York and on Matijevic Hill, Endeavour Crater, Mars”, J. Geophys. Res. Planets, 119, 2349–2369, doi:10.1002/2014JE00464.; M. Peikari, A. L. Martel, "Automatic cell detection and segmentation from H and E stained pathology slides using colorspace decorrelation stretching", Proc. SPIE 9791, Medical Imaging 2016: Digital Pathology, 979114 (23 March 2016); https://doi.org/10.1117/12.2216507; D. Hema1, S. Kannan. “Interactive Color Image Segmentation using HSV Color Space”, Science and Technology Journal, Vol. 7 Issue: 1 ISSN: 2321-3388, 2020; The MathWorks Inc,“Image Processing Toolbox For Use with MATLAB®”, decorstretch function, Version 3, User's Guide, https://www.mathworks.com/help/images/ref/decorrstretch.html.; T. Gevers, J. Weijer, H Stokman, “Color Image Processing: Chapter Color Feature Detection”. Social Science Computing Review, 1 st ed. England. edit. CRC Press, pp. 22, 2006. eBook ISBN9781315221526.; The MathWorks Inc,“Image Processing Toolbox For Use with MATLAB®”, imfill function, Version 3, User's Guide, https://la.mathworks.com/help/images/ref/imfill.html?searchHighlight=imfill&s_tid=srch title_support_results_1_imfill.; The MathWorks Inc,“Image Processing Toolbox For Use with MATLAB®”, bwareadopen function, Version 3, User's Guide. https://la.mathworks.com/help/images/ref/bwareaopen.html?searchHighlight=bwareao pen&s_tid=srchtitle_support_results_1_bwareaopen; Shutterstock,” Imágenes libres de regalías de Maldivas”, [Online]. Recuperado de: https://www.shutterstock.com/es/search/maldivas; National Geographic, “Vista aérea del complejo arqueoastronómico de Chankillo, en Perú”. Foto: Ministerio de Cultura de Perú, [Online]. Recuperado de: https://historia.nationalgeographic.com.es/a/chankillo-observatorio-solar-mas-antiguoamerica_19020; M. Franzese and A. Iuliano, “Hidden Markov models,” in Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Elsevier, 2018, pp. 753–762. Doi:10.1016/B978-0-12-809633-8.20488-3.; B.-J. Yoon, “Hidden Markov Models and their Applications in Biological Sequence Analysis,” Cur Genomics, vol. 10, no. 6, pp. 402–415, Sep. 2009, Doi:10.2174/138920209789177575.; P. C. Chang, J. J. Lin, J. C. Hsieh, and J. Weng, “Myocardial infarction classification with multilead ECG using hidden Markov models and Gaussian mixture models,” Applied Soft Computing Journal, vol. 12, no. 10, pp. 3165–3175, Oct. 2012, Doi:10.1016/j.asoc.2012.06.004.; T. Navarrete, “Detección de anomalías en la carga de un procesador utilizando modelos ocultos de Markov.,” Tesis de maestría, Instituto tecnológico de Morelia, Morelia, Michoacán, pp. 1, 2007. Accessed: Sep. 11, 2023. [Online]. Available: http://www.asiat.com.mx/tomas/tesismaestria/micrositio/node2.html; Ö. Yavuz, M. Calp, and H. Erkengel, “Prediction of breast cancer using machine learning algorithms on different datasets,” Ingenieria Solidaria, vol. 19, no. 1, pp. 1–32, Jun. 2023, doi:10.16925/2357-6014.2023.01.08.; DANE, “Estadísticas vitales (EEVV),” pp. 1, 2023. Accessed: Sep. 11, 2023. [Online]. Available: https://www.dane.gov.co/files/investigaciones/poblacion/pre_estadisticasvitales_IIItrim_2022p r.pdf; W. Gersch, P. Lilly, and E. Dong, “PVC Detection by the Heart-Beat Interval Data-Markov Chain Approach,” COMPUTERS AND BIOMEDICAL RESEARCH, vol. 8, pp. 370–378, 1975, Doi: https://doi.org/10.1016/0010-4809(75)90013-0.; A. H. Kadish et al., “ACC/AHA clinical competence statement on electrocardiography and ambulatory electrocardiography. A report of the ACC/AHA/ACP-ASIM Task Force on Clinical Competence (ACC/AHA Committee to Develop a Clinical Competence Statement on Electrocardiography and Ambulatory Electrocardiography),” J Am Coll Cardio, vol. 38, no. 7, pp. 2091–2100, 2001, Doi:10.1016/s0735-1097(01)01680-1.; R. V. Andreão, B. Dorizzi, and J. Boudy, “ECG signal analysis through hidden Markov models,” IEEE Trans Biomed Eng, vol. 53, no. 8, pp. 1541–1549, Aug. 2006, doi:10.1109/TBME.2006.877103.; M. H. Crawford et al., “ACC/AHA guidelines for ambulatory electrocardiography: Executive summary and recommendations: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the Guidelines for Ambulatory Electrocardiography): Developed in Collaboration with the North American Society for Pacing and Electrophysiology,” Circulation, vol. 100, no. 8. Lippincott Williams and Wilkins, pp. 886–893, Aug. 24, 1999. Doi:10.1161/01.CIR.100.8.886.; Sayed Khaled, A. Khalaf, and Y. Kadah, “Arrhythmia classification based on novel distance series transform of phase space trajectories,” Annu Int Conf IEEE Eng Med Biol Soc, pp. 5195– 8, 2015, Doi:10.1109/EMBC.2015.7319562.; M. Alvarez and R. Henao, “Combinacion de ppca y hmm para la identificación de infarto agudo de miocardio,” Scientia Et Technica, vol. 3, no. 32, pp. 139–144, 2006, doi: https://doi.org/10.22517/23447214.6253.; P. Laguna, A. Mark, A. Goldberg, and B. Moody, “A Database for Evaluation of Algorithms for Measurement of QT and Other Waveform Intervals in the ECG,” Compute Cardiol, pp. 673–76, 1997, Doi:10.1109/CIC.1997.648140.; A. L. Goldberger et al., “Physio Bank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals.,” Circulation, vol. 101, no. 23, pp. 1–6, 2000, Doi:10.1161/01.cir.101.23.e215.; G. Moody and R. Mark, “The impact of the MIT-BIH Arrhythmia Database,” IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 3, pp. 45–50, 2001, Doi:10.1109/51.932724.; A. Taddei et al., “The European ST-T database: standard for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography,” Eur Heart J, vol. 13, no. 9, pp. 1164– 1172, 1992, Doi:10.1093/oxfordjournals.eurheartj.a060332.; R. Bousseljot, D. Kreiseler, and A. Schnabel, “Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet,” Biomedizinische Technik, vol. 40, pp. 317–318, 1995, Doi: https://doi.org/10.1515/bmte.1995.40.s1.317.; F. Nolle, J. Badura, R. Catlett, H. Bowser, and M. Sketch, “CREI-GARD, a new concept in computerized arrhythmia monitoring systems,” Computers in Cardiology , pp. 515–518, 1987.; W. T. Cheng and K. L. Chan, “Classification of electrocardiogram using hidden Markov models,” Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. , vol. 20, no. 1, pp. 143–46, 1998, Doi:10.1109/IEMBS.1998.745850.; D. V. Filho and A. M. Cavalcanti, “MODELO PARA ANÁLISE DE ARRITMIAS CARDÍACAS USANDO CADEIAS DE MARKOV,” Proceedings of the XII SIBGRAPI , pp. 101–104, 1999, Accessed: Sep. 11, 2023. [Online]. Available: http://www.din.uem.br/sbpo/sbpo2005/pdf/arq0174.pdf; V. Kalidas and L. S. Tamil, “Detection of atrial fibrillation using discrete-state Markov models and Random Forests,” Compute Biol Med, vol. 113, pp. 1–14, Oct. 2019, Doi:10.1016/j.compbiomed.2019.103386.; P. Cheng and X. Dong, “Life-threatening ventricular arrhythmia detection with personalized features,” IEEE Access, vol. 5, pp. 14195–14203, Jul. 2017, Doi:10.1109/ACCESS.2017.2723258.; F. Nilsson, M. Stridh, and L. Sörnmo, “Frequency Tracking of Atrial Fibrillation using Hidden Markov Models,” Conf Proc IEEE Eng Med Biol Soc., pp. 1406–9, 2006, Doi:10.1109/IEMBS.2006.259677.; J. Oliveira, C. Sousa, and M. Coimbra, “Coupled hidden Markov model for automatic ECG and PCG segmentation,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, pp. 1023–27, 2017, Doi:10.1109/ICASSP.2017.7952311.; S. Petrutiu, A. V. Sahakian, and S. Swiryn, “Abrupt changes in fibrillatory wave characteristics at the termination of paroxysmal atrial fibrillation in humans,” Europace, vol. 9, no. 7, pp. 466– 470, Jul. 2007, Doi:10.1093/europace/eum096.; M. A F Pimentel, M. D. Santos, D. B. Springer, and G. D. Clifford, “Heart beat detection in multimodal physiological data using a hidden semi-Markov model and signal quality indices,” Physio Meas, vol. 36, no. 8, pp. 1717–1727, Aug. 2015, Doi:10.1088/0967-3334/36/8/1717.; A. K. Sangaiah, M. Arumugam, and G. Bin Bian, “An intelligent learning approach for improving ECG signal classification and arrhythmia analysis,” Artif Intell Med, vol. 103, pp. 1–14, Mar. 2020, Doi:10.1016/j.artmed.2019.101788.; H. Kwok, J. Coult, J. Blackwood, N. Sotoodehnia, P. Kudenchuk, and T. Rea, “A method for continuous rhythm classification and early detection of ventricular fibrillation during CPR,” Resuscitation, pp. 90–97, 2022, Doi:10.1016/j.resuscitation.2022.05.019.; L. A. Levin et al., “A cost-effectiveness analysis of screening for silent atrial fibrillation after ischaemic stroke,” Europace, vol. 17, no. 2, pp. 207–214, Dec. 2014, Doi:10.1093/europace/euu213.; G. H. Tison, J. Zhang, F. N. Delling, and R. C. Deo, “Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery,” Circ Cardiovasc Qual Outcomes, vol. 12, no. 9, pp. 1–12, Sep. 2019, Doi:10.1161/CIRCOUTCOMES.118.005289.; W. H. Tang, W. H. Ho, and Y. J. Chen, “Retrieving hidden atrial repolarization waves from standard surface ECGs,” Biomed Eng Online, vol. 17, pp. 1–11, Nov. 2018, Doi:10.1186/s12938-018-0576-3.; M. Altuve, G. Carrault, A. Beuchée, P. Pladys, and A. I. Hernández, “Online apnea–bradycardia detection based on hidden semi-Markov models,” Med Biol Eng Compute, vol. 53, no. 1, pp. 1– 13, Jan. 2015, Doi:10.1007/s11517-014-1207-1.; S. Masoudi and et al., “Early detection of apnea-bradycardia episodes in preterm infants based on coupled hidden Markov model,” IEEE International Symposium on Signal Processing and Information Technology, Athens, Greece, pp. 243–48, 2013, Doi:10.1109/ISSPIT.2013.6781887.; N. Montazeri Ghahjaverestan, M. B. Shamsollahi, D. Ge, A. Beuchée, and A. I. Hernández, “Apnea bradycardia detection based on new coupled hidden semi Markov model,” Med Biol Eng Comput, pp. 1–11, 2020, Doi:10.1007/s11517-020-02277-8.; A. Sadoughi, M. B. Shamsollahi, E. Fatemizadeh, A. Beuchée, A. I. Hernández, and N. Montazeri Ghahjaverestan, “Detection of Apnea Bradycardia from ECG Signals of Preterm Infants Using Layered Hidden Markov Model,” Ann Biomed Eng, vol. 49, no. 9, pp. 2159–2169, Sep. 2021, Doi:10.1007/s10439-021-02732-z.; E. D. Übeyli, “Combining recurrent neural networks with eigenvector methods for classification of ECG beats,” Digital Signal Processing: A Review Journal, vol. 19, no. 2, pp. 320–329, 2009, Doi:10.1016/j.dsp.2008.09.002.; C. Zhang, G. Wang, J. Zhao, P. Gao, J. Lin, and H. Yang, “Patient-specific ECG classification based on recurrent neural networks and clustering technique,” 2017 13th IASTED International Conference on Biomedical Engineering (BioMed), Innsbruck, Austria, pp. 63–67, 2017, Doi:10.2316/P.2017.852-029.; Z. Xiong, M. K. Stiles, and J. Zhao, “Robust ECG signal classification for detection of atrial fibrillation using a novel neural network,” in Computing in Cardiology, IEEE Computer Society, 2017, pp. 1–4. Doi:10.22489/CinC.2017.066-138; M. Liam and F. Precioso, “Atrial fibrillation detection and ECG classification based on convolutional recurrent neural network,” in Computing in Cardiology, IEEE Computer Society, 2017, pp. 1–4. Doi:10.22489/CinC.2017.171-325.; Y. C. Chang, S. H. Wu, L. M. Tseng, H. L. Chao, and C. H. Ko, “AF Detection by Exploiting the Spectral and Temporal Characteristics of ECG Signals with the LSTM Model,” in Computing in Cardiology, IEEE Computer Society, Sep. 2018, pp. 1–4. Doi:10.22489/CinC.2018.266.; H. W. Lui and K. L. Chow, “Multiclass classification of myocardial infarction with convolutional and recurrent neural networks for portable ECG devices,” Inform Med Unlocked, vol. 13, pp. 26–33, Jan. 2018, Doi:10.1016/j.imu.2018.08.002.; G. D. Clifford et al., “AF classification from a short single lead ECG recording: The PhysioNet/computing in cardiology challenge 2017,” in Computing in Cardiology, IEEE Computer Society, 2017, pp. 1–4. Doi:10.22489/CinC.2017.065-469.; S. Singh, S. K. Pandey, U. Pawar, and R. R. Janghel, “Classification of ECG Arrhythmia using Recurrent Neural Networks,” Procedia Compute Sci, vol. 132, pp. 1290–1297, 2018, Doi:10.1016/j.procs.2018.05.045.; Li X, Qi X, Chen Z, Hou Y, Yang Y, and Liang Q, “Affective Stress Rating Method Based on Improved Hidden Markov Model,” Chinese, vol. 33, no. 3, pp. 533–538, 2016.; C. Ying, Z. Xin, and C. Wenxi, “Automatic sleep staging based on ECG signals using hidden Markov models,” Annu Int Conf IEEE Eng Med Biol Soc ., pp. 530–3, 2015, Doi:10.1109/EMBC.2015.7318416.; F. Sandberg, M. Stridh, and L. Sörnmo, “Frequency tracking of atrial fibrillation using hidden Markov models,” IEEE Trans Biomed Eng, vol. 55, no. 2, pp. 502–511, Feb. 2008, Doi:10.1109/TBME.2007.905488.; L. Rincón, “Introducción a los procesos estocásticos,” UNAM, México, pp. 120-180, 2011. [Online]. Available: http://www.matematicas.unam.mx/lars; A. Alaa, S. Hu, and M. Schaar, “Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis,” International Conference on Machine Learning , pp. 60–69, 2017, Doi: https://doi.org/10.48550/arXiv.1705.05267.; J. Bilmes, “A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models,” International computer science institute, vol. 4, no. 510, p. 126, 1998, Accessed: Sep. 11, 2023. [Online]. Available: https://f.hubspotusercontent40.net/hubfs/8111846/Unicon_October2020/pdf/bilmes-emalgorithm.pdf; L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989, Doi:10.1109/5.18626.; A. Cohen, “Hidden Markov models in biomedical signal processing,” Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Biomedical Engineering Towards the Year 2000 and Beyond, vol. 3, pp. 1145–50, 1998, Doi:10.1109/IEMBS.1998.747073; Al-Hamadi, H., Gawanmeh, A., & Al-Qutayri, M. (2016). An automatic ECG generator for testing and evaluating ECG sensor algorithms. Proceeding of 2015 10th International Design and Test Symposium, IDT 2015, 78-83. https://doi.org/10.1109/IDT.2015.7396740; Yener, S. C., & Mutlu, R. (2018). A microcontroller-based ECG signal generator design utilizing microcontroller PWM output and experimental ECG data. 2018 ElectricElectronics, Computer Science, Biomedical Engineering’s’ Meeting, EBBT 2018, 1-4. https://doi.org/10.1109/EBBT.2018.8391465; Bear, M., Connors, B., & Paradiso, M. (2016). Neuroscience: Exploring the Brain. Wolters Kluwer. https://books.google.com.co/books?id=vVz4oAEACAAJ; López Chávez, H. I. (2020). Detección de la LRD en el ritmo cardiaco. APUNTES DE CLASE.; Park, K., & Willinger, W. (2000). Self-Similar Network Traffic and Performance Evaluation (1st). John Wiley & Sons, Inc.; Orozco, S. L., Cerda Villafaña, G., Cervantes, G. A., & Cisneros, M. T. (2010). Analysis of LRD Series with Time-Varying Hurst Parameter Análisis de Series LRD con Parámetro de Hurst Variante en el Tiempo. 13 (3), 295-312. http://www.fimee.ugto.mx/profesores/sledesma/documentos/; Ceballos, R. F., & Largo, F. F. (2018). On The Estimation of the Hurst Exponent Using Adjusted Rescaled Range Analysis, Detrended Fluctuation Analysis and Variance Time Plot: A Case of Exponential Distribution; Pujolle, G., Perros, H., Fdida, S., Korner, U., & Stavrakakis, I. (2000). Networking 2000 Broad- band Communications, High Performance Networking, and Performance of Communication Networks: IFIP-TC6/European Commission International Conference Paris, France, May 14–19, 2000 Proceedings. https://doi.org/10.1007/3-540-45551-5; Sheluhin, O., Smolskiy, S., & Osin, A. (2007). Self-Similar Processes in Telecommunications. John Wiley &; Sons, Inc.; Simonsen, I., Hansen, A., & Nes, O. M. (1998). Determination of the Hurst exponent by use of wavelet transforms. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 58 (3), 2779-2787. https://doi.org/10.1103/PhysRevE.58.2779; R. A. Robayo Salazar, P. E. Mattey Centeno, Y. F. Silva Urrego, D. M. Burgos Galindo y S. Delvasto Arjona, «Los residuos de la construcción y demolición en la ciudad de Cali: un análisis hacia su gestión, manejo y aprovechamiento,» Tecnura, vol. 19, nº 44, pp. 157-170, 2015.; Observatorio Ambiental de Bogotá, «Observatorio Ambiental de Bogotá,» 30 Julio 2023. [En línea]. Available: https://oab.ambientebogota.gov.co/residuos-de-construccion-ydemolicion/. [Último acceso: septiembre 2023].; Invías, «Normas y especificaciones 2012 invías,» 2012. [En línea]. Available: https://www.umv.gov.co/sisgestion2019/Documentos/APOYO/GLAB/GLAB-DE003_V1_Normas_Invias_Seccion_400-13.pdf. [Último acceso: septiembre 2023].; Normas técnicas Colombianas, «Concretos, especificaciones de los agragados para concreto NTC 174,» p. 5, 2000. [En línea]. Available: https://www.emcali.com.co/documents/148832/183512/NTC+174+de+2000.pdf/. [Último acceso: Septiembre 2023].; J. L. Rojas Ramírez y J. E. Berrío Mutiz, «Elaboración de concreto a partir de material de escombros de concreto,» Quindío - Colombia, 2019.; B. E. García Velásquez y L. M. Díaz Morales, «Proyecto de investigación evaluación de la resistencia a la compresión del concreto utilizando el cuesco proveniente de los residuos de fruto fresco de la palma africana y el concreto de residuos de construcción y demolición en obras civiles (rcd),» Villavicencio, 2019.; S. Peña Muñoz, J. F. Terán Puerta, J. A. Molina Sánchez, H. D. Cañola, A. BuilesJaramillo y . J. Ubany Zuluaga, «Evaluación de las propiedades de residuos de construcción y demolición de concreto,» Cuaderno, vol. 10, nº 1, pp. 79-90, 2018.; L. Perez Hernández, J. Gomez Chimento, A. Contreras Bravo y Padilla RuizLiseth, «Resistencia a la compresión del concreto,» Researchgate, Octubre 2018.; L. León Consuegra y M. Hernández Puentes, «Comparación de los valores de resistencia a compresión del hormigón a la edad de 7 y 28 días.,» Revista de Arquitectura e Ingeniería, vol. 10, nº 1, pp. 1-9, 2016.; À. Alegre Arias, «Hormigones en masa con áridos reciclados procedentes de rcd para su uso en la fabricación de bloques de defensa portuarios.,» Barcelona, 2012.; G. Bossini, M. G. Nuñez Cáceres y H. D. Anaya, «Influencia de agregados reciclados provenientes de (RCD) en hormigón,» de IX Jornadas de ciencias y tecnologías de facultades de ingeniería del NOA, Santiago del Estero, 2018.; C. J. Zega, «Hormigones reciclados: caracterización de los agregados gruesos reciclados,» (Tesis de maestría), p. 28, 2008.; E. Pavón, M. Etxeberria y I. Martínez, «Propiedades del hormigón de árido reciclado fabricado con adiciones, activa e inerte,» Revista de la construcción, vol. 10, nº 3, pp. 4- 15, 2011.; S. P. Muñoz Perez, D. M. Diaz Sanchez, E. E. Gamarra Capuñay y J. A. Chaname Bustamante , «La influencoa de los RCD en reemplazo de los agregados para la elaboración del concreto: una revisión literaria,» Ecuadorian Science Journal, vol. 5, nº 2, pp. 107-120, 2021.; C. A. Pacheco Bustos, L. G. Fuentes Pumarejo, É. H. Sánchez Cotte y H. A. Rondón Quintana, «Residuos de construcción y demolición (RCD), una perspectiva de aprovechamiento para la ciudad de barranquilla desde su modelo de gestión,» Ingeniería y Desarrollo, vol. 35, nº 2, pp. 533-555, 2017.; IEEE, IEEE Standard for Information technology—Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, vol. 2020. 2016. [Online]. Available: http://www.ieee.org/web/aboutus/whatis/policies/p9- 26.html.%0Ahttps://standards.ieee.org/standard/802_11ax-2021.html; “El nuevo 802.11ah conoce todo sobre Wi-Fi HaLow" :: Tecnocompras.” https://tecnocompras6.webnode.com.co/news/el-nuevo-802-11ah-conoce-todo-sobrewi-fi-halow/ (accessed Mar. 23, 2023).; Guías de Laboratorio para el estudio de señales Wi-Fi con el Equipo ANRITSU MS2830A de la Universidad Distrital Francisco José de Caldas, Manuel Fernando Cañas Soto, Brayan Alexander Estupiñan Avellaneda, José David Cely Callejas UDFJC 2023; M. Viseras, “Diseño De Una Guia De Prácticas De Laboratorio De Acuerdo Con Las Orientaciones Del Eees,” Enseñanza las Ciencias, Número Extra VIII Congr. Int. sobre Investig. en Didáctica las Ciencias, no. 1, pp. 1228–1233, 2009, [Online]. Available: https://pt.scribd.com/document/320878666/DISENO-DE-UNA-GUIA-DEPRACTICAS-DE-LABORATORIO-DE-ACUERDO-CON-LAS-ORIENTACIONESDEL-EEES; A. Alilla, A. Di Carlofelice, M. Faccio, I. Lucresi, and P. Tognolatti, “Software-defined satellite ranging measurements using laboratory signal analyzer,” 2014 IEEE Int. Work. Metrol. Aerospace, Metroaerosp. 2014 - Proc., pp. 332–336, 2014, doi:10.1109/METROAEROSPACE.2014.6865944.; P. Brochure, “Signal Analyzer,” SpringerReference, 2011, doi:10.1007/springerreference_24743.; A. Torres, “Ubiquiti airFiber – ¿Qué es BER (tasa de error de bit) en los radios airFiber? %7C Base de Conocimiento,” Ubiquiti. https://soporte.syscom.mx/es/articles/1439450- ubiquiti-airfiber-que-es-ber-tasa-de-error-de-bit-en-los-radios-airfiber (accessed Jul. 19, 2022).; O. Hernandez Cruz, “Diagrama de constelacion y modulaciones digitales avanzadas - Omar Hernández Cruz 17110937 Diagrama - StuDocu,” Universidad TecMilenio, 2021. https://www.studocu.com/es-mx/document/universidad-tecmilenio/ingenieria-decontrol/diagrama-de-constelacion-y-modulaciones-digitales-avanzadas/12619514 (accessed Jul. 19, 2022).; “Diagrama de constelación %7C PROMAX,” PROMAX, 2017. https://www.promax.es/esp/noticias/516/diagrama-de-constelacion/ (accessed Jul. 19, 2022).; Tektronix, “What Are Vector Network Analyzers %7C VNAs Explained %7C Tektronix.” https://www.tek.com/en/documents/primer/what-vector-network-analyzer-and-howdoes-it-work (accessed Jul. 19, 2022).; Tektronix, “Signal Generator %7C Tektronix.” https://www.tek.com/en/products/signalgenerators (accessed Jul. 19, 2022).; “Modelo pedagógico de la Facultad de Comunicaciones de la Universidad de Antioquia,” Feb. 2016. https://www.udea.edu.co/wps/wcm/connect/udea/fcc26266- 11ae-42c5-87abd8025d2bec9/MODELO+PEDAGÓGICO.pdf?MOD=AJPERES&CVID=lsLGwgF (accessed Aug. 05, 2022).; D. Noreña, “EL CONCEPTO DE PEDAGOGÍA EN LA OBRA PEDAGÓGICA DE RAFAEL FLÓREZ OCHOA ,” Univ. ANTIOQUIA Fac. Educ. Dep. Educ. Av. Maest. EN Educ. ÉNFASIS EN Form. Maest. , 2007, Accessed: Aug. 05, 2022. [Online]. Available: http://ayura.udea.edu.co:8080/jspui/bitstream/123456789/624/1/AA0384.pdf; M. Rosales, “Proceso evaluativo: evaluación sumativa, evaluación formativa y Assesment su impacto en la educación actual”; L. A. N. M. A. N. Committee, IEEE Std 802.11-2007: IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks-Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY, vol. 2020. 2007. [Online]. Available: http://scholar.google.com/scholar?q=related:K_aQPLd0dskJ:scholar.google.com/&hl= en&num=30&as_sdt=0,5%5Cnpapers3://publication/uuid/E731D645-DF33-45B5- 8882-A665213EA9D8; Anritsu MU181020A PPG 12.5Gb/s, “Anritsu corporation,” Analyzer, vol. 2, [Online]. Available: http://downloadfile.anritsu.com/Files/en-AU/Manuals/OperationManual/mu181020a_b_opm_e_17_0.pdf?f4739ea0f83b43ad1015d3937dbcf8be3aec 8f5de0897d0d745727bbd0217d9fa6b870ff705096c9d9cc39a9b064dd864b08e68938f 9ab5b245ce1c65ef3fe95eedc18d74c3ebd6bb939613a825ffb7; “Qué bandas de frecuencias WiFi hay: Explicación 2.4 GHz, 5 GHz y 6 GHz.” https://www.redeszone.net/tutoriales/redes-wifi/bandas-frecuencias-wi-fi/ (accessed Mar. 23, 2023).; F. G. Landa Barra, “Huella de carbono del transporte urbano para un plan de reducción de gases de efecto invernadero Puno 2021,” Repositorio Institucional - UCV, 2022, Accessed: Nov. 14, 2022. [Online]. https://repositorio.ucv.edu.pe/handle/20.500.12692/88703; S. Ankathi, Z. Lu, G. G. Zaimes, T. Hawkins, Y. Gan, and M. Wang, “Greenhouse gas emissions from the global transportation of crude oil: Current status and mitigation potential,” J Ind Ecol, 2022. https://doi.org/10.1111/jiec.13262; P. D. Faustino M. G., P. D. Florez S. Elkin, and M. Sc Guerrero G. G., “Mercados de energía en Colombia, una introducción,” 2021, Accessed: Nov. 14, 2022. [Online]. https://www.unipamplona.edu.co/unipamplona/portalIG/home_10/recursos/2021/documentos/ 19072021/mercados_energia.pdf.; A. Fernando et al., “Modelo de negocio para la implementación de estaciones de carga para vehículos eléctricos, en la empresa Biored energy,” 2020, Accessed: Nov. 26, 2022. [Online]. https://repository.udistrital.edu.co/handle/11349/28048.; Catagnia Chicaiza, L. D. (2020). Estimación de costos de energía eléctrica para la recarga de vehículos eléctricos basado en la óptima respuesta de la demanda (Bachelor's thesis). http://dspace.ups.edu.ec/handle/123456789/19333.; C. D. C. , Acosta Blanquiceth, J. M. , Chumbe Macana, J. F. , Ortigoza Ulloa, S. D. Palencia Pulido, and Sarmiento Baquero, “Estudio de factibilidad de la instalación de puntos de recarga para vehículos eléctricos en la ciudad de Bogotá,” 2021. https://hdl.handle.net/10882/11290; M. M. Rodríguez, “Impacto. Diseño de estaciones de carga eléctrica sostenible para vehículos eléctricos en Bogotá.,” 2021, Accessed: Nov. 26, 2022. [Online]. Available: http://repositorio.uan.edu.co/handle/123456789/1639.; Departamento Administrativo Nacional de Estadística, url: https://www.dane.gov.co.; Departamento Administrativo Nacional de Estadística https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-ypoblacion/proyecciones-de-poblacion.; Secretaría Distrital de Movilidad. https://www.movilidadbogota.gov.co/; Datos abiertos Bogotá. http://www.ideca.gov.co/recursos/glosario/datos-abiertos/.; Datos abiertos Bogotá. https://datosabiertos.bogota.gov.co/.; OpenStreetMap. https://www.openstreetmap.org/; F. C. Arias, “Estadística Espacial: Fundamentos y aplicación con Sistemas de Información Geográfica,” Revista Cartográfica, no. 105, 2022, doi:10.35424/rcarto.i105.1388. https://doi.org/10.35424/rcarto.i105.1388; V. Gómez Rubio, “Una introducción a la estadística espacial,” Boletín de Estadística e Investigación Operativa, vol. 38, 2022. https://www.seio.es/beio/una-introduccion-a-la-estadistica-espacial/; A. Rangel, A. Sánchez Ipia, W. Siabato, and J. Cely, “Geoestadística aplicada a estudios de contaminación ambiental,” UD y la Geomática, vol. 7 No.2, 2002. https://dialnet.unirioja.es/servlet/articulo?codigo=4797355.; D. Pascual, F. Pla, and S. Sánchez, “Algoritmos de agrupamiento,” Unpublished, 2007. https://repositorio.uci.cu/jspui/handle/123456789/7202; S. Wang, L. Sun, J. Rong, and Z. Yang, “Transit traffic analysis zone delineating method based on Thiessen polygon,” Sustainability (Switzerland), vol. 6, no. 4, 2014, doi:10.3390/su6041821. https://doi.org/10.3390/su6041821; “Geometría computacional,” http://asignatura.us.es/fgcitig/contenidos/gctem3ma.htm.; G. C. Henriques, “Arquitetura algorítmica: Técnicas, processos e fundamentos,” ENANPARQ IV Encontro da Associação Nacional de Pesquisa e Pós-Graduação em Arquitetura e Urbanismo, vol. 1, no. Sessão temática: projeto digital e fabricação na arquitetura, 2016.DOI:10.13140/RG.2.1.3479.3209; L. Jáuregui Álvarez and C. Vázquez Martínez, “MODELO DE NEGOCIO PARA LA GESTIÓN DE PUNTOS DE RECARGA Y ESTACIONAMIENTO NOCTURNO DE TURISMOS ELÉCTRICOS.” https://oa.upm.es/63478/; J. D. Gallo-Sanabria, P. A. Mozuca-Tamayo and R. I. Rincón-Fonseca, “Autonomous trajectory following for an UAV based on computer vision”, Visión electrónica, algo más que un estado sólido, vol. 14, no. 1, 2020; F. Campos Archila, V. Pinzón Saavedra, y F. Robayo Betancourt, “Fuzzy control of quadrotor Ar. Drone 2.0 in a controlled environment”, Vis. Electron., vol. 13, n.º 1, pp. 39–49, feb. 2019.; ] “Generación Eléctrica - Qué es, cómo se produce, renovables”. Concepto. Accedido el 27 de septiembre de 2023. https://concepto.de/generacion-electrica/; A. Gutierres. “Energías renovables: energías para un futuro más seguro”. Organizacion de las Naciones Unidas. Accedido el 1 de septiembre de 2023. https://www.un.org/es/climatechange/raising-ambition/renewable-energy; ] “Datos sobre producción eléctrica %7C Estadísticas mundiales sobre electricidad %7C Enerdata”. Estadísticas energéticas mundiales %7C Enerdata. Accedido el 27 de septiembre de 2023. https://datos.enerdata.net/electricidad/estadisticas-mundiales-produccion-electricidad.html; M. a. tamayo rincon, “PANORAMA ACTUAL DE LA GENERACIÓN HIDRÁULICA EN COLOMBIA Y ANTIOQUIA ANTE EL CRECIMIENTO DE LA DEMANDA DE ENERGÍA”, monografia, Univ. Antioquia, Medellin, 2022.; J. Rosero, L. Morales y D. Pozo, “Fuentes de Generación de Energía Eléctrica Convencional y Renovable a Nivel Mundial”, Rev. Politec., vol. 32, n.º 2, p. 13, 2013.; Malagón, E., 2020. La Hidroelectricidad, La Mayor Fuente De Energía Sostenible. ¡Aquí Te Decimos Por Qué! - Energía Para El Futuro. [Online] Energía para el futuro. Available at: [Accessed 21 October 2020].; Khan, A. A., & Khan, M. R. (2015). A simple and economical design of micro-hydro power generation system. 2015 Power Generation Systems and Renewable Energy Technologies, PGSRET 2015. https://doi.org/10.1109/PGSRET.2015.7312183; Ferro, L. M. C., Gato, L. M. C., & Falcão, A. F. O. (2011). Design of the rotor blades of a mini hydraulic bulb-turbine. Renewable Energy, 36(9), 2395–2403. https://doi.org/10.1016/j.renene.2011.01.037; E. R. Oviedo Ocaña, “Las Hidroeléctricas: efectos en los ecosistemas y en la salud ambiental”, Rev. Univ. Ind. Santander., vol. 50, n.º 3, 2018.; E. Sierra Vargas, A. F. Sierra Alarcon y C. A. Guerrero Fajardo. “Pequeñas y microcentrales hidroeléctricas: alternativa real de generación eléctrica. %7C Informador Técnico”. Revistas SENA. Accedido el 27 de septiembre de 2023. https://revistas.sena.edu.co/index.php/inf_tec/article/view/22/3439#info; Villarreal, J. L. S., Avalos, P. G., Galvan Gonzalez, S. R., & Dominguez Mota, F. J. (2019). Estimate electrical potential of municipal wastewater through a micro-hydroelectric plant. 2018 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2018, Ropec. https://doi.org/10.1109/ROPEC.2018.8661411; Qusay F. Hassan, "An Overview of Enabling Technologies for the Internet of Things," in Internet of Things A to Z: Technologies and Applications, IEEE, 2018, pp.77-112, doi:10.1002/9781119456735.ch3.; Hernandez Sampieri, R., Baptista Lucio, M. d. P., & Fernandez Collado, C. (2014). Metodologia de la investigacion (6a ed.). McGRAW-HILL / INTERAMERICANA EDITORES, S.A. DE C.V.; C M, S., Honnasiddaiah, R., Hindasageri, V., & Madav, V. (2021). Studies on application of vertical axis hydro turbine for sustainable power generation in irrigation channels with different bed slopes. Renewable Energy, 163, 845–857. https://doi.org/10.1016/j.renene.2020.09.015; Elbatran, A. H., Yaakob, O. B., Ahmed, Y. M., & Jalal, M. R. (2015). Novel approach of bidirectional diffuser-augmented channels system for enhancing hydrokinetic power generation in channels. Renewable Energy, 83, 809–819. https://doi.org/10.1016/j.renene.2015.05.038; Lucas D. Spies, E. A. T., Laboratorio. (2015). Diseño y Fabricación de una Turbina Eólica de Eje Vertical Impulsada por Drag. Revista Tecnología y Ciencia, 319–328.; Acevedo L, Lopez J, Sanchez S, (2008) Diseño de una turbina Banki para la recolección de aguas y generación de energía en una propiedad agrícola. Universidad tecnológica de Pereira, ingeniería mecatronica: http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/5770/62124A174.pdf;jsessionid=5 662092429514C805182C7EA731C6F45?sequence=1; Laboratorio de máquinas hidráulicas. (Universidad) (1923). Unidad 6 Turbina De Flujo Transversal O Michell Banki.2, 1–25. https://luiscalderonf.files.wordpress.com/2012/01/turbina-m-banki.pdf; Alfonso, C., & Gutiérrez, P. (2008). La turbina Mochell-Banki y su presencia en Colombia. Avances En Recursos Hidráulicos, 17, 33–42.; Bangi, V. K. T., Chaudhary, Y., Guduru, R. K., Aung, K. T., & Reddy, G. N. (2017). Preliminary investigation on generation of electricity using micro wind turbines placed on a car. International Journal of Renewable Energy Development, 6(1), 75–81. https://doi.org/10.14710/ijred.6.1.75-81; Ochoa, Y., Rodríguez, J., & Martínez, F. (2017). Sistema de regulación y control de carga para aerogenerador de baja potencia. Universidad Distrital Francisco José de Caldas - Facultad Tecnológica.; Hidrotu (empresa) "la turbina hidráulica del bulbo 0.1MW-10MW/la turbina del agua con descarga grande y el agua baja dirigen" Hoja técnica turbina de bulbo hidráulico., Spanish.hydrotu.com, 2020. [Online]. Available: http://spanish.hydrotu.com/china-; La_turbina_hidr_ulica_del_bulbo_0_1mw_10mw_la_turbina_del_agua_con_descarga_gra nde_y_el_agua_baja_di-295887.html. [Accessed: 08- Nov- 2020].; imagen turbina bulbo hidraulico- https://equipo2fae.wordpress.com/turbinas-kaplam/; Turbinas Kaplan. (2012). Recuperado 28 de diciembre de 2020, de EQUIPO2FAE website: https://equipo2fae.wordpress.com/turbinas-kaplam/; ] Vargas, J. A., Clavijo, F. V., & Torres Gómez, C. (2016). Desarrollo del prototipo de un hidrogenerador eléctrico como alternativa de generación de energía limpia en zonas rurales Development of the prototype of an electric hydro generator as an alternative for generating clean energy in rural areas. Ingeniare, 12(20), 91–101.; Naoe, N., Imazawa, A., Takehisa, K., & Nakamura, S. (2018). Bridge structure type micro hydropower-generating system and local region implementation. 2017 International Conference on Electrical, Electronics and System Engineering, ICEESE 2017, 2018-January, 78–83. https://doi.org/10.1109/ICEESE.2017.8298392; Plata, A. (2012). Diseño y desarrollo de un pico-generador hidroeléctrico para producción preindustrial. Universidad de Los Andes, 76.; Delgado Flores, A. F. (2016). Construcción de un convertidor CC-CC tipo reductor orientado a la enseñanza. Universidad Tecnológica de Pereira, 42.; Probe, M., & IoT, E. (2019). Power Consumption Measurements for IoT Applications Application Note. Rohde-Schwarz, 1–16.; Pane, D. N., Fikri, M. EL, & Ritonga, H. M. (2018). Análisis del consumo de energía promedio en dispositivos IoT de baja potencia con Blockchain como solución de seguridad. Journal of Chemical Information and Modeling, 53(9), 1689–1699.; Rose Karen, Eldridge Scott, C. L. (2015). LA INTERNET DE LAS COSAS-UNA BREVE RESEÑA. Internet Society, 83. https://doi.org/10.1007/978-0-85729-103-5_5; Kim, M., Lee, J., Kim, Y., & Song, Y. H. (2018). An analysis of energy consumption under various memory mappings for FRAM-based IoT devices. IEEE World Forum on Internet of Things, WF-IoT 2018 - Proceedings, 2018-January, 574–579. https://doi.org/10.1109/WFIoT.2018.8355212; Bonilla-Fabela Isaias Tavizon-Salazar Arturo Morales-Escobar Melisa Guajardo Muñoz Luz Tania & Laines-Alamina Cristina Isabel, “ISSN: 2448-5101 Año 2 Número 1 Julio 2015 - Junio 2016 2313 IOT, EL INTERNET DE LAS COSAS Y LA INNOVACIÓN DE SUS APLICACIONES”, Trabajo de grado, UANL Sch. Busines, Mexico, 2016.; S. Et. al., “Internet of Things (IoT): A Review”, Turkish J. Comput. Math. Educ. (TURCOMAT), vol. 12, n.º 2, pp. 521–526, abril de 2021. Accedido el 27 de septiembre de 2023, https://doi.org/10.17762/turcomat.v12i2.871; ] J. Flores Zermeño y E. G. Cosio Franco, “Aplicaciones, Enfoques y Tendencias del Internet de las Cosas (IoT): Revisión Sistemática de la Literatura”, Academia J., vol. 13, n.º 9, p. 9, 2021.; C. Chuquimarca, “Análisis comparativo entre arquitecturas de sistemas IoT”, RITI J., vol. 10, n.º 21, p. 16, 2021.; Anonimo. “¿Qué son los sensores IoT y para qué sirven? ¡Descúbrelo! %7C Tokio”. Tokio School. Accedido el 27 de septiembre de 2023, https://www.tokioschool.com/noticias/sensores-IoT/; F. D. Acevedo Garcés, "Diseño de una instalación solar fotovoltaica con capacidad para 3 kilovatios," Universidad Nacional Abierta y a Distancia Colombia, 2016.; M. Caro and R. Alejandro, "Dilemas éticos en la ingeniería," Retrieved 11 de 10 de 2021, from http://repositorio.uchile.cl/handle/2250/113296, 2012.; P. A. Castiblanco F. Luz A., "Trabajo de campo Sistema de Generación," En P. A. Castiblanco F. Luz A., Madrid, Cundinamarca, Cundinamarca, 2021.; T. D. Corcobado, "Instalaciones Solares Fotovoltaicas ciclo formativo de grado medio," Mc Graw Hill, Madrid, España, 2010.; Ministerio de Energía, "Energías Renovables no convencionales," En M. d. Energía. https://www.minenergia.gov.co/energias-renovables-no-convencionales, 2021.; J. Gómez Ramírez, "La energía solar fotovoltaica en Colombia: potenciales, antecedentes y perspectivas," Bogotá, 2017.; C. Guerrero, "Proyecto de Factibilidad para uso de Paneles Solares en Generación Fotovoltaica de Electricidad en el Complejo Habitacional “San Antonio” de Riobamba (Bachelor's thesis)," Riobamba, Ecuador, Ecuador, 2013.; I. S. JORGE, "Instalación y mantenimiento de sistemas solares fotovoltaicos. Capítulo 1, tema 1-2: La célula fotovoltaica. {En línea}. https://311cie.files.wordpress.com/2014/09/tema-1-2-la-celula-fotovoltaica.pdf," 2016.; P. &.-P. Marín-Cots, "En un entorno de 15 minutos: hacia la Ciudad de Proximidad, y su relación con el Covid-19 y la Crisis Climática, el caso de Málaga," Málaga, España, 2020.; Ministerio de Minas y Energía, "Ley 143 de 1994," En i. d. Régimen para la generación. Bogotá. https://www.minenergia.gov.co/documents/10180/667537/Ley_143_1994.pdf, 1994.; Monsolar, "Catálogo de productos," https://www.monsolar.com/bateria-gel-victron12v-165ah.html, 2023.; NASA, "Power Data Access View," https://power.larc.nasa.gov/data-access-viewer/, 2023.; G. C. Orrego, "Serie 3 Solera SE19 ORREGO G. CESAR A. Madrid Cundinamarca," 2019; R. Ortega, "Energías Renovables," Paraninfo, 2000.; UPME-Ideam, "Proyecciones de precios de los energéticos para generación eléctrica enero 2014 – diciembre 2037,"http://www.sipg.gov.co/sipg/documentos/precios_combustibles/Termicas_Marzo_ 2014. pdf, 2014.; WWF, "Glosario ambiental : Acuerdo de París," En WWF, París, Francia. https://www.wwf.org.co/?334976/Glosario-ambiental--Sabes-que-se-pacto-en-elAcuerdo-deParis#:~:text=Colombia%20en%20el%20Acuerdo%20de,de%20emisiones%20nac ionales%20de%202010, 2016.; (n.d.), «Buildings – Analysis - IEA,» 17 Abril 2023. [En línea]. Available: https://www.iea.org/reports/buildings.; C. t. d. l. e. e. España, « Seguridad estructural,» Documento básico SE., España, 2019.; F. Nemry, A. Uihlein, M. Colodel, C. Wetzel, A. Braune, B. Wittstock, I. Hasan, J. Kreißig, N. Gallon, S. Niemeier y Y. Frech, «Options to reduce the environmental impacts of residential buildings in the European Union—Potential and costs,» Energy Build, vol. 42, pp. 976-984, 2010.; Z. Ma, P. Cooper, D. Darly y L. Ledo, «Existing building retrofits: Methodology and stateof-the-art,» Energy Build, pp. 889-902, 2012.; reco2st, «reco2st,» programa de Investigación e Innovación Horizonte 2020 de la Unión Europea, 2020. [En línea]. Available: https://reco2st.eu/innovation/technologies/. [Último acceso: 14 11 2022].; C. o. B. S. Engineers, « Energy Efficiency in Buildings: CIBSE Guide F,» Chartered Institution of Building Services Engineers, 2004.; Objetivos y metas de desarrollo sostenible, «17 objetivos para transformar nuestro mundo,» NACIONES UNIDAS, 2017. [En línea]. Available: https://www.un.org/sustainabledevelopment/es/sustainable-development-goals/. [Último acceso: Noviembre 2022].; M. Santamouris y K. Vasilakopoulou, «Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation,» Electronics and Energy, vol. 1, 2021.; n.d, «Energy Efficiency 2019 – Analysis - IEA,» 17 Abril 2023. [En línea]. Available: https://www.iea.org/reports/energy-efficiency-2019.; L. Biardeau, L. Davis, P. Gertler y C. Wolfram, «Heat exposure and global air conditioning,» Nat Sustain, vol. 3, p. 25–28, 2020.; MITMA, «Documento Básico HS Salubiridad,» Ministerio de Transporte, Movilidad y Agenda Urbana, 2022.; J. Pradillo, ENFRIAMIENTO ADIABÁTICO INDIRECTO MEDIANTE CICL0 DE MAISOTSENKO Y APLICACIONES, wolf, 2015.; F. Rabadán, Evaluación de medidas de eficiencia energética en el, Sevilla: Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, 2021.; ABECE, «teoria sobre climatización adiabática,» Enero 2021. [En línea]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://asociacionbioclimatica.es/wpcontent/uploads/2021/01/TECNOLOGIAS-ADIABA%CC%81TICAS.pdf. [Último acceso: Noviembre 2022].; J. M. Arroyo and F. J. Fernández, “A genetic algorithm for power system vulnerability analysis under multiple contingencies,” Stud. Comput. Intell., vol. 482, pp. 41–68, 2013, doi:10.1007/978-3-642-37838-6_2.; D. K. Mishra, M. J. Ghadi, A. Azizivahed, L. Li, and J. Zhang, “A review on resilience studies in active distribution systems,” Renew. Sustain. Energy Rev., vol. 135, no. March 2020, 2021, doi:10.1016/j.rser.2020.110201.; J. Colombi, John M.; Miller, Michael E.; Schneider, Michael; McGrogan, Jason; Long, David S.; Plaga, “Towards Affordably Adaptable and Effective Systems,” Syst. Eng., vol. 14, no. 3, pp. 305–326, 2012, doi:10.1002/sys.; B. De Ataque and R. D. L. Sistemas, “A Bilevel Attacker-Defender Model for Enhancing Power Systems Resilience with Distributed Generation,” Sci. Tech., vol. 25, no. 4, pp. 540–547, 2020, doi:10.22517/23447214.23721.; P. H. Corredor and M. E. Ruiz, “Mitigating the Impact of Terrorist Activity on Colombia’s Power System,” IEEE Power Energy Mag., vol. 9, no. 2, pp. 59–66, 2011.; S. Cai, Y. Xie, Q. Wu, and Z. Xiang, “Robust MPC-based microgrid scheduling for resilience enhancement of distribution system,” Int. J. Electr. Power Energy Syst., vol. 121, no. April, p. 106068, 2020, doi:10.1016/j.ijepes.2020.106068.; S. N. Emenike and G. Falcone, “A review on energy supply chain resilience through optimization,” Renew. Sustain. Energy Rev., vol. 134, no. September, p. 110088, 2020, doi:10.1016/j.rser.2020.110088.; Z. Wan, Y. Mahajan, B. W. Kang, T. J. Moore, and J. H. Cho, “A Survey on Centrality Metrics and Their Network Resilience Analysis,” IEEE Access, vol. 9, pp. 104773–104819, 2021, doi:10.1109/ACCESS.2021.3094196.; L. Lotero and R. G. Hurtado, “Vulnerabilidad De Redes Complejas Y Una Revisión De La Literatura Vulnerability of Complex Networks and Urban Transportation Applications : a Literature Review,” Rev. EIA, vol. 11, no. 11, pp. 67–78, 2015.; T. Conferencia, M. D. E. Las, and R. D. E. Desastres, “Tercera Conferencia Mundial de las Naciones Unidas sobre la Reducción del Riesgo de Desastres,” 2015.; D. Sage, P. Fussey, and A. Dainty, “Securing and scaling resilient futures: neoliberalization, infrastructure, and topologies of power,” Environ. Plan. D Soc. Sp., vol. 33, no. 3, pp. 494–511, 2015, doi:10.1068/d14154p.; J. Pilatásig Lasluisa, “Resiliencia de Sistemas Eléctricos de Potencia mediante la Conmutación de Líneas de Transmisión – Estado del arte,” I+D Tecnológico, vol. 16, no. 2, 2020, doi:10.33412/idt.v16.2.2834.; B. M. Qu, T. Ding, L. Huang, and X. Wu, “Toward a Global Green Smart Microgrid,” pp. 55–69, 2020.; T. Khalili, A. Bidram, and M. J. Reno, “Impact study of demand response program on the resilience of dynamic clustered distribution systems,” IET Gener. Transm. Distrib., vol. 14, no. 22, pp. 5230–5238, 2020, doi:10.1049/iet-gtd.2020.0068.; J. Wu, H. Z. Deng, Y. J. Tan, and D. Z. Zhu, “Vulnerability of complex networks under intentional attack with incomplete information,” J. Phys. A Math. Theor., vol. 40, no. 11, pp. 2665–2671, 2007, doi:10.1088/1751-8113/40/11/005.; M. Azeroual, T. Lamhamdi, H. El Moussaoui, and H. El Markhi, “Simulation tools for a smart grid and energy management for microgrid with wind power using multi-agent system,” Wind Eng., vol. 44, no. 6, pp. 661–672, 2020, doi:10.1177/0309524X19862755.; Y. Wang et al., “Coordinating multiple sources for service restoration to enhance resilience of distribution systems,” IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 5781–5793, 2019, doi:10.1109/TSG.2019.2891515.; Q. Shi et al., “Network reconfiguration and distributed energy resource scheduling for improved distribution system resilience,” Int. J. Electr. Power Energy Syst., vol. 124, no. March 2020, p. 106355, 2021, doi:10.1016/j.ijepes.2020.106355.; K. Eshghi, B. K. Johnson, and C. G. Rieger, “Metrics required for power system resilient operations and protection,” Proc. - 2016 Resil. Week, RWS 2016, pp. 200–203, 2016, doi:10.1109/RWEEK.2016.7573333.; C. Ji, Y. Wei, and H. V. Poor, “Resilience of Energy Infrastructure and Services: Modeling, Data Analytics, and Metrics,” Proc. IEEE, vol. 105, no. 7, pp. 1354–1366, 2017, doi:10.1109/JPROC.2017.2698262.; D. J. M. Palacios, E. R. Trujillo, and J. M. López-Lezama, “Vulnerability analysis to maximize the resilience of power systems considering demand response and distributed generation,” Electron., vol. 10, no. 12, pp. 1–22, 2021, doi:10.3390/electronics10121498.; M. Bruneau et al., “A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities,” Earthq. Spectra, vol. 19, no. 4, pp. 733–752, 2003, doi:10.1193/1.1623497.; K. S. A. Sedzro, A. J. Lamadrid, and L. F. Zuluaga, “Allocation of Resources Using a Microgrid Formation Approach for Resilient Electric Grids,” IEEE Trans. Power Syst., vol. 33, no. 3, pp. 2633–2643, 2018, doi:10.1109/TPWRS.2017.2746622.; L. Yang, Y. Xu, H. Sun, M. Chow, and J. Zhou, “A multiagent system based optimal load restoration strategy in distribution systems,” Int. J. Electr. Power Energy Syst., vol. 124, no. May 2020, p. 106314, 2021, doi:10.1016/j.ijepes.2020.106314.; «Logra energía eólica a nivel mundial 1 TW de capacidad instalada», Energía Hoy. Accedido: 22 de agosto de 2023. [En línea]. Disponible en: https://energiahoy.com/2023/06/16/logra-energia-eolica-a-nivel-mundial-1-tw-de-capacidadinstalada/; P. M. Medina, «Colombia es uno de los países de la OCDE que más energía renovable genera», infobae. Accedido: 16 de agosto de 2023. [En línea]. Disponible en: https://www.infobae.com/colombia/2023/02/15/colombia-es-uno-de-los-paises-de-la-ocdeque-mas-energia-renovable-genera/; «Vista de Generador lineal para un generador eólico de baja potencia, selección, diseño y simulación en comsol multiphysic». Accedido: 16 de agosto de 2023. [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/vinculos/article/view/18620/17571; Mohan Ned, Undeland Tore, Robbins William, ELECTRONICA DE POTENCIA: Convertidores, aplicaciones y diseño, 3.a ed. Mc Graw Hill, 2009.; «Simscape Electrical». Accedido: 21 de julio de 2023. [En línea]. Disponible en: https://la.mathworks.com/products/simscape-electrical.html; M. H. Rashid, Electrónica de Potencia, 2.a ed. PRENTICE HALL HISPANOAMERICANA, S.A, 1993.; «Introducción a la identificación de sistemas», TÉCNICA INDUSTRIAL. Accedido: 24 de agosto de 2023. [En línea]. Disponible en: https://www.tecnicaindustrial.es/introduccion-a-laidentificacion-de-sistemas/; «System Identification Toolbox». Accedido: 24 de agosto de 2023. [En línea]. Disponible en: https://la.mathworks.com/products/sysid.html; L. J. Marín y V. M. Alfaro, «Sintonización de controladores por ubicación de polos y ceros», 2007.; S. C, «CONTROLADOR PI - Asignación de Polos [FÁCIL - Aprende]», Control Automático Educación. Accedido: 24 de agosto de 2023. [En línea]. Disponible en: https://controlautomaticoeducacion.com/control-realimentado/controlador-pi-por-asignacionde-polos/; «CONTROLADOR PI - Asignación de Polos [FÁCIL - Aprende]». Accedido: 24 de agosto de 2023. [En línea]. Disponible en: https://controlautomaticoeducacion.com/controlrealimentado/controlador-pi-por-asignacion-de-polos/; S. C, « Control Fuzzy - Mamdani - Simulink - [agosto, 2023 ]», Control Automático Educación. Accedido: 24 de agosto de 2023. [En línea]. Disponible en: https://controlautomaticoeducacion.com/control-realimentado/control-fuzzy-mamdanisimulink/; Agencia Internacional de Energía (AIE), "Perspectivas de tecnología energética 2020", AIE, 2020.; MA Ortega-Vázquez, MV Salas y KE Yeager, "Recursos energéticos distribuidos y su integración en el sistema de energía eléctrica", Proc. IEEE, vol. 99, núm. 1, págs. 28–39, enero de 2011.; N. Hatziargyriou, H. Asano, R. Iravani y C. Marnay, "Microgrids", IEEE Power Energy Mag., vol. 5, núm. 4, págs. 78–94, julio de 2007.; R. Pérez-García, F. González-Longatt y S. Carneiro, "Review of Distributed Energy Resources Integration in the IEEE Standards", en 2020 IEEE PES Transmission & Distribution Conference and Exposition (T&D), 2020; AS Al-Mohammed, RMO Al-Mohammed y M. Al- Mansoori, "Impacto de los recursos energéticos distribuidos en la calidad de la energía en las redes inteligentes: una revisión integral", Energías, vol. 13, núm. 7, pág. 1580, 2020.; S. A. Abbas, S. F. Hasan, D. R. Shin, “Analyzing the Integration of Distributed Generation into Smartgrids,” College of Information and Communications Engineering. Sungkyunkwan University. IEEE, 2015); G. Gross, J. Heinemann y F. Siefert, "Integración de energías renovables y su impacto en las operaciones de red",en 2010 IEEE PES Innovative Smart Grid Technologies, 2010.; K. Wang, Z. Xu y H. Wang, "Estándar IEEE y su aplicación en la regulación de microrredes", en 2012 Tercera Conferencia Internacional sobre Control Inteligente y Procesamiento de Información, 2012.; HY Kim, YS Cho y SS Kim, "Una revisión de la investigación sobre modelado y análisis de microrredes", Renew. Sostener. Energía Rev., vol. 59, págs. 1634-1640, 2016.; SR Mohanty, SN Singh y A. Kishor, "Una revisión de los métodos de detección de islas para la generación distribuida", Renew. Sostener. Energía Rev., vol. 13, núm. 8, págs. 1801- 1818, 2009.; ] F. Katiraei, MR Iravani y PW Lehn, "Operación autónoma de microredes durante y después del proceso de aislamiento", IEEE Trans. Entrega de energía, vol. 20, núm. 1, págs. 248-257.; M. Stadler et al., "Asignación y envío óptimos de recursos de energía distribuida: una revisión", IEEE Trans. Sistema de energía, vol. 22, núm. 1, págs. 107-116, 2007.; P. Palensky y D. Dietrich, "Gestión del lado de la demanda: respuesta a la demanda, sistemas de energía y cargas inteligentes", IEEE Trans. Indiana Informática, vol. 7, núm. 3, págs. 381-388, 2011.; CA Silva, SJ Rider y CS Yim, "Sistemas de almacenamiento de energía eléctrica: un análisis comparativo del costo del ciclo de vida", Renew. Sostener. Energía Rev., vol. 14, núm. 9, págs. 2717-2726, 2010.; E. Muljadi, CP Butterfield, A. Ellis y J. Meiman, "EnergyStorage for Stabilization of Wind Power", IEEE Trans. Solicitud de Indiana, vol. 37, núm. 1, págs. 272-280, 2001.; L. Zhong, X. Fang, J. Chen y Z. Zhang, "Regulación de carga de recursos energéticos distribuidos mediante controlpredictivo de modelos", en 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015.; P. Deane, G. O'Gallachoir y B. Ó. Gallachóir, "Revisión tecnoeconómica de una planta de almacenamiento de energía hidráulica por bombeo nueva y existente", Renovar. Sostener. Energía Rev., vol. 14, núm. 4, págs. 1293-1302, 2010.; E. Marín y P. Gómez, “Criterios e indicadores para la evaluación de la sostenibilidad de los sistemas energéticos”, Energía, vol. 32, núm. 12, págs. 2173-2181, 2007.; NK Roy, MT Naayagi y AM Ismail, "Análisis tecnoeconómico del sistema híbrido de almacenamiento deenergía para una planta de energía fotovoltaica independiente",Renew. Sostener. Energía Rev., vol. 69, págs. 1246-1256, 2017.; EG Talbi y K. Chekired, "Análisis económico y técnico de un sistema híbrido compuesto por paneles fotovoltaicos y baterías para un consumidor doméstico en Argelia", Energy Convers. Gestionar., vol. 47, núm. 18-19, págs. 3396-3409, 2006.; S. Deng, S. Zhong, Y. Fan y J. Du, "Operación óptima del almacenamiento de energía integrado y electrodomésticos inteligentes en microrredes considerando la respuesta a la demanda", IEEE Trans. Red inteligente, vol. 7, núm. 6, págs. 2831-2841, 2016.; https://hdl.handle.net/11349/40350
Availability: https://hdl.handle.net/11349/40350
-
7
Authors: et al.
Contributors: et al.
Subject Terms: 570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales, Cell aggregates, Morphogenesis model, Tissue engineering, Cell rearrangement, Self-learning KMC, Morphogenesis, Bioprinting simulation, Bioconvergence, Agregados celulares, Modelo de morfogenesis, Ingenieria de tejidos, Morfogenesis, Bioconvergencia
File Description: 227 páginas; application/pdf
Relation: RedCol; LaReferencia; Sánchez Rodríguez, D.A., A.I. Ramos-Murillo, and R.D. Godoy-Silva, Tissue engineering, 3DBioprinting, morphogenesis modelling and simulation of biostructures: Relevance, underpinning biological principles and future trends. Bioprinting, 2021. 24: p. e00171.; Liu, N., et al., Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration. Bioactive Materials, 2021. 6(5): p. 1388-1401.; GODT. Global Observatory on Donation and Transplantation data. 2016 25 April 2020 [cited 2020; Available from: http://www.transplant-observatory.org/summary/.; Health Resources and Services Administration. Organ Procurement and Transplantation Network. 26 April 2020 [cited 2020; Available from: https://optn.transplant.hrsa.gov/data/.; Matai, I., et al., Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 2020. 226: p. 119536.; Dzobo, K., K.S.C.M. Motaung, and A. Adesida, Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review. International Journal of Molecular Sciences, 2019. 20(18): p. 4628.; Gomes, M.E., et al., Tissue Engineering and Regenerative Medicine: New Trends and Directions—A Year in Review. Tissue Engineering Part B: Reviews, 2017. 23(3): p. 211-224.; Lanza, R.P., R. Langer, and J. Vacanti, Chapter 1 - The History and Scope of Tissue Engineering. 2014. p. 3 - 8.; Murphy, S.V. and A. Atala, 3D bioprinting of tissues and organs. Nature biotechnology, 2014. 32(8): p. 773-85.; Neagu, A., Role of computer simulation to predict the outcome of 3D bioprinting. Journal of 3D Printing in Medicine, 2017. 1(2): p. 103-121.; Brody, H., Regenerative medicine. Nature, 2016. 540: p. S49.; Langer, R. and J. Vacanti, Tissue engineering. Science, 1993. 260(5110): p. 920-926.; Ballet, F., Hepatotoxicity in drug development: detection, significance and solutions. Journal of Hepatology, 1997. 26: p. 26-36.; Caponigro, G. and W.R. Sellers, Advances in the preclinical testing of cancer therapeutic hypotheses. Nature Reviews Drug Discovery, 2011. 10(3): p. 179-187.; Schutgens, F. and H. Clevers, Human Organoids: Tools for Understanding Biology and Treating Diseases. Annu Rev Pathol, 2020. 15: p. 211-234.; Clevers, H., Modeling Development and Disease with Organoids. Cell, 2016. 165(7): p. 1586- 1597.; Dzobo, K., Taking a Full Snapshot of Cancer Biology: Deciphering the Tumor Microenvironment for Effective Cancer Therapy in the Oncology Clinic. OMICS: A Journal of Integrative Biology, 2020. 24(4): p. 175-179.; Dzobo, K., et al., Three-Dimensional Organoids in Cancer Research: The Search for the Holy Grail of Preclinical Cancer Modeling. Omics, 2018. 22(12): p. 733-748.; Kaushik, G., M.P. Ponnusamy, and S.K. Batra, Concise Review: Current Status of Three- Dimensional Organoids as Preclinical Models. STEM CELLS, 2018. 36(9): p. 1329-1340.; Drost, J. and H. Clevers, Organoids in cancer research. Nature Reviews Cancer, 2018. 18(7): p. 407-418.; Cellink. Bioconvergence is the future of healthcare. 2021; Available from: https://www.cellink.com/bioconvergence/.; Authority, I.I. Bio-Convergence. The Future of Medicine. 2019; Available from: https://innovationisrael.org.il/en/reportchapter/bio-convergence.; Senthebane, D.A., et al., The Role of Tumor Microenvironment in Chemoresistance: To Survive, Keep Your Enemies Closer. International Journal of Molecular Sciences, 2017. 18(7). Bibliografía 217; Khademhosseini, A. and R. Langer, Microengineered hydrogels for tissue engineering. Biomaterials, 2007. 28(34): p. 5087-92.; Kim, J.D., et al., Piezoelectric inkjet printing of polymers: Stem cell patterning on polymer substrates. Polymer, 2010. 51(10): p. 2147-2154.; Mège, R.-M., Les molécules d'adhérence cellulaire: molécules morphogénétiques. médecine/sciences, 1991. 7: p. 544.; Glazier, J.A. and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1993. 47(3): p. 2128-2154.; Savill, N.J. and P. Hogeweg, Modelling Morphogenesis: From Single Cells to Crawling Slugs. Journal of Theoretical Biology, 1997. 184(3): p. 229 - 235.; Walker, D.C., et al., Agent-based computational modeling of wounded epithelial cell monolayers. IEEE Transactions on NanoBioscience, 2004. 3(3): p. 153-163.; Galle, J., et al., Individual cell-based models of tumor-environment interactions: Multiple effects of CD97 on tumor invasion. The American journal of pathology, 2006. 169(5): p. 1802-11.; Takeichi, M., Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 1991. 251(5000): p. 1451-5.; Pepper, M., et al., Post-Bioprinting Processing Methods to Improve Cell Viability and Pattern Fidelity in Heterogeneous Tissue Test Systems. Vol. 2010. 2010. 259-62.; Murphy, S.V., A. Skardal, and A. Atala, Evaluation of hydrogels for bio-printing applications. Journal of biomedical materials research. Part A, 2013. 101(1): p. 272-84.; Jakab, K., et al., Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures. Vol. 14. 2007.; Jakab, K., et al., Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication, 2010. 2(2): p. 022001-022001.; Nogueira, J.A., et al., Simulation of a 3D Bioprinted Human Vascular Segment. Computer Aided Chemical Engineering, 2015: p. 684-688; Gjorevski, N., et al., Designer matrices for intestinal stem cell and organoid culture. Nature, 2016. 539(7630): p. 560-564.; West, J.L. and J.A. Hubbell, Polymeric Biomaterials with Degradation Sites for Proteases Involved in Cell Migration. Macromolecules, 1999. 32(1): p. 241-244.; Schiller, M., D. Javelaud, and A. Mauviel, TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. Journal of dermatological science, 2004. 35(2): p. 83-92.; Tamamura, Y., et al., Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. The Journal of biological chemistry, 2005. 280(19): p. 19185-95.; Ingber, D.E., et al., Tissue engineering and developmental biology: going biomimetic. Tissue engineering, 2006. 12(12): p. 3265-83.; Behonick, D.J. and Z. Werb, A bit of give and take: the relationship between the extracellular matrix and the developing chondrocyte. Mechanisms of development, 2003. 120(11): p. 1327-36.; Hersel, U., C. Dahmen, and H. Kessler, RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, 2003. 24(24): p. 4385-415. 218 Título de la tesis o trabajo de investigación; Price, R.L., K.M. Haberstroh, and T.J. Webster, Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina. Medical and Biological Engineering and Computing, 2003. 41(3): p. 372-375.; Teixeira, A.I., P.F. Nealey, and C.J. Murphy, Responses of human keratocytes to micro- and nanostructured substrates. Journal of biomedical materials research. Part A, 2004. 71(3): p. 369- 76.; Discher, D.E., P. Janmey, and Y.L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science, 2005. 310(5751): p. 1139-43.; Hopp, B., et al., Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue engineering, 2005. 11(11-12): p. 1817-23.; Stevens, M.M. and J.H. George, Exploring and engineering the cell surface interface. Science, 2005. 310(5751): p. 1135-8.; Wu, Z., et al., Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Scientific Reports, 2016. 6: p. 24474.; Schon, B.S., G.J. Hooper, and T.B.F. Woodfield, Modular Tissue Assembly Strategies for Biofabrication of Engineered Cartilage. Annals of Biomedical Engineering, 2017. 45(1): p. 100- 114.; Murphy, S.V. and A. Atala, 3D bioprinting of tissues and organs. Nat Biotechnol, 2014. 32(8): p. 773-85.; Chang, R., J. Nam, and W. Sun, Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue engineering. Part C, Methods, 2008. 14(2): p. 157-66.; Nair, K., et al., Characterization of cell viability during bioprinting processes. Biotechnology journal, 2009. 4(8): p. 1168-77.; Cui, X., et al., Thermal inkjet printing in tissue engineering and regenerative medicine. Recent patents on drug delivery & formulation, 2012. 6(2): p. 149-55.; Robu, A., et al., Computer simulations of in vitro morphogenesis. Biosystems, 2012. 109(3): p. 430-43.; Zhou, B., et al., Simulation of the gelation process of hydrogel droplets in 3D bioprinting. Vol. 16. 2016. 117-118.; Fristrom, D., The cellular basis of epithelial morphogenesis. A review. Tissue and Cell, 1988. 20(5): p. 645 - 690.; Radisic, M., et al., Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(52): p. 18129-34.; Xu, T., et al., Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials, 2006. 27(19): p. 3580 - 3588.; Steinberg, M.S., Adhesion in development: an historical overview. Developmental biology, 1996. 180(2): p. 377-88.; Wang, Y., et al., Spheroid formation of hepatocarcinoma cells in microwells: Experiments and Monte Carlo simulations. PLoS ONE, 2016. 11(8).; Mironov, V., et al., Organ printing: tissue spheroids as building blocks. Biomaterials, 2009. 30(12): p. 2164-74.; Kelm, J.M., et al., A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. Journal of biotechnology, 2010. 148(1): p. 46-55.; Tejavibulya, N., et al., Directed self-assembly of large scaffold-free multi-cellular honeycomb structures. Biofabrication, 2011. 3(3): p. 034110.; Derby, B., Printing and prototyping of tissues and scaffolds. Science, 2012. 338(6109): p. 921-6. Bibliografía 219; Jakab, K., et al., Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(9): p. 2864-2869.; Jakab, K., et al., Relating cell and tissue mechanics: implications and applications. Developmental dynamics, 2008. 237(9): p. 2438-49.; Steinberg, M.S., Reconstruction of Tissues by Dissociated Cells. Science, 1963. 141(3579): p. 401-408.; Nakamura, M., et al., Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue engineering, 2005. 11(11-12): p. 1658-66.; Freutel, M., et al., Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin Biomech (Bristol, Avon), 2014. 29(4): p. 363-72.; Timpl, R., et al., Laminin--a glycoprotein from basement membranes. J Biol Chem, 1979. 254(19): p. 9933-7.; Pankov, R. and K.M. Yamada, Fibronectin at a glance. J Cell Sci, 2002. 115(Pt 20): p. 3861-3.; Vazin, T. and D.V. Schaffer, Engineering strategies to emulate the stem cell niche. Trends Biotechnol, 2010. 28(3): p. 117-24.; Gleghorn, J.P., et al., Inhibitory morphogens and monopodial branching of the embryonic chicken lung. Developmental dynamics, 2012. 241(5): p. 852-62.; Iber, D. and D. Menshykau, The control of branching morphogenesis. Open biology, 2013. 3(9): p. 130088-130088.; Marga, F., et al., Developmental biology and tissue engineering. Birth Defects Research Part C: Embryo Today: Reviews, 2007. 81(4): p. 320-8.; Betsch, M., et al., Incorporating 4D into Bioprinting: Real-Time Magnetically Directed Collagen Fiber Alignment for Generating Complex Multilayered Tissues. Advanced Healthcare Materials, 2018. 7(21): p. e1800894.; Heinrich, M.A., et al., Bioprinting: 3D Bioprinting: from Benches to Translational Applications (Small 23/2019). Small, 2019. 15(23): p. 1970126.; Hoshiba, T. and M. Tanaka, Decellularized matrices as in vitro models of extracellular matrix in tumor tissues at different malignant levels: Mechanism of 5-fluorouracil resistance in colorectal tumor cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2016. 1863(11): p. 2749-2757.; Kasza, K.E., et al., The cell as a material. Current opinion in cell biology, 2007. 19(1): p. 101-7.; Mironov, V., V. Kasyanov, and R.R. Markwald, Organ printing: from bioprinter to organ biofabrication line. Current opinion in biotechnology, 2011. 22(5): p. 667-73.; Marga, F., et al., Toward engineering functional organ modules by additive manufacturing. Biofabrication, 2012. 4(2): p. 022001.; A., N., et al., Simulation of a 3D Bioprinted Human Vascular, in 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering, J.K.H.a.R.G. Krist V. Gernaey, Editor. 2015, Elsevier B.V.: Copenhagen, Denmark. p. 684-688; Khoo, Z.X., et al., 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping, 2015. 10(3): p. 103-122.; An, J., C.K. Chua, and V. Mironov, A Perspective on 4D Bioprinting. International Journal of Bioprinting, 2016. 220 Título de la tesis o trabajo de investigación; Kamei, M., et al., Endothelial tubes assemble from intracellular vacuoles in vivo. Nature, 2006. 442(7101): p. 453-6.; Alajati, A., et al., Spheroid-based engineering of a human vasculature in mice. Nature methods, 2008. 5(5): p. 439-45.; Chang, R., J. Nam, and W. Sun, Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue engineering. Part A, 2008. 14(1): p. 41-8.; Gunther, A., et al., A microfluidic platform for probing small artery structure and function. Lab on a chip, 2010. 10(18): p. 2341-9.; Huh, D., et al., Reconstituting organ-level lung functions on a chip. Science, 2010. 328(5986): p. 1662-8.; Xu, F., et al., A three-dimensional in vitro ovarian cancer coculture model using a highthroughput cell patterning platform. Biotechnology journal, 2011. 6(2): p. 204-212.; Ghaemmaghami, A.M., et al., Biomimetic tissues on a chip for drug discovery. Drug discovery today, 2012. 17(3-4): p. 173-81.; Knowlton, S., et al., Bioprinting for cancer research. Trends in biotechnology, 2015. 33(9): p. 504-13.; Villasante, A. and G. Vunjak-Novakovic, Tissue-engineered models of human tumors for cancer research. Expert opinion on drug discovery, 2015. 10(3): p. 257-68.; Lancaster, M.A., et al., Cerebral organoids model human brain development and microcephaly. Nature, 2013. 501(7467): p. 373-379.; Wong, A.P., et al., Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nature Biotechnology, 2012. 30(9): p. 876-882.; Clevers, H., STEM CELLS. What is an adult stem cell? Science, 2015. 350(6266): p. 1319-20.; Eiraku, M. and Y. Sasai, Self-formation of layered neural structures in three-dimensional culture of ES cells. Current opinion in neurobiology, 2012. 22(5): p. 768-777.; Lancaster, M.A. and J.A. Knoblich, Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014. 345(6194): p. 1247125.; Dekkers, J.F., et al., A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nature Medicine, 2013. 19(7): p. 939-945.; Ciancanelli, M.J., et al., Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science, 2015. 348(6233): p. 448.; Firth, A.L., et al., Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs. Cell Rep, 2015. 12(9): p. 1385-90.; Benam, K.H., et al., Human Lung Small Airway-on-a-Chip Protocol, in 3D Cell Culture: Methods and Protocols, Z. Koledova, Editor. 2017, Springer New York: New York, NY. p. 345- 365.; Bhatia, S.N. and D.E. Ingber, Microfluidic organs-on-chips. Nature Biotechnology, 2014. 32(8): p. 760-772.; Kimura, H., Y. Sakai, and T. Fujii, Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metabolism and Pharmacokinetics, 2018. 33(1): p. 43-48.; Domansky, K., et al., Perfused multiwell plate for 3D liver tissue engineering. Lab on a chip, 2010. 10(1): p. 51-8.; Faulkner-Jones, A., et al., Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication, 2015. 7(4): p. 044102. Bibliografía 221; Ma, X., et al., Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proceedings of the National Academy of Sciences of the United States of America, 2016. 113(8): p. 2206-11.; Dinh, N.-D., et al., Effective Light Directed Assembly of Building Blocks with Microscale Control. Small, 2017. 13.; Kizawa, H., et al., Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery. Biochemistry and Biophysics Reports, 2017. 10: p. 186-191.; Stichler, S., et al., Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(ε-caprolactone) for MSC chondrogenesis. Biofabrication, 2017. 9(4).; Kang, K., et al., Three-Dimensional Bioprinting of Hepatic Structures with Directly Converted Hepatocyte-Like Cells. Tissue engineering. Part A, 2018. 24(7-8): p. 576-583.; Takebe, T., et al., Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013. 499(7459): p. 481-484.; Bhise, N.S., et al., A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication, 2016. 8(1): p. 014101.; Hirt, M.N., A. Hansen, and T. Eschenhagen, Cardiac Tissue Engineering. Circulation Research, 2014. 114(2): p. 354-367.; Lind, J.U., et al., Instrumented cardiac microphysiological devices via multimaterial threedimensional printing. Nature Materials, 2017. 16(3): p. 303-308.; Zhang, Y.S., et al., Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 2016. 110: p. 45-59.; Ma, X., et al., 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Advanced drug delivery reviews, 2018. 132: p. 235-251.; Jang, J., H.-G. Yi, and D.-W. Cho, 3D Printed Tissue Models: Present and Future. ACS Biomaterials Science & Engineering, 2016. 2(10): p. 1722-1731.; Koch, L., et al., Skin tissue generation by laser cell printing. Biotechnology and bioengineering, 2012. 109(7): p. 1855-63.; Lee, V., et al., Design and fabrication of human skin by three-dimensional bioprinting. Tissue engineering. Part C, Methods, 2014. 20(6): p. 473-84.; Randall, M.J., et al., Advances in the Biofabrication of 3D Skin in vitro: Healthy and Pathological Models. Frontiers in Bioengineering and Biotechnology, 2018. 6(154).; Lindberg, K., et al., In vitro propagation of human ocular surface epithelial cells for transplantation. Investigative Ophthalmology & Visual Science, 1993. 34(9): p. 2672-2679.; Pellegrini, G., et al., Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. The Lancet, 1997. 349(9057): p. 990-993.; Rama, P., et al., Limbal stem-cell therapy and long-term corneal regeneration. New England journal of medicine, 2010. 363(2): p. 147-155.; Lancaster, M.A. and J.A. Knoblich, Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014. 345(6194).; Longmire, T.A., et al., Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell stem cell, 2012. 10(4): p. 398-411.; Steinberg, M.S., Differential adhesion in morphogenesis: a modern view. Current Opinion in Genetics and Development 2007. 17(4): p. 281-6.; Horning, J.L., et al., 3-D Tumor Model for In Vitro Evaluation of Anticancer Drugs. Molecular Pharmaceutics, 2008. 5(5): p. 849-862. 222 Título de la tesis o trabajo de investigación; Flenner, E., et al., Kinetic Monte Carlo and Cellular Particle Dynamics Simulations of Multicellular Systems. Vol. 85. 2012. 031907.; Shin, C.S., et al., 3D cancer tumor models for evaluating chemotherapeutic efficacy, in Biomaterials for Cancer Therapeutics, K. Park, Editor. 2013, Woodhead Publishing. p. 445-460.; Hubert, C.G., et al., A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found In Vivo. Cancer Res, 2016. 76(8): p. 2465-77.; Fujii, M., et al., A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis. Cell Stem Cell, 2016. 18(6): p. 827-838.; Liverani, C., et al., A biomimetic 3D model of hypoxia-driven cancer progression. Scientific Reports, 2019. 9(1): p. 12263.; Tanner, K. and M.M. Gottesman, Beyond 3D culture models of cancer. Science Translational Medicine, 2015. 7(283): p. 283ps9-283ps9.; Roberts, S., S. Peyman, and V. Speirs, Current and Emerging 3D Models to Study Breast Cancer, in Breast Cancer Metastasis and Drug Resistance. 2019. p. 413-427.; Ringeisen, B.R., et al., Laser printing of pluripotent embryonal carcinoma cells. Tissue engineering, 2004. 10(3-4): p. 483-91.; Matsusaki, M., et al., Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing. Advanced Healthcare Materials, 2013. 2(4): p. 534-9.; Zhao, Y., et al., Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication, 2014. 6(3): p. 035001.; Yamada, K.M. and E. Cukierman, Modeling Tissue Morphogenesis and Cancer in 3D. Cell, 2007. 130(4): p. 601-610.; Nantasanti, S., et al., Disease modeling and gene therapy of copper storage disease in canine hepatic organoids. Stem cell reports, 2015. 5(5): p. 895-907.; Chaturvedi, R., et al., A Hybrid Discrete-Continuum Model for 3-D Skeletogenesis of the Vertebrate Limb, in International Conference on Cellular Automata. 2004. p. 543-552.; Hespel, A.M., R. Wilhite, and J. Hudson, Invited review-applications for 3D printers in veterinary medicine. Veterinary Radiology & Ultrasound, 2014. 55(4): p. 347-358.; Kamb, A., What's wrong with our cancer models? Nat Rev Drug Discov, 2005. 4(2): p. 161-5.; Guillotin, B., et al., Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 2010. 31(28): p. 7250-6.; Campbell, P.G., et al., Engineered spatial patterns of FGF-2 immobilized on fibrin direct cell organization. Biomaterials, 2005. 26(33): p. 6762-70.; Phillippi, J.A., et al., Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells, 2008. 26(1): p. 127-34.; Norotte, C., et al., Scaffold-free vascular tissue engineering using bioprinting. Biomaterials, 2009. 30(30): p. 5910-7.; Chrisey, D.B., Materials Processing: The Power of Direct Writing. Science, 2000. 289(5481): p. 879-81.; Kattamis, N.T., et al., Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Applied Physics Letters, 2007. 91(17): p. 171120.; Koch, L., et al., Laser printing of skin cells and human stem cells. Tissue engineering. Part C, Methods, 2010. 16(5): p. 847-54.; Gruene, M., et al., Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue engineering. Part C, Methods, 2011. 17(1): p. 79-87.; Duocastella, M., et al., Novel laser printing technique for miniaturized biosensors preparation. Sensors and Actuators B: Chemical, 2010. 145(1): p. 596-600. Bibliografía 223; Tekin, E., P.J. Smith, and U.S. Schubert, Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter, 2008. 4(4): p. 703-713.; Klebe, R.J., Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Experimental cell research, 1988. 179(2): p. 362-73.; Okamoto, T., T. Suzuki, and N. Yamamoto, Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nature biotechnology, 2000. 18(4): p. 438-41.; Xu, T., et al., High-throughput production of single-cell microparticles using an inkjet printing technology. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2008. 130(2): p. 0210171-0210175.; Cohen, D.L., et al., Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue engineering, 2006. 12(5): p. 1325-35.; Visser, J., et al., Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication, 2013. 5(3): p. 035007.; Khalil, S. and W. Sun, Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Materials Science & Engineering C, 2007. 27(3): p. 469-478.; Guvendiren, M., H.D. Lu, and J.A. Burdick, Shear-thinning hydrogels for biomedical applications. Soft Matter, 2012. 8(2): p. 260-272.; Hribar, K.C., et al., Light-assisted direct-write of 3D functional biomaterials. Lab on a Chip, 2014. 14(2): p. 268-275.; Morris, V.B., et al., Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography. Annals of Biomedical Engineering, 2017. 45(1): p. 286-296.; Abdel Fattah, A.R., et al., In Situ 3D Label-Free Contactless Bioprinting of Cells through Diamagnetophoresis. ACS Biomaterials Science & Engineering, 2016. 2(12): p. 2133-2138.; Tseng, H., et al., A three-dimensional co-culture model of the aortic valve using magnetic levitation. Acta Biomaterialia, 2014. 10(1): p. 173-182.; Hennink, W.E. and C.F. van Nostrum, Novel crosslinking methods to design hydrogels. Advanced drug delivery reviews, 2002. 54(1): p. 13-36.; Shin, S.R., et al., A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics. Advanced Materials, 2016. 28(17): p. 3280-3289.; Li, L., et al., In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Scientific reports, 2017. 7(1): p. 9416.; Hakimi, N., et al., Handheld skin printer: in situ formation of planar biomaterials and tissues. Lab on a chip, 2018. 18(10): p. 1440-1451.; Silva, C., et al., Rational Design of a Triple-Layered Coaxial Extruder System: in silico and in vitro Evaluations Directed Toward Optimizing Cell Viability. International journal of bioprinting, 2020. 6(4): p. 282-282.; Hufnagel, L., et al., On the mechanism of wing size determination in fly development. Proceedings of the National Academy of Sciences, 2007. 104(10): p. 3835-3840.; Vincent, J.-P., A.G. Fletcher, and L.A. Baena-Lopez, Mechanisms and mechanics of cell competition in epithelia. Nature Reviews Molecular Cell Biology, 2013. 14(9): p. 581-591.; Fletcher, A.G., F. Cooper, and R.E. Baker, Mechanocellular models of epithelial morphogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017. 372(1720): p. 20150519.; Kolesky, D.B., et al., 3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs. Advanced Materials, 2014. 26(19): p. 3124-3130.; Kolesky, D.B., et al., Three-dimensional bioprinting of thick vascularized tissues. Proceedings of the National Academy of Sciences, 2016. 113(12): p. 3179-3184.; Kang, H.-W., et al., A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature Biotechnology, 2016. 34(3): p. 312-319.; Neagu, A., et al., Role of physical mechanisms in biological self-organization. Physical review letters, 2005. 95(17): p. 178104.; Fleming, P.A., et al., Fusion of uniluminal vascular spheroids: a model for assembly of blood vessels. Developmental dynamics, 2010. 239(2): p. 398-406.; Carter, S.B., Haptotaxis and the Mechanism of Cell Motility. Nature, 1967. 213(5073): p. 256- 260.; Harris, A., Behavior of cultured cells on substrata of variable adhesiveness. Experimental cell research, 1973. 77(1): p. 285-97.; Galle, J., M. Loeffler, and D. Drasdo, Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. Biophysical journal, 2005. 88(1): p. 62-75.; Merks, R.M.H., et al., Contact-Inhibited Chemotaxis in De Novo and Sprouting Blood-Vessel Growth. PLOS Computational Biology, 2008. 4(9): p. e1000163.; Sengers, B.G., et al., Computational modelling of cell spreading and tissue regeneration in porous scaffolds. Biomaterials, 2007. 28(10): p. 1926-40.; Hynes, R.O., Integrins: bidirectional, allosteric signaling machines. Cell, 2002. 110(6): p. 673- 87.; Gumbiner, B.M., Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 1996. 84(3): p. 345-57.; Beysens, D.A., G. Forgacs, and J.A. Glazier, Cell sorting is analogous to phase ordering in fluids. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(17): p. 9467-9471.; Foty, R.A. and M.S. Steinberg, The differential adhesion hypothesis: a direct evaluation. Developmental Biology, 2005. 278(1): p. 255-263.; Steinberg, M.S., On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the organization of fused, heteronomic tissue fragments. Proceedings of the National Academy of Sciences of the United States of America, 1962. 48(10): p. 1769-76.; Gierer, A., et al., Regeneration of hydra from reaggregated cells. Nature: New biology, 1972. 239(91): p. 98-101.; Yamanaka, H., Y. Tanaka-Ohmura, and M. Dan-Sohkawa, What do dissociated embryonic cells of the starfish, Asterina pectinifera, do to reconstruct bipinnaria larvae? Journal of embryology and experimental morphology, 1986. 94: p. 61-71.; Kipper, M.J., H.K. Kleinman, and F.W. Wang, New method for modeling connective-tissue cell migration: improved accuracy on motility parameters. Biophysical journal, 2007. 93(5): p. 1797- 808.; Steinberg, M.S., Adhesion-guided multicellular assembly: a commentary upon the postulates, real and imagined, of the differential adhesion hypothesis, with special attention to computer simulations of cell sorting. Journal of Theoretical Biology, 1975. 55(2): p. 431 - 443.; Foty, R.A., et al., Liquid properties of embryonic tissues: Measurement of interfacial tensions. Physical review letters, 1994. 72(14): p. 2298-2301.; Foty, R.A., et al., Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development, 1996. 122(5): p. 1611-20. Bibliografía 225; Marmottant, P., et al., The role of fluctuations and stress on the effective viscosity of cell aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(41): p. 17271-17275.; Pajic-Lijakovic, I. and M. Milivojevic, Long-time viscoelasticity of multicellular surfaces caused by collective cell migration – Multi-scale modeling considerations. Seminars in Cell & Developmental Biology, 2019. 93: p. 87-96.; Griffith, L.G. and G. Naughton, Tissue Engineering-Current Challenges and Expanding Opportunities. Science, 2002. 295(5557): p. 1009-1014.; Norotte, C., et al., Experimental evaluation of apparent tissue surface tension based on the exact solution of the Laplace equation. Europhysics Letters, 2008. 81(46003).; Mgharbel, A., H. Delanoe-Ayari, and J.P. Rieu, Measuring accurately liquid and tissue surface tension with a compression plate tensiometer. HFSP journal, 2009. 3(3): p. 213-21.; Korff, T. and H.G. Augustin, Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. Journal of cell science, 1999. 112 ( Pt 19): p. 3249-58.; Friedl, P. and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer. Nature reviews. Molecular cell biology 2009. 10(7): p. 445-57.; Lo, C.M., et al., Cell movement is guided by the rigidity of the substrate. Biophysical journal, 2000. 79(1): p. 144-152.; Mayor, R. and C. Carmona-Fontaine, Keeping in touch with contact inhibition of locomotion. Trends in cell biology, 2010. 20(6): p. 319-28.; Goel, N.S. and G. Rogers, Computer simulation of engulfment and other movements of embryonic tissues. Journal of Theoretical Biology, 1978. 71(1): p. 103-140.; Glazier, J.A., S.P. Gross, and J. Stavans, Dynamics of two-dimensional soap froths. Physical Review A, 1987. 36(1): p. 306-312.; Stavans, J. and J.A. Glazier, Soap froth revisited: Dynamic scaling in the two-dimensional froth. Physical review letters, 1989. 62(11): p. 1318-1321.; Turing, A.M., The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1952. 237(641): p. 37-72.; Wittwer, L.C., Roberto; Aland, Sebastian; Iber, Dagmar, Simulating Organogenesis in COMSOL: Phase-Field Based Simulations of Embryonic Lung Branching Morphogenesis. 2016.; Wittwer, L.D., Phase-Field Based Simulations of Embryonic Branching Morphogenesis. 2017, ETH Zurich.; Metzger, R.J., et al., The branching programme of mouse lung development. Nature, 2008. 453(7196): p. 745-50.; Walker, D.C. and J. Southgate, The virtual cell--a candidate co-ordinator for 'middle-out' modelling of biological systems. Briefings in bioinformatics, 2009. 10(4): p. 450-61.; Andasari, V., et al., Integrating Intracellular Dynamics Using CompuCell3D and Bionetsolver: Applications to Multiscale Modelling of Cancer Cell Growth and Invasion. PLOS ONE, 2012. 7(3): p. e33726.; Ingber, D.E. and M. Levin, What lies at the interface of regenerative medicine and developmental biology? Development, 2007. 134(14): p. 2541-2547.; Andreea Robu, L.S.-T., SIMMMC – An Informatic Application for Mmodelling and Simulating the Evolution of Multicellular Systems in the Vicinity of Biomaterials. Romaninan Journal of Biophysics, 2016. 26(3).; Amar, J.G., The Monte Carlo Method in Science and Engineering. Computing in Science and Engineering, 2006. 8: p. 9-19.; Fichthorn, K.A. and W.H. Weinberg, Theoretical foundations of dynamical Monte Carlo simulations. The Journal of Chemical Physics, 1991. 95(2): p. 1090-1096.; Vineyard, G.H., Frequency factors and isotope effects in solid state rate processes. Journal of Physics and Chemistry of Solids, 1957. 3(1): p. 121-127.; Sun, Y. and Q. Wang, Modeling and simulations of multicellular aggregate self-assembly in biofabrication using kinetic Monte Carlo methods. Soft Matter, 2013. 9(7): p. 2172-2186.; Bortz, A.B., M.H. Kalos, and J.L. Lebowitz, A new algorithm for Monte Carlo simulation of Ising spin systems. Journal of Computational Physics, 1975. 17(1): p. 10-18.; NEAGU, A., et al., COMPUTATIONAL MODELING OF TISSUE SELF-ASSEMBLY. Modern Physics Letters B, 2006. 20(20): p. 1217-1231.; Schienbein, M., K. Franke, and H. Gruler, Random walk and directed movement: Comparison between inert particles and self-organized molecular machines. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1994. 49(6): p. 5462-5471.; Mombach, J.C. and J.A. Glazier, Single cell motion in aggregates of embryonic cells. Physical review letters, 1996. 76(16): p. 3032-3035.; Graner, F. and J.A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model. Physical review letters, 1992. 69(13): p. 2013-2016.; Glazier, J.A., A. Balter, and N.J. Poplawski, Magnetization to Morphogenesis: A Brief History of the Glazier-Graner Hogeweg Model, in Singl-Cell-Based Models in Biology and Medicine, M.A.J.C. A.R.A. Anderson, K.A. Rejniak, Editor. 2007, Mathematics and Biosciences in Interaction: Birkhäuser Verlag Basel / Switzerland. p. 79-106.; Cickovski, T., et al., A Framework for Three-Dimensional Simulation of Morphogenesis. IEEE/ACM transactions on computational biology and bioinformatics, 2005. 2: p. 273-88.; Merks, R.M.H. and P. Koolwijk, Modeling Morphogenesis in silico and in vitro: Towards Quantitative, Predictive, Cell-based Modeling. Mathematical Modelling of Natural Phenomena, 2009. 4(4): p. 149-171; Hester, S.D., et al., A multi-cell, multi-scale model of vertebrate segmentation and somite formation. PLoS computational biology, 2011. 7(10): p. e1002155.; Rowlinson, J.S., Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density”. Journal of Statistical Physics, 1979. 20(2): p. 197-200.; Yang, X., V. Mironov, and Q. Wang, Modeling fusion of cellular aggregates in biofabrication using phase field theories. Journal of theoretical biology, 2012. 303: p. 110-8.; Yang, X., Y. Sun, and Q. Wang, A phase field approach for multicellular aggregate fusion in biofabrication. Journal of biomechanical engineering, 2013. 135(7): p. 71005.; Flory, P.J., Principles of Polymer Chemistry. 1953, Ithaca, N.Y.: Cornell University Press.; Qin, R.S. and H.K. Bhadeshia, Phase field method. Materials Science and Technology, 2010. 26(7): p. 803-811.; Aland, S., Modelling of two-phase flow with surface active particles, in Der Fakultät Mathematik und Naturwissenschaften. 2012, Technischen Universität Dresden. p. 127.; Chen, L.-Q., Phase-Field Models for Microstructure Evolution. Annual Review of Materials Research, 2002. 32(1): p. 113-140.; Folch, R., et al., Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1999. 60(2 Pt B): p. 1724-33.; Cahn, J.W. and J.E. Hilliard, Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics, 1958. 28(2): p. 258-267. Bibliografía 227; Cahn, J.W. and J.E. Hilliard, Free Energy of a Nonuniform System. III. Nucleation in a Two‐ Component Incompressible Fluid. The Journal of Chemical Physics, 1959. 31(3): p. 688-699.; Lervåg, K.Y. and J. Lowengrub, Analysis of the diffuse-domain method for solving PDEs in complex geometries. Communications in mathematical sciences, 2015. 13: p. 1473.; Ibrahimi, O.A., et al., Analysis of mutations in fibroblast growth factor (FGF) and a pathogenic mutation in FGF receptor (FGFR) provides direct evidence for the symmetric two-end model for FGFR dimerization. Molecular and cellular biology, 2005. 25(2): p. 671-84.; Francavilla, C., et al., Functional Proteomics Defines the Molecular Switch Underlying FGF Receptor Trafficking and Cellular Outputs. Molecular Cell, 2013. 51(6): p. 707-722.; Donea, J., et al., Arbitrary Lagrangian–Eulerian Methods, in Encyclopedia of Computational Mechanics. 2004.; Iber, D., et al., Simulating tissue morphogenesis and signaling. Methods in molecular biology, 2015. 1189: p. 323-38.; Kockelkoren, J., H. Levine, and W.-J. Rappel, Computational approach for modeling intra- and extracellular dynamics. Physical Review E, 2003. 68(3): p. 037702.; Kurics, T., D. Menshykau, and D. Iber, Feedback, receptor clustering, and receptor restriction to single cells yield large Turing spaces for ligand-receptor-based Turing models. Physical Review E, 2014. 90(2): p. 022716.; Palsson, E. and H.G. Othmer, A model for individual and collective cell movement in Dictyostelium-discoideum. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(19): p. 10448-10453.; Dallon, J.C. and H.G. Othmer, How cellular movement determines the collective force generated by the Dictyostelium discoideum slug. Journal of theoretical biology, 2004. 231(2): p. 203-22.; Walker, D.C., et al., The epitheliome: agent-based modelling of the social behaviour of cells. Biosystems, 2004. 76(1-3): p. 89-100.; Drasdo, D. and S. Hoehme, A single-cell-based model of tumor growth in vitro: Monolayers and spheroids. Physical biology, 2005. 2: p. 133-47.; Chu, Y.S., et al., Johnson-Kendall-Roberts theory applied to living cells. Physical review letters, 2005. 94(2): p. 028102.; Hoehme, S. and D. Drasdo, A cell-based simulation software for multi-cellular systems. Bioinformatics, 2010. 26(20): p. 2641-2.; Hoehme, S., et al., Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(23): p. 10371-6.; Hoffmann, M., et al., Spatial Organization of Mesenchymal Stem Cells In Vitro—Results from a New Individual Cell-Based Model with Podia. PLOS ONE, 2011. 6(7): p. e21960.; Newman, T.J., Modeling Multicellular Systems Using Subcellular Elements. Mathematical Biosciences & Engineering, 2005. 2(3): p. 613-624.; Zaman, M.H., et al., Computational model for cell migration in three-dimensional matrices. Biophysical journal, 2005. 89(2): p. 1389-97.; Flenner, E., et al., Relating biophysical properties across scales, in Current Topics in Developmental Biology. 2008. p. 461-83.; Sandersius, S.A. and T.J. Newman, Modeling cell rheology with the Subcellular Element Model. Physical biology, 2008. 5(1): p. 015002.; Kosztin, I., G. Vunjak-Novakovic, and G. Forgacs, Colloquium: Modeling the dynamics of multicellular systems: Application to tissue engineering. Reviews of Modern Physics, 2012. 84(4): p. 1791-1805.; 259. Chaikin, P.M., Principles of Condensed Matter Physics. 2000: Cambridge University Press.; Alberts, B., et al., Molecular Biology of the Cell. 2002, New York: Garland Science.; Pathmanathan, P., et al., A computational study of discrete mechanical tissue models. Physical Biology, 2009. 6(3): p. 036001.; Phillips, J.C., et al., Scalable molecular dynamics with NAMD. Journal of computational chemistry, 2005. 26(16): p. 1781-802.; Shafiee, A., et al., Post-deposition bioink self-assembly: a quantitative study. Biofabrication, 2015. 7(4): p. 045005.; Cristea, A. and A. Neagu, Shape changes of bioprinted tissue constructs simulated by the Lattice Boltzmann method. Computers in biology and medicine, 2016. 70: p. 80-87.; Silva, H.S. and M.L. Martins, A cellular automata model for cell differentiation. Physica A: Statistical Mechanics and its Applications, 2003. 322: p. 555-566.; Garijo, N., et al., Stochastic cellular automata model of cell migration, proliferation and differentiation: Validation with in vitro cultures of muscle satellite cells. Journal of Theoretical Biology, 2012. 314: p. 1-9.; Van Scoy, G.K., et al., A cellular automata model of bone formation. Mathematical Biosciences, 2017. 286: p. 58-64.; Ben Youssef, B., Simulating Cell-Cell Interactions Using a Multicellular Three-Dimensional Computational Model of Tissue Growth. 2018. p. 215-228.; Sipahi, R. and G.K.H. Zupanc, Stochastic cellular automata model of neurosphere growth: Roles of proliferative potential, contact inhibition, cell death, and phagocytosis. Journal of Theoretical Biology, 2018. 445: p. 151-165.; Zupanc, G.K.H., F.B. Zupanc, and R. Sipahi, Stochastic cellular automata model of tumorous neurosphere growth: Roles of developmental maturity and cell death. Journal of Theoretical Biology, 2019. 467: p. 100-110.; Beros, A., M. Chyba, and K. Noe, Co-evolving cellular automata for morphogenesis. Discrete & Continuous Dynamical Systems - B, 2019. 24(5): p. 2053-2071.; Brodland, G.W. and J.H. Veldhuis, Assessing the mechanical energy costs of various tissue reshaping mechanisms. Biomech Model Mechanobiol, 2012. 11(8): p. 1137-47.; Steinberg, M.S., Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science, 1963. 141(3579): p. 401-8.; Brodland, G.W. and H.H. Chen, The mechanics of heterotypic cell aggregates: insights from computer simulations. J Biomech Eng, 2000. 122(4): p. 402-7.; Hwang, M., et al., Rule-Based Simulation of Multi-Cellular Biological Systems-A Review of Modeling Techniques. Cellular and molecular bioengineering, 2009. 2(3): p. 285-294.; Rezende, R.A., et al., Organ Printing as an Information Technology. Procedia Engineering, 2015. 110: p. 151-158.; Cohen, D.L., et al., Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng, 2006. 12(5): p. 1325-35.; Chang, R., J. Nam, and W. Sun, Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng Part C Methods, 2008. 14(2): p. 157-66.; Hopp, B., et al., Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng, 2005. 11(11-12): p. 1817-23. Bibliografía 229; Mironov, V., V. Kasyanov, and R.R. Markwald, Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol, 2011. 22(5): p. 667-73.; Xu, F., et al., A three-dimensional in vitro ovarian cancer coculture model using a highthroughput cell patterning platform. Biotechnol J, 2011. 6(2): p. 204-212.; Jiang, T., et al., Directing the Self-assembly of Tumour Spheroids by Bioprinting Cellular Heterogeneous Models within Alginate/Gelatin Hydrogels. Scientific Reports, 2017. 7(1): p. 4575.; Lind, J.U., et al., Instrumented cardiac microphysiological devices via multimaterial threedimensional printing. 2017. 16(3): p. 303-308.; Koti, P., et al., Use of GelMA for 3D printing of cardiac myocytes and fibroblasts. Journal of 3D printing in medicine, 2019. 3(1): p. 11-22.; Klebe, R.J., Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res, 1988. 179(2): p. 362-73.; Nakamura, M., et al., Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng, 2005. 11(11-12): p. 1658-66.; Cui, X., et al., Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul, 2012. 6(2): p. 149-55.; Okamoto, T., T. Suzuki, and N. Yamamoto, Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol, 2000. 18(4): p. 438-41.; Matsusaki, M., et al., Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing. Adv Healthc Mater, 2013. 2(4): p. 534-9.; Lee, V., et al., Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods, 2014. 20(6): p. 473-84.; Ringeisen, B.R., et al., Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng, 2004. 10(3-4): p. 483-91.; Gruene, M., et al., Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods, 2011. 17(1): p. 79-87.; Guillemot, F., et al., High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomaterialia, 2010. 6(7): p. 2494-2500.; Ali, M., et al., Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication, 2014. 6(4): p. 045001.; Stavans, J. and J.A. Glazier, Soap froth revisited: Dynamic scaling in the two-dimensional froth. Phys Rev Lett, 1989. 62(11): p. 1318-1321.; Glazier, J.A. and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1993. 47(3): p. 2128-2154.; Amar, J.G., The Monte Carlo Method in Science and Engineering. Computing in Science and Engg., 2006. 8(2): p. 9–19.; Steinberg, M.S., On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the organization of fused, heteronomic tissue fragments. Proc Natl Acad Sci U S A, 1962. 48(10): p. 1769-76.; Steinberg, M.S., Differential adhesion in morphogenesis: a modern view. Curr Opin Genet Dev, 2007. 17(4): p. 281-6.; Domansky, K., et al., Perfused multiwell plate for 3D liver tissue engineering. Lab Chip, 2010. 10(1): p. 51-8. 230 Título de la tesis o trabajo de investigación; Cickovski, T.M., et al., A framework for three-dimensional simulation of morphogenesis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2005. 2(4): p. 273-288.; Merks, R.M.H. and P. Koolwijk, Modeling Morphogenesis in silico and in vitro: Towards Quantitative, Predictive, Cell-based Modeling. Math. Model. Nat. Phenom., 2009. 4(4): p. 149- 171.; R. Chaturvedi, C.H., J. A. Izaguirre, S. A. Newman, J. A. Glazier, M. Alber, A Hybrid Discrete- Continuum Model for 3-D Skeletogenesis of the Vertebrate Limb. International Conference on Cellular Automata, 2004: p. 543-552.; Nicholas J.Savill, P., Modelling Morphogenesis: From Single Cells to Crawling Slugs. Journal of Theoretical Biology, 1997. 184(3): p. 229 - 235.; Galle, J., et al., Individual cell-based models of tumor-environment interactions: Multiple effects of CD97 on tumor invasion. Am J Pathol, 2006. 169(5): p. 1802-11.; Jakab, K., et al., Relating cell and tissue mechanics: implications and applications. Dev Dyn, 2008. 237(9): p. 2438-49.; Jakab, K., et al., Organ printing: fiction or science. Biorheology, 2004. 41(3-4): p. 371-5.; Yang, X., V. Mironov, and Q. Wang, Modeling fusion of cellular aggregates in biofabrication using phase field theories. J Theor Biol, 2012. 303: p. 110-8.; Voter, A.F. INTRODUCTION TO THE KINETIC MONTE CARLO METHOD. 2007. Dordrecht: Springer Netherlands.; Glazier James A, A.B.a.N.J.P., Magnetization to Morphogenesis: A Brief History of the Glazier- Graner Hogeweg Model, in Singl-Cell-Based Models in Biology and Medicine, M.A.J.C. A.R.A. Anderson, K.A. Rejniak, Editor. 2007, Mathematics and Biosciences in Interaction: Birkhäuser Verlag Basel / Switzerland. p. 79-106.; Steinberg, M.S., Adhesion in development: an historical overview. Dev Biol, 1996. 180(2): p. 377-88.; Chatterjee, A. and D.G. Vlachos, An overview of spatial microscopic and accelerated kinetic Monte Carlo methods. Journal of Computer-Aided Materials Design, 2007. 14(2): p. 253-308.; Folch, R., et al., Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1999. 60(2 Pt B): p. 1724-33.; Yang, X., Y. Sun, and Q. Wang, A phase field approach for multicellular aggregate fusion in biofabrication. J Biomech Eng, 2013. 135(7): p. 71005.; Cristea, A. and A. Neagu, Shape changes of bioprinted tissue constructs simulated by the Lattice Boltzmann method. Comput Biol Med, 2016. 70: p. 80-87.; Norris, J.R., Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. 1997, Cambridge: Cambridge University Press.; Feller, W., An Introduction to Probability Theory and Its Applications. Vol. 1. 1966.; Blue, J.L., I. Beichl, and F. Sullivan, Faster Monte Carlo simulations. Physical Review E, 1995. 51(2): p. R867-R868.; Rahman, T., et al., Atomistic studies of thin film growth. Optical Science and Technology, the SPIE 49th Annual Meeting. Vol. 5509. 2004: SPIE.; Trushin, O., et al., Self-learning kinetic Monte Carlo method: Application to Cu(111). Physical Review B, 2005. 72(11): p. 115401.; Foty, R.A., et al., Liquid properties of embryonic tissues: Measurement of interfacial tensions. Phys Rev Lett, 1994. 72(14): p. 2298-2301.; Freutel, M., et al., Finite element modeling of soft tissues: Material models, tissue interaction and challenges. Clinical Biomechanics, 2014. 29(4): p. 363-372. Bibliografía 231; Marmottant, P., et al., The role of fluctuations and stress on the effective viscosity of cell aggregates. Proceedings of the National Academy of Sciences, 2009. 106(41): p. 17271-17275.; Schienbein, M., K. Franke, and H. Gruler, Random walk and directed movement: Comparison between inert particles and self-organized molecular machines. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1994. 49(6): p. 5462-5471.; Kipper, M.J., H.K. Kleinman, and F.W. Wang, New method for modeling connective-tissue cell migration: improved accuracy on motility parameters. Biophys J, 2007. 93(5): p. 1797-808.; Mombach, J.C. and J.A. Glazier, Single cell motion in aggregates of embryonic cells. Phys Rev Lett, 1996. 76(16): p. 3032-3035.; Flenner, E., et al., Relating biophysical properties across scales. Curr Top Dev Biol, 2008. 81: p. 461-83.; Thomas, W.A. and J. Yancey, Can retinal adhesion mechanisms determine cell-sorting patterns: a test of the differential adhesion hypothesis. Development, 1988. 103(1): p. 37-48.; Frenkel, J., Viscous flow of crystalline bodies under the action of surface tension. The Journal of Physics, USSR, 1945. 9: p. 385-391.; J, D., Eshelby, Trans. AIME, 1949(185).; Ma, X., et al., 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev, 2018. 132: p. 235-251.; An, J., C.K. Chua, and V. Mironov, A Perspective on 4D Bioprinting. International Journal of Bioprinting; Vol 2, No 1 (2016), 2016.; Nogueira JA., L.a., Marques TS., Oliveira DS., Mironov V., da Silva and R.R. JV., Simulation of a 3D Bioprinted Human Vascular Segment, in 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering, J.K.H.a.R.G. Krist V. Gernaey, Editor. 2015, Elsevier B.V.: Copenhagen, Denmark. p. 684-688; Iber, D., et al., Simulating tissue morphogenesis and signaling. Methods Mol Biol, 2015. 1189: p. 323-38.; Douglas Brown, R.H., and Wolfgang Christian, Tracker Video Analysis and Modeling Tool. October, 2020.; Inc., T.M., Matlab. 2017.; Han, Y., et al., Cultivation of recombinant Chinese hamster ovary cells grown as suspended aggregates in stirred vessels. J Biosci Bioeng, 2006. 102(5): p. 430-5.; Pan, X., et al., Metabolic characterization of a CHO cell size increase phase in fed-batch cultures. Applied microbiology and biotechnology, 2017. 101(22): p. 8101-8113.; https://repositorio.unal.edu.co/handle/unal/82216; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
8
Authors:
Contributors:
Subject Terms: Systems engineer, Technological innovations, Email, Mobile agents, System architecture, Storage systems, Information retrieval, Information storage and retrieval systems, Mobile agents (Computer software), Ingeniería de sistemas, Innovaciones tecnológicas, Recuperación de información, Sistemas de almacenamiento y recuperación de información, Agentes móviles (Software para computadores), Correo electrónico, Agentes móviles, Arquitectura del sistema, Sistemas de almacenamiento
Subject Geographic: Bucaramanga (Santander, Colombia), UNAB Campus Bucaramanga
File Description: application/pdf
Relation: [1] RUSSEL, S.; NORVIG, P. Inteligencia Artificial: Un enfoque moderno. Prentice Hall Hispanoamericana, S.A., México 1996.; [2] MAES, P. Artificial Life meets entertaiment: life like autonomous agent. Comuncations of the ACM 38 (11), 1995.; [3] HAYES-ROTH, B. An architecture for Adaptative Intelligent Systems. Artificial Intelligence: Special Issue on Agents and Interactivity, 72, 329-365. 1995; [4] JENNINGS, N. R.; WOOLDRIGE, M. Intelligent Agents : Theory and Practice. Knowledge Engineering Review, October 1994. Revised January 1995.; [5] GILBER, A; et al. The Role of Intelligent Agents in the Information Infraestructure. IBM, United States 1995; [6] What's An Agent, Anyway? A Sociological Case Study. Agents Memo 93-01, MIT Media Lab, Cambridge, MA. 1993; [7] S. Franklin and A. Graesser, Is it an Agent, or just a program?: A taxonomy for autonomous agents. http://www.msci.members.edu/~franklin/index.html. Febrero de 2001; [8] CASTELFRANCHI, C. Guarantees for autonomy in cognitive agent architecture. Intelligent Agents: Theories, Architectures, and Languages (LNAI Volume 890) pp56-70. Springer-Verlag: Heidelberg, Germany. 1995; [9] GENESERETH, M.¡ KETCHPEL, S. Software Agents. Comunications of the ACM 37 (7), 48-53, 1994; [10] SHOHAM, Y. Agent-oriented programming. Artificial Intelligence, 60(1):51-92, 1993; [11] BATES, J. The role of emotion in believable agents. Communications of the ACM, 37(7): 122-125. 1994; [12] LITTMAN, L. M. An optimization-based categorization or reinforcement learning environments. Proceeding of the Second International Conference on Simulation of Adaptative Behavior: From Animal to Animats, 1994; [13] LANGTON, C. Artificial Life. Addison-Wesley, Redwood City, CA 1989; [14] SANZ SACRISTÁN, M. A, B, C, de Internet. Boletín de la red nacional de l+D, Redlris. N° 28, Julio 1994; [15] BROOKS, R. A. A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and Automation 2(1), 14-23; [16] ETZIONI, O.; WELD, D. A Softbot-Based Interface to the Internet. Communications of the ACM 37 (7), 77-76. 1994; [17] MAES, P. Designing Autonomous Agents. Ed. P. Maes The MIT Press, Cambridge, MA. 1991; [18] WAYNER, P. Agents Unleashed: A Public Domain Look at Agent Technology Boston, MA: AP Profesional, 1995; [19] D’Agents: Mobile Agents at Darthmouth College. http://agent.cs.dartmouth.edu/, Enero. 2001.; [20] The Ara platform for Mobile Agents. http://wwwagss.informatik.unikl. de/Projekte/Ara/index e.html. Enero. 2001.; [21] IBM Aglets Home Page. http://www.trl.ibm.co.ip/aglets/. Enero 2001; [22] The Home of the Mole, http://mole.informatik.uni-: '. Enero. 2001.; [23] The Internet Softbot. http://www.cs.washington.edu/research/projects/softbots/www/internet-softbot.html. Junio. 2001.; [24] BALABANOVIC, M.; SHOHAM, Y. Fab: content-based, collaborative recommendation. Communications of the ACM, 40,3 (Marzo), 66-72. 1997; [25] A,B,C de Internet. SAENZ, M. A. http://www.ub.es/div3/enfogue1.htm. Junio 2001; http://hdl.handle.net/20.500.12749/27003; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Availability: https://hdl.handle.net/20.500.12749/27003
-
9
Authors: et al.
Subject Terms: Complejidad, Evolución, Vida, Origen, Biología evolutiva, Evaluación ecológica, Complexity, Evolution, Lifetime, Source, Evolutionary Biology, Ecological Evaluation, Vida -- Origen, Biología – Investigaciones
File Description: application/pdf
Relation: Andrade, E. (2006). Más allá de la dualidad “genotipo-fenotipo”. Complejidad y autorreferencia. Ludus Vitalis, 14(25), 3-23.; Andrade, E. (2009b). Darwin o el falso conflicto entre la teoría de la selección natural y la hipótesis de la pangénesis. Acta Biológica Colombiana, 14(S), 63-76.; Bowler, P. (1983). The eclipse of Darwinism: Anti-Darwinian evolution theories in the decades around 1900. Baltimore: The Johns Hopkins University Press.; Buss, L. W. (1988). The Evolution of Individuality. Princeton, Nueva Jersey: Princeton University Press.; Charlton, W. (1970). Aristotle’s Physics Books I-II, translated with Introduction and Notes. Oxford: Clarendon Press.; Darwin, C. (1868). The Variation of Animals and Plants Under Domestication. Vol. 2. London: John Murray.; Darwin, C. (1872). The Origin of Species (6a. ed.). London: John Murray.; Darwin, C. (1876). Charles Darwin to Moritz Wagner. Down, October 13, 1876. En: F. Darwin (Ed.). The Life and Letters of Charles Darwin. Vol. 2. Moscow: Dodo Press.; Deichmann, U. (2016a). Epigenetics: The origins and evolution of a fashionable topic. Developmental Biology, 416(1), 249-254. https://doi.org/10.1016/j.ydbio.2016.06.005; Ficz, G., Branco, M. R., Seisenberger, S., Santos, F. et al. (2011). Dynamic regulation of 5-hydroxymethylcytosine in mouse es cells and during differentiation. Nature, 473(7347), 398- 402.; Galton, F. (1871). Experiments in Pangenesis, by breeding from rabbits of a pure variety, into whose circulation blood taken from other varieties had previously been largely transfused. Proceedings of the Royal Society of London, 19, 393-410.; Gissis, S. y Jablonka, E. (2011). Glossary & Index. En: S. Gissis y E. Jablonka (Eds.). Transformation of Lamarckism (pp. 424-457). Cambridge: The mit.; Holliday, R. (1994). Epigenetics: An Overview. Developmental Genetics, 15, 453-457.; Jablonka, E. y Lamb, M. J. (1995). Epigenetic Inheritance and Evolution: The Lamarckian Dimension. New York Tokyo: Oxford University Press.; Jablonka, E. y Lamb, M. J. (2002). The Changing Concept of Epigenetics. Annals of the New York Academy of Sciences, 981, 82-96.; Lamarck, J. B. (1963). Zoological Philosophy: An Exposition with Regard to the Natural History of Animals. New York and London: Hafner Publishing Company.; Leith, B. (1986). El legado de Darwin. Barcelona: Salvat Editores.; Lysenko, T. D. (1949). Informe del Académico T. D. Lisenko acerca de la situación en las ciencias biológicas. En: La situación en las ciencias biológicas: Actas taquigráficas de la Sesión de la Academia Lenin de Ciencias Agrícolas de la U.R.S.S 31 de julio-7 de ag (p. 15). Moscu: Ediciones en Lenguas Extranjeras.; Morange, M. (2009). What history tells us xvii. Conrad Waddington and The nature of life. Journal of Biosciences, 34(2), 195-198.; Müller-Wille, S. y Rheinberger, H. J. (2012). A Cultural History of Heredity. Chicago and London: The University of Chicago Press.; Newman, S. y Müller, G. (2000). Epigenetic Mechanisms of Character Origination. Journal of Experimental Zoology (Mol Dev Evol), 288, 304-317.; Nicoglou, A. y Merlin, F. (2017). Epigenetics: A way to bridge the gap between biological fields. Studies in History and Philosophy of Biol & Biomed Sci, 66, 73-82.; Roth, S. (2011). Mathematics and biology: a Kantian view on the history of pattern formation theory. Development Genes and Evolution, 221, 255-279. https://doi.org/doi 10.1007/ s00427-011-0378-0; Simpson, G. G. (1953). The Baldwin effect. Evolution, 7(110- 117).; Turner, B. M. (2002). Cellular memory and the histone code. Cell, 111(3), 285-291.; Vallejo, F. (2002). La tautología darwinista y otros ensayos de biología. Madrid: Taurus.; Waddington, C. H. (1941). Canalization of development and the inheritance of acquired characters. Nature, 150, 563-565.; Waddington, C. H. (1953). Genetic Assimilation of an Acquired Character. Evolution, 7(2), 118-126. Recuperado de http:// www.chd.ucsd.edu/_files/winter2009/waddington-assimi- lation.pdf; Weismann, A. (1893). The Germ-Plams: A Theory of Heredity. London: Walter Scott, ltd.; Crowgey, E. L., Marsh, A. G., Robinson, K. G., Yeager, S. K., & Akins, R. E. (2018). Epigenetic machine learning: utilizing dna methylation patterns to predict spastic cerebral palsy. bmc Bioinformatics, 19:225. 10.1186/s12859-018-2224-0; Dincer, Y. (Ed.). (2016). Epigenetics. Mechanisms and clinical perspectives. Nova Scientific Publishers.; McNew, S. M., Beck, D., Sadler-Riggleman, I., Knutie, S. A., Koop, J. A. H., Clayton, D. H., & Skinner, M. K. (2017). Epigenetic variation between urban and rural populations of Darwin’s finches. bmc Evolutionary Biology, 17:183. 10.1186/s12862-017-1025-9; Párrizas, M., Gasa, R., & Kaliman, P. (Eds.). (2012). Epigenetics of lifestyle. Bentham Books.; Pintér, B., & Mészáros, Z. (Eds.). (2010). Epigenetics. Mechanisms, functions and human effects. Nova Science Publishers.; Stover, P. J., James, W. P. T., Krook, A., & Garza, C. (2018). Emerging concepts on the role of epigenetics in the relationships between nutrition and health. Journal of Internal Medicine, 284(1), 37-49. 10.1111/joim.12768; Xie, N., Zhou, Y., Sun, Q., & Tang, B. (2018). Novel epigenetic techniques provided by the crispr/Cas9 System. Stem Cells International. 10.1155/2018/7834175; Baedke, J. (2013). The epigenetic landscape in the course of time: Conrad Hal Waddington’s methodological impact on the life sciences. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 44(4), 756-773. 10.1016/j.shp- sc.2013.06.001; Baedke, J. (2018). Above the gene, beyond biology: Toward a philosophy of epigenetics. University of Pittsburgh Press.; Deichmann, U. (2016). Epigenetics: The origins and evolution of a fashionable topic. Developmental Biology, 416(1), 249- 254. 10.1016/j.ydbio.2016.06.005; Felsenfeld, G. (2014a). A brief history of epigenetics. Cold Spring Harbor Perspectives in Biology, 6(1), a018200. 10.1101/ cshperspect.a018200; Gilbert, S. F. (1991). Epigenetic landscaping: Waddington’s use of cell fate bifurcation diagrams. Biology and Philosophy, 6(2), 135-154.; Hall, B. K. (1999). Evolutionary developmental biology. 2nd ed.: Kluwer Academic.; Haig, D. (2004, January). The (dual) origin of epigenetics. In Cold Spring Harbor Symposia on Quantitative Biology (vol. 69, pp. 67-70). Cold Spring Harbor Laboratory Press.; Haig, D. (2011). Commentary: The epidemiology of epigenetics. International Journal of Epidemiology, 41(1), 13-16.; Maderspacher, F. (2010). Lysenko rising. Current Biology, 20(19), R835-R837. 10.1016/j.cub.2010.09.009; Making a mark (2010). Nature Biotechnology, 28, 1031. 10.1038/ nbt1010-1031; Nanney, D. L. (1958). Epigenetic control systems. Proceedings of the National Academy of Sciences of the United States of America, 44(7), 712.; Waddington, C. H. (1939). An introduction to modern genetics. George Allen and Unwin.; Waddington, C. H. (1942). The epigenotype. Endeavour, 1, 18-20.; Bird, A. (2007). Perceptions of epigenetics. Nature, 447(7143), 396.; Bonduriansky, R. (2012). Rethinking heredity, again. Trends in Ecology & Evolution, 27(6), 330-336.; Bowler, P. (2003). Evolution: The History of an Idea. California: University of California Press.; Brenner, S., Miller, J. y Broughton, W. (2002). Encyclopedia of Genetics.; Caponi, G. (2001). Biología funcional vs. biología evolutiva. Episteme, 12, 23-46.; Dawkins, R. (1989). The selfish gene. Oxford, Nueva York: Oxford University Press.; Dawkins, R. (2008). River out of Eden: A Darwinian View of life. Nueva York: Basic Books.; Dickins, T. y Rahman, Q. (2012). The extended evolutionary synthesis and the role of soft inheritance in evolution. Proceedings of the Royal Society B: Biological Sciences, 279(1740), 2913-2921.; Eldredge, N., Pievani, T., Serrelli, E. y Tëmkin, I. (Eds.). (2016). Evolutionary theory: a hierarchical perspective. Chicago: University of Chicago Press.; Falk, R. (2014). The allusion of the gene: misunderstandings of the concepts heredity and gene. Science & Education, 23(2), 273-284.; Fink, G. (2005). A transforming principle. Cell, 120(2), 153-154.; Futuyma, D. (2013). Evolution. Sunderland: Sinauer.; Gerstein, M., Bruce, C., Rozowsky, J., Zheng, D., Du, J. et al. (2007). What is a gene, post-Encode? History and updated definition. Genome Research, 17(6), 669-681.; Grafen, A. (2014). The formal darwinism project in outline. Bio- logy & Philosophy, 29(2), 155-174.; Gregory, T. (Ed.). (2011). The evolution of the genome. Ontario: Elsevier.; Hughes, V. (2014). Epigenetics: the sins of the father. Nature News, 507(7490), 22.; Hunter, P. (2007). The silence of genes: Is genomic imprinting the software of evolution or just a battleground for gender conflict? embo Reports, 8(5), 441-443.; Huxley, J., Pigliucci, M. y Müller, G. (2010). Evolution: the modern synthesis: the definitive edition. Massachusetts: Mit Press.; Laland, K., Uller, T., Feldman, M., Sterelny, K., Müller, G. et al. (2014). Does evolutionary theory need a rethink? Nature News, 514(7521), 161.; Lloyd, E. (2017). Units and Levels of Selection. The Stanford Encyclopedia of Philosophy. Recuperado de https://plato. stanford.edu/archives/sum2017/entries/selection-units/; Losos, J., Arnold, S., Bejerano, G., Brodie iii, e.d., Hibbett, D. et al. (2013). Evolutionary biology for the 21st century. PLoS Biology, 11(1), p.e1001466.; Mahner, M. y Bunge, M. (2000). Fundamentos de biofilosofía. Madrid: Siglo xxi.; Mattick, J., Amaral, P., Dinger, M., Mercer, T. y Mehler, M. (2009). rna regulation of epigenetic processes. Bioessays, 31(1), 51-59.; Mayr, E. (1997). This is biology: the science of the living world. Belknap Press of Harvard University Press.; Mesoudi, A., Blanchet, S., Charmantier, A., Danchin, E., Fogarty, L. et al. (2013). Is non-genetic inheritance just a proximate mechanism? A corroboration of the extended evolutionary synthesis. Biological Theory, 7(3), 189-195.; Müller, G. (2010). Evolution-the extended synthesis (No. 576.82 E9).; Ptashne, M. (2013). Epigenetics: core misconcept. Proceedings of the National Academy of Sciences, 110(18), 7101-7103.; Quante, T. y Bird, A. (2016). Do short, frequent dna sequence motifs mould the epigenome? Nature Reviews Molecular Cell Biology, 17(4), 257.; Richards, E. (2006). Inherited epigenetic variation–revisiting soft inheritance. Nature Reviews Genetics, 7(5), 395.; Ridley, M. (2016). In retrospect: The selfish gene. Nature, 529(7587), 462.; Roff, D. (2003), January. Evolutionary quantitative genetics: Are we in danger of throwing out the baby with the bathwater? Annales Zoologici Fennici, 40(4), 315-320.; Scherrer, K. y Jost, J. (2007). Gene and genon concept: coding versus regulation. Theory in Biosciences, 126(2-3), 65-113.; Simpson, G. (1944). Tempo and Mode in Evolution. Nueva York: Columbia University Press.; Stoltzfus, A. y Cable, K. (2014). Mendelian-mutationism: the forgotten evolutionary synthesis. Journal of the History of Biology, 47(4), 501-546.; Williams, G.(2018). Adaptation and natural selection: A critique of some current evolutionary thought, Vol. 61. Princeton: Princeton University Press.; Andrade, L. E. (2003a). Los demonios de Darwin: Semiótica y termodinamica de la evolución biológica. 2ª. ed. Bogotá: Universidad Nacional de Colombia.; Andrade, L. E. (2009). La ontogenia del pensamiento evolutivo. Bogotá: Universidad Nacional de Colombia. Recuperado de http://books.google.com.co/books/about/La_ontogenia_ del_pensamiento_evolutivo.html?id=OkcLijzm_t0Cyre- dir_esc=y.; Capra, F. (2002). Las conexiones ocultas. Barcelona: Anagrama.; Andrade, L. E. (2003b). The processing of information (analog/ digital) is the causal factor of the emergence of natural selection. Ludus Vitalis, xi(20),85-109.; Andrade, E. (2009a). Darwin, creador de dos teorías en conflicto aparente: selección natural y pangénesis. Innovación y Ciencia, 16(2), 36-51.; Andrade, E. (2009c). La ontogenia del pensamiento evolutivo: Hacia una interpretación semiótica de la naturaleza. Bogotá: Universidad Nacional de Colombia.; Bertalanffy, L. von. (1976). Teoría general de los sistemas. México: Fondo de Cultura Económica.; Caponi, G. (2012). Réquiem por el centauro: Aproximación epis- temológica a la biología evolucionaria del desarrollo. México: Centro de Estudios Filosóficos, Políticos y Sociales Vicente Lombardo Toledano.; Deichmann, U. (January, 2016). Why epigenetics is not a vindication of Lamarckism and why that matters. Studies in History and Philosophy of Science Part C: Studies in His- tory and Philosophy of Biological and Biomedical Scien- ces, 57. 80-82. https://doi.org/10.1016/j.shpsc.2016.04.004; Dias, B. G. y Ressler, K. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience, 17, 89-96.; Elliot, H. y Elliot, H. (1963). Introduction: Evolution. En: Zoological Philosophy: An Exposition with Regard to the Na- tural History of Animals (p. 30). New York and London: Hafner Publishing Company.; Gibbs, W. W. (2004). El nacimiento de la epigenética. Investigación y Ciencia, 331, 16-23.; Liu, Y. (2008). A new perspective on Darwin’s Pangenesis. Biological Reviews, 83, 141-149.; Nicoglou, A. (2018). Waddington’s epigenetics or the pictorial meetings of development and genetics. History and Philosophy of the Life Sciences, 40(4), 61.; Penny, D. (2015). Epigenetics, Darwin, and Lamarck. Genome Biology and Evolution, 7(6), 1758-1760. https://doi. org/10.1093/gbe/evv107; Razin, A. y Riggs, A. D. (1980). dna methylation and gene function. Science, 210(4470), 604-610.; Rodgers, A. B., Morgan, C. P., Bronson, S. L., Revello, S. y Bale, T. L. (2013). Paternal Stress Exposure Alters Sperm Microrna Content and Reprograms Offspring hpa Stress Axis Regulation. Journal of Neuroscience, 33(21), 9003-9012. https://doi.org/10.1523/jneurosci.0914-13.2013; Skinner, M. K. (2015). Environmental epigenetics and a unified theory of the molecular aspects of evolution: A neo-La-marckian concept that facilitates neo-Darwinian evolution. Genome Biology and Evolution, 7(5), 1296-1302. https:// doi.org/10.1093/gbe/evv073; Szyf, M. (2012). The early-life social environment and dna methylation. Clinical Genetics, 4, 341-349.; Szyf, M. (2014). Lamarck revisited: epigenetic inheritance of ancestral odor fear conditioning. Nature Neuroscience, 17(1), 2-4.; Turing, A. M. (1952). The Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society of London, 237(641), 37-72.; Waddington, C. H. (2012). The epigenotype. International journal of epidemiology, 41(1), 10-13.; Deans, C., & Maggert, K. A. (2015). What do you mean, “Epigenetic”? Genetics, 199(4), 887-896. 10.1534/genet- ics.114.173492; Delgado-Morales, R., Agís-Balboa, R. C., Esteller, M., & Berdasco, M. (2017). Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in brain disorders. Clinical Epigenetics, 9:67. 10.1186/s13148-017- 0365-z; Deobagkar, D. (2018). Epigenetics with special reference to the human X chromosome inactivation and the enigma of Drosophila dna methylation. Journal of Genetics, 97(2), 371-378. 10.1007/s12041-018-0937-5; Hallgrímsson, B., & Hall, B. K. (Eds.). (2011). Epigenetics: Linking genotype and phenotype in development and evolution. University of California Press.; Irimie, A. I., Ciocan, C., Gulei, D., Mehterov, N., Atanasov, A. G., Dudea, D., & Berindan-Neagoe, I. (2018). Current insights into oral cancer epigenetics. International Journal of Molecular Sciences, 19(3), 670. 10.3390/ijms19030670; Jablonka, E., & Lamb, M. J. (2006). Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. mit Press.; Monteiro Vaz, N., & Botelho Andrade, L. A. (2017). The epigenetic immune network. Constructivist Foundations, 13(1), 141-146.; Nebbioso, A., Tambaro, F. P., Dell’Aversana, C., & Altucci, L. (2018). Cancer epigenetics: moving forwards. PLoS Genetics, 14(6): e1007362. 10.1371/journal.pgen.1007362; Palumbo, S., Mariotti, V., Iofrida, C., & Pellegrini, S. (2018). Genes and aggressive behavior: Epigenetic mechanisms underlying individual susceptibility to aversive environments. Frontiers in Behavioral Neuroscience, 12:117. 10.3389/fnbeh.2018.00117; Rasras, S., Zibara, K., Vosughi, T., & Zayeri, Z. D. (2018). Genetics and epigenetics of glioblastoma: Therapeutic chal- lenges. Clinical Cancer Investigation Journal, 7(2), 43-49. 10.4103/ccij.ccij_82_17; Riley, P. A. (2018). Epimutation and cancer: Carcinogenesis viewed as errorprone inheritance of epigenetic information. Journal of Oncology, 6, 1-4. 10.1155/2018/2645095; Thompson, D’A. (1992). On growth and form. The complete revised edition. Dover.; Villota-Salazar, N. A., Mendoza-Mendoza, A., González-Prieto, J. M. (2016). Epigenetics: from the past to the present. Frontiers in Life Science, 9(4), 347-370. 10.1080/21553769.2016.1249033; Barnes, P. J. (2009). Targeting the epigenome in the treatment of asthma and chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 6(8), 693-696. 10.1513/pats.200907-071DP; Casali, M., & Merlin, F. (forthcoming). In H. Levine, P. Kulkarni, M. Jolly, & V. Nanjundiah, Phenotypic switching: Implications in biology and medicine. Elsevier.; Deans, C., & Maggert, K. A. (2015). What do you mean, “epigenetic”? Genetics, 199(4), 887-896. 10.1534/genetics.114.173492; Egger, G., Liang, G., Aparicio, A., & Jones, P. A. (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature, 429(6990), 457. 10.1038/nature02625; Felsenfeld, G. (2014b). The evolution of epigenetics. Perspectives in Biology and Medicine, 57(1), 132-148. 10.1353/ pbm.2014.0004; Huang, S. (2009a). Reprogramming cell fates: Reconciling rarity with robustness. Bioessays, 31(5), 546-560. 10.1002/ bies.200800189; Huang, S. (2009b). Non-genetic heterogeneity of cells in development: more than just noise. Development, 136(23), 3853-3862. 10.1242/dev.035139; Huang, S. (2011). Systems biology of stem cells: Three useful perspectives to help overcome the paradigm of linear pathways. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1575), 2247-2259. 10.1098/ rstb.2011.0008; Huang, S. (2012). The molecular and mathematical basis of Waddington’s epigenetic landscape: A framework for post‐Darwinian biology? Bioessays, 34(2), 149-157. 10.1002/ bies.201100031; Nicoglou, A. (2018). Waddington’s epigenetics or the pictorial meetings of development and genetics. History and Philosophy of the Life Sciences, 40(4), 61. 10.1007/s40656-018-0228-8; Nicoglou, A., & Merlin, F. (2017). Epigenetics: A way to bridge the gap between biological fields. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 66, 73-82. 10.1016/j.shpsc.2017.10.002; Pembrey, M. E., Bygren, L. O., Kaati, G., Edvinsson, S., Northstone, K., Sjöström, M., & Golding, J. (2006). Sex-specific, maleline transgenerational responses in humans. European Journal of Human Genetics, 14(2), 159. 10.1038/sj.ejhg.5201538; Russo, V. E., Martienssen, R. A., & Riggs, A. D. (1996). Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press.; Skinner, M. K., Manikkam, M., & Guerrero-Bosagna, C. (2010). Epigenetic transgenerational actions of environmental factors in disease etiology. Trends in Endocrinology & Metabolism, 21(4), 214-222. 10.1016/j.tem.2009.12.007; Weigel, D., & Colot, V. (2012). Epialleles in plant evolution. Genome Biology, 13(10), 249. 10.1186/gb-2012-13-10-249; Andrade, E. (2014). Integration of thermodynamic, quantum and hierarchical theories of information in the context of Peircean semiosis–A review. BioSystems, 120, 10-20.; Barton, N. y Turelli, M. (1989). Evolutionary quantitative genetics: how little do we know? Annual review of genetics, 23(1), 337-370.; Binder, P. y Danchin, A. (2011). Life's demons: information and order in biology: What subcellular machines gather and process the information necessary to sustain life? embo reports, 12(6), 495-499.; Cipriano, A. y Ballarino, M. (2018). The Ever-Evolving Concept of the Gene: The Use of RNA/Protein Experimental Techniques to Understand Genome Functions. Frontiers in Molecular Biosciences, 5, 20.; Delisle, R. (2009). The uncertain foundation of neo-Darwinism: metaphysical and epistemological pluralism in the evolutionary synthesis. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 40(2), 119-132.; English, S., Pen, I., Shea, N. y Uller, T. (2015). The information value of non-genetic inheritance in plants and animals. PloS one, 10(1), p.e0116996.; Gould, S. (2002). The structure of evolutionary theory. usa: Harvard University Press.; Jablonka, E. y Lamb, M. (2014). Evolution in four dimensions, revised edition: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. Massachusetts mit Press.; Keller, E. (2009). Rethinking the meaning of biological information. Biological Theory, 4(2), 159-166.; Laland, K., Uller, T., Feldman, M., Sterelny, K., Müller, G., et al. (2015). The extended evolutionary synthesis: its structure, assumptions and predictions. Proceedings of the Royal Society B: Biological Sciences, 282(1813), p.20151019.; Struhl, K. y Segal, E. (2013). Determinants of nucleosome positioning. Nature Structural & Molecular Biology, 20(3), 267.; Vinogradov, A. (2004). Evolution of genome size: multilevel selection, mutation bias or dynamical chaos? Current Opinion in Genetics & Development, 14(6), 620-626.; Wood, A., Esko, T., Yang, J., Vedantam, S., Pers, T. et al. (2014). Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 46(11), 1173.; Collier, J. D. y Muller, S. J. (1998). The dynamical basis of emergence in natural hierarchies. En: Emergence, complexity, hierarchy and organization, selected and edited papers from the echo ii conference. Acta Polytechnica Scandinavica.; García, M. y Le Lay, V. F. (Mayo-octubre de 1980). Estructuras disipativas. Algunas nociones basicas. El Basilisco, 10, 8-13.; Garciandía, J. A. (2005). Pensar sistémico: una introducción al pensamiento sistémico. Pontificia Universidad Javeriana. Recuperado de http://books.google.com/books?id=ZvKN-nxQb_1cCypgis=1.; Jablonka, E. y Lamb, M. J. (2002). The Changing Concept of Epigenetics. Annual NewYork Academiy of Science, 96, 82-96.; Jablonka, E. y Lamb, M. J. (2006). Evolution in four dimensions. mit Press.; Jablonski, D. (1987). Heritability at the species level: analysis of geographic ranges of cretaceous mollusks. Science, 238(4825), 360-3. https://doi.org/10.1126/science.238.4825.360.; Michod, R. E. y Roze, D. (2001). Cooperation and conflict in the evolution of multicellularity. Heredity, 86(Pt 1), 1-7. Recuperado de http://www.ncbi.nlm.nih.gov/pubmed/11298810.; Muñoz-Durán, J. (2002). Correlates of speciation and extinction rates in the Carnivora. Evolutionary Ecology Research, 4(7), 963-991.; O’Donnell, S. y Bulova, S. J. (2007). Worker connectivity: a review of the design of worker communication systems and their effects on task performance in insect societies. Insectes Sociaux, 54(3), 203-210. https://doi.org/10.1007/ s00040-007-0945-6.; Okasha, S. (Diciembre de 2005). Multilevel Selection and the Major Transitions in Evolution. Philosophy of Science, 72, 1013-1025.; Okasha, S. (2006). Evolution and the Levels of Selection. Oxford University Press.; Shanahan, T. (1997). Pluralism, antirealism, and the units of selection. Acta Biotheoretica, 117-126.; Slack, J. M. W. (Noviembre de 2002). Conrad Hal Waddington: the last Renaissance biologist?, National Center for Biotechnology Information, 425, 423-425.; Vrba, E. S. y Gould, S. J. (1986). The Hierarchical Expansion of Sorting and Selection: Sorting and Selection Cannot Be Equated. Paleobiology, 12(2), 217-228.; Andrade, E. (2003). Los demonios de Darwin, semiótica y termodinámica de la evolución biológica. Bogotá: Universidad Nacional de Colombia.; Andrade, E. (2009). La ontogenia del pensamiento evolutivo: Hacia una interpretación semiótica de la naturaleza. Bogotá: Universidad Nacional de Colombia.; Andrade, E. (2017). La teoría de sistemas en desarrollo, una vía para resolver la tensión entre las perspectivas internalista y externalista en la biología evolutiva. Metatheoria – Revista de Filosofía e Historia de la Ciencia 8(1), 129-144.; Aranda, A. (1997). La complejidad y la forma. México: Fondo de Cultura Económica.; rthur, W. (2002). The emerging conceptual framework of evolutionary developmental biology. Nature, vol. 415, 757-764.; Azkonobieta, T. G. (2005). Evolución, desarrollo y (auto) organización, un estudio sobre los principios filosóficos de la evo-devo. Tesis doctoral. Universidad del País Vasco.; Bento, G.; Ogawa, A. y Sommer R. J. (2010). Co-option of the hormone-signalling module dafachronic acid- daf-12 in nematode evolution. Nature, 466, 494-496.; Braendle, C. y Flatt, T. (2006). A role for genetic accommodation in evolution? Bioessays, 28, 868-873.; Caponi, G. (2007). El retorno de la ontogenia: un conflicto de ideales de orden natural en la biología evolucionaria actual. Scientiae Studia, 5(1), 9-34.; Caponi, G. (2008). El segundo pilar la biología evolucionaria desenvolvimiental y el surgimiento de una teoría complementaria a la teoría de la selección natural. Ludus Vitalis, xvi (29), 3-32.; Carroll, S, Gompel, N. y Prudhomme, B. (2008). Regulating evolution: how gene switches make life. Scientific American Magazine.; Carroll, S. (2008). Evo-Devo and an Expanding Evolutionary Synthesis: A Genetic Theory of Morphological Evolution. Cell, 134(1), 25-36.; Crispo, E. (2007). The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity. Evolution, 61, 2469-2479.; Dewitt, T. J. y Scheiner, S. M. (Eds.). (2004). Phenotypic Plasticity: Functional and conceptual approaches. Londres: Oxford University Press.; Dressino, V. (2017). La ontogenia y la evolución desde la perspectiva de la teoría de los sistemas de desarrollo (tsd). Acta Biológica Colombiana, 22(3), 265-273.; Frías-Lasserre, D. y Villagra C. A. (2019). The Importance of ncrnas as Epigenetic Mechanisms in Phenotypic Variation and Organic Evolution. Frontiers in Microbiology, 8(2483), 1-13.; Fusco, G. y Minelli, A. (2010). Phenotypic plasticity in development and evolution: facts and concepts. Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 365, 547-556.; Gilbert, S. (2005). Mechanisms for the environmental regulation of gene expression: Ecological aspects of animal development. Journal of Biosciences, 30, 65-74.; Glimcher, P. W. (2003). Decisions, Uncertainty, and the Brain: The Science of Neuroeconomics. Cambridge: The mit Press.; Gould, S. (1977). Ontogeny and phylogeny. Cambridge: Harvard University Press.; Gould, S. (2002). The structure of evolutionary theory. Cambridge: Harvard University Press.; Haig, D. (2004). The (dual) origin of epigenetics. Cold Spring Harbor Symposia on Quantitative Biology, 69, 67-70.; Hallgrímsson, B. y Hall, B. (2005). Variation: A Central Concept in Biology. New Jersey: Elsevier Academic Press, Burlington, MA.; Ho, M. W. (1979). Beyond neo-Darwinism-An Epigenetic Approach to Evolution. Journal of Theoretical Biology, 78, 573-591.; Hornstein, E. y Shomron, N. (Junio de 2006). Canalization of development by micrornas. Nature Genetics, 38.; Jablonka, E. y Lamb, M. J. (2005). Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. Cambridge, Massachusetts: The mit Press.; Johnston, T. y Gottlieb, G. (1990). Neophenogenesis: A developmental theory of phenotypic evolution. Journal of Theoretical Biology, 147, 471-495.; Laland, K. N, Uller, T, Feldman, M. W. et al. (2014). Does evolutionary theory need a rethink? Nature, vol. 514, 161-164.; Laland, K. N, Uller, T, Feldman, M. W. et al. (2015). The extended evolutionary synthesis: its structure, assumptions and predictions. Proceedings of the Royal Society, 282, 1019.; Maienschein, J. (1991). The Origins of Entwicklungsmechanik. En: Gilbert S. F. (Ed.). Developmental Biology: A Conceptual History of Modern Embryology, 7, 43-61.; Maturana, H. y Mpodozi, J. (1992). Origen de las especies por medio de la deriva natural o la diversificación de los linajes a través de la conservación y cambio de los fenotipos ontogénicos. Santiago: Museo Nacional de Historia Natural.; Merks, R. (1997). The molecular Bauplan. Group of Theoretical Biology and Bioinformatics. The Netherlands: Utrecht University, Department of Biology.; Moczek, A. P, Sultan, S, Foster, S. et al. (2011). The role of developmental plasticity in evolutionary innovation. Procee dings of the Royal Society B, 278, 2705-2713.; Müller, G. y Newman, S. (2003). Origination of Organismal Form: Beyond the gene in developmental and evolutionary Biology. Viena: The Viena Series in Theoretical Biology.; Müller, G. (2007). Evo-devo: extending the evolutionary synthesis nature reviews genetics. Nature Reviews Genetics, 8, 943-949.; Muñoz-Chápuli, R. (2005). Evo-devo: hacia un nuevo paradigma en biología evolutiva. Encuentros en la Biología, 100, 15-17.; Nicoglou, A. y Merlin, F. (2017). Epigenetics: A way to bridge the gap between biological fields. Studies in History and Philosophy of Biological and Biomedical Sciences Part C, 66, 73-82.; Nuño de la Rosa, L. (2016). Evo-devo - Biología evolutiva del desarrollo. Diccionario Interdisciplinar Austral (dia). Buenos Aires: Universidad Austral, Instituto de Filosofía.; Oyama, S, Griffiths, P. E. y Gray, R. D. (2001). Cycles of contingency: Developmental systems and evolution. Cambridge: mit Press.; Palmer, R. (2004). Symmetry breaking and the evolution of development. Science, 306, 828-836.; Pigliucci, M. y Müller, G. (2010). Evolution-The extended synthesis. London, England: The mit Press Massachusetts Institute of Technology.; Pigliucci, M, Murren, C. J. y Schlichting, C. D. (2006). Phenotypic plasticity and evolution by genetic assimilation. Journal of Experimental Biology, 209, 2362-23.; Quebradas, D. (2011). Decisiones, incertidumbre y el cerebro. Reseña de libro. Revista Chilena de Neuropsicología, 6(2), 129-131.; Ramírez, F, Balbín, A, Betancourt-Morales, A. et al. (2004). Biólogos lejos del equilibrio: Nuevas metáforas evolutivas. Bogotá: Grupo de Biología Teórica.; Remy, J. (2010). Stable inheritance of an acquired behavior in Caenorhabditis elegans. Current Biology, 20(20), 877-878.; Rutherford, S. y Lindquist, S. (1998). Hsp90 as a capacitor for morphological evolution. Nature, 396, 336-342.; Sampedro, J. (2002). Deconstruyendo a Darwin. Barcelona: Plaza Edición.; Saunders, P. T. (1989). The Evolution of Form and Pattern. Leonardo, 22(1), 33-38.; Schlichting, C. y Pigliucci, M. (1998). Phenotypic Evolution: A Reaction Norm Perspective. Sunderland, Massachusetts: Sinauer Associates.; Sheldrake, R. (1989). Una nueva ciencia de la vida: La hipótesis de causación formativa. Barcelona: Editorial Kairós.; Slack, J. (2002). Conrad Hal Waddington: the last Renaissance biologist? Nature Reviews, 3(11), 889-895.; Swalla, B. (2006). Building divergent body plans with similar genetic pathways. Heredity, 97, 235-243.; Uller, T. y Laland K. N. (2019). Evolutionary Causation Biological and Philosophical Reflections. Vienna Series in Theoretical Biology.; Velarde, M. y Le Lay. (1980). Estructuras disipativas: algunas nociones básicas. El Basilisco, 10.; Waddington, C. H. (1942). The Epigenotpye. Endeavour, 18-20.; Waddington, C. H. (1953). Genetic assimilation of an acquired character. Evolution, 7, 118-126.; Waddington, C. H. (1959). Evolutionary systems - animal and human. Nature, vol. 183.; Waddington, C. H. (1976). Las ideas básicas de la biología. Hacia una biología teórica. Madrid: Alianza Editorial, S.A.; West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford, U.K.: Oxford University Press.; Adamatzky, A. (2010). Physarum Machines: Computers from Slime Mould. Singapur: World Scientific Publishing.; Adamatzky, A. (2015). Atlas of Physarum Computing. Singapur: World Scientific Publishing.; Adamatzky, A. (2016). Advances in Physarum Machines: Sensing and Computing with Slime Mould. Berlín: Springer.; Adami, C. (2009). Biological complexity and biochemical information. En R. A. Meyer (Ed.), Encyclopedia of Complexity and Systems Science (pp. 489-511). Berlín: Springer.; Adleman, L. (1994). Molecular computation of solutions to combinatorial problems. Science, 266(5187), 1021-1024.; Alba, E. (Ed.). (2005). Parallel Metaheuristics: A New Class of Algorithms. Hoboken: John Wiley & Sons.; Amos, M. (Ed.). (2004). Cellular Computing. Oxford: Oxford University Press.; Amos, M. (2005). Theoretical and Experimental dna Computation. Berlín: Springer.; Amos, M., Hodgson, D. A. y Gibbons, A. (2007). Bacterial selforganisation and computation. International Journal of Unconventional Computing, 3(3), 199-210.; Baltimore, D. (2001). How biology become an information science. En P. J. Denning (Ed.), The Invisible Future: The Seamless Integration of Technology into Everyday Life (pp. 43-55). Nueva York: McGraw-Hill.; Banzhaf, W. y Yamamoto, L. (2015). Artificial Chemistries. Cambridge, ma: mit Press.; Bedau, M., McCaskill, J. S., Packard, N. H. y Rasmussen, S. (2010). Living Technology: Exploiting Life’s Principles in Technology. Artificial Life, 16(1), 89-97.; Bedau, M., McCaskill, J. S., Packard, N. H., Parke, E. C. y Rasmussen, S. R. (2013). Introduction to recent developments in living technology. Artificial Life, 19(3), 291-298.; Bedau, M., McCaskill, J. S., Packard, N. H. et al. (2000). Open problems in artificial life. Artificial Life, 6(4), 363-376.; Ben-Hur, A. y Siegelmann, H. T. (2004). Computation in gene networks. Chaos, 14(1), 145-151.; Ben-Jacob, E. y Levine, H. (2006). Self-engineering capabilities of bacteria. Journal of the Royal Society Interface, 3(6), 1-18.; Ben-Jacob, E. (2009). Learning from bacteria about natural information processing. Annals of the New York Academy of Sciences, 1178, 78-90.; Boden, M. (Ed.). (1996). The Philosophy of Artificial Life. Oxford: Oxford University Press.; Bray, D. (1995). Protein molecules as computational elements in living cells. Nature, 376(6538), 307-312.; Bray, D. (2009). Wetware: A Computer in Every Living Cell. New Haven: Yale University Press.; Brenner, S. (1998). Biological computation. Novartis Foundation Symposium, The Limits of reductionism in Biology (pp. 106-116). Chinchester: John Wiley & Sons.; Brijder, R., Daley, M., Harju, T. et al. (2012). Computational nature of gene assembly in ciliates. En G. Rozenberg, T. Bäck y J. N. Kok (Eds.), Handbook of Natural Computing (pp. 1233-1280). Berlín: Springer.; Brijder, R., Ehrenfeucht, A., Main, M. y Rozenberg, G. (2011). A tour of reaction systems. International Journal of Foundations of Computer Science, 22(7), 1499-1517.; Burgin, M. (2005). Super-Recursive Algorithms. Berlín: Springer.; Burgin, M. (2010). Theory of Information: Fundamentality, Di- versity and Unification. Singapur: World Scientific Publi- shing.; Burke, E. K., Gendreau, M., Hyde, M. et al. (2013). Hyper-heuristics: a survey of the state of the art. Journal of the Operational Research Society, 64(12), 1695-1724.; Bush, W. y Benfey, P. N. (2010). Information processing without brains – the power of intercellular regulators in plants. Development, 137(8), 1215-1226.; Calude, C. S. y Pǎun, G. (2000). Computing with cells and atoms in a nutshell. Complexity, 6(1), 38-48.; Calude, C. S. y Pǎun, G. (2001). Computing with Cells and Atoms: An Introduction to Quantum, dna and Membrane Computing. London: Taylor & Francis.; Calude, C. S. y Pǎun, G. (2004). Bio-steps beyond Turing. Biosystems 77(1-3), 175-194.; Cohen, I. R. (2006). Immune system computation and the immunological homunculus. En O. Nierstrasz, J. Whittle, D. Harel y G. Reggio (Eds.), Model Driven Engineering Lan- guages and Systems (pp. 499-512). Berlín: Springer.; Cohen, I. R. (2007). Real and artificial immune systems: computing the state of the body. Nature Reviews Immunology, 7(7), 569-574.; Cohen, I. R. y Harel, D. (2007). Explaining a complex living system: dynamics, multi-scaling and emergence. Journal of the Real Society Interface, 4(13), 175-182.; Conrad, M. (1996). Cross-scale information processing in evolution, development and intelligence. BioSystems, 38(2-3), 97-109.; Coolen, A. C. C., Kühn, R. y Sollich, P. (2005). Theory of Neural Information Processing Systems. Oxford: Oxford University Press.; Copeland, B. J. (Ed.). (2004). The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence and Artificial Life, plus the Secrets of Enigma. Oxford: Oxford University Press.; Corolli, L., Maj, C., Marini, F., Besozzi, D. y Mauri, G. (2012). An excursion in reaction systems: from computer science to biology. Theoretical Computer Science, 54, 95-108.; Cotta, C., Sevaux, M. y Sörensen, K. (Eds.). (2008). Adaptive and Multilevel Metaheuristics. Berlín: Springer.; Cull, P. (2013). Biocomputation: some history and prospects. Biosystems, 112(3), 196-203.; Daniel, R., Rubens, J. R., Sarpeshkar, R. y Lu, T. K. (2013). Synthetic analog computation in living cells. Nature, 497(7451), 619-623.; Dasgupta, D. y Niño, L. F. (2009). Immunological Computation: Theory and Applications. Boca Ratón: crc Press.; De Castro, L. N. (2007). Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. Boca Ratón: CRC Press.; Denning, P. (2012). Opening statement: What is computation? The Computer Journal, 55(7), 799-802.; Detrain, C. y Deneubourg, J. L. (2006). Self-organized structures in a superorganism: do ants “behave” like molecules? Physics of Life Reviews, 3(3), 162-187.; Detrain, C., Deneubourg, J. L. y Pasteels, J. M. (Eds.). (2001). Information Processing in Social Insects. Basel: Birkhäuser.; Dittrich, P. (2005). Chemical computing. En Banâtre et al. (Eds.), Unconventional Programming Paradigms (pp. 19-32). Berlín: Springer.; Dodig-Crnkovic, G. (2011). Dynamics of information as natural computation. Information, 2(3), 460-477.; Dodig-Crnkovic, G. (2014). Modeling life as cognitive info-computation. En A. Beckmann, E. Csuhaj-Varjú, K. Meer (Eds.), Language, Life, Limits (pp. 153-162). Berlín: Springer.; Dodig-Crnkovic, G. y Giovagnoli, R. (2013). Computing nature: A network of networks of concurrent information processes. En G. Dodig-Crnkovic y R. Giovagnoli (Eds.), Computing Nature: A Turing Centenary Perspective (pp. 1-22). Berlín: Springer.; Dodig-Crnkovic, G. y Giovagnoli, R. (2013a). Computing Nature: A Turing Centenary Perspective. Berlín: Springer.; Dornhaus, A. y Franks, N. R. (2008). Individual and collective cognition in ants and other insects (Hymenoptera: Formicidae). Myrmecological News, 11, 215-226.; Dorigo, M. y Stützle, T. (2004). Ant Colony Optimization. Cambridge, MA: MIT Press.; Doursat, R., Sayama, H. y Michel, O. (2013). A review of morphogenetic engineering. Natural Computing, 12(4), 517-535.; Drummond-Barbosa, D. (2008). Stem cells, their niches and the systemic environment: an aging network. Genetics, 180(4), 1787-1797.; Eberbach, E. (2005). Toward a theory of evolutionary computation. Biosystems, 82(1), 1-19.; Eberbach, E., Goldin, D. y Wegner, P. (2004). Turing's ideas and models of computation. En C. Teuscher (Ed.), Alan Turing: Life and Legacy of a Great Thinker (pp. 159-194). Berlín: Springer.; Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D. M. y Rozenberg, G. (2004). Computation in Living Cells: Gene Assembly in Ciliates. Berlín: Springer.; Ehrenfeucht, A. y Rozenberg, G. (2007). Events and modules in reaction systems. Theoretical Computer Science, 376(1-2), 3-16.; Ehrenfeucht, A. y Rozenberg, G. (2010). Reaction systems. Fundamenta Informaticae, 75(1-4), 263-280.; Ehrenfeucht, A. y Rozenberg, G. (2010a). Reaction systems: A model of computation inspired by bichemistry. En Y. Gao, H. Lu, S. Seki y S. Yu (Eds.), Developments in Lenguage Theory (pp. 1-3). Berlín: Springer.; Eiben, A. E. y Smith, J. E. (2015). Introduction to Evolutionary Computing (2a ed.). Berlín: Springer.; Emmeche, C. (1998). Vida simulada en el ordenador: La ciencia naciente de la vida artificial. Barcelona: Gedisa.; Engelbrecht, A. P. (2005). Fundamentals of Computational Swarm Intelligence. Hoboken: John Wiley & Sons.; Engelbrecht, A. P. (2007). Computational Intelligence: An Introduction (2a. ed.). Chichester: John Wiley & Sons.; Farnsworth, K. D., Nelson, J. y Gershenson, C. (2013). Living is information processing: From molecules to global systems. Acta Biotheoretica, 61(2), 203-222.; Fernández, M. (2009). Models of Computation: An Introduction to Computability Theory. Berlín: Springer.; Fernández, P. y Solé, R. (2006). The role of computation in complex regulatory networks. En E. V. Koonin, Y. I. Wolf y G. P. Karev (Eds.), Power Laws, Scale-Free Networks and Genome Biology (pp. 206-225). Berlín: Springer.; Fisher, J. Harel, D. y Henzinger, T. A. (2011). Biology as reactivity. Communications of the acm, 54(10), 72-82.; Floreano, D. y Mattiussi, C. (2008). Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. Cambridge, ma: mit Press.; Floridi, L. (2011). The Philosophy of Information. Oxford: Oxford University Press.; Floridi, L. (2004). Information. En L. Floridi (Ed.), The Blackwell Guide to the Philosophy of Computing and Information (pp. 40-61). Oxford: Blackwell Publishing.; Forbes, N. (2004). Imitation of Life: How Biology Is Inspiring Computing. Cambridge, ma: mit Press.; Forrest, S., Balthrop, J. Glickman, M. y Ackley, D. (2005). Computing in the wild. En E. Jen (Ed.), Robust Design: A Re- pertoire of Biological, Ecological, and Engineering Case Studies (pp. 207-230). Oxford: Oxford University Press.; Forrest, S. y Hofmeyr, S. (2000). Immunology as information processing. En L. A. Segel y R. Cohen (Eds.), Design Principles for Immune System & Other Distributed Autonomous Systems (pp. 361-387). Oxford: Oxford University Press.; Fournier, M. (2011). Quand la nature inspire la science: Histoires des inventions humaines qui imitent les plantes et les animaux. Toulouse: Plume de Carotte.; Fresco, N. (2014). Physical Computation and Cognitive Science. Berlin: Springer.; Gatenby, R. A. y Frieden, B. R. (2007). Information theory in living systems, methods, applications, and challenges. Bulletin of Mathematical Biology, 69, 635-657.; Gatlin, L. L. (1972). Information Theory and the Living System. Nueva York: Columbia University Press.; Garzon, M. (2005). Models of Massive Parallelism: Analysis of Cellular Automata and Neural Networks. Berlín: Springer.; Gibson, D. G., Glass, J. I., Lartigue, C. et al. (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329(5987), 52-56.; Godfrey-Smith, P. (2007). Information in biology. En D. L. Hull y M. Ruse (Eds.), The Cambridge Companion to the Philosophy of Biology (pp. 103-119). Cambridge: Cambridge University Press.; Goldin, D., Smolka, S. A., Attie, P. y Sonderegger, E. (2004). Turing machines, transition systems, and interaction. Information & Computation Journal, 194(2), 101-128.; Goodsell, D. S. (2009). The Machinery of Life (2a. ed.). Nueva York: Copernicus Books.; Gómez, N. A. (2013). Vida artificial: Ciencia e ingeniería de sistemas complejos. Bogotá: Universidad del Rosario.; Gómez, N. A. y Maldonado, C. E. (2011). Biological computation: A road to complex engineered systems. En H. Sayama, A. A. Minai, D. Braha y Y. Bar-Yam (Eds.), Unifying Themes in Complex Systems Volume viii: Proceedings of the Eighth International Conference on Complex Systems (pp. 918-927). Cambridge, ma: necsi Knowledge Press.; Gramelsberger, G. (2013). The simulation approach in synthetic biology. Studies in History and Philosophy of Science, 44(2), 150-157.; Graupe, D. (2013). Principles of Artificial Neural Networks (3a. ed.). Singapur: World Scientific Publishing.; Hogg, T. y Huberman, B. A. (1984). Understanding biological computation: Reliable learning and recognition. Proceedings of the National Academy of Sciences, 81(21), 6871-6875.; Hopfield, J. J. (1986). Physics, biological computation and complementarity. En J. De Boer, E. Dal y O. Ulfbeck (Eds.), The Lesson of Quantum Theory (pp. 295-314). Ámster- dam: North-Holland.; Hopfield, J. J. (1994). Physics, computation, and why biology looks so different. Journal of Theoretical Biology, 171(1), 53-60.; Ignatova, Z., Martínez-Pérez, I. y Zimmermann, K. H. (2008). dna Computing Models. Berlín: Springer-Verlag.; Istrail, S., Ben-Tabou De-Leon, S. y Davidson, E. (2007). The regulatory genome and the computer. Developmental Biology, 310(2), 187-195.; Kampfner, R. R. (1989). Biological information processing: the use of information for the support of function. BioSystems, 22(3), 223-230.; Kampis, G. (1991). Self-Modifying Systems in Biology and Cognitive Science: A New Framework for Dynamics, Information and Complexity. Oxford: Pergamon Press.; Kari, L. y Landweber, L. F. (2004). Biocomputation in ciliates. En M. Amos (Ed.), Cellular Computing (pp. 202-216). Oxford: Oxford University Press.; Kari, L. y Rozenberg, G. (2008). The many facets of natural computing. Communications of the acm, 51(10), 72-83.; Karpinski, S. y Szechynska-Hebda, M. (2010). Secret life of plants: from memory to intelligence. Plant Signaling & Behavior, 5(11), 1391-1394.; Kauffman, S. (2011) Preface. En S. Niiranen y A. Ribeiro (Eds.), Information Processing and Biological Systems (pp. v-vi-ii). Berlín: Springer.; Kim, K. J. y Cho, S. B. (2006). A comprehensive overview of the applications of artificial life. Artificial Life, 12(1), 153-182.; Kitano, H. (2002). Computational systems biology. Nature, 420(6912), 206-210.; Lahoz-Beltrà, R. (2004). Bioinformática: Simulación, vida artificial e inteligencia artificial. Madrid: Díaz de Santos.; Lamm, E. y Unger, R. (2011). Biological Computation. Boca Ratón: CRC Press.; Landweber, L. F. y Kari, L. (1999). The evolution of cellular computing: nature’s solution to a computational problem. Biosystems, 52(1-3), 3-13.; Landweber, L. y Kari, L. (2002). Universal molecular computation in ciliates. En L. Landweber y E. Winfree (Eds.), Evolution as Computation. Berlín: Springer.; Landweber, L. F. y Winfree, E. (Eds.). (2002). Evolution as Computation. Berlín: Springer.; Langton, C. (1986). Studying artificial life with cellular automata. Physica D, 22(1-3), 120-149.; Langton, C. (1989). Artificial life. En C. Langton (Ed.), Artificial Life I. Redwood City: Addison-Wesley.; Langton, C. (1992). Life at the edge of chaos. En C. Langton, C. Taylor, J. D. Farmer, S. Rasmussen (Eds.), Artificial Life II (pp. 41-91). Redwood City: Addison-Wesley.; Luisi, P. L. (2010). La vida emergente: De los orígenes químicos a la biología sintética. Barcelona: Tusquets.; Macal, C. (2009). Agent based modeling and artificial life. En R. Meyers (Ed.), Encyclopedia of Complexity and Systems Science (pp. 112-131). Nueva York: Springer.; Mainzer, K. (2007). Thinking in Complexity: The Computational Dynamics of Matter, Mind and Mankind (5a. ed.). Berlín: Springer.; Maldonado, C. E. (2018). Biological hypercomputation and degrees of freedom. En López-Ruiz, R. (Ed.), Complexity in Biological and Physical Systems: Bifurcations, Solitons and Fractals (pp. 83-93). IntechOpen. doi:10.5772/inte-chopen.73179.; Maldonado, C. E. y Gómez, N. A. (2015). Biological hypercomputation: A new research problem in complexity theory. Complexity, 20(4), 8-18.; Maldonado, C. E. y Gómez, N. A. (2011). El mundo de las ciencias de la complejidad: Una investigación sobre qué son, su desarrollo y sus posibilidades. Bogotá: Universidad del Rosario.; Mayfield, J. E. (2013). The Engine of Complexity: Evolution as Computation. Nueva York: Columbia University Press.; Maynard-Smith, J. y Szathmáry, E. (2001). Ocho hitos de la evolución: Del origen de la vida a la aparición del lenguaje. Barcelona: Tusquets.; Michener, W. K. y Jones, M. B. (2012). Ecoinformatics: supporting ecology as a data-intensive science. Trends in Ecology and Evolution, 27(2), 85-93.; Mitchell, M. (1998). Computation in cellular automata: A selected review. En Gramß, T., Bornholdt, S., Groß, M., Mitchell, M. y Pellizzari, T. (Eds.), Non-Standard Computation: Molecular Computation - Cellular Automata - Evolutionary Algorithms - Quantum Computers (pp. 95-140). Weinheim: Wiley-VCH.; Mitchell, M. (2009). Complexity: A Guided Tour. Oxford: Oxford University Press.; Mitchell. M. (2012). Biological computation. The Computer Journal, 55(7), 852-855.; Moussaid, M., Garnier, S., Theraulaz, G. y Helbing, D. (2009). Collective information processing and pattern formation in swarms, flocks y crowds. Topics in Cognitive Science, 1(3), 469-497.; Navlakha, S. y Bar-Joseph, Z. (2015). Distributed information processing in biological and computational systems. Communication of the acm, 58(1), 94-102.; Navlakha, S. y Bar-Joseph, Z. (2011). Algorithms in nature: The convergence of systems biology and computational thinking. Molecular Systems Biology, 7(1), 546.; Negoita, M. y Hintea, S. (2009). Bio-Inspired Technologies for the Hardware of Adaptive Systems: Real-World Implementations and Applications. Berlín: Springer.; Neuman, Y. (2008). Reviving the Living: Meaning Making in Living Systems. Ámsterdam: Elsevier.; Niiranen, S. y Ribeiro, A. (2011). Information Processing and Biological Systems. Berlín: Springer.; Noble, D. (2006). The Music of Life: Biology Beyond the Genome. Oxford: Oxford University Press.; Nurse, P. (2008). Life, logic and information. Nature, 454(7203), 424-426.; Olariu, S. y Zomaya, A. Y. (Eds.). (2006). Handbook of Bioinspired Algorithms and Applications. Boca Ratón: Chapman y Hall.; Pǎun, G. (2002). Membrane Computing: An Introduction. Berlín: Springer.; Pǎun, G. (2005). Membrane computing: power, efficiency, applications. En B. Cooper, B. Löwe, y L. Torenvliet (Eds.), New Computational Paradigms: First Conference on Computa- bility in Europe, CiE 2005 (pp. 396-407). Berlín: Springer.; Pǎun, G., Rozenberg, G. y Saloma, A. (Eds.). (2010). The Oxford Handbook of Membrane Computing. Oxford: Oxfod University Press.; Peak, D. West, J. D., Messinger, S. M. y Mott, K. A. (2004). Evidence for complex, collective dynamics and emergent, distributed computation in plants. Proceedings of the National Academy of Sciences, 101(4), 918-922.; Prescott, D. M. y Rozenberg, G. (2002). How ciliates manipulate their own dna - a splendid example of natural computing. Natural Computing, 1(2), 165-183.; Prescott, D. M. y Rozenberg, G. (2004). Encrypted genes and their assembly in ciliates. En M. Amos (Ed.), Cellular Computing (pp. 171-201). Oxford: Oxford University Press.; Prokopenko, M. (Ed.). (2014). Guided Self-Organization: Inception. Berlín: Springer.; Prusinkiewics, P. y Lindenmayer, A. (1990). The Algorithmic Beauty of Plants. Nueva York: Springer.; Ramsden, J. (2015). Bioinformatics: An Introduction (3a. ed.). Berlín: Springer.; Reading, A. (2011). Meaningful Information: The Bridge between Biology, Brain, and Behavior. Nueva York: Springer.; Recknagel, F. (Ed.). (2006). Ecological Informatics: Scope, Techniques and Applications (2a. ed.). Berlín: Springer.; Regot, S., Macia, J., Conde, N.; et al. (2011). Distributed biological computation with multicellular engineered networks. Nature, 469(7329), 207-211.; Roederer, J. G. (2005). Information and its Role in Nature. Berlín: Springer.; Rozenberg, G. (2008). Computer science, informatics, and natural computing-Personal reflections. En S. B. Cooper, B. Löwe y A. Sorbi (Eds.), New Computational Paradigms: Changing Conceptions of What Is Computable (pp. 373- 379). Nueva York: Springer.; Rozenberg, G., Bäck, T. y Kok, J. N. (Eds.). (2012). Handbook of Natural Computing (pp. 1233-1280). Berlín: Springer.; Sakakibara, Y. y Hiyama, S. (2012). Bacterial computing and molecular communication. En G. Rozenberg, T. Bäck y J. N. Kok (Eds.), Handbook of Natural Computing (pp. 1203- 1232). Berlín: Springer.; Sampson, J. R. (1976). Adaptive Information Processing: An Introductory Survey. Nueva York: Springer.; Schiff, J. L. (2008), Cellular Automata: A Discrete View of the World. New Jersey: John Wiley y Sons.; Schrödinger, E. (1944). What is life? Cambridge: Cambridge University Press.; Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379-423.; Siegelmann, H. T. (2013). Turing on super-Turing and adaptivity. Progress in Biophysics & Molecular Biology, 113(1), 117- 126.; Sipper, M. (1990). The emergence of cellular computing. ieee Computer, 32(7), 18-26.; Sipper, M. (1997). Evolution of Parallel Cellular Machines: The Cellular Programming Approach. Berlín: Springer.; Solé, R. y Macia, J. (2011). Synthetic biocomputation: the possible and the actual. En T. Lenaerts, M. Giacobini, H. Bersini, P. Bourgine, M. Dorigo y R. Doursat (Eds), Advances in Artificial Life, ecal, 2011 (without numeration). Cambridge, ma: mit Press.; Stepney, S. (2008). The neglected pillar of material computation. Physica D: Nonlinear Phenomena, 237(9), 1157-1164.; Syropoulos, A. (2006). Fuzzifying P systems. The Computer Journal, 49(5), 619-628.; Syropoulos, A. (2008). Hypercomputation: Computing Beyond the Church-Turing Barrier. Nueva York: Springer.; Talbi, E.-G. (2009). Metaheuristics: From Design to Implementation. New Jersey: John Wiley & Sons.; Talbi, E.-G. (Ed.). (2013). Hybrid Metaheuristics. Berlín: Springer.; Teuscher, C. (2009). Cellular computing. En R. Meyer (Ed.), Encyclopedia of Complexity and Systems Science (pp. 922- 936). Berlín: Springer.; Thompson, D. W. (1917). On Growth and Form. Cambridge: Cambridge University Press.; Toffoli, T. y Margolus, N. (1987). Cellular Automata Machines: A New Environment for Modeling. Cambridge, mit Press.; Tong, J. C. y Ren, E. C. (2009). Immunoinformatics: Current trends and future directions. Drug Discovery Today, 14(13- 14), 684-689.; Tračik, G. y Bialek, W. (2016). Information processing in living systems. Annual Review of Condensed Matter Physics, 7, 89-117.; Tsuda, S., Zauner, K. P. y Gunji, Y. P. (2006). Computing substrates and life. En S. Artmann y P. Dittrich (Eds.), Explorations in the Complexity of Possible Life: Abstracting and Synthesizing the Principles of Living Systems (pp. 39-49). Jena: ios Press.; Turing, A. M. (1992(1948)). Intelligent Machinery. En D. C. Ince (Ed.), Collected Works of A. M. Turing: Mechanical Intelligence (pp. 107-128). publication date: 1992). Ámsterdam: Elsevier Science.; Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433-460.; Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B, 237(641), 37-72.; Vedral, V. (2010). Decoding Reality: The Universe as Quantum Information. Oxford: Oxford University Press.; Von Neumann, J. (1966). Theory of Self-Reproducing Automata (edited and completed by A. W. Burks). Urbana and London: University of Illinois Press.; Wagensberg, J. (2010). Las raíces triviales de lo fundamental. Barcelona: Tusquets.; Wagensberg, J., García, A. y Lins de Barros, H. (2010). Individuals vs. individualities: a Darwinian approach. Biological Theory, 5(1), 85-93.; Wagner, A. (2005). Robustness and Evolvability in Living Systems. Princeton: Princeton University Press.; Wegner, P. (1998). Interactive foundations of computing. Theoretical Computer Science, 192(2), 315-351.; Wing, J. M. (2008). Five deep questions in computing. Communications of the acm, 51(1), 58-60.; Wolfram, S. (1984). Computer software in science and mathematics. Scientific American, 251(3), 188-203.; Wooley, J. C. y Lin, H. S. (Eds.). (2005). Catalyzing Inquiry at the Interface of Computing and Biology. Washington, D.C.: The National Academies Press.; Würtz, R. (Ed.). (2008). Organic Computing. Berlín: Springer.; Xing, B. y Gao, W.-J. (2014). Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms. Berlín: Springer.; Zenil, H. (Ed.). (2012). A Computable Universe: Understanding and Exploring Nature as Computation. New Jersey: World Scientific.; Baumeister, D., Tocke, R., Dwyer, J., Ritter, S. y Benyus, J. (2014). The Biomimicry Resource Handbook: A Seed Bank of Best Practices. Missoula: Biomimicry 3.8.; Benyus, J. M. (2012 [1977]). Biomímesis: cómo la ciencia innova inspirándose en la naturaleza. Barcelona: Tusquets Editores.; Bhushan, B. (2009). Biomimetics: lessons from nature – an overview. Philosophical Transactions of the Royal Society, 367, 1445-1486.; Blok, V. y Gremmen, B. (2016). Ecological Innovation: Biomimicry as a New Way of Thinking and Acting Ecologically. Journal of Agricultural and Environmental Ethics, 29(2), 203-217.; Bonser, R. H. (2006). Patented Biologically-inspired Technological Innovations: A Twenty Year View. Journal of Bionic Engineering, 3(1), 39-41.; Cervantes, G., Sosa, R., Rodríguez, G. y Robles, F. (2009). Ecología industrial y desarrollo sustentable. Ingeniería, 13(1), 63-70.; Dicks, H. (2016). The Philosophy of Biomimicry. Philosophy & Technology, 29(3), 223-243.; Harman, J. (2013). The Shark's Paintbrush: Biomimicry and How Nature is Inspiring Innovation. Ashland: White Cloud Press.; International Organization for Standardization (iso). (2015). iso Standard 18458: Biomimetics - Terminology, concepts and methodology. Suiza: iso.; Lakhtakia, A. y Martín-Palma, R. J. (2013). Engineered biomimicry. Ámsterdam: Elsevier.; Lepora, N. F., Verschure, P. y Prescott, T. J. (2013). The state of the art in biomimetics. Bioinspiration y Biomimetics, 8(1).; McKeag, T. (2012a). Formas prometedoras: diseñando el tren bala Shinkansen Sanyo Serie 500. Zygote Quarterly (2), 10-35.; McKeag, T. (2012b). La Cosa del Pantano. Zygote Quarterly (3), 10-17.; McKeag, T. (2015). Una situación resbalosa. Zygote Quarterly, 1(12), 20-43.; Ministerio de Ambiente y Desarrollo Sostenible (mads). (Marzo 25 de 2014). El Gobierno colombiano edifica la biomímesis como política de Estado. Barranquilla: mads; Nosonovsky, M. (2018). Cultural implications of biomimetics: changing the perception of living and non-living. moj Applied Bionics and Biomechanics, 2(4), 230-236.; Pauli, G. (2011). La economía azul: 10 años, 100 innovaciones, 100 millones de empleos. Barcelona: Tusquets Editores S.A.; Pawlyn, M. (2011). Biomimicry in Architecture. Londres: riba Publishing.; Popper, K. (2006a [1945]). Dos clases de definiciones. En D. Miller (Comp.), Popper: Escritos selectos (pp. 94-113). México D.F.: Fondo de Cultura Económica.; Popper, K. (2006b [1945]). El problema de la demarcación. En D. Miller (Comp.), Popper: Escritos selectos (pp. 131-142). México D.F.: Fondo de Cultura Económica.; Riechmann, J. (2003). Biomímesis: un concepto esclarecedor, potente y persuasivo para pensar la sustentabilidad. El ecologista, 28-31.; Sánchez, J. (Junio 14 de 2016). Biomímesis: ¿Oportunidad de oro en Colombia? Dinero.; Scobey-Thal, J. y Eben Meyer, A. (2014). Anthropology of an idea: Biomimetics. Foreign Policy (209), 20-21.; Vassie, K. y Morlino, G. (2012). Natural and Artificial Systems: Compare, Model or Engineer? En T. Ziemke, C. Balkenius y J. Hallam, From Animals to Animats 12 (pp. 1-11). Berlín: Springer.; Vincent, J., Bogatyreva, O., Bogatyrev, N., Bowyer, A. y Pahl, A. (2006). Biomimetics: its practice and theory. Journal of the Royal Society Interface, 3, 471-482.; Viñolas, J. (2005). Diseño ecológico: hacia un diseño y una producción en armonía con la naturaleza. Barcelona: Art Blume.; Vogel, S. (2000). Ancas y palancas: Mecánica natural y mecánica humana. Barcelona: Tusquets Editores.; Andrade, L. E. (2009). La ontogenia del pensamiento evolutivo: Hacia una interpretación semiótica de la naturaleza. Bogotá: Editorial Universidad Nacional de Colombia.; Barbancois (1816). Observations sur la filiation des animaux, depuis le polype jusqu_au singe. Journal de Physique, de Chimie, d'Histoire Naturelle et des Arts, 82, 444-448.; Barthélemy-Madaule, M. (1982). Lamarck the Mythical Precursor. Londres: The mit Press Cambridge.; Blixen, O. (1993). El árbol de la abundancia y el origen mítico de las plantas cultivadas en América del Sur. Moana, Estudios de Antropología, 4(3), 1-67.; Botnariuc, N. y Jahn, I. (1990). La biología en la época del Renacimiento y del capitalismo manufacturero. En Historia de la Biología: Teorías, métodos, instituciones y bibliografías breves. Barcelona: Editorial Labor, S.A.; Caponi, G. (2007). Contra la lectura adaptacionista de Lamarck. En: E. A. Rosas (Ed.). Filosofía, darwinismo y evolución (pp. 3-17). Bogotá: Universidad Nacional de Colombia.; Colleman, W. (2002). La biología en el siglo xix: Problemas de forma, función y transformación. México D. F.: Fondo de Cultura Económica.; Devarco, B. y Clegg E. (27 de julio de 2010). Revisioning Trees. Shape of Thought: A New View of Visual Language. Recuperado de http://shapeofthought.typepad.com/shape_of_ thought/revisioning-trees; Darwin, C. R. (2001 [1859]). El origen de las especies. Barcelona: Edicomunicación S.A.; Doolittle, W. F. (2000). Uprooting the tree of life. Scientific American, (282), 90-95.; Eldredge, N. y Gould S. J. (1972). Punctuated equilibria. An alternative to phyletic gradualism, En T.J.M Shopf (Ed.), Models in Paleobiology (pp. 82-115). San Francisco: Freeman.; Gayon, J. (2011). The tree of life reconsidered. En J. Martínez y A. Ponce de León (Eds.), Darwins evolving legacy. Madrid: Siglo xxi Editores.; Gliboff, S. (1998). Evolution, revolution and reform in Vienna: Franz Unger´s ideas on descent and their post-1848 reception. Journal of the History of Biology, 31(2), 179-209.; González, A. (2008). Linneo: El príncipe de los botánicos. Madrid: Nivola Libros y Ediciones, S. L.; Gontier, N. (2011). Depicting the Tree of Life: the Philosophical and Historical Roots of Evolutionary Tree Diagrams. Evolution: Education & Outreach. doi 10.1007/s12052-011- 0355-0.; Gould, S. J. (1989). Wonderful Life: The Burgess Shale and the Nature of History. Nueva York: W. W. Norton & Company Ltd.; Gould S. J. (2000). A Tree Grows in Paris: Lamarck's Division of worms and Revision of Nature. En Lying Stone of Marrakech. Cambridge: Harvard University Press.; Kauffman, S. (1995). At Home in the Universe: The search for the laws of self-organization and complexity. Nueva York: Oxford University Press.; Keeling, P. (2004). Diversity and Evolutionary History of Plastids and their Hosts. American Journal of Botany, 91(10), 1481-1493.; Knoll, A. H. (2004). La vida en un joven planeta: Los primeros tres mil millones de años en la Tierra. Barcelona: Crítica.; Koonin, E. V. (2012). The logic of chance: the nature and origin of biological evolution. Canadá: Pearson Education, Inc.; Margulis, L. (1991). Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis. Cambridge: The mit Press.; Martin, W. et al. (2012). Modern endosymbiotic theory: Getting lateral gene transfer in-to the equation. Journal of Endocytobiosis and Cell Research, 23, 1-5.; Mayr, E. (2006). Por qué es única la biología: Consideraciones sobre la autonomía de una disciplina científica. Buenos Aires: Katz.; O´Malley, M. A., Martin, W. y Dupré, J. (2010). The tree of life: introduction to an evolutionary debate. Biology & Philosophy (25), 441-453.; O´Malley M. A y Koonin, E. (2011). How stands the tree of life a century and a half after The Origin? Biology Direct, 6(32), 1-21.; Rieppel, O. (2010). The series, the network, and the tree: Changing metaphors of order in nature. Biology & Philosophy, (25), 475-496.; Rumpho, M. E., Worfula, J. M., Lee. J., Kannan, K., Tyler, M. S., Bhattacharyad, D., Moustafa, A. y Manhart, J. R. (2008). Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 17867-17871.; Singer, M. (2000). Bajo la sombra de la gran ceiba: la cosmovisión de los lacandones. Desacatos, 5, p. 45-56.; Starr, M. (1966). Parasitic Interaction of Bdellovibrio bacteriovorus with Other Bacteria. American Society for Microbio logy, 91(5), 2006-2017.; Tassy, P. (2010). Trees before and after Darwin. Journal of Zoological Systematics and Evolutionary Research. doi 10.1111/j.1439-0469.2010.00585.x; Urbina, F. (Comp). (2010). Las palabras del origen: Breve compendio de la mitología de los uitotos. Biblioteca básica de los pueblos indígenas de Colombia, tomo 4. Bogotá: Ministerio de Cultura.; Wilkins, J. (2009). The first use of a taxonomic tree. Shape of Thought: A New View of Visual Language. Recuperado de https://scienceblogs.com/evolvingthoughts/2009/04/10/ the-first-use-of-a-taxonomic-t; Woese, C. R. y Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America, 74(11), 5088-5090.; Woese, C. R., Kandler, O. y Wheelis, M. L. (1990). Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America, 87(12), 4576-4579.; Zuckerkandl, E. y Pauling, L. (1965). Evolutionary Divergence and Convergence in Proteins. En V. Bryson, H. J. Vogel (Eds.), Evolving Genes and Proteins (pp. 97-166). Nueva York: Academic Press.; Agustí, J. (1998). La paradoja del progreso evolutivo. En Agustí, Jordi y Wagensberg, Jorge (Eds.), El progreso (págs. 233- 266). Barcelona: Tusquets.; Agustí, J. (2003). Fósiles, genes y teorías. Barcelona: Tusquets.; Agustí, J. (2010). El ajedrez de la vida. Barcelona: Crítica.; Allano, L. y Clamens, A. (2010). Faits et mécanismes de l”évolution. París: Ellipses.; Arthur, W. (2011). Evolution: a developmental approach. Oxford: Wiley-Blackwell.; Ayala, F. (1998). Reducción en biología. En Sergio Martínez y Ana Barahona (Eds.), Historia y explicación en biología (págs. 371-384). México: Fondo de Cultura Económica.; Ayala, F. (2007). Beyond Darwinism? The challenge of macroevolution to the Synthetic Theory of Evolution. En Michael Ruse (Ed.), Philosophy of Biology (págs. 167-192). Amherst: Prometheus Books.; Ayala, F. y Ruiz, R. (2002). De Darwin al dna y el origen de la humanidad. México: Fondo de Cultura Económica.; Ayala, F. y Stebbins, G. Ledyard. (1981). Is a new evolutionary synthesis necessary? Science, 213(4511), 967-971.; Bechtel, W. y Richardson, R. (2010). Discovering complexity. Cambridge: mit Press.; Bedau, M. (2002). Downward causation and the autonomy of weak emergence. Principia, 6(1), 5-50.; Bunge, M. (2012). Tratado de filosofía, Vol. iv: Ontología ii – Un mundo de sistemas. Buenos Aires: Gedisa.; Campbell, D. (1983). La causación descendente en los sistemas biológicos jerárquicamente organizados. En Francisco la y Theodosius Dobzhansky (Eds.), Estudios sobre la filosofía de la biología (págs. 236-245). Barcelona: Ariel.; Caponi, G. (2012a). Linajes y sistemas: dos tipos de individuos biológicos. Scientiae Studia, 10(2), 243-268.; Caponi, G. (2012b). Réquiem por el centauro: Aproximación epistemológica a la biología evolucionaria del desarrollo. México: Centro Lombardo Toledano.; Caponi, G. (2014). Las especies como linajes de poblaciones micro-evolutivamente interconectadas. Ludus Vitalis, 22(41), 91-115.; Caponi, G. (2016). Lineages and systems: a conceptual discontinuity in biological hierarchies. En Niles Eldredge, Telmo Pievani, Emanuele Serrelli e Ilya Tëmkin (Eds.), Evolutionary Theory: A hierarchical perspective (págs. 47-62). Chicago: Chicago University Press.; Caponi, G. (2017). El correlato ecológico del semaforonte. Ludus Vitalis, 25(48), 1-28.; Caponi, G. (2018). Coesão sistémica e coesão genealógica: mais uma precisão sobre a individualidade dos táxons. Filosofia y História da Biologia, 13(1), 41-60.; Chapman, M. y Burke, J. (2007). Genetic divergence and hybrid speciation. Evolution, 61, 1773-1780.; Coyne, J. y Orr, A. (2004). Speciation. Sunderland: Sinauer.; Damuth, J. (1985). Selection among species: a formulation in terms of natural functional units. Evolution, 39(5), 1132-1146.; David, P. y Samadi, S. (2000). La théorie de l”evolution. París: Flammarion.; Diéguez, A. (2012). La vida bajo escrutinio. Madrid: Buridan.; Dietrich, M. (2010). Microevolution and macroevolution are governed by the same processes. En Francisco Ayala y Robert Arp (Eds.), Contemporary debates in Philosophy of Biolo gy (págs. 169-179). Oxford: Wiley-Blackwell.; Dobzhansky, T. (1937). Genetics and the origin of species. Nueva York: Columbia University Press.; Dobzhansky, T., Ayala, F., Stebbins, L. y Valentine, J. (1980). Evolución. Barcelona: Omega.; Dodds, W. (2009). Laws, theories, and patterns. Berkeley: University of California Press.; Dollo, L. (1893). Les lois de l”évolution. Bulletin de la Societé Belge de Géologie, de Paléontologie et d”Hydrologie, 7, 164-166.; Duvois, A. (2009). Qu”est-ce que”une espèce animale? Mémoires de la sef, 8, 9-48.; El Hani, C. (2002). On the reality of emergents. Principia, 6(1), 51-88.; El Hani, C. y Pereira, A. (2000). Higher-level descriptions: why should we preserve them? En Peter Andersen, Claus Emmeche, Niels Finnemann y Peder Christiansen (Eds.), Downward causation (págs. 188-142). Aarhus: Aarhus University Press.; El Hani, C. y Queiroz, J. (2005). Modos de irredutibilidade das propriedades emergentes. Scientiae Studia, 3(1), 9-41.; Eldredge, N. (1985). Unfinished synthesis. Oxford: Oxford University Press.; Eldredge, N. (1989). La macroévolution. En Philippe Janvier y Pascal Tassy (Eds.), La Recherche en Paléontologie (págs. 19-46). París: Seuil.; Eldredge, N. (1996). Reinventing Darwin. London: Phoenix.; Eldredge, N. (2016). The checkered career of hierarchical thinking in Evolutionary Biology. En Niles Eldredge, Telmo Pievani, Emanuele Serrelli e Ilya Tëmkin (Eds.), Evolutionary Theory: A hierarchical perspective (págs. 1-16). Chicago University Press: Chicago.; Eldredge, N. y Lieberman, B. (2014). What is punctuates equilibrium? What is macroevolution? Trends in Ecology y Evo lution, 28(4), 185-186.; Eldredge, N. y Tëmkin, I. (2015). Networks and hierarchies: approaching complexity in Evolutionary Theory. En Emanuele Serrelli y Nathalie Gontier (Eds.), Macroevolution (págs. 183-226). Dordrecht: Springer.; Eldredge, N. y Vrba, N. (1984). Individuals, hierarchies and processes: towards a more complete evolutionary theory. Paleobiology, 10(2), 146-171.; Emmeche, C., Kppe, S. y Stjernfelt, F. (2000). Levels, emergence, and three versions of downward causation. En Peter Andersen, Claus Emmeche, Niels Finnemann y Peder Christiansen, (Eds.), Downward causation (págs. 13-34). Aarhus: Aarhus University Press.; Endler, J. (1986). Natural selection in the wild. Princeton: Princeton University Press.; Ereshefsky, M. (2007). Species, taxonomy, and Systematics. En Moham Mauthen y Christopher Stephens (Eds.), Philosophy of Biology (págs. 403-428). Ámsterdam: Elsevier.; Ereshefsky, M. (2008). Systematics and Taxonomy. En Sahotra Sarkar y Anya Plutynski (Eds.), A companion to the Philosophy of Biology (págs. 99-118). Oxford: Blackwell.; Erwin, D. (2000). Macroevolution is more than repeated rounds of microevolution. Evolution & Development, 2(2), 78-84.; Erwin, D. (2010). Microevolution and macroevolution are not governed by the same processes. En Francisco Ayala y Robert Arp (Eds.), Contemporary debates in Philosophy of Biology (págs. 180-193). Cambridge: Wiley-Blackwell.; Frontier, S., Pichod-Viale, D., Leprête, A., Davoult, D. y Luczak, C. (2008). Écosystèmes. París: Dunod.; Futuyma, D. (2005). Evolution. Londres: Sinauer.; Gayon, J. (1995). La biologie darwinienne de l”évolution est-elle réductionniste? Revue Philosophique de Louvain, 93(1-2), 111-139.; Gerhart, J. y Kirschner, M. (2003). Evolvability. En Brian Hall y Wendy Olson (Eds.), Keywords and concepts in Evolutionary Developmental Biology (págs. 133-137). Cambridge: Harvard University Press.; Ghiselin, M. (1974). A radical solution to the species problem. Systematic Zoology, 23, 536-544.; Ghiselin, M. (1997). Metaphysics and the origin of species. Albany: Suny.; Goldschmidt, R. ([1939]1943). Base material de la evolución. Buenos Aires: Espasa Calpe.; Gould, S. (1970). Dollo on Dollo’s law: irreversibility and the status of evolution laws. Journal of the History of Biology, 3(2), 180-122.; Gould, S. (1982). Darwinism and the expansion of Evolutionary Theory. Science, 216, 380-387.; Gould, S. (1983). The meaning of Punctuated equilibrium ant its role in validating a hierarchical approach to macroevolution. Scientiae, 118, 135-157.; Gould, S. (1998). Gulliver’s further travels: the necessity and difficulty of a hierarchical theory of selection. Philosophical Transactions of the Royal Society of London, 353, 307-314.; Gould, S. y Lloyd, E. (1993). Species selection on variability. Proceedings of the Natural Academy of Sciences, 90, 595-599.; Gould, S. y Lloyd, E. (1999). Individuality and adaptation across levels of selection: how shall we name and generalize the unit of Darwinism. Proceedings of the National Academy of Sciences of the United States of America, 96(21), 11904-11909.; Gould, S. y Vrba, E. (1986). The hierarchical expansion of sorting and selection: sorting and selection cannot be equated. Paleobiology, 12(2), 217-228.; Grant, P. y Grant, R. (2008). How and why species multiply. Princeton: Princeton University Press.; Griffiths, G. (1974). On the foundations of biological Systematics. Acta Biotheoretica, 23, 85-131.; Harrison, R. (2010). Understanding the origin of species. En Michael Bell, Douglas Futuyma, Walter Eanes y Jeffrey Levinton (Eds.), Evolution since Darwin: the first 150 years (págs. 319-346). Sunderland: Sinauer.; Hennig, W. (1968). Elementos de sistemática filogenética. Buenos Aires: Eudeba.; Hull, D. (1994[1978]). A matter of individuality. En Elliott Sober (Ed.), Conceptual issues in Evolutionary Biology (págs. 193-217). Cambridge: mit Press.; Hull, D. (1998). Sujetos centrales y narraciones históricas. En Sergio Martínez y Ana Barahona (Eds.), Historia y explicación en biología (págs. 247-273). México: Fondo de Cultura Económica.; Hull, D. (2001). Interactors versus vehicles. En David Hull (Ed.), Science and selection (págs. 13-48). Cambridge: Cambridge University Press.; Hutchinson, G. (1979). El teatro ecológico y el drama evolutivo. Barcelona: Blume.; Jablonski, D. (2010). Origination Patterns And Multilevel Processes In Macroevolution. En Massimo Pigliucci y Gerd Muller (Eds.), Evolution: the extended synthesis (págs. 335-354). Cambridge: mit Press.; Kawata, M. (1987). Units and passages: a view for Evolutionary Biology and Ecology. Biology y Philosophy, 2, 415-434.; Korn, R. (2005). The emergence principle in biological hierarchies. Biology y Philosophy, 20, 137-151.; Lincoln, R., Boxshall, G. y Clarck, P. (2009). Diccionario de ecología, evolución y taxonomía. México: Fondo de Cultura Económica.; Love, A. (2003). Evolvability, dispositions, and intrinsicality. Philosophy of Science, 70, 1015-1027.; Mai, L., Owl, M. y Kersting, P. (2005). The Cambridge Dictionary of Human Biology and Evolution. Cambridge: Cambridge University Press.; Mallet, J. (2007). Hybrid speciation. Nature, 446, 279-283.; Margulis, L. (1992). Symbiosis theory: cells as microbiological communities. En Lynn Margulis y Lorraine Olendzenski (Eds.), Environmental Evolution (págs. 149-172). Cambridge: Mitt Press.; Margulis, L. y Sagan, D. (1995). Microcosmos. Barcelona: Tusquets.; Mayhew, P. (2006). Discovering Evolutionary Ecology. Oxford: Oxford University Press.; Mayr, E. (2001). What evolution is. Nueva York: Basic Books.; Moreno, Á. (2008). Downward causation requires naturalized constraints. Cybernetics and human knowing, 15(3-4), 135-144.; Moreno, Á. y Mossio, M. (2015). Biological autonomy. Dordrecht: Springer.; Ochoa, C. (2017). El eclipse del antidarwinismo. México: Centro Lombardo Toledano.; Pievani, T. (2010). Introdução à Filosofia da Biologia. São Paulo: Loyola.; Pievani, T. y Serrelli, E. (2013). Bucket thinking: the future framework for evolutionary explanation. Contrastes, suplemento 18, 389-405.; Plutynski, A. (2008). Speciation and macroevolution. En Sahotra Sarkar y Anya Plutynski (Eds.), A companion to Philosophy of Biology (págs. 138-156). Oxford: Blackwell.; Rabosky, D., Santini, F., Eastman, J., Smith, S., Sidlauskas, B., Chang, J. y Alfaro, M. (2013). Rates of speciation and morphological evolution are correlated across the largest verte brate radiation. Nature Communications, 4, 1957.; Reznick, D. y Ricklefs, R. (Febrero 2 de 2009). Darwin”s bridge between microevolution and macroevolution. Nature, 457, 837-842.; Rieppel, O. y Grande, L. (1994). Glossary. En Olivier Rieppel y Lance Grande (Eds.), Interpreting the hierarchy of nature (págs. 227-256). Londres: Academic Press.; Rosenberg, A. (2006). Darwinian reductionism. Chicago: The University of Chicago Press.; Ruse, M. (2008). Charles Darwin. Buenos Aires: Katz.; Salgado, L. y Arcucci, A. (2016). Teorías de la evolución. Viedma: Universidad Nacional de Río Negro.; Salmon, W. (1984). Scientific explanation and the causal structure of the world. Princeton: Princeton University Press.; Salmon, W. (1998). Causality and explanation. Oxford: Oxford University Press.; Salthe, S. (1985). Evolving hierarchical systems. Nueva York: Columbia University Press.; Simpson, G. (1944). Tempo and mode of evolution. New York: Columbia University Press.; Sober, E. (1984). Sets, species, and evolution. Philosophy of Science, 51, 334-341.; Stanley, S. (1975). A theory of evolution above the species level. Proceedings of the National Academies of Sciences, 72(2), 646-650.; Sterelny, K. (2007). Macroevolution, minimalism and the radiation of animals. En David Hull y Michael Ruse (Eds.), The Cambridge companion to the Philosophy of Biology (págs. 182-210). Cambridge: Cambridge University Press.; Sterelny, K. y Griffiths, P. (1999). Sex and death. Chicago: Chicago University Press.; Umerez, J. (2016). Biological organization from a hierarchical perspective: articulation of concepts and interlevel relation. En Niles Eldredge, Telmo Pievani, Emanuele Serrelli e Ilya Tëmkin (Eds.), Evolutionary Theory: A hierarchical perspective (págs. 63-85). Chicago: Chicago University Press.; Vaux, F., Trewick, S. y Morgan-Richards, M. (2016). Lineages, splits and divergence challenge whether the terms “anagenesis” and “cladogénesis” are necessary. Biological Journal of the Linnean Society, 117(2), 165-176.; Vrba, E. y Lieberman, B. (1995). Hierarchy theory, selection and sorting. BioScience, 45(6), 394-399.; Wagner, W. y Draghi, J. (2010). Evolution of evolvability. En Massimo Pigliucci y Gerd Muller (Eds.), Evolution: The extended synthesis (págs. 379-400). Cambridge: mit Press.; Wiley, E. (1980). Is the evolutionary species fiction? Systematic Zoology, 29, 76-80.; Wimsatt, W. (1998). La emergencia como no-agregatividad y los sesgos reduccionistas. En Sergio Martínez y Ana Barahona (Eds.), Historia y explicación en Biología (págs. 385-418). México: Fondo de Cultura Económica.; Zunino, M. (2005). Filogenia de áreas de distribución: algunas reflexiones teóricas. Acta Zoológica Mexicana [n.s.] 21(1), 115-118.; Zunino, M. y Zullini, A. (2003). Biogeografía. México: Fondo de Cultura Económica.; Ahmadi, M., Hajabdollahi, M., Karimi, N. y Samavi, S. (2018). Context-Aware Saliency Map Generation Using Semantic Segmentation. Electrical Engineering (icee), Iranian Conference on Mashhad (págs. 616-620). doi:10.1109/ icee.2018.8472577; Austin, J. L., (1982). “Cómo hacer cosas con palabras”. Barcelona: Paidós.; Barabási, A-L. (2003). Linked: The New Science of Networks. Cambridge: Plume.; Bergson, H. (2006). Materia y memoria: Ensayo sobre la relación del cuerpo con el espíritu. Buenos Aires: Cactus.; Blondel, V. D., Guillaume, J-L., Lambiotte, R. y Lefevbre, E. (2008). Fast unfolding of communities in large networks. arXiv:0803.0476v2 [physics.soc-ph].; Brier, S. (2008). Cybersemiotics: Why information is not enough! Toronto: University of Toronto Press.; Buckley, W. (1993). La sociología y la teoría moderna de los sistemas sociales. Bueno Aires: Amorrortu Editores.; Clauset, A., Newman, M.J.E. y Moore, C. (2004). Finding community structure in very large networks.arXiv:cond-ma-t/0408187v2 [cond-mat.stat-mech]; Gómez, J., Molina, M., Oehmichen, A. y Guo, Y. (2018). Visualizing large knowledge graphs: A performance analysis. Future Generation Computer Systems, 89, 224-238. https:// doi.org/10.1016/j.future.2018.06.015; Han, B-C. (2014). En el enjambre. Barcelona: Herder Editorial.; Heider, F. (1946). Attitudes and cognitive organization. Journal of Psychology, 21, 107-112.; Hummon, N. y Dereian, P. (1989). Connectivity in a citation network. The development of dna theory. Social Networks, 11, 39-63.; Husserl, E. (1996). Meditaciones cartesianas. José Gaos, Miguel García Baró (Trad.). México: Fondo de Cultura Económica.; Kauffman L. H. (2017). Mathematical work of Francisco Varela. Constructivist Foundations, 13(1), 11-17. http://constructi- vist.info/13/1/011; Kauffman, L. (2002). Laws of form and form dynamics. Cybernetics & Human Knowing 9(2), 49-63; Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J., Moreno, Y. y Porter, M. (2013). Mutilayer Networks. arXiv:1309.7233v2 [physics.soc-ph]; Korzybski, A. (1933). Science and Sanity: An introduction to non-aristotelian systems and general semantics Lakeville. Conn.: International Non-aristotelian Library Publishing Co.; Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A-L. et al. (2009). Computational Social Science. Science 323(5915), 721-723, doi:10.1126/science.1167742; Levy, P. (2004). Inteligencia colectiva: Por una antropología del ciberespacio. Washington; Bireme/paho/who.; Lewkow, L. (2017). Luhmann, intérprete de Husserl: El observador observado. Buenos Aires: Miño y Dávila.; Leydesdorff, L. (2005). Similarity measures, author cocitation analysis, and information theory. Journal of the Association for Information Science and Technology, 56, 769-772. doi:10.1002/asi.20130; Leydesdorff, L. (2009). The non-linear dynamics of meaning processing in social systems. Social Science Information, 48(1), 5-33. doi: https://doi.org/10.1177/0539018408099635; Leydesdorff, L. (2015). Una teoría sociológica de la comunicación: La autoorganización de la sociedad basada en conocimiento. México: Universidad Iberoamericana.; Leydesdorff, L. (2018). Diversity and interdisciplinarity: how can one distinguish and recombine disparity, variety, and balance?. Scientometrics, 116, 2113. https://doi.org/10.1007/ s11192-018-2810-y; Lucio-Arias, D. y Leydesdorff, L. (2008). Main-path analysis and path-dependent transitions in HistCite™-based historiograms. Journal of the American Society for Information Science and Technology, 59(12), 1948-1962; Luhmann, N. (1995). Las ciencias modernas y la fenomenología. Manuscrito Conferencia dictada en el Auditorio del Ayuntamiento de Viena el 25 de mayo de 1995.; Luhmann, N. (2007). La sociedad de la sociedad. México: Herder.; Martinelli, D. (2007). Zoosemiotics: Proposals for a handbook. Helsinki: International Semiotics Institute.; Maturana, H. y Varela, F. (2004). De máquinas y seres vivos. Autopoiesis: la organización de lo vivo. Santiago de Chile: Lumen.; Newman, M. J. E. (2006). Modularity and community structure in networks. arXiv:physics/0602124v1 [physics.data-an]; Palacios, G., Vélez, G. y Botero, J. D. (2018). Developmental tendencies in the academic field of intellectual property through the identification of invisible colleges. Scientometrics, 115, 1561. https://doi.org/10.1007/s11192-018-2648-3; Piaget, J. (1969). Biología y conocimiento. México: Siglo xxi.; Piaget, J. (1978). La equilibración de las estructuras cognitivas: Problema central del desarrollo. México: Siglo xxi.; Pizarro, N. (1998). Tratado de metodología de las ciencias sociales. Madrid: Siglo xxi Editores.; Quine, W. (2001). Palabra y objeto. Barcelona: Herder.; Salton, G. y McGill, M. (1986). Introduction to Modern Information Retrieval. Nueva York: McGraw-Hill Inc.; Spencer-Brown, G. (1972). Laws of form. Nueva York: The Julian Press Inc.; Schrödinger, E. (1944). What is life? The physical aspect of the living cell. Cambridge: Cambridge University Press.; Sowa, J. F. (2006). Semantic Networks. En L. Nadel (Ed.), Encyclopedia of Cognitive Science. doi:10.1002/0470018860. s00065; Varela, F. (1979). Principles of biological autonomy. Limerick: Thomond Books.; Vélez, G. (2011). Formas de la comunicación y redes de sentido. En Galindo, J. Comunicología posible: Hacia una ciencia de la comunicación. México: Universidad Iberoamericana.; Vélez, G. (2012). Las redes de sentido como modelo para la observación de la ciencia: Luhmann desde el punto de vista estructural. En Estrada Saavedra, M. y Millán, R. La teoría de los sistemas de Niklas Luhmann a prueba: Horizontes de aplicación en la investigación social en América Latina (págs. 219-274). México: Colmex, unam.; Vélez, G., Brand, E., Osorio, A. M., Montoya, S., Echeverry, L., Cardona, B. y Rodríguez, S. (2017). Discovering invisible colleges through networks of meaning. Ponencia presentada en la reunión anual del rc51 de la Asociación Internacional de Sociología. Medellín, 20-23 de junio.; Von Foester, H. (2002). Sistémica elemental desde un punto de vista superior. Medellín: Fondo Editorial Universidad Eafit.; Von Foester, H. (2006). Las semillas de la cibernética: Obras escogidas. Madrid: Gedisa.; Waltman, L., Van Eck, N. J. y Noyons, E. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics 4, 629-635. doi:10.1016/j. joi.2010.07.002; Watts, D. (2006). Seis grados de separación: La ciencia de las redes en la era del acceso. Barcelona: Espasa Libros.; Watts, D. y Strogatz, S. H. (1998). Collective dynamics of the small-world networks. Nature, 393, 440-442.; Watzlawick, P. (1995). El sinsentido del sentido o el sentido del sinsentido. Barcelona: Editorial Herder.; Zhao, J., Zhan, Z., Yang, Q., Zhang, Y., Hu, Ch., Li, Zh., Zhang, L. y He, Zh. (2018). Adaptive Learning of Local Semantic and Global Structure Representations for Text Classification. Proceedings of the 27th International Conference on Computational Linguistics, pages 2033-2043, Santa Fe, New Mexico, usa, August 20-26.; Alvarenga, H., Jones, W. y Rinderknecht, A. (2010). The youngest record of phorusrhacid birds (Aves, Phorusrhacidae) from the late Pleistocene of Uruguay. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 256, 229-234.; Antoine, P., Marivaux, L., Croft, D., Billet, G., Ganerød, M., Jaramillo, C. et al. (Abril 7 de 2011). Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography. Proceedings of the Royal Society of London, 279(1732), 1319-1326.; Antoine, P., Salas-Gismondi, R., Pujos, F., Ganerød, M. y Marivaux, L. (2016). Western Amazonia as a hotspot of mammalian biodiversity throughout the Cenozoic. Journal of Mammalian Evolution, 24(1), 5-17.; Bacon, C., Molnar, P., Antonelli, A., Crawford, A., Montes, C. y Vallejo-Pareja, M. (2016). Quaternary glaciation and the Great American Biotic Interchange. Geology, 44(5),375-378.; Bartoli, G., Sarnthein, M., Weinelt, M., Erlenkeuser, H., Garbe-Schönberg, D. y Lea, D. (2005). Final closure of Panama and the onset of northern hemisphere glaciation. Earth and Planetary Science Letters, 237, 33-44.; Billet, G. (2011). Phylogeny of the Notoungulata (Mammalia) based on cranial and dental characters. Journal of Systematic Palaeontology, 9(4), 481-497.; Bloch, J., Woodruff, E., Wood, A., Rincón, A., Harrington, A. et al. (2016). First North American fossil monkey and early Miocene tropical biotic interchange. Nature, 533, 243-246.; Bond, M., Tejedor, M., Campbell, K., Chornogubsky, L., Novo, N. y Goin, F. (2015). Eocene primates of South America and the African origins of New World monkeys. Nature, 520(7548), 538-541.; Cabrera, A. (1971). Fitogeografía de la República Argentina. Boletín de la Sociedad Argentina de Botánica, 14, 1-42.; Cabrera, A. y Yepes, J. (1940). Mamíferos Sud Americanos: Vida, costumbres y descripción. Historia Natural Ediar. Buenos Aires: Compañía Argentina de Editores.; Cabrera, A. y Willink, A. (1973). Biogeografía de América Latina. Washington: oea, Programa de Desarrollo Científico y Tecnológico. Serie de Biología Monografía no. 13.; Cabrera, A. y Willink, A. (1980). Biogeografía de América Latina. Washington: oea, Serie de Biología, Monografía no. 13.; Campbell, K., Frailey, D. y Romero-Pittman, L. (2000). The late Miocene gomphothere Amahuacatherium peruvium (Proboscidea: Gomphotheriidae) from Amazonian Peru: implications for the Great American Faunal Interchange. Instituto de Geológico Minero y Metalúrgico, Serie D: Estudios Regionales, 23(1), 1-152.; Campbell, K., Prothero, D., Romero-Pittman, L., Hertel, F. y Rivera, N. (2010). Amazonian magnetostratigraphy: dating the first pulse of the Great American Faunal Interchange. Journal of South American Earth Sciences, 29(3), 619-626.; Cantalapiedra, J., Prado, J., Hernández, M. y Alberdi, M. (2017). Decoupled ecomorphological evolution and diversification in Neogene-Quaternary horses. Science, 355(6325), 627-630.; Carlini, A. y Zurita, A. (2010). An introduction to Cingulate evolution and their evolutionary history during the Great American Biotic Interchange: biogeographical clues from Venezuela. En M Sánchez, O Aguilera y A Carlini (Eds.), Urumaco and Venezuela Paleontology: The fossil record of the Northern Neotropics, vol. 12. (págs. 233-254). Bloomington: Indiana University Press.; Carlini, A., Zurita, A. y Aguilera, O. (2008). North American glyptodontines (Xenarthra, Mammalia) in the upper Pleistocene of northern South America. Paläontologische Zeits chrift, 82(2), 125-138.; Carranza O. y Miller, W. (2004). Late Tertiary terrestrial mammals from central Mexico and their relationship to South American immigrants. Revista Brasileira de Paleontologia, 7,2249-2261.; Castro, M. (2015). Sistemática y evolución de los armadillos Dasypodini (Xenarthra, Cingulata, Dasypodidae). Revista del Museo de La Plata, 15, 1-50.; Cione, A. y Tonni, E. (1995). Chronostratigraphy and “Land-mam mal ages” in the Cenozoic of southern South America: principles, practices, and the “Uquian” problem. Journal of Paleontology, 69, 135-159.; Cione, A. y Tonni, E. (1996). Inchasi, a Chapadmalalan (Pliocene) locality in Bolivia. Comments on the Pliocene-Pleistocene continental scale of southern South America. Journal of South American Earth Sciences, 9, 221-236.; Cione, A. y Tonni, E. (2005). Bioestratigrafía basada en mamíferos del Cenozoico superior de la provincia de Buenos Aires, Argentina. En RE de Barrio, RO Etcheverry, MF Caballé y E Llambías (Eds.), Geología y Recursos Minerales de la Provincia de Buenos Aires, vol. 11 (págs. 183-200). Relatorio del xvi Congreso Geológico Argentino.; Cione, A., Tonni, E. y Soibelzon L. (2003). The broken Zig-Zag: late Cenozoic large mammal and turtle extinction in South America. Revista del Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, 5, 1-19.; Cione A., Tonni, E. y Soibelzon L. (2009). Did humans cause large mammal late Pleistocene- Holocene extinction in South America in a context of shrinking open areas? En G. Haynes (Ed.), American megafauna extinctions at the end of the Pleistocene. Vertebrate Paleobiology and Paleontology Series (págs. 125-144). Berlin: Springer.; Cione, A., Tonni, E., Bargo, S., Bond, M., Candela, A. et al. (2007). Mamíferos continentales del Mioceno tardío a la actualidad en Argentina: Cincuenta años de estudios (págs. 257-278). Asociación Paleontológica Argentina Publicación Especial 11, 50th aniversario.; Cione, A., Gasparini, G., Soibelzon, E., Soibelzon, L. y Tonni, E. (2015). The Great American Biotic Interchange in Southern South America: A southern perspective. Nueva York - Londres: Springer Briefs in Earth System Sciences.; Cisneros, J. (2005). New Pleistocene vertebrate fauna from El Salvador. Revista Brasileira de Paleontologia, 8(3), 239-55.; Clark, P., Dyke, A., Shakun, J., Carlson, A., Clark, J. et al. (2009). The Last Glacial Maximum. Science, 325(5941), 710-714.; Cox, C. (2001). The biogeographic regions reconsidered. Journal of Biogeography, 28, 511-523.; Cronin, T. y Dowsett, H. (1996). Biotic and oceanographic response to the Pliocene closing of the Central American Isthmus. En J. B. C. Jackson, A. F. Budd, A. G. Coates (Eds.), Evolution and Environment in Tropical America (págs. 76- 104), Chicago: University of Chicago Press.; Coronato, A.M. y Rabassa, J. (2011). Pleistocene Glaciations in Southern Patagonia and Tierra del Fuego. En Quaternary glaciations-extent and chronology a closer look (págs. 715-728). Amsterdam: Elsevier.; D’Elía, G., Hurtado, N. y D’Anatro, A. (2016). Alpha taxonomy of Dromiciops (Microbiotheriidae) with the description of 2 new species of monito del monte. Journal of Mammalogy, 97(4), 1136-1152.; De Oliveira, F.B., Molina, E.C. y Marroig, G. (2009). Paleogeography of the South Atlantic: a route for primates and rodents into the New World? En Garber, P.A., Estrada, A., Bicca-Marques, J.C., Heymann, E.W., Strier, K.B. (Eds.), South American Primates: Comparative Perspectives in the Study of Behavior, Ecology, and Conservation (págs. 55- 68). Nueva York: Springer Verlag.; Deschamps, C.M. (2005). Late Cenozoic mammal bio-chronos tratigraphy in southwestern Buenos Aires Province, Argentina. Ameghiniana, 42(4),733-750.; Ezcurra, M.D. y Agnolín, F.L. (2012). A new global palaeobio geographical model for the Late Mesozoic and Early Tertiary. Systematic Biology, 61 (4), 553-566.; Fariña, R. y Vizcaíno, S.F. (1999). A century after Florentino Ameghino: The palaeobiology of the Quaternary Land Mamad fauna of South America. En J. Rabassa y M. Salemme (Eds.), Quaternary of South America and Antarctic Peninsula, vol. 12 (págs. 255-77). Rotterdam: A. A. Balkema.; Farris, D.W., Jaramillo, C., Bayona, G., Restrepo-Moreno, S.A., Montes, C.et al. (2011). Fracturing of the Panamanian Isthmus during initial collision with South America. Geology, 39, 1007-1010.; Ferigolo, J. (1999). Late Pleistocene South American land-mam mal extinctions: the infection hypothesis. En Tonni, E.P. y Cione, A.L. (Eds.). Quaternary vertebrate palaeontology in South America and Antarctic Peninsula, 12,: 279-310. Rotterdam: A. A. Balkema.; Ficcarelli, G., Azzaroli, A., Bertini, A., Coltorti, M., Mazza, P. et al. (1997). Hypothesis on the cause of extinction of the South American mastodonts. Journal of South American Earth Sciences, 10,29-38.; Flynn, J.J. y Wyss, A.R. (1998). Recent advances in South American mammalian paleontology. Trends in Ecology and Evolution, 13(11), 449-454.; Flynn, J.J. (2008). Hystricognathi and Rodentia Incertae Sedis. En Janis CM, Gunnell GE, Uhen MD (Eds.), Evolution of Tertiary Mammals of North America, vol. 2. (págs. 498- 506). Cambridge: Cambridge University Press.; Flynn, J.J., Kowallis, B.J., Nuñez, C., Carranza-Castañeda, O. et al. (2005). Geochronology of Hemphillian-Blancan Aged Strata, Guanajuato, Mexico, and implications for timing of the Great American Biotic Interchange. Journal Geology, 113, 287-307.; Forasiepi, A.M. (2009). Osteology of Arctodictis sinclairi (Mam-malia, Metatheria, Sparassodonta) and phylogeny of Cenozoic metatherian carnivores from South America. Monografías del Museo Argentino de Ciencias Naturales, 6, 1-174.; Forasiepi, A.M., Soibelzon, L.H., Gómez, C.S., Sánchez, R., Quiroz, L.I., Jaramillo, C., et al. (2014). Carnivorans at the Great American Biotic Interchange: new discoveries from the northern neotropics. Naturwissenschaften, 101(11), 965-974.; Frailey, C. D. y Campbell, K. E. (2012). Two new genera of peccaries (Mammalia, Artiodactyla, Tayassuidae) from upper Miocene deposits of the Amazon Basin. Journal of Paleon tology, 86, 852-877.; Gardner, A. L. (Ed.). (2007[2008]). Mammals of South America. Volume 1: marsupials, xenarthrans, shrews and bats. Chicago, Illinois y Londres: University of Chicago Press.; Gasparini, G.M. (2013). Records and stratigraphic ranges of South American Tayassuidae (Mammalia, Artiodactyla). Jour nal of Mammalian Evolution, 20(1), 57-68.; Gasparini, G.M., De los Reyes, M., Francia, A., Scherer, C. y Poiré, D.G. (2017). The oldest record of Hemiauchenia Gervais and Ameghino (Mammalia, Cetartiodactyla) in South America: Comments about its paleobiogeographic and stratigraphic implicances. Geobios, 50(2), 141-153. http://dx.doi.org/10.1016/j.geobios.2016.12.003; Gaudin, T.J. y Croft, D.A. (2015). Paleogene Xenarthra and the evolution of South American mammals. Journal of Mammalogy, 96(4), 622-634.; Gillette, D. y Ray, C.E. (1981). Glyptodonts of North America. Smithsonian Contributions to Palaeobiology, 40,1-251.; Goin, F.J., Woodburne, M.O., Zimicz, A.N., Martin, G.M. y Chornogubsky, L. (2016). A Brief History of South American Metatherians: Evolutionary Contexts and Intercontinental Dispersals. Netherlands, Dordrecht, Países Bajos: Springer Earth System Sciences.; Goebel, T., Waters, M.R. y O’Rourke, D.H. (2008). The late Pleistocene dispersal of modern humans in the Americas. Science, 319(5869), 1497-1502.; Graham, R.W. y Lundelius, E. (1984). Coevolutionary disequilibrium and Pleistocene extinctions. En Martin, P.S. y Klein, R.G. (Eds.), Quaternary extinctions: A Prehistoric revolution (págs. 223-249). Tucson, usa: The University of Ari- zona Press.; Groeneveld, J., Hathorne, E.C., Steinke, S., DeBey, H., Mackensen, A. y Tiedemann, R. (2014). Glacial induced closure of the Panamanian Gateway during Marine Isotope Stages (MIS) 95-100 (~2.5 Ma). Earth and Planetary Science Letters, 404, 296-306.; Herrera, C.M., Powell, J.E. y Papa, C.D. (2012). Un nuevo Dasypodidae (Mammalia, Xenarthra) de la Formación Casa Grande (Eoceno) de la Provincia de Jujuy, Argentina. Ameghiniana, 49(2), 267-271.; Hoffmeister, M. (2016). El origen de la fauna sudamericana moderna: de Gondwana al Gran Intercambio Biótico Americano. En Pino, M. (Ed.), El Sitio Pilauco Osorno, Patagonia Noroccidental de Chile (págs.47-74). Chile: Universidad Austral de Chile.; Hoorn, C., Wesselingh, F.P., Ter Steege, H., Bermúdez, M.A., Mora, A. y Sevink, J. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330(6006), 927-931.; Ihering, H. Von. (1900). The history of the Neotropical Region. Science, 12: 857-864.; Jenkins, C., Pimm, S. y Joppa L. (2013). Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of the National Academy of Sciences, E2602-E2610.; Krapovickas, V. y Vizcaíno, S. (2016). The Cenozoic Radiation of Mammals. En Mángano, M., Buatois, L. (Eds.), The Trace-Fossil Record of Major Evolutionary Events. Topics in Geobiology, vol. 40 (págs. 371-410). Springer Netherlands: Dordrecht, Países Bajos.; Laurito, C.A. y Valerio, A.L. (2012). Paleobiogeografía del arribo de mamíferos suramericanos al sur de América Central previo al Gran Intercambio Biótico Americano: un vistazo al gabi en América Central. Revista Geológica de América Central, 46, 123-144.; Line, S. y Bergqvist, L. (2005). Enamel structure of Paleocene mammals of the São José de Itaboraí basin, Brazil. ‘Condylarthra’, Litopterna, Notoungulata, Xenungulata, and Astrapotheria. Journal of Vertebrate Paleontology, 25(4), 924-928.; López, G., Reguero, M. y Lizuain, A. (2001). El registro más antiguo de mastodontes (Plioceno tardío) de América del Sur. Ameghiniana, 38, R35-R36.; MacFadden, B.J. (2013). Dispersal of Pleistocene Equus (Family Equidae) into South America and Calibration of gabi 3 Based on evidence from Tarija, Bolivia. PLoS one, 8(3), e59277. doi:10.1371/journal.pone.0059277; MacFadden, B.J., Labs-Hochstein, J., Hulbert, R.C. Jr. y Baskin, J.A. (2007). Revised age of the late Neogene terror bird (Titanis) in North America during the Great American Biotic Interchange. Geology, 35,123-126.; Martin, P.S. (1967). Prehistoric overkill. En Martin P.S. y H. Wright Jr. (Eds.), Pleistocene extinctions: The search for the cause (págs. 75-120). New Haven: Yale University Press.; Mayr, G. (2009). Paleogene fossil birds. Heidelberg: Springer.; Morgan, G.R. (2008). Vertebrate fauna and geochronology of the Great American Biotic Interchange in North America. En Lucas SG, Mogan GS, Spielmann JA, Prothero DR (Eds.), Neogene mammals: Bulletin, vol. 44. New Mexico Museum of Natural History and Science, 93-140.; Morrison, J. C., Sechrest, W., Dinerstein, E., Wilcove, D. S., y Lamoreux, J. F. (2007). Persistence of large mammal faunas as Indicators of global human impacts. Journal of Mammalogy, 88(6), 1363-1380.; Morrone J.J. (2001). Biogeografía de América Latina y el Caribe, vol 3. M&T-Manuales & Tesis sea, Sociedad Entomológica Aragonesa, Zaragoza, p 148.; Morrone J.J. (2006). Biogeographic areas and transition zones of Latin America and the Caribbean Islands based on panbiogeographic and cladistic analyses of the entomofauna. Annu Rev Entomol 51:467-494; Morrone, J. J. (2014). Biogeographical regionalisation of the Neotropical region. Zootaxa, 3782(1),001-110.; Mothé, D. y Avilla, L.S. (2015). Mythbusting evolutionary issues on South American Gomphotheriidae (Mammalia: Proboscidea). Quaternary Science Reviews, 110, 23-35.; Mothé, D., Dos Santos, L., Asevedo, L., Borges-Silva, L., Rosas, M.et al. (2017). Sixty years after "The mastodonts of Brazil": the state of art of South American proboscideans (Proboscidea, Gomphotheriidae). Quaternary International, 443, 52-64.http://dx.doi.org/10.1016/j.quaint.2016.08.028; Newkirk, D.R. y Martin, E.E. (2009). Circulation through the Central American Seaway during the Miocene carbonate crash. Geology, 37, 87-90.; Ochsenius, C. (1997). The Neogene and Pleistocene savannization of Amazonia. Actas vi Congresso da Associacao Brasileira de Estudos do Quaternário (págs. 462-466), Curitiba, Brazil.; O´Dea, A., Lessios, H.A., Coates, A.G., Eytan, R.I., Restrepo-Moreno, A.et al. (2016). Formation of the Isthmus of Panama. Science Advances, 2 (8), 1-1. doi: http://dx.doi. org/10.1126/sciadv.1600883; Olson D.M., Dinerstein E., Wikramanayake E., Burgess N., Powell G.et al. (2001). Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience, 51(11), 933-938.; Osborne, A.H., Newkirk, D.R., Groeneveld, J., Martin, E.E., Tiedermann, R. y Frank, M. (2014). The seawater neodymium and lead isotope record of the final stages of Central American Seaway closure. Paleoceanography, 29,715-729.; Owen-Smith, N. (1987). Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology, 13, 351-362.; Pardiñas, UFJ. (1999). Fossil murids: taxonomy, palaeoecology, and palaeoenvironments. En Tonni EP, Cione AL (Eds.), Quat S Am Antarct Peninsula, 12, 225-254.; Pardiñas, U.F.J. (2004). Roedores sigmodontinos (Mammalia, Rodentia, Cricetidae) y otros micromamíferos como indicadores de ambientes hacia el Ensenadense cuspidal en el sudeste de la provincia de Buenos Aires (Argentina). Ame- ghiniana, 41(3), 437-450.; Pardiñas, U. y Tonni, E. (1998). Procedencia estratigráfica y edad de los más antiguos muroideos (Mammalia, Rodentia) de América del Sur. Ameghiniana, 35(4), 473-475.; Parisi Dutra, R., DeMelo, D., Velloso, R., Gasparini, G.M., Araújo, F. y Cozzuol, M.A. (2017a). Phylogenetic Systematics of Peccaries (Tayassuidae: Artiodactyla) and a Classification of South American Tayassuids. Journal of Mammalian Evolution, 24, 345-358. http://link.springer.com/ article/10.1007/s10914-016-9347-8; Parisi, R., Perini, F.A., Cozzuol, M.A., Missagia, R.V. y Gasparini, G.M. (2017b). On the supposed presence of Miocene Tayassuidae and Dromomerycinae (Mammalia, Artiodactyla) in South America. xxx Jornadas Argentinas de Masto zoología (sarem). Bahía Blanca.; Parrish, J.T. (1993). Climate of the supercontinent Pangea. The Journal of Geology, 101(2), 215-233.; Pérez, S., Postillone, M., Rindel, D., Gobbo, D., Gonzalez, P.N. y Bernal, V. (2016). Peopling time, spatial occupation and demography of Late Pleistocene-Holocene human population from Patagonia. Quaternary International, 425, 214-223.; Pimm, S.L. y Raven, P. (2000). Extinction by numbers. Nature, 403, 843-845.; Prado, J.L. y Alberdi, M.T. (2014). Global evolution of Equidae and Gomphotheriidae from South America. Integrative Zoology, 9(4), 434-443.; Prado, J., Alberdi, M., Sánchez. B., Azanza, B. y Frassinetti, D. (2005). The Pleistocene Gomphotheriidae (Proboscidaea) from South America. Quaternary International, 126, 128, 21-30.; Prevosti, F. (2006). Grandes cándidos (Carnivora, Canidae) del Cuaternario de la República Argentina. Sistemática, filogenia, bioestratigrafía y paleoecología. Tesis doctoral. Universidad Nacional de La Plata.; Prevosti, F. y Soibelzon, L.H. (2012). Evolution of the South American carnivores (Mammalia, Carnivora): a paleontological perspective. En Patterson BD, Costa LP (Eds.), Bones, clones, and biomes: An 80-million year history of modern Neotropical mammals, vol. 6 (págs. 102-122). Chicago: University of Chicago Press.; Prevosti, F.J., Forasiepi, A.M., Ercoli, M.D., Turazzini, G.F., Vizcaíno, S.F., Kay, R.F., et al. (2012). Paleoecology of the mammalian carnivores (Metatheria, Sparassodonta) of the Santa Cruz Formation (late early Miocene). En Vizcaíno, S.F., Kay, R.F., Bargo, M.S. (Eds.), Early Miocene paleobiology in Patagonia: high latitude paleocommunities of the Santa Cruz Formation (págs.173-193). Cambridge: University Press.; Prevosti, F.J., Forasiepi, A. y Zimicz, N. (2013). The evolution of the Cenozoic terrestrial mammalian predator guild in South America: competition or replacement? Journal of Mam malian Evolution, 20(1), 3-21.; Prothero, D., Campbell, K., Beatty, B. y Frailey, C. (2014). New late Miocene dromomerycine artiodactyl from the Amazon Basin: implications for interchange dynamics. Journal of Paleontology, 88(3), 434-443.; Rabassa, J. (2008). Late Cenozoic glaciations in Patagonia and Tierra del Fuego. En Rabassa J (Ed.), The Late Cenozoic of Patagonia and Tierra del Fuego, developments in quaternary science, vol. 11 (págs. 151-204). Amsterdam: Elsevier.; Rabassa, J., Coronato, A.M. y Salemme, M.C. (2005). Chronology of the Late Cenozoic Patagonia glaciations and their correlation with biostratigraphic units of the pampean region (Argentina). Journal of South American Earth Sciences, 20, 81-103.; Redford, K.H. y Eisenberg, J.F. (1992). Mammals of the Neotropics. The Southern Cone. Chile, Argentina, Uruguay, Paraguay. Illinois: University of Chicago Press.; Reguero, M., Candela, A. y Alonso, R. (2007). Biochronology and biostratigraphy of the Uquia Formation (Pliocene-early Pleistocene, nw Argentina) and its significance in the Great American Biotic Interchange. Journal of South American Earth Sciences, 23(1), 1-16. doi:10.1016/j.jsa-mes.2006.09.005.; Reguero, M.A. y Candela, A.M. (2011). Late Cenozoic mammals from the northwest of Argentina. En Salfity R, Marquillas MR (Eds.), Cenozoic geology of the Central Andes of Argentina (págs. 411-426). Salta: scs Publishers.; Reguero, M. A., Gelfo, J.N., López, G.M., Bond, M., Abello, A., Santillana, S.N. y Marenssi, S.A. (2014). Final Gondwana breakup: The Paleogene South American native ungulates and the demise of the South America–Antarctica land connection. Global and Planetary Change, 123B: 400-413.; Rinderknecht, A. y Blanco, R.E. (2015). History, taxonomy and paleobiology of giant fossil rodents (Hystricognathi, Dinomyidae). En Cox, P.G. Hautier, L. (Eds.), Evolution of the rodents: Advances in Phylogeny, Functional morphology and Development (págs.164-185). Cambridge, Reino Unido: Cambridge University Press.; Rincón, A.D., White, R.S. y McDonald, H.G. (2008). Late Pleistocene cingulates (Mammalia, Xenarthra) from Mene de Inciarte tar pits, Sierra de Perijá, Western Venezuela. Jour nal of Vertebrate Paleontology, 28(1), 197-207.; Ringuelet, R.A. (1961). Rasgos fundamentales de la Zoogeografía de la Argentina. Physis 22(63), 151-170.; Oliveira, E.V. y Goin, F.J. (2011). A reassessment of bunodont metatherians from the Paleogene of Itaboraí (Brazil): systematics and age of the Itaboraian Salma. Revista Brasilei ra de Paleontologia, 14(2), 105-136.; Poux, C., Chevret, P., Huchon, D., De Jong, W.W. y Douzery, E.J.P. (2006). Arrival and diversification of caviomorph rodents and platyrrhine primates in South America. Systema tic Biology, 55(2), 228-244.; Sclater, P.L. (1858). On the general geographic distribution of the members of the class Aves. Proceedings of the Linnean Society of London. Zoology, 2, 130-145.; Shackleton, N., Hall, M. y Pate, D. (1995). Pliocene stable isotope stratigraphy of Site 846. En N. G. Pisias, L. A. Mayer, T. R. Janecek, A. Palmer-Julson, T. H. van Andel, (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Texas A & M. University. Ocean Drilling Program, vol. 138 (págs. 337-355).; Schneider, B. y Schmittner, A. (2006). Simulating the impact of the Panamanian seaway closure on ocean circulation, marine productivity and nutrient cycling. Earth and Planetary Science Letters, 246, 367-380.; Scillato-Yané, G. J., Carlini, A.A. (1998). Un gigantesco gliptodonte en los alrededores de la ciudad de La Plata. Facultad de Ciencias Naturales y Museo de La Plata (unlp), Museo, 2(11), 45-48.; Simpson, G.G. (1950). History of the Fauna of Latin America. American Science, 38, 261-389.; Simpson, G.G. (1980). Splendid isolation: the curious history of South American mammals. New Haven, Connecticut: Yale University Press.; Soibelzon, E. (2019). Using Paleoclimate and the Fossil Record to Explain Past and Present Distributions of Armadillos (Xenarthra, Dasypodidae). Journal of Mammalian Evolution. 26, 61-70. doi 10.1007/s10914-017-9395-8.; Soibelzon, L. (2008). Broken Zig-Zag. Una nueva hipótesis sobre las causas de la extinción de los megamamíferos en América del Sur. Museo, 22, 24-36.; Soibelzon, L., Tonni, E. y Bond, M. (2005). The fossil record of South American short-faced bears (Ursidae, Tremarctinae). Journal of South American Earth Sciences, 20, 105-113.; Soibelzon, L.H., Romero, M., Aguilar, D. y Tartarini, V., (2008). A Blancan (Pliocene) short-faced bear from El Salvador and its implications for Tremarctines in South America. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 250(1), 1-8.; Soibelzon, L.H., Zamorano, M., Scillato-Yané, G.J., Piazza, D., Rodríguez, S., Soibelzon, E.et al. (2012). Un glyptodontidae de gran tamaño en el Holoceno temprano de la región Pampeana. Revista Brasileira de Paleontologia, 15, 113-122.; Soibelzon L.H., A.E. Zurita, C.C. Morgan, S. Rodríguez, G.M. Gasparini, E. Soibelzon, B.W. Schubert y A. Miño Boilini. (2010). Primer registro fósil de Procyon cancrivorus (G. Cuvier, 1798) en la Argentina. Revista Mexicana de Ciencias Geológicas 27: 313-319.; Soibelzon, E., Francia, A. y Ciancio, M. R. (2015). Los mamíferos fósiles de la región pampeana. En Ciancio, Soibelzon y Francia (Eds.), Caminando sobre gliptodontes y tigres diente de sable: Una guía didáctica para comprender la evolución de la vida en la Tierra. La Plata: Editorial de la Universidad de La Plata.; Springer, M.S., Meredith, R.W., Janecka, J.E. y Murphy, W.J. (2011). The historical biogeography of Mammalia. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366(1577), 2478-2502.; Tiedemann, R., Sarnthein, M. y Shackleton, N.J. (1994). Astronomic timescale for the Pliocene Atlantic d18O and dust flux records of Ocean Drilling Program Site 659. Paleocea nography, 9, 619-638.; Tonni E., Alberdi, M., Prado, J., Bargo, M. y Cione, A. (1992). Changes of mammal assemblages in the Pampean Region (Argentina) and their relation with the PlioPleistocene boundary. Palaeogeogr Palaeoclimatol Palaeoecol, 95, 179-194.; Upchurch, P. (2008). Gondwanan break-up: legacies of a lost world? Trends in Ecology and Evolution, 23(4), 229-236.; Upham, N.S. y Patterson, B.D. (2012). Diversification and biogeography of the Neotropical caviomorph lineage Octodontoidea (Rodentia: Hystricognathi). Molecular Phyloge netics and Evolution, 63(2), 417-429.; Verzi D. y Montalvo C. (2008). The oldest South American Cricetidae (Rodentia) and Mustelidae (Carnivora): Late Miocene faunal turnover in central Argentina and the Great American Biotic interchange. Palaeogeogr Palaeoclimatol Palaeoecol, 267, 84-291.; Vivo, M. y Carmignotto, A.P. (2004). Holocene vegetation change and the mammal faunas of South America and Africa. Journal of Biogeography, 31, 943-957.; Von der Heydt, A. y Dijkstra, H.A. (2005). Flow reorganizations in the Panama seaway: A cause for the demise of Miocene corals? Geophysical Research Letters, 32, L02609.; Veevers, J.J. (2004). Gondwanaland from 650-500 Ma assembly through 320 Ma merger in Pangea to 185-100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth-Science Reviews, 68(1), 1-132.; Verzi, D., Montalvo, C. y Deschamps, C. (2008). Biostratigraphy and biochronology of the Late Miocene of central Argentina: evidence from rodents and taphonomy. Geobios, 41, 145-155.; Yensen, E. y Tarifa, T. (2003). Galictis cuja. Mammalian Species, 728, 1-8.; Wallace, A.R. (1876). The geographical distribution of animals. Vol. I y II. Nueva York: Harper and Brothers.; Webb, S.D. (1985). Faunal interchange between North and South America. Acta Zoologica Fennica, 170, 177-178.; Webb, S. (2006). The Great American Biotic Interchange, Patterns and Processes. Annals of the Missouri Botanical Garden, 93, 245-257.; Webb, S. y Perrigo, S. (1984). Late Cenozoic vertebrates from Honduras and El Salvador. Journal of Vertebrate Palaeontology, 4, 237-54.; Woodburne, M. (2010). The Great American Biotic Interchange: Dispersals, Tectonics, Climate, Sea Level and Holding Pens. Journal of Mammalian Evolution, 17, 245-264.; Woodburne, M., Cione, A.L. y Tonni, E.P. (2006). Central American Provincialism and the Great American Biotic Interchange. Publicación Especial del Instituto de Geología y Centro de Geociencias de la Universidad Nacional Autónoma de México 4, 73-101.; Acosta, E.L., G.T. Garbino, G.M. Gasparini, y R. Parisi Dutra. (2020). Unraveling the nomenclatural puzzle of the collared and white-lipped peccaries (Mammalia, Cetartiodactyla, Tayassuidae). Zootaxa, 4851, 60–80.; Altrichter, M. y Boaglio, G. (2004). Distribution and relative abundance of peccaries in the Argentine Chaco associations with human factors. Biological Conservation, 116, 217-225.; Ávilla, L., Müller, L., Gasparini, G., Soibelzon, L., Absolon, B., Bonissoni, F., Silva, R., Kinoshita, A., Baffa, O. y Graciano, A. (2013). The northernmost record of Catagonus stenocephalus (Lund in Reinhardt, 1880) (Mammalia, Cetartiodactyla) and its palaeoenvironmental and palaeobiogeographical significance. Journal of South American Earth Sciences, 42, 39-46. Doi: http://dx.doi.org/10.1016/j. jsames.2012.10.001; Campbell, K. (2010). Recalibrating the Great American Faunal Interchange. Actas x Congreso Argentino de Paleontología y Bioestratigrafía y vii Latinoamericano de Paleontología. La Plata, p. 141-142.; Campbell, K., Portero, D., Romero-Pittman, L., Hertel, F. y Rivera, N. (2010). Amazonian magnetostratigraphy: dating the first pulse of the Great American Faunal Interchange. Journal of South American Earth Sciences, 29, 619-626.; Casamiquela, R. (1969). Un nuevo panorama etnológico del área pan-pampeana y patagónica adyacente. Pruebas etnohistóricas de la filiación tehuelche septentrional de los querandíes. Ediciones del Museo de Historia Natural. Dirección de Bibliotecas, Archivos y Museos, Santiago de Chile.; Casamiquela, R. (1975). Nota sobre la dispersión, en época histórica, de algunos mamíferos en el ámbito pampeano-patagónico. Relaciones de la Sociedad Argentina de Antropología, ix, 111-117.; Casamiquela, R. (1998). Estudio de la toponimia indígena de la provincia de Río Negro. Biblioteca de la Fundación Ameghino.; Cione, A., Tonni, E., Bargo, S., et al.(2007). Mamíferos continentales del Mioceno tardío a la actualidad en Argentina: cincuenta años de estudios. Asociación Paleontológica Argentina Publicación Especial 11, 50th aniversario, pp 257-278.; Cione, A., Gasparini, G., Soibelzon, E., Soibelzon, L. y Tonni, E. (2015). The Great American Biotic Interchange. A South American Perspective. Springer Brief Monographies in Earth System Sciences. South America and the Southern Hemisphere. En J. Rabassa, G. Lohmann, J. Notholt, L. A. Mysak, V. Unnithan (Eds.), Publisher Springer Netherlands. doi 10.1007/978-94-017-9792-4.; Claraz, J. (1988[1865-1866]). Diario de viaje de exploración al Chubut. Buenos Aires: Marymar.; Cox, G. (2005[1862-1863]). Viaje a las regiones septentrionales de la Patagonia. Buenos Aires: El Elefante Blanco.; D’Orbigny, A. (1999[1828-1829]). Viaje por América Meridional, 2. Buenos Aires: Emecé.; Daza, F. y Shockey, B. (1999). Geology and paleontology of Pleistocene beds of Mojotorillo, Bolivia (Departamento de Potosí). Actas del Congreso Internacional de Evolución Neotropical del Cenozoico, La Paz, Bolivia 8.; De los Reyes, M., Gasparini, G., Iacona, F. y Poiré, D. (2014). Novedoso hallazgo de especímenes de Platygonus (Mam- malia, Cetartiodactyla) en una paleocueva (Plioceno, Chapadmalalense) en la localidad de Olavarría. iii Jornadas Paleontológicas del Centro. Olavarría, Provincia de Buenos Aires.; Deodat, L. (1958-1959). El golfo San Matías y las veredas indígenas rionegrinas. Runa, 9(1-2), 391-404.; Desbiez, A., Santos, S., Keuroghlian, A. y Bodmer, R. (2009). Niche partitioning among white-lipped peccaries (Tayassu pecari), collared peccaries (Pecari tajacu), and feral pigs (Sus scrofa). Journal of Mammalogy, 90, 119-128.; Dias da Silva, D., Sedor, F. y Oliveira, E. (2010). A presencia de Catagonus e Tayassu (Artiodactyla, Tayassuidae) no Pleistoceno do Estado do Paraná, Brasil. En R.C. Silva, L.S. Avilla (Eds.), 7 Simpósio Brasileiro de Paleontologia de Vertebrados. Universidade Federal do Estado do Rio de Ja neiro, Rio de Janeiro. 112.; Doering, A., Berg, C. y Holmberg, E. (1881). Informe oficial de la comisión científica agregada al Estado Mayor General de la expedición al Río Negro (Patagonia) realizada en los meses de Abril, Mayo y Junio de 1879, bajo las órdenes del general D. Julio A. Roca. Primera parte: Zoología. Buenos Aires: Ostwald y Martínez.; Falkner, T. (1911[1774]). Descripción de la Patagonia. Buenos Aires: Coni.; Faure, M., Guérin, C. y Parenti, F. (1999). The Holocene megafauna from the Toca do Serrote do Arthur (Sao Raimundo Nonato archaeological area, Piauí, Brazil). C.R. Académie des Sciences París. Sciences de la Terre et des Planétes, 329, 443-448.; Feranec, R. (2007). Ecological generalization during adaptive radiation: evidence from Neogene mammals. Evolutionary Ecology Research, 9, 555-577.; Feranec, R. y MacFadden, B. (2000). Evolution of the grazing niche in Pleistocene mammals from Florida: evidence from stable isotopes. Palaeogeography Palaeoclimatology Palaeoecology, 162, 155-169.; Ferrero, B., Peralta, M., Brunetto, E. y Gasparini, G. (2015). Nuevos registros de mamíferos en la Formación Arroyo Feliciano (Pleistoceno tardío) en el tramo sur del río Gualeguay, provincia de Entre Ríos. xxix Jornadas Argentinas de Paleontología de Vertebrados. Diamante, Entre Ríos. Ameghiniana. Revista de la Asociación Paleontológica Ar gentina, 52(4), R17. BioOne.org.; Fonseca, J. (1979). Taiasuideos do Pleistoceno de cavernas calcárias de Minas Gerais: Instituto de Geociencias, Universidade Federal do Rio Grande do Sul, Dissertação para grado de Mestre em Geociências, 1-88.; Forasiepi, A., Soibelzon, L., Gómez, C., et al. (2014). Carnivorans at the Great American Biotic Interchange: new discoveries from the northern neotropics. Naturwissenschaften, 101(11), 965-974.; Fragoso, J. (1999). Perception of scale and resource portioning by peccaries: behavioral causes and ecological implications. Journal of Mammalogy, 80, 993-1003.; Frailey, C. y Campbell, K. (2012). Two new genera of peccaries (Mammalia, Artiodactyla, Tayassuidae) from upper Miocene deposits of the Amazon Basin. Journal of Paleontology, 86, 852-877.; Gasparini, G. (2004). Presencia de Tayassuidae en la Formación San Andrés (Plioceno tardío) en la región costera de Argentina central. xx Jornadas Argentinas de Paleontología de Vertebrados. Ameghiniana: Revista de la Asociación Paleontológica Argentina, 41(4), 47-48.; Gasparini, G. (2007). Sistemática, biogeografía, ecología y bioestratigrafía de los Tayassuidae (Mammalia, Artiodactyla) fósiles y actuales de América del Sur, con especial énfasis en las especies fósiles de la Provincia de Buenos Aires. Tesis de doctorado. La Plata (ar): Universidad Nacional de La Plata.; Gasparini, G. (2013). Records and stratigraphical ranges of South American Tayassuidae (Mammalia, Artiodactyla). Journal of Mammalogy, 20(1), 57-68; Gasparini, G. y Ubilla, M. (2010). Primeros ungulados inmigrantes norteamericanos: los Tayassuidae (Mammalia, Artiodactyla) del Cuaternario de Uruguay. Boletín de Resúmenes del vii Simposio Brasilero de Paleontología de Vertebrados. Río de Janeiro, Brasil. Pág. 89.; Gasparini, G., Ortiz, E. y Carlini, A. (2006). Familia Tayassuidae. En R. M. Bárquez, M. M. Díaz y R. A. Ojeda (Eds.) Los mamíferos de Argentina: Sistemática y distribución (págs. 114-115). Publicación Especial de la Sociedad Argentina para el Estudio de los Mamíferos (Sarem).; Gasparini, G., Soibelzon, E., Soibelzon, L., et al. (2010a). Estimación de la masa corporal de los tayasuidos (Mammalia, Artiodactyla) fósiles de América del Sur. xxiii Jornadas Ar gentinas de Mastozoología. Resúmenes, 42.; Gasparini, G. y Ferrero, B. (2010). The Tayassuidae (Mammalia, Artiodactyla) from the Quaternary of Entre Rios Province. A palaeofaunal review in Argentina. Neues Jahrbuch für Geologie und Paläontologie, 256, 151-160.; Gasparini, G., Ferrero, B., Vezzosi, R. y Brunetto, E. (2011). El registro de Tayassu pecari (Link, 1795) (Artiodactyla, Tayassuidae) en el Pleistoceno Tardío de la provincia de Santa Fe, Argentina. Aspectos biogeográficos y de distribución de una especie en retracción. Revista Mexicana de Ciencias Geológicas, 28(2), 203-211.; Gasparini, G., Kerber, L. y Oliveira, E. (2009a). Catagonus stenocephalus (Lund in Reinhardt, 1880) (Mammalia, Tayassuidae) in the Touro Passo Formation (late Pleistocene), Rio Grande do Sul, Brazil. Taxonomic and palaeoenvironmental comments. Neues Jahrbuch für Geologie und Paläontologie, 254(3), 261-273.; Gasparini, G., Parisi Dutra, R., Lamenza, G., Tonni, E. y Ruella, A. (2019). Parachoerus carlesi (Mammalia, Tayassuidae) in the Late Pleistocene (northern Argentina, South America): paleoecological and palaeobiogeographic considerations. Historical Biology: An International Journal of Paleobiology, 31(8), 1082-1088 doi: http://dx.doi.org/10.1080/08912963.2017.1418340; Gasparini, G. y Soibelzon, E. (2003). Primer registro de Tayassu pecari Link, 1795 (Mammalia, Artiodactyla) en la Provincia de Buenos Aires. xviii Jornadas Argentinas de Mastozoología. Resúmenes, 31.; Gasparini, G., Soibelzon, E., Zurita, A. y Miño-Boilini, A. (2010b). A review of the Quaternary Tayassuidae (Mammalia, Artiodactyla) from the Tarija Valley, Bolivia. Alcheringa: An Aus tralasian Journal of Palaeontology, 34(1), 7-20.; Gasparini, G., Ubilla, M. y Tonni, E. (2009b). Tres especies de tayasuidos (Catagonus wagneri, C. stenocephalus y Tayassu pecari) en el Pleistoceno tardío del norte de Uruguay (Fm. Sopas). Alcheringa: An Australasian Journal of Palaeontology, 46(4), 80.; Gasparini, G. y Ubilla, M. (2011). Platygonus sp. (Mammalia, Tayassuidae) in Uruguay (Raigón? Fm.; Pliocene-early Pleistocene), comments about its distribution and palaeonvironmental significance in South America. Journal of Natural History, Vol. 45, Issue 45-46, 2855-2870 pages. Issn 0022-2933 print/issn 1464-5262 online.; Gasparini, G., Ubilla, M y Tonni, E. (2013). The Chacoan peccary, Catagonus wagneri (Mammalia, Tayassuidae), in the late Pleistocene (northern Uruguay, South America): paleoecological and paleobiogeographic considerations. His torical Biology, 25(5-6), 679-690.; Gasparini, G., Zapata, J. y Martínez. J. (2012). El pecarí de collar, Tayassu tajacu (Linnaeus, 1758) (Mammalia, Cetartiodactyla) en el Pleistoceno tardío de La Cruz, Perú: consideraciones paleoambientales y paleobiogeográficas. iii Congreso de la Sociedad Peruana de Mastozoología. Piura, Perú.; Gasparini, G. y Zurita, A. (2005). Primer registro fósil de Tayassu pecari (Link) (Mammalia, Artiodactyla) en la Argentina. Ameghiniana: Revista de la Asociación Paleontológica Argentina, 42(2), 473-480.; Gaudioso, P., Gasparini, G. y Bárquez, R. (2016). Paleofauna del Pleistoceno de Termas de Río Hondo, Santiago del Estero, Argentina. xxx Jornadas Argentinas de Paleontología de Vertebrados, 65.; Hudson, W. (1893). Idle Days in Patagonia. Londres: Chapman y Hall.; Hulbert, C. (2001). Mammalia, artiodactyls. En Hulbert R (Ed.), The Fossil Vertebrates of Florida (págs. 242-279). Gainesville: University Press of Florida.; Keuroghlian, A. y Eaton, D. (2008). Fruit availability and peccary frugivory in an isolated Atlantic forest fragment: effects on peccary ranging behaviour and habitat use. Biotropica, 40, 62-70.; Kraglievich, J. (1952). El perfil geológico de Chapadmalal y Miramar, Provincia de Buenos Aires. Revista del Museo de Ciencias Naturales y Tradicionales de Mar del Plata, 1, 8-37.; Kraglievich, J. (1959). Rectificación acerca de los supuestos molares humanos fósiles de Miramar (Provincia de Buenos Aires). Revista del Instituto de Antropología, 1, 223-236.; Larrosa, A. (2010). Un médico inglés en el Río de La Plata antes de la fundación de Montevideo. Revista del Instituto Histórico y Geográfico del Uruguay, xxxii, 9-50.; Maestri, R., Patterson, B., Fornel, R., Monteiro, L. y Freitas, T. (2016). Diet, bite force and skull morphology in the generalist rodent morphotype. Journal of Evolutionary Biology, 29(11), 2191-2204.; Marshall, L. y Sempere, T. (1991). The Eocene to Pleistocene vertebrates of Bolivia and their stratigraphic context: a review. En Fósiles y Facies de Bolivia. Vol. I Vertebrados. Revista Técnica de Yacimientos Petrolíferos Fiscales Boli vianos, 12, 631-652.; Mayer, J. y Brandt, P. (1982). Identity, distribution and natural history of the peccaries, Tayassuidae. En Mares MA, Genoways HH (Eds.), Mammalian Biology in South America: a symposium held at the Pymatuning Laboratory of Ecolo gy, May 10-14, 1981, 433-455.; Mayer, J. y Wetzel, R. (1986). Catagonus wagneri. Mammalian Species, 259, 1-5.; Medina, M. (2008). Diversificación económica y uso del espacio en el tardío prehispánico del Norte del Valle de Punilla, Pampa de Olaen y Llanura Noroccidental (Córdoba, Argentina). Tesis doctoral en Arqueología. Universidad de Buenos Aires: Facultad de Filosofía y Letras.; Menégaz, A. y Ortiz E. (1995). Los artiodáctilos. En Alberdi MT, Leone G, Tonni EP (Eds.), Evolución biológica y climática de la región pampeana durante los últimos cinco millones de años: Un ensayo de correlación con el Mediterráneo Occidental, (págs. 311-335). Madrid: Museo Nacional de Ciencias Naturales.; Missagia, R., Gasparini, G., Ferreira, R. y Cozzuol, M. (2013). First fossil record of Tayassu tajacu (Mammalia, Cetartiodactyla) in Rio Grande do Norte, Brazil. Reunión Anual de Comunicaciones de la Asociación Paleontológica Argentina. Ameghiniana: Revista de la Asociación Paleontológica Argentina, 50 (6), 60.; Mones, A. (2001). La mastozoología en el Uruguay: pasado y presente. Comunicaciones Zoológicas del Museo de Historia Natural de Montevideo, 197(xiii), 2-19.; Montellano M., Rincón, A. y Solórzano, A. (2014). Record of tayassuids in late Pliocene to Quaternary deposits in Venezuela. Revista Brasileira de Paleontologia, 17(2), 169-182. Moreno, F. (2004[1876-77]). Viaje a la Patagonia austral. Buenos Aires: El Elefante Blanco.; Müller, L., Avilla. L. y Gasparini, G. (2013). Consideracoes taxonómicas e paleoclimàticas sobre os tayassuideos (Mam-malia, Cetartiodactyla) fòsseis registrados nas cavernas de Aurora do Tocantins, Norte do Brasil. xxiii Congresso Brasileiro de Paleontología. Gramado, Río Grande do Sul, Brasil.; Musters, T. (1997[1869-1970]). Vida entre los patagones. Buenos Aires: El Elefante Blanco.; Nogueira, M., Peracchi, A. y Monteiro, L. (2009). Morphological correlates of bite force and diet in the skull and mandible of phyllostomid bats. Functional Ecology, 23 (4), 715-723.; Nowak, R. y Paradiso, J. (1983). Walker´s Mammals of the World, vol. 2 (p. 568). Baltimore y Londres: The John Hopkins University Press.; O´Dea, A., Lessios, H., Coates, A., et al. (2016). Formation of the Isthmus of Panama. Science Advances 2 (8), 1-1. doi: http://dx.doi.org/10.1126/sciadv.1600883; Oliver, W. (1993). Plan de acción y evaluación de la condición actual de los pecaríes (págs 1-56). (uicn) sur.; Outes, F. (1930). Cartas y planos inéditos de los siglos xvii y xviii. Buenos Aires: Peuser.; Pardiñas, U. y Tonni, E. (1998). Procedencia estratigráfica y edad de los más antiguos muroideos (Mammalia, Rodentia) de América del Sur. Ameghiniana: Revista de la Asociación Paleontológica Argentina, 35(4), 473-475.; Parera, A. (2002). Los mamíferos de Argentina y la región austral de Sudamérica (p. 458). Buenos Aires: El Ateneo.; Parisi Dutra, R., Gasparini, G. y Cozzuol, M. (2010). Primer registro de Tayassu (Mammalia, Artiodactyla) en el Holoceno de Brasil. xxiii Jornadas Argentinas de Mastozoología. Resúmenes, 43.; Parisi Dutra, R., De Melo, D., Velloso, R., Gasparini, G. Perini, F. y Cozzuol, M. (2017a). Phylogenetic Systematics of Peccaries (Tayassuidae: Artiodactyla) and a Classification of South American Tayassuids. Journal of Mammalian Evolution, 24, 345-358.; Parisi Dutra, R., Velloso, R., Araujo, et al. (2017b). Fossil peccaries of Late Pleistocene/Holocene (Cetartiodactyla, Tayassuidae) from underwater caves of Serra da Bodoquena (Mato Grosso do Sul State, Brazil). Historical Biology International Journal of Paleobiology, 29(1), 85-92. doi:10.1080/08912963.2015.1125898.; Parisi Dutra, R., Perini, F., Cozzuol, M., Missagia, R. y Gasparini, G. (2017c). On the supposed presence of Miocene Tayassuidae and Dromomerycinae (Mammalia, Artiodactyla) in South America. xxx Jornadas Argentinas de Mastozoología. Sarem. Bahía Blanca.; Paula, C. (1975). Mamíferos fósseis do Quaternário do sudeste brasileiro. Boletim Paranaense de Geociências, 33, 89-132.; Paula, C. (1981). On an extinct peccary from the Pleistocene of Minas Gerais. Iheringia Série Geología, Porto Alegre 6, 75-78.; Pautasso, A. (2008). Mamíferos de la provincia de Santa Fe, Argentina. Comunicaciones del Museo Provincial de Ciencias Naturales “Florentino Ameghino”, 13(2), 1-248.; Pérez, F. y Gordon, I. (1999). The functional relationship between feeding type and jaw and cranial morphology in ungulates. Oecologia, 118(2), 157-165.; Politis, G. y Saunders, N. (2002). Archaeological correlates of ideological activity: food taboos and spirit-animals in an Amazonian hunter-gatherer society. En Miracle, P. (Ed.). Consuming Passions: Archaeological studies of material culture (págs. 113-130). Cambridge: Mc Donald Institute.; Politis G., y Messineo P. (2008). The Campo Laborde site: new evidence for the Holocene survival of Pleistocene megafauna in the Argentine Pampas. Quaternary Internatl 191:98-114, doi:10.1016/j.quaint.2007.12.003.; Prevosti, F. y Soibelzon, L.H. (2012). Evolution of the South American carnivores (Mammalia, Carnivora): a paleontological perspective. En Patterson BD, Costa LP (Eds.), Bones, clones, and biomes: An 80-million year history of modern Neotropical mammals, vol. 6. (págs. 102-122). Chicago: University of Chicago Press.; Prevosti, F., Gasparini, G. y Bond, M. (2006). On the systematic position of a specimen previously assigned to Carnivora from the Pliocene of Argentina and its implication for the Great American Biotic Interchange. Neues Jahrbuch für Geologie und Paläontologie, 242(1), 133-144.; Prothero, D. (2009). The early evolution of the North American peccaries (Artiodactyla: Tayassuidae). En Albright LB (Ed.), Geology, Vertebrate Paleontology, and Biostratigraphy in Honor of Michael O. Woodburne. Mus No Ariz Bull, 65, 509-541.; Prothero, D. (2015). Evolution of the early Miocene Hesperhine peccaries. New Mexico Museum of Natural History and Science, 67, 235-256.; Rancy, A. (1999). Fossil mammals of the Amazon as a portrait of a Pleistocene environment. En Eisenberg JF, Redford KH (Eds.), Mammals of the Neotropics (págs 20-26). Chicago: University of Chicago Press.; Redford, K. y Eisenberg, J. (1992). Order Artiodactyla. En Redford KH, Eisenberg JF (Eds.), Mammals of the Neotropics. The Southern Cone (págs. 229-252). Chicago y Londres: University of Chicago Press.; Reguero, M. y Candela A. (2008). Bioestratigrafía de las secuencias neógenas tardías de la Quebrada de Humahuaca, provincia de Jujuy. Implicancias paleoambientales y paleobiogeográficas. Relatorio del xvii Congreso Geológico Argentino, Jujuy, 286-296.; Reguero, M. y Candela A. (2011). Late Cenozoic mammals from the northwest of Argentina. En Salfity R, Marquillas mr (Eds.), Cenozoic geology of the Central Andes of Argentina. scs Publishers, Salta, pp. 411-426.; Reguero, M., Candela, A. y Alonso, R. (2007). Biochronology and biostratigraphy of the Uquia Formation (Pliocene-early Pleistocene, nw Argentina) and its significance in the Great American Biotic Interchange. Journal of South American Earth Sciences, 23(1), 1-16. doi:10.1016/j.jsa- mes.2006.09.005.; Reig, O. (1952). Descripción previa de nuevos ungulados y marsupiales fósiles del Plioceno y del Eocuartario argentinos. Revista del Museo de Mar del Plata, 1(1), 119-129.; Rincón, A., Parra, G., Prevosti, F., Alberdi, M. y Bell, CH. (2009). A preliminary assessment of the mammalian fauna from the Pliocene–Pleistocene El Breal de Orocual locality, Monagas State, Venezuela. En L.B. Albright (Ed.), Papers on geology, vertebrate paleontology and biostratigraphy in honor of mo Woodburne. Flagstaff, AZ: Museum of Northern Arizona Bulletin, 65, 593-620.; Romer, A. (1966). Vertebrate Paleontology, 3a.ed. (p. 468). Chicago: University of Chicago Press.; Rusconi, C. (1930). Las especies fósiles argentinas de pecaríes y sus relaciones con las del Brasil y Norteamérica. Anales Museo Nacional de Historia Natural “Bernardino Rivada- via”. Buenos Aires, 36, 121-241.; Rusconi, C. (1952). Pecaríes extinguidos del Uruguay. Revista Museo Historia Natural de Mendoza 6, 123-127.; Schmidt, C. (2008). Dental microwear analysis of extinct Flatheated Peccary (Platygonus compressus) from Southern Indiana. Proceedings of the Indiana Academy of Science. 117(2). http://www.freepatentsonline.com/article/ Proceedings-Indiana-Academy-Science/19735305.html; Schmidt, D. (2005). Diversificar para poblar: el contexto arqueológico brasileño en la transición Pleistoceno Holoceno. Rupestre web. Arte rupestre en América Latina. http:// www.rupestreweb2.tripod.com/arqueobrasil.html.; Soibelzon, E., Gasparini, G., Zurita, A. y Soibelzon, L. (2008). Las “toscas del Río de La Plata” (Buenos Aires, Argentina). Análisis paleofaunístico de un yacimiento paleontológico en desaparición. Revista del Museo Argentino de Ciencias Naturales, 10, 291-308.; Sponsel, L. (1986). Amazon ecology and adaptation. Annual Review of Anthropology, 15, 67-97.; Stirton, R. (1947). A rodent and a peccary from the Cenozoic of Colombia. Compilación de Estudios Geológicos Oficiales en Colombia, 7, 317-324.; Taylor, A. (2006). Feeding behaviour, diet, and the functional consequences of jaw form in orangutans, with implications for the evolution of Pongo. Journal of Human Evolution, 50(4), 377-393.; Toller, W. (1955). Viaje de William Toller a la Banda Oriental y Río de la Plata en 1715. Montevideo: Universidad de la República. Facultad de Humanidades y Ciencias.; Tonni, E. (2004). Faunas y clima en el Cuaternario de la Mesopotamia argentina. En Aceñolaza FG (Ed.), Temas de la biodiversidad del litoral fluvial argentino. Instituto Superior de Correlación Geológica, Miscelánea, Tucumán 12, 31-38.; Tonni, E. (2006). Cambio climático en el Holoceno tardío de la Argentina. Una síntesis con énfasis en los últimos 1.000 años. Folia Histórica del Nordeste, 16, 187-195; Torres, R., Tamburini, D., Lezcano, J. y Rossi, E. (2017). New records of the Endangered Chacoan peccary Catagonus wagneri suggest a broader distribution than formerly known. Oryx, 51(2), 286-289.; Ubilla, M. (2004). Mammalian biostratigraphy of Pleistocene fluvial deposits in northern Uruguay, South America. Procee- dings of the Geologists' Association, 115, 1-11.; Verzi, D. y Montalvo, C. (2008). The oldest South American Cricetidae (Rodentia) and Mustelidae (Carnivora): Late Miocene faunal turnover in central Argentina and the Great American Biotic interchange. Palaeogeography, Palaeoclimatology, Palaeoecology, 267, 84-291.; Viedma, A. de (1972[1780-83]). Descripción de la costa meridional del sur, vulgarmente llamada patagónica. En P. de Angelis (Comp.), Colección de obras y documentos relativos a la historia del Río de la Plata, viii, vol. B (págs. 939-966). Buenos Aires: Plus Ultra.; Villarino, B. (1972[1782-83]). Diario del piloto de la Real Armada D. Basilio Villarino del reconocimiento que hizo del río Negro en la costa oriental de la Patagonia. En P. de Angelis (Comp.), Colección de obras y documentos relativos a la historia del Río de la Plata, viii, vol. B (págs. 967-1138). Buenos Aires: Plus Ultra.; Wetzel, R. (1977). The Chacoan peccary, Catagonus wagneri (Rusconi). Bulletin of Carnegie Museum of Natural History, 3, 1-36.; Woodburne, M., Cione, A. y Tonni, E. (2006). Central American Provincialism and the Great American Biotic Interchange (4: 73-101). México: Publicación Especial del Instituto de Geología y Centro de Geociencias de la Universidad Nacional Autónoma de México.; Wright, D. (1989). Phylogenetic relationships of Catagonus wagneri: sister taxa from the Tertiary of North America. En Eisenberg JF, Redford KH (Eds.), Advances in Neotropical Mammalogy (págs.281-308). Sandhill Crane Press, Gainsville, usa.; Wright, D. (1998). Tayassuidae. En Janis M, Scott KM, Jacobs LL. (Eds.), Evolution of Tertiary Mammals of North America. Vol. 1 (págs. 389-400).Terrestrial Carnivores, Ungulates, and Ungulate like Mammals. Cambridge: Cambridge University Press.; Zeballos, E. (2002[1878]). La conquista de quince mil leguas: Estudio sobre la traslación de la frontera sur de la República al río Negro. Buenos Aires: Nueva Dimensión Argentina.; Barlow, N. (1993). The autobiography of Charles Darwin: 1809- 1882. uk: W. Norton & Co.; Bowler, P. (2010). Charles Darwin: The man and his influence. uk: Cambridge University Press.; Brown, J. (2002). Charles Darwin the power of place. New Jersey: Princeton University Press.; Brown, J. (2008). Charles Darwin, el viaje, una biografía. España: Universitat de Valencia.; Burkhardt, F. (2008). Charles Darwin the Beagle letters. Cambridge: Cambridge University Press.; Burkhardt, F. (2018). The correspondence of Charles Darwin. Cambridge: Cambridge University Press.; Buskes, C. (2009). La herencia de Darwin. España: Herder.; Caro, L. (2004). Charles Darwin: Una vida en busca de la vida. Bogotá: Panamericana.; Castrodeza, C. (2016). La darwinización del mundo. España: Herder.; Chatzimanolis, S. (2014). Darwin’s legacy to rove beetles (Coleoptera, Staphylinidae): A new genus and a new species, including materials collected on the Beagle’s voyage. Natural History Museum London. Zookeys, 379, 29-41.; Chancellor, J. (1973). Great lives Charles Darwin. Londres: Weidenfeld and Nicolson.; Comín del Río, P. (2009). Darwin una evolución extraordinaria. España: Pearson, Alhambra.; Darwin, C. (1839). El viaje del Beagle. 4ª. ed. Chile: Editorial Universitaria.; Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. Londres: Sterling Publishing.; Darwin, C. (1871). The descent of man, and selection in relation to sex. Princeton Science Library, Princeton University Press, New Jersey, usa.; Darwin, C. (1887). Life and letters of Charles Darwin (pág. 382). Londres, John Murray Publisher, American Edition, ny, mblwhoi Library.; Darwin, C. (1887). The autobiogeography of Charles Darwin 1809.1882. W.W. Norton & Company, London, uk.; Eldredge, N. (2009). Darwin: El descubrimiento del árbol de la vida. Buenos Aires: Conocimiento.; Gruber, H. (1984). Darwin sobre el hombre: Un estudio psicológico de la creatividad científica. Madrid: Alianza.; Hodge, J. y Radick, G. (2003). The Cambridge companion to Darwin. uk: Cambridge University Press, Cambridge.; Huxley, J. (1985). Darwin. Barcelona: Salvat.; Kohn, D. (1985). The Darwinian Heritage. New Jersey: Princeton University Press.; Quammen, D. (2006). El remiso Mr. Darwin: Un retrato íntimo de Charles Darwin y el desarrollo de la teoría de la evolución. Barcelona: Antoni Bosch.; Rose, M. (2000). Darwin’s Spectre Evolutionary Biology in the Modern World. New Jersey: Princeton University Press.; Reitter, E. (1908). Fauna Germanica Die Käfer des Deutschen Reiches.; Way, A. (1832). Cambridge University Library.; Arellano, L., Castillo, C., Huerta, C., García, A. y Lara, C. (2015). Effect of using different types of animal dung for feeding and nesting by the dung beetle Onthophagus lecontei (Coleoptera: Scarabaeinae). Canadian Journal of Zoology, 93, 337-343.; Badii, M.H., Rodríguez, H., Cerna, E., Ochoa, Y., Landeros, J. y Valenzuela, J. (2913). Life history strategies. Daena: International Journal of Good Conscience. 8(1)94-102.; Balshine, S. (2012). Patterns of parental care in vertebrates. En Nick J., R.P.T. Smiseth y M. Kölliker (Eds.), The Evolution of Parental Care (págs. 62-78). Oxford University Press.; Benitez, J. y M. Martínez. (1982). Análisis del proceso de degeneración testicular en Canthon cyanellus Leconte (Coleoptera: Scarabaeinae). Folia Entomológica Mexicana, 54, 55-56.; Beynon, S., Wainwright, A. y Michael, C. (2015). The application of an ecosystem services framework to estimate the economic value of dung beetles to the U.K. cattle industry. Ecological Entomology, 40(Suppl. 1), 124-135.; Bornemissza, G. (1976). The Australian dung beetle project 1965-1975. Australian Meat Research Committee Review, 30, 1-30.; Browne, J. y Scholtz, C. (1999). A phylogeny of the families of Scarabaeoidea (Coleoptera). Systematic Entomology, 24, 51-84.; Burger, B., Petersen, W., Ewig, B., Neuhaus, J., Tribe, G. y Burger, W. (2008). Semiochemicals of the Scarabaeinae - viii. Identification of active constituents of the abdominal sex-attracting secretion of the male dung beetle, Kheper bonelli, using gas chromatography with flame ionization and electroantennographic detection in parallel. Journal Chromatography A, 1186, 245-253.; Cambefort, Y. (1991). From saprophagy to coprophagy. En Hanski, I., Y. Cambefort (Eds.), Dung Beetle Ecology (págs. 22- 35). Princeton: Princeton University Press.; Castillo, P. y Ritcher, P. (1973). Ovariole number in Passalidae (Coleoptera). Proceedings of the Entomological Society of Washington, 75(4), 478-479.; Costa, J. y Fitzgerald, T. (1996). Developments in social terminology: semantic battles in a conceptual war. Trends in Ecolo gy and Evolution, 11(7), 285-289.; Costa, J. y Fitzgerald, T. (2005). Social terminology revisited: where are we ten years later? Annales Zoologici Fennici, 42, 559-564.; Costa, J. (2006). The Other Insect Societies. Cambridge: Harvard University Press.; Cruz, R. y Castillo, M. (2008). Morfología del aparato reproductor en Odontotaenius striatopunctatus (Percheron, 1835) (Coleoptera: Passalidae). Acta Zoológica Mexicana, (n.s.) 24(2), 23-38.; Dalgleish, E. y Elgar, M. (2005). Breeding ecology of the rainforest dung beetle Cephalodesmius armiger (Scarabaeidae) in Tooloom National Park. Australian Journal of Zoology, 53, 95-102.; Darwin, C. (1859). On the Origin of Species. Londres: Murray.; Estrada, A. y Coates, R. (1999). Tropical rain forest fragmentation, howler monkeys (Alouatta palliata), and dung beetles at los Tuxtlas, Mexico. American Journal of Primatology, 48, 253-262.; Favila, M. (1991). Some ecological factors affecting the life-style of Canthon cyanellus cyanellus (Coleoptera Scarabaeidae): an experimental approach. Ethology Ecology & Evolution, 5, 319-328.; Favila, M. (2001). Ecología química en escarabajos coprófagos y necrófagos de la subfamilia Scarabaeinae. En Anaya, A., F. Espinosa-García y R. Cruz-Ortega (Eds.), Relaciones químicas entre organismos: Aspectos básicos y perspectivas de su aplicación (pags. 541-580). México: Instituto de Ecología, unam y Editorial Plaza y Valdés.; Favila, M. (2001). Historia de vida y comportamiento de un escarabajo necrófago: Canthon cyanellus cyanellus Leconte (Coleoptera: Scarabaeinae). Folia Entomológica Mexicana, 40(2), 245-278.; Favila, M. y Halffter, G. (1997). The use of indicator groups for measuring biodiversity as related to community structure and function. Acta Zoológica Mexicana (n.s.), 72, 1-25.; Giraldo, C., Montoya, S. y Escobar, F. (2018). Escarabajos del estiércol en paisajes ganaderos de Colombia. Cali: Fundación cipav.; González, P. y Morelli, E. (1998). Estados preimaginales, nidificación y fenología de Canthidium (E.) moestum Harold, 1867 (Coloeptera: Scarabaeidae: Coprini). Acta Zoológica Mexicana, (ns), 73, 155-165.; Grimaldi, D. y Engel, M. (2005). Evolution of the insects. Cambridge: Cambridge University Press.; Halffter, G. y Edmonds, D. (1982). The nesting behavior of dung beetles (Scarabaeinae). An ecological and evolutive approach. México D. F.: Instituto de Ecología.; Halffter, G. y Matthews, E. (1966). The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera, Scarabaeidae). Folia Entomológica Mexicana, 12-14, 1-32.; Halffter, G. y Matthews E. (1966). The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera, Scarabaeidae). Folia Entomológica Mexicana, 12-14, 1-312.; Halffter, G. y Favila M. (1993). The Scarabaeinae (Insecta: Coleoptera) an animal group for analyzing, inventorying and monitoring biodiversity in tropical rainforest and modified landscapes. Biology International, 27, 15-21.; Halffter, G. (1997). Subsocial behavior in Scarabaeinae beetles. En Choe, J.C. y B.J. Crespi (Eds), The Evolution of Social Behaviour in Insects and Arachnids (págs. 237-259). Cambridge: Cambridge University Press.; Halffter, G., Cortez, V., Gómez, E., Rueda, C., Ciares, W. y Verdú, J. (2013). A Review of subsocial behavior in Scarabaeinae rollers (Insecta: Coleoptera): an evolutionary approach. Zaragoza: Monografías del Tercer Milenio.; Halffter, G., Huerta, C. y López, J. (1996). Parental care and offspring survival in Copris incertus Say, a subsocial beetle (Coleoptera, Scarabaeidae, Scarabaeinae). Animal Behaviour, 52, 133-139.; Hanski, I. y Cambefort, Y. (1991). Dung Beetles Ecology. Princeton: Princeton University Press.; Huerta, C. y Halffter, G. (2000). Factores involucrados en el comportamiento subsocial de Copris (Col.: Scarabaeidae: Scarabaeinae). Folia Entomológica Mexicana, 108, 95-120.; Huerta, C. y Martínez, I. (2008). Morphological changes in reproductive organs and neuroendocrine centers related to nesting, mating, and larvicide behavior in Eurysternus mexicanus Harold (Scarabaeinae: Eurysternini). The Coleopterists Bulletin, 62(1), 123-132.; Huerta, C. y Andagua, S. (2007). Factores del nido relacionados con el comportamiento maternal en Copris Müller (Coleoptera: Scarabaeinae). En Zunino M. y A. Melic (Eds.), Escarabajos, diversidad y conservación biológica: Ensayos en homenaje a Gonzalo Halffter, vol. 7 (págs. 143- 148). Zaragoza: Monografías del Tercer Milenio.; Huerta, C., Halffter, G. y Halffter, V. (2005). Nidification in Eurysternus foedus Guérin-Méneville: Its relationship to other dung beetle nesting patterns (Coleoptera: Scarabaeidae, Scarabaeinae). Folia Entomológica Mexicana, 44(1), 75-84.; Huerta, C., Halffter, G., Halffter V. y López R. (2003). Comparative analysis of reproductive and nesting behavior in several species of Eurysternus Dalman (Coleoptera: Scarabaeinae: Eurysternini). Acta Zoológica Mexicana, 88, 1-41.; Huerta, C., Martínez, I. y García, M. (2010). Preimaginal development of Onthophagus incensus Say, 1835 (Coleoptera: Scarabaeidae: Scarabaeinae). Coleopterists Bulletin, 64, 365-371.; Huerta, C., Anduaga, S. y Halffter, G. (1981). Relaciones entre nidificación y ovario en Copris (Coleoptera, Scarabaeidae, Scarabaeinae). Folia Entomólogica Mexicana, 47, 139-170.; Jones, R. (2017). Call of nature: The secret life of dung. UK: Pelagic Publishing.; Klemperer, H. (1986). Life history and parental behavior of a dung beetle from neotropical rainforest, Copris laeviceps (Coleoptera: Scarabaeidae). Journal of Zoology, 209, 319-326.; Krell, F. (2006). Fossil record and evolution of Scarabaeoidea (Coleoptera: Polyphaga). Coleopterist Bulletin, 60,120-143.; Kryger, U., Cole, K., Tukker R. y Scholtz C. (2006). Biology and ecology of Circellium bacchus (Fabricius 1781) (Coleoptera, Scarabaeidae), a South African dung beetle of conser- vation concern. Tropical Zoology, 19, 185-207.; Lister, B. y García, A. (2018). Climate-driven declines in arthropod abundance restructure a rainforest food web. Proceedings of the National Academy of Science, 115(44), 1-10.; Lobo, J. (2001). Decline of roller dung beetles (Scarabaeinae) populations in the Iberian Peninsula during the 20th century. Biology Conservation, 97(1), 43-50.; Losey, J. y Vaughan, M. (2006). The economic value of ecological services provided by insects. Bioscience, 56(4), 311-323.; Martínez, I. y Morón, M. (2015). Los sistemas reproductivos de Melolonthinae, Rutelinae, y Dynastinae (Coleoptera, Scarabaeoidea, Melolonthidae). Southwestern Entomology, 40(2), 369-385.; Martín, F. y López, J. (2000). Coleoptera, Scarabaeoidea I. En Ramos, M.A. et al. (Eds), Fauna Ibérica, vol. 14. Madrid: Consejo Superior de Investigaciones Científicas. Museo Nacional de Ciencias Naturales.; Millennium Ecosystem Assessment (mea). (2003). Ecosystem and human well-being: A framework for assessment. Washington. D. C.: Island. Press.; Monaghan, M., Inward, D., Hunt, T. y Vogler A. (2007). A molecular phylogenetic analysis of the Scarabaeinae (dung beetles). Molecular Phylogenetics and Evolution, 45, 674-692.; Monteith, G. y Storey, R. (1981). The biology of Cephalodesmius a genus of dung beetles which synthesizes ‘dung’ from plant material (Coleoptera: Scarabaeidae: Scarabaeinae). Memoirs of the Queensland Museum, 20, 253-71.; Montoya, S., Giraldo, C., Montoya, J., Chara, J., Escobar, F. y Calle, Z. (2015). Land sharing vs. land sparing in the dry Caribbean lowlands: A dung beetles’ perspective. Applied Soil Ecology, 98, 204-2012.; Nichols, E., Spector, S., Louzada, J., Larsen, T., Amezquita, S., Favila, M. y Network T. (2008). Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological Conservation, 141(6), 1461-1474.; Palestrini, C., Zunino, M. y Zucchelli M. (1990). Sound produc- tion in the larvae of Geotrupes spiniger (Marsham) (Co- leoptera: Getrupidae). Bioacoustics, 2, 209-2016.; Philips, T. y Bell, K. (2008). Attavicinus, a new generic name for the myrmecophilous dung beetle Liatongus monstrous (Scarabaeidae: Scarabaeinae). The Coleopterists Bulletin, 62(1), 67-81.; Philips, T., Pretorius, E. y Scholtz C. (2004). A phylogenetic analysis of dung beetles (Scarabaeinae: Scarabaeidae): unrolling an evolutionary history. Invertebrate Systematics, 18, 53-88.; Pianka, E. (1970). On r and K selection. American Naturalist, 104(940), 592-597.; Pluot, D. (1982). Diversité et dimorphisme sexuel de glandes tégumentaires abdominales chez les Coléoptères Scarabaeidae. Comptes rendus des séances de l’Académie des scien ces. Série 3, Sciences de la Vie, 294, 945-948.; Ritcher, P. y Baker C. (1974). Ovariole numbers in Scarabaeoidea (Coleoptera: Lucanidae, Passalidae, Scarabaeidae). Proceedings Entomological Society of Washington, 76(4), 480-494.; Sánchez, F. y Wyckhuys K. (2019). Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232, 8-27.; Scholtz, C., Davis, A. y Kryger, U. (2009). Evolutionary biology and conservation of dung beetles. Sofia-Moscow: Pensoft.; Schoolmeesters, P. (2019). Scarabs: World Scarabaeidae Database (version Oct 2018). En: Roskov, Y., G. Ower, T. Orrell, D. Nicolson, N. Bailly, P.M. Kirk, T. Bourgoin, R.E. DeWalt, W. Decock, E. Nieukerken, J. van, Zarucchi, L. Penev (eds.), Species 2000 & itis Catalogue of Life, 20th February 2019. Digital resource at www.catalogueoflife. org/col. Species 2000: Naturalis, Leiden, the Netherlands.; Tallamy, D. y Wood T. (1986). Convergence patterns in subsocial insects. Annual Review of Entomology, 31, 369-390.; Tallamy, D. (1984). Insects parental care. BioScience, 34(1), 20-24.; Tribe, G. (1975). Pheromone release by dung beetles (Coleoptera; Scarabaeidae). South African Journal of Science, 71, 277-278.; Uribe, F., Zuluaga, A., Valencia, L., Murgueitio, E., Zapata A. et al. (2011). Establecimiento y manejo de sistemas silvopastoriles. Manual 1, Proyecto Ganadería Colombiana Sostenible. Bogotá: gef, Banco Mundial, Fedegan, Cipav, Fondo Acción, tnc.; Verdú, J.R., Cortez, V., Ortiz, A.J., González-Rodríguez, E., Martínez-Pinna, J., Lumaret, J.P. y Sánchez-Piñero, F. (2015). Low doses of ivermectin cause sensory and locomotor disorders in dung beetles. Scientific Reports, 5, 13912.; Verdú, J.R., Lobo, J.M., Sánchez-Piñero, F. et al. (2018). Ivermectin residues disrupt dung beetle diversity, soil properties and ecosystem functioning: An interdisciplinary field study. Science of the Total Environment, 618, 219–228.; Vuts, J., Imrei, Z., Birkett, M., Pickett J., Woodcock, C. y Tóth, M. (2014). Semiochemistry of the Scarabaeoidea. Journal of Chemestry and Ecology, 40, 190-210.; West, M. (1975). The evolution of social behavior by kin selection. The Quarterly Review of Biology, 50(1), 1-33.; Wilson, E. (1975). Sociobiology: the new synthesis. Cambridge, ma: Belknap Press.; Woodcock, B., Bullock, J., Shore, R., Heard, M., Pereira, M. et al. (2017). Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science, 356, 1393-1395.; Allaby, M. (2004). A dictionary of ecology. Oxford University Press.; Baldwin, J. M. (1896). Consciousness and evolution. Psychological Review 3(3), 300-309.; Böhm, J., Scherzer, S., Krol, E., … Hedrich, R. (2016). The Venus fly trap Dionaea muscipula counts prey-induced action potentials to induce sodium uptake. Current Biology, 26, 286-295. 10.1016/j.cub.2015.11.057; Calvo, P., Sahi, V. P., & Trewavas, A. (2017). Are plants sentient? Plant, Cell & Environment, 40, 2858-2869. 10.1111/ pce.13065; Capra, F. (1997). The web of life: A new scientific understanding of living systems. Anchor Books.; Damasio, A. (2000). The feeling of what happens: Body and emotion in the making of consciousness. Harcourt.; Gabbatiss, J. (2017), Plants can see, hear and smell – and respond. bbc Earth. Available in: http://www.bbc.com/earth/ story/20170109-plants-can-see-hear-and-smell-and-re-spond; Gagliano, M. (2015). In a green frame of mind: Perspectives on the behavioural ecology and cognitive nature of plants. AoB plants, 7, plu075. 10.1093/aobpla/plu075; Hedrich, R. (2012). Ion channels in plants. Physiological Reviews, 92, 1777-1811. 10.1152/physrev.00038.2011; Maturana, H., & Varela, F. (1987). The tree of knowledge: The biological roots of human understanding. Shambhala.; Millikan, R. (1984). Language, thought and other biological categories. mit Press.; Monod, J. (1972). Chance and necessity: An essay on the natural philosophy of modern biology. Vintage Books.; Nagel, T. (1974). What is it like to be a bat? The Philosophical Review, 83, 435-450.; O’Doherty, F. (2013). A contribution to understanding consciousness: Qualia as phenotype. Biosemiotics, 6, 191-203. 10.1007/s12304-012-9140-x; Pereira Jr., A. (2012). Perceptual information integration: Hypothetical role of astrocytes. Cognitive Computation, 4(1), 51-62. 10.1007/s12559-011-9120-5; Pereira Jr., A. (2017). Astroglial hydro-ionic waves guided by the extracellular matrix: An exploratory model. Journal of Integrative Neuroscience, 16, 1-16. 10.3233/JIN-160003; Pereira Jr., A., & Almada, L. F. (2011). Conceptual spaces and consciousness research. International Journal of Machine Consciousness, 3, 1-17. 10.1142/S1793843011000649; Pereira Jr., A., Foz, F. B., & Rocha, A. F. (2017). The dynamical signature of conscious processing: From modality-specific percepts to complex episodes. Psychology of Consciousness, 4(2), 230-247. 10.1037/cns0000115; Pereira Jr., A., & Furlan, F. A. (2009). On the role of synchrony for neuron-astrocyte interactions and perceptual conscious processing. Journal of Biological Physics, 35, 465-481. 10.1007/s10867-009-9147-y; Pereira Jr., A., & Furlan, F. A. (2010). Astrocytes and human cognition: Modeling information integration and modulation of neuronal activity. Progress in Neurobiology, 92, 405-420. 10.1016/j.pneurobio.2010.07.001; Sanders, D., Brownlee, C., & Harper, J. F. (1999). Communicating with calcium. The Plant Cell, 11(4), 691-706. 10.1105/ tpc.11.4.691; Toyota, M., Spencer, D., Sawai-Toyota, S., Jiaqi, W., Zhang, T., Koo, A. J., Howe, G. A., & Gilroy, S. (2018). Glutamate triggers long-distance, calcium-based plant defense signaling. Science, 361(6407), 1112-1115. 10.1126/science. aat7744; Trewavas, A. (2016). Intelligence, cognition, and language of green plants. Frontiers in Psychology, 7, 588. 10.3389/ fpsyg.2016.00588; Trewavas, A., & Malhó, R. (1998). Ca2+ signalling in plant cells: The big network! Current Opinion in Plant Biology, 1(5), 428-433.; Wohlleben, P. (2016). The hidden life of trees: What they feel, how they communicate. Greystone Books.; Bardach E. (2012). A practical guide for policy analysis: The eightfold path to more effective problem solving. 4a. ed. Londres: Sage.; Capra F. (1998). La trama de la vida: Una nueva perspectiva de los sistemas vivos. Barcelona: Anagrama.; Cho, Y., Kim, S., Kwon, I. y Kim, I. (2014). Complex adaptive therapeutic strategy (cats) for cancer. Journal of Controlled Release, 175, 43-47. http://dx.doi.org/10.1016/j.jcon- rel.2013.12.017; Derbal, Y. (2018). The adaptive complexity of cancer. BioMed Research International, 2018. Article id 5837235. https:// doi.org/10.1155/2018/5837235; Gell-Mann, M. (1995). What is complexity? Remarks on simplicity and complexity by the Nobel Prize-winning author of The Quark and the Jaguar. Complexity, 1, 16-19. doi:10.1002/cplx.6130010105; Givel, M. (2015). ‘What’s the big deal?’: complexity versus traditional us policy approaches. En Cairney P y Geyer R. Handbook on complexity and Public Policy. Introduction. Northampton: Edward Elgar Publishing, ma.; Jablonka, E. y Lamb, M. (2005). Evolution in four dimensions. Genetic, epigenetic, behavioral and symbolic variation in the history of life. Cambridge: The mit Press.; Jayasinghe, S. (2011). Conceptualizing population health: from mechanistic thinking to complexity science. Emerging Themes in Epidemiology, 8, 2.; Johnsson, S. (2003). Sistemas emergentes. México: Fondo de Cultura Económica.; Jupp, P. (2018). A complex systems approach to cancer prevention. Medical Hypotheses, 112, 18-23. https://doi.org/10.1016/j.mehy.2018.01.006; Maldonado, C., Aristizábal, C., Bonilla, J., Cárdenas, H., García, A., Galvis, S., Gómez, L., y Sandoval, J. (2019). Una introducción a la epigenética: Complejidad y salud. Bogotá: Universidad El Bosque. Documentos de Investigación No. 1. En prensa.; Maldonado, C. (2018). Política + Tiempo = Biopolítica. Complejizar la política. Bogotá: Ediciones Desde Abajo.; Miller, J. y Page, S. (2007). Complex adaptive systems. An introduction to computational models of social life. Princeton: Princeton University Press.; Ministerio de Salud y Protección Social. (2012). Plan decenal para el control del cáncer en Colombia, 2012-2021. Bogotá: Ministerio.; Mitchel, M. (2009). Complexity. A guided tour. Nueva York: Oxford University Press.; Mukherjee, S. (2012). El emperador de todos los males: Una biografía del cáncer. Bogotá: Taurus.; Organización de las Naciones Unidas (onu). (2011). Asamblea general sobre la prevención y el control de enfermedades no transmisibles. Declaración política. Nueva York: onu.; Park, K. (2014). Complex adaptive therapeutic strategy for cancer treatment. Journal of Controlled Release, 175, 87, http://dx.doi.org/10.1016/j.jconrel.2014.01.011; Patiño, J. (2002). Oncología, caos, sistemas complejos adaptativos y estructuras disipativas. Revista Colombiana de Ciru gía, 17(1), 5-9.; Prigogine, I. (1993). ¿Tan solo una ilusión? Una exploración del caos al orden. 3ª ed. Barcelona: Tusquets.; Schwab, E. y Pienta, K. (1995-1996). Cancer as a complex adaptive system. Medical Hypotheses, 47, 235-241.; Tennison, B. (2002). Complexity in epidemiology and public health. En: Sweeney K and Griffiths F. Complexity and Healthcare. An introduction. United Kingdom: Radcliffe Medical Press.; Durkheim, E. (1986). Las reglas del método sociológico. Ciudad de México: Fondo de Cultura Económica.; Hempel, C. (1996). La explicación científica. Barcelona: Paidós.; Maturana, H. y Varela, F. (2004). De máquinas y seres vivos. Autopoiesis: la organización de lo vivo. Buenos Aires: Grupo Editorial Lumen.; Rodríguez, D. y Torres, J. (2003). Autopoiesis, la unidad de una diferencia: Luhmann y Maturana. Sociologías, 5(9), 106-140.; Tylor, E.B. (1977). Cultura primitiva. Barcelona: Ayuso.; https://hdl.handle.net/20.500.12495/5811; instname:Universidad El Bosque; reponame:Repositorio Institucional Universidad El Bosque; repourl:https://repositorio.unbosque.edu.co
Availability: https://hdl.handle.net/20.500.12495/5811
-
10
Authors: et al.
Contributors: et al.
Subject Terms: 000 - Ciencias de la computación, información y obras generales, 650 - Gerencia y servicios auxiliares, 600 - Tecnología (Ciencias aplicadas), perspectiva clásica, sistemas complejos, red compleja, gestión de proyectos, PMBOK®, classical perspective, complex systems, complex network, project management
File Description: application/pdf
Relation: Alderman, N., Ivory, C., (2010). Service-led projects: understanding the meta-project context. COnstr. Manag. Econ. 28, 1131-1143. Aloini, D., Dulmin, R., Mininno, V., (2007). Risk management in ERP project introduction: review of the literature. Information Management 44 (6), 547–567. Andersen, E.S., (2008). Rethinking Project Management an organizational perspective. FT Prentice Hall, Essex, England. Anderson, P., (1999), ‘Complexity Theory and Organization Science’, Organization Science 10:3, 216-323. Arellano D., Danti J., Pérez M.F., (2016). Proyectos y Sistemas Complejos. PMI-INCOSE. Aritua, B., Smith, N.J., Bower, D., (2009). Construction client multi-projects a complex adaptive systems perspective. Int. J. Proj. Manag. 27, 72-79. Ashby, W. R., (1962). Principles of self-organization, En Hinez von Foerster and GW Zopf Jr., Principles of Self-Organization: Transactios of the University of Illinois Symposium, Pergamon Press, New York. Atlan, H., (1990). Entre el cristal y el humo. Madrid: Editorial Debate. Atkinson, P., Hammersley, (1995). Ethnography and Participant Observation. En: Handbook of Qualitative Research. Atkinson, R., Crawford, L., Ward, S., (2006). Fundamental uncertainties in projects and the scope of project management. International Journal Project Management. 24 (8), 687–698. Austin, S., Newton, A., Steele, J., Waskett, P., (2002). Modelling and managing project complexity. International Journal Project Management. 20 (3), 191–198. Avena, E., (2005). The experience of responsibility-based management in deci¬sion making: a grounded theory study. Dissertation. University of Phoenix, November. Baccarini, D., (1996). The concept of project complexity –a review. International Journal of Project Management, 14, pp 201-204. Baccarini, D., (1999). The Logical Framework Method for Defining Project Success. Project Management Journal, 30(4), 25-32. Badawy, M., (1997) Temas de gestión e innovación para científicos e ingenieros, Clásicos COTEC, Fundación para la innovación tecnológica, Madrid, España. Baker, C., (1997). Membership, categorization and interview accounts. In: D. Silverman (Ed.). Qualitative Research: Theory, method and practice. London: Sage publications. Bakir, A. & Bakir, V., (2006). Unpacking complexity, pinning down the “elusi¬veness” of strategy. A grounded theory study in leisure and cultural orga¬nisations Qualitative Research in Organizations and Management: An Interna¬tional Journal, 1(3). Bakker, R.M., (2010). Taking stock of temporary organizational forms: a systematic review and research agenda. Int. J. Manag. Rev. 12, 466-486. Barabási, A. L., Jeong, H., Ravasz, E., Néda, Z., Schuberts, A., and Vicsek, T., (2002). Evolution of the social network of scientific collaborations, Physica A 311, 590-614. Barbier, J.M., (1996). Savoirs théoriques et saviors dáction. París: PUF, 305 p. Barclay, C., y Osei-Bryson, K. M., (2010). Project performance development framework: An approach for developing performance criteria y measures for information systems (IS) projects. International Journal of Production Economics, 124(1), 272-292. Barlett, C. y Ghoshal, S., (2003) “What is a global manager?”, Harvard Bussiness Review, septiembre- octubre. Barnes, D.M., (1996). An analysis of the Grounded theory method and the con¬cept of culture. Qualitative Health Research 6(3): 429-441. Bar-Yam, (2004). Making Things Work solving complex Problems in A Complex World. NECSI-Knolwedge Press. Belout, A., Gauvreau, C., (2004). Factors influencing project success: the impact of human resource management. International Journal Project Management. 22 (1), 1–11. Benbya, H., McKelvey, B., (2006). Toward a complexity theory of information systems development. Inf. Technol. People 19 (1), 12–34. Bernal, A.C., (2010). Metodología de la investigación. Administración, economía, humanidades y ciencias sociales. Tercera Edición. Pearson. Bertalanffy V., (1968). General System Theory: Foundations Development, Applications. New York: George Braziller. Berg. M., (2001). Implementing information systems in health care organizations: myths and challenges. Int. J. Med. Inform. 64, 143-156. Bertelsen, S., (2003). Construction as a complex system. Presented at the 11th annual conference in the International Group for Lean Construction, Blacksburg VA, August 2003. Bertalanffy, L. V., (1962). General Systems Theory: A Critical review, General Systems VII. Bertalanffy, L.V., (1968). General Systems Theory. New York, G. Brasiller. Bianconi, G. and Barabási, A. L., (2001). Competition and multiscaling in evolving networks, Europhys. Lett. 54, 436-442. Bianconi, G. and Capocci, A., (2003). Number of loops of size h in growing scale-free networks, Phys. Rev. Lett. 90, 078701. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D. U., (200&). Complex networks: Structure and dynamics, Phys, Rep. 424, 175-308. Bolseguí, M, and Fuguet S.A., (2006). Construcción de un modelo conceptual a través de la investigación cualitativa. Sapiens. Revista Universitaria de Investigación, vol. 7, núm. 1. Universidad Pedagógica Experimental Libertador. Caracas, Venezuela. Boje, D.M., Gephart J r., R.P., Thatchenkery, T.J., (1996). Postmodern Management and Organization Theory. Thousand Oaks: Sage Publications. Booch, G., Rumbaugh, J. y Jacobson, I., (2006). El lenguaje de modelado, Pearson, Madrid. Borgatti, S.P., (2005). Centrality and network flow, Soc. Networks 27, 55-71. Bowman, R.A., (1995). Efficient estimation of arc criticalities in stochastic activity networks. Management Science. 41 (1), 58–67. Bradley, G., (2010). Benefit realisation management, 2nd ed. Gower, Famham. Brady, T., Davies, A., (2010). From hero to hubris—reconsidering the project management of Heathrow’s Terminal 5. International Journal Project Management. 28 (2), 151–157. Bredillet, C., (2007). Exploring research in project management: nine schools of project management research (part 1). Proj. Manag. J. 38, 3-4. Breese, R., (2012). Benefits realisation management panacea or false dawn? Int. J. Proj. Manag. 30, 341-351. Brocke, J.V., Simons, A., Niehaves, B., Reimer, K., Plattfaut, R. Cleven, A., (2009). Reconstructing the giant: on the importance of rigour in documenting the literatura search process. ECIS 2009 Proceedings. Paper 161. Browning, T.R., Eppinger, S.D., (2002). Modeling impacts of process architecture on cost and schedule risk in product development. IEEE Trans. Eng. Manag. 49 (4), 428–442. Bryman, A., (2008). Social research methods, Third edition. Oxford University Press, Oxford. Burcar, I. and M. Radujkoviü, (2009). Risk model for construction projects risk register system. in Construction facing worldwide chalenges - Joint 2008 CIB W065/W055 Commissions Symposium Proceedings. Dubrovnik: Faculty of Civil Engineering, University of Zagreb. Burrell, G., Morgan, G., (1979). Sociological paradigms and organisational analysis. Elements of the Sociology of Corporate LifeHeinemann Educational, London. Burt, J.M., (1977). Planning and dynamic control of projects under uncertainty. Management Science. 24 (3), 249–258. Bubshait, KA & Selen WJ., (1992). Project characteristics that influence the implementation of project management techniques: a survey. Project Management Journal XXIII, No. 2, pp. 43-47. Burcar, Dunoviü I., Radujkoviü M., Skreba A.K., (2014). 27th IPMA World Congress Towards a new model of complexity - the case of large infrastructure projects. Croatia. Briskorn, D., (2010). A survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J. Oper. Res. 207 (1), 1–14. Brodbeck, M., (1959) “Models, Meanings and Theories”, en Symposium on Sociological Theory, ed. L. Gross, 373-403, New York Harper & Row. Capra, F., (2002). Las conexiones ocultas. Implicaciones sociales, medioambientales y económicas y biológicas de una nueva vision del mundo. Barcelona: Editorial Anagrama. Cardona, O. D., (2001). Estimación holística del riesgo sísmico utilizando sistemas dinpamicos complejos. Universitat Politécnica de Catalunya. Escola Tècnica superior d’enginyers de camins, canals I ports. Barcelona. Cardona, O.D. et. al., (2004). Metodología para la evaluación del desempeño de la gestión del riesgo. Castellani, B., & Rajaram, R., (2012). Case-based modeling and the SACS Toolkit: a mathematical outline. Computational and Mathematical Organization Theory, 18(2), 153-174. Castellani, B. R. Rajaram, G. Buckwalter, M. Ball and F. Hafferty, (2014) Place and Health as Complex Systems: A Case-Based Study and Empirical Test. In SpringerBriefs in Public Health Series. New York: Springer. In press. Castellani, B., Schimpf, C., & Hafferty, F., (2013). Medical Sociology and Case-Based Complexity Science: A User’s Guide. In Handbook of Systems and Complexity in Health (pp. 521-535). Springer New York. Castellani, B., & Hafferty, F. W., (2009). Sociology and complexity science: a new field of inquiry. Springer. Castellani, B., (1999). Michel Foucault and symbolic interactionism: The making of a new theory of interaction. STUDIES IN SYMBOLIC INTERACTION, VOL 22, 1999, 22, 247-272. Chanas, S., Zieliński, P., (2001). Critical path analysis in the network with fuzzy activity times. Fuzzy Sets Syst. 122 (2), 195–204. Chapman, C., Ward, S., (2000). Estimation and evaluation of uncertainty: a minimalist first pass approach. International Journal Project Management. 18 (6), 369–383. Chen, W.S., Hirschheim, R., (2004). A paradigmatic and methodological examination of information systems research from 1991 to 2001. Inf. Syst. J. 14, 197–235. Chen, S.P., (2007). Analysis of critical paths in a project network with fuzzy activity times. Eur. J. Oper. Res. 183 (1), 442–459. Chervel, M. y Le Gall, M., (1991). Manual de evaluación económica de proyectos El método de los efectos. Bogotá: Aguilar. Cho, J.G., Yum, B.J., (1997). An uncertainty importance measure of activities in PERT networks. International Journal Prod. Res. 35 (10), 2737–2758. Cho, S.H., Eppinger, S.D., (2005). A simulation-based process model for managing complex design projects. IEEE Trans. Eng. Manag. 52 (3), 316–328. Cicmil, S., Williams, T., Thomas, J., Hodgson, D., (2006). Rethinking project management: researching the actuality of projects. International Journal Project Management. 24 (8), 675–686. Clarke, N., (2010). Projects are emotional: how project managers' emotional awareness can influence decisions and behaviours in projects. Int. J. Manag. Proj. Bus. 3, 604–624. Comte, A., (1830). Cours de Philosophie Positive, Bachelier, Imprimeur Libraire pour les sciences, París. Corbin, J. & Strauss, A., (1990). Grounded theory research: Procedures, canons and evaluative criteria. Qualitative Sociology, 13, 3-21. Cook, T.M., Jennings, R.H., (1979). Estimating a project's completion time distribution using intelligent simulation methods. J. Oper. Res. Soc. 30 (12), 1103–1108. Cooke-Davies, T., Cicmil, S., Crawford, L., Richardson, K., (2007). Mapping the strange landscape of complexity theory, and its relationship to project management. Project Management. J. 38 (2), 50–61. Cooke-Davies, T., (2002). The “real” success factors on projects. International Journal of Project Management, 20(3), 185-190. Cooper R and Burrell G., (1988). Mode - risme, Postmodernisme En Organisatieanalyse, in Mens En Onderneming, 1988, 5: 283-306. Crawford, L., Morris, P., Thomas, J., Winter, M., (2006). Practitioner development: from trained technicians to reflective practitioners. Int. J. Proj. Manag. 24, 722–733. Cueva, J., (2009). La complejidad y la gerencia. Lineamientos para gestionar la complejidad en la empresa. Curry, E.L, (2003). The use of Grounded theory as a knowledge development tool. Journal of Theory Construction & Testing, Fall; 7, 2. Danilovic, M., Browning, T.R., (2007). Managing complex product development projects with design structure matrices and domain mapping matrices. International Journal Project Management. 25 (3), 300–314. de Wit, A., (1988). Measurement of project success. International Journal of Project Management, 6(3), 164-170. Dille, T., Söderlund, J., (2011). Managing inter-institutional projects: the significance of isochronism, timing norms and temporal misfits. Int. J. Proj. Manag. 29, 480–490. Dombkins, DH., (2008). The Integration of Project Management and Systems Thinking. A chapter published in the annual publication of International Project Management Association, XXIX, pp. 16-21. Dorogovtsev, S.N. and Mendes, J.F.F., (2002). Evolution of networks, Adv. Phys. 51, 1079-1187. Dubring, A., (2004). Esentials of management, Cap. 1, Cincinniati, Ohio: South- Wenstern Publishing Co. Dunovic, B.I. & Radujkovic, M. & Skreb, K. A., (2014). Towards a new model of complexity – the case of large infrastructure projects. 27th IPMA World Congress. University of Zagreb, Faculty of Civil Engineering, Kaciceva 26, Zagreb, Croatia. Dyner, I. et. al., (2016). Enfoque metodológico para el estudio y representación de comportamientos complejos en mercados de electricidad. Ing. cienc., vol. 12, no. 24, pp.195–220, julio-diciembre. Eden, C., Williams, T., Ackermann, F., Howick, S., (2000). The role of feedback dynamics in disruption and delay on the nature of disruption and delay (D&D) in major projects. J. Oper. Res. Soc. 51 (3), 291–300. Elmaghraby, S.E., Fathi, Y., Taner, M.R., (1999). On the sensitivity of project variability to activity mean duration. Int. J. Prod. Econ. 62 (3), 219–232. Engholm, P., (2001). May. The Controversy Between Modernist and Postmodernist Views of Management Science: Is a Synergy Possible? Internet, Monash University. Erdös, P. and Rényi, A., (1961). On the strength of connectedness of a random graph. Acta Mathematica Scientia Hungary 12, 261-267. Estáy-Niculcar, C., (2007). Rigor y relevancia, perspectivas filosóficas y gestión de proyectos de Investigación- Acción en Sistemas de Información. Departamento de humanidades Universitat internacional de catalunya. Barcelona – España. Tesis Doctoral. Foerster, Heinz Von, (1996). Las semillas de la cibernética. 2° ed, Colección terapia familiar. Gedisa. Barcelona. Forrester, H.V., (1968). Principies of Systems. Cambridge: Wrigth Allen. Freeman, L.C., (2004). The Development of Social Network Analysis, Empirical Press, Vancouver. García R., (2000). Capítulo 4: Los procesos cognpscitivos, En Rolando García, El conocimiento en construcción. De las formulaciones de Jean Piaget a la teoría de los sistemas complejos. Gedisa, Barcelona, Pag. 95-113. García R., (2006). Sistemas Complejos. Editorial GEDISA. Geraldi, J. G., (2008) 'The balance between order and chaos in multi-project firms: A conceptual model', International Journal of Project Management, 26(4), 348-356. Geraldi, J., Adlbrecht, G., (2007). On faith, fact, and interaction in projects. Project Management. J. 38 (1), 32–43. Geraldi, J., & Adlbrecht, G., (2006). Unravelling Complexities in Engineering Projects. Cited in a chapter Patterns of Complexity: The Thermometer of Complexity in the annual publication of International Project Management Association, XXI by Geraldi, pp. 4-9. Gidado, K., (1993). Numerical Index of Complexity in Building Construction with Particular Consideration to its Effect on Proudction Time. Ph. D. Thesis, University of Brigthon. Gido, J. Clements, J. P., (2006). Administración Exitosa de Proyectos. International Thomson Editores. Girmscheid, & Brockmann, (2008). The inherent Complexity of Large Scale Engineering Projects. A chapter published in the annual publication of International Project Management Association, XXIX, pp. 22-26. Glaser, B. & Strauss, A., (1967). The discovery of grounded theory. Chicago: Aldine Press. Glaser, B.G., (1978). Theoretical sensitivity. Mill Valley, CA: Sociology Press. Glaser, B.G., (1992). Basics of grounded theory analysis. Mill Valley, CA: Sociology Press. Glaser, B.G., (2004), Remodeling Grounded theory. Forum Qualitative Social Re¬search, 5(2), May. Gómez, E., (1999). El proyecto y su dirección y gestión, Universidad Politécnica de Valencia, pp 27-43. González, L. J. & Kalenatic, D. & Moreno, K. V., Metodología Integral y Dinámica aplicada a la programación de proyectos. Revista Facultad de Ingeniería Universidad de Antioquia, núm. 62, enero-marzo, 2012, pp. 21-32. Grize, J.-B., (2012). Logique naturelle et representations sociales. En Denise Jodelet (Ed.), Les représentations sociales (pp. 170-186). Paris: Puf. Grubbs, F.E., (1962). Letter to the Editor-Attempts to Validate Certain PERT Statistics or “Picking on PERT”. Oper. Res. 10 (6), 912–915. Guba, E. G., & Lincoln, Y. S., (1989). Fourth generation evaluation. Newbury Park, CA: Sage. Hällgren, M., Söderholm, A., (2011). Projects-as-practice — new approach, new insights. In: Morris, P.W.G., Pinto, J.K., Söderlund, J. (Eds.), The Oxford handbook of project management. Oxford University Press, Oxford, pp. 500–518. Hammersley, M., (1989). The dilemma of qualitative method. London: Routledge Hart, C., (1998). Doing a literature review: releasing the social science research imagination. Sage Publications Inc., London. Hass K. B., (2009). Managing complex projects a new model. Management concepts. Helbrough, B., (1995). Computer assisted collaboration – the fourth dimensión of project management?. International Journal of Project Management. Helbrough, B., (1995). Computer assisted collaboration-the fourth dimension of project management? International Journal of Project Management, 13, 329-333. Hernandez D. H., (2011). “150 años construyendo nación con ingenio propio" . En: Colombia Ingenieria e Investigacion ISSN: 0120-5609 ed: Instituto de Estudios Políticos y Relaciones Internacionales de la Universidad Nacional de Colombia v.31 fasc. p.51 – 55. Herroelen, W., Leus, R., (2004). Robust and reactive project scheduling: a review and classification of procedures. Int. J. Prod. Res. 42 (8), 1599–1620. Herroelen, W., Leus, R., (2005). Project scheduling under uncertainty: survey and research potentials. Eur. J. Oper. Res. 165 (2), 289–306. Herroelen, W., De Reyck, B., Demeulemeester, E., (1998). Resource-constrained project scheduling: a survey of recent developments. Comput. Oper. Res. 25 (4), 279–302. Herzog, V.L., (2001). International student paper award winner: Trust building on corporate collaborative project teams. Project Management Journal, 32(1), 28–35. Hindle, K., (2002). A grounded theory for teaching entrepreneurship using si¬mulation games. Simulations & Gaming, 33(2), June, 236-241. Hirschman, E. C. & Thompson, C. J., (1997). Why media matter: Toward a ri¬cher understanding of consumers’ relationships with advertising and mass media. Journal of Advertising, 26(1), 43-60. Hodgson, D., Cicmil, S., (2006). Making projects critical. Palgrave Macmillan, Houndmills, Basingstoke, Hamshire. Holland, J., (1995). Hidden order: How adaptation builds complexity. Perseus Books, Cambridge. Holland, J., (1998). Emergence. From chaos to order. Reading, MA: Addison-Wesley. Holland, R., (1999). Reflexivity, Human Relations, 52(4): 463-484. Horton, T y Peter, C., (2005). What fate for middle managers?, Management Review, enero. Howick, S., Eden, C., (2001). The impact of disruption and delay when compressing large projects: going for incentives? J. Oper. Res. Soc. 26-34. Huemann, M., Keegan, A., Turner, J.R., (2007). Human resource management in the project-oriented company: a review. International Journal Project Management. 25 (3), 315–323. Ika, L.A., (2009). Project success as a topic in project management journals. Project Management Journal. 40 (4), 6–19. ICCPM, (2012). Complex Project Manager Competency Standards.Version 4.1. International Centre for Complex Proyect Management. Jacobsson, M., Söderholm, A., (2011). Breaking out of the straitjacket of project research: in search of contribution. International Journal Management Project Business. 4 (3), 378–388. Jensen, C., Johansson, S., Löfström, M., (2006). Project relationships–a model for analyzing interactional uncertainty. International Journal Project Management. 24 (1), 4–12. Joannides, V. & Berland, N., (2008). Grounded theory: quels usages dans les recherches en contrôle de gestion?/Grounded theory: what uses in manage¬ment accounting research? Comptabilité contrôle audit. 22. Paris: Dec. Johnson-Laird, P. N., (1983). Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness. Cambridge: Harvard University Press. Johnson-Laird, P. N., (1987). Modelos mentales en ciencia cognitiva. En Donald Norman A. (Ed.), Perspectivas de las ciencias cognitivas (pp. 179-231). Barcelona: Paidos. Jones, D.; Manzelli, H. & Pecheny, M., (2004). Grounded theory. Una aplicación de la teoría fundamentada a la salud. En Kornblit, A.L. (Ed.). Análisis de datos en metodologías cualitativas. Buenos Aires: Biblos Jugdev, K., Thomas, J., Delisle, C.L., (2001). Rethinking project management: old truths and new insights. Proj. Manag. 7, 36–43. Jugdev, K., Müller, R., (2005). A retrospective look at our evolving understanding of project success. Project Management Journal. 36 (4), 19–31. Jurison,, J., (1999). Software project management: The manager’s view. Communications of the Association for Informations Systems, 2(17), 1-57. Kähkönen, K., (2008). Level of complexity in projects and its compacts on managerial solutions. Editorial published in the anual publication of International Project Management Association, XXIX, p.3. Kendra, K., & Tapling, L., (2004). Project Success: A Cultural Framework. Project Management Journal, 35 (1): 30-45. Knight, F., (1921). Risk, Uncertainty and Profit, Houghton Mifflin, Boston. Disponible en sitio web econlib.org. Kloppenborg, T.J., Opfer, W.A., (2002). The current state of project management research: trends, interpretations, and predictions. Project Management Journal. 33 (2), 5–18. Kolisch, R., (1996). Serial and parallel resource-constrained project scheduling methods revisited: theory and computation. Eur. J. Oper. Res. 90 (2), 320–333. Kolisch, R., Padman, R., (2001). An integrated survey of deterministic project scheduling. Omega 29 (3), 249–272. Kolltveit, B.J., Karlsen, J.T., Grønhaug, K., (2007). Perspectives on project management. Int. J. Proj. Manag. 25, 3–9. Komives, S.R., Mainelle, F.C., Longerbeam, S.D., Osteen, L. & Owen, J., (2006). A leadership identity development model: Applications from a Grounded theory. Journal of College Student Development, Jul/Aug, 47, 4. Koppenjan, J., Veeneman, W., van der Voort, H., ten Heuvelhof, E., Leijten, M., (2011). Competing management approaches in large engineering projects: the Dutch RandstadRail project. Int. J. Proj. Manag. 29, 740–750. Koskela, L., Howell, G., (2002). The underlying theory of project management is obsolete. PMI Research Conference 2002. PMI, pp. 293–302. Kreiner, K., (1995). In search of relevance: project management in drifting environments. Scand. J. Manag. 11, 335–346. Kreiner, K., (2012). Comments on challenging the rational project environment: the legacy and impact of Christensen and Kreiner's Projektledning i en ofulständig värld. Int. J. Manag. Proj. Bus. 5, 714–717. Lacomba, E., (2000), los sistemas dinámicos, que son y para qué sirven, misceláneas matemáticas 32, 2000. Larson, E., & Gray, C., (2011). Project management, the managerial process. (5th ed.). McGraw-Hill. Pg.4. Le Moigne, J.L., (1990). La modélisation des systems complexes, 1990. Éd. Dunod. Réédité en 1995. Le Moigne, J. L., (1997). “La ‘Incoherencia epistemológica’ de las ciencias de la gestión”. En: Cuadernos de Economía. N° 26. Universidad Nacional. Pp. 163-185. Traducción de Ricardo Romero y Alberto Supelano. Lenfle, S., (2011). The strategy of parallel approaches in projects with unforeseeable uncertainty: the Manhattan case in retrospect. International Journal Project Management. 29 (4), 359–373. Lenfle, S., Loch, C., (2010). Lost roots: how project management came to emphasize control over flexibility and novelty. Calif. Manag. Rev. 53, 32–55. Leonard, D. & Mcadam, R., (2002). The strategic dynamics of total quality ma¬nagement. A grounded theory research study. The Quality Management Jour¬nal. 9(1). Leskovec J. and Horvitz, E., Planetary-scale views on a large instantmessaging network. In Proc. of the 17th international conference on the World Wide Web, WWW '08, pages 915{924. ACM, 2008. Leybourne, S.A., (2007). The changing bias of project management research: a consideration of the literatures and an application of extant theory. Proj. Manag. J. 38, 61–73. Leybourne, S., (2010). Project management and high-value superyacht projects: an improvisational and temporal perspective. Proj. Manag. J. 41, 17–27. Lichtenberg, S., (1983). Alternatives to conventional project management. Int. J. Proj. Manag. 1, 101–102. Lim, C.S., & Mohamed, M.Z., (1999). Criteria of project success: An explanatory re-examination. International Journal of Project Management, 21, 411-418. Littau, P., Jujagiri, N.J., Adlbrecht, G., (2010). 25 years of stakeholder theory in project management literature (1984–2009). Project Management Journal. 41 (4), 17–29. Louw, T., Rwelamila, P.D., (2012). Project management training curricula at South African public universities: is the balanced demand of the profession sufficiently accommodated? Proj. Manag. J. 43, 70–80. Lundin, R.A., Söderholm, A., (1995). A theory of the temporary organization.Scand. J. Manag. 11, 437–455. Lu, Y., Luo, L., Wang, H., Le, Y., Shi, Q., (2015). Measurement model of project complexity for large-scale projects from task and organization perspective. International Journal Project Management. 33 (3), 610–622. MacCrimmon, K.R., Ryavec, C.A., (1964). An analytical study of the PERT assumptions. Oper. Res. 12 (1), 16–37. Maijala H. et al., (2004). The use of grounded theory to study interaction. Nurse Researcher, 11(2), 41-55. Maldonado, C. E., (2009). “Complejidad de los sistemas sociales: un reto para las ciencias sociales”. Cinta de Moebio 36:146-157. Maldonado, C. E., (2007), Complejidad: ciencia, pensamiento y aplicación. Universidad Externado de Colombia. Nuenos Aires, Argentina. Maldonado, C.E., Gómez C. y Alfonso N., (2010). Modelamiento y simulación de sistemas complejos. Bogotá: Universidad del Rosario. Mandelbrot, B., (1987). Los objetos fractales. 2006, 6° edi. Tusquets, Barcelona. España. Martin, D., (2007). Management learning exercise and trainer’s note for buil¬ding grounded theory in tourism behavior. Journal of Business Research, 60(7), New York, July Maturana, H.R. y Varela, F.J., (1972). De máquinas y seres vivos. Santiago de Chile: Universitaria. Maylor, H., Vidgen, R., Carver, S., (2008). Managerial complexity in projectbased operations: a grounded model and its implications for practice. Project Management Journal. 39 (S1), S15–S26. Maylor, H., (2006). Special Issue on rethinking project management (EPSRC network 2004–2006). Int. J. Proj. Manag. 24, 635–637. Maylor, H., Brady, T., Cooke-Davies, T., Hodgson, D., (2006). From projectification to programmification. Int. J. Proj. Manag. 24, 663–674. McLeod, L., Doolin, B., MacDonell, S.G., (2012). A perspective-based understanding of project success. Proj. Manag. J. 43, 68–86. Meyer, R.E., Hammerschmid, G., (2006). Changing institutional logics and executive identities. Am. Behav. Sci. 49, 1000–1014. Meyer, J.W., Rowan, B., (1977). Institutionalized organizations: formal structure as myth and ceremony. Am. J. Sociol. 83, 340–363. Milgram, S., (1967). The small world problema, Psychol. Today 2, 60-67. Mill, S. J., (1967). The collected Works of John Stuart Mill, Volume IV – Essays on Economics and Society Part I, University of Toronto. Morin, E., (1977, 1980, 1986, 1991 y 2003). La méthode: I. La nature de la Nature. II. La vie de la vie. III. La connaissance de la connaissance. IV. Les idées, leur hábitat, leurvie, leurs moeurs, leur organization. V. L´humanité de l´humanité. París: Du Seuil. 5 vols. (El mètodo. I. La naturaleza de la naturaleza II. La vida de la vida. III el conocimiento del conocimiento. IV. Las ideas, su hábitat, su vida, sus costumbres, su organización. La humanidad. Madrid: Cátedra, 1988 a 1993, 5 vols). Morin, E. y Brigitte K.A., (1993), Tierra-Patria. 1999, 2° ed. Nueva Visión, Nuenos Aires. Morin, E., (2000). Los Siete Saberes Necesarios De La Educación Del Futuro. UNESCO. Ediciones Faces/UCV. CIPOST. Caracas. Morín, E., (2003). Introducción al pensamiento complejo. Barcelona, Gedisa. Morin, E., (2005). Introducción al pensamiento complejo (Introduction a la pensée complexe), editorial Gedisa, Barcelona. Morgan, G., (1997). Images of organization. SAGE publications, Thousand Oaks. Morris, P., 1994. The management of projects. Thomas Telford, London. Morris, P.W., (2010). Research and the future of project management. International Journal Management Project Business. 3 (1), 139–146. Morris, P.W.G., Pinto, J.R. & Söderlund, J., (2012). The Oxford Handbook of Project Management. Morris, P., (2013). Reconstructing project management. Wiley Blackwell, Chichester, West Sussex, UK. Morris, P.W.G., Crawford, L., Hodgson, D., Shepherd, M.M., Thomas, J., (2006). Exploring the role of formal bodies of knowledge in defining a profession — the case of project management. Int. J. Proj. Manag. 24, 710–721. Morris, P.W.G., Pinto, J.K., Söderlund, J., (2011). Introduction: towards the third wave of project management. In: Morris, P.W.G., Pinto, J.K., Söderlund, J. (Eds.), The Oxford handbook of project management. Oxford University Press, Oxford, pp. 1–11. Moscovici, S., (1979). El psicoanálisis, su imágen y su público. Buenos Aires: Huemul. Mueller, R., Geraldi, J. G. and Turner, J. R., (2007) 'Linking Project Complexity and Leadership Competences of Project Managers', in IRNOP Conference 2007, Brighton. Müller, R., Jugdev, K., (2012). Critical success factors in projects: Pinto, Slevin, and Prescott—the elucidation of project success. International Journal Management Project Business. 5 (4), 757–775. Müller, R., Pemsel, S., Shao, J., (2014). Organizational enablers for governance and governmentality of projects: a literature review. International Journal of Project Management. Newmann, J. V., (1968). The General and Logical Theory of Automata. Aldine, Chicago. Newman, M.E.J., (2010). Networks. An Introduction. University of Michigan and Santa Fe Institute. Newman, M.E.J., (2006). Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104. Neumann, J. V., (1980). El ordenador y el cerebro. Universidad complutense de Madrid. Nicolescu, B., (2006). Trnasdisciplinariedad pasado, presente y futuro. Primer parte. En: Revista Visión docente con-ciencia (31): 15-31. Nicolis, G. y Prigogine, I., (1987). La estructura de los complejo: en el camino hacia una nueva comprensión de las ciencias. Osorio, G. S.N., (2012). El pensamiento complejo y la transdisciplinariedad: fenómenos emergentes de una nueva racionalidad. Revista de la Facultad de Ciencias Económicas de la Universidad Militar Nueva Granada. rev.fac.cienc.econ, XX (1). Padalkar, M., Gopinath, S., (2015). Delays in projects: a game-theoretic study. In: Warkentin, M. (Ed.), Trends and Research in the Decision Sciences: Best Papers from the 2014 Annual Conference. Pearson Education, Upper Saddle River, NJ, pp. 191–212. Padalkar, M. Gopinath, S., (2016). Are complexity and uncertainty distinct concepts in project management? A taxonomical examination from literatura. International Journal Project Management. Packendorff, J., (1995). Inquiring into the temporary organization: new directions for project management research. Scand. J. Manag. 11, 319–333. Patton, M.Q., (2002). Qualitative research & evaluation methods, 3 ed. Sage Publications Inc., Thousand Oaks. Parker, D., & Stacey, R., (1996). Chaos, Management and Economics (lEA Hobart). Ciborra Organization Studies; 17: pp. 150-153. Pauleen, D. J., Corbitt, B. & Yoong, P., (2007). Discovering and articulating what is not yet known Using action learning and grounded theory as a knowledge management strategy. The Learning Organization, 14(3), 222- 240. Peirce, C. S., (1903). The essential Pierce: Selected philosophical writings, vol. 2. Bloo-mington: Indiana University Press. Perminova, O., Gustafsson, M., Wikström, K., (2008). Defining uncertainty in projects—a new perspective. International Journal Project Management 26 (1), 73–79. Peter, A., Maguire, S. and McKelvey B., (2011). The SAGE Handbook of Complexity and Management. SAGE. Phillips, B.J., (1997). Thinking into it: consumer interpretation of complex ad¬vertising images, The Journal of Advertising, 16(2), 77-87. Piaget, J., (1978). La equilibración de las estructuras cognitivas. Problema central del desarrollo. 1° ed. Siglo XXI, México. Pich, M.T., Loch, C.H., Meyer, A.D., (2002). On uncertainty, ambiguity, and complexity in project management. Management Science. 48 (8), 1008–1023. Pillai, A. S., Joshi, A., & Rao, K. S., (2002). Performance measurement of R&D projects in a multi-project, concurrent engineering environment. International Journal of Project Management, 20(2), 165-177. PMI, (2013). A Guide to the Project Management Body of Knowledge (PMBOK® Guide). 5th edition. Project Management Institute, Newtown Square, Pennsylvania. Prabhakar, G. P., (2008). What is Project Success: A Literature Review. International Journal of Business and Management, 3(9), 3-9. Prigogine I., (1986). La nouvelle Alliance. Paris: Gallimard. 1ª ed. 1979. (La nueva alianza. Metamorfosis de la ciencia. Madrid: Alianza, 1990). Prigogine I. y Stengers I., (1984). Order out of Chaos: Man´s New Dialogue with Nature. New York: Bantam. Prigogine I. y Stengers I., (1987). La nueva alianza. Metamorfosis de la ciencia, Madrid: Alianza. Qureshi S.M., & Kang C.W., (2014). Analysing the organizational factors of project complexity using structural equation modelling. International Journal of Project Management. Radzicki, M.J., y Taylor R.A., 2008. Origin of system dynamics: Jay W. Forrester and the history of system dynamicsy. US Department of Energy’s introduction to system dynamics Ramasesh, R.V., Browning, T.R., (2014). A conceptual framework for tackling knowable unknown unknowns in project management. J. Oper. Manag. 32 (4), 190–204. Remington, K. and Pollack, J., (2007) Tools for Complex Projects, Hampshire: Gower Publishing Ltd. Remington, K., Zolin, R. and Turner, R., (2009) A model of project complexity: distinguish dimensions of complexity from severity, translated by Berlin. Remington K., Pollack J., (2010). Tools for Complex Project. Ribera, J. L., (2000). Project Management. MBA Course IESE, Universidad de Navarra (Spring 2000). http://web.iese.edu/ribera/. Leído el 01/11/2014. Rodrigues, A y Boers, J., (1996). “The role of system dynamics in Project management”, International Journal of Project Management Vol. 14, No. 4, pp. 213-220. Rodrigues, A., Williams, T.M., (1998). System dynamics in projectmanagement: assessing the impacts of client behaviour on project performance. J. Oper. Res. Soc. 2-15 Rodríguez, G.L. & Aguirre, J.L., (2011). Teoría de la complejidad y Ciencias Sociales. Nuevas estrategias Epistemológicas y Metodológicas. Nómadas, revista crítica de ciencias sociales y jurídicas. Rodríguez Zoya, L. y Rodríguez Zoya, P., (2013). Modelo de espacios controversiales y estudios de la complejidad en América Latina: Metodología de análisis, propuesta de formalización y aplicación al campo de la complejidad Documentos de Jóvenes Investigadores N°37, Recuperado de http://webiigg.sociales.uba.ar/iigg/textos/documentos/dji37.pdf. Roggero, P. y Sibertin-Blanc, C., (2008). “Quand des sociologues rencontrent des informaticiens: essai de formalisation des systemes d’action concrets”. Nouvelles Perspectives en Sciences Sociales 3 (2): 41-81. Roggero, P., (2006). De la complexité en sociologié: évolutions théoriques, développements méthodologiques et épreuves empiriques dún project sociologique. Mémoire d´habilitation á diriger des recherches en sociologie, Université de Toulouse 1, Toulouse. Rorty, R., (1979). Philosophy and the mirror of nature. Princeton University Press. Rozenes, S., Vitner, G., Spraggett, S., (2006). Project control: literature review. Project Management Institute. Ruiz-Martin C., Poza J. D., (2015). Project configuration by means of network theory. International Journal of Project Management, 33 (2015) 1755-1767. Sadeh, I.A., (1965). Fuzzy sets. University of California, Berkeley, California. Sahlin-Andersson, K., A.Söderholm, A., (2002). Beyond project management – new perspectives on the temporary-permanent dilemma. Copehage Business School Press, Copenhagen. Sampieri, H. R., et. al. (2010). Metodología de la investigación. 6th Edición. McGrawHill. Sapag, C.N., y Sapag, C.R., (1989). Preparación y evaluación de proyectos. 2da. Edición. Bogotá: Editorial Mc Graw Hill Latinoamericana, S.A. pp.1-36. Sayama H., (2015). Introduction to the Modeling and Analysis of Complex Systems. Saynisch, M., (2010a). Beyond frontiers of traditional project management: an approach to evolutionary, self-organizational principles and the complexity theory—results of the research program. Proj. Manag. J. 41, 21–37. Saynisch, M., (2010b). Mastering complexity and changes in projects, economy, and society via Project Management Second Order (PM-2). Proj. Manag. J. 41, 4–20. Senge, P., (1990). The Fifth Discipline: The art and Practice of the Learning Organisation, Century, London. Scott, W.R., Davis, G.F., (2007). Organizations and organizing: rational, natural, and open system perspectives. Pearson Prentice Hall, Upper Sadle River. Sense, A.J., (2009). The social learning character of projects and project teams.Int. J. Knowl. Manag. Stud. 3, 195–208. Sewchurran, K., (2008). Toward an approach to create self-organizing and reflexive information systems project practitioners. Int. J. Manag. Proj. Bus. 1, 316–333. Shannon, R. E., (1988). Simulación de sistemas: diseño, desarrollo e implementación. Trillas, México. Schonberger, R.J., (1981). Why projects are “always” late: a rationale based on manual simulation of a PERT/CPM network. Interfaces 11 (5), 66–70. Screiber, R.S. & Stern, P.N. (Eds.), (2001). Using grounded theory in nursing. Sprin¬ger Publishing Company. Shenhar, A. J., & Dvir, D., (2007). Project management research, The challenge and opportunity. Project Management Journal, 38 (2): pp. 93-99. Shenhar, A., Dvir, D., (2007). Reinventing project management: the diamond approach to successful growth and innovation. Harvard Business Press, Boston. Shenhar, A.J., (2001). One size does not fit all projects: exploring classical contingency domains. Management. Science. 47 (3), 394–414. Shenhar, A.J., Dvir, D., (1996). Toward a typological theory of project management. Res. Policy 25 (4), 607–632. Shenhar, A. J., & Dvir, D., (2007). Reinventing Project Management. Harvard Business School Press. Sheffield, J., Sankaran, S., Haslett, T., (2012). Systems thinking: taming complexity in project management. Horizon 20, 126–136. Simon, H. A., (1989). Naturaleza y límites de la razón humana. Fondo de Cultura Económica. México. Singh, H., & Singh, A., (2002). Principles of Complexity and Chaos Theory in Project Execution: A New Approach to Management. Cost Engineering, 44(12), pp. 23-33. Small, J., D.Walker, D., (2010). The emergent realities of project praxis in socially complex project environmentsInt. J. Manag. Proj. Bus. 3, 147–156. Smith, C., (2011). Understanding project manager identities: a framework for research. Int. J. Manag. Proj. Bus. 4, 680–696. Smyth, H.J., Morris, P.W., (2007). An epistemological evaluation of research into projects and their management: methodological issues. International Journal Project Management. 25 (4), 423–436. S.Ohara, S., T.Asada, T., (2009). Japanese project management: KPM— innovation, development and improvementMonden Institute of Manage- ment, Japanese management and international studies, v. 3. World Scientific, New Jersey, p. 477. Söderlund, J., (2004). Building theories of project management: past research, questions for the future. International Journal Project Management. 22 (3), 183–191. Söderlund, J., (2011). Pluralism in project management: navigating the crossroads of specialization and fragmentation. Int. J. Manag. Rev. 13, 153–176. Sommer, S.C., Loch, C.H., (2004). Selectionism and learning in projects with complexity and unforeseeable uncertainty. Management Science. 50 (10), 1334–1347. Sterman, J.D., (2002). System Dynamics: Systems thinking and modeling for a complex word. MIT Sloan School of Management. Cambridge MA 02421. Stoner J., (2005). Administración, Editorial PHH, Prentice Hall, En español, México. Strauss, A., and Corbin, J., (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory (2nd ed.). Thousand Oaks, CA: Sage. Strube, L., (1992). Patient focused care: The path to empowered self-manage¬ment. A grounded theory approach. Dissertation. Columbia University. February. Suddaby, R., (2006). From the editors: What grounded theory is not. The Aca¬demy of Management Journal, 49(4), 633-642. Sulkowski, L., (2010). Two paradigms in Management Epistemology. Journal of Intercultural Management Vol. 2, Nro. 1. Sutton, R.L., (1987). The process of organizational death. Disbanding and re¬connecting. Admintstrattve Science Quarterly, 32, 542-569. Svejvig P., & Andersen P., (2014). Rethinking project management: A structured literature review with a critical look at the brave new world. International Journal of Project Management. Svejvig, P., (2012). Rethinking project management in Denmark. In: Pries-Heje, J. (Ed.), Project Management Multiplicity: Current Trends. Samfundslitteratur, Frederiksberg C, pp. 39–58. Tang, K. J., (2011). Temporal network metrics and their application to real world networks. Robinson College University of Cambridge. Tatikonda, M.V., Rosenthal, S.R., (2000). Technology novelty, project complexity, and product development project execution success: a deeper look at task uncertainty in product innovation. IEEE Trans. Eng. Manag. 47 (1), 74–87. Taylor, S., y Bogdan, R., (1986). Introducción a los métodos cualitativos de investigación. Buenos Aires: Paidos. Taylor, S., y Bogdan, R., (1992). Introducción a los métodos cualitativos de investigación. Barcelona: Paidos. Tesch, D., Kloppenborg, T.J., Stemmer, J.K., (2003). Project management learning: what the literature has to say. Project Management Journal. 34 (4), 33–39. a (2008). Modélisation et simulation a base d’agents, Dunod, Paris. Turner, J.R., Müller, R., (2003). On the nature of the project as a temporary organization. International Journal Project Management. 21 (1), 1–8. Turner, J.R., Müller, R., (2005). The project manager's leadership style as a success factor on projects: a literature review. Project Management Journal. 36 (1), 49–61. Thom, R., (1972). Stabilite structurelle morphogenese. Reading. Mass: Benjamín. Thom, R., (1976). “Structural Stability, Catastrophe Theory, and Applied Mathematics: The John von Neumann Lecture, 1976”. SIAM Review 19 (2): 189-201. Thomas, J., Mengel, T., (2008). Preparing project managers to deal with complexity —advanced project management education. Int. J. Proj. Manag. 26, 304–315. Tranfield, D., Denyer, D., Smart, P., (2003). Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br. J. Manag. 14, 207–222. Turner, R., Huemann, M., Anbari, F., Bredillet, C., (2010). Perspectives on projects. Routledge, London and New York. Van de Ven, A.H., Hargrave, T.J., (2004). Social, technical, and institutional change. In: Poole, M.S., Van de Ven, A.H. (Eds.), Handbook of Organizational Change and Innovation. Oxford University Press, New York, pp. 259–303. Van de Vonder, S., Demeulemeester, E., Herroelen, W., Leus, R., (2005). The use of buffers in project management: the trade-off between stability and makespan. Int. J. Prod. Econ. 97 (2), 227–240. Vidal, L.A., Marle, F., (2008). Understanding project complexity: implications on project management. Kybernetes 37 (8), 1094–1110. Vom Brocke, J., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., Cleven, A., (2009). Reconstructing the giant: on the importance of rigour in documenting the literature search process. ECIS 2009 Proceedings. Paper 161, pp. 1–13. Von Neumann, J., (2004). Theory of selt-reproducing autómata. En: Illinois University, 1996-Theory games and economic behavior. Princeton University Press. Wasserman, S. and Faust, K., (1994). Social Network Analysis. Cambridge University Press, Cambridge. Ward, S., Chapman, C., (2003). Transforming project risk management into project uncertainty management. International Journal Project Management. 21 (2), 97–105. Ward, J., Daniel, E., (2012). Benefits management: how to increase the business value of your IT projects. Wiley, West Sussex, United Kingdom. Watts, D.J., and Strogatz, S.H., (1998). Collective dynamics of “small-world” networks, Nature 393, 440-442. Weaver, W., (1949). The Mathematical Theory of Communication, University of Illionois. Webster, J., R.T.Watson, R.T., (2002). Analyzing the past to prepare for the future: writing a literature reviewMIS Q. 26, 13–23. Welge, M.K., Swedberg, R., (1990). Economics and Sociology: Redefining their Boundaries: Conversations with Economists and Sociologists. Princeton: Princeton University Press. Wells, K., (1995). The strategy of Grounded theory: Possibilities and problems. Social Work Research 19(1), 33-37. Whitty, S.J., Maylor, H., (2009). And then came complex project management (revised). International Journal Project Management. 27 (3), 304–310. Wi, H., y Jung, M., (2010). Modeling and analysis of project performance factors in an extended project oriented virtual organization (EProVO). Expert Systems with Applications, 37(2), 1143-1151. Wiener, N., (1985). Cibernetica. O el control y la comunicación en animals y ma´quinas. 1° ed. Tusquets, Barcelona. España. Williams, T., Eden, C., Ackerman, F., Tait, A., (1995). Vicious circles of parallelism. Interantional Journal of Project Management. 13 (3), 151–155. Williams, T., Samset, K., (2010). Issues in front-end decision making on projects. Project Management Journal. 41 (2), 38–49. Williams, T.M., (1992). Criticality in stochastic networks. J. Oper. Res. Soc. 353-357. Williams, T.M., (1999). The need for new paradigms for complex projects. International Journal Project Management 17 (5), 269–273. Williams, T.M., (1999-2002). The need for new paradigms for complex projects. International Journal of Project Management, 17, No. 5, pp. 269-273. Williams, T., (2002) Modelling Complex Projects, West Sussex: John Wiley & Sons. Willins, R., (2004). What´s happenig to America´s middle manager?, Management Review, enero, 2004. Winter, M., Szczepanek, T., (2009). Images of projects. Gower, Farnham. Winter, M., C.Smith, C., T.Cooke-Davies, T., S.Cicmil, S., (2006b). The importance of ‘process’ in rethinking project management: the story of a UK government-funded research networkInt. J. Proj. Manag. 24, 650–662. Winter, M., Smith, C., Morris, P., Cicmil, S., (2006c). Directions for future research in project management: the main findings of a UK government- funded research network. Int. J. Proj. Manag. 24, 638–649. van Dijk, T. A., (1999). Ideología. Una aproximación multidisciplinaria. Sevilla: Gedisa. van Marrewijk, A., Clegg, S. R., Pitsis, T. S. and Veenswijk, M., (2008) 'Managing public–private megaprojects: Paradoxes, complexity, and project design', International Journal of Project Management, 26(6), 591-600. Xia, W., Lee, G., (2004). Grasping the complexity of IS development projects. Commun. ACM 47 (5), 68–74. Xia, W., Lee, G., (2005). Complexity of information systems development projects: conceptualization and measurement development. Journal Management Information Systems 22 (1), 45–83.; palabras clave; https://repositorio.unal.edu.co/handle/unal/77685
Availability: https://repositorio.unal.edu.co/handle/unal/77685
-
11
Authors: et al.
Contributors: et al.
Subject Terms: Enterprise architecture, Public sector, Principles of architecture, Software development, Information systems, Public administration, Systems engineer, Software management, Software application, New technologies, Research, Teaching, Sistemas de información, Administración pública, Ingeniería de sistemas, Gestión de software, Aplicación de software, Nuevas tecnologías, Investigaciones, Enseñanza, Arquitectura empresarial, TOGAF, Sector público, Principios de arquitectura, Desarrollo de software
Subject Geographic: Bucaramanga (Colombia), UNAB Campus Bucaramanga
File Description: application/pdf
Relation: Cruz Bueno, Hernán Darío (2014). Lineamientos iníciales para implementación de arquitecturas empresariales utilizando TOGAF en entidades públicas colombianas, caso de estudio Hospital Universitario de Santander (HUS). Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB; Aagesen G., & Van Veenstra A. (2011). The Entanglement of Enterprise Architecture and IT-Governance: The Cases of Norway and the Netherlands, Proceedings of the 44th Hawaii International Conference on System Sciences. ISBN: 978-0-7695-4282-9; Abul Kalam M., & Ali Khan A. (2008). Government Enterprise Architectures: Present Status of Bangladesh and Scope of Development. ICEGOV2008, 2nd International Conference on Theory and Practice of Electronic Governance, December 1-4, 2008, Cairo, Egypt.; Aier S. (2012). The role of organizational culture for grounding, management, guidance and effectiveness of enterprise architecture principles. Information Systems and e-Business Management ISSN: 1617-9854 (Online); Al-Nasrawi S., & Ibrahim M. (2013). An Enterprise Architecture Mapping Approach for Realizing e-Government. The 3rd International Conference on communications and information technology (ICCIT-2013): Digital information management & security, Beirut. Junio 19-21, 2013. IEEE.; Andreas Ask, Karin Hedström, 2011 - Taking Initial Steps towards Enterprise Architecture in Local Government, Department of Informatics, Swedish Business School at Örebro University, Sweden, Springer 2011; Avison, D., Jones, J., Powell, 2004 - Using and Validating the Strategic Alignment Model. The Journal of Strategic Information Systems, Vol. 13, Issue 3, September 2004; Bejarano G. & Ropero E., 2012, Análisis y diseño de una arquitectura empresarial como solución al proceso de certificación de competencias laborales en el sistema nacional de formación para el trabajo-SENA, Proyecto de Maestría en Gestión Aplicación y Desarrollo de Software, UNAB, 2012.; D. Greefhorst, 2011, A Practical Approach to the Formulation and Use of Architecture Principles, 2011 15th IEEE International Enterprise Distributed Object Computing Conference Workshops; Doucet, G., Gøtze J., & Saha P. (2008), Coherency Management: Using Enterprise Architecture for Alignment, Agility, and Assurance, Journal of Enterprise Architecture, 2008. ISSN 2166-6792 (online); Ebrahim Z., & Irani Z. (2006). E-government adoption: architecture and barriers. Business Process Management Journal, Vol. 11 No. 5, 2005, pp. 589-611. Emerald Group Publishing. ISSN: 1463-7154; Ecopetrol innova parte1, 2011 - El mapa de decisiones, Revista Innova Ecopetrol, Edición 7 - 2011, http://www.ecopetrol.com.co/especiales/RevistaInnova7ed/innovaciones16.html, Revisado 17 Octubre 2013; Espinosa A., & Fong W. (2011). The Organizational Impact of Enterprise Architecture: A Research Framework. Proceedings of the 44th Hawaii International Conference on System Sciences, 2011. IEEE Computer Society Washington, ISBN: 978-0-7695-4282-9.; Espinosa A., & Fong W. (2009). Coordination and Governance in Geographically Distributed Enterprise Architecting: An Empirical Research Design. Proceedings of the 42nd Hawaii International Conference on System Sciences – 2009. 5-8 Junio. 2009. ISBN: 978-0-7695-3450-3; FEAF, 2012 - Federal Enterprise Architecture (FEA) Recuperado Octubre 25 de 2013, http://www.whitehouse.gov/omb/e-gov/fea/; G. Doucet, J. Gøtze, P. Saha, S. Bernard, 2008 - “Coherency Management: Using Enterprise Architecture for Alignment, Agility, and Assurance,” Journal of Enterprise Architecture, May, 2008.; Guijarro L. (2007). Interoperability frameworks and enterprise architectures in e-governmentinitiatives in Europe and the United States. Government Information Quarterly 24 (2007) 89 – 101. ISSN: 0740-624X; Gobierno en Línea, 2011 – Programa de Gobierno electrónico colombiano, http://programa.gobiernoenlinea.gov.co/index.shtml; González L., 2005 - Arquitectura de Empresa. Visión General, IX Congreso de Ingeniería de Organización, 2005. Recuperado Octubre 17 de 2013, http://dialnet.unirioja.es/servlet/articulo?codigo=3250017; Hannu Larsson, 2011 - Ambiguities in the Early Stages of Public Sector Enterprise Architecture Implementation: Outlining Complexities of Interoperability, IFIP International Federation for Information Processing 2011.; Hans Jochen Scholl, Herbert Kubicek, Ralf Cimander, 2011 - Interoperability, Enterprise Architectures, and IT Governance in Government, IFIP International Federation for Information Processing 2011.; Hirvonen, A, 2005 - “Enterprise Architecture Planning in Practice – The Perspectives of Information and Communication Technology Service Provider and End-User”, Doctoral dissertation, University of Jyväskylä; Hjort-Madsen K., & Pries-Heje J. (2009). Enterprise Architecture in Government: Fad or Future? , Proceedings of the 42nd Hawaii International Conference on System Sciences – 2009. 5-8 Junio. 2009. ISBN: 978-0-7695-3450-3; Hjort-Madsen K. (2007). Institutional patterns of enterprise architecture adoption in government. Transforming Government: People, Process and Policy Vol. 1 No. 4, 2007 pp. 333-349. Emerald Group Publishing. ISSN: 1750-6166; Hugoson M., & Magoulas T. (2010). Enterprise Architecture Design Principles and Business-Driven IT Management. BIS 2010, 13th International Conference on Business Information Systems, Berlin, Germany 3-5 Mayo, 2010. LNBIP 57, pp. 144–155. ISBN 978-3-642-15401-0; ICBF- Instituto Colombiano de Bienestar Familiar, 2013, F02 - Anexo– Condiciones Técnicas para la prestación del servicio y/o entrega de bien, Recuperado Octubre 20 de 2013, http://www.icbf.gov.co/portal/page/portal/PortalICBF/NormatividadGestion/EstudiosdeMercado/Estudios2013/Direcci%C3%B3n%20de%20Informaci%C3%B3n%20y%20Tecnolog%C3%ADa/Tab1/ARQUITECTURA%20EMP%20-%20FCTEPS%20060513.pdf; ICFES, 2010- Convocatoria Pública ICFES CP No. 002-2010, “Contratar los servicios de consultoría especializada para el diseño y definición de la Arquitectura Empresarial del ICFES, plantear los proyectos para su implementación, y realizar por demanda mantenimiento a la Arquitectura.”, Recuperado Noviembre 23 de 2013, http://web.icfes.gov.co/component/docman/doc_view/3290-cp-002-acto-de-adjudicacion?Itemid=59; ISO/IEC/IEEE 42010, 2013 - System and Software Engineering - Recommende Practice for Architectural Description of Software-Intensive Systems. Recuperado Octubre 20 de 2013, de http://www.iso-architecture.org/ieee-1471/afs; Iyamu T. (2009). The Factors affecting Institutionalisation of Enterprise Architecture in the Organisation. 2009 IEEE Conference on Commerce and Enterprise Computing. 20-23 Julio 2009. IEEE computer society.; Janssen, M., & Hjort-Madsen, K. (2007). Analyzing Enterprise Architecture in National Governments: The Cases of Denmark and the Netherlands. Proceedings of the 40th Hawaii International Conference on System Sciences (HICSS'07), IEEE, Big Island, Hawaii, 2007. ISBN:0-7695-2755-8; Janssen M. (2012). Sociopolitical Aspects of Interoperability and Enterprise Architecture in E-Government, Social Science Computer Review 30(1) 24-36. SAGE Journals; Janssen M., & Klievink B. (2010). ICT-project failure in public administration: The need to include risk management in enterprise architectures. Proceedings of the 11th Annual International Conference on Digital Government Research. Mexico, Mayo 17 - 17, 2010. ISBN: 978-1-4503-0070-4; Janssen M., & Klievink B. (2009). Can enterprise architectures reduce failure in development projects. 2009 International Conference on Electrical Engineering and Informatics. Transforming Government: People, Process and Policy. Vol. 6 No. 1, 2012, pp. 27-40. Emerald Group Publishing. ISSN: 1750-6166; Jin y Kung, 2010 - Research of Information System Technology Architecture-2010 2nd IEEE -2010, International Conference on Industrial and Information Systems; J. Carrillo, 2010 - Roadmap for the implementation of an Enterprise Architecture Framework Oriented to Institutions of Higher Education in Ecuador - Universidad Politécnica de Madrid, 2010; Kaisler, S.H., Valivullah, M., (2005). Enterprise Architecting: Critical Problems. Proceedings of the 38th Annual Hawaii International Conference on System Sciences - Volume 09. ISBN:0-7695-2268-8-9.; Kamal M.M. (2006). IT innovation adoption in the government sector: identifying the critical success factors. Journal of Enterprise Information Management. Vol. 19 No. 2, 2006, pp. 192-222. Emerald Group Publishing Limited. ISSN: 1741-0398.; Kamal M., Hackney R., & Ali M. (2013). Facilitating enterprise application integration adoption: An empirical analysis of UK local government authorities. International Journal of Information Management 33 (2013) pp. 61-75. ISSN: 0268-4012; Kamal M. M., Weerakkody V., & Jones S. (2009). The case of EAI in facilitating e-Government services in a Welsh authority. International Journal of Information Management 29 (2009) pp 161–165. ISSN: 0268-4012; Kristian Hjort-Madsen, Jan Pries-Heje, 2009 - Enterprise Architecture in Government: Fad or Future? , Proceedings of the 42nd Hawaii International Conference on System Sciences – 2009, IT-University of Copenhagen.; Kristian Hjort-Madsen, 2007 - Institutional patterns of enterprise architecture adoption in government, Transforming Government: People, Process and Policy Vol. 1 No. 4, 2007, IT-University of Copenhagen.; Kaisler, S.H., Valivullah, M., 2005 - Enterprise Architecting: Critical Problems”, Proceedings of the 38th Hawaii International Conference on System Sciences; K. Valtonen, M. Leppänen, M. Pulkkinen, 2011 - “Enterprise Architecture Descriptions for Enhancing Local Government Transformation and Coherency Management”, 15th IEEE International Enterprise Distributed Object Computing Conference Workshops 2011.; Larsson H. (2011). Ambiguities in the Early Stages of Public Sector Enterprise Architecture Implementation: Outlining Complexities of Interoperability. IFIP – 10th conference on electronic government, EGOV 2011. Agosto 28 a Septiembre 02 de 2011. Springer, ISBN 978-3-642-22877-3.; M. EsmaeilZadeh, G. Millar, 2012, Mapping the Enterprise Architecture Principles in TOGAF to the Cybernetic Concepts – An Exploratory Study; Lineamientos Marco referencia Gestión de TI, 2014, Ministerio de Tecnologías de Información y Comunicaciones, Recuperado Junio 18 de 2014 http://www.mintic.gov.co/portal/604/w3-article-6301.html; Marco referencia AE Colombia, 2014, Ministerio de Tecnologías de Información y Comunicaciones, Recuperado Junio 18 de 2014 http://www.mintic.gov.co/portal/604/w3-article-6313.html; Maya E., 2010 – ArquitecturaEmpresarial: un nuevo reto para las empresas de hoy – INTERACTIC (Articulos de Interes No 15 Año 3) - CINTEL (Centro de Investigación de Telecomunicaciones).; Martin N., & Gregor S. (2005). Using a Common Architecture in Australian e-Government – The Case of Smart Service Queensland. ICEC '04 Proceedings of the 6th international conference on Electronic commerce. ISBN:1-58113-930-6; Marijn Janssen, Bram Klievink, 2010, ICT-project failure in public administration: The need to include risk management in enterprise architectures, Proceedings of the 11th Annual International Conference on Digital Government Research – 2010; Marijn Janssen, 2012 - Sociopolitical Aspects of Interoperability and Enterprise Architecture in E-Government, Social Science Computer Review 30(1) 24-36.; Marijn Janssen, Kristian Hjort-Madsen, 2007, Analyzing Enterprise Architecture in National Governments: The cases of Denmark and the Netherlands, Proceedings of the 40th Hawaii International Conference on System Sciences - 2007.; Mats-Åke Hugoson, Thanos Magoulas, 2010, Enterprise Architecture Design Principles and Business-Driven IT Management, BIS 2010 Workshops, LNBIP 57, pp. 144–155, 2010; Mohamed Ali Mohamed, Galal Hassan Galal-Edeen, Hesham Ahmed Hassan, 2012, An Evaluation of Enterprise Architecture Frameworks for E-Government, Faculty of Computers and Information, Cairo University, Egypt – 2012, IEEE.; Ministerio de Tecnologías de la Información y las Comunicaciones, (2011), Programa de Gobierno electrónico colombiano Colombia, Recuperado (2013, octubre 18) de http://programa.gobiernoenlinea.gov.co/apc-aa-files/eb0df10529195223c011ca6762bfe39e/manual-3.1.pdf; Ministerio de Tecnologías de la Información y las Comunicaciones, Plan Vive Digital, (2012), Colombia, Agenda estratégica de Innovación Arquitectura de TI, Recuperado (2013, octubre 21) de http://vivedigital.gov.co/idi/wp-content/uploads/2012/10/ATI_AEI__Vectores_v_1-2-0.pdf; Mosquera L., Andrade D., Sierra L. (2013). A Guide to support the priorization of the risk in information techonologies project management. Gerencia Tecnológica Informática, Vol. 12 - N° 33 - pp 15 - 32. ISSN: 2027-8330; N. Umeh, C. Dagli, 2007 - TOGAF vs. DoDAF: Architecting Frameworks for Net-centric Systems, Njideka Umeh, Cihan Dagli; Nodo arquitectura, 2012 – Documento de agenda estratégica de innovación, Recuperado Octubre 20 de 2013, http://vivedigital.gov.co/idi/wp-content/uploads/2012/10/ATI_AEI__Vectores_v_1-2-0.pdf; Ojo, A., Janowski, T. & Estevez, E. (2012). Improving Government Enterprise Architecture Practice – Maturity Factor Analysis. 45th Hawaii International Conference on System Sciences, 4- 7 de enero 2012, USA. ISBN:9781457719257; Paz, R. y Macedo, R., 2010 - The Open Group Architecture Framework, Paz Renato y Macedo Ricardo, Universidad Catolica San Pablo, Recuperado Octubre 18 de 2013, tis-2010-g1.googlecode.com/svn-history/r4/trunk/TOGAF.doc; Plan Vive Digital, Ministerio Tecnologías de Información y Comunicaciones (2012), Recuperado (2014, Abril 28) de http://www.mintic.gov.co/portal/vivedigital/612/w3-propertyvalue-6106.html; Penttinen K., & Isomäki H. (2010). Stakeholders’ Views on Government Enterprise Architecture: Strategic Goals and New Public Services. First International Conference, EGOVIS 2010, Bilbao, Spain, Agosto 31 – Septiembre 2, 2010. Proceedings. ISBN: 978-3-642-15172-9 (Online).; Pessi, K., Magoulas, T. & Hugoson, M., 2011, “The Impact of Enterprise Architecture Principles on the Management of IT Investments” The Electronic Journal Information Systems Evaluation Volume 14 Issue 1 2011, (pp53-62), ISSN 1566-6379; Pulkkinen, M., Hirvonen, A., 2005 - EA Planning, Development and Management Process for Agile Enterprise Development, Proceedings of the 38th Hawaii International Conference on System Sciences; Richardson L., Jackson B. M., & Dickson G. (1990). A principle-based enterprise architecture: Lessons From Texaco and Star Enterprise. MIS Quarterly, 14, 385–403.; Richard A. Martin, Edward L. Robertson, 2005, Architectural Principles for Enterprise Frameworks, IFIP — The International Federation for Information Processing, Volume 183, 2005, pp 79-91; Robert Winter, Stephan Aier, 2011, How are Enterprise Architecture Design Principles Used?, 2011 15th IEEE International Enterprise Distributed Object Computing Conference Workshops; Saha, P. (2007). Handbook of Enterprise Systems Architecture in Practice. IGI Global Information Science Reference, Hershey, 2007. ISBN13: 9781599041896; Saha P. (2009). Architecting the Connected Government: Practices and Innovations in Singapore. The 3rd International Conference on Theory and Practice of Electronic Governance (ICEGOV2009). 10 - 13 Noviembre 2009. ACM.; Schekkerman, J. (2005). Enterprise Architecture: How are Organizations Progressing? Web-form Based. Institute For Enterprise architecture Developments. 2005, pp 79-84; Scholl H., & Kubicek H. (2011). Interoperability, Enterprise Architectures, and IT Governance in Government. 10th conference on electronic government, EGOV 2011. Agosto 28 a Septiembre 02 de 2011. ISBN 978-3-642-22877-3. IFIP International Federation for Information Processing 2011 LNCS 6846, pp. 345–354; Sessions R., 2007 - “Comparison of the Top Four Enterprise Architecture Methodologies”, object watch, 2007, Revisado el 21 de Octubre de 2013. http://msdn.microsoft.com/en-us/library/bb466232.aspx; Seppänen V., Heikkilä J., & Liimatainen K. (2009). Key Issues in EA-implementation: Case study of two Finnish government agencies, 11th IEEE Conference on Commerce and Enterprise Computing (CEC’09). 20-23 Julio 2009.; Servicio Nacional de Aprendizaje SENA, (2012). Colombia. Estudio de mercado, oficina de sistemas – Arquitectura Empresarial, Recuperado (2013, noviembre 23) de http://contratacion.sena.edu.co/_file/solicitudes/2321_1.pdf; Sistema de Investigación, Desarrollo e Innovación, Ministerio Tecnologías e Información, (2012). Colombia, Documento de plan de acción Nodo de innovación en Arquitectura TI para Gobierno, Recuperado (2013, octubre 21) de http://vivedigital.gov.co/idi/wp-content/uploads/2012/07/Plan_de_Accion_NDI_Arquitectura_V2_0_0.pdf; Stephan Aier, 2012 - The role of organizational culture for grounding, management, guidance and effectiveness of enterprise architecture principles, Springer-Verlag Berlin Heidelberg 2012, University of St. Gallen , Switzerland.; Superintendencia Sociedades, (2012). Colombia, Resolución No. 511-004064 de 2012 de Superintendencia de Sociedades, Recuperado (2013, octubre 20) de http://www.supersociedades.gov.co/ss/drvisapi.dll?MIval=muestra&id_pag=33550&t=1; S. Lusa y D. Sensuse, 2011 - Enterprise Architecture Model For Implementation Knowledge Management System (KMS) - Sofian Lusa y Dana Indra Sensuse , University of Indonesia - Depok, Indonesia – IEEE 2011; Tambouris E., & Kaliva E. (2012). A reference requirements set for public service provision enterprise architectures, Springer. Software & Systems Modeling. ISSN: 1619-1374 (Online); Togaf v9, 2009 - The Open Group .La arquitectura abierta del Grupo Marco (TOGAF) versión 9 Enterprise Edition. 2009 (Online):\url{http://www.opengroup.org/architecture/togaf9-doc/arch/index.html /; The Open Group, 2013 - The Open Group Architecture Framework (TOGAF). Versión 9.1. Disponible en: http://pubs.opengroup.org/architecture/togaf9-doc/arch/; The Open Group Principles, 2013 - The Open Group Architecture Framework (TOGAF). Principles, Versión 9.1. Disponible en: http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap04.html; Tuo Zheng, Lei Zheng, 2013 - Examining e-government enterprise architecture research in China: A systematic approach and research agenda Government Information Quarterly 30 (2013) S59–S67.; U. Franke, D. Hook, J. Konig, R. Lagerstrom, 2009 - “ EAF2 – A Framework for Categorizing Enterprise Architecture Frameworks”, 10th ACIS International Conference on Software Engineering, pp. 327–633, 2009; Valtonen, K. & Leppanen M. (2009). Business Architecture Development at Public Administration – Insights from Government EA Method Engineering Project in Finland. Information Systems Development. ISBN: 978-0-387-84810-5 (Online) Pages 765-774; Valtonen K., Leppänen M., & Pulkkinen M. (2011). Enterprise Architecture Descriptions for Enhancing Local Government Transformation and Coherency Management. 15th IEEE International Enterprise Distributed Object Computing Conference Workshops. (EDOCW 2011). ISBN:9781457708695; Valtonen K., & Seppänen V. (2009). Government Enterprise Architecture Grid Adaptation in Finland. Proceedings of the 42nd Hawaii International Conference on System Sciences – 2009. IEEE Computer Society. ISBN: 978-0-7695-3450-3; Ville Seppänen, Jukka Heikkilä, Katja Liimatainen, 2009 - Key Issues in EA-implementation: Case study of two Finnish government agencies, 2009 IEEE Conference on Commerce and Enterprise Computing; http://hdl.handle.net/20.500.12749/3343; reponame:Repositorio Institucional UNAB
Availability: https://hdl.handle.net/20.500.12749/3343
-
12
Authors: et al.
Contributors: et al.
Subject Terms: Software development, Enterprise architecture, Architecture framework, Systems engineer, Software management, Software application, Development of computer programs, Programming, Electronic computers, Research, Analysis, Ingeniería de sistemas, Gestión de software, Aplicación de software, Desarrollo de programas para computador, Programación, Computadores electrónicos, Investigaciones, Análisis, Desarrollo de software, Arquitectura empresarial, TOGAF, Framework de arquitectura
Subject Geographic: Bucaramanga (Colombia), UNAB Campus Bucaramanga
File Description: application/pdf; application/octet-stream
Relation: Contreras Mora, José Wilson (2013). Prototipo de arquitectura empresarial para la dirección de admisiones y registro académico de la UNAB, sobre las fases: preliminar, A, B y C del FRAMEWORK TOGAF MODELADO CON CASEWISE. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB; © 2010 Gartner, Inc. (2013, May) Magic Quadrant for Enterprise Architecture Tools 28 Octubre 2010. [Online]. http://www.gartner.com/DisplayDocument?id=1459313&ref=%27g_fromdoc%27; © 2010 Gartner, Inc. (2013, May) Magic Quadrant for Enterprise Architecture Tools 28 Octubre 2010. [Online]. http://www.gartner.com/DisplayDocument?id=1459313&ref='g_fromdoc'; © 2010 Gartner, Inc. (2013, May) troux. [Online]. http://www.troux.com/outgoing/gartner_mq_2010.pdf; © 2011 Gartner, Inc. (2013, May) Magic Quadrant for Enterprise Architecture Tools 3 Noviembre 2011. [Online]. http://www.gartner.com/DisplayDocument?id=1839614&ref=%27g_fromdoc%27; © 2012 Gartner, Inc. (2013, May) Magic Quadrant for Enterprise Architecture Tools 31 October 2012. [Online]. http://www.gartner.com/DisplayDocument?id=2219916&ref=%27g_fromdoc%27; © 2012 Gartner, Inc. (2013, May) Magic Quadrant for Enterprise Architecture Tools 31 Octubre 2012. [Online]. http://www.gartner.com/technology/reprints.do?id=1-1CVXD3X&ct=121119&utm_content=c26292b9-8692-4afe-9fec-28e9315d6a34; © 2012 Gartner, Inc. (2013, May) online.ist.psu.ed. [Online]. https://online.ist.psu.edu/sites/ist873/files/t12_magic_quadrant.pdf; © 2013 Ellucian Company L.P. and its affiliates. (2012, Nov.) Ellucian. [Online]. http://www.ellucian.com/; © Casewise Ltd 2013. (2013, May) About us. [Online]. http://www.casewise.com/about-us; © Casewise Ltd 2013. (2013, May) Business Analyst / Architect. [Online]. http://www.casewise.com/solutions/role/business-analyst-architect; © Casewise Ltd 2013. (2013, May) Casewise Models & Frameworks. [Online]. http://www.casewise.com/products/models-and-frameworks; © Casewise Ltd 2013. (2013, May) Central & Local Gov't, Public Sector & Not-For-Profit. [Online]. http://www.casewise.com/solutions/industry/central-local-government-public-sector-not-for-profit; © Casewise Ltd 2013. (2013, May) Enterprise Architecture. [Online]. http://www.casewise.com/solutions/discipline/enterprise-architecture; © Casewise Ltd 2013. (2013, May) gartner leader. [Online]. http://www.casewise.com/gartner-leader/; © Casewise Ltd 2013. (2013, May) global vision. [Online]. http://www.casewise.com/about-us/global-vision; © Casewise Ltd 2013. (2013, May) modeler. [Online]. http://www.casewise.com/products/modeler; © Casewise Ltd 2013. (2013, May) products. [Online]. http://www.casewise.com/products; © Casewise Ltd 2013. (2013, May) solutions. [Online]. http://www.casewise.com/solutions; © Casewise Ltd 2013. (2013, May) TOGAF 8 Extension. [Online]. http://www.casewise.com/support-and-downloads/downloads/togaf-8; © TeleManagement Forum. 1988-2012. (2013, May) TM Forum. [Online]. http://www.tmforum.org/; Arquitectura Empresarial en Acción. (2013, May) Los Diferentes Roles del Arquitecto. [Online]. http://arquitecturaempresarialcali.wordpress.com/2010/12/05/los-diferentes-roles-del-arquitecto/; Claudia Isabel Caceres Becerra. (2012, Junio) Representación textual de una Arquitectura Empresarial elaborada con Archimate para facilitar el análisis de información, usando XADL. Trabajo de Grado - UNAB.; Copyright © 1999-2011 The Open Group, All Rights Reserved. (2013, May) Architecture Governance. [Online]. http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap50.html; Daniel Minoli, "Introduction: Enterprise Architecture and Technology Trends," in Enterprise Architecture A to Z, CRC Press, Ed. Boca Ratón, Fl., Estados Unidos: Auerbach Publications, 2008, ch. 1, pp. 3-31.; Dirección de admisiones y registro académico UNAB. (2013, Apr.) Presentación Admisiones y Registro Académico Institucional. Presentación MS PowerPoint.; Erika María González Escobar and Jorge Wilmar Álzate. (2012, Aug.) Arquitectura Empresarial en acción. [Online]. http://arquitecturaempresarialcali.wordpress.com/2010/12/05/los-diferentes-roles-del-arquitecto/; Garthner Gruop. (2012, Julio) IT Glossary Defining The IT Industry. [Online]. http://www.gartner.com/it-glossary/enterprise-architecture-ea/; IBM developerWorks and Thiago Souza Mendes Guimarães. (2013, May) 21 principles of enterprise architecture for the financial sector. [Online]. http://www.ibm.com/developerworks/rational/library/enterprise-architecture-financial-sector/enterprise-architecture-financial-sector-pdf.pdf; Jesus Perez Cota Managing Partner BPMC Group. (2013, May) slideshare. [Online]. http://www.slideshare.net/jperezcota/casewise-corporate-modeler; John A. Zachman, "A Framework for Information Systems Architecture," IBM Systems Journal, vol. 26, no. 3, 1987.; John A. Zachman, "Business Systems Planning and Business Information Control Study: A comparisment," IBM Systems Journal, vol. 21, no. 3, pp. 31-53, 1982.; Kiran Garimella, Michael Lees, and Bruce Williams, "Defining Business Process," in BPM Basics FOR DUMmIES, Software AG Special Edition ed. Indianapolis, EE.UU: Wiley Publishing, 2008, ch. 1, pp. 5-10.; Kiran Garimella, Michael Lees, and Bruce Williams, "The Business Drivers of BPM," in BPM Basics FOR DUMmIES. Indianapolis, EE.UU: Wiley Publishing, Inc., 2008, ch. 2, pp. 11-14.; Kiran Garimella, Michael Lees, and Bruce Williams, "The Functional Goals of BPM," in BPM Basics FOR DUMmIES. Indianapolis, EE.UU: Wiley Publishing, Inc., 2008, ch. 3, pp. 15-22.; Kiran Garimella, Michael Lees, and Bruce Williams, BPM Basics FOR DUMmIES, Software AG Special Edition ed. Indianapolis, Indiana: Wiley Publishing, 2008.; Leon Kappelman, The SIM Guide to Enterprise Architecture, Leon Kappelman, Ed. Boca Ratón, Estados Unidos: CRC Press, 2010.; Leonard Greski. (2013, May) Architecture and governance magazine. [Online]. http://architectureandgovernance.com/content/business-capability-modeling-theory-practice&prev=/search%3Fq%3DEvaluate%2BBusiness%2BCapabilities%26start%3D10%26sa%3DN%26biw%3D1920%26bih%3D942; Martín Darío Arango Serna, Jesús Enrique Londoño Salazar, and Julián Andrés Zapata Cortés, "Arquitectura empresarial - una visión general," Revista Ingenierías Universidad de Medellín, vol. 9, no. 16, p. 11, Junio 2010.; Mike Rosen. (2013, June) 10 Key Skills Architects Must Have to Deliver Value. 10_key_skills_architects.; Ministerio de Educación Nacional - MEN. (2013, Apr.) Sistema Nacional de Información de la Educación Superior - SNIES. [Online]. http://snies.mineducacion.gov.co/consultasnies/institucion/buscar.jsp?control=0.054486014773978075; Óscar Barros V., Arquitectura y Diseño de Procesos de Negocios, Serie Gestión ed. Chile, 2007.; Pedro Bonillo. (2013, June) Revista de Gestão da Tecnologia e Sistemas de Informação. [Online]. http://www.tecsi.fea.usp.br/Revistatecsi/edicoesanteriores/v03n02-2006/v03n02-2006/a04v03n02/v3n2a4.htm; SAP Deutschland AG & Co. KG. (2013, May) Enterprise Architecture – Organizational Structure. paper.; Steven Wright. (2013, June) Steve Wright's Home Page. [Online]. http://home.comcast.net/~stevendwright/ArchRoles.htm; The Open Group Copyright © 1999-2011. (2013, June) Architecture Skills Framework. [Online]. http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap20.html; The Open Group Copyright © 1999-2011. (2013, June) Business Transformation Readiness Assessment. [Online]. http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap30.html; The Open Group. (2012, Julio) Part I, Core Concepts. [Online]. http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap02.html; The Open Group. (2012, Julio) Part I, Definitions. [Online]. http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap03.html; The Open Group. (2012, Julio) Part I, Introduction. [Online]. http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap01.html; The Open Group. (2012, Julio) Part II, Introduction to the ADM. [Online]. http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap05.html; The Open Group. (2012, Julio) Part II, Phase A: Architecture Vision. [Online]. http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap07.html; The Open Group. (2012, Julio) Part II, Phase B: Business Architecture. [Online]. http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap08.html; The Open Group. (2012, Julio) Part II, Preliminary Phase. [Online]. http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap06.html; Universidad Autónoma de Bucaramanga. (2012, Julio) Campus - CSU Octavio Cadena Gómez. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/campus/csu; Universidad Autónoma de Bucaramanga. (2012, Julio) Campus - El Bosque. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/campus/campus-bosque; Universidad Autónoma de Bucaramanga. (2012, Julio) Campus - El Jardín. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/campus/campus-jardin; Universidad Autónoma de Bucaramanga. (2012, Julio) Campus - El Tejar. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/campus/campus-tejar; Universidad Autónoma de Bucaramanga. (2012, Julio) Campus - Ubicación. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/campus/ubicacion; Universidad Autónoma de Bucaramanga. (2012, Julio) Ejes Estratégicos Plan De Desarrollo 2007-2012. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/ejes-estrategico; Universidad Autónoma de Bucaramanga. (2012, Julio) Gestión de Calidad - Calidad Educativa. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/gestion-de-la-calidad/calidad-educativa; Universidad Autónoma de Bucaramanga. (2012, Julio) Misión. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/mision; Universidad Autonoma de Bucaramanga. (2012, Julio) Política de Calidad. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/gestion-de-la-calidad/politica-de-calidad; Universidad Autónoma de Bucaramanga. (2012, Julio) Portal UNAB. [Online]. http://www.unab.edu.co/portal/page/portal/UNAB; Universidad Autónoma de Bucaramanga. (2012, Julio) Presentación Institucional. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/presentacion; Universidad Autónoma de Bucaramanga. (2012, Julio) Síntesis Proyecto Educativo Institucional. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/proyecto-educativo/sintesis; Universidad Autónoma de Bucaramanga. (2012, Julio) UNAB en Cifras Servicios Tecnológicos. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/unab-en-cifras/ServiciosTecnologicos; Universidad Autónoma de Bucaramanga. (2012, Julio) Valores UNAB. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/valores; Universidad Autónoma de Bucaramanga. (2012, Julio) Visión. [Online]. http://wlserver.unab.edu.co/portal/page/portal/UNAB/presentacion-institucional/vision; http://hdl.handle.net/20.500.12749/3383; reponame:Repositorio Institucional UNAB
Availability: https://hdl.handle.net/20.500.12749/3383
-
13
Authors:
Contributors:
Subject Terms: 000 - Ciencias de la computación, información y obras generales, Local area networks (Computer networks), Computer algorithms, Computer networks - design and construction, Redes de área local (Computadores), Algoritmos (Computadores), Redes de computadores - Diseño y construcción, Auto-organización, Cooperación, Confianza, Adaptación, Redes ad-hoc, Self-organization, Cooperation, Trust, Adaptation, Ad-hoc networks
File Description: xvi, 57 páginas; application/pdf
Relation: Abdel-Halim, I T.; Fahmy, H M A.; Bahaa-Eldin, A M.: Agent-based trusted on-demand routing protocol for mobile ad-hoc networks. En: Wireless Networks 21 (2014), Nr. 2, p. 467–483; Anderegg, Luzi; Eidenbenz, Stephan: Ad hoc-VCG: a truthful and cost-efficient routing protocol for mobile ad hoc networks with selfish agents. En: Proceedings of the 9th annual international conference on Mobile computing and networking, 2003, p. 245–259; Ashwin, M; Kamalraj, S; Azath, M: Weighted Clustering Trust Model for Mobile Ad Hoc Networks. En: Wireless Personal Communications 94 (2017), Nr. 4, p. 2203– 2212; Axelrod, Robert; Hamilton, William D.: The evolution of cooperation. En: science 211 (1981), Nr. 4489, p. 1390–1396; Ayday, E; Fekri, F: An Iterative Algorithm for Trust Management and Adversary Detection for Delay-Tolerant Networks. En: IEEE Transactions on Mobile Computing 11 (2012), Nr. 9, p. 1514–1531; Bansal, Sorav; Baker, Mary: Observation-based cooperation enforcement in ad hoc networks. En: arXiv preprint cs/0307012 (2003); Bauer, Paul C.: Conceptualizing trust and trustworthiness. (2017); Bauer, Paul C.; Keusch, Florian; Kreuter, Frauke: Trust and cooperative behavior: Evidence from the realm of data-sharing. En: PloS one 14 (2019), Nr. 8, p. e0220115; Bisen, D; Sharma, S: An enhanced performance through agent-based secure approach for mobile ad hoc networks. En: International Journal of Electronics 105 (2018), Nr. 1, p. 116–136; Buchegger, Sonja; Le Boudec, Jean-Yves: Performance analysis of the CONFI- DANT protocol. En: Proceedings of the 3rd ACM international symposium on Mobile ad hoc networking & computing, 2002, p. 226–236; Chatterjee, P; Sengupta, I; Ghosh, S K.: STACRP: A secure trusted auction oriented clustering based routing protocol for MANET. En: Cluster Computing 15 (2012), Nr. 3, p. 303–320; Fadel, Etimad; Gungor, Vehbi C.; Nassef, Laila; Akkari, Nadine; Malik, MG A.; Almasri, Suleiman; Akyildiz, Ian F.: A survey on wireless sensor networks for smart grid. En: Computer Communications 71 (2015), p. 22–33; Fitzek, F.H.P.; Katz, M.D.: Cooperation in wireless networks: Principles and applications: Real egoistic behavior is to cooperate! Springer, 2006. – 1–641 p. – cited By 186; Friedman, Linda W.; Friedman, Hershey H.: Analyzing simulation output using the bootstrap method. En: Simulation 64 (1995), Nr. 2, p. 95–100; Gera, P; Garg, K; Misra, M: Trust-based multi-path routing for enhancing data security in MANETs. En: International Journal of Network Security 16 (2014), Nr. 2, p. 102–111; Gershenson, Carlos; Heylighen, Francis: When can we call a system self-organizing? En: European Conference on Artificial Life Springer, 2003, p. 606–614; Ghosekar, Pravin; Katkar, Girish; Ghorpade, Pradip: Mobile ad hoc networking: imperatives and challenges. En: IJCA Special issue on MANETs 3 (2010), p. 153–158; Hanbali, Ahmad; Ibrahim, Mouhamad; Simon, Vilmos; Varga, Endre; Carreras, Iacopo: A Survey of Message Diffusion Protocols in Mobile Ad Hoc Networks, 2008; Hardin, Garrett: The tragedy of the commons. En: science 162 (1968), Nr. 3859, p. 1243–1248; He, Qi; Wu, Dapeng; Khosla, Pradeep: SORI: A secure and objective reputation-based incentive scheme for ad-hoc networks. En: 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No. 04TH8733) Vol. 2 IEEE, 2004, p. 825–830; Hegde, S B.; Babu, B S.; Venkataram, P: A Cognitive Theory-based Opportunistic Resource-Pooling Scheme for Ad hoc Networks. En: Journal of Intelligent Systems 26 (2017), Nr. 1, p. 47–68; Hilbe, Christian; Šimsa, Štěpán; Chatterjee, Krishnendu; Nowak, Martin A.: Evolution of cooperation in stochastic games. En: Nature 559 (2018), Nr. 7713, p. 246–249; Jayanand, A; Chenthil Kumaran, N: Trusted and authentication based routing security for MANET. En: International Journal of Applied Engineering Research 10 (2015), Nr. 1, p. 105–120; Katz, M.; Lucani, D.E.; Seeling, P.: Mobile clouds as the building blocks of shareconomy: Sharing resources locally and widely. En: IEEE Vehicular Technology Magazine 9 (2014), Nr. 3, p. 63–71; Li, W; Parker, J; Joshi, A: Security through collaboration and trust in MANETs. En: Mobile Networks and Applications 17 (2012), Nr. 3, p. 342–352; Loo, Jonathan; Mauri, Jaime L.; Ortiz, Jesus H.: Mobile ad hoc networks: current status and future trends. CRC Press, 2016; Mandhare, V V.; Thool, V R.; Manthalkar, R R.: QoS Routing enhancement using metaheuristic approach in mobile ad-hoc network. En: Computer Networks 110 (2016), p. 180–191. – ISSN 1389–1286; Mani, P; Kamalakkannan, P: Conviction based packet promotion scheme for efficient detection of selfish nodes in mobile Ad Hoc networks. En: International Review on Computers and Software 9 (2014), Nr. 2, p. 212–218; Marias, Giannis F.; Georgiadis, Panagiotis; Flitzanis, D; Mandalas, K: Cooperation enforcement schemes for MANETs: A survey. En: Wireless Communications and Mobile Computing 6 (2006), Nr. 3, p. 319–332; Mejia, Angela M.: Evolución genética de estrategias para modelos de confianza en redes móviles ad-hoc basados en teoría de juegos. 2010. – unpublished thesis; Mejia, M; Peña, N; Muñoz, J L.; Esparza, O; Alzate, M A.: A game theoretic trust model for on-line distributed evolution of cooperation inMANETs. En: Journal of Network and Computer Applications 34 (2011), Nr. 1, p. 39–51; Mertens, J-F; Neyman, Abraham: Stochastic games. En: International Journal of Game Theory 10 (1981), Nr. 2, p. 53–66; Michiardi, Pietro; Molva, Refik: Core: a collaborative reputation mechanism to enforce node cooperation in mobile ad hoc networks. En: Advanced communications and multimedia security. Springer, 2002, p. 107–121; Myerson, Roger B.: Game theory. Harvard university press, 2013; Ninu, S B.; Behin Sam, S: A collaborative Intrusion Detection System for manet using data mining technique. En: ARPN Journal of Engineering and Applied Sciences 13 (2018), Nr. 14, p. 4387–4392; Ochoa, Gabriela: Setting the mutation rate: Scope and limitations of the 1/L heuristic. En: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, 2002, p. 495–502; Pariselvam, S; Parvathi, R M S.: Trust based security mechanism for service discovery in MANET. En: Journal of Theoretical and Applied Information Technology 56 (2013), Nr. 2, p. 226–234; Pouyan, A A.; Yadollahzadeh Tabari, M: FPN-SAODV: using fuzzy petri nets for securing AODV routing protocol in mobile Ad hoc network. En: International Journal of Communication Systems 30 (2017), Nr. 1; Rajeshwar, J; Narsimha, G: Secure way routing protocol for mobile ad hoc network. En: Wireless Networks 23 (2017), Nr. 2, p. 345–354; Rapoport, Anatol; Chammah, Albert M.; Orwant, Carol J.: Prisoner’s dilemma: A study in conflict and cooperation. Vol. 165. University of Michigan press, 1965; Raychaudhuri, Dipankar; Gerla, Mario: Emerging wireless technologies and the future mobile internet. Cambridge University Press, 2011; Mandayam, Narayan B.: Frontiers of wireless and mobile communications. En: Proceedings of the IEEE 100 (2012), Nr. 4, p. 824–840; Reddy, V B.; Venkataraman, S; Negi, A: A dynamic trust evolution model for MANETs based on mobility. En: International Journal of Ad Hoc and Ubiquitous Computing 28 (2018), Nr. 4, p. 230–246; Roughgarden, Tim: Algorithmic game theory. En: Communications of the ACM 53 (2010), Nr. 7, p. 78–86; Saha, H N.; Singh, R; Bhattacharyya, D; Banerjee, P K.: Modified Fidelity Based On-Demand Secure (MFBOD) Routing Protocol in Mobile Ad-Hoc Network. En: Foundations of Computing and Decision Sciences 40 (2015), Nr. 4, p. 267–298; Shannon, Claude E.: A mathematical theory of communication. En: ACM SIGMO- BILE mobile computing and communications review 5 (2001), Nr. 1, p. 3–55; Sridhar, S; Nagaraju, V; Bapu, B R T.; Shankar, R; Anitha, R: Trusted and optimized routing in mobile ad-hoc networks emphasizing quality of service. En: Applied Mathematics and Information Sciences 12 (2018), Nr. 3, p. 655–663; Thorat, S A.; Kulkarni, P J.: Opportunistic Routing in Presence of Selfish Nodes for MANET. En: Wireless Personal Communications 82 (2015), Nr. 2, p. 689–708; Tonguz, Ozan K.; Ferrari, Gianluigi: A communication-theoretic approach to ad hoc wireless networking. En: 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks Vol. 2 IEEE, 2006, p. 715–722; Vega, Diego A.; Ospina, Juan P.; Latorre, Julian F.; Ortiz, Jorge E.: An adaptive trust model for achieving emergent cooperation in ad hoc networks. En: Current Trends in Semantic Web Technologies: Theory and Practice. Springer, 2019, p. 85–100; Vekaria, Kanta; Clack, Chris: Selective crossover in genetic algorithms: An empirical study. En: International Conference on Parallel Problem Solving from Nature Springer, 1998, p. 438–447; Wooldridge, Michael: An introduction to multiagent systems. John Wiley & Sons, 2009; Yang, Hao; Shu, James; Meng, Xiaoqiao; Lu, Songwu: SCAN: self-organized network-layer security in mobile ad hoc networks. En: IEEE Journal on Selected Areas in Communications 24 (2006), Nr. 2, p. 261–273; Zhang, Qing; Yu, Ting; Irwin, Keith: A Classification Scheme for Trust Functions in Reputation-Based Trust Management. En: ISWC Workshop on Trust, Security, and Reputation on the Semantic Web Vol. 127 Citeseer, 2004; Zhang, Yujun; Yan, Tan; Tian, Jie; Hu, Qi; Wang, Guiling; Li, Zhongcheng: TOHIP: A topology-hiding multipath routing protocol in mobile ad hoc networks. En: Ad Hoc Networks 21 (2014), p. 109–122. – ISSN 1570–8705; Zhong, Sheng; Chen, Jiang; Yang, Yang R.: Sprite: A simple, cheat-proof, credit-based system for mobile ad-hoc networks. En: IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No. 03CH37428) Vol. 3 IEEE, 2003, p. 1987–1997; https://repositorio.unal.edu.co/handle/unal/80614; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
14
Authors: et al.
Contributors: et al.
Subject Terms: Voice processing systems, Automatic voice recognition, Systems engineering, Telematics, Investigations, New technologies, Internet of things, Speech recognition, Ubiquitous computing, Sistemas de procesamiento de voz, Reconocimiento automático de la voz, Ingeniería de sistemas, Telemática, Investigaciones, Nuevas tecnologías, Internet de las cosas, Middleware, Reconocimiento del habla, Computación ubicua
Subject Geographic: Bucaramanga (Colombia), UNAB Campus Bucaramanga
File Description: application/pdf; application/octet-stream
Relation: Manrique Hernández, Johana Andrea (2018). Switch: un Middleware para el desarrollo de aplicaciones IOT con interfaces basadas en voz. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB; Abdmeziem, M. R., Tandjaoui, D., & Romdhani, I. (2016). Architecting the internet of things: state of the art. In Robots and Sensor Clouds (pp. 55–75). Springer.; Abreu, D. P., Velasquez, K., Curado, M., & Monteiro, E. (2017). A resilient Internet of Things architecture for smart cities. Annals of Telecommunications, 72(1–2), 19–30.; Adams, K. (2015). Non-functional Requirements in Systems Analysis and Design. Springer.; Addo, I. D., Ahamed, S. I., Yau, S. S., & Buduru, A. (2014). A reference architecture for improving security and privacy in Internet of Things applications. In Mobile Services (MS), 2014 IEEE International Conference on (pp. 108–115).; Afonso, S., Laranjo, I., Braga, J., Alves, V., & Neves, J. (2015). Multilingual Voice Control for Endoscopic Procedures. In Internet of Things. User-Centric IoT (pp. 229–235). Springer.; Akash, S. A., Menon, A., Gupta, A., Wakeel, M. W., Praveen, M. N., & Meena, P. (2014). A novel strategy for controlling the movement of a smart wheelchair using internet of things. In Global Humanitarian Technology Conference-South Asia Satellite (GHTC-SAS), 2014 IEEE (pp. 154–158).; Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376.; Al-Jaroodi, J., Aziz, J., & Mohamed, N. (2009). Middleware for RFID systems: An overview. In Computer Software and Applications Conference, 2009. COMPSAC’09. 33rd Annual IEEE International (Vol. 2, pp. 154–159).; Aldosari, H. M. (2015). A Proposed Security Layer for the Internet of Things Communication Reference Model. Procedia Computer Science, 65, 95–98.; Alhamedi, A. H., Snasel, V., Aldosari, H. M., & Abraham, A. (2014). Internet of things communication reference model. In Computational Aspects of Social Networks (CASoN), 2014 6th International Conference on (pp. 61–66).; Association for computing machinery ACM. (2012). CCS 2012.; Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805. http://doi.org/doi.org/10.1016/j.comnet.2010.05.010; Baccaglini, E., Gavelli, M., Morello, M., & Vergori, P. (2015). A multimodal user interface using the webinos platform to connect a smart input device to the Web of Things. In Pervasive and Embedded Computing and Communication Systems (PECCS), 2015 International Conference on (pp. 1–5).; Bai, J. G., Wei, J. G., Chen, L., He, Y. Q., Wang, J. R., & Dang, J. W. (2013). Design and Implementation of a Housekeeper System. In Applied Mechanics and Materials (Vol. 437, pp. 394–398).; Banda, G., Chaitanya, K., & Mohan, H. (2015). An IoT protocol and framework for OEMs to make IoT-enabled devices forward compatible. In Signal-Image Technology & Internet-Based Systems (SITIS), 2015 11th International Conference on (pp. 824–832).; Bandyopadhyay, S., Sengupta, M., Maiti, S., & Dutta, S. (2011). A Survey of Middleware for Internet of Things. In A. Özcan, J. Zizka, & D. Nagamalai (Eds.), Recent Trends in Wireless and Mobile Networks: Third International Conferences, WiMo 2011 and CoNeCo 2011, Ankara, Turkey, June 26-28, 2011. Proceedings (pp. 288–296). Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-21937-5_27; Bassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S., & Meissner, S. (Eds.). (2013). Enabling Things to Talk. Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-40403-0; Bell, A. G. (1881). The production of sound by radiant energy. Science, 2(48), 242– 253.; Bernabe, J. B., Hernández, J. L., Moreno, M. V., & Gomez, A. F. S. (2014). Privacypreserving security framework for a social-aware internet of things. In International conference on ubiquitous computing and ambient intelligence (pp. 408–415).; Berners-Lee, T., Cailliau, R., Groff, J.-R., & Pollermann, B. (1992). World-Wide Web: The Information Universe. Electronic Networking: Research, Applications and Policy, 2(1), 52–58.; Besacier, L., Barnard, E., Karpov, A., & Schultz, T. (2014). Automatic speech recognition for under-resourced languages: A survey. Speech Communication, 56, 85–100.; Blackstock, M., & Lea, R. (2016). FRED: A Hosted Data Flow Platform for the IoT. In Proceedings of the 1st International Workshop on Mashups of Things and APIs (p. 2:1--2:5). New York, NY, USA: ACM. http://doi.org/10.1145/3007203.3007214; Bochmann, G. V. (1990). Protocol specification for OSI. Computer Networks and ISDN Systems, 18(3), 167–184.; Borgia, E. (2014). The Internet of Things vision: Key features, applications and open issues. Computer Communications, 54, 1–31.; Bouraoui, H., Jerad, C., Chattopadhyay, A., & Hadj-Alouane, N. Ben. (2017). Hardware Architectures for Embedded Speaker Recognition Applications: A Survey. ACM Transactions on Embedded Computing Systems (TECS), 16(3), 78.; Boussard, M., Meissner, S., Nettsträter, A., Olivereau, A., Segura, A. S., Thoma, M.,& Walewski, J. W. (2013). A Process for Generating Concrete Architectures. In Enabling Things to Talk (pp. 45–111). Springer.; Brown, A. (2016). The role of voice in IoT applications. Retrieved from https://www.strategyanalytics.com/strategy-analytics/blogs/iot/2016/02/19/therole- of-voice-in-the-internet-of-things#.WD3wMPkrLcc; Buyya, R., & Dastjerdi, A. V. (2016). Internet of Things: Principles and paradigms. Elsevier.; Cavalcante, E., Alves, M. P., Batista, T., Delicato, F. C., & Pires, P. F. (2015). An analysis of reference architectures for the internet of things. In Proceedings of the 1st International Workshop on Exploring Component-based Techniques for Constructing Reference Architectures (pp. 13–16). Ccori, P. C., De Biase, L. C. C., Zuffo, M. K., & da Silva, F. S. C. (2016). Device discovery strategies for the IoT. In Consumer Electronics (ISCE), 2016 IEEE International Symposium on (pp. 97–98).; Chaqfeh, M. A., & Mohamed, N. (2012). Challenges in middleware solutions for the internet of things. In Collaboration Technologies and Systems (CTS), 2012 International Conference on (pp. 21–26).; Chelloug, S. A., & El-Zawawy, M. A. (2017). Middleware for Internet of Things: Survey and Challenges. Intelligent Automation & Soft Computing, 0(0), 1–9. http://doi.org/10.1080/10798587.2017.1290328; CISCO. (2014). The Internet of Things Reference Model. San José, California. Retrieved from http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_ 4_2014.pdf; CISCO. (2016). Internet of Things at a Glance. Retrieved from https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/ata- glance-c45-731471.pdf; Colciencias. (2016). Tipología de proyectos calificados como de carácter cientifíco, tecnológico e innovación (Vol. 4).; Costa, N., Pereira, A., & Serodio, C. (2007). Virtual Machines Applied to WSN’s: The state-of-the-art and classification. In Systems and Networks Communications, 2007. ICSNC 2007. Second International Conference on (p. 50).; Coulouris, G. F., Dollimore, J., & Kindberg, T. (2005). Distributed systems: concepts and design (Fifth edit). Pearson education.; Davis, K. H., Biddulph, R., & Balashek, S. (1952). Automatic recognition of spoken digits. The Journal of the Acoustical Society of America, 24(6), 637–642.; De, S., Carrez, F., Reetz, E., Tönjes, R., & Wang, W. (2013). Test-enabled architecture for IoT service creation and provisioning. In The Future Internet Assembly (pp. 233–245).; Delicato, F. C., Pires, P. F., & Batista, T. (2017). The Resource Management Challenge in IoT. In Resource Management for Internet of Things (pp. 7–18). Springer.; Dino, J. (2008). Ames Technology Capabilities and Facilities. Retrieved January 5, 2017, from https://www.nasa.gov/centers/ames/research/technologyonepagers/ hc-computing.html; Eisenhauer, M., Rosengren, P., & Antolin, P. (2010). HYDRA: A Development Platform for Integrating Wireless Devices and Sensors into Ambient Intelligence Systems. In D. Giusto, A. Iera, G. Morabito, & L. Atzori (Eds.), The Internet of Things: 20th Tyrrhenian Workshop on Digital Communications (pp. 367–373). New York, NY: Springer New York. http://doi.org/10.1007/978-1-4419-1674- 7_36; European Lighthouse Integrated Project. (2016). Internet of things Architecture IoTA. Retrieved November 1, 2016, from http://www.iota. eu/public/requirements/copy_of_requirements; Evans, D. (2011). The Internet of Things: How the next evolution of the internet is changing everything. Retrieved from http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FIN AL.pdf; EY. (2016). Internet of Things: Human machine interactions that unlock possibilities. United Kingdom. Retrieved from http://www.ey.com/Publication/vwLUAssets/ey-m-e-internet-ofthings/$ FILE/ey-m-e-internet-of-things.pdf; Fernandes, J., Nati, M., Loumis, N. S., Nikoletseas, S., Raptis, T. P., Krco, S., … Ziegler, S. (2015). IoT Lab: Towards co-design and IoT solution testing using the crowd. In Recent Advances in Internet of Things (RIoT), 2015 International Conference on (pp. 1–6).; Ferreira, H. G. C., Canedo, E. D., & de Sousa, R. T. (2013). IoT architecture to enable intercommunication through REST API and UPnP using IP, ZigBee and arduino. In 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 53–60). http://doi.org/10.1109/WiMOB.2013.6673340; Ferreira, H. G., & Sousa Junior, R. T. (2017). Security Analysis of a Proposed Internet of Things Middleware. Cluster Computing, 20(1), 651–660. http://doi.org/10.1007/s10586-017-0729-3; Formisano, C., Pavia, D., Gurgen, L., Yonezawa, T., Galache, J. A., Doguchi, K., & Matranga, I. (2015). The advantages of IoT and cloud applied to smart cities. In Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on (pp. 325–332).; Fremantle, P. (2015). A reference architecture for Internet of Things. Sri Lanka. Retrieved from https://wso2.com/whitepapers/a-reference-architecture-for-theinternet- of-things/; Gartner Inc. (2014). IT Glossary. Retrieved January 4, 2017, from http://www.gartner.com/it-glossary/telematics/; Gartner Inc. (2016). Hype Cycle for Emerging Technologies, 2016.; Gartnet Inc. (2017). Hype Cycle for Emerging Technologies, 2017. USA.; Gilchrist, A. (2016). IIoT Reference Architecture. In Industry 4.0 (pp. 65–86). Springer.; Gluhak, A., Hauswirth, M., Krco, S., Stojanovic, N., Bauer, M., Nielsen, R. H., … Corcho, O. (2011). An Architectural Blueprint for a Real-World Internet. In Future Internet Assembly (pp. 67–80).; Gluhak, A., Munoz, L., Sotres, P., Sanchez, L., Roux, P., Sanchez, B., … Hernandez, A. L. (2013). Third Cycle Architecture Specification.; Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. http://doi.org/10.1016/j.future.2013.01.010; Guo, B., Zhang, D., Wang, Z., Yu, Z., & Zhou, X. (2013). Opportunistic IoT: exploring the harmonious interaction between human and the internet of things. Journal of Network and Computer Applications, 36(6), 1531–1539.; Hadim, S., & Mohamed, N. (2006). Middleware: Middleware challenges and approaches for wireless sensor networks. IEEE Distributed Systems Online, 7(3), 1.; Han, X., & Rashid, M. A. (2016). Gesture and voice control of Internet of Things. In Industrial Electronics and Applications (ICIEA), 2016 IEEE 11th Conference on (pp. 1791–1795).; Haridas, A. V., Marimuthu, R., & Sivakumar, V. G. (2018). A critical review and analysis on techniques of speech recognition: The road ahead. International Journal of Knowledge-Based and Intelligent Engineering Systems, 22(1), 39– 57.; Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2010). Metodología de la investigación. McGraw-Hill (Quinta Edi). México DF.; Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014a). Architecture Reference Model. In From Machine-To-Machine to the Internet of Things (pp. 167–197). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00007-3; Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014b). IoT Architecture – State of the Art. In From Machine-To-Machine to the Internet of Things (pp. 145–165). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00006-1; Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014c). IoT Reference Architecture. In From Machine-To-Machine to the Internet of Things (pp. 199–223). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00008-5; Hollosi, D., Nagy, G., Rodigast, R., Goetze, S., & Cousin, P. (2013). Enhancing wireless sensor networks with acoustic sensing technology: use cases, applications & experiments. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing (pp. 335–342).; Huang, Z., Lin, K. J., & Shih, C. S. (2016). Supporting Edge Intelligence in Service- Oriented Smart IoT Applications. In 2016 IEEE International Conference on Computer and Information Technology (CIT) (pp. 492–499). Nadi, Fiji: IEEE. http://doi.org/10.1109/CIT.2016.40; Huang, Z., Tsai, B. L., Chou, J. J., Chen, C. Y., Chen, C. H., Chuang, C. C., … Shih, C. S. (2015). Context and user behavior aware intelligent home control using WuKong middleware. In 2015 IEEE International Conference on Consumer Electronics - Taiwan (pp. 302–303). Taipei, Taiwan: IEEE. http://doi.org/10.1109/ICCE-TW.2015.7216911; Hui, G. (2014). How the Internet of Things changes Business Models. Retrieved from https://hbr.org/2014/07/how-the-internet-of-things-changes-business-models; IEEE. (1990). IEEE Standard Glossary of Software Engineering Terminology.; IEEE Computer Society. (2014). Guide to the Software Engineering - Body of Knowledge. (P. Bourque & R. E. Fairley, Eds.)IEEE Computer Society (V3 ed.). http://doi.org/10.1234/12345678; Igure, V. M., Laughter, S. A., & Williams, R. D. (2006). Security issues in SCADA networks. Computers & Security, 25(7), 498–506.; International Organization for Standardization - ISO. Software product quality, 1 ISO/IEC 25010 34 (2011).; International Telecommunication Union - ITU. (2012). Recommendation ITU-T Y.2060: Overview of the Internet of things. Series Y: Global information infrastructure, internet protocol aspects and next-generation networks - Frameworks and functional architecture models. Retrieved from https://www.itu.int/rec/T-REC-Y.2060-201206-I; International Telecomunication Union - ITU. (2005). The Internet of Things. ITU Internet Reports.; Internet Society. (2015). The Internet of Things (IoT): An Overview. Geneva, Switzerland. Retrieved from https://www.internetsociety.org/doc/iot-overview; IoT-A Project. (2016). Requirements — IOT-A: Internet of Things Architecture.; IoT Analytics. (2016). IoT Platforms: Market Report 2015-2021. Hamburg, Germany. Retrieved from https://iot-analytics.com/product/iot-platforms-market-report- 2015-2021-3/; ISO/IEC/IEEE. (2010). ISO/IEC/IEEE 24765:2010 Systems and software engineering - Vocabulary.; ISO/IEC JTC 1. (2009). Study on Sensor Networks (Version 3).; ISO, & IEEE. Systems and software engineering - Vocabulary, ISO/IEC/IEEE 24765:2010(E) 1–418 (2010). http://doi.org/10.1109/IEEESTD.2010.5733835; Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili, M., … Hamida, A. Ben. (2011). Service-oriented middleware for the Future Internet: state of the art and research directions. Journal of Internet Services and Applications, 2(1), 23–45. http://doi.org/10.1007/s13174-011-0021-3; Itakura, F. (1975). Minimum prediction residual principle applied to speech recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 23(1), 67–72.; Jelinek, F., Bahl, L., & Mercer, R. (1975). Design of a linguistic statistical decoder for the recognition of continuous speech. IEEE Transactions on Information Theory, 21(3), 250–256.; Juang, B.-H., Hou, W., & Lee, C.-H. (1997). Minimum classification error rate methods for speech recognition. IEEE Transactions on Speech and Audio Processing, 5(3), 257–265.; Juang, B.-H., & Rabiner, L. R. (2005). Automatic speech recognition-a brief history of the technology development. Elsevier Encyclopedia of Language and Linguistics, 1, 24.; Kaneko, M., Arima, K., Usami, M., Sugimura, H., Isshiki, M., & Koh, K. (2015). Development of information living integrated by home appliances and web services. In Consumer Electronics (GCCE), 2015 IEEE 4th Global Conference on (pp. 311–312).; Keh, H.-C., Shih, C.-C., Chou, K.-Y., Cheng, Y.-C., Ho, H.-K., Yu, P.-Y., & Huang, N.-C. (2014). Integrating unified communications and internet of m-health things with micro wireless physiological sensors, 17(3), 319–328.; Khurana, T. (2017). IPv6 Enables Global Mobile IoT Innovation and Proliferation. Retrieved February 26, 2017, from https://goo.gl/B1E1eF; Kim, J., Lee, J., Kim, J., & Yun, J. (2014). M2M service platforms: survey, issues, and enabling technologies. IEEE Communications Surveys & Tutorials, 16(1), 61–76.; Kostelnik, P., Sarnovsk, M., & Furdik, K. (2011). The semantic middleware for networked embedded systems applied in the internet of things and services domain. Scalable Computing: Practice and Experience, 12(3), 307–316.; Krco, S., Pokric, B., & Carrez, F. (2014). Designing IoT architecture (s): A European perspective. In Internet of Things (WF-IoT), 2014 IEEE World Forum on (pp. 79–84).; Kubitza, T. (2016). Using Speech for End User Programming of Smart Environments in the Internet of Thing. Germany.; Kubitza, T., & Schmidt, A. (2016). Rapid Interweaving of Smart Things with the meSchup IoT Platform. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (pp. 313–316). New York, NY, USA: ACM. http://doi.org/10.1145/2968219.2971379; Kubitza, T., & Schmidt, A. (2017). meSchup: A Platform for Programming Interconnected Smart Things. Computer, 50(11), 38–49.; Kumar, A., Mishra, A., Makula, P., Karan, K., & Mittal, V. K. (2015). Smart Robotic Assistant. In Region 10 Symposium (TENSYMP), 2015 IEEE (pp. 25–28).; Lee, G. M., Crespi, N., Choi, J. K., & Boussard, M. (2013). Internet of things. In Evolution of Telecommunication Services (pp. 257–282). Springer.; Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431–440.; Lin, K. J., Reijers, N., Wang, Y. C., Shih, C. S., & Hsu, J. Y. (2013). Building Smart M2M Applications Using the WuKong Profile Framework. In 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing (pp. 1175–1180). Beijing, China: IEEE. http://doi.org/10.1109/GreenCom-iThings- CPSCom.2013.204; Loucopoulus, P., & Karakostas, V. (1995). System Requirements Engineering. McGraw-Hill, Inc.; Ma, M., Wang, P., & Chu, C.-H. (2013). Data management for internet of things: challenges, approaches and opportunities. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing (pp. 1144–1151).; MacGillivray, C. (2016). Worldwide Internet of Things Forecast Update, 2015-2019.; Mamei, M., & Zambonelli, F. (2006). Field-based coordination for pervasive multiagent systems. Springer Science & Business Media.; Manrique, J. ., Rueda-Rueda, J., & Portocarrero, J. . (2016). Contrasting Internet of Things and Wireless Sensor Network from a conceptual overview. In 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (p. 6). IEEE Computer Society. http://doi.org/978-1-5090-5880-8/16; Marulli, F., Pareschi, R., & Baldacci, D. (2016). The internet of speaking things and its applications to Cultural Heritage. In Proceedings of IoTBD2016 Conference, SCITEPRESS.; McCulloch, W. S., & Pitts, W. (1990). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 52(1), 99–115.; Meier, R., & Cahill, V. (2002). Steam: Event-based middleware for wireless ad hoc networks. In Distributed Computing Systems Workshops, 2002. Proceedings. 22nd International Conference on (pp. 639–644).; Mineraud, J., Mazhelis, O., Su, X., & Tarkoma, S. (2016). A gap analysis of Internetof-Things platforms. Computer Communications, 89, 5–16.; Miranda, J., Mäkitalo, N., Garcia-Alonso, J., Berrocal, J., Mikkonen, T., Canal, C., & Murillo, J. M. (2015). From the Internet of Things to the Internet of People. IEEE Internet Computing, 19(2), 40–47.; Mittal, Y., Toshniwal, P., Sharma, S., Singhal, D., Gupta, R., & Mittal, V. K. (2015). A voice-controlled multi-functional Smart Home Automation System. In India Conference (INDICON), 2015 Annual IEEE (pp. 1–6).; Monteiro, C., Oliveira, M., Bastos, J., Ramrekha, T., & Rodriguez, J. (2014). Social Networks and Internet of Things, an Overview of the SITAC Project. In International Wireless Internet Conference (pp. 191–196).; Mottola, L., Murphy, A. L., & Picco, G. Pietro. (2006). Pervasive games in a moteenabled virtual world using tuple space middleware. In Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games (p. 29).; Nagata, K., Kato, Y., & Chiba, S. (1964). Spoken digit recognizer for Japanese language. In Audio Engineering Society Convention 16.; Nakagawa, E. Y., Oquendo, F., & Becker, M. (2012). Ramodel: A reference model for reference architectures. In Software Architecture (WICSA) and European Conference on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP Conference on (pp. 297–301).; Ngu, A. H., Gutierrez, M., Metsis, V., Nepal, S., & Sheng, Q. Z. (2017). IoT middleware: A survey on issues and enabling technologies. IEEE Internet of Things Journal, 4(1), 1–20.; Nia, A. M., & Jha, N. K. (2016). A comprehensive study of security of internet-ofthings. IEEE Transactions on Emerging Topics in Computing.; Nitti, M., Pilloni, V., Colistra, G., & Atzori, L. (2016). The virtual object as a major element of the internet of things: a survey. IEEE Communications Surveys & Tutorials, 18(2), 1228–1240.; Nuance Communications. (2016). Majority of Consumers Want Intelligent, Personalized Dialogue with Customer Service. Retrieved February 27, 2017, from https://www.nuance.com/about-us/newsroom/press-releases/opusintelligent- assistants-and-authentication-conference-2016.html; Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service- Oriented Computing: State of the Art and Research Challenges. Computer, 40(11), 38–45. http://doi.org/10.1109/MC.2007.400; Park, K.-J., Zheng, R., & Liu, X. (2012). Cyber-physical systems: Milestones and research challenges. Computer Communications, 36(1), 1–7.; Patel, P., & Cassou, D. (2015). Enabling high-level application development for the Internet of Things. Journal of Systems and Software, 103, 62–84.; Payne, G. (2014). The Internet of Things brings a new era of connectivity… and a talking fridge. Retrieved February 27, 2017, from http://whatsnext.nuance.com/connected-living/the-internet-of-thingsconnectivity/; Petrolo, R., Mitton, N., Soldatos, J., Hauswirth, M., & Schiele, G. (2014). Integrating wireless sensor networks within a city cloud. In 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking Workshops (SECON Workshops) (pp. 24–27). http://doi.org/10.1109/SECONW.2014.6979700; Pressman, R. (2010). Ingeniería del software: un enfoque práctico (Séptima Ed). México DF: McGraw-Hill Interamericana.; Rabiner, L., Levinson, S., Rosenberg, A., & Wilpon, J. (1979). Speaker-independent recognition of isolated words using clustering techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 27(4), 336–349.; Rabiner, L. R., & Juang, B. H. (2004). Statistical methods for the recognition and understanding of speech. Encyclopedia of language and linguistics.; Ratkowski, A. (2016). Architecture for Internet of Things Analytical Ecosystem. In Dependability Engineering and Complex Systems (pp. 385–393). Springer.; Raveendran, V., Sanjeev, M. R., Paul, N., & Jijina, K. P. (2016). Speech only interface approach for personal computing environment. In Engineering and Technology (ICETECH), 2016 IEEE International Conference on (pp. 372–377).; Razzaque, M. A., Milojevic-Jevric, M., Palade, A., & Clarke, S. (2016). Middleware for internet of things: a survey. IEEE Internet of Things Journal, 3(1), 70–95.; Richards, M. (2015). Software architecture patterns. O’Reilly Media, Incorporated.; Robles, T., Alcarria, R., de Andrés, D. M., Navarro, M., Calero, R., Iglesias, S., & López, M. (2015). An IoT based reference architecture for smart water management processes. JoWUA, 6(1), 4–23.; Sakai, T., & Doshita, S. (1962). The Phonetic Typewriter. In IFIP Congress (Vol. 445, p. 449).; Sanchez, L., Muñoz, L., Galache, J. A., Sotres, P., Santana, J. R., Gutierrez, V., … others. (2014). SmartSantander: IoT experimentation over a smart city testbed. Computer Networks, 61, 217–238.; Sanchez, S., Angel Sicilia, M., & Rodriguez, D. (2012). Ingeniería del Sofware. Un enfoque desde la guía SWEBOK. Alfaomega.; Santos, J. F. M., Guessi, M., Galster, M., Feitosa, D., & Nakagawa, E. Y. (2013). A Checklist for Evaluation of Reference Architectures of Embedded Systems. In SEKE (Vol. 13, pp. 1–4).; Sarma, S., Brock, D., & Engels, D. (2001). Radio Frequency Identification and the Electronic Product Code. IEEE Micro, 21(6), 50–54. http://doi.org/10.1109/40.977758; Schauer, P., & Debita, G. (2015). Internet of Things Service Systems Architecture.; Seo, S., Kim, J., Yun, S., Huh, J., & Maeng, S. (2015). HePA: Hexagonal Platform Architecture for Smart Home Things. In Parallel and Distributed Systems (ICPADS), 2015 IEEE 21st International Conference on (pp. 181–189).; Shen, S., & Carugi, M. (2014). Standardizing the Internet of Things in an evolutionary way. In ITU Kaleidoscope Academic Conference: Living in a converged world- Impossible without standards?, Proceedings of the 2014 (pp. 249–254).; Shih, C. S., Lin, K. J., Chou, J. J., & Chuang, C. C. (2014). Autonomous Service Management for Location and Context Aware Service. In 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications (pp. 246–251). Matsue, Japan: IEEE. http://doi.org/10.1109/SOCA.2014.10; Shin, D.-G., & Jun, M.-S. (2015). Home IoT device certification through speaker recognition. In Advanced Communication Technology (ICACT), 2015 17th International Conference on (pp. 600–603).; Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. In Industrial Engineering and Engineering Management (IEEM), 2014 IEEE International Conference on (pp. 697–701).; Singh, S., & Singh, N. (2015). Internet of Things (IoT): Security challenges, business opportunities & reference architecture for E-commerce. In Green Computing and Internet of Things (ICGCIoT), 2015 International Conference on (pp. 1577– 1581).; Sinha, S., Agrawal, S. S., & Jain, A. (2013). Continuous density Hidden Markov Model for context dependent Hindi speech recognition. In Advances in Computing, Communications and Informatics (ICACCI), 2013 International Conference on (pp. 1953–1958).; Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte, J.-P., Riahi, M., … Herzog, R. (2015). OpenIoT: Open Source Internet-of-Things in the Cloud. In I. Podnar Žarko, K. Pripužić, & M. Serrano (Eds.), Interoperability and Open- Source Solutions for the Internet of Things: International Workshop, FP7 OpenIoT Project, Held in Conjunction with SoftCOM 2014, Split, Croatia,September 18, 2014, Invited Papers (pp. 13–25). Cham: Springer International Publishing. http://doi.org/10.1007/978-3-319-16546-2_3; Sommerville, I. (2011). Ingeniería del Software. PEARSON.; Souza, R., & Cardozo, E. (2016). A Resource-Oriented Architecture for the Internet of Things (IoT). In Connectivity Frameworks for Smart Devices (pp. 99–116). Springer.; Stravoskoufos, K., Sotiriadis, S., & Petrakis, E. (2016). IoT-A and FIWARE: bridging the barriers between the cloud and IoT systems design and implementation. In Proc. 6th Int’l Conf. Cloud Computing and Services Science (pp. 146–153).; Sundmaeker, H., Guillemin, P., Friess, P., & Woelfflé, S. (2010). Vision and challenges for realising the Internet of Things. (Cluster of European research projects on the Internet of Things, Ed.)European Commision.; Suzuki, J., & Nakata, K. (1961). Recognition of Japanese vowels - Preliminary to the recognition of speech. Journal of the Radio Research Laboratory, 8(37), 193– 212.; Talavera Portocarrero, J. M. (2016). RAMSES: Reference Architectue of Self- Adaptative Middleware for Wireless Sensor Networks. Universidade Federal fo Rio de Janeiro.; Techopedia. (2017). What is Modeling Language?; The Institute of Electrical and Electronics Engineers. (2014). 2014 IEEE Thesaurus. Retrieved from http://www.ieee.org/documents/ieee_thesaurus_2013.pdf; Turck, M. (2018). Growing Pains: The 2018 Internet of Things Landscape. Retrieved April 2, 2018, from http://mattturck.com/iot2018/; United Nations Educational Scientific and Cultural Organization. (2016). UNESCO Thesaurus. Retrieved August 29, 2016, from http://vocabularies.unesco.org/; United Nations Educational Scientific and Cultural Organization (UNESCO). (2016). UNESCO Thesaurus. Retrieved April 11, 2016, from http://vocabularies.unesco.org/browser/thesaurus/en/; Unnibhavi, A. H., & Jangamshetti, D. S. (2016). A survey of speech recognition on south Indian Languages. In Signal Processing, Communication, Power and Embedded System (SCOPES), 2016 International Conference on (pp. 1122– 1126).; Usländer, T., & Epple, U. (2015). Reference model of industrie 4.0 service architectures. At-Automatisierungstechnik, 63(10), 858–866.; Verdouw, C. N., Robbemond, R. M., Verwaart, T., Wolfert, J., & Beulens, A. J. M. (2015). A reference architecture for IoT-based logistic information systems in agri-food supply chains. Enterprise Information Systems, 1–25.; Wang, M.-M., Cao, J.-N., Li, J., & Dasi, S. K. (2008). Middleware for wireless sensor networks: A survey. Journal of Computer Science and Technology, 23(3), 305– 326.; Weiser, M. (1991). The computer for the 21st century. Scientific American, 265(3), 94–104.; Weyrich, M., & Ebert, C. (2016). Reference architectures for the internet of things. IEEE Software, 33(1), 112–116.; Whittaker, E. W. D. (2000). Statistical language modelling for automatic speech recognition of Russian and English. University of Cambridge.; Wiener, N. (1961). Cybernetics or Control and Communication in the Animal and the Machine (Vol. 25). MIT press.; Wortmann, F., Flüchter, K., & others. (2015). Internet of things. Business & Information Systems Engineering, 57(3), 221–224. http://doi.org/10.1007/s12599-015-0383-3; Xu, B., Zhang, D., & Yang, W. (2012). Research on architecture of the Internet of Things for grain monitoring in storage. In Internet of Things (pp. 431–438). Springer.; Zhong, N., Ma, J., Huang, R., Liu, J., Yao, Y., Zhang, Y., & Chen, J. (2016). Research challenges and perspectives on Wisdom Web of Things (W2T). In Wisdom Web of Things (pp. 3–26). Springer.; Zhou, S., Liu, G., & Lin, C. (2012). An Embedded Voice Inquiry Experimental Platform for Temperature and Humidity Measurement on the Internet of Things. In Emerging Computation and Information teChnologies for Education (pp. 533– 539). Springer.; http://hdl.handle.net/20.500.12749/3547; reponame:Repositorio Institucional UNAB
Availability: https://hdl.handle.net/20.500.12749/3547
-
15
Authors:
Contributors:
Subject Terms: Arquitectura, Analítica de datos, Gobierno de datos, Ingeniería de software, Minería de datos, Procesamiento de datos, Servicios de procesamiento de datos, Big data, Architecture, Data analytics, Data government
Subject Geographic: Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
File Description: p. 1-91; Electrónico; application/pdf
Relation: 91; Artac, M., Borovsak, T., Di Nitto, E., Guerriero, M., Perez-Palacin, D., & Tamburri, D. A. (2018). Infrastructure-as-Code for Data-Intensive Architectures: A Model-Driven Development Approach. Proceedings - 2018 IEEE 15th International Conference on Software Architecture, ICSA 2018, 156–165. https://doi.org/10.1109/ICSA.2018.00025; Assunção, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A. S., & Buyya, R. (2015). Big Data computing and clouds: Trends and future directions. Journal of Parallel and Distributed Computing, 79, 3–15.; Bibri, S. E. (2019). The anatomy of the data-driven smart sustainable city: instrumentation, datafication, computerization and related applications. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-0221-4; Blazquez, D., & Domenech, J. (2018). Big Data sources and methods for social and economic analyses. Technological Forecasting and Social Change, 130(September 2017), 99–113. https://doi.org/10.1016/j.techfore.2017.07.027; Camargo Vega, J. J., Camargo Ortega, J. F., & Joyanes Aguilar, L. (2015). Arquitectura Tecnológica Para Big Data. Revista Científica, 1(21), 7. https://doi.org/10.14483/udistrital.jour.rc.2015.21.a1; Clarke, P., Tyrrell, G., & Nagle, T. (2016). Governing self service analytics. Journal of Decision Systems, 25, 145–159. https://doi.org/10.1080/12460125.2016.1187385; Colombia, M. de S. y P. S. (2016). Atenciones en Urgencias Municipio de Medellín 2016. Datos Abiertos Del Gobierno de Colombia. https://www.datos.gov.co/en/Salud-y-Protecci-n-Social/Atenciones-en-Urgencias-Municipio-de-Medell-n-2016/ew37-r3ft%0A; Dabbéchi, H., Nabli, A., & Bouzguenda, L. (2016). Towards cloud-based data warehouse as a service for big data analytics. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 9876 LNCS (pp. 180–189). https://doi.org/10.1007/978-3-319-45246-3_17; Ebner, K., Bühnen, T., & Urbach, N. (2014). Think big with big data: Identifying suitable big data strategies in corporate environments. Proceedings of the Annual Hawaii International Conference on System Sciences, 3748–3757. https://doi.org/10.1109/HICSS.2014.466; Ereth, J. (2018). DataOps - Towards a Definition. CEUR Workshop Proceedings, September.; Europe, A. I., & Foundation, O. K. (2011). Beyond Access : Open Government Data & the Right to ( Re ) use Public Information. January, 89. http://www.access-info.org/documents/Access_Docs/Advancing/ Beyond_Access_7_January_2011_web.pdf; Golfarelli, M., & Rizzi, S. (2019). A model-driven approach to automate data visualization in big data analytics. Information Visualization. https://doi.org/10.1177/1473871619858933; Gonçalves, A., Portela, F., Santos, M. F., & Rua, F. (2017). Towards of a Real-time Big Data Architecture to Intensive Care. Procedia Computer Science, 113, 585–590. https://doi.org/10.1016/j.procs.2017.08.294; Hevner, A. R., March, S. T., Park, J., & Ram, S. (2008). Design science in information systems research. Management Information Systems Quarterly, 28(1), 6.; Jovanovic, P., Romero, O., & Abelló, A. (2016). A unified view of data-intensive flows in business intelligence systems: A survey. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 10120, pp. 66–107). https://doi.org/10.1007/978-3-662-54037-4_3; Kazman, R., Abowd, G., Bass, L., & Webb, M. (1993). Analyzing the Properties of User Interface Software Architectures. Computer Science Technical Report CMU-CS-93-201, CMU.; Khatri, V., & Brown, C. V. (2010). Designing data governance. Communications of the ACM, 53(1), 148–152. https://doi.org/10.1145/1629175.1629210; Krishnan, K. (2013). Data Warehousing in the Age of Big Data. In Data Warehousing in the Age of Big Data. https://doi.org/10.1016/C2012-0-02737-8; Madden, S. (2012). From databases to big data. IEEE Internet Computing, 16(3), 4–6.; Mazumder, S. (2016). Big data tools and platforms. In Big Data Concepts, Theories, and Applications (pp. 29–128). Springer.; Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1.; Oussous, A., Benjelloun, F. Z., Ait Lahcen, A., & Belfkih, S. (2018). Big Data technologies: A survey. Journal of King Saud University - Computer and Information Sciences, 30(4), 431–448. https://doi.org/10.1016/j.jksuci.2017.06.001; Pääkkönen, P., & Pakkala, D. (2015). Reference Architecture and Classification of Technologies , Products and Services for Big Data Systems. Big Data Research, 2(4), 166–186. https://doi.org/10.1016/j.bdr.2015.01.001; Passlick, J., Lebek, B., & Breitner, M. H. (2017). A Self-Service Supporting Business Intelligence and Big Data Analytics Architecture. Proceedings Der 13. Internationalen Tagung Wirtschaftsinformatik (WI 2017), 1126–1140. https://doi.org/10.1002/mds.22555; Pollock, R., & Dietrich, D. (2009). CKAN: apt-get for the Debian of Data. 26th Chaos Communication Congress.; Schlesinger, P., & Rahman, N. (2016). Self-Service Business Intelligence Resulting in Disruptive Technology SELF-SERVICE BUSINESS INTELLIGENCE RESULTING IN DISRUPTIVE TECHNOLOGY Intel Corporation. 4417(March). https://doi.org/10.1080/08874417.2015.11645796; Wan, J., Cai, H., & Zhou, K. (2015). Industrie 4.0: enabling technologies. Proceedings of 2015 International Conference on Intelligent Computing and Internet of Things, 135–140.; Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change, 126, 3–13.; Zaghloul, M. M., Ali-Eldin, A., & Salem, M. (2015). A process-centric data analytics architecture. 2014 9th International Conference on Informatics and Systems, INFOS 2014, DEKM34–DEKM39. https://doi.org/10.1109/INFOS.2014.7036705; Zhelev, S., & Rozeva, A. (2017). Big data processing in the cloud - Challenges and platforms. AIP Conference Proceedings, 1910. https://doi.org/10.1063/1.5014007; T 0108 2021; http://hdl.handle.net/11407/6408; reponame:Repositorio Institucional Universidad de Medellín; instname:Universidad de Medellín
Availability: http://hdl.handle.net/11407/6408
-
16
Authors:
Contributors:
Subject Terms: Telecommunications, Agent, Multiagent systems, Intelligent agents (Computer software), Artificial intelligence (Computer programs), Software development, Software, Software architecture, Sistemas multiagente, Agentes inteligentes (Software para computadores), Inteligencia artificial (Programas para computador), Desarrollo de software, Arquitectura de software, Telecomunicaciones, Agente
Subject Geographic: Bucaramanga (Santander, Colombia), UNAB Campus Bucaramanga
File Description: application/pdf
Relation: [Bac99] Back S., Liebowitz J., Prasad S.Y., Granger M. Intelligent Agents for Knowledge Management — Toward Intelligent Web-Based Collaboration within Virtual Teams. In: Liebowitz J.(ed.), Knowledge Management Handbook. CRC Press, 1999; [Bon88] Bond A.H., Gasser L. (eds.) Readings in Distributed Artificial Intelligence. Morgan Kaufmann. 1988.; [Bra97] Bradshaw, J. (ed.). Software Agents. AAAI Press/ The MIT Press. 1997; [Bur96] Burmeister B. Models and Methodology for Agent Oriented Analysis and Design. Working Notes of the KI?96 Workshop on Agent — Oriented Programming and Distributed Systems. 1996; [Co196] Collinot A., Drogoul A., Benhamou P. Agent Oriented Design of a Soccer Robot Team. In Proceedings of the Second International Conference on MultiAgent Systems (ICMAS-96), pages 41-47, 1996.; [COL97] Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnología - “Francisco José de Caldas” — Colciencias. Plan Estratégico del Programa Nacional de Electrónica, Telecomunicaciones e Informática. 1997.; [Dec97] Decker K., Sycara K., Williamson M., Middle-Agents for the Internet. In: Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI-97), Jan. 1997.; [Din97.] d'Inverno M., Fisher M., Lomuscio A., Luck M., de Rijke M., Ryan M., Wooldridge M. Formalisms for Multi-Agent Systems. The Knowledge Engineering Review, vol. 12, num. 3, 1997; [Eva00] Evans, P. Y Wurster, T. S. Volando en pedacitos.: Como se transforma la estrategia de negocios en la nueva economía de la información. Oxford University Press México, 2000; [Fin97] Finin T., Labrour Y., Mayfield J. KQLM as an Agent Communication Language. In Software Engineering, Bradshaw J. M. (ed). AAAI Press. 1997; [Gla96] Glaser N. Contribution to Knowledge Modelling in a Multiagent Framework: The CoMoMAS Approach. Tesis Doctoral L*Universtité Henri Poincaré, Nancy I, France. 1996; [Hay94] Hayes-Roth, B. et. al. Direct Improvisation, Technical Report No. KSL-94-61, Stanford Univ., 1994.; [Hoa95] Hoare C. A, R. Communicating Sequential Processes. Prentice-Hall International. 1985.; [Huh97] Huhns M., Singh, M. P. Agents and Multiagent Systems: Themes, Approaches and Challenges. In Readings in Agents, chapter 1. Morgan Kaufmann Publishers. 1997; [Ig198] Iglesias C. A. Definición de una Metodología para el Desarrollo de Sistemas Multiagente. Tesis Doctoral. Universidad Politécnica de Madrid. Departamento de Ingeniería de Sistemas Telemáticos. 1998.; [JeSW98] Jennings N.R., Sycara K., Wooldridge M. A Roadmap of Agent Research and Development. Autonomous Agents and Multi-Agent Systems Journal. Kluwer Academic Pubs., vol. 1, num. 1, pages 7-38, 1998.; [Kin96] Kinny D., Georgeff M., Rao A. A Methodology and Modelling Technique for Systems of BDI Agents. In Van de Velde and Perram, editors, Agents Breaking Away: Proceedings of the Seventh European Workshop on Modelling Autonomous Agents in a Multi-Agent World. LNAI, vol 1038, pages 56-71, Springer Verlag, 1996.; [Lar96] Larsen P. G., Fitzgerald J., Brookes T. Applying Formal Specification in Industry. IEEE Software. Volume 13, number 7, pages 48-56. 1996.; [Mac95] MacKenzie, D.C.; Cameron, J.M.; Arkin, R.C, Specification and Execution of Multiagent Missions, Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, vol, 3, pp. 51- 58, Aug. 1995; [Ma99] Ma M. Agents in E-Commerce. Communication of the ACM, vol. 42, num. 3, pages 79 -80, 1999; [Mae99] Macs P., Guttman R., Moukas A. G. Agents that Buy and Sell. Communication of the ACM, vol. 42, num. 3, pages 81-91. 1999; [Mur98] Murugesan, S. Intelligent Agents on the Internet and Web, http://btewebsh.macarthur.uws.edu.au/san/; [Neg97] Negroponte N. Agents: From Direct Manipulation to Delegation. In Software Agents. J. Bradshaw (ed.). pp 57-66. 1997; [Non99] Nonaka, I; Takeuchi, H. La organización creadora de conocimiento. Oxford University Press, México, 1999; [Nor97] Norman, D. How Might People Interact with Agents?. In: Software Agents, J. Bradshaw (ed.). pp 49-56. 1997; [Nwa96] Nwana, H.S. Sofware Agents: An Overview. Knowledge Engineering Review, vol. 11, num.3, pages 205-244. 1996.; [O*"L97] O”Leary D. E. The Internet, Intranets, and the Al Renaissance. IEEE Computer, vol. 30, num. 1, pages 71 - 78. 1997; [Omi00] Omicini A. SODA: Societies and Infrastructures in the Analysis and Design of Agent-Based Systems. In Ciancarini P. and Wooldridge M., editors; Agent-Oriented Software Engineering — Proceedings of the First International Workshop (AOSE 2000). Springer-Verlag. 2000.; [Rum99] Rumbaugh J., Jacobson I., Booch G. The Unified Modeling Language Reference Manual. Addison-Wesley. 1999.; [Sch00] Schreiber G., Akkermans H. et al. Knowledge Engineering and Management. The MIT Press. 2000.; [Stu98] Studer R., Benjamins V.R., Fensel, D. Knowledge engineering, principles and methods. Data and Knowledge Engineering, vol. 25, pages 161-197, 1998.; [Str97] Strader, T.J. The Impact of Electronic Commerce on Consumer and Organizational Costs, College of Commerce and Business Admin., Univ. Of Illinois at Urbana Champaign, May 1997.; [Wii98] Wiig, K.M. Perspectives on Introducing Enterprise Knowledge Management. Proc. Of the 2" Int. Conf. On Practical Aspects of Knowledge Management, Basel, Suiza, Oct. 1998.; F[Woo00] Wood M., DeLoach S. An Overview of the Multiagent Systems Engineering Methodology. In Ciancarini P. and Wooldridge M., editors, AgentOriented Software Engineering — Proceedings of the First International Workshop (AOSE 2000). Springer-Verlag. 2000.; [Woo95] Wooldridge J., Jennings N. Intelligent Agents: Theory and Practice, The Knowledge Engineering Review, vol. 10, num. 2, pages 115-152. 1995.; [Woo96] Wooldridge M., Jennings N. The GAIA Methodology for Agent-Oriented Analysis and Design. Kluwer Academic Publishers. 1996.; [Woo96a] Woodcock J., Davies J. Using Z. Prentice-Hall International. 1996.; [Woo00a] Wooldridge M. Reasoning about Rational Agents. The MIT Press. 2000.; [Woo00b] Wooldridge M., Ciancarini P. Agent-Oriented Software Engineering: the State of the Art. In First International Workshop on Agent-Oriented Software Engineering. Lecture Notes in Computer Science, vol.1957, pages 1 — 28. 2000.; http://hdl.handle.net/20.500.12749/25703; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Availability: https://hdl.handle.net/20.500.12749/25703
-
17
Authors: et al.
Contributors: et al.
Subject Terms: Systems engineer, Technological innovations, Software, Computational vision, Registration processes, Economic activity, Information technology, Process development, Prototypes, Technological change, Digital formats, Ingeniería de sistemas, Innovaciones tecnológicas, Desarrollo de procesos, Prototipos, Cambio tecnológico, Formatos digitales, Visión computacional, Procesos de registro, Actividad económica, Tecnologías de la información
Subject Geographic: Colombia
File Description: application/pdf
Relation: Alaña C., Solórzano S., T. P., & , Sayonara, S. (2015). Procesos contables básicos para no contadores. In Espol (Machala :).; Álarcon, G. (2014). El Proceso Contable: Análisis E Interpretación De La Información Contable En Las Organizaciones Actuales. Méthodos, 12(12), 92–101. http://www.ucipfg.com/Repositorio/MAP/MAPD02/UNIDADES_DE_APRENDIZAJE/UNIDAD_1/LECTURAS/Vision_y_mision_ de_una_empresa.pdf; Alpaydin, E. (2014). Introduction to Machine Learning Ethem Alpaydin. Introduction to Machine Learning, Third Edition.; Amodeo, E. (2010). ¿Qué son los DSL (Domain Specific Languages)? https://eamodeorubio.wordpress.com/2010/09/13/¿que-son-los-dsl-domainspecific-languages/; Ashish. (2018). Understanding Edge Detection (Sobel Operator) - Data Driven Investor - Medium. https://medium.com/datadriveninvestor/understanding-edgedetection-sobel-operator-2aada303b900; AuraPortal. (2018, June 7). RPA: Robotic Process Automation - Qué es y cómo nos ayuda • AuraPortal. https://www.auraportal.com/es/rpa-robotic-processautomation-que-es/; Automation Anywhere. (2020). Casos de estudio de clientes %7C Automation Anywhere. https://www.automationanywhere.com/la/customers/case-studies; Azevedo, A., & Filipe Santos, M. (2008, January). (PDF) KDD, semma and CRISPDM: A parallel overview. https://www.researchgate.net/publication/220969845_KDD_semma_and_CRIS P-DM_A_parallel_overview; Bagnato, J. I. (2018a). Convolutional Neural Networks: La Teoría explicada en Español %7C Aprende Machine Learning. https://www.aprendemachinelearning.com/como-funcionan-las-convolutionalneural-networks-vision-por-ordenador/; Bagnato, J. I. (2018b, November 29). Convolutional Neural Networks: La Teoría explicada en Español %7C Aprende Machine Learning. https://www.aprendemachinelearning.com/como-funcionan-las-convolutionalneural-network; Barchard, K. A., & Pace, L. A. (2011). Preventing human error: The impact of data entry methods on data accuracy and statistical results. Computers in Human Behavior, 27(5), 1834–1839. https://doi.org/10.1016/j.chb.2011.04.004; Beltramelli, T. (2018). pix2code: Generating code from a graphical user interface screenshot. Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems, EICS 2018, 1–9. https://doi.org/10.1145/3220134.3220135; BMind Licencias. (2019). IBM RPA (Robotic Process Automation) - BMind Licencias. https://bmind.com/licencias/ibm-rpa; Burke, B., Cearley, D., Litan, A., Groombridge, D., & Mahdi, D. (2020). Top 10 Strategic Technology Trends for 2020: Practical Blockchain. Gartner, October 2019, 1–13. Burke, B., Cearley, D., Litan, A., Groombridge, D., & Mahdi, D. (2020). Top 10 Strategic Technology Trends for 2020: Practical Blockchain. Gartner, October 2019, 1–13.; Capocchi, L., Santucci, J. F., & Ville, T. (2013). Software test automation using DEVSimPy environment. SIGSIM-PADS 2013 - Proceedings of the 2013 ACM SIGSIM Principles of Advanced Discrete Simulation, 343–348. https://doi.org/10.1145/2486092.2486137; Capterra. (2019). UiPath Robotic Process Automation - Opiniones, precios, y características - Capterra España 2020. https://www.capterra.es/software/135186/uipath-robCapterra. (2019). UiPath Robotic Process Automation - Opiniones, precios, y características - Capterra España 2020. https://www.capterra.es/software/135186/uipath-robotic-process-automation otic-process-automation; CGN, C. G. de la N. (2014). Doctrina Contable Pública Compilada Actualizada Del 2 de enero al 31 de diciembre de 2014. 1–1391. http://www.contaduria.gov.co/wps/wcm/connect/9903da6e-11e6-44a5-a1f0effa8cac282c/DOCTRINA+contablePublicaDic312013.pdf?MOD=AJPERES&C ACHEID=9903da6e-11e6-44a5-a1f0-effa8cac282c; Chang, T. H., Yeh, T., & Miller, R. C. (2010). GUI testing using computer vision. Conference on Human Factors in Computing Systems - Proceedings, 3(Figure 1), 1535–1544. https://doi.org/10.1145/1753326.1753555; Chollet, F. (2018). Deep Learning with Phyton. In Manning; Christensson, P. (2009). User Interface Definition. https://techterms.com/definition/user_interface; Congreso de Colombia. (2012). Ley 1575 de 2012 “Por medio de la cual se establece la Ley General de Bomberos de Colombia.”; Cooper, L. A., Holderness, D. K., Sorensen, T. L., & Wood, D. A. (2019). Robotic process automation in public accounting. Accounting Horizons, 33(4), 15–35. https://doi.org/10.2308/acch-52466; Cowley, J. (2018). Redes neuronales convolucionales. Ibm, 1. https://www.ibm.com/developerworks/ssa/library/cc-convolutional-neuralnetwork-vision-recognition/index.html; DANE. (2012). Revisión 4 adaptada CIIU Rev . 4 A . C . 496. https://www.dane.gov.co/files/nomenclaturas/CIIU_Rev4ac.pdf; DataWow. (2018). Interns Explain CNN - Data Wow. https://blog.datawow.io/internsexplain-cnn-8a669d053f8b; Deloitte. (2017, May 25). ¿Qué es Robotic Process Automation? %7C Deloitte España. https://www2.deloitte.com/es/es/pages/operations/articles/que-es-roboticprocess-automation.html; Deloitte. (2020). Tech Trends 2020. Deloitte Insights, 1–130. https://www2.deloitte.com/us/en/insights/focus/tech-trends.html; Dhakal, V., Feit, A. M., Kristensson, P. O., & Oulasvirta, A. (2018). Observations on typing from 136 million keystrokes. Conference on Human Factors in Computing Systems - Proceedings, 2018-April. https://doi.org/10.1145/3173574.3174220; Díaz Moreno, H. (2006). Contabilidad general: enfoque práctico con aplicaciones informáticas. In Editorial Mc Graw Hill Interamericana SA. https://www.biblionline.pearson.com/Pages/BookRead.aspx; EcuRed. (2015). EcuRed. https://www.ecured.cu/Barra_de_desplazamiento; Ernesto Arévalo-Vázquez, E., Zúñiga-López, A., Villegas-Cortez, J., & Avilés-Cruz, C. (2015). Implementación de reconocimiento de objetos por color y forma en un robot móvil. In 21 Research in Computing Science (Vol. 91).; FAEDIS. (2018, September 10). FAEDIS. http://virtual.umng.edu.co/distancia/ecosistema/odin/odin_desktop.php?path=Li 4vb3Zhcy9hZG1pbmlzdHJhY2lvbl9lbXByZXNhcy9jb250YWJpbGlkYWRfZ2VuZ XJhbC91bmlkYWRfMS8=#slide_5.2; Fernando F. Coelho. (2019). Introducción a Selenium: Cómo funciona, Características y Opciones. https://www.digital55.com/desarrollotecnologia/herramientas-testing-introduccion-selenium/; Fisher, R., Perkins, S., Walker, A., & Wolfart, E. (2003). Feature Detectors - Canny Edge Detector. http://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm; Gallardo Arancibia, J. A. (2013). Metodología para el Desarrollo de Proyectos en Minería de Datos CRISP-DM. 84, 487–492. http://ir.obihiro.ac.jp/dspace/handle/10322/3933; Garcia, A. (2016). Automatización de pruebas de interfaz gráfica en herramientas de tesorería. https://www.iit.comillas.edu/pfc/resumenes/578e702f6cafb.pdf; García, E. M. i. (2002). Visión Artificial. In Inteligencia Artificial; glosarios@servidor-alicante.com. (2015). Eficiencia (Contabilidad de gestión). Glosarios@servidor-Alicante.Com. https://glosarios.servidoralicante.com/contabilidad-de-gestion/eficiencia GNOME developer. (2014). GNOME developer. https://developer.gnome.org/hig/stable/toolbars.html.es Gollapudi, S. (2019). Learn computer vision using OpenCV : with deep learning CNNs and RNNs; GNOME developer. (2014). GNOME developer. https://developer.gnome.org/hig/stable/toolbars.html.es; Gollapudi, S. (2019). Learn computer vision using OpenCV : with deep learning CNNs and RNNs.; Gonzales, R. (2019). Fundamentos para diseñar una Arquitectura de Solución con RPA.; Guru99. (n.d.). Clasificación de imágenes de TensorFlow: CNN (Red Neural Convolucional) - Guru99. Retrieved April 24, 2020, from https://guru99.es/convnet-tensorflow-image-classification/#2; helpsystems. (2020). Software de automatización GUI. https://www.helpsystems.com/es/productos/automate/software-deautomatizacion-gui-macros; Hureño, O. (2010). Contabilidad Básica Colección Didáctica Ciencias Económicas Y Administrativas. https://www.sanmateo.edu.co/documentos/publicacioncontabilidad-basica.pdf; IBM, I. B. M. (2012). Manual CRISP-DM de IBM SPSS Modeler. IBM Corporation, 56. http://www.ibm.com/spss.%0Aftp://public.dhe.ibm.com/software/analytics/spss/ documentation/modeler/15.0/es/CRISP-DM.pdf; IBM Robotic Process Automation. (2020). Robotic Process Automation with Automation Anywhere - Colombia %7C IBM. IBM Robotic Process Automation; (n.d.). Robotic Process Automation with Automation Anywhere -(n.d.). Robotic Process Automation with Automation Anywhere - Colombia %7C IBM. Retrieved April 1, 2020, from Https://Www.Ibm.Com/Co-Es/Products/RoboticProcess-Automation. https://www.ibm.com/co-es/products/robotic-processautomation Colombia %7C IBM. Retrieved April 1, 2020, from Https://Www.Ibm.Com/Co-Es/Products/RoboticProcess-Automation. https://www.ibm.com/co-es/products/robotic-processautomation; Identigate. (2018). Manual Data Entry: The weak link in automated Systems – Identigate: Web and Mobile Identity Management Solutions. http://www.identigate.co.ke/2018/04/14/manual-data-entry-the-weak-link-inautomated-systems/; ISO. (2009). ISO 9001 - Software ISO 9001 de Sistemas de Gestión ISO. ISOTools Excellence. https://www.isotools.org/normas/calidad/iso9001?__hstc=268265809.657f678a4e6ad8c124f59cda1704dff7.158847266804 8.1588472668048.1588472668048.1&__hssc=268265809.2.1588472668048& __hsfp=1312440609; ISO 25000. (2016). ISO 25000 Portal. https://iso25000.com/; Iso25000. (2018). NORMAS ISO 25000. ISO 25000. https://iso25000.com/index.php/normas-iso-25000?limit=4&start=4; ISOL. (2019). RPA (Robotic Process Automation) Beneficios %7C ISOL. https://isol.mx/rpa-robotic-process-automation-beneficios/; Ki, J., & Kwon, K. (2019a). Proceedings of the Sixth International Conference on Green and Human Information Technology. In Proceedings of the Sixth International Conference on Green and Human Information Technology. ICGHIT 2018 (Vol. 502). Springer Singapore. https://doi.org/10.1007/978-981-13-0311-1; Ki, J., & Kwon, K. (2019b). Proceedings of the Sixth International Conference on Green and Human Information Technology. Proceedings of the Sixth International Conference on Green and Human Information Technology. ICGHIT 2018, 502, 10–13. https://doi.org/10.1007/978-981-13-0311-1; Kim, B., Park, S., & Kim, B. (2018). Deep - Learning Based Web UI Automatic Programming. 2–3; Kokina, J., & Blanchette, S. (2019). Early evidence of digital labor in accounting: Innovation with Robotic Process Automation. International Journal of Accounting Information Systems, 35, 100431. https://doi.org/10.1016/j.accinf.2019.100431; Lemley, J., Bazrafkan, S., & Corcoran, P. (2017). Deep Learning for Consumer Devices and Services: Pushing the limits for machine learning, artificial intelligence, and computer vision. IEEE Consumer Electronics Magazine, 6(2), 48–56. https://doi.org/10.1109/MCE.2016.2640698; Levy Steven. (2015). Graphical user interface %7C computing %7C Britannica. https://www.britannica.com/technology/graphical-user-interface; Luenendonk, M. (2017, October 20). Accounting Errors. https://www.cleverism.com/lexicon/accounting-errors/; Maitra Satyajit. (2019, February 24). What Canny Edge Detection algorithm is all about? - SATYAJIT MAITRA - Medium. https://medium.com/@ssatyajitmaitra/what-canny-edge-detection-algorithm-isall-about-103d94553d21; Mays, J. A., & Mathias, P. C. (2019). Measuring the rate of manual transcription error in outpatient point-of-care testing. Journal of the American Medical Informatics Association, 26(3), 269–272. https://doi.org/10.1093/jamia/ocy170; Mihir Mistry, Ameya Apte, Varad Ghodake(&), and S. B. M. (2019). Machine Learning Based User Interface Generation. In Robotics and Autonomous Systems (Vol. 7, Issues 2–3). https://doi.org/10.1016/0921-8890(91)90033-H; Moreno, A. (2017). ¿Qué es el procesamiento de lenguaje natural? Procesamiento Del Lenguaje Natural, ¿qué Es? https://www.sas.com/es_co/insights/analytics/what-is-natural-languageprocessing-nlp.html; Narayana, M., Raghu Ram Reddy, N., & Hyndavi Reddy, N. (2019). High speed script execution for GUI Automation using Computer Vision. International Journal of Electrical and Computer Engineering, 9(1), 231–236. https://doi.org/10.11591/ijece.v9i1.pp231-236; Nguyen, T. A., & Csallner, C. (2016). Reverse engineering mobile application user interfaces with REMAUI. Proceedings - 2015 30th IEEE/ACM International Conference on Automated Software Engineering, ASE 2015, 248–259. https://doi.org/10.1109/ASE.2015.32; OBS. (2020). Características y fases del modelo incremental. OBS Business School. https://obsbusiness.school/int/blog-project-management/metodologiasagiles/caracteristicas-y-fases-del-modelo-incremental; Organizaci, P. D. E. L. A., Iv, J., & Vicepresidente, O. (2018). Aprovechar la automatización inteligente de procesos : El 1300 % de retorno de la inversión genera una mayor satisfacción de los clientes y USD 7 millones en nuevas fuentes de ingresos; Pete, C., Julian, C., Randy, K., Thomas, K., Thomas, R., Colin, S., & Wirth, R. (2000). Crisp-Dm 1.0. CRISP-DM Consortium, 76.; Pressman, R. (2002a). Ingeniería del Software. Un enfoque práctico. http://cotana.informatica.edu.bo/downloads/ldIngenieria.de.software.enfoque.practico.7ed.Pressman.PDF; Pressman, R. (2002b). Ingeniería del Software. Un enfoque práctico.; R., A. (2011). La MISION DE UNA EMPRESA. 1–6. http://www.crecenegocios.com/la-mision-de-una-empresa/el; Radhakrishnan, P. (2017, November 17). What is Transfer Learning? - Towards Data Science. https://towardsdatascience.com/what-is-transfer-learning8b1a0fa42b4; Ray, S., Tornbohm, C., Miers, D., & Kerremans, M. (2019). Magic Quadrant for Robotic Process Automation Software. July, 1–40; Redmon, Joseph, Santosh Divvala, R. G., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection; Remanan Surya. (2019, April 28). Beginner’s Guide to Object Detection Algorithms - Analytics Vidhya - Medium. https://medium.com/analytics-vidhya/beginnersguide-to-object-detection-algorithms-6620fb31c375; Robot Framework. (2008, August 21). Robot Framework. https://robotframework.org/; Rouse, M. (2017). ¿Qué es Aprendizaje profundo (deep learning)? - Definición en WhatIs.com. Abril 2017. https://searchdatacenter.techtarget.com/es/definicion/Aprendizaje-profundodeep-learning Rouse, M. (2017). ¿Qué es Aprendizaje profundo (deep learning)? - Definición en WhatIs.com. Abril 2017. https://searchdatacenter.techtarget.com/es/definicion/Aprendizaje-profundodeep-learning; scannmore. (2018, July 15). The Biggest Disadvantages of Manual Data Entry. https://scannmore.com/manual-data-entry-disadvantages/; Leyes desde 1992 - Vigencia expresa y control de constitucionalidad [DECRETO_2811_1974], (2006). http://www.secretariasenado.gov.co/senado/basedoc/constitucion_politica_199 1_pr011.html#354; Sevilla, P. (2018, July 7). Lenguaje de programación Python: qué es, utilidades y ventajas. https://initiumsoft.com/blog/que-es-el-lenguaje-de-programacionpython-y-para-que-sirve/; Standardization, F. O. R., & Normalisation, D. E. (1987). International Standard Iso. 1987; Sucar, L. E., & Gómez, G. (2011). Vision Computacional. Instituto Nacional de Astrofísica, Óptica y Electrónica, 185. http://ccc.inaoep.mx/~esucar/Libros/vision-sucar-gomez.pdf; The MathWorks, I. (2019). ¿Qué es una red neuronal? - MATLAB & Simulink. 2019. https://la.mathworks.com/discovery/neural-network.html; ThinkAutomation. (2018, September 19). Everything wrong with manual data entry - ThinkAutomation. https://www.thinkautomation.com/productivity/everythingwrong-with-manual-data-entry/; Torres, L. G. (2018). PA181-3-DotNetGen DotNetGenerator : Generador de Código para Arquitectura Microsoft . NET a partir de modelos ISML DotNetGenerator : Generador de Código para Arquitectura Microsoft . NET a partir de modelos ISML; Towards Machine Learning. (2018). Deep Learning Series, P2: Understanding Convolutional Neural Networks – Towards Machine Learning. https://towardsml.com/2018/10/16/deep-learning-series-p2-understandingconvolutional-neural-networks/; UiPath. (2017). ¿Qué es RPA (Automatización Robótica de Procesos)? %7C UiPath®. https://www.uipath.com/es/rpa/automatizacion-robotica-de-procesos; UiPath. (2019). Capterra. Obtenido de https://www.capterra.co/software/135186/uiUiPath. (2019). Capterra. Obtenido de https://www.capterra.co/software/135186/uipath-robotic-process-automation path-robotic-process-automation; Uskenbayeva, R., Kalpeyeva, Z., Satybaldiyeva, R., Moldagulova, A., & Kassymova, A. (2019). Applying of RPA in Administrative Processes of Public Administration. Proceedings - 21st IEEE Conference on Business Informatics, CBI 2019, 2, 9– 12. https://doi.org/10.1109/CBI.2019.10089; Villena Román, J. (2016, August 2). CRISP-DM: La metodología para poner orden en los proyectos - Sngular. https://www.sngular.com/es/data-science-crisp-dmmetodologia/; Yun, Y., & Park, J. (2018). Automatic Mobile Screen Translation Using Object Detection Approach Based on Deep Neural Networks. 21(11), 1305–1316.; http://hdl.handle.net/20.500.12749/14397; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Availability: https://hdl.handle.net/20.500.12749/14397
-
18
Authors: et al.
Contributors: et al.
Subject Terms: Revista Colombiana de Computación, Multi-agent systems, Article reception and administration system, Systems engineering, Computer science, Computer program, Data processing, Investigations, Analysis, Gaia methodology, Agent-oriented software engineering, Sistemas multiagentes, Sistema de recepción y administración de artículos, Ingeniería de sistemas, Ciencias computacionales, Programa para computador, Procesamiento de datos, Investigaciones, Análisis, Metodología Gaia, AUML, Ingeniería de software orientada a agentes
Subject Geographic: Bucaramanga (Colombia), UNAB Campus Bucaramanga
File Description: application/pdf
Relation: García Ojeda, Juan Carlos (2005). Gadmas. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB, Instituto Tecnológico y de Estudios Superiores de Monterrey ITESM; [ABE00] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Napal, E. Rauch, G. Sussmann, and R. Weiss, R. 2000. Amorphous computing. Commun. ACM 43, 5 (May), 43–50.; [ARE04] A. E. Arenas, J. C. García-Ojeda, J. de J. Pérez-Alcázar. On Combining Organisational Modelling and Graphical Languages for the Development of Multiagent Systems. Journal of Integrated Computer-Aided Engineering (ICAE). IOS Press Netherlands, 11(2):151-163, Mar. 2004.; [BAU01a] B. Bauer, J. P. Muller and J. Odell. Agent UML: A formalism for specifying multiagent software systems. Int. J. Softw. Eng. Knowl. Eng. ll, 3 (Apr.), 207–230. 2001.; [BAU01b] Bauer, B.: UML Class Diagrams and Agent-Based Systems, Proceedings Autonomous Agents 2001, Montreal, 2001.; [BAU02] B. Bauer. Uml class diagrams revisited in the context of agent based systems. In Agent-Oriented Software Engineering II (LNCS Volume 2222), pages 101–118. Springer-Verlag, 2002.; [BER01] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Sci. Amer. May.; [BRE01] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia and J. Mylopoulos. A knowledge level software engineering methodology for agent oriented programming. In Proceedings of the5th International Conference on Autonomous Agents (Montreal, Ont., Canada, June). ACM, New York, pp. 648–655. 2001.; [BRO91] R. A. Brooks. Intelligence without representation. Artificial Intelligence. 47, 139-159. 1991.; [CAB02] G. Cabri, L. Leonardi and F. Zambonelli, XRole: XML Roles for Agent Interaction, Proceedings of the Third International Symposium "From Agent Theory to Agent Implementation" at the 16th European Meeting on Cybernetics and Systems Research, Vienna (A), April 2002.; [CAI02] G. Caire, W. Coulier, F. Garijo, J. Gómez, J. Pavón, F. Leal, P. Chaino, P. Kearney, J. Stark, R. Evans and P. Massonet. Agent-oriented analysis using message/uml. In Proceedings of the 2nd International Workshop on Agent-Oriented Software Engineering. Lecture Notes in Computer Science, vol. 2222. Springer Verlag, New York, pp. 119– 135. 2002.; [CER04a] L. Cernuzzi, T. Juan, L. Sterling, F. Zambonelli, "The Gaia Methodology: Basic Concepts and Extensions", in Methodologies and Software Engineering for Agent Systems, Kluwer, 2004.; [CER04b] L. Cernuzzi, F. Zambonelli, "Experiencing AUML with the Gaia Methodology", 6th International Conference on Enterprise Information Systems, Porto (P), April 2004.; [CERV04] R. Cervenka,I. Trencansky, M. Calisti and D. A. P. Greenwood. AML: Agent Modeling Language Toward Industry-Grade Agent-Based Modeling. In Proceedings of the Fifth International Workshop on Agent-Oriented software Engineering AOSE, pages 31-46, 2004.; [CIA01] P. Ciancarini and M. Wooldridge, editors: Agent-Oriented Software Engineering. Springer-Verlag Lecture Notes in AI Volume 1957, January 2001.; [COL94] D. Coleman, P. Arnold, S. Bodoff, D. Dollin, H. Gilchrist, F. Hayes and P. Jeremas. Object-Oriented Development: The FUSION Method. Prentice-Hall International, Hemel Hampstead U.K, 1994; [COS02] M. Cossentino, C. Potts - "A CASE tool supported methodology for the design of multi-agent systems" - The 2002 International Conference on Software Engineering Research and Practice (SERP'02) 2002.; [DEL01] S. A. DeLoach and M. Word. Developing Multiagent Systems with agentTool. 7th.International Workshop ATAL, 2001; [EST02] D. Estrin, D. Culler, K. Pister and G. Sukjatme. Connecting the physical world with pervasive networks. IEEE Perv. Comput. l, 1, 59– 69. 2002; [FER98] J. Ferber, O. Gutknecht. A meta-model for the analysis and design of organizations in multi-agent systems. In Proceedings of the Third International Conference on Multi-Agent Systems (ICMAS98) , pages 128--135, 1998, Paris, France; [FER98] J. Ferber, and O. Gutknecht. A meta-model for the analysis and design of organizations in multi-agent systems. In Proceedings of the 3rd International Conference on Multi-Agent Systems (Paris, France). IEEE Computer Society Press, Los Alamitos, Calif., pp. 128–135. 1998.; [FIP05] Foundation for Intelligent Physical Agents. http://www.fipa.org/, Consultado Enero de 2005.; [FOS99] I. Foster and C. Kesselman (EDS.). The Grid: Blueprint for a New Computing Infrastructure. Morgan-Kaufmann, 1999; [GAR02a] J. C. García- Ojeda, J. de J. Pérez-Alcázar, A. E. Arenas. Aplicación de una Metodología de Desarrollo de Sistemas Multiagente en la Diseminación Selectiva de Información en la Web, Memorias del II Congreso Iberoamericano de Telemática (CITA’02). ISBN: 980-237- 217- X. Septiembre, 2002; [GAR02b] J. C. García-Ojeda, J. de J. Pérez-Alcázar and A. E. Arenas. Applying Gaia and AUML to the Selective Dissemination of Information on the Web, Proceedings of the 4th Iberoamerican Workshop on Multiagent Systems, Málaga, España, 2002; [GAR04] J. C. García-Ojeda, J. de J. Pérez-Alcázar, A. E. Arenas. Extending the Gaia Methodology with Agent-UML, In Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-04). New York, USA, 2004.; [GAR05] Paving the Way for Implementing Multiagent systems: Refining Gaia with AUML. Juan C. García-Ojeda, Álvaro E. Arenas and José de J. Pérez-Alcázar. In Proceedings of the 6th International Workshop on Agent-Oriented Software engineering (AOSE-2005), Por Aparecer.; [GOM03] J. Gomez-Sanz and J. Pavon. Agent oriented software engineering with INGENIAS. CEEMAS 2003 – Multi-Agent Systems and Applications III, 2691 , pages 394–403, 2003.; [HUH97] M. Huhns and M. P. Singh. Agents and Multiagent Systems: Themes, Approaches and Challenges. In Readings in Agents, chapter 1. Morgan Kaufmann Publishers. 1997.; [IEEE93] IEEE Standard 610.12 “Glossary of software engineering terminology,” in Software Engineering Standards Collection, IEEE CS Press, Los Alamitos, Calif. 1993; [IGL97] C. A. Iglesias, M. Garijo, J. C. Gonzalez and J. R. Velasco. Analysis and Design of Multiagent Systems Using MAS-CommonKADS. In Proceedings of the 4th International Workshop, ATAL'97. USA, pages 313-327, 1997.; [IGL99] C. Iglesias, M. Garito and J. Gonzáles. A survey of agent-oriented methodologies. In Intelligents Agents IV: Agent Theories, Architectures, and Languages. Lacture Notes in Artificial Intelligence, vol. 1555. Springer-Verlag, New York, pp. 317–330. 1999.; [JAC98] I. Jacobson. "Applying UML in The Unified Process" Rational Software. Presentación disponible en http://www.rational.com/uml como UMLconf.zip, 1998.; [JEN00] N. R. Jennings (2000) "On Agent-Based Software Engineering", Artificial Intelligence, 117 (2) 277-296.; [JEN01] N. R. Jennings (2001) "An agent-based approach for building complex software systems" Comms. of the ACM, 44 (4) 35-41.; [JUA03] Juan, T. and Sterling, L., The ROADMAP Meta-model for Intelligent Adaptive Multi-AgentSystems in Open Environments, Proceedings of the Fourth International Workshop on Agent Oriented Software Engineering, at AAMAS'03, Melbourne, Australia, July 2003.; [JUA02] Juan, T., Pearce, A. and Sterling, L., ROADMAP: Extending the Gaia methodology for Complex Open Systems, Proceedings of the First International Joint Conference on Autonomous Agents and Multi- Agent Systems (AAMAS 2002), Bologna, Italy, July 2002.; [MOR03] P. Moraitis, E. Petraki and N. Spanoudakis, Engineering JADE Agents with the Gaia Methodology. Lecture Notes in Computer Science (LNCS), vol. 2592: "Agent Technologies, Infrastructures, Tools, and Applications for e-Services", Springer-Verlag, 2003, pp 77-91; [MOR04] P. Moraitis and N. Spanoudakis. Combining Gaia and JADE for Multiagent Systems. In Proceedings of the 4th International Symposium "From Agent Theory to Agent Implementation" (AT2AI4), in: Proceedings of the 17th European Meeting on Cybernetics and Systems Research (EMCSR 2004), Vienna, Austria, April 13 - 16, 2004.; [MYL99] J. Mylopoulos, L. Chung, E. S. K. Yu. From Object-Oriented to Goal- Oriented Requirements Analysis, Commun. ACM 42(1): 31-37 (1999); [ODE00] J. Odell, V. D. Parunak, and B. Bauer. Extending uml for agents. In G. Wagner, Y. Lesperance, and E. Yu, editors, Proceedings of the Agent- Oriented Information Systems Workshop at the l7th National conference on Artificial Intelligence., pages 3–17, 2000.; [ODE01] J. Odell, H. Van Dyke Parunak and B. Bauer. Representing agent interaction protocols in UML. In Proceedings of the lst International Workshop on Agent-Oriented Software Engineering. Lecture Notes in Computer Science, vol. 1957. Springer-Verlag, New York, pp. 121– 140, 2001.; [OMG] Object Management Group. http://www.omg.org/, Consultado Enero de 2005.; [PAR01] H. V. Parunak, J. Odell. "Representing Social Structures in UML," Agent-Oriented Software Engineering (AOSE) II, Michael Wooldridge et al. eds., Springer-Verlag, Berlin, 2002, pp. 1-16.; [PAR97] H. V. D. Parunak. Go to the ant: Engineering principles from natural agent systems. Ann. Oper.Res. 75, 69–101. 1997; [PAU93] M. C. Paulk, B. Curtis, M. B. Chrissis and C. V. Weber."The Capability Maturity Model for Software", IEEE Software, Vol. 10, No. 4, July 1993, pp. 18-27.; [RIC02] A. Ricci, A. Omicini and E. Dente. Agent coordination infrastructures for virtual enterprises and workflow. Int. J. Coop. Inf. Syst. ll, 3 (Sept.), 335–380. 2002.; [RIP02] M. Ripeani, A. Iamnitchi and I. Foster. Mapping the gnutella network. IEEE Internet Comput. 6, 1 (Jan.), 50–57. 2002; [RUM91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object-Oriented Modelling and Design. Prentice Hall, 1991; [RUS02] S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2002; [SHA95] M. Shaw, R. Deline, D. Klein, T. Ross, D. Young and G. Zelesnik. Abstractions for software architecture and tools to support them. IEEE Trans. Softw. Eng. 2l, 4 (Apr.), 314–335. 1995; [SIM54] H. A. Simon. Models of Man. Wiley, New York, 1957.; [STU03] A. Sturm and O. Shehory. “A Framework for Evaluating Agent- Oriented Methodologies”, Workshop on Agent-Oriented Information System (AOIS), Melbourne, Australia, 2003.; [SUD04] J. Sudeikat, L. Braubach, A. Pokahr and W. Lamersdorf. “Evaluation of Agent-Oriented Software Methodologies – Examination of the Gap Between Modeling and Platform”, AOSE 2004, 126-141; [TEN00] D. Tennenhouse. Embedding the Internet: Proactive computing. Commun. ACM 43, 5 (May), 36–42. 2000.; [WOD01] M. Word, S. A. DeLoach and C. Sparkman. Multiagent system engineering. Int. J. Softw. Eng. Knowl. Eng. ll, 3 (Apr.), 231–258. 2001.; [WOO00] M. Wooldridge, N. R. Jennings, and D. Kinny. “The Gaia Methodology for Agent-Oriented Analysis and Design", Journal of Autonomous Agents and Multi-Agent Systems 3 (3) 285-312, 2000; [WOO02] Michael Wooldridge. An Introduction to Multiagent Systems. Ed. John Wiley & Sons, 2002.; [WOO95] M. J. Woolridge and N. R. Jennings. Intelligent Agents, Theory and Practice, 1995 Knowledge Engineering Review vol. 10:2, 115-152; [WOO97] M. Wooldridge (1997) “Agent-based software engineering” IEE Proc. on Software Engineering, 144 (1) 26-37.; [ZAM03a] F. Zambonelli, F. and H. V. D. Parunak. Signs of a revolution in computer science and software engineering. In Proceedings of the 3rd International Workshop on Engineering Societies in the Agents World. Lecture Notes in Computer Science, vol. 2577. Springer-Verlag, New York, pp. 13–28.; [ZAM03b] F. Zambonelli, N. R. Jennings and M. Wooldridge. "Developing multiagent systems: the Gaia Methodology", ACM Trans on Software Engineering and Methodology 12 (3) 317-370, 2003.; http://hdl.handle.net/20.500.12749/3301; reponame:Repositorio Institucional UNAB
Availability: https://hdl.handle.net/20.500.12749/3301
-
19
Authors: et al.
Contributors: et al.
Subject Terms: 650 - Gerencia y servicios auxiliares::658 - Gerencia general, Transformación digital, Digitalización, Modelos de madurez de transformación digital, Transformación del modelo de negocio, Digital transformation, Digitization, Digital transformation maturity models, Business model transformation, Cambio tecnológico, Comportamiento innovador, Resistencia al cambio, Technological change, Innovation behaviour, Resistance to change
File Description: xx, 205 páginas; application/pdf
Relation: Acevedo, A. (IDOM T. C. (2018). Modelo de madurez para la transformación digital. Bogotá, D.C.: MinTIC -Subdirección de Comercio Electrónico, INNpulsa Colombia - Desarrollo Empresarial, 44. https://camaraarmenia.org.co/wp-content/uploads/2020/08/Modelo-de-transformacióndigital.pdf; Adner, R., Puranam, P., & Zhu, F. (2019). What Is Different About Digital Strategy? From Quantitative to Qualitative Change. Strategy Science, 4(4), 253–261. https://doi.org/10.1287/stsc.2019.0099; Aghamiri, S., Karima, J., & Cavus, N. (2022). Advantages of Digital Transformation Models and Frameworks for Business: A Systematic Literature Review. International Journal of Advanced Computer Science and Applications, 13(12). https://doi.org/10.14569/IJACSA.2022.0131206; Agostino, D., & Costantini, C. (2021). A measurement framework for assessing the digital transformation of cultural institutions: the Italian case. Meditari Accountancy Research. https://doi.org/10.1108/MEDAR-02-2021-1207; Albrecht, E., & Brummett, C. M. (2021). If you cannot measure it, you cannot improve it. Anaesthesia, 76(10), 1304–1307. https://doi.org/10.1111/anae.15480; Alcácer, V., & Cruz-Machado, V. (2019). Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems. Engineering Science and Technology, an International Journal, 22(3), 899–919. https://doi.org/10.1016/j.jestch.2019.01.006; Alekseev, A. N., Lobova, S. V., Bogoviz, A. V., & Ragulina, Y. V. (2019). Digitalization of the russian energy sector: state of the art and potential for future research. International Journal of Energy Economics and Policy, 9(5), 274–280. https://doi.org/10.32479/ijeep.7673; Alkan, D. P. (2020). Re-Shaping Business Strategy in the Era of Digitization. In Handbook of Research on Strategic Fit and Design in Business Ecosystems (pp. 76–97). https://doi.org/10.4018/978-1-7998-1125-1.ch004; Almasri, H., ZAKUAN, N., AMER, M. S., & MAJID, M. R. (2021). A developed systematic literature review procedure with application in the field of digital transformation. Studies of Applied Economics, 39(4). https://doi.org/10.25115/eea.v39i4.4559; AlMulhim, A. F. (2021). Smart supply chain and firm performance: the role of digital technologies. Business Process Management Journal, 27(5), 1353–1372. https://doi.org/10.1108/BPMJ-12- 2020-0573; Ambrosio da Silva, I., Cesar Macedo Barbalho, S., Adam, T., Heine, I., & Schmitt, R. (2021). Industry 4.0 Readiness: a new framework for maturity evaluation based on a bibliometric study of scientific articles from 2001 to 2020. DYNA, 88(218), 101–109. https://doi.org/10.15446/dyna.v88n218.92543; Anderson, C., & William, E. (2018). Digital Maturity Model - Achieving digital maturity to drive growth. Deloitte. https://www2.deloitte.com/content/dam/Deloitte/global/Documents/TechnologyMedia-Telecommunications/deloitte-digital-maturity-model.pdf; ANDI. (2019). Informe de la encuesta de transformacion digital 2019. Asociación Nacional de Industriales. http://www.andi.com.co/Uploads/ANALISIS - ENCUESTA DE TRANSFORMACIÓN DIGITAL 2019 - ANDI.pdf; ANDI. (2022). Colombia un país digital. Asociación Nacional de Industriales. https://www.andi.com.co/Uploads/02 PINZON 19052022 Panoransformación Digital en Colombia ILS VF SPGAMG.pdf; Appio, F. P., Frattini, F., Petruzzelli, A. M., & Neirotti, P. (2021). Digital Transformation and Innovation Management: A Synthesis of Existing Research and an Agenda for Future Studies. Journal of Product Innovation Management, 38(1), 4–20. https://doi.org/10.1111/jpim.12562; Archibugi, D. (2017). Blade Runner economics: Will innovation lead the economic recovery? Research Policy, 46(3), 535–543. https://doi.org/10.1016/j.respol.2016.01.021; Ashok, M., Madan, R., Joha, A., & Sivarajah, U. (2022). Ethical framework for Artificial Intelligence and Digital technologies. International Journal of Information Management, 62, 102433. https://doi.org/10.1016/j.ijinfomgt.2021.102433; Babkin, A., Tashenova, L., Mamrayeva, D., & Makhmudova, G. (2020). Digital platforms for industrial clusters and enterprises. Proceedings of the 2nd International Scientific Conference on Innovations in Digital Economy: SPBPU IDE-2020, 1–7. https://doi.org/10.1145/3444465.3444486; Bai, C., Quayson, M., & Sarkis, J. (2021). COVID-19 pandemic digitization lessons for sustainable development of micro-and small- enterprises. Sustainable Production and Consumption, 27(1), 1989–2001. https://doi.org/10.1016/j.spc.2021.04.035; Becker, J., Knackstedt, R., & Pöppelbuß, J. (2009). Developing Maturity Models for IT Management. Business & Information Systems Engineering, 1(3), 213–222. https://doi.org/10.1007/s12599- 009-0044-5; Becker, W., Ulrich, P., & Vogt, M. (2013). Digitalisierung im Mittelstand-Ergebnisbericht einer OnlineUmfrage. Univ., Lehrstuhl Für Betriebswirtschaftslehre, Insbes. Unternehmensführung Und Controlling. https://fis.unibamberg.de/bitstream/uniba/1505/1/BBB192DigiOnlineUmfrseA2.pdf; Bellantuono, N., Nuzzi, A., Pontrandolfo, P., & Scozzi, B. (2021). Digital transformation models for the i4.0 transition: Lessons from the change management literature. Sustainability (Switzerland), 13(23). https://doi.org/10.3390/su132312941; Berger, R. (2015). The digital transformation of industry. The Study Commissioned by the Federation of German Industries (BDI), Munich. https://bdi.eu/media/presse/publikationen/informationund-telekommunikation/Digital_Transformation.pdf; Berghaus, S., & Back, A. (2016). Stages in digital business transformation: results of an empirical maturity study. Mediterranean Conference on Information Systems (MCIS), (Paper 22), 1–17. https://core.ac.uk/download/pdf/301370037.pdf; Berghaus, S., Back, A., & Kaltenrieder, B. (2016). Digital maturity & transformation report 2016. Institut Für Wirtschaftsinformatik, Universität St.Gallen. https://www.digitaleschweiz.ch/wpcontent/uploads/2016/06/digital-maturity-transformation-report-2016-mit-best-practices.pdf; Berghaus, S., Back, A., & Kaltenrieder, B. (2017). Digital Maturity & Transformation Report 2017. Institut Für Wirtschaftsinformatik, Universität St.Gallen. https://office-roxx.de/wpcontent/uploads/2019/01/digital-maturity-transformation-report-2017.pdf; Bertello, A., Ferraris, A., Bresciani, S., & De Bernardi, P. (2021). Big data analytics (BDA) and degree of internationalization: the interplay between governance of BDA infrastructure and BDA capabilities. Journal of Management and Governance, 25(4), 1035–1055. https://doi.org/10.1007/s10997-020-09542-w; Bordeleau, F.-È., & Felden, C. (2019). After the plan: An exploration of the digitalization application barriers. 25th Americas Conference on Information Systems, AMCIS 2019.; Bouncken, R., & Barwinski, R. (2021). Shared digital identity and rich knowledge ties in global 3D printing—A drizzle in the clouds? Global Strategy Journal, 11(1), 81–108. https://doi.org/10.1002/gsj.1370; Brennen, J. S., & Kreiss, D. (2016). Digitalization. In The International Encyclopedia of Communication Theory and Philosophy (pp. 1–11). Wiley. https://doi.org/10.1002/9781118766804.wbiect111; Brown, N., & Brown, I. (2019). From digital business strategy to digital transformation - How?: A systematic literature review. PervasiveHealth: Pervasive Computing Technologies for Healthcare. https://doi.org/10.1145/3351108.3351122; Brozzi, R., Riedl, M., & Matta, D. (2020). Key Readiness Indicators to Assess the Digital Level of Manufacturing SMEs. Procedia CIRP, 96, 201–206. https://doi.org/10.1016/j.procir.2021.01.075; Calle, A. D. La, Freije, I., Ugarte, J. V., & Larrinaga, M. Á. (2020). Measuring the impact of digital capabilities on product-service innovation in Spanish industries. International Journal of Business Environment, 11(3), 254. https://doi.org/10.1504/IJBE.2020.110904; Caputo, F., Cillo, V., Candelo, E., & Liu, Y. (2019). Innovating through digital revolution. Management Decision, 57(8), 2032–2051. https://doi.org/10.1108/MD-07-2018-0833; Carrijo, P., Alturas, B., & Pedrosa, I. (2021). Analysis of Digital Transformation Maturity Models %7C Análise de modelos de maturidade deTransformação Digital. Iberian Conference on Information Systems and Technologies, CISTI. https://doi.org/10.23919/CISTI52073.2021.9476644; Castells, M. (2010). The Information Age Economy, Society, and Culture . Volume I The Rise of the Network Society. John Wiley & Sons Ltd.; Catlin, T., Scanlan, J., & Willmott, P. (2015). Raising your digital quotient. McKinsey Q. http://www.eurasiancommission.org/ru/act/dmi/workgroup/materials/Pages/Бизнес-среда в цифровом мире/Доклады консалтинговых агентств/Mckinsey_Raising your Digital Quotient_2016.pdf; CEPAL. (2018). Datos, algoritmos y políticas: la redefinición del mundo digital (LC/CMSI.6/4). In Comisión Económica para América Latina y el Caribe (CEPAL). Publicación de las Naciones Unidas. https://repositorio.cepal.org/bitstream/handle/11362/43477/7/S1800053_es.pdf; CEPAL. (2021). Tecnologías digitales para un nuevo futuro (LC/TS.2021/43). In Comisión Económica para América Latina y el Caribe (CEPAL). Publicación de las Naciones Unidas. https://repositorio.cepal.org/bitstream/handle/11362/46816/1/S2000961_es.pdf; CEPAL. (2022a). Un camino digital para el desarrollo sostenible de América Latina y el Caribe (LC/CMSI.8/3). In Comisión Económica para América Latina y el Caribe (CEPAL). Publicación de las Naciones Unidas. https://repositorio.cepal.org/bitstream/handle/11362/48460/4/S2200899_es.pdf; CEPAL. (2022b). Hacia la transformación del modelo de desarrollo en América Latina y el Caribe: producción, inclusión y sostenibilidad (LC/SES.39/3-P). In Comisión Económica para América Latina y el Caribe (CEPAL). Publicación de las Naciones Unidas. https://doi.org/10.18356/9789210055857; Chanias, S., & Hess, T. (2016). Understanding digital transformation strategy formation: insights from Europe’s automotive industry. Pacific Asia Conference on Information Systems, PACIS 2016 - Proceedings. Pacific Asia Conference on Information Systems, 296. https://aisel.aisnet.org/pacis2016/296; Chaparro-Peláez, J., Acquila-Natale, E., Hernández-García, Á., & Iglesias-Pradas, S. (2020). The Digital Transformation of the Retail Electricity Market in Spain. Energies, 13(8), 2085. https://doi.org/10.3390/en13082085; Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., & Yin, B. (2018). Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges. IEEE Access, 6, 6505–6519. https://doi.org/10.1109/ACCESS.2017.2783682; Chen, N., Sun, D., & Chen, J. (2022). Digital transformation, labour share, and industrial heterogeneity. Journal of Innovation & Knowledge, 7(2), 100173. https://doi.org/10.1016/j.jik.2022.100173; Cheng, Y., Zhou, X., & Li, Y. (2023). The effect of digital transformation on real economy enterprises’ total factor productivity. International Review of Economics & Finance, 85, 488–501. https://doi.org/10.1016/j.iref.2023.02.007; Chou, Y.-C., Hao-Chun Chuang, H., & Shao, B. B. M. (2014). The impacts of information technology on total factor productivity: A look at externalities and innovations. International Journal of Production Economics, 158, 290–299. https://doi.org/10.1016/j.ijpe.2014.08.003; Christensen, C., Schmitt, M. K., Larsen, M. S. S., & Heidemann Lassen, A. (2022). The Effect of Digital Maturity on Strategic Approaches to Digital Transformation. In Lecture Notes in Mechanical Engineering (pp. 754–761). https://doi.org/10.1007/978-3-030-90700-6_86; Clerck, J. (2017). Digitization, digitalization, digital and transformation: the differences. I-SCOOP. https://www.i-scoop.eu/digital-transformation/digitization-digitalization-digital-transformationdisruption/; Colli, M., Madsen, O., Berger, U., Møller, C., Wæhrens, B. V., & Bockholt, M. (2018). Contextualizing the outcome of a maturity assessment for Industry 4.0. IFAC-PapersOnLine, 51(11), 1347– 1352. https://doi.org/10.1016/j.ifacol.2018.08.343; Collin, J., Hiekkanen, K., Korhonen, J., The Heel, M., Itälä, T., & Helenius, M. (2015). IT Leadership in Transition-The Impact of digitalization on Finnish Organization. Research Report, Aalto University. Department of Computer Science.; Consoli, D. (2012). Literature analysis on determinant factors and the impact of ICT in SMEs. Procedia – Social and Behavioral Sciences, 62, 93–97.; Creswell, J. W. (2014). Research Desing. Qualitative, quantitative and mixed methods approaches. SAGE Publications, Inc.; Creswell, John W., & Creswell, J. D. (2018). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (Fifth edit). SAGE Publications, Inc.; Crittenden, W. F., Biel, I. K., & Lovely, W. A. (2019). Embracing Digitalization: Student Learning and New Technologies. Journal of Marketing Education, 41(1), 5–14. https://doi.org/10.1177/0273475318820895; DAFP. (2016). Decreto 415 de 2016. Departamento Administrativo de La Función Pública (DAFP). http://es.presidencia.gov.co/normativa/normativa/DECRETO 415 DEL 07 DE MARZO DE 2016.pdf; Davis, N., & O’Halloran, D. (2018). La cuarta revolución industrial impulsa la globalización 4.0. Foro Económico Mundial. https://es.weforum.org/agenda/2018/11/la-cuarta-revolucion-industrialimpulsa-la-globalizacion-4-0/; De Carolis, A., Macchi, M., Negri, E., & Terzi, S. (2017). A maturity model for assessing the digital readiness of manufacturing companies. In IFIP Advances in Information and Communication Technology (Vol. 513). https://doi.org/10.1007/978-3-319-66923-6_2; Dedehayir, O., Ortt, J. R., & Seppänen, M. (2017). Disruptive change and the reconfiguration of innovation ecosystems. Journal of Technology Management & Innovation, 12(3), 9–21. https://doi.org/10.4067/S0718-27242017000300002; Delgosha, M. S., Saheb, T., & Hajiheydari, N. (2020). Modelling the asymmetrical relationships between digitalisation and sustainable competitiveness: a cross-country configurational analysis. Information Systems Frontiers. https://doi.org/https://doi.org/10.1007/s10796- 020- 10029-0; Deloitte. (2018). Digital Maturity Model Achieving digital maturity to drive growth. Deloitte Digital. https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Technology-MediaTelecommunications/deloitte-digital-maturity-model.pdf; Demlehner, Q., & Laumer, S. (2020). Why Context Matters: Explaining the Digital Transformation of the Manufacturing Industry and the Role of the Industry’s Characteristics in It. Pacific Asia Journal of the Association for Information Systems, 12(3), 57–81. https://doi.org/10.17705/1pais.12303; Dethine, B., Enjolras, M., & Monticolo, D. (2020). Digitalization and SMEs’ Export Management: Impacts on Resources and Capabilities. Technology Innovation Management Review, 10(4), 18–34. https://doi.org/10.22215/timreview/1344; Devereux, M. P., & Vella, J. (2018). Debate: Implications of Digitalization for International Corporate Tax Reform. Intertax, 46(6), 550–559. https://kluwerlawonline.com/journalarticle/Intertax/46.6/TAXI2018056; Dini, M., Gligo, N., & Patiño, A. (2021). Transformación digital de las mipymes: Elementos para el diseño de políticas. Documentos de Proyectos (LC/TS.2021/99), Santiago, Comisión Económica Para América Latina y El Caribe (CEPAL), 61. https://repositorio.cepal.org/bitstream/handle/11362/47183/1/S2100372_es.pdf; DNP, D. N. de P. (2018). Plan Nacional de Desarrollo 2018-2022: Pacto por Colombia, pacto por la equidad. Departamento Nacional de Planeación. Departamento Nacional de Planeación; DNP, D. N. de P. (2019). COPES 3975: Política nacional para la transformación digital e inteligencia artificial. https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/3975.pdf; DNP, D. N. de P. (2023). Plan Nacional de Desarrollo 2023-2026: Colombia potencia mundial de la vida. Departamento Nacional de Planeación. https://colaboracion.dnp.gov.co/CDT/portalDNP/PND-2023/2023-05-04-bases-plan-nacionalde-inversiones-2022-2026.pdf; Dosi, G., & Virgillito, M. E. (2019). Whither the evolution of the contemporary social fabric? New technologies and old socio‐economic trends. International Labour Review, 158(4), 593–625. https://doi.org/10.1111/ilr.12145; Eden, R., Burton-Jones, A., Casey, V., & Draheim, M. (2019). Digital Transformation Requires Workforce Transformation. MIS Quarterly Executive, 18(1). https://doi.org/10.17705/2msqe.00005; Eling, M., & Lehmann, M. (2018). The Impact of Digitalization on the Insurance Value Chain and the Insurability of Risks. The Geneva Papers on Risk and Insurance - Issues and Practice, 43(3), 359–396. https://doi.org/10.1057/s41288-017-0073-0; Epicoco, M. (2021). Technological Revolutions and Economic Development: Endogenous and Exogenous Fluctuations. Journal of the Knowledge Economy, 12(3), 1437–1461. https://doi.org/10.1007/s13132-020-00671-z; Ernstsen, S. N., Whyte, J., Thuesen, C., & Maier, A. (2021). How Innovation Champions Frame the Future: Three Visions for Digital Transformation of Construction. Journal of Construction Engineering and Management, 147(1), 05020022. https://doi.org/10.1061/(ASCE)CO.1943- 7862.0001928; Escorsa, P., & Valls, J. (2005). Tecnología e Innovación en la empresa (2nd ed.). Editorial Alfaomega.; Farías Gaytán, S.-C., Ramirez-Montoya, M.-S., & Aguaded, I. (2020). Research plan on the digital transformation of faculty to advance to the global era. ACM International Conference Proceeding Series, 1048–1052. https://doi.org/10.1145/3434780.3436634; Feliciano-Cestero, M. M., Ameen, N., Kotabe, M., Paul, J., & Signoret, M. (2023). Is digital transformation threatened? A systematic literature review of the factors influencing firms’ digital transformation and internationalization. Journal of Business Research, 157, 113546. https://doi.org/10.1016/j.jbusres.2022.113546; Felippes, B., da Silva, I., Barbalho, S., Adam, T., Heine, I., & Schmitt, R. (2022). 3D-CUBE readiness model for industry 4.0: technological, organizational, and process maturity enablers. Production & Manufacturing Research, 10(1), 875–937. https://doi.org/10.1080/21693277.2022.2135628; Frank, A. G., Mendes, G. H. S., Ayala, N. F., & Ghezzi, A. (2019). Servitization and Industry 4.0 convergence in the digital transformation of product firms: A business model innovation perspective. Technological Forecasting and Social Change, 141, 341–351. https://doi.org/10.1016/j.techfore.2019.01.014; Freeman, C., & Perez, C. (1988). Structural crises of adjustment, business cycles and investment behaviour. In G. Dosi et al. (Eds.),Technical change and economic theory (pp. 38–66). Francis Pinter; Friedrich, R., Gröne, F., Koster, A., & Le Merle, M. (2011). Measuring industry digitization: Leaders and laggards in the digital economy. https://www.strategyand.pwc.com/gx/en/insights/2002- 2013/measuring-industry-digitization/strategyand-measuring-industry-digitization-leaderslaggards-digital-economy.pdf; Fujii-Takamoto, B., & Langford, G. (2022). Digital Transformation can Threaten your Organizational Survival without Digital Self-Awareness. PICMET 2022 - Portland International Conference on Management of Engineering and Technology: Technology Management and Leadership in Digital Transformation - Looking Ahead to Post-COVID Era, Proceedings. https://doi.org/10.23919/PICMET53225.2022.9882832; Gaffley, G., & Pelser, T. G. (2021). Developing a digital transformation model to enhance the strategy development process for leadership in the South African manufacturing sector. South African Journal of Business Management, 52(1). https://doi.org/10.4102/sajbm.v52i1.2357; Galvis-Lista, E. A., & Sánchez-Torres, J. M. (2014). Modelo de Referencia de Procesos de Gestión de Conocimiento aplicable a Organizaciones Desarrolladoras de Software del Contexto Colombiano. November, 270. https://doi.org/10.13140/2.1.3185.1207; Gebayew, C., Hardini, I. R., Panjaitan, G. H. A., Kurniawan, N. B., & Suhardi. (2018). A Systematic Literature Review on Digital Transformation. 2018 International Conference on Information Technology Systems and Innovation (ICITSI), 260–265. https://doi.org/10.1109/ICITSI.2018.8695912; Gebre-Mariam, M., & Bygstad, B. (2019). Digitalization mechanisms of health management information systems in developing countries. Information and Organization, 29(1), 1–22. https://doi.org/10.1016/j.infoandorg.2018.12.002; Ghobakhloo, M., & Fathi, M. (2019). Corporate survival in Industry 4.0 era: the enabling role of leandigitized manufacturing. Journal of Manufacturing Technology Management, 31(1), 1–30. https://doi.org/10.1108/JMTM-11-2018-0417; Ghobakhloo, M., & Iranmanesh, M. (2021). Digital transformation success under Industry 4.0: a strategic guideline for manufacturing SMEs. Journal of Manufacturing Technology Management, ahead-of-p(ahead-of-print). https://doi.org/10.1108/JMTM-11-2020-0455; Ghosh, S., Hughes, M., Hodgkinson, I., & Hughes, P. (2022). Digital transformation of industrial businesses: A dynamic capability approach. Technovation, 113, 102414. https://doi.org/10.1016/j.technovation.2021.102414; Gileva, T. A., Galimova, M. P., Babkin, A. V, & Gorshenina, M. E. (2021). Strategic management of industrial enterprise digital maturity in a global economic space of the ecosystem economy. IOP Conference Series: Earth and Environmental Science, 816(1), 012022. https://doi.org/10.1088/1755-1315/816/1/012022; Gill, M., & VanBoskirk, S. (2016). Digital Maturity Model 4.0. Benchmarks: Digital Transformation Playbook. Forrester Research, Inc. https://dixital.cec.es/wpcontent/uploads/presentacions/presentacion06.pdf; Gils, B. van, & Weigand, H. (2020). Towards Sustainable Digital Transformation. 2020 IEEE 22nd Conference on Business Informatics (CBI), 1, 104–113. https://doi.org/10.1109/CBI49978.2020.00019; Gimpel, H., Hosseini, S., Xaver, R., Huber, R., Probst, L., Röglinger, M., & Faisst, U. (2018). Structuring Digital Transformation: A Framework of Action Fields and its Application at ZEISS. Journal of Information Technology, 19(1), 31–54. https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1726&context=jitta; GipuzKoa Berritzen - Innobasque. (2011). Roadmapping : Una herramienta para definir estrategias de I + D + i de éxito. Agencia Vasca de La Innovación, 32.; Gobble, M. M. (2018). Digitalization, Digitization, and Innovation. Research-Technology Management, 61(4), 56–59. https://doi.org/10.1080/08956308.2018.1471280; Gökalp, E., & Martinez, V. (2021). Digital transformation capability maturity model enabling the assessment of industrial manufacturers. Computers in Industry, 132, 103522. https://doi.org/10.1016/j.compind.2021.103522; Gollhardt, T., Halsbenning, S., Hermann, A., Karsakova, A., & Becker, J. (2020). Development of a Digital Transformation Maturity Model for IT Companies. 2020 IEEE 22nd Conference on Business Informatics (CBI), 1, 94–103. https://doi.org/10.1109/CBI49978.2020.00018; González-Varona, J. M., López-Paredes, A., Poza, D., & Acebes, F. (2021). Building and development of an organizational competence for digital transformation in SMEs. Journal of Industrial Engineering and Management, 14(1), 15–24. https://doi.org/10.3926/jiem.3279; Gordon, R. J. (2013). Is U.S. Economic Growth Over?faltering innovation Confronts the Six headwinds. Voprosy Ekonomiki, 4, 49–67. https://doi.org/10.32609/0042-8736-2013-4-49-67; Gunsberg, D., Callow, B., Ryan, B., Suthers, J., Baker, P. A., & Richardson, J. (2018). Applying an organisational agility maturity model. Journal of Organizational Change Management, 31(6), 1315–1343. https://doi.org/10.1108/JOCM-10-2017-0398; Guo, X., Li, M., Wang, Y., & Mardani, A. (2023). Does digital transformation improve the firm’s performance? From the perspective of digitalization paradox and managerial myopia. Journal of Business Research, 163, 113868. https://doi.org/10.1016/j.jbusres.2023.113868; Hagberg, J., Sundstrom, M., & Egels-Zandén, N. (2016). The digitalization of retailing: an exploratory framework. International Journal of Retail & Distribution Management, 44(7), 694–712. https://doi.org/10.1108/IJRDM-09-2015-0140; Hanelt, A., Bohnsack, R., Marz, D., & Antunes Marante, C. (2021). A Systematic Review of the Literature on Digital Transformation: Insights and Implications for Strategy and Organizational Change. Journal of Management Studies, 58(5), 1159–1197. https://doi.org/10.1111/joms.12639; Haryanti, T., Rakhmawati, N. A., & Subriadi, A. P. (2023). The Extended Digital Maturity Model. Big Data and Cognitive Computing, 7(1), 17. https://doi.org/10.3390/bdcc7010017; Hellge, V., Schröder, D., & Bosse, C. (2019). Der Readiness-Check Digitalisierung Ein Instrument zur Bestimmung der digitalen Reife von KMU. Mittelstand 4.0-Kompetenzzentrum Kaiserslautern. https://kompetenzzentrum-kaiserslautern.digital/wpcontent/uploads/2019/01/Broschüre_Readiness_Check_Digitalisierung_Januar_2019_final.p df; Henriette, E., Feki, M., & Boughzala, I. (2015). The Shape of Digital Transformation: A Systematic Literature Review. MCIS 2015 Proceedings, 10. https://aisel.aisnet.org/mcis2015/10; Heredia, J., Castillo-Vergara, M., Geldes, C., Carbajal Gamarra, F. M., Flores, A., & Heredia, W. (2022). How do digital capabilities affect firm performance? The mediating role of technological capabilities in the “new normal.” Journal of Innovation & Knowledge, 7(2), 100171. https://doi.org/10.1016/j.jik.2022.100171; Hess, T., Matt, C., Benlian, A., & Wiesböck, F. (2016). Options for formulating a digital transformation strategy. MIS Quarterly Executive, 15(2), 123–139, ISSN 15401960.; Holmström, J., Holweg, M., Lawson, B., Pil, F. K., & Wagner, S. M. (2019). The digitalization of operations and supply chain management: Theoretical and methodological implications. Journal of Operations Management, 65(8), 728–734. https://doi.org/10.1002/joom.1073; Horlach, B., Drews, P., Schirmer, I., & Boehmann, T. (2017). Increasing the Agility of IT Delivery: Five Types of Bimodal IT Organization. https://doi.org/10.24251/HICSS.2017.656; Ifenthaler, D., & Egloffstein, M. (2020). Development and Implementation of a Maturity Model of Digital Transformation. TechTrends, 64(2), 302–309. https://doi.org/10.1007/s11528-019- 00457-4; Ifenthaler, Dirk, & Egloffstein, M. (2020). Development and Implementation of a Maturity Model of Digital Transformation. TechTrends, 64(2), 302–309. https://doi.org/10.1007/s11528-019- 00457-4; Isaev, E., Korovkina, N., & Tabakova, M. (2018). Evaluation of the readiness of a company’s IT department for digital business transformation. Business Informatics, 2018(2), 55–64. https://doi.org/10.17323/1998-0663.2018.2.55.64; Ishfaq, R., Davis-Sramek, E., & Gibson, B. (2021). Digital supply chains in omnichannel retail: A conceptual framework. Journal of Business Logistics. https://doi.org/10.1111/jbl.12277; Ismagilova, L. A., Gileva, T. A., Galimova, M. P., Sitnikova, L. V., & Gilev, G. A. (2019). The digital transformation trajectory of industrial enterprises. Proceedings of the 33rd International Business Information Management Association Conference, IBIMA 2019: Education Excellence and Innovation Management through Vision 2020, 2033–2045.; Jonathan, G. M., Rusu, L., & Van Grembergen, W. (2021). Business-IT Alignment and Digital Transformation: Setting A Research Agenda. In 29th International Conference on Information Systems Development. Association for Information Systems (AIS).; Jonathan, Gideon Mekonnen, Yalew, S. D., Gebremeskel, B. K., Rusu, L., & Perjons, E. (2023). IT Alignment: A Path Towards Digital Transformation Success. Procedia Computer Science, 219, 471–478. https://doi.org/10.1016/j.procs.2023.01.314; Kääriäinen, J., Pussinen, P., Saari, L., Kuusisto, O., Saarela, M., & Hänninen, K. (2021). Applying the positioning phase of the digital transformation model in practice for SMEs: toward systematic development of digitalization. International Journal of Information Systems and Project Management, 8(4), 24–43. https://doi.org/10.12821/ijispm080402; Kamalaldin, A., Linde, L., Sjödin, D., & Parida, V. (2020). Transforming provider-customer relationships in digital servitization: A relational view on digitalization. Industrial Marketing Management, 89, 306–325. https://doi.org/10.1016/j.indmarman.2020.02.004; Kane, G. C., Palmer, D., Nguyen Phillips, A., Kiron, D., & Buckley, N. (2016). Aligning the Organization for Its Digital Future. MIT Sloan Management Review and Deloitte University Press, (58180), 1–27. https://www2.deloitte.com/content/dam/insights/us/articles/mit-smrdeloitte-digital-transformation-strategy/2016_MIT_DeloitteAligningDigitalFuture.pdf; Kane, M., Crooks, T., & Cohen, A. (1999). Validating measures of performance. Educ. Meas.: Issues Pract.; Kane, M. T. (2006). Validation. Educ. Meas.; Karagiannaki, A., Vergados, G., & Fouskas, K. (2017). The impact of digital transformation in the financial services industry: Insights from an open innovation initiative in fintech in Greece. In Mediterranean Conference on Information Systems (MCIS). Association For Information Systems.; Khan, S. (2017). Leadership in the Digital Age – a study on the effects of digitalization on top management leadership (PDF) (Thesis). Stockholm Business School.; Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering – A systematic literature review. Information and Software Technology, 51(1), 7–15. https://doi.org/10.1016/j.infsof.2008.09.009; KPMG. (2016). Digital auf der Höhe der Zeit? KPMG. https://assets.kpmg/content/dam/kpmg/pdf/2016/04/digital-readiness-assessment-03-16.PDF; Lee, M., Yun, J., Pyka, A., Won, D., Kodama, F., Schiuma, G., Park, H., Jeon, J., Park, K., Jung, K., Yan, M.-R., Lee, S., & Zhao, X. (2018). How to Respond to the Fourth Industrial Revolution, or the Second Information Technology Revolution? Dynamic New Combinations between Technology, Market, and Society through Open Innovation. Journal of Open Innovation: Technology, Market, and Complexity, 4(3), 21. https://doi.org/10.3390/joitmc4030021; Lenka, S., Parida, V., & Wincent, J. (2017). Digitalization Capabilities as Enablers of Value CoCreation in Servitizing Firms. Psychology & Marketing, 34(1), 92–100. https://doi.org/10.1002/mar.20975; Leonardus, W., Wasono, M., Alamsjah, F., Elidjen, & Sasmoko. (2018). Digital transformation in the age of industry 4.0: Acceleration of transformational performance through business model innovation and co-creation strategy in indonesian ict firms %7C Transformación digital en la era de la industria 4.0: aceleración del rend. Opcion, 34(86), 2145–2159.; Lerch, C., & Gotsch, M. (2015). Digitalized Product-Service Systems in Manufacturing Firms: A Case Study Analysis. Research-Technology Management, 58(5), 45–52. https://doi.org/10.5437/08956308X5805357; Leyh, C., Schäffer, T., Bley, K., & Bay, L. (2017). The Application of the Maturity Model SIMMI 4.0 in Selected Enterprises. Twenty-Third Americas Conference on Information Systems, Boston. https://tu-dresden.de/bu/wirtschaft/winf/isih/ressourcen/dateien/isih_team/pdfs_team/Leyh-etal-2017-_-The-Application-of-the-Maturity-Model-SIMMI-4-0.pdf?lang=de; Leyh, C., Schäffer, T., Bley, K., & Forstenhäusler, S. (2016). SIMMI 4.0 – A Maturity Model for Classifying the Enterprise-wide IT and Software Landscape Focusing on Industry 4.0. 1297– 1302. https://doi.org/10.15439/2016F478; Li, F. (2020). The digital transformation of business models in the creative industries: A holistic framework and emerging trends. Technovation, 92–93. https://doi.org/10.1016/j.technovation.2017.12.004; Li, Feng. (2020). The digital transformation of business models in the creative industries: A holistic framework and emerging trends. Technovation, 92–93, 102012. https://doi.org/10.1016/j.technovation.2017.12.004; Lichtblau, K., & et al. (2017). Study: Industrie 4.0 Readiness. http://www.impulsstiftung.de/%0Adocuments/3581372/4875835/Industrie+4.0+Readniness+IMPULS+Studie+O ktober+2015.%0Apdf/447a6187-9759-4f25-b186-b0f5eac69974; Lichtblau, K., Stich, V., Bertenrath, R., Blum, M., Bleider, M., Millack, A., Schmitt, K., Schmitz, E., & Schröter, M. (2015). IMPULS - Industrie 4.0-Readiness. Impuls-Stiftung Des VDMA, AachenKöln. https://www.vdma.org/viewer/-/v2article/render/1084566; Liere-Netheler, K., Packmohr, S., & Vogelsang, K. (2018). Drivers of Digital Transformation in Manufacturing. https://doi.org/10.24251/HICSS.2018.493; Lorenzo, O. (2016). Cultura Digital: Construyendo nuevos comportamientos y habitos en la organización para maximizar el potencial de la tecnología. Boletin de Estudios Económicos, 71(217), 71–83. https://www.researchgate.net/publication/301297558_CULTURA_DIGITAL_CONSTRUYEND O_NUEVOS_COMPORTAMIENTOS_Y_HABITOS_EN_LA_ORGANIZACION_PARA_MAXI MIZAR_EL_POTENCIAL_DE_LA_TECNOLOGIA_DIGITAL_CULTURE_BUILDING_NEW_O RGANIZATIONAL_BEHAVIORS_AND_HABITS_TO_MAXIMI; Lorenzo Ochoa, O. (2016). Modelos de madurez digital: ¿En qué consisten y qué podemos aprender de ellos? Boletín de Estudios Económicos, 72(219), 573–590. file:///C:/Users/Monica Pelegrina/Downloads/BEEMadurezDigitalOLorenzo.pdf; Lundvall, B.-Å. (2017). Is there a technological fix for the current global stagnation? Research Policy, 46(3), 544–549. https://doi.org/10.1016/j.respol.2016.06.011; Machekhina, O. N. (2017). Digitalization of education as a trend of its modernization and reforming. https://www.semanticscholar.org/paper/Digitalization-of-education-as-a-trend-of-its-andMachekhina/3c78b5205e2d1b386d79de6b40af9ceb1628fb02; Maedche, A., Vom Brocke, J., & Hevner, A. (2017). Designing the Digital Transformation: 12th International Conference, DESRIST 2017.; Mahraz, M.-I., Benabbou, L., & Berrado, A. (2019). A systematic literature review of digital transformation. Proceedings of the International Conference on Industrial Engineering and Operations Management, 917–931.; Maltaverne, B. (2017). Digital transformation of Procurement: a good abuse of language? http://www.thedigitaltransformationpeople.com/; Manochehri, N. N., Al-Esmail, R., & Ashrafi, R. (2012). Examining the impact of information and communication technologies (ICT) on enterprise practices: a preliminary perspective from Qatar. The Electronic Journal on Information Systems in Developing Countries (EJISDC), 51(3), 1–16.; Manotti, J., Sanasi, S., Cavallo, A., Ghezzi, A., & Rangone, A. (2020). Digital innovation: A bibliometric review and research agenda. Proceedings of the European Conference on Innovation and Entrepreneurship, ECIE, 2020-Septe, 369–375. https://doi.org/10.34190/EIE.20.116; Marjanovic, U., Rakic, S., & Lalic, B. (2019). Digital Servitization: The Next “Big Thing” in Manufacturing Industries. In IFIP Advances in Information and Communication Technology (Vol. 566, pp. 510–517). https://doi.org/10.1007/978-3-030-30000-5_63; Martín-Peña, M.-L., Sánchez-López, J.-M., & Díaz-Garrido, E. (2019). Servitization and digitalization in manufacturing: the influence on firm performance. Journal of Business & Industrial Marketing, 35(3), 564–574. https://doi.org/10.1108/JBIM-12-2018-0400; Matt, C., Hess, T., & Benlian, A. (2015). Digital Transformation Strategies. Business & Information Systems Engineering, 57(5), 339–343. https://doi.org/10.1007/s12599-015-0401-5; Maxwell, L., & McCain, T. A. (1997). Gateway or gatekeeper: The implications of copyright and digitalization on education. Communication Education, 46(3), 141–157. https://doi.org/10.1080/03634529709379087; Maydanova, S., & Ilin, I. (2019). Strategic approach to global company digital transformation. Proceedings of the 33rd International Business Information Management Association Conference, IBIMA 2019: Education Excellence and Innovation Management through Vision 2020, 8818–8833.; Mihardjo, L. W. W., Sasmoko, S., Alamsjah, F., & Elidjen, E. (2019). Digital leadership role in developing business model innovation and customer experience orientation in industry 4.0. Management Science Letters, 9(11), 1749–1762. https://doi.org/10.5267/j.msl.2019.6.015; Mihova, T., & Chukalov, K. (2019). Digital business models in industrial enterprises. IOP Conference Series: Materials Science and Engineering, 618(1). https://doi.org/10.1088/1757- 899X/618/1/012074; MinTIC. (2019a). G.GEN.03 Guía general de un proceso de Arquitectura Empresarial. In Viceministerio de Economía Digital, Dirección de Gobierno Digital. Versión 2.2, Octubre 2019. Ministerio de Tecnologías de la Información y las Comunicaciones (MinTIC). https://mintic.gov.co/arquitecturati/630/articles-9435_Guia_Proceso.pdf; MinTIC. (2019b). MAE.G.GEN.01 – Documento Maestro del Modelo de Arquitectura Empresarial. In Viceministerio de Economía Digital, Dirección de Gobierno Digital. Versión 1, Octubre 2019. Ministerio de Tecnologías de la Información y las Comunicaciones (MinTIC). https://www.mintic.gov.co/arquitecturati/630/articles-144764_recurso_pdf.pdf; MinTIC. (2019c). Marco de Referencia de Arquitectura v. 2.0. Arquitectura TI Colombia, Ministerio de Tecnologías de La Información y Las Comunicaciones (MinTIC). https://www.mintic.gov.co/arquitecturati/630/w3-propertyvalue-8118.html; MinTIC. (2019d). MGGTI.G.GEN.01 – Documento Maestro del Modelo de Gestión y Gobierno de TI. In Viceministerio de Economía Digital, Dirección de Gobierno Digital. Versión 1, Octubre 2019. Ministerio de Tecnologías de la Información y las Comunicaciones (MinTIC). https://www.mintic.gov.co/arquitecturati/630/articles-144767_recurso_pdf.pdf; MinTIC. (2019e). MGPTI.G.GEN.01 – Documento Maestro del Modelo de Gestión de Proyectos TI. In Viceministerio de Economía Digital, Dirección de Gobierno Digital. Versión 1, Octubre 2019. https://www.mintic.gov.co/arquitecturati/630/articles-144766_recurso_pdf.pdf; MinTIC. (2020). Marco de la Transformación Digital para el Estado Colombiano. In Viceministerio de Economía Digital, Dirección de Gobierno Digital. Versión 1, Julio 2020. Ministerio de Tecnologías de la Información y las Comunicaciones (MinTIC). https://mintic.gov.co/portal/715/articles-149186_recurso_1.pdf; MinTIC, M. de T. de la I. y las C. (2018). Manual de Gobierno Digital. Ministerio de Tecnologías de la Información y las Comunicaciones (MinTIC). https://gobiernodigital.mintic.gov.co/692/channels-594_manual_gd.pdf; MinTIC, M. de T. de la I. y las C. (2022). MinTIC expide el Decreto 1263 de 2022 para definir los lineamientos y estándares aplicables a la transformación digital pública. Transformación Digital. https://www.mintic.gov.co/portal/inicio/Sala-de-prensa/Noticias/238232:MinTICexpide-el-Decreto-1263-de-2022-para-definir-los-lineamientos-y-estandares-aplicables-a-latransformacion-digital-publica; Morakanyane, R., Grace, A., & O’Reilly, P. (2017). Conceptualizing Digital Transformation in Business Organizations: A Systematic Review of Literature. Digital Transformation – From Connecting Things to Transforming Our Lives, 427–443. https://doi.org/10.18690/978-961- 286-043-1.30; Morley, J., Widdicks, K., & Hazas, M. (2018). Digitalisation, energy and data demand: The impact of Internet traffic on overall and peak electricity consumption. Energy Research & Social Science, 38, 128–137. https://doi.org/10.1016/j.erss.2018.01.018; Motta, J., Moreno, H., & Ascúa, R. (2019). Industria 4.0 en miPYMES manufactureras de la Argentina, Documentos de Proyectos (LC/TS.2019/93), Santiago. Comisión Económica Para América Latina y El Caribe (CEPAL).; Mullins, J., & Komisar, R. (2011). MEASURING UP: DASHBOARDING FOR INNOVATORS. Business Strategy Review, 22(1), 7–16. https://doi.org/10.1111/j.1467-8616.2011.00723.x; Nadler, D. A., & Tushman, M. L. (1980). A model for diagnosing organizational behavior. Organizational Dynamics, 9(2), 35–51. https://doi.org/10.1016/0090-2616(80)90039-X; Nambisan, S., Wright, M., & Feldman, M. (2019). The digital transformation of innovation and entrepreneurship: Progress, challenges and key themes. Research Policy, 48(8), 103773. https://doi.org/10.1016/j.respol.2019.03.018; Nasiri, M., Saunila, M., Ukko, J., Rantala, T., & Rantanen, H. (2020). Shaping Digital Innovation Via Digital-related Capabilities. Information Systems Frontiers. https://doi.org/10.1007/s10796- 020-10089-2; Ndou, A. T., Madonsela, N. S., & Twala, B. (2020). The era of digital technology: Analysis of factors contributing to economic growth and sustainability. Proceedings of the International Conference on Industrial Engineering and Operations Management, 59, 1109–1123.; Nerima, M., & Ralyté, J. (2021). Towards a Digital Maturity Balance Model for Public Organizations. In Lecture Notes in Business Information Processing: Vol. 415 LNBIP. https://doi.org/10.1007/978-3-030-75018-3_20; Newman, M. (2017). Digital Maturity Model (DMM) A blueprint for digital transformation. TM Forum. https://www.tmforum.org/wp-content/uploads/2017/05/DMM-WP-2017-Web.pdf; Núñez de Schilling, E. (2011). Gestión tecnológica en la empresa: definición de sus objetivos fundamentales. Revista de Ciencias Sociales (RCS), 17(1), 156–166.; Open Roads. (2017). Introduction to Open Digital Maturity Model. https://de.scribd.com/document/362559576/170810-Introduction-to-Open-Digital-MaturityModel-for-release-V2R9-pdf#download; Pan, W., Xie, T., Wang, Z., & Ma, L. (2022). Digital economy: An innovation driver for total factor productivity. Journal of Business Research, 139, 303–311. https://doi.org/10.1016/j.jbusres.2021.09.061; Pappas, I. O., Mikalef, P., Giannakos, M. N., Krogstie, J., & Lekakos, G. (2018). Big data and business analytics ecosystems: Paving the way towards digital transformation and sustainable societies. Information Systems and E-Business Management, 16(3), 479–491.; Parida, V., Sjödin, D. R., Lenka, S., & Wincent, J. (2015). Developing Global Service Innovation Capabilities: How Global Manufacturers Address the Challenges of Market Heterogeneity. Research-Technology Management, 58(5), 35–44. https://doi.org/10.5437/08956308X5805360; Paritala, P. K., Manchikatla, S., & Yarlagadda, P. K. D. V. (2017). Digital Manufacturing- Applications Past, Current, and Future Trends. Procedia Engineering, 174, 982–991. https://doi.org/10.1016/j.proeng.2017.01.250; Parviainen, P., Tihinen, M., Kääriäinen, J., & Teppola, S. (2017). Tackling the digitalization challenge: How to benefit from digitalization in practice. International Journal of Information Systems and Project Management, 5, 63–77. https://doi.org/http://dx.doi.org/10.12821/ijispm050104; Peng, Y., & Tao, C. (2022). Can digital transformation promote enterprise performance? —From the perspective of public policy and innovation. Journal of Innovation & Knowledge, 7(3), 100198. https://doi.org/10.1016/j.jik.2022.100198; Perez, C. (2010). Technological revolutions and techno-economic paradigms. Cambridge Journal of Economics, 34(1), 185–202. https://doi.org/10.1093/cje/bep051; Perez, Carlota. (2013). Unleashing a golden age after the financial collapse: Drawing lessons from history. Environmental Innovation and Societal Transitions, 6, 9–23. https://doi.org/10.1016/j.eist.2012.12.004; Peter, M. K. (2017). KMU-Transformation. Als KMU die Digitale Transformation erfolgreich umsetzen. Forschungsresultate und Praxisleitfaden. FHNW Fachhochschule Nordwestschweiz Hochschule Für Wirtschaft. https://kmu-transformation.ch/digitale-ausgabe/; Peyman, A., Faraby, N., Rossmann, A., Steimel, B., & Wichmann, K. (2014). Digital Transformation Report - eine empirische Studie. Köln. Neuland GmbH & Co. KG. https://www.wiwo.de/downloads/10773004/1/DTA_Report_neu.pdf; Piccinini, E., Gregory, R. W., & Kolbe, L. M. (2015). Changes in the Producer-Consumer Relationship - Towards Digital Transformation. Wirtschaftsinformatik Proceedings 2015, 109. https://aisel.aisnet.org/wi2015/109; Porter, M. E. (2002). Ventaja Competitiva, creación y sostenimiento de un desempeño superior (2da ed.). Compañía Editorial Continental (CECSA).; Proença, D., & Borbinha, J. (2016). Maturity Models for Information Systems - A State of the Art. Procedia Computer Science, 100, 1042–1049. https://doi.org/10.1016/j.procs.2016.09.279; PwC Colombia, & CINTEL. (2021). Digital Way Colombia 2021: Análisis de la transformación digital de las empresas Colombianas ganadoras del Premio de Transformación Digital. Consulting PwC Colombia. https://www.pwc.com/co/es/advisory/Tecnologia/digital-way/files/digital-waycolombia-2021-pwc-cintel.pdf; Queiroz, M. M., Fosso Wamba, S., Machado, M. C., & Telles, R. (2020). Smart production systems drivers for business process management improvement. Business Process Management Journal, 26(5), 1075–1092. https://doi.org/10.1108/BPMJ-03-2019-0134; Rachinger, M., Rauter, R., Müller, C., Vorraber, W., & Schirgi, E. (2019). Digitalization and its influence on business model innovation. Journal of Manufacturing Technology Management, 30(8), 1143–1160. https://doi.org/10.1108/JMTM-01-2018-0020; Reis, J., Amorim, M., Melão, N., Cohen, Y., & Rodrigues, M. (2020). Digitalization: A Literature Review and Research Agenda (pp. 443–456). https://doi.org/10.1007/978-3-030-43616-2_47; Remane, G., Hanelt, A., Wiesboeck, F., & Kolbe, L. (2017). Digital maturity in traditional industries– an exploratory analysis. Proceedings of the 25th European Conference on Information Systems (ECIS). https://www.researchgate.net/publication/316687803_DIGITAL_MATURITY_IN_TRADITION AL_INDUSTRIES_-_AN_EXPLORATORY_ANALYSIS; Reyes, J. F., Morocho, V., & Cedillo, P. (2022). Applying Maturity Models in Organizations for Digital Transformation: A Comparative Study. In Smart Innovation, Systems and Technologies (Vol. 252, pp. 721–731). https://doi.org/10.1007/978-981-16-4126-8_64; Riascos González, J. A. (2006). De la estructura por funciones al enfoque basado en procesos y a la visión sistémica de la organizació. In Revista Ciencias Estratégicas (Vol. 14, Issue 15).; Ringenson, T., Höjer, M., Kramers, A., & Viggedal, A. (2018). Digitalization and Environmental Aims in Municipalities. Sustainability, 10(4), 1278. https://doi.org/10.3390/su10041278; Rodríguez-Abitia, G., & Bribiesca-Correa, G. (2021). Assessing digital transformation in universities. Future Internet, 13(2), 1–17. https://doi.org/10.3390/fi13020052; Rodríguez-Abitia, Guillermo, & Bribiesca-Correa, G. (2021). Assessing Digital Transformation in Universities. Future Internet, 13(2), 52. https://doi.org/10.3390/fi13020052; Rogers, D. L. (2016). The Digital Transformation Playbook - Rethink Your Business for the Digital Age. Columbia University Press.; Romero, D., Flores, M., Herrera, M., & Resendez, H. (2019). Five Management Pillars for Digital Transformation Integrating the Lean Thinking Philosophy. 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), 1–8. https://doi.org/10.1109/ICE.2019.8792650; Rossmann, A. (2018). Digital Maturity: Conceptualization and Measurement Mode. ICIS 2018 Proceedings., 8. https://www.researchgate.net/profile/Alexander-Rossmann2/publication/345760193_Digital_Maturity_Conceptualization_and_Measurement_Model/links /5face798299bf18c5b6a0a20/Digital-Maturity-Conceptualization-and-Measurement-Model.pdf; Rozo, D., Moreira, J., & van Sinderen, M. (2020). Examining enterprise architecture for digital transformation. CEUR Workshop Proceedings, 2900.; Saleh, A., & Awny, M. M. (2020). Digital transformation strategy framework. Towards the Digital World and Industry X.0 - Proceedings of the 29th International Conference of the International Association for Management of Technology, IAMOT 2020, 1207–1219.; Salume, P. K., Barbosa, M. W., Pinto, M. R., & Sousa, P. R. (2021). Key dimensions of digital maturity: A study with retail sector companies in Brazil %7C DimensÕes-chave da maturidade digital: Um estudo com empresas do setor de varejo no Brasil. Revista de Administracao Mackenzie, 22(6). https://doi.org/10.1590/1678-6971/ERAMD210071; Salviotti, G., Gaur, A., & Pennarola, F. (2019). Strategic factors enabling digital maturity: an extended survey. The 13th Mediterranean Conference on Information Systems (MCIS), 1–13. https://aisel.aisnet.org/mcis2019/15; Sánchez-Torres, J. M., & Miles, I. (2017). The role of future-oriented technology analysis in eGovernment: a systematic review. European Journal of Futures Research, 5(1). https://doi.org/10.1007/S40309-017-0131-7; Satalkina, L., & Steiner, G. (2020). Digital entrepreneurship and its role in innovation systems: A systematic literature review as a basis for future research avenues for sustainable transitions. Sustainability (Switzerland), 12(7). https://doi.org/10.3390/su12072764; Schäfer, D., Rossmann, A., Vogel, R., & Wichmann, K. (2015). Digital Transformation Report 2015. Köln. WirtschaftsWoche & Neuland, 1–75.; Schallmo, D., Williams, C. A., & Boardman, L. (2017). Digital transformation of business models — Best practice, enablers, and roadmap. International Journal of Innovation Management, 21(08), 1740014. https://doi.org/10.1142/S136391961740014X; Schlaepfer, R., Von Radowitz, K., Koch, M., & Merkofer, P. (2017). Digital future readiness - How do companies prepare for the opportunities and challenges of digitalisation? Deloitte. https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/consumer-business/ch-cip-enswiss-transformation.pdf; Schuchmann, D., & Seufert, S. (2015). Corporate Learning in Times of Digital Transformation: A Conceptual Framework and Service Portfolio for the Learning Function in Banking Organisations. International Journal of Advanced Corporate Learning (IJAC), 8(1), 31. https://doi.org/10.3991/ijac.v8i1.4440; Schuh, G., Anderl, R., Gausemeier, J., ten Hompel, M., & Wolfgang Wahlster. (2017). Industrie 4.0 Maturity Index Managing the Digital Transformation of Companies. Acatech STUDY. https://en.acatech.de/publication/industrie-4-0-maturity-index-managing-the-digitaltransformation-of-companies/; Schumacher, A., Erol, S., & Sihn, W. (2016). A Maturity Model for Assessing Industry 4.0 Readiness and Maturity of Manufacturing Enterprises. Procedia CIRP, 52, 161–166. https://doi.org/10.1016/j.procir.2016.07.040; Schumpeter, J. A. (1939). Business cycles. A theoretical, historical and statistical analysis of the capitalistprocess. McGraw-Hill Book Co.; Schwab, K. (2017). The fourth industrial revolution. Crown Business. https://doi.org/10.5555/3137529; Schwab, Klaus. (2016). The fourth industrial revolution. https://law.unimelb.edu.au/__data/assets/pdf_file/0005/3385454/SchwabThe_Fourth_Industrial_Revolution_Klaus_S.pdf; Schwertner, K. (2017). Digital transformation of business. Trakia Journal of Science, 15(Suppl.1), 388–393. https://doi.org/10.15547/tjs.2017.s.01.065; Serinikli, N. (2020). Transformation of Business With Digital Processes. In Handbook of Research on Strategic Fit and Design in Business Ecosystems (pp. 53–75). https://doi.org/10.4018/978- 1-7998-1125-1.ch003; Sewpersadh, N. S. (2023). Disruptive business value models in the digital era. Journal of Innovation and Entrepreneurship, 12(1), 2. https://doi.org/10.1186/s13731-022-00252-1; Seyedghorban, Z., Samson, D., & Tahernejad, H. (2020). Digitalization opportunities for the procurement function: pathways to maturity. International Journal of Operations & Production Management, 40(11), 1685–1693. https://doi.org/10.1108/IJOPM-04-2020-0214; Shahi, C., & Sinha, M. (2021). Digital transformation: challenges faced by organizations and their potential solutions. International Journal of Innovation Science, 13(1), 17–33. https://doi.org/10.1108/IJIS-09-2020-0157; Sheng, X., Guo, S., & Chang, X. (2022). Managerial myopia and firm productivity: Evidence from China. Finance Research Letters, 49, 103083. https://doi.org/10.1016/j.frl.2022.103083; Sierra, Y. (2022). Transformación digital en Colombia según el MinTIC (2022). Lemontech Blog. https://blog.lemontech.com/transformacion-digital-colombia/; Soares, N., Monteiro, P., Duarte, F. J., & Machado, R. J. (2021). Extended Maturity Model for Digital Transformation. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 12952 LNCS. https://doi.org/10.1007/978-3-030-86973-1_13; Sousa-Zomer, T. T., Neely, A., & Martinez, V. (2020). Digital transforming capability and performance: a microfoundational perspective. International Journal of Operations & Production Management, 40(7/8), 1095–1128. https://doi.org/10.1108/IJOPM-06-2019-0444; Sousa, M. J., Cruz, R., Rocha, Á., & Sousa, M. (2019). Innovation Trends for Smart Factories: A Literature Review. In Advances in Intelligent Systems and Computing (Vol. 930, pp. 689–698). https://doi.org/10.1007/978-3-030-16181-1_65; Srai, J. S., & Lorentz, H. (2019). Developing design principles for the digitalisation of purchasing and supply management. Journal of Purchasing and Supply Management, 25(1), 78–98. https://doi.org/10.1016/j.pursup.2018.07.001; Steinmueller, W. E. (2017). Science fiction and innovation: A response. Research Policy, 46(3), 550– 553. https://doi.org/10.1016/j.respol.2016.07.009; Strutynska, I., Dmytrotsa, L., Kozbur, H., Melnyk, L., & Olha, H. (2020). Developing practical recommendations for increasing the level of digital business transformation index. CEUR Workshop Proceedings, 2732, 351–362.; Sturgeon, T. J. (2021). Upgrading strategies for the digital economy. Global Strategy Journal, 11(1), 34–57. https://doi.org/10.1002/gsj.1364; Taruta, A., & Gatautisa, R. (2014). ICT impact on SMEs performance. Procedia - Social and Behavioral Sciences, 110, 1218 – 1225.; Tarute, A., Duobiene, J., Kloviene, L., Vitkauskaite, E., & Varaniute, V. (2018). Identifying factors affecting digital transformation of SMEs. Proceedings of the International Conference on Electronic Business (ICEB), 2018-Decem, 373–381.; Tashakkori, A., & Teddlie, C. (2009). Integrating Qualitative and Quantitative Approaches to Research. In The SAGE Handbook of Applied Social Research Methods (pp. 283–317). SAGE Publications, Inc. https://doi.org/10.4135/9781483348858.n9; Teichert, R. (2019). Digital Transformation Maturity: A Systematic Review of Literature. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67(6), 1673–1687. https://doi.org/10.11118/actaun201967061673; Teubner, R. A. (2019). An Exploration into IT Programs and Their Management: Findings From Multiple Case Study Research. Information Systems Management, 36(1), 40–56. https://doi.org/10.1080/10580530.2018.1553648; Thordsen, T., & Bick, M. (2021). Towards a holistic digital maturity model. International Conference on Information Systems, ICIS 2020 - Making Digital Inclusive: Blending the Local and the Global.; Thordsen, Tristan, Murawski, M., & Bick, M. (2020). How to Measure Digitalization? A Critical Evaluation of Digital Maturity Models (pp. 358–369). https://doi.org/10.1007/978-3-030-44999- 5_30; Thorseng, A. A., & Grisot, M. (2017). Digitalization as institutional work: a case of designing a tool for changing diabetes care. Information Technology & People, 30(1), 227–243. https://doi.org/10.1108/ITP-07-2015-0155; Tiller, S. R. (2011). Effective Business Governance. Leadership and Management in Engineering, 11(3), 253–257. https://doi.org/10.1061/(ASCE)LM.1943-5630.0000128; Tortora, D., Chierici, R., Farina Briamonte, M., & Tiscini, R. (2021). ‘I digitize so I exist’. Searching for critical capabilities affecting firms’ digital innovation. Journal of Business Research, 129, 193–204. https://doi.org/10.1016/j.jbusres.2021.02.048; Tylecote, A. (2019). Biotechnology as a new techno-economic paradigm that will help drive the world economy and mitigate climate change. Research Policy, 48(4), 858–868. https://doi.org/10.1016/j.respol.2018.10.001; Usai, A., Fiano, F., Messeni Petruzzelli, A., Paoloni, P., Farina Briamonte, M., & Orlando, B. (2021). Unveiling the impact of the adoption of digital technologies on firms’ innovation performance. Journal of Business Research, 133, 327–336. https://doi.org/10.1016/j.jbusres.2021.04.035; Valdez-de-Leon, O. (2016). A digital maturity model for telecommunications service providers. Technology Innovation Management Review, 6(8), 19–32. https://timreview.ca/sites/default/files/article_PDF/Valdez-deLeon_TIMReview_August2016.pdf; Valenduc, G., & Vendramin, P. (2017). Digitalisation, between disruption and evolution. Transfer: European Review of Labour and Research, 23(2), 121–134. https://doi.org/10.1177/1024258917701379; van Steenbergen, M., Bos, R., Brinkkemper, S., van de Weerd, I., & Bekkers, W. (2010). The Design of Focus Area Maturity Models (pp. 317–332). https://doi.org/10.1007/978-3-642-13335-0_22; Veiga de Cabo, J., De La Fuente Díez, E., & Zimmermann Verdejo, M. (2008). Modelos de estudios en investigación aplicada: conceptos y criterios para el diseño. Medicina y Seguridad Del Trabajo, 54(210). https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0465- 546X2008000100011; Velasco Chaves, R., Ordóñez Arias, C., & Restrepo Sánchez, M. (2020). Analítica. INNpulsa Colombia. Micomercio. https://innpulsacolombia.com/sites/default/files/documentos-recursospdf/Analitica_II (1).pdf; Venkateswaran, V., & Jyotishi, A. (2017). Digital Strategy Performance Differential Between Government and Private Sector: An New Institutional Economics Perspective. 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), 1– 5. https://doi.org/10.1109/ICCIC.2017.8524567; Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Qi Dong, J., Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisciplinary reflection and research agenda. Journal of Business Research, 122, 889–901. https://doi.org/10.1016/j.jbusres.2019.09.022; Verhovnik, J., & Duh, E. S. (2021). The importance of Industry 4.0 and digital transformation for SMEs %7C Pomen Industrije 4.0 in digitalne transformacije za mikro, mala in srednje velika podjetja. Elektrotehniski Vestnik/Electrotechnical Review, 88(3), 147–149.; Voss, M., Jaspert, D., Ahlfeld, C., & Sucke, L. (2023). Developing a digital maturity model for the sales processes of industrial projects. Journal of Personal Selling & Sales Management, 1–21. https://doi.org/10.1080/08853134.2022.2151014; Wade, M., & Shan, J. (2020). Covid-19 Has Accelerated Digital Transformation, but May Have Made it Harder Not Easier. MIS Quarterly Executive, 19(3), 213–220. https://aisel.aisnet.org/misqe/vol19/iss3/7; Wade, Michael, & Shan, J. (2020). Covid-19 Has Accelerated Digital Transformation, but May Have Made it Harder Not Easier. MIS Quarterly Executive, 213–220. https://doi.org/10.17705/2msqe.00034; Wallner, J., & KPMG. (2016). New “Digital Readiness Assessment” from 2b AHEAD and KPMG. 2b AHEAD ThinkTank. https://www.zukunft.business/foresight/trendanalysen/analyse/digitalreadiness-assessment-von-2b-ahead-und-kpmg/; Wang, S., Wan, J., Li, D., & Zhang, C. (2016). Implementing Smart Factory of Industrie 4.0: An Outlook. International Journal of Distributed Sensor Networks, 12(1), 3159805. https://doi.org/10.1155/2016/3159805; Weking, J., Stöcker, M., Kowalkiewicz, M., Böhm, M., & Krcmar, H. (2020). Leveraging industry 4.0 – A business model pattern framework. International Journal of Production Economics, 225, 107588. https://doi.org/10.1016/j.ijpe.2019.107588; Wendler, R. (2014). Development of the organizational agility maturity model. Federated Conference on Computer Science and Information Systems (FedCSIS), 1197–1206.; Wendler, Roy. (2012). The maturity of maturity model research: A systematic mapping study. Information and Software Technology, 54(12), 1317–1339. https://doi.org/10.1016/j.infsof.2012.07.007; Wessel, L., Baiyere, A., Ologeanu-Taddei, R., Cha, J., & Blegind Jensen, T. (2021). Unpacking the Difference Between Digital Transformation and IT-Enabled Organizational Transformation. Journal of the Association for Information Systems, 22(1), 102–129. https://doi.org/10.17705/1jais.00655; Westerman, G. (2016). Why digital transformation needs a heart. MIT Sloan Management Review, 58(1), ISSN 15329194.; Westerman, G., Bonnet, D., & McAfee, A. (2014). The nine elements of digital transformation. MIT Sloan Management Review, 55(3), 1–6.; Westerman, G., Calméjane, C., Bonnet, D., Ferraris, P., & McAfee, A. (2011). Digital Transformation: A roadmap for billion-dollar organizations. MIT Center for Digital Business and Capgemini Consulting, 1, 1–68. https://www.capgemini.com/wpcontent/uploads/2017/07/Digital_Transformation__A_Road-Map_for_BillionDollar_Organizations.pdf; Westerman, G., Tannou, M., Bonnet, D., Ferraris, P., & McAfee, A. (2012). The digital advantage: how digital leaders outperform their peers in every industry. MITSloan Manag. Capgemini Consult, 2, 2–23. https://www.capgemini.com/wpcontent/uploads/2017/07/The_Digital_Advantage__How_Digital_Leaders_Outperform_their_ Peers_in_Every_Industry.pdf; Yamamoto, S. (2020). A Strategic Map for Digital Transformation. Procedia Computer Science, 176, 1374–1381. https://doi.org/10.1016/j.procs.2020.09.147; Yoo, Y., Lyytinen, K., Thummadi, V., & Weiss, A. (2010). Unbounded Innovation with Digitalization : A Case of Digital Camera. Proceedings of the Annual Meeting of the Academy of Management, AOM 2010.; Zhai, H., Yang, M., & Chan, K. C. (2022). Does digital transformation enhance a firm’s performance? Evidence from China. Technology in Society, 68, 101841. https://doi.org/10.1016/j.techsoc.2021.101841; https://repositorio.unal.edu.co/handle/unal/84991; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
20
Authors:
Contributors:
Subject Terms: Enfermedades de planta - Clasificación, Datos PlantVillage, Sintonización de hiperparámetros, Aprendizaje profundo, Clasificación, Enfermedades de plantas, PlantVillage, Hyperparameter tuning, Deep learning, Classification, Plant diseases
File Description: 87 páginas; application/pdf
Relation: FAO, “Conceptos Básicos %7C Programa Especial para la Seguridad Alimentaria (PESA) Centroamérica %7C Organización de las Naciones Unidas para la Alimentación y la Agricultura,” 2023. [Online]. Available: https://www.fao.org/in-action/pesa-centroamerica/temas/conceptos-basicos/es/; Minambiente, “Minambiente, interesado en ayudar a disminuir el desperdicio de alimentos,” Sep. 2022. [Online]. Available: https://www.minambiente.gov.co/ minambiente-interesado-en-ayudar-a-disminuir-el-desperdicio-de-alimentos/; Universidad de Antioquia, “Agricultura de precision,” 2020. [Online]. Available: https://www.udea.edu.co/wps/portal/udea/web/inicio/extension/ portafoliotecnologico/articulos/Agricultura_de_precision; C. Liang and T. Shah, “IoT in Agriculture: The Future of Precision Monitoring and Data-Driven Farming,” Eigenpub Review of Science and Technology, vol. 7, no. 1, pp. 85–104, Jun. 2023. [Online]. Available: https://studies.eigenpub.com/index.php/erst/ article/view/11; G. Quaglia, C. Visconte, L. S. Scimmi, M. Melchiorre, P. Cavallone, and S. Pastorelli, “Design of a UGV Powered by Solar Energy for Precision Agriculture,” Robotics 2020, Vol. 9, Page 13, vol. 9, no. 1, p. 13, Mar. 2020, publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2218-6581/9/1/13/htm; S. M. Kasem, Z. Baka, M. A. El-Metwally, A. A. Ibrahim, and M. Soliman, “Biocontrol Agents of Mycoflora to Improve the Physiological and Genetic Characteristics of Maize Plants,” Egyptian Journal of Botany, vol. 64, no. 3, pp. 298–317, Sep. 2024, publisher: National Information and Documentation Center (NIDOC), Academy of Scientific Research and Technology (ASRT). [Online]. Available: https://ejbo.journals.ekb.eg/article_377520.html; F. U. Mba, “Detection of three cereal viruses in oat samples,” 2024, publisher: Helsingin yliopisto;University of Helsinki;Helsingfors universitet. [Online]. Available: URN:NBN:fi:hulib-202408293941;https://hdl.handle.net/10138/585175; R. A. Francisco, N. V. Fassinou Hotegni, D. E. O. Sogbohossou, C. A. Houdegbe, E. G. Achigan-Dako, and A. H. Bokonon-Ganta, “Knowledge and management of insect pests affecting Gynandropsis gynandra [(L.) Briq (Cleomaceae)] among vegetable growers in Benin,” International Journal of Tropical Insect Science, Aug. 2024. [Online]. Available: https://doi.org/10.1007/s42690-024-01344-z Tésis.; A. Raza, K. Khandelwal, S. Pandit, M. Singh, S. Kumar, S. Rustagi, N. Ranjan, R. Verma, K. Priya, and R. Prasad, “Exploring the potential of metallic and metal oxide nanoparticles for reinforced disease management in agricultural systems: A comprehensive review,” Environmental Nanotechnology, Monitoring & Management, p. 100998, Aug. 2024. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S2215153224000862; K. A. Ashley, “Exploring Crop Management Impacts to Soil Health in Maine Potato Production,” Ph.D. dissertation. [Online]. Available: https://digitalcommons.library. umaine.edu/etd/3939; N. Kundu, G. Rani, and V. S. Dhaka, “A Comparative Analysis of Deep Learning Models Applied for Disease Classification in Bell Pepper,” 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), pp. 243–247, Nov. 2020, conference Name: 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC) ISBN: 9781728171326 Place: Waknaghat, India Publisher: IEEE. [Online]. Available: https://ieeexplore.ieee.org/document/9315821/; L. Tan, J. Lu, and H. Jiang, “Tomato Leaf Diseases Classification Based on Leaf Images: A Comparison between Classical Machine Learning and Deep Learning Methods,” AgriEngineering 2021, Vol. 3, Pages 542-558, vol. 3, no. 3, pp. 542–558, Jul. 2021, publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2624-7402/3/3/35/htm; J. Andrew, J. Eunice, D. E. Popescu, M. K. Chowdary, and J. Hemanth, “Deep Learning-Based Leaf Disease Detection in Crops Using Images for Agricultural Applications,” Agronomy 2022, Vol. 12, Page 2395, vol. 12, no. 10, p. 2395, Oct. 2022, publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2073-4395/12/10/2395/htm; A. Bhola, S. Verma, and P. Kumar, “A comparative analysis of deep learning models for cucumber disease classification using transfer learning,” Journal of Current Science and Technology, vol. 13, no. 1, pp. 23–35, Feb. 2023. [Online]. Available: https://ph04.tci-thaijo.org/index.php/JCST/article/view/201; E. L. da Rocha, L. Ferreira Rodrigues, and J. F. Mari, “Maize leaf disease classification using convolutional neural networks and hyperparameter optimization,” Anais do Workshop de Visão Computacional (WVC), pp. 104–110, Oct. 2020, publisher: SBC. [Online]. Available: https://sol.sbc.org.br/index.php/wvc/article/view/13489; J. A. Pandian, V. D. Kumar, O. Geman, M. Hnatiuc, M. Arif, and K. Kanchanadevi, “Plant Disease Detection Using Deep Convolutional Neural Network,” Applied Sciences 2022, Vol. 12, Page 6982, vol. 12, no. 14, p. 6982, Jul. 2022, publisher: Multidisciplinary Digital Publishing Institute ISBN: 9798350306811. [Online]. Available: https://www.mdpi.com/2076-3417/12/14/6982/htm; J. A. Pandian and G. Geetharamani, “Identification of plant leaf diseases using a ninelayer deep convolutional neural network,” Computers & Electrical Engineering, vol. 76, pp. 323–338, Jun. 2019, publisher: Pergamon.; Y. Zhao, J. Qiu, M. Xie, and H. Huang, “Equivalence between algorithmic instability and transition to replica symmetry breaking in perceptron learning systems,” Physical Review Research, vol. 4, no. 2, p. 023023, Apr. 2022, arXiv:2111.13302 [cond-mat, stat]. [Online]. Available: http://arxiv.org/abs/2111.13302; B. Suteja, “Application of Neural Network in Letter Recognition Using the Perceptron Method,” Instal : Jurnal Komputer, vol. 14, no. 01, pp. 11–23, Jun. 2022, number: 01. [Online]. Available: https://journalinstal.cattleyadf.org/index.php/Instal/article/view/9; F. Schwendicke, W. Samek, and J. Krois, “Artificial Intelligence in Dentistry: Chances and Challenges,” Journal of Dental Research, vol. 99, no. 7, pp. 769–774, Jul. 2020, publisher: SAGE Publications Inc. [Online]. Available: https://doi.org/10.1177/0022034520915714; Y. P. Raykov and D. Saad, “Principled Machine Learning,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 4, pp. 1–19, Jul. 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9808310/; I. N. da Silva, D. Hernane Spatti, R. Andrade Flauzino, L. H. B. Liboni, and S. F. dos Reis Alves, “Artificial Neural Network Architectures and Training Processes,” in Artificial Neural Networks : A Practical Course, I. N. da Silva, D. Hernane Spatti, R. Andrade Flauzino, L. H. B. Liboni, and S. F. dos Reis Alves, Eds. Cham: Springer International Publishing, 2017, pp. 21–28. [Online]. Available: https://doi.org/10.1007/978-3-319-43162-8_2; Y. Sun, G. G. Yen, and M. Zhang, “Deep Neural Networks,” in Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances, Y. Sun, G. G. Yen, and M. Zhang, Eds. Cham: Springer International Publishing, 2023, pp. 9–30. [Online]. Available: https://doi.org/10.1007/978-3-031-16868-0_2; W. W. Hsieh, “Deep Learning,” in Introduction to Environmental Data Science. Cambridge University Press, Mar. 2023, pp. 494–517. [Online]. Available: https://www.cambridge.org/core/books/introduction-to-environmental-data-science/ deep-learning/E413E23B804C883A68FE006C0A2E8D1A; T. T. Teoh and Z. Rong, “Convolutional Neural Networks,” in Artificial Intelligence with Python, T. T. Teoh and Z. Rong, Eds. Singapore: Springer, 2022, pp. 261–275. [Online]. Available: https://doi.org/10.1007/978-981-16-8615-3_16; P. Purwono, A. Ma’arif, W. Rahmaniar, H. I. K. Fathurrahman, A. Z. K. Frisky, and Q. M. u. Haq, “Understanding of Convolutional Neural Network (CNN): A Review,” International Journal of Robotics and Control Systems, vol. 2, no. 4, pp. 739–748, 2022, number: 4. [Online]. Available: https://pubs2.ascee.org/index.php/IJRCS/article/view/ 888; S. Pattanayak, “Convolutional Neural Networks,” in Pro Deep Learning with TensorFlow 2.0: A Mathematical Approach to Advanced Artificial Intelligence in Python, S. Pattanayak, Ed. Berkeley, CA: Apress, 2023, pp. 199–291. [Online]. Available: https://doi.org/10.1007/978-1-4842-8931-0_3; M. M. Taye, “Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions,” Computation, vol. 11, no. 3, p. 52, Mar. 2023, number: 3 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2079-3197/11/3/52; S. Sharma, S. Sharma, and A. Athaiya, “ACTIVATION FUNCTIONS IN NEURAL NETWORKS,” International Journal of Engineering Applied Sciences and Technology, vol. 04, no. 12, pp. 310–316, May 2020. [Online]. Available: https://www.ijeast.com/ papers/310-316,Tesma412,IJEAST.pdf; K. Biswas, S. Kumar, S. Banerjee, and A. K. Pandey, “EIS - Efficient and Trainable Activation Functions for Better Accuracy and Performance,” in Artificial Neural Networks and Machine Learning – ICANN 2021, I. Farkaš, P. Masulli, S. Otte, and S. Wermter, Eds. Cham: Springer International Publishing, 2021, pp. 260–272.; S. Feng and B. Wang, “A novel design of learnable pooling algorithm,” in Third International Symposium on Computer Engineering and Intelligent Communications (ISCEIC 2022), vol. 12462. SPIE, Feb. 2023, pp. 756–762. [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12462/1246230/ A-novel-design-of-learnable-pooling-algorithm/10.1117/12.2660788.full; M. Monnet, H. Gebran, A. Matic-Flierl, F. Kiwit, B. Schachtner, A. Bentellis, and J. M. Lorenz, “Pooling techniques in hybrid quantum-classical convolutional neural networks,” May 2023, arXiv:2305.05603 [quant-ph]. [Online]. Available: http: //arxiv.org/abs/2305.05603; K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” Dec. 2015, arXiv:1512.03385 [cs] version: 1. [Online]. Available: http://arxiv.org/abs/1512.03385; T. Lee, V. P. Singh, and K. H. Cho, “Training a Neural Network,” in Deep Learning for Hydrometeorology and Environmental Science, T. Lee, V. P. Singh, and K. H. Cho, Eds. Cham: Springer International Publishing, 2021, pp. 47–62. [Online]. Available: https://doi.org/10.1007/978-3-030-64777-3_5; C. Cappi, C. Chapdelaine, L. Gardes, E. Jenn, B. Lefevre, S. Picard, and T. Soumarmon, “Dataset Definition Standard (DDS),” Jan. 2021, arXiv:2101.03020 [cs]. [Online]. Available: http://arxiv.org/abs/2101.03020; L. Yu, L. Sun, B. Du, T. Zhu, and W. Lv, “Label-Enhanced Graph Neural Network for Semi-Supervised Node Classification,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 11, pp. 11 529–11 540, Nov. 2023, conference Name: IEEE Transactions on Knowledge and Data Engineering. [Online]. Available: https://ieeexplore.ieee.org/document/9997579; H. Shaziya and R. Zaheer, “Impact of Hyperparameters on Model Development in Deep Learning,” in Proceedings of International Conference on Computational Intelligence and Data Engineering, N. Chaki, J. Pejas, N. Devarakonda, and R. M. Rao Kovvur, Eds. Singapore: Springer, 2021, pp. 57–67.; S. Bos, E. Vinogradov, and S. Pollin, “Avoiding normalization uncertainties in deep learning architectures for end-to-end communication,” Jul. 2021, publisher: Institute of Electrical and Electronics Engineers (IEEE). [Online]. Available: http: //dx.doi.org/10.36227/techrxiv.14994906.v1; I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press, 2016.; N. Raximov, J. Kuvandikov, and K. Dilmurod, “The importance of loss function in artificial intelligence,” in 2022 International Conference on Information Science and Communications Technologies (ICISCT), Sep. 2022, pp. 1–3. [Online]. Available: https://ieeexplore.ieee.org/document/10146883; N. Gowdra, R. Sinha, S. MacDonell, and W. Yan, “Maximum Categorical Cross Entropy (MCCE): A noise-robust alternative loss function to mitigate racial bias in Convolutional Neural Networks (CNNs) by reducing overfitting,” Oct. 2020. [Online]. Available: https://openreview.net/forum?id=1IBgFQbj7y; I. A. Dewi and M. A. N. E. Salawangi, “High performance of optimizers in deep learning for cloth patterns detection,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 12, no. 3, pp. 1407–1418, Sep. 2023, number: 3. [Online]. Available: https://ijai.iaescore.com/index.php/IJAI/article/view/22128; S. Ruder, “An overview of gradient descent optimization algorithms,” Jun. 2017, arXiv:1609.04747 [cs]. [Online]. Available: http://arxiv.org/abs/1609.04747; H. Robbins and S. Monro, “A Stochastic Approximation Method,” The Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, Sep. 1951, publisher: Institute of Mathematical Statistics. [Online]. Available: https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/ issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full; I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, “Chapter 10 - Deep learning,” in Data Mining (Fourth Edition), I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Eds. Morgan Kaufmann, Jan. 2017, pp. 417–466. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128042915000106; G. Hinton, N. Srivastava, and K. Swersky, “Lecture 6e-Rmsprop: Divide the Gradient by a Running Average of Its Recent Magnitude,” COURSERA: Neural Networks for Machine Learning, vol. 4, no. 2, pp. 26–31, 2012.; R. Elshamy, O. Abu-Elnasr, M. Elhoseny, and S. Elmougy, “Improving the efficiency of RMSProp optimizer by utilizing Nestrove in deep learning,” Scientific Reports, vol. 13, p. 8814, May 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC10232429/; D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Jan. 2017, arXiv:1412.6980 [cs]. [Online]. Available: http://arxiv.org/abs/1412.6980; A. H. Montazeri, S. K. Emami, M. R. Zaghiyan, and S. Eslamian, “Chapter 23 - Stochastic learning algorithms,” in Handbook of Hydroinformatics, S. Eslamian and F. Eslamian, Eds. Elsevier, Jan. 2023, pp. 385–410. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128212851000166; M. Grandini, E. Bagli, and G. Visani, “Metrics for Multi-Class Classification: an Overview,” Aug. 2020, arXiv:2008.05756 [cs, stat]. [Online]. Available: http: //arxiv.org/abs/2008.05756; D. Darwish, “Improving Techniques for Convolutional Neural Networks Performance,” European Journal of Electrical Engineering and Computer Science, vol. 8, no. 1, pp. 1–16, Jan. 2024, number: 1. [Online]. Available: https://ejece.org/index.php/ejece/article/ view/596; C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” Journal of Big Data, vol. 6, no. 1, p. 60, Jul. 2019. [Online]. Available: https://doi.org/10.1186/s40537-019-0197-0; P. Pawara, E. Okafor, L. Schomaker, and M. Wiering, “Data Augmentation for Plant Classification,” in Advanced Concepts for Intelligent Vision Systems, J. Blanc-Talon, R. Penne, W. Philips, D. Popescu, and P. Scheunders, Eds. Cham: Springer International Publishing, 2017, pp. 615–626.; A. Gilik, A. S. Ogrenci, and A. Ozmen, “Air quality prediction using CNN+LSTMbased hybrid deep learning architecture,” Environmental Science and Pollution Research, vol. 29, no. 8, pp. 11 920–11 938, Feb. 2022. [Online]. Available: https: //doi.org/10.1007/s11356-021-16227-w; M. Subramanian, K. Shanmugavadivel, and P. S. Nandhini, “On fine-tuning deep learning models using transfer learning and hyper-parameters optimization for disease identification in maize leaves,” Neural Computing and Applications, vol. 34, no. 16, pp. 13 951–13 968, Aug. 2022, publisher: Springer Science and Business Media Deutschland GmbH. [Online]. Available: https://link.springer.com/article/10. 1007/s00521-022-07246-w; F. Friedrichs and C. Igel, “Evolutionary tuning of multiple SVM parameters,” Neurocomputing, vol. 64, pp. 107–117, Mar. 2005. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0925231204005223; D. Passos and P. Mishra, “A tutorial on automatic hyperparameter tuning of deep spectral modelling for regression and classification tasks,” Chemometrics and Intelligent Laboratory Systems, vol. 223, p. 104520, Apr. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169743922000314; J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,” Journal of Machine Learning Research, vol. 13, no. 10, pp. 281–305, 2012. [Online]. Available: http://jmlr.org/papers/v13/bergstra12a.html; J. Močkus, “On bayesian methods for seeking the extremum,” in Optimization Techniques IFIP Technical Conference Novosibirsk, July 1–7, 1974, G. I. Marchuk, Ed. Berlin, Heidelberg: Springer, 1975, pp. 400–404.; L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization,” Jun. 2018, arXiv:1603.06560 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1603.06560; L. Liao, H. Li, W. Shang, and L. Ma, “An Empirical Study of the Impact of Hyperparameter Tuning and Model Optimization on the Performance Properties of Deep Neural Networks,” ACM Transactions on Software Engineering and Methodology, vol. 31, no. 3, pp. 53:1–53:40, 2022. [Online]. Available: https://doi.org/10.1145/3506695; I. Kandel and M. Castelli, “The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset,” ICT Express, vol. 6, no. 4, pp. 312–315, Dec. 2020. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S2405959519303455; Y. Bengio, “Practical Recommendations for Gradient-Based Training of Deep Architectures,” in Neural Networks: Tricks of the Trade: Second Edition, G. Montavon, G. B. Orr, and K.-R. Müller, Eds. Berlin, Heidelberg: Springer, 2012, pp. 437–478. [Online]. Available: https://doi.org/10.1007/978-3-642-35289-8_26; R. M. Schmidt, F. Schneider, and P. Hennig, “Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers,” Aug. 2021, arXiv:2007.01547 [cs, stat]. [Online]. Available: http://arxiv.org/abs/2007.01547; D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl, “On Empirical Comparisons of Optimizers for Deep Learning,” Jun. 2020, arXiv:1910.05446 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1910.05446; C. Bakkene, T. K. Svendsen, and J. A. Eriksen, “Optimization of a Convolutional Neural Network for Classification of Radar Signals,” Master’s thesis, Norwegian University of Science and Technology, Trondheim, Jun. 2021. [Online]. Available: https://hdl.handle.net/11250/2787100; N. T. Sinshaw, B. E. Ejigu, B. G. Assefa, and S. K. Mohapatra, “Amharic Handwritten & Machine Printed Character Recognition Using Deep CNN with Random Search Hyperparameter Optimization Algorithm,” May 2023. [Online]. Available: https://www.researchsquare.com; S. Roy, R. Mehera, R. K. Pal, and S. K. Bandyopadhyay, “Hyperparameter optimization for deep neural network models: a comprehensive study on methods and techniques,” Innovations in Systems and Software Engineering, pp. 1–12, Oct. 2023, publisher: Springer Science and Business Media Deutschland GmbH. [Online]. Available: https://link.springer.com/article/10.1007/s11334-023-00540-3; A. A. Chowdhury, A. Das, K. K. S. Hoque, and D. Karmaker, “A Comparative Study of Hyperparameter Optimization Techniques for Deep Learning,” pp. 509–521, 2022, publisher: Springer, Singapore ISBN: 978-981-19-0332-8. [Online]. Available: https://link.springer.com/chapter/10.1007/978-981-19-0332-8_38; A. Waheed, M. Goyal, D. Gupta, A. Khanna, A. E. Hassanien, and H. M. Pandey, “An optimized dense convolutional neural network model for disease recognition and classification in corn leaf,” Computers and Electronics in Agriculture, vol. 175, p. 105456, Aug. 2020, publisher: Elsevier.; L. Poole and D. Brown, “Investigating Popular CNN Architectures for Plant Disease Detection,” icABCD 2021 - 4th International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems, Proceedings, Aug. 2021, publisher: Institute of Electrical and Electronics Engineers Inc. ISBN: 9781728185927.; J. A. Pandian, K. Kanchanadevi, V. D. Kumar, E. Jasińska, R. Goňo, Z. Leonowicz, and M. Jasiński, “A Five Convolutional Layer Deep Convolutional Neural Network for Plant Leaf Disease Detection,” Electronics 2022, Vol. 11, Page 1266, vol. 11, no. 8, p. 1266, Apr. 2022, publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2079-9292/11/8/1266/htm; M. H. Saleem, J. Potgieter, and K. M. Arif, “A Performance-Optimized Deep Learningbased Plant Disease Detection Approach for Horticultural Crops of New Zealand,” IEEE Access, 2022, publisher: Institute of Electrical and Electronics Engineers Inc.; V. K. Vishnoi, K. Kumar, B. Kumar, S. Mohan, and A. A. Khan, “Detection of Apple Plant Diseases Using Leaf Images Through Convolutional Neural Network,” IEEE Access, vol. 11, pp. 6594–6609, 2023, publisher: Institute of Electrical and Electronics Engineers Inc.; L. Poole and D. Brown, “A multispectral and machine learning approach to early stress classification in plants,” Master’s thesis, Rhodes University, Grahamstown, Mar. 2022. [Online]. Available: https://hdl.handle.net/10962/232410; J. F. Restrepo-Arias, J. W. Branch-Bedoya, and G. Awad, “Plant Disease Detection Strategy Based on Image Texture and Bayesian Optimization with Small Neural Networks,” Agriculture 2022, Vol. 12, Page 1964, vol. 12, no. 11, p. 1964, Nov. 2022, publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2077-0472/12/11/1964/htm; D. Strigl, K. Kofler, and S. Podlipnig, “Performance and Scalability of GPU-Based Convolutional Neural Networks,” in 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing, Feb. 2010, pp. 317–324, iSSN: 2377-5750. [Online]. Available: https://ieeexplore.ieee.org/document/5452452; H. Aliady and D. Utari, “GPU Based Image Classification using Convolutional Neural Network Chicken Dishes Classification,” Jul. 2018.; D. P. Hughes and M. Salathe, “An open access repository of images on plant health to enable the development of mobile disease diagnostics,” Apr. 2016, arXiv:1511.08060 [cs]. [Online]. Available: http://arxiv.org/abs/1511.08060; Y. Yuan, L. Chen, Y. Ren, S. Wang, and Y. Li, “Impact of dataset on the study of crop disease image recognition,” International Journal of Agricultural and Biological Engineering, vol. 15, no. 5, pp. 181–186, Nov. 2022, number: 5. [Online]. Available: https://www.ijabe.org/index.php/ijabe/article/view/7005; D. C. Marcu and C. Grava, “The Importance of Data Quality in Training a Deep Convolutional Neural Network,” in 2023 17th International Conference on Engineering of Modern Electric Systems (EMES), Jun. 2023, pp. 1–4. [Online]. Available: https://ieeexplore.ieee.org/document/10171785; V. Sehwag, R. Oak, M. Chiang, and P. Mittal, “Time for a Background Check! Uncovering the impact of Background Features on Deep Neural Networks,” Jun. 2020, arXiv:2006.14077 [cs]. [Online]. Available: http://arxiv.org/abs/2006.14077; J. A. Pandian and G. Geetharamani, “Data for: Identification of Plant Leaf Diseases Using a 9-layer Deep Convolutional Neural Network,” vol. 1, Apr. 2019, publisher: Mendeley Data. [Online]. Available: https://data.mendeley.com/datasets/tywbtsjrjv/1; B. Jena, S. Saxena, G. K. Nayak, L. Saba, N. Sharma, and J. S. Suri, “Artificial intelligence-based hybrid deep learning models for image classification: The first narrative review,” Computers in Biology and Medicine, vol. 137, p. 104803, Oct. 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0010482521005977; A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The Marginal Value of Adaptive Gradient Methods in Machine Learning,” May 2018, arXiv:1705.08292. [Online]. Available: http://arxiv.org/abs/1705.08292; T. Wu, P. Zeng, and C. Song, “An optimization Strategy for Deep Neural Networks Training,” in 2022 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML), Oct. 2022, pp. 596–603. [Online]. Available: https://ieeexplore.ieee.org/document/10009665; P. M. Radiuk, “Impact of Training Set Batch Size on the Performance of Convolutional Neural Networks for Diverse Datasets,” Information Technology and Management Science, vol. 20, no. 1, pp. 20–24, 2017. [Online]. Available: https://itms-journals.rtu.lv/article/view/itms-2017-0003; F. Mohameth, C. Bingcai, and K. A. Sada, “Plant Disease Detection with Deep Learning and Feature Extraction Using Plant Village,” Journal of Computer and Communications, vol. 8, no. 6, pp. 10–22, Jun. 2020, number: 6 Publisher: Scientific Research Publishing. [Online]. Available: https://www.scirp.org/journal/paperinformation.aspx? paperid=100958; A. Sagar and D. Jacob, “On Using Transfer Learning For Plant Disease Detection,” May 2021, pages: 2020.05.22.110957 Section: New Results. [Online]. Available: https://www.biorxiv.org/content/10.1101/2020.05.22.110957v2; M. Prabhakar, R. Purushothaman, and D. P. Awasthi, “Deep learning based assessment of disease severity for early blight in tomato crop,” Multimedia Tools and Applications, vol. 79, no. 39, pp. 28 773–28 784, Oct. 2020. [Online]. Available: https://doi.org/10.1007/s11042-020-09461-w; N. Ganatra and A. Patel, “Performance Analysis Of Fine-Tuned Convolutional Neural Network Models For Plant Disease Classification,” pp. 293–305, Jan. 2020.; S. M. Hassan, A. K. Maji, M. Jasiński, Z. Leonowicz, and E. Jasińska, “Identification of Plant-Leaf Diseases Using CNN and Transfer-Learning Approach,” Electronics, vol. 10, no. 12, p. 1388, Jan. 2021, number: 12 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2079-9292/10/12/1388; M. M. F. Alim, Subiyanto, and Sartini, “Identification of diseases in tomato leaves using convolutional neural network and transfer learning method,” Journal of Physics: Conference Series, vol. 1918, no. 4, p. 042137, Jun. 2021, publisher: IOP Publishing. [Online]. Available: https://dx.doi.org/10.1088/1742-6596/1918/4/042137; S. K. Sahu, M. Pandey, and K. Geete, “Classification of soybean leaf disease from environment effect using fine tuning transfer learning,” Annals of the Romanian Society for Cell Biology, pp. 2188–2201, 2021. [Online]. Available: http://annalsofrscb.ro/index.php/journal/article/view/1660; P. Thakur, A. Chug, and A. P. Singh, “Plant Disease detection of Bell Pepper Plant Using Transfer Learning over different Models,” in 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN), Aug. 2021, pp. 384–389, iSSN: 2688-769X.; A. Morellos, X. E. Pantazi, C. Paraskevas, and D. Moshou, “Comparison of Deep Neural Networks in Detecting Field Grapevine Diseases Using Transfer Learning,” Remote Sensing, vol. 14, no. 18, p. 4648, Jan. 2022, number: 18 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2072-4292/14/18/4648; R. M. Math and N. V. Dharwadkar, “Early detection and identification of grape diseases using convolutional neural networks,” Journal of Plant Diseases and Protection, vol. 129, no. 3, pp. 521–532, Jun. 2022. [Online]. Available: https://doi.org/10.1007/s41348-022-00589-5; H. Tarek, H. Aly, S. Eisa, and M. Abul-Soud, “Optimized Deep Learning Algorithms for Tomato Leaf Disease Detection with Hardware Deployment,” Electronics, vol. 11, no. 1, p. 140, Jan. 2022, number: 1 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2079-9292/11/1/140; V. Singh, A. Chug, and A. P. Singh, “Classification of Beans Leaf Diseases using Fine Tuned CNN Model,” Procedia Computer Science, vol. 218, pp. 348– 356, Jan. 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S1877050923000170; G. Fenu and F. M. Malloci, “Classification of Pear Leaf Diseases Based on Ensemble Convolutional Neural Networks,” AgriEngineering, vol. 5, no. 1, pp. 141–152, Mar. 2023, number: 1 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2624-7402/5/1/9; A. Saeed, A. A. Abdel-Aziz, A. Mossad, M. A. Abdelhamid, A. Y. Alkhaled, and M. Mayhoub, “Smart Detection of Tomato Leaf Diseases Using Transfer Learning-Based Convolutional Neural Networks,” Agriculture, vol. 13, no. 1, p. 139, Jan. 2023, number: 1 Publisher: Multidisciplinary Digital Publishing Institute. [Online]. Available: https://www.mdpi.com/2077-0472/13/1/139; P. K. Das and S. S. Rupa, “ResNet for Leaf-based Disease Classification in Strawberry Plant,” International Journal of Applied Methods in Electronics and Computers, vol. 11, no. 3, pp. 151–157, Sep. 2023, number: 3. [Online]. Available: https://ijamec.org/index.php/ijamec/article/view/381; https://hdl.handle.net/20.500.12313/4617
Availability: https://hdl.handle.net/20.500.12313/4617
Nájsť tento článok vo Web of Science