Výsledky vyhľadávania - acm: c.: computer systems organizacion/c.0: general/c.0.0: hardware/software interfaces
-
1
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: Systems engineer, Technological innovations, User experience, Technology ownership, Zones rural, Mobile devices, Small farmers, Rural population, Research technology, Farmers, Cell phone, Mobile communication systems, Ingeniería de sistemas, Innovaciones tecnológicas, Población rural, Tecnología investigaciones, Campesinos, Teléfono celular, Sistemas móviles de comunicación, Experiencia de usuario, Apropiación tecnológica, Zonas rurales, IoT, TIC, Dispositivos móviles, Pequeños agricultores, Santander
Geografické téma: Bucaramanga (Santander, Colombia), UNAB Campus Bucaramanga
Popis súboru: application/pdf
Relation: Information Systems Foundations: The Role of Design Science - ANU. (n.d.). Retrieved October 30, 2019, from http://pressfiles. anu.edu.au/downloads/press/p121911/html/ch06.xhtml?referer=261&page=10; A Global Framework of Reference on Digital Literacy Skills for Indicator 4.4.2. (2018). http://www.uis.unesco.org; Adolph, M. (2009). Mobile Applications. http://www.economist.com/businessfinance/displayStory.cfm?story_id=13832338; Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T; Albirini, A. (2006). Cultural Perceptions: The Missing Element in the Implementation of ICT in Developing Countries. International Journal of Education and Development Using ICT.; Alicia Casanueva López, Constantino Pérez Vega, J. M. Z. S. de la M. (2007). Sistemas de telecomunicación; Alimentación, agricultura y desarrollo rural : temas actuales y emergentes para el análisis económico y la investigación de políticas (CUREMIS II). (2004). FAO.; Amazon. (n.d.). iPhone Size; Arango, C., Huertas, M., Sánchez, C., Arango Lozano, C. A., Sánchez, V., Camelo, C., & Sojo, J. (219 C.E.). 1218 Centennials: Generación sin etiquetas (U. Jorge T; ARCILA BARBOSA, V. N. (2015). INFLUENCIA DE LOS GREMIOS EMPRESARIALES EN COLOMBIA; ÁVILA CRUZ, H. C., & CORTÉS DÍAZ, J. C. (2016). GUÍA PARA LA REALIZACIÓN DE APLICACIONES MÓVILES EN LOS SISTEMAS OPERATIVOS ANDROID E iOS. Universidad Distrital - Francisco José Caldas; Banco, E., & Palmer, N. (n.d.). Las TIC y la agricultura en el contexto del “crecimiento verde” Ndubuisi Ekekwe, Institución Africana de Tecnología; Bandura, A. (2001). Social Cognitive Theory: An Agentic Perspective. Annual Review of Psychology, 52(1), 1–26. https://doi.org/10.1146/annurev.psych.52.1.1; Barrio, A. M. (2018). INTERNET DE LAS COSAS.; Baz Alonso, A., Ferreira Artime, I., Álvarez Rodríguez, M., & García Baniello, R. (n.d.). Dispositivos móviles; Berdegué, J. A., & Fuentealba, R. (2011). Latin America: The State of Smallholders in Agriculture. In Conference on New Directions for Smallholder Agriculture. https://doi.org/10.1093/acprof; Berger, B. (2018). HEDONIC INFORMATION SYSTEMS : WHAT WE KNOW AND WHA T WE DON ’ T KNOW. Twenty-Sixth European Conference on Information Systems (ECIS2018).; Boletín técnico. (n.d.).; Bongiovanni, R., Chartuni Mantovani, E., Best, S., & Roel, Á. (2006). AGRICULTURA DE PRECISIÓN: Integrando conocimientos para una agricultura moderna y susten; Bongiwe Nyambi, P. (2014). EXPLORING USER EXPERIENCE (UX) FACTORS FOR ICTD SERVICES [University of Fort Hare]. http://libdspace.ufh.ac.za/bitstream/handle/20.500.11837/270/M Sc %28Computer Sc%29 Dissertation NYAMBI, PB - 2015.pdf?sequence=1&isAllowed=y; Bourdieu, P. (1977). Outline of a Theory of Practice. Cambridge University Press. https://doi.org/10.1017/CBO9780511812507; Bourdieu, P. (1981). SOCIOLOGÍA Y CULTURA. In Revue Française de Sociologie (Vol. 22, Issue 4). https://doi.org/10.2307/332081; Bourdieu, P. (1999). Meditaciones pascalianas. Anagrama.; Cheney, P. H., Mann, R. I., & Amoroso, D. L. (1986). Organizational Factors Affecting the Success of End-User Computing. Journal of Management Information Systems, 3(1), 65–80. https://doi.org/10.1080/07421222.1986.11517755; Clark, J. (2016). What is the Internet of Things, and how does it work? https://www.ibm.com/blogs/internet-of-things/what-is-the-iot/; Collazos, C. A., Granollers, T., Gil, R., Guerrero, L. A., & Ochoa, S. F. (2010). Multicultural aspects in HCI-curricula. Procedia - Social and Behavioral Sciences, 2(2), 1584–1587. https://doi.org/10.1016/j.sbspro.2010.03.240; Compeau, D. R., & Higgins, C. A. (1995). Computer Self-Efficacy: Development of a Measure and Initial Test. MIS Quarterly, 19(2), 189. https://doi.org/10.2307/249; Congreso de Colombia. (2000). LEY 599 DE 2000. http://www.secretariasenado.gov.co/senado/basedoc/ley_0599_2000.; Congreso de Colombia. (2009a). LEY 1273 DE 2009.; Congreso de Colombia. (2009b). LEY 1286 DE 2009. http://www.suinjuriscol. gov.co/viewDocument.asp?ruta=Leyes/1676840; Congreso de la República de Colombia. (2008). LEY ESTATUTARIA 1266 DE 2008. http://www.secretariasenado.gov.co/senado/basedoc/ley_1266_2008.html; Conner, M. (2001). Health Behaviors. In International Encyclopedia of the Social & Behavioral Sciences (pp. 6506–6512). Elsevier. https://doi.org/10.1016/B0-08- 043076-7/03871-7; Constaín, S. (2019). Sentido de urgencia: Cerrar la brecha digital - Ministerio de Tecnologías de la Información y las Comunicaciones. https://www.mintic.gov.co/portal/inicio/Sala-de-Prensa/Columnas-Ministra- TIC/82174:Sentido-de-urgencia-Cerrar-la-brecha-dig; Corpas, I. (2010). Experiencia religiosa y lenguaje religioso: aproximación teol; Corporación Colombia Digital Medición Brecha Digital Regional Contrato MINTIC 508 de 2014. (n.d.); Cuello, J., & Vittone, J. (2013). Diseño visual. In Diseñando apps para móvil; DANE- Departamento Administrativo Nacional de Estadística. (2018). Serie de proyecciones de población 2018-2023 con desagregación nacional, departamental y área (cabecera – centros poblados y rural disperso), por grupos quinquenales de edad y sexo; DANE. (2016). 3er Censo Nacional Agropecuario. In Ministerio de agricultura (Vol. 2).; Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982–1003. https://doi.org/10.1287/mnsc.35.8.982; Departamento Nacional de Planeación. (n.d.). DOCUMENTO CONPES 3670.; Departamento Nacional de Planeación. (2013). DOCUMENTO CONPES SOCIAL; Departamento Nacional de Planeación. (2014). DOCUMENTO CONPES 173 DNP DE 2014; Departamento Nacional de Planeación. (2015). MISIÓN PARA LA TRANSFORMACIÓN DEL CAMPO; Departamento Nacional de Planeación. (2018). EVALUACIÓN DE LOS PROGRAMAS DEL PLAN VIVE DIGITAL PARA LA GENTE FINANCIADOS CON RECURSOS DEL FONDO DE TECNOLOGÍAS DE LA INFORMACIÓN Y LAS COMUNICACIONES (FONTIC); Derboven, J., Geerts, D., & De Grooff, D. (2016). The tactics of everyday practice: A semiotic approach to appropriation. Interaction Design and Architecture(S), 29(1), 99– 120.; Dey, B., & Binsardi, B. (2016). Appropriation of Mobile Telephony at the Bottom of the Pyramid. In ICTs in Developing Countries (pp. 97–110). Palgrave Macmillan UK. https://doi.org/10.1057/9781137469502_6; Dey, B., Newman, D., & Prendergast, R. (2011). Analysing appropriation and usability in social and occupational lives: An investigation of Bangladeshi farmers’ use of mobile telephony. Information Technology and People, 24(1), 46–63. https://doi.org/10.1108/09593841111109413; Díaz-Sarmiento, C., López-Lambraño, M., & Roncallo-Lafont, L. (2017). Entendiendo las generaciones: una revisión del concepto, clasificación y características distintivas de los Baby Boomers, X Y Millennials. Clío América, 11(22). https://doi.org/10.21676/23897848.2440; Dirección de Apropiación de TIC - Ministerio de Tecnologías de la Información y las Comunicaciones. (n.d.). Retrieved November 1, 2019, from https://mintic.gov.co/portal/604/w3-propertyvalue-547.html?_noredirect=1; Duran, J. B., Llull, U. R., Cinthya, A., & Sandoval, U. (2011). El uso de las TICs y la Brecha Digital entre adultos y adolescentes . Primer avance de resultados. January.; Ekwonwune, E. N., Egwuonwu, D. U., Elebri, L. C., & Uka, K. K. (2017). ICT as an Instrument of Enhanced Banking System. Journal of; ESCOLA D’ ART I SUPERIOR DE DISSENY DE VIC. (n.d.). PSICOLOGIA DEL COLOR.; Espinosa C, M. A., Romero Riaño, E., Flórez G, L. Y., & Guerrero D, C. D. (2019). DANDELION: Propuesta metodológica para recopilación y análisis de información de artículos científicos. Un enfoque desde la bibliometría y la revisión sistemática de la literatura; Espinosa, R. (2018). BENCHMARKING: qué es, tipos, etapas y ejemplos.; FAO. (2013). Agricultores pequeños y familiares. Vías de La Sustentabilidad, 1–4. http://www.fao.org/3/ar588s/ar588s.pdf; Finck, N. (2011). UX Disciplines. https://es.slideshare.net/nickf/the-ux-disciplines/17; Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research; Fulton, C., & McGuinness, C. (2016). Your Learning in a Digital World. In Digital Detectives (pp. 9–17). Elsevier. https://doi.org/10.1016/b978-0-08-100124-0.00002-7; Gannon, M., & Pillai, R. (2010). Understanding Global Cultures: Metaphorical Journeys Through 29 Nations, Clusters of Nations, Continents, and Diversity. SAGE Publications, Inc. https://doi.org/10.4135/9781452224886; Ghezzi, A., Rangone, A., Balocco, R., & Renga, F. (2010). A Strategy-Technology- Regulation-User-Context model for Mobile Location-Based Services market activation analysis. ICMB and GMR 2010 - 2010 9th International Conference on Mobile Business/2010 9th Global Mobility Roundtable, July 2018, 280–288. https://doi.org/10.1109/ICMB-GMR.2010.49; Gowrisankaran, G., & Stavins, J. (2002). Network Externalities and Technology Adoption: Lessons from Electronic Payments. https://doi.org/10.3386/w8943; Granolers, T. (2018). Usability Evaluation with Heuristics, Beyond Nielsen’s List. ACHI 2018: The Eleventh International Conference on Advances in Computer-Human; Guimaraes, T., & Gupta, Y. P. (1987). Personal computing and support services. Omega, 15(6), 467–475. https://doi.org/10.1016/0305-0483(87)90004; Hamrick, K. S. (2003). Rural America, Briefly. Amber Waves, 51–51. https://doi.org/10.22004/AG.ECON.130864; Harris, C. G., & Achora, J. C. (2018). Designing ICT for Agriculture (ICT4A) Innovations for Smallholder Farmers. Proceedings of the XIX International Conference on Human Computer Interaction - Interacción 2018, 1–9. https://doi.org/10.1145/3233824.323383; Hart, L. G., Larson, E. H., & Lishner, D. M. (2005). Rural definitions for health policy and research. In American Journal of Public Health (Vol. 95, Issue 7, pp. 1149–1155). https://doi.org/10.2105/AJPH.2004.042432; Hassenzahl, M., & Tractinsky, N. (2006). User experience - A research agenda. Behaviour and Information Technology, 25(2), 91–97. https://doi.org/10.1080/01449290500330331; Hekkert, P. (2006). Design aesthetics : principles of pleasure in design Design aesthetics : principles of pleasure in design. Psychology Science, 48(June 2006), 157–172. http://www.pabst-publishers.de/psychology-science/2-2006/06_Hekkert.pdf; Hernández Rodríguez, C., & Cano Flores, M. (2017). LA IMPORTANCIA DEL BENCHMARKING COMO HERRAMIENTA PARA INCREMENTAR LA CALIDAD EN EL SERVICIO EN LAS ORGANIZACIONES; Herselman, M. (2003). ICT in Rural Areas in South Africa: Various Case Studies. Proceedings of the 2003 InSITE Conference, January 2003. https://doi.org/10.28945/2680; ICTs For Small-Scale Farmers: A Game Changing Approach to Climate Smart Agriculture in Latin America %7C Colombia and Honduras %7C UNFCCC. (n.d.). Retrieved December 21, 2019, from https://unfccc.int/climate-action/momentum-for-change/ictsolutions/ icts-for-small-scale-farmers-a-game-changing-approach-to-climate-smartagriculture- in-latin-america; Igbaria, M. (1994). An examination of the factors contributing to microcomputer technology acceptance. Accounting, Management and Information Technologies, 4(4), 205–224. https://doi.org/10.1016/0959-8022(94)90023-X; Igbaria, M., & Parasuraman, S. (1989). A Path Analytic Study of Individual Characteristics, Computer Anxiety and Attitudes toward Microcomputers. Journal of Management, 15(3), 373–388. https://doi.org/10.1177/014920638901500302; Imani, B., Hajalizadeh, A., Jahangiri, A., Heydarvand, M., Eftekhar ardebili, K., & Ebrahimi, E. (n.d.). The Challenges of ICT Development in Rural Area Case study: Village Aleni,Meshkin Shahr in Ardebil Province. Australian Journal of Basic and 164 Applied Sciences.; Imenda, S. (2014). Is There a Conceptual Difference between Theoretical and Conceptual Frameworks? In J Soc Sci (Vol. 38, Issue 2).; Interaction Design Foundation. (n.d.). What is Human-Computer Interaction (HCI)? . Retrieved February 11, 2020, from https://www.interactiondesign. org/literature/topics/human-computer-interaction; International Organization for Standardization (ISO). (2001). ISO/IEC 14598-6:2001 Software engineering — Product evaluation — Part 6: Documentation of evaluation modules.; International Organization for Standardization (ISO). (2004). ISO/IEC GUIDE 2:2004 Standardization and related activities — General vocabulary; International Organization for Standardization (ISO). (2011a). ISO/IEC 25040:2011 Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — Evaluation process.; International Organization for Standardization (ISO). (2011b). ISO / IEC 25010: 2011 Ingeniería de sistemas y software - Requisitos y evaluación de calidad de sistemas y software (SQuaRE) - Modelos de calidad de sistemas y s; International Organization for Standardization (ISO). (2012). ISO/IEC 25041:2012 Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — Evaluation guide for developers, acquirers and independent evaluators.; International Organization for Standardization (ISO). (2014a). ISO/IEC 25000:2014 Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — Guide to SQuaRE; International Organization for Standardization (ISO). (2014b). ISO/IEC 25001:2014 Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — Planning and manage; International Organization for Standardization (ISO). (2016a). ISO/IEC 25022:2016 Systems and software engineering — Systems and software quality requirements and evaluation (SQuaRE) — Measurement of quality in u; International Organization for Standardization (ISO). (2016b). ISO/IEC 25023:2016 Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — Measurement of system and software product quality. https://www.iso.org/standard/35747.html; International Organization for Standardization (ISO). (2018). ISO 9241-11:2018 Ergonomics of human-system interaction — Part 11: Usability: Definitions and concepts; International Organization for Standardization (ISO). (2019). ISO 9241-210:2019 165 Ergonomics of human-system interaction — Part 210: Human - centred design for interactive systems. https://www.iso.org/standard/77520.html; Isabirye, N., Flowerday, S. V., Nanavati, A., & von Solms, R. (2015). Building Technology Trust in a Rural Agricultural e-Marketplace: A User Requirements Perspective. The Electronic Journal of Information Systems in Developing Countries, 70(1), 1–20. https://doi.org/10.1002/j.1681-4835.2015.tb00504.x; ITU Telecommunication Development Sector (ITU-D). (n.d.). Telecommunications/ ICTs for rural and remote areas; Ives, B., Olson, M. H., & Baroudi, J. J. (1983). The measurement of user information satisfaction. Communications of the ACM, 26(10), 785–793. https://doi.org/10.1145/358413.358430; Jabareen, Y. (2009). Building a Conceptual Framework: Philosophy, Definitions, and Procedure. International Journal of Qualitative Methods, 8(4), 49–62. https://doi.org/10.1177/160940690900800406; Jiang, Y., de Bruijn, O., & De Angeli, A. (2009). The Perception of Cultural Differences in Online Self-presentation (pp. 672–685). https://doi.org/10.1007/978-3-642-03655- 2_74; Kandachar, P., & Halme, M. (2008). Sustainability challenges and solutions at the base of the pyramid [electronic resource] : business, technology and the poor / edited by Prabhu Kandachar and Minna Halme. January. http://ra.ocls.ca/ra/login.aspx?url=http://search.ebscohost.com/login.aspx?direct=true &db=cat00912a&AN=cclc.305104&site=edslive% 5Cnhttp://ra.ocls.ca/ra/login.aspx?inst=conestoga&url=http://gse.publisher.ingen taconnect.com/content/glbj/scsbp/20; Khokhar, M. F., Ejaz, H., Asif Butt, T., Iftikhar, S., Muzaffer, U., Illyas, A., Mustafa, F. U., Mushtaq, A., Ahmad, U., & Asghar, U. (2014). Enhancement of usability for farmers: User interface for rural community. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8519 LNCS(PART 3), 574–582. https://doi.org/10.1007/978-3-319- 07635-5_55; Knight, W. (2019). UX for Developers: How to Integrate User-Centered Design Principles Into Your Day-to-Day Development Work-Westley Knight. https://doi.org/10.1007/978-1-4842-4227-8; LaMorte, W. W. (2019a). The Social Cognitive Theory.; LaMorte, W. W. (2019b). The Theory of Planned Behavior. Boston University School of Public Health; Le Beux, Y. (2019). UX design for Agriculture in Africa : case study from Zambia.; Leveau, L., Bénel, A., Cahier, J.-P., Pinet, F., Salembier, P., Soulignac, V., & Bergez, J.-E. 166 (2019). Information and Communication Technology (ICT) and the Agroecological Transition. In Agroecological Transitions: From Theory to Practice in Local Participatory Design (pp. 263–287). Springer International Publishing. https://doi.org/10.1007/978-3-030-01953-2_12; Lexico - Universidad de OXFORD. (n.d.). User Experience %7C Meaning of User Experience. Retrieved February 11, 2020, from https://www.lexico.com/definition/user_expe; Leyes desde 1992 - Vigencia expresa y control de constitucionalidad [LEY_0388_1997]. (n.d.). Retrieved November 1, 2019, from http://www.secretariasenado.gov.co/senado/basedoc/ley_0388_1997.html; Leyes desde 1992 - Vigencia expresa y control de constitucionalidad [LEY_1341_2009]. (n.d.). Retrieved November 1, 2019, from http://www.secretariasenado.gov.co/senado/basedoc/ley_1341_2009.html; Libelium. (n.d.). Libelium Smart World Infographic. Retrieved February 13, 2020, from http://www.libelium.com/libelium-smart-world-infographic-smart-cities-internet-ofthings; Maksimovic, M. (2018). Greening the Future: Green Internet of Things (G-IoT) as a Key Technological Enabler of Sustainable Development (pp. 283–313). https://doi.org/10.1007/978-3-319-60435-0_12; Martínez, R., Trucco, D., & Palma, A. (n.d.). El analfabetismo funcional en América Latina y el Caribe Panorama y principales desafíos de política; Medhi, I., Patnaik, S., Brunskill, E., Gautama, S. N. N., Thies, W., & Toyama, K. (2011). Designing mobile interfaces for novice and low-literacy users. ACM Transactions on Computer-Human Interaction, 18(1), 1–28. https://doi.org/10.1145/1959022.1959024; Microsoft. (2019). Design and code Windows apps; Miles B., M., & Huberman, M. A. (1994). Qualitative Data Analysis: An Expanded Sourcebook.; Milhausen, R. R., Reece, M., & Perera, B. (2006). A theory‐based approach to understanding sexual behavior at Mardi Gras. Journal of Sex Research, 43(2), 97–106. https://doi.org/10.1080/00224490609552304; Mimiaga, M. J., Reisner, S. L., Reilly, L., Soroudi, N., & Safren, S. A. (2009). Individual interventions. In HIV Prevention (pp. 203–239). Elsevier. https://doi.org/10.1016/B978-0-12-374235-3.00008-X; Min, Q., Ji, S., & Qu, G. (2008). Mobile Commerce User Acceptance Study in China: A Revised UTAUT Model. Tsinghua Science and Technology, 13(3), 257–264. https://doi.org/10.1016/S1007-0214(08)70042-7; MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL. (n.d.). Plan Estratégico de Tecnologías de Información y Comunicación Sectorial. https://www.minagricultura.gov.co/Documents/PETI_Sector_Agropecuario.pdf; MINISTERIO DE AGRICULTURA Y DESARROLLO RURAL. (2018). DECRETO PEQUEÑO PRODUCTOR; Ministerio de Comercio Industria y Turismo. (2010). Guía Turística Colombia,Santander. https://cdn.colombia.com/docs/turismo/sitios-turisticos/santander/santander.pdf; Ministerio de Comunicaciones de la República de Colombia. (2008). Plan Nacional de Tecnologías de la Información y las Comunicaciones; Ministerio de Tecnologías de la Información y las Comunicaciones. (n.d.). Guía de estilo y usabilidad - LI.SIS.07 - Arquitectura TI. Retrieved February 13, 2020, from https://mintic.gov.co/arquitecturati/630/w3-article-8724.htm; Ministerio de Tecnologías de la Información y las Comunicaciones. (2015). DECRETO No1078 DE 2015 26 MAY 2015.; Ministerio de Tecnologías de la Información y las Comunicaciones. (2018). DECRETO No1008 DE 14 JUN 2018.; Misaki, E. (2019). The Experience of Chamwino Small-Scale Farmers on the Use of Smartphone in Farming Business, Tanzania (pp. 593–605). https://doi.org/10.1007/978-3-030-18400-1_49; Montiel Torres, M. (2019). (PDF) LAS CIENCIAS SOCIALES Y LA AGENDA NACIONAL Reflexiones y propuestas desde las Ciencias Sociales XIII Conocimiento, ciencia e innovación: contribuciones e impactos a la problemática social. https://www.researchgate.net/publication/330336534_LAS_CIENCIAS_SOCIALES_ Y_LA_AGENDA_NACIONAL_Reflexiones_y_propuestas_desde_las_Ciencias_Soci ales_XIII_Conocimiento_ciencia_e_innovacion_contribuciones_e_impactos_a_la_pro blematica_social#page=129; Moore, G., & Benbasat, I. (1991). Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Information Systems Research; Mora Holguín, H., Salas, N. A., García, J. M., Rincón, S. Z., & Mejía, L. E. (n.d.). USABILIDAD DE TIC Y CONSUMO DIGITAL EN EL SECTOR AGROPECUARIO COLOMBIANO; Morales Wu, J. A. (2019). Aceptación y uso académico del IPAD en la Facultad de Comunicaciones de una universidad privada de Lima. Universidad Peruana Cayetano Heredia. http://repositorio.upch.edu.pe/handle/upch/6570; Morgan, J. (2014). A Simple Explanation Of “The Internet Of Things.” https://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-internetthings- that-anyone-can-understand/#37e8504a1d09; Morville, P. (2004). UX Honeycomb; Mueller, K. J., Coburn, A. F., Mackinney, A. C., Mcbride, T. D., Slifkin, R. T., & Wakefield, M. K. (2007). Rural Policy Research Institute Health Panel Choosing 168 Rural Definitions: Implications for Health Policy. March; Mugisha, A., Nankabirwa, V., Tylleskär, T., & Babic, A. (2019). A usability design checklist for Mobile electronic data capturing forms: the validation process. BMC Medical Informatics and Decision Making, 19(1), 4. https://doi.org/10.1186/s12911- 018-0718-3; Mumtaz, S. (2000). Factors affecting teachers’ use of information and communications technology: A review of the literature. Journal of Information Technology for Teacher Education, 9(3), 319–342. https://doi.org/10.1080/14759390000200; Necesidad y tendencias de carreras TIC, ¿qué hay en el mercado? - Ministerio de Tecnologías de la Información y las Comunicaciones. (n.d.). Retrieved November 1, 2019, from https://www.mintic.gov.co/portal/604/w3-article- 64030.html?_noredirect=1; Nelson, D. L. (1990). Individual Adjustment to Information-Driven Technologies: A Critical Review; Newton, H. (1998). Newton’s telecom dictionary : the official dictionary of telecommunications. Flatiron Pub; Nielsen, J. (1997). The Difference Between Web Design and GUI Design.; Norman, D. (2014). The design of everyday things. In Choice Reviews Online (Vol. 51, Issue 10). https://doi.org/10.5860/choice.51-5559; Noticias ONU. (2020). Coronavirus, hambre, América Latina, recesión; Ntawanga, F., & Coleman, A. (2015). A lightweight mobile e-procurement solution for rural small scale traders implemented using a living lab approach. 2015 IST-Africa Conference, 1–10. https://doi.org/10.1109/ISTAFRICA.2015.7190550; Connor, R. (2018). Using Exercise Psychology: Theory of Planned Behaviour.; Ochoa Duarte, A., Forero Pachón, A. M., & Cangrejo, L. D. (2012). Actualidad y tendencias de la Agricultura de Precisión; Olushola, T., & Abiola, J. O. (2016). The Efficacy of Technology Acceptance Model: A Review of Applicable Theoretical Models in Information Technology Researches. Journal of Research in Business and Management.; ORACLE. (n.d.). What Is the Internet of Things (IoT)? Retrieved February 13, 2020, from https://www.oracle.com/internet-of-things/what-is-iot.html; Oreglia, E., Liu, Y., & Zhao, W. (2011). Designing for emerging rural users. Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems - CHI ’11, 1433. https://doi.org/10.1145/1978942.1979152; Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO. (n.d.). Cerrar la brecha digital en el medio rural. Retrieved February 11, 2020, from http://www.fao.org/spanish/newsroom/news/2002/9209-es.html; Organización de Naciones Unidas (ONU). (n.d.). ¿QUÉ SON LOS OBJETIVOS DE 169 DESARROLLO SOSTENIBLE? https://ww; Otero, E. de D. (2004). La guía Caja Madrid para el arte ahora mismo; Otero Torres, E., Rodríguez Hernández, H., & Rodríguez Duarte, M. A. (2016). Derechos y políticas culturales en el Departamento de Santander – Colombia 2008-2011. https://dialnet.unirioja.es/servlet/articulo?codigo=6798812; Ovalles V, F. A. (2006). INTRODUCCIÓN A LA AGRICULTURA DE PRECISIÓN. Revista Digital CENIAP; Park, J., Han, S. H., Kim, H. K., Cho, Y., & Park, W. (2013). Developing Elements of User Experience for Mobile Phones and Services: Survey, Interview, and Observation Approaches. Human Factors and Ergonomics in Manufacturing & Service Industries, 23(4), 279–293. https://doi.org/10.1002/hfm.203; Pejovic, V., & Skarlatidou, A. (2020). Understanding Interaction Design Challenges in Mobile Extreme Citizen Science. International Journal of Human–Computer Interaction, 36(3), 251–270. https://doi.org/10.1080/10447318.2019.1630934; Pepe, E. (2008). Tipografía Expresiva (Redargenta).; Plan Estratégico Departamental de Ciencia, Tecnología e Innovación. (2020).; Programa de las Naciones Unidas para el Desarollo PNUD. (2011). Informe Nacional de Desarrollo Humano 2011.; Pucillo, F., & Cascini, G. (2014). A framework for user experience, needs and affordances. Design Studies, 35(2), 160–179. https://doi.org/10.1016/j.destud.2013.10.; República de Colombia. (2016). CONSTITUCIÓN POLÍTICA DE COLOMBIA 1991.; Resolución 1704 de 2002 Ministerio de Comunicaciones. (n.d.). Retrieved November 1, 2019, from https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=9139; Rocco, S. T., & Plakhotnik, S. M. (2009). Literature reviews, conceptual frameworks, and theoretical frameworks: Terms, functions, and distinctions. In Human Resource Development Review (Vol. 8, Issue 1, pp. 120–130). SAGE Publications Ltd. https://doi.org/10.1177/1534484309332617; Rodríguez Fuentes, J. D. (n.d.). PROPUESTA NORMATIVA PARA APLICACIONES MÓVILES EN COLOMBIA: DERECHOS Y DEBERES DE ACTORES INVOLUCRADOS EN LA CREACIÓN Y GESTIÓN DE APLICACIONES NATIVAS.; Rogers, E. M., Singhal, A., & Quinlan, M. M. (1971). Diffusion of innovations. In An Integrated Approach to Communication Theory and Research, Third Edition. https://doi.org/10.4324/9780203710753-35; Rumata, V. M. (2018). The Influence of Internet Information-Communication Skills and Overloads towards ICT Rural Adoption. 2018 International Conference on ICT for Rural Development (IC-ICTRuDev), 154–157. 170 https://doi.org/10.1109/ICICTR.2018.8706845; Servicios de Telecomunicaciones - Ministerio de Tecnologías de la Información y las Comunicaciones. (n.d.). Retrieved November 1, 2019, from https://www.mintic.gov.co/portal/604/w3-article-5237.html?_noredirect=1; Skuse, A. (2001). Information Communication Technologies, Poverty and Empowerment.; Soegaard, M. (n.d.). Usability: A part of the User Experience %7C Interaction Design Foundation. Retrieved February 13, 2020, from https://www.interactiondesign. org/literature/article/usability-a-part-of-the-user-experien; Springmann, M., Clark, M., Mason-D’Croz, D., Wiebe, K., Bodirsky, B. L., Lassaletta, L., de Vries, W., Vermeulen, S. J., Herrero, M., Carlson, K. M., Jonell, M., Troell, M., DeClerck, F., Gordon, L. J., Zurayk, R., Scarborough, P., Rayner, M., Loken, B., Fanzo, J., … Willett, W. (2018). Options for keeping the food system within environmental limits. Nature, 562(7728), 519–525. https://doi.org/10.1038/s41586- 018-0594-0; SRIFA, P., & POOKEAMKAM, W. (2017). Development of Printed Media with Augmented Reality Technology for the Farmers in Rural Areas Nakhon Nayok Provinces, Thailand. Turkish Online Journal of Educational Technology, 175–179; Stephanidis, C., Salvendy, G., Antona, M., Chen, J. Y. C., Dong, J., Duffy, V. G., Fang, X., Fidopiastis, C., Fragomeni, G., Fu, L. P., Guo, Y., Harris, D., Ioannou, A., Jeong, K. ah (Kate), Konomi, S., Krömker, H., Kurosu, M., Lewis, J. R., Marcus, A., … Zhou, J. (2019). Seven HCI Grand Challenges. International Journal of Human-Computer Interaction. https://doi.org/10.1080/10447318.2019.1619259; Stratigea, A. (2011). ICTs for rural development: potential applications and barriers involved. Netcom, 25-3/4, 179–204. https://doi.org/10.4000/netcom.14; Stull, E. (2018). User Experience Principles for Managers, Writers, Designers, and Developers-UX Fundamentals for Non-UX Professionals. https://doi.org/10.1007/978- 1-4842-3811-0; Suárez Restrepo, N. del C., & Tobasura Acuña, I. (2008). THE RURAL AREA: AN UNFINISHED “FIELD.”; Sultana, S., Hasan, S., Mahmud, K. R., Alam, S. M. R., & Ahmed, S. I. (2019). “Shada Baksho”: a hardware device to explore the fears of using mobile phones among the rural women of Bangladesh. Proceedings of the Tenth International Conference on Information and Communication Technologies and Development - ICTDX ’19, 1–4. https://doi.org/10.1145/3287098.3287132; Taherdoost, H. (2018). A review of technology acceptance and adoption models and theories. Procedia Manufacturing, 22, 960–967. https://doi.org/10.1016/j.promfg.2018.03.137; Taluja, Y. (2014). Android Development in the Rural World: A How To Guide. 171 https://blog.atlan.com/team/android-development-guide-rural-world/; Tavakol, M., & Ghazinejad, M. (2011). Generation gap in macro-sociological approaches: a review of historical generation approaches and contrast with emphasis on the views of Mannheim and Bourdieu. 95–124.; Tecnósfera. (2015). Los 10 celulares usados que más se venden en Colombia; THE GLOBAL DEVELOPMENT RESEARCH CENTER. (n.d.). What are ICTs? Retrieved February 11, 2020, from http://www.gdrc.org/icts/what-is-icts.html; Thompson, R., Higgins, C., & Howell, J. (1991). Personal Computing Toward a Conceptual Model of Utilization. MIS Quarterly; Trendov, N. M., Varas, S., & Zeng, M. (2019). Digital technoligies in agriculture and rural areas. 26. http://www.fao.org/3/ca4887en/ca4887en.pdf; Triandis, H. C. (1977). Interpersonal behavior. Brooks/Cole Pub. Co.; Triandis, H. C. (1980). Values, Attitudes, and Interpersonal Behavior. Nebraska Symposium on Motivation; Tryon, W. W. (2014). Corollary Network Principles. In Cognitive Neuroscience and Psychotherapy (pp. 223–256). Elsevier. https://doi.org/10.1016/B978-0-12-420071- 5.00004-1; Vaezi, R., Mills, A., Chin, W., & Zafar, H. (2016). User Satisfaction Research in Information Systems: Historical Roots and Approaches. Communications of the Association for Information Systems, 38, 504–532. https://doi.org/10.17705/1CAIS.038127; Van den Ban, A. ., & Hawkins, H. S. (2000). Agricultural Extension.; van Huysen, T., Hansen, J., & Tall, A. (2018, January 1). Scaling up climate services for smallholder farmers: Learning from practice. Climate Risk Management, 22, 1–3. https://doi.org/10.1016/j.crm.2018.10.002; Venkatesh, Morris, Davis, & Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036; Venkatesh, Thong, & Xu. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157. https://doi.org/10.2307/41410412; Venkatesh, V., & Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Sciences, 39(2), 273–315. https://doi.org/10.1111/j.1540-5915.2008.00192.x; Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926; Vermeeren, A. P. O. S., Law, E. L.-C., Roto, V., Obrist, M., Hoonhout, J., & Väänänen- Vainio-Mattila, K. (2010). User experience evaluation methods. Proceedings of the 172 6th Nordic Conference on Human-Computer Interaction Extending Boundaries - NordiCHI ’10, 521. https://doi.org/10.1145/1868914.1868973; Webster, J., & Martocchio, J. J. (1992). Microcomputer Playfulness: Development of a Measure with Workplace Implications. MIS Quarterly, 16(2), 201. https://doi.org/10.2307/24; Weisse, M., & Goldman, E. D. (2019). The World Lost a Belgium-sized Area of Primary Rainforests Last Year. World Resources Institute; Woon, I. M. ., & Pee, L. G. (2004). Behavioral Factors Affecting Internet Abuse in the Workplace – An Empirical Investigation. SIGHCI 2004 Proceedings. 5. https://aisel.aisnet.org/sighci200; Wu, B., & Zhang, L. (2013). Farmer innovation diffusion via network building: a case of winter greenhouse diffusion in China. Agriculture and Human Values, 30(4), 641– 651. https://doi.org/10.1007/s10460-013-9438-6; Wu, Y.-L., Tao, Y.-H., & Yang, P.-C. (2008). The use of unified theory of acceptance and use of technology to confer the behavioral model of 3G mobile telecommunication users. Journal of Statistics and Management Systems, 11(5), 919–949. https://doi.org/10.1080/09720510.2008.10701351; Zampati, F. (2019). Does data mean power for smallholder farmers? https://blogs.worldbank.org/opendata/does-data-mean-power-smallholder-farmers; Zender, M., & Cassedy, A. (2014). (mis)understanding: icon comprehension in different cultural contexts. Visible Language, p68-95. 28p.; Zhenwei Qiang, C., Kuek, S. C., Dymond, A., & Esselaar, S. (2011). Mobil Applications for Agriculture and Rural Development; http://hdl.handle.net/20.500.12749/12085; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Dostupnosť: https://hdl.handle.net/20.500.12749/12085
-
2
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: Systems engineer, Software development, IOT, Monitoring, Water quality, Real time, Drinking water, Public health, Water resources, Environmental monitoring, Desarrollo de Software, Ingeniería de sistemas, Agua potable, Salud pública, Recursos hídricos, Vigilancia ambiental, Internet, Monitoreo, Calidad del agua, Tiempo real
Geografické téma: Colombia, UNAB Campus Bucaramanga
Popis súboru: application/pdf; application/octet-stream
Relation: Ahrend, U., Aleksy, M., Berning, M., Gebhardt, J., Mendoza, F., & Schulz, D. (2021). Sensors as the Basis for Digitalization: New Approaches in Instrumentation, IoT-concepts, and 5G. Internet of Things, 100406. https://doi.org/https://doi.org/10.1016/j.iot.2021.100406; Akhter, F., Siddiquei, H. R., Alahi, M. E. E., & Mukhopadhyay, S. C. (2021). Design and Development of an IoT-enabled Portable Phosphate Detection System in Water for Smart Agriculture. Sensors and Actuators A: Physical, 112861. https://doi.org/https://doi.org/10.1016/j.sna.2021.112861; Al-Turjman, F. (2020). The Cloud in Iot-Enabled Spaces. In CRC Press.; Alahi, M. E. E., Mukhopadhyay, S. C., & Burkitt, L. (2018). Imprinted polymer coated impedimetric nitrate sensor for real- time water quality monitoring. Sensors and Actuators B: Chemical, 259, 753–761. https://doi.org/10.1016/j.snb.2017.12.104; Albano, M., Ferreira, L. L., Pinho, L. M., & Alkhawaja, A. R. (2015). Computer Standards & Interfaces Message-oriented middleware for smart grids. Computer Standards & Interfaces, 38, 133–143. https://doi.org/10.1016/j.csi.2014.08.002; Alcaldía de Bogota. (2021). Documentos para Agua: Agua Para el Consumo Humano.; Algore, M. (2021). Machine Learning With Python: The Definitive Tool to Improve Your Python Programming and Deep Learning to Take You to The Next Level of Coding and Algorithms Optimization.; Alley, E. R. (2006). Water Quality Control Handbook. In Environment (Second). McGraw Hill. https://doi.org/10.1036/0071467602; Amato, A., Cozzolino, G., Maisto, A., & Pelosi, S. (2021). Monitoring Airplanes Faults Through Business Intelligence Tools (pp. 224–234). https://doi.org/10.1007/978-3-030-61105-7_22; Arévalo-Gómez, M. Á., Carrillo-Zambrano, E., Herrera-Quintero, L. F., & Chavarriaga, J. (2018). Water wells monitoring solution in rural zones using IoT approaches and cloud-based real-time databases. Proceedings of the Euro American Conference on Telematics and Information Systems - EATIS ’18, 1–5. https://doi.org/10.1145/3293614.3293659; Arévalo Junco, A. D. (2019). Prototipo de un sistema de monitoreo de calidad del agua subterránea en instalaciones de captación de una localidad rural del municipio de Tibaná-Boyacá. Universidad Piloto de Colombia.; Aspin, A. (2020). Pro Power BI Desktop. Apress. https://doi.org/10.1007/978-14842-5763-0; Aznil Ab Aziz, M., Abas, M. F., Anwar Abu Bashri, M. K., Saad, N. M., & Ariff, M. H. (2019). Evaluating IoT based passive water catchment monitoring system data acquisition and analysis. Bulletin of Electrical Engineering and Informatics, 8(4). https://doi.org/10.11591/eei.v8i4.1583; Badii, M., Guillen, A., Rodríguez, C., Lugo, O., Aguilar, J., & Acuña, M. (2015). Pérdida de Biodiversidad: Causas y Efectos Biodiversity Loss: Causes and Factors. Daena: International Journal of Good Conscience, 10(2), 156–174; Bagali, M. U., & Thangadurai, N. (2021). NavIC/GNSS receiver based integrated transport monitoring system using embedded system. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.11.080; Bahadori, A., & Smith,Bahadori, A., & Smith, S. T. (2016). A. In Dictionary of Environmental Engineering and Wastewater Treatment (pp. 1–37). Springer International Publishing. https://doi.org/10.1007/978-3-319-26261-1_1; Baird, R. B., Rice, E. W., & Posavec, S. (2017). Standard Methods For The Examination Of Water And Wastewater 23th. In Amer Public Health Assn; Balachandar, S., & Chinnaiyan, R. (2020). Reliable pharma cold chain monitoring and analytics through Internet of Things Edge. In Emergence of Pharmaceutical Industry Growth with Industrial IoT Approach (pp. 133–161). Elsevier. https://doi.org/10.1016/B978-0-12-819593-2.00005-4; Bastião Silva, L. A., Costa, C., & Oliveira, J. L. (2013). A common API for delivering services over multi-vendor cloud resources. Journal of Systems and Software, 86(9), 2309–2317. https://doi.org/10.1016/j.jss.2013.04.037; Bastidas, S. E. C., & Plata, R. A. D. (2020). Sistema IoT con UAV y GPR para Identificar Zonas Con Aguas Subterráneas en el Departamento de la GuajiraColombia. Encuentro Internacional de Educación En Ingeniería; Beigi, N. K., Partov, B., & Farokhi, S. (2018). Real-time cloud robotics in practical smart city applications. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 2017-Octob, 1–5. https://doi.org/10.1109/PIMRC.2017.8292655; Boehm, B. (2004). Balancing Agility and Discipline: A Guide for the Perplexed. https://doi.org/10.1007/978-3-540-24675-6_1; Boeker, M., Vach, W., & Motschall, E. (2013). Google Scholar as replacement for systematic literature searches: Good relative recall and precision are not enough. BMC Medical Research Methodology, 13(1). https://doi.org/10.1186/1471-2288-13-131; Boyd, C. E. (2020). Water Quality. Springer International Publishing. https://doi.org/10.1007/978-3-030-23335-8; Burbano Ordoñez, C. Y., & others. (2017). Implementación de una red de sensores inalámbricos LPWAN mediante módulos LoRa para el monitoreo de la calidad del agua en 2 ríos. Universidad Distrital Francisco José de Caldas.; Burgos Galeano, C. A., Lafont Álvarez, K., & Estrada Palencia, P. A. (2018). Análisis comparativo de indicadores de la calidad del agua del rio Sinú municipio de Montería, Córdoba. Modum, 55–64.; Caballero-Flores, R. (2019). Análisis de errores en las medidas. https://digibuo.uniovi.es/dspace/bitstream/handle/10651/52857/ANÁLISIS DE ERRORES EN LA MEDIDA_RCF.pdf?sequence=1; Caho-Rodríguez, C. A., & López-Barrera, E. A. (2017). Determinación del Índice de Calidad de Agua para el sector occidental del humedal Torca-Guaymaral empleando las metodologías UWQI y CWQI. Producción + Limpia, 12(2), 35– 49. https://doi.org/10.22507/pml.v12n; Camacho Botero, L. A. (2020). La paradoja de la disponibilidad de agua de mala calidad en el sector rural colombiano. Revista de Ingeniería, 49(49), 38–51. https://doi.org/10.16924/revinge.49.6; Cao, H., Guo, Z., Wang, S., Cheng, H., & Zhan, C. (2020). Intelligent wide-area water quality monitoring and analysis system exploiting unmanned surface vehicles and ensemble learning. Water (Switzerland), 12(3). https://doi.org/10.3390/w12030681; Carminati, M., Turolla, A., Mezzera, L., Di Mauro, M., Tizzoni, M., Pani, G., Zanetto, F., Foschi, J., & Antonelli, M. (2020). A Self-Powered Wireless Water Quality Sensing Network Enabling Smart Monitoring of Biological and Chemical Stability in Supply Systems. Sensors, 20(4), 1125. https://doi.org/10.3390/s20041125; Carrasco Mantilla, W. (2016). Estado del arte del agua y saneamiento rural en Colombia. Revista de Ingeniería, 0(44), 46. https://doi.org/10.16924/riua.v0i44.923; CEPAL. (2013). Agua para el Siglo XXI para América del Sur. Journal of Chemical Information and Modeling, 53(9), 1689–1699.; Chang, J. F. (2006). Business Process Management Systems. Strategy and Implementation. Taylor & Francis Group; Chen, G., & Kotz, D. (2000). A Survey of Context-Aware Mobile Computing Research. Time, 3755(TR2000-381), 1–16. https://doi.org/10.1.1.140.3131; Chin Roemer, R., & Borchardt, R. (2015). Meaningful Metrics: A 21st Century Librarian’s Guide to Bibliometrics, Altmetrics, and Research Impact. Association of College and Research Libraries; Climent, E., Pelegri-Sebastia, J., Sogorb, T., Talens, J., & Chilo, J. (2017). Development of the MOOSY4 eNose IoT for Sulphur-Based VOC Water Pollution Detection. Sensors, 17(8), 1917. https://doi.org/10.3390/s17081917; Coetzee, L., & Eksteen, J. (2011). The Internet of Things - promise for the future? An introduction. In In IST-Africa Conference Proceedings. IEEE.; Conagua. (2010). Capítulo 3. Usos del Agua. Estadísticas Del Agua En México, Edición 2010, 61–76; Copeland, D. B. (2017). Rails, Angular, Postgres, and Bootstrap: Powerful, Effective, Efficient, Full-Stack Web Development; Cordeiro, L., Mar, C., Valentin, E., Cruz, F., Patrick, D., Barreto, R., & Lucena, V. (2008). An agile development methodology applied to embedded control software under stringent hardware constraints. ACM SIGSOFT Software Engineering Notes, 33(1), 1. https://doi.org/10.1145/1344452.1344459; Cotruvo, J. A. (2018). Drinking water quality and contaminants guidebook. Taylor & Francis; Cressie, N., & Wikle, C. K. (2011). Statistics for Spatio-Temporal Data. John Wiley and Sons; CVS. (2020). Cobertura geográfica Departamento de Córdoba.; DANE. (2018). Censo Nacional de Población y censo nacional de vivienda Vivienda. DANE, Publicacion Para Todos, 66. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-ypoblacion/censo-nacional-de-poblacion-y-vivenda-2018/cuantos-somos; Darwish, M., & Ouda, A. (2015). Evaluation of an OAuth 2 . 0 Protocol Implementation for Web Server Applications. 2015 International Conference and Workshop on Computing and Communication (IEMCON), 2–5.; De Bellis, N. (2009). Bibliometrics and Citation Analysis; from the Science Citation Index to Cybermetrics. The Scarecrow Press, Inc.; De León-Peña, R., & Vargas-Lombardo, M. (2017). OpenID connect and digital identity security. Revista de Iniciación Científica, 3(2), 94–99; Díaz Porras, K. P. (2019). El oro azul y su gestión de pérdidas en Colombia. Módulo Arquitectura CUC, 23(1), 9–22. https://doi.org/10.17981/mod.arq.cuc.23.1.2019.01; Dow, C. (2020). Hands-On Edge Analytics with Azure IoT: Design and Develop IoT Applications with Edge Analytical Solutions Including Azure IoT Edge. Packt Publishing Ltd.; Dürr, C., & Vie, J.-J. (2021). Competitive Programming in Python: 128 Algorithms to Develop your Coding Skills. In Cambridge University Press. https://doi.org/10.1017/9781108591928; Edmondson, V., Cerny, M., Lim, M., Gledson, B., Lockley, S., & Woodward, J. (2018). A smart sewer asset information model to enable an ‘Internet of Things’ for operational wastewater management. Automation in Construction, 91, 193–205. https://doi.org/10.1016/j.autcon.2018.03.003; Ehrenmueller-Jensen, M. (2020). Self-Service AI with Power BI Desktop. In SelfService AI with Power BI Desktop. Apress. https://doi.org/10.1007/978-1-48426231-3; Emerson, S., Choi, Y. K., Hwang, D. Y., Kim, K. S., & Kim, K. H. (2015). An OAuth based authentication mechanism for IoT networks. International Conference on ICT Convergence 2015: Innovations Toward the IoT, 5G, and Smart Media Era, ICTC 2015, 1072–1074. https://doi.org/10.1109/ICTC.2015.7354740; Escobar Roberto, L. A., & Gutierrez Ramirez, N. (2020). Implementación de un sistema electrónico de monitoreo de la calidad del agua para un estanque piscícola. Universidad Distrital Francisco José de Caldas; Espake, P. (2015). Learning Heroku Postgres. Packt Publishing; Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37–54.; Foro Económico Mundial. (2019). Informe de riesgos mundiales 2019 14.a edición.; García, S., Luengo, J., & Herrera, F. (2015). Data Preprocessing in Data Mining. In Intelligent Systems Reference Library (Vol. 72). Springer International Publishing. https://doi.org/10.1007/978-3-319-10247-4; Geetha, S., & Gouthami, S. (2016). Internet of things enabled real time water quality monitoring system. Smart Water, 2(1), 1. https://doi.org/10.1186/s40713-017-0005-y; Gingras, Y. (2016). Bibliometrics and Research Evaluation: Uses and Abuses (History and Foundations of Information Science). The MIT Press.; Global Water. (2019). Water Quality. In Instrumentation Resource Book (pp. 54– 101). http://www.globalw.com/downloads/Catalog/WaterQuality.pdf; Gorchev, H. G., & Ozolins, G. (1984). WHO guidelines for drinking- water quality. WHO Chronicle, 38(3), 104–108.; Goyal, H. R., Ghanshala, K. K., & Sharma, S. (2021a). Flash flood risk management modeling in indian cities using IoT based reinforcement learning. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2021.01.072; Goyal, H. R., Ghanshala, K. K., & Sharma, S. (2021b). Recommendation based rescue operation model for flood victim using smart IoT devices. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.12.959; Greenfeld, D. R., & Greenfeld, A. R. (2020). Django Crash Course.; Greengard, S. (2015). The Internet of Things; Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. https://doi.org/10.1016/j.future.2013.01.010; Gupta, A. (2013). Java EE 7 Essentials: Enterprise Developer Handbook (M. Loukides & M. Blanchette (eds.); First Edit). O’Reilly Media, Inc. https://doi.org/10.1007/978-1-4302-4426-4; Guzmán, B. L., Nava, G., & Díaz, P. (2015). La calidad del agua para consumo humano y su asociación con la morbimortalidad en Colombia, 2008-2012. Biomedica, 35(3), 177–190. https://doi.org/10.7705/biomedica.v35i0.2511; Hakim, W. L., Hasanah, L., Mulyanti, B., & Aminudin, A. (2019). Characterization of turbidity water sensor SEN0189 on the changes of total suspended solids in the water. Journal of Physics: Conference Series, 1280, 022064. https://doi.org/10.1088/1742-6596/1280/2/022064; Havinek, P. (2009). Risk Management of Water Supply and Sanitation Systems (P. Hlavinek, C. Popovska, J. Marsalek, I. Mahrikova, & T. Kukharchyk (eds.)). Springer Netherlands. https://doi.org/10.1007/978-90-481-2365-0; Hill, C. A., Biemer, P. P., Buskirk, T. D., Japec, L., Kirchner, A., Kolenikov, S., & Lyberg, L. E. (2021). Big Data Meets Survey Science: A Collection of Innovative Methods. In Wiley Series in Survey Methodology. Wiley; Hlavinek, P. (2020). Management of Water Quality and Quantity (M. Zelenakova, P. Hlavínek, & A. M. Negm (eds.)). Springer International Publishing. https://doi.org/10.1007/978-3-030-18359-2; Hoyos Botero, C. (2000). Un modelo para investigación documental (Señal Editora (ed.)).; Hu, Z., & Liu, L. (2018). Prediction of water pollution by nutrients based on eutrophication evaluation. Chemical Engineering Transactions, 71, 667–672. https://doi.org/10.3303/CET1871112; IGAC. (2017). Mapas Departamentales Físico Políticos. Instituto Geográfico Agustín Codazzi.; Islam, M., Ashraf, F., Alam, T., Misran, N., & Mat, K. (2018). A Compact Ultrawideband Antenna Based on Hexagonal Split-Ring Resonator for pH Sensor Application. Sensors, 18(9), 2959. https://doi.org/10.3390/s18092959; James, S. (2016). An Introduction to Data Analysis using Aggregation Functions in R. In An Introduction to Data Analysis using Aggregation Functions in R. Springer International Publishing. https://doi.org/10.1007/978-3-319-46762-7; Jia, T., Zhao, X., Wang, Z., Gong, D., & Ding, G. (2016). Model Transformation and Data Migration from Relational Database to MongoDB. 2016 IEEE International Congress on Big Data (BigData Congress), 60–67. https://doi.org/10.1109/BigDataCongress.2016.16; John, V., & Liu, X. (2017). A Survey of Distributed Message Broker Queues; Kachroud, M., Trolard, F., Kefi, M., Jebari, S., & Bourrié, G. (2019). Water quality indices: Challenges and application limits in the literature. Water (Switzerland), 11(2), 1–26. https://doi.org/10.3390/w11020361; Kaur, H., Singh, S. P., Bhatnagar, S., & Solanki, A. (2021). Chapter 10 - Intelligent Smart Home Energy Efficiency Model Using Artificial Intelligence and Internet of Things (G. Kaur, P. Tomar, & M. B. T.-A. I. to S. P. I. of T. I. Tanque (eds.); pp. 183–210). Academic Press. https://doi.org/https://doi.org/10.1016/B978-012-818576-6.00010-1; Kim, H. (2021). Software Engineering in IoT, Big Data, Cloud and Mobile Computing (H. Kim & R. Lee (eds.); Vol. 930). Springer International Publishing. https://doi.org/10.1007/978-3-030-64773-; Kothari, N., Shreemali, J., Chakrabarti, P., & Poddar, S. (2021). Design and implementation of IoT sensor based drinking water quality measurement system. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.12.1142; Lai, C. S., Lai, L. L., & Lai, Q. H. (2021). Smart Grids and Big Data Analytics for Smart Cities. In Smart Grids and Big Data Analytics for Smart Cities. Springer International Publishing. https://doi.org/10.1007/978-3-030-52155-4; Larson, B. (2019). Data Analysis with Microsoft Power BI. McGraw-Hill Education.; Lea, P. (2018). Internet of Things for Architects: Architecting IoT solutions by implementing sensors, communication infrastructure, edge computing, analytics, and security. Packt Publishing; Lea, P. (2020). IoT and Edge Computing for Architects.; Lee, R. (2020). Big Data, Cloud Computing, and Data Science Engineering (R. Lee (ed.); Vol. 844). Springer International Publishing. https://doi.org/10.1007/9783-030-24405-7; Leke, C. A., & Marwala, T. (2019). Deep Learning and Missing Data in Engineering Systems (Vol. 48). Springer International Publishing. https://doi.org/10.1007/978-3-030-01180-2; Lima-Rodrigues, L. M. S., & Rodrigues, D. A. (2020). Agenda 2030. Quaestio - Revista de Estudos Em Educação, 22(3), 721–739. https://doi.org/10.22483/2177-5796.2020v22n3p721-739; Little, R. J. A., & Rubin, D. B. (2019). Statistical Analysis with Missing Data. In Wiley Series in Probability and Statistics. John Wiley & Sons; Livelihoods & Natural Resource Man, International Water & Sanitation C, Centre for Economic and Social Stu, & Watershed Support Services & Activ. (2014). Sustainable Water and Sanitation Services. In Sustainable Water and Sanitation Services: The Life-Cycle Cost Approach to Planning and Management. Routledge. https://doi.org/10.4324/9780203521670; Loucks, D. P., & van Beek, E. (2017). Water resource systems planning and management: An introduction to methods, models, and applications. In Water Resource Systems Planning and Management: An Introduction to Methods, Models, and Applications. https://doi.org/10.1007/978-3-319-44234-1; Ma, H., & Wang, J. (2021). The 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy. In J. MacIntyre, J. Zhao, & X. Ma (Eds.), Advances in Intelligent Systems and Computing (Vol. 1282). Springer International Publishing. https://doi.org/10.1007/978-3-03062743-0; Megargel, A., Shankararaman, V., & Walker, D. K. (2020). Software Engineering in the Era of Cloud Computing (M. Ramachandran & Z. Mahmood (eds.)). Springer International Publishing. https://doi.org/10.1007/978-3-030-33624-0; Melé, A. (2020). Django 3 By Example: Build powerful and reliable Python web applications from scratch (3th ed.). PACKT Publishing; Melendez Gelvez, I., Quijano Parra, A., & Pardo Perez, E. (2015). Actividad genotóxica de aguas antes y despues de clorar en la planta de potabilización Empopamplona. Bistua Revista De La Facultad De Ciencias Basicas, 13(2), 12. https://doi.org/10.24054/01204211.v2.n2.2015.1795; Meneses, H. W. P., García, J. P. M., & Sánchez, M. E. L. (2018). AQUASMART, La Solución Mecatrónica al Manejo de Recursos Hídricos. Encuentro Internacional de Educación En Ingeniería.; Micheli, G. De. (2020). Embedded, Cyber-Physical, and IoT Systems. In S. S. Bhattacharyya, M. Potkonjak, & S. Velipasalar (Eds.), Embedded, CyberPhysical, and IoT Systems. Springer International Publishing. https://doi.org/10.1007/978-3-030-16949-7; Decreto número 1575 de 2007, 14 (2007).; Ministerio de la protección social, & Ministerio de Ambiente, V. y D. T. (2007). Resolución 2115/2007. Gaceta Oficial, 23.; Minteer, A. (2017). Analytics for the Internet of Things (IoT): Intelligent analytics for your intelligent devices. Packt Publishing; Mirzavand, R., Honari, M., Laribi, B., Khorshidi, B., Sadrzadeh, M., & Mousavi, P. (2018). An Unpowered Sensor Node for Real-Time Water Quality Assessment (Humic Acid Detection). Electronics, 7(10), 231. https://doi.org/10.3390/electronics710023; Mishra, V., Kumar, T., Bhalla, K., & Patil, M. M. (2018). SuJAL: Design and Development of IoT-Based Real-Time Lake Monitoring System. 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C), 1–4. https://doi.org/10.1109/CIMCA.2018.8739; Mitsa, T. (2010). Temporal Data Mining. Chapman and Hall/CRC. https://doi.org/10.1201/9781420089776; Molenberghs, G., Fitzmaurice, G., Kenward, M., Tsiatis, B., & Verbeke, G. (2015). Handbook of Missing Data Methodology. In G. Molenberghs, G. Fitzmaurice, M. G. Kenward, & A. Tsiatis (Eds.), Handbook of Missing Data Methodology. Chapman and Hall/CRC. https://doi.org/10.1201/b17622; Morales García, J., Peñuela Meneses, W., & Leyes Sánchez, M. (2018). Aquasmart, la solución mecatrónica al manejo de recursos hídricos. Encuentro Internacional de Educación En Ingeniería ACOFI, 1–7.; Moreno Arboleda, F. J., Quintero Rendón, J. E., & Rueda Vásquez, R. (2016). Una comparación de rendimiento entre Oracle y MongoDB. Ciencia e Ingeniería Neogranadina, 26(1), 109. https://doi.org/10.18359/rcin.1669; Munirathinam, S. (2021). Drift Detection Analytics for IoT Sensors. Procedia Computer Science, 180, 903–912. https://doi.org/https://doi.org/10.1016/j.procs.2021.01.341; Musa, P., Sugeru, H., & Mufza, H. F. (2019). An intelligent applied Fuzzy Logic to prediction the Parts per Million (PPM) as hydroponic nutrition on the based Internet of Things (IoT). 2019 Fourth International Conference on Informatics and Computing (ICIC), 1–7. https://doi.org/10.1109/ICIC47613.2019.8985712; Naqvi, S., Yfantidou, S., & Zimányi, E. (2017). Advanced Databases. Time Series Databases and InfluxDB. In Universite libre de Bruxelles.; Norris, D. J. (2020). Machine Learning with the Raspberry Pi: Experiments with Data and Computer Vision. Apress. https://doi.org/10.1007/978-1-4842-5174-4; Núñez-Blanco, Y., Ramírez-Cerpa, E., & Sánchez-Comas, A. (2020). Revisión de sistemas de telemetría en ríos: propuesta para el río Magdalena, Barranquilla, Colombia. Tecnología y Ciencias Del Agua, 11(5), 298–343. https://doi.org/10.24850/j-tyca-2020-05-08; Ojha, A. (2020). Sensors in Water Pollutants Monitoring: Role of Material (D. Pooja, P. Kumar, P. Singh, & S. Patil (eds.)). Springer Singapore. https://doi.org/10.1007/978-981-15-0671-0; OMS. (2006). Guidelines for drinking- water qualit; OMS, O. M. D. L. S., & UNICEF, F. de las N. U. para la I. (2017). Progresos en materia de agua potable, saneamiento e higiene. In Organización Mundial de la Salud.; Organización Mundial de La Salud. (2011). Guías para la calidad del agua de consumo humano. Organización Mundial de La Salud, 4, 608.; Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLOS Medicine, 18(3), e1003583. https://doi.org/10.1371/journal.pmed.1003583; Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., MayoWilson, E., McDonald, S., … McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ, 372, n160. https://doi.org/10.1136/bmj.n160; Parameswari, M., & Moses, M. B. (2018). Online measurement of water quality and reporting system using prominent rule controller based on aqua care-IOT. Design Automation for Embedded Systems, 22(1–2), 25–44. https://doi.org/10.1007/s10617-017-9187-7; Particle. (2020). Quick Start: ARGON. Particle.Io.; Pilicita Garrido, A., Borja López, Y., & Gutiérrez Constante, G. (2020). Rendimiento de MariaDB y PostgreSQL. Revista Científica y Tecnológica UPSE, 7(2), 09– 16. https://doi.org/10.26423/rctu.v7i2.538; Poongodi, T., Rathee, A., Indrakumari, R., & Suresh, P. (2020). Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm. In S.-L. Peng, S. Pal, & L. Huang (Eds.), Intelligent Systems Reference Library. Springer International Publishing. https://doi.org/10.1007/978-3-030-33596-0; Poza Luján, J. L. (2012). Proposed smart control distributed architecture based on service quality policies. Doctoral thesis. Universidad Politécnica de Valencia; Prashanth, D. S., Patel, G., & Bharathi, B. (2017). Research and development of a mobile based women safety application with real-time database and datastream network. 2017 International Conference on Circuit ,Power and Computing Technologies (ICCPCT), 1–5. https://doi.org/10.1109/ICCPCT.2017.8074261; Programa de las Naciones Unidas para el Desarrollo. (2015). Objetivos de Desarrollo del Milenio. In Humanismo y Trabajo Social: Vols 5 (93-101).; Puig, V., Ocampo-Martínez, C., Pérez, R., Cembrano, G., Quevedo, J., & Escobet, T. (Eds.). (2017). Real-time Monitoring and Operational Control of DrinkingWater Systems. Springer International Publishing. https://doi.org/10.1007/9783-319-50751-4; Quintana Fajardo, B. F., & Sarabia Caffroni, J. J. (2018). Arquitectura para el sistema de monitoreo de la calidad del agua de los caños y lagos internos del Distrito de Cartagena de Indias soportada en tecnologías de internet de las cosas. Universidad de Cartagena; Rad, R. (2018). Power BI Service Content. In Pro Power BI Architecture (pp. 29– 57). Apress. https://doi.org/10.1007/978-1-4842-4015-1_3; Raghuvanshi, A., & Singh, U. K. (2020). Internet of Things for smart cities- security issues and challenges. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.10.849; Rajanna, R. R., Natarajan, S., & Vittal, P. R. (2018). An IoT Wi-Fi Connected Sensor For Real Time Heart Rate Variability Monitoring. 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C), 1–4. https://doi.org/10.1109/CIMCA.2018.8739323; Ratnaparkhi, S., Khan, S., Arya, C., Khapre, S., Singh, P., Diwakar, M., & Shankar, A. (2020). Smart agriculture sensors in IOT: A review. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.138; Ray, P. P., Dash, D., & De, D. (2019). Internet of things-based real-time model study on e-healthcare: Device, message service and dew computing. Computer Networks, 149, 226–239. https://doi.org/10.1016/j.comnet.2018.12.006; Asamblea General de las Naciones Unidas, Naciones Unidas 3 (2010).; Rethlefsen, M. L., Kirtley, S., Waffenschmidt, S., Ayala, A. P., Moher, D., Page, M. J., & Koffel, J. B. (2021). PRISMA-S: an extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Systematic Reviews, 10(1), 39. https://doi.org/10.1186/s13643-020-01542-z; Rey Graña, C., & Ramil Diaz, M. (2011). Series temporales. Introduccion a La Estadistica Descriptiva. Segunda Edicion, 85–105. https://doi.org/10.4272/978-84-9745-167-3.ch4; Rojo-Nieto, E., & Montoto, T. (2017). Basuras marinas, plásticos y microplásticos orígenes, impactos y consecuencias de una amenaza global. Ecologistas en Acción; Rondero, C., & Font, V. (2015). Articulación de la complejidad matemática de la media aritmética. Ensenanza de Las Ciencias, 33(2), 29–49. https://doi.org/10.5565/rev/ensciencias.1386; Ruiz, C. A., Salazar, D. M., & Rodríguez González, N. (2020). La prestación de los servicios de agua potable y saneamiento básico en Colombia análisis y prospectiva. In Investigaciones y productos CID; Ruiz, C. A., Salazar, D. M., & Rodríguez, N. (2020). The provision of drinking water and basic sanitation services in Colombia: analysis and prospective. Documentos FCE-CID Escuela de Economía, 34, 1–86. www.fce.unal.edu.co/centro-editorial/documentos.html; Ruiz Peláez, J. G., & Rodríguez Malagón, M. N. (2015). Población y muestra. Epidemiología Clínica: Investigación Clínica Aplicada, 62–66.; Russo, C., Ramón, H., Alonso, N., Cicerchia, B., Esnaola, L., & Tessore, J. P. (2015). Tratamiento Masivo de Datos Utilizando Técnicas de Machine Learning Resumen Contexto Introducción. 131–134; Samaranayake, P., Ramanathan, K., & Laosirihongthong, T. (2017). Implementing industry 4.0 — A technological readiness perspective. 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 529–533. https://doi.org/10.1109/IEEM.2017.8289947; Saravanan, K., Anusuya, E., Kumar, R., & Son, L. H. (2018). Real-time water quality monitoring using Internet of Things in SCADA. Environmental Monitoring and Assessment, 190(9). https://doi.org/10.1007/s10661-018-6914x; Schwaber, K. (2004). Agile Project Management with Scrum (Vol. 7, Issue CMM). https://doi.org/10.1201/9781420084191-c2; Seamark, P., & Martens, T. (2019). Pro Dax with Power Bi: Business Intelligence with Powerpivot and SQL Server Analysis Services Tabular. Apress. https://doi.org/10.1007/978-1-4842-4897-3; Sebastian, A. (2020). Smart Systems and IoT: Innovations in Computing. In A. K. Somani, R. S. Shekhawat, A. Mundra, S. Srivastava, & V. K. Verma (Eds.), Smart Innovation, Systems and Technologies. Springer Singapore. https://doi.org/10.1007/978-981-13-8406-6; Serpanos, D., & Wolf, M. (2018). Internet-of-Things (IoT) Systems. In Internet-ofThings (IoT) Systems. Springer International Publishing. https://doi.org/10.1007/978-3-319-69715-4; Serrano Castaño, C. E. (2002). Modelo integral para el profesional en ingeniería (Universidad del Cauca (Ed.)).; Shaw, P. (2013). Postgres Succinctly. In Syncfusion Inc; Sierra, C. A. (2011). Calidad del Agua. Evaluación y diagnóstico. In Journal of Chemical Information and Modeling. https://repository.udem.edu.co/handle/11407/2568; Siow, E., Tiropanis, T., & Hall, W. (2018). Analytics for the Internet of Things. ACM Computing Surveys, 51(4), 1–36. https://doi.org/10.1145/3204947; Spandana, K., & Rao, V. R. S. (2018). Internet of Things (Iot) Based smart water quality monitoring system. International Journal of Engineering and Technology(UAE), 7(3), 259–262. https://doi.org/10.14419/ijet.v7i3.6.14985; Suresh, A., Nandagopal, M., Pethuru Raj, Neeba, E. A., & Lin, J.-W. (2020). Industrial IoT Application Architectures and Use Cases. Auerbach Publications.; Suseendran, G., & Balaganesh, D. (2021). Smart cattle health monitoring system using IoT sensors. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2021.01.873; Sutradhar, B. C. (2013). ISS-2012 Proceedings Volume On Longitudinal Data Analysis Subject to Measurement Errors, Missing Values, and/or Outliers (B. C. Sutradhar (Ed.); Vol. 211). Springer New York. https://doi.org/10.1007/9781-4614-6871-4; Tanwar, S. (2020). Fog Data Analytics for IoT Applications: Next Generation Process Model with State of the Art Technologies (S. Tanwar (Ed.); Vol. 76). Springer Singapore. https://doi.org/10.1007/978-981-15-6044-6; The Government Office for Science. (2014). The IoT: making the most of the Second Digital Revolution. WordLink, 1–40. https://doi.org/GS/14/1230; Torres Pardo, J. C. (2017). Definition of a Reference Architecture for Information Systems in Ubiquitous Wireless Sensor Networks based on quality of service. Master’s Degree Option Work. Universidad Nacional de Colombia; Tukey, J. W. (1962). The Future of Data Analysis. The annals of mathematical statistics.; UNESCO. (2015). El Crecimiento Insostenible Y La Creciente Demanda Mundial De Agua. Wwdr, 12; UNESCO. (2019). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2019. No dejar a nadie atrás. In Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura; UNESCO. (2020). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2020. In Agua y Cambio Climático; Urrútia, G., & Bonfill, X. (2010). Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Medicina Clínica, 135(11), 507–511. https://doi.org/10.1016/j.medcli.2010.01.015; van Eck, N. J., & Waltman, L. (2011). Text mining and visualization using VOSviewer. Text Mining and Visualization, 1–5.; van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053–1070. https://doi.org/10.1007/s11192-017-2300-7; Vélez, A., & Calvo, G. (1992). La investigación documental. Estado del arte y del conocimiento. Análisis de la investigación en la formación de investigadores. Universidad de la Sabana; Viegas, V., Pereira, J. M. D., Girao, P., Postolache, O., & Salgado, R. (2018). IoT applied to Environmental Monitoring in Oysters’ Farms. 2018 International Symposium in Sensing and Instrumentation in IoT Era (ISSI), 1–5. https://doi.org/10.1109/ISSI.2018.8538136; Vikesland, P. J. (2018). Nanosensors for water quality monitoring. Nature Nanotechnology, 13(8), 651–660. https://doi.org/10.1038/s41565-018-0209-9; Viloria, A., Acuña, G. C., Alcázar Franco, D. J., Hernández-Palma, H., Fuentes, J. P., & Rambal, E. P. (2019). Integration of Data Mining Techniques to PostgreSQL Database Manager System. Procedia Computer Science, 155, 575–580. https://doi.org/10.1016/j.procs.2019.08.080; Wade, R. (2020). Advanced Analytics in Power BI with R and Python. Apress. https://doi.org/10.1007/978-1-4842-5829-3; Water-quality engineering in natural systems: fate and transport processes in the water environment. (2013). Choice Reviews Online, 50(12), 50-6781-50–6781. https://doi.org/10.5860/choice.50-6781; Weber, R. H., & Weber, R. (2010). Internet of Things. In Development. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-11710-7; Weiser, M. (1991). The computer for the 21st century. Scientific American (International Edition), 265(3), 66–75. https://doi.org/10.1038/scientificamerican0991-94; Wolf, W. H. W. H. (1994). Hardware-software co-design of embedded systems. Proceedings of the IEEE, 82(7), 967–989. https://doi.org/10.1109/5.293155; Wong, B. P., & Kerkez, B. (2016). Real-time environmental sensor data: An application to water quality using web services. Environmental Modelling & Software, 84, 505–517. https://doi.org/10.1016/j.envsoft.2016.07.020; World Health Organization. (2019). Safe water, better health. In Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO; Wortham, R. H. (2020). Transparency for Robots and Autonomous Systems. The Institution of Engineering and Technology; Yanes, A. R., Martinez, P., & Ahmad, R. (2020). Towards automated aquaponics: A review on monitoring, IoT, and smart systems. Journal of Cleaner Production, 263, 121571. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.121571; Zelenakova, M., Hlavínek, P., & Negm, A. M. (2020). Management of Water Quality and Quantity. Springer International Publishing. https://doi.org/10.1007/978-3-030-18359-2; Ziegler, A. (2014). In-situ Materials Characterization (A. Ziegler, H. Graafsma, X. F. Zhang, & J. W. M. Frenken (Eds.); Vol. 193). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-45152-2; Zimányi, E., Sakr, M., & Lesuisse, A. (2020). MobilityDB: A Mobility Database Based on PostgreSQL and PostGIS. ACM Transactions on Database Systems, 45(4), 1–42. https://doi.org/10.1145/3406534; Zou, Q., Xiong, Q., Li, Q., Yi, H., Yu, Y., & Wu, C. (2020). A water quality prediction method based on the multi-time scale bidirectional long short-term memory network. Environmental Science and Pollution Research, 27(14), 16853– 16864. https://doi.org/10.1007/s11356-020-08087-7; http://hdl.handle.net/20.500.12749/15481; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Dostupnosť: https://hdl.handle.net/20.500.12749/15481
-
3
Autori: By:VICTORIS
Zdroj: Business Wire, March 11, 2004
-
4
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: Voice processing systems, Automatic voice recognition, Systems engineering, Telematics, Investigations, New technologies, Internet of things, Speech recognition, Ubiquitous computing, Sistemas de procesamiento de voz, Reconocimiento automático de la voz, Ingeniería de sistemas, Telemática, Investigaciones, Nuevas tecnologías, Internet de las cosas, Middleware, Reconocimiento del habla, Computación ubicua
Geografické téma: Bucaramanga (Colombia), UNAB Campus Bucaramanga
Popis súboru: application/pdf; application/octet-stream
Relation: Manrique Hernández, Johana Andrea (2018). Switch: un Middleware para el desarrollo de aplicaciones IOT con interfaces basadas en voz. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB; Abdmeziem, M. R., Tandjaoui, D., & Romdhani, I. (2016). Architecting the internet of things: state of the art. In Robots and Sensor Clouds (pp. 55–75). Springer.; Abreu, D. P., Velasquez, K., Curado, M., & Monteiro, E. (2017). A resilient Internet of Things architecture for smart cities. Annals of Telecommunications, 72(1–2), 19–30.; Adams, K. (2015). Non-functional Requirements in Systems Analysis and Design. Springer.; Addo, I. D., Ahamed, S. I., Yau, S. S., & Buduru, A. (2014). A reference architecture for improving security and privacy in Internet of Things applications. In Mobile Services (MS), 2014 IEEE International Conference on (pp. 108–115).; Afonso, S., Laranjo, I., Braga, J., Alves, V., & Neves, J. (2015). Multilingual Voice Control for Endoscopic Procedures. In Internet of Things. User-Centric IoT (pp. 229–235). Springer.; Akash, S. A., Menon, A., Gupta, A., Wakeel, M. W., Praveen, M. N., & Meena, P. (2014). A novel strategy for controlling the movement of a smart wheelchair using internet of things. In Global Humanitarian Technology Conference-South Asia Satellite (GHTC-SAS), 2014 IEEE (pp. 154–158).; Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376.; Al-Jaroodi, J., Aziz, J., & Mohamed, N. (2009). Middleware for RFID systems: An overview. In Computer Software and Applications Conference, 2009. COMPSAC’09. 33rd Annual IEEE International (Vol. 2, pp. 154–159).; Aldosari, H. M. (2015). A Proposed Security Layer for the Internet of Things Communication Reference Model. Procedia Computer Science, 65, 95–98.; Alhamedi, A. H., Snasel, V., Aldosari, H. M., & Abraham, A. (2014). Internet of things communication reference model. In Computational Aspects of Social Networks (CASoN), 2014 6th International Conference on (pp. 61–66).; Association for computing machinery ACM. (2012). CCS 2012.; Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805. http://doi.org/doi.org/10.1016/j.comnet.2010.05.010; Baccaglini, E., Gavelli, M., Morello, M., & Vergori, P. (2015). A multimodal user interface using the webinos platform to connect a smart input device to the Web of Things. In Pervasive and Embedded Computing and Communication Systems (PECCS), 2015 International Conference on (pp. 1–5).; Bai, J. G., Wei, J. G., Chen, L., He, Y. Q., Wang, J. R., & Dang, J. W. (2013). Design and Implementation of a Housekeeper System. In Applied Mechanics and Materials (Vol. 437, pp. 394–398).; Banda, G., Chaitanya, K., & Mohan, H. (2015). An IoT protocol and framework for OEMs to make IoT-enabled devices forward compatible. In Signal-Image Technology & Internet-Based Systems (SITIS), 2015 11th International Conference on (pp. 824–832).; Bandyopadhyay, S., Sengupta, M., Maiti, S., & Dutta, S. (2011). A Survey of Middleware for Internet of Things. In A. Özcan, J. Zizka, & D. Nagamalai (Eds.), Recent Trends in Wireless and Mobile Networks: Third International Conferences, WiMo 2011 and CoNeCo 2011, Ankara, Turkey, June 26-28, 2011. Proceedings (pp. 288–296). Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-21937-5_27; Bassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S., & Meissner, S. (Eds.). (2013). Enabling Things to Talk. Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-40403-0; Bell, A. G. (1881). The production of sound by radiant energy. Science, 2(48), 242– 253.; Bernabe, J. B., Hernández, J. L., Moreno, M. V., & Gomez, A. F. S. (2014). Privacypreserving security framework for a social-aware internet of things. In International conference on ubiquitous computing and ambient intelligence (pp. 408–415).; Berners-Lee, T., Cailliau, R., Groff, J.-R., & Pollermann, B. (1992). World-Wide Web: The Information Universe. Electronic Networking: Research, Applications and Policy, 2(1), 52–58.; Besacier, L., Barnard, E., Karpov, A., & Schultz, T. (2014). Automatic speech recognition for under-resourced languages: A survey. Speech Communication, 56, 85–100.; Blackstock, M., & Lea, R. (2016). FRED: A Hosted Data Flow Platform for the IoT. In Proceedings of the 1st International Workshop on Mashups of Things and APIs (p. 2:1--2:5). New York, NY, USA: ACM. http://doi.org/10.1145/3007203.3007214; Bochmann, G. V. (1990). Protocol specification for OSI. Computer Networks and ISDN Systems, 18(3), 167–184.; Borgia, E. (2014). The Internet of Things vision: Key features, applications and open issues. Computer Communications, 54, 1–31.; Bouraoui, H., Jerad, C., Chattopadhyay, A., & Hadj-Alouane, N. Ben. (2017). Hardware Architectures for Embedded Speaker Recognition Applications: A Survey. ACM Transactions on Embedded Computing Systems (TECS), 16(3), 78.; Boussard, M., Meissner, S., Nettsträter, A., Olivereau, A., Segura, A. S., Thoma, M.,& Walewski, J. W. (2013). A Process for Generating Concrete Architectures. In Enabling Things to Talk (pp. 45–111). Springer.; Brown, A. (2016). The role of voice in IoT applications. Retrieved from https://www.strategyanalytics.com/strategy-analytics/blogs/iot/2016/02/19/therole- of-voice-in-the-internet-of-things#.WD3wMPkrLcc; Buyya, R., & Dastjerdi, A. V. (2016). Internet of Things: Principles and paradigms. Elsevier.; Cavalcante, E., Alves, M. P., Batista, T., Delicato, F. C., & Pires, P. F. (2015). An analysis of reference architectures for the internet of things. In Proceedings of the 1st International Workshop on Exploring Component-based Techniques for Constructing Reference Architectures (pp. 13–16). Ccori, P. C., De Biase, L. C. C., Zuffo, M. K., & da Silva, F. S. C. (2016). Device discovery strategies for the IoT. In Consumer Electronics (ISCE), 2016 IEEE International Symposium on (pp. 97–98).; Chaqfeh, M. A., & Mohamed, N. (2012). Challenges in middleware solutions for the internet of things. In Collaboration Technologies and Systems (CTS), 2012 International Conference on (pp. 21–26).; Chelloug, S. A., & El-Zawawy, M. A. (2017). Middleware for Internet of Things: Survey and Challenges. Intelligent Automation & Soft Computing, 0(0), 1–9. http://doi.org/10.1080/10798587.2017.1290328; CISCO. (2014). The Internet of Things Reference Model. San José, California. Retrieved from http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_ 4_2014.pdf; CISCO. (2016). Internet of Things at a Glance. Retrieved from https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/ata- glance-c45-731471.pdf; Colciencias. (2016). Tipología de proyectos calificados como de carácter cientifíco, tecnológico e innovación (Vol. 4).; Costa, N., Pereira, A., & Serodio, C. (2007). Virtual Machines Applied to WSN’s: The state-of-the-art and classification. In Systems and Networks Communications, 2007. ICSNC 2007. Second International Conference on (p. 50).; Coulouris, G. F., Dollimore, J., & Kindberg, T. (2005). Distributed systems: concepts and design (Fifth edit). Pearson education.; Davis, K. H., Biddulph, R., & Balashek, S. (1952). Automatic recognition of spoken digits. The Journal of the Acoustical Society of America, 24(6), 637–642.; De, S., Carrez, F., Reetz, E., Tönjes, R., & Wang, W. (2013). Test-enabled architecture for IoT service creation and provisioning. In The Future Internet Assembly (pp. 233–245).; Delicato, F. C., Pires, P. F., & Batista, T. (2017). The Resource Management Challenge in IoT. In Resource Management for Internet of Things (pp. 7–18). Springer.; Dino, J. (2008). Ames Technology Capabilities and Facilities. Retrieved January 5, 2017, from https://www.nasa.gov/centers/ames/research/technologyonepagers/ hc-computing.html; Eisenhauer, M., Rosengren, P., & Antolin, P. (2010). HYDRA: A Development Platform for Integrating Wireless Devices and Sensors into Ambient Intelligence Systems. In D. Giusto, A. Iera, G. Morabito, & L. Atzori (Eds.), The Internet of Things: 20th Tyrrhenian Workshop on Digital Communications (pp. 367–373). New York, NY: Springer New York. http://doi.org/10.1007/978-1-4419-1674- 7_36; European Lighthouse Integrated Project. (2016). Internet of things Architecture IoTA. Retrieved November 1, 2016, from http://www.iota. eu/public/requirements/copy_of_requirements; Evans, D. (2011). The Internet of Things: How the next evolution of the internet is changing everything. Retrieved from http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FIN AL.pdf; EY. (2016). Internet of Things: Human machine interactions that unlock possibilities. United Kingdom. Retrieved from http://www.ey.com/Publication/vwLUAssets/ey-m-e-internet-ofthings/$ FILE/ey-m-e-internet-of-things.pdf; Fernandes, J., Nati, M., Loumis, N. S., Nikoletseas, S., Raptis, T. P., Krco, S., … Ziegler, S. (2015). IoT Lab: Towards co-design and IoT solution testing using the crowd. In Recent Advances in Internet of Things (RIoT), 2015 International Conference on (pp. 1–6).; Ferreira, H. G. C., Canedo, E. D., & de Sousa, R. T. (2013). IoT architecture to enable intercommunication through REST API and UPnP using IP, ZigBee and arduino. In 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 53–60). http://doi.org/10.1109/WiMOB.2013.6673340; Ferreira, H. G., & Sousa Junior, R. T. (2017). Security Analysis of a Proposed Internet of Things Middleware. Cluster Computing, 20(1), 651–660. http://doi.org/10.1007/s10586-017-0729-3; Formisano, C., Pavia, D., Gurgen, L., Yonezawa, T., Galache, J. A., Doguchi, K., & Matranga, I. (2015). The advantages of IoT and cloud applied to smart cities. In Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on (pp. 325–332).; Fremantle, P. (2015). A reference architecture for Internet of Things. Sri Lanka. Retrieved from https://wso2.com/whitepapers/a-reference-architecture-for-theinternet- of-things/; Gartner Inc. (2014). IT Glossary. Retrieved January 4, 2017, from http://www.gartner.com/it-glossary/telematics/; Gartner Inc. (2016). Hype Cycle for Emerging Technologies, 2016.; Gartnet Inc. (2017). Hype Cycle for Emerging Technologies, 2017. USA.; Gilchrist, A. (2016). IIoT Reference Architecture. In Industry 4.0 (pp. 65–86). Springer.; Gluhak, A., Hauswirth, M., Krco, S., Stojanovic, N., Bauer, M., Nielsen, R. H., … Corcho, O. (2011). An Architectural Blueprint for a Real-World Internet. In Future Internet Assembly (pp. 67–80).; Gluhak, A., Munoz, L., Sotres, P., Sanchez, L., Roux, P., Sanchez, B., … Hernandez, A. L. (2013). Third Cycle Architecture Specification.; Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. http://doi.org/10.1016/j.future.2013.01.010; Guo, B., Zhang, D., Wang, Z., Yu, Z., & Zhou, X. (2013). Opportunistic IoT: exploring the harmonious interaction between human and the internet of things. Journal of Network and Computer Applications, 36(6), 1531–1539.; Hadim, S., & Mohamed, N. (2006). Middleware: Middleware challenges and approaches for wireless sensor networks. IEEE Distributed Systems Online, 7(3), 1.; Han, X., & Rashid, M. A. (2016). Gesture and voice control of Internet of Things. In Industrial Electronics and Applications (ICIEA), 2016 IEEE 11th Conference on (pp. 1791–1795).; Haridas, A. V., Marimuthu, R., & Sivakumar, V. G. (2018). A critical review and analysis on techniques of speech recognition: The road ahead. International Journal of Knowledge-Based and Intelligent Engineering Systems, 22(1), 39– 57.; Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2010). Metodología de la investigación. McGraw-Hill (Quinta Edi). México DF.; Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014a). Architecture Reference Model. In From Machine-To-Machine to the Internet of Things (pp. 167–197). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00007-3; Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014b). IoT Architecture – State of the Art. In From Machine-To-Machine to the Internet of Things (pp. 145–165). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00006-1; Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014c). IoT Reference Architecture. In From Machine-To-Machine to the Internet of Things (pp. 199–223). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00008-5; Hollosi, D., Nagy, G., Rodigast, R., Goetze, S., & Cousin, P. (2013). Enhancing wireless sensor networks with acoustic sensing technology: use cases, applications & experiments. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing (pp. 335–342).; Huang, Z., Lin, K. J., & Shih, C. S. (2016). Supporting Edge Intelligence in Service- Oriented Smart IoT Applications. In 2016 IEEE International Conference on Computer and Information Technology (CIT) (pp. 492–499). Nadi, Fiji: IEEE. http://doi.org/10.1109/CIT.2016.40; Huang, Z., Tsai, B. L., Chou, J. J., Chen, C. Y., Chen, C. H., Chuang, C. C., … Shih, C. S. (2015). Context and user behavior aware intelligent home control using WuKong middleware. In 2015 IEEE International Conference on Consumer Electronics - Taiwan (pp. 302–303). Taipei, Taiwan: IEEE. http://doi.org/10.1109/ICCE-TW.2015.7216911; Hui, G. (2014). How the Internet of Things changes Business Models. Retrieved from https://hbr.org/2014/07/how-the-internet-of-things-changes-business-models; IEEE. (1990). IEEE Standard Glossary of Software Engineering Terminology.; IEEE Computer Society. (2014). Guide to the Software Engineering - Body of Knowledge. (P. Bourque & R. E. Fairley, Eds.)IEEE Computer Society (V3 ed.). http://doi.org/10.1234/12345678; Igure, V. M., Laughter, S. A., & Williams, R. D. (2006). Security issues in SCADA networks. Computers & Security, 25(7), 498–506.; International Organization for Standardization - ISO. Software product quality, 1 ISO/IEC 25010 34 (2011).; International Telecommunication Union - ITU. (2012). Recommendation ITU-T Y.2060: Overview of the Internet of things. Series Y: Global information infrastructure, internet protocol aspects and next-generation networks - Frameworks and functional architecture models. Retrieved from https://www.itu.int/rec/T-REC-Y.2060-201206-I; International Telecomunication Union - ITU. (2005). The Internet of Things. ITU Internet Reports.; Internet Society. (2015). The Internet of Things (IoT): An Overview. Geneva, Switzerland. Retrieved from https://www.internetsociety.org/doc/iot-overview; IoT-A Project. (2016). Requirements — IOT-A: Internet of Things Architecture.; IoT Analytics. (2016). IoT Platforms: Market Report 2015-2021. Hamburg, Germany. Retrieved from https://iot-analytics.com/product/iot-platforms-market-report- 2015-2021-3/; ISO/IEC/IEEE. (2010). ISO/IEC/IEEE 24765:2010 Systems and software engineering - Vocabulary.; ISO/IEC JTC 1. (2009). Study on Sensor Networks (Version 3).; ISO, & IEEE. Systems and software engineering - Vocabulary, ISO/IEC/IEEE 24765:2010(E) 1–418 (2010). http://doi.org/10.1109/IEEESTD.2010.5733835; Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili, M., … Hamida, A. Ben. (2011). Service-oriented middleware for the Future Internet: state of the art and research directions. Journal of Internet Services and Applications, 2(1), 23–45. http://doi.org/10.1007/s13174-011-0021-3; Itakura, F. (1975). Minimum prediction residual principle applied to speech recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 23(1), 67–72.; Jelinek, F., Bahl, L., & Mercer, R. (1975). Design of a linguistic statistical decoder for the recognition of continuous speech. IEEE Transactions on Information Theory, 21(3), 250–256.; Juang, B.-H., Hou, W., & Lee, C.-H. (1997). Minimum classification error rate methods for speech recognition. IEEE Transactions on Speech and Audio Processing, 5(3), 257–265.; Juang, B.-H., & Rabiner, L. R. (2005). Automatic speech recognition-a brief history of the technology development. Elsevier Encyclopedia of Language and Linguistics, 1, 24.; Kaneko, M., Arima, K., Usami, M., Sugimura, H., Isshiki, M., & Koh, K. (2015). Development of information living integrated by home appliances and web services. In Consumer Electronics (GCCE), 2015 IEEE 4th Global Conference on (pp. 311–312).; Keh, H.-C., Shih, C.-C., Chou, K.-Y., Cheng, Y.-C., Ho, H.-K., Yu, P.-Y., & Huang, N.-C. (2014). Integrating unified communications and internet of m-health things with micro wireless physiological sensors, 17(3), 319–328.; Khurana, T. (2017). IPv6 Enables Global Mobile IoT Innovation and Proliferation. Retrieved February 26, 2017, from https://goo.gl/B1E1eF; Kim, J., Lee, J., Kim, J., & Yun, J. (2014). M2M service platforms: survey, issues, and enabling technologies. IEEE Communications Surveys & Tutorials, 16(1), 61–76.; Kostelnik, P., Sarnovsk, M., & Furdik, K. (2011). The semantic middleware for networked embedded systems applied in the internet of things and services domain. Scalable Computing: Practice and Experience, 12(3), 307–316.; Krco, S., Pokric, B., & Carrez, F. (2014). Designing IoT architecture (s): A European perspective. In Internet of Things (WF-IoT), 2014 IEEE World Forum on (pp. 79–84).; Kubitza, T. (2016). Using Speech for End User Programming of Smart Environments in the Internet of Thing. Germany.; Kubitza, T., & Schmidt, A. (2016). Rapid Interweaving of Smart Things with the meSchup IoT Platform. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (pp. 313–316). New York, NY, USA: ACM. http://doi.org/10.1145/2968219.2971379; Kubitza, T., & Schmidt, A. (2017). meSchup: A Platform for Programming Interconnected Smart Things. Computer, 50(11), 38–49.; Kumar, A., Mishra, A., Makula, P., Karan, K., & Mittal, V. K. (2015). Smart Robotic Assistant. In Region 10 Symposium (TENSYMP), 2015 IEEE (pp. 25–28).; Lee, G. M., Crespi, N., Choi, J. K., & Boussard, M. (2013). Internet of things. In Evolution of Telecommunication Services (pp. 257–282). Springer.; Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431–440.; Lin, K. J., Reijers, N., Wang, Y. C., Shih, C. S., & Hsu, J. Y. (2013). Building Smart M2M Applications Using the WuKong Profile Framework. In 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing (pp. 1175–1180). Beijing, China: IEEE. http://doi.org/10.1109/GreenCom-iThings- CPSCom.2013.204; Loucopoulus, P., & Karakostas, V. (1995). System Requirements Engineering. McGraw-Hill, Inc.; Ma, M., Wang, P., & Chu, C.-H. (2013). Data management for internet of things: challenges, approaches and opportunities. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing (pp. 1144–1151).; MacGillivray, C. (2016). Worldwide Internet of Things Forecast Update, 2015-2019.; Mamei, M., & Zambonelli, F. (2006). Field-based coordination for pervasive multiagent systems. Springer Science & Business Media.; Manrique, J. ., Rueda-Rueda, J., & Portocarrero, J. . (2016). Contrasting Internet of Things and Wireless Sensor Network from a conceptual overview. In 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (p. 6). IEEE Computer Society. http://doi.org/978-1-5090-5880-8/16; Marulli, F., Pareschi, R., & Baldacci, D. (2016). The internet of speaking things and its applications to Cultural Heritage. In Proceedings of IoTBD2016 Conference, SCITEPRESS.; McCulloch, W. S., & Pitts, W. (1990). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 52(1), 99–115.; Meier, R., & Cahill, V. (2002). Steam: Event-based middleware for wireless ad hoc networks. In Distributed Computing Systems Workshops, 2002. Proceedings. 22nd International Conference on (pp. 639–644).; Mineraud, J., Mazhelis, O., Su, X., & Tarkoma, S. (2016). A gap analysis of Internetof-Things platforms. Computer Communications, 89, 5–16.; Miranda, J., Mäkitalo, N., Garcia-Alonso, J., Berrocal, J., Mikkonen, T., Canal, C., & Murillo, J. M. (2015). From the Internet of Things to the Internet of People. IEEE Internet Computing, 19(2), 40–47.; Mittal, Y., Toshniwal, P., Sharma, S., Singhal, D., Gupta, R., & Mittal, V. K. (2015). A voice-controlled multi-functional Smart Home Automation System. In India Conference (INDICON), 2015 Annual IEEE (pp. 1–6).; Monteiro, C., Oliveira, M., Bastos, J., Ramrekha, T., & Rodriguez, J. (2014). Social Networks and Internet of Things, an Overview of the SITAC Project. In International Wireless Internet Conference (pp. 191–196).; Mottola, L., Murphy, A. L., & Picco, G. Pietro. (2006). Pervasive games in a moteenabled virtual world using tuple space middleware. In Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games (p. 29).; Nagata, K., Kato, Y., & Chiba, S. (1964). Spoken digit recognizer for Japanese language. In Audio Engineering Society Convention 16.; Nakagawa, E. Y., Oquendo, F., & Becker, M. (2012). Ramodel: A reference model for reference architectures. In Software Architecture (WICSA) and European Conference on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP Conference on (pp. 297–301).; Ngu, A. H., Gutierrez, M., Metsis, V., Nepal, S., & Sheng, Q. Z. (2017). IoT middleware: A survey on issues and enabling technologies. IEEE Internet of Things Journal, 4(1), 1–20.; Nia, A. M., & Jha, N. K. (2016). A comprehensive study of security of internet-ofthings. IEEE Transactions on Emerging Topics in Computing.; Nitti, M., Pilloni, V., Colistra, G., & Atzori, L. (2016). The virtual object as a major element of the internet of things: a survey. IEEE Communications Surveys & Tutorials, 18(2), 1228–1240.; Nuance Communications. (2016). Majority of Consumers Want Intelligent, Personalized Dialogue with Customer Service. Retrieved February 27, 2017, from https://www.nuance.com/about-us/newsroom/press-releases/opusintelligent- assistants-and-authentication-conference-2016.html; Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service- Oriented Computing: State of the Art and Research Challenges. Computer, 40(11), 38–45. http://doi.org/10.1109/MC.2007.400; Park, K.-J., Zheng, R., & Liu, X. (2012). Cyber-physical systems: Milestones and research challenges. Computer Communications, 36(1), 1–7.; Patel, P., & Cassou, D. (2015). Enabling high-level application development for the Internet of Things. Journal of Systems and Software, 103, 62–84.; Payne, G. (2014). The Internet of Things brings a new era of connectivity… and a talking fridge. Retrieved February 27, 2017, from http://whatsnext.nuance.com/connected-living/the-internet-of-thingsconnectivity/; Petrolo, R., Mitton, N., Soldatos, J., Hauswirth, M., & Schiele, G. (2014). Integrating wireless sensor networks within a city cloud. In 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking Workshops (SECON Workshops) (pp. 24–27). http://doi.org/10.1109/SECONW.2014.6979700; Pressman, R. (2010). Ingeniería del software: un enfoque práctico (Séptima Ed). México DF: McGraw-Hill Interamericana.; Rabiner, L., Levinson, S., Rosenberg, A., & Wilpon, J. (1979). Speaker-independent recognition of isolated words using clustering techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 27(4), 336–349.; Rabiner, L. R., & Juang, B. H. (2004). Statistical methods for the recognition and understanding of speech. Encyclopedia of language and linguistics.; Ratkowski, A. (2016). Architecture for Internet of Things Analytical Ecosystem. In Dependability Engineering and Complex Systems (pp. 385–393). Springer.; Raveendran, V., Sanjeev, M. R., Paul, N., & Jijina, K. P. (2016). Speech only interface approach for personal computing environment. In Engineering and Technology (ICETECH), 2016 IEEE International Conference on (pp. 372–377).; Razzaque, M. A., Milojevic-Jevric, M., Palade, A., & Clarke, S. (2016). Middleware for internet of things: a survey. IEEE Internet of Things Journal, 3(1), 70–95.; Richards, M. (2015). Software architecture patterns. O’Reilly Media, Incorporated.; Robles, T., Alcarria, R., de Andrés, D. M., Navarro, M., Calero, R., Iglesias, S., & López, M. (2015). An IoT based reference architecture for smart water management processes. JoWUA, 6(1), 4–23.; Sakai, T., & Doshita, S. (1962). The Phonetic Typewriter. In IFIP Congress (Vol. 445, p. 449).; Sanchez, L., Muñoz, L., Galache, J. A., Sotres, P., Santana, J. R., Gutierrez, V., … others. (2014). SmartSantander: IoT experimentation over a smart city testbed. Computer Networks, 61, 217–238.; Sanchez, S., Angel Sicilia, M., & Rodriguez, D. (2012). Ingeniería del Sofware. Un enfoque desde la guía SWEBOK. Alfaomega.; Santos, J. F. M., Guessi, M., Galster, M., Feitosa, D., & Nakagawa, E. Y. (2013). A Checklist for Evaluation of Reference Architectures of Embedded Systems. In SEKE (Vol. 13, pp. 1–4).; Sarma, S., Brock, D., & Engels, D. (2001). Radio Frequency Identification and the Electronic Product Code. IEEE Micro, 21(6), 50–54. http://doi.org/10.1109/40.977758; Schauer, P., & Debita, G. (2015). Internet of Things Service Systems Architecture.; Seo, S., Kim, J., Yun, S., Huh, J., & Maeng, S. (2015). HePA: Hexagonal Platform Architecture for Smart Home Things. In Parallel and Distributed Systems (ICPADS), 2015 IEEE 21st International Conference on (pp. 181–189).; Shen, S., & Carugi, M. (2014). Standardizing the Internet of Things in an evolutionary way. In ITU Kaleidoscope Academic Conference: Living in a converged world- Impossible without standards?, Proceedings of the 2014 (pp. 249–254).; Shih, C. S., Lin, K. J., Chou, J. J., & Chuang, C. C. (2014). Autonomous Service Management for Location and Context Aware Service. In 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications (pp. 246–251). Matsue, Japan: IEEE. http://doi.org/10.1109/SOCA.2014.10; Shin, D.-G., & Jun, M.-S. (2015). Home IoT device certification through speaker recognition. In Advanced Communication Technology (ICACT), 2015 17th International Conference on (pp. 600–603).; Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. In Industrial Engineering and Engineering Management (IEEM), 2014 IEEE International Conference on (pp. 697–701).; Singh, S., & Singh, N. (2015). Internet of Things (IoT): Security challenges, business opportunities & reference architecture for E-commerce. In Green Computing and Internet of Things (ICGCIoT), 2015 International Conference on (pp. 1577– 1581).; Sinha, S., Agrawal, S. S., & Jain, A. (2013). Continuous density Hidden Markov Model for context dependent Hindi speech recognition. In Advances in Computing, Communications and Informatics (ICACCI), 2013 International Conference on (pp. 1953–1958).; Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte, J.-P., Riahi, M., … Herzog, R. (2015). OpenIoT: Open Source Internet-of-Things in the Cloud. In I. Podnar Žarko, K. Pripužić, & M. Serrano (Eds.), Interoperability and Open- Source Solutions for the Internet of Things: International Workshop, FP7 OpenIoT Project, Held in Conjunction with SoftCOM 2014, Split, Croatia,September 18, 2014, Invited Papers (pp. 13–25). Cham: Springer International Publishing. http://doi.org/10.1007/978-3-319-16546-2_3; Sommerville, I. (2011). Ingeniería del Software. PEARSON.; Souza, R., & Cardozo, E. (2016). A Resource-Oriented Architecture for the Internet of Things (IoT). In Connectivity Frameworks for Smart Devices (pp. 99–116). Springer.; Stravoskoufos, K., Sotiriadis, S., & Petrakis, E. (2016). IoT-A and FIWARE: bridging the barriers between the cloud and IoT systems design and implementation. In Proc. 6th Int’l Conf. Cloud Computing and Services Science (pp. 146–153).; Sundmaeker, H., Guillemin, P., Friess, P., & Woelfflé, S. (2010). Vision and challenges for realising the Internet of Things. (Cluster of European research projects on the Internet of Things, Ed.)European Commision.; Suzuki, J., & Nakata, K. (1961). Recognition of Japanese vowels - Preliminary to the recognition of speech. Journal of the Radio Research Laboratory, 8(37), 193– 212.; Talavera Portocarrero, J. M. (2016). RAMSES: Reference Architectue of Self- Adaptative Middleware for Wireless Sensor Networks. Universidade Federal fo Rio de Janeiro.; Techopedia. (2017). What is Modeling Language?; The Institute of Electrical and Electronics Engineers. (2014). 2014 IEEE Thesaurus. Retrieved from http://www.ieee.org/documents/ieee_thesaurus_2013.pdf; Turck, M. (2018). Growing Pains: The 2018 Internet of Things Landscape. Retrieved April 2, 2018, from http://mattturck.com/iot2018/; United Nations Educational Scientific and Cultural Organization. (2016). UNESCO Thesaurus. Retrieved August 29, 2016, from http://vocabularies.unesco.org/; United Nations Educational Scientific and Cultural Organization (UNESCO). (2016). UNESCO Thesaurus. Retrieved April 11, 2016, from http://vocabularies.unesco.org/browser/thesaurus/en/; Unnibhavi, A. H., & Jangamshetti, D. S. (2016). A survey of speech recognition on south Indian Languages. In Signal Processing, Communication, Power and Embedded System (SCOPES), 2016 International Conference on (pp. 1122– 1126).; Usländer, T., & Epple, U. (2015). Reference model of industrie 4.0 service architectures. At-Automatisierungstechnik, 63(10), 858–866.; Verdouw, C. N., Robbemond, R. M., Verwaart, T., Wolfert, J., & Beulens, A. J. M. (2015). A reference architecture for IoT-based logistic information systems in agri-food supply chains. Enterprise Information Systems, 1–25.; Wang, M.-M., Cao, J.-N., Li, J., & Dasi, S. K. (2008). Middleware for wireless sensor networks: A survey. Journal of Computer Science and Technology, 23(3), 305– 326.; Weiser, M. (1991). The computer for the 21st century. Scientific American, 265(3), 94–104.; Weyrich, M., & Ebert, C. (2016). Reference architectures for the internet of things. IEEE Software, 33(1), 112–116.; Whittaker, E. W. D. (2000). Statistical language modelling for automatic speech recognition of Russian and English. University of Cambridge.; Wiener, N. (1961). Cybernetics or Control and Communication in the Animal and the Machine (Vol. 25). MIT press.; Wortmann, F., Flüchter, K., & others. (2015). Internet of things. Business & Information Systems Engineering, 57(3), 221–224. http://doi.org/10.1007/s12599-015-0383-3; Xu, B., Zhang, D., & Yang, W. (2012). Research on architecture of the Internet of Things for grain monitoring in storage. In Internet of Things (pp. 431–438). Springer.; Zhong, N., Ma, J., Huang, R., Liu, J., Yao, Y., Zhang, Y., & Chen, J. (2016). Research challenges and perspectives on Wisdom Web of Things (W2T). In Wisdom Web of Things (pp. 3–26). Springer.; Zhou, S., Liu, G., & Lin, C. (2012). An Embedded Voice Inquiry Experimental Platform for Temperature and Humidity Measurement on the Internet of Things. In Emerging Computation and Information teChnologies for Education (pp. 533– 539). Springer.; http://hdl.handle.net/20.500.12749/3547; reponame:Repositorio Institucional UNAB
Dostupnosť: https://hdl.handle.net/20.500.12749/3547
-
5
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: Robótica, Agentes inteligentes, Inteligencia artificial, Redes neuronales, Automatización, Bioingeniería, Platafomas web, Prótesis, TIC, Procesamiento de datos, Generadores de energía, Energía -- Congresos, conferencias, etc. -- Memorias, Bioingeniería -- Congresos, Sistemas de control inteligente -- Congresos, Procesamiento de señales -- Congresos, Automatización -- Congresos, Desarrollo de prototipos -- Congresos, Ingeniería biomédica -- Congresos, Tecnologías de la información y de la comunicación -- Congresos, Procesamiento digital de imágenes -- Congresos, Redes neuronales (Computadores) -- Congresos, Inteligencia artificial -- Congresos, Robotics, Intelligent agents, Artificial intelligence, Neural networks, Automation, Bioengineering
Popis súboru: pdf; application/pdf
Relation: Congreso Internacional de Electrónica Control y Telecomunicaciones.; Borrero Guerrero, H., Baquero Velasquez, A.E., Barrero, J.F., Côco, D.Z., Risardi, J.C., Magalhães, D.V. and Becker, M., 2014. “Orientation (yaw) fuzzy controller applied to a car-like mobile robot prototype”. In 2014 IEEE 5th Colombian Workshop on Circuits and Systems (CWCAS). pp. 1–6. doi:10.1109/CWCAS.2014.6994603.; Higuti, V.A.H., Guerrero, H.B., Velasquez, A.E.B., Pinto, R., Tinelli, L.M., Magalhães, D.V. and Milori, D., 2015. “Lowcost embedded computer for mobile robot platform based on raspberry board”. In ABCM International Congress of Mechanical Egineering (Cobem2015), Rio de Janeiro, Brazil.; Guerrero, H.B., 2016. Desenvolvimento de um sistema de controle em um robô móvel agrícola em escala reduzida para deslocamento entre fileiras de plantio. Ph.D. thesis, Escola de Engenharia de São Carlos, Universidad de Sao Paulo.; Guerrero, H.B., 2016. Desenvolvimento de um sistema de controle em um robô móvel agrícola em escala reduzida para deslocamento entre fileiras de plantio. Ph.D. tesis, Escola de Engenharia de São Carlos, Universidad de Sao Paulo.; Ni, J., Wang, Y., Li, H. and Du, H., 2022. “Path tracking motion control method of tracked robot based on improved lqr control”. 2022 41st Chinese Control Conference (CCC). doi:10.23919/CCC55666.2022.9902113.; Ben Halima Abid, D., Allagui, N.Y. and Derbel, N., 2017. “Navigation and trajectory tracking of mobile robot based on kinematic pi controller”. In 2017 18th International Conference on Sciences and; Allagui, N.Y., Abid, D.B. and Derbel, N., 2019. “Autonomous navigation of mobile robot with combined fractional order pi and fuzzy logic controllers”. In 2019 16th International Multi-Conference on Systems, Signals Devices (SSD). pp. 78–83. Doi:10.1109/SSD.2019.8893176.; Lentin, J., 2018. “Robot operating system for absolute beginners”. Apress, Berkeley, CA.; Nevludov, I., Sychova, O., Reznichenko, O., Novoselov, S., Mospan, D. and Mospan, V., 2021. “Control system for agricultural robot based on ros”. 2021 IEEE International Conference on Modern Electrical and Energy Systems (MEES). pp. 1–6. doi:10.1109/MEES52427.2021.9598560.; Megalingam, R.K., Nagalla, D., Nigam, K., Gontu, V. and Allada, P.K., 2020. “Pid based locomotion of multi-terrain robot using ros platform”. 2020 Fourth International Conference on Inventive Systems and Control (ICISC). pp. 751–755. doi:10.1109/ICISC47916.2020.9171152.; Alam Bhuiyan, Ifte Khairul. (2017). LiDAR Sensor for Autonomous Vehicle. 10.13140/RG.2.2.16982.34887/1.; Lin, Z., Xiong, Y., Dai, H. and Xia, X., 2017. “An experimental performance evaluation of the orientation accuracy of four nine-axis mems motion sensors”. 2017 5th International Conference on Enterprise Systems (ES). pp. 185–189. doi:10.1109/ES.2017.37.; Henry, B.G., David, Q.Y., Estivent, C.M.J., Arbey, C.C.L., Alexis, C.R.Y. and Andrés, S.R., 2020. “Lidar readings based mobile robot wall-following task using a reactive fuzzy control system - a low-cost experimental approach”. URL https://hemeroteca.unad.edu.co/index.php/memorias/article/view/4201.; Guerrero, H.B., 2016. Desenvolvimento de um sistema de controle em um robô móvel agrícola em escala reduzida para deslocamento entre fileiras de plantio. Ph.D. tesis, Escola de Engenharia de São Carlos, Universidade de Sao Paulo.; S.N. Sivanandam, S. Sumathi. and S.N. Deepa, "Introduction to Fuzzy Logic using MATLAB", Springer-Verlag, Berlin, Germany, 2007.; M. Garcia Sanz and M. Motilva Casado, "Herramientas para el estudio de robots de cinemática paralela: Simulador y prototipo experimental," Revista Iberoamericana de Automática e Informática Industrial, RIAI, vol. 2, no. 2, pp. 73-81, 2005. https://polipapers.upv.es/index.php/RIAI/article/view/8064; A. I. Aureles Cabrera, Robot paralelo tipo STEWART para la rehabilitación de tobillo, Hidalgo, Mexico: Universidad Politécnica de Tulancingo, 2019. http://www.upt.edu.mx/Contenido/Investigacion/Contenido/TESIS/MAC/2019/MAC_T_2 019_01_AAC.pdf; Instituto de Investigación de Seguridad en la Conducción IOWA, «Simulador NADS - 1,» Univesidad de Iowa, 2023. [En línea]. Available: https://dsri.uiowa.edu/nads-1. [Último acceso: 02 2023].; SIMAERO, "AIRBUS A340 FFS," SIMAERO, 2023. [Online]. Available: https://www.sim.aero/a340/. [Último acceso 02 2023].; O. Altuzarra, Y. San Martín, E. Amezua and A. Hernández, "Motion pattern analysis of parallel kinematic machines: A case study," Robotics and Computer-Integrated Manufacturing, vol. 25, no. 2, pp. 432-440, 2009. https://doi.org/10.1016/j.rcim.2008.01.007; J. Fernandes and A. Selvakumar, "Kinematic and Dynamic Analysis of 3PUU Parallel Manipulator for Medical Applications," Procedia Computer Science, vol. 133, no. 1, pp. 604-611, 2018. https://doi.org/10.1016/j.procs.2018.07.091; I. Ben Hamida, M. Amine Laribi, A. Mlika, L. Romdhane, S. Zeghloul and G. Carbone, "Multi-Objective optimal design of a cable driven parallel robot for rehabilitation tasks," Mechanism and Machine Theory, vol. 156, no. 1, pp. 104-141, 2021. https://doi.org/10.1016/j.mechmachtheory.2020.104141; K. Duarte Barón and C. Borrás Pinilla, «Generalidades de robots paralelos,» Revista visión electrónica, algo más que un estado sólido, vol. 10, nº 1, pp. 1-11, 2016. https://doi.org/10.14483/22484728.11711; K. Duarte Barón, C. Borrás Pinilla and J. J. Gil Pelaez, «Dynamic analysis and simulation of computed torque control of a parallel robot 3SPS - 1U,» de IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellín, Colombia, 2019. https://doi.org/10.1109/CCAC.2019.8921238; C. Gosselin and J. Angeles, "Singularity analysis of closed-loop kinematic chains," IEEE Transactions on Robotics and Automation, vol. 6, no. 3, pp. 281-290, 1990. https://doi.org/10.1109/70.56660; J. Kardos, "Robust Computed Torque Method of Robot Tracking Control," in 22nd International Conference on Process Control (PC19), Strbske Pleso, Slovakia, 2019. https://doi.org/10.1109/PC.2019.8815088; C. Jun and W. Lin, "Track Tracking of Double Joint Robot Based on Sliding Mode Control," in IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE), Dalian, China, 2020. https://doi.org/10.1109/ICISCAE51034.2020.9236895; W. X. Xu, G. Z. Cao, Y. P. Zhang, J. C. Chen, D. P. Tan and Z. Q. Ling, "Adaptive backstepping sliding mode control of lower limb exoskele-ton robot based on combined double power reaching law," in 2th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Baishan, China, 2022. https://doi.org/10.1109/CYBER55403.2022.9907279; X. Chen, H. Chen, Y. Huang and Q. Huang, "Adaptability Control Towards Complex Ground Based on Fuzzy Logic for Humanoid Robots," IEEE Transactions on Fuzzy Systems, vol. 30, no. 6, pp. 1574-1584, 2022. https://doi.org/10.1109/TFUZZ.2022.3167458; D. Li, J. Pan, J. Liu, M. Wang and J. Yu, "Model Predictive Control Based Path Following of an Amphibious Robot," in 0th Chinese Control Conference (CCC), 2021. https://doi.org/10.23919/CCC52363.2021.9549348; Y. Zhang, L. Sol and Y. Zhang, "Research on Algorithm of Humanoid Robot Arm Control System Based on Fuzzy PID Control," in International Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS), Bristol, United Kingdom, 2022. https://doi.org/10.1109/AIARS57204.2022.00082; K. Duarte Barón and C. Borrás Pinilla, Analisis, diseño y simulacion de un control robusto para un robot paralelo de 3 grados de libertad, Bucaramanga, Colombia, Universidad Industrial de Santander, 2019. https://noesis.uis.edu.co/items/c91bc6a4-e228-44f8- 8ab4-33000e9e8688; J. J. Slotine and W. Li, Applied nonlinear control, New Jersey: Prentice Hall, 1991.; S. Iqbal and A. I. Bhatti, "Robust sliding-mode controller design for a stewart platform," in Proceedings of International Bhurban Conference on Applied Sciences, Islamabad, Pakistan, 2007. https://doi.org/10.1109/IBCAST.2007.4379924; C. Zhang and L. Zhang, "Kinematics analysis and workspace investigation of a novel 2- DOF parallel manipulator applied in vehicle driving simulator," Robotics and ComputerIntegrated Manufacturing, vol. 29, no. 2, pp. 113-120, 2013. https://doi.org/10.1016/j.rcim.2012.11.005; Hongwei Gao, Jin An, Chee Kai Chua, David Bourell, Che-Nan Kuo, Dawn T.H. Tan, 3D printed optics and photonics: Processes, materials and applications, Materials Today, 2023, ISSN 1369-7021, https://doi.org/10.1016/j.mattod.2023.06.019; C. Wu, L. Wu, G. Shang and H. Guo, "Application and Research of 3D Printing Technology in the Field of Architecture," 2021 4th International Conference on Electron Device and Mechanical Engineering (ICEDME), Guangzhou, China, 2021, pp. 71-74, https://doi.org/10.1109/ICEDME52809.2021.00024; Jens Oprel, Gerjan Wolterink, Jurnan Schilder, Gijs Krijnen, Novel 3D printed capacitive shear stress sensor, Additive Manufacturing, Volume 73, 2023, 103674, ISSN 2214- 8604, https://doi.org/10.1016/j.addma.2023.103674; Jun Ren, Fan Wu, Erwei Shang, Dongya Li, Yu Liu, 3D printed smart elastomeric foam with force sensing and its integration with robotic gripper, Sensors and Actuators A: Physical, Volume 349, 2023, 113998, ISSN 0924-4247, https://doi.org/10.1016/j.sna.2022.113998; Guo Liang Goh, Wai Yee Yeong, Jannick Altherr, Jingyuan Tan, Domenico Campolo, 3D printing of soft sensors for soft gripper applications, Materials Today: Proceedings, Volume 70, 2022, Pages 224-229, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2022.09.025; W. Zhang, J. Li, H. Liu and G. Jin, "Research on Embedded 3D Printing for Magnetic Soft Robots," 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, 2021, pp. 518-523, https://doi.org/10.1109/NEMS51815.2021.9451436; M. Abouelmajd, A. Bahlaoui, I. Arroub, M. Lagache and S. Belhouideg, "Mechanical Characterization of PLA Used in Manufacturing of 3D Printed Medical Equipment for COVID-19 Pandemic," 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), Kenitra, Morocco, 2020, pp. 1-5, https://doi.org/10.1109/ICECOCS50124.2020.9314444; S. Zhang, G. Xia, X. Hao, Y. Zhang, W. Chen and Z. Zhou, "Design Optimization and Simulation Analysis of Screw Extrusion 3D Printing Screw," 2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), Ma'anshan, China, 2022, pp. 400-404, https://doi.org/10.1109/WCMEIM56910.2022.10021447; B. B. Kanbur, S. Shen, Y. Zhou and F. Duan, "Neural network-integrated multiobjective optimization of the 3D-printed conformal cooling channels," 2020 5th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 2020, pp. 1-6, https://doi.org/10.23919/SpliTech49282.2020.9243730; D. Wang, H. Wang and Y. Wang, "Continuity Path Planning for 3D Printed Lightweight Infill Structures," 2021 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS), Shenyang, China, 2021, pp. 959-962, https://doi.org/10.1109/TOCS53301.2021.9688877; M. H. Ali, G. Yerbolat and S. Amangeldi, "Material Optimization Method in 3D Printing," 2018 IEEE International Conference on Advanced Manufacturing (ICAM), Yunlin, Taiwan, 2018, pp. 365-368, https://doi.org/10.1109/AMCON.2018.8614886; R F. Peng, "Prototyping to Mass Production: Automated CAD Model and G-Code Optimization Framework for Industrial 3D Printing," 2023 9th International Conference on Mechatronics and Robotics Engineering (ICMRE), Shenzhen, China, 2023, pp. 203- 206, https://doi.org/10.1109/ICMRE56789.2023.10106588; Mohit Bhayana, Jaswinder Singh, Ankit Sharma, Manish Gupta, A review on optimized FDM 3D printed Wood/PLA bio composite material characteristics, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.03.029; Aliza Rabinowitz, Paul M. DeSantis, Cemile Basgul, Hannah Spece, Steven M. Kurtz, Taguchi optimization of 3D printed short carbon fiber polyetherketoneketone (CFR PEKK), Journal of the Mechanical Behavior of Biomedical Materials, Volume 145, 2023, 105981, ISSN 1751-6161, https://doi.org/10.1016/j.jmbbm.2023.105981; Mihir Mogra, Ofer Asaf, Aaron Sprecher, Oded Amir, Design optimization of 3D printed concrete elements considering buildability, Engineering Structures, Volume 294, 2023, 116735, ISSN 0141-0296, https://doi.org/10.1016/j.engstruct.2023.116735; C. Wu, C. Dai, G. Fang, Y. -J. Liu and C. C. L. Wang, “General Support-Effective Decomposition for Multi-Directional 3-D Printing”, IEEE Transactions on Automation Science and Engineering, vol. 17, no. 2, pp. 599-610, April 2020, doi: https://doi.org/10.1109/TASE.2019.2938219; L. Cheng and A. To, “Part-scale build orientation optimization for minimizing residual stress and support volume for metal additive manufacturing: Theory and experimental validation,” Computer-Aided Design, vol. 113, pp. 1–23, Aug. 2019, doi: https://doi.org/10.1016/j.cad.2019.03.004; J. Jiang, X. Xu, and J. Stringer, “Optimization of process planning for reducing material waste in extrusion based additive manufacturing,” Robotics and Computer-Integrated Manufacturing, vol. 59, pp. 317–325, Oct. 2019, doi: https://doi.org/10.1016/j.rcim.2019.05.007; George E. P. Box. “Evolutionary Operation: A Method for Increasing Industrial Productivity.” Journal of the Royal Statistical Society. Series C (Applied Statistics) 6, no. 2 (1957): 81–101. https://doi.org/10.2307/2985505; J. C. Guacheta-Alba, S. Gonzalez, D. A. Nunez, M. Mauledoux, O. Aviles, "3D printing part orientation optimization: discrete approximation of support volume". International Journal of Electrical and Computer Engineering, vol 12. pp. 5958-5966, 2022. https://doi.org/10.11591/ijece.v12i6.pp5958-5966; L. Wing-Yue Geoffrey , M. Sharaf and N. Goldie, "Human-Robot Interaction for Rehabilitation Robots," in Robotic Assistive Technologies: Principles and Practice, Boca Raton, CRC Press, Taylor & Francis Group, 2017, pp. 26-27, 40.; C. Bodine, L. Sliker, M. Marquez, C. Clark, B. Burne and J. Sandstrum, "Social Assistive Robots for Children with Complex Disabilities," in Robotic Assitive Tecnologies: Principles and Practice, Boca Raton, CRC Press, Taylor & Francis Group, 2017, pp. 263, 295.; R. Baker, "Gait analysis methods in rehabilitation," J. Neuroeng. Rehabil., vol. 3, p. 4, 2006.; J. C. Pulido, C. Suárez-Mejías, J. C. González, A. Dueñas Ruiz, P. Ferrand Ferri, M. E. Martínez Sahuquillo, C. Echevarría Ruiz De Vargas, P. Infante-Cossio and C. L. Parra Calderón, "A Socially Assistive Robotic Platform for Upper-Limb Rehabilitation," IEEE ROBOTICS & AUTOMATION MAGAZINE, pp. 24-39, 2019.; G. Emre Cemal, C. YuJung and K. ChangHwan , "Imitation of Human Upper-Body Motions by Humanoid Robots," 16th International Conference on Ubiquitous Robots (UR), p. 24, 2019.; K. Darvish, L. Penco, J. Ramos, R. Cisneros, J. Pratt, E. Yoshida, S. Ivaldi and D. Pucci, "Teleoperation of Humanoid Robots: A Survey," Computer Science, pp. 1-21, 202.; J. Valčík, Similarity Models for Human Motion Data, Brno: Masaryk University, 2016.; P. Kopniak, "Motion capture using multiple Kinect controllers," Przeglad. Elektrotechniczny, 91(8), pp. 26-29, 2015.; L. L. Gómez Echeverry, A. M. Jaramillo Henao, M. A. Ruiz Molina, S. . M. Velásquez Restrepo, C. A. Páramo Velásquez and G. J. Silva Bolívar, "Human motion capture and analysis systems: a systematic review," PROSPECTIVA Vol. 16 - No. 2, pp. 24-34, 2018.; N. Ltda., Axis Neuron User Guide.; A. M. Norjasween, F. A. khtar Hanapiah, R. A. Abdul Rahman and H. Yussof, "Emergence of Socially Assistive Robotics in Rehabilitation for Children with Cerebral Palsy: A Review," International Journal of Advanced Robotic Systems, pp. 1-7, 2016.; S. Fojt˚u, "Nao Localization and Navigation Based on Sparse 3D Point Cloud Reconstruction," CZECH TECHNICAL UNIVERSITY IN PRAGUE, Praga, 2011.; Revista de Robots, "ROBOT NAO PARA EMPRESA Y EDUCACIÓN," Revista de Robots, 8 junio 2023. [Online]. Available: https://revistaderobots.com/robots-y-robotica/robot-naocaracteristicas-y-precio/?cn-reloaded=1. [Accessed 2023 junio 24].; University of Wisconsin-Madison, "Biovision BVH," 2023. [Online]. Available: https://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html.; B. Lutjens, "perc-neuron-ros-ur10," 2019. [Online]. Available: https://github.com/blutjens/perc_neuron_ros_ur10.; S. Haller, "perception-neuron-ros," 2017. [Online]. Available: https://github.com/smhaller/perception-neuron-ros.; O. Robotics, "Open Robotics," 2019. [Online]. Available: http://wiki.ros.org/nao.; C. Girard, D. Calderón de León, A. Arafat Lemus, V. Ferman and J. Fajardo, "A Motion Mapping System for Humanoids that Provides Immersive Teleprescence Experiences," Universidad Galileo, 2020.; B. M. Lütjens, "Real-Time Teleoperation of Industrial Robots with the Motion Capture System Perception Neuron," TECHNISCHE UNIVERSITÄT MÜNCHEN, Munich, 2017.; I. Almetwally and M. Mallem, "Real-time Tele-operation and Tele-walking of Humanoid Robot Nao using Kinect Depth Camera," IEEE, pp. 1-4, 2013.; C. Gu, L. Weicong, X. He, Z. Lei and Z. Mingming, "IMU-based motion capture system for rehabilitation applications: A systematic review," Biomimetic Intelligence and Robotics, vol. 3, no. 2, pp. 1-13, 2023.; Ministerio de Educación Nacional, «¿Cómo formular e implementar los resultados de aprendizaje?,» 2021. [En línea]. Available: https://www.mineducacion.gov.co/1780/articles-408425_recurso_5.pdf. [Último acceso: 12 septiembre 2023].; NASA, «Los Rovers del Marte,» 23 marzo 2021. [En línea]. Available: https://spaceplace.nasa.gov/mars-rovers/sp/. [Último acceso: 10 septiembre 2023].; J. J. Lugo, «Rover espacial SR-001 diseñado para descubrir nuevos mundos,» 2023. [En línea]. Available: https://ideasdi.com/diseno-transporte/rover-espacial-sr-001/. [Último acceso: 9 septiembre 2023].; TN, «La NASA diseñó un rover que hace rápel para desniveles de otros planetas,» 16 octubre 2020. [En línea]. Available: https://tn.com.ar/tecno/2020/10/16/la-nasadiseno-un-rover-que-hace-rapel-para-desniveles-de-otros-planetas/. [Último acceso: 12 septiembre 2023].; x. m. J. G. y. R. L. Christian Montaleza, «Diseño de un prototipo de robot con geometría Rocker-Bogie,» Enfoque UTE , vol. 13, nº 1, pp. 82-96, 2022.; M. R. H. S. y. M. Santos, «Primera aproximación de diseño de un rover minimalista bio-inspirado,» de XXXVII jornada de automatica, Madrid, 2016.; C. A. L. Talavera, «Diseño de un vehículo a tracción humana para participar en el NASA Human Rover Challenge,» 2022. [En línea]. Available: https://hdl.handle.net/20.500.12404/24409. [Último acceso: 9 septiembre 2023].; D. L. L. y. J. A. A. O. Diana Marcela Hernandez Rincón, «Diseño y construccion de un vehículo autónomo tipo rover -DIDAJO-,» 2005. [En línea]. Available: http://biblioteca.usbbog.edu.co:8080/Biblioteca/BDigital/37506.pdf. [Último acceso: 8 septiembre 2023].; H. . A. Carvajal Pulido, J. D. Bohórquez Guerra y G. Carrasquilla Mercado, «Diseño y construcción de un prototipo a escala de vehículo tipo rover no tripulado para la siembra, fumigación y transporte de productos agrícolas en terrenos irregulares del corregimiento de Berlín Santander,» junio 2021. [En línea]. Available: https://repository.unab.edu.co/handle/20.500.12749/14232. [Último acceso: 5 septiembre 2023].; Pavcowavin, «5 beneficios de usar tuberías PVC en tu casa,» 12 marzo 2021. [En línea]. Available: https://pavcowavin.com.co/blog/beneficios-de-usar-tuberiaspvc#:~:text=Las%20tuber%C3%ADas%20de%20policloruro%20de,como%20aguas %20lluvia%20y%20ventilaci%C3%B3n. [Último acceso: 6 septiembre 2023].; Electrotekmega, «Motor Reductor Faulhaber,» 2023. [En línea]. Available: https://electrotekmega.com/producto/motor-reductor-faulhaber/. [Último acceso: 10 septiembre 2023].; Mvelectronica, «Motorreductor Faulhaber Con Encoder De Velocidad 12v 64:1 120rpm 2342l012cr,» 2023. [En línea]. Available: https://mvelectronica.com/producto/motorreductor-faulhaber-con-encoder-develocidad-12v-64-1-120rpm-2342l012cr. [Último acceso: 2 septiembre 2023].; Arduino.cl, «Arduino Mega 2560,» 2023. [En línea]. Available: https://arduino.cl/producto/arduino-mega2560/#:~:text=Arduino%20Mega%20es%20una%20tarjeta,implementa%20el%20len guaje%20Processing%2FWiring. [Último acceso: 10 septiembre 2023].; Arduino Spain, «Arduino Mega características y specificaciones,» 14 julio 2023. [En línea]. Available: https://arduino-spain.site/arduino-mega/. [Último acceso: 12 septiembre 2023].; Naylampmechatronics, «TUTORIAL DE USO DEL MÓDULO L298N,» 2023. [En línea]. Available: https://naylampmechatronics.com/blog/11_tutorial-de-uso-delmodulo-l298n.html. [Último acceso: 12 septiembre 2023].; Eneka SA, «MÓDULOS COMUNICACIÓN,» 2023. [En línea]. Available: https://www.eneka.com.uy/robotica/modulos-comunicacion/m%C3%B3dulobluetooth-hc05- detail.html#:~:text=Este%20m%C3%B3dulo%20bluetooth%20nos%20permite,opera ci%C3%B3n%20de%20un%20puerto%20serial. [Último acceso: 5 septiembre 2023].; Ambientesoluciones, «PRODUCTOS / BATERÍAS AGM,» 2023. [En línea]. Available: https://www.ambientesoluciones.com/portal/producto/bateria-12v9ah#:~:text=Detalles%3A,y%20descarga%20lenta%20y%20profunda. [Último acceso: 12 septiembre 2023].; Mlstatic, «FL1290,» 2023. [En línea]. Available: https://http2.mlstatic.com/D_NQ_NP_718370-MLA48587476540_122021-O.webp. [Último acceso: 10 septiembre 2023].; Habacuc Flores, «DEVELOPMENT OF A ROVER VEHICLE WITH ROCKER-BOGIE SUSPENSION FOR AGRICULTURAL INSPECTION,» 5 octubre 2016. [En línea]. Available: https://www.youtube.com/watch?v=7B1DlB6RcLQ&t=29s. [Último acceso: 7 septiembre 2023].; F. Cugurullo, "Urban Artificial Intelligence: From Automation to Autonomy in the Smart City," 2020.; Y. Liu, Q. Shi, W. Guo, and W. Liao, "A Real-time, Mobile-object Detection Approach for Unmanned Aerial Vehicle Based Forest Fire Surveillance System," 2020.; P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, "A Review of YOLO Algorithm Developments," 2022.; R. C. U. Chiroma, "Vehicle detection, counting, and classification in traffic videos: A survey," IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 10, pp. 3773-3785, 2021.; M. A. H. Akhand, "Vehicle Recognition from License Plate Number using Deep Learning," arXiv preprint arXiv:1903.09203, 2019.; J. W. Coral López, C. A. Pulgarín Ortiz, S. E. Nope, and A. Barandica, "Identificación de camiones de carga en movimiento por visión artificial," Tesis de pregrado, Escuela de Ingeniería Eléctrica y Electrónica, Universidad del Valle.; Á. Ramajo Ballester, J. González Cepeda, J. M. Armingol Moreno, and A. de la Escalera Hueso, "Reidentificación de camiones mediante técnicas de deep learning," Informe técnico, Laboratorio de Sistemas Inteligentes, Universidad Carlos III de Madrid.; R. A. Gonzalez, R. E. Ferro, and D. Liberona, "Government and governance in intelligent cities, smart transportation study case in Bogotá Colombia," Ain Shams Engineering Journal, vol. 11, no. 1, pp. 25-34, 2020.; Unesco.org. (2023, abril 20). IA por el Planeta: Destacando las innovaciones de IA para la movilidad sostenible y las ciudades inteligentes. [En línea]. Disponible en: https://www.unesco.org/es/articles/ia-por-el-planeta-destacando-las-innovaciones-de-ia-parala-movilidad-sostenible-y-las-ciudades; Redalyc.org. (S/f). [En línea]. Disponible en: https://www.redalyc.org/journal/852/85259689013/html/. Recuperado el 7 de julio de 2023.; Gómez Zapata, C. A. (2019). "Reconocimiento de objetos del hogar, usando redes neuronales convolucionales para personas con discapacidad visual." Revista Científica de Ingeniería y Tecnología, 2(2), 1-10. Disponible en: https://dialnet.unirioja.es/descarga/articulo/7436051.pdf.; Murgui, J., & García-Sánchez, A. J. (2018). "Clasificación y reconocimiento de imágenes con redes neuronales para aplicaciones industriales." Disponible en: https://riunet.upv.es/bitstream/handle/10251/115464/Murgui.pdf?sequence=1; Olabe, X. B. (s/f). "Redes Neuronales Artificiales y Sus Aplicaciones." Disponible en: https://ocw.ehu.eus/pluginfile.php/40137/mod_resource/content/1/redes_neuro/contenidos/pd f/libro-del-curso.pdf. Recuperado el 8 de julio de 2023.; Ortiz, G., & Sánchez, A. I. (2020). "Emprendimiento y tecnologías de la información y la comunicación en Bogotá." Cuadernos de Administración, 36(67), 199-211.; Torres, J., & Acosta, H. (2019). "La innovación en el ecosistema emprendedor de Bogotá." Cuadernos de Administración, 35(64), 251-262.; Uribe, F., & Guzmán, J. (2021). "La colaboración público-privada en el fomento de la innovación en Bogotá: el caso de la identificación de objetos en el contexto vial." Revista Internacional de Gestión y Economía Aplicada, 11(1), 89-101.; Bogotá se destaca como una ciudad innovadora en el CityLab 2021. (2021). [En línea]. Disponible en: https://bogota.gov.co/internacional/bogota-se-destaca-como-una-ciudadinnovadora-en-el-citylab-2021; Ministerio de Transporte y Agencia Nacional de Seguridad Vial adoptan la metodología para establecer velocidad límite y reglamentan los planes de gestión de la velocidad %7C ANSV. (2023). [En línea]. Disponible en: https://ansv.gov.co/es/prensa-comunicados/9955; Parámetros e hiperparámetros en el Machine Learning %7C Codificando Bits. (2023). [En línea]. Disponible en: https://www.codificandobits.com/blog/parametros-hiperparametrosmachine-learning/; ¿Qué es el ajuste de hiperparámetros? - Explicación de los métodos de ajuste de hiperparámetros - AWS. (2023). [En línea]. Disponible en: https://aws.amazon.com/es/whatis/hyperparameter-tuning/; Análisis del flujo vehicular Generalidades. (s/f). [En línea]. Disponible en: https://sjnavarro.files.wordpress.com/2008/08/analisis-de-flujo-vehicular-cal-y-mayor.pdf; "INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO ESCOM “Cálculo del flujo vehicular mediante segmentación de imágenes.” (s/f). [En línea]. Disponible en: https://tesis.ipn.mx/bitstream/handle/123456789/21133/C%C3%A1lculo%20del%20flujo%20v ehicular%20mediante%20segmentaci%C3%B3n%20de%20im%C3%A1genes.pdf?sequence =5&isAllowed=y; Oscar Javier Reyes-Ortiz, Mejia, M., & Juan Sebastián Useche-Castelblanco. (2019). "TÉCNICAS DE INTELIGENCIA ARTIFICIAL UTILIZADAS EN EL PROCESAMIENTO DE IMÁGENES Y SU APLICACIÓN EN EL ANÁLISIS DE PAVIMENTOS." Revista EIA, 16(31), 189–207. Disponible en: https://www.redalyc.org/journal/1492/149258931014/html/; Secretaría Distrital de Movilidad. (2014). Movilidadbogota.gov.co. https://www.movilidadbogota.gov.co/web/; L. Salcedo, "YOLO (You Only Look Once): Detección de Objetos en Tiempo Real," Mi Diario Python, Mi Diario Python, 19 de septiembre de 2018. Disponible en: https://pythondiario.com/2018/09/yolo-you-only-look-once-deteccion-de.html [26] Y. Shao, D. Zhang, H. Chu, X. Zhang, and Y. Rao, "A Review of YOLO Object Detection Based on Deep Learning," 2021.; Konda et al., "Real-Time Traffic Sign Detection and Recognition Using YOLOv3 and OpenCV," 2020.; Bhasin, "Real-time Object Detection with YOLO, OpenCV and Python," 2019.; Suresh et al., "Object Detection with YOLO for Intelligent Traffic Monitoring System," 2020.; S. Siddiqui, "Traffic Sign Detection Using YOLO v3 with OpenCV," 2020.; Propia, "Esquema general de entrenamiento usado para reconocimiento de imágenes con YOLO," [Figura], 2023.; A. Sharma, J. Pathak, M. Prakash, and J. N. Singh, "Object Detection using OpenCV and Python," International Journal of Innovative Research in Computer and Communication Engineering, vol. 8, no. 6, pp. 2736-2741, 2020.; R. Fernandez, "Detección de rostros, caras y ojos con Haar Cascad," Cursos de Programación de 0 a Experto © Garantizados, 10 de enero de 2018. Disponible en: https://unipython.com/deteccion-rostros-caras-ojos-haar-cascad/; Administrador, "Como crear tu propio DETECTOR DE OBJETOS con Haar Cascade %7C Python y OpenCV," omes-va.com, OMES, 29 de julio de 2020. Disponible en: https://omesva.com/como-crear-tu-propio-detector-de-objetos-con-haar-cascade-python-y-opencv/; E. Ángel and J. Ambrogio, "ARTÍCULOS PRESENTADOS A RADI %7C TECNOLOGÍA DE LA INFORMACIÓN Y COMUNICACIÓN." Disponible en: https://confedi.org.ar/wpcontent/uploads/2020/12/Articulo1-RADI16.pdf; Propia, "Esquema general de entrenamiento usado para reconocimiento de imágenes con Haar Cascade," [Figura], 2023.; S. S. Rao, "Vehicle detection and identification using computer vision and deep learning techniques," IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 10, pp. 2827-2836, 2018.; M. E. Gavilán, "Procesamiento de Imágenes y Visión Artificial con MATLAB," MathWorks, 2021.; MathWorks, "Visión Artificial con MATLAB: Detección y seguimiento de objetos," MathWorks, 2013.; Propia, "Esquema general de entrenamiento usado para reconocimiento de imágenes con Visión por computadora sin usar Deep Learning," [Figura], 2023.; A. Jayasree, M. Vari, P. Vishnu, and S. Medimi, "A comparative study of YOLO and Haar Cascade algorithm for helmet and license plate detection of motorcycles," 2022. [En línea]. Disponible en: https://www.diva-portal.org/smash/get/diva2:1707864/FULLTEXT02; J. Lamichhane, J. Aubertot, G. Begg, A. Birch, P. Boonekamp, S. Dachbrodt, J. Grønbech, M. Hovmøller, J. Jensen, L. Jørgensen, J. Kiss, P. Kudsk, A. Moonen, J. Rasplus, M. Sattin, J. Streito, A. Messéan, “Networking of integrated pest management: A powerful approach to address common challenges in agriculture”, J. Crop Protection, vol. 89, no. 1, pp. 139- 151, 2016. Doi: https://doi.org/10.1016/j.cropro.2016.07.011.; S. Azfar, A. Nadeem, A. Basit, “Pest detection and control techniques using wireless sensor network: a review”, J. Entomology and Zoology Studies, vol 3, no. 2, pp. 92-99, Jan. 2015.; J. Pretty, Z. Bharucha, “Integrated pest management for sustainable intensification of agriculture in Asia and Africa”, Insects, vol 6, no. 1, pp. 152-182, Mar. 2015. Doi: https://doi.org/10.3390/insects6010152.; D. Arcega, W. Lee, C. Lu, Y. Wu, P. Shih, S. Chen, J. Chung, T. Lin, “Edge-based wireless imaging system for continuous monitoring of insect pests in a remote outdoor mango orchard”, Computers and Electronics in Agriculture, vol 211, no. 108019, 2023. Doi: https://doi.org/10.1016/j.compag.2023.; H. Zhang, T. Islam, W. Lio, “Integrated pest management programme for cereal blast fungus Magnaporthe oryzae”, J. Integrative Agriculture, vol 21, no. 12, pp. 3420-3433. 2022. Doi: https://doi.org/10.1016/j.jia.2022.08.056.; D. Rustia, L. Chiu, C. Lu, Y. Wu, S. Chen, J. Chung, J. Hsu, T. Lin, “Towards intelligent and integrated pest management through an AIoT-based monitoring system”, Pest. Manage. Sci., vol 78, no. 10, pp. 4288–4302, 2022. Doi: https://doi.org/10.1002/ps.7048.; I. Ahmad and K. Pothuganti, "Smart Field Monitoring using ToxTrac: A Cyber-Physical System Approach in Agriculture", 2020 International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, pp. 723-727, 2020. Doi:10.1109/ICOSEC49089.2020.9215282.; S. Cecchi, S. Spinsante, A. Terenzi, S. Orcioni, “A Smart Sensor-Based Measurement System for Advanced Bee Hive Monitoring”, Sensors, vol 20, no. 2726, pp. 1-20, 2020. Doi: https://doi.org/10.3390/s20092726.; F. Murphy, M. Magno, P. Whelan and E. Vici, "b+WSN: Smart beehive for agriculture, environmental, and honey bee health monitoring — Preliminary results and analysis," 2015 IEEE Sensors Applications Symposium (SAS), Zadar, Croatia, pp. 1-6, 2020. Doi:10.1109/SAS.2015.7133587.; P. Saha, V. Kumar, S. Kathuria, A. Gehlot, V. Pachouri and A. S. Duggal, “Precision Agriculture Using Internet of Things and Wireless Sensor Networks”, 2023 International Conference on Disruptive Technologies (ICDT), Greater Noida, India, pp. 519-522, 2023. Doi:10.1109/ICDT57929.2023.10150678.; R. Singh, R. Berkvens and M. Weyn, “Energy Efficient Wireless Communication for IoT Enabled Greenhouses”, 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India, pp. 885-887, 2020. Doi:10.1109/COMSNETS48256.2020.9027392.; F. Kiani and A. Seyyedabbasi, “Wireless Sensor Network and Internet of Things in Precision Agriculture”, International Journal of Advanced Computer Science and Applications, vol 9, no. 6, pp. 99-103, 2018. Doi: http://dx.doi.org/10.14569/IJACSA.2018.090614.; O. Savale, A. Managave, D. Ambekar, S. Sathe, “Internet of Things in Precision Agriculture using Wireless Sensor Networks”, International Journal Of Advanced Engineering & Innovative Technology, vol 2, no. 3, pp. 1-4, Dec. 2015.; A. Sawant, J. Adinarayana and S. Durbha, “KrishiSense: A semantically aware web enabled wireless sensor network system for precision agriculture applications”, 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, pp. 4090-4093, 2014. Doi:10.1109/IGARSS.2014.6947385.; C. Prakash, L. Singh, A. Gupta, S. Lohan, “Advancements in smart farming: A comprehensive review of IoT, wireless communication, sensors, and hardware for agricultural automation”, Sensors and Actuators A: Physical, vol 362, no. 114605, pp. 1- 25, 2023. Doi: https://doi.org/10.1016/j.sna.2023.114605.; H. Jawad, R. Nordin, S. Gharghan, A. Jawad, M. Ismail, “Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review”, Sensors, vol 17, no. 1781, pp. 1-4, 2017. Doi: https://doi.org/10.3390/s17081781.; E. Avşar, N. Mowla, “Wireless communication protocols in smart agriculture: A review on applications, challenges and future trends”, Ad Hoc Networks, vol 136, no. 102982, pp. 1- 25, 2022. Doi: https://doi.org/10.1016/j.adhoc.2022.102982.; V. Starčević, M. Simić, V. Risojević and Z. Babić, “Integrated video-based bee counting and multi-sensors platform for remote bee yard monitoring”, 21st International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, pp. 1-6, 2022. Doi:10.1109/INFOTEH53737.2022.9751284.; H. Remli, K. Wan, N. Ismail, A. González, J. Corchado, M. Mohamad, “Recent Advancements and Challenges of AIoT Application in Smart Agriculture: A Review”, Sensors, vol 23, no. 7, pp. 1-22, 2023. Doi: https://doi.org/10.3390/s23073752.; S. Qazi, B. Khawaja and Q. U. Farooq, “IoT-Equipped and AI-Enabled Next Generation Smart Agriculture: A Critical Review, Current Challenges and Future Trends”, in IEEE Access, vol 10, pp. 21219-21235, 2022. Doi:10.1109/ACCESS.2022.3152544.; A. AlZubi and K. Galyna, “Artificial Intelligence and Internet of Things for Sustainable Farming and Smart Agriculture”, in IEEE Access, vol 11, pp. 78686-78692, 2023. Doi:10.1109/ACCESS.2023.3298215.; G. Sagar, B. Aastha, K. Laxman, “An introduction of fall armyworm (Spodoptera frugiperda) with management strategies: a review paper”, Nippon Journal of Environmental Science, vol 1, no. 1010, pp. 1-12, 2020. Doi: https://doi.org/10.46266/njes.1010.; C. Nicolas, B. Naila and R. Amar, “Energy efficient Firmware Over The Air Update for TinyML models in LoRaWAN agricultural networks”, 2022 32nd International Telecommunication Networks and Applications Conference (ITNAC), Wellington, New Zealand, pp. 21-27, 2022. Doi:10.1109/ITNAC55475.2022.9998338.; B. Miles, E. Bourennane, S. Boucherkha, S. Chikhi, “A study of LoRaWAN protocol performance for IoT applications in smart agriculture”, Computer Communications, vol. 164, pp. 148-157, 2020. Doi: https://doi.org/10.1016/j.comcom.2020.10.009.; D. Davcev, K. Mitreski, S. Trajkovic, V. Nikolovski and N. Koteli, “IoT agriculture system based on LoRaWAN”, 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS), Imperia, Italy, pp. 1-4, 2018. Doi:10.1109/WFCS.2018.8402368.; J. Tovar, C. Pareja, O. García, L. Gutiérrez, “Performance evaluation of LoRa technology for implementation in rural areas”, Dyna, vol 88, no. 216, pp. 69-78, Feb. 2021. Doi:10.15446/dyna.v88n216.88258.; P. Supanirattisai, K. Pimpin, W. Srituravanich and N. Damrongplasit, “Smart Agriculture Monitoring and Management System using IoT-enabled Devices based on LoRaWAN”, 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), Phuket, Thailand, pp. 679-682, 2022. Doi:10.1109/ITCCSCC55581.2022.9894956.; Y.M. Bar-On, R. Phillips, R. Milo, “The biomass distribution on earth”, Proc. Natl. Acad. Sci. U. S. A. 115, 6506–6511. 2018. https://doi.org/10.1073/pnas.1711842115; A. P. Genoud, J. Torsiello, M. Belson y B.P. Thomas, “Entomological photonic sensors: Estimating insect population density, its uncertainty and temporal resolution from transit data”, Ecological Informatics, 61, 101186, 2021. https://doi.org/10.1016/j.ecoinf.2020.101186; Murciaplaza, 2021. [En línea]. Disponible en https://murciaplaza.com/plagasenfermedades-cultivos-region-provocaron-120-millones-perdidas-2020.; N. Ardila, EL TIEMPO. 2020. [En línea]. Disponible en https://www.eltiempo.com/colombia/otras-ciudades/plaga-de-langostas-cultivosarrasados-en-los-llanos-orientales-por-una-plaga-noticias-hoy-518744; M. Huerga y S. San Juan, “El control de las plagas en la agricultura argentina. Estudio sectorial Agrícola Rural Banco Mundial/Centro de inversiones FAO”, Argentina. 2005; M. Vargas y D. Alvear, “Agricultura limpia: manejo racional de plaguicidas para control de plagas en invernaderos” [en línea]. Disponible en https://biblioteca.inia.cl/handle/123456789/6089; G. A. Holguin, B. L. Lehman, L. A. Hull, V. P. Jones y J. Park, “Electronic traps for automated monitoring of insect populations”. IFAC Proceedings Volumes, 43(26), 49- 54. 2010. https://doi.org/10.3182/20101206-3-JP-3009.00008; I. Rigakis, K. Varikou, A. Nikolakakis, Z. Skarakis, N. Tatlas y I. Potamitis, “The e-funnel trap: Automatic monitoring of lepidoptera; a case study of tomato leaf miner”. Computers and Electronics in Agriculture, 185, 106154. 2021, https://doi.org/10.1016/j.compag.2021.106154; I. Potamitis, I. Rigakis, N. Vidakis, M. Petousis y M. Weber, “Affordable Bimodal Optical Sensors to Spread the Use of Automated Insect Monitoring”. J. Sens. 2018. Article ID 3949415: https://doi.org/10.1155/2018/3949415; M. Weber, M. Geier, I. Potamitis, C. Pruszynski, M. Doyle, A. Rose, M. Geismar y J. Encarnacao. “The BG-counter, the first operative automatic mosquito counting device for online mosquito monitoring: field tests and technical outlook”. AMCA 2017 83rd Annual Meeting, 2017, pp 57.; M. Preti, F. Verheggen, S. Angeli, “Insect pest monitoring with camera-equipped traps: strengths and limitations”. J. Pest. Sci. 2020. https://doi.org/10.1007/s10340-020- 01309-4; N. Flórián, L. Gránicz, V. Gergócs, F. Tóth, M. Dombos, M. “Detecting Soil Microarthropods with a Camera-Supported Trap”. Insects. 11 (244) 2020. https://doi.org/10.3390/insects11040244; A. Gutierrez, A. Ansuategi, L. Susperregi, C. Tubío, I. Ranki ́c, L. Lenˇza, “Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases”. J. Sens. 1–15. 2019, https://doi.org/10.1155/2019/5219471; E. Goldshtein, Y. Cohen, A. Hetzroni, Y. Gazit, D. Timar, L. Rosenfeld y A. Mizrach, “Development of an automatic monitoring trap for Mediterranean fruit fly (Ceratitis capitata) to optimize control applications frequency”. Computers and Electronics in Agriculture, 139, 115-125, 2017. https://doi.org/10.1016/j.compag.2017.04.022; B. Keswani, A. Mohapatra, A. Mohanty, A. Khanna, J. Rodriguez, D. Gupta, V. De Albuquerque, “Adapting weather conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms”. Neural Comput. Appl. 31: 277–292, 2019. https://doi.org/10.1007/s00521-018-3737-1; L. García, L. Parra, J.M. Jimenez, J. Lloret, P. Lorenz, “IoT-Based Smart Irrigation Systems: An Overview on the Recent Trends on Sensors and IoT Systems for Irrigation in Precision Agriculture”. Sensors, 20(4),1042, 2020, https://doi.org/10.3390/s20041042; F.A. Paredes-Sánchez, G. Rivera, V. Bocanegra-García, H. Y. Martínez-Padrón, M. Berrones-Morales, N. Niño-García y V. Herrera-Mayorga. “Advances in control strategies against Spodoptera Frugiperda. A review”. Molecules, 26(18), 5587, 2021. https://doi.org/10.3390/molecules26185587; Ecobertura., Spodoptera frugiperda (Smith) 2023. [En línea]. Disponible en https://ecobertura.es/spodoptera-frugiperda/; Weather Spark., 2023. Average Weather in Villavicencio, Colombia. [En línea]. Disponible en https://weatherspark.com/y/24273/Average-Weather-in-VillavicencioColombia-Year-Round; S. A. Vaca Vargas, “Automated greenhouse, instrumentation and fuzzy logic”, Visión Electrónica, vol. 14, no. 1, pp. 119–127, ene. 2020. https://doi.org/10.14483/22484728.15907; A. M. Molano-Gómez; A. F. Neira-Reyes; L. H. Correa-Salazar; E. Bernal-Alzate, “Topological alternatives for photovoltaic integration in rural areas”, Visión electrónica, vol. 13, no. 1, januaryjune 2019, pp. 24-32.; Wohlers, T. (2020). "Wohlers Report 2020: 3D Printing and Additive Manufacturing State of the Industry." Wohlers Associates, Inc.; McKinsey & Company. (2018). "The next frontiers for additive manufacturing." McKinsey Digital.; Stockholm Environment Institute, J. A. Vega Araújo, M. Muñoz Cabré, y Stockholm Environment Institute, «Energía solar y eólica en Colombia: panorama y resumen de políticas 2022», Stockholm Environment Institute, mar. 2023. doi:10.51414/sei2023.016.; Wohlers, T. (2019). "Wohlers Report 2019: 3D Printing and Additive Manufacturing State of the Industry." Wohlers Associates, Inc.; Chua, C. K., Leong, K. F., & Lim, C. S. (2014). "Rapid Prototyping: Principles and Applications." World Scientific Publishing Company.; Kruth, J. P., Leu, M. C., & Nakagawa, T. (2003). "Progress in additive manufacturing and rapid prototyping." CIRP Annals - Manufacturing Technology, 52(2), 525-540.; Gibson, I., Rosen, D. W., & Stucker, B. (2015). "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing." Springer.; Cooper, R. G. (2019). "Product Leadership: Pathways to Profitable Innovation." Basic Books.; Ulrich, K. T., & Eppinger, S. D. (2015). "Product Design and Development." McGraw-Hill Education.; L. L. Hurtado-Cortés, J. A. Forero-Casallas, y V. E. Ruiz-Rosas, “Tecnologías automatizadas implementadas en la FMS HAS200”, Visión Electrónica, vol. 16, no. 1, jun. 2022.; McGrath, R. G. (2020). "Seeing Around Corners: How to Spot Inflection Points in Business Before They Happen." Houghton Mifflin Harcourt.; H. Beltrán-Cicery, D. Rojas-Sarmiento, y F. Barrera-Prieto, “Implementation of a manufacturing cell in assembly of Hanoi tower”, Visión Electrónica, vol. 16, no. 2, sep. 2022.; A. L. Vargas, "El profesional de mercadeo en tiempos de Inteligencia Artificial," IBM Colombia, 2017. [Online]. Available: https://www.revistapym.com.co/articulos/mercadeo/10851/el-profesional-de-mercadeo-entiempos-de-inteligencia-artificial.; C. F. Villa Gómez, "Mercadeo e Inteligencia Artificial," La República, 2020. [Online]. Available: https://www.larepublica.co/analisis/carlos-fernando-villa-gomez-400403/mercadeoe-inteligencia-artificial-3048716.; "Con el impulso de la Inteligencia Artificial, Colombia podría triplicar su productividad y aumentar su PIB hasta un 6.8%," Microsoft Noticias, 2019. [Online]. Available: https://news.microsoft.com/es-xl/con-el-impulso-de-la-inteligencia-artificial-colombia-podriatriplicar-su-productividad-y-aumentar-su-pib-hasta-un-6-8/; H. Wong, "Avances y Problemas en la Inteligencia Artificial de Colombia 2022," LinkedIn, 2022. [Online]. Available: https://es.linkedin.com/pulse/avances-y-problemas-en-lainteligencia-artificial-de-colombia-wong.; "IA y ChatGPT transformarán las prácticas de mercadeo," Portafolio, 2023. [Online]. Available: https://www.portafolio.co/tendencias/ia-y-chatgpt-transformaran-las-practicas-demercadeo-577916.; P. T. Hernández, "El Marco Ético para la Inteligencia Artificial en Colombia: una oportunidad para implementar proyectos de IA que beneficien a toda la ciudadanía," 2022. [Online]. Available: https://www.ccit.org.co/articulos-tictac/el-marco-etico-para-la-inteligencia-artificialen-colombia-una-oportunidad-para-implementar-proyectos-de-ia-que-beneficien-a-toda-laciudadania/.; "Inteligencia artificial: definición, historia, usos, peligros," DataScientest, 2023. [Online]. Available: https://datascientest.com/es/inteligencia-artificial-definicion.; A. Flores, "Conoce la historia del marketing digital y su evolución hasta el día de hoy," Crehana, 2021. [Online]. Available: https://www.crehana.com/blog/transformaciondigital/historia-del-marketing-digital/.; "Evolución del internet y mercadotecnia digital," Preceden, 2023. [Online]. Available: https://www.preceden.com/timelines/841917-evoluci-n-del-internet-y-mercadotecnia-digital.; "Colombia se adhiere a acuerdo sobre Inteligencia Artificial ante los países de la OCDE," Mintic, 2019. [Online]. Available: https://www.ccb.org.co/Clusteres/Cluster-de-Software-yTI/Noticias/2019/Mayo-2019/Colombia-se-adhiere-a-acuerdo-sobre-Inteligencia-Artificialante-los-paises-de-la-OCDE.; A. de Ignacio, "La Inteligencia Artificial en el marketing digital," 2023. [Online]. Available: https://www.cyberclick.es/numerical-blog/la-inteligencia-artificial-en-el-marketing-digital.; Meisam Mahdavi, Mohammad S. Javadi, João P.S. Catalão, Integrated generationtransmission expansion planning considering power system reliability and optimal maintenance activities, International Journal of Electrical Power & Energy Systems, Volume 145, 2023, 108688, ISSN 0142- 0615,https://doi.org/10.1016/j.ijepes.2022.108688. (https://www.sciencedirect.com/science/article/pii/S0142061522006846); Long Ding, Hong Wang, Kai Kang, Kai Wang, A novel method for SIL verification based on system degradation using reliability block diagram, Reliability Engineering & System Safety, Volume 132, 2014, Pages 36-45, ISSN 0951-8320, https://doi.org/10.1016/j.ress.2014.07.005. (https://www.sciencedirect.com/science/article/pii/S0951832014001604); ISO 55001:2014 Asset Management. Management systems – RequirementsThe British Standards Institution. 2014.; B. Dhilon, “Applied Reliability and Quality Fundamentals, Methods and Procedures, New Jersey: Springer, 2007.; Mohsen Firouzi, Abouzar Samimi, Abolfazl Salami, Reliability evaluation of a composite power system in the presence of renewable generations, Reliability Engineering & System Safety, Volume 222, 2022, 108396, ISSN 0951-8320, https://doi.org/10.1016/j.ress.2022.108396. (https://www.sciencedirect.com/science/article/pii/S0951832022000710); R. Yajun and M. Xiurui, "The reliability evaluation of the power system containing wind farm using the improved state space partition method," 2014 International Conference on Power System Technology, Chengdu, China, 2014, pp. 36-41, doi:10.1109/POWERCON.2014.6993498.; S. Anbazhagan, N. Kumarappan, Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT, Energy Conversion and Management, Volume 78, 2014, Pages 711-719, ISSN 0196-8904, https://doi.org/10.1016/j.enconman.2013.11.031.; Xudong Fan, Xijin Zhang, Xiong Bill Yu, Uncertainty quantification of a deep learning model for failure rate prediction of water distribution networks, Reliability Engineering & System Safety, Volume 236, 2023,109088, ISSN 0951-8320, https://doi.org/10.1016/j.ress.2023.109088. (https://www.sciencedirect.com/science/article/pii/S0951832023000030); Wei Qiu, Qiu Tang, Zhaosheng Teng, Wenxuan Yao, Jun Qiu, Failure rate prediction of electrical meters based on weighted hierarchical Bayesian,Measurement, Volume 142, 2019, Pages 21-29, ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2019.04.062. (https://www.sciencedirect.com/science/article/pii/S026322411930380X; C.Ramírez, “Phyton para finanzas CURSO PRÁCTICO”, Bogotá: Ediciones de la U, pp.223-233,2021.; C.Ramírez, “Phyton para finanzas CURSO PRÁCTICO”, Bogotá: Ediciones de la U, pp.279-311,2021.; J. Stock, “Introducción a la econometría”, Madrid: Pearson educación S.A, pp.373- 411, 2012.; G. Box, “Time Series Analysis Forecasting and Control”, New Jersey: John Wiley & Sons Ltd, pp. 2-43, 2016.; S. Raschka, “Machine Learning con PyTorch y Scikit-Learn”, Madrid: Alphaeditorial, pp.290-307, 2023.; Yanhui CHEN, Mengmeng Ma, Yuye Zou, Forecasting hourly electricity demand with nonparametric functional data analysis,Procedia Computer Science, Volume 214, 2022, Pages 428-436, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2022.11.195. (https://www.sciencedirect.com/science/article/pii/S1877050922019056); Ye Zhu, Shiwen Xie, Yongfang Xie, Xiaofang Chen, Temperature prediction of aluminum reduction cell based on integration of dual attention LSTM for non-stationary subsequence and ARMA for stationary sub-sequences, Control Engineering Practice, Volume 138, 2023,105567, ISSN 0967-0661, https://doi.org/10.1016/j.conengprac.2023.105567. (https://www.sciencedirect.com/science/article/pii/S0967066123001363); Shao, Y., Zhang, D., Chu, H., Zhang, X., & Rao, Y. (2021). A Review of YOLO Object Detection Based on Deep Learning.; Bhasin, S. (2019). Real-time Object Detection with YOLO, OpenCV and Python.; Suresh et al. (2020). Object Detection with YOLO for Intelligent Traffic Monitoring System.; Liu, Y., Shi, Q., Guo, W., & Liao, W. (2020). A Real-time, Mobile-object Detection Approach for Unmanned Aerial Vehicle Based Forest Fire Surveillance System.; Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022). A Review of YOLO Algorithm Developments.; Mauro Tucci, A. B. (s/f). "YOLO-S: A Lightweight and Accurate YOLO-like Network for Small Target Selection in Aerial Imagery".; Sharma, A., Pathak, J., Prakash, M., & Singh, J. N. (2020). Object Detection using OpenCV and Python. International Journal of Innovative Research in Computer and Communication Engineering, 8(6), 2736-2741.; “Procesamiento de Imágenes y Visión Artificial con MATLAB Video,” Mathworks.com, 2021. https://la.mathworks.com/videos/image-processing-and-computer-vision-with-matlab1597884648964.html (accessed Jul. 25, 2023).; Ricardo Alirio Gonzalez, R. Ferro, and Daríoo Liberona, “Government and governance in intelligent cities, smart transportation study case in Bogotá Colombia,” vol. 11, no. 1, pp. 25– 34, Mar. 2020, doi: https://doi.org/10.1016/j.asej.2019.05.002.; Beatriz Elena Pineda, Claudia Helena Muñoz, & Gil, H. (2018). Aspectos relevantes de la movilidad y su relación con el medio ambiente en el Valle de Aburrá: una revisión. Ingeniería Y Desarrollo, 36(2), 489–508. https://www.redalyc.org/journal/852/85259689013/html/; IA por el Planeta: Destacando las innovaciones de IA para la movilidad sostenible y las ciudades inteligentes. (2023). Unesco.org. https://www.unesco.org/es/articles/ia-por-elplaneta-destacando-las-innovaciones-de-ia-para-la-movilidad-sostenible-y-las-ciudades; Gómez Zapata, C. A. (2019). Reconocimiento de objetos del hogar, usando redes neuronales convolucionales para personas con discapacidad visual. Revista Científica de Ingeniería y Tecnología, 2(2), 1-10. https://dialnet.unirioja.es/descarga/articulo/7436051.pdf.; Olabe, X. B. (s/f). REDES NEURONALES ARTIFICIALES Y SUS APLICACIONES. Ehu.eus. Recuperado el 8 de julio de 2023, de URL: https://ocw.ehu.eus/pluginfile.php/40137/mod_resource/content/1/redes_neuro/contenidos/pd f/libro-del-curso.pdf; Murgui, J., & García-Sánchez, A. J. (2018). Clasificación y reconocimiento de imágenes con redes neuronales para aplicaciones industriales. URL: https://riunet.upv.es/bitstream/handle/10251/115464/Murgui.pdf?sequence=1; Ortiz, G., & Sánchez, A. I. (2020). Emprendimiento y tecnologías de la información y la comunicación en Bogotá. Cuadernos de Administración, 36(67), 199-211.; Torres, J., & Acosta, H. (2019). La innovación en el ecosistema emprendedor de Bogotá. Cuadernos de Administración, 35(64), 251-262.; Uribe, F., & Guzmán, J. (2021). La colaboración público-privada en el fomento de la innovación en Bogotá: el caso de la identificación de objetos en el contexto vial. Revista Internacional de Gestión y Economía Aplicada, 11(1), 89-101.; Centro de Investigación de la Universidad Distrital Francisco José de Caldas. (2023). Udistrital.edu.co. https://revistas.udistrital.edu.co/index.php/visele/article/view/18942/18701; Chiroma, R. C. U. (2021). Vehicle detection, counting, and classification in traffic videos: A survey. IEEE Transactions on Intelligent Transportation Systems, 22(10), 3773-3785. [20] Rao, S. S. (2018). Vehicle detection and identification using computer vision and deep learning techniques. IEEE Transactions on Intelligent Transportation Systems, 19(10), 2827- 2836.; Akhand, M. A. H. (2019). Vehicle Recognition from License Plate Number using Deep Learning. arXiv preprint arXiv:1903.09203.; Sandra Milena García Ávila, Cristian Alexander Vega Camacho, José Vicente Cadena López, Ricardo Alirio González Bustamante, Paola Andrea Mateus Abaunza. (2021). Diseño y aplicación de una herramienta para identificar y clasificar motocicletas mediante una red neuronal convolucional. researchgate.net. URL: https://doi.org/ISBN:978-958-53278-6-3; valentynsichkar, “Traffic Signs Detection by YOLO v3, OpenCV, Keras,” Kaggle.com, Apr. 15, 2022. https://www.kaggle.com/code/valentynsichkar/traffic-signs-detection-by-yolo-v3- opencv-keras (accessed Jul. 25, 2023).; Motor Colombia. (2022, February 23). 7.270 muertos en accidentes de tránsito en 2021. Motor Colombia; Motor Colombia. URL: https://www.motor.com.co/industria/7.270-muertos-enaccidentes-de-transito-en-2021-20220124-0001.html; R. Jiménez Moreno, O. Avilés, y D. M. Ovalle, “Red neuronal convolucional para discriminar herramientas en robótica asistencial”, Vis. Electron., vol. 12, no. 2, pp. 208–214, oct. 2018. https://doi.org/10.14483/22484728.13996; L. L. Hurtado-Cortés y J. A. Forero-Casallas, “Identification and fault detection in actuator using NN-NARX”, Vis. Electron., vol. 2, no. 2, pp. 304–312, dic. 2019. https://doi.org/10.14483/22484728.18432; Propia. (2023). Fragmento del conjunto de imágenes de entrenamiento para YOLO [Figura].; Propia. (2023). Matriz de confusión de una capacitación sobre imágenes de Camiones. [Figura].; Propia. (2023). Curva de precisión-confianza para el entrenamiento de imágenes de Camiones. [Figura].; Propia. (2023). Salida "Results.png" sobre el entrenamiento de imágenes de Camiones. [Figura].; Propia. (2023). Salida "Train.png" sobre el entrenamiento de imágenes de Camiones. [Figura].; Propia. (2023). Salida "Val.png" sobre el entrenamiento para Camiones. [Figura]; Propia. (2023). Salida de los gráficos de correlación de etiquetas para el entrenamiento de imágenes de Camiones. [Figura].; Propia. (2023). Esquema de entrenamiento general utilizado para el reconocimiento de imágenes con YOLO. [Figura]; Anagnoste, Sorin. "Robotic Automation Process – The operating system for the digital enterprise" Proceedings of the International Conference on Business Excellence, vol.12, no.1, 2018, pp.54-69. https://doi.org/10.2478/picbe-2018-0007; C. T. Kaya, M. Turkyilmaz, & B. Birol, “Impact of RPA Technologies on Accounting Systems”. Muhasebe ve Finansman Dergisi, pp. 235–250, Apr. 2019, https://doi.org/10.25095/mufad.536083; Morgan.O’ Mara., “How Much Paper is Used in One Day”, Record Nations, blog. https://www.recordnations.com/blog/how-much-paper-is-used-in-one-day/; Thomas Teunissen. Success factors for RPA application in small and medium sized enterprises. University of Twente. From https://essay.utwente.nl/77592/1/Teunissen_BA_EEMCS.pdf; James Barlow. 2023. OCRmyPDF documentation. Read the Docs. From: https://ocrmypdf.readthedocs.io/en/latest/index.html; T Malathi, et al. 2021. An Experimental Performance Analysis on Robotics Process Automation (RPA) With Open Source OCR Engines: Microsoft Ocr And Google Tesseract OCR. IOP Conf. Ser.: Mater. Sci. Eng. 1059 012004. https://doi.org/10.1088/1757-899X/1059/1/012004; Arkadiusz Januszewski et al. 2021. Benefits of and Obstacles to RPA Implementation in Accounting Firms. Procedia Computer Science 192 (2021). 4672–4680. https://doi.org/10.1016/j.procs.2021.09.245; Madakam, Somayya, Holmukhe, Rajesh M., and Jaiswal, Durgesh Kumar. (2019). The Future Digital Work Force: Robotic Process Automation (RPA). JISTEM - Journal of Information Systems and Technology Managements, 16, e201916001.https://doi.org/10.4301/S1807-1775201916001; Ribeiro, J., Lima, R., Paiva, S. (2021). Document Classification in Robotic Process Automation Using Artificial Intelligence—A Preliminary Literature Review. In: Sharma, H., Gupta, M.K., Tomar, G.S., Lipo, W. (eds) Communication and Intelligent Systems. Lecture Notes in Networks and Systems, vol 204. Springer, Singapore. https://doi.org/10.1007/978-981-16-1089-9_18; Leslie Willcocks, John Hindle & Mary Lacity. 2019. Keys to RPA Success - Executive Research Report. Knowledge Capital Partners. From: https://engineering.report/Resources/Whitepapers/9a46b779-a4a1-4188-8a1deb769ba4fbb1_Keys-RPA-Success.pdf; J. C. Diaz, D. Zunino, y G. Nicolino, “Análisis de la extracción de datos personales sin autorización de un dispositivo IoT”, Visión Electrónica, vol. 16, no. 2, dic. 2022.; S. Scheuber, and M. Vanhoy, "Emotional and Neurological Responses to Timbre in Electric Guitar and Voice," Paper 10505, (2021 May.).; J. Stanhope, and P. Weinstein, “The human health effects of singing bowls: A systematic review”, Complementary therapies in medicine, 51, 102412, (2020 Apr.).; C. J. Bless, “Análisis de la actividad EEG durante una sesión de estimulación multisensorial en una sala Snoezelen”, Universidad de Valladolid. Escuela Técnica Superior de Ingenieros de Telecomunicación, 2020.; L. Gong, M. Li, T. Zhang, W. Chen, “EEG emotion recognition using attention-based convolutional transformer neural network”, Biomedical Signal Processing and Control, Vol. 84, 2023.; C. Zeng, W. Lin, N. Li, Y. Wen, Y. Wang, W. Jiang, J. Zhang, H. Zhong, X. Chen, W. Luo, et al. “Electroencephalography (EEG)-Based Neural Emotional Response to the Vegetation Density and Integrated Sound Environment in a Green Space”, Forests, 2021.; S. N. Safder, M. U. Akram, M. N. Dar, A. A. Khan, S. G. Khawaja, A. R. Subhani, I. K. Niazi, S. Gul, “Analysis of EEG signals using deep learning to highlight effects of vibration-based therapy on brain”, Biomedical Signal Processing and Control, Vol. 83, 2023.; A. E. Nieto-Vallejo, O. F. Ramírez-Pérez, L. E. Ballesteros-Arroyave, and A. Aragón, “Design of a Neurofeedback Training System for Meditation Based on EEG Technology”, Revista Facultad de Ingeniería, 30(55), 2021; H.Y. Huang & P.C. Lo (2019) EEG dynamics of experienced Zen meditation practitioners probed by complexity index and spectral measure, Journal of Medical Engineering & Technology, 33:4, 314-321, DOI:10.1080/03091900802602677.; F. Ramos-Argüelles, G. Morales, S. Egozcue, R.M. Pabón, M.T. Alonso, “Técnicas básicas de electroencefalografía: principios y aplicaciones clínicas”, vol. 32, 2009.; J. Zain, “El uso de cuencos tibetanos como recurso vibroacústico en Musicoterapia Receptiva”, XVIII Forum estadual de Musicoterapia, 2012.; A. Ramírez Sánchez, C. Espinosa Calderón, A. F. Herrera Montenegro, E. Espinosa Calderón, A. Ramírez Moyano, “Beneficios de la psicoeducación de entrenamiento en técnicas de relajación en pacientes con ansiedad”, Revista Enfermería Docente, 2014.; M. Tobal, “Actividad Cerebral y Deporte: Un Estudio Mediante Mapas de Actividad Eléctrica Cerebral”, Universidad Complutense de Madrid, 1992.; EMOTIV. (2023, 6 abril). EMOTIV Insight 2 with 5 Channel EEG Headset %7C EMOTIV. https://www.emotiv.com/product/emotiv-insight-5-channel-mobile-brainwear/.; Sánchez, M. A. C. Lozano, M. S. G. (2016). El sonido que sana: Manual práctico de sanación a través del sonido. LA ESFERA DE LOS LIBROS, S.L.; Singing Bowl Tones and Frequencies: Complete Guide (2022). (s. f.). Shanti Bowl. https://www.shantibowl.com/blogs/blog/singing-bowl-tones-and-frequencies-complete-guide; Torrades, S. (2007, 1 noviembre). Estrés y burn out. Definición y prevención %7C Offarm. de:https://www.elsevier.es/es-revista-offarm-4-articulo-estres-burn-out-definicion-prevencion13112896; Domingues Hirsch, C., Devos Barlem, E. L., De Almeida, L. K., Tomaschewski Barlem, J. G., Lerch Lunardi, V., & Marcelino Ramos, A. (2018). Stress triggers in the educational environment from the perspective of nursing students. Texto & Contexto Enfermagem, 27(1), e0370014.; Zárate Depraect, N. E., Soto Decuir, M. G., Castro Castro, M. L., & Quintero Salazar, J. R. (2017). Estrés académico en estudiantes universitarios: Medidas preventivas. Revista de Alta Tecnología y la Sociedad, 9(4), 92-98.; Barlett. (1991). Stereo Microphone Techniques. Stoneham, Massachusetts: Reed Publishing (USA).; Holman, T. (2008). Sourround Sound: Up And Running. Burlington, Massachusets: Elsevier Inc.; Howard, D., & Angus, J. (2000). Acoustics and Psychoacoustics (2nd ed.). Routledge. https://doi.org/10.4324/9780080498522.; Burrough, P. A., & McDonnell, R. A. (1998). Principles of geographical information systems (2a ed.). Clarendon Press.; D. S. Garzón-Ramírez, M. S. Sanabria-Guio, y J. D. Cely-Fajardo, “Geolocation system and vehicular analysis for motorcyclists”, Vis. Electron., vol. 2, no. 1, pp. 95–106, mar. 2019. https://doi.org/10.14483/22484728.18416; Home. (2022, abril 15). Open Geospatial Consortium. https://www.ogc.org; Google. (s/f-b). Google.com. Recuperado el 31 de agosto de 2023, de https://earth.google.com/; Documentation. (s/f). Qgis.org. Recuperado el 15 de septiembre de 2023, de https://www.qgis.org/en/docs/index.html; GDAL — GDAL documentation. (s/f). Gdal.org. Recuperado el 15 de septiembre de 2023, de https://gdal.org/; GIS mapping software, location intelligence & spatial analytics. (s/f). Esri.com. Recuperado el 15 de septiembre de 2023, de https://www.esri.com/enus/home; P. F. Martín-Gómez, J. E. Rangel-Díaz, J. O. Montoya-Gómez, y J. L. RubianoFernández, “Automation of greenhouse pesticide application: design and construction”, Visión Electrónica, vol. 2, no. 1, pp. 129–133, mar. 2019. https://doi.org/10.14483/22484728.18419; F. A. Molina-Guzmán, S. A. Torres-Castillo, G. A. López-Martínez, “Use of wastewater and waste from Colombian pacific for electrical generation”, Visión Electrónica, vol. 16, no. 1, 2022.; B. Smith, A., & Johnson, “Automated Fruit Classification for Quality Control,” J. Agric. Technol., vol. 10, no. 4, pp. 1015–1027, 2018.; C. G. Peñaranda, “ANÁLISIS DE COSTOS DE LA PRODUCCIÓN DE DURAZNO (PRUNUS PÉRSICA) EN LA PROVINCIA DE PAMPLONA (NORTE DE SANTANDER),” Rev. la Fac. Ciencias Económicas y Empres., pp. 145–162, 2012.; 2. Camara de Comercio de Medellín, “HERRAMIENTAS EMPRESARIALESAUTOMATIZACIÓN DE LOS PROCESOS INDUSTRIALES,” 2018. http://herramientas.camaramedellin.com.co/Inicio/Buenaspracticasempresariales/Bibliot ecaProduccónyOperaciones/Automatizaciondelosprocesosindustriales.aspx.; C. García, A. López, and F. Fernández, “Deep Learning-Based Fruit Recognition and Classification System for Precision Agriculture,” Comput. Electron. Agric., vol. 180, p. 105832, 2020.; R. Patel, A. Sharma, and S. Kumar, “Real-time Fruit Recognition and Grading System for Robotic Harvesting,” Comput. Electron. Agric., vol. 157, pp. 306–316, 2019.; M. Megajothi, C. Meenakshi, and R. Rajakumari, “Automation of Fruit Quality Analysis System,” in 2nd International Conference on Applied Soft Computing Techniques C., 2022, pp. 424–425.; W. M. Syahrir, A. Suryanti, and C. Connsynn, “Color grading in Tomato Maturity Estimator using image processing technique,” in 2009 2nd IEEE International Conference on Computer Science and Information Technology, 2009, pp. 276–280, doi:10.1109/ICCSIT.2009.5234497.; Z. Ma, J.-H. Xue, A. Leijon, Z.-H. Tan, Z. Yang, and J. Guo, “Decorrelation of Neutral Vector Variables: Theory and Applications,” IEEE Trans. Neural Networks Learn. Syst., vol. 29, no. 1, pp. 129–143, 2018, doi:10.1109/TNNLS.2016.2616445.; L. Zhang, J. Jia, G. Gui, X. Hao, W. Gao, and M. Wang, “Deep Learning Based Improved Classification System for Designing Tomato Harvesting Robot,” IEEE Access, vol. 6, pp. 67940–67950, 2018, doi:10.1109/ACCESS.2018.2879324.; J. Chen, Z. Liu, H. Wang, A. Núñez, and Z. Han, “Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network,” IEEE Trans. Instrum. Meas, vol. 67, no. 2, pp. 257–269, 2018.; H. Yu, Z.-H. Tan, Z. Ma, R. Martin, and J. Guo, “Spoofing detection in automatic speaker verification systems using DNN classifiers and dynamic acoustic features,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 10, pp. 4633–4644, 2018.; and Y. A. X. Sun, G. Gui, Y. Li, R. P. Liu, “A novel deep neural network with feature reuse for Internet of Things,” IEEE Internet Things.; B. S and U. J, “Deep fruit detection in orchards,” IEEE Int. Conf. Robot. Autom, no. May, pp. 3626–3633, 2017.; Vanguardia, “¿Como Puede la inteligencia artificial mejorar nuestras vidas?,” 2016. http://www.lavanguardia.com/vida/20161218/412710361329/como-puede-lainteligencia-artificial-mejorar-nuestras-vidas.html.; C. Oehninger, “El Impacto de la Robótica y la Automatización del Empleo en Uruguay,” 2018.; R. Terminio and E. Rimbau-Gilabert, “La digitalización del entorno de trabajo: la llegada de la robótica, la automatización y la inteligencia artificial (RAIA) desde el punto de vista de los Informal learning and work View project Creative industry network of entrepreneurs-CINet View project,” no. May, 2018, [Online]. Available: https://www.researchgate.net/publication/325059719.; D. BROUGHAM and J. HAAR, “Employee assessment of their technological redundancy,” Labour y Ind., 2017.; McKinsey And Company, “UN FUTURO QUE FUNCIONA: AUTOMATIZACIÓN, EMPLEO Y PRODUCTIVIDAD,” New York, 2017. doi:10.1787/agr_outlook-2017-3-es; Agua Libre. "Lo que necesitas saber sobre la Telemetría," 2021. Disponible en: https://agualibre.cl/telemetria-2/; D. J. Cardoso Ortegón and J. D. Ramírez Tovar, "Propuesta de un sistema de potabilización de aguas subterráneas, caso de estudio pozo finca el arbolito-ubicado en la vereda Caimanera en el municipio de el Espinal - Tolima teniendo en cuenta la caracterización física, química y microbiológica," Proyecto de grado, Universidad Piloto de Colombia, 2021. Disponible en: http://repository.unipiloto.edu.co/handle/20.500.12277/10116.; A. Jiménez, F. Velásquez, y S. Puente, “Sistema inteligente de prescripción de riego agrícola basado en redes de sensores y modelado de cultivos”, Visión Electrónica, vol. 17, no. 1, feb. 2023.; Digital Senses. "Telemetría y Monitoreo efectivo de Pozos de Agua," Disponible en: https://www.digitalsenses.io/medidores-de-pozos-de-agua/; E. M. González-Clavijo, J. C. Contreras-Niño, y H. J. Eslava-Blanco, “Automatización del vivero Semigar”, Visión Electrónica, vol. 16, no. 1, jun. 2022.; Integra Instrumentación. "Instalación de telemetría para pozos," Disponible en: https://integrainstrumentacion.cl/instalacion-de-telemetria-para-pozos/; F. C. Castañeda-Árias y K. S. Novoa-Roldan, “Remote crops: case study of critical variables”, Visión. Electrónica, vol. 16, no. 1, ene. 2022.; Nettra. "Monitoreo de pozos de extracción de agua subterránea," Disponible en: https://nettra.tech/monitoreo-de-pozos-de-extraccion-de-agua-subterranea/; B. Böttcher, J. Badinger, N. Moriz, and O. Niggemann, “Design of industrial automation systems — Formal requirements in the engineering process,” in 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), 2013, pp. 1–4. doi:10.1109/ETFA.2013.6648148.; N. Papakonstantinou, J. Karttunen, S. Sierla, and V. Vyatkin, “Design to automation continuum for industrial processes: ISO 15926 – IEC 61131 versus an industrial case,” in 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 2019, pp. 1207–1212. doi:10.1109/ETFA.2019.8869325.; J. E. Martinez Baquero, “Diseño y construcción de equipo automatizado para separar mezclas,” Visión Electrónica Más que un estado sólido, vol. 8, no. 2, pp. 87–93, 2014, [Online]. Available: https://revistas.udistrital.edu.co/index.php/visele/article/view/9880; M. A. Monzón Herrera, “Diseño de un sistema dedicado al monitoreo y automatización de parámetros de proceso en una línea de producción de cartones moldeados (Doctoral dissertation).,” Universidad de San Carlos de Guatemala, 2019.; C. M. Bustamante Álvarez, J. E. Martínez Baquero, and C. Torres Gómez, “SCADA System of Physicochemical Variables in a Mixture Separator,” Rev. Inge CUC, vol. 11, no. 1, pp. 85–98, 2015, doi:10.17981/ingecuc.11.1.2015.09.; F. G. Astudillo, “Diseño y simulación de un control automático para una cámara de fermentación de pan por medio de un automáta programable,” ESCUELA POLITÉCNICA NACIONAL, 2010. [Online]. Available: https://bibdigital.epn.edu.ec/handle/15000/2231; P. A. Quinteros, M. C. Zurita, N. C. Zambrano, and L. M. Esthela, “Automatización de los procesos industriales,” J. Bus. Entrep. Stud., vol. 4, no. 2, pp. 123–131, 2020, [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=7888290; F. F. Cando Herrera and G. F. Medina Lescano, “Implementación de un sistema de control y monitoreo de nivel de agua para el sistema de riego Chambo –Guano en la provincia de Chimborazo,” 2021, [Online]. Available: https://www.dspace.espol.edu.ec/bitstream/123456789/56415/1/T-112772 Cando - Medina.pdf; J. D. Murcia Velez and L. F. Chacón Segura, “Diseño de un sistema automático de cultivo hidropónico para forraje verde,” Universidad de La Salle, 2018. [Online]. Available: https://ciencia.lasalle.edu.co/ing_automatizacionF.; P. Radu and L. Gheorghe, “Implementation of an automatic control system of technological process for disinfection of drinking water from treatment plants,” in Proceedings of 2012 IEEE International Conference on Automation, Quality and Testing, Robotics, 2012, pp. 144–149. doi:10.1109/AQTR.2012.6237691.; A. Chiavola, C. Di Marcantonio, M. D’Agostini, S. Leoni, and M. Lazzazzara, “A combined experimental-modeling approach for turbidity removal optimization in a coagulation– flocculation unit of a drinking water treatment plant,” J. Process Control, vol. 130, p. 103068, 2023, doi: https://doi.org/10.1016/j.jprocont.2023.103068.; E. A. Al-Sum, A. Sattar, and M. A. Aziz, “Automation of water treatment plants and its application in power and desalination plants,” Desalination, vol. 92, no. 1–3, 1993, doi:10.1016/0011-9164(93)80087-4.; H. Gulhan et al., “Use of water treatment plant sludge in high-rate activated sludge systems: A techno-economic investigation,” Sci. Total Environ., vol. 901, p. 166431, 2023, doi: https://doi.org/10.1016/j.scitotenv.2023.166431.; A. Ortega Ramírez, L. Cáceres Durán, and L. Castiblanco Molina, “INTRODUCCIÓN AL USO DE COAGULANTES NATURALES EN LOS PROCESOS DE POTABILIZACIÓN DEL AGUA,” Rev. Ambient. Agua, aire y suelo., vol. 11, no. 2, pp. 1–14, 2020, doi: https://doi.org/10.24054/aaas.v11i2.873.; H. A. Díaz Therán, M. Hincapié, L. Montoya, L. Galeano, A. Balaguera, and G. Carvajal, “Evaluación de la sostenibilidad para un sistema individual de potabilización de agua encomunidades rurales a través de la metodología de ACV,” in Encuentro Internacional de Educación en Ingeniería, 2023, 2023, p. 3128. [Online]. Available: 10.26507/paper.3128; R. C. Urban, L. Y. K. Nakada, and R. de L. Isaac, “A system dynamics approach for largescale water treatment plant sludge management: A case study in Brazil,” J. Clean. Prod., vol. 419, p. 138105, 2023, doi: https://doi.org/10.1016/j.jclepro.2023.138105.; N. Unidas, “Objetivo 6: Garantizar la disponibilidad de agua y su gestión sostenible y el saneamiento para todos.,” OBJETIVOS DE DESARROLLO SOSTENIBLE, 2015. https://www.un.org/sustainabledevelopment/es/water-and-sanitation/; C. J. Macuada, A. M. Oddershede, and L. E. Quezada, “DM methodology for automating technology system in water treatment plants,” in 2018 7th International Conference on Computers Communications and Control (ICCCC), 2018, pp. 265–269. doi:10.1109/ICCCC.2018.8390469.; M. Alissa, S. Al-Harahshah, and M. Ibrahim, “Monitoring of Surface Water Quality in King Talal Dam Using GIS: A Case Study,” Iraqi Geol. J., vol. 56, no. 2, pp. 36–47, 2023, doi:10.46717/igj.56.2A.3ms-2023-7-12.; F. Villacís Chimborazo and W. . Zambrano Vélez, “AUTOMATIZACIÓN DEL PROCESO DE TRATAMIENTO DE AGUAS RESIDUALES EN TECNOVA S . A .”,” Universidad Politécnica Salesiana. Ecuador, 2013. [Online]. Available: https://dspace.ups.edu.ec/handle/123456789/4118; M. Portección Social and M. Ambiente Vivienda y Desarrollo Territorial, Resolución 2115 de 2007, vol. 1. 2007, p. 23. [Online]. Available: https://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Legislac ión_del_agua/Resolución_2115.pdf.; Ministerio de Desarrollo Económico, “RAS 2000, Titulo A - Aspectos generales de los sistemas de agua potable y saneamiento básico. Ministerio de Vivienda Ciudad y Territorio Colombia,” Reglam. Técnico Del Sect. Agua Potable Y Saneam. Basico, p. 114, 2000.; G. Corporación Alemana, “Manual para la cloración del agua en sistemas de abastecimiento de agua potable en el ambito rural,” Corporación Alem. para la Coop. Int., p. 91, 2017, [Online]. Available: https://sswm.info/sites/default/files/reference_attachments/GIZ 2017. Manual para la cloración del agua en sistemas de abastecimiento de agua potable.pdf; AGUAVIVA, “Sistema de Acueducto,” 2021. https://www.aguavivaesp.gov.co/acueducto/; Anyasi, T. A., Jideani, A. I. O., & Mchau, G. (2013). Functional properties and postharvest utilization of commercial and noncommercial banana cultivars. Comprehensive Reviews in Food Science and Food Safety, 12(5), 509-522. https://doi.org/10.1111/1541-4337.12025; Al-Dairi, M., Pathare, P. B., Al-Yahyai, R., Jayasuriya, H. P. W., & Al-Attabi, Z. (2023). Postharvest Quality, Technologies, and Strategies to Reduce losses along the supply Chain of Banana: a review. Trends in Food Science and Technology, 134, 177-191. https://doi.org/10.1016/j.tifs.2023.03.003; S. A. Vaca Vargas, O. L. García Navarrete, y M. A. Colorado Gómez, “Diseño y construcción de un sistema acuapónico automatizado para cultivo acuaponico NFT de Carpa Roja y Lechuga Crespa”, Visión Electrónica, vol. 17, no. 1, ene. 2023.; Lidyce, Q. L. (s. f.). Elementos teóricos y prácticos sobre la bioimpedancia eléctrica en salud.http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1025- 02552016000500014; Caicedo-Eraso, J.C., Díaz-Arango, F.O., & Osorio-Alturo, A. (2019). Espectroscopia de impedancia eléctrica aplicada al control de la calidad en la industria alimentaria. http://www.scielo.org.co/pdf/ccta/v21n1/0122-8706-ccta-21-01-00100.pdf; Montes, L.M., Mejía-Gutiérrez, L.F., & Caicedo-Eraso, J.C. (2021). Espectroscopia de impedancia eléctrica, una herramienta para aplicaciones biotecnológicas con Lactobacillus casei ATCC 393. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123- 34752021000100055; Ocampo Hernández, Ó.H., Ruiz Villa, C.A., Aristizábal Botero, W., Olarte Echeverri, G., Gallego, P.A. (2017). Caracterización del tejido columnar del cérvix mediante espectroscopia de impedancia eléctrica y modelado computacional. Biosalud. https://www.semanticscholar.org/paper/216f9823cf95e0f9043636a052f656c4d318eed1; García Bello, J., Batista Luna, T., & Rodríguez de la Cruz, N. (2023). Principios básicos y uso en medicina de la espectroscopia de impedancia. Revista Cubana de Medicina Militar, 52(2), e02302316. Recuperado de https://revmedmilitar.sld.cu/index.php/mil/article/view/2316/1772; Carreño, A., & Gómez, C. (2013). Procesamiento de tejido de cuello uterino para estudio piloto de detección temprana de cáncer cervical basado en espectroscopia de impedancia eléctrica.; N. A. Ramírez-Pérez, L. E. Aparicio-Pico, y C. A. Pérez-Triana, “Medición sobre MRI para diagnóstico de cáncer de próstata”, Visión Electrónica, vol. 14, no. 2, pp. 196–206, jul. 2020. https://doi.org/10.14483/22484728.17965; Li, Yunhua; Cai, Chaozhi; Lee, Kok-Meng; Teng, Fengjian “A novel cascade temperature control system for a high-speed heat-airflow wind tunnel”, IEEE/ASME Transactions on Mechatronics, volumen 18, Issue 4, pages 1310 - 1319, 2013. https://doi:10.1109/TMECH.2013.2262077; Cai, Chaozhi; Li, Yunhua; Dong, Sujun, “Experimental Study on Gas Temperature Control for a High-Speed Heat-Airflow Wind Tunnel”, Journal of Aerospace Engineering, vol. 29, Issue. 6, nov 2016. https://doi.org/10.14483/22487638.6071; J. H. Fresneda-Alarcón, A. Escobar-Diaz, H. Vacca-González, y G. J. Rincón-Aponte, “Modelamiento e implementación de una planta térmica”, Visión Electrónica, vol. 15, no. 1, pp. 94–103, feb. 2021. https://doi.org/10.14483/22484728.17470; J. G. Ascanio-Villabona, B. E. Tarazona-Romero, y C. L. Sandoval, “Study of the behavior of the photovoltaic panel according to the installed surface”, Visión Electrónica, vol. 16, no. 2, dic. 2022.; LIU, Wei; ZHOU, Mengde, “An active damping vibration control system for wind tunnel models”, Chinese Journal of Aeronautics, vol. 32, pp. 2109-2120, sept 2019. https://doi.org/10.1016/j.cja.2019.04.014; Huang, Rui; Zhao, Yonghui; Hu, Haiyan, “Wind-Tunnel tests for active flutter control and closed-loop flutter identification”, AIAA Journal, vol. 54, Issue 7, pp. 2089-2099, 2016. https://doi.org/10.2514/1.J054649; FEEDBACK PT 326 Process Trainer User manual (e-lab) Crowborough, E. Sussex, England, 1999.; FEEDBACK Industry - PT 326 Process Trainer owner guide Crowborough, E. Sussex, England, 1999.; C. B. S. Dutra, F. K. Mendonca, G. C. Sousa, and N. G. Bonacorso, "Retrofitting of a plain table plotter for printed circuit boards prototyping," in Power Electronics Conference, 2009. COBEP '09. Brazilian, 2009, pp. 1027-1032.; K. Salonitis and S. Vatousianos, "Experimental Investigation of the Plasma Arc Cutting Process," Procedia CIRP, vol. 3, pp. 287-292, // 2012.; Lida Pan; Xiangkun Guo; Yan Luan; Hongliang Wang, “Design and realization of cutting simulation function of digital twin system of CNC machine tool”, Procedia Computer Science, vol. 183, pp. 261-266, 2021. https://doi.org/ https://doi.org/10.1016/j.procs.2021.02.057; A.M. Madni, C.C. Madni, S.D. Lucero, “Leveraging digital twin technology in modelbased systems engineering”, Systems, vol. 7, 2019. https://doi.org/ https://doi.org/10.3390/systems7010007; Ran, Meng, “Research on the key Technology of contour error control of machine tool based on digital twin”, ACM International Conference Proceeding Series, pp. 1070- 1075, dec 2022. https://doi.org/10.1145/3584376.3584567; Yu. G. KabaldinL, “Digital Twin for 3D Printing on CNC Machines”, Russian Engineering Research, vol. 39, pp. 848-851, 2019. https:// doiorg.bdigital.udistrital.edu.co/10.3103/S1068798X19100101; Hershberger, R. E., Morales, A. & Siegfried, J. D. Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals. Genet. Med. 12, 655–667 (2010). This review article provides a wide and detailed overview of clinical and genetic issues in specific types of genetic DCM.; Hershberger, R.E.; Hedges, D.J.; Morales, A. Dilated cardiomyopathy: The complexity of a diverse genetic architecture. Nat. Rev. Cardiol. 2013, 10, 531–547.; Antunes M de O, Scudeler TL. Hypertrophic cardiomyopathy. IJC Hear Vasc. 2020;27:100503.; Teekakirikul P, Zhu W, Huang HC, Fung E. Hypertrophic cardiomyopathy: An overview of genetics and management. Biomolecules. 2019;9(12):1–11.; Maron BJ. Clinical Course and Management of Hypertrophic Cardiomyopathy. N Engl J Med. 2018;379(7):655–68.; Maron, B. J. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113, 1807–1816 (2006).; Elliott, P. et al. Classification of the cardiomyopathies: a position statement from the european society of cardiology working group on myocardial and pericardial diseases. Eur. Heart J. 29, 270–276 (2007).; Richardson, P. et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation 93, 841–842 (1996); Rostán, S., Smiliansky, N., & Vaucher, A. (2020). Miocardiopatía por Influenza A H1N1. Reporte de un caso clínico. Revista Uruguaya De Medicina Interna, 5(3), 26-30. https://doi.org/10.26445/05.03.4; Galarza, G., Moreno, J., & Vasquez, G., (2021). Miocardiopatia secundaria a influenza. Revista Médica Vozandes, 32(1), 84-87. DOI:10.48018/rmv.v32.i1.2; Z. Wang, H. Shen, Y. Liu, Y. Cheng, R. Zhang, X. Wang, and A. L. Yuille, “Improving the accuracy of medical diagnosis with causal machine learning,” Nature Communications, vol. 11, no. 1, p. 18310, 2020.; M. M. Ahsan and Z. Siddique, “Machine learning-based heart disease diagnosis: A systematic literature review,” Artificial Intelligence in Medicine, vol. 128, p. 102289, 2022. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0933365722000549; A. Kumar and A. Singla, “Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda,” Journal of Ambient Intelligence and Humanized Computing, vol. 14, no. 7, pp. 1–28, 2022.; U. S. Acharya, S. Kulkarni, and P. Raju, “Artificial intelligence appliedto cardiomyopathies: Is it time for clinical application?” IEEE Access, vol. 10, pp. 16 264–16 282, 2022.; A. Regueiro Gómez, C. B. Busoch Morlán, C. Regueiro Busoch, y R. J. Díaz Martínez, “Biomedical Engineering: experiences in the research formation with MOODLE”, Visión Electrónica, vol. 14, no. 2, pp. 152–158, jul. 2020.; B. Forero, K. Velásquez, R. Hernández, y E. Mejía, “Simulation of transradial prosthesis using Virtual Reality Environment and electrooculography (EOG) signals for grip therapy”, Vis. Electrónica, vol. 16, no. 2, ago. 2022.; D. Sánchez-L., G. Sánchez, y L. A. Luengas-C., “Static postural stability: analysis in time and frequency through the development of a software tool”, Visión Electrónica, vol. 17, no. 1, abr. 2023.; J. L. Gerardo‐Nava, et al. "Transformative Materials to Create 3D Functional Human Tissue Models In Vitro in a Reproducible Manner." Advanced Healthcare Materials (2023): 2301030. doi.org/10.1002/adhm.202301030; C. Vesga-Castro, et al. “Contractile force assessment methods for in vitro skeletal muscle tissues.” eLife vol. 11 e77204. doi:10.7554/eLife.77204; K. Budde, J. Zimmermann, E. Neuhaus, M. Schröder, A. M. Uhrmacher and U. van Rienen, "Requirements for Documenting Electrical Cell Stimulation Experiments for Replicability and Numerical Modeling," 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 2019, pp. 1082-1088, doi:10.1109/EMBC.2019.8856863.; A.M. Kasper, et al. “Mimicking exercise in three-dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation.” Journal of cellular physiology vol. 233,3 (2018): 1985-1998. doi:10.1002/jcp.25840; M. Flaibani, et al. “Muscle differentiation and myotubes alignment is influenced by micropatterned surfaces and exogenous electrical stimulation.” Tissue engineering. Part A vol. 15,9 (2009): 2447-57. doi:10.1089/ten.tea.2008.0301; Fernández‐Costa, Juan M., et al. "Training‐on‐a‐Chip: A Multi‐Organ Device to Study the Effect of Muscle Exercise on Insulin Secretion in Vitro." Advanced Materials Technologies. vol. 8, no 7, p. 2200873 (2023). doi.org/10.1002/admt.202200873; Zhang, Xiaoning, et al. "Complex refractive indices measurements of polymers in visible and near-infrared bands." Applied optics. vol. 59, no 8, p. 2337-2344 (2020). Doi:org/10.1364/AO.383831; J. Fukushima, et al. “Effect of Aspect Ratio on the Permittivity of Graphite Fiber in Microwave Heating.” Materials (Basel, Switzerland) vol. 11,1 169. 22 Jan. 2018, doi:10.3390/ma11010169; K. K. Ravikumar, and K.K. Palanivelu. "Dielectric properties of natural rubber composites filled with graphite." Materials Today: Proceedings 16 (2019): 1338-1343. doi.org/10.1016/j.matpr.2019.05.233; S. Chen. “Dielectric constant measurement of P3HT, polystyrene, and polyethylene”, PhD. thesis., Faculty of Science and Engineering, 2017.; X. Y. Qi, et al. “Enhanced electrical conductivity in polystyrene nanocomposites at ultralow graphene content.” ACS applied materials & interfaces vol. 3,8 (2011): 3130-3. doi:10.1021/am200628c:10; K. Gadonna, et al. "Study of gas heating by a microwave plasma torch." Journal of Modern Physics. vol. 3, no 10, p. 1603. (2012): Doi.org/10.4236/jmp.2012.330198; E. Seran, et al. "What we can learn from measurements of air electric conductivity in 222Rn‐rich atmosphere." Earth and Space Science. vol. 4, no 2, p. 91-106 (2017). doi.org/10.1002/2016EA000241; K. Izdihar, et al. "Structural, mechanical, and dielectric properties of polydimethylsiloxane and silicone elastomer for the fabrication of clinical-grade kidney phantom." Applied Sciences. vol. 11, no 3, p. 1172 (2021). DOI:10.3390/app11031172; A. Müller, M. C. Wapler, and U. Wallrabe. "A quick and accurate method to determine the Poisson's ratio and the coefficient of thermal expansion of PDMS." Soft Matter. vol. 15, no 4, p. 779-784 (2019). DOI:10.1039/C8SM02105H; AZoM.com. (n.d.). Properties: Carbon - Graphite Materials. 2012.; Polystyrene %7C Designerdata. (n.d.). https://designerdata.nl/materials/plastics/thermoplastics/polystyrene; Poisson’s Ratio. (n.d.). https://polymerdatabase.com/polymer%20physics/Poisson%20Table.html; S, Shauheen, et al. “The elastic modulus of Matrigel as determined by atomic force microscopy.” Journal of structural biology. vol. 167, no 3, p. 216-219. doi:10.1016/j.jsb.2009.05.005; J.J. Vaca-González, et al. "Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid–Gelatin injectable hydrogels." Bioelectrochemistry. vol. 134, p. 107536 (2020). doi:10.1016/j.bioelechem.2020.107536; G. Agrawal, et al. “Skeletal muscle-on-a-chip: an in vitro model to evaluate tissue formation and injury.” Lab on a chip vol. 17,20 (2017): 3447-3461. doi:10.1039/c7lc00512a; G.; Renganathan et al., “ETH Library Foot Biomechanics with Emphasis on the Plantar Pressure Sensing: A Review Foot Biomechanics with Emphasis on the Plantar Pressure Sensing: A Review,” in Revolutions in Product Design for Healthcare, D. S. and Innovation, Ed. Singapore: Springer, 2022.; A. K. Buldt, J. J. Allan, K. B. Landorf, and H. B. Menz, “The relationship between foot posture and plantar pressure during walking in adults: A systematic review,” Gait and Posture, vol. 62. 2018, doi:10.1016/j.gaitpost.2018.02.026.; C. Deng, W. Tang, L. Liu, B. Chen, M. Li, and Z. L. Wang, “Self -Powered Insole Plantar Pressure Mapping System,” Adv. Funct. Mater., vol. 28, no. 29, Jul. 2018, doi:10.1002/ADFM.201801606.; J. L. Chen et al., “Plantar Pressure-Based Insole Gait Monitoring Techniques for Diseases Monitoring and Analysis: A Review,” Adv. Mater. Technol., vol. 7, no. 1, p. 2100566, Jan. 2022, doi:10.1002/ADMT.202100566.; Q. Zhang, Y. L. Wang, Y. Xia, X. Wu, T. V. Kirk, and X. D. Chen, “A low-cost and highly integrated sensing insole for plantar pressure measurement,” Sens. Bio-Sensing Res., vol. 26, 2019, doi:10.1016/j.sbsr.2019.100298.; J. F. Hafer, M. W. Lenhoff, J. Song, J. M. Jordan, M. T. Hannan, and H. J. Hillstrom, “Reliability of plantar pressure platforms,” Gait Posture, vol. 38, no. 3, 2013, doi:10.1016/j.gaitpost.2013.01.028.; H. Deepashini, B. Omar, A. Paungmali, N. Amaramalar, H. Ohnmar, and J. Leonard, “An insight into the plantar pressure distribution of the foot in clinical practice: Narrative review,” Polish Annals of Medicine, vol. 21, no. 1. 2014, doi:10.1016/j.poamed.2014.03.003.; K. Hébert-Losier and L. Murray, “Reliability of centre of pressure, plantar pressure, and plantar-flexion isometric strength measures: A systematic review,” Gait and Posture, vol. 75. 2020, doi:10.1016/j.gaitpost.2019.09.027.; P. R. Cavanagh, F. G. Hewitt, and J. E. Perry, “In-shoe plantar pressure measurement: a review,” The Foot, vol. 2, no. 4. 1992, doi:10.1016/0958-2592(92)90047-S.; X. Li, K. Wang, Y. L. Wang, and K. C. Wang, “Plantar pressure measurement system based on piezoelectric sensor: a review,” Sensor Review, vol. 42, no. 2. 2022, doi:10.1108/SR-09-2021-0333.; A. Ciniglio, A. Guiotto, F. Spolaor, and Z. Sawacha, “The design and simulation of a 16- sensors plantar pressure insole layout for different applications: From sports to clinics, a pilot study,” Sensors, vol. 21, no. 4, 2021, doi:10.3390/s21041450.; L. Luengas- Contreras.,and L. Wanumen-Silva. "Modelos computacionales en la posturografía". Tecnura, vol. 26, no. 73, 2022, 30-48. https://doi.org/10.14483/22487638.18060; R. de Fazio, E. Perrone, R. Velázquez, M. De Vittorio, and P. Visconti, “Development of a self-powered piezo-resistive smart insole equipped with low-power ble connectivity for remote gait monitoring,” Sensors, vol. 21, no. 13, 2021, doi:10.3390/s21134539.; H. Muhedinovic and D. Boskovic, “Design of iot solution for velostat footprint pressure sensor system,” in Lecture Notes of the Institute for Computer Sciences, SocialInformatics and Telecommunications Engineering, LNICST, 2016, vol. 187, doi:10.1007/978-3-319-51234-1_30.; AICMA, «Estadísticas de víctimas». Accedido: 26 de octubre de 2023. [En línea]. Disponible en: https://www.accioncontraminas.gov.co/Estadisticas/Paginas/Estadisticasde-Victimas.aspx; G. R. Hurley, R. McKenney, M. Robinson, M. Zadravec, y M. R. Pierrynowski, «The role of the contralateral limb in below-knee amputee gait», Prosthet Orthot Int, vol. 14, n.o 1, Art. n.o 1, abr. 1990, doi:10.3109/03093649009080314.; M. S. Pinzur, «The Effect of Prosthetic Alignment on Relative Limb Loading in Persons with Transtibial Amputation: A Preliminary Report», p. 5, 1995.; R. Gailey, «Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use», The Journal of Rehabilitation Research and Development, vol. 45, n.o 1, Art. n.o 1, dic. 2008, doi:10.1682/JRRD.2006.11.0147.; T. Kobayashi, M. S. Orendurff, y D. A. Boone, «Dynamic alignment of transtibial prostheses through visualization of socket reaction moments», Prosthetics and orthotics international, vol. 39, n.o 6, Art. n.o 6, 2015.; D. A. Boone et al., «Perception of socket alignment perturbations in amputees with transtibial prostheses», The Journal of Rehabilitation Research and Development, vol. 49, n.o 6, Art. n.o 6, 2012, doi:10.1682/JRRD.2011.08.0143.; H. Hashimoto, T. Kobayashi, F. Gao, y M. Kataoka, «A proper sequence of dynamic alignment in transtibial prosthesis: insight through socket reaction moments», Sci Rep, vol. 13, n.o 1, Art. n.o 1, ene. 2023, doi:10.1038/s41598-023-27438-1; S. L. Delp et al., «OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement», IEEE Transactions on Biomedical Engineering, vol. 54, n.o 11, Art. n.o 11, nov. 2007, doi:10.1109/TBME.2007.901024.; F. De Groote, A. L. Kinney, A. V. Rao, y B. J. Fregly, «Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem», Ann Biomed Eng, vol. 44, n.o 10, Art. n.o 10, oct. 2016, doi:10.1007/s10439-016-1591-9.; G. Serrancoli et al., «Subject-Exoskeleton Contact Model Calibration Leads to Accurate Interaction Force Predictions», IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, n.o 8, pp. 1597-1605, ago. 2019, doi:10.1109/TNSRE.2019.2924536.; S. Miller y Y. V. Weddingen, «Modeling Flexible Bodies with Simscape Multibody Software», 2017. Accedido: 10 de agosto de 2023. [En línea]. Disponible en: https://la.mathworks.com/content/dam/mathworks/tag-team/Objects/s/Modeling-FlexibleBodies-Simscape-Multibody-171122.pdf; M. Ackermann y A. J. van den Bogert, «Optimality Principles for Model-Based Prediction of Human Gait», J Biomech, vol. 43, n.o 6, Art. n.o 6, abr. 2010, doi:10.1016/j.jbiomech.2009.12.012.; T. W. Dorn, J. M. Wang, J. L. Hicks, y S. L. Delp, «Predictive Simulation Generates Human Adaptations during Loaded and Inclined Walking», PLOS ONE, vol. 10, n.o 4, Art. n.o 4, abr. 2015, doi:10.1371/journal.pone.0121407.; C. L. Dembia, N. A. Bianco, A. Falisse, J. L. Hicks, y S. L. Delp, «OpenSim Moco: Musculoskeletal optimal control», PLOS Computational Biology, vol. 16, n.o 12, p. e1008493, dic. 2020, doi:10.1371/journal.pcbi.1008493.; L. Nolan, A. Wit, K. Dudziñski, A. Lees, M. Lake, y M. Wychowañski, «Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees», Gait Posture, vol. 17, n.o 2, pp. 142-151, abr. 2003, doi:10.1016/s0966-6362(02)00066-8.; L. Nolan y A. Lees, «The functional demands on the intact limb during walking for active transfemoral and transtibial amputees», Prosthetics & Orthotics International, vol. 24, n.o 2, pp. 117-125, ago. 2000, doi:10.1080/03093640008726534.; W. Herzog, B. M. Nigg, L. J. Read, y E. Olsson, «Asymmetries in ground reaction force patterns in normal human gait», Medicine & Science in Sports & Exercise, vol. 21, n.o 1, p. 110, feb. 1989.; M. Roerdink, S. Roeles, S. C. H. van der Pas, O. Bosboom, y P. J. Beek, «Evaluating asymmetry in prosthetic gait with step-length asymmetry alone is flawed», Gait & Posture, vol. 35, n.o 3, pp. 446-451, mar. 2012, doi:10.1016/j.gaitpost.2011.11.005.; M. Roerdink y P. J. Beek, «Understanding Inconsistent Step-Length Asymmetries Across Hemiplegic Stroke Patients: Impairments and Compensatory Gait», Neurorehabil Neural Repair, vol. 25, n.o 3, pp. 253-258, mar. 2011, doi:10.1177/1545968310380687.; GP Fishwick, “Una introducción a Opensimulator y aplicaciones M&S basadas en agentes de entornos virtuales”, en Simulation Conference (WSC), Actas del invierno de 2009, diciembre de 2009, págs. 177 a 183,64.; Linden Research, Inc. Disponible en: http://lindenlab.com; M. Barbulescu, M. Marinescu, O. Grigoriu, G. Neculoiu, V. Sandulescu e I. Halcu, "GNU,GPL en el estudio de programas del campo de la ingeniería de sistemas", en Roedunet International Conference (RoEduNet), 10 de junio de 2011, pp. 1 –4.; Visor Hippo OpenSim, disponible: http://mjmlabs.com/viewer; Visor RealXtend, disponible: http://realxtend.org; M. Pattal, Y. Li y J. Zeng, “Web 3.0: ¡una verdadera web personal! Más oportunidades y más amenazas”, en Aplicaciones, servicios y tecnologías móviles de próxima generación, 2009. NGMAST '09. Tercera Internacional, Conferencia sobre, septiembre de 2009, pp. 125 –128.; McLeod, S. A; Piaget “Cognitive Theory” (en inglés). Simply Psychology. Consultado el 18 de marzo 2023.; Bronkart, J. P. y otros (1985). Vigotsky aujourd’hui. París: Delachaux & Niestlé. Consultado el 18 de marzo 2023; Bruner, J. (1980). Investigación sobre el desarrollo cognitivo. España: Pablo del Río.; Papert, S., & Harel, I. (2002). Situar el construccionismo. Alajuela: INCAE.; Ausubel, D. P. (2002). Adquisición y retención del conocimiento. Una perspectiva cognitiva. Barcelona: Ed. Paidós.; Athanassopoulos, N. Capítulo 7: Estudio comparativo del desarrollo de las inteligencias múltiples en alumnos que cursan o no estudios de danza en un conservatorio. innovando en educación.; Lave, J. (1991). Situating learning in communities of practice. En H. Resnick, S. Levine, & S. Teasley (Eds.), Perspective on socially shared cognition (pp.63-82). Washington, Estados Unidos: American Psycological Association.; Von Glasersfeld, E. 1984. An introduction to radical constructivism. En: P. Watzlawick. Theinvented reality. New York: Norton, pp. 17-40; MIT Media Lab (2016). Professor Emeritus Seymour Papert, pioneer of constructionist learning, dies at 88. MIT News, en http://news.mit.edu/2016/seymourpapertpioneer-of- constructionist-learning-dies-0801; Desarrollo de una aplicación con PLC Siemens, https://educatia.com.co/programacion-plc-logo-siemens-grafcet-a-ladder/; W. A. Bhat, A. Alzahrani, and M. A. Wani, “Can computer forensic tools be trusted in digital investigations?” Science and Justice, vol. 61, no. 2, pp. 198–203, Mar. 2021, [Online]. Disponible en: 10.1016/j.scijus.2020.10.002.; B. K. Akcam, “Forensic Science International we should give special mention to the observance of secrecy in the automotive industry in case of security relevant systems Digitizing Forensic Laboratories: The Turkish Criminal Police Laboratories Case.”; L. Xu, B. Wang, L. Wang, D. Zhao, X. Han, and S. Yang, “PLC-SEIFF: A programmable logic controller security incident forensics framework based on automatic construction of security constraints,” Computers and Security, vol. 92, May 2020, [Online]. Disponible en: 10.1016/j.cose.2020.101749.; M. I. Cohen, D. Bilby, and G. Caronni, “Distributed forensics and incident response in the enterprise,” in Digital Investigation, 2011, vol. 8, no. SUPPL. [Online]. Disponible en: 10.1016/j.diin.2011.05.012.; C. J. Courtney Mustaphi et al., “Guidelines for reporting and archiving 210Pb sediment chronologies to improve fidelity and extend data lifecycle,” Quaternary Geochronology, vol. 52, pp. 77–87, Jun. 2019, [Online]. Disponible en: 10.1016/j.quageo.2019.04.003.; P. Lutta, M. Sedky, M. Hassan, U. Jayawickrama, and B. Bakhtiari Bastaki, “The complexity of internet of things forensics: A state-of-the-art review,” Forensic Science International: Digital Investigation, vol. 38. Elsevier Ltd, Sep. 01, 2021. [Online]. Disponible en: 10.1016/j.fsidi.2021.301210.; W. Halboob, R. Mahmod, N. I. Udzir, and M. D. T. Abdullah, “Privacy levels for computer forensics: Toward a more efficient privacy-preserving investigation,” in Procedia Computer Science, 2015, vol. 56, no. 1, pp. 370–375. doi:10.1016/j.procs.2015.07.222.; G. Ma, Z. Wang, L. Zou, and Q. Zhang, “Computer forensics model based on evidence ring and evidence chain,” in Procedia Engineering, 2011, vol. 15, pp. 3663–3667.; M. Saadoon, S. H. Siti, H. Sofian, H. H. M. Altarturi, Z. H. Azizul, and N. Nasuha, “Fault tolerance in big data storage and processing systems: A review on challenges and solutions,” Ain Shams Engineering Journal, vol. 13, no. 2. Ain Shams University, Mar. 01, 2022.; D. Closser and E. Bou-Harb, “A live digital forensics approach for quantum mechanical computers,” Forensic Science International: Digital Investigation, vol. 40, p. 301341, Apr. 2022; G. Koorey, S. McMillan, and A. Nicholson, “Incident Management and Network Performance,” in Transportation Research Procedia, 2015, vol. 6, pp. 3–16.; K. Barik, S. Das, K. Konar, B. Chakrabarti Banik, and A. Banerjee, “Exploring user requirements of network forensic tools,” Global Transitions Proceedings, vol. 2, no. 2, pp. 350–354, Nov. 2021.; A. M. Marshall, “Digital forensic tool verification: An evaluation of options for establishing trustworthiness,” Forensic Science International: Digital Investigation, vol. 38, Sep. 2021.; T. Wu, F. Breitinger, and S. O’Shaughnessy, “Digital forensic tools: Recent advances and enhancing the status quo,” Forensic Science International: Digital Investigation, vol. 34, Sep. 2020.; W. A. Bhat, A. AlZahrani, and M. A. Wani, “Can computer forensic tools be trusted in digital investigations?” Science and Justice, vol. 61, no. 2, pp. 198–203, Mar. 2021.; A. Daniel D and S. E. Roslin, “Data validation and integrity verification for trust-based data aggregation protocol in WSN,” Microprocessors and Microsystems, vol. 80. Elsevier B.V., Feb. 01, 2021.; J. Tian and X. Jing, “Cloud data integrity verification scheme for associated tags,” Computers and Security, vol. 95, Aug. 2020.; C. Yang, F. Zhao, X. Tao, and Y. Wang, “Publicly verifiable outsourced data migration scheme supporting efficient integrity checking,” Journal of Network and Computer Applications, vol. 192, Oct. 2021.; Q. Zhao, S. Chen, Z. Liu, T. Baker, and Y. Zhang, “Blockchain-based privacypreserving remote data integrity checking scheme for IoT information systems,” Information Processing and Management, vol. 57, no. 6, Nov. 2020.; K. Porter, R. Nordvik, F. Toolan, and S. Axelsson, “Timestamp prefix carving for filesystem metadata extraction,” Forensic Science International: Digital Investigation, vol. 38, Sep. 2021.; R. Nordvik, K. Porter, F. Toolan, S. Axelsson, and K. Franke, “Generic Metadata Time Carving,” Forensic Science International: Digital Investigation, vol. 33, Jul. 2020.; M. Kiweler, M. Looso, and J. Graumann, “MARMoSET – Extracting Publication-ready Mass Spectrometry Metadata from RAW Files,” Molecular and Cellular Proteomics, vol. 18, no. 8, pp. 1700–1702, 2019.; N. K. Booker, P. Knights, J. D. Gates, and R. E. Clegg, “Applying principal component analysis (PCA) to the selection of forensic analysis methodologies,” Engineering Failure Analysis, vol. 132, Feb. 2022.; J. W. Ma, T. Czerniawski, and F. Leite, “An application of metadata-based image retrieval system for facility management,” Advanced Engineering Informatics, vol. 50, Oct. 2021.; L.E. Aparicio, “Informe Diagnóstico del estado actual de uso de las historias clínicas en hospitales de Bogotá”, 2010.; B. Schneier. Beyind Fear: Thinking Sensibly about Security in an Uncertain World. Copernicus Books, New York, NY, 2003.; R. Campbell, J. Al-Muhtadi, P. Naldurg, G. Sampemane, and M. Mickunas. Towards Security of Privacy for Pervasive Computing. En Proceedings of the International Symposium on Software Security, LNCS 2603, páginas 1-15, Springer-Verlag, 2002.; D. Garlan, D. Siewiprek, A. Smailagic, and P. Steenkiste. Project AURA: Toward Distraction-Free Pervasive Computing. IEEE Pervasive computing, 1(2):22-31, 2002.; M. Ulrich Legacy Systems: Transformation Strategies. Prentice Hall PTR, 2002.; J. H. Saltzer, D. P. Reed, and D.D. Clark. End-to-End Arguments in System Desing. ACM transactions on Computer Systems, 2(4):277-288, 1984.; Presentación del libro “Seguridad: una Introducción” Dr. MANUTA, Giovanni. Consultor y profesor de seguridad Cranfield University. Revista de Seguridad Corporativa. http//: www.seguridadcorporativa.org.; BORGHELLO. Cristian F. Tesis Seguridad Informática: Sus implicaciones e implementación. [En línea]. Junio 2001, (Citado nov., 05, 2004). Disponible en Internet:; FISHER ROYAL P. “Seguridad en los temas informáticos, Madrid; p 85, 1998.; JIMENEZ, José Alfredo. Evolución Seguridad de un Sistema de Información. [en línea]. Noviembre 2001, (Citado mar., 16, 2005). Disponible en Internet:; CALVO, Rafael Fernández. Glosario básico inglés-español para usuarios. [En línea]. Febrero 2000, (Citado mar., 16, 2005). Disponible en Internet:; ARDITA, Julio Cesar. Director de Cybsec S.A. Security System y ex-Hacker. Entrevista personal realizada el día 15 de enero del 2001 en Instalaciones de Cybsec S.A. http//: www.cybsec.com; MERLAT, Máximo. PAZ, Gonzalo. SOSA, Matias. MARTINEZ, Marcelo. Seguridad Informática: Hackers. [En línea]. Julio 2003. (Citado mar., 16, 2005). Disponible en Internet: http.//www.Seguridad InformáticaHackerilustrados_com.htm; KEITHE J. Jones, Superutilidades Hackers. México D.F: Mac Graw Hill, 2003, p. 282-288.; SUÑER, Francisco José. Hacker. [En línea]. Julio 2004. (Citado abr., 15, 2005). Disponible en Internet:< http://www.ciencia-ficcion.com/glosario/hacker.htm>; CANO. Jeimy. V Encuesta Nacional sobre Seguridad Informática en Colombia. [En línea]. Enero 2005, (Citado jul., 25, 2005). Disponible en Internet:; MENDEZ. Carlos E. Metodología Diseño y Desarrollo del Proceso de Investigación. Bogotá: Mc Graw Hill, 2005.; M. Bano, A. Qayyum, R. N. Bin Rais, and S. S. A. Gilani, “Soft-Mesh: A Robust Routing Architecture for Hybrid SDN and Wireless Mesh Networks,” IEEE Access, vol. 9, pp. 87715–87730, 2021, doi:10.1109/ACCESS.2021.3089020.; S. Kemp, “Digital in 2018: World’s internet users pass the 4 billion mark - We Are Social UK,” 2018. https://wearesocial.com/uk/blog/2018/01/global-digital-report-2018/ (accessed Sep. 01, 2023).; Z. Latif, K. Sharif, F. Li, M. Karim, and Y. Wang, “A Comprehensive Survey of Interface Protocols for Software Defined Networks,” 2019.; M. Paliwal and K. K. Nagwanshi, “Effective Flow Table Space Management Using PolicyBased Routing Approach in Hybrid SDN Network,” IEEE Access, vol. 10, pp. 59806– 59820, 2022, doi:10.1109/ACCESS.2022.3180333.; “Management, Control and Data plane - Cisco Community.” https://community.cisco.com/t5/switching/management-control-and-data-plane/tdp/2803553 (accessed Sep. 02, 2023).; “Management, Control, and Data Planes in Network Devices and Systems « ipSpace.net blog,” 2013. https://blog.ipspace.net/2013/08/management-control-and-data-planesin.html (accessed Mar. 12, 2023).; H. Farag, “CCNA-SEC Lec#4 %7C Securing Data Plane – Network-Masters,” 2017. https://networkmasters.wordpress.com/2017/01/27/ccna-sec-lec4-securing-data-plane/ (accessed Mar. 12, 2023).; “Difference Between Data Plane Vs Control Plane - Route XP Private Network Services.” https://www.routexp.com/2020/03/difference-between-data-plane-vs.html (accessed Mar. 12, 2023).; “Cisco SDN: Control Plane e Data Plane - Cisco Community.” https://community.cisco.com/t5/blogs-routing-y-switching/cisco-sdn-control-plane-edata-plane/ba-p/4655704 (accessed Sep. 02, 2023).; M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software defined networking: State of the art and research challenges,” 2014, doi:10.1016/j.comnet.2014.07.004.; C. Chaudet and Y. Haddad, “Wireless software defined networks: Challenges and opportunities,” 2013 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, COMCAS 2013, 2013, doi:10.1109/COMCAS.2013.6685237.; J. F. G. Orrego and J. P. U. Duque, “Throughput and delay evaluation framework integrating SDN and IEEE 802.11s WMN,” 2017 IEEE 9th Latin-American Conference on Communications, LATINCOM 2017, vol. 2017-January, pp. 1–6, Dec. 2017, doi:10.1109/LATINCOM.2017.8240186.; A. Drescher, “A Survey of Software-Defined Wireless Networks”, Accessed: Sep. 02, 2023. [Online]. Available: http://www.cse.wustl.edu/~jain/cse574-14/ftp/sdwn/index.html; D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015, doi:10.1109/JPROC.2014.2371999.; F. D. O. Silva, J. H. D. S. Pereira, P. F. Rosa, and S. T. Kofuji, “Enabling future internet architecture research and experimentation by using software defined networking,” Proceedings - European Workshop on Software Defined Networks, EWSDN 2012, pp. 73–78, 2012, doi:10.1109/EWSDN.2012.24.; E. Haleplidis and S. Salsano, “Overview of RFC7426: SDN Layers and Architecture Terminology - IEEE Software Defined Networks,” 2017. https://sdn.ieee.org/newsletter/september-2017/overview-of-rfc7426-sdn-layers-andarchitecture-terminology (accessed Feb. 18, 2023).; J. Espinoza, “Las API en Ambientes de Controladores de Red — Serie SDN №2 %7C by Jesus Espinoza %7C Medium,” 2021. https://jesuseduardoespinoza.medium.com/las-api-enambientes-de-controladores-de-red-serie-sdn-2-75139f6a10a2 (accessed Mar. 13, 2023).; J. E. Cáceres Guevara and C. A. Casilimas Fajardo, “Arquitectura y funcionamiento de redes definidas por software (SDN),” Repositorio Universidad Distrital Francisco José de Caldas, 2022.; “Open Networking Foundation.” https://opennetworking.org/ (accessed Sep. 07, 2023).; “Overview of Northbound Interfaces - eSight 21.0 Operation Guide 07 - Huawei.” https://support.huawei.com/enterprise/es/doc/EDOC1100208263/8ac892ef/northboundinterfaces (accessed Mar. 13, 2023).; D. J. Ramos Suavita, “Análisis de vulnerabilidades a nivel de seguridad en redes SDN para los planos de control y plano de datos,” Universidad Militar Nueva Granada, 2021, Accessed: Nov. 05, 2022. [Online]. Available: https://repository.unimilitar.edu.co/bitstream/handle/10654/41314/RamosSuavitaDairon Javier2022.pdf?sequence=1&isAllowed=y; L. Zhu, M. M. Karim, K. Sharif, F. Li, X. Du, and M. Guizani, “SDN Controllers: Benchmarking & Performance Evaluation,” Feb. 2019, [Online]. Available: http://arxiv.org/abs/1902.04491; D. Dudhal, “Performance Evaluation of SDN Controllers using Cbench and Iperf %7C by Disha Dudhal %7C Medium,” 2022. https://medium.com/@dishadudhal/performanceevaluation-of-sdn-controllers-using-cbench-and-iperf-e9296f63115c (accessed Apr. 30, 2023).; R. Kumar, M. Atulkar, and N. Kumar, Performance Comparison of Ryu and Floodlight Controllers in Different SDN Topologies. 2019.; R. Ramadhan, N. Armi, R. Magdalena, G. N. Nurkahfi, and M. M. M. Dinata, “QoS Performance of Software Define Network Using Open Network Operating System Controller,” in Proceeding - 2020 International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications, ICRAMET 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 124–128. doi:10.1109/ICRAMET51080.2020.9298662.; M. Z. Abdullah, N. A. Al-Awad, and F. W. Hussein, “Evaluating and Comparing the Performance of Using Multiple Controllers in Software Defined Networks,” Modern Education and Computer Science, vol. 8, pp. 27–34, 2019, doi:10.5815/ijmecs.2019.08.03.; A. Singh, N. Kaur, and H. Kaur, “Extensive performance analysis of OpenDayLight (ODL) and Open Network Operating System (ONOS) SDN controllers,” 2022, doi:10.1016/j.micpro.2022.104715.; “SDN Framework RYU Using OpenFlow 1.3 RYU project team”.; “ONOS - ONOS - Wiki.” https://wiki.onosproject.org/ (accessed Sep. 07, 2023).; H. Facchini, S. Perez, R. Blanchet, B. Roberti, and R. Azcarate, “Experimental performance contrast between SDN and traditional networks,” in 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021, Institute of Electrical and Electronics Engineers Inc., 2021. doi:10.1109/CHILECON54041.2021.9702982.; D. Bombal, “GNS3,” 2015. https://gns3.com/sdn-101-mininet-openflow-and-gns (accessed Sep. 07, 2023).; “OpenFlow.” https://wiki.wireshark.org/OpenFlow (accessed Sep. 08, 2023).; J. Mogul and S. Deering, “RFC 1191 - Path MTU discovery.” https://datatracker.ietf.org/doc/html/rfc1191 (accessed Sep. 07, 2023).; “Rendimiento del servicio de volumen en bloque.” https://docs.oracle.com/esww/iaas/Content/Block/Concepts/blockvolumeperformance.htm (accessed Sep. 07, 2023).; “Data Center Switches – Cisco Nexus - Cisco.” https://www.cisco.com/site/us/en/products/networking/cloud-networkingswitches/index.html (accessed Sep. 07, 2023).; “muestra la memoria virtual del sistema %7C Juniper Networks.” https://www.juniper.net/documentation/mx/es/software/junos/junos-overview/topics/ref/command/show-system-virtual-memory.html (accessed Sep. 07, 2023).; “Why Move to a Modern Network Operating System? White Paper - Cisco.” https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-xrsoftware/white-paper-c11-744829.html (accessed Sep. 04, 2023).; “Software-Defined Networking (SDN) Definition - Open Networking Foundation.” https://opennetworking.org/sdn-definition/ (accessed Sep. 03, 2023).; “threading — Thread-based parallelism — Python 3.11.5 documentation.” https://docs.python.org/3/library/threading.html (accessed Sep. 05, 2023).; 5gamericas, “5gamericas: Statistics - Latin America.” [Online]. Available: http://www.5gamericas.org/en/resources/statistics/statistics-latin-america/.; A. Navarro Cadavid, A. Arteaga, L. Vargas, J. Renteria, and M. Arciniegas, “Spectrum Monitoring System and Benchmarking of Mobile Networks Using Open Software Radios SIMONES,” IEEE Lat. Am. Trans., vol. 13, no. 11, pp. 3592–3597, 2015.; M. Iedema and H. Samra, Getting Started with OpenBTS. 2015.; A. Dubey, D. Vohra, K. Vachhani, and A. Rao, “Demonstration of vulnerabilities in GSM security with USRP B200 and open-source penetration tools,” in Proceedings - AsiaPacific Conference on Communications, APCC 2016, 2016, pp. 496–501.; B. Harmat et al., “The Security Implications of IMSI Catchers,” in International Conference on Security and Management (SAM’15), 2015, pp. 57–62.; Mesud Hadžialić; Mirko Škrbić; Kemal Huseinović; Irvin Kočan; Jasmin Mušović, “An Approach to Analyze Security of GSM Network,” 22nd Telecommun. forum TELFOR 2014, 2014.; S. Ghafoor, K. N. Brown, and C. J. Sreenan, “Experimental evaluation of a software defined radio-based prototype for a disaster response cellular network,” in Proceedings of the 2015 2nd International Conference on Information and Communication Technologies for Disaster Management, ICT-DM 2015, 2016, pp. 57–63.; K. Guevara, M. Rodriguez, N. Gallo, G. Velasco, K. Vasudeva, and I. Guvenc, “UAVbased GSM network for public safety communications,” in Conference Proceedings - IEEE SOUTHEASTCON, 2015, vol. 2015-June, no. June.; T. Di. Putri and T. Juhana, “Mobile-openbts implementation of natural disaster victims search,” in Proceedings - ICWT 2017: 3rd International Conference on Wireless and Telematics 2017, 2018, vol. 2017-July, pp. 149–154.; J. Mpala and G. Van Stam, “Open BTS, a GSM experiment in rural Zambia,” Africomm, Yaounde, Cameroon, pp. 1–9, 2012.; M. Zheleva, A. Paul, D. L. Johnson, and E. Belding, “Kwiizya: Local Cellular Network Services in Remote Areas,” in MobiSys, 2013, July, p. 417.; L. Angrisani, P. Daponte, and M. D'Apuzzo, “A measurement method based on time-frequency representations for testing GSM equipment,” IEEE Trans. Instrum. Meas., vol. 49, no. 5, pp. 1050–1056, 2000.; A. Aiello and D. Grimaldi, “Frequency error measurement in GMSK signals in a multipath propagation environment,” IEEE Trans. Instrum. Meas., vol. 52, no. 3, pp. 938–945, 2003.; K. Paul, “Introduction to GSM and GSM mobile RF transceiver derivation.; Union Internacional de Telecomunicaciones., “Definiciones de sistema radioeléctrico determinado por programas informáticos (RDI) y sistema radioeléctrico cognoscitivo (SRC),” vol. 2152, 2009.; T. ETSI Specification, “Digital cellular telecomm mmunications system (Phase e 2+) (GSM); GSM/EDGE Multiplexing and multiple access on the radio path (3GPP TS 45.0.002 version 13.3.1 Release 13).”; J. M. HUIDOBRO, Comunicaciones móviles: sistemas GSM, UMTS Y LTE, 2012th ed.; ETSI, Digital cellular telecommunications system (Phase 2+); Release independent frequency bands; Implementation guidelines (3GPP TS 05.14 version 7.2.0 Release 1998), vol. 0. 2001, pp. 0–31.; ETSI, Digital cellular telecommunications system (Phase 2+); Radio transmission and reception (3GPP TS 45.005 version 12.4.0 Release 12), vol. 0. 2008, pp. 0–40.; T. Specification, “ETSI TS 145 002,” vol. 0, pp. 0–112, 2014.; T. ETSI Specification, Technical Specification Group GSM/EDGE Radio Access Network; Digital cellular telecommunications system (Phase 2+); Modulation TS 05.04, vol. 0. 2003, pp. 1–28.; 3GPP, 3rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network; Digital cellular telecommunications system (Phase 2+); Radio subsystem synchronization. 1999.; ETSI, Digital cellular telecommunications system (Phase 2 and Phase 2+); Base Station System (BSS) equipment specification; Radio aspects (3GPP TS 11.21 version 8.6.0 Release 1999), vol. 0. 2008, pp. 0–40.; ETSI, EN 300 910 Digital cellular telecommunications system (Phase 2+); Radio transmission and reception (GSM 05.05 version 8.5.1 Release 1999), vol. 1. 1999, pp. 1– 10.; Keysight Technologies, “Understanding GSM/EDGE Transmitter and Receiver Measurements for Base Transceiver Stations and their Components.”; E. No. O. . U. S. A. Gbadamosi A. M. Aibinu, “Towards Independent Measurement of End to End Bit Error Rate in GSM Network,” pp. 1–4, 2014.; R. Communications, “Laboratory works in Radio Communications GSM Transceiver Measurements.” Prentice-Hall Inc, 1995.; T. ETSI Specification, 3GPP TS 05.05 3rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network; Radio transmission and reception, vol. 0. 2005.; E. Research, “USRP Hardware Driver and USRP Manual Version: 003.010.001.001-41- g6abf277.” [Online]. Available: http://openbts.org/hardware/.; R. Networks, C. C. Attribution-sharealike, and U. License, “OpenBTS Application Suite,” 2014; Agilent Technologies, “Making the Phase and Frequency Error Measurement.” [Online]. Available: http://literature.cdn.keysight.com/litweb/pdf/ads2001/vsaedgemeas/gsmmeas6.html.; D. Seidl et al., «The multiparameter station at Galeras Volcano (Colombia): concept and realization», Journal of Volcanology and Geothermal Research, vol. 125, n.o 1-2, pp. 1-12, 2003, doi:10.1016/s0377-0273(03)00075-1.; J. M, «Review of electric and magnetic fields accompanying seismic and volcanic activity», U.S. Geological Survey, vol. 18, n.o 5, pp. 441-475, 1997, doi:10.1023/A:1006500408086.; V. Surkov y V. Pilipenko, «Estimate of ULF electromagnetic noise caused by a fluid flow during seismic or volcano activity», Copernicus Publications, vol. 2, n.o 10, pp. 6475-6497, 2014, doi:10.5194/nhessd-2-6475-2014.; Y. Sasai et al., «Magnetic and electric field observations during the 2000 activity of Miyakejima volcano, Central Japan», Earth and Planetary Science Letters, vol. 203, n.o 2, pp. 769-777, 2002, doi:10.1016/S0012-821X(02)00857-9.; M. Valenciano, «Implementación de un radioenlace LPWAN con tecnología LoRa», Tesis, Universidad de Valladolid, Valladolid, 2022. [En línea]. Disponible en: https://uvadoc.uva.es/bitstream/handle/10324/57458/TFGG5892.pdf?sequence=1&isAllowed=y; R. Piyare, A. Murphy, M. Magno, y L. Benini, «On-Demand LoRa: Asynchronous TDMA for EnergyEfficient and Low Latency Communication in IoT», Sensors, vol. 18, n.o 3718, 2018, doi:10.3390/s18113718.; C. Guerrero, «Evaluación de los retardos en redes LoRaWAN multisalto con topología lineal», Tesis, Universidad Politécnica Nacional, Quito Ecuador, 2022.; H. Mahmood Jawad, R. Nordin, S. Kamel Gharghan, A. Mahmood Jawad, y Mahamod Ismail, «Energy-efficient wireless sensor networks for precision agriculture: A review», Sensors, vol. 17, n.o 8, p. 1781, 2017, doi:10.3390/s17081781.; R. Muñoz, «Modelado y evaluación de la eficiencia del estándar SCHC para el transporte de paquetes IP sobre LoRaWAN», Tesis Maestría, Universidad de Chile, Santiago de Chile, 2020. [En línea]. Disponible en: https://repositorio.uchile.cl/bitstream/handle/2250/177977/Modelado-y-evaluacion-de-laeficiencia-del-estandar-SCHC-para-el-transporte-de-paquetes-IP.pdf?sequence=1; W. Yong, L. Minzan, y Z. Man, «Remote-control system for greenhouse based on opensource hardware», IFAC, vol. 52, n.o 30, pp. 178-183, 2019, doi:10.1016/j.ifacol.2019.12.518.; L. Cilleruelo and A. Zubiaga, “Una aproximación a la Educación STEAM. Prácticas educativas en la encrucijada arte, ciencia y tecnología. Jornadas de Psicodidáctica, 18.,” 2014.; M. L. Matute Sánchez and C. R. Contreras Alvarado, “Diseño y desarrollo de un asistente robótico basado en sistemas embebidos y aplicaciones móviles como herramienta de soporte pedagógica para niños de uno a cinco años,” 2019.; E. Systems, “ESP8266EX,” 2023.; K. Arakadakis, P. Charalampidis, A. Makrogiannakis, and A. Fragkiadakis, “Firmware Over-the-air Programming Techniques for IoT Networks-A Survey,” ACM Comput. Surv., vol. 54, no. 9, pp. 1–24, 2022, doi:10.1145/3472292.; I. G. Juan, I. Garc, I. F. Milena, and I. G. Ezequiel, “Gestión de Redes Centralizado desde GNU / Linux,” Cordoba, 2021.; Y. T. Chávez Cujilán and J. M. Espinoza Ortíz, “Desarrollo de una plataforma web para el control y seguimiento de productos terminados en la empresa camaronera ambartex s.a. empleando la metodología kanban,” Universidad de Guayaquil, 2016.; M. docs Web, “Métodos de petición HTTP,” 2023. https://developer.mozilla.org/es/docs/Web/HTTP/Methods.; R. Pereira, C. de Souza, D. Patino, and J. Lata, “Platform for Distance Learning of Microcontrollers and Internet of Things; [Plataforma De Enseñanza a Distancia De Microcontroladores E Internet De Las Cosas],” Ingenius, vol. 2022, no. 28, pp. 53 – 62, 2022, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144095611&doi=10.17163%2Fings.n28.2022.05&partnerID=40&md5=cc9fd40b5b28 c66ac89ebf8f68ab3275.; M. Garduno-Aparicio, J. Rodriguez-Resendiz, G. Macias-Bobadilla, and S. Thenozhi, “A Multidisciplinary Industrial Robot Approach for Teaching Mechatronics-Related Courses,” IEEE Trans. Educ., vol. 61, no. 1, pp. 55–62, 2018, doi:10.1109/TE.2017.2741446.; P. Jacko et al., “Remote IoT Education Laboratory for Microcontrollers Based on the STM32 Chips,” Sensors, vol. 22, no. 4, 2022, doi:10.3390/s22041440.; Ð. Mijailović, A. Ðorđdević, M. Stefanovic, D. Vidojević, A. Gazizulina, and D. Projović, “A cloud-based with microcontroller platforms system designed to educate students within digitalization and the industry 4.0 paradigm,” Sustain., vol. 13, no. 22, 2021, doi:10.3390/su132212396.; J. Vega D, “Soporte para gestión remota ota sobre una picocelda GSM / GPRS OverThe-Air management on a GSM / GPRS picocell Graduado en Ingeniería de Tecnologías de Telecomunicación,” Universidad de Cantabria, 2014.; J. Molnár et al., “Weather Station IoT Educational Model Using Cloud Services,” JUCS - J. Univers. Comput. Sci., vol. 26, no. 11, pp. 1495–1512, Nov. 28AD, [Online]. Available: https://doi.org/10.3897/jucs.2020.079.; O. Velihorskyi, I. Nesterov, and M. Khomenko, “Remote Debugging of Embedded Systems in Stm32Cubemonitor,” pp. 22–25, 2020, doi:10.35598/mcfpga.2020.007.; G. Zhabelova, M. Vesterlund, S. Eschmann, Y. Berezovskaya, V. Vyatkin, and D. Flieller, “A Comprehensive Model of Data Center: From CPU to Cooling Tower,” IEEE Access, vol. 6, pp. 61254–61266, 2018, doi:10.1109/ACCESS.2018.2875623.; I. Marín, “un enfoque de neurociencia sobre la participación de los estudiantes en las clases de microcontroladores durante la pandemia covid19,” in 14a Conferencia Internacional Anual de Educación, Investigación e Innovación Actas JA - ICERI2021, pp. 5776-5783 urgencias-, doi:10.21125/iceri.2021.1303 Año anual - 2021.; S. P. De Araujo and L. Dias Souza, “STEAM Education y el Diseño de los modelos de aprendizaje MOE, TAS y COM,” i+Diseño. Rev. Científico-Académica Int. Innovación, Investig. y Desarro. en Diseño, vol. 17, pp. 23–34, 2022, doi:10.24310/idiseno.2022.v17i.15683.; E. Flores, “Ingenieria de Software,” 2021. https://ingenieriadesoftware.mex.tl/52666_Presentacion.html.; E. Inga, J. Inga, and A. Ortega, “Novel approach sizing and routing of wireless sensor networks for applications in smart cities,” Sensors, vol. 21, no. 14, pp. 1–17, 2021, doi:10.3390/s21144692.; T. Vince et al., “IoT implementation in remote measuring laboratory VMLab analyses,” J. Univers. Comput. Sci., vol. 26, no. 11, pp. 1402–1421, 2020, doi:10.3897/jucs.2020.074.; I. Olarte C and L. A. Rodriguez Umaña, “diseño de arquitectura estándar para la adquisición y transmisión de datos integrados en la automatización de cultivos acuaponicos,” Universidad Cooperativa de Colombia, 2022.; J. I. Vega Luna, F. J. Sánchez-Rangel, G. Salgado-Guzmán, J. F. Cosme-Aceves, V. N. Tapia-Vargas, and M. A. Lagos-Acosta, “Red de monitorización para automatizar el sistema de enfriamiento de un centro de datos,” Ingenius, no. 24, pp. 87–96, 2020, doi:10.17163/ings.n24.2020.09.; M. Rodríguez, S. Zafra y S. Ortega, «La revisión sistemática de la literatura científica y la necesidad de visualizar los resultados de las investigaciones.,» Revista Logos, Ciencia & Tecnología, vol. 7, nº 1, pp. 101-103, 2015.; M. Salcido, A. del Toro, N. Medina, F. RamÍrez, M. Gacia, A. Briceño y J. Jiménez, «Revisión sistemática: el más alto nivel de evidencia,» Orthotips AMOT, vol. 17, nº 4, pp. 217-22%7C, 2021.; B. Moreno, M. Muñoz, J. Cuellar, S. Domancic y J. Villanueva, «Revisiones Sistemáticas: definición y nociones básicas.,» Revista clínica de periodoncia, implantología y rehabilitación oral, vol. 11, nº 3, pp. 184-186, 2018.; C. Ierandi, L. Orihuela, I. Jurado, Á. Rodríguez Del Nozal y A. Tapia, «Revisión sistemática de la literatura en ingeniería de sistemas. Caso práctico: técnicas de estimación distribuida de sistemas ciberfísicos.,» Actas de las XXXVIII Jornadas de Automática, pp. 84-91, 2017.; H. García, «Conceptos fundamentales de las revisiones sistemáticas/metaanálisis.,» Urología colombiana, vol. 24, nº 1, pp. 28-34, 2015.; O. Beltrán, «Revisiones sistemáticas de la literatura.,» Revista colombiana de gastroenterología., vol. 20, nº 1, pp. 60-69, 2005.; C. Manterola, P. Astudillo, E. Arias y N. Claros, «Revisiones sistemáticas de la literatura. Qué se debe saber acerca de ellas.,» Cirugía española, vol. 91, nº 3, pp. 149-155, 2023.; L. Letelier, J. Manríquez y G. Rada, «Revisiones sistemáticas y metaanálisis:¿ son la mejor evidencia?,» Revista médica de Chile, vol. 133, nº 2, pp. 246-249, 2005.; OpenAI, «ChatGPT (Versión del 16 de octubre de 2023),» 2023. [En línea]. Available: https://chat.openai.com/.; G. Guevara, A. Verdesoto, S. Guevara y E. González, «Las Tecnologías de la Información y la Comunicación en la educación universitaria,» Revista Científica de Investigación actualización del mundo de las Ciencias, vol. 3, nº 3, pp. 409-422, 2019.; J. Cobo, «El concepto de tecnologías de la información. Benchmarking sobre las definiciones de las TIC en la sociedad del conocimiento.,» Revista de Estudios de Comunicación, vol. 14, nº 27, pp. 295-318, 2009.; Z. L. C. A. P. G. L. V. C. &. D. C. M. B. Aliaga, «Software educativo para favorecer la aprehensión de los contenidos de ingeniería de software,» Revista de Investigación en Tecnologías de la Información, pp. 5(9), 63-69., 2017.; B. Gros, El ordenador invisible. Hacia la apropiación del ordenador en la enseñanza, Barcelona, España: Editorial Gedisa, 2000.; S. Kumar, «Knowledge of software education,» Global Research Journal of Educaion, pp. 1-2, 2022.; H. Rosario N, «TIC EN AMBIENTES EDUCATIVOS,» Comunidad y Salud, vol. 5, nº 2, 2007.; ] U. IIEP, «Tecnologías de la información y la comunicación (TICs) en la educación,» IIEP Learning Portal, 22 Marzo 2023. [En línea]. Available: https://learningportal.iiep.unesco.org/es/fichas-praticas/mejorar-elaprendizaje/tecnologias-de-la-informacion-y-la-comunicacion-tics-en-la. [Último acceso: 5 Octubre 2023].; D. Correa y F. Pérez, «Los modelos pedagógicos: trayectos históricos,» Debates por la Historia., pp. 125-154, 2022.; B. Joyce y M. Weil, Los modelos de enseñanza., Madrid, España: Editorial Anaya, 1985.; F. García, «Los modelos didácticos como instrumento de análisis y de intervención en la realidad educativa.,» García Pérez, F. F. (2000). Los modelos didácticos como instrumento de análiBiblio 3w: Revista Bibliográfica de Geografía y Ciencias Sociales., pp. 1-12, 2000.; V. Niño, Metodología de la investigación. Diseño y ejecución., Bogotá, Colombia: Ediciones de la U, 2011.; G. Fidias, El proyecto de Investigación. Introducción a la metodología científica., Caracas, Venezuela: Editorial Episteme, CA., 2006.; L. Larriba, «La investigación de los modelos didácticos y de las estrategias de enseñanza.,» Enseñanza., pp. 73-88, 2001.; N. Romero y J. Moncada, «Modelo didáctico para la enseñanzade la educación ambiental en la Educación Superior Venezolana,» Revista de Pedagogía, pp. 443-476, 2007.; A. Brolpito, Digital Skills and Competence, and Digital and Online Learning., European Training Foundation., 2018.; O. Najar, «Tecnologías de la información y la comunicación aplicadas a la educación,» Praxis y Saber, vol. 7, nº 14, pp. 9-16, 2016.; E. Kispeter, What digital skills do adults need to succeed in the workplace now and in the next 10 years., Warwick Institute for Employement Research., 2018.; A. Gargallo, «La integración de las TIC en los procesos educativos y organizativos.,» Educar em Revista., vol. 34, nº 69, pp. 325-339, 2018.; J. Cabrero, Tecnología educativa. Diseño y utilización de medios en la enseñanza., Barcelona, España: Editorial Paidos, 2001.; L. Alvarez, Modelos de gestión, Bogotá: Fundación Universitaria del Área Andina, 2017.; T. Huertas, E. Suárez, M. Salgado, L. Jadán y B. Jiménez, «Diseño de un modelo de gestión. Base científica y práctica para su elaboración.,» Revista Universidad y Sociedad, 12(1), 165-177., vol. 12, nº 1, pp. 165-177, 2020.; L. Reginato, C. Pereira y R. Guerreiro, «Una investigacion sobre las caracteristicas del modelo de gestion: un estudio de caso.,» Reginato, L., Pereira, C. A., & Guerreiro, R. (2009). Una investigacion sobre las cara Iberoamerican journal of industrial engineering, vol. 1, nº 1, pp. 24-45, 2009.; L. Angulo, Gestión de ptoyectos. Bajo el enfoque del PMBOK, Lima: Editorial Macro, 215.; A. López y D. Lankenau, Administración de proyectos. La clave para la coordinación efectiva de actividades y recursos, México: Pearson, 2017.; R. Terrazas, «Modelo conceptual para la gestión de proyectos.,» Perspectivas, vol. 24, pp. 165-188, 2009.; A. Narvaez y R. Esperanza, «Modelos para la Gestión de Proyectos.,» Informador Técnico, vol. 71, pp. 53-58, 2007.; U. IIEP, «Tecnologías de la información y la comunicación (TICs) en la educación,» IIEP Learning Portal, 22 Marzo 2023. [En línea]. Available: https://learningportal.iiep.unesco.org/es/fichas-praticas/mejorar-elaprendizaje/tecnologias-de-la-informacion-y-la-comunicacion-tics-en-la. [Último acceso: 5 Octubre 2023].; J. A. Pineda Acero, «Diseño de proyectos educativos mediados por TIC: un marco de referencia,» Opción, vol. 32, nº 10, pp. 479-499, 2016.; UNESCO, Herramientas para la gestión de proyectos educativos con TIC, Buenos Aires: UNESCO, 2007.; E. H. Legresti, «Proyecto de incorporación de las TICs como herramienta de aprendizaje,» 2019.; D. &. C. S. L. Alan Neill, Procesos y fundamentos de la investigación científica. , 53(9)., Macha, Ecuador: Ediciones UTMACH, 2018.; A. Carli, La Ciencia como herramienta. Guía para la investigación y la realización de informes, monografías y tesis científicas., Buenos Aires: Editorial Biblos, 2008.; P. Suárez, Metodología de la investigación. Diseño y técnicas, Bogotá, Colombia: Orión Editores Ltda., 2004.; M. Medina, La investigación aplicada a proyectos. Identificación del proyecto y formulación de la investigación., Bogotá, Colombia: Ediciones Ántropos Ltda., 2007.; Aplicación y uso de drones: https://edu.gcfglobal.org/es/cultura-tecnologica/quees-un-dron-y-cuales-son-sus-usos/1/; Como funciona el Mapeo a partir de drones? : https://ts2.space/es/como-funcionael-sistema-de-mapeo-3d-de-un-dron/; Duarte, J. F., Galindo Gómez, S. F., Rodríguez Pupo, S., PayánDurán, L. F., & Velásquez-Rodrígue, C. E. (2022). Paso a paso para desarrollar innovaciones sociales. Documento Técnico del PCIS.; Hoyos Montoya, E. A., & de Souza Bías, E. (2021). [Título del artículo]. Recuperado dehttps://doi.org/10.22490/25394088.5609; UN (2022). Objetivos de Desarrollo Sosteninle Tomado de: https://www.un.org/sustainabledevelopment/es/waterand-sanitation/; MEN( 2022) titulado ORIENTACIONES CURRICULARES PARA EL ÁREA DETECNOLOGÍA E INFORMÁTICA EN LA EDUCACIÓN BÁSICA Y MEDIA https://www.colombiaaprende.edu.co/sites/default/files/files_public/2022- 11/Orientaciones_Curricures_Tecnologia.pdf; Secretaría de Ambiente. Bogotá está mejorando y en el Día Mundial de los Humedales reafirma su compromiso con estos ecosistemas. https://www.ambientebogota.gov.co/ (2022).; Cuellar, Y., Pérez, L. Modelado multitemporal y simulación de la dinámica compleja en humedales urbanos: el caso de Bogotá, Colombia. Representante científico 13 , 9374 (2023).https://doi.org/10.1038/s41598-023-36600-8; Ramsar. "Humedales urbanos: tierras preciadas, no terrenos baldíos ". https://www.ramsar.org/resources/publications (2018).; Das, N. y Mehrotra, S. Humedales en contextos urbanos: un caso de Bhoj Wetland. En 2021 Simposio internacional de geociencia y teledetección del IEEE IGARSS (págs. 6972-6975). IEEE(2021).; Van der Hammen, T. Los humedales de la Sabana: origen, evolución, degradación y restauración. en Los humedales de Bogotá y la Sabana, Conservación Internacional 19–51(2003).; Ramsar (2021). " Transformar la agricultura para sostener a las personas y mantener los humedales”. Tomado de: https://www.ramsar.org/sites/default/files/documents/library/rpb6_agriculture_s. pdf; Espínola Pérez, A. M. (2014). Clasificación de Imágenes de Satélite mediante AutómatasCelulares (Tesis doctoral). Universidad de Almería. Dirigida por Dr. D. Luis F. Iribarne Martínez, Dra. Dña. Rosa M. Ayala Palenzuela, y Dr. D. José Antonio Piedra Fernández.; He, W., Chen, S., Liu, X., & Chen, J. (2008). Water quality monitoring in a slightly-pollutedinland water body through remote sensing — Case study of the Guanting Reservoir in Beijing, China. Frontiers of Environmental Science & Engineering in China, 2, 163–171.; Carbonell Carrera, C., & Bermejo Asensio, L. A. (2017). Augmented reality as a digital teaching environment to develop spatial thinking. Cartography and Geographic Information Science, 44(3), 259-270. https://doi.org/10.1080/15230406.2016.1145556; Cuellar, Y., & Perez, L. (2023). Multitemporal modeling and simulation of the complex dynamics in urban wetlands: the case of Bogota, Colombia. Scientific Reports, 13, 9374.; Carbonell Carrera, C., & Bermejo Asensio, L. A. (2017). Augmented reality as a digital teachingenvironment to develop spatial thinking. Cartography and Geographic Information Science, 44(3), 259-270. https://doi.org/10.1080/15230406.2016.1145556; Alikhani, S., Nummi, P. & Ojala, A. Humedales urbanos: una revisión de los valores ecológicosy culturales. Agua 13 , 3301 (2021).; H. Mohapatra and S. I. Hosain, “Intermodal dispersion free few-mode (quadruple mode) fiber: A theoretical modelling,” Opt Commun, vol. 305, pp. 267–270, 2013, doi:10.1016/j.optcom.2013.05.018.; J. Tu, K. Long, and K. Saitoh, “Design and optimization of 3-mode×12-core dual-ring structured few-mode multi-core fiber,” Opt Commun, vol. 381, pp. 30–36, 2016, doi:10.1016/j.optcom.2016.06.049.; H. Zhu, Z. Cao, and Q. Shen, “Construction of the refractive index profiles for few-mode planar optical waveguides,” Opt Commun, vol. 260, no. 2, pp. 542–547, 2006, doi:10.1016/j.optcom.2005.11.011.; G. F. Fibers, H. Mohapatra, and S. I. Hosain, “Variational Approximations for LP l 1 Modes,” vol. 26, no. 4, pp. 372–375, 2014.; F. Ferreira, D. Fonseca, and H. Silva, “Design of few-mode fibers with up to 12 modes and low differential mode delay,” International Conference on Transparent Optical Networks, vol. 32, no. 3, pp. 353–360, 2014, doi:10.1109/ICTON.2014.6876696.; A. Rjeb, H. Seleem, H. Fathallah, and M. Machhout, “Design of 12 OAM-Graded index few mode fi bers for next generation short haul interconnect transmission,” Optical Fiber Technology, vol. 55, no. October 2019, p. 102148, 2020, doi:10.1016/j.yofte.2020.102148.; H. Kubota and T. Morioka, “Few-mode optical fiber for mode-division multiplexing,” Optical Fiber Technology, vol. 17, no. 5, pp. 490–494, 2011, doi:10.1016/j.yofte.2011.06.011.; J. Zhang and L. Mao, “Integrating multiple transportation modes into measures of spatial food accessibility,” J Transp Health, vol. 13, no. March, pp. 1–11, 2019, doi:10.1016/j.jth.2019.03.001.; A. E. Zhukov, V. A. Burdin, and A. V Bourdine, “Design of silica optical fibers with enlarged core diameter for a few-mode fiber optic links of onboard and industrial multiGigabit networks,” Procedia Eng, vol. 201, pp. 105–116, 2017, doi:10.1016/j.proeng.2017.09.675.; W. Jin et al., “Few-mode and large-mode-area fiber with circularly distributed cores,” Opt Commun, vol. 387, no. July 2016, pp. 79–83, 2017, doi:10.1016/j.optcom.2016.11.016.; J. Han and C. Qu, “Characterization of distributed mode crosstalk in few-mode fiber links with low MIMO complexity,” Physical Communication, vol. 25, pp. 310–314, 2017, doi:10.1016/j.phycom.2017.02.002.; S. Wei-Hua, X. Chuan-Xiang, and Y. Jing, “A new type of Few-mode Photonic Crystal Fiber with nearly-zero flattened Dispersion properties,” ICOCN 2017 - 16th International Conference on Optical Communications and Networks, vol. 2017-Novem, pp. 16–18, 2017, doi:10.1109/icocn.2017.8374406.; R. Miyazaki, M. Ohashi, H. Kubota, Y. Miyoshi, and N. Shibata, “Chromatic dispersion measurement of the high order mode in a few-mode fiber using an interferometric technique and a mode converter,” 2017 Opto-Electronics and Communications Conference, OECC 2017 and Photonics Global Conference, PGC 2017, vol. 2017- Novem, pp. 1–3, 2017, doi:10.1109/OECC.2017.8114866.; A. Marcos Aparicio, “Cable submarino, conexión DWDM entre continentes,” Sistema de Gestión de incidencias Open Source, 2017, [Online]. Available: http://oa.upm.es/48560/1/PFC_ANA_ISABEL_MARCOS_APARICIO.pdf; G. P. (Govind P. ) Agrawal, Fiber-optic communication systems. Wiley-Interscience, 2002.; S. Matthew, Elementos de electromagnetismo. 2009. doi: 10: 0-8400-5444-0.; D. Pozar, “Microwave Engineering 2nd Ed David Pozar,” pp. 1–736, 2008, [Online]. Available: papers2://publication/uuid/74B11176-09A2-4077-9BDE-1E89002D0735; R. Neri Vela and L. H. Porragas Beltrán, Líneas de transmisión, vol. 3, no. 2. 2012. doi:10.25009/uv.1998.124.; D. Gloge and E. A. J. Marcatili, “Multimode Theory of Graded-Core Fibers,” 1973.; M. Carmen. España Booquera, Comunicaciones ópticas : conceptos esenciales y resolución de ejercicios. Díaz de Santos, 2005. Accessed: Sep. 25, 2023. [Online]. Available: https://www.academia.edu/33300228/MAR%C3%8DA_CARMEN_ESPA%C3%91A_B OQUERA_COMUNICACIONES_%C3%93PTICAS_Conceptos_esenciales_y_resoluci %C3%B3n_de_ejercicios; K. Gomez, L. Goratti, F. Granelli, y T. Rasheed, «A Comparative Study of Scheduling Disciplines in 5G Systems for Emergency Communications», presentado en 1st International Conference on 5G for Ubiquitous Connectivity, Levi, Finland, 2014. doi:10.4108/icst.5gu.2014.257987.; K. Pedersen, G. Pocovi, J. Steiner, y A. Maeder, «Agile 5G Scheduler for Improved E2E Performance and Flexibility for Different Network Implementations», IEEE Commun. Mag., vol. 56, n.o 3, pp. 210-217, mar. 2018, doi:10.1109/MCOM.2017.1700517.; A. Akhtar y H. Arslan, «Downlink resource allocation and packet scheduling in multinumerology wireless systems», en 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Barcelona, abr. 2018, pp. 362-367. doi:10.1109/WCNCW.2018.8369012.; K. I. Pedersen, M. Niparko, J. Steiner, J. Oszmianski, L. Mudolo, y S. R. Khosravirad, «System Level Analysis of Dynamic User-Centric Scheduling for a Flexible 5G Design», en 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, dic. 2016, pp. 1-6. doi:10.1109/GLOCOM.2016.7842312.; S. A. AlQahtani and M. Alhassany, “Comparing different LTE scheduling schemes,” in 2013 9th international wireless communications and mobile computing conference (IWCMC), 2013, pp. 264–269.; T. Dikamba, “Downlink scheduling in 3GPP long term evolution (LTE),” 2011.; S. V. S. Prakash and M. Visali, “On demand SINR based scheduling algorithm (ODSSA) for mobile uplink communication in LTE networks,” in 2015 International Conference on Signal Processing and Communication Engineering Systems, 2015, pp. 453–457.; G. Muñoz, I. H. Solana, and M. Ángela, “Gestión de Recursos Radio en Redes Móviles Celulares Basadas en Tecnología OFDMA para la Provisión de QoS y Control de la Interferencia.”; C. So-In, R. Jain, y A. K. Tamimi, “A Deficit Round Robin with Fragmentation scheduler for IEEE 802.16e Mobile WiMAX”, en IEEE Sarnoff Symposium, 2009. SARNOFF ’09, 2009, pp. 1–7.; H. Fattah y C. Leung, “An Improved Round Robin Packet Scheduler for Wireless Networks”, International Journal of Wireless Information Networks, vol. 11, pp. 41–54, 2004.; J. Vihriala et al., «Numerology and frame structure for 5G radio access», en 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications; N. Siasi, A. Jaesim, A. Aldalbahi, y N. Ghani, «Link Failure Recovery in NFV for 5G and Beyond», en 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona, Spain, oct. 2019, pp. 144-148. doi:10.1109/WiMOB.2019.8923413.; D.-H. Kim, B.-H. Ryu, y C.-G. Kang, «Packet Scheduling Algorithm Considering a Minimum Bit Rate for Non-realtime Traffic in an OFDMA/FDD-Based Mobile Internet Access System», ETRI J., vol. 26, n.o 1, pp. 48-52, feb. 2004, doi:10.4218/etrij.04.0203.0005.; M. Yan, G. Feng, J. Zhou, Y. Sun, y Y.-C. Liang, «Intelligent Resource Scheduling for 5G Radio Access Network Slicing», IEEE Trans. Veh. Technol., vol. 68, n.o 8, pp. 7691- 7703, ago. 2019, doi:10.1109/TVT.2019.2922668.; A. A. Esswie y K. I. Pedersen, «Opportunistic Spatial Preemptive Scheduling for URLLC and eMBB Coexistence in Multi-User 5G Networks», IEEE Access, vol. 6, pp. 38451-38463, 2018, doi:10.1109/ACCESS.2018.2854292.; R. B. Abreu, G. Pocovi, T. H. Jacobsen, M. Centenaro, K. I. Pedersen, y T. E. Kolding, «Scheduling Enhancements and Performance Evaluation of Downlink 5G TimeSensitive Communications», IEEE Access, vol. 8, pp. 128106-128115, 2020, doi:10.1109/ACCESS.2020.3008598.; Z. Gu et al., «Knowledge-Assisted Deep Reinforcement Learning in 5G Scheduler Design: From Theoretical Framework to Implementation», ArXiv200908346 Cs Eess, feb. 2021, Accedido: feb. 06, 2021. [En línea]. Disponible en: http://arxiv.org/abs/2009.08346; Khaira, M. S., & Borkar, N. Y., «U.S. Patent No. 5,357,512. Washington, DC: U.S. Patent and Trademark Office.» 1994.; C. J. Katila, C. Buratti, M. D. Abrignani, y R. Verdone, «Neighbors-Aware Proportional Fair scheduling for future wireless networks with mixed MAC protocols», EURASIP J. Wirel. Commun. Netw., vol. 2017, n.o 1, p. 93, dic. 2017, doi:10.1186/s13638-017- 0875-6.; Humaira Rashid Khan, Fahd Sikandar Khan, Ahmed Shuja Syed, Javeed Akhtar, Chapter 27 - Nano-inks and their applications in packaging industries, Editor(s): Ram K. Gupta, Tuan Anh Nguyen, In Micro and Nano Technologies, Smart Multifunctional Nano-inks, Elsevier, 2023, Pages 687-698, ISBN 9780323911450, https://doi.org/10.1016/B978-0-323-91145-0.00015-3.; Muhammad Ifaz Shahriar Chowdhury, Yashdi Saif Autul, Sazedur Rahman, Md Enamul Hoque, 11 - Polymer nanocomposites for automotive applications, Editor(s): Md Enamul Hoque, Kumar Ramar, Ahmed Sharif, In Woodhead Publishing in Materials, Advanced Polymer Nanocomposites, Woodhead Publishing, 2022, Pages 267-317, ISBN 9780128244920, https://doi.org/10.1016/B978-0-12-824492-0.00010-6.; Harpreet Singh, Kirandeep Kaur, Role of nanotechnology in research fields: Medical sciences, military & tribology- A review on recent advancements, grand challenges and perspectives, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.02.061. (https://www.sciencedirect.com/science/article/pii/S2214785323005783); Priyanshi Saini, Kamalesu, Lalita, Manikanika, Review on nanotechnology “Impact on the food services industry”, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.04.377.; Aloysius F. Hepp, Jerry D. Harris, Allen W. Apblett, Andrew R. Barron, Chapter 17 - Commercialization of single-source precursors: Applications, intellectual property, and technology transfer, Editor(s): Allen W. Apblett, Andrew R. Barron, Aloysius F. Hepp, Nanomaterials via Single-Source Precursors, Elsevier, 2022, Pages 563-600, ISBN 9780128203408, https://doi.org/10.1016/B978-0-12-820340-8.00008-3.; Arkadiy Larionov, Yulia Larionova, Ludmila Selivanova, Regional Peculiarities of Energy Saving Development During the Exploitation of Housing and Underground Housing and Utility Sector Objects, Procedia Engineering, Volume 165, 2016, Pages 1229-1232, ISSN 1877-7058, https://doi.org/10.1016/j.proeng.2016.11.844.; Mahendra L. Shelar, Vinod B. Suryawanshi, Experimental investigation and characterization of the tensile and flexural properties of amine functionalized graphene enhanced nanocomposite prepregs, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.06.371.; A. B. Shivshambhu Kumar, "Potential applications of nanomaterials in oil and gas well cementing: Current status, challenges and prospects," Journal of Petroleum Science and Engineering, vol. 213, pp. 1-18, 2022.; L. Ivanov, O. Borisova and S. R. Miminova, "The inventions in nanotechnologies as practical solutions. Part I.," Nanotekhnologii v Stroitel'stve, vol. 11, no. 1, pp. 91-101, 2019.; F. A. Shilar, S. V. Ganachari y V. B. Patil, “Advancement of nano-based construction materials-A review”, Construction and Building Materials, vol. 359, pp. 1-41, 2022; M. Luna, J.J. Delgado, T. Montini, L.M.L. Almoraima Gil, P. Fornasiero and M.J. Mosquera, "Photocatalytic TiO2 nanosheets-SiO2 coatings on concrete and limestone: An enhancement of de-polluting and self-cleaning properties by nanoparticle design," Construction and Building Materials, vol. 338, pp. 1-13, 2022.; Z. Wang, Q. Yu, P. Feng and H. Brouwers, "Variation of self-cleaning performance of nano-TiO2 modified mortar caused by carbonation: From hydrates to carbonates," Cement and Concrete Research, vol. 158, pp. 1-15, 2022.; A. A. Firoozi, M. Naji, M. Dithinde and A. A. Firoozi, "A Review: Influence of Potential Nanomaterials for Civil Engineering Projects," Iranian Journal of Science and Technology, Transactions of Civil Engineering, vol. 45, p. 2057–2068, 2020.; A. A. Alizadehmojarad, X. Zhou, A. G. Beyene, K. E., Chacon, Y. Sung, R. Pinals, L. Vuković, "Binding Affinity and Conformational Preferences Influence Kinetic Stability of Short Oligonucleotides on Carbon Nanotubes," Advanced Materials Interfaces, vol. 7, no. 15, p. 2000353, 2020.; J. Tang, X. Wang, J. Zhang, J. Wang, W. Yin, D.S. Li, and T. Wu, "A chalcogenide-cluster-based semiconducting nanotube array with oriented photoconductive behavior," Nature Communications, vol. 12, no. 1, p. 4275, 2021.; A. S. Dahlan, "Smart and Functional Materials Based Nanomaterials in Construction Styles in Nano-Architecture," Silicon, vol. 11, pp. 1949-1953, 2019.; A. Adesina, "Overview of Workability and Mechanical Performance of Cement-Based Composites Incorporating Nanomaterials," Silicon, vol. 14, pp. 135-144, 2020.; A. M. Onaizi, G. F. Huseien, N. H. A. S. Lim, M. Amran and M. Samadi, "Effect of nanomaterials inclusion on sustainability of cement-based concretes: A comprehensive review," Construction and Building Materials, vol. 306, pp. 1-20, 2021.; A. Z. Aljenbaz y Ç. Çağnan, “Evaluation of Nanomaterials for Building Production within the Context of Sustainability”, European Journal of Sustainable Development, vol. 9, pp. 53-65, 2020.; P. D. Bonilla Nieto, J. S. Carrillo Sanabria, y J. R. Camargo López, “Solar energy manager with PSOC5LP”, Vis. Electron., vol. 13, n.º 1, pp. 112–122, ene. 2019. https://doi.org/10.14483/22484728.14426; D. J. Arcila Perozo, L. Y. López López, y K. S. Novoa Roldán, ”Robotic system based on ant behavior for optimizing shortest path finding”, Vis. Electron., vol. 17, n.º 1, abr. 2023.; Yener, S. C., & Mutlu, R. (2018). A microcontroller-based ECG signal generator design utilizing microcontroller PWM output and experimental ECG data. 2018 Electric Electronics, Computer Science, Biomedical Engineering’s’ Meeting, EBBT 2018, 1-4. https://doi.org/10.1109/EBBT.2018.8391465; Rangayyan, R. M. (2002). BIOMEDICAL SIGNAL ANALYSIS A Case-Study Approach.; León, F., Rodríguez Lozano, F. J., Cubero Fernández, A., Palomares, J. M., & Olivares, J. (2019). SysGpr: Sistema de generación de señales sintéticas pseudo-realistas. Revista Iberoamericana De Automática, 16 (3), 369-379.; Anowarul Fattah, S. (2012). Identifying the Motor Neuron Disease in EMG Signal Using Time and Frequency Domain Features with Comparison. Signal & Image Processing: An International Journal, 3 (2), 99-114. https://doi.org/10.5121/sipij.2012.3207; De Luca, C. J. (1979). Physiology and Mathematics of Myoelectric Signals. IEEE Transactions on Biomedical Engineering, BME-26 (6), 313-325. https://doi.org/10.1109/TBME.1979.326534; Selvan, V. A. (2011). Single-fiber EMG: A review. Ann Indian Acad Neurol.; Wu, J., Li, X., Liu, W., & Jane Wang, Z. (2019). SEMG Signal Processing Methods: A Review. Journal of Physics: Conference Series, 1237 (3). https://doi.org/10.1088/1742- 6596/1237/ 3/032008; Widodo, A., Puspitaningayu, P., Anifah, L., & Firmansyah, R. (2018). An ArdiunoSimulink Based ECG Waveform Generator. 2018 2nd Borneo International Conference on Ap- plied Mathematics and Engineering, BICAME 2018, 338-342. https://doi.org/10.1109/ BICAME45512.2018.1570504879; DALCAME. (2005). Electromiografía. http ://www.dalcame.com/emg.html#.X4o6m9BKjIV (accessed: 16.10.2020).; López Chávez, H. I. (2020). Detección de la LRD en el ritmo cardiaco. APUNTES DE CLASE. Mahabalagiri, A. K., Ahmed, K., & Schlereth, F. (2011). A novel approach for simulation, measurement and representation of surface EMG (sEMG) signals. Conference Record - Asilomar Conference on Signals, Systems and Computers, 476- 480. https://doi.org/10.1109/ACSSC.2011.6190045; Ruiz Rubio, R. (1999). Aplicaciones de las señales electromiográficas. http://www.encuentros.uma.es/encuentros53/aplicaciones.%20html#:∼:%20text=Las% 5C%20se%5C%C3%5C%B1ales%5C%20EMG%5C%20tienen%5C%20una%5C%20f recuencia%5C%20que%5C%20oscila%5C%20entre%5C%2050,ser%5C%20menor% 5C%20de%5C%20300%5C%20Hz. (accessed: 16.10.2020).; Tabernig, C., Acevedo, R., & Fernández, J. (2007). INFLUENCIA DE LA FATIGA MUSCULAR EN LA SEÑAL ELECTROMIOGRÁFICA DE MÚSCULOS ESTIMULADOS ELÉCTRICAMENTE. Revista EIA, 111-119.; Alvarés Osorio, L. (2007). Acondicionamiento de señales bioeléctricas. https://www.coursehero.com/file/p3rjpjoo/2-Tipos-de-se%5C%C3%5C%B1alesbioel%5C%C3%5C%A9ctricas-6-nervous-system-a-trav%5C%C3%5C%A9s-demotor-end-plates/(accessed: 16.10.2020).; Mcgill, K. C., Lateva, Z. C., & Marateb, H. R. (2005). EMGLAB. http://emglab.net/emglab/index.php; Nikolic, M. (2001). Detailed Analysis of Clinical Electromyography Signals EMG Decomposition, Findings and Firing Pattern Analysis in Controls and Patients with Myopathy and Amy- trophic Lateral Sclerosis [Tesis doctoral, Faculty of Health Science, University of Copenhagen].; Téllez, M., Mejía, J., López, H., & Hernández, C. (2020). Random Number Generator with LongRange Dependence and Multifractal Behavior Based on Memristor. Electronics, 9 (10). https://doi.org/10.3390/electronics9101607; Initial J. Barrios., Tratamiento del sindrome del tunel carpiano. estudio de un caso clinico, Available online: https://mbfisioterapia.wordpress.com/tag/tunel-carpiano/, 2012, (accessed on 27-08-2023).; Diego A. B. V. and Ferro R. E, Estudio de modelos propuestos para el nervio mediano sano y con síndrome de túnel carpiano. Available online: https://revistas.udistrital.edu.co/index.php/NoriaIE/article/view/16353/15643 , 2019, (accessed on 28-08-2023).; L. L. A., Síndrome del túnel del carpo, Available online: https://www.medigraphic.com/pdfs/orthotips/ot-2014/ot141g.pdf , 2014, (accessed on 28-08-2023). Revista Orthotips.; R. D. G. F and D. F, Síndrome del túnel carpiano carpal tunnel syndrome,Revista Habanera de Ciencias Médicas, vol. 13, pp. 728–741, 2014. [Online]. Available: http://scielo.sld.cu; M. E. D. Alguacil, A. C. Millán, R. L. Sánchez, A. M. Sánchez, M. F. Arrondo, and I. C. Hernández, Revisión bibliográfica síndrome del túnel carpiano. intervención enfermera. Available online: https://revistasanitariadeinvestigacion.com/revision-bibliograficasindrome-del-tunel-carpiano-intervencion-enfermera/ , 2022, (accessed on 29-08- 2023).; J. O. G, Síndrome de túnel carpiano y accidente de tráfico. https://www.peritajemedicoforense.com/OJEDA.htm#:∼:text=El%20S%C3%ADndrome %20de%20T%C3%%20BAnel%20Carpiano,a%20traumatismo%20sobre%20la%20mu %C3%B1eca, 2001, (accessed on 29-08-2023).; M. B. Tejedor, J. A. Cervera, R. G. Lahiguera, and A. L. Ferreres, Análisis de factores de riesgo laborales y no laborales en síndrome de túnel carpiano (stc) mediante análisis bivariante y multivariante, https://scielo.isciii.es/scielo.php?script=sci arttext&pid=S1132-62552016000300004, 2016, (accessed on 01-09-2023). Valencia. Revista Scielo.; A. M. R., Síndrome del túnel carpiano. revisión no sistemática de la literatura. https://revistas.unisanitas.edu.co/index.php/rms/article/view/436, 2019, (accessed on 01-09-2023). Revista Médica Sanitas.; G. C. G. P., A. F. G. E., and E. A. G. A., Síndrome del túnel del carpo. Revista morfología. https://revistas.unal.edu.co/index.php/morfolia/article/view/10857#:∼:text=El%20S%C 3%ADndrome%20del%20T%C3%BAnel%20de,causas%20locales,%20regionale s%20y%20sist%C3%A9micas., 2009, (accessed on 02-09-2023). Universidad Nacional de Colombia.; Y. A. M. M., L. V. C. S., and M. A. T. S., Prevalencia de signos y síntomas de síndrome del túnel carpiano y sus factores asociados, en empleados administrativos de la universidad santo tomás sede floridablanca, durante el semestre del 2016. https://repository.usta.edu.co/bitstream/handle/11634/10218/YohannaMirandaLizethcala-%202017.pdf?sequence=1&isAllowed=y, 2017, (accessed on 23-09-2023). Universidad Santo Tomás.; U. M. Vázquez, I. D. C. Carrera, A. Alonso-Calvete, and Y. González-González, Eficacia del kinesiotape en el síndrome del túnel carpiano. una revisión sistemática, https://scielo.isciii.es/scielo.php?pid=S1132- 62552022000100011&script=sciarttext&tlng=pt, 2022, accedido 6-09-2023.; E. Cabrera, “El coeficiente de correlacion de los rangos de spearman caracterizacion,”http://scielo.sld.cu/pdf/rhcm/v8n2/rhcm17209.pdf, 2009, accedido 8- 09-2023.; IBM, “Estadísticos de tablas cruzadas,” https://www.ibm.com/docs/es/spss-statistics/ saas?topic=crosstabs-statistics, 2021, accedido 8-09-2023.; H. L. J. Diego, E. C. Franklin, R. J. E, C. R. J. Gerardo, T. S. C. Andrés, A. T. M. Karina, C. S. S. Milena, and B. P. V. José, “Sobre el uso adecuado del coeficiente de correlación de pearson: definición, propiedades y suposiciones,” https://www.redalyc.org/journal/559/55963207025/55963207025.pdf, 2018, accedido 8- 09-2023.; S. I. M. Orlando, “Coeficiente de correlación; coeficiente de correlación de spearman; estadística; coeficiente de correlación por rangos,” http://repositorio.utn.edu.ec/handle/123456789/768, 2011, accedido 15-09-2023.; B. M.H., A. G. O.P, L. Serrato, and J. A. Garnica, “Correlación no-paramétrica y su aplicación en la investigaciones científica non-parametric correlation and its application in scientific research,” http://www.spentamexico.org/v9-n2/A5.9(2)31-40.pdf, 2014, accedido 15-09-2023.; NCAN National Center for Adaptative Neurotechnologies, Documentation 2nd Wadsworth BCI Dataset (P300 Evoked Potentials) Data Acquired Using BCI2000 P3 Speller Paradigm, 1, 2002.; M.S.S.T.N.H Yağan-Mussellim-Arslan-Çakar-Alp-Ozkan, "A new benchmark dataset for P300 ERP-based BCI applications", Digital Signal Processing, vol. 135, pp. 1-11, April 2023.https://doi.org/10.1016/j.dsp.2023.103950.; L. E. A. G. P. Korczowski-Ostaschenko-Andreev-Cattan-Coelho Rodrigues, et al. Brain Invaders calibration-less P300-based BCI using dry EEG electrodes Dataset, (bi2014a). [Research Report] GIPSA-lab. 2019. ffhal-02171575f; A. M. E. D. D. C. R. M. T. L. M. Gramfort-Luessi-Larson-Engemann-StrohmeierBrodbeck-Goj-Jas-Brooks-Parkkonen-Hämäläinen. MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience, 7(267):1–13, 2013. doi:10.3389/fnins.2013.00267.; Haghighatpanah, N., Amirfattahi, R., Abootalebi, V., & Nazari, B. (2012). A two stage single trial P300 detection algorithm based on independent component analysis and wavelet transforms. 2012 19th Iranian Conference of Biomedical Engineering (ICBME), 324-329.; Neda Haghighatpanah, Rasoul Amirfattahi, Vahid Abootalebi, and Behzad Nazari. A single channel-single trial p300 detection algorithm. In 2013 21st Iranian Conference on Electrical Engineering (ICEE), pages 1–5, 2013; S. K. Haider, A. Jiang, M. A. Jamshed, H. Pervaiz and S. Mumtaz, "Performance Enhancement in P300 ERP Single Trial by Machine Learning Adaptive Denoising Mechanism," in IEEE Networking Letters, vol. 1, no. 1, pp. 26-29, March 2019, doi:10.1109/LNET.2018.2883859.; Praveen Kumar Shukla, Rahul Kumar Chaurasiya, and Shrish Verma. Performance improvement of p300-based home appliances control classification using convolution neural network. Biomedical Signal Processing and Control, 63, 1 2021.; Samima, S., Sarma, M., Samanta, D. et al. Estimation and quantification of vigilance using ERPs and eye blink rate with a fuzzy model-based approach. Cogn Tech Work 21, 517–533 (2019). https://doi.org/10.1007/s10111-018-0533-8; A. Boudjella, M. Y. Boudjella and B. Bachir, "Epileptic Disease Prediction Using Graphic User Interface–Machine Learning Algorithm," 2022 7th International Conference on Image and Signal Processing and their Applications (ISPA), Mostaganem, Algeria, 2022, pp. 1-8, doi:10.1109/ISPA54004.2022.9786366.; Heras, J. M. (2019, noviembre 17). Precision, Recall, F1, Accuracy en clasificación. [Online] Iartificial.net. Available at https://www.iartificial.net/precision-recall-f1- accuracy-en-clasificacion/; C. F. Blanco-D ́ıaz, C. D. Guerrero-Méndez, and A. F. Ruiz-Olaya. Enhancing p300 detection using a band-selective filter bank for a visual p300 speller. IRBM, 44, 6 2023; E Solis-Escalante, G Gabriel Gentiletti, and O Yanez-Suarez. Single trial p300 detection based on the empirical mode decomposition. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 1157– 1160, 2006.; C. F. Blanco-D ́ıaz, C. D. Guerrero-M ́endez, and A. F. Ruiz-Olaya. Enhancing p300 detection using a band-selective filter bank for a visual p300 speller. IRBM, 44, 6 2023; R. A. Neira- Ricouz, " Fotografia Aerea", Tesis Ing, Universidad Austral de Chile, Valdivia, Chile, 2005.; D. I. Gómez, R. Castrillón, " Reconocimiento Automático De Ganado Bovino A Partir De Imágenes Aéreas Tomadas Con Drones: Un enfoque exploratorio", III Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y Móvil, 32-39, Pereira Colombia, 2019.; Airdroneview, 4 julio 2014, “Historia de la fotografía aérea”[Blog], [Online]. Recuperado de: https://airdroneview.com/2014/07/04/historia-de-la-fotografia-aerea/ .; F. Fernández García, " Fotografía aérea histórica e historia de la fotografía aérea en España”, Revista ERIA, Departamento de Geografía. Universidad de Oviedo, España, pp . 217-240, 2015.; M. Blanco Pérez. (2021). Fotografía aérea con tecnología drone. Tipología y aplicaciones. Discursos Fotograficos, 16(29), pp.76–101. https://doi.org/10.5433/1984-7939.2020v16n29p76; FJT Historia, medicina y otras artes, marzo 2016, “Las primeras fotografías aéreas de la Historia”[Blog],[Online]. Recuperado de: https://franciscojaviertostado.com/2016/03/14/las-primeras-fotografias-aereas-de-lahistoria/.; A Berrondo UrruzolaD. I, "Detección de carreteras en imágenes de reconocimiento remoto mediante deep", Grado en Ingeniería Informática Computación, Univeridad del pais vasco, Facultad de informatica, 2020.; A. Yasin Yiğit, A. Kocatepe, " Automatic road detection from orthophoto images", mersin photogrametri journal, 2(1); 10-17, e ISSN 2687-654X, 2020 .; Chaki, N., Shaikh, S.H., Saeed, K. (2014). A Comprehensive Survey on Image Binarization Techniques. In: Exploring Image Binarization Techniques. Studies in Computational Intelligence, vol 560. Springer, New Delhi. https://doi.org/10.1007/978- 81-322-1907-1_2; RAE, diccionario real academia de la lengua española, actualización 2022, “consulta del termino correlación”[Online]. Recuperado de: https://dle.rae.es/correlaci%C3%B3n?m=form; Máxima formación, julio 2020, “¿Qué Es La Correlación Estadística Y Cómo Interpretarla?”, [Blog], [Online]. Recuperado de: https://dle.rae.es/correlaci%C3%B3n?m=form; P. Sinha, B. Horgan, R. Ewing, E. Rampe, M. Lapotre, M. Nachon, M. Thorpe, A. Rudolph, C. Bedford, K. Maso2, E. Champion, P. Gray, E. Reid, M. Faragalli, “Decorrelation stretches(dcs) of visible images as a tool for sedimentary provenance investigationson earth and mars”, NTRS - NASA Technical Reports Server, March 16, 2020; Farrand, W. H., J. F. Bell III, J. R. Johnson, M. S. Rice, B. L. Jolliff, and R. E. Arvidson (2014), “Observations of rock spectral classes by the Opportunity rover’s Pancam on northern Cape York and on Matijevic Hill, Endeavour Crater, Mars”, J. Geophys. Res. Planets, 119, 2349–2369, doi:10.1002/2014JE00464.; M. Peikari, A. L. Martel, "Automatic cell detection and segmentation from H and E stained pathology slides using colorspace decorrelation stretching", Proc. SPIE 9791, Medical Imaging 2016: Digital Pathology, 979114 (23 March 2016); https://doi.org/10.1117/12.2216507; D. Hema1, S. Kannan. “Interactive Color Image Segmentation using HSV Color Space”, Science and Technology Journal, Vol. 7 Issue: 1 ISSN: 2321-3388, 2020; The MathWorks Inc,“Image Processing Toolbox For Use with MATLAB®”, decorstretch function, Version 3, User's Guide, https://www.mathworks.com/help/images/ref/decorrstretch.html.; T. Gevers, J. Weijer, H Stokman, “Color Image Processing: Chapter Color Feature Detection”. Social Science Computing Review, 1 st ed. England. edit. CRC Press, pp. 22, 2006. eBook ISBN9781315221526.; The MathWorks Inc,“Image Processing Toolbox For Use with MATLAB®”, imfill function, Version 3, User's Guide, https://la.mathworks.com/help/images/ref/imfill.html?searchHighlight=imfill&s_tid=srch title_support_results_1_imfill.; The MathWorks Inc,“Image Processing Toolbox For Use with MATLAB®”, bwareadopen function, Version 3, User's Guide. https://la.mathworks.com/help/images/ref/bwareaopen.html?searchHighlight=bwareao pen&s_tid=srchtitle_support_results_1_bwareaopen; Shutterstock,” Imágenes libres de regalías de Maldivas”, [Online]. Recuperado de: https://www.shutterstock.com/es/search/maldivas; National Geographic, “Vista aérea del complejo arqueoastronómico de Chankillo, en Perú”. Foto: Ministerio de Cultura de Perú, [Online]. Recuperado de: https://historia.nationalgeographic.com.es/a/chankillo-observatorio-solar-mas-antiguoamerica_19020; M. Franzese and A. Iuliano, “Hidden Markov models,” in Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Elsevier, 2018, pp. 753–762. Doi:10.1016/B978-0-12-809633-8.20488-3.; B.-J. Yoon, “Hidden Markov Models and their Applications in Biological Sequence Analysis,” Cur Genomics, vol. 10, no. 6, pp. 402–415, Sep. 2009, Doi:10.2174/138920209789177575.; P. C. Chang, J. J. Lin, J. C. Hsieh, and J. Weng, “Myocardial infarction classification with multilead ECG using hidden Markov models and Gaussian mixture models,” Applied Soft Computing Journal, vol. 12, no. 10, pp. 3165–3175, Oct. 2012, Doi:10.1016/j.asoc.2012.06.004.; T. Navarrete, “Detección de anomalías en la carga de un procesador utilizando modelos ocultos de Markov.,” Tesis de maestría, Instituto tecnológico de Morelia, Morelia, Michoacán, pp. 1, 2007. Accessed: Sep. 11, 2023. [Online]. Available: http://www.asiat.com.mx/tomas/tesismaestria/micrositio/node2.html; Ö. Yavuz, M. Calp, and H. Erkengel, “Prediction of breast cancer using machine learning algorithms on different datasets,” Ingenieria Solidaria, vol. 19, no. 1, pp. 1–32, Jun. 2023, doi:10.16925/2357-6014.2023.01.08.; DANE, “Estadísticas vitales (EEVV),” pp. 1, 2023. Accessed: Sep. 11, 2023. [Online]. Available: https://www.dane.gov.co/files/investigaciones/poblacion/pre_estadisticasvitales_IIItrim_2022p r.pdf; W. Gersch, P. Lilly, and E. Dong, “PVC Detection by the Heart-Beat Interval Data-Markov Chain Approach,” COMPUTERS AND BIOMEDICAL RESEARCH, vol. 8, pp. 370–378, 1975, Doi: https://doi.org/10.1016/0010-4809(75)90013-0.; A. H. Kadish et al., “ACC/AHA clinical competence statement on electrocardiography and ambulatory electrocardiography. A report of the ACC/AHA/ACP-ASIM Task Force on Clinical Competence (ACC/AHA Committee to Develop a Clinical Competence Statement on Electrocardiography and Ambulatory Electrocardiography),” J Am Coll Cardio, vol. 38, no. 7, pp. 2091–2100, 2001, Doi:10.1016/s0735-1097(01)01680-1.; R. V. Andreão, B. Dorizzi, and J. Boudy, “ECG signal analysis through hidden Markov models,” IEEE Trans Biomed Eng, vol. 53, no. 8, pp. 1541–1549, Aug. 2006, doi:10.1109/TBME.2006.877103.; M. H. Crawford et al., “ACC/AHA guidelines for ambulatory electrocardiography: Executive summary and recommendations: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the Guidelines for Ambulatory Electrocardiography): Developed in Collaboration with the North American Society for Pacing and Electrophysiology,” Circulation, vol. 100, no. 8. Lippincott Williams and Wilkins, pp. 886–893, Aug. 24, 1999. Doi:10.1161/01.CIR.100.8.886.; Sayed Khaled, A. Khalaf, and Y. Kadah, “Arrhythmia classification based on novel distance series transform of phase space trajectories,” Annu Int Conf IEEE Eng Med Biol Soc, pp. 5195– 8, 2015, Doi:10.1109/EMBC.2015.7319562.; M. Alvarez and R. Henao, “Combinacion de ppca y hmm para la identificación de infarto agudo de miocardio,” Scientia Et Technica, vol. 3, no. 32, pp. 139–144, 2006, doi: https://doi.org/10.22517/23447214.6253.; P. Laguna, A. Mark, A. Goldberg, and B. Moody, “A Database for Evaluation of Algorithms for Measurement of QT and Other Waveform Intervals in the ECG,” Compute Cardiol, pp. 673–76, 1997, Doi:10.1109/CIC.1997.648140.; A. L. Goldberger et al., “Physio Bank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals.,” Circulation, vol. 101, no. 23, pp. 1–6, 2000, Doi:10.1161/01.cir.101.23.e215.; G. Moody and R. Mark, “The impact of the MIT-BIH Arrhythmia Database,” IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 3, pp. 45–50, 2001, Doi:10.1109/51.932724.; A. Taddei et al., “The European ST-T database: standard for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography,” Eur Heart J, vol. 13, no. 9, pp. 1164– 1172, 1992, Doi:10.1093/oxfordjournals.eurheartj.a060332.; R. Bousseljot, D. Kreiseler, and A. Schnabel, “Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet,” Biomedizinische Technik, vol. 40, pp. 317–318, 1995, Doi: https://doi.org/10.1515/bmte.1995.40.s1.317.; F. Nolle, J. Badura, R. Catlett, H. Bowser, and M. Sketch, “CREI-GARD, a new concept in computerized arrhythmia monitoring systems,” Computers in Cardiology , pp. 515–518, 1987.; W. T. Cheng and K. L. Chan, “Classification of electrocardiogram using hidden Markov models,” Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. , vol. 20, no. 1, pp. 143–46, 1998, Doi:10.1109/IEMBS.1998.745850.; D. V. Filho and A. M. Cavalcanti, “MODELO PARA ANÁLISE DE ARRITMIAS CARDÍACAS USANDO CADEIAS DE MARKOV,” Proceedings of the XII SIBGRAPI , pp. 101–104, 1999, Accessed: Sep. 11, 2023. [Online]. Available: http://www.din.uem.br/sbpo/sbpo2005/pdf/arq0174.pdf; V. Kalidas and L. S. Tamil, “Detection of atrial fibrillation using discrete-state Markov models and Random Forests,” Compute Biol Med, vol. 113, pp. 1–14, Oct. 2019, Doi:10.1016/j.compbiomed.2019.103386.; P. Cheng and X. Dong, “Life-threatening ventricular arrhythmia detection with personalized features,” IEEE Access, vol. 5, pp. 14195–14203, Jul. 2017, Doi:10.1109/ACCESS.2017.2723258.; F. Nilsson, M. Stridh, and L. Sörnmo, “Frequency Tracking of Atrial Fibrillation using Hidden Markov Models,” Conf Proc IEEE Eng Med Biol Soc., pp. 1406–9, 2006, Doi:10.1109/IEMBS.2006.259677.; J. Oliveira, C. Sousa, and M. Coimbra, “Coupled hidden Markov model for automatic ECG and PCG segmentation,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, pp. 1023–27, 2017, Doi:10.1109/ICASSP.2017.7952311.; S. Petrutiu, A. V. Sahakian, and S. Swiryn, “Abrupt changes in fibrillatory wave characteristics at the termination of paroxysmal atrial fibrillation in humans,” Europace, vol. 9, no. 7, pp. 466– 470, Jul. 2007, Doi:10.1093/europace/eum096.; M. A F Pimentel, M. D. Santos, D. B. Springer, and G. D. Clifford, “Heart beat detection in multimodal physiological data using a hidden semi-Markov model and signal quality indices,” Physio Meas, vol. 36, no. 8, pp. 1717–1727, Aug. 2015, Doi:10.1088/0967-3334/36/8/1717.; A. K. Sangaiah, M. Arumugam, and G. Bin Bian, “An intelligent learning approach for improving ECG signal classification and arrhythmia analysis,” Artif Intell Med, vol. 103, pp. 1–14, Mar. 2020, Doi:10.1016/j.artmed.2019.101788.; H. Kwok, J. Coult, J. Blackwood, N. Sotoodehnia, P. Kudenchuk, and T. Rea, “A method for continuous rhythm classification and early detection of ventricular fibrillation during CPR,” Resuscitation, pp. 90–97, 2022, Doi:10.1016/j.resuscitation.2022.05.019.; L. A. Levin et al., “A cost-effectiveness analysis of screening for silent atrial fibrillation after ischaemic stroke,” Europace, vol. 17, no. 2, pp. 207–214, Dec. 2014, Doi:10.1093/europace/euu213.; G. H. Tison, J. Zhang, F. N. Delling, and R. C. Deo, “Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery,” Circ Cardiovasc Qual Outcomes, vol. 12, no. 9, pp. 1–12, Sep. 2019, Doi:10.1161/CIRCOUTCOMES.118.005289.; W. H. Tang, W. H. Ho, and Y. J. Chen, “Retrieving hidden atrial repolarization waves from standard surface ECGs,” Biomed Eng Online, vol. 17, pp. 1–11, Nov. 2018, Doi:10.1186/s12938-018-0576-3.; M. Altuve, G. Carrault, A. Beuchée, P. Pladys, and A. I. Hernández, “Online apnea–bradycardia detection based on hidden semi-Markov models,” Med Biol Eng Compute, vol. 53, no. 1, pp. 1– 13, Jan. 2015, Doi:10.1007/s11517-014-1207-1.; S. Masoudi and et al., “Early detection of apnea-bradycardia episodes in preterm infants based on coupled hidden Markov model,” IEEE International Symposium on Signal Processing and Information Technology, Athens, Greece, pp. 243–48, 2013, Doi:10.1109/ISSPIT.2013.6781887.; N. Montazeri Ghahjaverestan, M. B. Shamsollahi, D. Ge, A. Beuchée, and A. I. Hernández, “Apnea bradycardia detection based on new coupled hidden semi Markov model,” Med Biol Eng Comput, pp. 1–11, 2020, Doi:10.1007/s11517-020-02277-8.; A. Sadoughi, M. B. Shamsollahi, E. Fatemizadeh, A. Beuchée, A. I. Hernández, and N. Montazeri Ghahjaverestan, “Detection of Apnea Bradycardia from ECG Signals of Preterm Infants Using Layered Hidden Markov Model,” Ann Biomed Eng, vol. 49, no. 9, pp. 2159–2169, Sep. 2021, Doi:10.1007/s10439-021-02732-z.; E. D. Übeyli, “Combining recurrent neural networks with eigenvector methods for classification of ECG beats,” Digital Signal Processing: A Review Journal, vol. 19, no. 2, pp. 320–329, 2009, Doi:10.1016/j.dsp.2008.09.002.; C. Zhang, G. Wang, J. Zhao, P. Gao, J. Lin, and H. Yang, “Patient-specific ECG classification based on recurrent neural networks and clustering technique,” 2017 13th IASTED International Conference on Biomedical Engineering (BioMed), Innsbruck, Austria, pp. 63–67, 2017, Doi:10.2316/P.2017.852-029.; Z. Xiong, M. K. Stiles, and J. Zhao, “Robust ECG signal classification for detection of atrial fibrillation using a novel neural network,” in Computing in Cardiology, IEEE Computer Society, 2017, pp. 1–4. Doi:10.22489/CinC.2017.066-138; M. Liam and F. Precioso, “Atrial fibrillation detection and ECG classification based on convolutional recurrent neural network,” in Computing in Cardiology, IEEE Computer Society, 2017, pp. 1–4. Doi:10.22489/CinC.2017.171-325.; Y. C. Chang, S. H. Wu, L. M. Tseng, H. L. Chao, and C. H. Ko, “AF Detection by Exploiting the Spectral and Temporal Characteristics of ECG Signals with the LSTM Model,” in Computing in Cardiology, IEEE Computer Society, Sep. 2018, pp. 1–4. Doi:10.22489/CinC.2018.266.; H. W. Lui and K. L. Chow, “Multiclass classification of myocardial infarction with convolutional and recurrent neural networks for portable ECG devices,” Inform Med Unlocked, vol. 13, pp. 26–33, Jan. 2018, Doi:10.1016/j.imu.2018.08.002.; G. D. Clifford et al., “AF classification from a short single lead ECG recording: The PhysioNet/computing in cardiology challenge 2017,” in Computing in Cardiology, IEEE Computer Society, 2017, pp. 1–4. Doi:10.22489/CinC.2017.065-469.; S. Singh, S. K. Pandey, U. Pawar, and R. R. Janghel, “Classification of ECG Arrhythmia using Recurrent Neural Networks,” Procedia Compute Sci, vol. 132, pp. 1290–1297, 2018, Doi:10.1016/j.procs.2018.05.045.; Li X, Qi X, Chen Z, Hou Y, Yang Y, and Liang Q, “Affective Stress Rating Method Based on Improved Hidden Markov Model,” Chinese, vol. 33, no. 3, pp. 533–538, 2016.; C. Ying, Z. Xin, and C. Wenxi, “Automatic sleep staging based on ECG signals using hidden Markov models,” Annu Int Conf IEEE Eng Med Biol Soc ., pp. 530–3, 2015, Doi:10.1109/EMBC.2015.7318416.; F. Sandberg, M. Stridh, and L. Sörnmo, “Frequency tracking of atrial fibrillation using hidden Markov models,” IEEE Trans Biomed Eng, vol. 55, no. 2, pp. 502–511, Feb. 2008, Doi:10.1109/TBME.2007.905488.; L. Rincón, “Introducción a los procesos estocásticos,” UNAM, México, pp. 120-180, 2011. [Online]. Available: http://www.matematicas.unam.mx/lars; A. Alaa, S. Hu, and M. Schaar, “Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis,” International Conference on Machine Learning , pp. 60–69, 2017, Doi: https://doi.org/10.48550/arXiv.1705.05267.; J. Bilmes, “A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models,” International computer science institute, vol. 4, no. 510, p. 126, 1998, Accessed: Sep. 11, 2023. [Online]. Available: https://f.hubspotusercontent40.net/hubfs/8111846/Unicon_October2020/pdf/bilmes-emalgorithm.pdf; L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989, Doi:10.1109/5.18626.; A. Cohen, “Hidden Markov models in biomedical signal processing,” Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Biomedical Engineering Towards the Year 2000 and Beyond, vol. 3, pp. 1145–50, 1998, Doi:10.1109/IEMBS.1998.747073; Al-Hamadi, H., Gawanmeh, A., & Al-Qutayri, M. (2016). An automatic ECG generator for testing and evaluating ECG sensor algorithms. Proceeding of 2015 10th International Design and Test Symposium, IDT 2015, 78-83. https://doi.org/10.1109/IDT.2015.7396740; Yener, S. C., & Mutlu, R. (2018). A microcontroller-based ECG signal generator design utilizing microcontroller PWM output and experimental ECG data. 2018 ElectricElectronics, Computer Science, Biomedical Engineering’s’ Meeting, EBBT 2018, 1-4. https://doi.org/10.1109/EBBT.2018.8391465; Bear, M., Connors, B., & Paradiso, M. (2016). Neuroscience: Exploring the Brain. Wolters Kluwer. https://books.google.com.co/books?id=vVz4oAEACAAJ; López Chávez, H. I. (2020). Detección de la LRD en el ritmo cardiaco. APUNTES DE CLASE.; Park, K., & Willinger, W. (2000). Self-Similar Network Traffic and Performance Evaluation (1st). John Wiley & Sons, Inc.; Orozco, S. L., Cerda Villafaña, G., Cervantes, G. A., & Cisneros, M. T. (2010). Analysis of LRD Series with Time-Varying Hurst Parameter Análisis de Series LRD con Parámetro de Hurst Variante en el Tiempo. 13 (3), 295-312. http://www.fimee.ugto.mx/profesores/sledesma/documentos/; Ceballos, R. F., & Largo, F. F. (2018). On The Estimation of the Hurst Exponent Using Adjusted Rescaled Range Analysis, Detrended Fluctuation Analysis and Variance Time Plot: A Case of Exponential Distribution; Pujolle, G., Perros, H., Fdida, S., Korner, U., & Stavrakakis, I. (2000). Networking 2000 Broad- band Communications, High Performance Networking, and Performance of Communication Networks: IFIP-TC6/European Commission International Conference Paris, France, May 14–19, 2000 Proceedings. https://doi.org/10.1007/3-540-45551-5; Sheluhin, O., Smolskiy, S., & Osin, A. (2007). Self-Similar Processes in Telecommunications. John Wiley &; Sons, Inc.; Simonsen, I., Hansen, A., & Nes, O. M. (1998). Determination of the Hurst exponent by use of wavelet transforms. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 58 (3), 2779-2787. https://doi.org/10.1103/PhysRevE.58.2779; R. A. Robayo Salazar, P. E. Mattey Centeno, Y. F. Silva Urrego, D. M. Burgos Galindo y S. Delvasto Arjona, «Los residuos de la construcción y demolición en la ciudad de Cali: un análisis hacia su gestión, manejo y aprovechamiento,» Tecnura, vol. 19, nº 44, pp. 157-170, 2015.; Observatorio Ambiental de Bogotá, «Observatorio Ambiental de Bogotá,» 30 Julio 2023. [En línea]. Available: https://oab.ambientebogota.gov.co/residuos-de-construccion-ydemolicion/. [Último acceso: septiembre 2023].; Invías, «Normas y especificaciones 2012 invías,» 2012. [En línea]. Available: https://www.umv.gov.co/sisgestion2019/Documentos/APOYO/GLAB/GLAB-DE003_V1_Normas_Invias_Seccion_400-13.pdf. [Último acceso: septiembre 2023].; Normas técnicas Colombianas, «Concretos, especificaciones de los agragados para concreto NTC 174,» p. 5, 2000. [En línea]. Available: https://www.emcali.com.co/documents/148832/183512/NTC+174+de+2000.pdf/. [Último acceso: Septiembre 2023].; J. L. Rojas Ramírez y J. E. Berrío Mutiz, «Elaboración de concreto a partir de material de escombros de concreto,» Quindío - Colombia, 2019.; B. E. García Velásquez y L. M. Díaz Morales, «Proyecto de investigación evaluación de la resistencia a la compresión del concreto utilizando el cuesco proveniente de los residuos de fruto fresco de la palma africana y el concreto de residuos de construcción y demolición en obras civiles (rcd),» Villavicencio, 2019.; S. Peña Muñoz, J. F. Terán Puerta, J. A. Molina Sánchez, H. D. Cañola, A. BuilesJaramillo y . J. Ubany Zuluaga, «Evaluación de las propiedades de residuos de construcción y demolición de concreto,» Cuaderno, vol. 10, nº 1, pp. 79-90, 2018.; L. Perez Hernández, J. Gomez Chimento, A. Contreras Bravo y Padilla RuizLiseth, «Resistencia a la compresión del concreto,» Researchgate, Octubre 2018.; L. León Consuegra y M. Hernández Puentes, «Comparación de los valores de resistencia a compresión del hormigón a la edad de 7 y 28 días.,» Revista de Arquitectura e Ingeniería, vol. 10, nº 1, pp. 1-9, 2016.; À. Alegre Arias, «Hormigones en masa con áridos reciclados procedentes de rcd para su uso en la fabricación de bloques de defensa portuarios.,» Barcelona, 2012.; G. Bossini, M. G. Nuñez Cáceres y H. D. Anaya, «Influencia de agregados reciclados provenientes de (RCD) en hormigón,» de IX Jornadas de ciencias y tecnologías de facultades de ingeniería del NOA, Santiago del Estero, 2018.; C. J. Zega, «Hormigones reciclados: caracterización de los agregados gruesos reciclados,» (Tesis de maestría), p. 28, 2008.; E. Pavón, M. Etxeberria y I. Martínez, «Propiedades del hormigón de árido reciclado fabricado con adiciones, activa e inerte,» Revista de la construcción, vol. 10, nº 3, pp. 4- 15, 2011.; S. P. Muñoz Perez, D. M. Diaz Sanchez, E. E. Gamarra Capuñay y J. A. Chaname Bustamante , «La influencoa de los RCD en reemplazo de los agregados para la elaboración del concreto: una revisión literaria,» Ecuadorian Science Journal, vol. 5, nº 2, pp. 107-120, 2021.; C. A. Pacheco Bustos, L. G. Fuentes Pumarejo, É. H. Sánchez Cotte y H. A. Rondón Quintana, «Residuos de construcción y demolición (RCD), una perspectiva de aprovechamiento para la ciudad de barranquilla desde su modelo de gestión,» Ingeniería y Desarrollo, vol. 35, nº 2, pp. 533-555, 2017.; IEEE, IEEE Standard for Information technology—Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, vol. 2020. 2016. [Online]. Available: http://www.ieee.org/web/aboutus/whatis/policies/p9- 26.html.%0Ahttps://standards.ieee.org/standard/802_11ax-2021.html; “El nuevo 802.11ah conoce todo sobre Wi-Fi HaLow" :: Tecnocompras.” https://tecnocompras6.webnode.com.co/news/el-nuevo-802-11ah-conoce-todo-sobrewi-fi-halow/ (accessed Mar. 23, 2023).; Guías de Laboratorio para el estudio de señales Wi-Fi con el Equipo ANRITSU MS2830A de la Universidad Distrital Francisco José de Caldas, Manuel Fernando Cañas Soto, Brayan Alexander Estupiñan Avellaneda, José David Cely Callejas UDFJC 2023; M. Viseras, “Diseño De Una Guia De Prácticas De Laboratorio De Acuerdo Con Las Orientaciones Del Eees,” Enseñanza las Ciencias, Número Extra VIII Congr. Int. sobre Investig. en Didáctica las Ciencias, no. 1, pp. 1228–1233, 2009, [Online]. Available: https://pt.scribd.com/document/320878666/DISENO-DE-UNA-GUIA-DEPRACTICAS-DE-LABORATORIO-DE-ACUERDO-CON-LAS-ORIENTACIONESDEL-EEES; A. Alilla, A. Di Carlofelice, M. Faccio, I. Lucresi, and P. Tognolatti, “Software-defined satellite ranging measurements using laboratory signal analyzer,” 2014 IEEE Int. Work. Metrol. Aerospace, Metroaerosp. 2014 - Proc., pp. 332–336, 2014, doi:10.1109/METROAEROSPACE.2014.6865944.; P. Brochure, “Signal Analyzer,” SpringerReference, 2011, doi:10.1007/springerreference_24743.; A. Torres, “Ubiquiti airFiber – ¿Qué es BER (tasa de error de bit) en los radios airFiber? %7C Base de Conocimiento,” Ubiquiti. https://soporte.syscom.mx/es/articles/1439450- ubiquiti-airfiber-que-es-ber-tasa-de-error-de-bit-en-los-radios-airfiber (accessed Jul. 19, 2022).; O. Hernandez Cruz, “Diagrama de constelacion y modulaciones digitales avanzadas - Omar Hernández Cruz 17110937 Diagrama - StuDocu,” Universidad TecMilenio, 2021. https://www.studocu.com/es-mx/document/universidad-tecmilenio/ingenieria-decontrol/diagrama-de-constelacion-y-modulaciones-digitales-avanzadas/12619514 (accessed Jul. 19, 2022).; “Diagrama de constelación %7C PROMAX,” PROMAX, 2017. https://www.promax.es/esp/noticias/516/diagrama-de-constelacion/ (accessed Jul. 19, 2022).; Tektronix, “What Are Vector Network Analyzers %7C VNAs Explained %7C Tektronix.” https://www.tek.com/en/documents/primer/what-vector-network-analyzer-and-howdoes-it-work (accessed Jul. 19, 2022).; Tektronix, “Signal Generator %7C Tektronix.” https://www.tek.com/en/products/signalgenerators (accessed Jul. 19, 2022).; “Modelo pedagógico de la Facultad de Comunicaciones de la Universidad de Antioquia,” Feb. 2016. https://www.udea.edu.co/wps/wcm/connect/udea/fcc26266- 11ae-42c5-87abd8025d2bec9/MODELO+PEDAGÓGICO.pdf?MOD=AJPERES&CVID=lsLGwgF (accessed Aug. 05, 2022).; D. Noreña, “EL CONCEPTO DE PEDAGOGÍA EN LA OBRA PEDAGÓGICA DE RAFAEL FLÓREZ OCHOA ,” Univ. ANTIOQUIA Fac. Educ. Dep. Educ. Av. Maest. EN Educ. ÉNFASIS EN Form. Maest. , 2007, Accessed: Aug. 05, 2022. [Online]. Available: http://ayura.udea.edu.co:8080/jspui/bitstream/123456789/624/1/AA0384.pdf; M. Rosales, “Proceso evaluativo: evaluación sumativa, evaluación formativa y Assesment su impacto en la educación actual”; L. A. N. M. A. N. Committee, IEEE Std 802.11-2007: IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks-Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY, vol. 2020. 2007. [Online]. Available: http://scholar.google.com/scholar?q=related:K_aQPLd0dskJ:scholar.google.com/&hl= en&num=30&as_sdt=0,5%5Cnpapers3://publication/uuid/E731D645-DF33-45B5- 8882-A665213EA9D8; Anritsu MU181020A PPG 12.5Gb/s, “Anritsu corporation,” Analyzer, vol. 2, [Online]. Available: http://downloadfile.anritsu.com/Files/en-AU/Manuals/OperationManual/mu181020a_b_opm_e_17_0.pdf?f4739ea0f83b43ad1015d3937dbcf8be3aec 8f5de0897d0d745727bbd0217d9fa6b870ff705096c9d9cc39a9b064dd864b08e68938f 9ab5b245ce1c65ef3fe95eedc18d74c3ebd6bb939613a825ffb7; “Qué bandas de frecuencias WiFi hay: Explicación 2.4 GHz, 5 GHz y 6 GHz.” https://www.redeszone.net/tutoriales/redes-wifi/bandas-frecuencias-wi-fi/ (accessed Mar. 23, 2023).; F. G. Landa Barra, “Huella de carbono del transporte urbano para un plan de reducción de gases de efecto invernadero Puno 2021,” Repositorio Institucional - UCV, 2022, Accessed: Nov. 14, 2022. [Online]. https://repositorio.ucv.edu.pe/handle/20.500.12692/88703; S. Ankathi, Z. Lu, G. G. Zaimes, T. Hawkins, Y. Gan, and M. Wang, “Greenhouse gas emissions from the global transportation of crude oil: Current status and mitigation potential,” J Ind Ecol, 2022. https://doi.org/10.1111/jiec.13262; P. D. Faustino M. G., P. D. Florez S. Elkin, and M. Sc Guerrero G. G., “Mercados de energía en Colombia, una introducción,” 2021, Accessed: Nov. 14, 2022. [Online]. https://www.unipamplona.edu.co/unipamplona/portalIG/home_10/recursos/2021/documentos/ 19072021/mercados_energia.pdf.; A. Fernando et al., “Modelo de negocio para la implementación de estaciones de carga para vehículos eléctricos, en la empresa Biored energy,” 2020, Accessed: Nov. 26, 2022. [Online]. https://repository.udistrital.edu.co/handle/11349/28048.; Catagnia Chicaiza, L. D. (2020). Estimación de costos de energía eléctrica para la recarga de vehículos eléctricos basado en la óptima respuesta de la demanda (Bachelor's thesis). http://dspace.ups.edu.ec/handle/123456789/19333.; C. D. C. , Acosta Blanquiceth, J. M. , Chumbe Macana, J. F. , Ortigoza Ulloa, S. D. Palencia Pulido, and Sarmiento Baquero, “Estudio de factibilidad de la instalación de puntos de recarga para vehículos eléctricos en la ciudad de Bogotá,” 2021. https://hdl.handle.net/10882/11290; M. M. Rodríguez, “Impacto. Diseño de estaciones de carga eléctrica sostenible para vehículos eléctricos en Bogotá.,” 2021, Accessed: Nov. 26, 2022. [Online]. Available: http://repositorio.uan.edu.co/handle/123456789/1639.; Departamento Administrativo Nacional de Estadística, url: https://www.dane.gov.co.; Departamento Administrativo Nacional de Estadística https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-ypoblacion/proyecciones-de-poblacion.; Secretaría Distrital de Movilidad. https://www.movilidadbogota.gov.co/; Datos abiertos Bogotá. http://www.ideca.gov.co/recursos/glosario/datos-abiertos/.; Datos abiertos Bogotá. https://datosabiertos.bogota.gov.co/.; OpenStreetMap. https://www.openstreetmap.org/; F. C. Arias, “Estadística Espacial: Fundamentos y aplicación con Sistemas de Información Geográfica,” Revista Cartográfica, no. 105, 2022, doi:10.35424/rcarto.i105.1388. https://doi.org/10.35424/rcarto.i105.1388; V. Gómez Rubio, “Una introducción a la estadística espacial,” Boletín de Estadística e Investigación Operativa, vol. 38, 2022. https://www.seio.es/beio/una-introduccion-a-la-estadistica-espacial/; A. Rangel, A. Sánchez Ipia, W. Siabato, and J. Cely, “Geoestadística aplicada a estudios de contaminación ambiental,” UD y la Geomática, vol. 7 No.2, 2002. https://dialnet.unirioja.es/servlet/articulo?codigo=4797355.; D. Pascual, F. Pla, and S. Sánchez, “Algoritmos de agrupamiento,” Unpublished, 2007. https://repositorio.uci.cu/jspui/handle/123456789/7202; S. Wang, L. Sun, J. Rong, and Z. Yang, “Transit traffic analysis zone delineating method based on Thiessen polygon,” Sustainability (Switzerland), vol. 6, no. 4, 2014, doi:10.3390/su6041821. https://doi.org/10.3390/su6041821; “Geometría computacional,” http://asignatura.us.es/fgcitig/contenidos/gctem3ma.htm.; G. C. Henriques, “Arquitetura algorítmica: Técnicas, processos e fundamentos,” ENANPARQ IV Encontro da Associação Nacional de Pesquisa e Pós-Graduação em Arquitetura e Urbanismo, vol. 1, no. Sessão temática: projeto digital e fabricação na arquitetura, 2016.DOI:10.13140/RG.2.1.3479.3209; L. Jáuregui Álvarez and C. Vázquez Martínez, “MODELO DE NEGOCIO PARA LA GESTIÓN DE PUNTOS DE RECARGA Y ESTACIONAMIENTO NOCTURNO DE TURISMOS ELÉCTRICOS.” https://oa.upm.es/63478/; J. D. Gallo-Sanabria, P. A. Mozuca-Tamayo and R. I. Rincón-Fonseca, “Autonomous trajectory following for an UAV based on computer vision”, Visión electrónica, algo más que un estado sólido, vol. 14, no. 1, 2020; F. Campos Archila, V. Pinzón Saavedra, y F. Robayo Betancourt, “Fuzzy control of quadrotor Ar. Drone 2.0 in a controlled environment”, Vis. Electron., vol. 13, n.º 1, pp. 39–49, feb. 2019.; ] “Generación Eléctrica - Qué es, cómo se produce, renovables”. Concepto. Accedido el 27 de septiembre de 2023. https://concepto.de/generacion-electrica/; A. Gutierres. “Energías renovables: energías para un futuro más seguro”. Organizacion de las Naciones Unidas. Accedido el 1 de septiembre de 2023. https://www.un.org/es/climatechange/raising-ambition/renewable-energy; ] “Datos sobre producción eléctrica %7C Estadísticas mundiales sobre electricidad %7C Enerdata”. Estadísticas energéticas mundiales %7C Enerdata. Accedido el 27 de septiembre de 2023. https://datos.enerdata.net/electricidad/estadisticas-mundiales-produccion-electricidad.html; M. a. tamayo rincon, “PANORAMA ACTUAL DE LA GENERACIÓN HIDRÁULICA EN COLOMBIA Y ANTIOQUIA ANTE EL CRECIMIENTO DE LA DEMANDA DE ENERGÍA”, monografia, Univ. Antioquia, Medellin, 2022.; J. Rosero, L. Morales y D. Pozo, “Fuentes de Generación de Energía Eléctrica Convencional y Renovable a Nivel Mundial”, Rev. Politec., vol. 32, n.º 2, p. 13, 2013.; Malagón, E., 2020. La Hidroelectricidad, La Mayor Fuente De Energía Sostenible. ¡Aquí Te Decimos Por Qué! - Energía Para El Futuro. [Online] Energía para el futuro. Available at: [Accessed 21 October 2020].; Khan, A. A., & Khan, M. R. (2015). A simple and economical design of micro-hydro power generation system. 2015 Power Generation Systems and Renewable Energy Technologies, PGSRET 2015. https://doi.org/10.1109/PGSRET.2015.7312183; Ferro, L. M. C., Gato, L. M. C., & Falcão, A. F. O. (2011). Design of the rotor blades of a mini hydraulic bulb-turbine. Renewable Energy, 36(9), 2395–2403. https://doi.org/10.1016/j.renene.2011.01.037; E. R. Oviedo Ocaña, “Las Hidroeléctricas: efectos en los ecosistemas y en la salud ambiental”, Rev. Univ. Ind. Santander., vol. 50, n.º 3, 2018.; E. Sierra Vargas, A. F. Sierra Alarcon y C. A. Guerrero Fajardo. “Pequeñas y microcentrales hidroeléctricas: alternativa real de generación eléctrica. %7C Informador Técnico”. Revistas SENA. Accedido el 27 de septiembre de 2023. https://revistas.sena.edu.co/index.php/inf_tec/article/view/22/3439#info; Villarreal, J. L. S., Avalos, P. G., Galvan Gonzalez, S. R., & Dominguez Mota, F. J. (2019). Estimate electrical potential of municipal wastewater through a micro-hydroelectric plant. 2018 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2018, Ropec. https://doi.org/10.1109/ROPEC.2018.8661411; Qusay F. Hassan, "An Overview of Enabling Technologies for the Internet of Things," in Internet of Things A to Z: Technologies and Applications, IEEE, 2018, pp.77-112, doi:10.1002/9781119456735.ch3.; Hernandez Sampieri, R., Baptista Lucio, M. d. P., & Fernandez Collado, C. (2014). Metodologia de la investigacion (6a ed.). McGRAW-HILL / INTERAMERICANA EDITORES, S.A. DE C.V.; C M, S., Honnasiddaiah, R., Hindasageri, V., & Madav, V. (2021). Studies on application of vertical axis hydro turbine for sustainable power generation in irrigation channels with different bed slopes. Renewable Energy, 163, 845–857. https://doi.org/10.1016/j.renene.2020.09.015; Elbatran, A. H., Yaakob, O. B., Ahmed, Y. M., & Jalal, M. R. (2015). Novel approach of bidirectional diffuser-augmented channels system for enhancing hydrokinetic power generation in channels. Renewable Energy, 83, 809–819. https://doi.org/10.1016/j.renene.2015.05.038; Lucas D. Spies, E. A. T., Laboratorio. (2015). Diseño y Fabricación de una Turbina Eólica de Eje Vertical Impulsada por Drag. Revista Tecnología y Ciencia, 319–328.; Acevedo L, Lopez J, Sanchez S, (2008) Diseño de una turbina Banki para la recolección de aguas y generación de energía en una propiedad agrícola. Universidad tecnológica de Pereira, ingeniería mecatronica: http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/5770/62124A174.pdf;jsessionid=5 662092429514C805182C7EA731C6F45?sequence=1; Laboratorio de máquinas hidráulicas. (Universidad) (1923). Unidad 6 Turbina De Flujo Transversal O Michell Banki.2, 1–25. https://luiscalderonf.files.wordpress.com/2012/01/turbina-m-banki.pdf; Alfonso, C., & Gutiérrez, P. (2008). La turbina Mochell-Banki y su presencia en Colombia. Avances En Recursos Hidráulicos, 17, 33–42.; Bangi, V. K. T., Chaudhary, Y., Guduru, R. K., Aung, K. T., & Reddy, G. N. (2017). Preliminary investigation on generation of electricity using micro wind turbines placed on a car. International Journal of Renewable Energy Development, 6(1), 75–81. https://doi.org/10.14710/ijred.6.1.75-81; Ochoa, Y., Rodríguez, J., & Martínez, F. (2017). Sistema de regulación y control de carga para aerogenerador de baja potencia. Universidad Distrital Francisco José de Caldas - Facultad Tecnológica.; Hidrotu (empresa) "la turbina hidráulica del bulbo 0.1MW-10MW/la turbina del agua con descarga grande y el agua baja dirigen" Hoja técnica turbina de bulbo hidráulico., Spanish.hydrotu.com, 2020. [Online]. Available: http://spanish.hydrotu.com/china-; La_turbina_hidr_ulica_del_bulbo_0_1mw_10mw_la_turbina_del_agua_con_descarga_gra nde_y_el_agua_baja_di-295887.html. [Accessed: 08- Nov- 2020].; imagen turbina bulbo hidraulico- https://equipo2fae.wordpress.com/turbinas-kaplam/; Turbinas Kaplan. (2012). Recuperado 28 de diciembre de 2020, de EQUIPO2FAE website: https://equipo2fae.wordpress.com/turbinas-kaplam/; ] Vargas, J. A., Clavijo, F. V., & Torres Gómez, C. (2016). Desarrollo del prototipo de un hidrogenerador eléctrico como alternativa de generación de energía limpia en zonas rurales Development of the prototype of an electric hydro generator as an alternative for generating clean energy in rural areas. Ingeniare, 12(20), 91–101.; Naoe, N., Imazawa, A., Takehisa, K., & Nakamura, S. (2018). Bridge structure type micro hydropower-generating system and local region implementation. 2017 International Conference on Electrical, Electronics and System Engineering, ICEESE 2017, 2018-January, 78–83. https://doi.org/10.1109/ICEESE.2017.8298392; Plata, A. (2012). Diseño y desarrollo de un pico-generador hidroeléctrico para producción preindustrial. Universidad de Los Andes, 76.; Delgado Flores, A. F. (2016). Construcción de un convertidor CC-CC tipo reductor orientado a la enseñanza. Universidad Tecnológica de Pereira, 42.; Probe, M., & IoT, E. (2019). Power Consumption Measurements for IoT Applications Application Note. Rohde-Schwarz, 1–16.; Pane, D. N., Fikri, M. EL, & Ritonga, H. M. (2018). Análisis del consumo de energía promedio en dispositivos IoT de baja potencia con Blockchain como solución de seguridad. Journal of Chemical Information and Modeling, 53(9), 1689–1699.; Rose Karen, Eldridge Scott, C. L. (2015). LA INTERNET DE LAS COSAS-UNA BREVE RESEÑA. Internet Society, 83. https://doi.org/10.1007/978-0-85729-103-5_5; Kim, M., Lee, J., Kim, Y., & Song, Y. H. (2018). An analysis of energy consumption under various memory mappings for FRAM-based IoT devices. IEEE World Forum on Internet of Things, WF-IoT 2018 - Proceedings, 2018-January, 574–579. https://doi.org/10.1109/WFIoT.2018.8355212; Bonilla-Fabela Isaias Tavizon-Salazar Arturo Morales-Escobar Melisa Guajardo Muñoz Luz Tania & Laines-Alamina Cristina Isabel, “ISSN: 2448-5101 Año 2 Número 1 Julio 2015 - Junio 2016 2313 IOT, EL INTERNET DE LAS COSAS Y LA INNOVACIÓN DE SUS APLICACIONES”, Trabajo de grado, UANL Sch. Busines, Mexico, 2016.; S. Et. al., “Internet of Things (IoT): A Review”, Turkish J. Comput. Math. Educ. (TURCOMAT), vol. 12, n.º 2, pp. 521–526, abril de 2021. Accedido el 27 de septiembre de 2023, https://doi.org/10.17762/turcomat.v12i2.871; ] J. Flores Zermeño y E. G. Cosio Franco, “Aplicaciones, Enfoques y Tendencias del Internet de las Cosas (IoT): Revisión Sistemática de la Literatura”, Academia J., vol. 13, n.º 9, p. 9, 2021.; C. Chuquimarca, “Análisis comparativo entre arquitecturas de sistemas IoT”, RITI J., vol. 10, n.º 21, p. 16, 2021.; Anonimo. “¿Qué son los sensores IoT y para qué sirven? ¡Descúbrelo! %7C Tokio”. Tokio School. Accedido el 27 de septiembre de 2023, https://www.tokioschool.com/noticias/sensores-IoT/; F. D. Acevedo Garcés, "Diseño de una instalación solar fotovoltaica con capacidad para 3 kilovatios," Universidad Nacional Abierta y a Distancia Colombia, 2016.; M. Caro and R. Alejandro, "Dilemas éticos en la ingeniería," Retrieved 11 de 10 de 2021, from http://repositorio.uchile.cl/handle/2250/113296, 2012.; P. A. Castiblanco F. Luz A., "Trabajo de campo Sistema de Generación," En P. A. Castiblanco F. Luz A., Madrid, Cundinamarca, Cundinamarca, 2021.; T. D. Corcobado, "Instalaciones Solares Fotovoltaicas ciclo formativo de grado medio," Mc Graw Hill, Madrid, España, 2010.; Ministerio de Energía, "Energías Renovables no convencionales," En M. d. Energía. https://www.minenergia.gov.co/energias-renovables-no-convencionales, 2021.; J. Gómez Ramírez, "La energía solar fotovoltaica en Colombia: potenciales, antecedentes y perspectivas," Bogotá, 2017.; C. Guerrero, "Proyecto de Factibilidad para uso de Paneles Solares en Generación Fotovoltaica de Electricidad en el Complejo Habitacional “San Antonio” de Riobamba (Bachelor's thesis)," Riobamba, Ecuador, Ecuador, 2013.; I. S. JORGE, "Instalación y mantenimiento de sistemas solares fotovoltaicos. Capítulo 1, tema 1-2: La célula fotovoltaica. {En línea}. https://311cie.files.wordpress.com/2014/09/tema-1-2-la-celula-fotovoltaica.pdf," 2016.; P. &.-P. Marín-Cots, "En un entorno de 15 minutos: hacia la Ciudad de Proximidad, y su relación con el Covid-19 y la Crisis Climática, el caso de Málaga," Málaga, España, 2020.; Ministerio de Minas y Energía, "Ley 143 de 1994," En i. d. Régimen para la generación. Bogotá. https://www.minenergia.gov.co/documents/10180/667537/Ley_143_1994.pdf, 1994.; Monsolar, "Catálogo de productos," https://www.monsolar.com/bateria-gel-victron12v-165ah.html, 2023.; NASA, "Power Data Access View," https://power.larc.nasa.gov/data-access-viewer/, 2023.; G. C. Orrego, "Serie 3 Solera SE19 ORREGO G. CESAR A. Madrid Cundinamarca," 2019; R. Ortega, "Energías Renovables," Paraninfo, 2000.; UPME-Ideam, "Proyecciones de precios de los energéticos para generación eléctrica enero 2014 – diciembre 2037,"http://www.sipg.gov.co/sipg/documentos/precios_combustibles/Termicas_Marzo_ 2014. pdf, 2014.; WWF, "Glosario ambiental : Acuerdo de París," En WWF, París, Francia. https://www.wwf.org.co/?334976/Glosario-ambiental--Sabes-que-se-pacto-en-elAcuerdo-deParis#:~:text=Colombia%20en%20el%20Acuerdo%20de,de%20emisiones%20nac ionales%20de%202010, 2016.; (n.d.), «Buildings – Analysis - IEA,» 17 Abril 2023. [En línea]. Available: https://www.iea.org/reports/buildings.; C. t. d. l. e. e. España, « Seguridad estructural,» Documento básico SE., España, 2019.; F. Nemry, A. Uihlein, M. Colodel, C. Wetzel, A. Braune, B. Wittstock, I. Hasan, J. Kreißig, N. Gallon, S. Niemeier y Y. Frech, «Options to reduce the environmental impacts of residential buildings in the European Union—Potential and costs,» Energy Build, vol. 42, pp. 976-984, 2010.; Z. Ma, P. Cooper, D. Darly y L. Ledo, «Existing building retrofits: Methodology and stateof-the-art,» Energy Build, pp. 889-902, 2012.; reco2st, «reco2st,» programa de Investigación e Innovación Horizonte 2020 de la Unión Europea, 2020. [En línea]. Available: https://reco2st.eu/innovation/technologies/. [Último acceso: 14 11 2022].; C. o. B. S. Engineers, « Energy Efficiency in Buildings: CIBSE Guide F,» Chartered Institution of Building Services Engineers, 2004.; Objetivos y metas de desarrollo sostenible, «17 objetivos para transformar nuestro mundo,» NACIONES UNIDAS, 2017. [En línea]. Available: https://www.un.org/sustainabledevelopment/es/sustainable-development-goals/. [Último acceso: Noviembre 2022].; M. Santamouris y K. Vasilakopoulou, «Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation,» Electronics and Energy, vol. 1, 2021.; n.d, «Energy Efficiency 2019 – Analysis - IEA,» 17 Abril 2023. [En línea]. Available: https://www.iea.org/reports/energy-efficiency-2019.; L. Biardeau, L. Davis, P. Gertler y C. Wolfram, «Heat exposure and global air conditioning,» Nat Sustain, vol. 3, p. 25–28, 2020.; MITMA, «Documento Básico HS Salubiridad,» Ministerio de Transporte, Movilidad y Agenda Urbana, 2022.; J. Pradillo, ENFRIAMIENTO ADIABÁTICO INDIRECTO MEDIANTE CICL0 DE MAISOTSENKO Y APLICACIONES, wolf, 2015.; F. Rabadán, Evaluación de medidas de eficiencia energética en el, Sevilla: Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, 2021.; ABECE, «teoria sobre climatización adiabática,» Enero 2021. [En línea]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://asociacionbioclimatica.es/wpcontent/uploads/2021/01/TECNOLOGIAS-ADIABA%CC%81TICAS.pdf. [Último acceso: Noviembre 2022].; J. M. Arroyo and F. J. Fernández, “A genetic algorithm for power system vulnerability analysis under multiple contingencies,” Stud. Comput. Intell., vol. 482, pp. 41–68, 2013, doi:10.1007/978-3-642-37838-6_2.; D. K. Mishra, M. J. Ghadi, A. Azizivahed, L. Li, and J. Zhang, “A review on resilience studies in active distribution systems,” Renew. Sustain. Energy Rev., vol. 135, no. March 2020, 2021, doi:10.1016/j.rser.2020.110201.; J. Colombi, John M.; Miller, Michael E.; Schneider, Michael; McGrogan, Jason; Long, David S.; Plaga, “Towards Affordably Adaptable and Effective Systems,” Syst. Eng., vol. 14, no. 3, pp. 305–326, 2012, doi:10.1002/sys.; B. De Ataque and R. D. L. Sistemas, “A Bilevel Attacker-Defender Model for Enhancing Power Systems Resilience with Distributed Generation,” Sci. Tech., vol. 25, no. 4, pp. 540–547, 2020, doi:10.22517/23447214.23721.; P. H. Corredor and M. E. Ruiz, “Mitigating the Impact of Terrorist Activity on Colombia’s Power System,” IEEE Power Energy Mag., vol. 9, no. 2, pp. 59–66, 2011.; S. Cai, Y. Xie, Q. Wu, and Z. Xiang, “Robust MPC-based microgrid scheduling for resilience enhancement of distribution system,” Int. J. Electr. Power Energy Syst., vol. 121, no. April, p. 106068, 2020, doi:10.1016/j.ijepes.2020.106068.; S. N. Emenike and G. Falcone, “A review on energy supply chain resilience through optimization,” Renew. Sustain. Energy Rev., vol. 134, no. September, p. 110088, 2020, doi:10.1016/j.rser.2020.110088.; Z. Wan, Y. Mahajan, B. W. Kang, T. J. Moore, and J. H. Cho, “A Survey on Centrality Metrics and Their Network Resilience Analysis,” IEEE Access, vol. 9, pp. 104773–104819, 2021, doi:10.1109/ACCESS.2021.3094196.; L. Lotero and R. G. Hurtado, “Vulnerabilidad De Redes Complejas Y Una Revisión De La Literatura Vulnerability of Complex Networks and Urban Transportation Applications : a Literature Review,” Rev. EIA, vol. 11, no. 11, pp. 67–78, 2015.; T. Conferencia, M. D. E. Las, and R. D. E. Desastres, “Tercera Conferencia Mundial de las Naciones Unidas sobre la Reducción del Riesgo de Desastres,” 2015.; D. Sage, P. Fussey, and A. Dainty, “Securing and scaling resilient futures: neoliberalization, infrastructure, and topologies of power,” Environ. Plan. D Soc. Sp., vol. 33, no. 3, pp. 494–511, 2015, doi:10.1068/d14154p.; J. Pilatásig Lasluisa, “Resiliencia de Sistemas Eléctricos de Potencia mediante la Conmutación de Líneas de Transmisión – Estado del arte,” I+D Tecnológico, vol. 16, no. 2, 2020, doi:10.33412/idt.v16.2.2834.; B. M. Qu, T. Ding, L. Huang, and X. Wu, “Toward a Global Green Smart Microgrid,” pp. 55–69, 2020.; T. Khalili, A. Bidram, and M. J. Reno, “Impact study of demand response program on the resilience of dynamic clustered distribution systems,” IET Gener. Transm. Distrib., vol. 14, no. 22, pp. 5230–5238, 2020, doi:10.1049/iet-gtd.2020.0068.; J. Wu, H. Z. Deng, Y. J. Tan, and D. Z. Zhu, “Vulnerability of complex networks under intentional attack with incomplete information,” J. Phys. A Math. Theor., vol. 40, no. 11, pp. 2665–2671, 2007, doi:10.1088/1751-8113/40/11/005.; M. Azeroual, T. Lamhamdi, H. El Moussaoui, and H. El Markhi, “Simulation tools for a smart grid and energy management for microgrid with wind power using multi-agent system,” Wind Eng., vol. 44, no. 6, pp. 661–672, 2020, doi:10.1177/0309524X19862755.; Y. Wang et al., “Coordinating multiple sources for service restoration to enhance resilience of distribution systems,” IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 5781–5793, 2019, doi:10.1109/TSG.2019.2891515.; Q. Shi et al., “Network reconfiguration and distributed energy resource scheduling for improved distribution system resilience,” Int. J. Electr. Power Energy Syst., vol. 124, no. March 2020, p. 106355, 2021, doi:10.1016/j.ijepes.2020.106355.; K. Eshghi, B. K. Johnson, and C. G. Rieger, “Metrics required for power system resilient operations and protection,” Proc. - 2016 Resil. Week, RWS 2016, pp. 200–203, 2016, doi:10.1109/RWEEK.2016.7573333.; C. Ji, Y. Wei, and H. V. Poor, “Resilience of Energy Infrastructure and Services: Modeling, Data Analytics, and Metrics,” Proc. IEEE, vol. 105, no. 7, pp. 1354–1366, 2017, doi:10.1109/JPROC.2017.2698262.; D. J. M. Palacios, E. R. Trujillo, and J. M. López-Lezama, “Vulnerability analysis to maximize the resilience of power systems considering demand response and distributed generation,” Electron., vol. 10, no. 12, pp. 1–22, 2021, doi:10.3390/electronics10121498.; M. Bruneau et al., “A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities,” Earthq. Spectra, vol. 19, no. 4, pp. 733–752, 2003, doi:10.1193/1.1623497.; K. S. A. Sedzro, A. J. Lamadrid, and L. F. Zuluaga, “Allocation of Resources Using a Microgrid Formation Approach for Resilient Electric Grids,” IEEE Trans. Power Syst., vol. 33, no. 3, pp. 2633–2643, 2018, doi:10.1109/TPWRS.2017.2746622.; L. Yang, Y. Xu, H. Sun, M. Chow, and J. Zhou, “A multiagent system based optimal load restoration strategy in distribution systems,” Int. J. Electr. Power Energy Syst., vol. 124, no. May 2020, p. 106314, 2021, doi:10.1016/j.ijepes.2020.106314.; «Logra energía eólica a nivel mundial 1 TW de capacidad instalada», Energía Hoy. Accedido: 22 de agosto de 2023. [En línea]. Disponible en: https://energiahoy.com/2023/06/16/logra-energia-eolica-a-nivel-mundial-1-tw-de-capacidadinstalada/; P. M. Medina, «Colombia es uno de los países de la OCDE que más energía renovable genera», infobae. Accedido: 16 de agosto de 2023. [En línea]. Disponible en: https://www.infobae.com/colombia/2023/02/15/colombia-es-uno-de-los-paises-de-la-ocdeque-mas-energia-renovable-genera/; «Vista de Generador lineal para un generador eólico de baja potencia, selección, diseño y simulación en comsol multiphysic». Accedido: 16 de agosto de 2023. [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/vinculos/article/view/18620/17571; Mohan Ned, Undeland Tore, Robbins William, ELECTRONICA DE POTENCIA: Convertidores, aplicaciones y diseño, 3.a ed. Mc Graw Hill, 2009.; «Simscape Electrical». Accedido: 21 de julio de 2023. [En línea]. Disponible en: https://la.mathworks.com/products/simscape-electrical.html; M. H. Rashid, Electrónica de Potencia, 2.a ed. PRENTICE HALL HISPANOAMERICANA, S.A, 1993.; «Introducción a la identificación de sistemas», TÉCNICA INDUSTRIAL. Accedido: 24 de agosto de 2023. [En línea]. Disponible en: https://www.tecnicaindustrial.es/introduccion-a-laidentificacion-de-sistemas/; «System Identification Toolbox». Accedido: 24 de agosto de 2023. [En línea]. Disponible en: https://la.mathworks.com/products/sysid.html; L. J. Marín y V. M. Alfaro, «Sintonización de controladores por ubicación de polos y ceros», 2007.; S. C, «CONTROLADOR PI - Asignación de Polos [FÁCIL - Aprende]», Control Automático Educación. Accedido: 24 de agosto de 2023. [En línea]. Disponible en: https://controlautomaticoeducacion.com/control-realimentado/controlador-pi-por-asignacionde-polos/; «CONTROLADOR PI - Asignación de Polos [FÁCIL - Aprende]». Accedido: 24 de agosto de 2023. [En línea]. Disponible en: https://controlautomaticoeducacion.com/controlrealimentado/controlador-pi-por-asignacion-de-polos/; S. C, « Control Fuzzy - Mamdani - Simulink - [agosto, 2023 ]», Control Automático Educación. Accedido: 24 de agosto de 2023. [En línea]. Disponible en: https://controlautomaticoeducacion.com/control-realimentado/control-fuzzy-mamdanisimulink/; Agencia Internacional de Energía (AIE), "Perspectivas de tecnología energética 2020", AIE, 2020.; MA Ortega-Vázquez, MV Salas y KE Yeager, "Recursos energéticos distribuidos y su integración en el sistema de energía eléctrica", Proc. IEEE, vol. 99, núm. 1, págs. 28–39, enero de 2011.; N. Hatziargyriou, H. Asano, R. Iravani y C. Marnay, "Microgrids", IEEE Power Energy Mag., vol. 5, núm. 4, págs. 78–94, julio de 2007.; R. Pérez-García, F. González-Longatt y S. Carneiro, "Review of Distributed Energy Resources Integration in the IEEE Standards", en 2020 IEEE PES Transmission & Distribution Conference and Exposition (T&D), 2020; AS Al-Mohammed, RMO Al-Mohammed y M. Al- Mansoori, "Impacto de los recursos energéticos distribuidos en la calidad de la energía en las redes inteligentes: una revisión integral", Energías, vol. 13, núm. 7, pág. 1580, 2020.; S. A. Abbas, S. F. Hasan, D. R. Shin, “Analyzing the Integration of Distributed Generation into Smartgrids,” College of Information and Communications Engineering. Sungkyunkwan University. IEEE, 2015); G. Gross, J. Heinemann y F. Siefert, "Integración de energías renovables y su impacto en las operaciones de red",en 2010 IEEE PES Innovative Smart Grid Technologies, 2010.; K. Wang, Z. Xu y H. Wang, "Estándar IEEE y su aplicación en la regulación de microrredes", en 2012 Tercera Conferencia Internacional sobre Control Inteligente y Procesamiento de Información, 2012.; HY Kim, YS Cho y SS Kim, "Una revisión de la investigación sobre modelado y análisis de microrredes", Renew. Sostener. Energía Rev., vol. 59, págs. 1634-1640, 2016.; SR Mohanty, SN Singh y A. Kishor, "Una revisión de los métodos de detección de islas para la generación distribuida", Renew. Sostener. Energía Rev., vol. 13, núm. 8, págs. 1801- 1818, 2009.; ] F. Katiraei, MR Iravani y PW Lehn, "Operación autónoma de microredes durante y después del proceso de aislamiento", IEEE Trans. Entrega de energía, vol. 20, núm. 1, págs. 248-257.; M. Stadler et al., "Asignación y envío óptimos de recursos de energía distribuida: una revisión", IEEE Trans. Sistema de energía, vol. 22, núm. 1, págs. 107-116, 2007.; P. Palensky y D. Dietrich, "Gestión del lado de la demanda: respuesta a la demanda, sistemas de energía y cargas inteligentes", IEEE Trans. Indiana Informática, vol. 7, núm. 3, págs. 381-388, 2011.; CA Silva, SJ Rider y CS Yim, "Sistemas de almacenamiento de energía eléctrica: un análisis comparativo del costo del ciclo de vida", Renew. Sostener. Energía Rev., vol. 14, núm. 9, págs. 2717-2726, 2010.; E. Muljadi, CP Butterfield, A. Ellis y J. Meiman, "EnergyStorage for Stabilization of Wind Power", IEEE Trans. Solicitud de Indiana, vol. 37, núm. 1, págs. 272-280, 2001.; L. Zhong, X. Fang, J. Chen y Z. Zhang, "Regulación de carga de recursos energéticos distribuidos mediante controlpredictivo de modelos", en 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015.; P. Deane, G. O'Gallachoir y B. Ó. Gallachóir, "Revisión tecnoeconómica de una planta de almacenamiento de energía hidráulica por bombeo nueva y existente", Renovar. Sostener. Energía Rev., vol. 14, núm. 4, págs. 1293-1302, 2010.; E. Marín y P. Gómez, “Criterios e indicadores para la evaluación de la sostenibilidad de los sistemas energéticos”, Energía, vol. 32, núm. 12, págs. 2173-2181, 2007.; NK Roy, MT Naayagi y AM Ismail, "Análisis tecnoeconómico del sistema híbrido de almacenamiento deenergía para una planta de energía fotovoltaica independiente",Renew. Sostener. Energía Rev., vol. 69, págs. 1246-1256, 2017.; EG Talbi y K. Chekired, "Análisis económico y técnico de un sistema híbrido compuesto por paneles fotovoltaicos y baterías para un consumidor doméstico en Argelia", Energy Convers. Gestionar., vol. 47, núm. 18-19, págs. 3396-3409, 2006.; S. Deng, S. Zhong, Y. Fan y J. Du, "Operación óptima del almacenamiento de energía integrado y electrodomésticos inteligentes en microrredes considerando la respuesta a la demanda", IEEE Trans. Red inteligente, vol. 7, núm. 6, págs. 2831-2841, 2016.; https://hdl.handle.net/11349/40350
Dostupnosť: https://hdl.handle.net/11349/40350
-
6
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: Systems engineering, Software engineering, Prototype development, Mobile computing, Investigations, Analysis, Automation, Free hardware, Internet of things, Monitoring, Wireless sensor network, Open source software, Ingeniería de sistemas, Ingeniería de software, Desarrollo de prototipos, Computación móvil, Investigaciones, Análisis, Arduino, Automatización, Fritzing, Hardware libre, Internet de las cosas, Lux, Monitorización, Red de sensores inalámbricos, Software de código abierto, WiFi
Geografické téma: Bucaramanga (Colombia), UNAB Campus Bucaramanga
Popis súboru: application/pdf
Relation: Santander González, Frank Wilmar (2016). Prototipo de sistema de monitorización y riego automático que mide la humedad y la temperatura para evaluar la vegetación. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB; Adafruit. 2016. «Adafruit TSL2591 High Dynamic Range Digital Light Sensor». https://cdn-learn.adafruit.com/downloads/pdf/adafruit-tsl2591.pdf.; Aosong Electronics Co. 2016. «Digital-Output Relative Humidity & Temperature Sensor/Module AM2303». https://cdn-shop.adafruit.com/datasheets/DHT22.pdf.; Arduino LLC. 2016a. «AnalogRead». Arduino. https://www.arduino.cc/en/Reference/AnalogRead.; 2016b. «Arduino Community Logo». Arduino. https://www.arduino.cc/en/Trademark/CommunityLogo.; 2016c. «Frequently Asked Questions». Arduino. http://www.arduino.cc/en/Main/FAQ.; 2016d. «Trademark». Arduino. https://www.arduino.cc/en/Trademark/HomePage.; 2016e. «What is Arduino?» Arduino. https://www.arduino.cc/en/Guide/Introduction.; 2016f. «Two Arduinos Become One». octubre 1. https://blog.arduino.cc/2016/10/01/two-arduinos-become-one-2/.; Arduino SRL. 2016a. «Arduino Programming Language: AnalogRead». Arduino. http://www.arduino.org/learning/reference/analogread.; 2016b. «Copyright Notice». Arduino. http://www.arduino.org/copyright-notice.; 2016c. «What is Arduino». Arduino. http://www.arduino.org/learning/getting-started/what-is-arduino.; 2016d. «Two Arduinos Become One». septiembre 31. http://www.arduino.org/blog/two-arduinos-become-one.; Bakker, Kees, Roman Messer, y Mike McPherson. 2016. «Sodaq DS3231». GitHub. abril 24. https://github.com/SodaqMoja/Sodaq_DS3231.; Barath, Pratap Singh, Maitreyee Dutta, Ajay Chaudhary, y Madhu Sudan Jangid. 2014. «A Novel Adaptive Framework for Efficient and Effective Management of Water Supply System Using Arduino». En Proceedings of the 2014 International Conference on Information and Communication Technology for Competitive Strategies, 13:1–13:4. ICTCS ’14. New York, NY, USA: ACM. doi:10.1145/2677855.2677868.; Blynk. 2016. «WebHook». Blynk. http://docs.blynk.cc/#widgets-other-webhook.; Brendan, Howell, Dirk van Osterbosch, y Lionel Michel. 2015. DC Motor. Multiplataforma. Fritzing. Friends of Fritzing.; Bruneau, Richard. 2014. «Fritzing Parts - First Set». Omnigatherum. febrero 12. http://omnigatherum.ca/wp/?p=6.; 2015. «Fritzing Parts - Second Set». Omnigatherum. abril 16. http://omnigatherum.ca/wp/?p=87.; Chun-zhi, H., X. Yin-shui, y W. Lun-yao. 2011. «A Universal Asynchronous Receiver Transmitter Design». En Electronics, Communications and Control (ICECC), 2011 International Conference on, 691-94. IEEE. doi:10.1109/ICECC.2011.6066542.; Cinetica Tech. 2016. «ThingView Full». Google Play. septiembre 4. https://play.google.com/store/apps/details?id=com.cinetica_tech.thingview.full.; Cortez, Pamela. 2014. «Make Your Own Fritzing Parts». SparkFun. marzo 18. https://learn.sparkfun.com/tutorials/make-your-own-fritzing-parts#download-and-install.; Creative Commons. 2013a. «Attribution-NoDerivatives 4.0 International». https://creativecommons.org/licenses/by-nd/4.0/.; 2013b. «Attribution-ShareAlike 4.0 International». https://creativecommons.org/licenses/by-sa/4.0/.; Cristian René Calderón Calderón. 2015. «Prototipo de sistema informático para la captura ambiental en espacios cerrados y monitoreo en tiempo real. Caso de estudio en la Facultad de Ingeniería de Sistemas (UNAB)». Universidad Autónoma de Bucaramanga.; Dasios, Athanasios, Damianos Gavalas, Grammati Pantziou, y Charalampos Konstantopoulos. 2015. «Wireless Sensor Network Deployment for Remote Elderly Care Monitoring». En Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments, 61:1–61:4. PETRA ’15. New York, NY, USA: ACM. doi:10.1145/2769493.2769539.; Denso ADC. 2016. «QR Code Essentials». http://denso-adc.com/download/whitepaper/1.; DiCola, Tony, Matthijs Kooijman, Limor Fried, Jose M. Dana, Phillip Burgess, Tim Forbes, Lars Sørup, Colin Miller, y Igor Scheller. 2016. «DHT Sensor Library». GitHub. mayo 27. https://github.com/adafruit/DHT-sensor-library.; DiCola, Tony, Kevin Townsend, Limor Fried, Rick Lesniak, y ’Bbx10node’. 2016. «Adafruit TSL2591 Library». GitHub. mayo 27. https://github.com/adafruit/Adafruit_TSL2591_Library.; Friends of Fritzing. 2016a. «Frequently Asked Questions». Fritzing. http://fritzing.org/faq/.; 2016b. «Fritzing». Fritzing. http://fritzing.org/home/.; 2016c. «People». Fritzing. http://fritzing.org/about/people.; Gibb, Alicia, Steven Abadie, Ed Baafi, Matt Bolton, Kipp Bradford, Gabriella Levine, David A. Mellis, et al. 2015. Building Open Source Hardware - DIY Manufacturing for Hackers and Makers. Crawfordsville, Estados Unidos: Addison-Wesley. https://books.google.com.co/books?id=wg27BQAAQBAJ&pg=PA132&lpg=PA132&dq=DIY+Manufacturing+for+Hackers+and+Makers+pdf&source=bl&ots=2Rgbx-h0im&sig=x-K9d0bfBO7cVjd4bZjXim3K9Yo&hl=en&sa=X&ved=0ahUKEwiFjc-ThOnKAhWJ6x4KHcHCBNkQ6AEILjAE#v=onepage&q=DIY%20Manufa.; GNU. 2016a. «GNU Lesser General Public License». GNU Operating System. agosto 6. http://www.gnu.org/licenses/lgpl-3.0.html.; 2016b. «GNU General Public License». GNU Operating System. agosto 7. http://www.gnu.org/licenses/gpl-3.0.html.; Gómez Rodríguez, Atain. 2015. «Aspectos de organización, producción y comercialización del melón en la comarca lagunera». Saltillo, México: Universidad Autónoma Agraria Antonio Narro. http://repositorio.uaaan.mx:8080/xmlui/bitstream/handle/123456789/4871/T13569%20G%C3%93MEZ%20RODR%C3%8DGUEZ%20ATAIN.%20%20TESIS.pdf?sequence=1.; Herstatt, Cornelius, y Daniel Ehls. 2015. Open Source Innovation - The Phenomenon, Participant’s Behavior, Business Implications. Ciudad de Nueva York, Estados Unidos: Routledge. http://samples.sainsburysebooks.co.uk/9781317624257_sample_951827.pdf.; ITU. 2012. Series Y: Global Information Infrastructure, Internet Protocol Aspects and Next-Generation Networks. Génova, Suiza. https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-Y.2060-201206-I!!PDF-E&type=items.; Jindarat, S., y P. Wuttidittachotti. 2015. «Smart Farm Monitoring Using Raspberry Pi and Arduino». En Computer, Communications, and Control Technology (I4CT), 2015 International Conference on, 284-88. IEEE. doi:10.1109/I4CT.2015.7219582.; Net Applications. 2016. «Mobile/Tablet Operating System Market Share». NetMarketShare. https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=1&qpcustomb=&qpsp=2016&qpnp=1&qptimeframe=Y.; NXP Semiconductors. 2013. «I2C-Bus Components Selection Guide». http://www.nxp.com/documents/selection_guide/75017443.pdf.; 2016. «NFC Knowledge Base». http://www.nxp.com/products/identification-and-security/nfc-and-reader-ics/nfc-technology-hub/nfc-knowledge-base:NFC-KNOWLEDGE-BASE.; Oxford Unity Press. 2016a. «Automation». Oxford Dictionaries. http://www.oxforddictionaries.com/es/definicion/ingles/automation.; 2016b. «Wi-Fi». Oxford Dictionaries. https://en.oxforddictionaries.com/definition/wi-fi.; Paphitou, Athina C., Stella Constantinou, y Georgia M. Kapitsaki. 2015. «SensoMan: Remote Management of Context Sensors». En Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics, 19:1–19:6. WIMS ’15. New York, NY, USA: ACM. doi:10.1145/2797115.2797121.; Rajeshwari, P., B. Shanthini, y Mini Prince. 2015. «Hierarchical Energy Efficient Clustering Algorithm for WSN». IDIOSI Publication, 108.; Real Academia Española. 2016a. «Lux». Diccionario de la Lengua española. http://dle.rae.es/?w=lux.; 2016b. «Monitorizar». Diccionario de la Lengua española. http://dle.rae.es/?w=monitorizar.; Shao, Xing, Cui-Xiang Wang, y Yuang Rao. 2015. «Network Coding Aware QoS Routing for Wireless Sensor Network». Journal of Communications, enero, 24.; StatCounter. 2016. «Top 8 Mobile Operating Systems from Jan to Mar 2016». StatCounter Global Stats. http://gs.statcounter.com/#mobile_os-ww-yearly-2016-2016-bar.; The Matworks Inc. 2016. «Update a Channel Feed». MathWorks. https://www.mathworks.com/help/thingspeak/update-channel-feed.html?requestedDomain=au.mathworks.com&requestedDomain=www.mathworks.com#update_feed_text.; UNAB, UFPS, UCC, UNISANGIL, y UPB. 2016. «CIINATIC». Arduino. http://congresociinatic2016.wixsite.com/ciinatic.; http://hdl.handle.net/20.500.12749/1308; reponame:Repositorio Institucional UNAB
Dostupnosť: https://hdl.handle.net/20.500.12749/1308
-
7
Autori:
Prispievatelia:
Predmety: Systems engineer, Technological innovations, Email, Mobile agents, System architecture, Storage systems, Information retrieval, Information storage and retrieval systems, Mobile agents (Computer software), Ingeniería de sistemas, Innovaciones tecnológicas, Recuperación de información, Sistemas de almacenamiento y recuperación de información, Agentes móviles (Software para computadores), Correo electrónico, Agentes móviles, Arquitectura del sistema, Sistemas de almacenamiento
Geografické téma: Bucaramanga (Santander, Colombia), UNAB Campus Bucaramanga
Popis súboru: application/pdf
Relation: [1] RUSSEL, S.; NORVIG, P. Inteligencia Artificial: Un enfoque moderno. Prentice Hall Hispanoamericana, S.A., México 1996.; [2] MAES, P. Artificial Life meets entertaiment: life like autonomous agent. Comuncations of the ACM 38 (11), 1995.; [3] HAYES-ROTH, B. An architecture for Adaptative Intelligent Systems. Artificial Intelligence: Special Issue on Agents and Interactivity, 72, 329-365. 1995; [4] JENNINGS, N. R.; WOOLDRIGE, M. Intelligent Agents : Theory and Practice. Knowledge Engineering Review, October 1994. Revised January 1995.; [5] GILBER, A; et al. The Role of Intelligent Agents in the Information Infraestructure. IBM, United States 1995; [6] What's An Agent, Anyway? A Sociological Case Study. Agents Memo 93-01, MIT Media Lab, Cambridge, MA. 1993; [7] S. Franklin and A. Graesser, Is it an Agent, or just a program?: A taxonomy for autonomous agents. http://www.msci.members.edu/~franklin/index.html. Febrero de 2001; [8] CASTELFRANCHI, C. Guarantees for autonomy in cognitive agent architecture. Intelligent Agents: Theories, Architectures, and Languages (LNAI Volume 890) pp56-70. Springer-Verlag: Heidelberg, Germany. 1995; [9] GENESERETH, M.¡ KETCHPEL, S. Software Agents. Comunications of the ACM 37 (7), 48-53, 1994; [10] SHOHAM, Y. Agent-oriented programming. Artificial Intelligence, 60(1):51-92, 1993; [11] BATES, J. The role of emotion in believable agents. Communications of the ACM, 37(7): 122-125. 1994; [12] LITTMAN, L. M. An optimization-based categorization or reinforcement learning environments. Proceeding of the Second International Conference on Simulation of Adaptative Behavior: From Animal to Animats, 1994; [13] LANGTON, C. Artificial Life. Addison-Wesley, Redwood City, CA 1989; [14] SANZ SACRISTÁN, M. A, B, C, de Internet. Boletín de la red nacional de l+D, Redlris. N° 28, Julio 1994; [15] BROOKS, R. A. A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and Automation 2(1), 14-23; [16] ETZIONI, O.; WELD, D. A Softbot-Based Interface to the Internet. Communications of the ACM 37 (7), 77-76. 1994; [17] MAES, P. Designing Autonomous Agents. Ed. P. Maes The MIT Press, Cambridge, MA. 1991; [18] WAYNER, P. Agents Unleashed: A Public Domain Look at Agent Technology Boston, MA: AP Profesional, 1995; [19] D’Agents: Mobile Agents at Darthmouth College. http://agent.cs.dartmouth.edu/, Enero. 2001.; [20] The Ara platform for Mobile Agents. http://wwwagss.informatik.unikl. de/Projekte/Ara/index e.html. Enero. 2001.; [21] IBM Aglets Home Page. http://www.trl.ibm.co.ip/aglets/. Enero 2001; [22] The Home of the Mole, http://mole.informatik.uni-: '. Enero. 2001.; [23] The Internet Softbot. http://www.cs.washington.edu/research/projects/softbots/www/internet-softbot.html. Junio. 2001.; [24] BALABANOVIC, M.; SHOHAM, Y. Fab: content-based, collaborative recommendation. Communications of the ACM, 40,3 (Marzo), 66-72. 1997; [25] A,B,C de Internet. SAENZ, M. A. http://www.ub.es/div3/enfogue1.htm. Junio 2001; http://hdl.handle.net/20.500.12749/27003; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Dostupnosť: https://hdl.handle.net/20.500.12749/27003
-
8
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: Systems engineer, Technological innovations, Software, Computational vision, Registration processes, Economic activity, Information technology, Process development, Prototypes, Technological change, Digital formats, Ingeniería de sistemas, Innovaciones tecnológicas, Desarrollo de procesos, Prototipos, Cambio tecnológico, Formatos digitales, Visión computacional, Procesos de registro, Actividad económica, Tecnologías de la información
Geografické téma: Colombia
Popis súboru: application/pdf
Relation: Alaña C., Solórzano S., T. P., & , Sayonara, S. (2015). Procesos contables básicos para no contadores. In Espol (Machala :).; Álarcon, G. (2014). El Proceso Contable: Análisis E Interpretación De La Información Contable En Las Organizaciones Actuales. Méthodos, 12(12), 92–101. http://www.ucipfg.com/Repositorio/MAP/MAPD02/UNIDADES_DE_APRENDIZAJE/UNIDAD_1/LECTURAS/Vision_y_mision_ de_una_empresa.pdf; Alpaydin, E. (2014). Introduction to Machine Learning Ethem Alpaydin. Introduction to Machine Learning, Third Edition.; Amodeo, E. (2010). ¿Qué son los DSL (Domain Specific Languages)? https://eamodeorubio.wordpress.com/2010/09/13/¿que-son-los-dsl-domainspecific-languages/; Ashish. (2018). Understanding Edge Detection (Sobel Operator) - Data Driven Investor - Medium. https://medium.com/datadriveninvestor/understanding-edgedetection-sobel-operator-2aada303b900; AuraPortal. (2018, June 7). RPA: Robotic Process Automation - Qué es y cómo nos ayuda • AuraPortal. https://www.auraportal.com/es/rpa-robotic-processautomation-que-es/; Automation Anywhere. (2020). Casos de estudio de clientes %7C Automation Anywhere. https://www.automationanywhere.com/la/customers/case-studies; Azevedo, A., & Filipe Santos, M. (2008, January). (PDF) KDD, semma and CRISPDM: A parallel overview. https://www.researchgate.net/publication/220969845_KDD_semma_and_CRIS P-DM_A_parallel_overview; Bagnato, J. I. (2018a). Convolutional Neural Networks: La Teoría explicada en Español %7C Aprende Machine Learning. https://www.aprendemachinelearning.com/como-funcionan-las-convolutionalneural-networks-vision-por-ordenador/; Bagnato, J. I. (2018b, November 29). Convolutional Neural Networks: La Teoría explicada en Español %7C Aprende Machine Learning. https://www.aprendemachinelearning.com/como-funcionan-las-convolutionalneural-network; Barchard, K. A., & Pace, L. A. (2011). Preventing human error: The impact of data entry methods on data accuracy and statistical results. Computers in Human Behavior, 27(5), 1834–1839. https://doi.org/10.1016/j.chb.2011.04.004; Beltramelli, T. (2018). pix2code: Generating code from a graphical user interface screenshot. Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems, EICS 2018, 1–9. https://doi.org/10.1145/3220134.3220135; BMind Licencias. (2019). IBM RPA (Robotic Process Automation) - BMind Licencias. https://bmind.com/licencias/ibm-rpa; Burke, B., Cearley, D., Litan, A., Groombridge, D., & Mahdi, D. (2020). Top 10 Strategic Technology Trends for 2020: Practical Blockchain. Gartner, October 2019, 1–13. Burke, B., Cearley, D., Litan, A., Groombridge, D., & Mahdi, D. (2020). Top 10 Strategic Technology Trends for 2020: Practical Blockchain. Gartner, October 2019, 1–13.; Capocchi, L., Santucci, J. F., & Ville, T. (2013). Software test automation using DEVSimPy environment. SIGSIM-PADS 2013 - Proceedings of the 2013 ACM SIGSIM Principles of Advanced Discrete Simulation, 343–348. https://doi.org/10.1145/2486092.2486137; Capterra. (2019). UiPath Robotic Process Automation - Opiniones, precios, y características - Capterra España 2020. https://www.capterra.es/software/135186/uipath-robCapterra. (2019). UiPath Robotic Process Automation - Opiniones, precios, y características - Capterra España 2020. https://www.capterra.es/software/135186/uipath-robotic-process-automation otic-process-automation; CGN, C. G. de la N. (2014). Doctrina Contable Pública Compilada Actualizada Del 2 de enero al 31 de diciembre de 2014. 1–1391. http://www.contaduria.gov.co/wps/wcm/connect/9903da6e-11e6-44a5-a1f0effa8cac282c/DOCTRINA+contablePublicaDic312013.pdf?MOD=AJPERES&C ACHEID=9903da6e-11e6-44a5-a1f0-effa8cac282c; Chang, T. H., Yeh, T., & Miller, R. C. (2010). GUI testing using computer vision. Conference on Human Factors in Computing Systems - Proceedings, 3(Figure 1), 1535–1544. https://doi.org/10.1145/1753326.1753555; Chollet, F. (2018). Deep Learning with Phyton. In Manning; Christensson, P. (2009). User Interface Definition. https://techterms.com/definition/user_interface; Congreso de Colombia. (2012). Ley 1575 de 2012 “Por medio de la cual se establece la Ley General de Bomberos de Colombia.”; Cooper, L. A., Holderness, D. K., Sorensen, T. L., & Wood, D. A. (2019). Robotic process automation in public accounting. Accounting Horizons, 33(4), 15–35. https://doi.org/10.2308/acch-52466; Cowley, J. (2018). Redes neuronales convolucionales. Ibm, 1. https://www.ibm.com/developerworks/ssa/library/cc-convolutional-neuralnetwork-vision-recognition/index.html; DANE. (2012). Revisión 4 adaptada CIIU Rev . 4 A . C . 496. https://www.dane.gov.co/files/nomenclaturas/CIIU_Rev4ac.pdf; DataWow. (2018). Interns Explain CNN - Data Wow. https://blog.datawow.io/internsexplain-cnn-8a669d053f8b; Deloitte. (2017, May 25). ¿Qué es Robotic Process Automation? %7C Deloitte España. https://www2.deloitte.com/es/es/pages/operations/articles/que-es-roboticprocess-automation.html; Deloitte. (2020). Tech Trends 2020. Deloitte Insights, 1–130. https://www2.deloitte.com/us/en/insights/focus/tech-trends.html; Dhakal, V., Feit, A. M., Kristensson, P. O., & Oulasvirta, A. (2018). Observations on typing from 136 million keystrokes. Conference on Human Factors in Computing Systems - Proceedings, 2018-April. https://doi.org/10.1145/3173574.3174220; Díaz Moreno, H. (2006). Contabilidad general: enfoque práctico con aplicaciones informáticas. In Editorial Mc Graw Hill Interamericana SA. https://www.biblionline.pearson.com/Pages/BookRead.aspx; EcuRed. (2015). EcuRed. https://www.ecured.cu/Barra_de_desplazamiento; Ernesto Arévalo-Vázquez, E., Zúñiga-López, A., Villegas-Cortez, J., & Avilés-Cruz, C. (2015). Implementación de reconocimiento de objetos por color y forma en un robot móvil. In 21 Research in Computing Science (Vol. 91).; FAEDIS. (2018, September 10). FAEDIS. http://virtual.umng.edu.co/distancia/ecosistema/odin/odin_desktop.php?path=Li 4vb3Zhcy9hZG1pbmlzdHJhY2lvbl9lbXByZXNhcy9jb250YWJpbGlkYWRfZ2VuZ XJhbC91bmlkYWRfMS8=#slide_5.2; Fernando F. Coelho. (2019). Introducción a Selenium: Cómo funciona, Características y Opciones. https://www.digital55.com/desarrollotecnologia/herramientas-testing-introduccion-selenium/; Fisher, R., Perkins, S., Walker, A., & Wolfart, E. (2003). Feature Detectors - Canny Edge Detector. http://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm; Gallardo Arancibia, J. A. (2013). Metodología para el Desarrollo de Proyectos en Minería de Datos CRISP-DM. 84, 487–492. http://ir.obihiro.ac.jp/dspace/handle/10322/3933; Garcia, A. (2016). Automatización de pruebas de interfaz gráfica en herramientas de tesorería. https://www.iit.comillas.edu/pfc/resumenes/578e702f6cafb.pdf; García, E. M. i. (2002). Visión Artificial. In Inteligencia Artificial; glosarios@servidor-alicante.com. (2015). Eficiencia (Contabilidad de gestión). Glosarios@servidor-Alicante.Com. https://glosarios.servidoralicante.com/contabilidad-de-gestion/eficiencia GNOME developer. (2014). GNOME developer. https://developer.gnome.org/hig/stable/toolbars.html.es Gollapudi, S. (2019). Learn computer vision using OpenCV : with deep learning CNNs and RNNs; GNOME developer. (2014). GNOME developer. https://developer.gnome.org/hig/stable/toolbars.html.es; Gollapudi, S. (2019). Learn computer vision using OpenCV : with deep learning CNNs and RNNs.; Gonzales, R. (2019). Fundamentos para diseñar una Arquitectura de Solución con RPA.; Guru99. (n.d.). Clasificación de imágenes de TensorFlow: CNN (Red Neural Convolucional) - Guru99. Retrieved April 24, 2020, from https://guru99.es/convnet-tensorflow-image-classification/#2; helpsystems. (2020). Software de automatización GUI. https://www.helpsystems.com/es/productos/automate/software-deautomatizacion-gui-macros; Hureño, O. (2010). Contabilidad Básica Colección Didáctica Ciencias Económicas Y Administrativas. https://www.sanmateo.edu.co/documentos/publicacioncontabilidad-basica.pdf; IBM, I. B. M. (2012). Manual CRISP-DM de IBM SPSS Modeler. IBM Corporation, 56. http://www.ibm.com/spss.%0Aftp://public.dhe.ibm.com/software/analytics/spss/ documentation/modeler/15.0/es/CRISP-DM.pdf; IBM Robotic Process Automation. (2020). Robotic Process Automation with Automation Anywhere - Colombia %7C IBM. IBM Robotic Process Automation; (n.d.). Robotic Process Automation with Automation Anywhere -(n.d.). Robotic Process Automation with Automation Anywhere - Colombia %7C IBM. Retrieved April 1, 2020, from Https://Www.Ibm.Com/Co-Es/Products/RoboticProcess-Automation. https://www.ibm.com/co-es/products/robotic-processautomation Colombia %7C IBM. Retrieved April 1, 2020, from Https://Www.Ibm.Com/Co-Es/Products/RoboticProcess-Automation. https://www.ibm.com/co-es/products/robotic-processautomation; Identigate. (2018). Manual Data Entry: The weak link in automated Systems – Identigate: Web and Mobile Identity Management Solutions. http://www.identigate.co.ke/2018/04/14/manual-data-entry-the-weak-link-inautomated-systems/; ISO. (2009). ISO 9001 - Software ISO 9001 de Sistemas de Gestión ISO. ISOTools Excellence. https://www.isotools.org/normas/calidad/iso9001?__hstc=268265809.657f678a4e6ad8c124f59cda1704dff7.158847266804 8.1588472668048.1588472668048.1&__hssc=268265809.2.1588472668048& __hsfp=1312440609; ISO 25000. (2016). ISO 25000 Portal. https://iso25000.com/; Iso25000. (2018). NORMAS ISO 25000. ISO 25000. https://iso25000.com/index.php/normas-iso-25000?limit=4&start=4; ISOL. (2019). RPA (Robotic Process Automation) Beneficios %7C ISOL. https://isol.mx/rpa-robotic-process-automation-beneficios/; Ki, J., & Kwon, K. (2019a). Proceedings of the Sixth International Conference on Green and Human Information Technology. In Proceedings of the Sixth International Conference on Green and Human Information Technology. ICGHIT 2018 (Vol. 502). Springer Singapore. https://doi.org/10.1007/978-981-13-0311-1; Ki, J., & Kwon, K. (2019b). Proceedings of the Sixth International Conference on Green and Human Information Technology. Proceedings of the Sixth International Conference on Green and Human Information Technology. ICGHIT 2018, 502, 10–13. https://doi.org/10.1007/978-981-13-0311-1; Kim, B., Park, S., & Kim, B. (2018). Deep - Learning Based Web UI Automatic Programming. 2–3; Kokina, J., & Blanchette, S. (2019). Early evidence of digital labor in accounting: Innovation with Robotic Process Automation. International Journal of Accounting Information Systems, 35, 100431. https://doi.org/10.1016/j.accinf.2019.100431; Lemley, J., Bazrafkan, S., & Corcoran, P. (2017). Deep Learning for Consumer Devices and Services: Pushing the limits for machine learning, artificial intelligence, and computer vision. IEEE Consumer Electronics Magazine, 6(2), 48–56. https://doi.org/10.1109/MCE.2016.2640698; Levy Steven. (2015). Graphical user interface %7C computing %7C Britannica. https://www.britannica.com/technology/graphical-user-interface; Luenendonk, M. (2017, October 20). Accounting Errors. https://www.cleverism.com/lexicon/accounting-errors/; Maitra Satyajit. (2019, February 24). What Canny Edge Detection algorithm is all about? - SATYAJIT MAITRA - Medium. https://medium.com/@ssatyajitmaitra/what-canny-edge-detection-algorithm-isall-about-103d94553d21; Mays, J. A., & Mathias, P. C. (2019). Measuring the rate of manual transcription error in outpatient point-of-care testing. Journal of the American Medical Informatics Association, 26(3), 269–272. https://doi.org/10.1093/jamia/ocy170; Mihir Mistry, Ameya Apte, Varad Ghodake(&), and S. B. M. (2019). Machine Learning Based User Interface Generation. In Robotics and Autonomous Systems (Vol. 7, Issues 2–3). https://doi.org/10.1016/0921-8890(91)90033-H; Moreno, A. (2017). ¿Qué es el procesamiento de lenguaje natural? Procesamiento Del Lenguaje Natural, ¿qué Es? https://www.sas.com/es_co/insights/analytics/what-is-natural-languageprocessing-nlp.html; Narayana, M., Raghu Ram Reddy, N., & Hyndavi Reddy, N. (2019). High speed script execution for GUI Automation using Computer Vision. International Journal of Electrical and Computer Engineering, 9(1), 231–236. https://doi.org/10.11591/ijece.v9i1.pp231-236; Nguyen, T. A., & Csallner, C. (2016). Reverse engineering mobile application user interfaces with REMAUI. Proceedings - 2015 30th IEEE/ACM International Conference on Automated Software Engineering, ASE 2015, 248–259. https://doi.org/10.1109/ASE.2015.32; OBS. (2020). Características y fases del modelo incremental. OBS Business School. https://obsbusiness.school/int/blog-project-management/metodologiasagiles/caracteristicas-y-fases-del-modelo-incremental; Organizaci, P. D. E. L. A., Iv, J., & Vicepresidente, O. (2018). Aprovechar la automatización inteligente de procesos : El 1300 % de retorno de la inversión genera una mayor satisfacción de los clientes y USD 7 millones en nuevas fuentes de ingresos; Pete, C., Julian, C., Randy, K., Thomas, K., Thomas, R., Colin, S., & Wirth, R. (2000). Crisp-Dm 1.0. CRISP-DM Consortium, 76.; Pressman, R. (2002a). Ingeniería del Software. Un enfoque práctico. http://cotana.informatica.edu.bo/downloads/ldIngenieria.de.software.enfoque.practico.7ed.Pressman.PDF; Pressman, R. (2002b). Ingeniería del Software. Un enfoque práctico.; R., A. (2011). La MISION DE UNA EMPRESA. 1–6. http://www.crecenegocios.com/la-mision-de-una-empresa/el; Radhakrishnan, P. (2017, November 17). What is Transfer Learning? - Towards Data Science. https://towardsdatascience.com/what-is-transfer-learning8b1a0fa42b4; Ray, S., Tornbohm, C., Miers, D., & Kerremans, M. (2019). Magic Quadrant for Robotic Process Automation Software. July, 1–40; Redmon, Joseph, Santosh Divvala, R. G., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection; Remanan Surya. (2019, April 28). Beginner’s Guide to Object Detection Algorithms - Analytics Vidhya - Medium. https://medium.com/analytics-vidhya/beginnersguide-to-object-detection-algorithms-6620fb31c375; Robot Framework. (2008, August 21). Robot Framework. https://robotframework.org/; Rouse, M. (2017). ¿Qué es Aprendizaje profundo (deep learning)? - Definición en WhatIs.com. Abril 2017. https://searchdatacenter.techtarget.com/es/definicion/Aprendizaje-profundodeep-learning Rouse, M. (2017). ¿Qué es Aprendizaje profundo (deep learning)? - Definición en WhatIs.com. Abril 2017. https://searchdatacenter.techtarget.com/es/definicion/Aprendizaje-profundodeep-learning; scannmore. (2018, July 15). The Biggest Disadvantages of Manual Data Entry. https://scannmore.com/manual-data-entry-disadvantages/; Leyes desde 1992 - Vigencia expresa y control de constitucionalidad [DECRETO_2811_1974], (2006). http://www.secretariasenado.gov.co/senado/basedoc/constitucion_politica_199 1_pr011.html#354; Sevilla, P. (2018, July 7). Lenguaje de programación Python: qué es, utilidades y ventajas. https://initiumsoft.com/blog/que-es-el-lenguaje-de-programacionpython-y-para-que-sirve/; Standardization, F. O. R., & Normalisation, D. E. (1987). International Standard Iso. 1987; Sucar, L. E., & Gómez, G. (2011). Vision Computacional. Instituto Nacional de Astrofísica, Óptica y Electrónica, 185. http://ccc.inaoep.mx/~esucar/Libros/vision-sucar-gomez.pdf; The MathWorks, I. (2019). ¿Qué es una red neuronal? - MATLAB & Simulink. 2019. https://la.mathworks.com/discovery/neural-network.html; ThinkAutomation. (2018, September 19). Everything wrong with manual data entry - ThinkAutomation. https://www.thinkautomation.com/productivity/everythingwrong-with-manual-data-entry/; Torres, L. G. (2018). PA181-3-DotNetGen DotNetGenerator : Generador de Código para Arquitectura Microsoft . NET a partir de modelos ISML DotNetGenerator : Generador de Código para Arquitectura Microsoft . NET a partir de modelos ISML; Towards Machine Learning. (2018). Deep Learning Series, P2: Understanding Convolutional Neural Networks – Towards Machine Learning. https://towardsml.com/2018/10/16/deep-learning-series-p2-understandingconvolutional-neural-networks/; UiPath. (2017). ¿Qué es RPA (Automatización Robótica de Procesos)? %7C UiPath®. https://www.uipath.com/es/rpa/automatizacion-robotica-de-procesos; UiPath. (2019). Capterra. Obtenido de https://www.capterra.co/software/135186/uiUiPath. (2019). Capterra. Obtenido de https://www.capterra.co/software/135186/uipath-robotic-process-automation path-robotic-process-automation; Uskenbayeva, R., Kalpeyeva, Z., Satybaldiyeva, R., Moldagulova, A., & Kassymova, A. (2019). Applying of RPA in Administrative Processes of Public Administration. Proceedings - 21st IEEE Conference on Business Informatics, CBI 2019, 2, 9– 12. https://doi.org/10.1109/CBI.2019.10089; Villena Román, J. (2016, August 2). CRISP-DM: La metodología para poner orden en los proyectos - Sngular. https://www.sngular.com/es/data-science-crisp-dmmetodologia/; Yun, Y., & Park, J. (2018). Automatic Mobile Screen Translation Using Object Detection Approach Based on Deep Neural Networks. 21(11), 1305–1316.; http://hdl.handle.net/20.500.12749/14397; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Dostupnosť: https://hdl.handle.net/20.500.12749/14397
-
9
Autori:
Zdroj: Revista CES Derecho; Vol. 10 Núm. 1 (2019): CES Derecho; 418-446 ; 2145-7719
Popis súboru: application/pdf
Relation: https://revistas.ces.edu.co/index.php/derecho/article/view/4800/3049; Alami, A. (2016). Why Do Information Technology Projects Fail? Procedia Computer Science(100), 62-71. doi:10.1016/j.procs.2016.09.124; Alfonso, P., & Mariño, S. (2013). Los estándares internacionales y su importancia para la industria del software. Técnica Administrativa, 12(2). Recuperado el 29 de Octubre de 2017, de http://www.cyta.com.ar/ta1202/v12n2a3.htm; Amoroso Fernández, Y. (1994). Breve exposición de la informática en Cuba: la protección y comercialización del software. El régimen de protección de los datos. Revista General de Información y Documentación, 4(2), 195-205.; Amoroso Fernández, Y. (2017). Un acercamiento a la socio-cibernética y la infoética en las TIC. Valores éticos y derecho. Revista Argumentos de Razón Técnica(20), 119-148.; Asamblea Nacional del Poder Popular. (28 de Diciembre de 1977). Ley No 14 de 28 diciembre de 1977. Ley sobre Derecho de Autor. Gaceta Oficial la República de Cuba. Edición Ordinaria de 30 de diciembre de 1977(49), 1-30. La Habana, Cuba: Ministerio de Justicia.; Bain, M., & partners, i. l. (2009). Guía del derecho y el software de fuentes abiertas. (CREA’T, Ed.) Madrid, España: Centro Nacional de Referencia de Aplicación de las TIC basadas en fuentes abiertas, CENATIC. Recuperado el 18 de Noviembre de 2017, de http://www.cenatic.es; Bencomo Yarine, E. (2008). Nuevo acercamiento a la legislación cubana sobre nuevas tecnologías. Revista de Derecho Informático(121), 2-9. Recuperado el 5 de Abril de 2018, de https://dialnet.unirioja.es/servlet/revista?codigo=2485; Beth Chrissis, M., Konrad, M., & Shrum, S. (2009). CMMI, Guía para la integración de procesos y la mejora de productos (Segunda ed.). (C. d. de, Trad.) Madrid, España: Pearson Educación, S.A.; Brioso, X. (2015). Integrating ISO 21500 Guidance on Project Management, Lean Construction and PMBOK. Creative Construction Conference 2015, (págs. 76-84). doi:doi:10.1016/j.proeng.2015.10.060; Cantero Márquez, M. (2015). Propuesta para el cálculo del costo de proyectos de desarrollo informático en la universidad de las ciencias informáticas. Tesis presentada en opción al título de master en contabilidad general, Universidad de las Ciencias Informáticas, Centro de Informatización de la Gestión de Entidades, CEIGE, Facultad 3, Santa Clara. Recuperado el 30 de Noviembre de 2017, de https://repositorio.uci.cu/jspui/handle/ident/9078; Castell González, J. (2012). Modelo para el desarrollo de un ecosistema de software orientado a soluciones para la gestión de proyectos. Tesis de Maestría, Universidad de las Ciencias Informáticas, Centro de Consultoría y Desarrollo de Arquitecturas Empresariales / Laboratorio de Gestión de Proyectos, La Habana. Recuperado el 5 de Abril de 2018, de https://repositorio.uci.cu; Castro Ruz, F. (5 de Diciembre de 2004). Discurso Clausura del VII Congreso de la Unión de Jóvenes Comunistas. La Habana, Cuba: Oficina de Publicaciones del Consejo de Estado.; Cazorla Suárez, L. (2010). Estudio de la metodología de Gestión de Proyectos PRINCE2: Aplicación a un caso práctico. Escuela Técnica Superior de Ingeniería Informática, Dpto. Lenguajes y Ciencias de la Computación. Málaga: Universidad de Málaga.; Chavarría, A. E., Oré, S. B., & Pastor, C. (2016). Aseguramiento de la Calidad en el Proceso de Desarrollo de Software utilizando CMMI, TSP y PSP. RISTI - Revista Ibérica de Sistemas e Tecnologias de Informação(20), 62-77. doi:https://dx.doi.org/10.17013/risti.20.62-77; Chávez Sánchez, J. L. (27 de Noviembre de 2009). Metodología Jurídica para la elaboración de contratos informáticos. Recuperado el 5 de Noviembre de 2017, de Derecho Ecuador: http://www.derechoecuador.com/index.php?option=com_content&view=article&id=5239:metodologia-juridica-para-la-elaboracion-de-contratos-informaticos&catid=42:derecho-informatico&Itemid=420; Ciudad Ricardo, F. A. (9 de Septiembre de 2011). Conferencia “Introducción a la gestión de proyectos de desarrollo de software” - Asignatura “Gestión de Software”. doi:10.13140/RG.2.2.17145.77923/1; Ciudad Ricardo, F. A. (2016). Diseño de Entornos Virtuales para la integración academia – industria. Implementación en la Disciplina Ingeniería y Gestión de Software. Saarbrücken, Alemania: Editorial Publicia .; Consejo de Estado de la República de Cuba. (14 de Octubre de 1994). Decreto Ley 156. Modificativo de la Ley No 14. de Derecho de Autor. La Habana, Cuba: Ministerio de Justicia.; Delgado Flores, G., & Telléz Valdéz, J. (2006). Temas de Derecho Informático (Primera ed.). México D.F., México: Secretaría de Gobernación, Subsecretaría de Asuntos Jurídicos y Derechos Humanos. Recuperado el 4 de Abril de 2018, de http://www.gobernacion.gob.mx; Delgado Martínez, R. (2010). Estrategia para la estandarización de la documentación y las actividades para el desarrollo de software en la Universidad de las Ciencias Informáticas. Tesis de Maestría, Universidad de las Ciencias Informáticas, Centro de Calidad de Software, CALISOFT, Ciudad de la Habana. Recuperado el 5 de Abril de 2018, de https://repositorio.uci.cu; Delpiazzo, C. (2008). Habeas data. A propósito del acceso a la información pública. Seminario "El derecho de habeas data en el Uruguay" (págs. 1-19). Montevideo: FONTRA.; Fernández del Monte, Y. (2013). Metodología para desarrollar la distribución cubana de GNU/Linux Nova. Tesis de Maestría, Universidad de las Ciencias Informáticas, Facultad 1, Centro de Software Libre, La Habana. Recuperado el 5 de Abril de 2018, de https://repositorio.uci.cu; Fernández Delpech, H. (2014). Manual de Derecho Informático (Primera ed.). Ciudad Autónoma de Buenos Aires, Argentina: Abeledo Perrot S.A.; Fernández Hernández, A. (2015). Modelo ontológico de recuperación de información para la toma de decisiones en gestión de proyectos. Tesis doctoral, Facultad de Comunicación y Documentación, Universidad de Granada, Departamento de Información y Comunicación, Granada. Recuperado el 5 de Abril de 2018, de http://repositorio.uci.cu; Formentín Zayas, Y. M. (Enero-Junio de 2013). La firma electrónica, su recepción legal. Especial referencia a la ausencia legislativa en Cuba. IUS. Revista del Instituto de Ciencias Jurídicas de Puebla, VII(31), 104-120.; Fuentes Castillo, Y., Salazar Labrada, L., & León Mendoza, A. F. (2016). IPP-2016 Libro de Proceso para el Desarrollo de Requisitos (RD). Libro de Procesos CMMI-UCI Nivel 3, Universidad de las Ciencias Informáticas, Dirección de Calidad de Software, La Habana. Recuperado el 20 de Abril de 2018, de http://excriba.prod.uci.cu; Fundación IBIT. (2007). Guía práctica de gestión de proyectos europeos. Fundación IBIT, Govern d´ les Illes Balears. Palma de Mallorca: Conselleria d’Economia, Hisenda i Innovació. Recuperado el 30 de Abril de 2018, de http://www.ibit.org; García Martín, J., Trujillo Casañola, Y., & Gutiérrez Feria, L. M. (2016). IPP-2016 Libro de proceso para el Monitoreo y Control del Proyecto (PMC). Libro de Procesos CMMI-UCI Nivel 2, Universidad de las Ciencias Informáticas, Dirección de Calidad de Software, La Habana. Recuperado el 10 de Abril de 2018, de http://excriba.prod.uci.cu; Gellweiler, C. (2017). Bridging IT requirements to competitive advantage: The concept of IT value planning. CENTERIS - International Conference on ENTERprise Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems and Technologies,HCist 2017. 121, págs. 145-151. Barcelona: Procedia Computer Science. doi:10.1016/j.procs.2017.11.020; Goñi Oramas, A. (2012). Metodología para la gestión de proyectos de Consultoría en Migración a Tecnologías de Software Libre y Código Abierto. Tesis de Maestría, Universidad de las Ciencias Informáticas, Facultad 1, Centro de Soluciones Libres (CESOL), La Habana. Recuperado el 5 de Abril de 2018, de https://repositorio.uci.cu; González González, W. (Julio-Diciembre de 2017). Personal, producto, proceso y proyecto: las 4P con un enfoque empresarial. Revista Tecnología, Investigación y Academia, 5(2), 181-189. Recuperado el 5 de Abril de 2018, de http://revistas.udistrital.edu.co/ojs/index.php/tia/issue/archive; González Hernández, Y. (2013). Metodología de desarrollo para proyectos de almacenes de datos. Tesis de Maestría, Universidad de las Ciencias Informáticas, Facultad de Ciencias y Tecnologías Computacionales (CITEC), Centro de Tecnologías de Gestión de Datos (DATEC), La Habana. Recuperado el 5 de Abril de 2018, de https://repositorio.uci.cu; Gutiérrez Feria, L. M. (2016). IPP-2016 Libro de Proceso para la Gestión de Riesgos (RSMK). Libro de Procesos CMMI-UCI Nivel 3, Universidad de las Ciencias Informáticas, Dirección de Calidad de Software, La Habana. Recuperado el 20 de Abril de 2018, de http://excriba.prod.uci.cu; Hernández Fernández, L. (2006). Momento y lugar de la perfección de los contratos concertados vía electrónica. Tesis doctoral, Universidad Central "Martha Abreu" de Las Villas, Facultad de Derecho, Santa Clara.; Hernández Fernández, L. (2006). Momento y lugar de la perfección de los contratos concertados vía electrónica. Tesis doctoral, Universidad Central "Martha Abreu" de Las Villas, Santa Clara.; Hernández Hernández, L. (2016). IPP-2016 Libro de Proceso para el Análisis de Decisiones y Resolución (DAR). Libro de Procesos CMMI-UCI Nivel 3, Universidad de las Ciencias Informáticas, Dirección de Calidad de Software, La Habana. Recuperado el 5 de Abril de 2018, de http://excriba.prod.uci.cu; Iden, J., & Bygstad, B. (2018). The social interaction of developers and IT operations staff in software development projects. International Journal of Project Management(36), 485–497. doi:10.1016/j.ijproman.2017.12.001; International ISBN Agency. (2012). The International Standard Book Number System. Manual (Sexta Edición en español ed.). Londres, Reino Unido: International ISBN Agency. Obtenido de http://www.isbn-international.org; International Organization for Standardization ISO. (2012). Internacional Standard ISO 21500. Guidance on project management. Geneva: ISO Copyright Office. Recuperado el 30 de Abril de 2018, de https://www.iso.org; Keegan, A., Ringhofer, C., & Huemann, M. (2018). Human resource management and project based organizing: Fertile ground, missed opportunities and prospects for closer connections. International Journal of Project Management(36), 121-133. doi:10.1016/j.ijproman.2017.06.003; Kniberg, H. (2007). Scrum y XP desde las trincheras. Como hacemos Scrum. (D. Plesa, Ed., & Á. Medinilla, Trad.) Whashintong, D.C., Estados Unidos de América: C4Media Inc. Obtenido de http://infoq.com/minibooks/scrum-xp-from-the-trenches; La Torre Hernández, L. (2013). MODELIPS, Modelo de Desarrollo para Líneas de Productos de Software de Supervisión y Control de Procesos Industriales. Tesis de Maestría, Universidad de las Ciencias Informáticas, Facultad 5, Centro de Informática Industrial, La Habana. Recuperado el 5 de Abril de 2018, de https://repositorio.uci.cu; Laboratorio Nacional de Calidad del Software del Instituto Nacional de Tecnologías de la Comunicación (INTECO). (Junio de 2009). Guía Avanzada de Gestión de Contratos. Guía, Instituto Nacional de Tecnologías de la Comunicación, Laboratorio Nacional de Calidad del Software, Madrid. Recuperado el 31 de Julio de 2017, de INTECO Web Site: http://www.inteco.es; Lessig, L. (2006). Code version 2.0. New York, United States of America: Basic Books. A Member of the Perseus Books Group.; López Soria, Y. (2011). Código Penal Cubano. (N. Casanovas Herrero, Ed.) La Habana: Ediciones ONBC.; López-Ibor Mayor, V., & García Delgado, S. (1994). Situación del derecho informático en España y en Europa: algunas consideraciones. Revista Iberoamericana de Derecho Informático(4), 643-655. Recuperado el 30 de Noviembre de 2017, de https://dialnet.unirioja.es/servlet/articulo?codigo=251099; Loredo Álvarez, A. (15 de Febrero de 2011). Contratos informáticos y telemáticos y su regulación en la Ley Mexicana en el entorno del comercio electrónico. Recuperado el 5 de Mayo de 2018, de Observatorio para la Sociedad: http://www.cibersociedad.net/archivo/arti; Lourido Ramil, B. (15 de Febrero de 2008). Sobre la contratación informática. (Portico Legal S.A) Recuperado el 30 de Noviembre de 2017, de Portico Legal: www.porticolegal.eleconomista.es/pa_articulo.php?ref=321; Luz Clara, B., Di Lorio, A. H., Uriarte, V. C., Giaccaglia, M. F., & Navarro Saravia, E. L. (2013). Defensa del Consumidor en la contratación de bienes y servicios informáticos (Primera ed.). Mar del Plata: Universidad FASTA Ediciones.; Mantei, M. (Marzo de 1981). The Effect of Programming Team Structures on Programming Tasks. (R. L. Ashenhurst, Ed.) Communications of the ACM, 24(3), 106-113. Recuperado el 5 de Mayo de 2018, de https://www2.seas.gwu.edu/~mlancast/cs254/p106-mantei.pdf; Marín Díaz, A., & Velázquez Cintra, A. (2016). IPP-2016 Proceso para las actividades de calidad (PPQA, VER & VAL). Libro de Procesos CMMI-UCI Nivel 3, Universidad de las Ciencias Informáticas, Dirección de Calidad de Software, La Habana. Recuperado el 20 de Abril de 2018, de http://excriba.prod.uci.cu; Marín Sánchez, J. (2015). Marco de trabajo para el uso de la tecnología en el proceso de monitoreo y control de proyectos de software. Tesis de Maestria, Universidad de las Ciencias Informáticas, La Habana. Recuperado el 30 de Noviembre de 2017, de https://repositorio.uci.cu/jspui/handle/ident/9067; Martin, R. C. (2012). Código Limpio. Manual de Estilo para el desarrollo ágil de software. (S. Grupo ANAYA, Ed., & J. L. Gómez Celador, Trad.) Madrid, España: ANAYA Multimedia.; Martinez Chong, M. (2010). Propuesta de metodología de desarrollo de software para su utilización en la unidad de compatibilización, integración y desarrollo de productos informáticos para la defensa (UCID). Tesis de Maestría, Universidad de las Ciencias Informáticas, Unidad de Compatibilización, Integración y Desarrollo de Productos Informáticos para la Defensa, La Habana. Recuperado el 5 de Abril de 2018, de https://repositorio.uci.cu; Matos, S., & Lopes, E. (2013). Prince2 or PMBOK – a question of choice. Procedia Technology(9), 787 – 794. doi:10.1016/j.protcy.2013.12.087; Mendoza, N. (Enero - Junio de 2015). Análisis jurídico en torno a la propiedad intelectual, las tecnologías y la información digital en el marco del ciberespacio. (L. Pérez Gallardo, Ed.) Revista Cubana de Derecho(45), 93-125. Recuperado el 5 de Mayo de 2018, de http://www.unjc.co.cu; Ministerio de Comunicaciones. (2017). Política integral para el perfeccionamiento de la Informatización de la sociedad en Cuba. Ministerio de Comunicaciones, La Habana. Recuperado el 20 de Abril de 2018, de http://www.mincom.gob.cu; Ministerio de Cultura-Ministerio de la Industria Sideromecánica y la Electrónica. (6 de Junio de 1999). Resolución Conjunta No.1/1999, sobre la Protección y Comercialización de los Programas de Computación y las Bases de Datos. La Habana, Cuba: Centro Nacional de Derecho de Autor. Recuperado el 30 de Noviembre de 2017, de http://www.cenda.cult.cu; Ministerio de Educación. (2011). Guía de Gestión de Contratos. Ministerio de Educación, Gobierno de Chile, Enlaces, Centro de Educación y Tecnología, Santiago de Chile.; Ministerio de la Informática y las Comunicaciones. (2011). Estrategia de Exportaciones de la Industria Informática Cubana. Ministerio de la Informática y las Comunicaciones, Dirección de Exportaciones, La Habana. Recuperado el 11 de Noviembre de 2011; Monteiro, A., Santosa, V., & Varajão, J. (2016). Project Management Office Models – a review. Procedia Computer Science(100), 1085-1094. doi:10.1016/j.procs.2016.09.254; Mossalam, A. (2017). Projects’ issue management. HBRC Journal. Housing and Building National Research Center. doi:10.1016/j.hbrcj.2017.12.001; Muro Fumero, D. (2011). Modelo de desarrollo de software basado en líneas de producción de software y técnicas de desarrollo ágil. Tesis de Maestría, Universidad de las Ciencias Informáticas, La Habana. Recuperado el 4 de Abril de 2018, de https://repositorio.uci.cu; Mustelier Sanchidrian, D., & Yero Tarancón, Y. (2014). IPP-2014 Libro de Proceso para Gestión de la Configuración (CM). Libro de Procesos CMMI-UCI Nivel 2, Universidad de las Ciencias Informáticas, Dirección de Calidad de Software, La Habana. Recuperado el 10 de Abril de 2018, de http://excriba.prod.uci.cu; Nicot García, A. A., Rivero Guerra, Y., & Armas Guerrero, J. (2016). IPP-2016 Libro de Proceso para Definición de Procesos de la Organización y Enfoque en Procesos de la Organización (OPD y OPF). Libro de Procesos CMMI-UCI Nivel 3, Universidad de las Ciencias Informáticas, Dirección de Calidad de Software, La Habana. Recuperado el 5 de Abril de 2018, de http://excriba.prod.uci.cu; Núñez Ponce, J. (2002). Bienes Intangibles Informáticos, Derecho e Internet : Software, Dominios, Franquicias, Documentos,Firmas y otros. II Congreso Mundial de Derecho Informático (págs. 2-9). Madrid: Universidad Complutense de Madrid.; Olivera, N. (2010). Estado de la cuestión en la relación entre derecho e informática. México: UNLP.; Olivera, N. (2010). Estado de la cuestión en la relación entre derecho e informática. En N. Olivera. México: UNLP.; Palacio, J. (Octubre de 2007). Flexibilidad con Scrum. Safe Creative. Recuperado el 5 de Mayo de 2018, de http://www.safecreative.org/work/0710210187520; Palacio, J. (2008). ScrumManager: Gestión de proyectos. Safe Creative. Recuperado el 5 de Abril de 2018, de http://www.scrummanager.net; Pantoja Zaldívar, Y. (2012). Modelo de desarrollo basado en líneas de productos de software para Sistemas de Información Geográfica sobre la base de la Plataforma GeneSIG. Tesis de Maestría, Universidad de las Ciencias Informáticas, Facultad 6, Centro de Geoinformática y Señales Digitales (GEySED), La Habana. Recuperado el 5 de Abril de 2018, de https://repositorio.uci.cu; Peña Abreu, M. (2012). Modelo para análisis de factibilidad en la evaluación de proyectos de software. Tesis de Maestría, Universidad de las Ciencias Informáticas, Laboratorio de Gestión de Proyectos, La Habana. Recuperado el 5 de Abril de 2018, de https://repositorio.uci.cu; Peñaranda Quintero, H. R. (22 de Marzo de 2006). La naturaleza jurídica del derecho informático. Recuperado el 20 de Junio de 2017, de Derecho Tecnológico: https://www.derechotecnologico.com/estrado/estrado006.html; Peres Soler Matute & Il.Iustre Col.legi Oficial d´ Enginyeria en Informàtica de Catalunya. (2004). El Contrato para la Elaboración de Programas de Ordenador. Catalunya, Navarra, España: Aranzandi, SA.; Pérez Veunes, S. (Julio de 2010). Guía pra identificar la información que se debe utilizar en la elaboración de un contrato informático. Tesis de Maestría, Universidad de las Ciencias Informáicas, Laboratorio de Gestión de Proyectos, La Habana. Recuperado el 5 de Abril de 2018, de http://www.repositorio.uci.cu; Piñero Pérez, Y. (5 de Febrero de 2007). Metodología para la gestión de contratación en proyectos de desarrollo de Software Educativo. Tesis de Maestría, Universidad de las Ciencias Informáticas, Dirección de Gestión de SW Educativo, Ciudad de la Habana. Recuperado el 30 de Noviembre de 2017, de http://repositorio.uci.cu; Pressman, R. S. (2005). Ingeniería del Software. Sexta Edición. McGrawHill.; Pressman, R. S. (2010). Software engineering: a practitioner's approach (Seventh ed.). (R. Srinivasan, Ed.) New York, NY, Estados Unidos de América: McGraw-Hill.; Pressman, R. S., & Maxim, B. R. (2015). Software Engineering: a practitioner’s approach (Eighth ed.). New York, NY, Estados Unidos de América: McGraw-Hill Education.; Project Management Institute. (2004). Guía de los Fundamentos para la Dirección de Proyectos (Guía del PMBOK) (Tercera ed.). Newtown Square, Pennsylvania, Estados Unidos de América: Project Management Institute, Inc. Recuperado el 30 de Enero de 2018, de https://www.pmi.org; Project Management Institute. (2008). Guía de los Fundamentos para la Dirección de Proyectos (Guía del PMBOK) (Cuarta ed.). Newtown Square, Pennsylvania, Estados Unidos de América: Project Management Institute, Inc. Recuperado el 30 de Enero de 2018, de https://www.pmi.org; Project Management Institute. (2013). Guía de los Fundamentos para la Dirección de Proyectos (Guía del PMBOK) (Quinta ed.). Newtown Square, Pensilvania, Estados Unidos de América: Project Management Institute, Inc. Recuperado el 30 de Noviembre de 2017, de https://www.pmi.org; Project Management Institute. (2017). A guide to the project management body of knowledge (PMBOK guide) (Sixth edition ed.). Newtown Square, Pennsylvania, USA: Project Management Institute, Inc. Recuperado el 30 de Abril de 2018, de https://www.pmi.org; Projekt Management Austria. (2015). Individual Competence Baseline für Projektmanagement Version 4.0. Wien, Austria: International Project Management Association (IPMA®). Recuperado el 5 de Mayo de 2018, de www.p-m-a.at; Radujkovića, M., & Sjekavicab, M. (2017). Project Management Success Factors. Procedia Engineering(196), 607 – 615. doi:10.1016/j.proeng.2017.08.048; Reusser Monsálvez, C. (2015). Lección I. Introducción al Derecho Informático. En Manual Chileno de Derecho Informático (págs. 7-10). Santiago de Chile.; Reyes Gómez, L. (2016). IPP-2016 Libro de Proceso para la Formación en la Organización (OT). Libro de Procesos CMMI-UCI Nivel 3, Universidad de las Ciencias Informáticas, Dirección de Calidad de Software, La Habana. Recuperado el 5 de Abril de 2018, de http://excriba.prod.uci.ci; Ringenbach Sanabria, J. L. (2007). El Contrato del Sitio Web, espacios virtuales obligaciones reales. Tlalpan, México D.F.: Fulton & Fulton SC. Recuperado el 13 de Noviembre de 2007, de www.leyenlinea.com; Rodríguez Sánchez, T., & Fuentes Castillo, Y. (2014). IPP-3510:2014 Libro de Proceso para la Administración de Requisitos. Libro de Procesos CMMI-UCI Nivel 2, Universidad de las Ciencias Informáticas, Dirección de Calidad de Software, La Habana. Recuperado el 10 de Abril de 2018, de https://excriba.prod.uci.cu; Rodriguez Silva, L. R. (30 de Noviembre de 2012). Premisas para la adecuación del régimen jurídico de la contratación de productos y servicios informáticos en el marco de la estrategia de exportación de la industria informática cubana. Tesina de Diplomado de Comercio Exterior y la Inversión Extranjera, Instituto de Comercio Exterior y la Inversión Extranjera, La Habana.; Rodríguez, F. (2013). Lecciones de derecho y etica profesional para estudiantes y profesionales de Ingeniería, Arquitectura y profesionales afines. Buenos Aires: UNC.; Rosenoer, J. (1997). CyberLaw. The Law of the Internet. New York, USA: Springer.; Rosenoer, J. (1997). CyberLaw. The Law of the Internet. Springer.; Sáez Peña, E. (Mayo-Junio de 2011). La protección de datos personales en el desarrollo de software. Revista Novática(211), 50-55. Recuperado el 13 de Abril de 2013; Santana Méndez, W. (2010). Proceso de desarrollo para portales Web. Tesis de Maestría, Universidad de las Ciencias Informáticas, La Habana. Recuperado el 5 de Abril de 2018, de https://repositorio.uci.cu; Software Engineering Institute. (2010). CMMI® para Desarrollo. Guía para la integración de procesos y la mejora de productos (Tercera ed.). (C. M. University, Ed.) Madrid, España: Editorial Universitaria Ramón Areces.; Sommerville, I. (2005). Ingeniería del Software (Séptima ed.). (M. I. Alfonso Galipienso, A. Botía Martíinez, F. Mora Lizán, & J. P. Trigueros Jover, Trads.) Madrid, España: Pearson Educación.; Sommerville, I. (2007). Software Engineeering (Eighth ed.). (A.-W. Publisher, Ed.) Reino Unido: Pearson Education.; Sommerville, I. (2011). Ingeniería de Software (Novena ed.). (L. M. Castillo, Ed., & V. C. Olguín, Trad.) Naucalpan de Juárez, Estado de México, México: Pearson Education.; Špundak, M. (2014). Mixed agile/traditional project management methodology – reality or illusion? Procedia - Social and Behavioral Sciences(119), 939 – 948. doi:10.1016/j.sbspro.2014.03.105; Stella Rodríguez, G. (Septiembre de 2000). Responsabilidad civil en el proceso de negociación informática. Revista de Derecho de la Universidad del Norte(14), 90-102.; Téllez Valdés, J. (1989). La protección jurídica de los programas de computación (Segunda ed.). (M. López Ruiz, Ed.) México D.F, México: Instituto de Investigaciones Jurídicas.; Téllez Valdés, J. (1989). La protección jurídica de los programas de computación (Segunda ed.). México: Instituto de Investigaciones Jurídicas.; Téllez Valdés, J. (2006). Contratos Informaticos. México: McGrawHill.; Téllez Valdés, J. (2006). Contratos Informaticos. México.; Téllez Valdés, J. (2009). Derecho Informático (Cuarta ed.). México, D.F., México: McGraw Hill/Interamericana Editores, S.A. DE C.V.; Toro López, F. (2013). Administración de Proyectos de Informática. Bogotá: ECOE.; Torres López, S. (2015). Modelo de evaluación de competencias a partir de evidencias durante la gestión de proyectos. Tesis doctoral, Universidad de las Ciencias Informáticas, Facultad 5, Centro de Desarrollo y Arquitectura Empresariales (CDAE), La Habana. Recuperado el 30 de Abril de 2018, de https://repositorio.uci.cu; Triana Morales, B. (2015). Método para elaborar portafolios de proyectos determinando su factibilidad y orden de ejecución. Tesis de Maestría, Universidad de las Ciencias Informáticas, Facultad 5, Laboratorio de Investigaciones en Gestión de Proyectos. Recuperado el 10 de Mayo de 2018, de https://repositorio.uci.cu; Trujillo Casañola, Y., García Martín, J., Yanet, D. R., & Sospedra López, D. (2016). IPP-2016 Libro de Proceso para la Planificación de Proyecto. Libro de Procesos CMMI-UCI Nivel 2, Universidad de las Ciencias Informáticas, Dirección de Calidad de Software, La Habana. Recuperado el 24 de Febrero de 2017, de http://mejoras.uci.cu; Trujillo Casañola, Y., Gutiérrez Feria, L. M., & Febles Pérez, D. (2014). IPP-2014 Libro de Proceso para el Aseguramiento de la Calidad del Proceso y del Producto (PPQA). Libro de Procesos CMMI-UCI Nivel 2, Universidad de las Ciencias Informáticas, Dirección de Calidad de Software, La Habana. Recuperado el 10 de Abril de 2018, de http://excriba.prod.uci.cu; Trujillo Casañola, Y., Velázquez Álvarez, R., & Alfonso Hernández, Y. (2014). IPP-2014 Libro de Proceso para Medición y Análisis. Libro de Procesos CMMI-UCI Nivel 2, Universidad de las Ciencias Informáticas, Dirección de Calidad de Software, La Habana. Recuperado el 10 de Abril de 2018, de http://excriba.prod.uci.cu; Turley, F. (2011). The PRINCE2® Training Manual. A common sense approach to learning and understanding PRINCE2. UK: MgmtPlaza; TAG.; Turner, J. R. (2018). The management of the project-based organization: A personal reflection. International Journal of Project Management(36), 231-240. doi:10.1016/j.ijproman.2017.08.002; UCI-Vicerrectoría de Producción. (2014). Informe de Balance 2013. Informe de Balance, Universidad de las Ciencias Informáticas, Vicerrectoría de Producción, LA HABANA. Recuperado el 30 de Noviembre de 2017; UCI-Vicerrectoría de Producción. (2015). Informe de Balance del 2014. Informe de Balance, Universidad de las Ciencias Informáticas, Vicerrectoría de Producción, La Habana. Recuperado el 30 de Noviembre de 2017; Varajão, J., Colomo-Palacios, R., & Silva, H. (2017). ISO 21500:2012 and PMBoK 5 processes in information systems project management. Computer Standards & Interfaces, 50, 216-222. doi:10.1016/j.csi.2016.09.007.; Vicerrectoría de Producción - UCI. (2016). Metodología de desarrollo para la actividad productiva de la UCI. Universidad de las Ciencias Informáticas, Dirección de Calidad de SW. Programa de Mejora, La Habana. Recuperado el 5 de Abril de 2018, de http://mejoras.prod.uci.cu; Zalazar, A. S., Gonnet, S., & Leone, H. (2014). Aspectos Contractuales de Cloud Computing. CIIDDI Congreso 2014 (págs. 1-10). Santa Fé: CIIDDI. Recuperado el 29 de Octubre de 2017, de http://ciiddi.org/congreso2014/images/documentos/aspectoscontractualesdecloudcomputingzalazar.pdf; Zandhuis, A., & Stellingwerf, R. (2013). ISO21500: Guidance on project management - A Pocket Guide (First ed.). (S. Newton, Ed.) Zaltbommel: Van Haren Publishing. Recuperado el 5 de Mayo de 2018, de https://www.vanharen.ne; https://revistas.ces.edu.co/index.php/derecho/article/view/4800
-
10
Autori: By:DYLAND
Zdroj: Business Wire, January 26, 2004
-
11
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: Engineering, Technology management, Maturity model, Smart technologies, Smart-university, Technology adoption, Technological innovations, Technological change, Artificial intelligence, Computer networks, Communications technology, Ingeniería, Innovaciones tecnológicas, Cambio tecnológico, Inteligencia artificial, Redes de computadores, Tecnología de las comunicaciones, Gestión de tecnología, Modelo de madurez, Tecnologías inteligentes, Universidad inteligente, Adopción tecnológica
Geografické téma: Norte de Santander (Colombia), UNAB Campus Bucaramanga
Popis súboru: application/pdf
Relation: [1] C. U. ESPAÑOLAS, Analisis de las TIC en las Universidades Españolas. 2015. doi:10.1017/CBO9781107415324.004; [2] J. S. Rueda-Rueda, D. Rico-Bautista, and É. Flórez-Solano, “Education in ICT: Teaching to use, teaching to protect oneself and teaching to create [Educación en TIC: Enseñar a usar, enseñar a protegerse y enseñar a crear tecnología],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2019, no. 19, pp. 252–264, 2019.; [3] L. V. Glukhova, S. D. Syrotyuk, A. A. Sherstobitova, and S. V. Pavlova, Smart university development evaluation models, vol. 144. Springer Singapore, 2019. doi:10.1007/978-981-13-8260-4_47; [4] D. Rico-bautista, C. D. Guerrero, C. A. Collazos, and G. Maestre-góngora, “Smart University : A vision of technology adoption Universidad inteligente : Una visión de la adopción de la tecnología,” Revista Colombiana de Computación, vol. 22, no. 1, pp. 44–55, 2021, doi:10.29375/25392115.4153; [5] P. Pornphol and T. Tongkeo, “Transformation from a traditional university into a smart university,” Proceedings of the 6th International Conference on Information and Education Technology - ICIET ’18. ACM Press, pp. 144–148, 2018. doi:10.1145/3178158.3178167; [6] I. Staškevičiute and B. Neverauskas, “The intelligent university’s conceptual model,” Engineering Economics, vol. 4, no. 59, pp. 53–58, 2008, doi:10.5755/j01.ee.59.4.11563; [7] D. Rico-Bautista, C. D. Guerrero, C. A. Collazos, and G. Maestre-Gongora, “Maturity model of adoption of Information Technologies for universities: An approach from the Smart University perspective,” in 2021 16th Iberian Conference on Information Systems and Technologies (CISTI), Jun. 2021, pp. 1–6. doi:10.23919/CISTI52073.2021.9476468; [8] L. I. U. Xiong, “A Study on Smart Campus Model in the Era of Big Data,” Advances in Social Science, Education and Humanities Research, vol. 87, no. Icemeet 2016, pp. 919–922, 2017.; [9] D. Rico-Bautista, G. P. Maestre-Góngora, and C. D. Guerrero, “Smart university: Characterization of the current situation of intelligent technologies, based on two case studies [Caracterización de la situación actual de las tecnologías inteligentes para una universidad inteligente en Colombia/latinoamérica],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E27, pp. 484–501, 2020; [10] F. M. Pérez, J. V. B. Martínez, J. M. S. Bernabeu, I. L. Fonseca, and A. Fuster-Guilló, “Smart university: hacia una universidad más abierta.” 2016.; [11] D. Rico-Bautista, Y. Medina-Cárdenas, and C. D. Guerrero, “Smart University: A Review from the Educational and Technological View of Internet of Things,” in International Conference on Information Technology and Systems, ICITS 2019, vol. 918, P. M., F. C., and R. A., Eds. Systems and Informatics Department, Universidad Francisco de Paula Santander Ocaña, Algodonal Campus Vía Acolsure, Ocaña, 546551, Colombia: Springer Verlag, 2019, pp. 427–440. doi:10.1007/978-3-03011890-7_42; [12] J. P. Bakken, V. L. Uskov, S. V. Kuppili, A. V Uskov, N. Golla, and N. Rayala, Smart University: Conceptual Modeling and Systems’ Design, vol. 70. Cham: Springer International Publishing, 2018. doi:10.1007/978-3-319-59454-5.; [13] O. Akhrif, Y. E. B. El Idrissi, and N. Hmina, “Smart university: SOC-based study,” Proceedings of the 3rd International Conference on Smart City Applications - SCA ’18. ACM Press, 2018. doi:10.1145/3286606.3286798; [14] Aqeel-ur-Rehman, A. Z. Abbasi, and Z. A. Shaikh, “Building a Smart University Using RFID Technology,” in 2008 International Conference on Computer Science and Software Engineering, 2008, vol. 5, pp. 641–644. doi:10.1109/CSSE.2008.1528.; [15] K. Sargent, P. Hyland, and S. Sawang, “Factors influencing the adoption of information technology in a construction business,” Construction Economics and Building, vol. 12, no. 2, p. 86, Jun. 2012, doi:10.5130/AJCEB.v12i2.244; [16] S. Karkošková, “Towards Cloud Computing Management Model Based on ITIL Processes,” in Proceedings of the 2nd International Conference on Business and Information Management, Sep. 2018, pp. 1–5. doi:10.1145/3278252.3278265; [17] M. Comuzzi and A. Patel, “How organisations leverage: Big Data: A maturity model,” Industrial Management and Data Systems, vol. 116, no. 8, pp. 1468–1492, 2016, doi:10.1108/IMDS-12-20150495.; [18] N. V Semenova, E. A. Svyatkina, T. G. Pismak, and Z. Y. Polezhaeva, “The Realities of Smart Education in the Contemporary Russian Universities,” in Proceedings of the Internationsl Conference on Electronic Governance and Open Society: Challenges in Eurasia, 2017, pp. 48–52. doi:10.1145/3129757.3129767; [19] A. Fernández Martínez and F. Llorens Largo, Gobierno de las TI para universidades. 2016.; [20] C. Williams, D. Schallmo, K. Lang, and L. Boardman, “Digital Maturity Models for Small and Medium-sized Enterprises: A Systematic Literature Review,” ISPIM Conference Proceedings, no. June, pp. 1–15, 2019; [21] J. Rueda-Rueda, J. Manrique, and J. Cabrera Cruz, Internet de las Cosas en las Instituciones de Educación Superior. 2017.; [22] J. Becker, R. Knackstedt, and J. Pöppelbuß, “Developing Maturity Models for IT Management,” Business & Information Systems Engineering, vol. 1, no. 3, pp. 213–222, 2009, doi:10.1007/s12599009-0044-5.; [23] C. Heinemann and V. L. Uskov, “Smart University: Literature Review and Creative Analysis,” in Smart Universities, Germany: Springer International Publishing, 2018, pp. 11–46. doi:10.1007/978-3-31959454-5_2; [24] P. Rikhardsson and R. Dull, “An exploratory study of the adoption, application and impacts of continuous auditing technologies in small businesses,” International Journal of Accounting Information Systems, vol. 20, pp. 26–37, Apr. 2016, doi:10.1016/j.accinf.2016.01.003; [25] Y. C. Medina-Cárdenas and D. Rico-Bautista, “Strategic alignment under a technology management organizational approach: ITIL & ISO 20000,” Revista Tecnura, vol. 20, no. 1, pp. 82–94, 2016, doi:10.14483/22487638.11681; [26] D. Rico-Bautista et al., “Smart university: Strategic map since the adoption of technology [Universidad inteligente: Mapa estratégico desde la adopción de tecnología].,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E28, pp. 711–724, 2020.; [27] Dewar. Rico-Bautista, Y. Areniz Arévalo, and Y. C. Medina Cárdenas, “Strategic management appropriation: A question of organizational skills,” FACE: Revista de la Facultad de Ciencias Económicas y Empresariales, vol. 15, no. 2, pp. 71–80, Nov. 2015; [28] D. Rico-Bautista et al., “Smart university: Key factors for the adoption of internet of things and big data,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 201, no. 41, pp. 63–79, 2021, doi:10.17013/risti.41.63–79; [29] D. Rico-Bautista, C. A. Collazos, C. D. Guerrero, G. Maestre-Gongora, and Y. Medina-Cárdenas, “Latin American Smart University: Key Factors for a User-Centered Smart Technology Adoption Model,” in Sustainable Intelligent Systems, 2021, pp. 161–173. doi:10.1007/978-981-33-4901-8_1; [30] D. Rico-Bautista, Y. Medina-Cardenas, L. A. Coronel-Rojas, F. Cuesta-Quintero, G. Maestre-Gongora, and C. D. Guerrero, “Smart University: Key Factors for an Artificial Intelligence Adoption Model,” in Advances and Applications in Computer Science, Electronics and Industrial Engineering, vol. 1307, M. v. García, F. Fernández-Peña, and C. Gordón-Gallegos, Eds. Singapore: Springer Singapore, 2021, pp. 153–166. doi:10.1007/978-981-33-4565-2_10.; [31] D. Rico-Bautista, G. Maestre-Gongora, and C. D. Guerrero, “Smart University:IoT adoption model,” in 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), Jul. 2020, pp. 821–826. doi:10.1109/WorldS450073.2020.9210369. [32] D. Rico-Bautista, Y. Medina-Cardenas, Y. Areniz-Arevalo, E.; [32] D. Rico-Bautista, Y. Medina-Cardenas, Y. Areniz-Arevalo, E. Barrientos-Avendano, G. MaestreGongora, and C. D. Guerrero, “Smart University: Big Data adoption model,” in 2020 9th International Conference On Software Process Improvement (CIMPS), Oct. 2020, pp. 52–60. doi:10.1109/CIMPS52057.2020.9390151; [33] O. Akhrif, Y. E. B. El Idrissi, and N. Hmina, “Smart university, a new concept in the Internet of Things,” in Proceedings of the 3rd International Conference on Smart City Applications - SCA ’18, 2018, pp. 1– 6. doi:10.1145/3286606.3286798.; [34] C. de la república de Colombia, “Plan nacional de desarrollo 2014-2018,” 2015.; [35] Consejo Privado de Competitividad, “Informe nacional de competitividad 2017-2018,” p. 271, 2017, doi: ISSN 2016-1430; [36] P. Generales and C. De Calidad, “Modelo de acreditación CNA,” 2006; [37] L. Enrique and O. Silva, “La calidad de la universidad. Más allá de toda ambigüedad,” pp. 1–14, 1997; [38] A. Roa, “Hacia un modelo de aseguramiento de la calidad en la educación superior en Colombia: estándares básicos y acreditación de excelencia,” Educación superior, calidad y acreditación. Alfa Omega Colombiana, Bogotá, pp. 101–107, 2003; [39] Ministerio de Educación Nacional, “Propuesta metodológica para la distribución de recursos Artículo 87 de la Ley 30 de 1992 Vigencia 2013,” p. 6, 2013.; [40] M. Zapata-Ros, “La universidad inteligente La transición de los LMS a los Sistemas Inteligentes de Aprendizaje en Educación Superior The transition from Learning Management Systems (LMS) to Smart Learning Systems (SLS) in Higher Education,” RED. Revista de Educación a Distancia. Núm, vol. 57, no. 10, pp. 31–1, 2018, doi:10.6018/red/57/10; [41] J. Gómez, T. Jimenez, J. Gumbau, and F. Llorens, Universitic 2017 Análisis de las TIC en las Universidades Españolas. 2017; [42] F. Maciá, Smart University. Hacia una universidad más abierta, Primera. 2017.; [43] J. Gómez, T. Jimenez, J. Gumbau, and F. Llorens, “UNIVERSITIC 2016 Análisis de las TIC en las Universidades Españolas,” p. 150, 2016; Universidades Españolas,” p. 150, 2016. [44] ANUIES, Estado actual de las Tecnologías de la Información y las Comunicaciones en las Instituciones de Educación Superior en México. 2017.; [45] R. Padilla, S. Cadena, R. Enríquez, J. Córdova, and F. Lllorens, Estado de las tecnologías de la información y la comunicación en las universidades ecuatorianas. 2017.; [46] F. L. L. Antonio Fernández Martínez, Universitic Latam 2014, no. 1. 2014. doi:10.1007/s13398-0140173-7.2; [47] J. Valls, R. Villers, and G. Duque, Estado Actual de las Tecnologías de la Información y las Comunicaciones en las Instituciones de Educación Superior en México. 2016; [48] A. Whitmore, A. Agarwal, and L. Da Xu, “The Internet of Things—A survey of topics and trends,” Information Systems Frontiers, vol. 17, no. 2, pp. 261–274, 2015, doi:10.1007/s10796-014-9489-2; [49] N. Gershenfeld, R. Krikorian, and D. Cohen, The internet of things, vol. 291, no. 4. 2004. doi:10.1038/scientificamerican1004-76.; [50] C. (Software B. Williams, “Smart Systems,” Cybertalk, no. April, 2016; [51] O. Flauzac, C. Gonzalez, and F. Nolot, “New security architecture for IoT network,” in Procedia Computer Science, 2015, vol. 52, no. 1, pp. 1028–1033. doi:10.1016/j.procs.2015.05.099; [52] G. Maestre-Góngora, “Revisión de literatura sobre ciudades inteligentes: una perspectiva centrada en las TIC,” Ingeniare, vol. 19, no. 19, pp. 137–149, 2016.; [53] G. Perboli, A. De Marco, F. Perfetti, and M. Marone, “A New Taxonomy of Smart City Projects,” Transportation Research Procedia, vol. 3, pp. 470–478, 2014, doi:10.1016/j.trpro.2014.10; [54] L. Muñoz López, D. Proyecto, P. Antón Martínez, and S. Fernández Ciez, “Summary for Policymakers,” in Climate Change 2013 - The Physical Science Basis, Intergovernmental Panel on Climate Change, Ed. Cambridge: Cambridge University Press, 2015, pp. 1–30. doi:10.1017/CBO9781107415324.004.; [55] Y. Atif, S. S. Mathew, and A. Lakas, “Building a smart campus to support ubiquitous learning,” Journal of Ambient Intelligence and Humanized Computing, vol. 6, no. 2, pp. 223–238, 2015, doi:10.1007/s12652-014-0226-y; [56] E. M. Malatji, “The development of a smart campus - African universities point of view,” in 2017 8th International Renewable Energy Congress (IREC), Mar. 2017, pp. 1–5. doi:10.1109/IREC.2017.7926010; [57] A. Adamko, T. Kadek, and M. Kosa, “Intelligent and adaptive services for a smart campus,” in 5th IEEE Conference on Cognitive Infocommunications (CogInfoCom), Nov. 2014, pp. 505–509. doi:10.1109/CogInfoCom.2014.7020509; [58] Y. Khamayseh, W. Mardini, S. Aljawarneh, and M. B. Yassein, “Integration of Wireless Technologies in Smart University Campus Environment,” International Journal of Information and Communication Technology Education, vol. 11, no. 1, pp. 60–74, Jan. 2015, doi:10.4018/ijicte.2015010104.; [59] M. Rohs and J. Bohn, “Entry points into a smart campus environment - overview of the ETHOC system,” in 23rd International Conference on Distributed Computing Systems Workshops, 2003. Proceedings., 2003, pp. 260–266. doi:10.1109/ICDCSW.2003.1203564.; [60] S. Gul, M. Asif, S. Ahmad, M. Yasir, M. Majid, and M. S. A. Malik, “A Survey on role of Internet of Things in education,” IJCSNS International Journal of Computer Science and Network Security, vol. 17, no. 5, pp. 159–165, 2017; [61] L. Banica, E. Burtescu, and F. Enescu, “The impact of internet-of-things in higher education,” Scientific Bulletin-Economic Sciences, vol. 16, no. 1, pp. 53–59, 2017.; [62] D. Galego, C. Giovannella, and Ó. Mealha, “Determination of the Smartness of a University Campus: The Case Study of Aveiro,” Procedia - Social and Behavioral Sciences, vol. 223, pp. 147–152, 2016, doi:10.1016/j.sbspro.2016.05.336.; [63] R. Wendler, “The maturity of maturity model research: A systematic mapping study,” Information and Software Technology, vol. 54, no. 12, pp. 1317–1339, 2012, doi:10.1016/j.infsof.2012.07.007; [64] J. Fraser and S. Plewes, “Applications of a UX Maturity Model to Influencing HF Best Practices in Technology Centric Companies – Lessons from Edison,” Procedia Manufacturing, vol. 3, pp. 626–631, 2015, doi:10.1016/j.promfg.2015.07.285.; [65] J. Poeppelbuss, B. Niehaves, A. Simons, and J. Becker, “Maturity Models in Information Systems Research: Literature Search and Analysis,” Communications of the Association for Information Systems, vol. 29, no. 1, 2011, doi:10.17705/1cais.02927; [66] L. G. Pee and A. Kankanhalli, “A model of organisational knowledge management maturity based on people, process, and technology,” Journal of Information and Knowledge Management, vol. 8, no. 2, pp. 79–99, 2009, doi:10.1142/S0219649209002270; [67] L. Montañez Carrillo and J. P. Lis Gutiérrez, “A propósito de los modelos de madurez de gestión del conocimiento,” Revista Facultad de Ciencias Económicas, vol. 25, no. 2, pp. 63–81, 2017, doi:10.18359/rfce.3069; [68] F. Y. Hernández, R. I. Laguado, and J. P. Rodriguez, “Maturity analysis in project management in Colombian universities,” in Journal of Physics: Conference Series, 2018, vol. 1126, no. 1. doi:10.1088/1742-6596/1126/1/012055; [69] T. de Bruin, M. Rosemann, R. Freeze, and U. Kulkarni, “Understanding the main phases of developing a maturity assessment model,” 2005; [70] L. Lee‐Kelley, D. A. Blackman, and J. P. Hurst, “An exploration of the relationship between learning organisations and the retention of knowledge workers,” The Learning Organization, vol. 14, no. 3, pp. 204–221, Apr. 2007, doi:10.1108/09696470710739390.; [71] P. Jonsson and C. Wohlin, “An evaluation of k-nearest neighbour imputation using likert data,” in 10th International Symposium on Software Metrics, 2004. Proceedings., pp. 108–118. doi:10.1109/METRIC.2004.1357895; [72] J. Martínez Lozano, “Modelo de madurez en el dominio de los proyectos aplicado a organizaciones de gestión de proyectos en Medellín,” Universidad EAFIT, 2015.; [73] E. I. Pérez-Mergarejo, I. I. Pérez-Vergara, and Y. Rodríguez-Ruíz III, “Modelos de madurez y su idoneidad para aplicar en pequeñas y medianas empresas Maturity models and the suitability of its application in small and medium enterprises,” Ingeniería Industrial, vol. XXXV, no. 2, pp. 1815–5936, 2014, doi:10.1016/j.jag.2015.12.005.; [74] S. Marshall, “Change, technology and higher education: Are universities capable of organisational change?,” Australasian Journal of Educational Technology, vol. 26, no. 8, pp. 179–192, 2010, doi:10.14742/ajet.1018.; [75] C. L. Carvajal and A. M. Moreno, “The Maturity of Usability Maturity Models,” no. February, 2018, doi:10.1007/978-3-319-67383-7.; [76] T. C. Lacerda and C. G. von Wangenheim, “Systematic literature review of usability capability/maturity models,” Computer Standards and Interfaces, vol. 55, pp. 1339–1351, 2018, doi:10.1016/j.csi.2017.06.001; [77] J. Becker, B. Niehaves, J. Pöppelbuß, and A. Simons, “Maturity models in IS research,” 18th European Conference on Information Systems, ECIS 2010, 2010; [78] T. De Bruin, R. Freeze, U. Kaulkarni, and M. Rosemann, “Understanding the main phases of developing a maturity assessment model,” Australasian Chapter of the Association for Information Systems, pp. 8– 19, 2005, doi:10.1108/14637151211225225; [79] J. Becker, R. Knackstedt, and J. Pöppelbuß, “Developing maturity models for it management - A procedure model and its application [Entwicklung von reifegradmodellen für das it-management - VorgehensModell und praktische anwendung],” Business and Information Systems Engineering, vol. 51, no. 3, pp. 249–260, 2009, doi:10.1007/s11576-009-0167-9.; [80] J. Vuorio, J. Okkonen, and J. Viteli, “Enhancing user value of educational technology by three layer assessment,” in Proceedings of the 21st International Academic Mindtrek Conference, Sep. 2017, pp. 220–226. doi:10.1145/3131085.3131105.; [81] P. Martins and J. de S. D. Duarte, “Towards a Maturity Model for Higher Education Institutions,” Journal of Spatial and Organisational Dynamics, vol. 1, no. 1, 2013; [82] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “A gap analysis of Internet-of-Things platforms,” Computer Communications, vol. 89–90, 2016, doi:10.1016/j.comcom.2016.03.015; [83] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125–1142, 2017, doi:10.1109/JIOT.2017.2683200.; [84] M. A. Marotta, C. B. Both, J. Rochol, L. Z. Granville, and L. M. R. Tarouco, “Evaluating management architectures for Internet of Things devices,” IFIP Wireless Days, vol. 2015-Janua, no. January, 2015, doi:10.1109/WD.2014.7020811.; [85] T. Ara, P. Gajkumar Shah, and M. Prabhakar, “Internet of Things Architecture and Applications: A Survey,” Indian Journal of Science and Technology; Volume 9, Issue 45, December 2016, 2016.; [86] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: The internet of things architecture, possible applications and key challenges,” in Proceedings - 10th International Conference on Frontiers of Information Technology, FIT 2012, 2012, pp. 257–260. doi:10.1109/FIT.2012.53.; [87] J. I. Rodríguez Molano, C. E. Montenegro marín, J. M. Cueva Lovelle, J. Molano, C. Marin, and J. Cueva, “Introducción al Internet de las Cosas,” Redes de Ingeniería, vol. 6, no. 7, pp. 53–59, 2015, doi:10.14483/udistrital.jour.redes.2016.1.a04.; [88] T. Cao, X. Chen, R. Doss, J. Zhai, L. J. Wise, and Q. Zhao, “RFID ownership transfer protocol based on cloud,” Computer Networks, vol. 105, pp. 47–59, 2016, doi:10.1016/j.comnet.2016.05.017; [89] F. Maciá-Pérez, J. Berná-Martínez, J. Sánchez-Bernabéu, and I. Lorenzo, Smart university: hacia una universidad más abierta. Marcombo, 2016.; [90] S. Downes and C. E.-A. Campbell, “Smart University Utilising the Concept of the Internet of Things (IOT),” in 2018 UKSim-AMSS 20th International Conference on Computer Modelling and Simulation (UKSim), 2018, pp. 145–150. doi:10.1109/uksim.2018.00037.; [91] M. Zapata-ros, “La universidad inteligente La transición de los LMS a los Sistemas Inteligentes de Aprendizaje en Educación Superior The smart university,” vol. 57, no. 10, pp. 1–43, 2018.; [92] Y. S. Mitrofanova, A. A. Sherstobitova, and O. A. Filippova, Modeling the assessment of definition of a smart university infrastructure development level, vol. 144. Springer Singapore, 2019. doi:10.1007/978-981-13-8260-4_50; [93] S. Park and D. Ko, “Design of the Convergence Security Platform for Smart Universities,” vol. 3, no. 2. pp. 3–7, 2015.; [94] X. Cheng and R. Xue, “Construction of Smart Campus System Based on Cloud Computing,” Proceedings of the 2016 6th International Conference on Applied Science, Engineering and Technology (ICASET), vol. 77, no. Icaset, pp. 187–191, 2016, doi:10.2991/icaset-16.2016.37.; [95] A. Ben Rjab and S. Mellouli, “Smart cities in the era of artificial intelligence and internet of things,” no. 1, pp. 1–10, 2018, doi:10.1145/3209281.3209380; [96] S. Alqassemi, Y. K. Ever, and A. V. Rajan, “Maturity Level of Cloud Computing at HCT,” ITT 2017 - Information Technology Trends: Exploring Current Trends in Information Technology, Conference Proceedings, vol. 2018-Janua, no. Itt, pp. 5–8, 2018, doi:10.1109/CTIT.2017.8259558.; [97] C. N. Hung, M. D. Hwang, and Y. C. Liu, “Building a Maturity Model of Information Security Governance for Technological Colleges and Universities in Taiwan,” Applied Mechanics and Materials, vol. 284–287, pp. 3657–3661, 2013, doi:10.4028/www.scientific.net/amm.284-287.3657; [98] B. Sánchez-Torres, J. A. Rodríguez-Rodríguez, D. Rico-Bautista, and C. D. Guerrero, “Smart Campus: Trends in cybersecurity and future development,” Revista Facultad de Ingeniería, vol. 27, no. 47, pp. 93–101, Jan. 2018, doi:10.19053/01211129.v27.n47.2018.7807; [99] D. Rico-Bautista, Y. Medina-Cárdenas, and C. D. Guerrero, “Smart University: A Review from the Educational and Technological View of Internet of Things,” in International Conference on Information Technology and Systems, ICITS 2019, vol. 918, M. Paredes, C. Ferras, and A. Rocha, Eds. Systems and Informatics Department, Universidad Francisco de Paula Santander Ocaña, Algodonal Campus Vía Acolsure, Ocaña, 546551, Colombia: Springer Verlag, 2019, pp. 427–440. doi:10.1007/978-3-030-11890-7_42.; [100] D. Rico-Bautista, G. P. Maestre-Góngora, and C. D. Guerrero, “Smart university: Characterization of the current situation of intelligent technologies, based on two case studies [Caracterización de la situación actual de las tecnologías inteligentes para una universidad inteligente en Colombia/latinoamérica],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E27, pp. 484–501, 2020; [101] M. Ali and A. Majeed, “How Internet-of-Things ( IoT ) Making the University Campuses Smart ?,” pp. 646–648, 2018, doi:10.1109/CCWC.2018.8301774; [102] S. Hipwell, “Developing smart campuses #x2014; A working model,” 2014 International Conference on Intelligent Green Building and Smart Grid (IGBSG), pp. 1–6, 2014, doi:10.1109/IGBSG.2014.6835169.; [103] I. Staskeviciute and B. Neverauskas, “The Intelligent University’s Conceptual Model,” Inzinerine Ekonomika-Engineering Economics, no. 4, pp. 53–58, 2008; [104] J. Green, “The Internet of Things Reference Model,” Internet of Things World Forum, pp. 1–12, 2014; [105] S. Li, L. Da Xu, and S. Zhao, “The internet of things: a survey,” Information Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015, doi:10.1007/s10796-014-9492-7; [106] D. Airehrour, J. Gutierrez, and S. K. Ray, “Secure routing for internet of things: A survey,” Journal of Network and Computer Applications, vol. 66, 2016, doi:10.1016/j.jnca.2016.03.006; [107] Dewar. Rico-Bautista, Y. Medina-Cárdenas, and L. M. Santos Jaimes, “Ipsec de Ipv6 en la universidad de Pamplona,” Scientia Et Technica, vol. 2, no. 39, pp. 320–325, 2008, doi:10.22517/23447214.3239; [108] A. J. Jara, P. Moreno-Sanchez, A. F. Skarmeta, S. Varakliotis, and P. Kirstein, “IPv6 addressing proxy: Mapping native addressing from legacy technologies and devices to the internet of things (IPv6),” Sensors (Switzerland), vol. 13, no. 5, pp. 6687–6712, 2013, doi:10.3390/s130506687; [109] L. M. Santos and D. Rico-Bautista, “IPv6 en la Universidad de Pamplona: Estado del arte,” Scientia Et Technica, vol. XIII, pp. 415–420, 2007.; [110] T. Le Vinh, S. Bouzefrane, J. M. Farinone, A. Attar, and B. P. Kennedy, “Middleware to integrate mobile devices, sensors and cloud computing,” Procedia Computer Science, vol. 52, no. 1, pp. 234– 243, 2015, doi:10.1016/j.procs.2015.05.061.; [111] A. Kotsev, F. Pantisano, S. Schade, and S. Jirka, “Architecture of a service-enabled sensing platform for the environment,” Sensors (Switzerland), vol. 15, no. 2, pp. 4470–4495, 2015, doi:10.3390/s150204470; [112] M. Taneja and A. Davy, “Resource Aware Placement of Data Analytics Platform in Fog Computing,” Procedia Computer Science, vol. 97, pp. 153–156, 2016, doi:10.1016/j.procs.2016.08.295; [113] M. M. Rathore, A. Ahmad, and A. Paul, “Big Data and Internet of Things,” in Proceedings of the 2015 International Conference on Big Data Applications and Services - BigDAS ’15, 2015, vol. 20-23-Octo, pp. 58–65. doi:10.1145/2837060.2837067.; [114] M. Quwaider, M. Al-Alyyoub, and Y. Jararweh, “Cloud Support Data Management Infrastructure for Upcoming Smart Cities,” Procedia Computer Science, vol. 83, pp. 1232–1237, 2016, doi:10.1016/j.procs.2016.04.257.; [115] A. S. Yeole and D. R. Kalbande, “Use of Internet of Things (IoT) in Healthcare,” in Proceedings of the ACM Symposium on Women in Research 2016 - WIR ’16, 2016, vol. 21-22-Marc, pp. 71–76. doi:10.1145/2909067.2909079.; [116] S. V. Zanjal and G. R. Talmale, “Medicine Reminder and Monitoring System for Secure Health Using IOT,” in Physics Procedia, 2016, vol. 78, pp. 471–476. doi:10.1016/j.procs.2016.02.090; [117] D. Rico-Bautista, J. Rueda-Rueda, and S. Alvernia Acevedo, “Las TIC como agente social Una apuesta de la universidad Francisco de Paula Santander Ocaña,” in Simbiosis del aprendizaje con las tecnologías: experiencias innovadoras en el ámbito hispano, 2016, pp. 329–342.; [118] H. Aldowah, S. Ul Rehman, S. Ghazal, and I. Naufal Umar, “Internet of Things in Higher Education: A Study on Future Learning,” Journal of Physics: Conference Series, vol. 892, p. 012017, Sep. 2017, doi:10.1088/1742-6596/892/1/012017; [119] M. Coccoli, P. Maresca, and L. Stanganelli, “The role of big data and cognitive computing in the learning process,” Journal of Visual Languages and Computing, vol. 38, pp. 97–103, 2017, doi:10.1016/j.jvlc.2016.03.002; [120] J. Lobo and Dewar. Rico-Bautista, “Implementación de la seguridad del protocolo de internet versión 6,” Gerencia tecnológica informática, vol. 11, no. 29, pp. 35–46, 2012.; [121] B. Sánchez-Torres, J. A. Rodríguez-Rodríguez, D. W. Rico-Bautista, and C. D. Guerrero, “Smart Campus: Trends in cybersecurity and future development,” Revista Facultad de Ingeniería, vol. 27, no. 47, pp. 93–101, Jan. 2018, doi:10.19053/01211129.v27.n47.2018.7807; [122] Katz. Matías David, “Redes y seguridad,” Alfaomega grupo editor, no. Mexico, p. 87, 2013; [123] B. Aziz, “A formal model and analysis of an IoT protocol,” Ad Hoc Networks, vol. 36, pp. 49–57, Jan. 2016, doi:10.1016/J.ADHOC.2015.05.013; [124] N. Xiong, R. W. Liu, M. Liang, D. Wu, Z. Liu, and H. Wu, “Effective alternating direction optimization methods for sparsity-constrained blind image deblurring,” Sensors (Switzerland), vol. 17, no. 1, 2017, doi:10.3390/s17010174; [125] W. Mujun, “Smart Campus-Based Study on Optimization Model for the Computer Information Processing Technology in Universities and Colleges,” Revista de la Facultad de Ingeniería, vol. 32, no. 15, pp. 524–529, 2017; [126] M. Stočes, J. Vaněk, J. Masner, and J. Pavlík, “Internet of Things (IoT) in Agriculture - Selected Aspects,” Agris on-line Papers in Economics and Informatics, vol. VIII, no. 1, pp. 83–88, 2016, doi:10.7160/aol.2016.080108.; [127] K. Taylor et al., “Farming the Web of Things,” IEEE Intelligent Systems, vol. 28, no. 6, pp. 12–19, 2013, doi:10.1109/MIS.2013.102; [128] T. Arsan, “Smart Systems: From design to implementation of embedded Smart Systems,” in 2016 HONET-ICT, 2016, pp. 59–64. doi:10.1109/HONET.2016.7753420; [129] G. F. Hurlburt, J. Voas, and K. W. Miller, “The Internet of Things: A Reality Check,” IT Professional, vol. 14, no. June, pp. 56–59, 2012, doi:10.1109/MITP.2012.60.; [130] M. Weyrich and C. Ebert, “Reference architectures for the internet of things,” IEEE Software, vol. 33, no. 1, pp. 112–116, 2016, doi:10.1109/MS.2016.20.; [131] K. Dar, A. Taherkordi, H. Baraki, F. Eliassen, and K. Geihs, “A resource oriented integration architecture for the Internet of Things: A business process perspective,” Pervasive and Mobile Computing, vol. 20. pp. 145–159, 2015. doi:10.1016/j.pmcj.2014.11.0; [132] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Communications Surveys and Tutorials, vol. 17, no. 4, 2015, doi:10.1109/COMST.2015.2444095.; [133] D. Gagliardi, L. Schina, M. L. Sarcinella, G. Mangialardi, F. Niglia, and A. Corallo, “Information and communication technologies and public participation: interactive maps and value added for citizens,” Government Information Quarterly, vol. 34, no. 1, pp. 153–166, 2017, doi:10.1016/j.giq.2016.09.002.; [134] L. Tan, Lu Tan, and Neng Wang, “Future internet: The Internet of Things,” 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE), pp. V5-376-V5-380, 2010, doi:10.1109/ICACTE.2010.5579543; [135] European Technology Platform on Smart Systems Integration, Internet of Things in 2020. 2008. doi:10.1007/978-3-319-49736-5_2; [136] I. F. Akyildiz, S. Nie, S. C. Lin, and M. Chandrasekaran, “5G roadmap: 10 key enabling technologies,” Computer Networks, vol. 106, pp. 17–48, 2016, doi:10.1016/j.comnet.2016.06.010; [137] L. Atzori, A. Iera, and G. Morabito, “Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm,” Ad Hoc Networks, vol. 56, pp. 122–140, 2017, doi:10.1016/j.adhoc.2016.12.004; [138] M. Coccoli, A. Guercio, P. Maresca, and L. Stanganelli, “Smarter universities: A vision for the fast changing digital era,” Journal of Visual Languages & Computing, vol. 25, no. 6, pp. 1003–1011, Dec. 2014, doi:10.1016/j.jvlc.2014.09.007; [139] C. Heinemann and V. L. Uskov, Smart Universities, vol. 70. 2018. doi:10.1007/978-3-319-59454-5.; [140] M. Bertolli, G. Roark, S. Urrutia, and F. Chiodi, “Revisión de modelos de madurez en la medición del desempeño,” INGE CUC, vol. 13, no. 1, pp. 70–83, Jan. 2017, doi:10.17981/ingecuc.13.1.2017.07; [141] A. Acevedo, “Modelo de madurez para la transformación digital,” 2018.; [142] F. W. Van Dijk, F. Willem, J. Van Hillegersberg, and M. Daneva, “Van Dijk - Cloud maturity models,” 2017.; [143] D. Duarte and P. V. Martins, “A maturity model for higher education institutions,” CEUR Workshop Proceedings, vol. 731, pp. 25–45, 2011.; [144] F. W. Van Dijk, F. Willem, J. Van Hillegersberg, and M. Daneva, “Van Dijk - Cloud maturity models,” 2017.; [145] B. Henrik, “EVALUATION OF BIG DATA MATURITY MODELS - A BENCH- MARKING STUDY TO SUPPORT BIG DATA MATURITY AS- SESSMENT IN ORGANIZATIONS,” 2015; [146] M. Al-Ruithe and E. Benkhelifa, “Cloud data governance maturity model,” in Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing, Mar. 2017, pp. 1– 10. doi:10.1145/3018896.3036394; [147] I. Mitchell and S. Isherwood, Cloud adoption The definitive guide to a business technology revolution, Fujitsu Se. 2014. doi:10.1145/2554850.2555067; [148] B. White, H. Longenecker, P. Leidig, J. Reynolds, and D. Yarbrough, “Applicability of CMMI to the IS curriculum: a panel discussion,” Proceedings of the Information Systems Education Conference 2003, vol. 20, pp. 2–6, 2003; [149] C. Neuhauser, “A maturity model: Does it provide a path for online course design?,” Journal of Interactive Online Learning, vol. 3, no. 1, pp. 1–17, 2004; [150] I. Keshta, “A model for defining project lifecycle phases: Implementation of CMMI level 2 specific practice,” Journal of King Saud University - Computer and Information Sciences, Nov. 2019, doi:10.1016/j.jksuci.2019.10.013.; [151] E. Thompson et al., “Towards a learning process maturity model,” PhD Workshop 2004, vol. 9/2004, no. definition 3, pp. 8–16, 2004.; [152] S. Mattoon, B. Hensle, and J. Baty, “Cloud Computing Maturity Model Mattoon, S., Hensle, B., & Baty, J. (2011). Cloud Computing Maturity Model Guiding Success with Cloud Capabilities. Computing, (December), 13.Guiding Success with Cloud Capabilities,” Computing, no. December, p. 13, 2011.; [153] P. J. Schmidt, “Proposing a Cloud Computing Capability Maturity Model Proposing a Cloud Computing Capability Maturity Model,” 2015; [154] B. Henrik, “EVALUATION OF BIG DATA MATURITY MODELS - A BENCH- MARKING STUDY TO SUPPORT BIG DATA MATURITY AS- SESSMENT IN ORGANIZATIONS,” 2; [155] C. J. Galeano-Barrera, D. Bellón-Monsalve, S. A. Zabala-Vargas, E. Romero-Riaño, and V. uro-N. Duro-Novoa, “Identificación de los pilares que direccionan a una institución universitaria hacia un smart-campus,” Revista De Investigación, Desarrollo E Innovación, vol. 9, no. 1, pp. 127–145, 2018, doi:10.19053/20278306.v9.n1.2018.8511; [156] M. Coccoli, P. Maresca, L. Stanganelli, and A. Guercio, “An experience of collaboration using a PaaS for the smarter university model,” Journal of Visual Languages and Computing, vol. 31, pp. 275–282, 2015, doi:10.1016/j.jvlc.2015.10.014; [157] L. L. Ching, N. H. A. H. Malim, M. H. Husin, and M. M. Singh, “ICC - Smart university: reservation system with contactless technology,” in Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing - ICC ’17, 2017, p. 9. doi:10.1145/3018896.3018903; [158] W. Filho, J. B. Andrade Guerra, M. Mifsud, and R. Pretorius, Universities as Living Labs for sustainable development: A global perspective, vol. 26. 2017.; [159] O. Akhrif, Y. bouzekri el idrissi, and N. Hmina, “Enabling Smart Collaboration with Smart University Services,” 2019. doi:10.1145/3331453.3361311.; [160] O. Akhrif, C. Benfares, Y. El Bouzekri El Idrissi, and N. Hmina, “Collaborative learning services in the smart university environment,” ACM International Conference Proceeding Series, no. 3, 2019, doi:10.1145/3368756.3369020; [161] A. El Sayed, Š. Suad, Ć. Fuad, and A. Novali, New Technologies, Development and Application II, vol. 76. Cham: Springer International Publishing, 2020. doi:10.1007/978-3-030-18072-0.; [162] P. Pornphol and T. Tongkeo, “Transformation from a traditional university into a smart university,” in Proceedings of the 6th International Conference on Information and Education Technology, Jan. 2018, pp. 144–148. doi:10.1145/3178158.3178167; [163] O. J. Adeyemi, S. I. Popoola, A. A. Atayero, D. G. Afolayan, M. Ariyo, and E. Adetiba, “Exploration of daily Internet data traffic generated in a smart university campus,” Data in Brief, vol. 20, pp. 30–52, Oct. 2018, doi:10.1016/j.dib.2018.07.039; [164] M. V. López Cabrera, E. Hernandez-Rangel, G. P. Mejía Mejía, and J. L. Cerano Fuentes, “Factors that enable the adoption of educational technology in medical schools,” Educacion Medica, vol. 20, no. xx, pp. 3–9, 2019, doi:10.1016/j.edumed.2017.07.006; [165] J. Lin, H. Pu, Y. Li, and J. Lian, “Intelligent Recommendation System for Course Selection in Smart Education,” Procedia Computer Science, vol. 129, pp. 449–453, 2018, doi:10.1016/j.procs.2018.03.023.; [166] R. Bajaj and V. Sharma, “Smart Education with artificial intelligence based determination of learning styles,” Procedia Computer Science, vol. 132, pp. 834–842, 2018, doi:10.1016/j.procs.2018.05.095; [167] S. El Janati, A. Maach, and D. El Ghanami, “SMART education framework for adaptation content presentation,” Procedia Computer Science, vol. 127, pp. 436–443, 2018, doi:10.1016/j.procs.2018.01.141.; [168] P. Fraser, J. Moultrie, and M. Gregory, “The_use_of_maturity_models_grids_as_a_to.” Cambridge, Reino Unido, 2003. doi:10.1109 / IEMC.2002.1038431.; [169] C. M. Christensen, “The Innovator’s Dilemma,” Business, 1997, doi:10.1515/9783110215519.82; [170] C. M. Christensen, “The ongoing process of building a theory of disruption,” Journal of Product Innovation Management. 2006. doi:10.1111/j.1540-5885.2005.00180.x.; [171] M. Kuniavsky, “User Experience and HCI Section 1 : the boundaries of user experience,” HCI Handbook, pp. 1–37; [172] S. S. Rautaray and A. Agrawal, “Vision based hand gesture recognition for human computer interaction: a survey,” Artificial Intelligence Review, vol. 43, no. 1, pp. 1–54, 2012, doi:10.1007/s10462-012-93569.; [173] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and P. Tran-gia, “A Survey on Quality of Experience of HTTP Adaptive Streaming,” Ieee Communication Surveys & Tutorials, vol. 17, no. 1, pp. 469–492, 2015, doi:10.1109/COMST.2014.236094; [174] M. Turk, “Multimodal interaction: A review,” Pattern Recognition Letters, vol. 36, no. 1, pp. 189–195, 2014, doi:10.1016/j.patrec.2013.07.003; [175] H.-S. Yeo, B.-G. Lee, and H. Lim, “Hand tracking and gesture recognition system for human-computer interaction using low-cost hardware,” Multimedia Tools and Applications, vol. 74, no. 8, pp. 2687– 2715, Sep. 2015, doi:10.1007/s11042-013-1501-1; [176] K. Seaborn and D. I. Fels, “Gamification in theory and action: A survey,” International Journal of Human Computer Studies, vol. 74, pp. 14–31, 2015, doi:10.1016/j.ijhcs.2014.09.006.; [177] Y. Mengüç et al., “Wearable soft sensing suit for human gait measurement,” International Journal of Robotics Research, vol. 33, no. 14, pp. 1748–1764, 2014, doi:10.1177/0278364914543793; [178] D. González-Ortega, F. J. Díaz-Pernas, M. Martínez-Zarzuela, and M. Antón-Rodríguez, “A Kinectbased system for cognitive rehabilitation exercises monitoring,” Computer Methods and Programs in Biomedicine, vol. 113, no. 2, pp. 620–631, 2014, doi:10.1016/j.cmpb.2013.10.014; [179] S. Herath, M. Harandi, and F. Porikli, “Going deeper into action recognition: A survey,” Image and Vision Computing, vol. 60, pp. 4–21, Sep. 2017, doi:10.1016/j.imavis.2017.01.010; [180] C. Lallemand, G. Gronier, and V. Koenig, “User experience: A concept without consensus? Exploring practitioners’ perspectives through an international survey,” Computers in Human Behavior, vol. 43, pp. 35–48, Sep. 2015, doi:10.1016/j.chb.2014.10.048.; [181] P. K. Pisharady and M. Saerbeck, “Recent methods and databases in vision-based hand gesture recognition: A review,” Computer Vision and Image Understanding, vol. 141, pp. 152–165, Sep. 2015, doi:10.1016/j.cviu.2015.08.004.; [182] H. Cheng, L. Yang, and Z. Liu, “A Survey on 3D Hand Gesture Recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. PP, no. 99, p. 1, 2015, doi:10.1109/TCSVT.2015.2469551.; [183] P. Tsarouchi, S. Makris, and G. Chryssolouris, “Human – robot interaction review and challenges on task planning and programming,” International Journal of Computer Integrated Manufacturing, vol. 29, no. 8, pp. 916–931, Sep. 2016, doi:10.1080/0951192X.2015.1130251.; [184] J. Lorés and T. Granollers, “Ingeniería de la Usabilidad y de la Accesibilidad aplicada al diseño y desarrollo de sitios web,” no. May, pp. 3–7, 2004.; [185] J. Mariano and G. Romano, “Introducción a la IPO,” Metro, 2008; [186] T. Granollers, “Usability Evaluation with Heuristics . New Proposal from Integrating Two Trusted Sources 2 Combining Common Heuristic Sets,” pp. 1–16, 2018.; [187] L. Muñoz López, P. Antón Martínez, and S. Fernández Ciez, “Estudio y Guía metodológica sobre Ciudades Inteligentes,” 2015; [188] E. Ontiveros, D. Vizcaíno, and V. López Sabaer, Las ciudades del futuro : inteligentes , digitales y sostenibles futuro : inteligentes , digitales y sostenibles. 2016.; [189] E. Del and D. Une, “Norma Española Accesibilidad Universal en las Ciudades Inteligentes,” 2017.; [190] O. Iberoamericano, “Manual Iberoamericano de Indicadores de Educación Superior: Manual de Lima,” p. 88 p., 2016; [191] Ministerio de Modernización Innovación y Tecnología, “La Importancia de un Modelo de Planificación Estratégica para el Desarrollo de Ciudades Inteligentes,” p. 32, 2017; [192] P. Fernández, “Análisis de los factores de influencia en la adopción de herramientas colaborativas basadas en software social. Aplicación a entornos empresariales,” Universidad Politécnica de Madrid, 2015; [193] D. W. Rico-Bautista, “Conceptual framework for smart university,” Journal of Physics: Conference Series, vol. 1409, p. 012009, Nov. 2019, doi:10.1088/1742-6596/1409/1/012009.; [194] J. A. Parra Valencia, C. D. Guerrero, and D. Rico-Bautista, “IOT: una aproximación desde ciudad inteligente a universidad inteligente,” Revista Ingenio, vol. 13, no. 1, pp. 9–20, Jun. 2017, doi:10.22463/2011642X.2128.; [195] F. H. Cerdeira Ferreira and R. Mendes de Araujo, “Campus Inteligentes: Conceitos, aplicações, tecnologias e desafios.,” Relatórios Técnicos do DIA/UNIRIO, vol. 11, no. 1, pp. 4–19, 2018.; [196] D. Rico-Bautista, C. D. Guerrero, Y. Medina-Cárdenas, and A. García-Barreto, “Analysis of the potential value of technology: Case of universidad francisco de paula santander O; [197] D. Rico-Bautista, G. P. Maestre-Góngora, and C. D. Guerrero, “Caracterización de la situación actual de las tecnologías inteligentes para una Universidad inteligente en Colombia/Latinoamérica,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E27, pp. 484–501, 2020.; [198] D. Rico-Bautista et al., “Smart University: Strategic map since the adoption of technology,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E28, pp. 711–724, 2020; [199] D. Rico-Bautista et al., “Smart University: Key Factors for a Cloud Computing Adoption Model,” Lecture Notes in Networks and Systems, vol. 334, pp. 85–93, 2022, doi:10.1007/978-981-16-6369-7_8; [200] M. V. López Cabrera, E. Hernandez-Rangel, G. P. Mejía Mejía, and J. L. Cerano Fuentes, “Factores que facilitan la adopción de tecnología educativa en escuelas de medicina,” Educación Médica, vol. 20, pp. 3–9, Mar. 2019, doi:10.1016/j.edumed.2017.07.006; [202] A. V. Martín García, Á. García del Dujo, and J. M. Muñoz Rodríguez, “Factores determinantes de adopción de blended learning en educación superior. Adaptación del modelo UTAUT*,” Educación XX1, vol. 17, no. 2, May 2014, doi:10.5944/educxx1.17.2.11489; [203] M. Luzardo Briceño, B. E. Sandia Saldivia, A. S. Aguilar Jiménez, M. Macias Martínez, and J. Herrera Díaz, “Factores que influyen en la adopción de las Tecnologías de Información y Comunicación por parte de las universidades. Dimensión Enseñanza-Aprendizaje,” Educere, vol. 21, no. 68, pp. 143–153, 2017; [204] M. Frasquet Deltoro, A. Mollá Descals, and M. Eugenia Ruiz Molina, “Factores determinantes y consecuencias de la adopción del comercio electrónico B2C:una comparativa internacional,” Estudios Gerenciales, vol. 28, no. 123, pp. 101–120, Apr. 2012, doi:10.1016/S0123-5923(12)70207-3.; [205] D. Rico-Bautista et al., “Key Technology Adoption Indicators for Smart Universities: A Preliminary Proposal,” Lecture Notes in Networks and Systems, vol. 333, pp. 651–663, 2022, doi:10.1007/978-98116-6309-3_61.; [206] P. Hernández, R., Fernández, C. y Baptista, Libro Metodología de la Investigación 6ta edición SAMPIERI (PDF) %7C Metodologiaecs. 2014; [207] S. M. Takey and M. M. Carvalho, “Fuzzy front end of systemic innovations: A conceptual framework based on a systematic literature review,” Technological Forecasting and Social Change, vol. 111, pp. 97–109, Oct. 2016, doi:10.1016/j.techfore.2016.06.011; [208] P. Martins and J. de S. D. Duarte, “A Maturity Model for Higher Education Institutions,” Journal of Spatial and Organisational Dynamics , vol. 1, no. 1, 2013.; [209] Z. Liu, Y. Yin, W. Liu, and M. Dunford, “Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis,” Scientometrics, 2015, doi:10.1007/s11192-0141517-y.; [210] J. A. Wise, “The ecological approach to text visualization,” Journal of the American Society for Information Science, 1999, doi:10.1002/(SICI)1097-4571(1999)50:133.0.CO;2-4.; [211] J. E. Meissner, “VantagePoint,” Nursing, 1981, doi:10.1097/00152193-198101000-00010.; [212] L. Leydesdorff and T. Schank, “Dynamic animations of journal maps: Indicators of structural changes and interdisciplinary developments,” Journal of the American Society for Information Science and Technology, 2008, doi:10.1002/asi.20891; [213] “Science of Science (Sci2) Tool,” in Encyclopedia of Social Network Analysis and Mining, 2018. doi:10.1007/978-1-4939-7131-2_101025.; [214] N. J. Van Eck and L. Waltman, “VOSviewer: A computer program for bibliometric mapping,” 2009; [215] “Network Workbench Tool,” in Encyclopedia of Social Network Analysis and Mining, 2014. doi:10.1007/978-1-4614-6170-8_110035; [216] B. Vargas-Quesada and F. de Moya Aragón, Visualizing the structure of science. New York, NY, 2007.; [217] L. A. R. Hoeffner and R. P. Smiraglia, “Visualizing domain coherence: Social informatics as a case study,” 2014. doi:10.7152/acro.v23i1.14261.; [218] K. Fujita, Y. Kajikawa, J. Mori, and I. Sakata, “Detecting research fronts using different types of weighted citation networks,” Journal of Engineering and Technology Management - JET-M, vol. 32, pp. 129–146, 2014, doi:10.1016/j.jengtecman.2013.07.002.; [219] A. Angelakis and K. Galanakis, “A science-based sector in the making: the formation of the biotechnology sector in two regions,” Regional Studies, 2017, doi:10.1080/00343404.2016.1215601.; [220] A. Gaur, B. Scotney, G. Parr, and S. McClean, “Smart city architecture and its applications based on IoT,” in Procedia Computer Science, 2015, vol. 52, no. 1. doi:10.1016/j.procs.2015.05.122.; [221] R. Díaz-Díaz, L. Muñoz, and D. Pérez-González, “Business model analysis of public services operating in the smart city ecosystem: The case of SmartSantander,” Future Generation Computer Systems, 2017, doi:10.1016/j.future.2017.01.032.; [222] A. Sampri, A. Mavragani, and K. P. Tsagarakis, “Evaluating Google Trends as a Tool for Integrating the ‘Smart Health’ Concept in the Smart Cities’ Governance in USA,” Procedia Engineering, vol. 162, pp. 585–592, 2016, doi:10.1016/j.proeng.2016.11.104.; [223] U. Rosati and S. Conti, “What is a Smart City Project? An Urban Model or A Corporate Business Plan?,” Procedia - Social and Behavioral Sciences, vol. 223, pp. 968–973, 2016, doi:10.1016/j.sbspro.2016.05.332.; [224] C. M. et. Al, “Mapping Smart Cities in the EU,” European Parliament, pp. 23–49, 2015.; [225] G. P. Maestre Góngora, “Revisión de literatura sobre ciudades inteligentes: una perspectiva centrada en las TIC,” INGENIARE, no. 19, p. 137, Jul. 2015, doi:10.18041/1909-2458/ingeniare.19.531; [226] X. Nie, “Constructing Smart Campus Based on the Cloud Computing Platform and the Internet of Things,” 2013. doi:10.2991/iccsee.2013.395.; [227] M. Cata, “Smart university, a new concept in the Internet of Things,” in 2015 14th RoEduNet International Conference - Networking in Education and Research (RoEduNet NER), Sep. 2015, pp. 195–197. doi:10.1109/RoEduNet.2015.7311993; [228] V. A. F. Almeida, D. Doneda, and M. Monteiro, “Governance Challenges for the Internet of Things,” IEEE Internet Computing, vol. 19, no. 4, pp. 56–59, Jul. 2015, doi:10.1109/MIC.2015.86; [229] S. Thiel, J. Mitchell, and J. Williams, “Coordination or Collision? The Intersection of Diabetes Care, Cybersecurity, and Cloud-Based Computing,” Journal of Diabetes Science and Technology, vol. 11, no. 2, pp. 195–197, Mar. 2017, doi:10.1177/1932296816676189.; [230] E. Borgia, “The Internet of Things vision: Key features, applications and open issues,” Computer Communications, vol. 54, pp. 1–31, Dec. 2014, doi:10.1016/j.comcom.2014.09.008.; [231] A. Jara, P. Moreno-Sanchez, A. Skarmeta, S. Varakliotis, and P. Kirstein, “IPv6 Addressing Proxy: Mapping Native Addressing from Legacy Technologies and Devices to the Internet of Things (IPv6),” Sensors, vol. 13, no. 5, pp. 6687–6712, May 2013, doi:10.3390/s130506687.; [232] E. Chinkes, Las Tecnologías de la Información y la Comunicación Potenciando la Universidad del Siglo XXI: Claves para una política TIC universitaria, vol. 1. 2015. doi:10.1017/CBO9781107415324.004; [233] E. Chinkes, Potenciando la Universidad del Siglo XXI: Soluciones TIC para pensar la universidad del futuro. 2017; [234] RedCLARA, ACTAS TICAL 2016. 2016; [235] RedCLARA, ACTAS TICAL 2017. 2017; [236] RedCLARA, ACTAS TICAL 2018. 2018.; [237] RedCLARA, ACTAS TICAL 2019. 2019; [238] O. Akhri, Y. El Bouzekri El Idrissi, and N. Hmina, “Enabling smart collaboration with smart university services,” in ACM International Conference Proceeding Series, 2019. doi:10.1145/3331453.3361311.; [239] D. Rico-Bautista et al., “Smart university: Strategic map since the adoption of technology [Universidad inteligente: Mapa estratégico desde la adopción de tecnología],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E28, pp. 711–724, 2020; [240] M. de L. Sigg, J. L. V. Cisneros, S. V. Reyes, and J. A. R. Salcedo, “Explicación de la Adopción de Tecnologías de Información en Pequeñas Empresas Usando el Modelo del Usuario Perezoso: un Caso de Estudio,” Iberian Journal of Information Systems and Technologies, no. e1, pp. 91–104, Mar. 2014, doi:10.4304/risti.e1.91-104.; [241] L. O. S. A. Erasmus et al., “Adopción de las tecnologías infocomunicacionales (TI) en Docentes: actualizando enfoques.,” Revista Electrónica Teoría de la Educación. Educación y Cultura en La Sociedad de la Información., vol. 10, pp. 310–337, 2009; [242] P. Brous, M. Janssen, and P. Herder, “The dual effects of the Internet of Things (IoT): A systematic review of the benefits and risks of IoT adoption by organizations,” International Journal of Information Management, vol. 51, p. 101952, Apr. 2020, doi:10.1016/j.ijinfomgt.2019.05.008.; [243] J. Martín et al., “Review of IoT applications in agro-industrial and environmental fields,” vol. 142, no. 118, pp. 283–297, 2017, doi:10.1016/j.compag.2017.09.015.; [244] A. Abushakra and D. Nikbin, Knowledge Management in Organizations, vol. 1027. Cham: Springer International Publishing, 2019. doi:10.1007/978-3-030-21451-7; [245] D. Mourtzis, E. Vlachou, and N. Milas, “Industrial Big Data as a Result of IoT Adoption in Manufacturing,” Procedia CIRP, vol. 55, pp. 290–295, 2016, doi:10.1016/j.procir.2016.07.038.; [246] I. C. Ehie and M. A. Chilton, “Understanding the influence of IT/OT Convergence on the adoption of Internet of Things (IoT) in manufacturing organizations: An empirical investigation,” Computers in Industry, vol. 115, p. 103166, Feb. 2020, doi:10.1016/j.compind.2019.103166.; [247] L. Amodu, O. Odiboh, S. Usaini, D. Yartey, and T. Ekanem, “Data on security implications of the adoption of Internet of Things by public relations professionals,” Data in Brief, vol. 27, 2019, doi:10.1016/j.dib.2019.104663.; [248] H. Shaikh, M. S. Khan, Z. A. Mahar, M. Anwar, A. Raza, and A. Shah, “A Conceptual Framework for Determining Acceptance of Internet of Things (IoT) in Higher Education Institutions of Pakistan,” in 2019 International Conference on Information Science and Communication Technology (ICISCT), Mar. 2019, pp. 1–5. doi:10.1109/CISCT.2019.8777431.; [249] A. Abushakra and D. Nikbin, Knowledge Management in Organizations, vol. 1027. Cham: Springer International Publishing, 2019. doi:10.1007/978-3-030-21451-7.; [250] M. Mital, V. Chang, P. Choudhary, A. Papa, and A. K. Pani, “Adoption of Internet of Things in India: A test of competing models using a structured equation modeling approach,” Technological Forecasting and Social Change, vol. 136, pp. 339–346, 2018, doi:10.1016/j.techfore.2017.03.001.; [251] S. Lu and Y. P. Singh, “Scie enceDir rect ScienceDirect Analyz zing chal llenges t o Interne et of Thi ings ( IoT T ) adopt tion and ion : An Indian context c diffusi,” 2018, doi:10.1016/j.procs.2017.12.094; [252] Y. Kao, K. Nawata, and C. Huang, “An Exploration and Confirmation of the Factors Influencing Adoption of IoT-Based Wearable Fitness Trackers,” 2019.; [253] Y.-S. Kao, K. Nawata, and C.-Y. Huang, “An Exploration and Confirmation of the Factors Influencing Adoption of IoT-Based Wearable Fitness Trackers,” International Journal of Environmental Research and Public Health, vol. 16, no. 18, p. 3227, Sep. 2019, doi:10.3390/ijerph16183227.; [254] V. Venkatesh, J. Thong, and X. Xu, “Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead,” Journal of the Association for Information Systems, vol. 17, no. 5, pp. 328–376, May 2016, doi:10.17705/1jais.00428; [255] E. González Arza, “Validación de la Teoría Unificada de Aceptación y Uso de la Tecnología UTAUT en castellano en el ámbito de las consultas externas de la Red de Salud Mental de Bizkaia,” Universitat Oberta de Catalunya, 2013.; [256] T. Kr. Aune, H. Gjestland, J. Ø. Haagensen, B. Kittilsen, J. I. Skar, and H. Westengen, “Magnesium Alloys,” in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2003, pp. 1–19. doi:10.1002/14356007.a15_581; [257] P. Palos-Sanchez, A. Reyes-Menendez, and J. R. Saura, “Models of adoption of information technology and cloud computing in organizations,” Informacion Tecnologica, vol. 30, no. 3, pp. 3–12, 2019, doi:10.4067/S0718-07642019000300003; [258] P. Pinheiro, M. Aparicio, and C. Costa, “Adoption of cloud computing systems,” in Proceedings of the International Conference on Information Systems and Design of Communication - ISDOC ’14, 2014, pp. 127–131. doi:10.1145/2618168.2618188; [259] H. Vasudavan, K. Shanmugam, and H. A. Ahmada, “User Perceptions in Adopting Cloud Computing in Autonomous Vehicle,” in Proceedings of the 6th International Conference on Information Technology: IoT and Smart City - ICIT 2018, 2018, pp. 151–156. doi:10.1145/3301551.3301583; [260] F. Nikolopoulos and S. Likothanassis, “Using UTAUT2 for cloud computing technology acceptance modeling,” in Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing, Mar. 2017, no. March, pp. 1–6. doi:10.1145/3018896.3025153; [261] U. Nasir and M. Niazi, “Cloud computing adoption assessment model (CAAM),” in Proceedings of the 12th International Conference on Product Focused Software Development and Process Improvement - Profes ’11, 2011, vol. 44, no. 0, pp. 34–37. doi:10.1145/2181101.2181110.; [262] M. Al-Ruithe, E. Benkhelifa, and K. Hameed, “Current State of Cloud Computing Adoption – An Empirical Study in Major Public Sector Organizations of Saudi Arabia (KSA),” Procedia Computer Science, vol. 110, pp. 378–385, 2017, doi:10.1016/j.procs.2017.06.080; [263] P. Priyadarshinee, R. D. Raut, M. K. Jha, and B. B. Gardas, “Understanding and predicting the determinants of cloud computing adoption: A two staged hybrid SEM - Neural networks approach,” Computers in Human Behavior, vol. 76, pp. 341–362, Nov. 2017, doi:10.1016/j.chb.2017.07.027; [264] K. Njenga, L. Garg, A. K. Bhardwaj, V. Prakash, and S. Bawa, “The cloud computing adoption in higher learning institutions in Kenya: Hindering factors and recommendations for the way forward,” Telematics and Informatics, vol. 38, no. May, pp. 225–246, May 2019, doi:10.1016/j.tele.2018.10.007.; [265] I. Arpaci, “Antecedents and consequences of cloud computing adoption in education to achieve knowledge management,” Computers in Human Behavior, vol. 70, pp. 382–390, May 2017, doi:10.1016/j.chb.2017.01.024; [266] H. M. Sabi, F. E. Uzoka, K. Langmia, and F. N. Njeh, “Conceptualizing a model for adoption of cloud computing in education,” International Journal of Information Management, vol. 36, no. 2, pp. 183– 191, Apr. 2016, doi:10.1016/j.ijinfomgt.2015.11.010; [267] P. Palos-Sanchez, A. Reyes-Menendez, and J. R. Saura, “Modelos de Adopción de Tecnologías de la Información y Cloud Computing en las Organizaciones,” Información tecnológica, vol. 30, no. 3, pp. 3–12, Jun. 2019, doi:10.4067/S0718-07642019000300003; [268] M. Shorfuzzaman, M. S. Hossain, A. Nazir, G. Muhammad, and A. Alamri, “Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment,” Computers in Human Behavior, vol. 92, pp. 578–588, Mar. 2019, doi:10.1016/j.chb.2018.07.002; [269] F. P. S. Surbakti, W. Wang, M. Indulska, and S. Sadiq, “Factors influencing effective use of big data: A research framework,” Information & Management, vol. 57, no. 1, p. 103146, Jan. 2020, doi:10.1016/j.im.2019.02.001; [270] S. Das, “‘The Early Bird Catches the Worm - First Mover Advantage through IoT Adoption for Indian Public Sector Retail Oil Outlets,’” Journal of Global Information Technology Management, vol. 22, no. 4, pp. 280–308, Oct. 2019, doi:10.1080/1097198X.2019.1679588; [271] A. M. Al-Momani, M. A. Mahmoud, and M. S. Ahmad, “A Review of Factors Influencing Customer Acceptance of Internet of Things Services,” International Journal of Information Systems in the Service Sector, vol. 11, no. 1, pp. 54–67, Jan. 2019, doi:10.4018/IJISSS.2019010104; [272] D. Nikbin and A. Abushakra, “Internet of Things Adoption: Empirical Evidence from an Emerging Country,” in Communications in Computer and Information Science, 2019, pp. 348–352. doi:10.1007/978-3-030-21451-7_30; [273] B. Sivathanu, “Adoption of internet of things (IOT) based wearables for healthcare of older adults – a behavioural reasoning theory (BRT) approach,” Journal of Enabling Technologies, vol. 12, no. 4, pp. 169–185, Dec. 2018, doi:10.1108/JET-12-2017-0048; [274] A. M. Al-Momani, M. A. Mahmoud, and M. S. Ahmad, “Factors that Influence the Acceptance of Internet of Things Services by Customers of Telecommunication Companies in Jordan,” Journal of Organizational and End User Computing, vol. 30, no. 4, pp. 51–63, Oct. 2018, doi:10.4018/JOEUC.2018100104.; [275] E. E. Grandon, A. A. Ibarra, S. A. Guzman, P. Ramirez-Correa, and J. Alfaro-Perez, “Internet of Things: Factors that influence its adoption among Chilean SMEs,” in 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Jun. 2018, vol. 2018-June, pp. 1–6. doi:10.23919/CISTI.2018.8399183; [276] M. Tu, “An exploratory study of Internet of Things (IoT) adoption intention in logistics and supply chain management,” The International Journal of Logistics Management, vol. 29, no. 1, pp. 131–151, Feb. 2018, doi:10.1108/IJLM-11-2016-0274; [277] M. Trujillo Suárez, J. J. Aguilar, and C. Neira, “Los métodos más característicos del diseño centrado en el usuario -DCU-, adaptados para el desarrollo de productos materiales,” Iconofacto, vol. 12, no. 19, pp. 215–236, 2016, doi:10.18566/iconofact.v12.n19.a09.; [278] M. Greer and H. S. Harris, “User-Centered Design as a Foundation for Effective Online Writing Instruction,” Computers and Composition, vol. 49, no. 2017, pp. 14–24, 2018, doi:10.1016/j.compcom.2018.05.006; [278] M. Greer and H. S. Harris, “User-Centered Design as a Foundation for Effective Online Writing Instruction,” Computers and Composition, vol. 49, no. 2017, pp. 14–24, 2018, doi:10.1016/j.compcom.2018.05.006.; [279] Y. Han and M. Moghaddam, “Analysis of sentiment expressions for user-centered design,” Expert Systems with Applications, vol. 171, p. 114604, 2021, doi: https://doi.org/10.1016/j.eswa.2021.114604.; [280] T. Xu, Study on user experience design of mobile application interfaces, vol. 1018. Springer International Publishing, 2020. doi:10.1007/978-3-030-25629-6_80; [281] 2019 ISO Standard, “International Standard interactive systems,” Iso 9241-210:2019, vol. 2019, 2019.; [282] O. Ayalon and E. Toch, “User-Centered Privacy-by-Design: Evaluating the Appropriateness of Design Prototypes,” International Journal of Human Computer Studies, vol. 154, no. March, p. 102641, 2021, doi:10.1016/j.ijhcs.2021.102641; [283] M. François, F. Osiurak, A. Fort, P. Crave, and J. Navarro, “Usability and acceptance of truck dashboards designed by drivers: Two participatory design approaches compared to a user-centered design,” International Journal of Industrial Ergonomics, vol. 81, no. November 2019, p. 103073, 2021, doi:10.1016/j.ergon.2020.103073.; [284] A. C. Luis, T. E. M. Elizabeth, F. V. Jesús, R. U. M. Deyanira, and A. S. J., “Interacción HumanoComputadora,” pp. 195–232, 2016; [285] Ideo, “Diseño centrado en las personas,” 2019; [286] P. M. A. Desmet, H. Xue, and S. F. Fokkinga, “The Same Person Is Never the Same: Introducing MoodStimulated Thought/Action Tendencies for User-Centered Design,” She Ji, vol. 5, no. 3, pp. 167–187, 2019, doi:10.1016/j.sheji.2019.07.; [287] L. M. Kopf and J. Huh-Yoo, “A User-Centered Design Approach to Developing a Voice Monitoring System for Disorder Prevention,” Journal of Voice, vol. 3200, 2020, doi:10.1016/j.jvoice.2020.10.015; [288] L. Bu, C. H. Chen, K. K. H. Ng, P. Zheng, G. Dong, and H. Liu, “A user-centric design approach for smart product-service systems using virtual reality: A case study,” Journal of Cleaner Production, vol. 280, p. 124413, 2021, doi:10.1016/j.jclepro.2020.124413; [289] H. Khalajzadeh, T. Verma, A. J. Simmons, J. Grundy, M. Abdelrazek, and J. Hosking, “User-centred tooling for modelling of big data applications,” Proceedings - 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, MODELS-C 2020 - Companion Proceedings, pp. 31–35, 2020, doi:10.1145/3417990.3422004; [290] G. A. García-Mireles, M. Á. Moraga, and F. García, “Development of maturity models: A systematic literature review,” IET Seminar Digest, vol. 2012, no. 1, pp. 279–283, 2012, doi:10.1049/ic.2012.0036; [291] J. Wang and A. Moulden, “AI Trust Score: A User-Centered Approach to Building, Designing, and Measuring the Success of Intelligent Workplace Features,” Conference on Human Factors in Computing Systems - Proceedings, 2021, doi:10.1145/3411763.3443452.; [292] J. Escobar-Pérez and Á. Cuervo-Martínez, “Validez de contenido y juicio de expertos: una aproximación a su utilización,” Avances en medición, vol. 6, no. 1, pp. 27–36, 2008.; [293] G. C. Vázquez González, I. U. Jiménez Macías, and L. G. Juárez Hernández, “Construction-validation of the questionnaire: Maturity of knowledge management to educational innovation in universities,” Apertura, vol. 12, no. 1, Mar. 2020, doi:10.32870/Ap.v12n1.1767.; [294] J. Escobar and Á. Cuervo, “Validez de contenido y juicio de expertos: una aproximación a su utilización,” Polymer, 2008.; [295] J. S. Grant and L. L. Davis, “Selection and use of content experts for instrument development,” Research in Nursing & Health, vol. 20, no. 3, pp. 269–274, 1997, doi:10.1002/(sici)1098240x(199706)20:33.3.co;2-3; [296] R. Skjong and B. H. Wentworth, “Expert judgment and risk perception,” Proceedings of the International Offshore and Polar Engineering Conference, vol. 4, pp. 537–544, 2001.; [297] A. Raza, L. F. Capretz, and F. Ahmed, “An open source usability maturity model (OS-UMM),” Computers in Human Behavior, vol. 28, no. 4, pp. 1109–1121, 2012, doi:10.1016/j.chb.2012.01.018; [298] S. Beecham, T. Hall, C. Britton, M. Cottee, and A. Rainer, “Using an expert panel to validate a requirements process improvement model,” The journal of systems and software, vol. 76, pp. 251–275, 2005, doi:10.1016/j.jss.2004.06.004; [299] C. Shaoyong, T. Yirong, and L. Zhefu, “UNITA : A Reference Model of University IT Architecture,” ICCIS ’16: Proceedings of the 2016 International Conference on Communication and Information Systems, pp. 73–77, 2016, doi:10.1145/3023924.3023949; [300] H. Chaoui and I. Makdoun, “A new secure model for the use of cloud computing in big data analytics,” pp. 1–11, 2018, doi:10.1145/3018896.3018913; [301] S. Chaveesuk, P. Wutthirong, and W. Chaiyasoonthorn, “Cloud Computing Classroom Acceptance Model in Thailand Higher Education’s Institutes,” in Proceedings of the 2018 10th International Conference on Information Management and Engineering - ICIME 2018, 2018, pp. 141–145. doi:10.1145/3285957.3285989; [302] F. Nikolopoulos, “Using UTAUT2 for Cloud Computing Technology Acceptance Modeling,” no. 1995, 2017; [303] B. B. Rad, T. Diaby, and M. E. Rana, “Cloud Computing Adoption,” in Proceedings of the 2017 International Conference on E-commerce, E-Business and E-Government - ICEEG 2017, 2017, no. June, pp. 51–55. doi:10.1145/3108421.3108426; [304] E. H. Steele and I. R. Guzman, “Investigating the Role of Top Management and Institutional Pressures in Cloud Computing Adoption,” pp. 25–26, 2016.; [305] A. M. Shaaban, C. Schmittner, T. Gruber, G. Quirchmayr, and E. Schikuta, “CloudWoT - A Reference Model for Knowledge-based IoT Solutions,” 2018, doi:10.1145/3282373.3282400.; [306] M. Basingab, L. Rabelo, C. Rose, and E. Gutiérrez, “Business Modeling Based on Internet of Things : A Case Study of Predictive Maintenance Software Using ABS Model,” 2017, doi:10.1145/3018896.3018905; [307] M.-C. Vega-Hernández, M.-C. Patino-Alonso, and M.-P. Galindo-Villardón, “Multivariate characterization of university students using the ICT for learning,” Computers & Education, vol. 121, pp. 124–130, Jun. 2018, doi:10.1016/j.compedu.2018.03.004.; [308] u-planner, “U-planner,” 2019; [309] Bizagi, “Bizagi,” 2019; [309] Bizagi, “Bizagi,” 2019.; [310] Analytikus, “Analytikus,”; [311] Y. Medina and Dewar. Rico-Bautista, “Modelo de gestión de servicios para la universidad de Pamplona: ITIL,” Scientia Et Technica, vol. XIV, no. 39, pp. 314–319, 2008; [312] Y. Medina-Cárdenas and D. Rico- Bautista, “Modelo de gestión basado en el ciclo de vida del servicio de la Biblioteca de Infraestructura de Tecnologías de Información ( ITIL ),” Revista Virtual Universidad Católica del Norte, no. 27, pp. 1–21, 2009.; [313] M. V Bueno-Delgado, P. Pavón-Marino, A. De-Gea-García, and A. Dolón-García, “The Smart University Experience: An NFC-Based Ubiquitous Environment,” in 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, 2012, pp. 799–804. doi:10.1109/IMIS.2012.110; [314] O. A. Shvetsova, “Smart education in high school: New perspectives in global world,” in Proceedings of the 2017 International Conference “Quality Management, Transport and Information Security, Information Technologies”, IT and QM and IS 2017, 2017, pp. 688–691. doi:10.1109/ITMQIS.2017.8085917.; [315] T. Savov, V. Terzieva, K. Todorova, and P. Kademova-Katzarova, “CONTEMPORARY TECHNOLOGY SUPPORT FOR EDUCATION,” CBU International Conference Proceedings, vol. 5, pp. 802–806, Sep. 2017, doi:10.12955/cbup.v5.1029.; [316] A. M. Shaaban, C. Schmittner, T. Gruber, G. Quirchmayr, and E. Schikuta, “CloudWoT - A Reference Model for Knowledge-based IoT Solutions,” 2018, doi:10.1145/3282373.3282400.; [317] S. Chen, Y. Tang, and Z. Li, “UNITA: A reference model of university IT architecture,” in ACM International Conference Proceeding Series, 2016, pp. 73–77. doi:10.1145/3023924.3023949; [318] E. Barrientos-Avendaño and Y. Areniz-Arévalo, “Universidad inteligente: Oportunidades y desafíos desde la Industria 4.0,” Revista Ingenio UFPSO, vol. 16, no. 1, 2019, doi:10.22463/2011642X.2343.; [319] E. Barrientos-Avendaño, Y. Areniz-Arevalo, L. A. Coronel-Rojas, F. Cuesta-Quintero, and D. RicoBautista, “Industry foray model 4.0 applied to the food company your gourmet bread sas: Strategy for rebirth in the COVID-19 (SARS-CoV-2) pandemic [Modelo de incursión en la industria 4.0 aplicado a la compañía alimenticia tu pan gourmet sas: estrategia para el rena,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E34, pp. 436–449, 2020.; [320] C. D. Guerrero and D. Rico-Bautista, “Center for excellence and internet acquisition of things: A commitment to competitiveness from alliances between government, academia and productive sector [Centro de excelencia y apropiación en internet de las cosas: Una apuesta a la competitividad desde,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E28, pp. 615–628, 202; [321] D. Mourtzis, E. Vlachou, and N. Milas, “Industrial Big Data as a Result of IoT Adoption in Manufacturing,” Procedia CIRP, vol. 55, pp. 290–295, 2016, doi:10.1016/j.procir.2016.07.038.; [322] I. C. Ehie and M. A. Chilton, “Understanding the influence of IT/OT Convergence on the adoption of Internet of Things (IoT) in manufacturing organizations: An empirical investigation,” Computers in Industry, vol. 115, p. 103166, Feb. 2020, doi:10.1016/j.compind.2019.103166.; [323] H. Xu, “Application of Cloud Computing Information Processing System in Network Education,” in International Conference on Applications and Techniques in Cyber Intelligence, ATCI 2019, vol. 1017, A. J.H., C. K.-K.R., I. R., X. Z., and A. M., Eds. Dianchi College of Yunnan University, Kunming, 650000, China: Springer Verlag, 2020, pp. 1809–1815. doi:10.1007/978-3-030-25128-4_238; [324] Y. C. Medina Cárdenas, Y. Areniz Arévalo, and D. W. Rico Bautista, Modelo estratégico para la gestión tecnológica en la organización: plan táctico de la calidad (ITIL & ISO 20000), vol. 1. Instituto Tecnológico Metropolitano, 2016. doi:10.22430/9789585414006; [325] Y. Medina-Cárdenas and D. Rico-Bautista, “Model of Administration of Services for the Universidad of Pamplona: ITIL,” Scientia Et Technica Scientia et Technica Año XIV, vol. 14, no. 39, pp. 314–319, 2008; [326] R. D. Raut, P. Priyadarshinee, B. B. Gardas, and M. K. Jha, “Analyzing the factors influencing cloud computing adoption using three stage hybrid SEM-ANN-ISM (SEANIS) approach,” Technological Forecasting and Social Change, vol. 134, no. July 2017, pp. 98–123, Sep. 2018, doi:10.1016/j.techfore.2018.05.020; [327] R. El-Gazzar, E. Hustad, and D. H. Olsen, “Understanding cloud computing adoption issues: A Delphi study approach,” Journal of Systems and Software, vol. 118, pp. 64–84, Aug. 2016, doi:10.1016/j.jss.2016.04.061; [328] J. Cecil, “A Collaborative Manufacturing Approach supporting adoption of IoT Principles in Micro Devices Assembly,” Procedia Manufacturing, vol. 26, pp. 1265–1277, 2018, doi:10.1016/j.promfg.2018.07.141; [329] W. Hao, Z. Huang, and L. Shi, “Research on college students’ ideological and political education and daily performance evaluation model based on big data,” Journal of Advanced Oxidation Technologies, vol. 21, no. 2, 2018, doi:10.26802/jaots.2018.01625; [330] Y. H. Kim and J. Ahn, “A Study on the Application of Big Data to the Korean College Education System,” Procedia Computer Science, vol. 91, no. Itqm 2016, pp. 855–861, 2016, doi:10.1016/j.procs.2016.07.096; [331] T. G. Ramos, J. C. F. Machado, and B. P. V. Cordeiro, “Primary Education Evaluation in Brazil Using Big Data and Cluster Analysis,” Procedia Computer Science, vol. 55, no. Itqm, pp. 1031–1039, 2015, doi:10.1016/j.procs.2015.07.061; [332] R. H. Hamilton and W. A. Sodeman, “The questions we ask: Opportunities and challenges for using big data analytics to strategically manage human capital resources,” Business Horizons, vol. 63, no. 1, pp. 85–95, Jan. 2020, doi:10.1016/j.bushor.2019.10.001; [333] J. Wu, H. Li, L. Liu, and H. Zheng, “Adoption of big data and analytics in mobile healthcare market: An economic perspective,” Electronic Commerce Research and Applications, vol. 22, pp. 24–41, Mar. 2017, doi:10.1016/j.elerap.2017.02.002; [334] Z. Allam and Z. A. Dhunny, “On big data, artificial intelligence and smart cities,” Cities, vol. 89, no. January, pp. 80–91, Jun. 2019, doi:10.1016/j.cities.2019.01.032; [335] M. A. Goralski and T. K. Tan, “Artificial intelligence and sustainable development,” The International Journal of Management Education, vol. 18, no. 1, p. 100330, Mar. 2020, doi:10.1016/j.ijme.2019.100330.; [336] C. R. Deig, A. Kanwar, and R. F. Thompson, “Artificial Intelligence in Radiation Oncology,” Hematology/Oncology Clinics of North America, vol. 33, no. 6, pp. 1095–1104, Dec. 2019, doi:10.1016/j.hoc.2019.08.003; [337] M. Chassignol, A. Khoroshavin, A. Klimova, and A. Bilyatdinova, “Artificial Intelligence trends in education: a narrative overview,” Procedia Computer Science, vol. 136, pp. 16–24, 2018, doi:10.1016/j.procs.2018.08.233; [338] E. Barrientos-Avendaño, L. A. Coronel-Rojas, F. Cuesta-Quintero, and D. Rico-Bautista, “Store-tostore sales management system: Applying artificial intelligence techniques [Sistema de administración de ventas tienda a tienda: Aplicando técnicas de inteligencia artificial],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E27, pp. 677–689, 2020.; [339] A. Kankanhalli, Y. Charalabidis, and S. Mellouli, “IoT and AI for Smart Government: A Research Agenda,” Government Information Quarterly, vol. 36, no. 2, pp. 304–309, Apr. 2019, doi:10.1016/j.giq.2019.02.003; [340] A. Y. Sheikh and J. I. Fann, “Artificial Intelligence,” Thoracic Surgery Clinics, vol. 29, no. 3, pp. 339– 350, Aug. 2019, doi:10.1016/j.thorsurg.2019.03.011; [341] A. Haleem, M. Javaid, and I. H. Khan, “Current status and applications of Artificial Intelligence (AI) in medical field: An overview,” Current Medicine Research and Practice, vol. 9, no. 6, pp. 231–237, Nov. 2019, doi:10.1016/j.cmrp.2019.11.005; [342] T. Granollers i Saltiveri, “MPIu+a. Una metodología que integra la Ingeniería del Software, la Interacción Persona-Ordenador y la Accesibilidad en el contexto de equipos de desarrollo multidisciplinares,” 2004; [343] U. de Lleida, “Departament de Llenguatges i Sistemes Informàtics Universitat de Lleida Lleida, julio 2004,” Screen, 2004; [344] V. De Freitas, “Model of Maturity in Knowledge Management System, From a Holistic Approach,” Negotium, vol. Revista Ci, pp. 5–31, 2018; [345] F. RICHARDSON and G. LEóN, “Instrumento para determinar el nivel de madurez en la adopción de tecnologías escolar en la educación primaria en escuelas públicas de la República Dominicana,” 2019.; [346] L. C. Ñungo Pinzón, B. Torres González, and J. I. Palacios Osma, “Modelo de nivel de madurez para los procesos de emprendimiento en las pymes colombianas,” Ingeniería Solidaria, vol. 14, no. 26, Dec. 2018, doi:10.16925/in.v14i26.2456.; [347] L. v. Glukhova, S. D. Syrotyuk, A. A. Sherstobitova, and S. v. Pavlova, “Smart University Development Evaluation Models,” in Smart Innovation, Systems and Technologies, vol. 144, Springer Science and Business Media Deutschland GmbH, 2019, pp. 539–549. doi:10.1007/978-981-13-8260-4_47; [348] D. Lee, J. Gu, and H. Jung, “Process maturity models: Classification by application sectors and validities studies,” Journal of Software: Evolution and Process, vol. 31, no. 4, p. e2161, Apr. 2019, doi:10.1002/smr.2161.; [349] S. Beecham, T. Hall, and A. Rainer, “Defining a Requirements Process Improvement Model,” Software Quality Journal, vol. 13, no. 3, pp. 247–279, Sep. 2005, doi:10.1007/s11219-005-1752-9.; [350] U. Benjamín et al., “EVALUACIÓN DE LA MADUREZ DE LOS PRINCIPIOS LEAN EN PROYECTOS DE CONSTRUCCIÓN,” 2016; [351] M. Gina and P. M. Gongora, “FRAMEWORK DE GESTIÓN DE TECNOLOGÍAS DE INFORMACIÓN PARA CIUDADES INTELIGENTES: CASO COLOMBIANO TESIS DOCTORAL,” Barranquilla, 2017.; [352] L. C. Ñungo Pinzón, B. Torres González, and J. I. Palacios Osma, “Modelo de nivel de madurez para los procesos de emprendimiento en las pymes colombianas,” Ingeniería Solidaria, vol. 14, no. 26, 2018, doi:10.16925/in.v14i26.2456; [353] R. Morales Fernandez, J. A. Brieto Rojas, and J. A. Villaseñor Marcial, “CMMI - Capability Maturity Model Integration,” MIPRO 2008 - 31st International Convention Proceedings: Digital Economy - 5th ALADIN, Information Systems Security, Business Intelligence Systems, Local Government and Student Papers, vol. 5, no. Cmmi, pp. 229–234, 2008.; [354] E. Pérez Mergarejo, I. Pérez Vergara, and Y. Rodriguez Ruiz, “Modelos de madurez y su idoneidad para aplicar en pequeñas y medianas empresas / Maturity models and the suitability of its application in small and medium enterprises,” Ingeniería Industrial, vol. XXXV, no. 2, pp. 146–158, 20; [355] R. Galeano, “Diseño Hipermedia centrado en el usuario,” Universidad Pontificia Bolivariana, vol. 2, no. 4, pp. 1–15, 2008; [356] T. Granollers, “Diseño Centrado en el Usuario (DCU). El modelo MPlu+a,” p. 71, 2013; [357] M. Garreta Domingo and E. Mor Pera, “Diseño centrado en el usuario (I). Introducción,” El Profesional de la Informacion, vol. 12, no. 1, pp. 52–54, 2003, doi:10.1076/epri.12.1.52.19713.; [358] L. Perurena Cancio and M. Moráguez Bergues, “Usabilidad de los sitios Web, los métodos y las técnicas para la evaluación,” Usabilidad de los sitios Web, los métodos y las técnicas para la evaluación, vol. 24, no. 2, pp. 176–194, 2013; [359] E. E. Grandon, A. A. Ibarra, S. A. Guzman, P. Ramirez-Correa, and J. Alfaro-Perez, “Internet of Things: Factors that influence its adoption among Chilean SMEs,” in 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Jun. 2018, pp. 1–6. doi:10.23919/CISTI.2018.8399183.; [360] F. Authors, “An exploratory study of Internet of Things ( IoT ) adoption intention in logistics and supply chain management - a mixed research approach,” 2016; [361] P. Brous, M. Janssen, and P. Herder, “The dual effects of the Internet of Things ( IoT ): A systematic review of the benefits and risks of IoT adoption by organizations,” International Journal of Information Management, no. May, pp. 1–17, 2019, doi:10.1016/j.ijinfomgt.2019.05.008; [362] H. Shaikh, Z. A. Mahar, and A. Raza, “A Conceptual Framework for Determining Acceptance of Internet of Things ( IoT ) in Higher Education Institutions of Pakistan,” 2019 International Conference on Information Science and Communication Technology (ICISCT), pp. 1–5, 2019.; [363] M. Mital, P. Choudhary, V. Chang, A. Papa, and A. K. Pani, “Technological Forecasting & Social Change Adoption of Internet of Things in India : A test of competing models using a structured equation modeling approach,” Technological Forecasting & Social Change, pp. 1–8, 2017, doi:10.1016/j.techfore.2017.03.001; [364] S. Kang, H. B. Rn, E. Jung, and H. Hwang, “Survey on the demand for adoption of Internet of Things ( IoT ) -based services in hospitals : Investigation of nurses ’ perception in a tertiary university hospital,” Applied Nursing Research, vol. 47, no. May 2018, pp. 18–23, 2019, doi:10.1016/j.apnr.2019.03.005; [365] F. Authors, “Adoption of internet of things ( IOT ) based wearables for elderly healthcare – a behavioural reasoning theory ( BRT ) approach,” 2018, doi:10.1108/JET-12-2017-0048.; [366] R. BaÅ¡ková, Z. Struková, and M. Kozlovská, “Construction Cost Saving Through Adoption of IoT Applications in Concrete Works,” Lecture Notes in Civil Engineering, vol. 47, pp. 452–459, 2020, doi:10.1007/978-3-030-27011-7_57; [367] Y. Kao, K. Nawata, and C. Huang, “An Exploration and Confirmation of the Factors Influencing Adoption of IoT-Based Wearable Fitness Trackers,” 2019.; [368] M. Mital, P. Choudhary, V. Chang, A. Papa, and A. K. Pani, “Technological Forecasting & Social Change Adoption of Internet of Things in India : A test of competing models using a structured equation modeling approach,” Technological Forecasting & Social Change, pp. 1–8, 2017, doi:10.1016/j.techfore.2017.03.001; [369] M. Fahmideh and D. Zowghi, “An exploration of IoT platform development,” Information Systems, vol. 87, p. 101409, 2020, doi:10.1016/j.is.2019.06.005; [370] S. Kang, H. B. Rn, E. Jung, and H. Hwang, “Survey on the demand for adoption of Internet of Things ( IoT ) -based services in hospitals : Investigation of nurses ’ perception in a tertiary university hospital,” Applied Nursing Research, vol. 47, no. May 2018, pp. 18–23, 2019, doi:10.1016/j.apnr.2019.03.005; [371] M. Al-Emran, S. I. Malik, and M. N. Al-Kabi, “A Survey of Internet of Things (IoT) in Education: Opportunities and Challenges,” Studies in Computational Intelligence, vol. 846, pp. 197–209, 2020, doi:10.1007/978-3-030-24513-9_12; [372] H. Shaikh, Z. A. Mahar, and A. Raza, “A Conceptual Framework for Determining Acceptance of Internet of Things ( IoT ) in Higher Education Institutions of Pakistan,” 2019 International Conference on Information Science and Communication Technology (ICISCT), pp. 1–5, 2019.; [373] R. Scherer, F. Siddiq, and J. Tondeur, “The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education,” Computers and Education, vol. 128, pp. 13–35, 2019, doi:10.1016/j.compedu.2018.09.009.; [374] Y. S. Kao, K. Nawata, and C. Y. Huang, “An exploration and confirmation of the factors influencing adoption of IoT-basedwearable fitness trackers,” International Journal of Environmental Research and Public Health, vol. 16, no. 18, 2019, doi:10.3390/ijerph16183227.; [375] P. K. Paul, “Usability engineering and hci for promoting root-level social computation and informatics practice: A possible academic move in the indian perspective,” International Journal of Asian Business and Information Management, vol. 12, no. 2, pp. 96–109, 2021, doi:10.4018/IJABIM.20210401.oa6; [376] M. A. Castaño González, “Índice de madurez de transformación digital de las empresas Colombianas,” Cintel, pp. 1–36, 2016; [377] P. Pinheiro, M. Aparicio, and C. Costa, “Adoption of cloud computing systems,” in Proceedings of the International Conference on Information Systems and Design of Communication - ISDOC ’14, 2014, pp. 127–131. doi:10.1145/2618168.2618188; [378] H. Xu, International Conference on Applications and Techniques in Cyber Intelligence ATCI 2019, vol. 1017. Cham: Springer International Publishing, 2020. doi:10.1007/978-3-030-25128-4; [379] B. B. Rad, T. Diaby, and M. E. Rana, “Cloud Computing Adoption,” in Proceedings of the 2017 International Conference on E-commerce, E-Business and E-Government - ICEEG 2017, 2017, pp. 51– 55. doi:10.1145/3108421.3108426; [380] B. B. Rad, T. Diaby, and M. E. Rana, “Cloud Computing Adoption,” in Proceedings of the 2017 International Conference on E-commerce, E-Business and E-Government - ICEEG 2017, 2017, pp. 51– 55. doi:10.1145/3108421.3108426; [381] H. Vasudavan, K. Shanmugam, and H. A. Ahmada, “User Perceptions in Adopting Cloud Computing in Autonomous Vehicle,” in Proceedings of the 6th International Conference on Information Technology: IoT and Smart City - ICIT 2018, 2018, pp. 151–156. doi:10.1145/3301551.3301583; [382] D. S. Jat, M. S. Haodom, and A. Peters, “Relevance of Cloud Computing in Namibia,” in Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies - ICTCS ’16, 2016, pp. 1–4. doi:10.1145/2905055.2905301; [383] T. Branco, F. de Sá-Soares, and A. L. Rivero, “Key Issues for the Successful Adoption of Cloud Computing,” Procedia Computer Science, vol. 121, pp. 115–122, 2017, doi:10.1016/j.procs.2017.11.016.; [384] R. D. Raut, P. Priyadarshinee, B. B. Gardas, and M. K. Jha, “Analyzing the factors influencing cloud computing adoption using three stage hybrid SEM-ANN-ISM (SEANIS) approach,” Technological Forecasting and Social Change, vol. 134, no. July 2017, pp. 98–123, Sep. 2018, doi:10.1016/j.techfore.2018.05.020; [385] R. El-Gazzar, E. Hustad, and D. H. Olsen, “Understanding cloud computing adoption issues: A Delphi study approach,” Journal of Systems and Software, vol. 118, pp. 64–84, Aug. 2016, doi:10.1016/j.jss.2016.04.061; [386] D. S. Jat, M. S. Haodom, and A. Peters, “Relevance of Cloud Computing in Namibia,” in Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies - ICTCS ’16, 2016, pp. 1–4. doi:10.1145/2905055.29053; [387] M. Al-Ruithe, E. Benkhelifa, and K. Hameed, “Current State of Cloud Computing Adoption – An Empirical Study in Major Public Sector Organizations of Saudi Arabia (KSA),” Procedia Computer Science, vol. 110, pp. 378–385, 2017, doi:10.1016/j.procs.2017.06.080; [388] O. Sabri, “Measuring is Success Factors of Adopting Cloud Computing from Enterprise Overview,” in Proceedings of the The International Conference on Engineering & MIS 2015 - ICEMIS ’15, 2015, pp. 1–5. doi:10.1145/2832987.2832993; [389] F. Alharbi, A. Atkins, and C. Stanier, “Cloud Computing Adoption Readiness Assessment in Saudi Healthcare Organisations : A Strategic View,” 2017.; [390] U. Nasir and M. Niazi, “Cloud computing adoption assessment model (CAAM),” in Proceedings of the 12th International Conference on Product Focused Software Development and Process Improvement - Profes ’11, 2011, vol. 44, no. 0, pp. 34–37. doi:10.1145/2181101.2181110; [391] J. Cecil, “A Collaborative Manufacturing Approach supporting adoption of IoT Principles in Micro Devices Assembly,” Procedia Manufacturing, vol. 26, pp. 1265–1277, 2018, doi:10.1016/j.promfg.2018.07.141.; [392] R. F. El-gazzar, “An Overview of Cloud Computing Adoption Challenges in the Norwegian Context,” 2014.; [393] R. F. El-gazzar, “An Overview of Cloud Computing Adoption Challenges in the Norwegian Context,” 2014; [394] H. Hassan, “ScienceDirect ScienceDirect Organisational factors affecting cloud computing adoption in small and medium enterprises ( SMEs ) in service sector,” Procedia Computer Science, vol. 121, pp. 976–981, 2017, doi:10.1016/j.procs.2017.11.126; [395] I. Arpaci, “Antecedents and consequences of cloud computing adoption in education to achieve knowledge management,” Computers in Human Behavior, vol. 70, pp. 382–390, May 2017, doi:10.1016/j.chb.2017.01.024; [396] H. M. Sabi, F. E. Uzoka, K. Langmia, and F. N. Njeh, “Conceptualizing a model for adoption of cloud computing in education,” International Journal of Information Management, vol. 36, no. 2, pp. 183– 191, Apr. 2016, doi:10.1016/j.ijinfomgt.2015.11.010; [397] F. Gao and A. Sunyaev, “International Journal of Information Management Context matters : A review of the determinant factors in the decision to adopt cloud computing in healthcare,” International Journal of Information Management, vol. 48, no. February, pp. 120–138, 2019, doi:10.1016/j.ijinfomgt.2019.02.002.; [398] K. Njenga, L. Garg, A. K. Bhardwaj, V. Prakash, and S. Bawa, “The cloud computing adoption in higher learning institutions in Kenya: Hindering factors and recommendations for the way forward,” Telematics and Informatics, vol. 38, no. May, pp. 225–246, May 2019, doi:10.1016/j.tele.2018.10.007; [399] P. Priyadarshinee, R. D. Raut, M. K. Jha, and B. B. Gardas, “Understanding and predicting the determinants of cloud computing adoption: A two staged hybrid SEM - Neural networks approach,” Computers in Human Behavior, vol. 76, pp. 341–362, Nov. 2017, doi:10.1016/j.chb.2017.07.027.; [400] W. Hao, Z. Huang, and L. Shi, “Research on college students’ ideological and political education and daily performance evaluation model based on big data,” Journal of Advanced Oxidation Technologies, vol. 21, no. 2, 2018, doi:10.26802/jaots.2018.01625.; [401] J. Wu, H. Li, L. Liu, and H. Zheng, “Adoption of big data and analytics in mobile healthcare market: An economic perspective,” Electronic Commerce Research and Applications, vol. 22, pp. 24–41, Mar. 2017, doi:10.1016/j.elerap.2017.02.002; [402] Y. H. Kim and J. Ahn, “A Study on the Application of Big Data to the Korean College Education System,” Procedia Computer Science, vol. 91, no. Itqm 2016, pp. 855–861, 2016, doi:10.1016/j.procs.2016.07.096.; [403] M. Shorfuzzaman, M. S. Hossain, A. Nazir, G. Muhammad, and A. Alamri, “Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment,” Computers in Human Behavior, vol. 92, pp. 578–588, Mar. 2019, doi:10.1016/j.chb.2018.07.002; [403] M. Shorfuzzaman, M. S. Hossain, A. Nazir, G. Muhammad, and A. Alamri, “Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment,” Computers in Human Behavior, vol. 92, pp. 578–588, Mar. 2019, doi:10.1016/j.chb.2018.07.002. [404] T. G. Ramos, J. C. F. Machado, and B. P. V. Cordeiro, “Primary Education Evaluation in; [404] T. G. Ramos, J. C. F. Machado, and B. P. V. Cordeiro, “Primary Education Evaluation in Brazil Using Big Data and Cluster Analysis,” Procedia Computer Science, vol. 55, no. Itqm, pp. 1031–1039, 2015, doi:10.1016/j.procs.2015.07.061.; [405] R. H. Hamilton and W. A. Sodeman, “The questions we ask: Opportunities and challenges for using big data analytics to strategically manage human capital resources,” Business Horizons, vol. 63, no. 1, pp. 85–95, Jan. 2020, doi:10.1016/j.bushor.2019.10.001; [406] F. P. S. Surbakti, W. Wang, M. Indulska, and S. Sadiq, “Factors influencing effective use of big data: A research framework,” Information & Management, vol. 57, no. 1, p. 103146, Jan. 2020, doi:10.1016/j.im.2019.02.001; [407] U. D. Kumar, Analytics Education Ms Purvi Tiwari , Research Associates at DCAL , Indian Institute of Management. Elsevier Ltd, 2019. doi:10.1016/j.iimb.2019.10.014; [408] M. Zapata-ros, “La universidad inteligente La transición de los LMS a los Sistemas Inteligentes de Aprendizaje en Educación Superior The smart university,” vol. 57, no. 10, pp. 1–43, 2018.; [409] N. Mehta, A. Pandit, and S. Shukla, “Transforming Healthcare with Big Data Analytics and Artificial Intelligence: A Systematic Mapping Study,” Journal of Biomedical Informatics, p. 103311, 2019, doi:10.1016/j.jbi.2019.103311.; [410] J. A. Carrillo Ruiz et al., “Big Data En Los Entornos De Defensa Y Seguridad,” 2003.; [411] A. S. Leví, “Aproximación al Big Data . Análisis de su posible utilización en la universidad pública,” 2018; [412] Z. Allam and Z. A. Dhunny, “On big data, artificial intelligence and smart cities,” Cities, vol. 89, no. January, pp. 80–91, Jun. 2019, doi:10.1016/j.cities.2019.01.032; [413] M. A. Goralski and T. K. Tan, “Artificial intelligence and sustainable development,” The International Journal of Management Education, vol. 18, no. 1, p. 100330, Mar. 2020, doi:10.1016/j.ijme.2019.100330; [414] C. R. Deig, A. Kanwar, and R. F. Thompson, “Artificial Intelligence in Radiation Oncology,” Hematology/Oncology Clinics of North America, vol. 33, no. 6, pp. 1095–1104, Dec. 2019, doi:10.1016/j.hoc.2019.08.003; [415] M. Chassignol, A. Khoroshavin, A. Klimova, and A. Bilyatdinova, “Artificial Intelligence trends in education: a narrative overview,” Procedia Computer Science, vol. 136, pp. 16–24, 2018, doi:10.1016/j.procs.2018.08.233; [416] R. Bajaj and V. Sharma, “ScienceDirect ScienceDirect Smart Education with artificial intelligence based determination of Smart Education with artificial intelligence learning styles based determination of learning styles,” Procedia Computer Science, vol. 132, pp. 834–842, 2018, doi:10.1016/j.procs.2018.05.095; [417] A. Kankanhalli, Y. Charalabidis, and S. Mellouli, “IoT and AI for Smart Government: A Research Agenda,” Government Information Quarterly, vol. 36, no. 2, pp. 304–309, Apr. 2019, doi:10.1016/j.giq.2019.02.003; [418] A. Y. Sheikh and J. I. Fann, “Artificial Intelligence,” Thoracic Surgery Clinics, vol. 29, no. 3, pp. 339– 350, Aug. 2019, doi:10.1016/j.thorsurg.2019.03.011; [419] A. Blandford, “education : the potential offered by artificial intellige e tech s,” pp. 212–222, 1990; [420] A. Haleem, M. Javaid, and I. H. Khan, “Current status and applications of Artificial Intelligence (AI) in medical field: An overview,” Current Medicine Research and Practice, vol. 9, no. 6, pp. 231–237, Nov. 2019, doi:10.1016/j.cmrp.2019.11.005.; [421] I. y U. Ministerio de Ciencia, “Estrategia Española De I+D+I En Inteligencia Artificial,” p. 48, 2019; [422] J. G. Sierra Llorente, Y. A. Palmezano Córdoba, and B. S. Romero Mora, “CAUSAS QUE DETERMINAN LAS DIFICULTADES DE LA INCORPORACIÓN DE LAS TIC EN LAS AULAS DE CLASES - Causes that determine the difficulties in the onboarding process of ICT in classrooms,” Panorama, vol. 12, no. 22, pp. 31–41, 2018, doi:10.15765/pnrm.v12i22.1064; [423] MINTIC, “Análisis del sector dirección de gobierno digital,” Ministerio de las tecnologías de la información, vol. 57, no. 1, p. 31, 2019.; [424] H. A. Botello Peñaloza, O. E. Contreras Pacheco, and P. Avella. A. Cecilia, “Análisis empresarial de la influencia de las TIC en el desempeño de las empresas de servicios en Colombia,” Panorama, vol. 4, no. 8, pp. 3–15, 2013, doi:10.15765/pnrm.v4i8.57.; [425] M. E. Rojas Salgado, “Los recursos tecnológicos como soporte para la enseñanza de las ciencias naturales - Technological resources as support in natural sciences teaching,” Hamut’Ay, vol. 4, no. 1, p. 85, 2017, doi:10.21503/hamu.v4i1.1403; [426] Universidad Santo Tomás, “Documento Marco Tecnologías de la Información y la Comunicación,” 2015.; [427] F. I. Díazgranados et al., Uso De Recursos Educativos En Educación Superior. 2018. doi:10.2307/j.ctt2050wh0.7; [428] C. Alberto, F. Reboreda, C. Alberto, and F. Reboreda, “UD igital,” 2020; [429] D. Rico-Bautista, C. D. Guerrero, Y. Medina-Cárdenas, and A. García-Barreto, “Analysis of the potential value of technology: Case of universidad francisco de paula santander Ocaña [Análisis del valor potencial de la tecnología: Caso universidad francisco de paula santander Ocaña],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, no. E17, pp. 756–774, 2019; [430] D. Rico-Bautista and Y. Medina-Cárdenas, “Modelo institucional de autoevaluación y mejoramiento continuo: Proceso misional de investigación de la Universidad Francisco de Paula Santander Ocaña (UFPSO). Un caso de éxito,” Revista Iberoamericana CTS, vol. Abril, pp. 1–14, 2; [431] M. Arrieta, M. Sanguino, and C. Lobo, “Diseño de un plan estratégico de tecnologías de información para la Universidad Francisco de Paula Santander Ocaña,” 2015. [; [432] J. F. Rockart, “Chief executives define their own data needs.,” Harvard Business Review, 1979, doi: Article.; [433] M. Arrieta, M. Sanguino, and C. Lobo, “Diseño de un plan estratégico de tecnologías de información para la Universidad Francisco de Paula Santander Ocaña,” 2015.; [434] M. E. Porter, “Competitive Advantage,” Competitive Advantage: Creating and Sustaining Superior Performance. 1985. doi:10.1182/blood-2005-11-4354.; [435] D. S. Hidayat and D. I. Sensuse, “Knowledge Management Model for Smart Campus in Indonesia,” Data, vol. 7, no. 1, p. 7, Jan. 2022, doi:10.3390/data7010007; [436] V. Salazar Solano, J. M. Moreno Dena, I. S. Rojas Rodríguez, and L. A. Islas Olavarrieta, “Nivel de adopción de tecnologías de la información y la comunicación en empresas comercializadoras de mango en Nayarit – México,” Estudios Gerenciales, vol. 34, no. 148, pp. 292–304, Sep. 2018, doi:10.18046/j.estger.2018.148.2639; [437] S. Dalal, D. Khodyakov, R. Srinivasan, S. Straus, and J. Adams, “ExpertLens: A system for eliciting opinions from a large pool of non-collocated experts with diverse knowledge,” Technological Forecasting and Social; [438] S. Beecham, T. Hall, C. Britton, M. Cottee, and A. Rainer, “Using an expert panel to validate a requirements process improvement model,” Journal of Systems and Software, vol. 76, no. 3, pp. 251– 275, Jun. 2005, doi:10.1016/j.jss.2004.06.004.; [439] M. Kopyto, S. Lechler, H. A. von der Gracht, and E. Hartmann, “Potentials of blockchain technology in supply chain management: Long-term judgments of an international expert panel,” Technological Forecasting and Social Change, vol. 161, p. 120330, Dec. 2020, doi:10.1016/j.techfore.2020.120330; [440] L. A. Galicia Alarcón, J. A. Balderrama Trápaga, and R. Edel Navarro, “Content validity by experts judgment: Proposal for; [441] F. Sheikhshoaei, N. Naghshineh, S. Alidousti, M. Nakhoda, and H. Dehdarirad, “Development and validation of a measuring instrument for digital library maturity,” Library & Information Science Research, vol. 43, no. 3, p. 101101, Jul. 2021, doi:10.1016/j.lisr.2021.101101; [442] C. Á. Álvarez, “La relación teoría-práctica en los procesos de enseñanza-aprendizaje Theory-practice relationship in the processes of teaching and learning,” 2012.; [443] J. M. González-Varona, A. López-Paredes, J. Pajares, F. Acebes, and F. Villafáñez, “Aplicabilidad de los Modelos de Madurez de Business Intelligence a PYMES,” Direccion y Organizacion, no. 71, pp. 31–45, Jul. 2020, doi:10.37610/dyo.v0i71.577; [444] C. U. Españolas, “TIC 360o - Transformación Digital en la Universidad,” 2017; [445] L. F. Berdnikova, A. A. Sherstobitova, O. V. Schnaider, N. O. Mikhalenok, and O. E. Medvedeva, Smart university: Assessment models for resources and economic potential, vol. 144. Springer Singapore, 2019. doi:10.1007/978-981-13-8260-4_51; http://hdl.handle.net/20.500.12749/16730; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Dostupnosť: https://hdl.handle.net/20.500.12749/16730
-
12
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: Industrial automation, Industrial engineering, Technological change, Automatic control, Automatic machinery, Nanotechnology, Bibliographic research, High technology, Factories, Automatización industrial, Ingeniería industrial, Cambio tecnológico, Control automático, Maquinaria automática, Alta tecnología, Fábricas, Nanotecnología, Investigación bibliográfica
Geografické téma: Colombia
Popis súboru: application/pdf
Relation: Teik-Cheng Lim. (2011) Nanosensors Theory and Applications in Industry, Healthcare and Defense. Boca Raton: Taylor and Francis Group, LLC. T. Pradeep. (2008) Nano: The Essentials Understanding Nanoscience and Nanotechnology. New York: McGraw-Hill.; Ahmed Busnaina. (2007) Nanomanfacturing Handbook. Boca Raton: Taylor and Francis Group, LLC.; Renzo Tomellini (2004) La nanotecnología. Innovaciones para el mundo del mañana. Luxemburgo: Comisión Europea; http://www.ijitee.org/attachments/File/v3i4/D1199093413.pdf; http://www.nano.gov/you/nanotechnology-benefits; http://blogs.creamoselfuturo.com/nano-tecnologia/; http://www.ehu.eus/sgi/software-de-calculo/siesta#informacingeneral; Fundación Española para la Ciencia y la Tecnología, FECYT (2009) NANOCIENCIA Y NANOTECNOLOGÍA Entre la ciencia ficción del presente y la tecnología del futuro. España: Fundación Española para la Ciencia y la Tecnología.; http://www.idepa.es/sites/web/idepaweb/Repositorios/galeria_descargas_idepa/AplicacionesIndustriales_Nanotecnologia.pdf; http://www.euroresidentes.com/futuro/nanotecnologia/diccionario/nanomateriales.htm; http://catarina.udlap.mx/u_dl_a/tales/documentos/leip/vega_m_d/indice.html PABLO R. HERNÁNDEZ RODRÍGUEZ Bioelectrónica, Departamento de Ingeniería Eléctrica, CINVESTAV IPN, México; Martinez, Pau & Marín, Pedro. “Diseño y estudio de una máquina de electrospinning”. Tomado de la red en Abril de 2017. Disponible en Internet: https://upcommons.upc.edu/pfc/bitstream/2099.1/7123/4/03_Mem%C3%B2ria.pdf; Jaimes Moreno, Edgar Mauricio. “Electroestimulador inteligente y sistema de clonación artificial de sensores de movimiento y control adaptativo-predictivo, por 143 143 acupuntura con agujas-electrodos y transmisión inalámbrica, evaluado en un diseño de prototipo construido”. Universidad Autónoma de Bucaramanga. 2009.; Siti Fatimah Abd Rahman, Nor Azah Yusof, Uda Hashim, M. Nuzaihan Md Nor. “Design and Fabrication of Silicon Nanowire based Sensor”. Institute of Advanced Technology, Universiti Putra Malaysia. 2013.; Rodriguez Pacheco, Jorge Humberto. “Prototipo automatizado para la implementacion de la técnica “electrospinning” en aplicaciones farmacológicas”. Universidad Autónoma de Bucaramanga. 2010.; Asgar, Z., Kodakara, S., & Lilja, D. (2005). Fault-tolerant image processing using stochastic logic (Tech. Rep.). Retrieved from http://www.zasgar.net/zain/publications/publications.php; Bryant, R., & Chen, Y. (1995). Verification of arithmetic circuits with binary moment diagrams. In Proceedings of the 32nd Design Automation Conference (DAC ’95), San Francisco (pp.535-541).; DeHon, A. (2005). Nanowire-based programmable architectures. ACM Journal on Emerging Technologies in Computing Systems, 1(2), 109–162. doi:10.1145/1084748.1084750; FENA. (2006). Mission statement. Retrieved from http://www.fena.org; Qian, W, Backes, J, Riedel, M. (2009). The synthesis of stochastic Circuits for Nanoscale Computation; [ADAM 94] ADAMI, C., Learning and complexity in genetic auto¬adaptive systems. California Institute of Technology, 1994.; [ADEL 95] ADELI, H., Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems. John Wiley and Sons, Inc, 1995; S. A. Pérez. 2002. “Diseño de Sistemas Digitales con VHDL”. Ed. Thomson. Neil H. E. Weste and Kamran Eshraghian. Principles of CMOS VLSI Design. Addison-Wesley, 2nd edition, 1994; Xilinx Inc., 2100 Logic Drive, San Jose, CA 95124. The Programmable Gate ArrayData Book, 1991.; National Acdemy of Science. Panel on Scientific and Medical Aspects of Human Cloning. August 7, 2001; Vera, F. (2006). “Sistema Electrónico de clonación Artificial de un Sensor de Viscocidad Basado en Hardware Evolutivo.” Universidad de Pamplona; WINTER, D. A. Biomechanics and Motor Control of Human Movement. Warterloo: Warterloo Press, 1991.; Pedro Carlos Russi. Estudo De Um Modelo Dinâmico Para Avaliação Física Do Corpo Humano. Faculdade de Engenharia de Guaratinguetá da Universidade Estadual Paulista. Sao Paulo. Brasil; Sistema electrónico de clonacion artificial de un sensor de viscosidad basado en hardware evolutivo. Fredy Vera Perez trabajo de grado para optar por el título de ingeniero electrónico. Universidad de Pamplona. 2006; Muñoz Antonio F. Sensorica e instrumentación, Mecánica de Alta precisión. . Pueblo y educación. 1997; Maneiro Malavé Ninoska. Algoritmos genéticos aplicados al problema cuadrático de asignación de facilidades. Departamento de Investigación Operativa, Escuela de Ingeniería Industrial, Universidad de Carabobo, Valencia. Venezuela. Febrero 2002; Faustino, A, Muñoz, Mariela. (2010). “Algoritmos y Sistemas Genéticos Aplicados en sistema de control en Tiempo Real Obtenido por Clonación Artificial para Prótesis Mecatrónica de Piel Artificial con Nanopartículas.”. Universidad Autónoma de Bucaramanga y Universidad del Cauca, Colombia; Beneficios de la Nanotecnología: Presentación. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/nanotecnologia_benecios.html; Caro Bejarano, José (2012). Los riesgos mundiales en el 2012 según el foro económico mundial. ieee.es. Tomado de la red en Abril de 2015. URL: http://www.ieee.es/Galerias/chero/docs_informativos/2012/DIEEEI06-2012_ForoEconomicoMundial_RiesgosGlobales2012_MJCaro_v2.pdf; García Díaz, J. (2006). Normalización sobre Nanotecnologías. AENOR, p. 26-28. Tomado de la red en Abril de 2015. URL: http://www.nanospain.org/les/Working%20Groups/NanoSpain_WGIndustrial_Normalizacion.pdf; José Luis Carrillo Aguado. Cómo es la Nanotecnología según la FDA. Perdiositasenlinea.org. Tomado de la red en Abril de 2015. URL: 145 145 http://www.periodistasenlinea.org/modules.php?op=modload&name=News&le=article&sid=23516; Marquez, J. (2008). Nanobioética, nanobiopolítica y nanotecnología. Revista Salud Uninorte. 24 (1), 140-157. Tomado de la red en Abril de 2015. URL: http://rcienticas.uninorte.edu.co/index.php/salud/article/view/3824/2435; Organización de las Naciones Unidas para la Agricultura y la Alimentación y Organización mundial de la salud. Reunión Conjunta FAO/OMS de Expertos acerca de la aplicación de la nanotecnología en los sectores alimentario y agropecuario: posibles consecuencias para la inocuidad de los alimentos. Informe. Consultado en http://www.fao.org/docrep/015/i1434s/i1434s00.pdf; Panorama y perspectivas de la nanotecnología. Revista Virtual Pro, Agosto 2009 (91), pp17-18. Tomado de la red en Abril de 2015. URL: http://www.revistavirtualpro.com/revista/index.php?ed=2009-08-01&pag=17; Riesgos de la Nanotecnología. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/riesgos_nanotecnologia.htm; Creus Sole, A. “Instrumentación Industrial”. 7 ed., México: Alfaomega, 2005; Delgado, A. Inteligencia Artificial y Minirobots. Ecoe Ediciones, 1998; Ghosh, A. N. R. Pal, and S. K. Pal, "Self-organization for object extraction using a multilayer neural network and fuzziness measures," IEEE Transactions on Fuzzy Systems, vol. 1, pp. 54-58, 1993.; CARDENAS, J., Diseño Geométrico de Carreteras, Primera Edición, Ecoe Ediciones, 2011.; CARREÑO, Y., Investigación de Sistemas de Control Inteligente del Tráfico Vehicular y Desarrollo de Instrumentación de Alta Precisión de Parámetros Asociados al Monitoreo, Mando y Control Automáticos de Carreteras Urbanas. Programa Jóvenes Investigadores e Innovadores "Virginia Gutiérrez de Pineda Colciencias, Colombia 2011; MONTEJO, A., Ingeniería de Pavimentos. Fundamentos, Estudios Básicos y Diseño, Tercera Edición, Tomo 1, Universidad Católica de Colombia, 2010; C. J. Lin, C. H. Chen, and C. T. Lin, "Efficient self-evolving evolutionary learning for neurofuzzy inference systems," IEEE Transactions on Fuzzy Systems, vol. 16, pp. 1476- 1490, 2008.; D. Goldberg. Genetics Algorithms in Search, Optimization and Machine Learning. Massachusetts: Addison-Wesley Reading, 1983; D. Nauck, F. Klawonn, and R. Kruse, "Foundations of neuro-fuzzy systems," Chichester,U.K.: Wiley, 1997.; D. Valdez, “Automatización en el área de bodega en una empresa de correo y mensajería para lograr una mayor productividad”. M.S. tesis, Universidad De San Carlos De Guatemala, Guatemala, 2005; F. E. Cellier, Continuous System Modeling. New York, 1991; F. Munoz, “Sistemas de control inteligentes de la planta de viscorreduccion basados en la clonacion artificial de un sensor de viscosidad y parámetros asociados”; G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B. Rosen, "Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps," IEEE Transactions on Neural Networks, vol. 3, pp. 698-713, 1992; H. Boudouda, H. Seridi H. Akdag. “The Fuzzy Possibilistic C-Means Classifier”, Asian Journal of Infomation Technology, Vol. 4, no 11, pp. 981-985, 2005.; H. Ishibuchi, M. Nii, and T. Murata, "Linguistic rule extraction from neural networks and genetic-algorithm-based rule selection," in IEEE International Conference on Neural Networks - Conference Proceedings, Houston, TX, USA, 1997, pp. 2390-2395.; H. R. Berenji and P. Khedkar, "Learning and tuning fuzzy logic controllers through reinforcements," IEEE Transactions on Neural Networks, vol. 3, pp. 724-740, 1992.; H. Takagi, N. Suzuki, T. Koda, and Y. Kojima, "Neural networks designed on approximate reasoning architecture and their applications," IEEE Transactions on Neural http://www.unipamplona.edu.co/unipamplona/hermesoft/portalIG/home_2/recursos/investigacion/contenidos/01102007/sistemas_control_inteligente.jsp. [Consultado 20 Marzo 2013].; I. Lache, F. Muñoz, “Investigación de nuevos prototipos de sensores y sistema de control por clonación artificial, basados en técnicas de inteligencia artificial” [En línea]. Disponible: http://ivanovichlache.googlepages.com/PaperPamILS.doc [Consultado 3 Febrero 2013; J. Castro, J. Padilla y E. Romero, “Metodología para realizar una automatización utilizando PLC,” Impulso, Revista De Electrónica, Eléctrica Y Sistemas Computacionales, Departamento de Eléctrica y Electrónica del Instituto Tecnológico de Sonora, vol. 1, nro. 1, pp. 18-21, 2005; J. J. Buckley and Y. Hayashi, "Fuzzy neural networks: A survey," Fuzzy Sets andSystems, vol. 66, pp. 1-13, 1994.; J. J. Hopfield and D. W. Tank, "'Neural' computation of decisions in optimization problems," Biological Cybernetics, vol. 52, pp. 141-152, 1985.; J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities," Proceedings of the National Academy of Sciences of the United States of America, vol. 79, pp. 2554-2558, 1982.; J. M. Keller and D. J. Hunt, "Incorporating fuzzy membership functions into the perceptron algorithm," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-7, pp. 693-699, 1985; J. M. Keller and H. Tahani, "Implementation of conjunctive and disjunctive fuzzy logic rules with neural networks," International Journal of Approximate Reasoning, vol. 6, pp.221-240, 1992.; J. M. Keller, R. Krishnapuram, and F. C.-H. Rhee, "Evidence aggregation networks for fuzzy logic inference," IEEE Transactions on Neural Networks, vol. 3, pp. 761-769,1992; J. Rissanen, "Modeling by shortest data description," Automatica, vol. 14, pp. 465-471, 1978; J.-S. R. Jang, "ANFIS: adaptive-network-based fuzzy inference system," IEEE Transactions on Systems, Man and Cybernetics, vol. 23, pp. 665-685, 1993; J.S.R. Jang, N. Gulley, Natick. Fuzzy Logic Toolbox. MS, Mathworks, 2000; K. J. Aström and P. Eykhoff, "System identification-A survey," Automatica, vol. 7, pp. 123-162, 1971; K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop, "Neural networks for control systems - A survey," Automatica, vol. 28, pp. 1083-1112, 1992; K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks," IEEE Transactions on Neural Networks, vol. 1, pp. 4-27, 1990.; L. Ljung and Z.-D. Yuan, "Asymptotic Properties of Black-Box Identification of Transfer Functions," IEEE Transactions on Automatic Control, vol. AC-30, pp. 514-530, 1985.; L. Ljung, "System Identification: Theory for the User.," New Jersey: Prentice-Hall, 1999.; L.-X. Wang and J. M. Mendel, "Fuzzy basis functions, universal approximation, and orthogonal least-squares learning," IEEE Transactions on Neural Networks, vol. 3, pp. 807-814, 1992; Muñoz Mariela, Muñoz F, (2010). Diseño De Un Sistema De Control Basado en Clonación Artificial, ISSN: 1692-7257 Revista Tecnologías Avanzada Universidad de Pamplona, Colombia; N. K. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction," IEEE Transactions on Fuzzy Systems, vol. 10, pp. 144-154, 2002; N. K. Sinha and B. Kuszta, Modeling and identification of dynamic systems: Springer,1983. Networks, vol. 3, pp. 752-760, 1992; P. Angelov P. Filev, “An approach to online identification of Takagi-Sugeno fuzzy models”, IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(1), pp. 484-498, 2004.; P. Eykhoff, "System Identification," John Wiley, 1974; Q. Song and N. K. Kasabov, "NFI: A neuro-fuzzy inference method for transductive reasoning," IEEE Transactions on Fuzzy Systems, vol. 13, pp. 799-808, 2005; Q. Song and N. Kasabov, "TWNFI - a transductive neuro-fuzzy inference system with weighted data normalization for personalized modeling," Neural Networks, vol. 19, pp. 1591-1596, 2006; R. Babuska, Fuzzy Modeling for Control: Kluwer Academic Publishers, 1998; R. Haber and H. Unbehauen, "Structure identification of nonlinear dynamic systems - Asurvey on input/output approaches," Automatica, vol. 26, pp. 651-677, 1990.; R. J. Oentaryo, M. Pasquier, and C. Quek, "GenSoFNN-Yager: A novel brain-inspired generic self-organizing neuro-fuzzy system realizing Yager inference," Expert Systems with Applications, vol. 35, pp. 1825-1840; R. Johansson, "System Modeling and Identification," in Information and System Sciences New Jersey: Prentice Hall, 1993; S. C. Lee and E. T. Lee, "Fuzzy neural networks," Mathematical Biosciences, vol. 23, pp. 151-177, 1975; S. K. Pal and S. Mitra, "Multilayer perceptron, fuzzy sets, and classification," IEEE Transactions on Neural Networks, vol. 3, pp. 683-697, 1992; S. Mitra and S. K. Pal, "Fuzzy multi-layer perceptron, inferencing and rule generation," IEEE Transactions on Neural Networks, vol. 6, pp. 51-63, 19; S. Mitra and Y. Hayashi, "Neuro-fuzzy rule generation: survey in soft computing framework," IEEE Transactions on Neural Networks, vol. 11, pp. 748-768, 2000.; S. Mitra, "Fuzzy MLP based expert system for medical diagnosis," Fuzzy Sets and Systems, vol. 65, pp. 285-296, 1994; S.J. Derby, “Design of Automatic Machinery”, New York: Marcel Dekker, 2005; T. Calonge, L. Alonso, and R. Ralha, "Transputer implementations of a multilayer perceptron used for speech-recognition task," Microcomputer Applications, vol. 16, pp.64-69, 1997.; T. Kohonen, "The self-organizing map," Proceedings of the IEEE, vol. 78, pp. 1464-1480, 1990; T. Söderström and P. Stoica, "System Identification," New York: Prentice Hall, 1989.; U.K.: Wiley, 1997.; W. A. Farag, V. H. Quintana, and G. Lambert-Torres, "A genetic-based neuro-fuzzy approach for modeling and control of dynamical systems," IEEE Transactions on Neural Networks, vol. 9, pp. 756-767, 1998; W. L. Tung and C. Quek, "eFSM - A novel online neural-fuzzy semantic memory model," IEEE Transactions on Neural Networks, vol. 21, pp. 136-157, 2010.; Y. Hayashi, J. J. Buckley, and E. Czogala, "Fuzzy neural network with fuzzy signals and weights," International Journal of Intelligent Systems, vol. 8, pp. 527-537, 1993; Automatización de las vías, carreteras e inteligencia de automoviles – Pölliita Fänii http://pollitafannimecatronica.wordpress.com/2011/12/08/automatizacion-de-las-vias-carreteras-e-inteligencia-de-automoviles; Carreteras, Análisis de Tráfico – Vaisala http://es.vaisala.com/sp/roads/applications/trafficanalysis/Pages/default.as; La DGT trabaja en un proyecto para instaurar en España sistemas inteligentes de comunicación entre el vehículo y la vía – Lukor 150 150 http://www.lukor.com/ordenadores/11012301.htm; Sistemas inteligentes de transporte ¿Realidad o Ficción? – Circula Seguro http://www.circulaseguro.com/vehiculos-y-tecnologia/sistemas-inteligentes-de-transporte-ficcion-o-realidad; Sistemas inteligentes de transporte http://www.google.com.co/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&ved=0CFEQFjAH&url=http%3A%2F%2Fwww.iies.es%2Fattachment%2F115765%2F&ei=yS5GUfTzLIrW0gGF3YDIBw&usg=AFQjCNF2RLjXUUjDjor9B-xqi5tlblePbw&bvm=bv.43828540,d.eWU&cad=rja; CICNetwork – Ciencia y Tecnología http://www.cicnetwork.es/upload/pdf/revistas/CN1.p; BARROSO OLIVEIA, Luis Manuel. Automatização e controlo de um sistema de electrospinning [en línea]. Universidade do Minho, Escola de Engenharia. Octubre de 2011. Disponible en Internet: https://repositorium.sdum.uminho.pt/bitstream/1822/16498/1/pg16155_TESE_MEM.pdf; DUQUE SÁNCHEZ, Lina Marcela; RODRÍGUEZ, Leonardo y LÓPEZ, Marcos. Electrospinning: La Era de las Nanofibras [en línea]. En: Revista Iberoamericana de Polímeros Volumen 14(1), Enero de 2013; Siti Fatimah Abd Rahman, Nor Azah Yusof, Uda Hashim, M. Nuzaihan Md Nor. “Design and Fabrication of Silicon Nanowire based Sensor”. Institute of Advanced Technology, Universiti Putra Malaysia. 2013; Qian, W, Backes, J, Riedel, M. (2009). The synthesis of stochastic Circuits for Nanoscale Computation.; Rodríguez Pacheco, Jorge Humberto. “Prototipo automatizado para la implementacion de la técnica “electrospinning” en aplicaciones farmacológicas”. Universidad Autónoma de Bucaramanga. 2010.; MANTILLA, Oscar Alberto. Diseño y Construcción de un Prototipo Electro-mecánico para la Implementación de la Técnica " Electrospinning " en Aplicaciones Farmacológicas. Junio de 2006.; Jie Chen y Hua Li, “Design Methodology for Hardware-efficient Fault-tolerant Nanoscale Circuits”, en IEEE International Symposium on Circuits and Systems’ 2006; USERO, Rafael y SUÁREZ, Natalia. Electrospinning de poliesteramidas Biodegradables [en línea]. 2010. [Citado 3 feb 2016] Disponible en Internet; MUÑOZ, A.F., Aplicación de los algoritmos genéticos en la identificación y control de bioprocesos por clonación artificial. IEEE Transactions on Systems, Man, and Cybernetic V 19 No. 2 58-76, 1998; MUÑOZ, A.F., Tecnología de clonación artificial on-line de sensores y controladores. Oficina Internacional de Invenciones, Patentes y Marcas, República de Cuba. Registros No. 7-789735, 2000; ADAMI, C., Learning and complexity in genetic auto¬adaptive systems. California Institute of Technology, 1994; ADELI, H., Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems. John Wiley and Sons, Inc, 1995.; Vera, F. “Sistema Electrónico de clonación Artificial de un Sensor de Viscocidad Basado en Hardware Evolutivo.” Universidad de Pamplona. 2006; Faustino, A, Muñoz, Mariela. (2010). “Algoritmos y Sistemas Genéticos Aplicados en sistema de control en Tiempo Real Obtenido por Clonación Artificial para Prótesis Mecatrónica de Piel Artificial con Nanopartículas.”. Universidad Autónoma de Bucaramanga y Universidad del Cauca, Colombia.; Beneficios de la Nanotecnología: Presentación. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/nanotecnologia_bene¬cios.htm; Caro Bejarano, José (2012). Los riesgos mundiales en el 2012 según el foro económico mundial. ieee.es. Tomado de la red en abril de 2015. URL: http://www.ieee.es/Galerias/-chero/docs_informativos/2012/DIEEEI06-2012_ForoEconomicoMundial_RiesgosGlobales2012_MJCaro_v2.pdf; García Díaz, J. (2006). Normalización sobre Nanotecnologías. AENOR, p. 26-28. Tomado de la red en Abril de 2015. URL: http://www.nanospain.org/-les/Working%20Groups/NanoSpain_WGIndustrial_Normalizacion.pdf; José Luis Carrillo Aguado. Cómo es la Nanotecnología según la FDA. Perdiositasenlinea.org. Tomado de la red en abril de 2015. URL: http://www.periodistasenlinea.org/modules.php?op=modload&name=News&-le=article&sid=23516; Marquez, J. (2008). Nanobioética, nanobiopolítica y nanotecnología. Revista Salud Uninorte. 24 (1), 140-157. Tomado de la red en Abril de 2015. URL: http://rcienti-cas.uninorte.edu.co/index.php/salud/article/view/3824/2435; Ingeniería en Nanotecnología. Upb. Tomado de la red en Mayo 17 de 2015. URL: http://www.upb.edu.co/portal/page?_pageid=1054,53529575&_dad=portal&_schema=PORTAL; GALVIS, Dalya Julieth. Sistema de electroestimulación por tecnología de fabricación de electrohilado. Noviembre de 2014; GAMBOA, Wilsón., MANTILLA, O., CASTILLO, V., Producción de micro y nano fibras a partir de la técnica “Electrospinning” para aplicaciones farmacológicas. Agosto, 2007, vol. 053, 1-4; J. Chen, J. Mundy, Y. Bai, S. Chan, P. Petrica, y R. I. Bahar, “A probabilistic approach to nano-computing,” En Proceedings of the Second Workshop on Non-Silicon Computing, San Diego, CA, Junio 2003.; K. N. Patel, I. L. Markov, y J. P. Hayes, “Evaluating circuit reliability under probabilistic gate-level fault models,” en IEEE International Workshop on Logic and Synthesis, 2003.; MODELAJE Y SIMULACION MULTIFISICA DE UN SENSOR DE GAS DE Sno2 EN COVENTORWARE™. Andrés Felipe Méndez Jiménez, Alba Ávila Bernal. Departamento de Ingeniería Eléctrica y Electrónica, Universidad de los Andes. Bogota, Colombia. Noviembre de 2005; MEMORIAS I SEMINARIO INTERNACIONAL DE NANOTECNOLOGÍA UDES 2011.; HERSEL U., DAHMEN C., KESSLER H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. Vol. 24, 2003, p. 4385-4415; DOSHI, Jayesh., RENEKER, Darrell H. Electrospinning process and applications of electrospun fibers: Journal of Electrostatic. Agosto, 1995, vol. 35. 151-160.; J.S.R Jang y Sun C.T(1993) Funcional Equivalence Berween Radial Basis Funtion Networks and Fuzzy Inference Systems. IEEE Transactions on Neuronal Networks.; K.F. Man and K.S. Tang Genetic Algorithms for Control and Signal Processing Department of Electronic Engineering City University of Hong Kong; Haber and H. Unbehauen, "Structure identification of nonlinear dynamic systems – A survey on input/output approaches," Automatica, vol. 26, pp. 651-677, 1990; Delgado Alberto Rule Based System with DNA Chip Proceedings of the 2003 IEEE International Symposium on Intelligent Control Houston, Texas October 5-8, 2003; D. Frenkel, B. Smit, Understanding Molecular Simulations software SIESTA: from algorithms to applications, Academic Press (1996; Huifei Rao, Jie Chen, Changhong Yu, Woon Tiong and others Ensemble Dependent Matrix Methodology for Probabilistic-Based Fault-tolerant Nanoscale Circuit Design; Muñoz Antonio F NUEVOS MÉTODOS Y PROCEDIMIENTOS DE ALTA PRECISIÓN APLICADO A PAVIMENTOS Y VÍA CERTIFICADO DE REGISTRO DE SOPORTE LÓGICO – SOFTWARE TÉCNICAS DE INTELIGENCIA ARTIFICIAL BASADOS EN ALGORITMOS GEN ÉTICOS PARA DETERMINAR EL DESEMPEÑO A PARTIR DE LOS PARÁMETROS DE COMPORTAMIENTO Libro - Tomo – Partida 13-40-467 Fecha Registro 03-Feb-2014; Durakbasa et PUC Río Brasil CERTIFICADO DE DERECHO DE AUTOR Registro 0410263/CA Fuzzy Logic Measurement Nanosystems d; Entrenamientos. “Fitness y electroestimulación”. Tomado de la red en Agosto de 2014. URL: http://www.entrenamientos.org/entrenamiento-fisico/item/70-fitness-y-electroestimulacion; Entrenamientos. “Entrenamiento físico y electroestimulación”. Tomado de la red en Agosto de 2014. URL: http://www.entrenamientos.org/entrenamiento-fisico/item/47-electroestimulacion; Martinez, Pau & Marín, Pedro. “Diseño y estudio de una máquina de electrospinning”. Tomado de la red en Agosto Septiembre de 2014. URL: https://upcommons.upc.edu/pfc/bitstream/2099.1/7123/4/03_Mem%C3%B2ria.pdf; Jaimes Moreno, Edgar Mauricio. “Electroestimulador inteligente y sistema de clonación artificial de sensores de movimiento y control adaptativo-predictivo, por acupuntura con agujas-electrodos y transmisión inalámbrica, evaluado en un diseño de prototipo construido”. Universidad Autónoma de Bucaramanga. 2009; Rodriguez Pacheco, Jorge Humberto. “Prototipo automatizado para la implementacion de la técnica “electrospinning” en aplicaciones farmacológicas”. Universidad Autónoma de Bucaramanga. 2010; FENA. (2006). Mission statement. Retrieved from http://www.fena.org Qian, W, Backes, J, Riedel, M. (2009). The synthesis of stochastic Circuits for Nanoscale Computation.; MUÑOZ, A.F., Aplicación de los algoritmos genéticos en la identificación y control de bioprocesos por clonación artificial. IEEE Transactions on Systems, Man, and Cybernetic V 19 No. 2 58-76, 19; MUÑOZ, A.F., Equipo de control genético de la composición en medios continuos on-line. Oficina Internacional de Invenciones, Patentes y Marcas, República de Cuba. Registros No. 7-789734, 2001; ADELI, H., Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems. John Wiley and Sons, Inc, 1995; Vera, F. (2006). “Sistema Electrónico de clonación Artificial de un Sensor de Viscocidad Basado en Hardware Evolutivo.” Universidad de Pamplona. WINTER, D. A. Biomechanics and Motor Control of Human Movement. Warterloo: Warterloo Press, 1991.; Maneiro Malavé Ninoska. Algoritmos genéticos aplicados al problema cuadrático de asignación de facilidades. Departamento de Investigación Operativa, Escuela de Ingeniería Industrial, Universidad de Carabobo, Valencia. Venezuela. Febrero 2; Faustino, A, Muñoz, Mariela. (2010). “Algoritmos y Sistemas Genéticos Aplicados en sistema de control en Tiempo Real Obtenido por Clonación Artificial para Prótesis Mecatrónica de Piel Artificial con Nanopartículas.”. Universidad Autónoma de Bucaramanga y Universidad del Cauca, Colomb; Beneficios de la Nanotecnología: Presentación. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/nanotecnologia_benecios.htm; García Díaz, J. (2006). Normalización sobre Nanotecnologías. AENOR, p. 26-28. Tomado de la red en Abril de 2015. URL: 157 157 http://www.nanospain.org/les/Working%20Groups/NanoSpain_WGIndustrial_Normalizacion.pdf; José Luis Carrillo Aguado. Cómo es la Nanotecnología según la FDA. Perdiositasenlinea.org. Tomado de la red en Abril de 2015. URL: http://www.periodistasenlinea.org/modules.php?op=modload&name=News&le=article&sid=23516; Panorama y perspectivas de la nanotecnología. Revista Virtual Pro, Agosto 2009 (91), pp17-18. Tomado de la red en Abril de 2015. URL: http://www.revistavirtualpro.com/revista/index.php?ed=2009-08-01&pag=17 Riesgos de la Nanotecnología. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/riesgos_nanotecnologia.htm; D. Olea, S.S. Alexandre, P. Amo-Ochoa, A. Guijarro, F. de Jesús, J.M. Soler, P.J. de Pablo, F. Zamora, J. Gómez Herrero, Advanced Materials 2005, 17, 1761-176; “Assembling of Dimeric Entities of Cd(II) with 6-Mercaptopurine to Afford One dimensional Coordination Polymers: Synthesis and Scanning Probe Microscopy Characterization”. P. Amo-Ochoa, M.I. Rodríguez-Tapiador, O. Castillo, D. Olea, A. Guijarro, S.S. Alexandre, J. Gómez-Herrero, F. Zamora, Inorganic Chemistry 2006, 45, 7642-7650.; “Electrical Conductivity in Platinum-Dimer Columns”. A. Guijarro, O. Castillo, A. Calzolari, P. J. Sanz Miguel, C. J. Gómez-García, R. di Felice, F. Zamora, Inorganic Chemistry 2008, 47, 9736-9738.; “Organization of Cordination Polymers on Surfaces by Direct Sublimation”. L. Welte, U. García-Couceiro, O. Castillo, D. Olea, C. Polop, A. Guijarro, A. Luque, J.; M. Gómez-Rodríguez, J. Gómez Herrero, F. Zamora, Advanced Materials 2009, 21, 2025-2028.; “Nanofibers generated by spontaneous self-assembly on surfaces of individual bimetallic building blocks”. R. Mas-Ballesté, R. Gonzalez-Prieto, A. Guijarro, M. A. Fernández, F. Zamora, Dalton Transactions 2009, Submitted; “MMX as conductors from single crystals to nanostructures”. A. Guijarro, O. Castillo, L. Welte, A. Calzolari, P. J. Sanz Miguel, C. J. Gómez-García, D. Olea, R. di Felice, J. Gómez-Herrero, F. Zamora, Journal of the American Chemical Society 2009, Subm; Ozin, G.; Arsenault, A. C. “Nanochemistry, A Chemical Aproach to Nanomaterials” RSC Publishing, 2005; página web http://www.intel.com, marzo 2009. 3 (a) Gates, B. D. Chem. Rev. 2005, 105, 1171-1196 (b) Barth, J. V. Nature 2005, 437,671-679.; Bibliografía Software Molecular workbench Charles Xie. SPORE, Science Prize for Online Resources in Education; http://www.sciencemag.org/site/special/spore/; Pryor. R. W. Multiphysics Modeling Using COMSOL: A First Principles Approach (Jones and Bartlett Publishers, Sudbury, MA, 2009).; Bridson, C. R. Batty, Science 330, 1756 (2010). Abstract/FREE Full Text; Finkelstein N. D. et al., Phys. Rev. Spec. Top. Phys. Educ. Res. 1, 010103 (2005). CrossRef; Klahr,L. M. Triona, C. Williams, J. Res. Sci. Teach. 44, 183 (2007). CrossRefWeb of Scie; Leach A. R., Molecular Modeling: Principles and Applications (Pearson Education, Upper Saddle River, NJ, ed.2, 2001). D. C. Rappaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, Cambridge,1997; N. Watanabe, M. Tsukada, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62, (2 Pt B), 2914 (2000). CrossRefPubMed; R. Feynman, J. Microelectromech. Syst. 1, 60 (1992). CrossRef; W. H. Schmidt, C. C. McKnight, S. A. Raizen , A Splintered Vision: An Investigation of U.S. Science and Mathematics Education (Kluwer Academic Press, Boston, MA, 1997).; National Research Council, Conceptual Framework for New Science Education Standards, update 7,March 2011; http://www7.nationalacademies.org/bose/Standards_Framework_Homepage.html. Y. B. Kafai, Games Cult. 1, 36 (2006).; William Humphrey, Andrew Dalke, and Klaus Schulten. VMD - Visual Molecular Dynamics. J. Mol. Graphics, 14:33-38, 199; Rajeev Sharma, Michael Zeller, Vladimir I. Pavlovic, Thomas S. Huang, Zion Lo, Stephen Chu, Yunxin Zhao, James C. Phillips, and Klaus Schulten. Speech/gesture interface to a visual-computing environment. IEEE Comp. Graph. App., 20:29-37, 2000.; Simon Cross, Michelle M. Kuttell, John E. Stone, and James E. Gain. Visualization of cyclic and multi-branched molecules with VMD. J. Mol. Graph. Model., 28:131-139, 2009.; John E. Stone, Axel Kohlmeyer, Kirby L. Vandivort, and Klaus Schulten. Immersive molecular visualization and interactive modeling with commodity hardware. Lect. Notes in Comp. Sci., 6454:382-393, 2010.; John E. Stone, Kirby L. Vandivort, and Klaus Schulten. Immersive out-of-core visualization of large-size and long-timescale molecular dynamics trajectories. Lect. Notes in Comp. Sci., 6939:1-12, 2011.; John E. Stone, William R. Sherman, and Klaus Schulten. Immersive molecular visualization with omnidirectional stereoscopic ray tracing and remote rendering. 2016 IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW), pages 1048-1057, 2016; Michael Zeller, James C. Phillips, Andrew Dalke, William Humphrey, Klaus Schulten, Rajeev Sharma, T. S. Huang, V. I. Pavlovic, Y. Zhao, Z. Lo, and S. Chu. A visual computing environment for very large scale biomolecular modeling. In Proceedings of the 1997 IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), pages 3-12. IEEE Computer Society Press, 1997; John E. Stone, Justin Gullingsrud, Paul Grayson, and Klaus Schulten. A system for interactive molecular dynamics simulation. In John F. Hughes and Carlo H. Séquin, editors, 2001 ACM Symposium on Interactive 3D Graphics, pages 191-194, New York, 2001. ACM SIGGRAPH.; Matthieu Chavent, Tyler Reddy, Joseph Goose, Anna Caroline E. Dahl, John E. Stone, Bruno Jobard, and Mark S.P. Sansom. Methodologies for the analysis of instantaneous lipid diffusion in MD simulations of 161 161 large membrane systems. Faraday Discuss., 169:455-475, 2014.; Benjamin G. Levine, John E. Stone, and Axel Kohlmeyer. Fast analysis of molecular dynamics trajectories with graphics processing units-radial distribution function histogramming. J. Comp. Phys., 230:3556-3569, 2011.; John Stone and Mark Underwood. Rendering of numerical flow simulations using MPI. In Second MPI Developer's Conference, pages 138-141. IEEE Computer Society Technical Committee on Distributed Processing, IEEE Computer Society Press, 1996.; John E. Stone. An Efficient Library for Parallel Ray Tracing and Animation. Master's thesis, Computer Science Department, University of Missouri-Rolla, April 1998.; John E. Stone, Barry Isralewitz, and Klaus Schulten. Early experiences scaling VMD molecular visualization and analysis jobs on Blue Waters. In Extreme Scaling Workshop (XSW), 2013, pages 43-50, Aug. 2013; I. Wald, G. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers, J. Gunther, and P. Navratil. OSPRay - a CPU ray tracing framework for scientific visualization. IEEE Transactions on Visualization and Computer Graphics, 23(1):1-1, 20; John E. Stone, James C. Phillips, Peter L. Freddolino, David J. Hardy, Leonardo G. Trabuco, and Klaus Schulten. Accelerating molecular modeling applications with graphics processors. J. Comp. Chem., 28:2618-2640, 2007.; John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone, and James C. Phillips. GPU computing. Proc. IEEE, 96:879-899, 2008; Christopher I. Rodrigues, David J. Hardy, John E. Stone, Klaus Schulten, and Wen-mei W. Hwu. GPU acceleration of cutoff pair potentials for molecular modeling applications. In CF'08: Proceedings of the 2008 conference on Computing Frontiers, pages 273-282, New York, NY, USA, 2008. AC; David J. Hardy, John E. Stone, and Klaus Schulten. Multilevel summation of electrostatic potentials using graphics processing units. J. Paral. Comp., 35:164-177, 2009.; Volodymyr Kindratenko, Jeremy Enos, Guochun Shi, Michael Showerman, Galen Arnold, John E. Stone, James Phillips, and Wen-mei Hwu. GPU clusters for high performance computing. In Cluster Computing and Workshops, 2009. CLUSTER '09. IEEE International Conference on, pages 1-8, 2009; John E. Stone, David J. Hardy, Ivan S. Ufimtsev, and Klaus Schulten. GPU-accelerated molecular modeling coming of age. J. Mol. Graph. Model., 29:116-125, 2010; John E. Stone, David Gohara, and Guochun Shi. OpenCL: A parallel programming standard for heterogeneous computing systems. Comput. in Sci. and Eng., 12:66-73, 2010.; Jeremy Enos, Craig Steffen, Joshi Fullop, Michael Showerman, Guochun Shi, Kenneth Esler, Volodymyr Kindratenko, John E. Stone, and James C. Phillips. Quantifying the impact of GPUs on performance and energy efficiency in HPC clusters. In International Conference on Green Computing, pages 317-324, 2010.; John E. Stone, David J. Hardy, Barry Isralewitz, and Klaus Schulten. GPU algorithms for molecular modeling. In Jack Dongarra, David A. Bader, and Jakub Kurzak, editors, Scientific Computing with Multicore and Accelerators, chapter 16, pages 351-371. Chapman & Hall/CRC Press, 2011; David J. Hardy, Zhe Wu, James C. Phillips, John E. Stone, Robert D. Skeel, and Klaus Schulten. Multilevel summation method for electrostatic force evaluation. J. Chem. Theor. Comp., 11:766-779, 201; John E. Stone, Ryan McGreevy, Barry Isralewitz, and Klaus Schulten. GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting. Faraday Discuss., 169:265-283, 2014; Abhishek Singharoy, Ivan Teo, Ryan McGreevy, John E. Stone, Jianhua Zhao, and Klaus Schulten. Molecular dynamics-based refinement and validation with Resolution Exchange MDFF for sub-5 Å cryo-electron microscopy maps. eLife, 10.7554/eLife.16105, 2016. (66 pages).; John E. Stone, Juan R. Perilla, C. Keith Cassidy, and Klaus Schulten. GPU-accelerated molecular dynamics clustering analysis with OpenACC. In Robert Farber, editor, Parallel Programming with OpenACC, pages 215-240. Morgan Kaufmann, Cambridge, MA, 2016; John E. Stone, Jan Saam, David J. Hardy, Kirby L. Vandivort, Wen-mei W. Hwu, and Klaus Schulten. High performance computation and interactive display of molecular orbitals on GPUs and multi-core CPUs. In Proceedings of the 2nd Workshop on General-Purpose Processing on Graphics Processing Units, ACM International Conference Proceeding Series, volume 383, pages 9-18, New York, NY, USA, 2009. ACM.; John E. Stone, David J. Hardy, Jan Saam, Kirby L. Vandivort, and Klaus Schulten. GPU-accelerated computation and interactive display of molecular orbitals. In Wen-mei Hwu, editor, GPU Computing Gems, chapter 1, pages 5-18. Morgan Kaufmann Publishers, 2011; John E. Stone, Michael J. Hallock, James C. Phillips, Joseph R. Peterson, Zaida Luthey-Schulten, and Klaus Schulten. Evaluation of emerging energy-efficient heterogeneous computing platforms for biomolecular and cellular simulation workloads. 2016 IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW), pages 89-100, 2016.; John E. Stone, Antti-Pekka Hynninen, James C. Phillips, and Klaus Schulten. Early experiences porting the NAMD and VMD molecular simulation and analysis software to GPU-accelerated OpenPOWER platforms. Lect. Notes in Comp. Sci., 9945:188-206, 2016; Michael Krone, John E. Stone, Thomas Ertl, and Klaus Schulten. Fast visualization of Gaussian density surfaces for molecular dynamics and particle system trajectories. In EuroVis - Short Papers 2012, pages 67-71, 2012; Elijah Roberts, John E. Stone, and Zaida Luthey-Schulten. Lattice microbes: High-performance stochastic simulation method for the reaction-diffusion master equation. J. Comp. Chem., 34:245-255, 2013.; Structures et fonctions des molécules biologiques. Utilisations pédagogiques des visualisations tridimensionnelles avec Rasmol. J. Barrère, J-Y Dupont and N. Salamé. INRP, 1997, 128 pages.; Surprising similarities in structure comparison. Jean-François Gilbrat, Thomas Madej, and Stephen H. Bryant. Current Opinion in Structural Biology 6:377-385, 1996. A review of early results of searcing for similarities in structure, regardless of sequence similarities. Describes the Vector Alignment Search Tool (VAST) provided by the US National Center for Biotechnology Information; GlaxoWellcome and MDL become entangled in the Web, by John Hodgson, Nature Biotechnology 14:690, June 1996. This article concerning RasMol and Chime is full of errors. See the editorial comment; A Dynamic Look at Structures: WWW-Entrez and the Molecular Modeling Database, by Christopher W. V. Hogue, Hitomi Ohkawa and Stephen H. Bryant. Trends in Biochemical Sciences, 21:226-9, 1996. All PDB files have been converted to the WWW-Entrez format ASN.1. This format can handle a broader range of 3D structural information, including for example models from electron microscopy. WWW-Entrez links 3D structural information with GenBank sequences and MEDLINE abstracts. Related structures can be identified. Kinemage animations are generated automatically to reveal information buried in PDB files, such as thermal factors, disordered zones, and multiple NMR models.; RasMol: Biomolecular graphics for all, by Roger A. Sayle and E. James Milner-White, Trends in Biochemical Sciences 20(Sept):374-376, 1995. RasMol was first widely distributed via the Internet in June, 1993, but this is the original paper publication describing RasMol; Hyperactive Molecules and the World-Wide-Web Information System, by Omer Casher, Gudge K. Chandramohan, Martin J. Hargreaves, Christopher Leach, Peter Murray-Rust, Henry S. Rzepa, Roger A. Sayle and Benjamin J. Whitaker. J. Chem. Soc., Perkin Trans. 2, 1995, 7. This paper proposes sharing chemical data too bulky for journal publication via World Wide Web. To accomplish this, it introduces various new chemical MIME (Multipurpose Internet Mail Extension) types, including chemical/x-csml for the Chemical Structure Markup Language which can be understood by RasMol; Software for viewing biomolecules in three dimensions on the Internet, by Alvaro Sanchez-Ferrer, Estrella Nunez-Delicado, and Roque Bru, Trends in Biochemical Sciences 20(July):286-288, 1995.Compares RasMol 2.5, pdVwin, Pkin_2_4/Mage_2_4, Hyperchem 3; Utilisations pédagogiques des visualisations tridimensionelles de molécules en biologie, by J. Barrère, J.-Y. Dupont, and N. Salamé, in Images numériques dan l'enseignement des sciences, Journées d'études CNAM, June 1995, J. C. Le Touzé and N. Salamé, eds., Institut Nationale de Recherche Pédagogique, pp. 87-93. A brief introduction to the use of RasMol for educational molecular visualization of DNA and proteins, touching on hemoglobin and the active site of carboxypeptidase. Illustrated.; Kinemages: make your own molecules for teaching, by Charles W. Sokolik, Trends in Biochemical Sciences 20(March):122-4, 1995; Kinemages -- simple macromolecular graphics for interactive teaching and publication, by David C. Richardson and Jane S. Richardson, Trends in Biochemical Sciences 19(March):135-8, 1994.; CPK models are very informative during the process of putting them together, but the completed models all look alike. Computer versions of CPK models have successfully imitated their appearance and most of their disadvantages (the fact that the inside is completely hidden, and the difficulty of identifying an atom or group), without, so far, imitating the real virtue of CPK's, which is the physical "feel" for the bumps, constraints, and degrees of freedom one obtains by manipulating them.; The Kinemage: A tool for scientific communication, by David C. Richardson, and Jane S. Richardson, Protein Science 1:3-9, 1992; Feynman. R, There’s Plenty of Room at the Bottom, American Physical Society, 1959. H.D. Gilbert, Miniaturization Reinhold Publishing Corp, N.Y, 1961,282. http://www.zyvex.com/nanotech/feynman.html. 2 N. Taniguchi, “On the Basic Concept of Nanotechnology”, Proc.Intl.Conf.Prod.Eng, Tokyo 1974, 18. 3 T. Theis, D. Parr, P. Binks, J. Ying, K. E.; Drexler, E. Schepers, K. Mullis, C. Bai, J. J. Boland, R. Langer, P. Dobson, C. N. R. Rao, M. Ferrari, , Nat.Nanotech. 2006,1,8. 4 J. J. Ramsden, Nanotechnology: An Introduction, Elsevier, Amsterdam, 2011. 5 (a) G. Binnig, H. Rohrer, IBM Journal of Research and Development 1986,30,355. (b) G.; Binnig, H. Rohrer, Rev. Mod. Phys. 1987, 59,615. 6 D. Eigler, E. Schweizer, Nature 1990,344,.524. 7 167 167 http://researcher.watson.ibm.com/researcher/view_group.php?id=4245 8 (a) C. P. Poole Jr., F. J.; Owens, Introduction To Nanotechnology, John Wiley & Sons, New Yersey, 2003. (b) R. Kelsall, I. W. Hamley, M. Geoghegan, Nanoscale Science and Technology, John Wiley & Sons, UK, 2005. 9 (a) M. Pagliaro, Nano-Age: How Nanotechnology Changes our Future, Wiley-VCH, Weinheim 2010 (b) J. J. Ramsden, Applied Nanotechnology. The Conversion of Research Results to Products, Elsevier, Amsterdam, 2014; V.V. Pokropivny, V.V. Skorokhod, Mater.Sci.Eng.C 2007,27,990. (b) K. Ariga, M. Li, G. J. Richards, J. P. Hill, J. Nanosci.Nanotechnol.2011,11,1. 11 (a) M. Wautelet, Eur. J. Phys. 2001; E. Roduner, Chem. Soc. Rev. 2006, 35, 583. (c) G. Hodes, Adv. Mater. 2007, 19, 639. 12 C. Baia, M. Liub, Nano Today 2012,7,258. 13 (a) B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, Chem. Rev. 2005, 105, 1171. (b) M. J. Köhler, W. Fritzsche, Nanotechnology: An Introduction to Nanostructuring Techniques, 2nd Ed., Wiley-VCH, Weinheim, 2007.; The Royal Society & The Royal Academy of Engineering, Nanoscience and nanotechnologies: opportunities and uncertainties, London, 2004 (http://www.nanotec.org.uk/finalReport.htm).; T. Ito, S. Okazaki, Nature 2000,406,1027.; Basnar, I. Willner, Small 2009,5,28; G. Cao, Nanostructures and nanomaterials, Imperial College Press, London, UK, 2009.; Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, J. N. Coleman, Science 2013,340,1420; http://hdl.handle.net/20.500.12749/7272; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Dostupnosť: https://hdl.handle.net/20.500.12749/7272
-
13
Alternate Title: VRINMOTION: Use of Augmented Reality in the Furniture Sector. (English)
Autori: a ďalší
Zdroj: RISTI: Iberian Journal on Information Systems & Technologies / Revista Ibérica de Sistemas e Tecnologias de Informação; Jun2011, Issue 7, p1-16, 16p
-
14
Autori: Bermon Angarita, Leonardo
Predmety: 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación, Ingeniería de software -- Administración -- Problemas, ejercicios, etc, Proceso de desarrollo de software, Desarrollo de software de aplicaciones, Medición de software, Software de entornos de trabajo, Lenguajes de modelado (Computación), Ingeniería de software -- Ciclo de vida -- Normas técnicas, Proceso de mejora continua -- Normas técnicas, Sistemas informáticos -- Gestión - - Problemas, Mejora de procesos, Metodología de desarrollo de software, Gestión de proyectos de software
Popis súboru: 647 páginas; application/pdf; application/epub+zip; image/png
Relation: Anton, C. y Anton, D. (2001). ISO 9000:2000 Survival Guide: 30 Minutes to Understanding the Process. aem Consulting Group.; Balzer, R. (1990). What we do and don’t know about software process. En Proceedings of the 6th International Software Process Workshop’Support for the Software Process’ (pp. 61-62). IEEE Computer Society. https://doi.ieeecomputersociety.org/10.1109/ ISPW.1990.659574; Boehm, B. (2006). A view of 20th and 21st century software engineering. En Proceedings of the 28th International Conference on Software Engineering (pp. 12-29). https://doi. org/10.1145/1134285.1134288; Boehm, B. W. y Turner, R. (2004). Balancing agility and discipline: A guide for the perplexed. Addison-Wesley.; Bourque, P. y Fairley, R. E. (eds.) (2014). Guide to the software engineering body of knowledge, version 3.0. ieee Computer Society. http://artemisa.unicauca.edu.co/~cardila/ IS__SWEBOKv3.pdf; Brookse, F. (1986). No silver bullet: Essence and accident in software engineering. En Proceedings of the ifip 10th World Computing Conference, Dublin, Ireland (pp. 1069-1076).; Cignoni, G. A. (2000). Software process technologies and the competitiveness challenge. En R. Conradi (eds.), Software Process Technology. ewspt 2000. Lecture Notes in Computer Science (pp. 151-155). Springer. https://doi.org/10.1007/BFb0095024; Clarke, P. y O’Connor, R. V. (2012). The situational factors that affect the software development process: Towards a comprehensive reference framework. Information and Software Technology, 54(5), 433-447. https://doi.org/10.1016/j.infsof.2011.12.003; Conway, M. E. (1968). How do committees invent? Datamation, 14(4), 28-31. https:// hashingit.com/elements/research-resources/1968-04-committees.pdf; Emami, M. S., Ithnin, N. B. y Ibrahim, O. (2010). Software process engineering: Strengths, weaknesses, opportunities and threats. En INC2010: 6th International Conference on Networked Computing (pp. 1-5). IEEE.; Erdogmus, H. (2008). Seven essentials of software process. En Proceedings of the 1st International Workshop on Business Impact of Process Improvements (pp. 39-40). https://doi. org/10.1145/1370837.1370846; Estublier, J. (2005). Software are processes too. En M. Li, B. Boehm y L. J. Osterweil (eds.), Software Process Workshop (pp. 25-34). Springer. https://doi.org/10.1007/11608035_3; Fairley, R. E. (2009). Managing and leading software projects. John Wiley & Sons.; Feiler, P. H. y Humphrey, W. S. (1993). Software process development and enactment: Concepts and definitions. En Proceedings of the Second International Conference on the Software Process-Continuous Software Process Improvement (pp. 28-40). ieee. https:// doi.org/10.1109/SPCON.1993.236824; Finkelstein, A., Kramer, J. y Nuseibeh, B. (1994). Software process modelling and technology. Research Studies Press.; Florac, W., Park, R. y Carleton, A. (1997). Practical software measurement: Measuring for process management and improvement. cmu/sei-97-hb-003. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu.edu/documents/ 1627/1997_002_001_16529.pdf; Forrester, E. (2006). A process research framework: The International Process Research Consortium (iprc). Software Engineering Institute, Carnegie Mellon University. https:// insights.sei.cmu.edu/documents/1301/2006_014_001_30505.pdf; Fuggetta, A. (2000). Software process: A roadmap. En Proceedings of the Conference on the Future of Software Engineering (pp. 25-34). https://doi.org/10.1109/CERMA.2012.25; Garg, P. K. (1995). Process-centered software engineering environments. IEEE Computer Society Press.; Henderson-Sellers, B. y González-Pérez, C. (2005). A comparison of four process metamodels and the creation of a new generic standard. Information and Software Technology, 47(1), 49-65. https://doi.org/10.1016/j.infsof.2004.06.001; Humphrey, W. S. (1988). Characterizing the software process: A maturity framework. ieee Software, 5(2), 73-79. https://doi.org/10.1109/52.2014; Isaias, P. y Issa, T. (2015). High level models and methodologies for information systems. Springer. https://doi.org/10.1007/978-1-4614-9254-2; Jalote, P. (2002). Software project management in practice. Addison Wesley.; Kneuper, R. (2002). Supporting software processes using knowledge management. En S. K. Chang (ed.), Handbook of software engineering and knowledge engineering (vol. 2, pp. 579-606). World Scientific. https://doi.org/10.1142/9789812389701_0025; Kneuper, R. (2018). Software processes and life cycle models: An introduction to modelling, using and managing agile, plan-driven and hybrid processes. Springer.; Kroeger, T. A., Davidson, N. J. y Cook, S. C. (2014). Understanding the characteristics of quality for software engineering processes: A grounded theory investigation. Information and Software Technology, 56(2), 252-271. https://doi.org/10.1016/j.infsof. 2013.10.003; Kwan, I., Cataldo, M. y Damian, D. (2011). Conway’s law revisited: The evidence for a taskbased perspective. IEEE Software, 29(1), 90-93. https://doi.org/10.1109/MS.2012.3; Li, M. (2006). Expanding the horizons of software development processes: A 3-D integrated methodology. En M. Li, B. Boehm y L. J. Osterweil (eds.), Unifying the Software Process Spectrum. spw 2005. Lecture Notes in Computer Science (pp. 54-67). Springer. https:// doi.org/10.1007/11608035_6; Lonchamp, J. (1993). A structured conceptual and terminological framework for software process engineering. En Proceedings of the Second International Conference on the Software Process-Continuous Software Process Improvement (pp. 41-53). ieee. https://doi. org/10.1109/SPCON.1993.236823; Meyer, B. (2009). Touch of class: Learning to program well with objects and contracts. Springer. https://doi.org/10.1007/978-3-540-92145-5; Moore, J. W. (2005). The road map to software engineering: A standards-based guide. Wiley-ieee Computer Society; Mustafa, G., Hafeez, Y. y Abbas, M. A. (2011). Fundamental characteristics creating software process diversity. En International Conference on Computer Networks and Information Technology (pp. 341-344). ieee. https://doi.org/10.1109/ICCNIT.2011.6020891; O’Regan, G. (2017). Concise guide to software engineering: From fundamentals to application methods. Springer.; Osterweil, L. (2011). Software processes are software too. En P. Tarr y A. Wolf (eds.), Engineering of software (pp. 323-344). Springer. https://doi.org/10.1007/978-3-642- 19823-6_17; Pedreira, O., Piattini, M., Luaces, M. R. y Brisaboa, N. R. (2007). A systematic review of software process tailoring. acm sigsoft Software Engineering Notes, 32(3), 1-6. https:// doi.org/10.1145/1241572.1241584; Prodan, M., Prodan, A. y Purcarea, A. A. (2015). Three new dimensions to people, process, technology improvement model. En A. Rocha, A. Correia, S. Costanzo y L. Reis (eds.), New contributions in information systems and technologies: Advances in intelligent systems and computing (pp. 481-490). Springer. https://doi.org/10.1007/978-3-319-16486-1_47; Raman, S. (2000). It is software process, stupid: Next millennium software quality key. ieee Aerospace and Electronic Systems Magazine, 15(6), 33-37. https://doi. org/10.1109/62.847929; Ruiz-González, F. y Canfora, G. (2004). Software process: Characteristics, technology and environments. spt Software Process Technology, 5, 6-10.; Software Engineering Institute. (2010). cmmi for development, cmmi-dev version 1.3. cmu/sei- 2010-tr-033. https://insights.sei.cmu.edu/documents/87/2010_019_001_28782.pdf; Sommerville, I. (2015). Software engineering: Always learning. Pearson.; Suri, D. y Sebern, M. J. (2004). Incorporating software process in an undergraduate software engineering curriculum: Challenges and rewards. En 17th Conference on Software Engineering Education and Training, 2004. Proceedings (pp. 18-23). ieee. https://doi. org/10.1109/CSEE.2004.1276505; Sutton, S. M. (2000). The role of process in software start-up. ieee Software, 17(4), 33-39.; Wieczorek, M., Vos, D. y Bons, H. (2014). Systems and software quality. Springer. https://doi. org/10.1007/978-3-642-39971-8; Yang, D. y Xue, M. (2011). Software process paradigm and its constraint mechanisms. En 2011 ieee 2nd International Conference on Software Engineering and Service Science (pp. 842-845). ieee. https://doi.org/10.1109/ICSESS.2011.5982472; Arms, W. Y. (2022). Examples of software development processes. Cornell University Compunng and Information Science. https://www.cs.cornell.edu/courses/cs5150/2017sp/ slides/3-process-examples.pdf; Azam, F., Gull, H., Bibi, S. y Amjad, S. (2010). Back and forth (BnF) software process model. En 2010 Second International Conference on Computer Engineering and Applications (vol. 1, pp. 426-430). ieee. https://doi.org/10.1109/ICCEA.2010.89; Banker, R. D., Kauffman, R. J. y Zweig, D. (1993). Repository evaluation of software reuse. ieee Transactions on Software Engineering, 19(4), 379-389. https://doi. org/10.1109/32.223805; Boehm, B. W. (1996). Anchoring the software process. IEEE Software, 13(4), 73-82. https:// doi.org/10.1109/52.526834; Boehm, B. W. (1988). A spiral model of software development and enhancement. Computer, 21(5), 61-72. https://doi.org/10.1109/2.59; Boehm, B. W. y Hansen, W. J. (2000). Spiral development: Experience, principles and refinements. Special Report cmu/sei-2000-sr-008. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu.edu/documents/5439/2000_003_001_13655.pdf; Boehm, B. W. y Turner, R. (2004). Balancing agility and discipline: A guide for the perplexed. Addison-Wesley; Capers, J. (2012). Software engineering best practices: Lessons from successful projects in the top companies. McGraw-Hill; Carr, M. y Verner, J. (1997). Prototyping and software development approaches. https://citeseerx. ist.psu.edu/document?repid=rep1&type=pdf&doi=0b05add730e04843e- 234937a070f24b19efaadc3; Crnkovic, I. y Larsson, M. (2001). Component-based software engineering: New paradigm of software development. Mälardalen University.; Diebold, P. y Zehler, T. (2016). The right degree of agility in rich processes. En M. Kuhrmann, J. Münch, I. Richardson, A. Rausch y H. Zhang (eds.), Managing software process evolution (pp. 15-37). Springer. https://doi.org/10.1007/978-3-319-31545-4_2; Floyd, C. (1984). A systematic look at prototyping. En R. Budde, K. Kuhlenkamp, L. Mathiassen y H. Züllighoven (eds.), Approaches to prototyping (pp. 1-18). Springer. https:// doi.org/10.1007/978-3-642-69796-8_1; Gottesdiener, E. (1995). RAD realities: Beyond the hype to how rad really works. Application Development Trends, 2(8), 28-38.; Henninger, S. (1997). An evolutionary approach to constructing effective software reuse repositories. ACM Transactions on Software Engineering and Methodology (tosem), 6(2), 111-140. https://doi.org/10.1145/248233.248242; International Organization for Standardization. (2008). ISO/IEC 12207:1995/AMD2:2004. Information Technology - Software life cycle processes - Amendment 2.; Jirava, P. (2004). System development life cycle. https://dk.upce.cz/bitstream/handle/ 10195/32471/CL456.pdf?sequence=1&isAllowed=y; Jurgens, D. (2009). Survey on software engineering for scientific applications. Institute for Scientific Computing. https://leopard.tu-braunschweig.de/servlets/MCRFileNodeServlet/ dbbs_derivate_00006306/Juergens-Survey-Software-Eng-Scientific-Applications.pdf; Madachy, R. J. (2008). Software process dynamics. John Wiley & Sons.; Mathur, S. y Malik, S. (2010). Advancements in the V-Model. International Journal of Computer Applications, 1(12), 29-34. https://citeseerx.ist.psu.edu/document?repid=rep1&- type=pdf&doi=04aca97824d178d7ca3688bbed2118d0115dfaba; May, E. L. y Zimmer, B. A. (1996). The evolutionary development model for software. Hewlett Packard Journal, 47, 39-41. https://citeseerx.ist.psu.edu/document?repid=rep1&- type=pdf&doi=5304a6d70439f180af1e349d518cb1d20b99e4a8; Mills, H. D., Dyer, M. y Linger, R. C. (1987). Cleanroom software engineering. IEEE Software, 4(5), 19-25. https://doi.org/10.1109/MS.1987.231413; Munassar, N. M. A. y Govardhan, A (2010). Comparison between five models of software engineering. International Journal of Computer Science Issues, 7(5), 94-101. https:// www.ijcsi.org/papers/7-5-94-101.pdf; Petersen, K. y Wohlin, C. (2010). The effect of moving from a plan-driven to an incremental software development approach with agile practices: An industrial case study. Empirical Software Engineering, 15, 654-693. https://doi.org/10.1007/s10664-010-9136-6; Petersen, K., Wohlin, C. y Baca, D. (2009). The waterfall model in large-scale development. En F. Bomarius, M. Oivo, P. Jaring y P. Abrahamsson (eds.), Product-Focused Software Process Improvement. PROFES 2009. Lecture Notes in Business Information Processing (pp. 386-400). Springer. https://doi.org/10.1007/978-3-642-02152-7_29; Pressman, R. S. (2005). Software engineering: A practitioner’s approach (6.ª ed.). McGraw-Hill.; ProjectSmart. (2008). Which life cycle is best for your project? https://www.projectsmart.co.uk/ agile-project-management/which-life-cycle-is-best-for-your-project.php; Rastogi, V. (2015). Software development life cycle models-comparison, consequences. International Journal of Computer Science and Information Technologies, 6(1), 168-172. https://www.academia.edu/download/40003520/ijcsit2015060137.pdf; Royce, W. W. (1987). Managing the development of large software systems: Concepts and techniques. En Proceedings of the 9th International Conference on Software Engineering (ICSE ’87) (pp. 328-338).; Sabale, R. y Dani, A. (2012). Comparative study of prototype model for software engineering with system development life cycle. IOSR Journal of Engineering, 2(7), 21-24. https://www.iosrjen.org/Papers/vol2_issue7%20(part-2)/D0272124.pdf; Sharma, P. y Singh, D. (2015). Comparative study of various SDLC models on different parameters. International Journal of Engineering Research, 4(4), 188-191. https://citeseerx. ist.psu.edu/document?repid=rep1&type=pdf&doi=2628386ec0e41ed06dbb604bf9729e679f394cb2; Solinski, A. y Petersen, K. (2016). Prioritizing agile benefits and limitations in relation to practice usage. Software Quality Journal, 24, 447-482. https://doi.org/10.1007/ s11219-014-9253-3; Špundak, M. (2014). Mixed agile/traditional project management methodology: Reality or illusion? Procedia-Social and Behavioral Sciences, 119, 939-948. https://doi. org/10.1016/j.sbspro.2014.03.105; Tian, J. (2005). Software quality engineering: Testing, quality assurance, and quantifiable improvement. John Wiley & Sons.; Tilloo, R. (2013). What is incremental model in software engineering? http://www.technotrice. com/incremental-model-in-software-engineering; Wallin, C. y Land, R. (2005). Software development lifecycle models: The basic types. Research methodology for computer science and engineering. Mälardalen University.; Abrahamsson, P., Salo, O., Ronkainen, J. y Warsta, J. (2002). Agile software development methods: Review and analysis. vtt Electronics. https://doi.org/10.48550/arXiv.1709.08439; Abrahamsson, P., Warsta, J., Siponen, M. T. y Ronkainen, J. (2003). New directions on agile methods: A comparative analysis. En 25th International Conference on Software Engineering, 2003. Proceedings (pp. 244-254). IEEE. https://doi.org/10.1109/ ICSE.2003.1201204; Abrantes, J. F. y Travassos, G. H. (2011). Common agile practices in software processes. En 2011 International Symposium on Empirical Software Engineering and Measurement (pp. 355-358). IEEE. https://doi.org/10.1109/ESEM.2011.47; Adelyar, S. H. y Norta, A. (2016). Towards a secure agile software development process. En 2016 10th International Conference on the Quality of Information and Communications Technology (quatic) (pp. 101-106). IEEE. https://doi.org/10.1109/QUATIC.2016.028; Agile Manifesto. (2001). Manifesto for Agile Software Development. http://agilemanifesto.org/; Alqudah, M. y Razali, R. (2016). A review of scaling agile methods in large software development. International Journal on Advanced Science, Engineering and Information Technology, 6(6), 828-837. http://dx.doi.org/10.18517/ijaseit.6.6.1374; Ambler, S. (2002). Agile modeling: Effective practices for eXtreme Programming and the unified process. John Wiley & Sons.; Ambler, S. W. (2009). The agile scaling model (asm): Adapting agile methods for complex environments. https://scrummasters.com/wp-content/uploads/2022/02/White-Paper- Adapting-Agile.pdf; Ambler, S. W. y Lines, M. (2012). Disciplined Agile Delivery: A practitioner’s guide to agile software delivery in the enterprise. IBM Press; Ambler, S. W. y Lines, M. (2013). Going beyond scrum: Disciplined Agile Delivery, disciplined agile consortium. White Paper Series. https://www.classes.cs.uchicago.edu/ archive/2016/fall/51205-1/required.reading/BeyondScrum.pdf; Ambler, S. W. y Lines, M. (2016). The disciplined agile process decision framework. En D. Winkler, S. Biffl y J. Bergsmann (eds.), Software Quality: The Future of Systems- and Software Development. swqd 2016. Lecture Notes in Business Information Processing (pp. 3-14). Springer. https://doi.org/10.1007/978-3-319-27033-3_1; Anderson, L., Alleman, G. B., Beck, K., Blotner, J., Cunningham, W., Poppendieck, M. y Wirfs-Brock, R. (2003). Agile management-an oxymoron? Who needs managers anyway? En Companion of the 18th Annual acm sigplan Conference on Object-Oriented Programming, Systems, Languages, and Applications (pp. 275-277). https://doi. org/10.1145/949344.949410; Aoyama, M. (1998). Agile software process and its experience. En Proceedings of the 20th International Conference on Software Engineering (pp. 3-12). IEEE. https://doi.org/10.1109/ ICSE.1998.671097; Baca, D. y Carlsson, B. (2011). Agile development with security engineering activities. En Proceedings of the 2011 International Conference on Software and Systems Process (pp. 149-158). https://doi.org/10.1145/1987875.1987900; Barnett, L. y Schwaber, C. (2004). Adopting agile development processes: Improve time-to-benefits for software projects forrester research.; Bartsch, S. (2011). Practitioners’ perspectives on security in agile development. En 2011 Sixth International Conference on Availability, Reliability and Security (pp. 479-484). IEEE. https://doi.org/10.1109/ARES.2011.82; Beck, K. (2000). Extreme programming explained: Embrace change. Addison-Wesley.; Beck, K. (2002). Test driven development: By example. Addison-Wesley.; Beck, K. y Fowler, M. (2001). Planning eXtreme Programming. Addison-Wesley.; Ben Othmane, L., Angin, P., Weffers, H. y Bhargava, B. (2014). Extending the agile development process to develop acceptably secure software. ieee Transactions on Dependable and Secure Computing, 11(6), 497-509. https://doi.org/10.1109/TDSC.2014.2298011; Bessam, A., Kimour, M. T. y Melit, A. (2009). Separating users’ views in a development process for agile methods. En 2009 Fourth International Conference on Dependability of Computer Systems (pp. 61-68). IEEE. https://doi.org/10.1109/DepCoS-RELCOMEX. 2009.16; Boehm, B. y Turner, R. (2005). Management challenges to implementing agile processes in traditional development organizations. IEEE Software, 22(5), 30-39. https://doi. org/10.1109/MS.2005.129; Buglione, L. y Abran, A. (2013). Improving the user story agile technique using the invest criteria. En 2013 Joint Conference of the 23rd International Workshop on Software Measurement and the 8th International Conference on Software Process and Product Measurement (pp. 49-53). IEEE. https://doi.org/10.1109/IWSM-Mensura.2013.18; Canós, J., Letelier, P. y Penadés, M. (2003). Metodologías ágiles en el desarrollo de software. https://www.academia.edu/download/34546906/XP_Agil.pdf; Chowdhury, A. F. y Huda, M. N. (2011). Comparison between Adaptive Software Development and Feature-Driven Development. En Proceedings of 2011 International Conference on Computer Science and Network Technology (vol. 1, pp. 363-367). IEEE. https:// doi.org/10.1109/ICCSNT.2011.6181977; Coad, P., Lefebvre, E. y Luca, J. D. (1999). Feature-driven development. En Java modeling in color with UML: Enterprise components and process. Prentice Hall ptr.; Cockburn, A. (2004). Crystal clear: A human-powered methodology for small teams. Addison- Wesley.; Cohen D., Lindvall, M. y Costa P. (2004). An introduction to agile methods. Advances in Computers, 62(3), 1-66. https://doi.org/10.1016/S0065-2458(03)62001-2; Cohn, M. y Ford, D. (2003). Introducing an agile process to an organization [software development]. Computer, 36(6), 74-78. https://doi.org/10.1109/MC.2003.1204378; Coram, M. y Bohner, S. (2005). The impact of agile methods on software project management. En 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05) (pp. 363-370). IEEE. https://doi.org/10.1109/ ECBS.2005.68; Cugola, G. y Ghezzi, C. (1998). Software processes: A retrospective and a path to the future. Software Process: Improvement and Practice, 4(3), 101-123. https://doi.org/10.1002/ (SICI)1099-1670(199809)4:3%3C101::AID-SPIP103%3E3.0.CO;2-K; Deemer, P., Benefield, G., Larman, C. y Vodde, B. (2012). A lightweight guide to the theory and practice of scrum. Version 2.0. InfoQ Enterprise Software Development Series. https:// www.scruminc.com/wp-content/uploads/2014/05/scrumprimer20.pdf; Despa, M. L. (2014). Comparative study on software development methodologies. Database Systems Journal, 5(3), 37-56. https://dbjournal.ro/archive/17/17.pdf#page=38; Digital.ai. (2024, 4 de marzo). The 17th State of Agile Report. https://digital.ai/resource-center/ analyst-reports/state-of-agile-report/; DSDM Consortium. (2008). DSDM Atern Handbook V2/2. Whitehorse Press.; Fitzgerald, B., Hartnett, G. y Conboy, K. (2006). Customising agile methods to software practices at Intel Shannon. European Journal of Information Systems, 15(2), 200-213. https://doi.org/10.1057/palgrave.ejis.3000605; Fowler, M. (2005, 13 de diciembre). The new methodology. https://www.martinfowler.com/ articles/newMethodology.html; Fraser, S., Reinitz, R., Eckstein, J., Kerievsky, J., Mee, R. y Poppendieck, M. (2003). Xtreme programming and agile coaching. En Companion of the 18th Annual acm sigplan Conference on Object-Oriented Programming, Systems, Languages, and Applications (pp. 265-267). https://doi.org/10.1145/949344.949406; Ghani, I. y Yasin, I. (2013). Software security engineering in eXtreme Programming methodology: A systematic literature review. Science International, 25(2), 215-221. https:// citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fb3ac381f336911fe- 46c638abdde53376d74a5e5; Hewitt, B. y Walz, D. (2005). Using shared leadership to foster knowledge sharing in information systems development projects. En Proceedings of the 38th Annual Hawaii International Conference on System Sciences (pp. 256a-256a). ieee. https://doi.org/10.1109/ HICSS.2005.666; Highsmith, J. A. (2002). Agile software development ecosystems. Addison-Wesley.; Highsmith, J. A. (2004). Agile project management: Creating innovative products. Addison- Wesley.; Highsmith, J. A. (2013). Adaptive software development: A collaborative approach to managing complex systems. Addison-Wesley.; Highsmith, J. y Cockburn, A. (2001). Agile software development: The business of innovation. Computer, 34(9), 120-127. https://doi.org/10.1109/2.947100; Ionel, N. (2008). Critical analysis of the scrum project management methodology. Annals of the University of Oradea, Economic Science Series, 17(4), 435-441. https://anale.steconomiceuoradea. ro/volume/2008/v4-management-marketing/077.pdf; Kanwal, F., Junaid, K. y Fahiem, M. A. (2010). A hybrid software architecture evaluation method for fdd: An agile process model. En 2010 International Conference on Computational Intelligence And Software Engineering (pp. 1-5). IEEE. https://doi.org/10.1109/ CISE.2010.5676863; Khatri, S. K., Bahri, K. y Johri, P. (2014). Best practices for managing risk in adaptive agile process. En Proceedings of 3rd International Conference on Reliability, Infocom Technologies and Optimization (pp. 1-5). IEEE. https://doi.org/10.1109/ICRITO.2014.7014759; Kirkman, B. L. y Rosen, B. (1999). Beyond self-management: Antecedents and consequences of team empowerment. Academy of Management Journal, 42(1), 58-74. https://doi. org/10.5465/256874; Larman, C. (2004). Agile and iterative development: A manager’s guide. Addison-Wesley; Larman, C. y Vodde, B. (2008). Scaling lean & agile development: Thinking and organizational tools for large-scale scrum. Addison-Wesley.; Larman, C. y Vodde, B. (2013). Scaling agile development. CrossTalk, 9, 8-12. https://miroslawdabrowski. com/downloads/Scrum/Large%20Scale%20Scrum%20(LESS).pdf; Larman, C. y Vodde, B. (2016). Large-scale scrum: More with LeSS. Addison-Wesley.; Leffingwell, D. (2011). Scaling Agile Framework (SAFe). http://www.scaledagileframework.com/; Lindstrom, L. y Jeffries, R. (2005). Extreme Programming and agile software development methodologies. Information Systems Management, 21(3), 41-52.; Lui, T. W. y Piccoli, G. (2006). Degrees of agility: Implications for information systems design and firm strategy. En K. Desouza (ed.), Agile information systems (pp. 122-133). Routledge. https://doi.org/10.4324/9780080463681; Mahmud, D. M. y Abdullah, N. A. S. (2015). Reviews on agile methods in mobile application development process. En 2015 9th Malaysian Software Engineering Conference (MySEC) (pp. 161-165). IEEE. https://doi.org/10.1109/MySEC.2015.7475214; Marrington, A., Hogan, J. M. y Thomas, R. (2005). Quality assurance in a student-based agile software engineering process. En 2005 Australian Software Engineering Conference (pp. 324-331). IEEE. https://doi.org/10.1109/ASWEC.2005.38; Maximini, D. (2015). The scrum culture: Introducing agile methods in organizations. management for professionals. Springer. https://doi.org/10.1007/978-3-319-73842-0; Meng, X. X., Wang, Y. S., Shi, L. y Wang, F. J. (2007). A process pattern language for agile methods. En 14th Asia-Pacific Software Engineering Conference (apsec’07) (pp. 374-381). IEEE. https://doi.org/10.1109/ASPEC.2007.72; Meyer, B. (2014). Agile! The good, the hype and the ugly. Springer.; Millett, S., Blankenship, J. y Bussa, M. (2011). Pro agile: NET development with scrum. Apress.; Misra, S. C., Kumar, V. y Kumar, U. (2009). Identifying some important success factors in adopting agile software development practices. Journal of Systems and Software, 82(11), 1869-1890. https://doi.org/10.1016/j.jss.2009.05.052; Morgan, G. (2006). Images of organizations. Sage.; Müller, M. M. y Höfer, A. (2007). The effect of experience on the test-driven development process. Empirical Software Engineering, 12, 593-615. https://doi.org/10.1007/ s10664-007-9048-2; Mundra, A., Misra, S. y Dhawale, C. A. (2013). Practical scrum-scrum team: Way to produce successful and quality software. En 2013 13th International Conference on Computational Science and Its Applications (pp. 119-123). ieee. https://doi.org/10.1109/ ICCSA.2013.25; Nerur, S., Mahapatra, R. y Mangalaraj, G. (2005). Challenges of migrating to agile methodologies. Communications of the acm, 48(5), 72-78. https://doi.org/ 10.1145/1060710.1060712; Newkirk, J. (2002). Introduction to agile processes and eXtreme Programming. En Proceedings of the 24th International Conference on Software Engineering (pp. 695-696). https:// doi.org/10.1145/581339.581450; Paasivaara, M., Lassenius, C. y Heikkilä, V. T. (2012). Inter-team coordination in large-scale globally distributed scrum: Do scrum-of-scrums really work? En Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and Measurement (pp. 235-238). https://doi.org/10.1145/2372251.2372294; Palmer, S. R. y Felsing, M. (2002). A practical guide to Feature-Driven Development. Prentice Hall.; Pearce, C. L. (2004). The future of leadership: Combining vertical and shared leadership to transform knowledge work. Academy of Management Executive, 18(1), 47-57. https:// doi.org/10.5465/ame.2004.12690298; Pikkarainen, M., Salo, O. y Still, J. (2005). Deploying agile practices in organizations: A case study. En I. Richardson, P. Abrahamsson y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2005. Lecture Notes in Computer Science (pp. 16-27). Springer. https://doi.org/10.1007/11586012_3; Pohl, C. y Hof, H. J. (2015). Secure scrum: Development of secure software with scrum. En Proceedings of the Ninth International Conference on Emerging Security Information, Systems and Technologies (SECURWARE 2015). IARIA XPS Press. https://doi.org/10.48550/ arXiv.1507.02992; Poppendieck, M. y Poppendieck, T. (2003). Lean software development: An agile toolkit. Addison- Wesley.; Poppendieck, M. y Poppendieck, T. (2006). Implementing Lean Software Development: From concept to cash. Addison-Wesley.; Qumer, A. y Henderson-Sellers, B. (2008). An evaluation of the degree of agility in six agile methods and its applicability for method engineering. Information and Software Technology, 50(4), 280-295. https://doi.org/10.1016/j.infsof.2007.02.002; Reifer, D. (2002). How good are agile methods? IEEE Software, 19(4), 16-18. https://doi. org/10.1109/MS.2002.1020280; Rick, U., Vossen, R., Richert, A. y Henning, K. (2010). Designing agile processes in information management. En 2010 2nd IEEE International Conference on Information Management and Engineering (pp. 156-160). IEEE. https://doi.org/10.1109/ICIME.2010.5477776; Rieckmann, H. (1992). Dynaxibility - oder wie “systemisches”. Management in der Praxis funktionieren kann. En K. Henning y B. Harendt (eds.), Methodik und Praxis der Komplexitätsbewältigung (pp. 17-39). Duncker & Humblot.; Riehle, D. (2000). A comparison of the value systems of Adaptive Software Development and eXtreme Programming: How methodologies may learn from each other. En Proceedings of the First International Conference on Extreme Programming and Flexible Processes in Software Engineering (XP 2000) (pp. 35-50). https:// citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=807bd8be840eded41828ad9052e0d4d14b31865c; Rubin, K. S. (2012). Essential scrum: A practical guide to the most popular agile process. Addison- Wesley.; Rossberg, J. (2014). Beginning application lifecycle management. Apress.; Scale Agile Framework. (2020). SAFe 6.0. https://www.scaledagileframework.com/; Schuh, P. (2004). Integrating agile development in the real world. Charles River Media.; Schwaber, K. y Beedle, M. (2001). Agile software development with scrum. Prentice Hall PTR.; Sidky, A. S. (2007). A structured approach to adopting agile practices: The agile adoption framework (tesis de doctorado, Virginia Tech). https://vtechworks.lib.vt.edu/server/api/ core/bitstreams/4ff25112-51c4-4ce7-86f3-ee3e0c84100a/content; Singhal, A. (2012). Integration analysis of security activities from the perspective of agility. En 2012 Agile India (pp. 40-47). ieee. https://doi.org/10.1109/AgileIndia.2012.9; Sneed, H. M. (2014). Dealing with technical debt in agile development projects. En D. Winkler, S. Biffl y J. Bergsmann (eds.), Software Quality. Model-Based Approaches for Advanced Software and Systems Engineering. swqd 2014. Lecture Notes in Business Information Processing (pp. 48-62). Springer. https://doi.org/10.1007/978-3-319-03602-1_4; Stapleton, J. (1997). DSDM, dynamic systems development method: The method in practice. Cambridge University Press.; Sutherland, J. y Schwaber, K. (2020). The 2020 Scrum GuideTM. https://scrumguides.org/ scrum-guide.html; Tahir, F. y Manarvi, I. A. (2013). Agile process model and practices in distributed environment. En J. Stjepandić, G. Rock y C. Bil (eds.), Concurrent engineering approaches for sustainable product development in a multi-disciplinary environment (pp. 1169-1180). Springer. https://doi.org/10.1007/978-1-4471-4426-7_98; Tiltmann, T. (2007). Agile Entwicklung von cscw-Anwendungen für regionale Bildungswerke. Mainz.; Trist, E. (1981). The evolution of socio-technical systems: A conceptual framework and an action research program. Occasional Paper, 2. https://www.lmmiller.com/blog/ wp-content/uploads/2013/06/The-Evolution-of-Socio-Technical-Systems-Trist.pdf; Vaidya, A. (2014). Does dad know best, is it better to do less or just be safe? Adapting scaling agile practices into the Enterprise. En 32nd Annual Pacific Northwest Software Quality Conference - PNSQC 2014 (pp. 1-18). https://pnsqc.org/archives/dad-knowbest- better-less-just-enough-safe-adapting-agile-scaling-practices-enterprise/; Voigt, B. J., Glinz, M. y Seybold, D. I. C. (2004). Dynamic system development method. University of Zurich. https://files.ifi.uzh.ch/rerg/amadeus/teaching/seminars/seminar_ ws0304/14_Voigt_DSMD_Ausarbeitung.pdf; Walton, M. (1999). Strategies for lean product development: A compilation of lean aerospace initiative research. Research Paper, 2.; Womack, J. P. y Jones, D. T. (2003). Lean thinking: Banish waste and create wealth in your corporation. Free Press.; Womack, J. P., Jones, D. T. y Roos, D. (2007). The machine that changed the world: The story of lean production. Simon and Schuster.; Acuna, S. T., Juristo, N., Moreno, A. M. y Mon, A. (2006). A software process model handbook for incorporating people’s capabilities. Springer.; Alarcón, A., Martínez, N. y Sandoval, J. (2013). Use of learning strategies of swebok© guide proposed knowledge areas. En L. Uden, F. Herrera, J. Bajo Pérez y J. Corchado Rodríguez (eds.), 7th International Conference on Knowledge Management in Organizations: Service and Cloud Computing. Advances in Intelligent Systems and Computing pp. 243-254). Springer. https://doi.org/10.1007/978-3-642-30867-3_22; Bernardos, M.ª del S. (2004). Guideline for developing a software life cycle process in natural language generation projects. En A. Gelbukh (eds.), Computational Linguistics and Intelligent Text Processing. CICLing 2004. Lecture Notes in Computer Science (pp. 355-359). Springer. https://doi.org/10.1007/978-3-540-24630-5_43; Booch, G., Rumbaugh, J. y Jacobson, I. (2017). The unified modeling language user guide. Addison-Wesley.; Ceccarelli, A. y Silva, N. (2013). Qualitative comparison of aerospace standards: An objective approach. En 2013 ieee International Symposium on Software Reliability Engineering Workshops (issrew) (pp. 331-336). ieee. https://doi.org/10.1109/ISSREW. 2013.6688916; Dahhane, W., Berrich, J., Bouchentouf, T. y Rahmoun, M. (2016). semat Essence’s Kernel applied to O-MaSE. En 2016 5th International Conference on Multimedia Computing and Systems (icmcs) (pp. 799-804). ieee. https://doi.org/10.1109/ICMCS.2016.7905565; David, P. A. (1995). Standardization policies for network technologies: The flux between freedom and order revisited. En R. Hawkins, R. Mansell y J. Skea (eds.), Standards, innovation and competitiveness: The politics and economics of standards in natural and technical environments (pp. 15-35). Edward Elgar.; De Vries, H. J. (2013). Standardization: A business approach to the role of national standardization organizations. Springer.; Derniame, J. C., Kaba, B. A. y Wastell, D. (eds.) (1999). Software process: Principles, methodology, and technology. Springer.; Dupuis, R., Bourque, P. y Abran, A. (2003). swebok guide an overview of trial usages in the field of education. En Proceedings of the 33rd Annual Frontiers in Education (fie 2003). ieee. https://doi.org/10.1109/FIE.2003.1265987; ECSS-E-ST-10-02c - Verification (2009, 6 de marzo). https://ecss.nl/standard/ecss-e-st-10- 02c-verification/; ECSS-E-ST-10-06C - Technical requirements specification. (2009, 6 de marzo). https://ecss.nl/ standard/ecss-e-st-10-06c-technical-requirements-specification/; ECSS-E-ST-10c Rev.1 - System engineering general requirements. (2017, 15 de febrero). https://ecss.nl/standard/ecss-e-st-10c-rev-1-system-engineering-general-requirements- 15-february-2017/; ECSS-E-ST-40c - Software (2009, 6 de marzo). https://ecss.nl/standard/ecss-e-st-40c-software- general-requirements/; ECSS-Q-ST-30c Rev.1 - Dependability (2017, 15 de febrero). https://ecss.nl/standard/; ECSS-Q-ST-30c-rev-1-space-product-assurance-dependability-15-february-2017/; ECSS-Q-ST-40c - Safety. (2009, 6 de marzo). https://ecss.nl/standard/ecss-q-st-40c-safety/; ECSS-Q-ST-80C Rev.1 - Software product assurance. (2017, 15 de febrero). https://ecss.nl/ standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/; Elvesæter, B., Striewe, M., McNeile, A. y Berre, A. J. (2012). Towards an agile foundation for the creation and enactment of software engineering methods: The semat approach. En Proceedings of the Co-located Events at the 8th European Conference on Modelling Foundations and Applications (ecmfa 2012) (pp. 279-290). Technical University of Denmark. https://www.dcs.bbk.ac.uk/~amcnei01/docs/be_pmde_2012_paper.pdf; Emmerich, W. (1999). Software process: Standards, assessments and improvement. En J. C. Derniame, B. A. Kaba y D. Wastell (eds.), Software Process: Principles, Methodology, and Technology. Lecture Notes in Computer Science (pp. 15-25). Springer. https://doi. org/10.1007/3-540-49205-4_2; ESA Board for Software Standardisation and Control. (1995). Guide to the Software Engineering Standards. http://everyspec.com/ESA/ESA_PSS-05-06_ISSUE-1_REVISION- 1_10567/; Freericks, C. (2001). Open source standards on software process: A practical application. ieee Communications Magazine, 39(4), 116-123. https://doi.org/10.1109/35.917513; Halling, M., Zuser, W., Kohle, M. y Biffl, S. (2002). Teaching the unified process to undergraduate students. En Proceedings 15th Conference on Software Engineering Education and Training (csee&t 2002) (pp. 148-159). ieee. https://doi.org/10.1109/ CSEE.2002.995207; Hui, Y., Yan, Y., Quanyu, W. y Zhiwen, C. (2015). Compare essential unified process (EssUP) with rational unified process (RUP). En 2015 ieee 10th Conference on Industrial Electronics and Applications (iciea) (pp. 472-476). ieee. https://doi.org/10.1109/ICIEA. 2015.7334159; Ida, T. (2017). Evolutionary stability of de jure and de facto standards. Working Paper. ieee-std 1074. (2006). ieee Standard for Developing a Software Project Life Cycle Process, ieee Std 1074-2006 (Revision of ieee Std 1074-1997). https://doi.org/10.1109/ IEEESTD.2006.219190; ISO/IEC 15288:2015. (2015). Systems engineering - System life cycle processes. International Standardization Organization.; ISO/IEC 9000-3:2004. (2004). Software engineering - Guidelines for the application of ISO 9001:2000 to computer software. International Organization for Standardization.; ISO/IEC/IEEE 12207:2017. (2017). Systems and software engineering - Software life cycle processes. International Organization for Standardization.; Ivar Jacobson International. (2015). How to use the Agile Essentials Practice Pack. https:// www.ivarjacobson.com/services/agile-essentials-starter-pack-agile-practices; Jacobson, I., Ng, P. W., McMahon, P. E., Spence, I. y Lidman, S. (2012). The essence of software engineering: The semat kernel. Communications of the acm, 55(12), 42-49. http:// doi.acm.org/10.1145/2380656.2380670; Jones, M., Mortensen, U. K. y Fairclough, J. (1997). The esa software engineering standards: Past, present and future. En Proceedings of ieee International Symposium on Software Engineering Standards (pp. 119-126). ieee. https://doi.org/10.1109/SESS.1997.595952; Kajko-Mattsson, M., Striewe, M., Goedicke, M., Jacobson, I., Spence, I., Huang, S. … y Seymour, E. (2012). Refounding software engineering: The SEMAT initiative (Invited presentation). En 2012 34th International Conference on Software Engineering (icse) (pp. 1649-1650). ieee. https://doi.org/10.1109/ICSE.2012.6227214; Kempton, S., Sobell, C. y Withrow, C. (1988). dod-std-2167a applied to software maintenance. En 1988 Conference on Software Maintenance (pp. 159-164). ieee Computer Society. https://doi.ieeecomputersociety.org/10.1109/ICSM.1988.10156; Krishnan, M. S., Mukhopadhyay, T. y Zubrow, D. (1999). Software process models and project performance. Information Systems Frontiers, 1, 267-277. https://doi. org/10.1023/A:1010054412650; Kuhrmann, M., Münch, J., Richardson, I., Rausch, A. y Zhang, H. (eds.) (2016). Managing software process evolution: Traditional, agile and beyond–how to handle process change. Springer. https://doi.org/10.1007/978-3-319-31545-4; Land, S. K. y Walz, J. W. (2007). Practical support for ISO 9001 Software Project Documentation using IEEE Software Engineering Standards. Wiley-ieee Press.; Land, S. K., Smith, D. B. y Walz, J. W. (2012). Practical support for lean six sigma software process definition: Using ieee software engineering standards. John Wiley & Sons.; Mahonen, P. (2000). The standardization process in it-too slow or too fast? En Information technology standards and standardization: A global perspective (pp. 35-47). IGI Global. http://dx.doi.org/10.4018/978-1-878289-70-4.ch003; McCord, J. W. (1990). Software development-process and implementation: dod-std- 2167a vs. traditional methodologies. En ieee Conference on Aerospace and Electronics (pp. 681-687). IEEE. https://doi.org/10.1109/NAECON.1990.112848; Métrica v.3. (2020). Metodología de planificación, desarrollo y mantenimiento de sistemas de información. https://administracionelectronica.gob.es/pae_Home/pae_Documentacion/ pae_Metodolog/pae_Metrica_v3.html; Moore, J. W. (2006). The road map to software engineering: A standards-based guide. Wiley-ieee Computer Society Press.; Object Management Group. (2015). Essence - Kernel and Language for Software Engineering Methods. Version 1.1. https://www.omg.org/spec/Essence/1.0/PDF; OpenUP. (2022). Proceso unificado abierto. https://www.utm.mx/~caff/doc/OpenUPWeb/; Pino, F. J., Baldassarre, M. T., Piattini, M., Visaggio, G. y Caivano, D. (2010). Mapping software acquisition practices from iso 12207 and cmmi. En L. A. Maciaszek, C. González-Pérez y S. Jablonski (eds.), Evaluation of Novel Approaches to Software Engineering. enase enase 2009 2008. Communications in Computer and Information Science (pp. 234-247). Springer. https://doi.org/10.1007/978-3-642-14819-4_17; Pons, C., Giandini, R. y Baum, G. (2000). Dependency relations between models in the Unified Process. En Tenth International Workshop on Software Specification and Design. iwssd-10 2000 (pp. 149-157). ieee. https://doi.org/10.1109/IWSSD.2000.891136; Portuguese Institute of Quality. (2008). np en iso 9001:2008 - Quality Management Systems - Requirements.; Priestley, M. y Utt, M. H. (2000). A unified process for software and documentation development. En 18th Annual Conference on Computer Documentation. ipcc sigdoc 2000. Technology and Teamwork. Proceedings. ieee Professional Communication Society International Professional Communication Conference (pp. 221-238). ieee. https://doi.org/10.1109/ IPCC.2000.887279; Strandberg, T. (2016). What is iso/iec 15288? (A concise introduction). White Paper.; Valdés Cárdenas, L. E. (2005). Guía para la implementación de la Norma iso 9001:2000 en las empresas de software. Colciencias.; West, J. (2003). The role of standards in the creation and use of information systems. En Proceedings of the Workshop on Standard Making: A Critical Research Frontier for Information Systems (pp. 314-326). MIS Quarterly.; Amjad, A., Azam, F., Anwar, M. W., Butt, W. H. y Rashid, M. (2018). Event-driven process chain for modeling and verification of business requirements: A systematic literature review. ieee Access, 6, 9027-9048. https://doi.org/10.1109/ACCESS.2018.2791666; Atkinson, D. C., Weeks, D. C. y Noll, J. (2004). The design of evolutionary process modeling languages. En 11th Asia-Pacific Software Engineering Conference (pp. 73-82). ieee. https://doi.org/10.1109/APSEC.2004.98; Bandinelli, S. C., Fuggetta, A. y Ghezzi, C. (1993). Software process model evolution in the spade environment. ieee Transactions on Software Engineering, 19(12), 1128-1144. https://doi.org/10.1109/32.249659; Bendraou, R., Jézéquel, J. M., Gervais, M. P. y Blanc, X. (2010). A comparison of six uml-based languages for software process modeling. ieee Transactions on Software Engineering, 36(5), 662-675. https://doi.org/10.1109/TSE.2009.85; Brcina, R. (2007). Arbeiten zur Verfolgbarkeit und Aspekte des Verfolgbarkeitsprozesses. Softwaretechnik-Trends: Mitteilungen von mehreren Fachgruppen des Fachausschusses, 27(1), 3-8.; Brondani, C. H., da Cruz Mello, O. y Fontoura, L. M. (2019). A case study of a software development process model for sis-astros. En seke (pp. 600-776). http://ksiresearch. org/seke/seke19paper/seke19paper_98.pdf; Broy, M. y Rumpe B. (2007). Modulare hierarchische Modellierung als Grundlage der Software- und Systementwicklung. InformatikSpektrum, 30(1), 3-18. https://doi. org/10.1007/; Campos, A. L. N. y Oliveira, T. (2013). Software processes with bpmn: An empirical analysis. En J. Heidrich, M. Oivo, A. Jedlitschka y M. T. Baldassarre (eds.), Product- Focused Software Process Improvement. profes 2013. Lecture Notes in Computer Science (pp. 338-341). Springer. https://doi.org/10.1007/978-3-642-39259-7_29; Cempel, W. A. y Dąbal, D. (2014). idef0 as a project management tool in the simulation modeling and analysis process in emergency evacuation from hospital facility: A case study. En P. Pawlewski y A. Greenwood (eds.), Process Simulation and Optimization in Sustainable Logistics and Manufacturing. EcoProduction (pp. 155-166). Springer. https://doi.org/10.1007/978-3-319-07347-7_11; Conradi, R., Jaceheri, M. L., Mazzi, C., Nguyen y M. N., Aarsten, A. (1992). Design, use and implementation of spell: A language for software process modeling and evolution. En J. C. Derniame (eds.), Software Process Technology. ewspt 1992. Lecture Notes in Computer Science (pp. 167-177). Springer. https://doi.org/10.1007/BFb0017519; Decker, G. (2009). Design and analysis of process choreographies [tesis de doctorado, Universität Potsdam]. https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/ index/docId/3898/file/decker_diss.pdf; DeMarco, T. (2004). Was man nicht messen kann, kann man nicht kontrollieren. MitpVerlag.; Dowson, M. y Fernström, C. (1994). Towards requirements for enactment mechanisms. En B. C. Warboys (eds.), Software Process Technology. ewspt 1994. Lecture Notes in Computer Science (pp. 90-106). Springer. https://doi.org/10.1007/3-540-57739-4_13; Dumas, M., La Rosa, M., Mendling, J. y Reijers, H. A. (2013). Fundamentals of business process management. Springer. https://doi.org/10.1007/978-3-642-33143-5; Gallina, B., Pitchai, K. R. y Lundqvist, K. (2014). S-TunExSPEM: Towards an extension of spem 2.0 to model and exchange tunable safety-oriented processes. En R. Lee (eds.), Software Engineering Research, Management and Applications. Studies in Computational Intelligence (pp. 215-230). Springer. https://doi.org/10.1007/978-3-319-00948-3_14; García-Borgoñón, L., Barcelona, M. A., García-García, J. A., Alba, M. y Escalona, M. J. (2014). Software process modeling languages: A systematic literature review. Information and Software Technology, 56(2), 103-116. https://doi.org/10.1016/j.infsof. 2013.10.001; García-García, J. A., Enríquez, J. G. y Domínguez-Mayo, F. J. (2019). Characterizing and evaluating the quality of software process modeling language: Comparison of ten representative model-based languages. Computer Standards & Interfaces, 63, 52-66. https://doi.org/10.1016/j.csi.2018.11.008; Génova, G. (2012). Conceptos básicos de modelado. En Desarrollo de software dirigido por modelos: Conceptos, métodos y herramientas (pp. 67-80). Ra-Ma. http://www.lcc.uma. es/~av/Publicaciones/12/LibroDSDM.pdf; Harel, D. y Rumpe, B. (2004). Meaningful modeling: What’s the semantics of “semantics”? Computer, 37(10), 64-72. https://doi.org/10.1109/MC.2004.172; Hauser, R. (2010). Automatic transformation from graphical process models to executable code. eth Zürich. https://doi.org/10.3929/ethz-a-006050258; Holt, J. (2004). uml for systems engineering: Watching the wheels. iet.; Hunter, R. B. y Thayer, R. H. (eds.) (2001). Software process improvement (practitioners). ieee Computer Society; Hurtado Alegría, J. A., Bastarrica, M. C. y Bergel, A. (2011). Analyzing software process models with avispa. En Proceedings of the 2011 International Conference on Software and Systems Process (pp. 23-32). https://doi.org/10.1145/1987875.1987882; Kaiser, G. E., Barghouti, N. S. y Sokolsky, M. H. (1990). Preliminary experience with process modeling in the marvel software development environment kernel. En Proceedings of the 23rd International Conference on System Sciences (pp. 131-140). ieee. https:// doi.org/10.1109/HICSS.1990.205161; Kelemen, Z. D., Kusters, R., Trienekens, J. y Balla, K. (2013). Selecting a process modeling language for process based unification of multiple standards and models. https://www. academia.edu/download/40527680/Selecting_a_Process_Modeling_Language_ fo20151130-12371-180bp3v.pdf; Li, Y. B. y Mao, F. Q. (2010). Research of the verification in workflow process modeling on the application of Petri nets. En 2010 International Conference on e-Education, e-Business, e-Management and e-Learning (pp. 21-24). ieee. https://doi.org/10.1109/ IC4E.2010.71; Ludewig, J. y Lichter, H. (2023). Software engineering: Grundlagen, menschen, prozesse, techniken. Dpunkt Verlag GmbH.; Mendling, J., Neumann, G. y Nüttgens, M. (2005). Yet another Event-Driven Process Chain. En W. M. P. van der Aalst, B. Benatallah, F. Casati y F. Curbera (eds.), Business Process Management. bpm 2005. Lecture Notes in Computer Science (pp. 428-433). Springer. https://doi.org/10.1007/11538394_35; Mili, H., Tremblay, G., Jaoude, G. B., Lefebvre, É., Elabed, L. y Boussaidi, G. E. (2010). Business process modeling languages: Sorting through the alphabet soup. acm Computing Surveys (csur), 43(1), 1-56. https://doi.org/10.1145/1824795.1824799; Moro, M. (2004). Modellbasierte Qualitätsbewertung von Softwaresystemen. Books on Demand GmbH.; Nitto, E. D., Lavazza, L., Schiavoni, M., Tracanella, E. y Trombetta, M. (2002). Deriving executable process descriptions from uml. En Proceedings of the 24th International Conference on Software Engineering (pp. 155-165). https://doi.org/10.1145/581339.581361; Object Management Group. (2008a). Software & Systems Process Engineering Meta-Model Specification Version 2.0. omg Document Number: formal/2008-04-01. https://www.omg. org/spec/SPEM/2.0/PDF; Object Management Group. (2008b). Meta Object Facility (mof) Core Specification. Version 2.5.1. omg Document Number: formal/2019-10-01. https://www.omg.org/spec/MOF; Object Management Group. (2017). omg Unified Modeling Language (omg uml) Version 2.5.1. omg Document Number: formal/2017-12-05. https://www.omg.org/spec/UML/2.5.1/ PDF; OpenUP. (2012). Eclipse Process Framework Composer. http://www.utm.mx/~caff/doc/OpenUPWeb/ index.htm; Pawel, P. (2010). Using Petri nets to model and simulation production systems in process reengineering (case study). intech Open Access Publisher. https://www.intechopen.com/ chapters/9195; Pereira, E. B., Bastos, R. M., Oliveira, T. C. y Móra, M. C. (2012). A set of well-formedness rules to checking the consistency of the software processes based on spem 2.0. En R. Zhang, J. Zhang, Z. Zhang, J. Filipe y J. Cordeiro (eds.), Enterprise Information Systems. iceis 2011. Lecture Notes in Business Information Processing (pp. 284-299). Springer. https://doi.org/10.1007/978-3-642-29958-2_19; Ris-Ala, R. (2016). Scrum Framework Drawn in bpmn. https://www.linkedin.com/pulse/ scrum-drawn-bpmn-rafael-ris-ala-jos%C3%A9-jardim; Seidewitz, E. (2003). What models mean. ieee Software, 20(5), 26-32. https://doi. org/10.1109/MS.2003.1231147; Sutton, S. M., Heimbigner, D. y Osterweil, L. J. (1995). appl/a: A language for software process programming. acm Transactions on Software Engineering and Methodology (tosem), 4(3), 221-286. https://doi.org/10.1145/214013.214017; Van der Aalst, W. (2016). Process mining: Data science in action. Springer.; Basili, V. R., Caldiera, G. y Rombach, H. D. (1994). The goal question metric approach. En Encyclopedia of software engineering (pp. 528-532). Wiley & Sons Inc.; Bourque, P. y Fairley, R. E. (eds.) (2014). Guide to the software engineering body of knowledge, version 3.0. ieee Computer Society; Canfora, G., García, F., Piattini, M., Ruiz, F. y Visaggio, C. A. (2005). A family of experiments to validate metrics for software process models. Journal of Systems and Software, 77(2), 113-129. https://doi.org/10.1016/j.jss.2004.11.007; Deridder, D. (2002). A concept-oriented approach to support software maintenance and reuse activities. En Workshop on Knowledge-Based Object-Oriented Software Engineering at 16th European Conference on Object-Oriented Programming (ecoop 2002). Springer. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7785ac1e75fc7b343776cbb98c598e1b1a0be565; Fairley, R. E. (2011). Managing and leading software projects. John Wiley & Sons.; Farooq, S. U., Quadri, S. M. K. y Ahmad, N. (2011). Software measurements and metrics: Role in effective software testing. International Journal of Engineering Science and Technology, 3(1), 671-680. https://www.academia.edu/download/52482421/SOFTWARE_ MEASUREMENTS_AND_METRICS_ROLE_I20170404-6019-9p9zbx.pdf; Florak, W. A., Park, R. E. y Carleton, A. (1997). Practical software measurement: Measuring for process management and improvement. No. cmu/sei-97-hb-003. Software Engineering Institute, Carnegie Mellon University. https://citeseerx.ist.psu.edu/document? repid=rep1&type=pdf&doi=76aafd5d0ed49263488bca95f00f1fdad3729bec; Grady, R. B. (1992). Practical software metrics for project management and process improvement. Prentice-Hall.; Institute of Electrical and Electronics Engineers. (1990). 610.12-1990 - ieee Standard Glossary of Software Engineering Terminology. https://doi.org/10.1109/IEEESTD.1990.101064; ISO/IEC/IEEE 12207. (2017). ISO/IEC/IEEE 12207:2017 Systems and software engineering – Software life cycle processes.; ISO/IEC/IEEE 15288. (2015). ISO/IEC/IEEE 15288:2015 Systems and software engineering – System life cycle processes.; ISO/IEC/IEEE 15939. (2017). ISO/IEC/IEEE 15939:2017 Systems and software engineering – Measurement process.; Joint Committee for Guides in Metrology. (2012). jcgm 200:2012: International vocabulary of metrology. Basic and general concepts and associated terms (vim). https://www.bipm.org/ utils/common/documents/jcgm/JCGM_200_2012.pdf; Kurnia, R., Ferdiana, R. y Wibirama, S. (2018). Software metrics classification for agile scrum process: A literature review. En 2018 International Seminar on Research of Information Technology and Intelligent Systems (isriti) (pp. 174-179). ieee. https://doi. org/10.1109/ISRITI.2018.8864244; Menéndez Domínguez, V. H. y Castellanos Bolaños, M. E. (2015). spem: Software process engineering metamodel. Archivo de la Revista Latinoamericana de Ingeniería de Software, 3(2), 92-100. https://doi.org/10.18294/relais.2015.92-100; Mills, E. E. y Shingler, K. H. (1988). Software Metrics: sei Curriculum Module sei-cm-12-1.1. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu. edu/documents/1537/1988_007_001_15608.pdf; Noor, H., Hayat, D. B., Hamid, A., Wakeel, T. y Nasim, R. (2020). Software metrics: Investigating success factors, challenges, solutions and new research directions. International Journal of Scientific & Technology Research, 9(8), 38-44.; Park, R. E., Goethert, W. B. y Florac, W. A. (1996). Goal-driven software measurement: A guidebook. No. cmu/sei-96-hb-002. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu.edu/documents/1623/1996_002_001_16436.pdf; Piattini Velthuis, M. G., García Rubio, F. O., García Rodríguez de Guzmán, I. y Pino, F. J. (2011). Calidad de sistemas de información. Ra-Ma.; Pressman, R. S. (2005). Software engineering: A practitioner’s approach. McGraw-Hill.; Ruiz, F., Genero, M., García, F., Piattini, M. y Calero, C. (2003). A proposal of a software measurement ontology. En Proceedings of the Conference on Computer Science and Operational Research. Springer. https://www.academia.edu/download/68115968/A_proposal_ of_a_Software_Measurement_Ont20210715-13490-bwjmn6.pdf; Srinivasan, K. P. (2015). Unique fundamentals of software measurement and software metrics in software engineering. International Journal of Computer Science & Information Technology (ijcsit), 7(4), 29-43. https://www.airccse.org/journal/jcsit/7415ijcsit03.pdf; Tautz, C. y Von Wangenheim, C. (1998). refseno: A representation formalism for software engineering ontologies. Technical report No. 015.98/E, version 1.1. Fraunhofer iese. https://publica-rest.fraunhofer.de/server/api/core/bitstreams/05029db1-0b3f-408eb786- 468127baee2d/content; Xu, R., Xue, Y., Nie, P., Zhang, Y. y Li, D. (2006). Research on CMMI-based software process metrics. En First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS’06) (vol. 2, pp. 391-397). ieee. https://doi.org/10.1109/ IMSCCS.2006.260; Baldassarre, T., Boffoli, N., Caivano, D. y Visaggio, G. (2004). Managing Software Process Improvement (SPI) through statistical process control (spc). En F. Bomarius y H. Iida (eds.), Product Focused Software Process Improvement. profes 2004. Lecture Notes in Computer Science (pp. 30-46). Springer. https://doi.org/10.1007/978-3-540-24659-6_3; Caivano, D. (2005). Continuous Software Process Improvement through statistical process control. En Ninth European Conference on Software Maintenance and Reengineering (pp. 288-293). ieee. https://doi.org/10.1109/CSMR.2005.20; Card, D. N. y Glass, R. L. (1990). Measuring software design quality. Prentice-Hall.; Chang, C. W. y Tong, L. I. (2013). Monitoring the software development process using a short-run control chart. Software Quality Journal, 21, 479-499. https://doi. org/10.1007/s11219-012-9182-y; DeMarco, T. (1986). Controlling software projects: Management, measurement, and estimates. Prentice Hall.; Fine, E. S. (1997). What is wrong with spc? Quality, 36(10), 22-24.; Florac, W. A. y Carleton, A. D. (1999). Measuring the software process: Statistical process control for Software Process Improvement. Addison-Wesley.; Florac, W. A., Carleton, A. D. y Barnard, J. R. (2000). Statistical process control: Analyzing space shuttle onboard software process. ieee Software, 17(4), 97-106. https://doi. org/10.1109/52.854075; Florac, W. A., Park, R. E. y Carleton, A. (1997). Practical software measurement: Measuring for process management and improvement. No. cmu/sei-97-hb-003. Software Engineering Institute, Carnegie Mellon University. https://citeseerx.ist.psu.edu/document? repid=rep1&type=pdf&doi=76aafd5d0ed49263488bca95f00f1fdad3729bec; Gonçalves, L., Lima, L., Reis, R. Q., Nascimento, L. y Ribeiro, T. (2012). Support for statistic process control of software process. En 2012 xxxviii Conferencia Latinoamericana en Informática (clei) (pp. 1-10). ieee. https://doi.org/10.1109/CLEI.2012.6426915; Humphrey, W. S. (2005). psp (sm): A self-improvement process for software engineers. Addison-Wesley.; Jalote, P. y Saxena, A. (2002). Optimum control limits for employing statistical process control in software process. ieee Transactions on Software Engineering, 28(12), 1126-1134. https://doi.org/10.1109/TSE.2002.1158286; Komuro, M. (2006). Experiences of applying SPC techniques to software development processes. En Proceedings of the 28th international conference on Software engineering (pp. 577-584). https://doi.org/10.1145/1134285.1134367; Khurana, R. (2007). Software engineering: Principles and practices. Vikas.; Manlove, D. y Kan, S. H. (2007). Practical statistical process control for software metrics. Software Quality Professional Magazine, 9(4), 15-26.; Montgomery, D. C. (2012). Statistical quality control. Wiley Global Education.; Raczynski, B. y Curtis, B. (2008). Software data violate spc’s underlying assumptions. ieee Software, 25(3), 48-50.; Salazar, R. (2019). Quality Control Charts: x-bar chart, R-chart and Process Capability Analysis. Towards data science. https://towardsdatascience.com/quality-controlcharts- x-bar-chart-r-chart-and-process-capability-analysis-96caa9d9233e; Sargut, K. U. y Demirörs, O. (2006). Utilization of statistical process control (spc) in emergent software organizations: Pitfalls and suggestions. Software Quality Journal, 14, 135-157. https://doi.org/10.1007/s11219-006-7599-x; Şengöz, N. G. (2018). Control charts to enhance quality. En L. Kounis (ed.), Quality management systems: A selective presentation of case-studies showcasing its evolution (pp. 153-194). IntechOpen.; Shewhart, W. A. (1926). Quality control charts. Bell System Technical Journal, 5, 593-603. https://doi.org/10.1002/j.1538-7305.1926.tb00125.x; Tarhan, A. y Demirörs, O. (2006). Investigating suitability of software process and metrics for statistical process control. En I. Richardson, P. Runeson y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2006. Lecture Notes in Computer Science (pp. 88-99). Springer. https://doi.org/10.1007/11908562_9; Weller, E. y Card, D. (2008). Applying spc to software development where and why. ieee Software, 25(3), 48-50.; Wheeler, D. J. (1993). Understanding variation: The key to managing chaos. spc Press.; Wheeler, D. J. (1995). Advanced topics in statistical process control. spc Press.; Allison, I. (2005). Towards an agile approach to Software Process Improvement: Addressing the changing needs of software products. Communications of iima, 5(1), 67-76. https:// doi.org/10.58729/1941-6687.1256; American Society for Quality. (2020). Quality tools. https://asq.org/quality-resources/quality- tools; Antony, J. y Banuelas, R. (2002). Key ingredients for the effective implementation of Six Sigma program. Measuring Business Excellence, 6(4), 20-27. https://doi. org/10.1108/13683040210451679; Basili, V., Caldiera, G. y Rombach, D. (1994). Experience factory. En Encyclopedia of software engineering (vol. 1, pp. 476-496). John Wiley & Sons.; Beecham, S., Hall, T. y Rainer, A. (2003). Software process improvement problems in twelve software companies: An empirical analysis. Empirical Software Engineering, 8, 7-42. https://doi.org/10.1023/A:1021764731148; Bekaroo, G. y Warren, P. (2016). Self-tuning flowcharts: A priority-based approach to optimize diagnostic flowcharts. En 2016 ieee International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech) (pp. 279-285). IEEE. https://doi.org/10.1109/EmergiTech.2016.7737352; Birk, A. y Rombach, D. (2001). A practical approach to continuous improvement in software engineering. En M. Wieczorek y D. Meyerhoff (eds.), Software quality: State of the art in management, testing, and tools (pp. 34-45). https://doi.org/10.1007/978-3- 642-56529-8_3; Borstler, J., Carrington, D., Hislop, G. W., Lisack, S., Olson, K. y Williams, L. (2002). Teaching PSP: Challenges and lessons learned. ieee Software, 19(5), 42-48. https://doi. org/10.1109/MS.2002.1032853; British Standards Institution. (2011). Kick start guide TickITplus. https://www.tickitplus. org/en/standards-and-guidance/guidance.html?file=files/content/tickitplus/TickITplus_-_ Kick_Start_Guide_1.pdf&cid=33397; Bubevski, V. (2010). An application of Six Sigma and simulation in software testing risk assessment. En 2010 Third International Conference on Software Testing, Verification and Validation (pp. 295-302). ieee. https://doi.org/10.1109/ICST.2010.23; Cangussu, J. W., DeCarlo, R. A. y Mathur, A. P. (2003). Monitoring the software test process using statistical process control: A logarithmic approach. En Proceedings of the 9th European Software Engineering Conference held jointly with 11th acm sigsoft International Symposium on Foundations of Software Engineering (pp. 158-167). ieee. https://doi. org/10.1145/940071.940093; Cano, E. L., Moguerza, J. M. y Redchuk, A. (2012). Six Sigma with R: Statistical engineering for process improvement. Springer.; Chaudhary, M. y Chopra, A. (2017). CMMI for development: Implementation guide. Apress. https://doi.org/10.1007/978-1-4842-2529-5; Davis, P. T. y Lewis, B. D. (2018). Project management capability assessment: Performing iso 33000-Based capability assessments of project management. crc Press.; Ferreira, M. G. y Wazlawick, R. S. (2011). Complementing the sei-ideal model with deployers’ real experiences: The need to address human factors in spi Initiatives. En CIbSE (pp. 39-52). https://www.academia.edu/download/32809080/cibse_paper03.pdf; Fontana, R. M., Albuquerque, R., Luz, R., Moises, A. C., Malucelli, A. y Reinehr, S. (2018). Maturity models for agile software development: What are they? En X. Larrucea, I. Santamaria, R. O’Connor y R. Messnarz (eds.), Systems, Software and Services Process Improvement. EuroSPI 2018. Communications in Computer and Information Science (pp. 3-14). Springer. https://doi.org/10.1007/978-3-319-97925-0_1; Grütter, G. y Ferber, S. (2002). The Personal Software Process in practice: Experience in two cases over five years. En J. Kontio y R. Conradi (eds.), Software Quality - ecsq 2002. ecsq 2002. Lecture Notes in Computer Science (pp. 165-174). Springer. https:// doi.org/10.1007/3-540-47984-8_20; Gupta, P. y Rao, D. S. (2011). Best practices to achieve CMMI level 2 configuration management process area through vss tool. International Journal of Computer Technology and Applications, 2(3), 542-558.; Harry, M. y Schroeder, R. (2000). Six Sigma: The breakthrough management strategy revolutionizing the world’s top corporations. Doubleday.; Hauser, S. (2018). Analysis of requirement problems regarding their causes and effects for projects with the objective to model qualitative pris-empirical study. https://ceur-ws.org/Vol-2075/ DS-paper3.pdf; Humphrey, W. S. (2001). Winning with software: An executive strategy. Pearson Education.; Humphrey, W. S. y Over, J. W. (2010). Leadership, teamwork, and trust: Building a competitive software capability. Addison-Wesley.; Iqbal, J., Nasir, M. H. N., Khan, M., Awan, I. y Farid, S. (2020). Software process improvement implementation issues in small and medium enterprises that develop healthcare applications. Journal of Medical Imaging and Health Informatics, 10(10), 2393-2403. https://doi.org/10.1166/jmihi.2020.3187; ISO 33000. (2020). iso 33000. https://www.iso33000.es/; ISO/IEC 15504. (2003). International Organization for Standardization and the International Electrotechnical Commission (iso/iec). iso/iec 15504-2 - Information technology - Process assessment - Part 2: Performing an assessment.; Kandt, R. K. (2003). Ten steps to successful Software Process Improvement. https://dataverse. jpl.nasa.gov/api/access/datafile/6189?gbrecs=true; Kaplan, R. S. y Norton, D.P. (1992). The balanced scorecard: Measures that drive performance. Harvard Business Review, 70(1), 71-79. https://hbr.org/1992/01/the-balancedscorecard- measures-that-drive-performance-2; Kaplan, R. S. y Norton, D.P. (2009). El cuadro de mando integral. Gestión 2000.; Kazi, L., Radosav, D., Nikolic, M. y Chotaliya, N. (2011). Balanced scorecard framework in software project monitoring. Journal of Engineering Management and Competitiveness (jemc), 1(1-2), 51-56. http://www.tfzr.uns.ac.rs/JEMC/files/V1N1-22011-10.pdf; Kuhrmann, M., Konopka, C., Nellemann, P., Diebold, P. y Münch, J. (2015). Software process improvement: Where is the evidence? Initial findings from a systematic mapping study. En Proceedings of the 2015 International Conference on Software and System Process (pp. 107-116). https://doi.org/10.1145/2785592.2785600; Kuilboer, J. P. y Ashrafi, N. (2000). Software process and product improvement: An empirical assessment. Information and Software Technology, 42(1), 27-34. https://doi. org/10.1016/S0950-5849(99)00054-3; Lee, J. C., Hsu, W. C. y Chen, C. Y. (2018). Impact of absorptive capability on Software Process Improvement and firm performance. Information Technology and Management, 19, 21-35. https://doi.org/10.1007/s10799-016-0272-6; Liliana, L. (2016). A new model of Ishikawa diagram for quality assessment. En Iop Conference Series: Materials Science and Engineering, 161(1), 012099. https://doi. org/10.1088/1757-899X/161/1/012099; McFeeley, B. (1996). IDEAL: A user’s guide for Software Process Improvement. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu.edu/documents/ 1622/1996_002_001_16433.pdf; Mejía, J., Íñiguez, F. y Muñoz, M. (2017). Data Analysis for Software Process Improvement: A systematic literature review. En Á. Rocha, A. Correia, H. Adeli, L. Reis y S. Costanzo (eds.), Recent Advances in Information Systems and Technologies. WorldCIST 2017. Advances in Intelligent Systems and Computing (pp. 48-59). Springer. https://doi. org/10.1007/978-3-319-56535-4_5; Mills, H. D. y Linger, R. C. (2002). Cleanroom software engineering: Developing software under statistical quality control. En Encyclopedia of Software Engineering. John Wiley & Sons. https://doi.org/10.1002/0471028959.sof040; Niazi, M., Mishra, A. y Gill, A. Q. (2018). What do software practitioners really think about Software Process Improvement project success? An exploratory study. Arabian Journal for Science and Engineering, 43, 7719-7735. https://doi.org/10.1007/s13369- 018-3140-3; O’Regan, G. (2017). Concise guide to software engineering. Springer.; Pernstål, J., Feldt, R., Gorschek, T. y Florén, D. (2019). flex-rca: A lean-based method for root cause analysis in Software Process Improvement. Software Quality Journal, 27, 389-428. https://doi.org/10.1007/s11219-018-9408-8; Piattini Velthuis, M. G. y Garzás Parra, J. (2007). Fábricas de software: Experiencias, tecnologías y organización. ra-ma.; Pillai, A. K. R., Pundir, A. K. y Ganapathy, L. (2012). Implementing integrated Lean Six Sigma for software development: A flexibility framework for managing the continuity. Change dichotomy. Global Journal of Flexible Systems Management, 13, 107-116. https://doi.org/10.1007/s40171-012-0009-2; Pomeroy-Huff, M., Mullaney, J., Cannon, R. y Seburn, M. (2008). The Personal Software Process-SM (PSP-SM) Body of Knowledge, Version 1.0. No. cmu/sei-2005-sr-003. Software Engineering Institute, Carnegie Mellon University. https://apps.dtic.mil/sti/tr/ pdf/ADA636411.pdf; Poth, A., Sasabe, S. y Mas, A. (2017). Lean and agile Software Process Improvement: An overview and outlook. En J. Stolfa, S. Stolfa, R. O’Connor y R. Messnarz (eds.), Systems, Software and Services Process Improvement. EuroSPI 2017. Communications in Computer and Information Science (pp. 471-485). Springer. https://doi.org/10.1007/978-3- 319-64218-5_38; Pournaghshband, H. y Watson, J. (2017). Should Six Sigma be incorporated into software development & project management? En 2017 International Conference on Computational Science and Computational Intelligence (csci) (pp. 1021-1026). ieee. https://doi. org/10.1109/CSCI.2017.176; Pressman, R. S. (2005). Software engineering: A practitioner’s approach. Palgrave Macmillan.; Qumer, A., Henderson-Sellers, B. y Mcbride, T. (2007). Agile adoption and improvement model. En Proceedings European and Mediterranean Conference on Information Systems (emcis). The Information Institute, Brunel University. https://opus.lib.uts.edu.au/bitstream/ 10453/6833/1/2006014581.pdf; Salo, O. (2006). Enabling Software Process Improvement in agile software development teams and organisations [tesis de doctorado, vtt Technical Research Centre of Finland]. https://publications.vtt.fi/pdf/publications/2006/P618.pdf; Santana, C., Queiroz, F., Vasconcelos, A. y Gusmão, C. (2015). Software process improvement in agile software development a systematic literature review. En 2015 41st Euromicro Conference on Software Engineering and Advanced Applications (pp. 325-332). ieee. https://doi.org/10.1109/SEAA.2015.82; scampi Upgrade Team. (2011). scampi - Standard cmmi Appraisal Method for Process Improvement (scampi) A, Version 1.3: Method Definition Document. Technical Report cmu/sei-2011- hb-001. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA. https://insights.sei.cmu.edu/documents/1618/2011_002_001_15311. pdf; Shin, H., Choi, H. J. y Baik, J. (2007). Jasmine: A PSP supporting tool. En Q. Wang, D. Pfahl y D. M. Raffo (eds.), Software Process Dynamics and Agility. icsp 2007. Lecture Notes in Computer Science (pp. 73-83). Springer. https://doi.org/10.1007/978-3-540- 72426-1_7; Software Engineering Institute. (2010). cmmi para Desarrollo, Versión 1.3. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu.edu/ documents/87/2010_019_001_28782.pdf; Tague, N. R. (2005). The quality toolbox. asq Quality Press.; Wiegers, K. E. (1999). Process Improvement that works. Software Development, 7(10), 24-30.; Zahran, S. (1998). Software process improvement: Practical guidelines for business susccess. Addison-Wesley.; Amescua, A., Bermón Angarita, L., García, J. y Sánchez-Segura, M. I. (2010). Knowledge repository to improve agile development processes learning. iet Software, 4(6), 434-444. https://doi.org/10.1049/iet-sen.2010.0067; Bayona, S., Calvo Manzano, J., Cuevas, G. y San Feliu, T. (2013). Identify and classify the critical success factors for a successful process deployment. En R. Pooley, J. Coady, C. Schneider, H. Linger, C. Barry y M. Lang (eds.), Information systems development: Reflections, challenges and new directions (pp. 11-22). Springer. https:// doi.org/10.1007/978-1-4614-4951-5_2; Bermón Angarita, L. (2010). Librería de activos para la gestión del conocimiento sobre procesos de software: PAL-Wiki [tesis de doctorado, Universidad Carlos III de Madrid]. https://e-archivo.uc3m.es/handle/10016/10231#preview; Bourque, P. y Fairley, R. E. (eds.) (2014). Guide to the Software Engineering Body of Knowledge, Version 3.0. ieee Computer Society. https://cs.fit.edu/~kgallagher/Schtick/Serious/ SWEBOKv3.pdf; Chaghrouchni, T., Kabbaj, M. I. y Bakkoury, Z. (2016). Optimized approach for dynamic adaptation of process models. En A. El Oualkadi, F. Choubani y A. El Moussati (eds.), Proceedings of the Mediterranean Conference on Information & Communication Technologies 2015. Lecture Notes in Electrical Engineering (pp. 101-109). Springer. https://doi. org/10.1007/978-3-319-30298-0_11; Chaudhary, M. y Chopra, A. (2017). cmmi for development: Implementation guide. Apress. http://ndl.ethernet.edu.et/bitstream/123456789/27112/1/Mukund %20Chaudhary. pdf; Christensen, C. M. y Overdorf, M. (2000). Meeting the challenge of disruptive change. Harvard Business Review, 78(2), 66-77. http://innovbfa.viabloga.com/files/HBR___Christensen___ meeting_the_challenge_of_disruptive_change___2009.pdf; De Lucia, A., Fasano, F., Francese, R. y Tortora, G. (2004). ADAMS: An artefact-based process support system. En F. Maurer y G. Ruhe (eds.), Proceedings of the Seventh International Conference on Software Engineering and Knowledge Engineering (apeie) (pp. 31-36). IEEE.; De Oliveira, K. M., Zlot, F., Rocha, A. R., Travassos, G. H., Galotta, C. y de Menezes, C. S. (2004). Domain-oriented software development environment. Journal of Systems and Software, 72(2), 145-161. https://doi.org/10.1016/S0164-1212(03)00233-4; DeMarco, T. y Lister, T. (2013). Peopleware: Productive projects and teams. Addison-Wesley.; Dengler, F., Lamparter, S., Hefke, M. y Abecker, A., (2009). Collaborative process development using Semantic MediaWiki. En K. Hinkelmann y H. Wache (eds.), WM2009: 5th Conference on Professional Knowledge Management (pp. 97-107). Gesellschaft für Informatik e.V. https://new-dl.gi.de/bitstream/handle/20.500.12116/23326/giproc- 145-008.pdf?sequence=1&isAllowed=y; Dowson, M. (1993). Consistency maintenance in process sensitive environments. En Proceedings of Workshop on Process Sensitive Environments Architectures. Rocky Mountain Institute of Software Engineering.; Dybå, T. (2005). An empirical investigation of the key factors for success in Software Process Improvement. ieee transactions on Software Engineering, 31(5), 410-424. https://doi.org/10.1109/TSE.2005.53; Ebersbach, A., Glaser, M., Heigl, R. y Warta, A. (2008). Wiki: Web collaboration (2.ª ed.). Springer.; García, J., Amescua, A., Sánchez, M. I. y Bermón Angarita, L. (2011). Design guidelines for software processes knowledge repository development. Information and Software Technology, 53(8), 834-850. https://doi.org/10.1016/j.infsof.2011.03.002; García, S. y Turner, R. (2007). CMMI survival guide: Just enough process improvement. Addison-Wesley.; Gruhn, V. (2002). Process-centered software engineering environments: A brief history and future challenges. Annals of Software Engineering, 14, 363-382. https://doi. org/10.1023/A:1020522111961; Hasan, H. y Pfaff, C. C. (2006). The Wiki: An environment to revolutionise employees’ interaction with corporate knowledge. En Proceedings of the 18th Australia conference on Computer-Human Interaction: Design: Activities, Artefacts and Environments (pp. 377-380). https://doi.org/10.1145/1228175.1228250; Henderson, R. M. y Clark, K. B. (1990). Architectural innovation: The reconfiguration of existing product technologies and the failure of established firms. Administrative Science Quarterly, 35, 9-30. https://doi.org/10.2307/2393549; Humphrey, W. S. (2005). The software process: Global goals. En M. Li, B. Boehm y L. J. Osterweil (eds.), Unifying the Software Process Spectrum. spw 2005. Lecture Notes in Computer Science (pp. 35-42). Springer. https://doi.org/10.1007/11608035_4; Jiang, T., Ying, J., Wu, M. y Fang, M. (2006). An architecture of process-centered context- aware software development environment. En 2006 10th International Conference on Computer Supported Cooperative Work in Design (pp. 1-5). ieee. https://doi. org/10.1109/CSCWD.2006.253193; Kaltio, T. (2001). Software process asset management and deployment in a multi-site organization [tesis de doctorado, Helsinki University of Technology]. https://aaltodoc.aalto.fi/ server/api/core/bitstreams/627a1f2d-ca62-4915-a2af-5c69ba06d629/content; Kellner, M. I., Becker-Kornstaedt, U., Riddle, W. E., Tomal, J. y Verlage, M. (1998). Process guides: Effective guidance for process participants. ispa Press. https://publica-rest.fraunhofer. de/server/api/core/bitstreams/0cae4e01-20d2-490c-b565-3eb6dd58539a/content; Layman, B. (2005). Implementing an organizational Software Process Improvement program. IEEE Software Engineering, 2, 279-288.; Leuf, B. y Cunningham, W. (2001). The wiki way: Quick collaboration on the web. Addison- Wesley.; Maciel, R. S. P., da Silva, B. C., Magalhães, A. P. F. y Rosa, N. S. (2009). An integrated approach for model driven process modeling and enactment. En 2009 xxiii Brazilian Symposium on Software Engineering (pp. 104-114). ieee. https://doi. org/10.1109/SBES.2009.18; Maciel, R. S. P., Gomes, R. A., Magalhães, A. P., Silva, B. C. y Queiroz, J. P. B. (2013). Supporting model-driven development using a process-centered software engineering environment. Automated Software Engineering, 20, 427-461. https://doi.org/10.1007/ s10515-013-0124-0; Matinnejad, R. y Ramsin, R. (2012). An analytical review of process-centered software engineering environments. En 2012 ieee 19th International Conference and Workshops on Engineering of Computer-Based Systems (pp. 64-73). ieee. https://doi.org/10.1109/ ECBS.2012.11; Maurer, R. (2010). Beyond the wall of resistance: Why 70 % of all changes still fail-and what you can do about it. Bard Press.; Meso, P. y Jain, R. (2006). Agile software development: Adaptive systems principles and best practices. Information Systems Management, 23(3), 19-30. https://doi.org/10.120 1/1078.10580530/46108.23.3.20060601/93704.3; Messnarz, R., Ekert, D., Reiner, M. y O’Suilleabhain, G. (2008). Human resources based improvement strategies: The learning factor. Software Process: Improvement and Practice, 13(4), 355-362. https://doi.org/10.1002/spip.397; Moe, N. B. y Dybå, T. (2006). The use of an electronic process guide in a medium‐sized software development company. Software Process: Improvement and Practice, 11(1), 21-34. https://doi.org/10.1002/spip.250; Münch, J., Armbrust, O., Kowalczyk, M. y Sotó, M. (2012). Software process definition and management. Springer. https://doi.org/10.1007/978-3-642-24291-5; Nikula, U., Jurvanen, C., Gotel, O. y Gause, D. C. (2010). Empirical validation of the Classic Change Curve on a software technology change project. Information and Software Technology, 52(6), 680-696. https://doi.org/10.1016/j.infsof.2010.02.004; Osterweil, L. (2011). Software processes are software too. En P. Tarr y A. Wolf (eds.), Engineering of Software. Springer. https://doi.org/10.1007/978-3-642-19823-6_17; Rico, D. F. (2005). Practical metrics and models for Return on Investment. TickIT International, 7(2), 10-16. https://davidfrico.com/rico05p.pdf; Rogers, E. W. (2004). Introducing the pause and learn (pal) process: Adapting the Army after action review process to the nasa project world at the Goddard Space Flight Center. nasa Goddard Space Flight Center Knowledge Management Office; Schneider, D. M. y Goldwasser, C. (1998). Be a model leader of change. Management Review, 87(3), 41-45.; Scott, L., Carvalho, L., Jeffery, R., D’Ambra, J. y Becker-Kornstaedt, U. (2002). Understanding the use of an electronic process guide. Information and Software Technology, 44(10), 601-616. https://doi.org/10.1016/S0950-5849(02)00080-0; Smatti, M., Oussalah, M. y Ahmed Nacer, M. (2016). Supporting deviations on software processes: A literature overview. En P. Lorenz, J. Cardoso, L. Maciaszek y M. van Sinderen (eds.), Software Technologies. ICSOFT 2015. Communications in Computer and Information Science (pp. 191-209). Springer. https://doi.org/10.1007/978-3-319- 30142-6_11; Software Engineering Institute. (2010). cmmi® para Desarrollo, Versión 1.3. https://insights. sei.cmu.edu/documents/87/2010_019_001_28782.pdf; Van Solingen, R. (2004). Measuring the ROI of Software Process Improvement. ieee Software, 21(3), 32-38. https://doi.org/10.1109/MS.2004.1293070; Veterans Affairs. (2022). Process Asset Library. https://www.va.gov/process/artifacts.asp; Weber, S., Emrich, A., Broschart, J., Ras, E. y Ünalan, Ö. (2009). Supporting software development teams with a semantic process- and artifact-oriented collaboration environment. En Software Engineering 2009 - Workshopband (pp. 243-254). Gesellschaft für Informatik e.V. https://dl.gi.de/server/api/core/bitstreams/ac0c66ff-4de1-4aadbfee- da2ffb68ec0f/content; Wikipedia. (s. f.). Wiki. http://en.wikipedia.org/wiki/Wiki; Zahran, S. (1998). Software process improvement: Practical guidelines for business success. Addison-Wesley.; Ahonen, J. J., Forsell, M. y Taskinen, S. K. (2002). A modest but practical software process modeling technique for Software Process Improvement. Software Process: Improvement and Practice, 7(1), 33-44. https://doi.org/10.1002/spip.152; Alexandre, S., Renault, A. y Habra, N. (2006). OWPL: A gradual approach for Software Process Improvement in SMEs. En 32nd euromicro Conference on Software Engineering and Advanced Applications (euromicro’06) (pp. 328-335). ieee. https://doi.org/10.1109/ EUROMICRO.2006.48; Allen, P., Ramachandran, M. y Abushama, H. (2003). prisms: An approach to Software Process Improvement for small to medium enterprises. En Third International Conference on Quality Software, 2003. Proceedings (pp. 211-214). ieee. https://doi.org/10.1109/ QSIC.2003.1319105; Anacleto, R., Von Wangenheim, C. G., Salviano, C. F. y Savi, R. (2004). A method for process assessment in small software companies. En Proceedings of 4th International Software Process Improvement and Capability Determination Conference (SPICE04) (pp. 69-76). Springer. https://www.inf.ufsc.br/~c.wangenheim/download/MARESMethod_ spice2004_vref.pdf; Baskerville, R. y Pries-Heje, J. (1999). Knowledge capability and maturity in software management. acm sigmis Database: The database for Advances in Information Systems, 30(2), 26-43. https://doi.org/10.1145/383371.383374; Basri, S. y O’Connor, R. V. (2010). Understanding the perception of very small software companies towards the adoption of process standards. En A. Riel, R. O’Connor, S. Tichkiewitch y R. Messnarz (eds.), Systems, Software and Services Process Improvement. EuroSPI 2010. Communications in Computer and Information Science (pp. 153- 164). Springer. https://doi.org/10.1007/978-3-642-15666-3_14; Berander, P. y Andrews, A. (2005). Requirements prioritization. En A. Aurum y C. Wohlin (eds.), Engineering and managing software requirements (pp. 69-94). Springer. https:// doi.org/10.1007/3-540-28244-0_4; Bucci, G., Campanai, M. y Cignoni, G. A. (2000). Rapid assessment to solicit process improvement in SMEs. En Proceedings of 7th European Software Process Improvement Conference (EuroSPI). Springer. http://groups.di.unipi.it/~giovanni/CV/Pubb/GAC-2001- SQP-Doc.pdf; Calvo-Manzano Villalón, J. A., Cuevas Agustín, G., San Feliu Gilabert, T., De Amescua Seco, A., García Sánchez, L. y Pérez Cota, M. (2002). Experiences in the application of Software Process Improvement in SMEs. Software Quality Journal, 10, 261-273. https:// doi.org/10.1023/A:1021638523413; Cater-Steel, A. P. (2004). Low-rigour, rapid software process assessments for small software development firms. En 2004 Australian Software Engineering Conference. Proceedings (pp. 368-377). ieee. https://doi.org/10.1109/ASWEC.2004.1290490; Cater-Steel, A., Toleman, M. y Rout, T. (2006). Process improvement for small firms: An evaluation of the rapid assessment-based method. Information and Software Technology, 48(5), 323-334. https://doi.org/10.1016/j.infsof.2005.09.012; Chen, X. y Staples, M. (2007). Using practice outcome areas to understand perceived value of cmmi specific practices for SMEs. En P. Abrahamsson, N. Baddoo, T. Margaria y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2007. Lecture Notes in Computer Science (pp. 59-70). Springer. https://doi.org/10.1007/978-3-540-75381-0_6; Chin, A. (2000). 10 factors on fostering innovation in small and medium-sized organisations. En Proceedings of the 2000 ieee International Conference on Management of Innovation and Technology. icmit 2000.’Management in the 21st Century’(Cat. No. 00EX457) (vol. 1, pp. 473-478). ieee. https://doi.org/10.1109/ICMIT.2000.917383; Clarke, P. y O’Connor, R. V. (2012a). The influence of spi on business success in software SMEs: An empirical study. Journal of Systems and Software, 85(10), 2356-2367. https:// doi.org/10.1016/j.jss.2012.05.024; Coleman, G. y O’Connor, R. (2008). Investigating software process in practice: A grounded theory perspective. Journal of Systems and Software, 81(5), 772-784. https://doi.org/10.1016/j.jss.2007.07.027; Dybå, T. (2003). Factors of Software Process Improvement success in small and large organizations: An empirical study in the scandinavian context. acm sigsoft Software Engineering Notes, 28(5), 148-157. https://doi.org/10.1145/949952.940092; European Commission. (2020). What is a SME? https://ec.europa.eu/growth/smes/business- friendly-environment/sme-definition_en/; Fontana, R. M., Meyer, V., Reinehr, S. y Malucelli, A. (2015). Progressive outcomes: A framework for maturing in agile software development. Journal of Systems and Software, 102, 88-108. https://doi.org/10.1016/j.jss.2014.12.032; García Paucar, L. H., Laporte, C. Y., Arteaga, Y. y Bruggmann, M. (2015). Implementation and Certification of iso/iec 29110 in an IT Startup in Peru. Software Quality Professional Journal, 17(2), 16-29. https://profs.etsmtl.ca/claporte/Publications/Publications/iso- 29110-in-an-it-startup-in-peru.pdf; García-Mireles, G. A. y Rodríguez-Castillo, I. (2009). Software engineering area curricular evaluation method based in Moprosoft. En 2009 Mexican International Conference on Computer Science (pp. 272-279). ieee. https://doi.org/10.1109/ENC.2009.19; Hall, T., Rainer, A. y Baddoo, N. (2002). Implementing Software Process Improvement: An empirical study. Software Process: Improvement and Practice, 7(1), 3-15. https://doi. org/10.1002/spip.150; Hauck, J. C. R., Almeida, I., Araujo, R., Dymow, J. y Neto, M. F. (2015). Harmonizing mps. br and certics: A case study in a maturity level f organization. En 2015 29th Brazilian Symposium on Software Engineering (pp. 61-70). ieee. https://doi.org/10.1109/ SBES.2015.22; Hauck, J. C. R., Gresse Von Wangenheim, C., de Souza, R. H. y Thiry, M. (2008). Process reference guides: Support for improving software processes in alignment with reference models and standards. En R. V. O’Connor, N. Baddoo, K. Smolander y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2008. Communications in Computer and Information Science (pp. 70-81). Springer. https://doi.org/10.1007/978- 3-540-85936-9_7; Hoffman, L. (1998). Small projects and the CMM. En Key Practices to the CMM: Inappropriate for Small projects? Proceedings of the 1998 Software Engineering Process Group Conference (pp. 9-12). Chicago.; Horvat, R. V., Rozman, I. y Györkös, J. (2000). Managing the complexity of spi in small companies. Software Process: Improvement and Practice, 5(1), 45-54. https://doi. org/10.1002/(SICI)1099-1670(200003)5:1%3C45::AID-SPIP110%3E3.0.CO;2-2; ISO/IEC 29110-1. (2010). Software engineering - lifecycle profiles for very small entities (vse) - Part 1: vse profiles overview. International Organization for Standardization.; ISO/IEC 29110-2. (2010). Software engineering - lifecycle profiles for very Small entities (vse) - Part 2: Framework and taxonomy. International Organization for Standardization.; ISO/IEC 29110-3. (2010). Software engineering - lifecycle profiles for very small entities (vse) - Part 3: Assessment guide. International Organization for Standardization.; ISO/IEC 29110-4. (2010). Software engineering - lifecycle profiles for very small entities (vse) - Part 4: Specifications of VSE profiles. International Organization for Standardization.; ISO/IEC 29110-5. (2010). Software engineering - lifecycle profiles for very small entities (vse) - Part 5: Management and engineering guide. International Organization for Standardization.; ISO/IEC 42010. (2007). Systems and software engineering - recommended practice for architectural description of software-intensive systems. International Organization for Standardization; ITmark. (2020). Modelo ITmark. http://it-mark.eu/; Järvi, A., Mäkilä, T. y Hakonen, H. (2006). Changing role of SPI: Opportunities and challenges of process modeling. En I. Richardson, P. Runeson y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2006. Lecture Notes in Computer Science (pp. 135-146). Springer. https://doi.org/10.1007/11908562_13; Jeners, S., Clarke, P., O’Connor, R. V., Buglione, L. y Lepmets, M. (2013). Harmonizing software development processes with software development settings: A systematic approach. En F. McCaffery, R. V. O’Connor y R. Messnarz (eds.), Systems, Software and Services Process Improvement. EuroSPI 2013. Communications in Computer and Information Science (pp. 167-178). Springer. https://doi.org/10.1007/978-3-642-39179-8_15; Johnson, D. L. y Brodman, J. G. (1998). Applying the CMM to small organizations and small projects. En Proceedings of the 1998 Software Engineering Process Group Conference.; Kachigan, S. K. (1986). Statistical analysis: An interdisciplinary introduction to univariate & multivariate methods. Radius Press.; Kautz, K., Hansen, H. W. y Thaysen, K. (2000). Applying and adjusting a Software Process Improvement model in practice: The use of the ideal model in a small software enterprise. En Proceedings of the 22nd international conference on Software engineering (pp. 626-633). https://doi.org/10.1145/337180.337492; Kuvaja, P., Palo, P. y Bicego, A. (1999). tapistry: A Software Process Improvement approach tailored for small enterprises. Software Quality Journal, 8(2), 149-156. https://doi. org/10.1023/A:1008909011736; Lester, N. G., Wilkie, F. G., McFall, D. y Ware, M. P. (2007). Evaluating the internal consistency of the base questions in the Express Process Appraisal. En 33rd euromicro Conference on Software Engineering and Advanced Applications (euromicro 2007) (pp. 289-296). ieee. https://doi.org/10.1109/EUROMICRO.2007.30; Lester, N. G., Wilkie, F. G., McFall, D. y Ware, M. P. (2010). Investigating the role of cmmi with expanding company size for small‐to medium‐sized enterprises. Journal of Software Maintenance and Evolution: Research and Practice, 22(1), 17-31. https://doi. org/10.1002/spip.409; López, O., Esquivel-Vega, G., Valerio, A. L., Víquez-Acuña, L., Víquez-Acuña, O. y Umaña, D. (2012). Mejora de procesos para fomentar la competitividad de la pequeña y mediana industria del software de Iberoamérica. Instituto Tecnológico de Costa Rica. https://repositoriotec. tec.ac.cr/bitstream/handle/2238/3358/mejora-procesos-fomentar-competitividad. pdf?sequence=1&isAllowed=y; McCaffery, F. y Coleman, G. (2009). Lightweight spi assessments: What is the real cost? Software Process: Improvement and Practice, 14(5), 271-278. https://doi.org/10.1002/ spip.430; McCaffery, F., McFall, D. y Wilkie, F.G. (2005). Improving the Express Process Appraisal method. En F. Bomarius y S. Komi-Sirviö (eds.), Product Focused Software Process Improvement. profes 2005. Lecture Notes in Computer Science (pp. 286-298). Springer. https://doi.org/10.1007/11497455_24; McCaffery, F., Richardson, I. y Coleman, G. (2006). A Adept: A software process appraisal method for small to medium-sized Irish software development organisations. En Proceedings of the European Software Process Improvement and Innovation Conference (Euro- SPI06). https://eprints.dkit.ie/173/; Mishra, D. y Mishra, A. (2009). Software process improvement in SMEs: A comparative view. Computer Science and Information Systems, 6(1), 111-140. https://doi. org/10.2298/CSIS0901111M; MPS.BR. (2012). Melhoria de Processo de Software Brasileiro: Guia Geral. Softex.; Nawrocki, J. R., Jasiñski, M., Walter, B. y Wojciechowski, A. (2002). Combining eXtreme Programming with ISO 9000. En H. Shafazand y A. M. Tjoa (eds.), EurAsia-ICT 2002: Information and Communication Technology. EurAsia-ICT 2002. Lecture Notes in Computer Science (pp. 786-794). Springer. https://doi.org/10.1007/3-540-36087-5_91; Nawrocki, J., Walter, B. y Wojciechowski, A. (2001). Toward maturity model for eXtreme Programming. En Proceedings 27th euromicro Conference. 2001: A Net Odyssey (pp. 233-239). ieee. https://doi.org/10.1109/EURMIC.2001.952459; O’Connor, R. V. (2014). Early stage adoption of iso/iec 29110 software project management practices: A case study. En A. Mitasiunas, T. Rout, R. V. O’Connor y A. Dorling (eds.), Software Process Improvement and Capability Determination. spice 2014. Communications in Computer and Information Science (pp. 226-237). Springer. https://doi. org/10.1007/978-3-319-13036-1_20; O’Connor, R. V. y Laporte, C. Y. (2014). An innovative approach to the development of an international software process lifecycle standard for very small entities. International Journal Information Technologies and Systems Approach (ijitsa), 7(1), 1-22. https://doi. org/10.4018/ijitsa.2014010101; Oktaba, H. (dir.) (2005). Modelo de procesos para la industria de software MoProSoft por niveles de capacidad de procesos. Versión 1.3. nmx-059/01-nyce-2005. Organismo Nacional de Normalización y Evaluación de la Conformidad.; Oktaba, H., Alquicira Esquivel, C., Ramos, A. S., Palacios Elizalde, J., Pérez Escobar, C. J. y López Lira Hinojo, F. (2004). Método de evaluación de procesos para la industria del software, EvalProSoft V1.1. Secretaría de Economía de México.; Oktaba, H., García, F., Piattini, M., Ruiz, F., Pino, F. J. y Alquicira, C. (2007). Software process improvement: The Competisoft project. Computer, 40(10), 21-28. https://doi. org/10.1109/MC.2007.361; Paulk, M. C. (1998). Using the software CMM in small organizations. En The Joint 1998 Proceedings of the Pacific Northwest Software Quality Conference and the Eighth International Conference on Software Quality (pp. 350-361). Carnegie Mellon University. http://www.iso.staratel.com/iso/CMM/Article/cmm-small.pdf; Pettersson, F., Ivarsson, M., Gorschek, T. y Öhman, P. (2008). A practitioner’s guide to light weight software process assessment and improvement planning. Journal of Systems and Software, 81(6), 972-995. https://doi.org/10.1016/j.jss.2007.08.032; Piattini, M. y Garzás-Parra, J. (2007). Fábricas de software: Experiencias, tecnologías y organización. ra-ma.; Pino, F. J., García, F. y Piattini, M. (2008). Software process improvement in small and medium software enterprises: A systematic review. Software Quality Journal, 16, 237-261. https://doi.org/10.1007/s11219-007-9038-z; Raninen, A., Ahonen, J. J., Sihvonen, H. M., Savolainen, P. y Beecham, S. (2013). lappi: A light‐weight technique to practical process modeling and improvement target identification. Journal of Software: Evolution and Process, 25(9), 915-933. https://doi. org/10.1002/smr.1571; Regnell, B., Höst, M., och Dag, J. N., Beremark, P. y Hjelm, T. (2001). An industrial case study on distributed prioritisation in market-driven requirements engineering for packaged software. Requirements Engineering, 6, 51-62. https://doi.org/10.1007/ s007660170015; Richardson, I. (2002). SPI models: What characteristics are required for small software development companies? En J. Kontio y R. Conradi (eds.), Software Quality: ECSQ 2002. ECSQ 2002. Lecture Notes in Computer Science (pp. 100-113). Springer. https:// doi.org/10.1007/3-540-47984-8_14; Richardson, I. y Ryan, K. (2001). Software process improvements in a very small company. Software Quality professional, 3(2), 23-35. https://citeseerx.ist.psu.edu/document? repid=rep1&type=pdf&doi=37f9a4ce4e41816901f3c9f99eaec880f18f18c2; Rozman, I., Vajde Horvat, R., GyÓrkÓs, J. y Hericùko, M. (1997). Processus: Integration of sei cmm and iso quality models. Software Quality Journal, 6, 37-63. https://doi. org/10.1023/A:1018539413913; Saaty, T. L. y Vargas, L. G. (2012). Models, methods, concepts & applications of the analytic hierarchy process. Springer.; Sánchez-Gordón, M. L., Colomo-Palacios, R., de Amescua Seco, A. y O’Connor, R. V. (2016). The route to Software Process Improvement in small-and medium-sized enterprises. En M. Kuhrmann, J. Münch, I. Richardson, A. Rausch y H. Zhang (eds.), Managing software process evolution. Springer. https://doi.org/10.1007/978-3-319-31545-4_7; Santos, G., Kalinowski, M., Rocha, A. R., Travassos, G. H., Weber, K. C. y Antonioni, J. A. (2012). MPS. BR program and MPS model: Main results, benefits and beneficiaries of Software Process Improvement in Brazil. En 2012 Eighth International Conference on the Quality of Information and Communications Technology (pp. 137-142). ieee. https:// doi.org/10.1109/QUATIC.2012.42; Savolainen, P., Sihvonen, H. M. y Ahonen, J. J. (2007). SPI with lightweight software process modeling in a small software company. En P. Abrahamsson, N. Baddoo, T. Margaria y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2007. Lecture Notes in Computer Science (pp. 71-81). Springer. https://doi.org/10.1007/978-3-540-75381-0_7; Scott, L., Jeffery, R., Carvalho, L., D’ambra, J. y Rutherford, P. (2001). Practical Software Process Improvement-the IMPACT project. En Proceedings 2001 Australian Software Engineering Conference (pp. 182-189). ieee. https://doi.org/10.1109/ASWEC.2001.948512; Softex. (2020). Modelos de referência. https://softex.br/mpsbr/modelos/; Stambollian, A., Habra, N., Laporte, C. Y., Desharnais, J. M. y Renault, A. (2006). owpl: A light model & methodology for initiation Software Process Improvement. En Proceedings of the 6th SPICE Conference on Process Assessment and Improvement (pp. 97- 105).; Suwanya, S. y Kurutach, W. (2008). An analysis of Software Process Improvement for sustainable development in Thailand. En 2008 8th ieee International Conference on Computer and Information Technology (pp. 724-729). ieee. https://doi.org/10.1109/ CIT.2008.4594764; Turgeon, J. (2006). CMMI on the sly for the CMMI shy: Implementing Software Process Improvement in small teams and organizations. Presentation in sepg.; Vahaniitty, J. y Rautiainen, K. (2005). Towards an approach for managing the development portfolio in small product-oriented software companies. En Proceedings of the 38th Annual Hawaii International Conference on System Sciences (pp. 314c-314c). ieee. https:// doi.org/10.1109/HICSS.2005.636; Valdés, G., Astudillo, H., Visconti, M. y López, C. (2010). The Tutelkan SPI framework for small settings: A methodology transfer vehicle. En A. Riel, R. O’Connor, S. Tichkiewitch y R. Messnarz (eds.), Systems, Software and Services Process Improvement. EuroSPI 2010. Communications in Computer and Information Science (pp. 142-1529. Springer. https://doi.org/10.1007/978-3-642-15666-3_13; Valdés, G., Visconti, M. y Astudillo, H. (2011). The Tutelkan Reference Process: A reusable process model for enabling SPI in small settings. En R. V. O’Connor, J. Pries-Heje y R. Messnarz (eds.), Systems, Software and Service Process Improvement. EuroSPI 2011. Communications in Computer and Information Science (pp. 179-190). Springer. https:// doi.org/10.1007/978-3-642-22206-1_16; Valencia, L. S., Villas, P. A. y Ocampo, C. A. (2009). Modelo de calidad de software. Scientia et Technica, 2(42), 172-176. https://www.redalyc.org/pdf/849/84916714032.pdf; Valtanen, A. y Ahonen, J. J. (2008). Big improvements with small changes: Improving the processes of a small software company. En A. Jedlitschka y O. Salo (eds.), Product-Focused Software Process Improvement. profes 2008. Lecture Notes in Computer Science (pp. 258-272). Springer. https://doi.org/10.1007/978-3-540-69566-0_22; Villarroel, R., Gómez, Y., Gajardo, R. y Rodríguez, O. (2009). Implementation of an improvement cycle using the competisoft methodological framework and the Tutelkan platform. En 2009 International Conference of the Chilean Computer Science Society (pp. 97-104). ieee. https://doi.org/10.1109/SCCC.2009.20; Von Wangenheim, C. G., Anacleto, A. y Salviano, C. F. (2006). Helping small companies assess software processes. ieee Software, 23(1), 91-98. https://doi.org/10.1109/ MS.2006.13; Von Wangenheim, C. G., Weber, S., Hauck, J. C. R. y Trentin, G. (2006). Experiences on establishing software processes in small companies. Information and Software Technology, 48(9), 890-900. https://doi.org/10.1016/j.infsof.2005.12.010; Weber, K. C., Araújo, E. E. R., da Rocha, A. R. C., Machado, C. A. F., Scalet, D. y Salviano, C. F. (2005). Brazilian software process reference model and assessment method. En P. Yolum, T. Güngör, F. Gürgen y C. Özturan (eds.), Computer and Information Sciences - ISCIS 2005. ISCIS 2005. Lecture Notes in Computer Science (pp. 402-411). Springer. https://doi.org/10.1007/11569596_43; Wheelen, T. L., Hunger, J. D., Hoffman, A. N. y Bamford, C. E. (2017). Strategic management and business policy. Pearson; Wilkie, F. G., Mc Caffery, F., McFall, D., Lester, N. y Wilkinson, E. (2007). A Low‐overhead method for software process appraisal. Software Process: Improvement and Practice, 12(4), 339-349. https://doi.org/10.1002/spip.321; Zarour, M., Abran, A. y Desharnais, J. M. (2011). Evaluation of software process assessment methods: Case study. En R. V. O’Connor, T. Rout, F. McCaffery y A. Dorling (eds.), Software Process Improvement and Capability Determination. spice 2011. Communications in Computer and Information Science (pp. 42-51). Springer. https://doi. org/10.1007/978-3-642-21233-8_4; Akbar, R., Hassan, M. F. y Abdullah, A. (2011). A review of prominent work on agile processes Software Process Improvement and process tailoring practices. En J. M. Zain, W. M. b. Wan Mohd y E. El-Qawasmeh (eds.), Software Engineering and Computer Systems. icsecs 2011. Communications in Computer and Information Science (pp. 571-585). Springer. https://doi.org/10.1007/978-3-642-22203-0_49; Alavi, M. y Leidner, D. E. (2001). Knowledge management and knowledge management systems: Conceptual foundations and research issues. mis Quarterly, 25(1), 107-136. https://doi.org/10.2307/3250961; Alexander, C. (1979). The timeless way of building. Oxford University Press.; Anguswamy, R. y Frakes, W. B. (2012). A study of reusability, complexity, and reuse design principles. En Proceedings of the acm-ieee International Symposium on Empirical Software Engineering and Measurement (pp. 161-164). https://doi. org/10.1145/2372251.2372280; Armbrust, O., Katahira, M., Miyamoto, Y., Münch, J., Nakao, H. y Ocampo, A. (2009). Scoping software process lines. Software Process: Improvement and Practice, 14(3), 181-197. https://doi.org/10.1002/spip.412; Barreto, A. S., Murta, L. G. P. y Rocha, A. R. (2011). Software process definition: A reuse-based approach. Journal of Universal Computer Science (jucs), 17(13), 1765-1799. https:// www.jucs.org/jucs_17_13/software_process_definition_a/jucs_17_13_1765_1799_ barreto.pdf; Bermón Angarita, L. (2010). Librería de activos para la gestión del conocimiento sobre procesos de software: PAL-Wiki [tesis doctoral, Universidad Carlos III de Madrid]. https://e-archivo.uc3m.es/bitstream/handle/10016/10231/Tesis_Leonardo_Bermon. pdf?sequence=2&isAllowed=y; Bhuta, J., Boehm, B. y Meyers, S. (2006). Process elements: Components of software process architectures. En M. Li, B. Boehm y L. J. Osterweil (eds.), Unifying the Software Process Spectrum. spw 2005. Lecture Notes in Computer Science (pp. 332-346). Springer. https://doi.org/10.1007/11608035_28; Birk, A., Heller, G., John, I., Schmid, K., von der Maßen, T. y Muller, K. (2003). Product line engineering, the state of the practice. ieee Software, 20(6), 52-60. https://doi. org/10.1109/MS.2003.1241367; Chrissis, M. B., Konrad, M. y Shrum, S. (2006). CMMI: Guidelines for process integration and product improvement. Addison-Wesley.; Ezran, M., Morisio, M. y Tully, C. (2002). Practical software reuse. Springer.; Fenton, N. y Bieman, J. (2014). Software metrics: A rigorous and practical approach. crc Press.; Fitzgerald, B., Russo, N. y O’Kane, T. (2003). Software development method tailoring at Motorola. Communications of the acm, 46(4), 65-70. https://doi. org/10.1145/641205.641206; Forrester, E. (ed.) (2006). A process research framework: The international process research consortium. Carnegie Mellon University, Software Engineering Institute.; Fusaro, P., Tortorella, M. y Visaggio, G. (1998). rep-chaRacterising and exploiting process components: Results of experimentation. En Proceedings Fifth Working Conference on Reverse Engineering (Cat. No. 98TB100261) (pp. 20-29). ieee. https://doi.org/10.1109/ WCRE.1998.723172; Gallina, B., Kashiyarandi, S., Martin, H. y Bramberger, R. (2014). Modeling a safety-and automotive-oriented process line to enable reuse and flexible process derivation. En 2014 ieee 38th International Computer Software and Applications Conference Workshops (pp. 504-509). ieee. https://doi.org/10.1109/COMPSACW.2014.84; Gamma, E., Helm, R., Johnson, R. y Vlissides, J. (1994). Design patterns: Elements of reusable object-oriented software. Addison Wesley.; Gary, K. A. y Lindquist, T. E. (1999). Cooperating process components. En Proceedings. Twenty-Third Annual International Computer Software and Applications Conference (Cat. No. 99CB37032) (pp. 218-223). ieee. https://doi.org/10.1109/CMPSAC. 1999.812704; Ginsberg, M. P. y Quinn, L. H. (1995). Process tailoring and the software capability maturity model. Carnegie Mellon University, Software Engineering Institute. https://citeseerx. ist.psu.edu/document?repid=rep1&type=pdf&doi=fe11de0ed0212b58fb9d- 47152c94a34ab5b31974; Hansen, M. T., Nohria, N. y Tierney, T. (2000). What’s your strategy for managing knowledge? En J. A. Woods y J. Cortada (eds.), The knowledge management yearbook 2000-2001 (pp. 55-69). Routledge. https://doi.org/10.4324/9780080941042; Hassan, A. (2018). Style and meta-style: Another way to reuse software architecture evolution [tesis de doctorado, Universite de Nantes]. https://hal.science/tel-01917775/; Hollenbach, C. y Frakes, W. (1996). Software process reuse in an industrial setting. En Proceedings of Fourth ieee International Conference on Software Reuse (pp. 22-30). ieee. https://doi.org/10.1109/ICSR.1996.496110; Hurtado Alegria, J. A., Bastarrica, M. C., Quispe, A. y Ochoa, S. F. (2014). MDE‐based process tailoring strategy. Journal of Software: Evolution and Process, 26(4), 386-403. https://doi.org/10.1002/smr.1576; Institute of Electrical and Electronics Engineers. (2010). Std 1517-2010 ieee Standard for Information Technology - Software Life Cycle Processes - Reuse Processes - Description. ihs Standards.; Kalus, G. y Kuhrmann, M. (2013). Criteria for software process tailoring: A systematic review. En Proceedings of the 2013 International Conference on Software and System Process (pp. 171-180). IEEE. https://doi.org/10.1145/2486046.2486078; Karlsson, E. A. (ed.) (1995). Software reuse: A holistic approach. John Wiley & Sons.; Kneuper, R. (2018). Software processes and life cycle models: An introduction to modelling, using and managing agile, plan-driven and hybrid processes. Springer. https://doi. org/10.1007/978-3-319-98845-0; Kucza, T., Nättinen, M. y Parviainen, P. (2001). Improving knowledge management in software reuse process. En F. Bomarius y S. Komi-Sirviö (eds.), Product Focused Software Process Improvement. profes 2001. Lecture Notes in Computer Science (pp. 141-152). Springer. https://doi.org/10.1007/3-540-44813-6_15; Li, T. (2008). Overview of software processes and software evolution. En An approach to modelling software evolution processes (pp. 8-33). Springer. https://doi.org/10.1007/978-3- 540-79464-6_2; Lim, W. C. (1998). Managing software reuse: A comprehensive guide to strategically reengineering the organization for reusable components. Prentice-Hall.; Magdaleno, A. M., de Oliveira Barros, M., Werner, C. M. L., de Araujo, R. M. y Batista, C. F. A. (2015). Collaboration optimization in software process composition. Journal of Systems and Software, 103, 452-466. https://doi.org/10.1016/j.jss.2014.11.036; McIlroy, M. D., Buxton, J., Naur, P. y Randell, B. (1968). Mass-produced software components. En Proceedings of the 1st International Conference on Software Engineering, Garmisch Partenkirchen, Germany (pp. 88-98). Petrocelli/Charter Publishers. https:// st.inf.tu-dresden.de/files/teaching/ss16/cbse/slides/50-cbse-transconsistent-composition. pdf; Medina Domínguez, F. (2010). Marco metodológico para la mejora de la eficiencia de uso de los procesos de software [tesis doctoral, Universidad Carlos III de Madrid]. https://e-archivo. uc3m.es/bitstream/handle/10016/7433/Memoria%20Tesis-Fuensanta%20Medina% 20Dominguez.pdf?sequence=1&isAllowed=y; Nanda, V. (2001). On tailoring an organizational standard software development process for specific projects. En Proceedings of the 11th International Conference on Software Quality (pp. 1-13). ieee.; O’Regan, G. (2017). Concise guide to software engineering: From fundamentals to application methods. Springer. https://doi.org/10.1007/978-3-319-57750-0; Osterweil, L. (2011). Software processes are software too. En P. Tarr y A. Wolf (eds.), Engineering of software (pp 323-344). Springer. https://doi.org/10.1007/978-3-642-19823- 6_17; Pedreira, O., Piattini, M., Luaces, M. R. y Brisaboa, N. R. (2007). Una revisión sistemática de la adaptación del proceso de software. reicis: Revista Española de Innovación, Calidad e Ingeniería del Software, 3(2), 21-39. https://www.redalyc.org/pdf/922/92230204.pdf; Pesantes, M., Lemus, C., Mitre, H. A. y Mejía, J. (2012). Software process architecture: Roadmap. En 2012 ieee Ninth Electronics, Robotics and Automotive Mechanics Conference (pp. 111-116). ieee. https://doi.org/10.1109/CERMA.2012.25; Probst, G. J. B. (1998). Practical knowledge management: A model that works. En Managing knowledge: Building blocks for success (pp. 17-29). Wiley.; Rombach, D. (2006). Integrated software process and product lines. En M. Li, B. Boehm y L. J. Osterweil (eds.) Unifying the Software Process Spectrum. SPW 2005. Lecture Notes in Computer Science (pp 83-90). Springer. https://doi.org/10.1007/11608035_9; Rus, I., Lindvall, M. y Sinha, S. (2002). Knowledge management in software engineering. ieee Software, 19(3), 26-38.; Santos, V., Cortés, M. y Brasil, M. (2009). Dynamic management of the organizational knowledge using case-based reasoning. En L. A. Maciaszek, C. González-Pérez y S. Jablonski (eds.), Evaluation of Novel Approaches to Software Engineering. enase enase 2009 2008. Communications in Computer and Information Science (pp. 220-233). Springer. https://doi.org/10.1007/978-3-642-14819-4_16.; Software Engineering Institute. (2010). CMMI® para Desarrollo, Versión 1.3. Software Engineering Institute. Carnegie-Mellon University, Pittsburg, Pennsylvania.; Teixeira, E. N., Aleixo, F. A., de Sousa Amancio, F. D., Oliveira, E., Kulesza, U. y Werner, C. (2019). Software process line as an approach to support software process reuse: A systematic literature review. Information and Software Technology, 116, 106175. https://doi.org/10.1016/j.infsof.2019.08.007; Tran, H. N., Coulette B. y Dong, T. B. T. (2005). A classification of process patterns. En Proceedings of the International Conference on Software Development (swdc-rek 2005), Reykjavik.; Tran, H. N., Coulette, B. y Thuy, D. T. B. (2007). Broadening the use of process patterns for modeling processes. En seke (pp. 57-62). https://citeseerx.ist.psu.edu/document? repid=rep1&type=pdf&doi=a094027803f6fc090c35caef958b33924789c960#page= 77; Tran, H. N., Coulette, B., Tran, D. T. y Vu, M. H. (2011). Automatic reuse of process patterns in process modeling. En Proceedings of the 2011 acm Symposium on Applied Computing (pp. 1431-1438). https://doi.org/10.1145/1982185.1982494; Verma, A. y Tiwari, M. K. (2009). Role of corporate memory in the global supply chain environment. International Journal of Production Research, 47(19), 5311-5342. https:// doi.org/10.1080/00207540801918570; Washizaki, H. (2006). Deriving project-specific processes from process line architecture with commonality and variability. En 2006 4th ieee International Conference on Industrial Informatics (pp. 1301-1306). IEEE. https://doi.org/10.1109/INDIN.2006.275847; Xu, P. y Ramesh, B. (2008). Using process tailoring to manage software development challenges. IT Professional, 10(4), 39-45. https://doi.org/10.1109/MITP.2008.81; Abouzid, I. y Saidi, R. (2019). Proposal of bpmn extensions for modelling manufacturing processes. En 2019 5th International Conference on Optimization and Applications (icoa) (pp. 1-6). ieee. https://doi.org/10.1109/ICOA.2019.8727651; Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E. … y Zimmermann, T. (2019). Software engineering for machine learning: A case study. En 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (icse-seip) (pp. 291-300). ieee. https://doi.org/10.1109/ICSE-SEIP.2019.00042; arc. (2012). Automation expenditures for discrete industries. https://www.arcweb.com/market- studies/automation-software-expenditures-discrete-industries; Berkhout, F. y Hertin, J. (2001). Impacts of information and communication technologies on environmental sustainability: Speculations and evidence. oecd. https://www.oecd.org/science/ inno/1897156.pdf; Chakraborty, P., Shahriyar, R., Iqbal, A. y Bosu, A. (2018). Understanding the software development practices of blockchain projects: A survey. En Proceedings of the 12th acm/ieee International Symposium on Empirical Software Engineering and Measurement (pp. 1-10). https://doi.org/10.1145/3239235.3240298; Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C. y Wirth, R. (2000). crisp-dm 1.0: Step-by-step data mining guide. SPSS Inc, 9(13), 1-73.; Deep Intelligence. (2022). https://app.deepint.net/shared/c9d55a1f-6ec9daf4-0dd31924- 17429a774d9/dashboards/000001768ad911aa-d0711434-b94233c3-e0e- 32b99?lang=en#1; Dubey, A. (2011). Evaluating software engineering methods in the context of automation applications. En 2011 9th ieee International Conference on Industrial Informatics (pp. 585-590). ieee. https://doi.org/10.1109/INDIN.2011.6034944; Faruk, M. J. H., Islam, M., Alam, F., Shahriar, H. y Rahman, A. (2022a). Bie Vote: A Biometric Identification Enabled Blockchain-Based Secure and Transparent Voting Framework. En 2022 Fourth International Conference on Blockchain Computing and Applications (bcca) (pp. 253-258). ieee. https://doi.org/10.1109/BCCA55292.2022.9922588; Faruk, M. J. H., Subramanian, S., Shahriar, H., Valero, M., Li, X. y Tasnim, M. (2022b). Software engineering process and methodology in blockchain-oriented software development: A systematic study. En 2022 ieee/acis 20th International Conference on Software Engineering Research, Management and Applications (sera) (pp. 120-127). ieee. https://doi.org/10.1109/SERA54885.2022.9806817; Jain, A. K., Duin, R. P. W. y Mao, J. (2000). Statistical pattern recognition: A review. ieee Transactions on pattern analysis and machine intelligence, 22(1), 4-37. https://doi. org/10.1109/34.824819; Jain, A. K., Flynn, P. y Ross, A. A. (eds.) (2008). Handbook of biometrics. Springer.; Marchesi, L., Marchesi, M. y Tonelli, R. (2020). abcde: Agile block chain DApp engineering. Blockchain: Research and Applications, 1(1-2), 100002. https://doi.org/ 10.1016/j.bcra.2020.100002; Marchesi, M., Marchesi, L. y Tonelli, R. (2018). An agile software engineering method to design blockchain applications. En Proceedings of the 14th Central and Eastern European Software Engineering Conference Russia (pp. 1-8). https://doi.org/10.1145/3290621.3290627; Naumann, S., Dick, M., Kern, E. y Johann, T. (2011). The greensoft Model: A reference model for green and sustainable software and its engineering. Sustainable Computing: Informatics and Systems, 1(4), 294-304. https://doi.org/10.1016/j.suscom.2011.06.004; Shivers, R., Rahman, M. A., Faruk, M. J. H., Shahriar, H., Cuzzocrea, A. y Clincy, V. (2021). Ride-hailing for autonomous vehicles: Hyperledger fabric-based secure and decentralize blockchain platform. En 2021 ieee International Conference on Big Data (Big Data) (pp. 5450-5459). ieee. https://doi.org/10.1109/BigData52589.2021.9671379; Vyatkin, V. (2013). Software engineering in industrial automation: State-of-the-art review. ieee Transactions on Industrial Informatics, 9(3), 1234-1249. https://doi.org/10.1109/ TII.2013.2258165; Watanabe, S. (1985). Pattern recognition: Human and mechanical. John Wiley & Sons.; Wirth, R. y Hipp, J. (2000). crisp-dm: Towards a standard process model for data mining. En Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining (vol. 1, pp. 29-39). https://www.cs.unibo.it/~danilo. montesi/CBD/Beatriz/10.1.1.198.5133.pdf; Yousfi, A., Batoulis, K. y Weske, M. (2019). Achieving business process improvement via ubiquitous decision-aware business processes. acm Transactions on internet Technology (toit), 19(1), 1-19. https://doi.org/10.1145/3298986; Yousfi, A., Bauer, C., Saidi, R. y Dey, A. K. (2016). uBPMN: A bpmn extension for modeling ubiquitous business processes. Information and Software Technology, 74, 55-68. https://doi.org/10.1016/j.infsof.2016.02.002; Apple. (2004, 14 de enero). Apple Reports First Quarter Results. https://www.apple.com/ newsroom/2004/01/14Apple-Reports-First-Quarter-Results/#:~:text=CUPERTINO% 2C%20California%E2%80%94January%2014,,of%20%248%20million% 2C%20or%20%24.; Apple. (2007, 17 de enero). Apple reports third quarter results. https://www.apple.com/ newsroom/2007/01/17Apple-Reports-First-Quarter-Results/#:~:text=CUPERTINO% 2C%20California%E2%80%94January%2017,,or%20%241.14%20 per%20diluted%20share.; Bäcklander, G. (2019). Doing complexity leadership theory: How agile coaches at Spotify practise enabling leadership. Creativity and Innovation Management, 28(1), 42- 60. https://doi.org/10.1111/caim.12303; Butler, K. (1995). The economic benefits of software process improvement. Crosstalk, 8(7), 14-17.; Denning, S. (2019). How Amazon practices the three laws of agile management. Strategy & Leadership, 47(5), 36-41. https://doi.org/10.1108/SL-07-2019-0104; Diaz, M. y Sligo, J. (1997). How software process improvement helped Motorola. ieee software, 14(5), 75-81. https://doi.org/10.1109/52.605934; Dion, R. (1993). Process improvement and the corporate balance sheet. ieee Software, 10(4), 28-35. https://doi.org/10.1109/52.219618; Elwer, P. (2008). Agile Project Development at Intel: A scrum Odyssey. http://www.michaeljames. org/Intel-case-study.pdf; Forcano, R. (2018a, 14 de junio). hr goes Agile: A case study in bbva. https://www.linkedin. com/pulse/hr-goes-agile-case-study-bbva-ricardo-forcano; Forcano, R. (2018b, 16 de julio). rrhh se transforma a ‘agile’: Un caso de estudio en bbva. https://www.bbva.com/es/opinion/rrhh-transforma-agile-caso-estudio-bbva/; Ganguly, A., Nilchiani, R. y Farr, J. V. (2009). Evaluating agility in corporate enterprises. International Journal of Production Economics, 118(2), 410-423. https://doi. org/10.1016/j.ijpe.2008.12.009; Garzás, J. y Paulk, M. C. (2013). A case study of software process improvement with CMMI‐DEV and scrum in Spanish companies. Journal of Software: Evolution and Process, 25(12), 1325-1333. https://doi.org/10.1002/smr.1605; Gregory, P., Barroca, L., Taylor, K., Salah, D. y Sharp, H. (2015). Agile challenges in practice: A thematic analysis. En C. Lassenius, T. Dingsøyr y M. Paasivaara (eds.), Agile Processes in Software Engineering and Extreme Programming. xp 2015. Lecture Notes in Business Information Processing (vol. 212, pp. 64-80). Springer. https://doi.org/10.1007/978- 3-319-18612-2_6; Haley, T. J. (1996). Software process improvement at Raytheon. ieee Software, 13(6), 33-41. https://doi.org/10.1109/52.542292; Herbsleb, J. D. y Goldenson, D. R. (1996). A systematic survey of cmm experience and results. En Proceedings of ieee 18th International Conference on Software Engineering (pp. 323-330). IEEE. https://doi.org/10.1109/ICSE.1996.493427; Herbsleb, J., Carleton, A., Rozum, J., Siegel, J. y Zubrow, D. (1994). Benefits of CMM-based software process improvement: Executive summary of initial results. Carnegie Mellon University. https://insights.sei.cmu.edu/documents/1112/1994_005_001_16310.pdf; Humphrey, W. S., Snyder, T. R. y Willis, R. R. (1991). Software process improvement at Hughes Aircraft. IEEE Software, 8(4), 11-23. https://doi.org/10.1109/52.300031; Middleton, P. y Joyce, D. (2011). Lean software management: BBC worldwide case study. ieee Transactions on Engineering Management, 59(1), 20-32. https://doi.org/10.1109/ TEM.2010.2081675; NASA. (1997). Software Safety. nasa Technical Standard nasa-std-8719.13A.; Niazi, M. (2006). Software process improvement: A road to success. En J. Münch y M. Vierimaa (eds.), Product-Focused Software Process Improvement. profes 2006. Lecture Notes in Computer Science (vol. 4034, pp. 395-401). Springer. https://doi. org/10.1007/11767718_34; Olszewski, L. y Wingreen, S. C. (2011). The fbi sentinel project. Journal of Cases on Information Technology (jcit), 13(3), 84-102. https://doi.org/10.4018/jcit.2011070105; Pitterman, B. (2000). Telcordia technologies: The journey to high maturity. ieee Software, 17(4), 89-96. https://doi.org/10.1109/52.854074; Smite, D., Moe, N. B., Floryan, M., Levinta, G. y Chatzipetrou, P. (2020). Spotify guilds. Communications of the ACM, 63(3), 56-61. http://dx.doi.org/10.1145/3343146; Standish Group. (2020). CHAOS report: Beyond infinity. https://standishgroup.myshopify. com/; Striebeck, M. (2006). Ssh! We are adding a process… [agile practices]. En agile 2006 (agile’06) (pp. 9-193). ieee. https://doi.org/10.1109/AGILE.2006.48; Vassev, E., Sterritt, R., Rouff, C. y Hinchey, M. (2012). Swarm technology at nasa: Building resilient systems. IT Professional, 14(2), 36-42. https://doi.org/10.1109/MITP.2012.18; Yamamura, G. (1999). Software process satisfied employees. ieee Software, 16(5), 83-85.; Zelkowitz, M. V. (2009). An update to experimental models for validating computer technology. Journal of Systems and Software, 82(3), 373-376. https://doi.org/10.1016/j. jss.2008.06.040; Zelkowitz, M. V. y Wallace, D. R. (1998). Experimental models for validating technology. Computer, 31(5), 23-31. https://doi.org/10.1109/2.675630; Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J., Korkala, M. … y Salo, O. (2004). Mobile-D: An agile approach for mobile application development. En Companion to the 19th Annual acm sigplan Conference on Object-Oriented Programming, Systems, Languages, and Applications (pp. 174-175). https://doi. org/10.1145/1028664.1028736; Ågerfalk, P. J., Fitzgerald, B., Holmström, H., Lings, B., Lundell, B. y Conchúir, E. Ó. (2005). A framework for considering opportunities and threats in distributed software development. En Proceedings of the International Workshop on Distributed Software Development (pp. 47-61). Austrian Computer Society. https://researchrepository.ul.ie/ ndownloader/files/35267047/1; Akhtar, N. y Mian, A. (2018). Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access, 6, 14410-14430. https://doi.org/10.1109/ACCESS. 2018.2807385; Aldayel, A. y Alnafjan, K. (2017). Challenges and best practices for mobile application development. En Proceedings of the International Conference on Compute and Data Analysis (pp. 41-48). https://doi.org/10.1145/3093241.3093245; Ashishdeep, A., Bhatia, J. y Varma, K. (2016). Software process models for mobile application development: A review. Computer Science and Electronic Journal, 7(1), 150-153. https://csjournals.com/IJCSC/PDF7-1/20.%20Anitha.pdf; Basha, N. M. J., Moiz, S. A. y Rizwanullah, M. (2012). Model based software development: Issues & challenges. Special Issue of International Journal of Computer Science & Informatics (ijcsi), 2(1), 226-230. https://doi.org/10.47893/ijcsi.2013.1123; Beecham, S., Richardson, I. y Noll, J. (2015). Assessing the strength of global teaming practices: A pilot study. En 2015 ieee 10th International Conference on Global Software Engineering (pp. 110-114). ieee. https://doi.org/10.1109/ICGSE.2015.14; Bhatti, M. W. y Ahsan, A. (2016). Global software development: An exploratory study of challenges of globalization, HRM practices and process improvement. Review of Managerial Science, 10(4), 649-682. https://doi.org/10.1007/s11846-015-0171-y; Blum, F. R. (2016). Mining software process lines. En Proceedings of the 38th International Conference on Software Engineering Companion (pp. 839-842). https://doi. org/10.1145/2889160.2889267; Cabac, L. y Denz, N. (2008). Net components for the integration of process mining into agent-oriented software engineering. En K. Jensen, W. M. P. van der Aalst y J. Billington (eds.), Transactions on Petri nets and other models of concurrency I. Lecture notes in computer science (pp. 86-103). Springer. https://doi.org/10.1007/978-3-540-89287- 8_6; Caldeira, J. y Abreu, F. B. e. (2016). Software development process mining: Discovery, conformance checking and enhancement. En 2016 10th International Conference on the Quality of Information and Communications Technology (quatic) (pp. 254-259). ieee. https://doi.org/10.1109/QUATIC.2016.061; Conchúir, E. Ó. (2010). Global software development: A multiple-case study of the realisation of the benefits [tesis doctoral, University of Limerick]. https://researchrepository.ul.ie/ ndownloader/files/35241937/1; Da Cunha, T. F. V., Dantas, V. L. y Andrade, R. M. (2011). SLeSS: A Scrum and Lean Six Sigma integration approach for the development of sofware customization for mobile phones. En 2011 25th Brazilian Symposium on Software Engineering (pp. 283-292). ieee. https://doi.org/10.1109/SBES.2011.38; Del Carpio, A. F. y Angarita, L. B. (2020). Trends in software engineering processes using deep learning: A systematic literature review. En 2020 46th Euromicro Conference on Software Engineering and Advanced Applications (seaa) (pp. 445-454). ieee. https://doi. org/10.1109/SEAA51224.2020.00077; Dong, L., Liu, B., Li, Z., Wu, O., Babar, M. A. y Xue, B. (2017). A mapping study on mining software process. En 2017 24th Asia-Pacific Software Engineering Conference (apsec) (pp. 51-60). ieee. https://doi.org/10.1109/APSEC.2017.11; Ebert, C., Gallardo, G., Hernantes, J. y Serrano, N. (2016). DevOps. ieee Software, 33(3), 94-100. https://doi.org/10.1109/MS.2016.68; Erich, F. M., Amrit, C. y Daneva, M. (2017). A qualitative study of DevOps usage in practice. Journal of software: Evolution and Process, 29(6), e1885. https://doi.org/10.1002/ smr.1885; Fakhoury, S., Arnaoudova, V., Noiseux, C., Khomh, F. y Antoniol, G. (2018). Keep it simple: Is deep learning good for linguistic smell detection? En 2018 ieee 25Th international conference on software analysis, evolution and reengineering (saner) (pp. 602-611). ieee. https://doi.org/10.1109/SANER.2018.8330265; Falcini, F., Lami, G. y Costanza, A. M. (2017). Deep learning in automotive software. ieee Software, 34(3), 56-63. https://doi.org/10.1109/MS.2017.79; Fernández del Carpio, A. y Bermón Angarita, L. (2018). Techniques based on data science for software processes: A systematic literature review. En I. Stamelos, R. O’Connor, T. Rout y A. Dorling (eds.), Software Process Improvement and Capability Determination. spice 2018. Communications in Computer and Information Science (pp. 16-30). Springer. https://doi.org/10.1007/978-3-030-00623-5_2; Fuggetta, A. y Di Nitto, E. (2014). Software process. En Future of Software Engineering Proceedings (pp. 1-12). https://doi.org/10.1145/2593882.2593883; Godfrey, M. W., Hassan, A. E., Herbsleb, J., Murphy, G. C., Robillard, M., Devanbu, P. y Notkin, D. (2008). Future of mining software archives: A roundtable. ieee Software, 26(1), 67-70. https://doi.org/10.1109/MS.2009.10; Guo, J., Cheng, J. y Cleland-Huang, J. (2017). Semantically enhanced software traceability using deep learning techniques. En 2017 ieee/acm 39th International Conference on Software Engineering (ICSE) (pp. 3-14). ieee. https://doi.org/10.1109/ICSE.2017.9; Herbsleb, J. D. (2007). Global software engineering: The future of socio-technical coordination. En Future of software engineering (fose’07) (pp. 188-198). ieee. https://doi. org/10.1109/FOSE.2007.11; Hüttermann, M. (2012). Beginning devops for developers. En DevOps for Developers (pp. 3-13). Apress. https://doi.org/10.1007/978-1-4302-4570-4_1; Jeong, Y. J., Lee, J. H. y Shin, G. S. (2008). Development process of mobile application SW based on agile methodology. En 2008 10th International Conference on Advanced Communication Technology (vol. 1, pp. 362-366). ieee. https://doi.org/10.1109/ ICACT.2008.4493779; Kardoš, M. y Drozdová, M. (2010). Analytical method of cim to pim transformation in model driven architecture (MDA). Journal of Information and Organizational Sciences, 34(1), 89-99. https://hrcak.srce.hr/file/83906; Kaur, A. y Kaur, K. (2015). Suitability of existing software development life cycle (sdlc) in context of mobile application development life cycle (madlc). International Journal of Computer Applications, 116(19), 1-6. https://research.ijcaonline.org/volume116/number19/ pxc3902785.pdf; Kim, G., Humble, J., Debois, P., Willis, J. y Forsgren, N. (2016). The DevOps handbook: How to create world-class agility, reliability, & security in technology organizations. IT Revolution.; LeCun, Y., Bengio, Y. y Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-44. https://doi.org/10.1038/nature14539; Li, Z., Zhao, H., Shi, J., Huang, Y. y Xiong, J. (2019). An intelligent fuzzing data generation method based on deep adversarial learning. ieee Access, 7, 49327-49340. https://doi. org/10.1109/ACCESS.2019.2911121; Lwakatare, L. E., Kuvaja, P. y Oivo, M. (2015). Dimensions of DevOps. En C. Lassenius, T. Dingsøyr y M. Paasivaara (eds.), Agile Processes in Software Engineering and Extreme Programming. xp 2015. Lecture Notes in Business Information Processing (pp. 212-217). Springer. https://doi.org/10.1007/978-3-319-18612-2_19; Manoj Ray, D. y Samuel, P. (2016). Improving the productivity in global software development. En V. Snášel, A. Abraham, P. Krömer, M. Pant y A. Muda (eds.), Innovations in bio-inspired computing and applications: Advances in intelligent systems and computing (pp. 175-185). Springer. https://doi.org/10.1007/978-3-319-28031-8_15; Marshal, S. (2015). Machine learning an algorithm perspective. CRC Press.; Miralles, A. y Rouge, T. L. (2008). Modeling with enriched model driven architecture. En Encyclopedia of geographical information sciences (pp. 700-705). Springer. https:// dx.doi.org/10.1007/978-0-387-35973-1; Moreira, F., Cota, M. P. y Gonçalves, R. (2015). The influence of the use of mobile devices and the cloud computing in organizations. En A. Rocha, A. Correia, S. Costanzo y L. Reis (eds.), New contributions in information systems and technologies: Advances in intelligent systems and computing (vol. 1, pp. 275-284). Springer. https://doi. org/10.1007/978-3-319-16486-1_28; Murphy, K. P. (2011). Machine learning: A probabilistic perspective. MIT Press.; Ng, A., Ngiam, J., Foo, C. Y., Mai, Y., Suen, C., Coates, A. … y Tandon, S. (2013). Unsupervised feature learning and deep learning. https://redirect.cs.umbc.edu/courses/pub/ www/courses/graduate/678/spring15/visionaudio.pdf; Object Management Group (2014). Object Management Group Model Driven Architecture (MDA) MDA Guide rev. 2.0. https://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf; Object Management Group (2020). MDA® - The Architecture of Choice for a Changing World. https://www.omg.org/mda/; Overeem, M., Jansen, S. y Fortuin, S. (2018). Generative versus Interpretive Model-Driven Development: Moving Past ‘It Depends’. En L. Pires, S. Hammoudi y B. Selic (eds.), Model-Driven Engineering and Software Development. modelsward 2017. Communications in Computer and Information Science (pp. 222-246). Springer. https://doi. org/10.1007/978-3-319-94764-8_10; Paige, R. F., Kolovos, D. S. y Polack, F. A. (2014). A tutorial on metamodelling for grammar researchers. Science of Computer Programming, 96, 396-416. https://doi.org/10.1016/j. scico.2014.05.007; Popa, M. (2013). Considerations regarding the cross-platform mobile application development process. Economy Informatics, 13(1), 40-52. https://www.economyinformatics. ase.ro/content/EN13/04%20-%20Popa.pdf; Rahimian, V. y Ramsin, R. (2008). Designing an agile methodology for mobile software development: A hybrid method engineering approach. En 2008 Second International Conference on Research Challenges in Information Science (pp. 337-342). ieee. https:// doi.org/10.1109/RCIS.2008.4632123; Rubin, V., Günther, C. W., van der Aalst, W. M. P., Kindler, E., van Dongen, B. F. y Schäfer, W. (2007). Process mining framework for software processes. En Q. Wang, D. Pfahl y D. M. Raffo (eds.), Software Process Dynamics and Agility. ICSP 2007. Lecture Notes in Computer Science (pp. 169-181). Springer. https://doi.org/10.1007/978-3-540- 72426-1_15; Rui, Z., Tong, L., Qi, M., Zhenli, H., Qian, Y. y Yiquan, W. (2018). Data-driven bilayer software process mining. Journal of Software, 29(11), 3455-3483. http://dx.doi. org/10.13328/j.cnki.jos.005304; Sacks, M. (2012). DevOps principles for successful web sites. En Pro website development and operations: Streamlining DevOps for large-scale websites (pp. 1-14). Apress. https:// doi.org/10.1007/978-1-4302-3970-3_1; Schmidt, D. C. (2006). Guest editor’s introduction: Model-driven engineering. ieee Computer, 2(39), 25-31. https://doi.org/10.1109/MC.2006.58; Senapathi, M., Buchan, J. y Osman, H. (2018). DevOps capabilities, practices, and challenges: Insights from a case study. En Proceedings of the 22nd International Conference on Evaluation and Assessment in Software Engineering 2018 (pp. 57-67). https:// doi.org/10.1145/3210459.3210465; Shrestha, A. y Mahmood, A. (2019). Review of deep learning algorithms and architectures. ieee Access, 7, 53040-53065. https://doi.org/10.1109/ACCESS.2019.2912200; Swamynathan, M. (2019). Mastering machine learning with python in six steps: A practical implementation guide to predictive data analytics using python. Apress. https://doi. org/10.1007/978-1-4842-4947-5; Van der Aalst, W. M. (2011). Process mining: Discovery, conformance and enhancement of business processes. Springer.; Verdier, F., Seriai, A. D. y Tiam, R. T. (2019). Combining model-driven architecture and software product line engineering: Reuse of platform-specific assets. En S. Hammoudi, L. Pires y B. Selic (eds.), Model-Driven Engineering and Software Development. modelsward 2018. Communications in Computer and Information Science (pp. 430-454). Springer. https://doi.org/10.1007/978-3-030-11030-7_19; Vizcaíno, A., García, F. y Piattini, M. (2015). Visión general del desarrollo global de software. International Journal of Information Systems and Software Engineering for Big Companies, 1(1), 8-22. http://www.uajournals.com/ojs/index.php/ijisebc/article/view/1/1; Wang, J., Luo, W., Wu, X., Li, T., Qian, Y. y Xie, Z. (2012). An approach to modeling SaaS-oriented software service processes. En 2012 International Conference on System Science and Engineering (icsse) (pp. 573-577). ieee. https://doi.org/10.1109/ ICSSE.2012.6257252; Wasserman, A. I. (2010). Software engineering issues for mobile application development. En Proceedings of the fse/sdp workshop on Future of software engineering research (pp. 397-400). https://doi.org/10.1145/1882362.1882443; https://repositorio.unal.edu.co/handle/unal/87158; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
15
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: Systems engineer, Technological innovations, Usability, IOT, ICT, Agriculture, Colombia, Smallholders, Rural population, Agricultural workers, Rural zones, Agricultural development, Ingeniería de sistemas, Innovaciones tecnológicas, Población rural, Trabajadores agrícolas, Zonas rurales, Desarrollo agrícola, Usabilidad, TIC, Agricultura, Pequeños productores campesinos
Geografické téma: Santander (Colombia), UNAB Campus Bucaramanga
Popis súboru: application/pdf
Relation: [1] M. Springmann et al., “Options for keeping the food system within environmental limits,” Nature, vol. 562, no. 7728, pp. 519–525, 2018.; [2] DANE, 3er Censo Nacional Agropecuario: Resultados, vol. 2. 2016.; [3] eltelegrafo, “La agricultura familiar produce el 80% de los alimentos,” 2016. [Online]. Available: https://viaorganica.org/la-agricultura-familiar-produce-el80-de-los-alimentos/.; [4] FAO, “Oficina Regional de la FAO para América Latina y el Caribe: FAO: la agricultura familiar produce más del 70% de los alimentos de Centroamérica.”; [5] El campo es de todos: Minagricultura, “El 83.5% de los alimentos que consumen los colombianos son producidos por nuestros campesinos.” [Online]. Available: https://www.minagricultura.gov.co/noticias/Paginas/El-83de-los-alimentos-que-consumen-los-colombianos-son-producidos-pornuestros-campesinos.aspx; [6] OCDE-FAO, OCDE/FAO Perspectivas Agrícolas 2019-2028 - Enfoque Especial: America Latina. 2019; [7] P. Gandoca, “Comunicado de prensa Bogotá, 22 de septiembre de 2015 Censo Nacional Agropecuario GP,” no. Ccc, pp. 5–10, 1986.; [8] Minagricultura, “Las tendencias que dominarán la agricultura en el futuro.” [Online]. Available: https://www.agronet.gov.co/agronet/Paginas/default.aspx.; [9] El ESPECTADOR, “Internet de las cosas avanza en el agro colombiano,” 2018. [Online]. Available: https://www.elespectador.com/economia/internetde-las-cosas-da-sus-primeros-pasos-en-el-agro-colombiano-articulo-741563.; [10] P. A. Laplante, “IMPACTO DE LAS TECNOLOGÍAS DE LA INFORMACIÓN Y LAS COMUNICACIONES (TIC) PARA DISMINUIR LA BRECHA DIGITAL EN LA SOCIEDAD A,” Int. J. Comput. Appl., vol. 27, no. 2, pp. 82–95, 2005; [11] P. O. R. La, C. Se, M. El, S. D. E. Las, and T. Ogías, “Ley N°1978 25 julio 2019,” no. 19782, 2019.; [12] MinTIC, “Plan TIC 2018-2022 El Futuro Digital es de Todos,” pp. 1–105, 2018.; [13] EL SOFTWARE PARA LA GESTIÓN INTEGRAL EN EMPRESAS AGRÍCOLAS, “5 ventajas de implementar la Tecnología en el Campo.” [Online]. Available: http://sistemaagricola.com.mx/blog/5-ventajas-deimplementar-la-tecnologia-en-el-campo; [14] H. M. Sitorus, R. Govindaraju, I. I. Wiratmadja, and I. Sudirman, “Interaction perspective in mobile banking adoption: The role of usability and compatibility,” Proc. 2017 Int. Conf. Data Softw. Eng. ICoDSE 2017, vol. 2018-Janua, pp. 1–6, 2018; 15] S. Thuseethan and S. Kuhanesan, “Effective Use of Human Computer Interaction in Digital Academic Supportive Devices,” pp. 1–5, 2015.; [16] P. S. Agro, “Plan Estratégico de Tecnologías de Información y Comunicación Sectorial,” 2020; [17] C. N. de P. E. y social CONPES and D. N. de P. DNP, “Política Nacional de Ciencia, Tecnología e Innovación 2015-2025,” Doc. Borrador CONPES, pp. 1–161, 2015.; [18] ACFC, “Lineamientos estratégicos de política pública,” p. 64, 2018; [19] I. in rural people. Food and Agriculture Organization of the United Nations, “United Nations Decade Of FAMILY FARMING 2019-2028.” [Online]. Available: http://www.fao.org/family-farming-decade/home/en/.; [20] M. I. Zapata and B. E. Marín, “Ruralidad y dispositivos móviles: apropiación social y uso de la Tableta de Información Cafetera TIC. Estudio de caso Federación Nacional de Cafeteros para Antioquia,” Rev. Lasallista Investig., vol. 12, no. 2, pp. 19–27, 2015; [21] 1992(184-189) Policy Studies Journal, Vol.20, No.2, “¿ Qué es rural?” p. 1992; [22] MINTIC- Ministerio de Tecnologías de la Información y las Comunicaciones, “Alfabetización Digital,” 2014. [Online]. Available: https://www.mintic.gov.co/portal/inicio/5447:Alfabetizacion-Digital; [23] J. I. Farray Cuevas and M. V. Aguiar Perera, “La alfabetizacion digital: Perspectivas creativas y eticas,” Soc. la Inf. y Cult. Mediat. (Combyte 2003), pp. 91–118, 2011; [24] I. Standard, “Iso 9241-11,” vol. 1998, 1998; [25] H. Sun and Y. Zhang, “Applying ergonomics to improve usability design of the interface of the ‘San Nong’ (agriculture, rural areas and farmers) egovernment website,” Proc. Int. Conf. E-bus. E-Government, ICEE 2010, pp. 459–463, 2010.; [26] A. Lodhi, “Usability heuristics as an assessment parameter: For performing usability testing,” ICSTE 2010 - 2010 2nd Int. Conf. Softw. Technol. Eng. Proc., vol. 2, pp. 256–259, 2010; [27] S. Adhy, B. Noranita, R. Kusumaningrum, P. W. Wirawan, D. D. Prasetya, and F. Zaki, “Usability testing of weather monitoring on a web application,” 2017 1st Int. Conf. Informatics Comput. Sci., pp. 131–136, 2017; [28] AIMS, “Information and Communication Technologies (ICT).” [Online]. Available: http://aims.fao.org/es/information-and-communicationtechnologies-ict.; [29] “Tecnologías de la Información y las Comunicaciones (TIC).” [Online]. Available: https://mintic.gov.co/portal/inicio/5755:Tecnologias-de-laInformacion-y-las-Comunicaciones-TIC; [30] “El fututo digital es de todos Glosario MinTIC.” [Online]. Available: https://www.mintic.gov.co/portal/604/w3-propertyvalue1051.html?_noredirect=1; [31] ANE, “Definición de los parámetros técnicos para promover el internet de las cosas en Colombia,” p. 15, 2018.; [32] S. Best and I. Zamora, Tecnologías aplicable en agricultura de precisión. 2008.; [33] A. De Precisión, “Agricultura de Precisión con CAMPOsmart ®.”; [34] “Diseño visual.” [Online]. Available: https://appdesignbook.com/es/contenidos/diseno-visual-apps-nativas/.; [35] M. O. Thomas, B. A. Onyimbo, and R. Logeswaran, “Usability Evaluation Criteria for Internet of Things,” Int. J. Inf. Technol. Comput. Sci., vol. 8, no. 12, pp. 10–18, 2016.; [36] D. Garazi, Informe APEI sobre usabilidad por Yusef Hassan Montero y Sergio Ortega Santamaría Informe. 2019.; [37] F. D. Davis, “User acceptance of information technology: system characteristics, user perceptions and behavioral impacts,” SpringerReference. 2012.; [38] N. U. Ain, K. Kaur, and M. Waheed, “The influence of learning value on learning management system use: An extension of UTAUT2,” Inf. Dev., vol. 32, no. 5, pp. 1306–1321, 2016.; [39] Organización de las Naciones Unidas para la Alimentación y la Agricultura, “Oficina Regional de la FAO para América Latina y el Caribe.” [Online]. Available: http://www.fao.org/americas/prioridades/agricultura-familiar/es/.; [40] W. A. R. W. M. Isa et al., “Engineering rural informatics using agile user centered design,” 2014 2nd Int. Conf. Inf. Commun. Technol. ICoICT 2014, pp. 367–372, 2014.; [41] T. .Priyamvada and S. Keyur, “Visualising and systematizing a per-poor ICT intervention for Rural and Semi-urban Mothers in India,” ACM Int. Conf. Proceeding Ser., vol. 2014-Augus, no. August, pp. 129–138, 2014.; [42] D. Teka, Y. Dittrich, and M. Kifle, “Usability challenges in an ethiopian software development organization,” Proc. - 9th Int. Work. Coop. Hum. Asp. Softw. Eng. CHASE 2016, pp. 114–120, 2016.; [43] M. A. E. C, E. R. R, L. Y. F. G, and D. Cesar, “DANDELION : Propuesta metodológica para recopilación y análisis de información de artículos científicos . Un enfoque desde la bibliometría y la revisión sistemática de la literatura .”; [44] “Informe especial: 242 familias del sector rural se benefician de los ‘Mercadillos Campesinos.’” [Online]. Available: https://www.bucaramanga.gov.co/noticias/informe-especial-242-familias-delsector-rural-se-benefician-de-los-mercadillos-campesinos/.; [45] “Productos Potenciales Agroalimentos.” [Online]. Available: https://www.globalplansantander.com; [46] S. Pongnumkul, P. Chaovalit, and N. Surasvadi, “Applications of smartphone-based sensors in agriculture: A systematic review of research,” J. Sensors, vol. 2015, 2015. [; [47] A. R. Kiremire, “The application of the pareto principle in software engineering,” Consult. January, vol. 13, p. 2016, 2011; [49] T. Granolers, “Usability Evaluation with Heuristics, Beyond Nielsen’s List,” ACHI 2018 Elev. Int. Conf. Adv. Comput. Interact., no. c, pp. 60–65, 2018.; [50] T. Kaneuch, M. F. Wolfner, and T. Aigaki, “DESIGNING CULTURALLY SENSITIVE ICONS FOR USER INTERFACES : AN APPROACH FOR THE INTERACTION DESIGN OF SMARTPHONES IN DEVELOPING COUNTRIES,” Mol. Reprod. Dev., vol. 82, no. 7–8, pp. 501–501, 2015; [51] “ECONOMÍA DIGITAL 19 sep 2019 Colombia llegará a los 32 millones de usuarios de Internet en 2020.” [Online]. Available: https://www.bbva.com/es/co/colombia-llegara-a-los-32-millones-de-usuariosde-internet-en-2020; [52] J. C. Kandagor, J. M. Githeko, and A. M. Opiyo, “International Journal of Agricultural Extension USABILITY ATTRIBUTES INFLUENCING THE ADOPTION AND USE OF MOBILE,” vol. 06, no. 01, pp. 33–41, 2018; [53] L. K. Narine, A. Harder, and T. G. Roberts, “Farmers’ intention to use text messaging for extension services in Trinidad,” J. Agric. Educ. Ext., vol. 25, no. 4, pp. 293–306, 2019; [54] “Programa de chat de IA para agricultores gana el hackathon agrícola de Taiwán.” [Online]. Available: https://taiwantoday.tw/news.php?unit=2,6,10,15,18&post=147291.; [55] FONTIC, “Evaluación De Los Programas Del Plan Vive Digital Para La Gente De La Información Y Las Comunicaciones,” p. 367, 2018.; [56] R. McDonald, K. Heanue, K. Pierce, and B. Horan, “Factors Influencing New Entrant Dairy Farmer’s Decision-making Process around Technology Adoption,” J. Agric. Educ. Ext., vol. 22, no. 2, pp. 163–177, 2016.; [57] FAO, TRABAJADORES AGRÍCOLAS Y SU CONTRIBUCIÓN A LA AGRICULTURA Y EL DESARROLLO RURAL SOSTENIBLES. 2007.; [58] A. Baz, I. Ferreira, M. Álvarez, and R. García, “Dispositivos móviles,” pp. 1– 12, 2011; [59] Page Laubheimer, “Preventing User Errors: Avoiding Unconscious Slips,” 2015. [Online]. Available: https://www.nngroup.com/articles/slips/.; [60] D. M. Oliver, P. J. Bartie, A. L. Heathwaite, L. Pschetz, and R. S. Quilliam, “Design of a decision support tool for visualising E. coli risk on agricultural land using a stakeholder-driven approach,” Land use policy, vol. 66, no. May, pp. 227–234, 2017.; [61] L. Moosa, “An information technology adoption model for the rural sociocultural context in developing countries,” p. 247, 2010.; [62] J. Nielsen Norman Group- Nielsen, “Why You Only Need to Test with 5 Users.” [Online]. Available: https://www.nngroup.com/articles/why-you-onlyneed-to-test-with-5-users; [63] T. Daum, H. Buchwald, A. Gerlicher, and R. Birner, “Smartphone apps as a new method to collect data on smallholder farming systems in the digital age: A case study from Zambia,” Comput. Electron. Agric., vol. 153, no. November 2017, pp. 144–150, 2018.; [64] J. F. C. B. Ramalho et al., “Luminescence Thermometry on the Route of the Mobile-Based Internet of Things (IoT): How Smart QR Codes Make It Real,” Adv. Sci., vol. 6, no. 19, 2019.; [65] “Image responsive.” [Online]. Available: 93 https://developers.google.com/web/fundamentals/design-andux/responsive/images?hl=es.; [66] M. Singhal, K. Verma, and A. Shukla, “Krishi Ville - Android based solution for Indian agriculture,” Int. Symp. Adv. Networks Telecommun. Syst. ANTS, 2011; [67] H. Patel and D. Patel, “Survey of Android Apps for Agriculture Sector,” Int. J. Inf. Sci. Tech., vol. 6, no. 1/2, pp. 61–67, 2016.; [68] E. Tiempo, “Las cifras que demuestran por qué Colombia es un país de migraciones.” [Online]. Available: https://www.eltiempo.com/colombia/otrasciudades/especial-con-datos-sobre-las-migraciones-internas-en-colombia264990; [69] A. Tzounis, N. Katsoulas, T. Bartzanas, and C. Kittas, “Internet of Things in agriculture, recent advances and future challenges,” Biosyst. Eng., vol. 164, pp. 31–48, 2017; [70] E. N. La, A. Y. Las, and Z. Rurales, “TECNOLOGÍAS DIGITALES EN LA AGRICULTURA Y LAS ZONAS RURALES DOCUMENTO,” Tecnol. Digit., 2019; [71] J. Ruan et al., “A Life Cycle Framework of Green IoT-Based Agriculture and Its Finance, Operation, and Management Issues,” IEEE Commun. Mag., vol. 57, no. 3, pp. 90–96, 2019; [72] F. A. Esteve-Turrillas, J. V Mercader, C. Agullo, A. Abad-Somovilla, and A. Abad-Fuentes, “Moiety and linker site heterologies for highly sensitive immunoanalysis of cyprodinil in fermented alcoholic drinks,” FOOD Control, vol. 50, pp. 393–400, 2015; http://hdl.handle.net/20.500.12749/12040; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Dostupnosť: https://hdl.handle.net/20.500.12749/12040
-
16
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: Universidad Autónoma de Bucaramanga UNAB, Systems Engineering, Telematics, Information networks, Design of work systems, Computers, Access control, Research, Security, Networking, Security policies, Protocols, Telecommunications, Diagnosis, Methodological guide, Analysis and Risk Assessment, ISO Standard, Network access Control, Ingeniería de sistemas, Telemática, Redes de información, Diseño de sistemas de trabajo, Computadores, Control de acceso, Investigaciones, Redes de computadores, Seguridad, Redes Informáticas, Políticas de seguridad, Protocolos
Geografické téma: Bucaramanga (Colombia), Bucaramanga (Santander, Colombia), UNAB Campus Bucaramanga
Popis súboru: application/pdf; application/octet-stream
Relation: Ramírez Ardila, Alexa María (2016). Propuesta de una guía metodológica para la implementación de políticas de control de acceso utilizando la plataforma de cisco network admission control (CNAC) en la Universidad Autónoma de Bucaramanga UNAB. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB; Corporación Colombia Digital . (07 de 04 de 2015). Teletrabajo en Catastro Distrital, un nuevo avance. Obtenido de Aumentar la productividad, mejorar la movilidad empresarial y virtualizar las compañías son algunos beneficios de adoptar esta modalidad.: http://colombiadigital.net/actualidad/noticias/item/8237-teletrabajo-en-catastro-distrital-un-nuevo-avance.html; Intelligent Community Forum (ICF). (11 de 2015). The Smart21 Communities - Smart 21 of 2016. Obtenido de Intelligent Communities of the year : https://www.intelligentcommunity.org/index.php?submenu=Awards&src=gendocs&ref=Smart21&category=Events; International Telecommunication Union - ITU. (s.d. de s.m. de 2013). Protección de datos y privacidad en la nube ¿Quién es el propietario de la nube? Obtenido de https://itunews.itu.int/Es/3702-Proteccion-de-datos-y-privacidad-en-la-nube-BR-Quien-es-el-propietario-de-la-nube.note.aspx; World Wide Web Consortium (W3C). (3 de 12 de 2015). W3C Standards. Obtenido de http://www.w3.org/standards/webofdevices/; Abown, G. (2012). Towards a Better Understanding of Context and Context-Awareness. Proc. 1st international symposium on Handheld an Ubiquitous Computing. Springer-Verlag, Londres, 304-307. Obtenido de ftp://ftp.cc.gatech.edu/pub/gvu/tr/1999/99-22.pdf; Access to European Union Law. (23 de 11 de 1995). Official website of the European Union. Obtenido de Diario Oficial n° L 281 de 23/11/1995 p. 0031 - 0050: http://eur-lex.europa.eu/legal-content/ES/TXT/?uri=celex:31995L0046; Ackerman, M., Darrell, T., & Weizner, D. (2001 ). Privacy in Context. Human-Computer Interaction.; Aguilera López, P. (2010). Seguridad Informática. Barcelona: Editex. Obtenido de https://books.google.com.co/books?isbn=8497717619; Aguillón Martínez, E. (2012). Fundamentos de Criptografía. México: UNAM, Laboratorio de Redes y Seguridad. Obtenido de http://redyseguridad.fi-p.unam.mx/proyectos/criptografia/criptografia/index.php/1-panorama-general/13-servicios-y-mecanismos-de-seguridad/131-servicios-de-seguridad; Ahn, S., Lim, Y., Mun, Y., & Kim, H. (2005). Access control capable integrated network management system for TCP/IP networks. En Computational Science and Its Applications--ICCSA 2005 (págs. 676--685). Springer Berlin Heidelberg.; Asamblea Nacional Constituyente 1991. (2006). Nueva Constitución Política de Colombia 1991. Bogotá: Unión Ltda. Obtenido de http://www.procuraduria.gov.co/guiamp/media/file/Macroproceso%20Disciplinario/Constitucion_Politica_de_Colombia.htm; Augusto, J. C., Nakashima, H., & Agh, H. (2010). Ambient Intelligence and Smart Environments:A State of the Art. 1-29.; Bartoli, A., Hernandez-Serrano, J., Soriano, M., Dohler, M., Kountouris, A., & Barthe, D. (2011). Security and Privacy in your Smart City. Centre Tecnologic de Telecomunicacions de Catalunya (CTTC),Spain - IEEE, 1-6. Obtenido de http://www.cttc.es/publication/security-and-privacy-in-your-smart-city/; Batty , M., Axhausen, K., Pozdnoukhov, A., Fosca, G., Bazzani, A., Wachowicz, M., . . . Portugali, Y. (2012). Smart Cities of the Future. En C. f. London, Working Papers Series Paper 188 -Oct 12 Smart Cities of the Future (págs. 1-40). London: UCL CENTRE FOR ADVANCED SPATIAL ANALYSIS. Obtenido de https://www.bartlett.ucl.ac.uk/casa/pdf/paper188; BBC News. (17 de 01 de 2014). Edward Snowden: Leaks that exposed US spy programme. BBC NEWS on Internet. Obtenido de http://www.bbc.com/news/world-us-canada-23123964; BCS. (06 de 2014). http://www.bcs.org/. Obtenido de BYOD, CYOD, BYOT, BYOA and more: http://www.bcs.org/content/conWebDoc/52926; Behrooz, A. (01 de 2010). Privacy of Mobile Users in Contextaware Computing Environments Master of Science Thesis. Stockholm, Sweden : Royal Institute of Technology Department of Computer and Systems Sciences (KTH Information Communication Tecnology) TRITA-ICT-EX-2011:233. Obtenido de http://www.diva-portal.org/smash/get/diva2:512292/FULLTEXT01.pdf; Bertolín, J. A. (2008). Seguridad de la información. Redes, informática y sistemas de información. Paraninfo.; BeVier, L. R. (1995). Information About Individuals in the Hands of Government: Some Reflections on Mechanisms for Privacy Protection. William & Mary Law Review, 455. Obtenido de http://scholarship.law.wm.edu/cgi/viewcontent.cgi?article=1489&context=wmborj; BHERT. (18 de 01 de 2015). Internet of Everything - Powering the Smart Campus & the Smart City:Geelong’s Transformation to a Smart City. (B. B. Table, Ed.) Obtenido de In parthershio with University Deakin Worldly Australia, Cisco e IBM: http://www.bhert.com/events/2015-06-08/BHERT-Smart-City-Agenda-June-18.pdf; BID. (2015). Iniciativa CIUDADES EMERGENTES y SOSTENIBLES. Obtenido de Banco Interamericano de Desarrollo: http://www.iadb.org/es/temas/ciudades-emergentes-y-sostenibles/ciudades-usando-el-enfoque-de-desarrollo-urbano-sostenible,6693.html; Bort, J. (2012). Managing An Explosion Of Mobile Devices And Apps In The Enterprise. Obtenido de http://www.businessinsider.com/how-companies-are-managingthe-explosion-of-mobile-devices; Boulton, A. B. (2011). Cyberinfrastructures and “smart” world cities: Physical, human, and soft infrastructures. In P. Taylor, B. Derudder, M. Hoyler & F. Witlox (Eds.), International Handbook of Globalization and World Cities. Cheltenham, U.K.: Edward Elgar.; Braverman, B., Braverman , J., Taylor, J., Todosow, H., & Wimmersperg , U. (2014-2015). The Vision of A Smart City. En C. Communication and Policy Engagement (CPE) Team, Reconceptualising Smart Cities: A Reference Framework for India Compendium of Resources - Parte 1 Smart City Definitions (pág. 62). India: STEP Center for Study of Science, Technology& Policy. doi:http://www.osti.gov/scitech/servlets/purl/773961 del documento - 2009; Carreño Gallardo, J. (2004). Seguridad en Redes Telemáticas. España: McGraw-Hill.; Casa editorial El Tiempo. (6 de 09 de 2015). Las fallas de los bancos al reportar a clientes ante DataCrédito. El Tiempo , págs. http://www.eltiempo.com/economia/finanzas-personales/reportes-a-datacredito-y-otras-centrales-de-riesgo/14495887.; Cavoukian, A. (sd de 12 de 2013). Privacybydesing.ca. Obtenido de Ph.D. Information and Privacy commissioner Ontario, Canada: https://www.ipc.on.ca/site_documents/pbd-byod.pdf; CCM Benchmark Group. (s.f.). CCM. Obtenido de LAN (Rea de Area Local): http://es.ccm.net/contents/253-lan-red-de-area-local; Cio. (4 de 04 de 2012). http://www.cio.com/. Obtenido de BYOD: If You Think You're Saving Money, Think Again por Tom Kaneshige: http://www.cio.com/article/2397529/consumer-technology/byod--if-you-think-you-re-saving-money--think-again.html; Cio. (13 de 06 de 2014). www.cio.com. Obtenido de What Is Going Wrong With BYOD? por Tom Kaneshige: http://www.cio.com/article/2375498/byod/what-is-going-wrong-with-byod-.html; Cisco. (21 de Junio de 2013). Cisco IOS and NX-OS EOL Redirect page. Obtenido de http://www.cisco.com/c/en/us/td/docs/ios/redirect/eol.html; Cisco. (2014). Cisco. Obtenido de http://www.cisco.com/en/US/products/ps6128/index.html; Cisco. (18 de 10 de 2015). ¿Cómo el RADIUS trabaja? Obtenido de Cisco Systems Inc.: http://www.cisco.com/cisco/web/support/LA/102/1024/1024966_32.pdf; Cisco Academy Networking. (2012). CCNA Exploration. Aspectos básicos de networking. Obtenido de Exploration1; Cisco Networking Academy. (2009). CCNA Exoloration 4.0 accediendo a la wan.; Cisco System, Inc. (2014). 802.1X. Obtenido de Media-Level Network Access Control: http://www.cisco.com/c/en/us/tech/lan-switching/802-1x/index.html; Cisco Systems, Inc. (2005). Cisco Trust Agent 2.0. Obtenido de Cisco Trust Agent is a core component of the Network Admissions Control (NAC) solution: http://www.cisco.com/c/en/us/products/collateral/security/trust-agent/product_data_sheet0900aecd80119868.html; Cisco Systems, Inc. (2005). Implementing Network Admission Control Phase One Configuration and Deployment. USA. Obtenido de www.cisco.com; Cisco Systems, Inc. (2005). Network Admission Control. Obtenido de Software Configuration Guide: www.cisco.com; Cisco Systems, Inc. (2006). Cisco Secure Access Control Server Solution Engine. Obtenido de Ready-to-Deploy Access Policy Control: http://www.cisco.com/c/en/us/products/security/secure-access-control-server-solution-engine/index.html; Cisco Systems, Inc. (2007). Network Admission Control. USA: Cisco Press.; Cisco Systems, Inc. (7 de Noviembre de 2013). Chapter: Posture Validation. Obtenido de User Guide for Cisco Secure Access Control Server 4.2: http://www.cisco.com/c/en/us/td/docs/net_mgmt/cisco_secure_access_control_server_for_windows/4-2/user/guide/ACS4_2UG/PstrVal.html#wp134759; Cisco Systems, Inc. (2016). Cisco NAC Appliance (Clean Access). Obtenido de http://www.cisco.com/c/en/us/products/security/nac-appliance-clean-access/index.html; Cisco Systems, Inc. (2009). Usar Guide for Cisco Secure Access. USA. Obtenido de http://www.cisco.com/c/en/us/td/docs/net_mgmt/cisco_secure_access_control_server_for_windows/4-2-1/User_Guide/acs421ug/SCAdv.html; Cities for Cities, W. C. (Dirección). (2014). WCCD ISO 37120 [Película]. Obtenido de http://www.dataforcities.org; Citrix . (7 de 07 de 2015). Un enfoque realista de la experiencia BYOD. Obtenido de Alem, Ricardo: http://colombiadigital.net/opinion/columnistas/movilidad-y-tendencias/item/8399-un-enfoque-realista-de-la-experiencia-byod.html; Cole, S. A. (2001). Suspect Identities: A HISTORY OF FINGERPRINTING AND CRIMINAL IDENTIFICATION. Cambridge, MA: Harvard University.; Comer, D., & Suominen, E. (2002). TCP/IP. IT Press; Complejo Ruta N. (2012). Ruta N Medellín Centro de Innovación y Negocios. Obtenido de EL LUGAR DONDE POTENCIA LA INNOVACIÓN: http://rutanmedellin.org/es/sobre-nosotros; Congdon, P. (2000). IEEE 802.1X Overview - Port Based Network Access Control,. Albuquerque, NM,: IEEE Plenary. Obtenido de http://www.ieee802.org/1/files/public/docs2000/P8021XOverview.PDF; Congreso de Colombia. (24 de Julio de 2000). Ley 599. Obtenido de http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=6388; Congreso de Colombia. (5 de Enero de 2009). Ley 1273. Obtenido de http://www.mintic.gov.co/portal/604/articles-3705_documento.pdf; Congreso de Colombia. (27 de Junio de 2013). Decreto 1377 de 2013 por la cual se reglamenta parcialmente Ley No. 1581. Diario Oficial No. 48834, pág. 28. doi:http://www.sic.gov.co/drupal/sites/default/files/normatividad/Ley_1581_2012.pdf; Congreso de la República de Colombia. (31 de Diciembre de 2008). Ley Estatutaria 1266. Diario Oficial 47.219 de diciembre 31 de 2008, pág. s.p. Obtenido de http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=34488; Córdoba Téllez, A., & Durán Martínez, G. (2010). Diseño de un sistema de control de acceso con Radius configurado en un sistema operativo Linux para una LAN inalámbrica. México. Obtenido de http://tesis.ipn.mx/bitstream/handle/123456789/6823/ESIME-RADIUS.pdf?sequence=1; Cornella, A. (1999). La infoestructura: Un concepto esencial en la sociedad de la información. (i. p. Scopus, Ed.) El profesional de la Información - Revista Internaciona Cientifica y Profesional, 26. Recuperado el 2015, de http://www.elprofesionaldelainformacion.com/contenidos/1999/enero/el_concepto_de_infoestructura.html; Costas Santos, J. (2014). Seguridad Informática. España: RA-MA Editorial Retrieve from www.ebrary.com. Obtenido de http://site.ebrary.com.aure.unab.edu.co/lib/unabsp/detail.action?docID=11038505; Creative Commons Attribution Share-Alike 3.0 License. (2016). Control de acceso criptográfico. Obtenido de https://galiciacuamatzi.wikispaces.com/4.4+Control+de+acceso+criptogr%C3%A1fico.; Cuppens, F., & Cuppens, N. (2007). Modeling Contextual security policies, (2008), pages(285-305). International Journal of Information Security, 285-305; De Angeli, A. (12 de 03 de 2013). Smart students building their campus: A LARGE-SCALE PARTICIPATORY DESIGN. Smart Campus Lab, 55. Obtenido de http://disi.unitn.it/~deangeli/homepage/lib/exe/fetch.php?media=teaching:cscw_smart_campus.pdf; Dey, A. e. (1999). CyberDesk: A Framework for Providing Self-Integrating Context-Aware Services. Knowledge-Based Systems, 3-13. Obtenido de http://www.cc.gatech.edu/fce/ctk/pubs/KBS11-1.pdf; Dey, A. K. (2001). Understanding and using context. . Personal and Ubiquitous Computing, 4-7.; Dhont, J., Pérez Asinari, M. V., & Poullet, Y. (19 de 04 de 2004). Safe Harbour Decision Implementation Study. European Commission, Internal Market DG, 23; Dourish, P. (2004). What We Talk About When Talk About Context. Personal and Ubiquitous Computing, 19-30.; Dziedzic, T., & Levien, R. (s.d. de 11 de 2015). PacketFence Administration Guide. Obtenido de http:/www.packetfence.org/downloads/PacketFence/doc/PacketFence_Administration_Guide-5.5.2.pdf; Escrivá, G. G., Romero, S. R. M., & Ramada, D. J. (2013). Seguridad informática. España: Macmillan Iberia, S.A. Retrieved from http://www.ebrary.com. Obtenido de http://site.ebrary.com.aure.unab.edu.co/lib/unabsp/reader.action?docID=10820963&ppg=45; Esquivel, A., Haya, P., Montoro, G., & Alamán, X. (s.f.). UNA PROPUESTA PARA UN MODELO DE PRIVACIDAD EN ENTORNOS ACTIVOS. Obtenido de http://arantxa.ii.uam.es/~montoro/publications/esquivel05propuesta.pdf; ETSI. (2000). Broadband Radio Access Network (Bran); HIPERLAN Type 2; SYstem Overview. Sophia Antipolis Cedex - Francia: Etsi TR 101 683 V1.1.1. Obtenido de https://www.etsi.org/deliver/etsi_tr/101600_101699/101683/01.01.01_60/tr_101683v010101p.pdf; Feitosa, E., Oliveira, L., Lins, B., & Junior, A. M. (2008). Security information architecture for automation and control networks. . 8th Brazilian Symposium of Information Security and Computer Systems, 17-30.; Frias-Martinez, V., Stolfo, S. J., & Keromytis, A. D. (2008). Behavior-Based Network Access Control: A Proof-of-Concept. En Information Security (págs. 175-190). Springer-Verlag Berlin.; Futuresight. (2013). Resultados Clave de Colombia. LONDON: GSMA Latinoamérica.; Futuresight, & Theodorou, Y. (2013). Estudio de GSMA sobre las actitudes relacionadas con la privacidad de los usuarios móviles - Resultado clave en Colombia. New Fetter Lane London: GSMA.; Gartner. (3 de 01 de 2014). Magic Quadrant for Enterprise Mobility Management Suites. Obtenido de Analyst(s): Terrence Cosgrove, Rob Smith, Chris Silva, Bryan Taylor, John Girard, Monica Basso: http://www.creekpointe.com/pdfs/Magic-Quadrant-for-Enterprise-Mobility-Management-Suites.pdf; Gartner. (17 de 12 de 2015). http://www.gartner.com/. Obtenido de Bring Your Own Device (BYOD): http://www.gartner.com/it-glossary/bring-your-own-device-byod; Gartner Inc. (s.d. de s.m. de 2015). Gartner Enterprise. Obtenido de http://www.gartner.com/technology/about.jsp; González, J., & Rossi, A. (2001). New Trends for Smart Cities." Competitiveness and Innovation Framework Programme.; Gorenflo , G., & Moran, J. W. (10 de 04 de 2010). The Elements of the PDCA Cycle. Obtenido de http://www.naccho.org/topics/infrastructure/accreditation/upload/abcs-of-pdca.pdf; GSMA. (28 de 01 de 2012). Móviles y Privacidad. Obtenido de http://www.gsma.com/latinamerica/mobile-and-privacy; GSMA. (s.d. de 03 de 2013). Estudio de GSMA sobre las actitudes relacionadas con la privacidad de los usuarios Móviles - Resultados clave de Colombia. Obtenido de http://www.gsma.com/publicpolicy/wp-content/uploads/2013/04/privacy-attitudes-columbia-spanish.pdf; GSMA Association 2012. (s.d. de 06 de 2012). Móviles y Privacidad Directrices para el diseño de privacidad en el desarrollo de aplicaciones. doi:www.gsma.com/mobileprivacy; Halpert, Jim; et al. (2015). DATA PROTECTION LAWS OF THE WORLD. Londres y Chicago: DLA PIPER. Obtenido de http://www.dlapiperdataprotection.com/#handbook/world-map-section; Halpert, Jim; et al. (2015). DATA PROTECTION LAWS OF THE WORLD. Londres y Chicago: DLA PIPER.; Haya Coll, P. A. (2006). Tratamiento de información contextual en entornos inteligentes. UNIVERSIDAD AUT´ ONOMA DE MADRID. Madrid: Tesis Doctora; Universidad Aautónoma de Madrid.; Headquarters, C. (2005). Implementing Network Admission Control Phase One Configuration and Deployment; Helfrich, D., Frazier, J., Ronnau, L., & Forbes, P. (2006). Cisco Network Admission Control, Volume I: NAC Framework Architecture and Design. Pearson Education.; Hernández Sampieri, R. (2010). Metodología de la Investigación (5 ed.). (I. Editores, Ed.) México D.F.: McGraw-Hill.; Hervás Lucas, R., & Bravo Rodriguez, J. (2009). MODELADO DE CONTEXTO PARA LA VISUALIZACION DE INFORMACION EN AMBIENTES INTELIGENTES. Memoria para Doctorados de Informática. Toledo, La mancha, España: Universidad de Castilla - La Mancha.; Holvast, J. (1993). “Vulnerability and Privacy: Are We on the Way to a Risk-Free Society? North-Holland: in the Proceedings of the IFIP-WG9.2 Conference.; Hull, R., Neaves, P., & Bedford-Roberts, J. (1997). Towards Situated Computing. 1st International Symposium on Wearable Computers; . IEEE Network, 146-153.; IBM. (18 de 10 de 2012). La adopción de BYOD ¿es una amenaza para las empresas? Obtenido de Colombia.com / Tecnología / Noticias / Detalle de noticia: http://www.colombia.com/tecnologia/informatica/sdi/48477/la-adopcion-de-byod-es-una-amenaza-para-las-empresas; ico. (2015). ico. Information Commisioner's Office. Obtenido de Auditoria Independiente del Reino Unido -defiende los derechos de información de Interés Públido: https://ico.org.uk/; Icontec. (2007). Norma Técnica Colombiana NTC-ISO/IEC 27002.; Information Commisioner's Office-ICO. (2014). Bring your own device (BYOD). Obtenido de Data Protection Act 1998: https://ico.org.uk/media/for-organisations/documents/1563/ico_bring_your_own_device_byod_guidance.pdf; Information Security Media Group. (2016). Mobile: Learn from Intel's CISO on Securing Employee-Owned Devices . Obtenido de Training: http://www.govinfosecurity.com/webinars/mobile-learn-fromintels-ciso-on-securing-employee-owned-devices-w-264; Intelligent Community Forum (IFC). (21 de 10 de 2015). The Intelligent Community Forum names the Smart21 Communities of 2016. Obtenido de http://www.intelligentcommunity.org/index.php?src=news&srctype=detail&category=Awards&refno=1830&prid=1830; International Organization for Standardization - ISO. (2011). ISO/IEC 27005:2011. Obtenido de Information technology -- Security techniques -- Information security risk management: http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=56742; International Organization for Standardization - ISO. (2013). ISO/IEC 27000. Obtenido de http://www.iso.org/iso/home/standards/management-standards/iso27001.htm; International Organization for Standardization. (1989). ISO 7498-2:1989. Obtenido de Information processing systems -- Open Systems Interconnection -- Basic Reference Model -- Part 2: Security Architecture: http://www.iso.org/iso/catalogue_detail.htm?csnumber=14256; International Organization for Standardization. (2013). ISO/IEC 27001:2013. Obtenido de Information technology -- Security techniques -- Information security management systems -- Requirements: http://www.iso.org/iso/catalogue_detail?csnumber=54534; International Organization for Standardization ISO. (23 de 04 de 2005-2013). International Organization for Standardization ISO. Obtenido de http://www.iso.org/iso/home/standards/management-standards/iso27001.htm; International Organization for Standardization-ISO. (1989). ISO 7498-2:1989. Recuperado el 19 de Abril de 2016, de Information processing systems -- Open Systems Interconnection -- Basic Reference Model -- Part 2: Security Architecture: http://www.iso.org/iso/catalogue_detail.htm?csnumber=14256; International Telecommunication Union - ITU. (2012). Privacy in Cloud Computing. Geneva,: ITU.; International Telecommunication Union - ITU. (2013). Privacy and Data Protection:Model Policy Guidelines & Legislative Texts. Geneva: Telecommunication Development Bureau (BDT).; Inverse Inc. (11 de 2015). Administration Guide for PacketFence version 5.5.0. Obtenido de GNUFreeDocumentationLicense,Ver: http://www.packetfence.org/downloads/PacketFence/doc/PacketFence_Administration_Guide-5.5.1.pdf; ISO. (15 de 06 de 2005). ISO/IEC 17799 - International Organization for Standardization. Obtenido de Information technology -- Security techniques -- Code of practice for information security management: http://www.iso.org/iso/catalogue_detail?csnumber=39612; ISO. (15 de 05 de 2014). ISO 37120 briefing note: the first ISO International Standard on city indicators. Normative references. doi:http://www.iso.org/iso/37120_briefing_note.pdf; ISO -IEC. (2015). ISO/IEC JTC 1 Information technology. Switzerland: www.iso.org. doi:http://www.iso.org/sites/mysmartcity/index.html; IT@Intel White Paper. (11 de 2013). Enabling BYOD with Application Streaming and Client Virtualization. Obtenido de enabling-byod-with-application-streaming-and-client-virtualization.pdf; ITU-T – Telecommunication Standardization Bureau (TSB). (s.d. de 09 de 2015). Security in Telecommunications and Information Technology. (P. d.–C.-1. Switzerland, Ed.) Recuperado el 08 de 12 de 2015, de http://www.itu.int/dms_pub/itu-t/opb/tut/T-TUT-SEC-2015-PDF-E.pdf; ITU-T. (03 de 2012). Privacy in Cloud Computing. Obtenido de ITU-T Technology Watch Report: http://www.itu.int/dms_pub/itu-t/oth/23/01/T23010000160001PDFE.pdf; Jackson, N., & Walshe, P. (2011). Móviles y Privacidad Directrices para el diseño de privacidad en el desarrollo de aplicaciones. New Fetter Lane - London: GSMA; Johnson, K., & Filkins, B. L. (Marzo de 2012). SANS Mobility/BYOD Security Survey. Obtenido de http://www.sans.org/reading_room/analysts_program/mobilitysec-survey.pdf; Kim, H., Ahn, S., Lim, Y., & Mun, Y. (2005). Access control capable integrated network management system for TCP/IP networks. En M. L. Gavrilova, O. Gervasi, V. Kumar, A. Laganá, H. P. Lee, & Y. Mun (Edits.), Computational Science and Its Applications–ICCSA 2005 (Vol. 3482, págs. 676-685). Berlin, Alemania: Springer-Verlag Berlin Heidelberg. Obtenido de http://link.springer.com/chapter/10.1007%2F11424826_71#page-1; Know, L. (2015). A vision for the development of i-campus. Smart Learning Environments a SpringerOpen Journal, 12. Obtenido de http://www.slejournal.com/content/pdf/s40561-015-0009-8.pdf; Kurose, J. F., Ross, K. W., & Hierro, C. M. (2010). Redes de computadoras: un enfoque descendente. Addison Wesley.; Laird, J. (07 de 11 de 2014). A Brief History of BYOD and Why it Doesn't Actually Exist Anymore. págs. http://www.lifehacker.co.uk/2014/11/07/brief-history-byod-doesnt-actually-exist-anymore.; Langheinrich, M. (2001). Privacy by design - Principles of Privacy-Aware Ubiquitous Systems. Ubiquitous Computing - International Conference (págs. 273-291). Atlanta, Georgia, USA, September 30 - October 2, 2001.: Editorial Springer-Verlag Berlin Heidelberg.; Langheinrich, M. (2005). Personal Privacy in Ubiquitous Computing – Tools and System Support. Switzerland: PhD thesis, ETH Zurich, Zurich. Obtenido de PhD thesis, ETH Zurich,Zurich.; Lassila, O. (2005). Using the Semantic Web in Mobile and Ubiquitous Computing. Proceedings of the 1st IFIP WG12.5 Working Conference on Industrial Applications of Semantic Web), Springer, , 19--25.; Lazarte, M. (19 de 11 de 2015). From Australia to Nigeria - The road to building smart cities. Obtenido de http://www.iso.org/: http://www.iso.org/iso/news.htm?refid=Ref2027; Lee, O., Yonnim, & Kwon. (2010). An index-based privacy preserving service trigger in context-aware computing environments, (2010),pages5192 - 5200,. Expert Systems with Applications, 5192-5200.; Lepouras, G. V. (2007). Domain expert user development: The SmartGov approach. Communications of the ACM, 50 (9), 79-83.; López, P. A. (2010). Seguridad Informática. Editex.; Lucent, A. (2011.). "Understanding the Market Opportunity in the Cities of Tomorrow.". Alcatel Lucent; MACDONALD, N. e. (2010). The Future of Information Security Is Context Aware and Adaptative. Stamford: Gartner RAS Core Research Note G00200385.; Madden, Brian. (05 de 2012). http://www.brianmadden.com/. Obtenido de What is MDM, MAM, and MIM? (And what's the difference?): http://www.brianmadden.com/blogs/brianmadden/archive/2012/05/29/what-is-mdm-mam-and-mim-and-what-s-the-difference.aspx; Maidan, P. (20-22 de 05 de 2015). Smarter Solutions for a Better Tomorrow. (E. I. Group, Ed.) Obtenido de Exhibitions India Group: https://eu-smartcities.eu/sites/all/files/events/uploads/Smart%20Cities%20India%202015%20Brochure_0.pdf; Maiwald, E. (2012). Architectural Alternatives for Enforcing Network Access Control Requirements. (Garner Inc) Recuperado el 09 de Abril de 2016, de Sitio web de Garner Inc: https://www.gartner.com/doc/1969717/architectural-alternatives-enforcing-network-access; Malek, J. A. (2009). Informative global community development index of informative smart city. In Proceedings of the 8th WSEAS International Conference on Education and Educational Technology (Genova, Italy, Oct 17-19).; Manual de Seguridad en Redes. (s.f.). En Coordinación de emergencias en redes telemáticas (pág. 13). Obtenido de Manual de Seguridad en Redes página 13 , Coordinación de emergencia en redes telemáticas; Manzano, V. (2005). Introducción al análisis del discurso.; Miller, W. I. (1997). The Anatomy of Disgust. Cambridge: Harvard University Press.; Moya, J. M., & Martínez, D. R. (2005). Seguridad en redes y sistemas informáticos. Thomson Paraninfo; Nakhjiri , M., & Nakhjiri, N. (2005). AAA and Network Security for Mobile Access : Radius, Diameter,EAP,PKI and IP Mobility.; Nam , T., & Pardo , T. (2011). Conceptualizing Smart City with Dimensions of Technology, People, and Institutions. Obtenido de The Proceedings of the 12th Annual International Conference on Digital Government Research: http://inta-aivn.org/images/cc/Urbanism/background%20documents/dgo_2011_smartcity.pdf; NAM, T. P. ( 2011.). Conceptualizing Smart City with Dimensions of Technology , People and Institutions. (University of Maryland, Ed.) 12th Annual International Conference on Digital Government Research,, 282-291.; NetworkWorld. (24 de 06 de 2013). http://www.networkworld.com/. Obtenido de 'La contenerización' no es la panacea BYOD: Gartner - Gartner señala que es una importante cuestión de desarrollo de aplicaciones de TI: http://www.networkworld.com/article/2167570/byod/-containerization--is-no-byod-panacea--gartner.html; Normas-ISO.com. (25 de 02 de 2015). NORMAS ISO. Recuperado el 2015, de http://www.normas-iso.com/2015/iso-iec-27018-2014-requisitos-para-la-proteccion-de-la-informacion-de-identificacion-personal; Novenca Security Systems. (2015). Control de Acceso. Obtenido de http://www.novenca.com/site/index.php?option=com_content&view=article&id=86&Itemid=164; Ojeda Pérez , J. E. (2010). Delitos informáticos y entorno jurídico vigente en Colombia. Obtenido de http://www.sci.unal.edu.co/scielo.php?script=sci_arttext&pid=S0123-14722010000200003&lng=es&nrm=iso; ONU (United Nations Organization). (10 de 12 de 1948). Universal declaration of human rights. Obtenido de Adopted and proclaimed by General Assembly resolution 217 A (III) of December 10, 1948: http://www.un.org/en/sections/what-we-do/protect-human-rights/index.html; Organización Mundial de la Propiedad Intelectual. (23 de Junio de 1989). Decreto 1360. Obtenido de http://www.wipo.int/wipolex/es/text.jsp?file_id=126038; PacketFence. (11 de 2015). Obtenido de http://www.packetfence.org/about/advanced_features.html; Pandey, Y. (2015). Journey to Smart Campus How the Internet of Everything is Changing Everything. CSI Symposium held on BITKOM – Bundesverband Informationswirtschaft, Telekommunikation und neue Medien e.V., (pág. 34). Bundesverband, Alemania: CISCO.COM. Obtenido de http://www.csi-2015.org/Downloads/CISCO%20Presentation%20at%20CSI%20Symposium%20held%20on%2006.08.2015.pdf; Parekh, S. (03 de 09 de 2014). IEEE 802.11 Wireless LANs Unit 11. Obtenido de EECS Instructional and Electronics Support - University of California, Berkeley: http://inst.eecs.berkeley.edu/~ee122/sp07/80211.pdf; Pascoe, J. (1998.). Adding Generic Contextual Capabilities to Wearable Computers. 2nd International Symposium on Wearable Computers,. 2nd International Symposium on Wearable Computers, 92-99,.; Patiño Sedan, M. (2013). CITY OF THE YEAR. Obtenido de Investments and Corporate Banking, Citigroup: https://online.wsj.com/ad/cityoftheyear; Paul, I. (2013). 3 essential techniques to protect your online privacy. PCWorld Digital.; Pellejero, I., Andreu, F., & Lesta, A. (2006). Fundamentos y aplicaciones de seguridad en redes WLAN: de la teoría a la práctica. Marcombo; Periódico El Tiempo. (15 de 10 de 2015). Ley de Hábeas Data. Archivo el Tiempo, pág. s.p. Obtenido de http://www.eltiempo.com/noticias/ley-de-habeas-data; Pistore, M. (2015). Creating services WITH and FOR people. Smart Community Lab, 31. Obtenido de Project Manager – Smart Campus: http://www.science20-conference.eu/wp-content/uploads/2013/08/14_Marco_Pistore_-_Smart_Campus__Services_with_and_for_People.pdf; PMI. (21 de 07 de 2014). PMI Colombia Capitulo Bogotá. Obtenido de Empresas de Clase Mundial: http://www.pmicolombia.org/2014/07/empresas-de-clase-mundial/; Preuveneers, D., & Joosen, W. (2015). Change Impact Analysis for Context-Aware Applications in Intelligent Environments. . Workshop Proceedings of the 11th International Conference on Intelligent Environments. Open Access, IOS Press, , 70-81.; Radic, L. (1 de 4 de 2015). Estándares de privacidad para el entorno cloud. Obtenido de http://www.ccsur.com/estandares-de-privacidad-para-el-entorno-cloud/; RAE. (2014). DICCIONARIO DE LA LENGUA ESPAÑOLA - Vigésima segunda edición; Real Academia Española. (2014). DICCIONARIO DE LA LENGUA ESPAÑOLA. Obtenido de http://lema.rae.es/drae/; Rege, O. (17 de Agosto de 2011). Bring Your Own Device: Dealing With Trust and Liability Issues. Obtenido de http://www.forbes.com/sites/ciocentral/2011/08/17/bring-your-own-device-dealing-with-trust-and-liability-issues/#7cf605625182; Robinson, B. (26 de 07 de 2007). What you Need to Know About NAC. Obtenido de IT SECURITY: http://www.itsecurity.com/features/what-you-need-to-know-about-nac-072607/; Rodriguez H., A. A., Espindola, D., J. E., & Rodriguez H., F. (09 de 2015). Implementación de dispositivos móviles personales (BYOD) en la universidad pública. Memorias II Congreso Internacional de Educación a Distancia; ResearchGate, 412-420. Obtenido de https://www.researchgate.net/publication/282850481_Implementacin_de_dispositivos_mviles_personales_BYOD_en_la_universidad_pblica; Rosenberg, R. (2004). The Social Impact of Computers. San Diego, United States of America: Academic Press; Round Table Business/Higher Education. (2015). Internet of Everything -Powering the Smart Campus & the Smart City:Geelong’s Transformation to a Smart City. Deakin Worldly; Cisco; IBM. DC. Victoria Parade: Round Table Business/Higher Education. Obtenido de http://www.bhert.com/events/2015-06-08/BHERT-Smart-City-Agenda-June-18.pdf; Ruiz, C. (31 de 05 de 2013). Movilidad empresarial y convergencia de dispositivos. Obtenido de oficina de prensa de Lenovo Colombia: http://www.mintic.gov.co/portal/vivedigital/612/w3-article-4442.htm; Sairamesh, J. L. (2004). Information cities. . Communications of the ACM, 47 (2), 28-31.; Salber D, e. a. (1998). Georgia Tech GVU Technical Report GIT-GVU-98-0. 1,. Georgia Tech GVU Technical Report GIT-GVU-98-0, 1-15.; Sánchez Acevedo, N., & Segura Castañeda, J. S. (s.f.). Una guía metodológica para el cálculo del retorno a la inversión (ROI) en seguridad informática.; Scarón de Quintero, M. T., & Genisans, N. (1985). El diagnóstico social; Schaffers, H., Komninos, N., Tsarchopoulos, P., Pallot, M., Trousse, B., Posio, E., . . . Almirall,, E. (18 de 04 de 2012). Landscape and Roadmap of Future Internet and Smart Cities. HAL archives - ouvertes - Fireball Proyect, 209. Obtenido de https://hal.inria.fr/hal-00769715/document; Schilit, B., & Theimer , M. (1994). Disseminating Active Map Information to Mobile Hosts. . IEEE Network, 8(5), , 22-32.; Schmidt, A. (26 de 07 de 2015). INTERACTION DESIGN FOUNDATION. (I. D. Foundation, Editor) Obtenido de https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/context-aware-computing-context-awareness-context-aware-user-interfaces-and-implicit-interaction#chapter_start; Siliconweek. (s.f.). Recuperado el Junio de 25 de 2015, de http://www.siliconweek.es/e-enterprise/como-elegir-la-mejor-solucion-de-control-de-acceso-a-la-red-nac-751; Solove, D. J. (2006). A TAXONOMY OF PRIVACY Vol. 154 No.3. University of Pennsylvania Law Review, 477-560. Obtenido de https://www.law.upenn.edu/journals/lawreview/articles/volume154/issue3/Solove154U.Pa.L.Rev.477%282006%29.pdf; Spandas, L. (2012). Citrix favours selective BYOD program. Obtenido de http://www.zdnet.com/article/citrix-favours-selective-byod-program/: http://www.zdnet.com/article/citrix-favours-selective-byod-program/; Stojanovic, D. (2009). Contex - Aware Mobile and Ubiquitous Computing fir Enhanced Usability: Adaotatuve Technologies and Applications. New York: Information Science Reference Hershey -IGI GLOBAL - Brithis Library. Obtenido de https://books.google.com.co/books?hl=es&lr=&id=sY6IXsn5xjMC&oi=fnd&pg=PP1&dq=Context+-+Aware+Mobile+and+Ubiquitous+Computing+for+Enhanced+Usability:+Adaptation+Technologies+and+Applications&ots=qB2rAYMeQq&sig=gRdV74xI-EybY0tcX9VnT5-UdG0&redir_esc=y#v=onep; Strauss, J., & Rogerson, K. S. (2002). Policies for online privacy in the United States and the European Union. Telematics and Informatics 19, 173-192.; Tacacs. (04 de 2011). The Advantages of TACACS+ for Administrator Authentication . Obtenido de www.tacacs.net. : http://www.tacacs.net/docs/TACACS_Advantages.pdf; Tanenbaum, A. S. (2003). Redes de computadoras (4 ed.). México: Prentice-Hall.; TechRepublic. (9 de 02 de 2015). http://www.techrepublic.com/. Obtenido de 5 Reasons why BYOD survived 2014 and will prosper in 2015, BYOD faced some criticisms in 2014 but appears set to evolve further this year. por Will Kelly: http://www.techrepublic.com/article/5-reasons-why-byod-survived-2014-and-will-prosper-in-2015/; THE COMMISSION EUROPEAN. (27 de 11 de 2013). COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN. on the Functioning of the Safe Harbour from the Perspective of EU Citizens and. Brussels,, s.p., Bélgica: EUROPEAN EUROPEAN.; The Federal Council - Portal of the Swiss government. (s.d. de s.m. de 2014). Schweizerische Eidgenossenschaft - Confederation suisse. Obtenido de The federal Council: http://www.edoeb.admin.ch/org/00129/00132/index.html?lang=en; The Huffington Post. (27 de 12 de 2013). NSA Phone Surveillance Is Legal, New York Judge Rules . por: Neumeister, Larry (Internet). Obtenido de http://www.huffingtonpost.com/2013/12/27/nsa-phone-surveillance_n_4508483.html; Tur, J. N. (2009). Pensamiento y planificación estratégica. Definición e implementación de estrategias de desarrollo. Gestión y promoción del desarrollo local.; United Nations. (07 de 2014). Population world. Obtenido de www.worldometers.info: http://www.worldometers.info/world-population/india-population/; Universia Colombia. (21 de 05 de 2013). Para el año 2016 se afianzará el BYOD en las empresas. Obtenido de Universia.net.co : http://noticias.universia.net.co/en-portada/noticia/2013/05/21/1024756/ano-2016-afianzara-byod-empresas.html; alue, N. (2 de 04 de 2001). ACADEMIA DE REDES LLEGA A COLOMBIA. El tiempo. Obtenido de http://www.eltiempo.com/archivo/documento/MAM-567980; Vogt, W. P., & Johnson, R. B. (2011). Dictionary of Statistics & Methodology: A Nontechnical Guide for the Social Sciences: A Nontechnical Guide for the Social Sciences. Sage.; Volokh, E. (1999). Freedom of Speech and Information Privacy: The Troubling Impli-cations of a Right To Stop People from Speaking About You. University of California, Los Angeles (UCLA), 1049-1051.; W3C NOTE. (21 de 07 de 1998). P3P Guiding Principles. Obtenido de NOTE-P3P10-principles-19980721: http://www.w3.org/TR/NOTE-P3P10-principles; W3C Recomentation. (16 de 04 de 2002). The Platform for Privacy Preferences 1.0 . Obtenido de (P3P1.0) Specification: http://www.w3.org/TR/P3P/; W3C Working Group Note. (13 de 11 de 2006). The Platform for Privacy Preferences 1.1 . Obtenido de (P3P1.1) Specification: http://www.w3.org/TR/P3P11/; Wan, K. (2009). A Brief History of Context. International Journal of Computer Science Issues Vol 6, No.2, 33-42.; Want, R., Schilit, B., & Et al. (Diciembre, 1995.). An Overview of the PARCTab Ubiquitous Computing Experiment. IEEE Personal Communications,, 28-43. Obtenido de https://www.cs.colorado.edu/~rhan/CSCI_7143_002_Fall_2001/Papers/Want95_PARCTab.pdf; Ward, R., Hopper, A., Falcao, V., & Gibbons, J. (1992). The active Badge Location System. ACM Transactions on Information Systems, 91-102,.; Warren, S. D., & Brandeis, L. D. (1890). The Right to Privacy. 4 HARV. L. R EV, 193.; WatchGuard Technologies Inc. (s.d. de s.m. de 2008). Las 10 principales amenazas a la seguridad de los datos de las PyMEs. Obtenido de Parte. No. WGCE66599_112408: http://www.watchguard.com/docs/whitepaper/wg_top10-summary_wp_es.pdf; Weiser, M. (1993). Some computer science problems in ubiquitous computing. Communications of the ACM, 137–143.; Westin, A. F. (3 de 1 de 1968). Privacy And Freedom. Obtenido de http://scholarlycommons.law.wlu.edu/cgi/viewcontent.cgi?article=3659&context=wlulr; Corporación Colombia Digital . (07 de 04 de 2015). Teletrabajo en Catastro Distrital, un nuevo avance. Obtenido de Aumentar la productividad, mejorar la movilidad empresarial y virtualizar las compañías son algunos beneficios de adoptar esta modalidad.: http://colombiadigital.net/actualidad/noticias/item/8237-teletrabajo-en-catastro-distrital-un-nuevo-avance.html Intelligent Community Forum (ICF). (11 de 2015). The Smart21 Communities - Smart 21 of 2016. Obtenido de Intelligent Communities of the year : https://www.intelligentcommunity.org/index.php?submenu=Awards&src=gendocs&ref=Smart21&category=Events International Telecommunication Union - ITU. (s.d. de s.m. de 2013). Protección de datos y privacidad en la nube ¿Quién es el propietario de la nube? Obtenido de https://itunews.itu.int/Es/3702-Proteccion-de-datos-y-privacidad-en-la-nube-BR-Quien-es-el-propietario-de-la-nube.note.aspx World Wide Web Consortium (W3C). (3 de 12 de 2015). W3C Standards. Obtenido de http://www.w3.org/standards/webofdevices/ Abown, G. (2012). Towards a Better Understanding of Context and Context-Awareness. Proc. 1st international symposium on Handheld an Ubiquitous Computing. Springer-Verlag, Londres, 304-307. Obtenido de ftp://ftp.cc.gatech.edu/pub/gvu/tr/1999/99-22.pdf Access to European Union Law. (23 de 11 de 1995). Official website of the European Union. Obtenido de Diario Oficial n° L 281 de 23/11/1995 p. 0031 - 0050: http://eur-lex.europa.eu/legal-content/ES/TXT/?uri=celex:31995L0046 Ackerman, M., Darrell, T., & Weizner, D. (2001 ). Privacy in Context. Human-Computer Interaction. Aguilera López, P. (2010). Seguridad Informática. Barcelona: Editex. Obtenido de https://books.google.com.co/books?isbn=8497717619 Aguillón Martínez, E. (2012). Fundamentos de Criptografía. México: UNAM, Laboratorio de Redes y Seguridad. Obtenido de http://redyseguridad.fi-p.unam.mx/proyectos/criptografia/criptografia/index.php/1-panorama-general/13-servicios-y-mecanismos-de-seguridad/131-servicios-de-seguridad Ahn, S., Lim, Y., Mun, Y., & Kim, H. (2005). Access control capable integrated network management system for TCP/IP networks. En Computational Science and Its Applications--ICCSA 2005 (págs. 676--685). Springer Berlin Heidelberg. Asamblea Nacional Constituyente (1991). (1991). Constitución Política de Colombia 1991. Bogotá: República de Colombia. Obtenido de http://www.procuraduria.gov.co/guiamp/media/file/Macroproceso%20Disciplinario/Constitucion_Politica_de_Colombia.htm Asamblea Nacional Constituyente 1991. (2006). Nueva Constitución Política de Colombia 1991. Bogotá: Unión Ltda. Obtenido de http://www.procuraduria.gov.co/guiamp/media/file/Macroproceso%20Disciplinario/Constitucion_Politica_de_Colombia.htm Augusto, J. C., Nakashima, H., & Agh, H. (2010). Ambient Intelligence and Smart Environments:A State of the Art. 1-29. Bartoli, A., Hernandez-Serrano, J., Soriano, M., Dohler, M., Kountouris, A., & Barthe, D. (2011). Security and Privacy in your Smart City. Centre Tecnologic de Telecomunicacions de Catalunya (CTTC),Spain - IEEE, 1-6. Obtenido de http://www.cttc.es/publication/security-and-privacy-in-your-smart-city/ Batty , M., Axhausen, K., Pozdnoukhov, A., Fosca, G., Bazzani, A., Wachowicz, M., . . . Portugali, Y. (2012). Smart Cities of the Future. En C. f. London, Working Papers Series Paper 188 -Oct 12 Smart Cities of the Future (págs. 1-40). London: UCL CENTRE FOR ADVANCED SPATIAL ANALYSIS. Obtenido de https://www.bartlett.ucl.ac.uk/casa/pdf/paper188 BBC News. (17 de 01 de 2014). Edward Snowden: Leaks that exposed US spy programme. BBC NEWS on Internet. Obtenido de http://www.bbc.com/news/world-us-canada-23123964 BCS. (06 de 2014). http://www.bcs.org/. Obtenido de BYOD, CYOD, BYOT, BYOA and more: http://www.bcs.org/content/conWebDoc/52926 Behrooz, A. (01 de 2010). Privacy of Mobile Users in Contextaware Computing Environments Master of Science Thesis. Stockholm, Sweden : Royal Institute of Technology Department of Computer and Systems Sciences (KTH Information Communication Tecnology) TRITA-ICT-EX-2011:233. Obtenido de http://www.diva-portal.org/smash/get/diva2:512292/FULLTEXT01.pdf Bertolín, J. A. (2008). Seguridad de la información. Redes, informática y sistemas de información. Paraninfo. BeVier, L. R. (1995). Information About Individuals in the Hands of Government: Some Reflections on Mechanisms for Privacy Protection. William & Mary Law Review, 455. Obtenido de http://scholarship.law.wm.edu/cgi/viewcontent.cgi?article=1489&context=wmborj BHERT. (18 de 01 de 2015). Internet of Everything - Powering the Smart Campus & the Smart City:Geelong’s Transformation to a Smart City. (B. B. Table, Ed.) Obtenido de In parthershio with University Deakin Worldly Australia, Cisco e IBM: http://www.bhert.com/events/2015-06-08/BHERT-Smart-City-Agenda-June-18.pdf BID. (2015). Iniciativa CIUDADES EMERGENTES y SOSTENIBLES. Obtenido de Banco Interamericano de Desarrollo: http://www.iadb.org/es/temas/ciudades-emergentes-y-sostenibles/ciudades-usando-el-enfoque-de-desarrollo-urbano-sostenible,6693.html Bort, J. (2012). Managing An Explosion Of Mobile Devices And Apps In The Enterprise. Obtenido de http://www.businessinsider.com/how-companies-are-managingthe-explosion-of-mobile-devices Boulton, A. B. (2011). Cyberinfrastructures and “smart” world cities: Physical, human, and soft infrastructures. In P. Taylor, B. Derudder, M. Hoyler & F. Witlox (Eds.), International Handbook of Globalization and World Cities. Cheltenham, U.K.: Edward Elgar. Braverman, B., Braverman , J., Taylor, J., Todosow, H., & Wimmersperg , U. (2014-2015). The Vision of A Smart City. En C. Communication and Policy Engagement (CPE) Team, Reconceptualising Smart Cities: A Reference Framework for India Compendium of Resources - Parte 1 Smart City Definitions (pág. 62). India: STEP Center for Study of Science, Technology & Policy. doi:http://www.osti.gov/scitech/servlets/purl/773961 del documento - 2009 Carreño Gallardo, J. (2004). Seguridad en Redes Telemáticas. España: McGraw-Hill. Casa editorial El Tiempo. (6 de 09 de 2015). Las fallas de los bancos al reportar a clientes ante DataCrédito. El Tiempo , págs. http://www.eltiempo.com/economia/finanzas-personales/reportes-a-datacredito-y-otras-centrales-de-riesgo/14495887. Cavoukian, A. (sd de 12 de 2013). Privacybydesing.ca. Obtenido de Ph.D. Information and Privacy commissioner Ontario, Canada: https://www.ipc.on.ca/site_documents/pbd-byod.pdf CCM Benchmark Group. (s.f.). CCM. Obtenido de LAN (Rea de Area Local): http://es.ccm.net/contents/253-lan-red-de-area-local Cio. (4 de 04 de 2012). http://www.cio.com/. Obtenido de BYOD: If You Think You're Saving Money, Think Again por Tom Kaneshige: http://www.cio.com/article/2397529/consumer-technology/byod--if-you-think-you-re-saving-money--think-again.html Cio. (13 de 06 de 2014). www.cio.com. Obtenido de What Is Going Wrong With BYOD? por Tom Kaneshige: http://www.cio.com/article/2375498/byod/what-is-going-wrong-with-byod-.html Cisco. (21 de Junio de 2013). Cisco IOS and NX-OS EOL Redirect page. Obtenido de http://www.cisco.com/c/en/us/td/docs/ios/redirect/eol.html Cisco. (2014). Cisco. Obtenido de http://www.cisco.com/en/US/products/ps6128/index.html Cisco. (18 de 10 de 2015). ¿Cómo el RADIUS trabaja? Obtenido de Cisco Systems Inc.: http://www.cisco.com/cisco/web/support/LA/102/1024/1024966_32.pdf Cisco Academy Networking. (2012). CCNA Exploration. Aspectos básicos de networking. Obtenido de Exploration1. Cisco Networking Academy. (2009). CCNA Exoloration 4.0 accediendo a la wan. Cisco System, Inc. (2014). 802.1X. Obtenido de Media-Level Network Access Control: http://www.cisco.com/c/en/us/tech/lan-switching/802-1x/index.html Cisco Systems, Inc. (2005). Cisco Trust Agent 2.0. Obtenido de Cisco Trust Agent is a core component of the Network Admissions Control (NAC) solution: http://www.cisco.com/c/en/us/products/collateral/security/trust-agent/product_data_sheet0900aecd80119868.html Cisco Systems, Inc. (2005). Implementing Network Admission Control Phase One Configuration and Deployment. USA. Obtenido de www.cisco.com Cisco Systems, Inc. (2005). Network Admission Control. Obtenido de Software Configuration Guide: www.cisco.com Cisco Systems, Inc. (2006). Cisco Secure Access Control Server Solution Engine. Obtenido de Ready-to-Deploy Access Policy Control: http://www.cisco.com/c/en/us/products/security/secure-access-control-server-solution-engine/index.html Cisco Systems, Inc. (2007). Network Admission Control. USA: Cisco Press. Cisco Systems, Inc. (7 de Noviembre de 2013). Chapter: Posture Validation. Obtenido de User Guide for Cisco Secure Access Control Server 4.2: http://www.cisco.com/c/en/us/td/docs/net_mgmt/cisco_secure_access_control_server_for_windows/4-2/user/guide/ACS4_2UG/PstrVal.html#wp134759 Cisco Systems, Inc. (2016). Cisco NAC Appliance (Clean Access). Obtenido de http://www.cisco.com/c/en/us/products/security/nac-appliance-clean-access/index.html Cisco Systems, Inc. (2009). Usar Guide for Cisco Secure Access. USA. Obtenido de http://www.cisco.com/c/en/us/td/docs/net_mgmt/cisco_secure_access_control_server_for_windows/4-2-1/User_Guide/acs421ug/SCAdv.html Cities for Cities, W. C. (Dirección). (2014). WCCD ISO 37120 [Película]. Obtenido de http://www.dataforcities.org/ Citrix . (7 de 07 de 2015). Un enfoque realista de la experiencia BYOD. Obtenido de Alem, Ricardo: http://colombiadigital.net/opinion/columnistas/movilidad-y-tendencias/item/8399-un-enfoque-realista-de-la-experiencia-byod.html Cole, S. A. (2001). Suspect Identities: A HISTORY OF FINGERPRINTING AND CRIMINAL IDENTIFICATION. Cambridge, MA: Harvard University. Comer, D., & Suominen, E. (2002). TCP/IP. IT Press. Complejo Ruta N. (2012). Ruta N Medellín Centro de Innovación y Negocios. Obtenido de EL LUGAR DONDE POTENCIA LA INNOVACIÓN: http://rutanmedellin.org/es/sobre-nosotros Congdon, P. (2000). IEEE 802.1X Overview - Port Based Network Access Control,. Albuquerque, NM,: IEEE Plenary. Obtenido de http://www.ieee802.org/1/files/public/docs2000/P8021XOverview.PDF Congreso de Colombia. (24 de Julio de 2000). Ley 599. Obtenido de http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=6388 Congreso de Colombia. (5 de Enero de 2009). Ley 1273. Obtenido de http://www.mintic.gov.co/portal/604/articles-3705_documento.pdf Congreso de Colombia. (27 de Junio de 2013). Decreto 1377 de 2013 por la cual se reglamenta parcialmente Ley No. 1581. Diario Oficial No. 48834, pág. 28. doi:http://www.sic.gov.co/drupal/sites/default/files/normatividad/Ley_1581_2012.pdf Congreso de la República de Colombia. (31 de Diciembre de 2008). Ley Estatutaria 1266. Diario Oficial 47.219 de diciembre 31 de 2008, pág. s.p. Obtenido de http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=34488 Córdoba Téllez, A., & Durán Martínez, G. (2010). Diseño de un sistema de control de acceso con Radius configurado en un sistema operativo Linux para una LAN inalámbrica. México. Obtenido de http://tesis.ipn.mx/bitstream/handle/123456789/6823/ESIME-RADIUS.pdf?sequence=1 Cornella, A. (1999). La infoestructura: Un concepto esencial en la sociedad de la información. (i. p. Scopus, Ed.) El profesional de la Información - Revista Internaciona Cientifica y Profesional, 26. Recuperado el 2015, de http://www.elprofesionaldelainformacion.com/contenidos/1999/enero/el_concepto_de_infoestructura.html Costas Santos, J. (2014). Seguridad Informática. España: RA-MA Editorial Retrieve from www.ebrary.com. Obtenido de http://site.ebrary.com.aure.unab.edu.co/lib/unabsp/detail.action?docID=11038505 Creative Commons Attribution Share-Alike 3.0 License. (2016). Control de acceso criptográfico. Obtenido de https://galiciacuamatzi.wikispaces.com/4.4+Control+de+acceso+criptogr%C3%A1fico. Cuppens, F., & Cuppens, N. (2007). Modeling Contextual security policies, (2008), pages(285-305). International Journal of Information Security, 285-305. De Angeli, A. (12 de 03 de 2013). Smart students building their campus: A LARGE-SCALE PARTICIPATORY DESIGN. Smart Campus Lab, 55. Obtenido de http://disi.unitn.it/~deangeli/homepage/lib/exe/fetch.php?media=teaching:cscw_smart_campus.pdf Dey, A. e. (1999). CyberDesk: A Framework for Providing Self-Integrating Context-Aware Services. Knowledge-Based Systems, 3-13. Obtenido de http://www.cc.gatech.edu/fce/ctk/pubs/KBS11-1.pdf Dey, A. K. (2001). Understanding and using context. . Personal and Ubiquitous Computing, 4-7. Dhont, J., Pérez Asinari, M. V., & Poullet, Y. (19 de 04 de 2004). Safe Harbour Decision Implementation Study. European Commission, Internal Market DG, 23. Dourish, P. (2004). What We Talk About When Talk About Context. Personal and Ubiquitous Computing, 19-30. Dziedzic, T., & Levien, R. (s.d. de 11 de 2015). PacketFence Administration Guide. Obtenido de http:/www.packetfence.org/downloads/PacketFence/doc/PacketFence_Administration_Guide-5.5.2.pdf Escrivá, G. G., Romero, S. R. M., & Ramada, D. J. (2013). Seguridad informática. España: Macmillan Iberia, S.A. Retrieved from http://www.ebrary.com. Obtenido de http://site.ebrary.com.aure.unab.edu.co/lib/unabsp/reader.action?docID=10820963&ppg=45 Esquivel, A., Haya, P., Montoro, G., & Alamán, X. (s.f.). UNA PROPUESTA PARA UN MODELO DE PRIVACIDAD EN ENTORNOS ACTIVOS. Obtenido de http://arantxa.ii.uam.es/~montoro/publications/esquivel05propuesta.pdf ETSI. (2000). Broadband Radio Access Network (Bran); HIPERLAN Type 2; SYstem Overview. Sophia Antipolis Cedex - Francia: Etsi TR 101 683 V1.1.1. Obtenido de https://www.etsi.org/deliver/etsi_tr/101600_101699/101683/01.01.01_60/tr_101683v010101p.pdf Feitosa, E., Oliveira, L., Lins, B., & Junior, A. M. (2008). Security information architecture for automation and control networks. . 8th Brazilian Symposium of Information Security and Computer Systems, 17-30. Frias-Martinez, V., Stolfo, S. J., & Keromytis, A. D. (2008). Behavior-Based Network Access Control: A Proof-of-Concept. En Information Security (págs. 175-190). Springer-Verlag Berlin. Futuresight. (2013). Resultados Clave de Colombia. LONDON: GSMA Latinoamérica. Futuresight, & Theodorou, Y. (2013). Estudio de GSMA sobre las actitudes relacionadas con la privacidad de los usuarios móviles - Resultado clave en Colombia. New Fetter Lane London: GSMA. Gartner. (3 de 01 de 2014). Magic Quadrant for Enterprise Mobility Management Suites. Obtenido de Analyst(s): Terrence Cosgrove, Rob Smith, Chris Silva, Bryan Taylor, John Girard, Monica Basso: http://www.creekpointe.com/pdfs/Magic-Quadrant-for-Enterprise-Mobility-Management-Suites.pdf Gartner. (17 de 12 de 2015). http://www.gartner.com/. Obtenido de Bring Your Own Device (BYOD): http://www.gartner.com/it-glossary/bring-your-own-device-byod Gartner Inc. (s.d. de s.m. de 2015). Gartner Enterprise. Obtenido de http://www.gartner.com/technology/about.jsp González, J., & Rossi, A. (2001). New Trends for Smart Cities." Competitiveness and Innovation Framework Programme. Gorenflo , G., & Moran, J. W. (10 de 04 de 2010). The Elements of the PDCA Cycle. Obtenido de http://www.naccho.org/topics/infrastructure/accreditation/upload/abcs-of-pdca.pdf GSMA. (28 de 01 de 2012). Móviles y Privacidad. Obtenido de http://www.gsma.com/latinamerica/mobile-and-privacy GSMA. (s.d. de 03 de 2013). Estudio de GSMA sobre las actitudes relacionadas con la privacidad de los usuarios Móviles - Resultados clave de Colombia. Obtenido de http://www.gsma.com/publicpolicy/wp-content/uploads/2013/04/privacy-attitudes-columbia-spanish.pdf GSMA Association 2012. (s.d. de 06 de 2012). Móviles y Privacidad Directrices para el diseño de privacidad en el desarrollo de aplicaciones. doi:www.gsma.com/mobileprivacy Halpert, Jim; et al. (2015). DATA PROTECTION LAWS OF THE WORLD. Londres y Chicago: DLA PIPER. Obtenido de http://www.dlapiperdataprotection.com/#handbook/world-map-section Halpert, Jim; et al. (2015). DATA PROTECTION LAWS OF THE WORLD. Londres y Chicago: DLA PIPER. Halpert, Jim; et al. (2015). DATA PROTECTION LAWS OF THE WORLD. Londres y Chicago: DLA PIPER. Obtenido de http://www.dlapiperdataprotection.com/#handbook/world-map-section Haya Coll, P. A. (2006). Tratamiento de información contextual en entornos inteligentes. UNIVERSIDAD AUT´ ONOMA DE MADRID. Madrid: Tesis Doctora; Universidad Aautónoma de Madrid. Headquarters, C. (2005). Implementing Network Admission Control Phase One Configuration and Deployment. Helfrich, D., Frazier, J., Ronnau, L., & Forbes, P. (2006). Cisco Network Admission Control, Volume I: NAC Framework Architecture and Design. Pearson Education. Hernández Sampieri, R. (2010). Metodología de la Investigación (5 ed.). (I. Editores, Ed.) México D.F.: McGraw-Hill. Hervás Lucas, R., & Bravo Rodriguez, J. (2009). MODELADO DE CONTEXTO PARA LA VISUALIZACION DE INFORMACION EN AMBIENTES INTELIGENTES. Memoria para Doctorados de Informática. Toledo, La mancha, España: Universidad de Castilla - La Mancha. Holvast, J. (1993). “Vulnerability and Privacy: Are We on the Way to a Risk-Free Society? North-Holland: in the Proceedings of the IFIP-WG9.2 Conference. Hull, R., Neaves, P., & Bedford-Roberts, J. (1997). Towards Situated Computing. 1st International Symposium on Wearable Computers; . IEEE Network, 146-153. IBM. (18 de 10 de 2012). La adopción de BYOD ¿es una amenaza para las empresas? Obtenido de Colombia.com / Tecnología / Noticias / Detalle de noticia: http://www.colombia.com/tecnologia/informatica/sdi/48477/la-adopcion-de-byod-es-una-amenaza-para-las-empresas ico. (2015). ico. Information Commisioner's Office. Obtenido de Auditoria Independiente del Reino Unido -defiende los derechos de información de Interés Públido: https://ico.org.uk/ Icontec. (2007). Norma Técnica Colombiana NTC-ISO/IEC 27002. Information Commisioner's Office-ICO. (2014). Bring your own device (BYOD). Obtenido de Data Protection Act 1998: https://ico.org.uk/media/for-organisations/documents/1563/ico_bring_your_own_device_byod_guidance.pdf Information Security Media Group. (2016). Mobile: Learn from Intel's CISO on Securing Employee-Owned Devices . Obtenido de Training: http://www.govinfosecurity.com/webinars/mobile-learn-fromintels-ciso-on-securing-employee-owned-devices-w-264 Intelligent Community Forum (IFC). (21 de 10 de 2015). The Intelligent Community Forum names the Smart21 Communities of 2016. Obtenido de http://www.intelligentcommunity.org/index.php?src=news&srctype=detail&category=Awards&refno=1830&prid=1830 International Organization for Standardization - ISO. (2011). ISO/IEC 27005:2011. Obtenido de Information technology -- Security techniques -- Information security risk management: http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=56742 International Organization for Standardization - ISO. (2013). ISO/IEC 27000. Obtenido de http://www.iso.org/iso/home/standards/management-standards/iso27001.htm International Organization for Standardization. (1989). ISO 7498-2:1989. Obtenido de Information processing systems -- Open Systems Interconnection -- Basic Reference Model -- Part 2: Security Architecture: http://www.iso.org/iso/catalogue_detail.htm?csnumber=14256 International Organization for Standardization. (2013). ISO/IEC 27001:2013. Obtenido de Information technology -- Security techniques -- Information security management systems -- Requirements: http://www.iso.org/iso/catalogue_detail?csnumber=54534 International Organization for Standardization ISO. (23 de 04 de 2005-2013). International Organization for Standardization ISO. Obtenido de http://www.iso.org/iso/home/standards/management-standards/iso27001.htm International Organization for Standardization-ISO. (1989). ISO 7498-2:1989. Recuperado el 19 de Abril de 2016, de Information processing systems -- Open Systems Interconnection -- Basic Reference Model -- Part 2: Security Architecture: http://www.iso.org/iso/catalogue_detail.htm?csnumber=14256 International Telecommunication Union - ITU. (2012). Privacy in Cloud Computing. Geneva,: ITU. International Telecommunication Union - ITU. (2013). Privacy and Data Protection:Model Policy Guidelines & Legislative Texts. Geneva: Telecommunication Development Bureau (BDT). Inverse Inc. (11 de 2015). Administration Guide for PacketFence version 5.5.0. Obtenido de GNUFreeDocumentationLicense,Ver: http://www.packetfence.org/downloads/PacketFence/doc/PacketFence_Administration_Guide-5.5.1.pdf ISO. (15 de 06 de 2005). ISO/IEC 17799 - International Organization for Standardization. Obtenido de Information technology -- Security techniques -- Code of practice for information security management: http://www.iso.org/iso/catalogue_detail?csnumber=39612 ISO. (15 de 05 de 2014). ISO 37120 briefing note: the first ISO International Standard on city indicators. Normative references. doi:http://www.iso.org/iso/37120_briefing_note.pdf ISO -IEC. (2015). ISO/IEC JTC 1 Information technology. Switzerland: www.iso.org. doi:http://www.iso.org/sites/mysmartcity/index.html IT@Intel White Paper. (11 de 2013). Enabling BYOD with Application Streaming and Client Virtualization. Obtenido de enabling-byod-with-application-streaming-and-client-virtualization.pdf ITU-T – Telecommunication Standardization Bureau (TSB). (s.d. de 09 de 2015). Security in Telecommunications and Information Technology. (P. d.–C.-1. Switzerland, Ed.) Recuperado el 08 de 12 de 2015, de http://www.itu.int/dms_pub/itu-t/opb/tut/T-TUT-SEC-2015-PDF-E.pdf ITU-T. (03 de 2012). Privacy in Cloud Computing. Obtenido de ITU-T Technology Watch Report: http://www.itu.int/dms_pub/itu-t/oth/23/01/T23010000160001PDFE.pdf Jackson, N., & Walshe, P. (2011). Móviles y Privacidad Directrices para el diseño de privacidad en el desarrollo de aplicaciones. New Fetter Lane - London: GSMA. Johnson, K., & Filkins, B. L. (Marzo de 2012). SANS Mobility/BYOD Security Survey. Obtenido de http://www.sans.org/reading_room/analysts_program/mobilitysec-survey.pdf Kim, H., Ahn, S., Lim, Y., & Mun, Y. (2005). Access control capable integrated network management system for TCP/IP networks. En M. L. Gavrilova, O. Gervasi, V. Kumar, A. Laganá, H. P. Lee, & Y. Mun (Edits.), Computational Science and Its Applications–ICCSA 2005 (Vol. 3482, págs. 676-685). Berlin, Alemania: Springer-Verlag Berlin Heidelberg. Obtenido de http://link.springer.com/chapter/10.1007%2F11424826_71#page-1 Know, L. (2015). A vision for the development of i-campus. Smart Learning Environments a SpringerOpen Journal, 12. Obtenido de http://www.slejournal.com/content/pdf/s40561-015-0009-8.pdf Kurose, J. F., Ross, K. W., & Hierro, C. M. (2010). Redes de computadoras: un enfoque descendente. Addison Wesley. Laird, J. (07 de 11 de 2014). A Brief History of BYOD and Why it Doesn't Actually Exist Anymore. págs. http://www.lifehacker.co.uk/2014/11/07/brief-history-byod-doesnt-actually-exist-anymore. Langheinrich, M. (2001). Privacy by design - Principles of Privacy-Aware Ubiquitous Systems. Ubiquitous Computing - International Conference (págs. 273-291). Atlanta, Georgia, USA, September 30 - October 2, 2001.: Editorial Springer-Verlag Berlin Heidelberg. Langheinrich, M. (2005). Personal Privacy in Ubiquitous Computing – Tools and System Support. Switzerland: PhD thesis, ETH Zurich, Zurich. Obtenido de PhD thesis, ETH Zurich,Zurich. Lassila, O. (2005). Using the Semantic Web in Mobile and Ubiquitous Computing. Proceedings of the 1st IFIP WG12.5 Working Conference on Industrial Applications of Semantic Web), Springer, , 19--25. Lazarte, M. (19 de 11 de 2015). From Australia to Nigeria - The road to building smart cities. Obtenido de http://www.iso.org/: http://www.iso.org/iso/news.htm?refid=Ref2027 Lee, O., Yonnim, & Kwon. (2010). An index-based privacy preserving service trigger in context-aware computing environments, (2010),pages5192 - 5200,. Expert Systems with Applications, 5192-5200. Lepouras, G. V. (2007). Domain expert user development: The SmartGov approach. Communications of the ACM, 50 (9), 79-83. López, P. A. (2010). Seguridad Informática. Editex. Lucent, A. (2011.). "Understanding the Market Opportunity in the Cities of Tomorrow.". Alcatel Lucent,. MACDONALD, N. e. (2010). The Future of Information Security Is Context Aware and Adaptative. Stamford: Gartner RAS Core Research Note G00200385. Madden, Brian. (05 de 2012). http://www.brianmadden.com/. Obtenido de What is MDM, MAM, and MIM? (And what's the difference?): http://www.brianmadden.com/blogs/brianmadden/archive/2012/05/29/what-is-mdm-mam-and-mim-and-what-s-the-difference.aspx Maidan, P. (20-22 de 05 de 2015). Smarter Solutions for a Better Tomorrow. (E. I. Group, Ed.) Obtenido de Exhibitions India Group: https://eu-smartcities.eu/sites/all/files/events/uploads/Smart%20Cities%20India%202015%20Brochure_0.pdf Maiwald, E. (2012). Architectural Alternatives for Enforcing Network Access Control Requirements. (Garner Inc) Recuperado el 09 de Abril de 2016, de Sitio web de Garner Inc: https://www.gartner.com/doc/1969717/architectural-alternatives-enforcing-network-access Malek, J. A. (2009). Informative global community development index of informative smart city. In Proceedings of the 8th WSEAS International Conference on Education and Educational Technology (Genova, Italy, Oct 17-19). Manual de Seguridad en Redes. (s.f.). En Coordinación de emergencias en redes telemáticas (pág. 13). Obtenido de Manual de Seguridad en Redes página 13 , Coordinación de emergencia en redes telemáticas Manzano, V. (2005). Introducción al análisis del discurso . Miller, W. I. (1997). The Anatomy of Disgust. Cambridge: Harvard University Press. Moya, J. M., & Martínez, D. R. (2005). Seguridad en redes y sistemas informáticos. Thomson Paraninfo. Nakhjiri , M., & Nakhjiri, N. (2005). AAA and Network Security for Mobile Access : Radius, Diameter,EAP,PKI and IP Mobility. Nam , T., & Pardo , T. (2011). Conceptualizing Smart City with Dimensions of Technology, People, and Institutions. Obtenido de The Proceedings of the 12th Annual International Conference on Digital Government Research: http://inta-aivn.org/images/cc/Urbanism/background%20documents/dgo_2011_smartcity.pdf NAM, T. P. ( 2011.). Conceptualizing Smart City with Dimensions of Technology , People and Institutions. (University of Maryland, Ed.) 12th Annual International Conference on Digital Government Research,, 282-291. NetworkWorld. (24 de 06 de 2013). http://www.networkworld.com/. Obtenido de 'La contenerización' no es la panacea BYOD: Gartner - Gartner señala que es una importante cuestión de desarrollo de aplicaciones de TI: http://www.networkworld.com/article/2167570/byod/-containerization--is-no-byod-panacea--gartner.html Normas-ISO.com. (25 de 02 de 2015). NORMAS ISO. Recuperado el 2015, de http://www.normas-iso.com/2015/iso-iec-27018-2014-requisitos-para-la-proteccion-de-la-informacion-de-identificacion-personal Novenca Security Systems. (2015). Control de Acceso. Obtenido de http://www.novenca.com/site/index.php?option=com_content&view=article&id=86&Itemid=164 Ojeda Pérez , J. E. (2010). Delitos informáticos y entorno jurídico vigente en Colombia. Obtenido de http://www.sci.unal.edu.co/scielo.php?script=sci_arttext&pid=S0123-14722010000200003&lng=es&nrm=iso ONU (United Nations Organization). (10 de 12 de 1948). Universal declaration of human rights. Obtenido de Adopted and proclaimed by General Assembly resolution 217 A (III) of December 10, 1948: http://www.un.org/en/sections/what-we-do/protect-human-rights/index.html Organización Mundial de la Propiedad Intelectual. (23 de Junio de 1989). Decreto 1360. Obtenido de http://www.wipo.int/wipolex/es/text.jsp?file_id=126038 PacketFence. (11 de 2015). Obtenido de http://www.packetfence.org/about/advanced_features.html Pandey, Y. (2015). Journey to Smart Campus How the Internet of Everything is Changing Everything. CSI Symposium held on BITKOM – Bundesverband Informationswirtschaft, Telekommunikation und neue Medien e.V., (pág. 34). Bundesverband, Alemania: CISCO.COM. Obtenido de http://www.csi-2015.org/Downloads/CISCO%20Presentation%20at%20CSI%20Symposium%20held%20on%2006.08.2015.pdf Parekh, S. (03 de 09 de 2014). IEEE 802.11 Wireless LANs Unit 11. Obtenido de EECS Instructional and Electronics Support - University of California, Berkeley: http://inst.eecs.berkeley.edu/~ee122/sp07/80211.pdf Pascoe, J. (1998.). Adding Generic Contextual Capabilities to Wearable Computers. 2nd International Symposium on Wearable Computers,. 2nd International Symposium on Wearable Computers, 92-99,. Patiño Sedan, M. (2013). CITY OF THE YEAR. Obtenido de Investments and Corporate Banking, Citigroup: https://online.wsj.com/ad/cityoftheyear Paul, I. (2013). 3 essential techniques to protect your online privacy. PCWorld Digital. Pellejero, I., Andreu, F., & Lesta, A. (2006). Fundamentos y aplicaciones de seguridad en redes WLAN: de la teoría a la práctica. Marcombo. Periódico El Tiempo. (15 de 10 de 2015). Ley de Hábeas Data. Archivo el Tiempo, pág. s.p. Obtenido de http://www.eltiempo.com/noticias/ley-de-habeas-data Pistore, M. (2015). Creating services WITH and FOR people. Smart Community Lab, 31. Obtenido de Project Manager – Smart Campus: http://www.science20-conference.eu/wp-content/uploads/2013/08/14_Marco_Pistore_-_Smart_Campus__Services_with_and_for_People.pdf PMI. (21 de 07 de 2014). PMI Colombia Capitulo Bogotá. Obtenido de Empresas de Clase Mundial: http://www.pmicolombia.org/2014/07/empresas-de-clase-mundial/ Preuveneers, D., & Joosen, W. (2015). Change Impact Analysis for Context-Aware Applications in Intelligent Environments. . Workshop Proceedings of the 11th International Conference on Intelligent Environments. Open Access, IOS Press, , 70-81. Radic, L. (1 de 4 de 2015). Estándares de privacidad para el entorno cloud. Obtenido de http://www.ccsur.com/estandares-de-privacidad-para-el-entorno-cloud/ RAE. (2014). DICCIONARIO DE LA LENGUA ESPAÑOLA - Vigésima segunda edición. Real Academia Española. (2014). DICCIONARIO DE LA LENGUA ESPAÑOLA. Obtenido de http://lema.rae.es/drae/ Rege, O. (17 de Agosto de 2011). Bring Your Own Device: Dealing With Trust and Liability Issues. Obtenido de http://www.forbes.com/sites/ciocentral/2011/08/17/bring-your-own-device-dealing-with-trust-and-liability-issues/#7cf605625182 Robinson, B. (26 de 07 de 2007). What you Need to Know About NAC. Obtenido de IT SECURITY: http://www.itsecurity.com/features/what-you-need-to-know-about-nac-072607/ Rodriguez H., A. A., Espindola, D., J. E., & Rodriguez H., F. (09 de 2015). Implementación de dispositivos móviles personales (BYOD) en la universidad pública. Memorias II Congreso Internacional de Educación a Distancia; ResearchGate, 412-420. Obtenido de https://www.researchgate.net/publication/282850481_Implementacin_de_dispositivos_mviles_personales_BYOD_en_la_universidad_pblica Rosenberg, R. (2004). The Social Impact of Computers. San Diego, United States of America: Academic Press. Round Table Business/Higher Education. (2015). Internet of Everything -Powering the Smart Campus & the Smart City:Geelong’s Transformation to a Smart City. Deakin Worldly; Cisco; IBM. DC. Victoria Parade: Round Table Business/Higher Education. Obtenido de http://www.bhert.com/events/2015-06-08/BHERT-Smart-City-Agenda-June-18.pdf Ruiz, C. (31 de 05 de 2013). Movilidad empresarial y convergencia de dispositivos. Obtenido de oficina de prensa de Lenovo Colombia: http://www.mintic.gov.co/portal/vivedigital/612/w3-article-4442.html Sairamesh, J. L. (2004). Information cities. . Communications of the ACM, 47 (2), 28-31. Salber D, e. a. (1998). Georgia Tech GVU Technical Report GIT-GVU-98-0. 1,. Georgia Tech GVU Technical Report GIT-GVU-98-0, 1-15. Sánchez Acevedo, N., & Segura Castañeda, J. S. (s.f.). Una guía metodológica para el cálculo del retorno a la inversión (ROI) en seguridad informática. SANS. (2000). The most trusted source for information security training, certification, and research. Obtenido de https://www.sans.org/ Scarón de Quintero, M. T., & Genisans, N. (1985). El diagnóstico social. Schaffers, H., Komninos, N., Tsarchopoulos, P., Pallot, M., Trousse, B., Posio, E., . . . Almirall,, E. (18 de 04 de 2012). Landscape and Roadmap of Future Internet and Smart Cities. HAL archives - ouvertes - Fireball Proyect, 209. Obtenido de https://hal.inria.fr/hal-00769715/document Schilit, B., & Theimer , M. (1994). Disseminating Active Map Information to Mobile Hosts. . IEEE Network, 8(5), , 22-32. Schmidt, A. (26 de 07 de 2015). INTERACTION DESIGN FOUNDATION. (I. D. Foundation, Editor) Obtenido de https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/context-aware-computing-context-awareness-context-aware-user-interfaces-and-implicit-interaction#chapter_start Siliconweek. (s.f.). Recuperado el Junio de 25 de 2015, de http://www.siliconweek.es/e-enterprise/como-elegir-la-mejor-solucion-de-control-de-acceso-a-la-red-nac-751 Solove, D. J. (2006). A TAXONOMY OF PRIVACY Vol. 154 No.3. University of Pennsylvania Law Review, 477-560. Obtenido de https://www.law.upenn.edu/journals/lawreview/articles/volume154/issue3/Solove154U.Pa.L.Rev.477%282006%29.pdf Spandas, L. (2012). Citrix favours selective BYOD program. Obtenido de http://www.zdnet.com/article/citrix-favours-selective-byod-program/: http://www.zdnet.com/article/citrix-favours-selective-byod-program/ Stojanovic, D. (2009). Contex - Aware Mobile and Ubiquitous Computing fir Enhanced Usability: Adaotatuve Technologies and Applications. New York: Information Science Reference Hershey -IGI GLOBAL - Brithis Library. Obtenido de https://books.google.com.co/books?hl=es&lr=&id=sY6IXsn5xjMC&oi=fnd&pg=PP1&dq=Context+-+Aware+Mobile+and+Ubiquitous+Computing+for+Enhanced+Usability:+Adaptation+Technologies+and+Applications&ots=qB2rAYMeQq&sig=gRdV74xI-EybY0tcX9VnT5-UdG0&redir_esc=y#v=onep Strauss, J., & Rogerson, K. S. (2002). Policies for online privacy in the United States and the European Union. Telematics and Informatics 19, 173-192. Tacacs. (04 de 2011). The Advantages of TACACS+ for Administrator Authentication . Obtenido de www.tacacs.net. : http://www.tacacs.net/docs/TACACS_Advantages.pdf Tanenbaum, A. S. (2003). Redes de computadoras (4 ed.). México: Prentice-Hall. TechRepublic. (9 de 02 de 2015). http://www.techrepublic.com/. Obtenido de 5 Reasons why BYOD survived 2014 and will prosper in 2015, BYOD faced some criticisms in 2014 but appears set to evolve further this year. por Will Kelly: http://www.techrepublic.com/article/5-reasons-why-byod-survived-2014-and-will-prosper-in-2015/ THE COMMISSION EUROPEAN. (27 de 11 de 2013). COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN. on the Functioning of the Safe Harbour from the Perspective of EU Citizens and. Brussels,, s.p., Bélgica: EUROPEAN EUROPEAN. The Federal Council - Portal of the Swiss government. (s.d. de s.m. de 2014). Schweizerische Eidgenossenschaft - Confederation suisse. Obtenido de The federal Council: http://www.edoeb.admin.ch/org/00129/00132/index.html?lang=en The Huffington Post. (27 de 12 de 2013). NSA Phone Surveillance Is Legal, New York Judge Rules . por: Neumeister, Larry (Internet). Obtenido de http://www.huffingtonpost.com/2013/12/27/nsa-phone-surveillance_n_4508483.html Tur, J. N. (2009). Pensamiento y planificación estratégica. Definición e implementación de estrategias de desarrollo. Gestión y promoción del desarrollo local. United Nations. (07 de 2014). Population world. Obtenido de www.worldometers.info: http://www.worldometers.info/world-population/india-population/ Universia Colombia. (21 de 05 de 2013). Para el año 2016 se afianzará el BYOD en las empresas. Obtenido de Universia.net.co : http://noticias.universia.net.co/en-portada/noticia/2013/05/21/1024756/ano-2016-afianzara-byod-empresas.html Value, N. (2 de 04 de 2001). ACADEMIA DE REDES LLEGA A COLOMBIA. El tiempo. Obtenido de http://www.eltiempo.com/archivo/documento/MAM-567980 Vogt, W. P., & Johnson, R. B. (2011). Dictionary of Statistics & Methodology: A Nontechnical Guide for the Social Sciences: A Nontechnical Guide for the Social Sciences. Sage. Volokh, E. (1999). Freedom of Speech and Information Privacy: The Troubling Impli-cations of a Right To Stop People from Speaking About You. University of California, Los Angeles (UCLA), 1049-1051. W3C NOTE. (21 de 07 de 1998). P3P Guiding Principles. Obtenido de NOTE-P3P10-principles-19980721: http://www.w3.org/TR/NOTE-P3P10-principles W3C Recomentation. (16 de 04 de 2002). The Platform for Privacy Preferences 1.0 . Obtenido de (P3P1.0) Specification: http://www.w3.org/TR/P3P/ W3C Working Group Note. (13 de 11 de 2006). The Platform for Privacy Preferences 1.1 . Obtenido de (P3P1.1) Specification: http://www.w3.org/TR/P3P11/ Wan, K. (2009). A Brief History of Context. International Journal of Computer Science Issues Vol 6, No.2, 33-42. Want, R., Schilit, B., & Et al. (Diciembre, 1995.). An Overview of the PARCTab Ubiquitous Computing Experiment. IEEE Personal Communications,, 28-43. Obtenido de https://www.cs.colorado.edu/~rhan/CSCI_7143_002_Fall_2001/Papers/Want95_PARCTab.pdf Ward, R., Hopper, A., Falcao, V., & Gibbons, J. (1992). The active Badge Location System. ACM Transactions on Information Systems, 91-102,. Warren, S. D., & Brandeis, L. D. (1890). The Right to Privacy. 4 HARV. L. R EV, 193. WatchGuard Technologies Inc. (s.d. de s.m. de 2008). Las 10 principales amenazas a la seguridad de los datos de las PyMEs. Obtenido de Parte. No. WGCE66599_112408: http://www.watchguard.com/docs/whitepaper/wg_top10-summary_wp_es.pdf Weiser, M. (1993). Some computer science problems in ubiquitous computing. Communications of the ACM, 137–143. Westin, A. F. (3 de 1 de 1968). Privacy And Freedom. Obtenido de http://scholarlycommons.law.wlu.edu/cgi/viewcontent.cgi?article=3659&context=wlulr Willis, D. A. (2012). Bring Your Own Device: New Opportunities,. Gartner, Inc. G00238131, 1-9.; Wills, D. A. (2013). Bring Yout Own Device: The Facts and the Future. doi:G00250384; World Law Group. (2013). Global Guide to Data Breach Notifications. Washington, D.C.: The World Law Group, Ltd.,.; Yovanof, G. S. (2009). An architectural framework and nabling wireless technologies for digital cities & intelligent urban environments. Wireless Personal Communications, 49(3), 445-463; http://hdl.handle.net/20.500.12749/3544; reponame:Repositorio Institucional UNAB
Dostupnosť: https://hdl.handle.net/20.500.12749/3544
-
17
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: Revista Colombiana de Computación, Multi-agent systems, Article reception and administration system, Systems engineering, Computer science, Computer program, Data processing, Investigations, Analysis, Gaia methodology, Agent-oriented software engineering, Sistemas multiagentes, Sistema de recepción y administración de artículos, Ingeniería de sistemas, Ciencias computacionales, Programa para computador, Procesamiento de datos, Investigaciones, Análisis, Metodología Gaia, AUML, Ingeniería de software orientada a agentes
Geografické téma: Bucaramanga (Colombia), UNAB Campus Bucaramanga
Popis súboru: application/pdf
Relation: García Ojeda, Juan Carlos (2005). Gadmas. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB, Instituto Tecnológico y de Estudios Superiores de Monterrey ITESM; [ABE00] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight, R. Napal, E. Rauch, G. Sussmann, and R. Weiss, R. 2000. Amorphous computing. Commun. ACM 43, 5 (May), 43–50.; [ARE04] A. E. Arenas, J. C. García-Ojeda, J. de J. Pérez-Alcázar. On Combining Organisational Modelling and Graphical Languages for the Development of Multiagent Systems. Journal of Integrated Computer-Aided Engineering (ICAE). IOS Press Netherlands, 11(2):151-163, Mar. 2004.; [BAU01a] B. Bauer, J. P. Muller and J. Odell. Agent UML: A formalism for specifying multiagent software systems. Int. J. Softw. Eng. Knowl. Eng. ll, 3 (Apr.), 207–230. 2001.; [BAU01b] Bauer, B.: UML Class Diagrams and Agent-Based Systems, Proceedings Autonomous Agents 2001, Montreal, 2001.; [BAU02] B. Bauer. Uml class diagrams revisited in the context of agent based systems. In Agent-Oriented Software Engineering II (LNCS Volume 2222), pages 101–118. Springer-Verlag, 2002.; [BER01] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Sci. Amer. May.; [BRE01] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia and J. Mylopoulos. A knowledge level software engineering methodology for agent oriented programming. In Proceedings of the5th International Conference on Autonomous Agents (Montreal, Ont., Canada, June). ACM, New York, pp. 648–655. 2001.; [BRO91] R. A. Brooks. Intelligence without representation. Artificial Intelligence. 47, 139-159. 1991.; [CAB02] G. Cabri, L. Leonardi and F. Zambonelli, XRole: XML Roles for Agent Interaction, Proceedings of the Third International Symposium "From Agent Theory to Agent Implementation" at the 16th European Meeting on Cybernetics and Systems Research, Vienna (A), April 2002.; [CAI02] G. Caire, W. Coulier, F. Garijo, J. Gómez, J. Pavón, F. Leal, P. Chaino, P. Kearney, J. Stark, R. Evans and P. Massonet. Agent-oriented analysis using message/uml. In Proceedings of the 2nd International Workshop on Agent-Oriented Software Engineering. Lecture Notes in Computer Science, vol. 2222. Springer Verlag, New York, pp. 119– 135. 2002.; [CER04a] L. Cernuzzi, T. Juan, L. Sterling, F. Zambonelli, "The Gaia Methodology: Basic Concepts and Extensions", in Methodologies and Software Engineering for Agent Systems, Kluwer, 2004.; [CER04b] L. Cernuzzi, F. Zambonelli, "Experiencing AUML with the Gaia Methodology", 6th International Conference on Enterprise Information Systems, Porto (P), April 2004.; [CERV04] R. Cervenka,I. Trencansky, M. Calisti and D. A. P. Greenwood. AML: Agent Modeling Language Toward Industry-Grade Agent-Based Modeling. In Proceedings of the Fifth International Workshop on Agent-Oriented software Engineering AOSE, pages 31-46, 2004.; [CIA01] P. Ciancarini and M. Wooldridge, editors: Agent-Oriented Software Engineering. Springer-Verlag Lecture Notes in AI Volume 1957, January 2001.; [COL94] D. Coleman, P. Arnold, S. Bodoff, D. Dollin, H. Gilchrist, F. Hayes and P. Jeremas. Object-Oriented Development: The FUSION Method. Prentice-Hall International, Hemel Hampstead U.K, 1994; [COS02] M. Cossentino, C. Potts - "A CASE tool supported methodology for the design of multi-agent systems" - The 2002 International Conference on Software Engineering Research and Practice (SERP'02) 2002.; [DEL01] S. A. DeLoach and M. Word. Developing Multiagent Systems with agentTool. 7th.International Workshop ATAL, 2001; [EST02] D. Estrin, D. Culler, K. Pister and G. Sukjatme. Connecting the physical world with pervasive networks. IEEE Perv. Comput. l, 1, 59– 69. 2002; [FER98] J. Ferber, O. Gutknecht. A meta-model for the analysis and design of organizations in multi-agent systems. In Proceedings of the Third International Conference on Multi-Agent Systems (ICMAS98) , pages 128--135, 1998, Paris, France; [FER98] J. Ferber, and O. Gutknecht. A meta-model for the analysis and design of organizations in multi-agent systems. In Proceedings of the 3rd International Conference on Multi-Agent Systems (Paris, France). IEEE Computer Society Press, Los Alamitos, Calif., pp. 128–135. 1998.; [FIP05] Foundation for Intelligent Physical Agents. http://www.fipa.org/, Consultado Enero de 2005.; [FOS99] I. Foster and C. Kesselman (EDS.). The Grid: Blueprint for a New Computing Infrastructure. Morgan-Kaufmann, 1999; [GAR02a] J. C. García- Ojeda, J. de J. Pérez-Alcázar, A. E. Arenas. Aplicación de una Metodología de Desarrollo de Sistemas Multiagente en la Diseminación Selectiva de Información en la Web, Memorias del II Congreso Iberoamericano de Telemática (CITA’02). ISBN: 980-237- 217- X. Septiembre, 2002; [GAR02b] J. C. García-Ojeda, J. de J. Pérez-Alcázar and A. E. Arenas. Applying Gaia and AUML to the Selective Dissemination of Information on the Web, Proceedings of the 4th Iberoamerican Workshop on Multiagent Systems, Málaga, España, 2002; [GAR04] J. C. García-Ojeda, J. de J. Pérez-Alcázar, A. E. Arenas. Extending the Gaia Methodology with Agent-UML, In Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-04). New York, USA, 2004.; [GAR05] Paving the Way for Implementing Multiagent systems: Refining Gaia with AUML. Juan C. García-Ojeda, Álvaro E. Arenas and José de J. Pérez-Alcázar. In Proceedings of the 6th International Workshop on Agent-Oriented Software engineering (AOSE-2005), Por Aparecer.; [GOM03] J. Gomez-Sanz and J. Pavon. Agent oriented software engineering with INGENIAS. CEEMAS 2003 – Multi-Agent Systems and Applications III, 2691 , pages 394–403, 2003.; [HUH97] M. Huhns and M. P. Singh. Agents and Multiagent Systems: Themes, Approaches and Challenges. In Readings in Agents, chapter 1. Morgan Kaufmann Publishers. 1997.; [IEEE93] IEEE Standard 610.12 “Glossary of software engineering terminology,” in Software Engineering Standards Collection, IEEE CS Press, Los Alamitos, Calif. 1993; [IGL97] C. A. Iglesias, M. Garijo, J. C. Gonzalez and J. R. Velasco. Analysis and Design of Multiagent Systems Using MAS-CommonKADS. In Proceedings of the 4th International Workshop, ATAL'97. USA, pages 313-327, 1997.; [IGL99] C. Iglesias, M. Garito and J. Gonzáles. A survey of agent-oriented methodologies. In Intelligents Agents IV: Agent Theories, Architectures, and Languages. Lacture Notes in Artificial Intelligence, vol. 1555. Springer-Verlag, New York, pp. 317–330. 1999.; [JAC98] I. Jacobson. "Applying UML in The Unified Process" Rational Software. Presentación disponible en http://www.rational.com/uml como UMLconf.zip, 1998.; [JEN00] N. R. Jennings (2000) "On Agent-Based Software Engineering", Artificial Intelligence, 117 (2) 277-296.; [JEN01] N. R. Jennings (2001) "An agent-based approach for building complex software systems" Comms. of the ACM, 44 (4) 35-41.; [JUA03] Juan, T. and Sterling, L., The ROADMAP Meta-model for Intelligent Adaptive Multi-AgentSystems in Open Environments, Proceedings of the Fourth International Workshop on Agent Oriented Software Engineering, at AAMAS'03, Melbourne, Australia, July 2003.; [JUA02] Juan, T., Pearce, A. and Sterling, L., ROADMAP: Extending the Gaia methodology for Complex Open Systems, Proceedings of the First International Joint Conference on Autonomous Agents and Multi- Agent Systems (AAMAS 2002), Bologna, Italy, July 2002.; [MOR03] P. Moraitis, E. Petraki and N. Spanoudakis, Engineering JADE Agents with the Gaia Methodology. Lecture Notes in Computer Science (LNCS), vol. 2592: "Agent Technologies, Infrastructures, Tools, and Applications for e-Services", Springer-Verlag, 2003, pp 77-91; [MOR04] P. Moraitis and N. Spanoudakis. Combining Gaia and JADE for Multiagent Systems. In Proceedings of the 4th International Symposium "From Agent Theory to Agent Implementation" (AT2AI4), in: Proceedings of the 17th European Meeting on Cybernetics and Systems Research (EMCSR 2004), Vienna, Austria, April 13 - 16, 2004.; [MYL99] J. Mylopoulos, L. Chung, E. S. K. Yu. From Object-Oriented to Goal- Oriented Requirements Analysis, Commun. ACM 42(1): 31-37 (1999); [ODE00] J. Odell, V. D. Parunak, and B. Bauer. Extending uml for agents. In G. Wagner, Y. Lesperance, and E. Yu, editors, Proceedings of the Agent- Oriented Information Systems Workshop at the l7th National conference on Artificial Intelligence., pages 3–17, 2000.; [ODE01] J. Odell, H. Van Dyke Parunak and B. Bauer. Representing agent interaction protocols in UML. In Proceedings of the lst International Workshop on Agent-Oriented Software Engineering. Lecture Notes in Computer Science, vol. 1957. Springer-Verlag, New York, pp. 121– 140, 2001.; [OMG] Object Management Group. http://www.omg.org/, Consultado Enero de 2005.; [PAR01] H. V. Parunak, J. Odell. "Representing Social Structures in UML," Agent-Oriented Software Engineering (AOSE) II, Michael Wooldridge et al. eds., Springer-Verlag, Berlin, 2002, pp. 1-16.; [PAR97] H. V. D. Parunak. Go to the ant: Engineering principles from natural agent systems. Ann. Oper.Res. 75, 69–101. 1997; [PAU93] M. C. Paulk, B. Curtis, M. B. Chrissis and C. V. Weber."The Capability Maturity Model for Software", IEEE Software, Vol. 10, No. 4, July 1993, pp. 18-27.; [RIC02] A. Ricci, A. Omicini and E. Dente. Agent coordination infrastructures for virtual enterprises and workflow. Int. J. Coop. Inf. Syst. ll, 3 (Sept.), 335–380. 2002.; [RIP02] M. Ripeani, A. Iamnitchi and I. Foster. Mapping the gnutella network. IEEE Internet Comput. 6, 1 (Jan.), 50–57. 2002; [RUM91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen. Object-Oriented Modelling and Design. Prentice Hall, 1991; [RUS02] S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2002; [SHA95] M. Shaw, R. Deline, D. Klein, T. Ross, D. Young and G. Zelesnik. Abstractions for software architecture and tools to support them. IEEE Trans. Softw. Eng. 2l, 4 (Apr.), 314–335. 1995; [SIM54] H. A. Simon. Models of Man. Wiley, New York, 1957.; [STU03] A. Sturm and O. Shehory. “A Framework for Evaluating Agent- Oriented Methodologies”, Workshop on Agent-Oriented Information System (AOIS), Melbourne, Australia, 2003.; [SUD04] J. Sudeikat, L. Braubach, A. Pokahr and W. Lamersdorf. “Evaluation of Agent-Oriented Software Methodologies – Examination of the Gap Between Modeling and Platform”, AOSE 2004, 126-141; [TEN00] D. Tennenhouse. Embedding the Internet: Proactive computing. Commun. ACM 43, 5 (May), 36–42. 2000.; [WOD01] M. Word, S. A. DeLoach and C. Sparkman. Multiagent system engineering. Int. J. Softw. Eng. Knowl. Eng. ll, 3 (Apr.), 231–258. 2001.; [WOO00] M. Wooldridge, N. R. Jennings, and D. Kinny. “The Gaia Methodology for Agent-Oriented Analysis and Design", Journal of Autonomous Agents and Multi-Agent Systems 3 (3) 285-312, 2000; [WOO02] Michael Wooldridge. An Introduction to Multiagent Systems. Ed. John Wiley & Sons, 2002.; [WOO95] M. J. Woolridge and N. R. Jennings. Intelligent Agents, Theory and Practice, 1995 Knowledge Engineering Review vol. 10:2, 115-152; [WOO97] M. Wooldridge (1997) “Agent-based software engineering” IEE Proc. on Software Engineering, 144 (1) 26-37.; [ZAM03a] F. Zambonelli, F. and H. V. D. Parunak. Signs of a revolution in computer science and software engineering. In Proceedings of the 3rd International Workshop on Engineering Societies in the Agents World. Lecture Notes in Computer Science, vol. 2577. Springer-Verlag, New York, pp. 13–28.; [ZAM03b] F. Zambonelli, N. R. Jennings and M. Wooldridge. "Developing multiagent systems: the Gaia Methodology", ACM Trans on Software Engineering and Methodology 12 (3) 317-370, 2003.; http://hdl.handle.net/20.500.12749/3301; reponame:Repositorio Institucional UNAB
Dostupnosť: https://hdl.handle.net/20.500.12749/3301
-
18
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: Software development, Teaching, Primary basic education, Gross motor skills, Information technologies in education, Systems engineer, Software management, Software application, New technologies, Research, Tecnologías de información en educación, Ingeniería de sistemas, Gestión de software, Aplicación de software, Nuevas tecnologías, Investigaciones, Desarrollo de software, Enseñanza, Educación básica primaria, Motricidad gruesa
Geografické téma: Bucaramanga (Colombia), UNAB Campus Bucaramanga
Popis súboru: application/pdf; application/octet-stream
Relation: Palma Suarez, Carlos Andrés (2014). Metodología para la enseñanza inicial de macroinstrucciones y procesos lógico matemáticos a niños de grado quinto en instituciones oficiales de educación básica primaria. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB; Abelson, H., Sussman, G. J., & Sussman, J. (1996). Structure and Interpretation of Computer Programs. Boston: The MIT Press.; Abramovich, S. (Enero de 2013). Computers in Mathematics Education: An Introduction. Computers in the Schools, 30(1-2), 4-11.; Ackermannn, E. (2002). Piaget’s Constructivism, Papert’s Constructionism: What’s the difference? . MIT Media Lab.; Agina, A. (Julio de 2012). The Effect of Nonhuman's External Regulation on Young Children's Creative Thinking and Thinking Aloud Verbalization During Learning Mathematical Tasks. Computers in Human Behavior, 28(4), 1213-1226.; Akihabara News. (04 de 07 de 2013). Japanese Robots: Kids’ Summer School for Robotics & Engineering in Rural Japan. Obtenido de NPO Hito Project’s Robot Summer School: http://en.akihabaranews.com/136473/toy/japanese-robots-kids-summer-school-for-robotics-engineering; Albornoz, M. E. (2007). El aprendizaje según Piaget. Obtenido de Mayeutica Educativa: http://mayeuticaeducativa.idoneos.com/index.php/348494#El_Aprendizaje_seg%C3%BAn_Piaget; Alt, C., Astrachan, O., Forbes, J., Lucic, R., & Rodger, S. (2006). Social Networks Generate Interest in Computer Science. Proceedings of the 37th SIGCSE Technical Symposium on Computer Science Education (págs. 438-442). New York: ACM.; Amézquita Zárate, P., Contreras Pineda, J., & Pardo Romero, M. A. (1997). La comunidad educativa frente al neoliberalismo. Bogotá: Centro de Estudios Por La Nueva Cultura.; Armor Games. (2005). armorgames.com. Recuperado el 31 de Enero de 2014, de Página principal: http://armorgames.com/; Barrera Osorio, F., & Leigh L., L. (2009). The Use and Misuse of Computers in Education: Evidence from a Randomized Experiment in Colombia. World Bank Human Development Network Education Team.; Bauer, J., & Kenton, J. (2005). Toward Technology Integration in the Schools: Why It Isn’t Happening. Journal of Technology and Teacher Education, 519-546.; Burke, Q., & Kafai, Y. B. (2010). Programming & Storytelling: Opportunities for Learning About Coding & Composition. Proceedings of the 9th International Conference on Interaction Design and Children (págs. 348-351). Barcelona: ACM.; Cárdenas, M. (2001). Economic Growth in Colombia: A Reversal of 'Fortune'?. CID Working Paper No. 83. Cambridge: Center for International Development at Harvard University.; Clavijo Clavijo, G. A. (2008). La evaluación del proceso de formación. Cartagena. Recuperado el 28 de julio de 2014, de http://www.colombiaaprende.edu.co/html/productos/1685/articles-178627_ponen7.pdf; Code.org. (2013). Code.org. Obtenido de Página institucional: http://code.org/; Coderise.org. (2012). Coderise.org. Obtenido de Página institucional: http://coderise.org/index.html; Comisión Económica Para América Latina y el Caribe - CEPAL. (2012). Contribución al crecimiento económico de las tecnologías de la información y las comunicaciones y de la productividad en la Argentina, el Brasil, Chile y México - Serie Estudios Estadísticos y Prospectivos. CEPAL - División de Desarrollo Económico.; Computer Science Education Week. (2014). csedweeg.org. Obtenido de Página institucional: http://csedweek.org/; Corporación para la Nutrición Infantil - CONIN. (1988). Desarrollo cerebral en el niño. Revista Creces - Ciencia y Tecnología.; Delgado, J., Güell, J., García, J., Conde, M., & Casado, V. (2013). Aprendizaje de la programación en el Citilab. Revista Iberoamericana de Ciencia, Tecnología y Sociedad, 123-133.; Doerschuk, P., Liu, J., & Mann, J. (2012). An INSPIRED game programming academy for high school students. Proceedings - Frontiers in Education Conference, FIE.; Eggers, W. D. (2005). Government 2.0: Using Technology to Improve Education, Cut Red Tape, Reduce Gridlock, and Enhance Democracy. Maryland: Rowman & Littlefield Publishers, Inc.; Felleisen, M., Findler, R., Flatt, M., & Krishnamurthi, S. (2009). A functional I/O system*: Or, fun for freshman kids. Proceedings of the ACM SIGPLAN International Conference on Functional Programming (págs. 47-58). ICFP.; Fidge, C., & Teague, D. (2009). Losing Their Marbles: Syntax-free Programming for Assessing Problem-solving Skills. Proceedings of the Eleventh Australasian Conference on Computing Education. 95, págs. 75-82. Darlinghurst: Australian Computer Society, Inc.; Fundación Gabriel Piedrahita Uribe. (2013). Proyecto Scratch Motorola IV - Informe Final Abril 2013.; Giannakos, M., & Jaccheri, L. (2013). What Motivates Children to Become Creators of Digital Enriched Artifacts? Proceedings of the 9th ACM Conference on Creativity & Cognition (págs. 104-113). New York: ACM.; Gomez, P. (2010). Diseño curricular en Colombia: el caso de las matemáticas. Granada: Universidad de Granada. Obtenido de http://funes.uniandes.edu.co/651/; Great Schools. (02 de 2013). Is the next second language JavaScript? Obtenido de Should all kids learn to code?: http://www.greatschools.org/parenting/learning-development/5894-javascript-class-learn.gs?page=all; Grover, S. (Noviembre de 2009). Computer Science Is Not Just for Big Kids. Learning & Leading with Technology, 37(3), 27-29.; Hug, S., Guenther, R., & Wenk, M. (2013). Cultivating a K12 Computer Science Community: A Case Study. Proceeding of the 44th ACM Technical Symposium on Computer Science Education (págs. 275-280). New York: ACM.; Instituto Colombiano para la Evaluación de la Educación - ICFES. (2010). Colombia en PISA 2009 - Síntesis de Resultados. Bogotá: Cadena.; Instituto Colombiano para la Evaluación de la Educación - ICFES. (2013). Resultados del grado Quinto en el área de Matemáticas. Obtenido de Resultados históricos 2002 - 2005 - 2009 - 2012 - 2013: http://www.icfessaber.edu.co/historico.php/graficar/nacion/id/1/grado/5/tipo/2; Instituto de Nuestra Señora de la Asunción - INSA. (2012). Currículo INSA de Informática 2012. Obtenido de Eduteka: http://www.eduteka.org/tag/inicio/insa/1; Janalta Interactive Inc. (2010). Macroinstructon. Recuperado el 4 de Diciembre de 2013, de Techopedia.com: http://www.techopedia.com/definition/24802/macro-instruction; Javidi, G., & Sheybani, E. (Enero de 2009). Digispired: Digital Inspiration for Interactive Game Design and Programming. Journal of Computing Sciences in Colleges, 24(3), 144-150.; Justo de la Rosa, M. (2009). Competencias en Educación Infantil [Video]. Congreso Internacional "Fortaleciendo las Competencias: Nuevas estrategias, nuevos aprendizajes". Madrid. Recuperado el 27 de julio de 2014, de https://www.youtube.com/watch?v=HIHZHourDh4&index=9&list=PL2E599E1C578E229E; Kafai, Y. B. (1996). Software by kids for kids. Communications of the ACM, 39(4).; Kelleher, C., & Pausch, R. (Junio de 2005). Lowering the Barriers to Programming: A Taxonomy of Programming Environments and Languages for Novice Programmers. ACM Computing Surveys, 37(2), 83-137.; Kelleher, C., Pausch, R., & Kiesler, S. (2007). Storytelling Alice Motivates Middle School Girls to Learn Computer Programming. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (págs. 1455-1464). New York: ACM.; Kirriemuir, J., & McFarlane, A. (2004). Futurelab Series. Report 8: Literature Review in Games and Learning. Bristol: Futurelab.; Kliegman, R., Stanton, B., Schor, N., St. Geme III, J., & Behrman, R. (2011). Nelson Textbook of Pediatrics. Philadelphia: Elsevier Saunders Inc.; Lameras, P., Smith, D., Moumoutzis, N., Christodoulakis, S., Ovcin, E., & Stylianakis, G. (2010). Transforming teaching and learning: Changing the pedagogical approach to using educational programming languages. 17th Association for Learning Technology Conference (ALT-C 2010). Nottingham: ALT-C.; Lee, M., & Ko, A. (2011). Personifying Programming Tool Feedback Improves Novice Programmers' Learning. Proceedings of the Seventh International Workshop on Computing Education Research (págs. 109-116). New York: ACM.; Lin, C.-C., Zhang, M., Beck, B., & Olsen, G. (2009). Embedding Computer Science Concepts in K-12 Science Curricula. Proceedings of the 40th ACM Technical Symposium on Computer Science Education (págs. 539-543). New York: ACM.; Liu, C.-C., Cheng, Y.-B., & Huang, C.-W. (Noviembre de 2011). The effect of simulation games on the learning of computational problem solving. Computers & Education, 57(3), 1907-1918.; Maloney, J., Rusk, N., Burd, L., Silverman, B., Kafai, Y., & Resnick, M. (2004). Scratch: A sneak preview. Second International Conference on Creating, Connecting and Collaborating Through Computing.; Martín Fraile, B. (2011). Teorías educativas que subyacen en las prácticas docentes. (U. d. Salamanca, Ed.) Teoría de la Educación, 23(1), 45-70.; Meyers, A., Cole, M., Korth, E., & Pluta, S. (2009). Musicomputation: Teaching Computer Science to Teenage Musicians. Proceedings of the Seventh ACM Conference on Creativity and Cognition (págs. 29-38). New York: ACM.; Ministerio de Educación Nacional. (1994). Ley General de Educación - Ley 115 de Febrero 8 de 1994. Bogotá: Congreso de la República de Colombia.; Ministerio de Educación Nacional. (2001). El Constructivismo como modelo pedagógico. Recuperado el 04 de Diciembre de 2013, de Colombia Aprende: http://www.colombiaaprende.edu.co/html/docentes/1596/articles-169653_archivo.doc; Ministerio de Educación Nacional. (2003). Estándares Básicos de Competencias de Matemáticas. Bogotá.; Ministerio de Educación Nacional. (2007). Foro Educativo Nacional: Enfrentar un problema es encontrar un mundo de soluciones. Rueda de experiencias. Bogotá: Ministerio de Educación Nacional.; Ministerio de Educación Nacional. (2008). Ser competente en tecnología: ¡Una necesidad para el desarrollo! Orientaciones generales para la educación en tecnología. Bogotá: Imprenta Nacional.; Ministerio de Educación Nacional. (2010). Encuesta Nacional de Deserción Escolar (ENDE). Bogotá: Ministerio de Educación Nacional.; Ministerio de Educación Nacional. (2013). Objetivos Misionales. Recuperado el 25 de mayo de 2013, de Página Institucional: http://www.mineducacion.gov.co/1621/w3-article-85244.html; Ministerio de Educación Nacional. (2013). Plan de estudios. Recuperado el 11 de marzo de 2014, de Glosario: http://www.mineducacion.gov.co/1621/article-79419.html; Ministerio de Tecnologías de la Información y las Comunicaciones. (2011). Talento Digital. Recuperado el 10 de Feb de 2014, de Sitio web de Talento Digital, Programa Gobierno en línea: http://www.talentodigital.gov.co/; Miranda, M. J. (2007). Culturas juveniles y nuevas tecnologías. San Nicolás: Instituto Superior de Formación Docente No. 127.; MIT Media Lab. (2013). Scratch Project. Obtenido de Página institucional: http://scratch.mit.edu/; Mitchell, A., & Savill-Smith, C. (2004). The use of computer and video games for learning. A review of the literature. London: Learning and Skills Development Agency.; National Academy of Sciences. (2010). Report of a Workshop on The Scope and Nature of Computational Thinking. Washington, D.C.: National Academies Press.; Nickerson, R. S., & Zodhiates, P. P. (1988). Technology in Education: Looking Toward 2020. New York: Routledge.; OECD Programme for International Student Assessment. (2010). PISA 2009 Results: What Students Know and Can Do: Student Performance in Reading, Mathematics and Science (Volume I). Paris: OECD.; Organización de las Naciones Unidas Para la Agricultura y la Alimentación. (1999). Elaboración Participativa de Planes de Estudios para la Educación y Capacitación Agrícola. Roma: Departamento de Desarrollo Sostenible FAO.; Osborne, J., & Hennessy, S. (2003). Futurelab Series. Report 6: Literature Review in Science Education and the Role of ICT: Promise, Problems and Future Directions. Bristol: Futurelab.; Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books, Inc.; Pulido, D., & Velasco, L. (2009). Proyecto de Vida: Una alternativa para la prevención de la deserción escolar. Bogotá: Universidad de la Sabana.; Real Academia Española. (2001). Algoritmo. Recuperado el 4 de 12 de 2013, de Diccionario de la lengua española: http://lema.rae.es/drae/?val=algoritmo; Repenning, A., & Ioannidou, A. (Marzo de 2008). Broadening Participation through Scalable Game Design. SIGCSE Bulletin, 40(1), 305-309.; Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., . . . Kafai, Y. (Noviembre de 2009). Scratch: Programming for All. (ACM, Ed.) Communications of the ACM, 52(11), 60-67.; Rizvi, M., Humphries, T., Major, D., Jones, M., & Lauzun, H. (Enero de 2011). A CS0 Course Using Scratch. Journal of Computing Sciences in Colleges, 26(3), 19-27.; Rodger, S., Bashford, M., Dyck, L., Hayes, J., Liang, L., Nelson, D., & Qin, H. (2010). Enhancing K-12 Education with Alice Programming Adventures. Proceedings of the Fifteenth Annual Conference on Innovation and Technology in Computer Science Education (págs. 234-238). New York: ACM.; Rogozhkina, I., & Kushnirenko, A. (2011). PiktoMir: Teaching programming concepts to preschoolers with anew tutorial environment. World Conference on Educational Technology Research. Procedia - Social and Behavioral Sciences. Moscu.; Sancho Gil, J. M., & et.al. (2006). Tecnologías para transformar la educación. Madrid: Universidad Internacional de Andalucía.; Schwartz, J., Stagner, J., & Morrison, W. (2006). Kid's Programming Language (KPL). ACM SIGGRAPH 2006 Educators Program (págs. 52.1-52.4). Boston: ACM.; Sipitakiat, A., & Nusen, N. (2012). Robo-Blocks: Designing Debugging Abilities in a Tangible Programming System for Early Primary School Children. Proceedings of the 11th International Conference on Interaction Design and Children (págs. 98-105). New York: ACM.; Skinner, B. (1977). Sobre el conductismo. Barcelona: Fontanella.; Tapscott, D. (2008). Grown Up Digital. New York: Mc.Graw-Hill.; Tarkan, S., Sazawal, V., Druin, A., Golub, E., Bonsignore, E., Walsh, G., & Atrash, Z. (2010). Toque: Designing a Cooking-based Programming Language for and with Children. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (págs. 2417-2426). New York: ACM.; Tomcsányiová, M., & Tomcsányi, P. (2011). Little beaver - A new bebras contest category for children aged 8-9. 5th International Conference on Informatics in Schools: Situation, Evolution and Perspectives, ISSEP 2011. Bratislava: ISSEP.; Utting, I., Cooper, S., Kölling, M., Maloney, J., & Resnick, M. (Noviembre de 2010). Alice, Greenfoot, and Scratch - A Discussion. ACM Transactions on Computing Education, 10(4), 17.1 - 17.11.; Valente, A. (2004). Exploring theoretical computer science using paper toys (for kids). ICALT '04 Proceedings of the IEEE International Conference on Advanced Learning Technologies. Washington.; Velez, E., Schiefelbein, E., & Valenzuela, J. (1994). Factores que Afectan el Rendimiento Académico en la Educación. Revisión de la Literatura de América Latina y El Caribe. Revista Latinoamericana de Innovaciones Educativas.; Walton-Hadlock, M. (2008). Tots to Tweens: Age-Appropriate Technology Programming for Kids. (A. L. Association, Ed.) Children & Libraries: The Journal of the Association for Library, 6(3), 52-55.; Wen-Yu Lee, S., & Tsai, C.-C. (2013). Technology-supported Learning in Secondary and Undergraduate Biological Education: Observations from Literature Review. (Springer, Ed.) Journal of Science Education and Technology, 22(2), 226-233.; Wolz, U., Leitner, H., Malan, D., & Maloney, J. (2009). Starting with scratch in CS 1. SIGCSE'09 - Proceedings of the 40th ACM Technical Symposium on Computer Science Education.; Zuckerman, O., Arida, S., & Resnick, M. (2005). Extending Tangible Interfaces for Education: Digital Montessori-inspired Manipulatives. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (págs. 859-868). New York: ACM.; http://hdl.handle.net/20.500.12749/3347; reponame:Repositorio Institucional UNAB
Dostupnosť: https://hdl.handle.net/20.500.12749/3347
-
19
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: Engineering, Agriculture Technology transfer (ATT), Smallholder farmer, Internet of things (IoT), Information systems, Electronic data processing, Computational linguistics, Agricultural technology, Agricultural development, Ingeniería, Sistemas de información, Procesamiento electrónico de datos, Linguística computacional, Tecnología agrícola, Desarrollo agrícola, Internet de las cosas (IoT), Transferencia de tecnología agrícola (TTA), Pequeños productores agricultores, Diseño centrado en el hombre (DCH)
Geografické téma: Bucaramanga (Santander, Colombia), UNAB Campus Bucaramanga
Time: 2018-2022
Popis súboru: application/pdf; text/html
Relation: [1] FAO, “Buenas prácticas en la FAO: Sistematización de experiencias para el aprendizaje continuo,” vol. 13, p. 12, 2013, [Online]. Available: www.fao.org/docrep/meeting/021/ma061s.pdf.; [2] D. A’Zami, “Citizen-peasants : modernity , international relations and the problem of difference in,” University of Sussex.; [3] J. James, ICT4D: Information and Communication Technology for Development, vol. 61, no. 1. 2010.; [4] FAO, “Small family farms data portrait: Basic information document,” p. 15, 2017, [Online]. Available: http://www.fao.org/fileadmin/user_upload/smallholders_dataportrait/docs/Data_portrait_variables_description_new2.pdf.; [5] B. E. Graeub et al., “The State of Family Farms in the World,” World Dev., vol. 87, no. JUNE, pp. 1–15, 2016, doi:10.1016/j.worlddev.2015.05.012.; [6] J. A. Berdegué and R. Fuentealba, “The state of smallholders in agriculture in Latin America,” in New Directions for Smallholder Agriculture, no. March, IFAD, Ed. Roma: Oxford University Press, 2014, pp. 115–152.; [7] L. Joyanes Aguilar, Internet de las Cosas. Un futuro conectado. Alfaomega Grupo Editor, 2021.; [8] K. Xing, D. H. Cropley, M. L. Oppert, and C. Singh, Readiness for Digital Innovation and Industry 4.0 Transformation: Studies on Manufacturing Industries in the City of Salisbury. 2021.; [9] F. Lombo and C. Prada, “Censo Nacional Agropecuario Caracterización de los productores residentes en el área.”; [10] M. Springmann et al., “Options for keeping the food system within environmental limits,” Nature, vol. 562, no. 7728, pp. 519–525, 2018, doi:10.1038/s41586-018-0594-0.; [11] G. Rapsomanikis, G. Sylvester, O. de las N. U. para la A. y la A. FAO, I. F. P. R. I. IFPRI, and O. para la C. y el D. E. OCDE, Information and Communication Technology (ICT) in Agriculture A Report to the G20 Agricultural Deputies. 2017.; [12] F. Freire Carrera, O. Chadrina, J. Moreano Velasco, B. Torres Blacio, and Y. D. V. Garcia Orellana, “Prototipo de un sistema de riego automatizado en árboles de cacao (Theobroma cacao) controlado vía internet con dispositivos móviles,” Av. Investig. en Ing., vol. 16, no. 2, pp. 93–106, 2019, doi:10.18041/1794-4953/avances.2.5257.; [13] J. P. Tovar Soto, J. D. los S. Solórzano Suárez, A. Badillo Rodríguez, and G. O. Rodríguez Cainaba, “Internet de las cosas aplicado a la agricultura: estado actual,” Lámpsakos, no. 22. p. 86, 2019, doi:10.21501/21454086.3253.; [14] T. R. Wheeler and J. Braun, “Climate Change Impacts on Global Food Security,” Nat. Syst. Chang. Clim., vol. 341, no. August, pp. 508–513, 2013, doi: DOI:10.1126/science.1239402 ARTICLE.; [15] C. Lau, A. Javis, and J. Ramírez, “Agricultura colombiana: adaptación al cambio climático %7C Portal Sobre Conservación y Equidad Social CES,” CIAT Políticas en Síntesis No. 1, 2011. https://www.portalces.org/biblioteca/cambio-climatico/agricultura-colombiana-adaptacion-al-cambio-climatico (accessed May 27, 2019).; [16] A. D. Boursianis et al., “Advancing Rational Exploitation of Water Irrigation Using 5G-IoT Capabilities: The AREThOU5A Project,” 2019 IEEE 29th Int. Symp. Power Timing Model. Optim. Simulation, PATMOS 2019, pp. 127–132, 2019, doi:10.1109/PATMOS.2019.8862146.; [17] Organización para la Cooperación y el Desarrollo Económicos (OCDE), “A Framework for Rural Development. Rural 3.0,” People-Centred Rural Policy, p. 28, 2019, [Online]. Available: https://www.oecd.org/rural/rural-development-conference/documents/Rural-3.0-Policy-Highlights.pdf.; [18] M. O. Thomas, B. A. Onyimbo, and R. Logeswaran, “Usability Evaluation Criteria for Internet of Things,” Int. J. Inf. Technol. Comput. Sci., vol. 8, no. 12, pp. 10–18, 2016, doi:10.5815/ijitcs.2016.12.02.; [19] J. Š. Novák, J. Masner, J. Vaněk, P. Šimek, and K. Hennyeyová, “User experience and usability in agriculture-selected aspects for design systems,” Agris On-line Pap. Econ. Informatics, vol. 11, no. 4, pp. 75–83, 2019, doi:10.7160/aol.2019.110407.; [20] D. Fajardo, M. Mejía, L. Gómez, M. Matheu, and OXFAM en Colombia, “Radiografía de la desigualdad. LO QUE NOS DICE EL ÚLTIMO CENSO AGROPECUARIO SOBRE LA DISTRIBUCIÓN DE LA TIERRA EN COLOMBIA,” 2017. Accessed: Jun. 05, 2019. [Online]. Available: https://www-cdn.oxfam.org/s3fs-public/file_attachments/radiografia_de_la_desigualdad.pdf.; [21] S. Ziegler, BID (Banco Interamericano de desarrollo), Agricultura), IICA (Instituto Interamericano de Cooperación para la, and Microsoft, “Habilidades digitales en la ruralidad: un imperativo para reducir brechas en américa latina y el caribe,” 2021. [Online]. Available: http://repositorio.iica.int/handle/11324/14462?locale-attribute=es.; [22] J. M. Perez, Luchas campesinas y reforma agraria Luchas campesinas y reforma agraria, Primera Ed. Colombia, 2010.; [23] DNP (Departamento Nacional de Planeación), MINSALUD (Ministerio de Salud y Protección Social), and Departamento Administrativo de la Presidencia de la República, Documento CONPES 3999. 2020, pp. 1–163.; [24] Consejería Presidencial para los derechos humanos y asuntos Internacionales, “INFORME Y RECOMENDACIONES II Durante la pandemia del COVID-19 a la luz de los derechos humanos,” 2020.; [25] DANE (Departamento Administrativo Nacional de Estadística), “Mayoristas Boletín Semanal,” Feb. 16, 2021. https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/sistema-de-informacion-de-precios-sipsa/mayoristas-boletin-semanal-1 (accessed Mar. 04, 2021).; [26] J. F. C. Díaz del Castillo, “La intermediación como un impedimento al desarrollo del pequeño productor de Medellín,” Corpoica Cienc. y Tecnol. Agropecu., vol. 14, no. 1, p. 27, 2013, doi:10.21930/rcta.vol14_num1_art:264.; [27] H. H. Mann, Social Framework of Agriculture, 2nd ed. India, Middle East, England: Routledge, 2020.; [28] G. Rapsomanikis, “The economic lives of smallholder farmers,” Fao, vol. 4, no. 4, pp. 1–4, 2015, doi:10.5296/rae.v6i4.6320.; [29] Ó. A. Orozco and G. Llano Ramírez, “Sistemas de Información enfocados en tecnologías de agricultura de precisión y aplicables a la caña de azúcar, una revisión,” Rev. Ing. Univ. Medellín, vol. 15, no. 28, pp. 103–124, 2016, doi:10.22395/rium.v15n28a6.; [30] F. Ahmad et al., “A smart agricultural model by integrating IoT, mobile and cloud-based big data analytics,” Proc. 2017 Int. Conf. Intell. Comput. Control. I2C2 2017, vol. 2018-Janua, no. 1, pp. 1–5, Mar. 2018, doi:10.1109/I2C2.2017.8321902.; [31] J. Parra Delgadillo, “MIGRACIONES EN COLOMBIA (CIUDAD-CAMPO): ANÁLISIS AL NEORURALISMO Y LAS NUEVAS RURALIDADES EN LAS AFUERAS DE BOGOTÁ (CUNDINAMARCA).,” Universidad Externado de Colombia, 2018.; [32] R. Pardo, “Diagnóstico de la Juventud Rural en Colombia. Grupos de Diálogo Rural, una estrategia de incidencia,” Santiago de Chile, 2017. [Online]. Available: www.rimisp.org.; [33] M. T. De Ossa, J. E. Londoño, and A. Valencia-Arias, “Model of technology transfer from biomedical engineering: A case study [Modelo de Transferencia Tecnológica desde la Ingeniería Biomédica: un estudio de caso],” Inf. Tecnol., vol. 29, no. 1, pp. 83–90, 2018, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042253656&doi=10.4067%2FS0718-07642018000100010&partnerID=40&md5=13e130c77728abaf07cbe0831c57f992.; [34] T. Kyung Sung and D. V Gibson, “Knowledge and Technology Transfer: Levels and Key Factors.” Accessed: May 27, 2019. [Online]. Available: http://www.ic2.utexas.edu/ictpi/mirror/curitiba2000/papers/S04P04.PDF.; [35] ENTERPRISE IRELAND, “A REVIEW OF THE PERFORMANCE OF THE IRISH TECHNOLOGY TRANSFER SYSTEM 2007-2012,” 2012. Accessed: May 27, 2019. [Online]. Available: https://www.knowledgetransferireland.com/Reports-Publications/A-review-of-the-performance-of-the-Irish-technology-transfer-system-2007-2012.pdf.; [36] M. Susuki, “Finding the social, economic and technological barriers and opportunities in the developing countries for designing the technology transfer and innovation regime in climate change,” 2010.; [37] M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E. H. M. Aggoune, “Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk,” IEEE Access, vol. 7, pp. 129551–129583, 2019, doi:10.1109/ACCESS.2019.2932609.; [38] S. Shibusawa, “Precision Farming Approaches for Small Scale Farms,” IFAC Proc. Vol., vol. 34, no. 11, pp. 22–27, 2001, doi:10.1016/s1474-6670(17)34099-5.; [39] Grupo de alto nivel de expertos (HLPE), “Inversión en la agricultura a pequeña escala en favor de la seguridad alimentaria,” 2013.; [40] DANE (Departamento Administrativo Nacional de Estadística), “Encuesta Nacional de Calidad de Vida ECV 2019,” 2020. [Online]. Available: https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/calidad-de-vida-ecv/encuesta-nacional-de-calidad-de-vida-ecv-2019.; [41] ICANH (Instituto Colombiano de Antropología e Historia) and D. (Departamento A. N. de Estadística), “Elementos para la conceptualización de lo ‘campesino’ en Colombia,” 2017.; [42] S. Agrawal and D. Vieira, “A survey on Internet of Things - DOI 10.5752/P.2316-9451.2013v1n2p78,” Abakós, vol. 1, no. 2, pp. 291–319, 2013, doi:10.5752/P.2316-9451.2013v1n2p78.; [43] M. Hadžiali, A. Čolaković, and M. Hadžialić, “A Review of Enabling Technologies, Challenges, and Open Research Issues Internet of Things (IoT): A Review of Enabling Technologies, Challenges, and Open Research Issues,” Comput. Networks, vol. 144, pp. 17–39, 2018, doi:10.1016/j.comnet.2018.07.017.; [44] D. A. Norman and S. W. D. Draper, User Centered System Design. New perspectives on Human-Computer Interaction. CRC Press, 1986.; [45] E. Almirón, “EL AGUA COMO ELEMENTO VITAL EN EL DESARROLLO DEL HOMBRE,” Observatorio de políticas de derechos humanos de Mercosur. https://www.observatoriomercosur.org.uy/libro/el_agua_como_elemento_vital_en_el_desarrollo_del_hombre_17.php.; [46] FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura), “Sistemas de riego son vitales para la agricultura dominicana,” Agronoticias: Actualidad agropecuaria de América Latina y el Caribe, 2017. https://www.fao.org/in-action/agronoticias/detail/es/c/1027860/.; [47] IDEAM (Instituto de Hidrología Meteorología y Estudios Ambientales), “Estudio Nacional del Agua,” Bogotá, Colombia, 2010.; [48] J. Carrazón, “Manual práctico para el diseño de sistemas de minirriego,” Programa Espec. para la Segur. Aliment., vol. 9, no. 5, pp. 5876–5891, 2018.; [49] UNESCO-WWAP, “Agua para todos, agua para la vida,” United Nations, p. 36, 2003, [Online]. Available: http://www.un.org/esa/sustdev/sdissues/water/WWDR-spanish-129556s.pdf.; [50] UNESCO (Organización de las Naciones Unidas para la Educación la Ciencia y la Cultura), “GROUNDWATER Making the invisible visible,” Paris, 2022. [Online]. Available: https://www.unesco.org/reports/wwdr/2022/es/download.; [51] FAO, “Evapotranspiración del cultivo en condiciones estándar Introducción a la Evapotranspiración del Cultivo (ET c),” 2018, [Online]. Available: http://www.fao.org/3/x0490s/x0490s00.htm.; [52] IDEAM, J. Cadena, and M. Gómez, Validación de las fórmulas de Evapotranspiración de Referencia (ETo) para Colombia. Instituto de Hidrología Meteorología y Estudios Ambientales. 2017.; [53] SEPOR, Uso de la bandeja de vaporación Clase A para la propagación del riego. 2010.; [54] A. Ríos Hernández, Máquinas agrícolas, tracción animal y labores manuales. Cuba: Instituto de Mecanización Agrícola (INFOIIMA), 2012.; [55] M. Liotta, “Los Sistemas De Riego Por Goteo Y Microaspersion,” Inst. Nac. Tecnol. Agropecu. Argentina, pp. 1–26, 2004.; [56] M. A. Rapela, Fostering Innovation for Agriculture 4.0. Cham: Springer International Publishing, 2019.; [57] J. Demenois et al., “Barriers and Strategies to Boost Soil Carbon Sequestration in Agriculture,” Front. Sustain. Food Syst., vol. 4, 2020, doi:10.3389/fsufs.2020.00037.; [58] Y. Liu, X. Ma, L. Shu, G. P. Hancke, and A. M. Abu-Mahfouz, “From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges,” IEEE Trans. Ind. Informatics, vol. 17, no. 6, pp. 4322–4334, Jun. 2021, doi:10.1109/TII.2020.3003910.; [59] A. Cravero, D. Lagos, and R. Espinosa, “Big Data / IoT Use in Wine Production: A Systematic Mapping Study,” IEEE Lat. Am. Trans., vol. 16, no. 5, pp. 1476–1484, May 2018, doi:10.1109/TLA.2018.8408444.; [60] I. Froiz-Míguez et al., “Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on LoRa and LoRaWAN Sensor Nodes,” Sensors, vol. 20, no. 23, p. 6865, Nov. 2020, doi:10.3390/s20236865.; [61] W. Liping, “Study on Agricultural Products Logistics Mode in Henan Province of China,” in Software Engineering and Knowledge Engineering: Theory and Practice, 2012, pp. 635–640.; [62] S. Ramya, A. M. Swetha, and M. Doraipandian, “IoT Framework for Smart Irrigation using Machine Learning Technique,” J. Comput. Sci., vol. 16, no. 3, pp. 355–363, Mar. 2020, doi:10.3844/jcssp.2020.355.363.; [63] M. Raj et al., “A survey on the role of Internet of Things for adopting and promoting Agriculture 4.0,” J. Netw. Comput. Appl., vol. 187, no. May, p. 103107, 2021, doi:10.1016/j.jnca.2021.103107.; [64] D. M. Rodríguez, E. Bayona, and A. A. Rosado, “Summary of the internet of things and its application in agro-industrial production,” J. Phys. Conf. Ser., vol. 1409, p. 012018, Nov. 2019, doi:10.1088/1742-6596/1409/1/012018.; [65] S. Safdar, M. Mohsin, L. A. Khan, and W. Iqbal, “Leveraging the internet of things for smart waters: Motivation, enabling technologies and deployment strategies for Pakistan,” Proc. - 2018 IEEE SmartWorld, Ubiquitous Intell. Comput. Adv. Trust. Comput. Scalable Comput. Commun. Cloud Big Data Comput. Internet People Smart City Innov. SmartWorld/UIC/ATC/ScalCom/CBDCo, pp. 2117–2124, 2018, doi:10.1109/SmartWorld.2018.00354.; [66] S. I. Hassan, M. M. Alam, U. Illahi, M. A. Al Ghamdi, S. H. Almotiri, and M. M. Su’ud, “A Systematic Review on Monitoring and Advanced Control Strategies in Smart Agriculture,” IEEE Access, vol. 9, pp. 32517–32548, 2021, doi:10.1109/ACCESS.2021.3057865.; [67] A. Madruga Peláez, A. A. Estevez Pérez, R. S. López, I. Santana Ching, and C. M. García Algora, “Red de Sensores Inalámbricos para la Adquisición de Datos en Casas de Cultivo,” Ingeniería, vol. 24, no. 3, pp. 224–234, Sep. 2019, doi:10.14483/23448393.14437.; [68] Z. Irani et al., “Managing food security through food waste and loss: Small data to big data,” Comput. Oper. Res., vol. 98, pp. 367–383, Oct. 2018, doi:10.1016/j.cor.2017.10.007.; [69] R. Kondaveti, A. Reddy, and S. Palabtla, “Smart Irrigation System Using Machine Learning and IOT,” Proc. - Int. Conf. Vis. Towar. Emerg. Trends Commun. Networking, ViTECoN 2019, 2019, doi:10.1109/ViTECoN.2019.8899433.; [70] E. Nigussie, T. Olwal, G. Musumba, T. Tegegne, A. Lemma, and F. Mekuria, “IoT-based irrigation management for smallholder farmers in rural Sub-Saharan Africa,” Procedia Comput. Sci., vol. 177, pp. 86–93, 2020, doi:10.1016/j.procs.2020.10.015.; [71] X. Jiang et al., “Hybrid Low-Power Wide-Area Mesh Network for IoT Applications,” IEEE Internet Things J., vol. 8, no. 2, pp. 901–915, 2021, doi:10.1109/JIOT.2020.3009228.; [72] INTA and PROCISUR, “Sistemas y Metodologías pra asesoramiento a Regantes,” Manfredi, Córdoba (Argentina), 2010. [Online]. Available: https://inta.gob.ar/documentos/riego-sistemas-y-metodologias-para-asesoramiento-a-regantes.; [73] H. Jafarieh, “Technology Transfer to Developing Countries: A Quantative Approach,” 2001.; [74] M. Dubickis and E. Gaile-Sarkane, “Perspectives on Innovation and Technology Transfer,” Procedia - Soc. Behav. Sci., vol. 213, pp. 965–970, Dec. 2015, doi:10.1016/j.sbspro.2015.11.512.; [75] D. J. Sánchez Preciado, Developing Technology Transfer Processes in rural contexts : The case of Cauca in Colombia, vol. 4, no. 41. 2018.; [76] J. O. A. Palacio Niño, “Análisis de transferencia tecnológica para una adecuada implementación de contenidos educativos en el sistema de TDT interactiva en Colombia.” p. 234, 2011.; [77] T. Huang, “The technology transfer of the ICT curriculum in Taiwan.” pp. 407–422, 2013.; [78] J. . Behrman and W. A. Fisher, Overseas R&D Activity of Transnational Companies. Oelgeschlager, Gunn and Hain, Cambridge, 1980.; [79] M. Blomström, TRANSNATIONAL CORPORATIONS AND MANUFACTURING EXPORTS FROM DEVELOPING COUNTRIES. New York, New York, USA: United Nations Publications, 1990.; [80] J. Bhagwati, The New International Economic Order. Massachusetts: MIT Press, 1978.; [81] A. HASSAN and Y. Jamaluddin, “Exploring the Factors Affecting the ICT Technology Transfer Process: An Empirical Study in Libya,” Mod. Appl. Sci., vol. 10, no. 7, p. 156, 2016, doi:10.5539/mas.v10n7p156.; [82] A. K. Saini and V. KumarKhurana, “ICT Based Communication Systems as Enabler for Technology Transfer,” IEEE, pp. 90–99, 2016.; [83] J. Londoño, S. Restrepo, M. Rodríguez, F. Cuartas, and N. Viana, “Identificación De Tipos, Modelos Y Mecanismos De Transferencia Tecnológica Que Apalancan La Innovación,” Revista CINTEX, vol. 23, no. 2. pp. 13–23, 2018.; [84] J. A. Pineda Insuasti and A. S. Duarte Trujillo, “Modelo de transferencia de tecnología ecuatoriano: una revisión.” pp. 1–24, 2016.; [85] R. Barquin, “Some Introductory Notes on Transfer of Technology,” in Industrial Development and Technology Transfer, 1981.; [86] H. S. Lee, J. W. Lee, H. Y. Kim, H. J. Jo, and B. G. Lee, “Promising ICT Transfer Fields for Promotion of Micro-Startups Hye.” pp. 779–788, 2016.; [87] J. González Sabater, Manual transferencia de tecnología y conocimiento, 2nd ed. THE TRANSFER INSTITUTE, 2011.; [88] A. Corsi, R. N. Pagani, J. L. Kovaleski, and V. Luiz, “Technology transfer for sustainable development: Social impacts depicted and some other answers to a few questions,” J. Clean. Prod., p. 118522, 2019, doi:10.1016/j.jclepro.2019.118522.; [89] P. J. Buckley, “Some Aspects of Foreign Private Investment in the Manufacturing Sector of the Economy of the Irish Republic,” Econ. Soc. Rev, no. 5, pp. 301–321, 1974.; [90] A. GÜNSEL, “Research on Effectiveness of Technology Transfer from a Knowledge Based perspective,” in Procedia - Social and Behavioral Sciences, 2015, vol. 207, pp. 777–785, doi:10.1016/j.sbspro.2015.10.165.; [91] M. Ismail, S. R. Hamzah, and R. Bebenroth, “Differentiating knowledge transfer and technology transfer: What should an organizational manager need to know?,” Eur. J. Train. Dev., vol. 42, no. 9, pp. 611–628, 2018, doi:10.1108/EJTD-04-2018-0042.; [92] S. S. Da Silva, P. R. Feldmann, R. G. Spers, and M. D. Bambini, “Analysis of the process of technology transfer in public research institutions,” Innov. Manag. Rev., vol. 16, no. 4, pp. 375–390, 2019, doi:10.1108/inmr-05-2018-0024.; [93] P. J. Buckley, “New Forms of International Industrial Co-operation,” in The Economic Theory of the Multinational Enterprise, Macmillan, Ed. London: Buckley & Casson, 1985, pp. 39–59.; [94] D. O´Neil and C. Huff, “Ensuring universal acces to telecommunications technologies for all citizens: Equity vs Economic considerations.” STAS 98. Wiring the World: The Impact of Information Technology on Society. Proceedings of the 1998 International Symposium on Technology and Society, pp. 170–175, 1998.; [95] D. V. Gibson and R. W. Smilor, “Key variables in technology transfer: A field-study based empirical analysis,” J. Eng. Technol. Manag., vol. 8, no. 3–4, pp. 287–312, Dec. 1991, doi:10.1016/0923-4748(91)90015-J.; [96] Y. Acea Valdez, “La transferencia de tecnología en Cuba.” pp. 139–149, 2016.; [97] A. Corsi, F. F. De Souza, R. N. Pagani, and J. L. Kovaleski, Technology transfer oriented to sustainable development : proposal of a theoretical model based on barriers and opportunities, vol. 126, no. 6. Springer International Publishing, 2021.; [98] J. Arenas and D. González, “Technology Transfer Models and Elements in the University-Industry Collaboration,” Adm. Sci., vol. 8, no. 2, p. 19, 2018, doi:10.3390/admsci8020019.; [99] A. Hassan, M. Y. Jamaluddin, and K. M. Menshawi, “International technology transfer models: A comparison study,” Journal of Theoretical and Applied Information Technology, vol. 78, no. 1. pp. 95–108, 2015.; [100] E. C. Avendaño Sánchez, “El Uso De La Transferencia De Tecnología En El Sector Empresarial: De La Innovación a La Apropiación Del Saber,” Ekp, vol. 13, no. 3. pp. 1576–1580, 2017.; [101] F. ÖZSUNGUR, “Adaptation Approach to Technology Transfer Strategy,” Afro Eurasian Stud., vol. 7, no. 1, pp. 134–178, 2018, doi:10.33722/afes.471087.; [102] C. L. García Wagner, “Modelo conceptual para el funcionamiento de una Oficina de Transferencia de Tecnología en la Universidad del Quindío.” 2018.; [103] B. Metz, O. R. Davidson, J.-W. Martens, S. N. M. Van Rooijen, and L. Van Wie McGregory, “Methodological and Technological Issues in Technology Transfer,” 2000. Accessed: Jun. 17, 2019. [Online]. Available: www.cup.cam.ac.uk.; [104] R. H. Acker and D. M. Kammen, “The quiet (energy) revolution: analysing the dissemination of photovoltaic power systems in Kenya,” Energy Policy, vol. 24, no. 1, pp. 81–111, 1996.; [105] D. C. Rose et al., “Integrated farm management for sustainable agriculture: Lessons for knowledge exchange and policy,” Land use policy, vol. 81, no. April 2017, pp. 834–842, 2019, doi:10.1016/j.landusepol.2018.11.001.; [106] K. T. Moreno Suarez and E. L. Oviedo Bahamón, “Tipificación de la agricultura realizada por los integrantes de la Asociación de Productores Indígenas y Campesinos - ASPROINCA ubicada en el departamento de Caldas,” Corporación Universitaria Minuto de Dios - UNIMINUTO, 2017.; [107] E. L. Hyman, A. T. International, M. O. Donnell, G. Patterson, and J. Skibiak, “An Economic Analysis of Small-Scale Technologies for Palm Oil Extraction in Central and West Africa,” World Dev., vol. 18, no. 3, pp. 455–476, 1990.; [108] N. Clark and E. Clay, “The Dryland Research Project at lndore ( 1974-80 ) - an Institutional Innovation in Rural Technology Transfer,” J. Rural Stud., vol. 3, no. 2, pp. 159–173, 1987.; [109] K. M. Baker and R. L. Edmonds, “Transfer of Taiwanese ideas and technology to The Gambia, West Africa: a viable approach to rural development?,” Geogr. J., vol. 170, no. 3, pp. 189–211, 2004, [Online]. Available: https://www.jstor.org/stable/3451252.; [110] Unión Europea and IICA (Instituto Interamericano de Cooperación para la Agricultura), Sistemas de innovación agrícola en Centroamérica y Panamá: estrategias para el uso de buenas prácticas de transferencia tecnológica, Primera. San José, Costa Rica: IICA, 2016.; [111] G. A. Van Norman and R. Eisenkot, “Technology Transfer: From the Research Bench to Commercialization: Part 2: The Commercialization Process,” JACC Basic to Transl. Sci., vol. 2, no. 2, pp. 197–208, 2017, doi:10.1016/j.jacbts.2017.03.004.; [112] W. Keller, “International technology diffusion,” J. Econ. Lit., vol. 3, no. 42, pp. 752–783, 2004.; [113] M. Nabin, X. Nguyen, and P. Sgro, “On the Relationship Between Technology Transfer and Economic Growth in Asian,” World Econ., 2013, doi:10.1111/twec.12049.; [114] R. Thornton, “Los 90 y el nuevo siglo en los sistemas de extensión rural y transferencia de tecnología públicos en el Mercosur,” La Pampa, Argentina, 2011. [Online]. Available: https://inta.gob.ar/documentos/los-90-y-el-nuevo-siglo-en-los-sistemas-de-extension-rural-y-transferencia-de-tecnologia-publicos-en-el-mercosur.; [115] W. G. Delgado Munevar, “Caracterización del proceso de transferencia y adopción tecnológica de pequeños y medianos productores de cebolla (allium cepa l.) en el municipio de Pasca (Cundinamarca),” 2009, Accessed: May 27, 2019. [Online]. Available: https://repository.javeriana.edu.co/handle/10554/134.; [116] J. Ardila, Extensión rural para el desarrollo de la agricultura y la seguridad alimentaria, no. Aspectos conceptuales, situación y una visión de futuro. 2015.; [117] D. S. MacCarthy, J. Kihara, P. Masikati, and S. G. K. Adiku, “Decision support tools for site-specific fertilizer recommendations and agricultural planning in selected countries in sub-Sahara Africa,” Nutr. Cycl. Agroecosystems, vol. 110, no. 3, pp. 343–359, Apr. 2018, doi:10.1007/s10705-017-9877-3.; [118] C. Gamboa, G. Van den Broeck, and M. Maertens, “Smallholders’ Preferences for Improved Quinoa Varieties in the Peruvian Andes,” Sustainability, vol. 10, no. 10, p. 3735, Oct. 2018, doi:10.3390/su10103735.; [119] O. Oyinbo et al., “Farmers’ preferences for high-input agriculture supported by site-specific extension services: Evidence from a choice experiment in Nigeria,” Agric. Syst., vol. 173, no. June 2018, pp. 12–26, 2019, doi:10.1016/j.agsy.2019.02.003.; [120] M. Banković et al., “Teaching graduate students how to review research articles and respond to reviewer comments,” 2020, pp. 1–63.; [121] L. J. Catania, “The science and technologies of artificial intelligence (AI),” in Foundations of Artificial Intelligence in Healthcare and Bioscience, Elsevier, 2021, pp. 29–72.; [122] S. Vajjala, B. Majumder, A. Gupta, and H. Surana, Practical Natural Language Processing. A comprehensive Guide to Building Real-World NLP System. 2020.; [123] M. B. Hernández and J. M. Gómez, “Aplicaciones de Procesamiento de Lenguaje Natural,” Rev. Politécnica, vol. 32, no. 1, pp. 87–96, 2013, [Online]. Available: http://www.revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/32.; [124] J. C. Campbell, A. Hindle, and E. Stroulia, “Latent Dirichlet Allocation: Extracting Topics from Software Engineering Data,” Art Sci. Anal. Softw. Data, vol. 3, pp. 139–159, 2015, doi:10.1016/B978-0-12-411519-4.00006-9.; [125] R. Kulshrestha, “A Beginner’s Guide to Latent Dirichlet Allocation(LDA),” towardsdatascience.com, 2019. https://towardsdatascience.com/latent-dirichlet-allocation-lda-9d1cd064ffa2.; [126] T. Ganegedara, “Intuitive Guide to Latent Dirichlet Allocation,” towardsdatascience.com, 2018. https://towardsdatascience.com/light-on-math-machine-learning-intuitive-guide-to-latent-dirichlet-allocation-437c81220158.; [127] Z. Tong and H. Zhang, “A Text Mining Research Based on LDA Topic Modelling,” pp. 201–210, 2016, doi:10.5121/csit.2016.60616.; [128] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Hierarchical Dirichlet processes,” J. Am. Stat. Assoc., vol. 101, no. 476, pp. 1566–1581, 2006, doi:10.1198/016214506000000302.; [129] E. Coronado Sroka, “Don’t be Afraid of Nonparametric Topic Models,” towardsdatascience.com, 2020. https://towardsdatascience.com/dont-be-afraid-of-nonparametric-topic-models-d259c237a840.; [130] J. Xu, “Topic Modeling with LSA, PLSA, LDA y Ida2Vec,” medium.com, 2018. https://medium.com/nanonets/topic-modeling-with-lsa-psla-lda-and-lda2vec-555ff65b0b05.; [131] S. Baldassarri Santalucía, “Computación Afectiva: tecnología y emociones para mejorar la experiencia de usuario,” Rev. Inst. la Fac. Inform., vol. no. 3, pp. 14–15, 2016.; [132] M. Soegaard and R. Friss Dam, Encyclopedia of Human -Computer Interaction, 3rd ed. THE INTERACTION DESIGN FOUNDATION.; [133] N. Eyar and R. Hoover, How to Build Habit-Forming Products. Penguin Randowm house LLC, 2014.; [134] N. Norman, The design of everyday things. New York, New York, USA: Basic Books, 2013.; [135] M. G. Domingo and E. M. Pera, “Diseño centrado en el usuario,” Diseño centrado en el usuario, vol. 2, no. 4, 2017.; [136] INTERACTION DESIGN FOUNDATION, “What is User Centered Design? %7C Interaction Design Foundation.” https://www.interaction-design.org/literature/topics/user-centered-design (accessed May 28, 2019).; [137] Design Council, “Design Methods Step 1: Discover,” Design Council, 2015. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-1-discover/.; [138] Design Council, “Design Methods Step 2: Define,” Design Council, 2018. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-2-define/.; [139] Design Council, “Design Methods Step 3: Develop,” Design Council, 2018. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-3-develop/.; [140] Design Council, “Design Methods Step 4: Deliver,” 2018. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-4-deliver/.; [141] K. Rodden, H. Hutchinson, and X. Fu, “Measuring the user experience on a large scale,” in Proceedings of the 28th international conference on Human factors in computing systems - CHI ’10, 2010, p. 2395, doi:10.1145/1753326.1753687.; [142] S. Sastoque, C. Narváez, and G. Garnica, “Metodología para la construcción de Interfaces Gráficas Centradas en el Usuario,” 2016.; [143] INTERACTION DESIGN FOUNDATION, “What is Design Thinking and Why Is It So Popular?” .; [144] I. Young, Practical Empathy for collaboration and creativity in your Work. Rosenfeld, 2015.; [145] C. D. Batson, “These Things Called Empathy: Eight Related but Distinct Phenomena,” in The Social Neuroscience of Empathy, The MIT Press, 2009, pp. 3–16.; [146] T. Wiseman, “A concept analysis of empathy,” J. Adv. Nurs., vol. 23, no. 6, pp. 1162–1167, Jun. 1996, doi:10.1046/j.1365-2648.1996.12213.x.; [147] B. A. Aubert, A. Schroeder, and J. Grimaudo, “IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology,” Decis. Support Syst., vol. 54, no. 1, pp. 510–520, Dec. 2012, doi:10.1016/j.dss.2012.07.002.; [148] S. O. Somers and L. Stapleton, “A Human-Centred approach to e-Agricultural systems,” IFAC-PapersOnLine, vol. 48, no. 24, pp. 213–218, Jan. 2015, doi:10.1016/J.IFACOL.2015.12.085.; [149] S. Somers and L. Stapleton, “e-Agricultural innovation using a human-centred systems lens, proposed conceptual framework,” AI Soc., vol. 29, no. 2, pp. 193–202, May 2014, doi:10.1007/s00146-013-0475-x.; [150] N. Theodorakopoulos, D. J. Snchez Preciado, and D. Bennett, “Transferring technology from university to rural industry within a developing economy context: The case for nurturing communities of practice,” Technovation, vol. 32, no. 9–10, pp. 550–559, 2012, doi:10.1016/j.technovation.2012.05.001.; [151] P. S. Ahmed Awad Talb Altalb, Tadeusz Filipek, “The role of extension in the transfer and adoption of agricultural technology,” J. Int. Agric. Ext. Educ., vol. 03, no. 05, pp. 63–68, 2015.; [152] G. Sylvester, SUCCESS STORIES ON INFORMATION AND COMMUNICATION TECHNOLOGIES FOR AGRICULTURE AND RURAL DEVELOPMENT. Bangkok: FAO, 2015.; [153] C. Leeuwis and A. Van den Ban, Communication for Rural Innovation : Rethinking Agricultural Extension, 3rd ed. Hoboken, United States: John Wiley & Sons, Ltd, 2007.; [154] P. Figueroa, P. Castillo, V. Vrsalovic, D. Gálvez, and S. Diez-de-medina, “Technology Transfer from Academia to Rural Communities : The Case of Caprines in vitro Fecundation and Local Livestock Market in Tamarugal Province in Chile,” vol. 8, no. 4, pp. 186–194, 2013, [Online]. Available: https://scielo.conicyt.cl/pdf/jotmi/v8n4/art17.pdf.; [155] S. O. Somers and L. Stapleton, “A Human-Centred approach to e-Agricultural systems,” IFAC-PapersOnLine, vol. 48, no. 24, pp. 213–218, Jan. 2015, doi:10.1016/j.ifacol.2015.12.085.; [156] J. Mwangi, “the Role of Extension in the Transfer and Adoption of Agricultural Technologies,” J. Int. Agric. Ext. Educ., vol. 5, no. 1, 1998, doi:10.5191/jiaee.1998.05108.; [157] W. Muzari, W. Gatsi, and S. Muvhunzi, “The Impacts of Technology Adoption on Smallholder Agricultural Productivity in Sub-Saharan Africa: A Review,” J. Sustain. Dev., vol. 5, no. 8, pp. 69–77, 2012, doi:10.5539/jsd.v5n8p69.; [158] B. E. Swanson, “Global Review of Good Agricultural Extension and Advisory Practices,” Food Agric. Organ. United Nations, p. 82345, 2008, [Online]. Available: https://www.fao.org/3/i0261e/i0261e00.htm.; [159] L. Kuhl, “Technology transfer and adoption for smallholder climate change adaptation: opportunities and challenges,” Clim. Dev., vol. 12, no. 4, pp. 353–368, 2020, doi:10.1080/17565529.2019.1630349.; [160] A. Hassan, M. Y. Jamaluddin, and A. Queiri, “Technology transfer model for the Libyan information and communication industry,” J. Teknol., vol. 78, no. 8, pp. 99–100, 2016, doi:10.11113/jt.v78.5872.; [161] A. Espinosa, J. Pineda, O. Ortega, A. J. Author, R. Sarmiento, and G. W. Archibold Taylor, “Trends, Challenges and Opportunities for IoT in Smallholder Agriculture Sector: An Evaluation from the Perspective of Good Practices,” in Trends and Applications in Information Systems and Technologies, SPRINGER, 2021, pp. 293–301.; [162] G. Natarajan and L. Ashok Kumar, “Implementation of IoT based smart village for the rural development,” Int. J. Mech. Eng. Technol., vol. 8, no. 8, pp. 1212–1222, 2017.; [163] G. Carrión, M. Huerta, and B. Barzallo, “Internet of Things (IoT) Applied to an Urban Garden,” in Proceedings - 2018 IEEE 6th International Conference on Future Internet of Things and Cloud, FiCloud 2018, 2018, pp. 155–161, doi:10.1109/FiCloud.2018.00030.; [164] D. Singh and A. Thakur, “Designing of smart drip irrigation system for remote hilly areas,” PDGC 2018 - 2018 5th Int. Conf. Parallel, Distrib. Grid Comput., vol. 8, no. 1, pp. 90–94, 2018, doi:10.1109/PDGC.2018.8745934.; [165] N. Ananthi, J. Divya, M. Divya, and V. Janani, “IoT based smart soil monitoring system for agricultural production,” Proc. - 2017 IEEE Technol. Innov. ICT Agric. Rural Dev. TIAR 2017, vol. 2018-Janua, pp. 209–214, 2018, doi:10.1109/TIAR.2017.8273717.; [166] K. P. Satamraju, K. Shaik, and N. Vellanki, “RURAL BRIDGE: A novel system for smart and co-operative farming using IoT architecture,” IMPACT 2017 - Int. Conf. Multimedia, Signal Process. Commun. Technol., no. 1, pp. 22–26, 2018, doi:10.1109/MSPCT.2017.8363966.; [167] K. A. Shah, M. Patel, M. Khasakiya, S. Kazi, and P. Khalasi, “CESIS: Cost-effective and self-regulating irrigation system,” in Lecture Notes on Data Engineering and Communications Technologies, vol. 27, Springer, Cham, 2019, pp. 167–181.; [168] T. S. Sondhi, A. R. Sambhaji, and K. Sharmila Banu, “InFEvoS: Integrated farming evolution system,” Int. J. Recent Technol. Eng., vol. 7, no. 6, pp. 932–936, 2019.; [169] U. J. L. dos Santos, G. Pessin, C. A. da Costa, and R. da Rosa Righi, “AgriPrediction: A proactive internet of things model to anticipate problems and improve production in agricultural crops,” Comput. Electron. Agric., vol. 161, no. July, pp. 202–213, 2019, doi:10.1016/j.compag.2018.10.010.; [170] M. Mancini et al., “An open source and low-cost internet of things-enabled service for irrigation management,” Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., vol. 2019-Octob, pp. 1714–1719, 2019, doi:10.1109/SMC.2019.8914230.; [171] C. C. Baseca, S. Sendra, J. Lloret, and J. Tomas, “A smart decision system for digital farming,” Agronomy, vol. 9, no. 5, 2019, doi:10.3390/agronomy9050216.; [172] P. Visconti, R. de Fazio, P. Primiceri, D. Cafagna, S. Strazzella, and N. I. Giannoccaro, “A solar-powered fertigation system based on low-cost wireless sensor network remotely controlled by farmer for irrigation cycles and crops growth optimization,” Int. J. Electron. Telecommun., vol. 66, no. 1, pp. 59–68, 2020, doi:10.24425/ijet.2019.130266.; [173] D. P. Holzworth et al., “Agricultural production systems modelling and software: Current status and future prospects,” Environ. Model. Softw., vol. 72, no. 1, pp. 276–286, Oct. 2015, doi:10.1016/j.envsoft.2014.12.013.; [175] A. Tendolkar and S. Ramya, “CareBro (Personal Farm Assistant):An IoT based Smart Agriculture with Edge Computing,” MPCIT 2020 - Proc. IEEE 3rd Int. Conf. "Multimedia Process. Commun. Inf. Technol., pp. 97–102, 2020, doi:10.1109/MPCIT51588.2020.9350481.; [176] P. L. Ramirez Izolan et al., “Low-Cost Fog Computing Platform for Soil Moisture Management,” Int. Conf. Inf. Netw., vol. 2020-Janua, pp. 499–504, 2020, doi:10.1109/ICOIN48656.2020.9016572.; [177] J. D. Borrero and A. Zabalo, “An autonomous wireless device for real-time monitoring of water needs,” Sensors (Switzerland), vol. 20, no. 7, pp. 1–16, 2020, doi:10.3390/s20072078.; [178] N. A. A. Abdellah and N. Thangadurai, “Real Time Application of IoT for the Agriculture in the Field along with Machine Learning Algorithm,” Proc. 2020 Int. Conf. Comput. Control. Electr. Electron. Eng. ICCCEEE 2020, 2021, doi:10.1109/ICCCEEE49695.2021.9429606.; [179] S. Casadei, F. Peppoloni, F. Ventura, R. Teodorescu, D. Dunea, and N. Petrescu, “Application of smart irrigation systems for water conservation in Italian farms,” Environ. Sci. Pollut. Res., vol. 28, no. 21, pp. 26488–26499, 2021, doi:10.1007/s11356-021-12524-6.; [180] F. J. Ruiz Ortega, K. Esquivel Murillo, D. O. Rodríguez Martinez, M. E. Rodríguez Torres, and R. Duarte Ramírez, “INTERNET DE LAS COSAS (IoT), UNA ALTERNATIVA PARA EL CUIDADO DEL AGUA,” Pist. Educ., vol. 40, no. 130, pp. 2318–2330, 2018.; [181] A. F. Jimenez, E. F. Herrera, B. V. Ortiz, A. Ruiz, and P. F. Cardenas, “Inference System for Irrigation Scheduling with an Intelligent Agent,” in Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II, J. C. Corrales, P. Angelov, and J. A. Iglesias, Eds. Cham: Springer International Publishing, 2019, pp. 1–20.; [182] J. D. Franco-Ramirez, T. A. Ramirez-Delreal, A. Garate-Garcia, M. A. Ruiz, and D. Villanueva-Vasquez, “MOSyG: Monitoring system for germination chamber using fuzzy control based on cloudino-IoT and FIWARE,” 2019 IEEE Int. Autumn Meet. Power, Electron. Comput. ROPEC 2019, no. Ropec, 2019, doi:10.1109/ROPEC48299.2019.9057127.; [183] J. A. Laverde Mena and C. G. Laverde Mena, “Internet de las cosas aplicado en la agricultura ecuatoriana: Una propuesta para sistemas de riego,” Rev. Dilemas Contemp., vol. 148, pp. 148–162, 2021.; [184] E. Gutierrez Leon, J. E. Montiel Arguijo, C. Carreto Arellano, and F. R. Menchaca García, “Propuesta de sistema de gestión inteligente basado en IoT para hidroponia,” Res. Comput. Sci., vol. 148, no. 10, pp. 219–233, 2019, doi:10.13053/rcs-148-10-19.; [185] F. A. Capraro Fuentes, S. R. Tosetti, and P. L. Campillo, “Sensor Network for Monitoring and Fault Detection in Drip Irrigation Systems Based on Embedded Systems,” IEEE Lat. Am. Trans., vol. 18, no. 2, pp. 383–391, 2020, doi:10.1109/TLA.2020.9085294.; [186] A. Oliveira-Jr et al., “IoT Sensing Platform as a Driver for Digital Farming in Rural Africa,” Sensors, vol. 20, no. 12, p. 3511, Jun. 2020, doi:10.3390/s20123511.; [187] J. Rodríguez-Robles, Á. Martin, S. Martin, J. A. Ruipérez-Valiente, and M. Castro, “Autonomous sensor network for rural agriculture environments, low cost, and energy self-charge,” Sustain., vol. 12, no. 15, 2020, doi:10.3390/SU12155913.; [188] A. Cabarcas, C. Arrieta, D. Cermeno, H. Leal, R. Mendoza, and C. Rosales, “Irrigation system for precision agriculture supported in the measurement of environmental variables,” Proc. - 2019 7th Int. Eng. Sci. Technol. Conf. IESTEC 2019, no. March 2020, pp. 671–676, 2019, doi:10.1109/IESTEC46403.2019.00125.; [189] M. J. Ibarra, E. Alcarraz, O. Tapia, Y. P. Atencio, Y. Mamani-Coaquira, and H. A. Huillcen Baca, “NFT-I technique using IoT to improve hydroponic cultivation of lettuce,” Proc. - Int. Conf. Chil. Comput. Sci. Soc. SCCC, vol. 2020-Novem, 2020, doi:10.1109/SCCC51225.2020.9281277.; [190] Superintendencia de Industria y Comercio (SIC), “¿Qué se puede patentar?,” Superintenedencia de Industria y Comercio (SIC), 2021. https://www.sic.gov.co/node/44#:~:text=Se protegen los inventos que consistan en productos,,un procedimiento para la obtención de un producto.; [191] H. Ben Salem and T. Smith, “Feeding strategies to increase small ruminant production in dry environments,” Small Rumin. Res., vol. 77, no. 2–3, pp. 174–194, 2008, doi:10.1016/j.smallrumres.2008.03.008.; [192] D. Singh and A. Thakur, “Advancing Rational Exploitation of Water Irrigation Using 5G-IoT Capabilities: The AREThOU5A project,” PDGC 2018 - 2018 5th Int. Conf. Parallel, Distrib. Grid Comput., vol. 8, no. 1, pp. 90–94, 2018, doi:10.1109/PDGC.2018.8745934.; [193] R. Torres-Sanchez, H. Navarro-Hellin, A. Guillamon-Frutos, R. San-Segundo, M. C. Ruiz-Abellón, and R. Domingo-Miguel, “A decision support system for irrigation management: Analysis and implementation of different learning techniques,” Water (Switzerland), vol. 12, no. 2, 2020, doi:10.3390/w12020548.; [194] S. Athani, C. Tejeshwar, M. M. Patil, P. Patil, and R. Kulkarni, “Soil moisture monitoring using IoT enabled arduino sensors with neural networks for improving soil management for farmers and predict seasonal rainfall for planning future harvest in North Karnataka - India,” Int. Conf. I-SMAC (IoT Soc. Mobile, Anal. Cloud), pp. 43–48, 2017.; [195] J. J. Dethier and A. Effenberger, “Agriculture and development: A brief review of the literature,” Econ. Syst., vol. 36, no. 2, pp. 175–205, 2012, doi:10.1016/j.ecosys.2011.09.003.; [196] M. Bures, “Internet of Things: Current Challenges in the Quality Assurance and Testing Methods.” Accessed: Nov. 22, 2018. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/1805/1805.01241.pdf.; [197] K. Pernapati, “IoT Based Low Cost Smart Irrigation System,” in Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT 2018, 2018, pp. 1312–1315, doi:10.1109/ICICCT.2018.8473292.; [198] T. W. Zougmore, S. Malo, F. Kagembega, and A. Togueyini, “Low cost IoT solutions for agricultures fish farmers in Afirca: A case study from Burkina Faso,” ICSCC 2018 - 1st Int. Conf. Smart Cities Communities, 2018, doi:10.1109/SCCIC.2018.8584549.; [199] E. Beza, L. Kooistra, P. Reidsma, P. Poortvliet, M. Belay, and B. Bijen, “Exploring farmers’ intentions to adopt mobile Short Message Service (SMS) for citizen science in agriculture,” j, vol. 151, 2018, doi:10.1016/j.compag.2018.06.015.; [200] K. Lova Raju and V. Vijayaraghavan, “IoT and Cloud hinged Smart Irrigation System for Urban and Rural Farmers employing MQTT Protocol,” ICDCS 2020 - 2020 5th Int. Conf. Devices, Circuits Syst., pp. 71–75, 2020, doi:10.1109/ICDCS48716.2020.243551.; [201] W. A. K. L. Sanjula, K. T. W. Kavinda, M. A. K. Malintha, W. M. D. L. Wijesuriya, S. Lokuliyana, and R. De Silva, “Automated water-gate controlling system for paddy fields,” ICAC 2020 - 2nd Int. Conf. Adv. Comput. Proc., pp. 61–66, 2020, doi:10.1109/ICAC51239.2020.9357312.; [202] S. Hernando Mejía, “MODELO DE DECISIÓN PARA LA SELECCIÓN DE SOLUCIONES IoT APOYANDO LA TRANSFERENCIA TECNOLÓGICA EN ZONAS RURALES DE SANTANDER,” 2020.; [203] M. D. Caro Meza, “Diseño de directrices para la evaluación de interfaces en soluciones IOT implementadas en zonas rurales santandereanas: apoyando la transferencia tecnológica desde la perspectiva de usabilidad,” Universidad Autónoma de Bucaramanga, 2020.; [204] A. C. Martínez Pinzón and K. J. Villamizar Calderón, “FRAMEWORK CONCEPTUAL PARA DESARROLLO DE INTERFACES MÓVILES EN SOLUCIONES IOT QUE PERMITAN APROPIACIÓN TECNOLÓGICA EN ZONAS RURALES ALEDAÑAS AL MUNICIPIO DE BUCARAMANGA DESDE LA PERSPECTIVA DE UX,” Universidad Autónoma de Bucaramanga, 2020.; [205] D. F. Aceros Orduz, “PROTOTIPO DE UNA RUTA TECNOLOGICA PARA EL IOT, ENFOCADA EN LAS TECNOLOGÍAS DE RIEGO, PARA LOS AGRICULTORES DE PEQUEÑA ESCALA EN COLOMBIA,” Universidad Autónoma de Bucaramanga, 2020.; [206] C. A. Meneses Montana and karen S. Prada Jaimes, “Empleando elementos reconocibles como potencializador del uso de internet en zonas rurales: una investigación desde la experiencia de usuario en pequeños productores agrícolas de Santander,” Universiad Autónoma de Bucaramanga, 2020.; [207] A. F. Rincón Benavides and E. A. Martinez Zavala, “Climagro: diseño de un mapa de ruta de tecnologías IOT empleadas en entornos rurales para el monitoreo del clima, dirigido para los pequeños productores campesinos de Santander, mediante técnicas de text mining e inteligencia artificial,” Universidad Autónoma de Bucaramanga, 2020.; [208] J. E. Duarte Pineda and O. M. Ortega Pineda, “Farmia: Diseño de arquitectura IOT orientado a desarrolladores para la inclusión de tecnologías de internet de las cosas aplicadas a la Agro rotación de cultivos de acuerdo con el plan estratégico presentado por GPS Santander: Caso de estudio Villanueva, ,” Universidad Autónoma de Bucaramanga, 2020.; [209] O. Y. Patiño Hernández, “KAKAW: Modelo de inteligencia artificial para la identificación de actores y su relación en el sector cacaotero de Santander,” Universidad Autónoma de Bucaramanga, 2020.; [210] A. F. Herrera Duarte, “Propuesta metodológica para la evaluación de modelos de transferencia tecnológica TIC en la agricultura de los pequeños productores campesinos de la región de Santander,” Universidad Autónoma de Bucaramanga, 2020.; [211] F. J. Vargas Pérez and A. P. Verdugo Beltrán, “Desarrollo de un prototipo funcional de red sensórica IoT para el monitoreo de variables en suelos agrícolas de la finca el Oasis de la Vereda Llanadas, municipio de Los Santos (Santander),” Universidad Autónoma de Bucaramanga, 2021.; [212] N. E. Castillo Suta, “Desarrollo de un modelo de transferencia y apropiación de tecnologías del internet de las cosas para los agricultores colombianos de pequeña escala – AGRIOT,” Universidad Autónoma de Bucaramanga, 2021.; [213] C. Kamienski et al., “Smart water management platform: IoT-based precision irrigation for agriculture,” Sensors (Switzerland), vol. 19, no. 2, 2019, doi:10.3390/s19020276.; [214] B. Edwards et al., “mAgri Design Toolkit: User-centered design for mobile agriculture,” p. 186, 2014, [Online]. Available: https://www.comminit.com/ict-4-development/content/magri-design-toolkit-user-centered-design-mobile-agriculture.; [215] E. J. M. Arruda Filho and R. Roy Dholakia, “Hedonismo como um fator de decisão e uso tecnológico,” Rev. Bras. Gest. Negocios, vol. 15, no. 48, pp. 343–361, 2013, doi:10.7819/rbgn.v15i48.1407.; [216] C. N. Jiménez-Hernández, O. F. Castellanos-Domínguez, and E. M. Villa-Enciso, “La gestión de tecnologías emergentes en el ámbito universitario,” TecnoLógicas, no. 26, p. 145, 2011, doi:10.22430/22565337.57.; [217] DANE (Departamento Administrativo Nacional de Estadística) and MADR (Ministerio de Agricultura y Desarrollo Rural), “Censo Nacional Agropecuario 2014,” 2015.; [218] M. A. Espinosa, E. Romero R., L. Y. Flórez G., and C. D. Guerrero, “DANDELION: Propuesta metodológica para recopilación y análisis de información de artículos científicos. Un enfoque desde la bibliometría y la revisión sistemática de la literatura,” RISTI - Rev. Iber. Sist. e Tecnol. Inf., vol. 28, pp. 110–122, 2020, [Online]. Available: https://search.proquest.com/openview/e3b85a7260c758fd943bc4d5a0447f13/1?pq-origsite=gscholar&cbl=1006393.; [219] J. R. Fraenkel, N. E. Wallen, and H. H. Hyun, How to design and evaluate research in education, vol. 1, no. 1. McGraw: Hill Education, 2012.; [220] Unidad Administrativa Especial de Catastro Distrital -Gerencia IDECA, “Metodología para la Analítica de datos,” pp. 1–34, 2019, [Online]. Available: www.ideca.gov.co.; [221] P. Chapman et al., CRISP-DM 1.0. SPSS, 2000.; [222] E. Romero-riaño, C. D. Guerrero-santander, and H. E. Martínez-ardila, “Agronomy research co-authorship networks in agricultural innovation systems Redes de coautoría en investigación sobre agronomía en sistemas de innovación agrícola,” Rev. UIS Ing., vol. 20, no. 1, pp. 161–175, 2021, doi:10.18273/revuin.v20n1-2021015.; [223] G. Ko, J. K. Routray, and M. M. Ahmad, “ICT infrastructure for rural community sustainability,” Community Dev., vol. 50, no. 1, pp. 51–72, Jan. 2019, doi:10.1080/15575330.2018.1557720.; [224] V. A. Eras Moreira, “EVALUACIÓN DE IMPACTO DE TRANSFERENCIA DE TECNOLOGÍA AGROPECUARIA EN LA PROVINCIA DE IMBABURA: CANTONES COTACACHI, PIMAMPIRO E IBARRA,” 2014.; [225] S.-R. Cipriano Juárez, “La agricultura y el problema del agua en la provincia de alicante,” a Vueltas Con La Agric. Una Act. Económica Necesaria Y Marginada, 2010.; [226] J. A. Ocampo, “Misión para la transformación del campo,” Misión para la Transform. del campo, p. 46, 2014, doi:10.1007/s13398-014-0173-7.2.; [227] P. S. Birthal and P. K. Joshi, “Smallholder Farmers’ Access to Markets for High-Value Agricultural Commodities in India,” Case Stud. Food Policy Dev. Ctries., pp. 51–60, 2019, doi:10.7591/9780801466373-007.; [228] D. J. Quiroga-Parra, J. Torrent-Sellens, and C. P. Murcia Zorrilla, “Usos de las TIC en América Latina: Una caracterización,” Ingeniare, vol. 25, no. 2, pp. 289–305, 2017, doi:10.4067/S0718-33052017000200289.; [229] M. Taylor and S. Bhasme, “Model farmers, extension networks and the politics of agricultural knowledge transfer,” J. Rural Stud., vol. 64, no. September, pp. 1–10, 2018, doi:10.1016/j.jrurstud.2018.09.015.; [230] ITU (International Telecommunication Union), El ecosistema digital y la masificación de las tecnologías de la información y las comunicaciones en Paraguay.; [231] MTC, “Misión para la transformación del campo - Diagnóstico económico del campo colombiano,” Inf. la Misión para la Transform. del Campo, p. 63, 2015.; [232] A. Sharma, A. Bailey, and I. Fraser, “Technology Adoption and Pest Control Strategies Among UK Cereal Farmers: Evidence from Parametric and Nonparametric Count Data Models,” J. Agric. Econ., vol. 62, no. 1, pp. 73–92, Feb. 2011, doi:10.1111/j.1477-9552.2010.00272.x.; [233] J. Sollleiro R., R. Castañón I., J. González C., J. Aguilar-Ávila, and N. Aguilar G., “Identificación de buenas prácticas de extensionismo, transferencia de tecnología e innovación para el sector agroalimentario de méxico.,” no. April, p. 57, 2017.; [234] Y. Valencia Villegas and Y. Sepúlveda Casadiego, “Implementación de sensores en los sistemas de riego automatizado,” Dec. 2019. doi:10.22490/ECAPMA.3417.; [235] R. Oad and P. King, “Irrigation system design for management in mountainous areas,” Irrig. Drain. Syst., vol. 5, no. 3, pp. 213–228, Aug. 1991, doi:10.1007/BF01112500.; [236] Á. Penagos, C. Ospina, C. Quesada, and F. Castellanos, “Una mirada al mercado laboral rural colombiano y un acercamiento a los posibles efectos de la pandemia,” RIMISP Cent. Latinoam. para el Desarro. Rural, 2020, [Online]. Available: https://www.rimisp.org/documentos/informes/una-mirada-al-mercado-laboral-rural-colombiano-y-un-acercamiento-a-los-posibles-efectos-de-la-pandemia/.; [237] J. Wadsworth and B. Carlisle, “TECHNOLOGY AND ITS CONTRIBUTION TO PRO-POOR AGRICULTURAL DEVELOPMENT,” UK, 2005. Accessed: May 20, 2019. [Online]. Available: http://www.fao.org/3/a-at358e.pdf.; [238] P. Martinez Corral, “Orígenes de la exclusión digital en el campo colombiano: abordaje sobre la política de telecomunicaciones sociales,” Poliantea, vol. 11, no. 21, p. 195, 2016, doi:10.15765/plnt.v11i21.709.; [239] F. Castillo Blanco, Historia de la Cultura Campesina Santandereana y su arraigo en el departamento de Santander, Primera. Bucaramanga, Colombia: Gobernación de Santander, 2012.; [240] P. Šimek, J. Vaněk, and J. Pavlík, “Usability of UX Methods in Agrarian Sector - Verification,” Agris On-line Pap. Econ. Informatics, vol. 7, no. 3, pp. 49–56, 2015, doi:10.7160/aol.2015.070305. [241] E. Gerónimo Bautista and R. Calderón García, “La formación de talento e innovación a través de la vinculación y los modelos de hélice basados en la sociedad del conocimiento,” RIDE Rev. Iberoam. para la Investig. y el Desarro. Educ., vol. 10, no. 20, Apr. 2020, doi:10.23913/ride.v10i20.641.; [241] E. Gerónimo Bautista and R. Calderón García, “La formación de talento e innovación a través de la vinculación y los modelos de hélice basados en la sociedad del conocimiento,” RIDE Rev. Iberoam. para la Investig. y el Desarro. Educ., vol. 10, no. 20, Apr. 2020, doi:10.23913/ride.v10i20.641.; [242] D. Rotolo, D. Hicks, and B. R. Martin, “What is an emerging technology?,” Res. Policy, vol. 44, no. 10, pp. 1827–1843, Dec. 2015, doi:10.1016/J.RESPOL.2015.06.006.; [243] G. Fortino, C. Savaglio, G. Spezzano, and M. Zhou, “Internet of Things as System of Systems: A Review of Methodologies, Frameworks, Platforms, and Tools,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 51, no. 1, pp. 223–236, 2021, doi:10.1109/TSMC.2020.3042898.; [244] D. Kayisire and J. Wei, “ICT Adoption and Usage in Africa: Towards an Efficiency Assessment,” Inf. Technol. Dev., vol. 22, no. 4, pp. 630–653, 2016, doi:10.1080/02681102.2015.1081862.; [245] M. Dayahna Caro M., E. Romero-Riaño, M. Alexandra Espinosa C, and C. D. Guerrero, “Evaluando contribuciones de usabilidad en soluciones TIC-IOT para la agricultura: Una perspectiva desde la bibliometría,” RISTI - Rev. Iber. Sist. e Tecnol. Inf., vol. 2020, no. E28, pp. 681–692, 2020, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081040306&partnerID=40&md5=f59611d7803425f519635fe4470fdaca.; [246] S. K. Gawali and M. K. Deshmukh, “Energy autonomy in IoT technologies,” Energy Procedia, vol. 156, no. September 2018, pp. 222–226, 2019, doi:10.1016/j.egypro.2018.11.132.; [247] M. Tahir, Q. Mamoon Ashraf, and M. Dabbagh, “Towards Enabling Autonomic Computing in IoT Ecosystem,” in 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Aug. 2019, pp. 646–651, doi:10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00122.; [248] J. Lukkien, “A systems of systems perspective on the internet of things,” ACM SIGBED Rev., vol. 13, no. 3, pp. 56–62, 2016, doi:10.1145/2983185.2983195.; [249] G. Fortino, A. Guerrieri, G. M. P. O’Hare, and A. Ruzzelli, “A flexible building management framework based on wireless sensor and actuator networks,” J. Netw. Comput. Appl., vol. 35, no. 6, pp. 1934–1952, Nov. 2012, doi:10.1016/j.jnca.2012.07.016.; [250] P. Desai, A. Sheth, and P. Anantharam, “Semantic Gateway as a Service Architecture for IoT Interoperability,” in 2015 IEEE International Conference on Mobile Services, Jun. 2015, pp. 313–319, doi:10.1109/MobServ.2015.51.; [251] A. Katasonov, O. Kaykova, O. Khriyenko, S. Nikitin, and V. Terziyan, “Smart semantic middleware for the internet of things,” ICINCO 2008 - Proc. 5th Int. Conf. Informatics Control. Autom. Robot., vol. ICSO, no. May 2014, pp. 169–178, 2008.; [252] G. Codeluppi, A. Cilfone, L. Davoli, and G. Ferrari, “VegIoT Garden: A modular IoT Management Platform for Urban Vegetable Gardens,” 2019 IEEE Int. Work. Metrol. Agric. For. MetroAgriFor 2019 - Proc., pp. 121–126, 2019, doi:10.1109/MetroAgriFor.2019.8909228.; [253] G. Codeluppi, A. Cilfone, L. Davoli, and G. Ferrari, “LoRaFarM: A LoRaWAN-Based Smart Farming Modular IoT Architecture,” Sensors, vol. 20, no. 7, p. 2028, Apr. 2020, doi:10.3390/s20072028.; [254] K. Yelamarthi, M. S. Aman, and A. Abdelgawad, “An application-driven modular IoT architecture,” Wirel. Commun. Mob. Comput., vol. 2017, 2017, doi:10.1155/2017/1350929.; [255] M. Benammar, A. Abdaoui, S. Ahmad, F. Touati, and A. Kadri, “A Modular IoT Platform for Real-Time Indoor Air Quality Monitoring,” Sensors, vol. 18, no. 2, p. 581, Feb. 2018, doi:10.3390/s18020581.; [256] K. Douzis, S. Sotiriadis, E. G. M. Petrakis, and C. Amza, “Modular and generic IoT management on the cloud,” Futur. Gener. Comput. Syst., vol. 78, pp. 369–378, Jan. 2018, doi:10.1016/j.future.2016.05.041.; [257] INTERACTION DESIGN FOUNDATION, “Useful, Usable, and Used: Why They Matter to Designers,” 2021. https://www.interaction-design.org/literature/article/useful-usable-and-used-why-they-matter-to-designers.; [258] J. M. Antonini, “Health Effects Associated with Welding,” in Comprehensive Materials Processing, Elsevier, 2014, pp. 49–70.; [259] D. McQuillen, “‘Taking Usability Offline,’” Darwin Magazine, 2003.; [260] M. Blusi, K. Asplund, and M. Jong, “Older family carers in rural areas: experiences from using caregiver support services based on Information and Communication Technology (ICT),” Eur. J. Ageing, vol. 10, no. 3, pp. 191–199, Sep. 2013, doi:10.1007/s10433-013-0260-1.; [261] B. Momir, I. Petroman, E. C. Constantin, A. Mirea, and D. Marin, “The Importance of Cross-Cultural Knowledge,” Procedia - Soc. Behav. Sci., vol. 197, pp. 722–729, Jul. 2015, doi:10.1016/j.sbspro.2015.07.077.; [262] A. N., “Where to Start and What to Consider?,” in Usability and Internationalization of Information Technology, N. Aykin, Ed. CRC Press, 2005.; [263] S. Vanka and D. Klein, “Colortool: An Information Tool for Cross Cultural Design,” Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 39, no. 5, pp. 341–345, Oct. 1995, doi:10.1177/154193129503900510.; [264] M. W. Azeem, A. Tariq, F. J. Sheikh, M. A. Butt, I. Tariq, and H. M. Shahid, “Cultural effects on metaphor design,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9186, no. August, pp. 113–121, 2015, doi:10.1007/978-3-319-20886-2_11.; [265] G. S. Choi, R. Oehlmann, H. Dalke, and D. Cottington, “Discovering Color Semantics as a Chance for Developing Cross-Cultural Design Frameworks,” in Social Intelligence Design 2007 CTIT, 2007, pp. 926–933.; [266] S. Vanka and D. Klein, “Colortool: An Information Tool for Cross Cultural Design,” Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 39, no. 5, pp. 341–345, Oct. 1995, doi:10.1177/154193129503900510.; [267] J. Thornborrow and S. Wareing, Patterns in language. An introduction to language and literary style. Routledge, 2019.; [268] P. Tiwari and K. Sorathia, “Visualising and systematizing a per-poor ICT intervention for Rural and Semi-urban Mothers in India,” in Proceedings of the 7th International Symposium on Visual Information Communication and Interaction - VINCI ’14, 2014, pp. 129–138, doi:10.1145/2636240.2636856.; [269] Yann, “UX Design for Agriculture in Africa: Case Study from Zambia,” YUX, 2019. https://yux.design/ux-design-agriculture-africa-case-study-zambia.; [270] V. K. Kool and R. Agrawal, “Technology and Hedonism,” in Psychology of Technology, Cham: Springer International Publishing, 2016, pp. 253–304.; [271] J. S. Martínez García, “El habitus. Una revisión analítica,” Rev. Int. Sociol., vol. 75, no. 3, p. 067, Sep. 2017, doi:10.3989/ris.2017.75.3.15.115.; [272] B. R. Belland, “Using the theory of habitus to move beyond the study of barriers to technology integration,” Comput. Educ., vol. 52, no. 2, pp. 353–364, 2009, doi:10.1016/j.compedu.2008.09.004.; [273] L.-A. Sutherland and I. Darnhofer, “Of organic farmers and ‘good farmers’: Changing habitus in rural England,” J. Rural Stud., vol. 28, no. 3, pp. 232–240, Jul. 2012, doi:10.1016/j.jrurstud.2012.03.003.; [274] O. Prokopenko, O. Kudrina, and V. Omelyanenko, “Analysis of ICT Application in Technology Transfer Management within Industry 4.0 Conditions (Education Based Approach),” CEUR Workshop Proc., vol. 2105, pp. 258–273, 2018.; [275] S. Heo, S. Song, J. Kim, and H. Kim, “RT-IFTTT: Real-Time IoT Framework with Trigger Condition-Aware Flexible Polling Intervals,” Proc. - Real-Time Syst. Symp., vol. 2018-Janua, pp. 266–276, 2018, doi:10.1109/RTSS.2017.00032.; [276] C. Dodd, M. Adam, and C. Dodd, “Designing User Interfaces for the Elderly : A Systematic Literature Review,” pp. 1–12, 2017, [Online]. Available: https://aisel.aisnet.org/acis2017/61.; [277] T. Walsh and P. Nurkka, “Approaches to cross-cultural design: Two case studies with UX web-surveys,” Proc. 24th Aust. Comput. Interact. Conf. OzCHI 2012, pp. 633–642, 2012, doi:10.1145/2414536.2414632.; [278] K. Finn and J. Johnson, “Designing for an aging population: Toward universal design,” Conf. Hum. Factors Comput. Syst. - Proc., vol. 07-12-May-, no. May, pp. 1011–1012, 2016, doi:10.1145/2851581.2856669.; [279] INTERACTION DESIGN FOUNDATION, “Accessibility.” https://www.interaction-design.org/literature/topics/accessibility.; [280] P. Štrukelj, “Technology, Wealth and Modern Management of Technology,” Manag. Glob. Transitions, vol. 10, no. 1, pp. 29–49, 2012.; [281] IEA, ITU, UNESCO (Organización de las Naciones Unidas para la Educación la Ciencia y la Cultura), UNOOSA, and WIPO, “Science , technology and innovation and intellectual property rights : The vision for development Thematic Think Piece,” 2012.; [282] D. M. Dueñas Quintero and L. A. Páez Guevara, “CONSTRUCCIÓN DE LA AGENDA INVESTIGACIÓN PARA EL SECTOR AGROINDUSTRIAL EN EL DEPARTAMENTO DE BOYACÁ: IDENTIFICACIÓN DE LÍNEAS DE INVESTIGACIÓN,” Rev. Tumbaga, vol. 1, no. 11, 2016.; [283] World Summit on the Information Society, “WSIS/SDGs Matrix WSIS Forum 2018: Outcomes Linking WSIS Action lines with the Sustainable Development Goals,” 2018. [Online]. Available: https://www.itu.int/net4/wsis/forum/2018/Files/documents/outcomes/WSISForum2018_WSIS-SDGSMatrix.pdf.; [284] D. A. Delgado, C. M. Cocha, J. E. García, and G. K. Gonzales, “Metodologías de diseño centrado en las personas: Experiencia vereda La Yunga y Río Hondo, Popayán, Colombia,” Rev. Espac., vol. 41, no. 36, pp. 0–2, 2020.; [285] S. Bhattacharya, J. Glazer, and D. E. . Sappington, “Licensing and the sharing of knowledge in research joint ventures,” J. Econ. Theory, vol. 56, no. 1, pp. 43–69, Feb. 1992, doi:10.1016/0022-0531(92)90068-S.; [286] J. P. Lane, “Understanding Technology Transfer,” Assist. Technol., vol. 11, no. 1, pp. 5–19, 1999, doi:10.1080/10400435.1999.10131981; [287] E. G. García, “Análisis de buenas prácticas en transferencia de tecnología en el sector TIC,” 2013.; [288] ITU (International Telecommunication Union), ANSI, and DIAL, Construir aldeas inteligentes: un plan de trabajo Proyecto piloto en el Níger. ITUPublicaciones, 2020.; [289] Ministerio de Ciencia Tecnología e Innovación Productiva (Argentina), “Guía de buenas prácticas en gestión de la transferencia de tecnología y de la propiedad intelectual en instituciones y organismos del sistema nacional de ciencia, tenología e innovación,” pp. 3–63, 2012.; [290] S. Salazar and P. Henr, Guía para la gestión de la propiedad en consorcios intelectual regionales de investigación agrícola. San José, Costa Rica: https://www.fontagro.org/es/publicaciones/publicaciones-fontagro/gui-para-la-gestion-de-la-propiedad-intelectual-en-consorcios-regionales-de-investigac/, 2013.; [291] A. Jaime, M. L. Lizarazo, and H. E. Martinez, “Buenas Prácticas en Transferencia de Tecnología en el Mundo,” 2016, [Online]. Available: https://www.researchgate.net/publication/309728561_Buenas_Practicas_en_Transferencia_de_Tecnologia_en_el_Mundo.; [292] NASA, “Plan for Accelerating Technology Transfer at NASA,” 2012.; [293] D. A. Comstock and D. Lockney, “NASA’s legacy of technology transfer and prospects for future benefits,” A Collect. Tech. Pap. - AIAA Sp. 2007 Conf., vol. 3, no. September, pp. 2969–2978, 2007, doi:10.2514/6.2007-6283.; [294] D. A. Maluf, T. Okimura, and M. Gurram, “NASA technology transfer system,” Proc. - 4th IEEE Int. Conf. Sp. Mission Challenges Inf. Technol. SMC-IT 2011, pp. 111–117, 2011, doi:10.1109/SMC-IT.2011.27.; [295] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin, “A model for technology transfer in practice,” IEEE Softw., vol. 23, no. 6, pp. 88–95, 2006, doi:10.1109/MS.2006.147.; [296] V. R. Basili, M. K. Daskalantonakis, and R. H. Yacobellis, “Technology transfer at Motorola,” IEEE Softw., vol. 11, no. 2, pp. 70–76, Mar. 1994, doi:10.1109/52.268959.; [297] H. L. Pieterse and M. W. Pretorius, “A MODEL FOR TELECOMMUNICATION TECHNOLOGY TRANSFER AND DIFFUSION INTO THE RURAL AREAS OF SOUTH AFRICA,” South African J. Ind. Eng., vol. 13, no. 1, pp. 119–129, Jan. 2012, doi:10.7166/13-1-322.; [298] A. Shiri, “Introduction to Modern Information Retrieval (2nd edition),” Libr. Rev., vol. 53, no. 9, pp. 462–463, 2004, doi:10.1108/00242530410565256.; [299] J. A. Sheikh, H. S. Dar, and F. J. Sheikh, “Usability guidelines for designing knowledge base in rural areas towards women empowerment,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8519 LNCS, no. PART 3, pp. 462–469, 2014, doi:10.1007/978-3-319-07635-5_45.; [300] A. Lodhi, “Usability heuristics as an assessment parameter: For performing usability testing,” in ICSTE, 2010, pp. 256–259.; [301] W. A. R. W. M. Isa et al., “Engineering rural informatics using agile user centered design,” in 2014 2nd International Conference on Information and Communication Technology (ICoICT), May 2014, pp. 367–372, doi:10.1109/ICoICT.2014.6914093.; [302] S. Adhy, B. Noranita, R. Kusumaningrum, P. W. Wirawan, D. D. Prasetya, and F. Zaki, “Usability testing of weather monitoring on a web application,” in 2017 1st International Conference on Informatics and Computational Sciences (ICICoS), Nov. 2017, pp. 131–136, doi:10.1109/ICICOS.2017.8276350.; [303] S. Wyche, T. R. Dillahunt, N. Simiyu, and S. Alaka, “‘if god gives me the chance i will design my own phone’: Exploring mobile phone repair and postcolonial approaches to design in rural Kenya,” UbiComp 2015 - Proc. 2015 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput., no. September, pp. 463–473, 2015, doi:10.1145/2750858.2804249.; [304] A. A. Adesina and J. Baidu-Forson, “Farmer’s perpections and adoption of new agricultural technology: evidence from analysis in Burkina Faso and Guiena, West Africa,” Agric. Econ., no. 13, pp. 1–9, 1995, doi:10.14358/PERS.81.6.451.; [305] F. Ssozi-Mugarura, E. Blake, and U. Rivett, “Codesigning with communities to support rural water management in Uganda,” CoDesign, vol. 13, no. 2, pp. 110–126, Apr. 2017, doi:10.1080/15710882.2017.1310904.; [307] B. Dhehibi, U. Rudiger, H. P. Moyo, and M. Z. Dhraief, “Agricultural technology transfer preferences of smallholder farmers in Tunisia’s arid regions,” Sustain., vol. 12, no. 1, 2020, doi:10.3390/SU12010421.; [308] D. Teka, Y. Dittrich, and M. Kifle, “Usability challenges in an Ethiopian software development organization,” in Proceedings of the 9th International Workshop on Cooperative and Human Aspects of Software Engineering, May 2016, pp. 114–120, doi:10.1145/2897586.2897604.; [309] P. S. Dey et al., “Assessment of Sustainable Agriculture Practices in Uttarakhand, India,” IEEE Reg. 10 Humanit. Technol. Conf. R10-HTC, vol. 2020-Decem, 2020, doi:10.1109/R10-HTC49770.2020.9357012.; [310] R. Augusto Sales Dantas, M. Vasconcelos da Gama Neto, I. Dimitry Zyrianoff, and C. Alberto Kamienski, “The SWAMP Farmer App for IoT-based Smart Water Status Monitoring and Irrigation Control,” in 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Nov. 2020, pp. 109–113, doi:10.1109/MetroAgriFor50201.2020.9277588.; [311] Corporacion PBA, Manual del facilitador rural Métodos y herramientas para ayudar a campesinos a conseguir sus metas. 2011.; [312] DANE (Departamento Administrativo Nacional de Estadística), “Censo Nacional Agropecuario Bogotá,” 2014.; [313] DANE (Departamento Administrativo Nacional de Estadística), Censo Nacional Agropecuario, Tomo 3 - Mapas. 2015.; [314] A. González-Cárdenas and L. A. Paipilla-Pardo, “Misión para la Transformación del Campo : Síntesis y algunas reflexiones,” Revista Palmas, Bogotá, Colombia, pp. 57–78, 2015.; [315] P. A. Aremu, I. N. Kolo, A. K. Gana, and F. A. Adelere, “The Crucial Role of Extension Workers In Agricultural Technologies Transfer and Adoption,” Glob. Adv. Res. J. Food Sci. Technol., vol. 4, no. 2, pp. 14–18, 2015.; [316] K. Kuutti, T. Jokela, M. Nieminen, and P. Jokela, “Assessing Human-Centred Design Processes in Product Development by Using the INUSE Maturity Model,” IFAC Proc. Vol., vol. 31, no. 26, pp. 89–94, Sep. 1998, doi:10.1016/S1474-6670(17)40074-7.; [317] S. B. Azumah, S. A. Donkoh, and J. A. Awuni, “The perceived effectiveness of agricultural technology transfer methods: Evidence from rice farmers in Northern Ghana,” Cogent Food Agric., vol. 4, no. 1, pp. 1–11, 2018, doi:10.1080/23311932.2018.1503798.; [318] K. A. Mottaleb, “Perception and adoption of a new agricultural technology: Evidence from a developing country,” Technol. Soc., vol. 55, no. April, pp. 126–135, 2018, doi:10.1016/j.techsoc.2018.07.007.; [319] D. J. Mayhew, The Usability Engineering Lifecycle: A Practitioner’s Handbook for User Interface Design (Interactive Technologies), Primera. London, United Kingdom: Morgan Kaufmann Publishers, 1999.; [320] S. Merzouk, A. Cherkaoui, A. Marzak, and S. Nawal, “IoT methodologies: Comparative study,” Procedia Comput. Sci., vol. 175, pp. 585–590, 2020, doi:10.1016/j.procs.2020.07.084.; [321] V. Sachdeva and L. Chung, “Handling non-functional requirements for big data and IOT projects in Scrum,” in 2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence, Jan. 2017, pp. 216–221, doi:10.1109/CONFLUENCE.2017.7943152.; [322] B. Vogel, B. Peterson, and B. Emruli, “Prototyping for Internet of Things with Web Technologies: A Case on Project-Based Learning using Scrum,” in 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), Jul. 2019, pp. 300–305, doi:10.1109/COMPSAC.2019.10223.; [323] K. Rose, S. Eldridge, and L. Chapin, “La internet de las Cosas — Una breve reseña,” 2015. https://www.internetsociety.org/es/resources/doc/2015/iot-overview.; [324] O. Elijah, S. Member, T. Abdul Rahman, I. Orikumhi, C. Yen Leow, and M. Nour Hindia, “An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges,” IEEE INTERNET THINGS J., vol. 5, no. 5, 2018, doi:10.1109/JIOT.2018.2844296.; [325] ITU (International Telecommunication Union), “Overview of the Internet of Things,” 2015. http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=Y.2060.; [326] E. Oriwoh and M. Conrad, “Towards a Definition of the Internet of Things (IoT),” Int. J. Internet Things, vol. 4, no. 1, pp. 1–5, 2015.; [327] U. S. Department of Labors, “National Census of Fatal Occupational Injuries Summary,” 2021.; [328] Minciencias, “Documento de Política Nacional de Ciencia, Tecnología e Innovación N° 1602: Actores del Sistema Nacional de Ciencia, Tecnología e Innovación.,” pp. 6–9, 2018.; [329] J. N. Rodriguez and S. J. Camacho, “¿Quiénes son los campensinos colombianos hoy? Universidad, Ciencia y desarrollo. Universidad del Rosario,” Universidad, Ciencia y desarrollo. Universidad del Rosario. p. 1,2, 2013, [Online]. Available: http://www.urosario.edu.co/campesinos-colombianos/.; [330] A. C. Machado Silvia Botello M, “Serie de documentos de trabajo - La Agricultura Familiar en Colombia,” 2013, [Online]. Available: www.rimisp.org.; [331] M. Chiriboga, “Desafios de la pequeña agricultura familiar frente a la globalización,” Perspect. Rural., pp. 9–24, 1997.; [332] R. Chapman, T. Slaymaker, W. Paper, R. Chapman, and T. Slaymaker, “ICTs and Rural Development: Review of the Literature, Current Interventions and Opportunities for Action,” 2002.; [333] T. Havemann and V. Muccione, “Mechanisms for agricultural climate change mitigation incentives for smallholders. CCAFS Report no. 6.,” 2011. [Online]. Available: www.ccafs.cgiar. org.; [334] M. E. Londoño Escobar, A. M. Lozano Hurtado, O. Gómez Martínez, carlos A. Ramirez López, and J. Solano Castrillón, Prácticas sociales campesinas. El caso Monterrey Buga, Valle del Cauca - Colombia, Primera Ed. Bogotá, Colombia: Corporación Universitaria Minuto de Dios - UNIMINUTO, 2019.; [335] Centro de Innovación pública digital, “Tecnologías emergentes,” 2021. https://centrodeinnovacion.mintic.gov.co/es/blogs/tecnologias-emergentes.; [336] Vicepresidencia de Innovación y Transformación Digital and Grupo Bancolombia, “Internet de las Cosas: ¿cómo lo ha adoptado Colombia?,” 2018. https://www.grupobancolombia.com/wps/portal/empresas/capital-inteligente/tendencias/innovacion/iot-como-lo-ha-adoptado-colombia.; [337] M. Danquah, “Technology transfer, adoption of technology and the efficiency of nations: Empirical evidence from sub Saharan Africa,” Technol. Forecast. Soc. Change, vol. 131, no. December 2016, pp. 175–182, 2018, doi:10.1016/j.techfore.2017.12.007.; [338] D. J. Sánchez Preciado, B. Claes, and N. Theodorakopoulos, “Transferring intermediate technologies to rural enterprises in developing economies : A conceptual framework,” in Prometheus, Informa UK Limited.; [339] B. Biagini, L. Kuhl, K. S. Gallagher, and C. Ortiz, “Technology transfer for adaptation,” Nat. Clim. Chang., vol. 4, no. 9, pp. 828–834, 2014, doi:10.1038/nclimate2305.; [340] S. O. N. Somers and L. Stapleton, “A Human-Centred approach to e-Agricultural systems,” IFAC-PapersOnLine, vol. 48, no. 24, pp. 213–218, 2015, doi:10.1016/j.ifacol.2015.12.085.; [341] J. A. Sheikh, H. S. Dar, and F. J. Sheikh, “Usability Guidelines for Designing Knowledge Base in Rural Areas,” 2014, pp. 462–469.; [342] A. . Valdés Cuervo, Familia y Desarrollo. Intervenciones en terapia familiar. México: Manual Moderno, 2007.; [343] K. Prins, Proceso y producto. Un balance. Lima, Perú: Escuela para el desarrollo, 1996.; [344] FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura), Training of Farmers Programme South Asia. FAO Regional Office for Asia and the Pacific, 2011.; [345] M. E. Nogueira and M. Urcola, “La agricultura familiar en el marco de los programas de desarrollo rural del FIDA en el norte argentino (1991-2014),” Ager, vol. 2015, no. 19, pp. 7–44, 2015, doi:10.4422/ager.2015.01.; [346] C. J. Romera, F. E. Forero Suárez, and J. A. Ruiz Hernández, “Technology and design for rural development: A methodological proposal and a pilot experience in two Colombian municipalities,” Ager, vol. 2017, no. 23, pp. 27–57, 2017, doi:10.4422/ager.2017.03.; [347] RIMISP (Centro Latinoamericano para el Desarrollo Rural), “Misión para la transformación del campo. Estrategia de Implementación del Programa de Desarrollo Rural Integral con Enfoque Territorial,” Bogotá, Colombia, 2014. [Online]. Available: https://www.dnp.gov.co/programas/agricultura/Paginas/mision-para-la-transformacion-del-campo-colombiano.aspx.; [348] M. Docampo Rama, H. De Ridder, and H. Bouma, “Technology generation and age in using layered user interfaces,” Gerontechnology, vol. 1, no. 1, 2001, doi:10.4017/gt.2001.01.01.003.00.; [349] R. Sackmann and O. Winkler, “Technology generations revisited: The internet generation,” Gerontechnology, vol. 11, no. 4, pp. 493–503, 2013, doi:10.4017/gt.2013.11.4.002.00.; [350] M. Chesher and W. Skok, “Roadmap for successful information technology transfer for small businesses,” Proc. ACM SIGCPR Conf., pp. 16–22, 2000, doi:10.1145/333334.333338.; [351] P. R. Childs, Mechanical Design Engineering Handbook, Second Edi., vol. 1999, no. December. Oxford, United Kingdom: Elsevier Ltd., 2019.; [352] Y. Bai and Q. Bai, “Subsea Pipelines,” in Subsea Engineering Handbook, 2019, pp. 919–940.; [353] M. F. Maradei García and F. M. Espinel Correal, Ergonomía para el Diseño, Primera. Bucaramanga, Colombia: Universidad Industrial de Santander - Escuela de Diseño Industrial, 2009.; [354] R. Gacula Pineda, Technology in Culture: A Theoretical Discourse on Convergence in Human-Technology Interaction, no. May. 2014.; [355] K. Dorst and N. Cross, “Creativity in the design process: Co-evolution of problem-solution,” Des. Stud., vol. 22, no. 5, pp. 425–437, 2001, doi:10.1016/S0142-694X(01)00009-6.; [356] OMPI, “¿Qué es la Propiedad Intelectual ?,” p. 23, 2005, [Online]. Available: https://cerlalc.org/wp-content/uploads/documentos-de-interes/odai/ODAI_DOCUMENTOS_DE_INTERES_Que_es_la_propiedad_intelectual_V1.pdf.; [357] Universidad EAFIT, “Mecanismos de protección de la propiedad intelectual,” Propiedad Intelectual. https://www.eafit.edu.co/institucional/propiedad-intelectual/Paginas/mecanismos-de-proteccion.aspx.; [358] G. Oh, D. Kim, S. Kim, and S. Rhew, “A Quality Evaluation Technique of RFID Middleware in Ubiquitous Computing,” in 2006 International Conference on Hybrid Information Technology, Nov. 2006, pp. 730–735, doi:10.1109/ICHIT.2006.253690.; [359] V. Nassar, “Common criteria for usability review,” Work, vol. 41, pp. 1053–1057, 2012, doi:10.3233/WOR-2012-0282-1053.; [360] N. Maalel, E. Natalizio, A. Bouabdallah, P. Roux, and M. Kellil, “Reliability for Emergency Applications in Internet of Things,” in 2013 IEEE International Conference on Distributed Computing in Sensor Systems, May 2013, pp. 361–366, doi:10.1109/DCOSS.2013.40.; [361] C. Prehofer, “From the Internet of Things to Trusted Apps for Things,” in 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Aug. 2013, pp. 2037–2042, doi:10.1109/GreenCom-iThings-CPSCom.2013.381.; [362] N. Nikmehr and M. Doroodchi, “New paradigm in evaluating usability of E-learning system,” in 2008 International Conference on Innovations in Information Technology, Dec. 2008, pp. 347–351, doi:10.1109/INNOVATIONS.2008.4781683.; [363] S. Jimenez-Fernandez, P. de Toledo, and F. del Pozo, “Usability and Interoperability in Wireless Sensor Networks for Patient Telemonitoring in Chronic Disease Management,” IEEE Trans. Biomed. Eng., vol. 60, no. 12, pp. 3331–3339, Dec. 2013, doi:10.1109/TBME.2013.2280967.; [364] N. Bevan, “Measuring usability as quality of use,” Softw. Qual. J., vol. 4, no. 2, pp. 115–130, Jun. 1995, doi:10.1007/BF00402715.; [365] FAO, Guía para la implementación de Centros Demostrativos de Capacitación CDC con enfoque agroecológico. 2016.; [366] M. M. Zinnah, J. L. Compton, and A. A. Adesina, “Research-Extension-Farmer Linkages within the Context of the Generation, Transfer and Adoption of Improved Mangrove Swamp Rice Technology in West Africa.,” Q. J. Int. Agric., vol. 32, no. 2, pp. 201–214, 1993.; [367] J. W. Creswell and V. L. Plano Clark, Designing and Conducting Mixed methods Research, Tercera. USA: Sage Publishing, 2017.; [368] C. Narrod, D. Roy, and I. Food, “The Role of Public-Private Partnerships and Collective Action in Ensuring Smallholder Participation in High Value Fruit and Vegetable Supply Chains,” Role Public-Private Partnerships Collect. Action Ensuring Smallhold. Particip. High Value Fruit Veg. Supply Chain., no. 70, 2007, doi:10.2499/capriwp70.; [369] L. Ermakova, F. Bordignon, N. Turenne, and M. Noel, “Is the Abstract a Mere Teaser? Evaluating Generosity of Article Abstracts in the Environmental Sciences,” Front. Res. Metrics Anal., vol. 3, May 2018, doi:10.3389/frma.2018.00016.; [370] CEPAL (Comisión Económica para América Latina y el Caribe), Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, and IICA (Instituto Interamericano de Cooperación para la Agricultura), Perspectivas de la agricultura y del desarrollo rural en las Américas: una mirada hacia América Latina y el Caribe 2017-2018. San José, Costa Rica, 2017.; [371] H. Zhang, Y. Cai, and Z. Li, “Towards a typology of university technology transfer organizations in China: evidences from Tsinghua University,” Triple Helix, vol. 5, no. 1, 2018, doi:10.1186/s40604-018-0061-9.; [372] A. Li, “Technology transfer in China–Africa relation: myth or reality.” Transnational corporations review, pp. 183–195, 2016.; [373] C. N. A. Iris, “TIERRAS, AGROPRODUCCIÓN Y CULTIVOS ILÍCITOS EN COLOMBIA,” p. 35, 2019.; [374] A. J. Paz Cardona, “Un millón de hogares campesinos en Colombia tienen menos tierra que una vaca,” Apr. 18, 2018.; [375] Ministerio de Agricultura de Chile, “Nuevo Modelo para un Sistema de Extensión y Transferencia Tecnológica en el Sector Silvoagropecuario Chileno,” 2014.; [376] CGIAR, “Transforming agriculture and food innovation systems to win the race to zero - 1391948,” Nov. 17, 2017. https://globalmeet.webcasts.com/starthere.jsp?ei=1391948&tp_key=b17757b8fa (accessed Mar. 07, 2021).; [377] IICA (Instituto Interamericano de Cooperación para la Agricultura), “Elementos para una hoja de ruta conjunta. Evento 4. %7C Facebook,” Evento 4 del Ciclo de foros virtuales: Reducción de #BrechaDigital en las Zonas Rurales de América Latina y El Caribe: Hacia una revolución agrícola digital, Feb. 22, 2020. https://m.facebook.com/story.php?story_fbid=262820852158961&id=436831050034 (accessed Mar. 07, 2021).; [378] M. B. Hernández and J. M. Gómez, “Aplicaciones de Procesamiento de Lenguaje Natural,” Rev. Politécnica, vol. 32, no. 1, pp. 87–96, 2013.; [379] D. H. Flórez Martínez, A. Morales Castañeda, and C. P. Uribe Galvis, Megatendencias en investigación, desarrollo e innovación para el sector agropecuario colombiano: perspectivas, estrategias y visiones de futuro, vol. I. Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), 2018.; [380] FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura) and OCDE (Organización para la Cooperación y el Desarrollo Económicos), OCDE/FAO Perspectivas Agrícolas 2019-2028 - Enfoque Especial: America Latina. Roma: OECD Publishing, 2019.; [381] L. Boer and J. Donovan, “Provotypes for participatory innovation,” in Proceedings of the Designing Interactive Systems Conference on - DIS ’12, 2012, p. 388, doi:10.1145/2317956.2318014.; https://apolo.unab.edu.co/es/persons/rom%C3%A1n-eduardo-sarmiento-porras; http://hdl.handle.net/20.500.12749/19092; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Dostupnosť: https://hdl.handle.net/20.500.12749/19092
-
20
Autori: a ďalší
Prispievatelia: a ďalší
Predmety: Redes neuronales convolucionales, Termodinámica, Diseño de prótesis, Diseño de prototipos, Algoritmos, Generadores eléctricos, Tendencias tecnológicas, Bioingeniería, Bioingeniería -- Congresos, conferencias, etc. -- Memorias, Energía -- Congresos, Sistemas de control inteligente -- Congresos, Procesamiento de señales -- Congresos, Automatización -- Congresos, etc. -- Memoria, Desarrollo de prototipos -- Congresos, Ingeniería biomédica -- Congresos, Redes eléctricas -- Congresos, Tecnologías de la información y de la comunicación -- Congresos, Procesamiento digital de imágenes -- Congresos, Redes neuronales (Computadores) -- Congresos, Nanotecnología -- Congresos, Telecomunicaciones -- Congresos, Convolutional Neural Networks, Thermodynamics, Prosthesis design
Popis súboru: pdf; application/pdf
Relation: L. Coffey, P. Gallager, O. Horgan, D. Desmond, and M. MacLachlan. “Psychosocial adjustment to diabetes‐related lower limb amputation”. Oxford, Diabetic Medicine, 2009, pp.1063–1067.; DANE. “Censo de Población y Viviendas 2018”. Bogotá, D.C, Departamento Administrativo Nacional de Estadística, 2018.; D. Silverthorn, “Fisiología humana: un enfoque integrado” , 4ta ed, reimp- Bogotá - Panamericána, 2009.; K.J. Zuo, and J. L. Olson. “The evolution of functional hand replacement”: From iron prostheses to hand transplantation. Plastic Surgery, 22(1), 44-51, 2014.; D. Foord. “CHANGES IN TECHNOLOGIES AND MEANINGS OF UPPER LIMB PROSTHETICS: PART I-FROM ANCIENT EGYPT TO EARLY MODERN EUROPE”. In MEC Symposium Conference, July 2020.; K. Ashmore, S. Cialdella, A. Giuffrida, E. Kon, M. Marcacci, and B. Di Matteo. “ArtiFacts: Gottfried “Götz” von Berlichingen—The “Iron Hand” of the Renaissance”. Clinical Orthopaedics and Related Research®, 477(9), 2002-2004, 2019.; K. Moore, and A. Dalley. “Clinically oriented anatomy”. 7ª ed, UK, Wolters Klawer, 2013.; Àngels. (2017, Jan 16). “Cómo se llaman los huesos de la mano” [Online]. Available at:https://www.mundodeportivo.com/uncomo/educacion/articulo/como-se-llaman-los-huesos-de-la-mano-40009.html.; B. Maat, G. Smit, D. Plettenburg, and P. Breedveld. “Passive prosthetic hands and tools: A literature review”. Prosthetics and orthotics international, 42(1), 66-74, 2018.; A. Chadwell, L. Kenney, S. Thies, A. Galpin, and J. Head. “The reality of myoelectric prostheses: understanding what makes these devices difficult for some users to control”. Frontiers in neurorobotics, 10, 7, 2016.; T. Fujimaki et al., “Prevalence of floating toe and its relationship with static postural stability in children: The Yamanashi adjunct study of the Japan Environment and Children’s Study (JECS-Y),” PLoS One, vol. 16, no. 3 March, pp. 1–8, 2021, doi:10.1371/journal.pone.0246010.; L. A. Luengas-C, D. C. Toloza, and L. F. Wanumen, “Utilización de la Teoría de la Información para evaluar el comportamiento de la estabilidad estática en amputaciones transtibiales,” RISTI - Rev. Ibérica Sist. e Tecnol. Informação, vol. 40, no. 12, pp. 15–30, 2020, doi:10.17013/risti.40.15–30.; B. Olsen et al., “The Relationship Between Hip Strength and Postural Stability in Collegiate Athletes Who Participate in Lower Extremity Dominant Sports,” Int. J. Sports Phys. Ther., vol. 16, no. 1, pp. 64–71, 2021, doi:10.26603/001c.18817.; L. A. Luengas C. and D. C. Toloza, Análisis de estabilidad en amputados transtibiales unilaterales. Bogota: UD Editorial, 2019.; M. F. Peydro de Moya, J. M. Baydal, and M. J. Vivas, “Evaluación y rehabilitación del equilibrio mediante posturografía,” Rehabilitación, vol. 39, no. 6, pp. 315–323, 2005.; L. A. Luengas-C, J. López, and G. Sánchez Prieto, “Comportamiento de rangos articulares con alineación en amputados transtibiales,” Visión Electrónica Más que un estado sólido, vol. 1, no. 1, pp. 48–52, 2018.; A. Ruhe, R. Fejer, and B. Walker, “The test-retest reliability of centre of pressure measures in bipedal static task conditions - A systematic review of the literature,” Gait and Posture, vol. 32, no. 4. pp. 436–445, Oct. 2010, doi:10.1016/j.gaitpost.2010.09.012.; P. Schubert, M. Kirchner, S. Dietmar, and C. T. Haas, “About the structure of posturography: Sampling duration, parametrization, focus of attention (part I),” J. Biomed. Sci. Eng., vol. 5, pp. 496–507, 2012, doi: http://dx.doi.org/10.4236/jbise.2012.59062.; F. Martínez-Solís et al., “Algorithm to estimate the knee angle in normal gait: trajectory generation approach to intelligent transfemoral prosthesis,” Rev. Mex. Ing. Biomédica, vol. 37, no. 3, pp. 221–233, Sep. 2016, doi:10.17488/RMIB.37.3.7.; S. A. Ahmadi et al., “Towards computerized diagnosis of neurological stance disorders: data mining and machine learning of posturography and sway,” J. Neurol., vol. 266, no. s1, pp. 108–117, 2019, doi:10.1007/s00415-019-09458-y.; L. A. Luengas-C, “Computational Method to Verify Static Alignment of Transtibial Prosthesis,” Biomed. J. Sci. Tech. Res., vol. 31, no. 2, Oct. 2020, doi:10.26717/bjstr.2020.31.005074.; J. R. Chagdes, S. Rietdyk, M. H. Jeffrey, N. Z. Howard, and A. Raman, “Dynamic stability of a human standing on a balance board,” J. Biomech., vol. 46, no. 15, 2013, doi:10.1016/j.jbiomech.2013.08.012.; L. A. Luengas-C. and D. C. Toloza, “Frequency and Spectral Power Density Analysis of the Stability of Amputees Subjects,” TecnoLógicas, vol. 23, no. 48, pp. 1–16, 2020, doi: https://doi.org/10.22430/22565337.1453.; L. Verdichio, “Equilibrio y dominancia,” Universidad FASTA, 2016.; J. C. Segovia Martínez and J. C. Legido Arce, “Valores podoestabilométricos en la población deportiva infantil,” UNIVERSIDAD COMPLUTENSE DE MADRID, 2009.; B. Ristevski and M. Chen, “Big Data Analytics in Medicine and Healthcare,” J. Integr. Bioinform., vol. 15, no. 3, pp. 1–5, 2018, doi:10.1515/jib-2017-0030.; P. Schubert and M. Kirchner, “Ellipse area calculations and their applicability in posturography,” Gait Posture, vol. 39, no. 1, pp. 518–522, 2014, doi:10.1016/j.gaitpost.2013.09.001.; M. Duarte and S. M. Freitas, “Revision of posturography based on force plate for balance evaluation,” Rev. Bras. Fisioter., vol. 14, no. 3, pp. 183–192, 2010, doi: S1413-35552010000300003 [pii].; M. Duarte, “Comments on ‘ellipse area calculations and their applicability in posturography’ (schubert and kirchner, vol.39, pages 518-522, 2014),” Gait Posture, vol. 41, no. 1, pp. 44–45, 2015, doi:10.1016/j.gaitpost.2014.08.008.; M. Gómez, J. Serna, and L. Vélez, “Diagnosis of bearing with mechanical vibrations and virtual instruments,” Visión Electrónica Más que un estado sólido, vol. 8, no. 2, pp. 107–113, 2014.; Novel.de, “The pedar® system,” Novel GmbH, 2019. http://www.novel.de/novelcontent/pedar (accessed May 11, 2014).; D. A. Winter, Biomechanics and motor control of human movement, 4th ed. New Jersey: John Wiley & sons, Inc, 2009.; A. Bottaro, M. Casadio, P. G. Morasso, and V. Sanguineti, “Body sway during quiet standing: Is it the residual chattering of an intermittent stabilization process?,” in Human Movement Science, 2005, vol. 24, no. 4, pp. 588–615, doi:10.1016/j.humov.2005.07.006.; R. T. Disler et al., “Factors impairing the postural balance in COPD patients and its influence upon activities of daily living,” Eur. Respir. J., vol. 15, no. 1, 2019.; Bomberos Colombia. (2016). Guía para Certificar Equipos de Búsqueda y Rescate Urbano en los Cuerpos de Bomberos de Colombia. Disponible en: https://bomberos.mininterior.gov.co/sites/default/files/guia_final_bomberos_colombia_2017_.pdf.; Brigham and Women’s Hospital. (2019). Signos vitales (temperatura corporal, pulso, frecuencia respiratoria y presión arterial). Disponible en: https://healthlibrary.brighamandwomens.org/spanish/diseasesconditions/adult/NonTraumatic/85,P03963.; Catalogo de la Salud. (s.f). Monitoreo de signos vitales. Disponible en: https://www.catalogodelasalud.com/ficha-producto/Monitores-de-pacientes+102363.; CNN. (2012). Un dispositivo inalámbrico para monitorear signos vitales. Disponible en: https://cnnespanol.cnn.com/2012/05/25/un-dispositivo-inalambrico-para-monitorear-signos-vitales/.; OMS. (s.f). Terremotos. Disponible en: https://www.who.int/hac/techguidance/ems/earthquakes/es/.; OMS. (2017). 10 datos sobre la seguridad vial en el mundo – Organización Mundial de la Salud (OMS). Disponible en: https://www.who.int/features/factfiles/roadsafety/es/.; Ramírez López, L. J., Marín López, A. F., & Cifuentes Sanabria, Y. P. (2015). Aplicación de la biotelemetría para tres signos vitales. Ciencia Y Poder Aéreo, 10(1), 179-186. https://doi.org/10.18667/cienciaypoderaereo.428.; Rosenberg D. (2009). ICONIX Process for Embedded Systems - A roadmap for embedded system development using SysML. Tomado de: https://community.sparxsystems.com/white-papers/616-88iconix-process-for-embedded-systems-a-roadmap-for-embedded-system-development-using-sysml.; Salazar-Arbelaez, Gabriel. (2018). Terremotos y salud: lecciones y recomendaciones. Salud Pública de México, 60(Supl. 1), 6-15. https://doi.org/10.21149/9445.; SUMMA 112. (s.f). Módulo 7 Actuación ante Accidentes con Múltiples Víctimas y Catástrofes. Incidentes NBQR. Rescate sanitario. Manuel de enfermería. Disponible en: http://www.madrid.org/cs/Satellite?blobcol=urldata&blobheader=application%2Fpdf&blobheadername1=Content-Disposition&blobheadervalue1=filename%3DModulo+7.pdf&blobkey=id&blobtable=MungoBlobs&blobwhere=1352868957600&ssbinary=true.; Tecnológico de Monterrey. (2011). Sistema para la visualización de signos vitales con dispositivos móviles utilizando tecnología Bluetooth. Disponible en: https://repositorio.tec.mx/bitstream/handle/11285/632321/33068001111800.pdf?sequence=1&isAllowed=y.; UdeA. (2016). Monitor de signos vitales vestible. UdeA – Universidad de Antioquía, Medellín, Colombia. Disponible en: http://www.udea.edu.co/wps/portal/udea/web/inicio/extension/portafoliotecnologico/articulos/Monitor_de_signos_vitales_vestible.; Udistrital. (2018). Monitoreo remoto de signos corporales y transmisión de datos y alertas a una aplicación instalada en un smartphone. Udistrital – Universidad Distrital Francisco José de Caldas. Disponible en: https://repository.udistrital.edu.co/bitstream/handle/11349/13383/SarmientoG%C3%B3mezOscar2018.pdf?sequence=2&isAllowed=y.; Volcano Discovery. (2021). Informe de terremotos en todo el mundo por enero 2021. Disponible en: https://www.volcanodiscovery.com/es/earthquakes/monthly/news/118160/Informe-de-terremotos-en-todo-el-mundo-por-enero-2021.html.; A. F. Calvo Salcedo, A. Bejarano Martínez, y A. Castillo González, “Diseño prototipo de una red de sensores inalámbricos", Visión Electrónica, vol. 12, no. 1, pp. 43-50, 2018. https://doi.org/10.14483/22484728.13405.; E. Y. Rodríguez, L. F. Pedraza Martínez, y D. A. López Sarmiento, “Desarrollo y evaluación de un sistema de comunicación remota para el monitoreo de una máquina sopladora de botellas", Visión Electrónica, vol. 5, no. 1, pp. 89-102, 2011. https://doi.org/10.14483/22484728.3517.; T. Salamanca, “Prototipo para monitorización de signos vitales en espacios confinados", Visión Electrónica, vol. 12, no. 1, pp. 83-88, 2018. https://doi.org/10.14483/22484728.13401 [18] Volcano Discovery. (2021). Informe de terremotos en todo el mundo por enero 2021. Disponible en: https://www.volcanodiscovery.com/es/earthquakes/monthly/news/118160/Informe-de-terremotos-en-todo-el-mundo-por-enero-2021.html.; W. Enríquez, P. Nazate, y O. Marcillo, “Prototipo DAS basado en FPGA de 12 canales para monitoreo geodinámico", Visión Electrónica, vol. 12, no. 1, pp. 73-82, 2018. https://doi.org/10.14483/22484728.13782.; Y. Baquero, Z. Alezones Campos, y H. Borrero Guerrero, “Robot móvil controlado por comandos de voz LPC-DTW”, Visión Electrónica, vol. 5, no. 1, pp. 15-25, 2011. https://doi.org/10.14483/22484728.3524.; Cardona, O. (2007). La gestión del riesgo colectivo. Un marco conceptual que encuentra sustento en una ciudad laboratorio. Red de Estudios Sociales en Prevención de Desastres en América Latina.; Cardona, O. D., García, A. C., Mattingly, S., Trujillo, E. G. C., & Vega, D. F. P. (2003). Plan de emergencias de Manizales. Alcaldía de Manizales–Oficina Municipal para la Prevención y Atención de Desastres-OMPAD. Manizales.; Castro, F.D. (2008). Metodología de projeto centrada na casa da qualidade. Tesis de maestría, universidade federal rio grande do sul, Porto Alegre, Brasil.; Chowdhury, T. J., Elkin, C., Devabhaktuni, V., Rawat, D. B., & Oluoch, J. (2016). Advances on localization techniques for wireless sensor networks: A survey. Computer Networks, 110, 284-305.; Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., & Mankodiya, K. (2017). Towards fog-driven IoT eHealth: promises and challenges of IoT in medicine and healthcare. Future Generation Computer Systems.; García, A. M., & Castaño Dávila, A. C. (2013). SIG de deslizamientos para el departamento de Caldas.; Keipi, K., Mora-Castro, S., & Bastidas, P. (2005). Gestión de riesgo de amenazas naturales en proyectos de desarrollo: Lista de preguntas de verificación (" Checklist"). Inter-American Development Bank.; Kim, T., Ramos, C., & Mohammed, S. (2017). Smart City and IoT. Elsevier.; Lavell, A. (2001). Sobre la gestión del riesgo: apuntes hacia una definición. Biblioteca Virtual en Salud de Desastres-OPS. Consultado el, 4.; Liu, L., Guo, C., Li, J., Xu, H., Zhang, J., & Wang, B. (2016). Simultaneous life detection and localization using a wideband chaotic signal with an embedded tone. Sensors, 16(11), 1866.; Lomotey, R. K., Pry, J., & Sriramoju, S. (2017). Wearable IoT data stream traceability in a distributed health information system. Pervasive and Mobile Computing.; Morral, G., & Bianchi, P. (2016). Distributed on-line multidimensional scaling for self-localization in wireless sensor networks. Signal Processing, 120, 88-98.; Novák, D., Švecová, M., & Kocur, D. (2017). Multiple Person Localization Based on Their Vital Sign Detection Using UWB Sensor. In Microwave Systems and Applications. InTech.; Pahl, G., & Beitz, W. (2013). Engineering design: a systematic approach. Springer Science & Business Media.; Rising, L., & Janoff, N. S. (2000). The Scrum software development process for small teams. IEEE software, (4), 26-32.; Schwaber, K., & Sutherland, J. (2013). The definitive guide to Scrum: The rules of the game. online], Scrum. org, http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf. [Visitada en agosto de 2015].; Shalloway A, Bain S, Pugh K and Kolsky A. 2011. Essential Skills for the agile developer. A guide to better programming and desing. Ed. Addison-Wesley.; UNGRD (2017). Boletín de prensa 131, Unidad atención de riesgos y desastres. Tras avalancha en manizales, continúan los trabajos de recuperación.; J. Hartvigsen et al., “What low back pain is and why we need to pay attention,” Lancet, vol. 391, no. 10137, pp. 2356–2367, 2018, doi:10.1016/S0140-6736(18)30480-X.; A. Cieza, K. Causey, K. Kamenov, S. W. Hanson, S. Chatterji, and T. Vos, “Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019,” Lancet, vol. 396, no. 10267, pp. 2006–2017, 2020, doi:10.1016/S0140-6736(20)32340-0.; A. M. Briggs et al., “Musculoskeletal Health Conditions Represent a Global Threat to Healthy Aging: A Report for the 2015 World Health Organization World Report on Ageing and Health,” Gerontologist, vol. 56, pp. S243–S255, 2016, doi:10.1093/geront/gnw002.; (OMS) Organizacion Mundial de la Salud, “Rehabilitación,” 2020. https://www.who.int/es/news-room/fact-sheets/detail/rehabilitation.; (OMS) Organizacion Mundial de la Salud, “Rehabilitation 2030 Initiative.” https://www.who.int/initiatives/rehabilitation-2030.; F. A. Abdulla, S. Alsaadi, M. I. R. Sadat-Ali, F. Alkhamis, H. Alkawaja, and S. Lo, “Effects of pulsed low-frequency magnetic field therapy on pain intensity in patients with musculoskeletal chronic low back pain: Study protocol for a randomised double-blind placebo-controlled trial,” BMJ Open, vol. 9, no. 6, pp. 1–9, 2019, doi:10.1136/bmjopen-2018-024650.; H. Hu et al., “Promising application of Pulsed Electromagnetic Fields (PEMFs) in musculoskeletal disorders,” Biomed. Pharmacother., vol. 131, p. 110767, 2020, doi:10.1016/j.biopha.2020.110767.; J. D. Z. Guillot, “La magnetoterapia y su aplicación en la medicina,” Rev. Cuba. Med. Gen. Integr., vol. 18, no. 1, pp. 60–72, 2002.; (OMS) Organización Mundial de la Salud, “Campos electromagnéticos (CEM).” https://www.who.int/peh-emf/about/WhatisEMF/es/ (accessed Apr. 10, 2021).; E. Alonso Fustel, R. Garcia Vázquez, and C. Onaindia Olalde, “Campos electromagnéticos y efectos en salud.” Bizkaia, Vasco, 2012.; M. O. Mattsson and M. Simkó, “Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz,” Medical Devices: Evidence and Research, vol. 12. Dove Medical Press Ltd, pp. 347–368, 2019, doi:10.2147/MDER.S214152.; N. Bachl, G. Ruoff, B. Wessner, and H. Tschan, “Electromagnetic Interventions in Musculoskeletal Disorders,” Clinics in Sports Medicine, vol. 27, no. 1. pp. 87–105, Jan. 2008, doi:10.1016/j.csm.2007.10.006.; T. Paolucci, L. Pezzi, A. M. Centra, N. Giannandrea, R. G. Bellomo, and R. Saggini, “Electromagnetic field therapy: A rehabilitative perspective in the management of musculoskeletal pain – A systematic review,” J. Pain Res., vol. 13, pp. 1385–1400, 2020, doi:10.2147/JPR.S231778.; J. Multanen, A. Häkkinen, P. Heikkinen, H. Kautiainen, S. Mustalampi, and J. Ylinen, “Pulsed electromagnetic field therapy in the treatment of pain and other symptoms in fibromyalgia: A randomized controlled study,” Bioelectromagnetics, vol. 39, no. 5, pp. 405–413, 2018, doi:10.1002/bem.22127.; H. Mohajerani, F. Tabeie, F. Vossoughi, E. Jafari, and M. Assadi, “Effect of pulsed electromagnetic field on mandibular fracture healing: A randomized control trial, (RCT),” J. Stomatol. Oral Maxillofac. Surg., vol. 120, no. 5, pp. 390–396, Nov. 2019, doi:10.1016/j.jormas.2019.02.022.; A. M. Elshiwi, H. A. Hamada, D. Mosaad, I. M. A. Ragab, G. M. Koura, and S. M. Alrawaili, “Effect of pulsed electromagnetic field on nonspecific low back pain patients: a randomized controlled trial,” Brazilian J. Phys. Ther., vol. 23, no. 3, pp. 244–249, 2019, doi:10.1016/j.bjpt.2018.08.004.; H. L. Casalechi et al., “Acute effects of photobiomodulation therapy and magnetic field on functional mobility in stroke survivors: a randomized, sham-controlled, triple-blind, crossover, clinical trial,” Lasers Med. Sci., vol. 35, no. 6, pp. 1253–1262, 2020, doi:10.1007/s10103-019-02898-y.; L. Kopacz, Z. Ciosek, H. Gronwald, P. Skomro, R. Ardan, and D. Lietz-Kijak, “Comparative Analysis of the Influence of Selected Physical Factors on the Level of Pain in the Course of Temporomandibular Joint Disorders,” Pain Res. Manag., vol. 2020, 2020, doi:10.1155/2020/1036306.; E. Hattapoğlu, İ. Batmaz, B. Dilek, M. Karakoç, S. Em, and R. Çevik, “Efficiency of pulsed electromagnetic fields on pain, disability, anxiety, depression, and quality of life in patients with cervical disc herniation: A randomized controlled study,” Turkish J. Med. Sci., vol. 49, no. 4, pp. 1095–1101, 2019, doi:10.3906/sag-1901-65.; G. L. Bagnato, G. Miceli, N. Marino, D. Sciortino, and G. F. Bagnato, “Pulsed electromagnetic fields in knee osteoarthritis: A double blind, placebo-controlled, randomized clinical trial,” Rheumatol. (United Kingdom), vol. 55, no. 4, pp. 755–762, 2016, doi:10.1093/rheumatology/kev426.; L. Chen et al., “Effects of pulsed electromagnetic field therapy on pain, stiffness and physical function in patients with knee osteoarthritis: A systematic review and meta-analysis of randomized controlled trials,” J. Rehabil. Med., vol. 51, no. 11, pp. 821–827, 2019, doi:10.2340/16501977-2613.; T. Paolucci et al., “Efficacy of extremely low-frequency magnetic field in fibromyalgia pain: A pilot study,” J. Rehabil. Res. Dev., vol. 53, no. 6, pp. 1023–1034, 2016, doi:10.1682/JRRD.2015.04.0061.; A. El Zohiery, Y. El Miedany, T. Elserry, O. El Shazly, and S. Galal, “Impact of electromagnetic field exposure on pain, severity, functional status and depression in patients with primary fibromyalgia syndrome,” Egypt. Rheumatol., no. xxxx, pp. 0–4, 2020, doi:10.1016/j.ejr.2020.10.001.; C. L. Ross, I. Syed, T. L. Smith, and B. S. Harrison, “The regenerative effects of electromagnetic field on spinal cord injury,” Electromagn. Biol. Med., vol. 36, no. 1, pp. 74–87, 2017, doi:10.3109/15368378.2016.1160408.; T. Pesqueira, R. Costa-Almeida, and M. E. Gomes, “Magnetotherapy: The quest for tendon regeneration,” J. Cell. Physiol., vol. 233, no. 10, pp. 6395–6405, 2018, doi:10.1002/jcp.26637.; G. Vicenti et al., “Biophysical stimulation of the knee with PEMFs: from bench to bedside,” J. Biol. Regul. Homeost. Agents, vol. 32, no. 6, pp. 23–28, 2018.; K. Iwasa and A. H. Reddi, “Pulsed Electromagnetic Fields and Tissue Engineering of the Joints,” Tissue Engineering - Part B: Reviews, vol. 24, no. 2. Mary Ann Liebert Inc., pp. 144–154, Apr. 01, 2018, doi:10.1089/ten.teb.2017.0294.; A. Madroñero De La Cal, “Importancia de los aplicadores de campo magnético en los tratamientos electroterapéuticos en las personas mayores,” Rev. Esp. Geriatr. Gerontol., vol. 38, no. 6, pp. 355–368, 2003, doi:10.1016/s0211-139x(03)74917-8.; T. Wang et al., “Pulsed electromagnetic fields: promising treatment for osteoporosis,” Osteoporos. Int., vol. 30, no. 2, pp. 267–276, 2019, doi:10.1007/s00198-018-04822-6.; X. sheng Qiu, X. gang Li, and Y. xin Chen, “Pulsed electromagnetic field (PEMF): A potential adjuvant treatment for infected nonunion,” Med. Hypotheses, vol. 136, Mar. 2020, doi:10.1016/j.mehy.2019.109506.; J. Taradaj, M. Ozon, R. Dymarek, B. Bolach, K. Walewicz, and J. Rosinczuk, “Impact of selected magnetic fields on the therapeutic effect in patients with lumbar discopathy: A prospective, randomized, single-blinded, and placebo-controlled clinical trial,” Adv. Clin. Exp. Med., vol. 27, no. 5, pp. 649–666, 2018, doi:10.17219/acem/68690.; J. Zwolińska, M. Gąsior, E. Śniezek, and A. Kwolek, “The use of magnetic fields in treatment of patients with rheumatoid arthritis. Review of the literature,” Reumatologia, vol. 54, no. 4, pp. 201–206, 2016, doi:10.5114/reum.2016.62475.; Z. Wu et al., “Efficacy and safety of the pulsed electromagnetic field in osteoarthritis: A meta-analysis,” BMJ Open, vol. 8, no. 12, Dec. 2018, doi:10.1136/bmjopen-2018-022879.; L. Mori, “EFICACIA DE LA MAGNETOTERAPIA EN LA DISMINUCION DEL DOLOR EN ADULTOS MAYORES CON OSTEOARTROSIS CENTRO DE MEDICINA COMPLEMENTARIA ESSALUD TRUJILLO,” Tesis - Universidad Cesar Vallejo - Trujillo Perú, vol. 0, no. 12. p. Pág. 89-95-95, 2019, doi:10.5354/0717-8883.1986.23781.; K. Marycz, K. Kornicka, and M. Röcken, “Static Magnetic Field (SMF) as a Regulator of Stem Cell Fate – New Perspectives in Regenerative Medicine Arising from an Underestimated Tool,” Stem Cell Rev. Reports, vol. 14, no. 6, pp. 785–792, 2018, doi:10.1007/s12015-018-9847-4.; N. Kamei, N. Adachi, and M. Ochi, “Magnetic cell delivery for the regeneration of musculoskeletal and neural tissues,” Regen. Ther., vol. 9, pp. 116–119, 2018, doi:10.1016/j.reth.2018.10.001.; A. Catalano, S. Loddo, F. Bellone, C. Pecora, A. Lasco, and N. Morabito, “Pulsed electromagnetic fields modulate bone metabolism via RANKL/OPG and Wnt/β-catenin pathways in women with postmenopausal osteoporosis: A pilot study,” Bone, vol. 116. pp. 42–46, 2018, doi:10.1016/j.bone.2018.07.010.; H. Okano, H. Ishiwatari, A. Fujimura, and K. Watanuki, “The physiological influence of alternating current electromagnetic field exposure on human subjects,” 2017 IEEE Int. Conf. Syst. Man, Cybern. SMC 2017, vol. 2017-Janua, pp. 2442–2447, 2017, doi:10.1109/SMC.2017.8122989.; A. Maziarz et al., “How electromagnetic fields can influence adult stem cells: Positive and negative impacts,” Stem Cell Res. Ther., vol. 7, no. 1, 2016, doi:10.1186/s13287-016-0312-5.; E. I. Waldorff, N. Zhang, and J. T. Ryaby, “Pulsed electromagnetic field applications: A corporate perspective,” J. Orthop. Transl., vol. 9, pp. 60–68, 2017, doi:10.1016/j.jot.2017.02.006.; A. M. Nayback-Beebe, L. H. Yoder, B. J. Goff, S. Arzola, and C. Weidlich, “The effect of pulsed electromagnetic frequency therapy on health-related quality of life in military service members with chronic low back pain,” Nurs. Outlook, vol. 65, no. 5, pp. S26–S33, 2017, doi:10.1016/j.outlook.2017.07.012.; T. Klüter et al., “Electromagnetic transduction therapy and shockwave therapy in 86 patients with rotator cuff tendinopathy: A prospective randomized controlled trial,” Electromagn. Biol. Med., vol. 37, no. 4, pp. 175–183, 2018, doi:10.1080/15368378.2018.1499030.; J. Pasek, T. Pasek, K. Sieroń-Stołtny, G. Cieślar, and A. Sieroń, “Electromagnetic fields in medicine – The state of art,” Electromagn. Biol. Med., vol. 35, no. 2, pp. 170–175, Apr. 2016, doi:10.3109/15368378.2015.1048549.; A. Hochsprung, S. Escudero-Uribe, A. J. Ibáñez-Vera, and G. Izquierdo-Ayuso, “Effectiveness of monopolar dielectric transmission of pulsed electromagnetic fields for multiple sclerosis–related pain: A pilot study,” Neurologia, 2018, doi:10.1016/j.nrl.2018.03.003.; A. B. Camacho, Y. A. P. Borrego, M. J. R. Matas, V. S. León, L. M. Mateos, and A. Oliviero, “Protocolo terapéutico del dolor con técnicas de estimulación no invasiva,” Med., vol. 12, no. 75, pp. 4451–4454, 2019, doi:10.1016/j.med.2019.03.026.; J. Arabloo et al., “Health technology assessment of magnet therapy for relieving pain,” Med. J. Islam. Repub. Iran, vol. 31, no. 1, pp. 184–188, 2017, doi:10.18869/mjiri.31.31.; J. Chudorlinski and L. Ksiazek, “Medical device for physical therapy with a magnetic field and light,” 2019 Appl. Electromagn. Mod. Eng. Med. PTZE 2019, pp. 22–25, 2019, doi:10.23919/PTZE.2019.8781742.; J. Chudorlinski and L. Ksiazek, “Signals for magnetic field therapy and a method for their preparation,” 2018 Appl. Electromagn. Mod. Tech. Med. PTZE 2018, pp. 29–32, 2018, doi:10.1109/PTZE.2018.8503080.; A. Krawczyk, P. Murawski, and E. Korzeniewska, “New Magnetotherapeutical Device,” pp. 2–5, 2017.; Samuel K Au, Jeff Weber, and Hugh Herr. Biomechanical design of a powered ankle-foot prosthesis. In Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on, pages 298–303. IEEE, 2007.; Rouse, Elliott Jay; Mooney, Luke M.; Martinez-Villalpando, Ernesto C.; Herr, Hugh M. "Clutchable Series-Elastic Actuator: Design of a Robotic Knee Prosthesis for Minimum Energy Consumption". 13th International Conference on Rehabilitation Robotics, ICORR 2013.; Samuel K Au and Hugh M Herr. Powered ankle-foot prosthesis. IEEE Robotics & Automation Magazine, 15(3), 2008.; Dong, D., Ge, W., Liu, S., Xia, F., & Sun, Y. (2017). Design and optimization of a powered ankle-foot prosthesis using a geared five-bar spring mechanism. International Journal of Advanced Robotic Systems, 14(3), 1729881417704545.; Andrew K LaPre, Ryan D Wedge, Brian R Umberger, and Frank C Sup. Preliminary study of a robotic foot-ankle prosthesis with active alignment. In Rehabilitation Robotics (ICORR), 2017 International Conference on, pages 1299–1304. IEEE, 2017.; Maurice LeBlanc. Give hope-give a hand. The LN-4 Prosthetic Hand, 2014, 2008.; Dianbiao Dong, Wenjie Ge, Shumin Liu, Fan Xia, and Yuanxi Sun. Design and optimization of a powered ankle-foot prosthesis using a geared five-bar spring mechanism. International Journal of Advanced Robotic Systems, 14(3):1729881417704545, 2017.; Samuel K Au, Jeff Weber, and Hugh Herr. Powered ankle–foot prosthesis improves walking metabolic economy. IEEE Transactions on Robotics, 25(1):51–66, 2009.; Arthur D Kuo. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective. Human movement science, 26(4):617–656, 2007.; Mary M Rodgers. Dynamic biomechanics of the normal foot and ankle during walking and running. Physical therapy, 68(12):1822–1830, 1988.; Tan Thang Nguyen, Thanh-Phong Dao, and Shyh-Chour Huang. Bio- mechanical design of a novel six dof compliant prosthetic ankle-foot 2.0 for rehabilitation of amputee. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pages V05AT08A013–V05AT08A013. Ameri- can Society of Mechanical Engineers, 2017.; Joana Alves, Eurico Seabra, César Ferreira, Cristina P Santos, and Luís Paulo Reis. Design and dynamic modelling of an ankle-foot prosthesis for humanoid robot. In Autonomous Robot Systems and Competitions (ICARSC), 2017 IEEE International Conference on, pages 128–133. IEEE, 2017.; Lei Ren, Richard K Jones, and David Howard. Predictive modelling of human walking over a complete gait cycle. Journal of biomechanics, 40(7):1567–1574, 2007.; SK Au and H Herr. Initial experimental study on dynamic interaction between an amputee and a powered ankle-foot prosthesis. In Workshop on dynamic walking: Mechanics and control of human and robot locomotion, page 1, 2006.; Samuel K Au, Hugh Herr, Jeff Weber, and Ernesto C Martinez- Villalpando. Powered ankle-foot prosthesis for the improvement of amputee ambulation. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, pages 3020–3026. IEEE, 2007.; Grimmer, M., Eslamy, M., Gliech, S., & Seyfarth, A. (2012, May). A comparison of parallel-and series elastic elements in an actuator for mimicking human ankle joint in walking and running. In 2012 IEEE International Conference on Robotics and Automation (pp. 2463-2470). IEEE.; Soren Shashikant, 2017. Mechanical Leg. https://grabcad.com/library/mechanical-leg-2.; Guy Rouleau, 2014. From SolidWorks to SimMechanics Posted in July 10, 2014. Simulink & Model-Based Design. https://blogs.mathworks.com/simulink/2014/07/10/from-solidworks-to-simmechanics/.; Eilenberg, M. F., Geyer, H., & Herr, H. (2010). Control of a powered ankle–foot prosthesis based on a neuromuscular model. IEEE transactions on neural systems and rehabilitation engineering, 18(2), 164-173.; L. Agudelo, “La discapacidad en Colombia: una mirada global,” Revista Colombiana de Medicina Física y Rehabilitación, p. 16, 2012.; D. A. N. de E. (DANE), “Boletín Censo General 2005 DISCAPACIDAD-COLOMBIA,” 2005. Accessed: Oct. 08, 2020. [Online]. Available: https://www.dane.gov.co/files/censos/libroCenso2005nacional.pdf.; Ministerio de Salud y Protección Social, “Sala situacional de las Personas con Discapacidad,” 2019. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/MET/sala-situacional-discapacidad2019-2-vf.pdf (accessed Feb. 25, 2021).; MINISTERIO DE SALUD Y PROTECCIÓN SOCIAL, Resolución 2968 DE 2015. República de Colombia: Ministerio de Salud y Protección Social, 2015, pp. 1–16.; Ministerio de Salud y Protección Social, Decreto Número 4725 DE 2005. República de Colombia: Ministerio de Protección Social, 2005, pp. 1–31.; N. Dechev, W. L. Cleghorn, and S. Naumann, “Multiple finger, passive adaptive grasp prosthetic hand,” Mech. Mach. Theory, vol. 36, no. 10, pp. 1157–1173, Oct. 2001, doi:10.1016/S0094-114X(01)00035-0.; R. I. Flores Luna, “Repositorio de Tesis DGBSDI: Diseño de protesis mecatronica de mano,” Universidad Nacional Autónoma de México, 2007.; S. R. Kashef, S. Amini, and A. Akbarzadeh, “Robotic hand: A review on linkage-driven finger mechanisms of prosthetic hands and evaluation of the performance criteria,” Mechanism and Machine Theory, vol. 145. Elsevier Ltd, p. 103677, Mar. 01, 2020, doi:10.1016/j.mechmachtheory.2019.103677.; L. Roselia, P. León, and E. Luz González Muñoz, Rosalío Ávila Chaurand Dimensiones antropométricas de población latinoamericana. 2007.; M. Monar and L. Murillo, “DISEÑO Y CONSTRUCCIÓN DE UNA PRÓTESIS BIÓNICA DE MANO DE 7 GRADOS DE LIBERTAD UTILIZANDO MATERIALES INTELIGENTES Y CONTROL MIOELÉCTRICO ADAPTADA PARA VARIOS PATRONES DE SUJECIÓN,” Universidad de las Fuerzas Armadas, Latacunga, 2015.; J. Zhang, B. Wang, C. Zhang, Y. Xiao, and M. Y. Wang, “An EEG/EMG/EOG-Based Multimodal Human-Machine Interface to Real-Time Control of a Soft Robot Hand,” Front. Neurorobot., vol. 13, no. 7, p. 7, Mar. 2019, doi:10.3389/fnbot.2019.00007.; K. P. Biswajeet Champaty, Suraj Nayak, “Development of an Electrooculogram-based Human-Computer Interface for Hands-Free Control of Assistive Devices,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 4S, p. 11, 2019.; E. Camargo Casallas, L. A. Luengas C., y M. Balaguera, “Respuesta a carga de una prótesis transtibial con elementos infinitos durante el apoyo y balanceo", Visión Electrónica, vol. 6, no. 2, pp. 82-92, 2012.; Q. Huang et al., “An EOG-based wheelchair robotic arm system for assisting patients with severe spinal cord injuries,” J. Neural Eng, vol. 16, 2019, doi:10.1088/1741-2552/aafc88.; S. D and R. R. M, “A high performance asynchronous EOG speller system,” Biomed. Signal Process. Control, vol. 59, p. 101898, May 2020, doi:10.1016/j.bspc.2020.101898.; A. López, M. Fernández, H. Rodríguez, F. Ferrero, and O. Postolache, “Development of an EOG-based system to control a serious game,” Meas. J. Int. Meas. Confed., vol. 127, pp. 481–488, Oct. 2018, doi:10.1016/j.measurement.2018.06.017.; O. F. Avilés, R. D. Hernández, J. L. Loaiza, and J. M. Rosário, “Simulation model of an anthropomorphic hand,” Int. J. Appl. Eng. Res., vol. 11, no. 23, pp. 11114–11120, 2016, Accessed: Oct. 11, 2020. [Online]. Available: https://www.researchgate.net/publication/312979011_Simulation_Model_of_an_Anthropomorphic_Hand.; O. F. A. Sánchez, R. Gutiérrez, A. J. U. Quevedo, and J. M. Rosario, “(PDF) Antrohopomorphic Grippers - Modelling, Analysis and Implementation,” 2015. https://www.researchgate.net/publication/228090516_Antrhopomorphic_Grippers_-_Modelling_Analysis_and_Implementation (accessed Oct. 11, 2020).; A. Sharma, W. Niu, C. L. Hunt, G. Lévay, R. R. Kaliki, and N. Thakor, “Augmented Reality Prosthesis Training Setup for Motor Skill Enhancement,” 2019.; Y. Tsepkovskiy, L. Antonov, C. Kocev, F. Palis, and N. Shoylev, “DEVELOPMENT OF A 3D AND VRML VIRTUAL HAND MODELS FOR DIFFERENT MECHANICAL GRIPPER,” 2008.; S. T. Vite, C. F. Domínguez Velasco, J. B. Reséndiz Rodríguez, A. Hernández Valencia, y M. Ángel Padilla Castañeda, “Simulador de reparación de aneurismas cerebrales para entrenamiento médico Visión Electrónica, vol. 12, no. 1, pp. 51-57, 2018. https://doi.org/10.14483/22484728.13399.; F. J. Badesa et al., “Physiological responses during hybrid BNCI control of an upper-limb exoskeleton,” Sensors (Switzerland), vol. 19, no. 22, Nov. 2019, doi:10.3390/s19224931.; M. R. Cutkosky, “On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks,” IEEE Trans. Robot. Autom., vol. 5, no. 3, pp. 269–279, 1989, doi:10.1109/70.34763.; “Anexo A Norma DIN 33 402.”; J. F. Guerrero Martínez, “INGENIERÍA BIOMÉDICA Tema 2 Bioseñales 2.1. Introducción,” 2010.; L. Atanelov, S. A. Stiens, and M. A. Young, “History of physical medicine and rehabilitation and its ethical dimensions”, AMA journal of ethics, vol. 17, no. 6, pp. 568–574, 2015. DOI:10.1001/journalofethics.2015.17.6.mhst1-1506 URL: https://journalofethics.ama-assn.org/article/history-physical-medicine-and-rehabilitation-and-its-ethical-dimensions/2015-06.; M. C. Garcia and T. Vieira, “Surface electromyography: Why, when and how to use it”, Revista andaluza de medicina del deporte, vol. 4, no. 1, pp.17–28, 2011. URL: https://www.elsevier.es/es-revista-revista-andaluza-medicina-del-deporte-284-articulo-surface-electromyography-why-when-how-X1888754611201253.; J. C. Guerrero Pupo, I. Amell Muñoz, and R. Cañedo Andalia, “Tecnología, tecnología médica y tecnología de la salud: algunas consideraciones básicas”, Acimed, vol. 12, no. 4, pp. 1–1, 2004. URL: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1024-94352004000400007.; J. A. A. Londoño, E. C. Bravo, and J. F. C. García, “Aplicación de tecnologías de rehabilitación robótica en niños con lesión del miembro superior”, Revista Salud UIS, vol. 49, no. 1, pp. 103–114, 2017. DOI: http://dx.doi.org/10.18273/revsal.v49n1-2017010 URL: http://www.scielo.org.co/scielo.php?pid=S0121-08072017000100103&script=sci_abstract&tlng=es.; F. Salvuci and R. Kohanoff, Tecnologías de rehabilitación. Wiley-Interscience, 2016.; A. Merlo and I. Campanini, “Technical aspects of surface electromyography for clinicians”, The open rehabilitation journal, vol. 3, no. 1, 2010. DOI:10.2174/1874943701003010098 URL: https://benthamopen.com/ABSTRACT/TOREHJ-3-98 [7]. F. J. Juan, “Utilidad de la electromiografía de superficie en rehabilitación” URL: https://www.researchgate.net/profile/Francisco_Juan-Garcia/publication/316588275_UTILIDAD_DE_LA_ELECTROMIOGRAFIA_DE_SUPERFICIE_EN_REHABILITACION/links/5905b86c4585152d2e957860/UTILIDAD-DE-LA-ELECTROMIOGRAFIA-DE-SUPERFICIE-EN-REHABILITACION.pdf.; J. W. Meklenburg, S. K. Patrick, and S. D. Jung, “Surface electromyogram simulator for myoelectric prosthesis testing,” 2010. URL: https://digitalcommons.wpi.edu/mqp-all/1402/.; Merletti Roberto, and Dario Farina. Surface electromyography: physiology, engineering, and applications. Piscataway, NJ: IEEE Press, 2016, online. ISBN: 9781119082934, DOI:10.1002/9781119082934.; E. Guzmán, G. Méndez, “Electromiografía en las Ciencias de la Rehabilitación”, Salud Uninorte, Vol 3, no. 3, pp 753-765, 2018.; WOLFRAM S., y PACKARD N. H. Two-dimensional Cellular Autómata. J. Statist. Phys. 38, 1985.; MUÑOZ CASTAÑO, J. D., Artículo: Autómatas Celulares y Física Digital, en: Memorias del Primer Congreso Colombiano de Neuro Computación. Santa fe de Bogotá, D. C.: Academia Colombiana de Ciencias Exactas, Físicas y Naturales, p 28. ISBN 958-9205- 17-8. 1996.; HERNÁNDEZ, J. C., Algunas Generalizaciones en Autómatas Celulares. México: Consejo Nacional de Ciencia y Tecnología – CONACYT, 2008.; JUÁREZ, G. Teoría del Campo Promedio En Autómatas Celulares Similares a "The Game Of Life". México: Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 2000.; CUEVAS, E., ZALDÍVAR, D., & PÉREZ, M., Procesamiento digital de imágenes con MATLAB y Simulink. México: Alfaomega Grupo Editor; RA-MA Editorial. 2010.; MUÑOZ, M. A., Privacidad y ocultación de información digital ESTEGANOGRAFÍA protegiendo y atacando redes informáticas. Madrid, Bogotá., España, Colombia: Ra-ma, Ediciones de la U. 2017; PONCE, C., P. Inteligencia Artificial con aplicaciones a la ingeniería. México: Alfa Omega Grupo Editor. 2010.; WOLFRAM S., Cellular automata as simple self-organizing systems. Pasadena: Caltech prepint CAL-68-938. 1982.; ESPÍNOLA, M. Clasificación de Imágenes de Satélite mediante Autómatas Celulares. Almería: Universidad de Almería. 2011.; MOORE, E. F. Machine Models Of Self-Reproduction. U.S.A.: Proceedings of Symposia in Applied Mathematics. 1963.; GUERRERO, C. Á. “RapaNui – Isla de Pascua”. RapaNui, Chile. 20/06/2018.; CHEDDAD, A., CONDELL, J., CURRAN, K., & MCKEVITT, P. Digital image steganography: Survey and analysis of current methods. Northern Ireland: School of Computing and Intelligent Systems, University of Ulster at Magee. Signal Processing, 90 (3), 26. Obtenido de EL SEVIER, 2010.; DE LA CRUZ FRANCO, A. Implementación de un Algoritmo Computacional para Esteganografía basado en técnicas del bit menos significativo. Chetumal, México: Universidad de Quintana Roo. 2017.; VÁZQUEZ, J. I., & OLIVER, J. Evolución de Autómatas Celulares utilizando Algoritmos Genéticos. Bilbao, España: Universidad de Deusto. 2008.; MIRI, A., FAEZ, K. Adaptive Image Steganography based on transform domain via Genetic Algorithm. Tehran, Iran: Department of Electrical Engineering, Amirkabir University of Technology. Optika, 145, 10. Obtenido de EL SEVIER, 2017.; MUKJERJEE, S., ROY, S., & SANYAL, G. Image Steganography Using Mid Position Value Technique. Durgapur, India: National Institute of Technology Durgapur. Procedia Computer Science, 132, 7. Obtenido de EL SEVIER, 2018.; WESTFELD, A., PFIZMANN, A. Attacks on Steganographic System. Dresden, Germany: Department of Computer Science, Dresden University of Technology. Information Hiding, 15. 1999.; CABALLERO, H. Cálculo de la dispersión de pixels en imágenes RGB para Esteganografía con base en la teoría fractal. Toluca de Lerdo, México: Facultad de Ingeniería, Universidad Autónoma de México. 2020.; FRIDRICH, J., GOLJAN, M., & DU, R. Reliable Detection of LSB steganography in color and grayscale images. Binghamton, U.S.A.: Department of Electrical and Computer Engineering, Binghamton University, 7. 2002.; D. Galeano and I. Electr, “Robótica Médica,” p. 21.; J. Cornejo, J. A. Cornejo Aguilar, and J. P. Perales Villarroel, “Innovaciones Internacionales En Robótica Médica Para Mejorar El Manejo Del Paciente En Perú,” Rev. la Fac. Med. Humana, vol. 19, no. 4, pp. 105–113, 2019, doi:10.25176/rfmh.v19i4.2349.; E. Saraee, A. Joshi, and M. Betke, “A therapeutic robotic system for the upper body based on the Proficio robotic arm,” Int. Conf. Virtual Rehabil. ICVR, vol. 2017-June, 2017, doi:10.1109/ICVR.2017.8007498.; M. A. Soleimani, H. Zohoor, A. R. F. Yakhdani, M. Heravi, and E. Mohammadi, “Designing, Prototyping, and Controlling a Portable Rehabilitation Robot for the Shoulder Physiotherapy and Training,” ICRoM 2019 - 7th Int. Conf. Robot. Mechatronics, no. ICRoM, pp. 281–284, 2019, doi:10.1109/ICRoM48714.2019.9071844.; M. R. Sarder, F. Ahmed, and B. A. Shakhar, “Design and implementation of a lightweight telepresence robot for medical assistance,” ECCE 2017 - Int. Conf. Electr. Comput. Commun. Eng., pp. 779–783, 2017, doi:10.1109/ECACE.2017.7913008.; R. R. Murphy, D. Riddle, and E. Rasmussen, “Robot-assisted medical reachback: A survey of how medical personnel expect to interact with rescue robots,” Proc. - IEEE Int. Work. Robot Hum. Interact. Commun., pp. 301–306, 2004, doi:10.1109/roman.2004.1374777.; M. Cardona, F. Cortez, A. Palacios, and K. Cerros, “Mobile robots application against covid-19 pandemic,” 2020 Ieee Andescon, Andescon 2020, 2020, doi:10.1109/ANDESCON50619.2020.9272072.; R. M. Nope-Giraldo et al., “Mechatronic Systems Design of ROHNI-1: Hybrid Cyber-Human Medical Robot for COVID-19 Health Surveillance at Wholesale-Supermarket Entrances,” Pan Am. Heal. Care Exch. PAHCE, vol. 2021-May, 2021, doi:10.1109/GMEPE/PAHCE50215.2021.9434874.; P. Manikandan, G. Ramesh, G. Likith, D. Sreekanth, and G. Durga Prasad, “Smart Nursing Robot for COVID-19 Patients,” 2021 Int. Conf. Adv. Comput. Innov. Technol. Eng. ICACITE 2021, vol. 7, pp. 839–842, 2021, doi:10.1109/ICACITE51222.2021.9404698.; Coronavirus: 12 aspectos en los que cambiará radicalmente nuestras vidas”: BBC News, mayo 2020. https://www.bbc.com/mundo/noticias-52512680.; UN. “La enfermedad del coronavirus, una emergencia de salud mundial”. Naciones Unidas. https://www.un.org/es/coronavirus.; “Medidas tomadas por el gobierno.” GOV.CO. Fronteras, marzo 2020. https://coronaviruscolombia.gov.co/Covid19/acciones/acciones-de-fronteras.html.; “Cómo se propaga el COVID-19”. Centros para el Control y la Prevención de Enfermedades, julio 2021. https://espanol.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html.; OMS. “Protéjase a sí mismo y a los demás contra la COVID-19”. Organización Mundial de la Salud. Octubre 2020. https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019/advice-for-public.; M. A. Vivas. “Medidas para la reactivación económica en Colombia-Decreto 580 de 2021. Consultor Salud, junio 2021. https://consultorsalud.com/medidas-para-la-reactivacion-economica/.; C.R. Colombiana. “Consejos de autocuidado y prevención COVID-19”. Cruz Roja Colombiana. https://www.cruzrojacolombiana.org/consejos-de-autocuidado-y-prevencion/.; Cinco protocolos que se usan a diario y que no sirven contra el Covid”. Portafolio, febrero de 2021. https://www.portafolio.co/economia/cinco-protocolos-covid-19-que-no-sirven-contra-el-coronavirus-549048.; “Empresas deberán adaptar protocolo de bioseguridad de Minsalud a sus actividades”. Minsalud, abril 2020. https://www.minsalud.gov.co/Paginas/Empresas-deberan-adaptar-protocolo-de-bioseguridad-de-Minsalud-a-sus-actividades.aspx.; I. J. Molina Pineda. “¿Por qué el coronavirus se propaga ahora con tanta velocidad?”. BBC News, noviembre 2020. https://www.bbc.com/mundo/noticias-54794713.; “COVID-19: novedades científicas”. Instituto de Salud Global Barcelona, noviembre 2021. https://www.isglobal.org/covid-19-novedades-cientificas.; Lionex. “Proximiti-i”. Lionex. 2020. https://lionex.co/proximiti-i.; “La solución digital más confiable del mundo para mitigar la propagación de COVID-19”. KINEXON, 2020. https://kinexon.com/technology/safetag/.; “Coronavirus: el plan de Apple y Google para rastrear el covid-19 desde tu teléfono”. BBC News, abril 2020. https://www.bbc.com/mundo/noticias-52251843.; “Nissan incorporó un nuevo Dispositivo de Distanciamiento Físico para toda su red de concesionarios”. La Nación, marzo 2021. https://www.lanacion.com.ar/lifestyle/nissan-incorporo-un-nuevo-dispositivo-de-distanciamiento-fisico-para-toda-su-red-de-concesionarios-nid11032021/.; “Analítica de detección de tapabocas, para una reapertura segura”. SAC Seguridad, 2020. https://sacseguridad.com/iss-analitica-deteccion-tapabocas-termica/.; W. Yan. “¿Llevas puesta la mascarilla? Un software de reconocimiento está listo para checar si las personas cumplen con el correcto uso”. National Geographic, septiembre 2020. https://www.nationalgeographicla.com/ciencia/2020/09/software-reconocimiento-mascarillas.; K1T671TM-3XF”. HIKVISION, 2020. https://www.hikvision.com/es-la/products/Access-Control-Products/Face-Recognition-Terminals/Ultra-Series/ds-k1t671tm-3xf-/?q=ds-k1t671tm-3xf&position=5.; “SOLIDWORKS. Qué es y para qué sirve”. SolidBi. https://solid-bi.es/solidworks/.; “Sensor de distancia SHARP GP2Y0A02YK0F”. Naylamp Mechatronics. https://naylampmechatronics.com/sensores-proximidad/204-sensor-de-distancia-infrarrojo-sharp-gp2y0a02.html.; “Sensor ultrasónico HC-SR04”. Naylamp Mechatronics. https://naylampmechatronics.com/sensores-proximidad/10-sensor-ultrasonido-hc-sr04.html.; “Sensor de temperatura TMP36”. Prometec. https://www.prometec.net/sensor-tmp36/.; “Comprensión del reconocimiento facial mediante el algoritmo LBPH”. Analytics Vidhya, julio 2021. https://www.analyticsvidhya.com/blog/2021/07/understanding-face-recognition-using-lbph-algorithm/.; Y. M. Shum. “Situación Global Mobile 2020”. YS social media, 2020. https://yiminshum.com/mobile-movil-app-2020/.; F. Cortez, J. Cercado Mancero, A. Vera Lorenti, and E. Valle Flores, “Un panorama de las energías renovables en el Mundo, Latinoamérica y Colombia,” Espacios, vol. 39, p. 10, 2018.; G. A. Zapata and J. A. Valencia, “Guía práctica para la aplicación de los incentivos tributarios de la Ley 1715 de 2014,” Colombia.; J. Faiz and A. Nematsaberi, “Linear electrical generator topologies for direct-drive marine wave energy conversion- an overview,” IET Renew. Power Gener., vol. 11, no. 9, pp. 1163–1176, 2017.; X. Wang, F. Chen, R. Zhu, G. Yang, and C. Zhang, “A Review of the Design and Control of Free-Piston Linear Generator,” Energies, vol. 11, no. 8, p. 2179, 2018.; H. Chen, S. Zhao, H. Wang, and R. Nie, “A Novel Single-Phase Tubular Permanent Magnet Linear Generator,” IEEE Trans. Appl. Supercond., vol. 30, no. 4, pp. 2–6, 2020.; R. Guo, H. Yu, T. A. O. Xia, Z. Shi, W. Zhong, and X. Liu, “A Simplified Subdomain Analytical Model for the Design and Analysis of a Tubular Linear Permanent Magnet Oscillation Generator,” IEEE Access, vol. 6, pp. 42355–42367, 2018.; H. M. Zapata, F. A. Cabrera, M. A. Perez, C. A. Silva, and W. Jara, “Model of a permanent magnet linear generator,” IECON Proc. (Industrial Electron. Conf., vol. 2019-Octob, pp. 6992–6997, 2019.; H. Jing, N. Maki, T. Ida, and M. Izumi, “Electrical design of large-scale tubular PM linear generators for wave energy conversion,” IEEJ Trans. Electr. Electron. Eng., vol. 12, pp. S113–S119, 2017.; R. M. Korbekandi, N. J. Baker, and D. Wu, “A study of translator length in a tubular linear electrical machine designed for use in alinear combustion joule engine,” 2019 12th Int. Symp. Linear Drives Ind. Appl. LDIA 2019, pp. 1–6, 2019.; Y. Sun, Z. Xu, Q. Zhang, J. Lu, and L. Liu, “A Tubular Single-Phase Linear Generator with an Axially Magnetized PM Mover for Free-Piston Engines,” IEEJ Trans. Electr. Electron. Eng., vol. 16, no. 1, pp. 139–146, 2021.; J. Kim, J. Y. Kim, and J. B. Park, “Design and optimization of a 8kW linear generator for a direct-drive point absorber,” Ocean. 2013 MTS/IEEE - San Diego An Ocean Common, pp. 1–6, 2013.; S. Arslan and S. A. Oy, “Design and optimization of tube type interior permanent magnets generator for free piston applications,” TEM J., vol. 6, no. 2, pp. 214–221, 2017.; H. J.R. and T. J. E. Miller, Design of brushless permanetn magnet machines, vol. 732, no. 1. USA: Magna physycs publishing & Oxford University Press, 2010.; J. Zhang, H. Yu, and Z. Shi, “Analysis of a PM linear generator with double translators for complementary energy generation platform,” Energies, vol. 12, no. 24, 2019.; A. Musolino, R. Rizzo, and M. Raugi, “A semi-analytical model for the analysis of a Permanent Magnet tubular linear generator,” 2015 Int. Conf. Renew. Energy Res. Appl. ICRERA 2015, vol. 54, no. 1, pp. 1513–1517, 2015.; S. A. Nasar, “Permanent-Magnet Linear Alternators Part II: Design Guidelines,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-23, no. 1, pp. 79–82, 1987.; H. M. Quintero, E. R. Trujillo, and G. M. Tarazona Bermudez, “EVOLUTION OF WIND POWER TECHNOLOGY.” [Online]. Available: www.tjprc.org.; H. Montaña Quintero, E. Rivas Trujillo, and G. M. Tarazona, “TRENDS ON WIND POWER ELECTRIC GENERATORS,” vol. 15, no. 17, 2020, [Online]. Available: www.arpnjournals.com.; M. Abril Martínez, L. Carolina, R. Rodríguez, U. Militar, N. Granada, and D. P. Cuero, “Estado Del Arte Sobre Materiales Utilizados Para La Fabricación De Las Palas De Turbinas Eólicas Offshore.”; N. Javahiraly, A. Chakari, L. Calegari, and P. Meyrueis, “Determination of solid materials rigidity modulus by a new nondestructive optical method,” Optics & Laser Technology, vol. 36, no. 3, pp. 239–243, Apr. 2004, doi:10.1016/J.OPTLASTEC.2003.09.002.; I. M. Bragado, “Física General,” 2013.; H. A. Gonzáles - D. H. Meza, “LA IMPORTANCIA DEL MÉTODO EN LA SELECCION DE MATERIALES,” vol. 4, no. ISSN 0122-1701, 2004.; “Colección: LAS CIENCIAS NATURALES Y LA MATEMATICAS,” 2010.; Y. Jiang, B. Song, J. Hu, H. Liang, and S. Rao, “Time-dependent reliability of corroded circular steel tube structures: Characterization of statistical models for material properties,” Structures, vol. 33, pp. 792–803, Oct. 2021, doi:10.1016/J.ISTRUC.2021.04.091.; H. Zhang, B. Zhang, Q. Gao, J. Song, and G. Han, “A review on microstructures and properties of graphene-reinforced aluminum matrix composites fabricated by friction stir processing,” Journal of Manufacturing Processes, vol. 68, pp. 126–135, Aug. 2021, doi:10.1016/J.JMAPRO.2021.07.023.; W. Zhang, X. Zhang, Z. Qin, W. Zhang, and R. Yang, “Mechanical and flame retardant performance of fiberglass-reinforced polysilsesquioxane interpenetrated with poly(ethylene glycol)-urethane,” Composites Part A: Applied Science and Manufacturing, vol. 149, p. 106490, Oct. 2021, doi:10.1016/J.COMPOSITESA.2021.106490.; A. Zavdoveev et al., “Effect of heat treatment on the mechanical properties and microstructure of HSLA steels processed by various technologies,” Materials Today Communications, vol. 28, p. 102598, Sep. 2021, doi:10.1016/J.MTCOMM.2021.102598.; G. Kumar Sharma and B. Nidhi Vats, “A comparative study on mechanical and tribological properties of different grades of tool steels,” Materials Today: Proceedings, Mar. 2021, doi:10.1016/J.MATPR.2021.02.275.; F. Tariq and P. Bhargava, “Stress–strain curves and mechanical properties of corrosion damaged super ductile reinforcing steel,” Structures, vol. 33, pp. 1532–1543, Oct. 2021, doi:10.1016/J.ISTRUC.2021.05.039.; B. Nie, S. Xu, Z. Zhang, and A. Li, “Surface morphology characteristics and mechanical properties of corroded cold-formed steel channel sections,” Journal of Building Engineering, vol. 42, p. 102786, Oct. 2021, doi:10.1016/J.JOBE.2021.102786.; I. J. Delfin, F. Madrid, and R. Martínez Sánchez, “Tesis: EFECTO DE LA CERIA (CeO 2 ) EN LA MICROESTRUCTURA Y PROPIEDADES MECÁNICAS DE UNA ALEACIÓN DE ALUMINIO 2024 Que como requisito presenta.”; A. Baradeswaran and A. E. Perumal, “Wear and mechanical characteristics of Al 7075/graphite composites,” Composites Part B: Engineering, vol. 56, pp. 472–476, Jan. 2014, doi:10.1016/J.COMPOSITESB.2013.08.073.; P. Chakrapani and T. S. A. Suryakumari, “Mechanical properties of aluminium metal matrix composites-A review,” Materials Today: Proceedings, vol. 45, pp. 5960–5964, Jan. 2021, doi:10.1016/J.MATPR.2020.09.247.; N. Kumar, A. Bharti, and K. K. Saxena, “A re-investigation: Effect of powder metallurgy parameters on the physical and mechanical properties of aluminium matrix composites,” Materials Today: Proceedings, vol. 44, pp. 2188–2193, Jan. 2021, doi:10.1016/J.MATPR.2020.12.351.; B. Zhou, B. Liu, S. Zhang, R. Lin, Y. Jiang, and X. Lan, “Microstructure evolution of recycled 7075 aluminum alloy and its mechanical and corrosion properties,” Journal of Alloys and Compounds, vol. 879, p. 160407, Oct. 2021, doi:10.1016/J.JALLCOM.2021.160407.; M. Barhoumi, N. Sfina, M. Said, and S. Znaidia, “Elastic and mechanical properties of aluminium and silicon carbide using density functional theory and beyond,” Solid State Communications, vol. 334–335, p. 114369, Aug. 2021, doi:10.1016/J.SSC.2021.114369.; E. M. Ruiz Navas and B. Ruiz Palenzuela, “Sintering of Aluminum Alloys. Processing and Properties,” Encyclopedia of Materials: Metals and Allloys, pp. 343–352, Jan. 2022, doi:10.1016/B978-0-12-819726-4.00114-9.; Ankur, A. Bharti, D. Prasad, N. Kumar, and K. K. Saxena, “A Re-investigation: Effect of various parameter on mechanical properties of copper matrix composite fabricated by powder metallurgy,” Materials Today: Proceedings, vol. 45, pp. 4595–4600, Jan. 2021, doi:10.1016/J.MATPR.2021.01.009.; A. Agrawal and R. Mirzaeifar, “Copper-graphene composites; developing the MEAM potential and investigating their mechanical properties,” Computational Materials Science, vol. 188, p. 110204, Feb. 2021, doi:10.1016/J.COMMATSCI.2020.110204.; S. Thapliyal and A. Mishra, “Machine learning classification-based approach for mechanical properties of friction stir welding of copper,” Manufacturing Letters, vol. 29, pp. 52–55, Aug. 2021, doi:10.1016/J.MFGLET.2021.05.010.; J. Chi et al., “Titanium alloy components fabrication by laser depositing TA15 powders on TC17 forged plate: Microstructure and mechanical properties,” Materials Science and Engineering: A, vol. 818, p. 141382, Jun. 2021, doi:10.1016/J.MSEA.2021.141382.; D. Liović, M. Franulović, and D. Kozak, “Material models and mechanical properties of titanium alloys produced by selective laser melting,” Procedia Structural Integrity, vol. 31, pp. 86–91, Jan. 2021, doi:10.1016/J.PROSTR.2021.03.014.; J. Aguilar Pozzer and E. Guzowski, “Guía didáctica Materiales y materias primas.”; M. Z. R. Khan, S. K. Srivastava, and M. K. Gupta, “A state-of-the-art review on particulate wood polymer composites: Processing, properties and applications,” Polymer Testing, vol. 89, p. 106721, Sep. 2020, doi:10.1016/J.POLYMERTESTING.2020.106721.; C. Wu, N. Vahedi, A. P. Vassilopoulos, and T. Keller, “Mechanical properties of a balsa wood veneer structural sandwich core material,” Construction and Building Materials, vol. 265, p. 120193, Dec. 2020, doi:10.1016/J.CONBUILDMAT.2020.120193.; F. Tian, L. Chen, and X. Xu, “Dynamical mechanical properties of wood-high density polyethylene composites filled with recycled rubber,” Journal of Bioresources and Bioproducts, vol. 6, no. 2, pp. 152–159, May 2021, doi:10.1016/J.JOBAB.2021.02.007.; J. F. Shackelford, “Introducción a la ciencia de materiales para ingenieros 6a edición.”; S. Velu, J. K. Joseph, M. Sivakumar, V. K. Bupesh Raja, K. Palanikumar, and N. Lenin, “Experimental investigation on the mechanical properties of carbon-glass-jute fiber reinforced epoxy hybrid composites,” Materials Today: Proceedings, vol. 46, pp. 3566–3571, Jan. 2021, doi:10.1016/J.MATPR.2021.01.333.; W. Chen, Q. Meng, H. Hao, J. Cui, and Y. Shi, “Quasi-static and dynamic tensile properties of fiberglass/epoxy laminate sheet,” Construction and Building Materials, vol. 143, pp. 247–258, Jul. 2017, doi:10.1016/J.CONBUILDMAT.2017.03.074.; S. Y. Voronina, T. A. Shalygina, V. D. Voronchikhin, A. Y. Vlasov, A. N. Ovchinnikov, and N. N. Grotskaya, “Data for determining the surface properties of carbon fiber in contact interaction with polymeric binders,” Data in Brief, vol. 35, p. 106847, Apr. 2021, doi:10.1016/J.DIB.2021.106847.; C. Colombo and L. Vergani, “Influence of delamination on fatigue properties of a fibreglass composite,” Composite Structures, vol. 107, no. 1, pp. 325–333, Jan. 2014, doi:10.1016/J.COMPSTRUCT.2013.07.028.; L. Wang, J. Zhang, X. Yang, C. Zhang, W. Gong, and J. Yu, “Flexural properties of epoxy syntactic foams reinforced by fiberglass mesh and/or short glass fiber,” Materials & Design, vol. 55, pp. 929–936, Mar. 2014, doi:10.1016/J.MATDES.2013.10.065.; J. Viña, J. Bonhomme, V. Mollón, I. Viña, and A. Argüelles, “Mechanical properties of fibreglass and carbon-fibre reinforced polyetherimide after twenty years of outdoor environmental aging in the city of Gijón (Spain),” Composites Communications, vol. 22, p. 100522, Dec. 2020, doi:10.1016/J.COCO.2020.100522.; A. Armanfard and G. W. Melenka, “Experimental evaluation of carbon fibre, fibreglass and aramid tubular braided composites under combined tension–torsion loading,” Composite Structures, vol. 269, p. 114049, Aug. 2021, doi:10.1016/J.COMPSTRUCT.2021.114049.; Z. Sun et al., “Temperature-dependent mechanical properties of polyetherimide composites reinforced by graphene oxide-coated short carbon fibers,” Composite Structures, vol. 270, p. 114075, Aug. 2021, doi:10.1016/J.COMPSTRUCT.2021.114075.; V. Amigó, J. J. Payá, M. D. Salvador, J. M. Monzó, F. Segovia, and V. Borrachero, “MATERIALES COMPUESTOS 05.”; S. C. Das et al., “On the use of wood charcoal filler to improve the properties of natural fiber reinforced polymer composites,” Materials Today: Proceedings, vol. 44, pp. 926–929, Jan. 2021, doi:10.1016/J.MATPR.2020.10.808.; S. Yousef, S. P. Subadra, P. Griškevičius, S. Varnagiris, D. Milcius, and V. Makarevicius, “Superhydrophilic functionalized graphene/fiberglass/epoxy laminates with high mechanical, impact and thermal performance and treated by plasma,” Polymer Testing, vol. 90, p. 106701, Oct. 2020, doi:10.1016/J.POLYMERTESTING.2020.106701.; P. Karthick, A. A. E. Andrews, K. Subbareddy, K. Basha, V. Harshavardhan, and S. G. S. K. Reddy, “Investigation of mandatory properties of NaOH – KMnO4 Treated Banana/Fiberglass Hybrid Composite,” Materials Today: Proceedings, vol. 37, no. Part 2, pp. 63–66, Jan. 2021, doi:10.1016/J.MATPR.2020.03.072.; S. Saroj, S. Nayak, and D. Kumar Jesthi, “Effect of hybridization of carbon/glass/flax/kenaf fibre composite on flexural and impact properties,” Materials Today: Proceedings, Apr. 2021, doi:10.1016/J.MATPR.2021.03.094.; H. A. S. y. M. A. P., «ANÁLISIS DE TECNOLOGÍAS DE MEDICIÓN DE NIVEL DE TANQUES DE PRODUCTOS USADOS EN LA INDUSTRIA PETROLERA,» 5 Diciembre 2003. [En línea]. Available: https://repositorio.utb.edu.co/bitstream/handle/20.500.12585/3407/0024835.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; C. A. V. AGUILAR, «DISEÑO DE UN SISTEMA DE MONITOREO DE NIVEL DE LOS TANQUES DE EMERGENCIA DE EMCALI TELECOMUNICACIONES,» 9 Diciembre 2013. [En línea]. Available: https://red.uao.edu.co/bitstream/handle/10614/5683/T03722.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; A. A. Naranjo, «Diseño de control de nivel por medio de una medición continua en los tanques de almacenamiento de ACPM en la empresa de Colcafe S.A.,» 7 Marzo 2018. [En línea]. Available: https://repositorio.itm.edu.co/bitstream/handle/20.500.12622/3975/Rep_Itm_pre_Arbelaez.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; P. R. Martín, «¿Qué es una central de generación eléctrica diésel?,» 11 Junio 2020. [En línea]. Available: https://www.tecnatom.es/blog/que-es-una-central-de-generacion-electrica-diesel/. [Último acceso: 26 Septiembre 2021].; F. O. C. GUERRERO, «GENERACIÓN DE ENERGÍA ELÉCTRICA CON UN MOTOR DE COMBUSTIÓN INTERNA USANDO BIODIESEL DE ACEITE DE PIÑÓN (Jatropha curcas),» 2015. [En línea]. Available: https://repositorio.lamolina.edu.pe/bitstream/handle/UNALM/2152/P06-C118-T.pdf?sequence=1&isAllowed=y. [Último acceso: 26 Septiembre 2021].; El pensante.com , «¿Qué es el ACPM?,» E-Cultura Group, 7 Abril 2016. [En línea]. Available: https://elpensante.com/que-es-el-acpm/. [Último acceso: 25 Septiembre 2021].; D. Plaza, «El gasóleo o gasoil: propiedades y tipos,» motor.es, s.f. [En línea]. Available: https://www.motor.es/que-es/gasoil#:~:text=Es%20un%20hidrocarburo%20l%C3%ADquido%20que,carbono%20por%2026%20de%20hidr%C3%B3geno). [Último acceso: 25 Septiembre 2021].; C. Ribeiro, «Cómo funciona la medición automática de combustible en los tanques y cómo su estación puede beneficiarse,» 9 Agosto 2017. [En línea]. Available: https://blog.gilbarco.com/latam/como-funciona-la-medicion-automatica-de-combustible-en-los-tanques. [Último acceso: 25 Septiembre 2021].; Nation Unies, «Prescriptions uniformes relatives à l’homologation des véhicules en ce qui concerne,» 16 Octubre 1995. [En línea]. Available: https://unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/r083r4f.pdf. [Último acceso: 25 Septiembre 2021].; U.S. Environmental Protection Agency, «Code Of Federal Regulations Part 1065—Engine-Testing Procedures.,» 17 Septiembre 2021. [En línea]. Available: https://www.ecfr.gov/recent-changes?search%5Bhierarchy%5D%5Btitle%5D=16&search%5Blast_modified_after%5D=2021-09-10. [Último acceso: 25 Septirmbre 2021].; Code Of Federal Regulations, «VEHICLE-TESTING PROCEDURES,» 28 Abril 2014. [En línea]. Available: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-U/part-1066. [Último acceso: 25 Septiembre 2021].; L. B. M. y. H. C. F. Melissa Ávila Dávila, «Análisis gravimétrico y volumétrico,» 26 Agosto 2011. [En línea]. Available: https://www.monografias.com/trabajos89/analisis-gravimetrico-y-volumetrico/analisis-gravimetrico-y-volumetrico.shtml. [Último acceso: 27 Septienbre 2021].; C. B. ,. J. G. H. Richard D Burke, «Critical evaluation of on-engine fuel consumption measurement,» Automobile Engineering, vol. 225, nº 6, p. 829–844, Junio 2011.; O. NUNIGE, «EVALUACION Y COMPARACION DE METODOS DE MEDICION CONSUMO DE COMBUSTIBLE PARA LABORATORIO Y RUTA EN UN VEHICULO LIVIANO,» 2018. [En línea]. Available: http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/9465/T629.2538%20N972.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; W. E. L. C. F. d. R. Cesar V. Vargas, «Sistemas de Comunicación Inalámbrica MIMO - OFDM,» RevActaNova, vol. 3, nº 4, pp. 750-760, 2007.; F. E. Vargas Silva, «Sistema Digital De Medición De Nivel De Combustible En El Tanque Del Generador Para El Radar De ESUFA.,» 7 Noviembre 2019. [En línea]. Available: https://catalogosibfa.hosted.exlibrisgroup.com/exlibris/aleph/a23_1/apache_media/NIK8N7VLBTRRSKEGTLYUM76FF5BIB8.pdf. [Último acceso: 26 Septiembre 2021].; Quonty, «Tecnología inalámbrica, ¿cuáles son las redes y los dispositivos que más la utilizan?,» 21 Febrero 2018. [En línea]. Available: https://www.quonty.com/blog/tecnologia-inalambrica/. [Último acceso: 27 Septiembre 2021].; Morales, «Qué es la transmisión Wifi,» 11 Octubre 2019. [En línea]. Available: https://www.ticarte.com/contenido/que-es-la-transmision-wifi. [Último acceso: 27 Septiembre 2021].; J. Borlongan, «Cómo funciona la tecnología WiFi,» s.f. [En línea]. Available: https://techlandia.com/funciona-tecnologia-wifi-como_10752/. [Último acceso: 27 Septiembre 2021].; runestone.academy, «¿Qué es programación?,» s.f. [En línea]. Available: https://runestone.academy/runestone/static/pythoned/Introduction/QueEsProgramacion.html. [Último acceso: 28 Septiembre 2021].; aprendiendoarduino.wordpress.com, «Programación Arduino,» 23 Enero 2017. [En línea]. Available: https://aprendiendoarduino.wordpress.com/2017/01/23/programacion-arduino-5/. [Último acceso: 28 Septiembre 2021].; Arduino.cl, «Software de Arduino,» Enero 2019. [En línea]. Available: https://arduino.cl/programacion/. [Último acceso: 28 Septiembre 2021].; Arduino, «Arduino UNO,» s.f. [En línea]. Available: https://arduino.cl/arduino-uno/. [Último acceso: 27 Septiembre 2021].; L. LLAMAS, «MEDIR DISTANCIA CON ARDUINO Y SENSOR DE ULTRASONIDOS HC-SR04,» 16 Junio 2015. [En línea]. Available: https://www.luisllamas.es/medir-distancia-con-arduino-y-sensor-de-ultrasonidos-hc-sr04/. [Último acceso: 27 Septiembre 2021].; naylampmechatronics.com, «SENSOR ULTRASONIDO HC-SR04,» s.f. [En línea]. Available: https://naylampmechatronics.com/sensores-proximidad/10-sensor-ultrasonido-hc-sr04.html. [Último acceso: 27 Septiembre 2021].; L. Llamas, «COMUNICACIÓN INALÁMBRICA A 2.4GHZ CON ARDUINO Y NRF24L01,» 8 Diciembre 2016. [En línea]. Available: https://www.luisllamas.es/comunicacion-inalambrica-a-2-4ghz-con-arduino-y-nrf24l01/. [Último acceso: 28 Septiembre 2021].; robots-argentina.com.ar, «Arduino: Comunicación inalámbrica con NRF24L01,» 25 Diciembre 2019. [En línea]. Available: http://robots-argentina.com.ar/didactica/arduino-comunicacion-inalambrica-con-nrf24l01/. [Último acceso: 28 Septiembre 2021].; the Secretary of the Air Force, «TECHNICAL AND MANAGERIAL REFERENCE FOR MOTOR VEHICLE MAINTENANCE,» Published Under Authority, USA, 2004.; B. R. Serra, «VOLUMEN DE UN PRISMA RECTANGULAR,» 2014. [En línea]. Available: https://www.universoformulas.com/matematicas/geometria/volumen-prisma-rectangular/. [Último acceso: 28 Septiembre 2021].; extraconversion.com, «Metros Cúbicos a US Galones Líquidos Calculadora de Conversión,» s.f. [En línea]. Available: http://extraconversion.com/es/volumen/metros-cubicos/metros-cubicos-a-us-galones-liquidos.html. [Último acceso: 28 Septiembre 2021].; J. C. Najar Pacheco, «Exposición del activo más valioso de la organización, la “información", Visión Electrónica, vol. 11, no. 1, pp. 107-115, 2017. https://doi.org/10.14483/22484728.12345.; Clincy, V., & Shahriar, H., Web Application Firewall: Network Security Models and Configuration. Proceedings - International Computer Software and Applications Conference, 1, 835–836. https://doi.org/10.1109/COMPSAC.2018.00144, 2018.; C. Ping. "A second-order SQL injection detection method". Digital Object Identifier System. https://doi.org/10.1109/ITNEC.2017.8285104, 2018.; Tovar Valencia, O. (s. f.). INYECCIÓN DE SQL, TIPOS DE ATAQUES Y PREVENCION EN ASP.NET-C#. Universidad Piloto de Colombia. http://polux.unipiloto.edu.co:8080/00002026.pdf.; Rajashree, A. K., Sherekar, S. S., & Thakare, V. M. Detection of SQL injection attacks by removing the parameter values of SQL query. IEEE Conference Publication %7C IEEE Xplore. https://ieeexplore.ieee.org/document/8398896, 2018.; Gestión, Tecnología. Uso de apps y visitas a sitios web de alto riesgo subieron 161% debido a COVID. Gestión Tecnología. https://gestion.pe/tecnologia/uso-de-apps-y- visitas-a-sitios-web-de-alto-riesgo-subieron-161-debido-a-covid-noticia/, 2020.; Castillo, A., OWASP Top 1 - Ataques por Inyección SQL. Seguridad Ofensiva. https://seguridad-ofensiva.com/blog/owasp-top-10/owasp-top-1/, 2020.; A7:2017-Cross-Site Scripting (XSS) %7C OWASP, https://owasp.org/www-project-top-ten/2017/A7_2017-Cross-Site_Scripting_(XSS), 2017.; Vulnerabilidades OWASP - Ciberseguridad informática - Seguridad informática para Empresas. (n.d.). https://antimalwares.es/tecnologias/vulnerabilidades-owasp.; W. A. Barbosa y D. A. Buelvas Peñarredonda, “Implementación de redes privadas virtuales en la mediana empresa", Visión Electrónica, vol. 4, no. 2, pp. 106-121, 2010. https://revistas.udistrital.edu.co/index.php/visele/article/view/282/5573.; N. A. Gómez-Cruz and C. E. Maldonado, “Sistemas bio-inspirados: un marco teórico para la ingeniería de sistemas complejos,” Ing. Sist. complejos. Compil. las Conf. Present. en la Cuarta Asam. la Red Cart. Ing., p., 2011.; Y. Leidy, O. López, D. Guillermo, and B. Benavides, “Plataformas Bionpiradas Tipo Lego En Un Ambiente Conocido.”; Y. Jian and Y. Li, “Research on intelligent cognitive function enhancement of intelligent robot based on ant colony algorithm,” Cogn. Syst. Res., vol. 56, pp. 203–212, 2019, doi:10.1016/j.cogsys.2018.12.014.; L. M. Layos, E. L. Mundo, and D. E. L. A. S. Hormigas, “HORMIGAS,” 2006.; J. Rolando, C. López, N. Johanna Hernández Suárez, A. Del Pilar, and R. Tibaduiza, “Sistema de transporte y embalaje utilizando robótica cooperativa basada en teoría de colonias de hormigas mediante plataforma Mindstorm de LEGO® Transportation and Packaging System Using Cooperative Robotics Based on Theory of Ants Colonies Using Platform,” vol. 6, no. 1, pp. 60–71, 2015, doi:10.14483/udistrital.jour.redes.2015.1.a04.; Jaffe, “Evolucion de Sistemas de Comunicacion Quimico en Hormigas (Hymenoptera: Formicidae),” Folia Entomológica Mexicana, vol. 61. pp. 189–203, 1984.; Y. Leidy, O. López, G. Duvan, and B. Benavides, “Implementación de un sistema multirobot basado en el comportamiento de las hormigas.”; M. Dc and G. Motor, “Tank Mobile Platform Instrution Manual,” no. 112.; Alibaba.com. (2021). Professional Outdoor Solar Powered Automatic Weather Station. Tomado de: https://www.alibaba.com/product-detail/Professional-Outdoor-Solar-Powered-Automatic-Weather_60492093064.html.; BBC. (2021). River flooding - causes and management. Tomado de: https://www.bbc.co.uk/bitesize/guides/zx9kfrd/revision/1#:~:text=Flooding%20occurs%20when%20a%20river,interactions%20can%20increase%20the%20risk.; Bourdeau-Brien, M., & Kryzanowski, L. (2020). Natural disasters and risk aversion. Journal of Economic Behavior & Organization, 177, 818–835. Tomado de: https://doi.org/https://doi.org/10.1016/j.jebo.2020.07.007.; Boustan, L. P., Kahn, M. E., Rhode, P. W., & Yanguas, M. L. (2020). The effect of natural disasters on economic activity in US counties: A century of data. Journal of Urban Economics, 118, 103257. Tomado de: https://doi.org/https://doi.org/10.1016/j.jue.2020.103257.; Campo, P. A., Zafra K. (2013). SISTEMA ELECTRÓNICO INALÁMBRICO DE ALERTA TEMPRANA Y MONITOREO DEL COMPORTAMIENTO DEL NIVEL DE LOS RÍOS DE BAJO COSTO (Tesis de grado). Universidad San Buenaventura de Cali. Tomado de: http://bibliotecadigital.usbcali.edu.co/bitstream/10819/2144/1/Sistema_Electronico_Inalambrico_Monitoreo_Campo_2013.pdf.; Cao, H., & Wachowicz, M. (2019). The design of an IoT-GIS platform for performing automated analytical tasks. Computers, Environment and Urban Systems, 74, 23–40. Tomado de: https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2018.11.004.; CEPAL. (2018). Situación de las estadísticas e indicadores de eventos extremos y desastres. Tomado de: https://www.cepal.org/sites/default/files/presentations/2018-06-2areu-expertos-ea-4_2-cepal-pleonard.pdf.; Colombia Reports. (2020). Fatal landslide blocks road between Colombia’s capital and Medellin. Tomado de: https://colombiareports.com/fatal-landslide-blocks-road-between-colombias-capital-and-medellin/.; Confluence. (2021). Sensor T/H/CE de suelo CERES - IoT. Tomado de: https://nazaries.atlassian.net/wiki/spaces/IOT/pages/4654272/Sensor+T+H+CE+de+suelo+CERES.; CORTOLIMA. (s.f). Pérdida de suelos. Corporación Autónoma Regional del Tolima. Tomado de: https://www.cortolima.gov.co/sites/default/files/images/stories/centro_documentos/pom_totare/diagnostico/m_212perdida_de_suelos_totare.pdf.; Datos abiertos. (2021). Gov.co - Datos abiertos. Tomado de: https://www.datos.gov.co/.; Dorado, J.E. (2020). SISTEMA DE MONITOREO Y CONTROL DE ALERTA TEMPRANA DEL DESBORDAMIENTO DE UN RÍO (Tesis de grado). Universidad Piloto de Colombia. Tomado de: http://repository.unipiloto.edu.co/bitstream/handle/20.500.12277/7475/TESIS%20DE%20GRADO.pdf?sequence=1&isAllowed=y.; Duan, X., Bai, Z., Rong, L., Li, Y., Ding, J., Tao, Y., Li, J., Li, J., & Wang, W. (2020). Investigation method for regional soil erosion based on the Chinese Soil Loss Equation and high-resolution spatial data: Case study on the mountainous Yunnan Province, China. CATENA, 184, 104237. Tomado de: https://doi.org/https://doi.org/10.1016/j.catena.2019.104237.; FAO (Food and Agriculture Organization of the United Nations). (s.f). Lang & Water. Universal Soil Loss Equation. Tomado de: http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1236441/.; FloodList. (2017). Colombia – 11 Departments Hit by Heavy Rain, Floods and Landslides. Tomado de: http://floodlist.com/america/colombia-11-departments-floods-march-2017.; FloodList. (2020). Colombia – Rains Trigger Deadly Landslide in Antioquia. Tomado de: http://floodlist.com/america/colombia-landslide-floods-antioquia-november-2020.; Humanitarian RESPONSE. (2018). Colombia: Snapshot Desastres Naturales 2017 - OCHA Services. Tomado de: https://www.humanitarianresponse.info/en/operations/colombia/infographic/colombia-snapshot-desastres-naturales-2017.; IDEAM. S.f. Datos IDEAM. IDEAM: Instituto de Hidrología, Meteorología y Estudios Ambientales. Tomado de: http://www.ideam.gov.co/.; Insurance Information Institute (iii). (2019). Current graph - World Natural Catastrophes, 2019. Tomado de: https://www.iii.org/graph-archive/96134.; Jimenez N, A. (2005). LA INVESTIGACIÓN DE SUELOS EROSIONADOS: MÉTODOS E ÍNDICES DE DIAGNÓSTICO. Minería y Geología, vol. 21, num 2, 2005, pp. 1-18. Tomado de: https://www.redalyc.org/pdf/2235/223516049002.pdf.; Kamatchi Sundari, V., Nithyashri, J., Kuzhaloli, S., Subburaj, J., Vijayakumar, P., & Subha Hency Jose, P. (2021). Comparison analysis of IoT based industrial automation and improvement of different processes – review. Materials Today: Proceedings. Tomado de: https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.338.; Kong, D., Lin, Z., Wang, Y., & Xiang, J. (2021). Natural disasters and analysts’ earnings forecasts. Journal of Corporate Finance, 66, 101860. Tomado de: https://doi.org/https://doi.org/10.1016/j.jcorpfin.2020.101860.; Local Government Association. (s.f). Flood risk and flood risk management. Tomado de: https://www.local.gov.uk/topics/severe-weather/flooding/flood-and-coastal-erosion-risk-management/flood-risk-and-flood-risk.; McIvor, I., Youjun, H., Daoping, L., Eyles, G., & Pu, Z. (2014). Agroforestry: Conservation Trees and Erosion Prevention (N. K. B. T.-E. of A. and F. S. Van Alfen (ed.); pp. 208–221). Academic Press. Tomado de: https://doi.org/https://doi.org/10.1016/B978-0-444-52512-3.00247-3.; NETWORKWORLD. (2020). What is IoT? The internet of things explained. Tomado de: https://www.networkworld.com/article/3207535/what-is-iot-the-internet-of-things-explained.html.; Newark. (2014). A Brief History of Single Board Computers - electronicdesign. Tomado de: https://www.newark.com/wcsstore/ExtendedSitesCatalogAssetStore/cms/asset/pdf/americas/common/NE14-ElectronicDesignUncovered-Dec14.pdf.; OCHA. (2018). COLOMBIA Desastres Naturales 2017. Tomado de: https://www.humanitarianresponse.info/sites/www.humanitarianresponse.info/files/documents/files/20180420_snapshot_desastres_naturales_2017_-_v2.pdf.; OMM. (2016). Laboratorio virtual de la OMM para la enseñanza y formación en meteorología satelital. OMM - Organización Meteorológica Mundial. Tomado de: https://public.wmo.int/es/resources/bulletin/laboratorio-virtual-de-la-omm-para-la-ense%C3%B1anza-y-formaci%C3%B3n-en-meteorolog%C3%ADa.; Organización Mundial de la Salud (OMS). (s.f). Acción sanitaria en las crisis humanitarias - Inundaciones. Tomado de: https://www.who.int/hac/techguidance/ems/floods/es/.; Organización Mundial de la Salud (OMS). (s.f). Acción sanitaria en las crisis humanitarias - Corrimientos de tierra. Tomado de: https://www.who.int/hac/techguidance/ems/landslides/es/.; Organization of American States (OAS). (s.f). La erosión hídrica y las crecidas. Tomado de: https://www.oas.org/dsd/publications/Unit/oea23s/ch16.htm.; Osenga, E. C., Arnott, J. C., Endsley, K. A., & Katzenberger, J. W. (2019). Bioclimatic and Soil Moisture Monitoring Across Elevation in a Mountain Watershed: Opportunities for Research and Resource Management. Water Resources Research, 55(3), 2493–2503. Tomado de: https://doi.org/https://doi.org/10.1029/2018WR023653.; Paulino, Â., Guimarães, L., & Shiguemori, E. (2019). Hybrid Adaptive Computational Intelligence-based Multisensor Data Fusion applied to real-time UAV autonomous navigation. INTELIGENCIA ARTIFICIAL, 22, 162–195. Tomado de: https://doi.org/10.4114/intartif.vol22iss63pp162-195.; Pellet, C. and Hauck, C. (2017) Monitoring soil moisture from middle to high elevation in Switzerland: set-up and first results from the SOMOMOUNT network, Hydrol. Tomado de: Earth Syst. Sci., 21, 3199–3220, https://doi.org/10.5194/hess-21-3199-2017.; PreventivoWeb. (s.f). Disaster Data & statistics. Tomado de: https://www.preventionweb.net/knowledgebase/disaster-statistics.; R2D3. (s.f). A visual introduction to machine learning. Tomado de: http://www.r2d3.us/visual-intro-to-machine-learning-part-1/.; Raspberrypi. (s.f). Raspberry Pi 3 Model B+. Tomado de: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/.; Reggio, G., Leotta, M., Cerioli, M., Spalazzese, R., & Alkhabbas, F. (2020). What are IoT systems for real? An experts’ survey on software engineering aspects. Internet of Things, 12, 100313. Tomado de: https://doi.org/https://doi.org/10.1016/j.iot.2020.100313.; Scikit-learn.org. (2021). Scikit-learn machine learning in python. Tomado de: https://scikit-learn.org/stable/index.html.; sdxcentral. (s.f). IoT Definitions & Basics. Tomado de: https://www.sdxcentral.com/5g/iot/definitions/.; Thangamani, T., Prabha, R., Prasad, M., Kumari, U., KV, R., & Abidin, S. (2021). IoT Defense Machine Learning: Emerging Solutions and Future Problems. Microprocessors and Microsystems, 104043. Tomado de: https://doi.org/https://doi.org/10.1016/j.micpro.2021.104043.; Thibaud, M., Chi, H., Zhou, W., & Piramuthu, S. (2018). Internet of Things (IoT) in high-risk Environment, Health and Safety (EHS) industries: A comprehensive review. Decision Support Systems, 108, 79–95. Tomado de: https://doi.org/https://doi.org/10.1016/j.dss.2018.02.005.; towards data science. (2017). Types of Machine Learning Algorithms You Should Know. Tomado de: https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861.; UNGRD. 2018. Implementación del Sistema Nacional de información para la gestión del riesgo de desastres. Tomado de: http://portal.gestiondelriesgo.gov.co/Documents/Proyectos-Inversion/2015/proyecto_sistema_integrado_informacion_2015_2018.pdf.; Universidad de Chile. (s.f). Laboratorio de Meteorología (LM - DGF). Tomado de: http://uchile.cl/i91300.; University, C. for H. and R. R.-C.-C., University, C. for I. E. S. I. N.-C.-C., & Bank, I. B. for R. and D.-T. W. (2005). Global Multihazard Mortality Risks and Distribution. NASA Socioeconomic Data and Applications Center (SEDAC). Tomado de: https://doi.org/10.7927/H41J97NM.; University, C. for H. and R. R.-C.-C., University, C. for I. E. S. I. N.-C.-C., & Bank, I. B. for R. and D.-T. W. (2005). Global Landslide Mortality Risks and Distribution. NASA Socioeconomic Data and Applications Center (SEDAC). Tomado de: https://doi.org/10.7927/H4JH3J4N.; Waze. (2021). Acerca de Waze: Mapas con datos de tráfico en tiempo real. Tomado de: https://www.waze.com/es/about.; World Health Organization. (s.f). Lanslides. Tomado de: https://www.who.int/health-topics/landslides#tab=tab_2.; Zhang, H., Zhang, R., Qi, F., Liu, X., Niu, Y., Fan, Z., Zhang, Q., Li, J., Yuan, L., Song, Y., Yang, S., & Yao, X. (2018). The CSLE model based soil erosion prediction: Comparisons of sampling density and extrapolation method at the county level. CATENA, 165, 465–472. Tomado de: https://doi.org/https://doi.org/10.1016/j.catena.2018.02.007.; E. A. Avila Gomez, A. M. Martinez Daza, y S. A. Pinzon, “Estado de arte sobre infraestructura telemática para el teletrabajo", Visión Electrónica, vol. 11, no. 2, pp. 261-278, 2017.; F. E. Pineda Torres y A. de J. Chica Leal, “Propuesta de un estimador de fallas usando fracciones coprimas", Visión Electrónica, vol. 9, no. 2, pp. 172-181, 2015. https://doi.org/10.14483/22484728.11025.; F. N. Giraldo Ramos, F. Gonzalez, y E. Camargo Casallas, “Algoritmos de procesamiento de imágenes satelitales con tranformada Hough", Visión Electrónica, vol. 5, no. 2, pp. 26-41, 2011. https://doi.org/10.14483/22484728.3568.; H. J. Eslava Blanco, N. Serrano P., y F. A. Castro, “Sistema de alerta de riesgos en hogares mediante SMS”, Visión Electrónica, vol. 6, no. 2, pp. 15-30, 2012. https://doi.org/10.14483/22484728.3883.; J. O. Castellanos Millán, V. H. Amarillo Calvo, y R. M. Poveda Chaves, “Problema de asignación quadrática (pac) sobre gpu a través de una pga maestro-esclavo”, Visión Electrónica, vol. 10, no. 2, pp. 179-183, 2016.; J. C. Najar-Pacheco, J. A. Bohada-Jaime, y W. Y. Rojas-Moreno, “Vulnerabilidades en el internet de las cosas", Visión Electrónica, vol. 13, no. 2, pp. 312-321, 2019.; J. A. Londoño Alzate, A. Fonseca Velásquez, y E. A. Delgadillo, “Laboratorios remotos: estudio de caso con una planta térmica didáctica", Visión Electrónica, vol. 12, no. 2, pp. 265-277, 2018. https://doi.org/10.14483/22484728.14263.; J. Cortina, J. López-Lezama, And N. Muñoz-Galeano, “Metaheurísticas Aplicadas Al Problema De Interdicción En Sistemas De Potencia,” Inf. Tecnológica, Vol. 29, No. 2, Pp. 73–88, Mar. 2018, Doi:10.4067/S0718-07642018000200073.; C. A. Mora, “Problema De Interdicción De La Red Eléctrica.” Universidad Distrital Francisco José De Caldas, Bogotá, D. C., P. 16, 2020, [Online]. Available: Https://Drive.Google.Com/File/D/1qxg7pvhy1dndz9sgr0qug4ldnyzmpi5-/View?Usp=Sharing.; B. Mundial And Colombia, Análisis De La Gestión Del Riesgo De Desastres En Colombia, Primera. Bogotá, D. C.: Equilatero, 2012.; V. A. Gómez, R. A. Peña, And C. Hernández, “Identificación Y Localización De Fallas En Sistemas De Distribución Con Medidores De Calidad Del Servicio De Energía Eléctrica,” Inf. Tecnol., Vol. 23, No. 2, Pp. 109–116, 2012, Doi:10.4067/S0718-07642012000200013.; F. Olivari, “Diseño, Construcción Y Prueba De Un Sensor Sísmico Para Edificaciones.” Valparaiso, Nov. 2017, Accessed: Nov. 11, 2020. [Online]. Available: Http://Opac.Pucv.Cl/Pucv_Txt/Txt-2500/Ucc2795_01.Pdf.; C. Bonilla And Y. Gonzales, “Dispositivo De Adquisición De Señales Sísmicas”, Visión Electrónica, 2019, Accessed: Nov. 11, 2020. [Online]. Available: Http://Repository.Udistrital.Edu.Co/Bitstream/11349/22441/1/Bonillaseguracamilaalejandra2019.Pdf.; F. Torres And K. Chaca, “Diseño E Implementación De Un Digitalizador Sísmico De 4 Canales Con Acceso Ip,” Universidad De Cuenca, 2015.; D. García, J. Rio, D. Toma, And M. Blanco, “Array Sísmico Inalámbrico Y De Parámetros Ambientales Para La Caracterización De Precursores De Actividad Volcánica,” Universitat Politecnica De Catalunya, 2017.; Á. Herrera, “Prototipo Hardware De Bajo Coste Para La Alerta Sísmica Temprana Local,” 2016.; G. Martinez, “Diseño Y Construcción De Un Prototipo De Detección De Fallas Serie Para Disminuir El Tiempo De Interrupciones En El Sistema Eléctrico De Distribución,” Escuela Politécnica Nacional, 2019.; V. A. Gómez, R. A. Peña, And C. Hernández, “Identificación Y Localización De Fallas En Sistemas De Distribución Con Medidores De Calidad Del Servicio De Energía Eléctrica,” Inf. Tecnol., Vol. 23, No. 2, Pp. 109–116, 2012, Doi:10.4067/S0718-07642012000200013.; "Redes Sin", Xm, 2020, Accessed: Dic. 9, 2020. [En línea]. Available: Https://Www.Xm.Com.Co/Paginas/Transmision/Redes-Sistema-Interconectado-Nacional.Aspx.; R. Chokshi, “MPU-6000 and MPU-6050 Register Map and Descriptions Revision 4.0 MPU-6000/MPU-6050 Register Map and Descriptions,” MPU-6000 MPU-6050 Regist. Map Descr., vol. 1, no. 408, p. 48, 2012.N. Wolfberg, “Storage and retrieval for image and video databases”, SPIE Proceedings, pp. 27-32, 1993.; InvenSense Inc., “MPU-9150 Register Map and Descriptions,” vol. 1, no. 408, pp. 1–52, 2013.; “Raspberry pi foundation", Raspberrypi.org, 2020. [En linea]. Disponible en: https://www.raspberrypi.org.; VMware, “¿Qué son las redes definidas por software (SDN)? %7C Glosario de VMware %7C ES.” https://www.vmware.com/es/topics/glossary/content/software-defined-networking.html (accessed Sep. 22, 2021).; Citrix, “¿Qué son las redes definidas por software (SDN)? - Citrix Mexico.” https://www.citrix.com/es-mx/solutions/app-delivery-and-security/what-is-software-defined-networking.html (accessed Sep. 22, 2021).; M. Marchetti, “The road to riches,” Sales Mark. Manag., vol. 150, no. 10, p. 128, 2013, doi:10.2307/j.ctvc77cz1.22.; M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Software-Defined Networking Security: Pros and Cons,” IEEE Commun. Mag., vol. 53, no. September, pp. 48–54, 2015, doi:10.1109/MCOM.2015.7120048.; A. Feghali, R. Kilany, and M. Chamoun, “SDN security problems and solutions analysis,” Int. Conf. Protoc. Eng. ICPE 2015 Int. Conf. New Technol. Distrib. Syst. NTDS 2015 - Proc., 2015, doi:10.1109/NOTERE.2015.7293514.; S. Sidhu and H. Gupta, “A Security Mechanism for Software Defined Vulnerabilities,” 2019 4th International Conference on Information Systems and Computer Networks, ISCON 2019, pp. 59–62, 2019, doi:10.1109/ISCON47742.2019.9036247.; A. Pradhan and R. Mathew, “Solutions to Vulnerabilities and Threats in Software Defined Networking (SDN),” Procedia Comput. Sci., vol. 171, no. 2019, pp. 2581–2589, 2020, doi:10.1016/j.procs.2020.04.280.; F. W. Sanabria Navarro, J. G. Bustos, and W. E. Castellanos Hernández, “Adaptive video transmission over software defined networks,” Visión electrónica, vol. 13, no. 1, pp. 152–161, Feb. 2019, doi:10.14483/22484728.14398.; J. C. Najar Pacheco, “Exposición del activo más valioso de la organización, la ‘información,’” Visión electrónica, vol. 11, no. 1, pp. 107–115, Jun. 2017, doi:10.14483/22484728.12345.; A. M. Felicísimo, «Conceptos básicos, modelos y simulación.,» 2009. [En línea]. Available: http://www6. uniovi. es/~ feli/CursoMDT/Tema_1. pdf. [Último acceso: 10 Agosto 2021].; N. M. Chirinos y S. R. González, «Consideraciones teórico-epistémicas acerca del concepto de modelo,» Telos, vol. 13, nº 1, pp. 51-64, 2011.; E. López Moreno, Construcción de ciudades más equitativas. Políticas públicas para la inclusión en América Latina., Bogotá: CAF, 2014.; J. Linares-García, A. Hernández-Quirama y H. M. Rojas-Betancur, «Accesibilidad espacial e inclusión social: experiencias de ciudades incluyentes en Europa y Latinoamérica,» Civilizar: Ciencias Sociales y Humanas, vol. 18, nº 35, pp. 115-128, 2018.; É. A. López López y É. L. Álvarez-Aros, «Estrategia en ciudades inteligentes e inclusión social del adulto mayor,» Paakat: Revista de Tecnología y Sociedad, vol. 11, nº 20, pp. 1-29, 2021.; J. A. IREGUI DUARTE, «INCLUSIÓN DIGITAL: UN ANÁLISIS DE LA ESTRATEGIA DE TELETRABAJO EN BOGOTÁ,» PONTIFICIA UNIVERSIDAD JAVERIANA, BOGOTÁ D.C., 2018.; CMSI, «Declaración de Principios. Construir la Sociedad de la Información: un desafío global para el nuevo milenio,» CMSI, Ginebra, 2004.; K. Frey, «Gobernanza electrónica urbana e inclusión digital: experiencias en ciudades europeas y brasileñas,» Nueva Sociedad, nº 196, pp. 109-124, 2005.; D. Dávila, «Inclusión digital en colombia: Un análisis del plan vive digital I,» Pontificia Universidad Javeriana, Bogotá D.C., 2017.; F. Duarte y H. F. Pires, «INCLUSIÓN DIGITAL, TRES CONCEPTOS CLAVE: CONECTIVIDAD, ACCESIBILIDAD, COMUNICABILIDAD,» REVISTA ELECTRÓNICA DE RECURSOS EN INTERNET SOBRE GEOGRAFÍA Y CIENCIAS SOCIALES, nº 150, 2011.; E. Van der Klift y N. Kunc, «Beyond benevolence: Friendship and the politics of help,» de Creativity and collaborative learning: A practical guide to empowering students and teachers, Baltimore, Paul Brookes, 1994, pp. 391-401.; M. Sapon-Shevin, «La inclusión real: Una perspectiva de justicia social,» Revista de Investigación en Educación, vol. 3, nº 11, pp. 71-85, 2013.; G. A. Toledo, «Accesibilidad digital para usuarios con limitaciones visuales,» Universidad Nacional de la Plata, 2012.; Comisión Europea, «Aprovechar las TIC para la acción social: un programa de voluntariado digital,» Unión Europea, Luxemburgo, 2014.; E. M. Tapia, E. Munguia, «Activity recognition in the home setting using simple and ubiquitous sensors,» de international conference on pervasive computing, Berlin, Heidelberg, Springer Berlin Heidelberg, 2004, pp. 158--175.; C. Liming et al, «Sensor-based activity recognition,» IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, nº 6, pp. 790 - 808, 2012.; N. Wei et al, «Human activity detection and recognition for video surveillance,» de 2004 IEEE International Conference on Multimedia and Expo (ICME), IEEE, 2004, pp. 719--722.; M. S. Ryoo, «Human activity prediction: Early recognition of ongoing activities from streaming videos,» de 2011 International Conference on Computer Vision, IEEE, 2011, pp.; M. S. Ryoo, «Human activity prediction: Early recognition of ongoing activities from streaming videos,» de 2011 International Conference on Computer Vision, IEEE, 2011, pp. 1036--1043.; R. Nishkam, D. Nikhil et al., «Activity recognition from accelerometer data,» de Aaai, 2005, pp. 1541--1546.; Intille, L. Bao and S. S., «Activity recognition from user-annotated acceleration data,» de International conference on pervasive computing, 2004.; N. Belapurkar, S. Sagar and A. Baris, «The Case for Ambient Sensing for Human Activity Detection,» de Proceedings of the 8th International Conference on the Internet of Things, New, York, 2018.; D. Anguita et al, International workshop on ambient assisted living, Springer, 2012.; E. Kim, S. Helal and D. Cook, «Human activity recognition and pattern discovery,» IEEE Pervasive Computing/IEEE Computer Society [and] IEEE Communications Society, vol. 9, nº1, p. 48, 2010.; B. P. Clarkson, Life patterns: structure from wearable sensors, Massachusetts Institute of Technology, 2002.; J. Shotton, T. Sharp et al., «Real-time Human Pose Recognition in Parts from Single Depth Images,» Commun. ACM, vol. 56, nº 1, pp. 116--124, 2013.; R. Poppe, «A survey on vision-based human action recognition,» Image and vision computing, vol. 28, nº 6, pp. 976--990, 2010.; J. K Aggarwal and M. S. Ryoo, «Human activity analysis: A review,» ACM Computing Surveys (CSUR), vol. 43, nº 3, p. 16, 2011.; D. Weinland, R. Ronfard and Ed Boyer, «A survey of vision-based methods for actionrepresentation, segmentation and recognition,» Computer vision and image understanding, vol. 115, nº 2, pp. 224 -- 241, 2011.; V. Argyriou, M. Petrou and S. Barsky, «Photometric stereo with an arbitrary number of illuminants,» Computer Vision and Image Understanding, vol. 14, nº 8, pp. 887--900, 2010.; R. Chavarriaga, H. Sagha et al, «The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition,» Pattern Recognition Letters, vol. 34, nº 15, pp. 2033--2042, 2013.; T. Plötz, N. Y. Hammerla and P. Oliver, «Feature Learning for Activity Recognition in Ubiquitous Computing» de Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, AAAI Press, 2011, pp. 1729--1734.; A. Ferscha and F. Mattern, Pervasive Computing: Second International Conference, PERVASIVE 2004, Linz, Vienna: Springer, 2004.; N. Ravi, D. Nikhil et al, «Activity recognition from accelerometer data,» de Aaai, 2005, pp. 1541--1546.; L. B. a. S. Intille, «Activity recognition from user-annotated acceleration data,» de International conference on pervasive computing, 2004.; G. Z. Yang, and M. Yacoub, Body Sensor Networks. 2006, London: Springer, 2006.[22]. D. Anguita, A. Ghio et al, «A Public Domain Dataset for Human Activity Recognition using Smartphones,» de 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), 2013.; D. Roggen, K. Forster at al, «OPPORTUNITY: Towards opportunistic activity and context recognition systems,» de 2009 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks \& Workshops, 2009.; A. M. Khan, Y-K. Lee et al, «Human activity recognition via an accelerometer-enabled smartphone using kernel discriminant analysis,» de 2010 5th international conference on future information technology, 2010.; J. Reyes-Ortiz, L. Oneto et al, «Transition-aware human activity recognition using smartphones,» Transition-aware human activity recognition using smartphones, vol. 171, pp. 754--767, 2016.; S. I. Yang and S. B. Cho, «Recognizing human activities from accelerometer and physiological sensors,» de 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008.; R. Poovandran, «Human activity recognition for video surveillance,» de 2008 IEEE International Symposium on Circuits and Systems, 2008.; C. T. a. V. Hlavac, «Pose primitive based human action recognition in videos or still images,» de 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.; J. S. Caros, O. Chetelat, P. Celka et al, «Very low complexity algorithm for ambulatory activity classification,» de EMBEC, 2005.; M. F. Bin Abdullah et al, «Classification Algorithms in Human Activity Recognition using Smartphones,» World Academy of Science, Engineering and Technology International Journal of Biomedical and Biological Engineering, vol. 6, nº 1, 2012.; O. D. Lara and M. A. Labrador, «A survey on human activity recognition using wearable sensors,» pp. 1192-1209, 2013.; N. Robertson and I. Reid, «A general method for human activity recognition in video,» Computer Vision and Image Understanding, vol. 104, nº 2-3, pp. 232--248, 2006.; C. Thurau and V Hlavac, «Pose primitive based human action recognition in videos or still images,» de 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.; R. Poovsndran, «Human activity recognition for video surveillance,» de 2008 IEEE International Symposium on Circuits and Systems, 2008.; W. Niu, J. Long, D. Han and W. Yuan-Fang , «Human Activity Detection and Recognition for Video Surveillance,» 2004 IEEE International Conference on Multimedia and Expo (ICME), vol. 1, pp. 719-722, 2004.; J. M. Ermes, J. Parkka, J. Mantyjarvi, and I. Korhonen, «Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions,» TITB, vol. 12, nº 1, pp. 20--26, 2008.; X. Long, B. Yin and R. M. Aarts, «Singleaccelerometer-based daily physical activity classification,» de EMBS, 2009.; D. Karantonis, M. Narayanan, M. Mathier, et al, «Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring,» TITB, vol. 10, nº 1, pp. 156-167, 2006.; E. Heinz, K. Kunze, M. Gruber et al, «Using wearable sensors for Real-Time recognition tasks in games of martial arts - an initial experiment,» de GIC´06, 2006.; H. Markus, H. Takafumi, et al, «Chi-ball, an interactive device assisting martial arts,» de CHI´03, 2003.; J. Liao,Y. Bi and C. Nugent , «Activity recognition for smart Homes using Dempster-Shafer theory of evidence based on a revised lattice structure,» de 2010 Sixth International Conference on Intelligent Environments, 2010.; F. Cicirelli,G. Fortino, A. giordano et al, «On the design of smar homes framework for activyty recpgnition in home environment,» journal of medical systems, vol. 40, nº 9, p. 200, 2016.; S. C. Mukhopadhyay, «Wearable sensors for human activity monitoring: A review,» IEEE Sensors Journal, vol. 15, p. 1321–1330, 2015.; A. Reiss and D. Stricker, «Introducing a new benchmarked dataset for activity monitoring,» de International Symposium on Wearable Computers, 2012.; W. H. Wu, A. A. Bui, M.A. Batalin et al, «MEDIC: medical embedded device for individualized care,» Artificial Intelligence in Medicine, vol. 42, nº 2, pp. 137-152, 2008.; E. V. Someren, B. Vonk, W. Thijssen, J. Speelman et al, «A new actigraph for long-term registration of the duration and intensity of tremor and movement,» Biomedical Engineering, vol. 45, nº 3, pp. 386395, 1998.; D. J. Walker, P. S. Heslop, C. J. Plummer, et al, «A continuous patient activity,» Physiological Measurement, vol. 18, nº 1, pp. 49-59, 1997.; N. Hu, Z. Lou, G. Englebienne and B. Kröse, B., «Learning to Recognize Human Activities from Soft Labeled Data,» de Robotics: Science and Systems X, Berkeley, 2014.; G. Wu and S. Xue, «Portable preimpact fall detector with inertial sensors,» Neural Systems and Rehabilitation Engineering IEEE Transactions on,, vol. 16, nº 2, p. 178–183, 2008.; H. J. Busser, J. Ott, R. C. van Lummel et al, «Ambulatory monitoring of children’s activity,» Medical Engineering & Physics, vol. 19, nº 5, pp. 440-445, 1997.; B. G. Steele, B. Belza, K. Cain, C. Warms,, «Bodies in motion: Monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease,» Rehabilitation Research and Development, vol. 40, nº 5, 2003.; S. Bosch, M. Marin-Perianu, et al, «Keep on moving! activity monitoring and stimulation using wireless sensor networks,» de European Conference on Smart Sensing and Context, 2009.; F. Chen, Q. Zhong and F. Cannella, «Hand gesture modeling and recognition for human and robot interactive assembly using hidden markov models,» International Journal of Advanced Robotic Systems, vol. 12, nº 4, p. 48, 2015.; Ministerio de Minas y Energía, [En línea]. Available: https://www.minenergia.gov.co/ [Ultimo acceso: 24 agosto 2021].; Instituto de Planificación y Promoción de Soluciones Energéticas para Zonas no Interconectadas IPSE, [En línea]. Available: https://ipse.gov.co/ [Último acceso: 24 08 2021].; Unidad de Planeación Minero-Energética, [En línea]. Available: https://www1.upme.gov.co/Paginas/default.aspx [Último acceso: 24 08 2021].; Comisión de Regulación de Energía y Gas, [En línea]. Available: https://www.creg.gov.co/ [Último acceso: 6 septiembre 2021].; La Cámara Colombiana de Energía, [En línea]. Available: https://www.ccenergia.org.co/ [Ultimo acceso: 08 septiembre 2021].; Fondo de Energías No Convencionales y Gestión Eficiente de la Energía [En línea]. Available: https://fenoge.com/ [Último acceso: 7 septiembre 2021].; A. M. M. H. A. Al Hasib, «A Comparative Study of the Performance and Security Issues of AES and RSA Cryptography,» de Convergence Information Technology, International Conference, Finlandia, 2008.; Shamir R.L. Rivest and L. Adleman, (1978). A Method for Obtaining Digital Signatures and PublicKey Cryptosystems, Magazine Communications of the ACM, 1978.Volumen 21 págs. 120–126. https://doi.org/10.1145/359340.359342.; Castro Lechtaler, A., Cipriano, M., García, E., Liporace, J., Maiorano, A., Malvacio, E. and Tapia, N., (2021). Estudio de técnicas de criptoanálisis.XXI Workshop de Investigadores en Ciencias de la Computación. [online] Sedici.unlp.edu.ar. Available at: http://sedici.unlp.edu.ar/handle/10915/77269.; J. C. Mendoza T, «Universidad Politecnica Salesiana de Ecuador,» [En línea]. Available: https://dspace.ups.edu.ec/bitstream/123456789/8185/1/Demostraci%C3%B3n%20de%20cifrado%2 0sim%C3%A9trico%20y%20asim%C3%A9trico.pdf.; W. Dent, «Hybrid Cryptography,» 3 Junio 2009. [En línea]. Available: https://eprint.iacr.org/2004/210.ps.; Escobar Molero Gabriel. (2011). Clúster de alto rendimiento en un cloud: ejemplo de aplicación en criptoanálisis de funciones hash. Universidad de Almería. pg 60. http://repositorio.ual.es/bitstream/handle/10835/1202/PFC.pdf?sequence=1.; A. Pousa, «Universidad Nacional de la Plata,» Diciembre 2011. [En línea]. Available: https://postgrado.info.unlp.edu.ar/wp-content/uploads/2014/07/Pousa_Adrian.pdf.; A. Lenstra, «Key Lengths,» [En línea]. Available: https://infoscience.epfl.ch/record/164539/files/NPDF-32.pdf.; R. Avinash, A. Potnis, S. Kumar, P. Dwivedy y S. Soofi, «Internation Journal Of Engineering Research and Applications,» Agosto 2017. [En línea]. Available: http://www.ijera.com/papers/Vol7_issue8/Part-1/O0708019094.pdf.; A. Faget, «What are Cryptographic Signatures? %7C Introduction to the Most Common Schemes,» 14 Noviembre 2018. [En línea]. Available: https://coindoo.com/what-are-cryptographic-signaturesintroduction-to-the-most-common-schemes/.; Goldreich, O. (2000). Modern Cryptography, Probabilistic Proofs and Pseudorandomness (Second Edition - author's copy). Springer.pag 1-2, consultado en http://www.wisdom.weizmann.ac.il/~oded/PDF/mcppp-v2.pdf.; Muñoz, R., Muñoz, R., & completo, V. (2021). Algoritmo RSA en aplicación web. Retrieved 12 July 2021, from http://criptografiaverm1.blogspot.com/2013/07/tarea-5-algoritmo-rsa-en-aplicacionweb.html.; Eslava Blanco, H. J., Rocha, J. F., & Morales, J. I. (2011). Estudio de tráfico sobre una plataforma de virtualización. Visión electrónica, 5(2), 78-94. https://doi.org/10.14483/22484728.3572.; Congreso de Colombia. ley 1636 de 2013.; Lei Chen and Nansheng Yao, "Publishing Linked Data from relational databases using traditional views," 2010 3rd International Conference on Computer Science and Information Technology, 2010, pp. 9-12, doi:10.1109/ICCSIT.2010.5563576.; Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M. A., Saggion, H., Petrak, J., Li, Y., y Peters, W. (2017). Text Processing with GATE (Version 6).; C. Gardent and S. Narayan Multiple Adjunction in Feature-Based Tree-Adjoining Grammar In Computational Linguistics, Volume 41, Issue 1 - March 2015.; LM Vilches-Blázquez, B Villazón-Terrazas, O Corcho, A Gómez-Pérez. International Journal of Digital Earth 7 (7), 554-575, 2014.; R. Jessop, “El Futuro del Estado Capitalista”, Madrid: Ed. Catarata, Pag.124,2007.; M. Castells e Himanen, “Modelos de Desarrollo en la Era Global de la Información: Construcción de un Marco Analítico” en Castells e Himanen “reconceptualización del desarrollo en la era global de la información”. Santiago de Chile: FCE, Pag. 27, 2017.; C. H. Caicedo y A. Smida, “Intensidad informacional para la longitudinalidad asistencial en sistemas de salud", Visión Electrónica, vol. 10, no. 1, pp. 83-95, 2016. https://doi.org/10.14483/22484728.11612.; J. Van Dijck, “La Cultura de la Conectividad”, Siglo XXI. Bs. A. Pag 268, 2016.; S. Zuboff, “Atrapados en la era del capitalismo de Vigilancia y la Economía Predictiva”, El Espectador, p. 20, enero 10, 2020.; P. Virno, “Cuando el Verbo se hace Carne”. Madrid: Mapas, p.20, 2005.; E. Sadin, “La Siliconización del Mundo”, Bs As: Caja Negra, p.108, 2018.; M. Doueihi, “La Gran Conversión Digital”, Bs. As.: F.C.E. p. 21, 2010.; R. Echeverría. “Ontología del Lenguaje”, Chile: JC Sáez editor, Pag. 24 1997.; J.F. Lyotard, “La condition postmoderne: rapport sur le savoir”. París: Minuit, 1979.; O. Dallera, “La sociedad como sistema de comunicación. La teoría sociológica de Niklas Luhmann en 30 lecciones”, Buenos Aires: editorial Biblos, 2012.; S. Rozas,” Lenguaje y performatividad”, Psicología, Conocimiento y Sociedad, vol 6, no.2, pp. 280-298, 2016.; J. L. Austin, “Cómo hacer cosas con palabras”, Barcelona: Paidós, 1982.; S. Belli, R. Harré, L. Íñiguez, “Emociones en la tecnociencia: la performance de la velocidad”, Prisma Social, 3, pp. 1-41, 2009.; A. Heller, “Sociología de la vida cotidiana”, J. F. Yvars y E. Pérez Nadal (trads.). Barcelona: Península, 1977.; L. F. Aguilar, “En torno del concepto de racionalidad de Max Weber”, en l. Olivé, “Racionalidad Ensayos sobre la racionalidad en ética y política, ciencia y tecnología”, México: Siglo XXI Editores, Coediciones Temas: Ética, Filosofía política, Instituto de Investigaciones Filosóficas, 1988.; M. Weber, “El problema de la irracionalidad en las ciencias sociales”, Madrid: Tecnos, 192 p. 1985.; N. Luhmann, “Organización y decisión. Autopoiesis, acción y entendimiento comunicativo”, Rubí (Barcelona): Anthropos, 2005.; C.H., Caicedo E, “Fortalecimiento de la Gestión de la Investigación y la Extensión, condición para el avance del Sistema Nacional de Innovación”. Documento presentado como requisito para cambio de categoría de Profesor Asistente a Profesor Asociado, Bogotá: Facultad de Ingeniería de la Universidad Nacional de Colombia, 2006.; J. March, H. A. Simon, “Teoría de la organización”, Barcelona: Ariel Economía, 1980.; Joffre, Aurégan, Chédotel y Tellier, “Le Management Stratégique per le Projet”, París: Economica, P.45, 2006.; J. Neré, “Le Management de Projet”, Paris: Puf, p.4, 2015.; Garel, Giard y Midler, “Faire de la Recherche en Management de Projet”, París: FNEGE, Vuibert, p.1, 2004.; AMBROSE, W., Parallel translation of Riemannian curvature. Ann. of Math., 64, 337363. 1956.; APOSTOL TOM, Calculus vol. 1 y 2. Segunda edición. Reverté. 1982.; BERGER - GAUDUCHON - MAZET, Le Spectre d′une Varieté Rie- mannianne. Springer - Verlag. New York. 1971.; DO CARMO, M., Differential Geometry of Curves and Super- faces. Printece - Hall, New Jersy. 1976.; DO CARMO, M., Geometría Riemanniana. 2a Ed. Rio de Janeiro. Brasil. 1988.; CARTAN, E., Lecons sur la Géométrie des Espaces de Riemann (2‘eme édition). Paris, Gauthier-Villard. 1951.; FOMENKO, A. T., Symplectic Geometry. Moscuw. 1998.; FRANKEL, T., The Geometry of Physics. Cambrige University. 2001.; GALLOT-HULLIN-LAFONTAINE, Riemannian Geometry. 2a ed., Springer. 1990.; GUILLEMIN & POLLACK, Differential Topology. Prentice - Hall. 1974.; LIPSCHUTS MARTIN, Differential Geometry. Mc Graw-Hill. 1969. (Hay versión en Español).; HOWARDS H., HUTCHINGS M., MORGAN F., The isoperimetric Problem on surfaces. Monthly, vol. 106, Number 5, (1999) 430 - 439.; LIMA, ELON LARGE, Curso de Análise. Vol. 1 y 2. Terceira Ed. IMPA-Brasil. 1981.; MUNKRES JAMES, TOPOLOGY a first course. Prentice-Hall.New Jersey. 1975. (Hay versión en Español).; MUNKRES JAMES, Elements of Algebraic Topology. Addison- Wesley. 1984.; MYERS, S. B., Riemannian manifolds with positive mean cur- vatura. Duke Math. J., 8, 401-404. 1941.; NASH, J. F., The imbedding problem for Riemannian manifolds. Ann. of. Math., 63, 2063. 1956.; O’NEILL, B., Semi-Riemannianan Geometry: Aplication to Rela- tivity. University of California. Los Angeles California. Academic Press. 1983. 468 páginas.; POOR, W., Differential Geometric Structures. Dover Publications. New York. 1981.; RIEMANN, B.,Über die Hypothesen, welche der Geometrie zu Grunde liegen. Nature, 8 (183-184), 14-17, 36, 37. 1854.; SPIVAK, M., A comprehensive Introduction to DIFFERENTIAL GEOMETRY. Publish or Perish. 1990. 2.785 páginas en 5 volumenes.; SPIVAK, M., Cálculo en Variedades. Reverté. 1975.; WARNER F. W., Foundations of Differentiable Manifolds and Lie Groups. Springer. 1983.; A. Mouthon, “Los Beneficios de la Inteligencia Artificial,” 2017. https://www.eleconomista.es/firmas/noticias/8716667/11/17/Beneficios-de-la-inteligencia-artificial.html (accessed May 06, 2021).; A. Garcia-Serrano and S. Ossowski, “Inteligencia Artificial Distribuida y Sistemas Multiagentes,” Inteligencia Artificial, vol. 2, no. 6, pp. 1–6, 1998, doi:10.4114/ia.v2i6.614.; A. Turing, “Mind a Quarterly Review of Psychology and Philosophy,” Mind, vol. 8, no. 2, pp. 145– 166, 1899, doi:10.1093/mind/VIII.2.145.; M. A. Salichs, M. Malfaz, and J. F. Gorostiza, “Toma de Decisiones en Robótica,” Revista Iberoamericana de Automática e Informática Industrial RIAI, vol. 7, no. 4, pp. 5–16, 2010, doi:10.1016/s1697-7912(10)70055-8.; M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “Describing textures in the wild,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3606–3613, 2014, doi:10.1109/CVPR.2014.461.; Tensorflow, “TensorFlow 2 Detection Model Zoo.” https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo. md (accessed May 05, 2021).; L. F. Mahecha, N. F. Conde, H. Vacca-González, “Implementación de Redes Neuronales y Procesamiento de Imágenes en el Movimiento de Robots Modulares Tipo Cadena. SOMI XXXV Congreso de Instrumentación CDMX, México, 27 al 29 de octubre de 2021.; R. A. Valdesueiro, “Muestreo digital”, p. 12.; A. Hashemi Fath, F. Madanifar, y M. Abbasi, “Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems”, Petroleum, vol. 6, núm. 1, pp. 80–91, mar. 2020, doi:10.1016/j.petlm.2018.12.002.; L. O. González Salcedo, A. P. Guerrero Zúñiga, S. Delvasto Arjona, y A. L. E. Will, “Artificial Neural Model based on radial basis function networks used for prediction of compressive strength of fiber-reinforced concrete mixes”, Cien.Ing.Neogranadina, vol. 29, núm. 2, pp. 37–52, jun. 2019, doi:10.18359/rcin.3737.; A. Sudou, P. Hartono, R. Saegusa, y S. Hashimoto, “Signal reconstruction from sampled data using neural network”, en Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing, Martigny, Switzerland, 2002, pp. 707–715, doi:10.1109/NNSP.2002.1030082.; A. Ugena, “THE NEWTON NEURAL NET: A NEW APPROXIMATING NETWORK”, Int. J. of Pure and Appl. Math., vol. 82, núm. 4, feb. 2013, doi:10.12732/ijpam.v82i4.13.; N. M. Khan, “Audio Signal Reconstruction Using Cartesian Genetic Programming Evolved Artificial Neural Network (CGPANN)”, p. 6.; L. H. C. Casallas, E. H. M. Alfonso, y M. L. C. Martínez, “Clasificación de Plasmodium Falciparum por estadio en cultivos sincrónicos de eritrocitos”, Visión electrónica, vol. 5, núm. 1, Art. núm. 1, may 2011, doi:10.14483/22484728.3519.; J. A. P. Plaza, D. R. Zapata, y A. T. Tascón, “Implementación de redes neuronales utilizando dispositivos lógicos programables”, Visión electrónica, vol. 1, núm. 1, Art. núm. 1, jun. 2008, doi:10.14483/22484728.250.; O. L. Ramos, D. A. Rojas, y L. A. Góngora, “Reconocimiento de patrones de habla usando MFCC y RNA”, Visión electrónica, vol. 10, núm. 1, Art. núm. 1, jun. 2016, doi:10.14483/22484728.11712.; E. J. G. Monterroza, “Reconocimiento de primitivas 3D, usando autocorrelación y ANFIS”, Visión electrónica, vol. 1, núm. 1, Art. núm. 1, 2008, doi:10.14483/22484728.251.; L. F. P. Martínez, Ó. F. C. Camargo, y J. E. Roa, “Estudio comparativo de técnicas artificiales para la predicción de una serie de tiempo caótica”, Visión electrónica, vol. 2, núm. 2, Art. núm. 2, dic. 2008, doi:10.14483/22484728.792.; A. E. Díaz y L. A. Calderón, “Modelo tridimensional de extremidad inferior basado en imágenes de resonancia magnética”, Visión electrónica, vol. 3, núm. 1, Art. núm. 1, jun. 2009, doi:10.14483/22484728.686.; Ahl´en, J., Sundgren, D., Bengtsson, E.: Application of underwater hyperspectraldata for color correction purposes. Pattern Recognition and Image Analysis 17 (3 2007). https://doi.org/10.1134/S105466180701021X .; Arnold-Bos, A., Malkasse, J.P., Kervern, G.: A preprocessing framework for auto- matic underwater images denoising (3 2005), https://hal.archives-ouvertes.fr/hal- 00494314.; Bazeille, S., Quidu, I., Jaulin, L., Malkasse, J.P.: Automatic underwater image preprocessing. Proceedings of CMM’06 (4 2006).; Cetto, A.M.: La luz: en la naturaleza y en el laboratorio. Fondo de Cultura Econ´omica (2019).; Chambah, M., Semani, D., Renouf, A., Coutellemont, P., Rizzi, A.: Underwa- ter color constancy: Enhancement of automatic live fish recognition (2004), https://hal.archivesouvertes.fr/hal-00263734.; Iqbal, K., Odetayo, M., James, A., Salam, R.A., Talib, A.Z.H.: Enhancing the low quality images using unsupervised colour correction method. IEEE (10 2010). https://doi.org/10.1109/ICSMC.2010.5642311.; Jaffe, J.: Computer modeling and the design of optimal underwater imaging systems. IEEE Journal of Oceanic Engineering 15 (4 1990). https://doi.org/10.1109/48.50695.; McGlamery, B.L.: A computer model for underwater camera systems (3 1980). https://doi.org/10.1117/12.958279.; Schechner, Y., Karpel, N.: Recovery of underwater visibility and structure by polarization analysis. IEEE Journal of Oceanic Engineering 30 (7 2005). https://doi.org/10.1109/JOE.2005.850871.; Sears, F.W., Zemansky, M.W., Young, H.D., Freedman, R.A., Flores Flores, V.A., Rubio Ponce, A.: Fisica universitaria. Addison-Wesley; Pearson Educacion, Mexico (2009), oCLC: 991818413.; Serway, R.A.: Física para ciencias e ingenieria. McGraw-Hill, Mexico (2002), oCLC: 807250137.; Trucco, E., Olmos-Antillon, A.: Self-tuning underwater image restoration. IEEE Journal of Oceanic Engineering 31 (4 2006). https://doi.org/10.1109/JOE.2004.836395.; Wikipedia: Patron de muar´e — wikipedia, la enciclopedia libre (2020).; Pérez, M. A. A. (2009). Espacios De Color RGB, HSI Y Sus Generalizaciones A NDimensiones. PhD thesis, InstitutoNacional de Astrofísica, Óptica y Electrónica.; O. Ronneberger, P. Fischer, y T. Brox, «U-Net: Convolutional Networks for Biomedical Image Segmentation», CoRR, vol. abs/1505.04597, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1505.04597.; V. Badrinarayanan, A. Kendall, y R. Cipolla, «SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation», CoRR, vol. abs/1511.00561, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1511.00561.; S. Liu y W. Deng, «Very deep convolutional neural network based image classification using small training sample size», en 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), 2015, pp. 730-734. doi:10.1109/ACPR.2015.7486599.; J. Long, E. Shelhamer, y T. Darrell, «Fully Convolutional Networks for Semantic Segmentation», CoRR, vol. abs/1411.4038, 2014, [En línea]. Disponible en: http://arxiv.org/abs/1411.4038.; C. Szegedy et al., «Going Deeper with Convolutions», CoRR, vol. abs/1409.4842, 2014, [En línea]. Disponible en: http://arxiv.org/abs/1409.4842.; H. Zhao, J. Shi, X. Qi, X. Wang, y J. Jia, «Pyramid Scene Parsing Network», CoRR, vol. abs/1612.01105, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1612.01105.; K. He, X. Zhang, S. Ren, y J. Sun, «Deep Residual Learning for Image Recognition», CoRR, vol. abs/1512.03385, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1512.03385.; L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, y A. L. Yuille, «DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs», IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, n.o 4, pp. 834-848, 2018, doi:10.1109/TPAMI.2017.2699184.; L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, y A. L. Yuille, «DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs», CoRR, vol. abs/1606.00915, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1606.00915.; L.-C. Chen, G. Papandreou, F. Schroff, y H. Adam, «Rethinking Atrous Convolution for Semantic Image Segmentation», CoRR, vol. abs/1706.05587, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1706.05587.; R. Girshick, J. Donahue, T. Darrell, y J. Malik, «Rich feature hierarchies for accurate object detection and semantic segmentation». 2014.; R. Girshick, «Fast R-CNN». 2015.; S. Ren, K. He, R. Girshick, y J. Sun, «Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks». 2016.; T.-Y. Lin, P. Goyal, R. Girshick, K. He, y P. Dollor, «Focal Loss for Dense Object Detection». 2018.; W. Liu et al., «SSD: Single Shot MultiBox Detector», Lect. Notes Comput. Sci., p. 21-37, 2016, doi:10.1007/978-3-319-46448-0_2.; J. Redmon y A. Farhadi, «YOLO: Real-Time Object Detection». 2018.; J. Redmon y A. Farhadi, «YOLO9000: Better, Faster, Stronger». 2016.; J. Redmon y A. Farhadi, «YOLOv3: An Incremental Improvement». 2018.; F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, y K. Keutzer, «SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \textless1MB model size», CoRR, vol. abs/1602.07360, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1602.07360.; A. G. Howard et al., «MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications», CoRR, vol. abs/1704.04861, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1704.04861.; M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, y L.-C. Chen, «Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation», CoRR, vol. abs/1801.04381, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1801.04381.; G. Huang, S. Liu, L. van der Maaten, y K. Q. Weinberger, «CondenseNet: An Efficient DenseNet using Learned Group Convolutions», CoRR, vol. abs/1711.09224, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1711.09224.; X. Zhang, X. Zhou, M. Lin, y J. Sun, «ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices», CoRR, vol. abs/1707.01083, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1707.01083.; N. Ma, X. Zhang, H.-T. Zheng, y J. Sun, «ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design», CoRR, vol. abs/1807.11164, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1807.11164.; M. Tan, B. Chen, R. Pang, V. Vasudevan, y Q. V. Le, «MnasNet: Platform-Aware Neural Architecture Search for Mobile», CoRR, vol. abs/1807.11626, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1807.11626.; M. Tan y Q. V. Le, «EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks», CoRR, vol. abs/1905.11946, 2019, [En línea]. Disponible en: http://arxiv.org/abs/1905.11946.; M. Cordts et al., «The Cityscapes Dataset for Semantic Urban Scene Understanding». 2016.; J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, y L. Fei-Fei, «ImageNet: A Large-Scale Hierarchical Image Database», 2009.; K. C. L. Wong, M. Moradi, H. Tang, y T. F. Syeda-Mahmood, «3D Segmentation with Exponential Logarithmic Loss for Highly Unbalanced Object Sizes», CoRR, vol. abs/1809.00076, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1809.00076.; M. Willett, “Lessons of the SolarWinds Hack,” Survival (Lond)., vol. 63, no. 2, 2021, doi:10.1080/00396338.2021.1906001.; H. S. Lallie et al., “Cyber security in the age of COVID-19: A timeline and analysis of cyber-crime and cyber-attacks during the pandemic,” Comput. Secur., vol. 105, 2021, doi:10.1016/j.cose.2021.102248.; J. Aguirre, CURSO DE SEGURIDAD INFORMÁTICA Y CRIPTOGRAFÍA, vol. 3.1. 2003.; E. Biham and A. Shamir, “Differential cryptanalysis of DES-like cryptosystems,” J. Cryptol., vol. 4, no. 1, 1991, doi:10.1007/BF00630563.; J. Daemen and V. Rijmen, “AES proposal: Rijndael,” no. December, 1999.; N. Velasquez and N. Pineda, “Diseño e Implementacion de un Prototipo Criptoprocesador AES-Rijndael en FPGA,” Universidad de Los Llanos, 2007.; A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, and A. Poschmann, “PRESENT: An Ultra-Lightweight Block Cipher.; J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw, “The LED block cipher,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2011, vol. 6917 LNCS, doi:10.1007/978-3-642-23951-9_22.; F. Velásquez and J. F. Castaño, “Cryptographic Implementations for Fpga,” Rev. Visión Electron., vol. 5, no. 1, pp. 26–37, 2011.; F. Velásquez and J. A. Castaño, “Implementation of binary finite fields towers of extension 2,” Rev. Visión Electrónica, vol. 7, no. 2, pp. 89–96, 2013.; W. Enríquez, P. Nazate, and O. Marcillo, “Prototipo DAS basado en FPGA de 12 canales para monitoreo geodinámico,” Visión electrónica, vol. 12, no. 1, pp. 73–82, 2018, doi:10.14483/22484728.13782.; C. A. HERNANDEZ and E. JACINTO, “a New Methodology in the Design of Digital Filters Fir on Fpga,” Rev. Visión Electron., vol. 3, no. 2, pp. 40–47, 2009.; L. W. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, “THE SIMON AND SPECK FAMILIES OF LIGHTWEIGHT BLOCK CIPHERS,” Natl. Secur. Agency, p. 42, 2013.; P. Maene and I. Verbauwhede, “Single-cycle implementations of block ciphers,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9542, pp. 131–147, 2016, doi:10.1007/978-3-319-29078-2_8.; S. Abed, R. Jaffal, B. J. Mohd, and M. Alshayeji, “FPGA modeling and optimization of a SIMON lightweight block cipher,” Sensors (Switzerland), vol. 19, no. 4, 2019, doi:10.3390/s19040913.; A. Shahverdi, M. Taha, and T. Eisenbarth, “Lightweight Side Channel Resistance: Threshold Implementations of Simon,” IEEE Trans. Comput., vol. 66, no. 4, pp. 661–671, 2017, doi:10.1109/TC.2016.2614504.; S. B. Basturk, C. E. J. Dancer, and T. McNally, “High-throughput Configurable SIMON Architecture for Flexible Security,” Pharmacol. Res., p. 104743, 2020, doi:10.1016/j.mejo.2021.105085.; A. Muthumari et al., “High security for de-duplicated big data using optimal SIMON Cipher,” Comput. Mater. Contin., vol. 67, no. 2, pp. 1863–1879, 2021, doi:10.32604/cmc.2021.013614.; W. Diehl, A. Abdulgadir, J. P. Kaps, and K. Gaj, “Comparing the cost of protecting selected lightweight block ciphers against differential power analysis in low-cost FPGAs,” Computers, vol. 7, no. 2, pp. 128–135, 2018, doi:10.3390/computers7020028.; FAO, «Objetivos de Desarrollo Sostenible», Agenda 2030 para el desarrollo sostenible, 2021. http://www.fao.org/sustainable-development-goals/overview/fao-and-post-2015/sustainableagriculture/es/.; G. Spencer, Fundamentos de Acuaponía. 2018.; R. Adhikari, S. Rauniyar, N. Pokhrel, A. Wagle, T. Komai, y S. R. Paudel, «Nitrogen recovery via aquaponics in Nepal: current status, prospects, and challenges», SN Appl. Sci., vol. 2, n.o 7, 2020, doi:10.1007/s42452-020-2996-5.; P. Carneiro, A. Maria, M. Nunes, y R. Ujimoto, «Aquaponia: produção sustentável de peixes e vegetais», en Embrapa Tabuleiros Costeiros, 2015.; A. Caldas, I. Castillo, S. Prado, L. Rosales, y L. Vargas, «Diseño y construcción de sistemas acuapónicos a pequeña escala para familias de la región Piura», Pirhua, p. 205, 2019, [En línea]. Disponible en: https://pirhua.udep.edu.pe/handle/11042/4285.; C. M. Correa y J. F. Valencia, «Configuración de un control de temperatura en un sistema embebido de bajo costo, usando herramientas de inteligencia artificial y el internet de las cosas», Rev. Iber. Sist. y Tecnol. Inf., n.o 34, pp. 68-84, 2019, doi:10.17013/risti.34.68-84.; V. Jahnavi y S. Ahamed, «Red inteligente de sensores inalámbricos para invernaderos automatizados», IETE J. Res., vol. 61, n.o 2, pp. 180-185, 2015.; I. Lee y K. Lee, «The Internet of Things (IoT): Applications, investments, and challenges for enterprises», Bus. Horiz., vol. 58, n.o 4, pp. 431-440, 2015, doi:10.1016/j.bushor.2015.03.008.; E. Barrientos, D. Rico, L. A. Coronel, y F. R. Cuesta, «Granja inteligente: Definición de infraestructura basada en internet de las cosas, IpV6 y redes definidas por software», Rev. Ibérica Sist. e Tecnol. Informação, vol. E17, pp. 183-197, 2019.; F. Simanca, J. Paez, J. Cortés, E. Díaz, y J. Palacio, «Sistema de riego para cultivos controlado mediante una aplicación de IoT», Rev. Ibérica Sist. e Tecnol. Inf., pp. 410-424, 2020, [En línea]. Disponible en: www.estudioscualitativos.ec.; E. A. Q. Montoya, S. F. J. Colorado, W. Y. C. Muñoz, y G. E. C. Golondrino, «Propuesta de una Arquitectura para Agricultura de Precisión Soportada en IoT», RISTI - Rev. Iber. Sist. e Tecnol. Inf., n.o 24, pp. 39-56, 2017, doi:10.17013/risti.24.39-56.; S. M. A. Aguirre, D. R. M. Rivadeneira, L. R. G. Torrealba, L. D. N. Erazo, F. I. Rivas-Echeverría, y D. M. R. Albarran, «Metodología para el almacenamiento y visualización de datos masivos en invernadero basado en el Internet de las Cosas IoT.», Rev. Ibérica Sist. e Tecnol. Informação, n.o E15, pp. 1-12, 2018, [En línea]. Disponible en: https://search.proquest.com/docview/2041143320?accountid=134127%0Ahttp://link.periodicos.capes. gov.br/sfxlcl41?url_ver=Z39.882004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&genre=unknown&sid=ProQ:ProQ%3Ahightechjournals& atitle=Metodología+para+el+almacenam; G. E. Chanchí, L. M. Sierra, y W. Y. Campo, «Propuesta de una plataforma académica portable para la construcción de microservicios en entornos de IoT», Rev. Ibérica Sist. e Tecnol. Informação, n.o E27, pp. 1-13, 2020.; J. A. Brenes Carranza, A. Martínez Porras, C. U. Quesada López, y M. Jenkins Coronas, «Sistemas de apoyo a la toma de decisiones que usan inteligencia artificial en la agricultura de precisión», Rev. Ibérica Sist. y Tecnol. la Inf. núm E28, pp. 217-229, n.o 28, pp. 217-230, 2020.; A. Bárta, P. Soucek, V. Bozhynov, y P. Urbanová, «Automatic Multiparameter Acuisition in Aquaponics Systems», en 5th International Work-Conference, IWBBIO 2017 Granada, Spain, April 26– 28, 2017, Proceedings, Part II, 1.a ed., Springer, Ed. Granada, 2017, pp. 712-725.; O. A. O. Valero, P. A. R. Trujillo, N. L. M. Valderrama, M. E. de Oliveira, y A. R. B. Tech, «Monitoreo remoto automatizado de calidad del agua en sistemas acuapónicos en Sao Paulo, Brasil», Rev. Ibérica Sist. e Tecnol. Informação, n.o E31, pp. 223-235, 2020, [En línea]. Disponible en: http://ezproxy.unal.edu.co/scholarly-journals/monitoreo-remoto-automatizado-de-calidad-delagua/docview/2468684076/se-2?accountid=137090.; K. J. Keesman, O. Körner, K. Wagner, J. U. Urban, D. Karimanzira, y S. Rauschenbach, Thomas , Goddek, «Aquaponics Systems Modelling», en Aquaponics Food Production Systems, 1.a ed., Springer, Ed. Cham, 2019, pp. 273-299.; A. Ahmed, S. Zulfiqar, A. Ghandar, Y. Chen, M. Hanai, y G. Theodoropoulos, «Digital Twin Technology for Aquaponics: Towards Optimizing Food Production with Dynamic Data Driven Application Systems», en Methods and Applications for Modeling and Simulation of Complex Systems. 19th Asia Simulation Conference, AsiaSim 2019 Singapore, October 30 – November 1, 2019 Proceedings, Singapur: Springer, 2019, pp. 3-14.; Haryanto, M. Ulum, A. F. Ibadillah, R. Alfita, K. Aji, y R. Rizkyandi, «Smart aquaponic system based Internet of Things (IoT)», J. Phys. Conf. Ser., vol. 1211, n.o 1, 2019, doi:10.1088/17426596/1211/1/012047.; M. Dayahna Caro M., E. Romero-Riaño, M. Alexandra Espinosa C, y C. D. Guerrero, «Evaluando contribuciones de usabilidad en soluciones TIC-IOT para la agricultura: Una perspectiva desde la bibliometría», RISTI - Rev. Iber. Sist. e Tecnol. Inf., vol. 2020, n.o E28, pp. 681-692, 2020, [En línea]. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.085081040306&partnerID=40&md5=f59611d7803425f519635fe4470fdaca.; P. Rituay Trujillo, N. L. Murga Valderrama, M. D. P. Bustos Chavéz, P. Chauca Valqui, y J.-A. Campos Trigoso, «Evolución y tendencias investigativas de tecnologías aplicadas en los agronegocios : una revisión sistemática de la literatura», Iber. J. Inf. Syst. Technol., vol. 39, pp. 189-199, 2021.; S. F. Mejía S., L. Y. Flóres G., y C. D. Guerrero S., «Desarrollo tecnológico del IoT en el sector de la agricultura : una visión desde el análisis de patentes», Rev. Ibérica Sist. e Tecnol. Informação, n.o 28, pp. 375-386, 2020.; L. A. Rodríguez-umaña, «efectos de la variación de caudal sobre los niveles de amonio , nitrato y pH de un prototipo de cultivo acuapónico Evaluation of the effects of varying water flow on the levels of Ammonium , Nitrate and Ph of a prototype aquaponic system . Avaliação dos e», vol. 7, n.o 2, pp. 126-138, 2016.; M. Eck, K. Oliver, y M. H. Jijakli, «Nutrient Cycling in Aquaponics Systems», en Aquaponics Food Production Systems, 1ra ed., S. Goddek, A. Joyce, B. Kotzen, y G. Burnell M., Eds. Switzerland: Springer Nature Switzerland, 2020, pp. 231-246.; M. Á. Barrera Pérez, N. Y. Serrato Losada, E. Rojas Sánchez, y G. Mancilla Gaona, «Estado del arte en redes definidas por software (SDN)», Visión Electrónica, vol. 13, n.o 1, pp. 178-194, 2019, doi: https://doi.org/10.14483/22484728.14424.; J. C. Najar-Pacheco, J. A. Bohada-Jaime, y W. Y. Rojas-Moreno, «Vulnerabilidades en el internet de las cosas», Visión Electrónica, vol. 13, n.o 2, pp. 312-321, 2019, doi: https://doi.org/10.14483/22484728.14424.; J. A. Londoño Alzate, A. Fonseca Velásquez, y E. A. Delgadillo, «Laboratorios remotos: estudio de caso con una planta térmica didáctica», Visión Electrónica, vol. 12, n.o 2, pp. 265-277, 2018, doi: https://doi.org/10.14483/22484728.14263.; I. J. Donado Romero y J. C. Villamizar Rincón, «“Metodología para estandarización de componentes SCADA bajo normas ISA», Visión Electrónica, vol. 12, n.o 1, pp. 14-21, 2018, doi: https://doi.org/10.14483/22484728.13402.; O. L. Quintero, H. Medina, y E. A. Pineda Muñoz, «Automatización para dosificación de reactivos en clasificación de carbón», Visión Electrónica, vol. 11, n.o 1, pp. 45-54, 2017, doi: https://doi.org/10.14483/22484728.10995.; C. González, D. Zamara, S. R. González B, I. F. Mondragón B, y M. Moreno, «Inspección no invasiva de Physalis peruviana usando técnicas (Vir/Nir)», Visión Electrónica, vol. 10, n.o 1, pp. 22-28, 2016, doi: https://doi.org/10.14483/22484728.11702.; L. E. Galindo C, A. A. Aguilera, y L. A. Rojas Castellar, «Automatización en la industria de bolígrafos: El caso del estampado», Visión Electrónica, vol. 5, n.o 1, pp. 103-113, 2011, doi: https://doi.org/10.14483/22484728.3512.; A. Garcia Chacon, J. L. Martínez Rodríguez, y E. Y. Torres Castro, «Automatización de procesos en el sector plásticos: el caso de una inyectora», Visión Electrónica, vol. 2, n.o 2, pp. 52-63, 2008, [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/796.; Zamora Musa, Ronald, y “Laboratorios Remotos: Actualidad y Tendencias Futuras." Scientia Et Technica XVII, no. 51 (2012):113-118. Redalyc, https://www.redalyc.org/articulo.oa?id=84923910017.; C. I. Jiménez, «Propuesta pedagógica para el uso de laboratorios virtuales como actividad complementaria en las asignaturas teórico-prácticas,» Revista Mexicana De Investigación Educativa, 2014.; Nacional, M. d. (2 de septiembre de 2020). Ministerio de Educación Nacional. Obtenido de https://www.mineducacion.gov.co/1759/w3-article-400640.html?_noredirect=1.; Ramírez, E. A. (2014). Una Mirada Crítica al Papel de las TIC en la Educación Superior. Ibagué: Universidad del Tolima; A. F. Reinoso López y J. C. Forero Jiménez, «Diseño e implementación de un laboratorio con características de acceso remoto orientado hacia el calentamiento de agua» Universidad Distrital Francisco José de Caldas, Bogotá, 2021.; N. LabVIEW, «NI home,» [En línea]. Available: https://www.ni.com/academic/students/learnlabview/esa/environment.htm.; S. C. Giselle, «Laboratorio virtual y remoto, aprendiendo a través de la experimentación, » Universidad Tecnológica Nacional, 2017.; Heradio, R. et al. Virtual and remote labs in education: A bibliometric analysis. Computers & Education, Volume 98, 2016, Pages 14-3.; Unai H.J.; Javier G. Zubia. Remote measurement and instrumentation laboratory for training in real analog electronic experiments. Measurement, Volume 82, 2016, Pages 123-134.; B.R. Poorna chandra, K.P. Geevarghese, K.V. Gangadharan. Design and Implementation of Remote Mechatronics Laboratory for e-Learning Using LabVIEW and Smartphone and Cross-platform Communication Toolkit (SCCT), Procedia Technology, Volume 14, 2014, Pages 108-115.; Van Wylen, G. J.; Sonntag, R. E. Fundamentals of Classical Thermodynamics. Ed. John Wiley & Sons: Singapore, 3ra. edición, 1985.; Petrescu, R. V. V., Aversa, R., Apicella, A., Mirsayar, M., Kozaitis, S., Abu-Lebdeh, T. y Tiberiu Petrescu, F. I. (2017). The Inverse Kinematics of the Plane System 2-3 in a Mechatronic MP2R System, by a Trigonometric Method. Journal of Mechatronics and Robotics, 1(2), 75–87. https://doi.org/10.3844/jmrsp.2017.75.87.; Y Sethi, S. P., Sriskandarajah, C., Sorger, G., Blazewicz, J. y Kubiak, W. (1992). Sequencing of parts and robot moves in a robotic cell. International Journal of Flexible Manufacturing Systems, 4(3-4), 331–358. https://doi.org/10.1007/bf01324886.; Blazewicz, J., Eiselt, H.A., Finke, G., Laporte, G., Weglarz, J., 1991. Scheduling tasks and vehicles in a flexible manufacturing system. International Journal of Flexible Manufacturing Systems 4, 5–16.; Deuerlein, C., Müller, F., Seßner, J., Heß, P., & Franke, J. (2021). Improved design flexibility of open robot cells through tool-center-point monitoring. Procedia CIRP, 100, 295–300. https://doi.org/10.1016/j.procir.2021.05.069.; Veiga, G., Pires, J. N. y Nilsson, K. (2009). Experiments with service-oriented architectures for industrial robotic cells programming. Robotics and Computer-Integrated Manufacturing, 25(4-5), 746– 755. https://doi.org/10.1016/j.rcim.2008.09.001.; Zhao, Q., Sun, M., Cui, M., Yu, J., Qin, Y., & Zhao, X. (2015). Robotic Cell Rotation Based on the Minimum Rotation Force. IEEE Transactions on Automation Science and Engineering, 12(4), 1504– 1515. https://doi.org/10.1109/tase.2014.2360220.; G. Michalos, S. Makris, P. Tsarouchi, T. Guasch, D. Kontovrakis, G. Chryssolouris, Design Considerations for Safe Human-robot Collaborative Workplaces, in: Understanding the life cycle implications of manufacturing, 2015, pp. 248–253.; E. Magrini, F. Ferraguti, A.J. Ronga, F. Pini, A. de Luca, F. Leali, Human-robot coexistence and interaction in open industrial cells, in: Journal of Robotics and Computer-Integrated Manufacturing, 2019, p. 101846.; datasheet PCA9685PW. (2009, 16 de julio). DigChip IC database.; Zamora Navarro, F. J., & Valiente Cristancho, A. (2015). Tasa de muestreo ADC en microcontroladores avanzados de 8 bits. Visión electrónica, 9(1), 128-138. https://doi.org/10.14483/22484728.11022.; García-Guerrero, E., Inzunza-González, E., López-Bonilla, O., Cárdenas-Valdez, J., & TleloCuautle, E. (2020). Randomness improvement of chaotic maps for image encryption in a wireless communication scheme using PIC-microcontroller via Zigbee channels. Chaos, Solitons & Fractals, 133, 109646. https://doi.org/10.1016/j.chaos.2020.109646.; I2C - Puerto, Introducción, trama y protocolo - HETPRO/TUTORIALES. (s. f.). HETPRO/TUTORIALES. https://hetpro-store.com/TUTORIALES/i2c/.; Z. Boric and B. Markovic, "The talking thermometer simulator based on the DS1820 sensor and PIC18F45K22 microcontroller," 2012 20th Telecommunications Forum (TELFOR), 2012, pp. 544-547, doi:10.1109/TELFOR.2012.6419268.; Corke, P. I. (1996). A robotics toolbox for MATLAB. IEEE Robotics and Automation Magazine, 3(1), 24–32. https://doi.org/10.1109/100.486658.; Y. Fang and X. Chen, "Design and Simulation of UART Serial Communication Module Based on VHDL," 2011 3rd International Workshop on Intelligent Systems and Applications, 2011, pp. 1-4, doi:10.1109/ISA.2011.5873448.; Calderón Acero, J., & Parra Garzón, I. V. (2010). Controladores difusos en microcontroladores: software para diseño e implementación. Visión electrónica, 4(2), 64-76. https://doi.org/10.14483/22484728.273.; D’Souza, A., Vijayakumar, S., & Schaal, S. (2001). Learning inverse kinematics. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium (Cat. No.01CH37180). Published. https://doi.org/10.1109/iros.2001.973374.; R. Junge, B. König, M. Villarroel, T. Komives, and M. H. Jijakli, “Strategic points in aquaponics,” Water (Switzerland). 2017, doi:10.3390/w9030182.; C. Maucieri et al., “Life cycle assessment of a micro aquaponic system for educational purposes built using recovered material,” J. Clean. Prod., vol. 172, pp. 3119–3127, 2018, doi: https://doi.org/10.1016/j.jclepro.2017.11.097.; B. König, J. Janker, T. Reinhardt, M. Villarroel, and R. Junge, “Analysis of aquaponics as an emerging technological innovation system,” J. Clean. Prod., 2018, doi:10.1016/j.jclepro.2018.01.037.; Z. Hu, J. W. Lee, K. Chandran, S. Kim, A. C. Brotto, and S. K. Khanal, “Effect of plant species on nitrogen recovery in aquaponics,” Bioresour. Technol., vol. 188, pp. 92–98, 2015, doi: https://doi.org/10.1016/j.biortech.2015.01.013.; W. Kloas et al., “A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts,” Aquac. Environ. Interact., 2015, doi:10.3354/aei00146.; C. Maucieri et al., “Life cycle assessment of a micro aquaponic system for educational purposes built using recovered material,” J. Clean. Prod., 2018, doi:10.1016/j.jclepro.2017.11.097.; Y. Wei, W. Li, D. An, D. Li, Y. Jiao, and Q. Wei, “Equipment and Intelligent Control System in Aquaponics: A Review,” IEEE Access. 2019, doi:10.1109/ACCESS.2019.2953491.; Z. M. Gichana, D. Liti, H. Waidbacher, W. Zollitsch, S. Drexler, and J. Waikibia, “Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation,” Aquaculture International. 2018, doi:10.1007/s10499-018-0303-x.; W. A. Lennard and B. V. Leonard, “A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic test system,” Aquac. Int., 2006, doi:10.1007/s10499-006-9053-2.; I. Pinheiro et al., “Aquaponic production of Sarcocornia ambigua and Pacific white shrimp in biofloc system at different salinities,” Aquaculture, 2020, doi:10.1016/j.aquaculture.2019.734918.; Z. Schmautz et al., “Tomato productivity and quality in aquaponics: Comparison of three hydroponic methods,” Water (Switzerland), 2016, doi:10.3390/w8110533.; J. Dalsgaard, I. Lund, R. Thorarinsdottir, A. Drengstig, K. Arvonen, and P. B. Pedersen, “Farming different species in RAS in Nordic countries: Current status and future perspectives,” Aquac. Eng., vol. 53, pp. 2–13, 2013, doi: https://doi.org/10.1016/j.aquaeng.2012.11.008.; J. Suhl et al., Prospects and challenges of double recirculating aquaponic systems (DRAPS) for intensive plant production, vol. 1227. 2018.; H. R. Roosta and M. Hamidpour, “Effects of foliar application of some macro- and micronutrients on tomato plants in aquaponic and hydroponic systems,” Sci. Hortic. (Amsterdam)., vol. 129, no. 3, pp. 396–402, 2011, doi: https://doi.org/10.1016/j.scienta.2011.04.006.; Y. Fang et al., “Improving nitrogen utilization efficiency of aquaponics by introducing algalbacterial consortia,” Bioresour. Technol., vol. 245, pp. 358–364, 2017, doi: https://doi.org/10.1016/j.biortech.2017.08.116.; B. S. Cerozi and K. Fitzsimmons, “Phosphorus dynamics modeling and mass balance in an aquaponics system,” Agric. Syst., vol. 153, pp. 94–100, 2017, doi: https://doi.org/10.1016/j.agsy.2017.01.020.; D. Karimanzira, K. J. Keesman, W. Kloas, D. Baganz, and T. Rauschenbach, “Dynamic modeling of the INAPRO aquaponic system,” Aquac. Eng., vol. 75, pp. 29–45, 2016, doi: https://doi.org/10.1016/j.aquaeng.2016.10.004.; C. Lee and Y.-J. Wang, “Development of a cloud-based IoT monitoring system for Fish metabolism and activity in aquaponics,” Aquac. Eng., vol. 90, p. 102067, 2020, doi: https://doi.org/10.1016/j.aquaeng.2020.102067.; M. Manju, V. Karthik, S. Hariharan, and B. Sreekar, “Real time monitoring of the environmental parameters of an aquaponic system based on internet of things,” 2017, doi:10.1109/ICONSTEM.2017.8261342.; A. R. Yanes, P. Martinez, and R. Ahmad, “Towards automated aquaponics: A review on monitoring, IoT, and smart systems,” Journal of Cleaner Production. 2020, doi:10.1016/j.jclepro.2020.121571.; K. S. Khan, R. Kunz, J. Kleijnen, and G. Antes, “Five steps to conducting a systematic review,” J. R. Soc. Med., vol. 96, no. 3, pp. 118–121, 2003, doi:10.1258/jrsm.96.3.118.; M. Petticrew, “Petticrew_2001_Myths_Misconceptions,” vol. 322, no. January, 2001.; J. Mori and R. Smith, “Transmission of waterborne fish and plant pathogens in aquaponics and their control with physical disinfection and filtration: A systematized review,” Aquaculture. 2019, doi:10.1016/j.aquaculture.2019.02.009.; A. S. Oladimeji, S. O. Olufeagba, V. O. Ayuba, S. G. Sololmon, and V. T. Okomoda, “Effects of different growth media on water quality and plant yield in a catfish-pumpkin aquaponics system,” J. King Saud Univ. - Sci., vol. 32, no. 1, pp. 60–66, 2020, doi:10.1016/j.jksus.2018.02.001.; M. N. Mamatha and S. N. Namratha, “Design & implementation of indoor farming using automated aquaponics system,” 2017, doi:10.1109/ICSTM.2017.8089192.; P. Boonrawd, S. Nuchitprasitchai, and Y. Nilsiam, “Aquaponics Systems Using Internet of Things,” 2020, doi:10.1007/978-3-030-44044-2_5.; R. Calone et al., “Improving water management in European catfish recirculating aquaculture systems through catfish-lettuce aquaponics,” Sci. Total Environ., vol. 687, pp. 759–767, 2019, doi: https://doi.org/10.1016/j.scitotenv.2019.06.167.; J. P. Mandap et al., “Oxygen Monitoring and Control System Using Raspberry Pi as Network Backbone,” TENCON 2018 - 2018 IEEE Reg. 10 Conf., no. October, pp. 1381–1386, 2018.; S. E. Wortman, “Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system,” Sci. Hortic. (Amsterdam)., vol. 194, pp. 34–42, 2015, doi: https://doi.org/10.1016/j.scienta.2015.07.045.; S. Y. Choi and A. M. Kim, “Development of indoor aquaponics control system using a computational thinking-based convergence instructional model,” Univers. J. Educ. Res., 2019, doi:10.13189/ujer.2019.071509.; S. Goddek and O. Körner, “A fully integrated simulation model of multi-loop aquaponics: A case study for system sizing in different environments,” Agric. Syst., 2019, doi:10.1016/j.agsy.2019.01.010.; W. Vernandhes, N. S. Salahuddin, A. Kowanda, and S. P. Sari, “Smart aquaponic with monitoring and control system based on IoT,” Proc. 2nd Int. Conf. Informatics Comput. ICIC 2017, vol. 2018-Janua, pp. 1–6, 2018, doi:10.1109/IAC.2017.8280590.; D. Karimanzira and T. Rauschenbach, “Enhancing aquaponics management with IoT-based Predictive Analytics for efficient information utilization,” Inf. Process. Agric., vol. 6, no. 3, pp. 375– 385, 2019, doi: https://doi.org/10.1016/j.inpa.2018.12.003.; A. M. Nagayo, C. Mendoza, E. Vega, R. K. S. Al Izki, and R. S. Jamisola, “An automated solar-powered aquaponics system towards agricultural sustainability in the Sultanate of Oman,” 2017 IEEE Int. Conf. Smart Grid Smart Cities, ICSGSC 2017, pp. 42–49, 2017, doi:10.1109/ICSGSC.2017.8038547.; D. Pantazi, S. Dinu, and S. Voinea, “The smart aquaponics greenhouse – an interdisciplinary educational laboratory,” Rom. Reports Phys., 2019.; A. Tumbaco y B. Daniela, «Optimización del proceso productivo para incrementar la Utilidad en Mundo Verde, » Universidad de Guayaquil Facultad de Ciencias Administrativas, Guayaquil, Ecuador, 2017.; J. Montero y S. Cecilia, «Invernadero para la, » Institut de Recerca i Tecnología Agroalimentaries de Cabrils, España, 2008.; G. Ramón y F. Rodríguez, «Algoritmo De Navegación Reactiva De Robots, » Universidad de Almería, España, 2015.; K. Yingchun y S. Yue, «A Greenhouse Temperature and Humidity Controller Based on MIMO Fuzzy System, » International Conference on Intelligent System Design and Engineering Application, nº 1, pp. 35-39, 2010.; S. A. Giraldo, R. C. Castaño, C. Flesch y J. E. Normey-Rico, «Multivariable Greenhouse Control Using the Filtered Smith Predictor, » Journal of Control, Automation and Electrical Systems, vol. 27, nº 4, pp. 349-358, 2016.; M. Heidari, «Climate Control of An Agricultural Greenhouse by Using Fuzzy Logic SelfTuning PID Approach, » Proceedings of the 23rd International Conference on Automation & Computing, University of Huddersfield, 2017.; J. G. Jurado, «diseño de sistemas de control multivariable por desacoplo con controladores PID, » madrid, 2012.; M. Ajit K, Introduction to Control Engineering Modeling, Analysis and Desing, NEW AGE INTERNATIONAL PUBLISHERS, 2006.; M. G. Martínez, «Síntesis de controladores robustos mediante el análisis de la compatibilidad de especificaciones e incertidumbre, » Tesis de Grado- Universidad Pública de Navarra, 2001.; C. H. Houpis, S. N. Sheldon y J. J. D’Azzo, Linear Control System Analysis and Design: Fifth Edition, London: Revised and Expanded., 2003.; J. Elso, M. G. Martínez y M. Garcia-Sanz, «Quantitative Feedback Control for Multivariable Model Matching and Disturbance Rejection, » International Journal of Robust and Nonlinear Control, vol. 1, nº 27, pp. 121-134, 2017.; M. Gil-Martínez y M. García-Sanz, «Simultaneous meeting of robust control specifications in QFT, » International Journal of Robust and Nonlinear Control, vol. 7, nº 13, p. 643–656., 2003.; Y. Chait y O. Yaniv, «Multi-Input/Single-Output Computer-Aided Control Design Using the Quantitative Feedback Theory, » International Journal of Robust and Nonlinear Control, vol. 1, nº 3, pp. 47-54, 1993; Z. Hu, W. Wan and K. Harada, "Designing a Mechanical Tool for Robots With Two-Finger Parallel Grippers," in IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2981-2988, July 2019, doi:10.1109/LRA.2019.2924129.; L. Berscheid, T. Rühr and T. Kröger, "Improving Data Efficiency of Self-supervised Learning for Robotic Grasping," 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 2125-2131, doi:10.1109/ICRA.2019.8793952.; Y. Domae, A. Noda, T. Nagatani and W. Wan, "Robotic General Parts Feeder: Bin-picking, Regrasping, and Kitting," 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 5004-5010, doi:10.1109/ICRA40945.2020.9197056.; J. H. Sanchez, W. Amanhoud, A. Billard and M. Bouri, "Foot Control of a Surgical Laparoscopic Gripper via 5DoF Haptic Robotic Platform: Design, Dynamics and Haptic Shared Control," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 1255912566, doi:10.1109/ICRA48506.2021.9561887.; S. Ainetter and F. Fraundorfer, "End-to-end Trainable Deep Neural Network for Robotic Grasp Detection and Semantic Segmentation from RGB," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 13452-13458, doi:10.1109/ICRA48506.2021.9561398.; S. K. Rajput, A. Kaushal, R. K. Singh and A. K. Sharma, "A Study and Fabrication of SMA based 3D Printed Adaptive Gripper," 2021 Smart Technologies, Communication and Robotics (STCR), 2021, pp. 1-5, doi:10.1109/STCR51658.2021.9588838.; C. Son and S. Kim, "A Shape Memory Polymer Adhesive Gripper For Pick-and-Place Applications," 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 10010-10016, doi:10.1109/ICRA40945.2020.9197511.; S. D. Liyanage, A. M. Mazid and P. Dzitac, "An Innovative Whisker Tactile Sensor for Intelligent Robotic Grasping," IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, 2021, pp. 1-6, doi:10.1109/IECON48115.2021.9589765.; T. V. Prabhu, P. V. Manivannan, D. Roy and Yathishkumar, "A robust tactile sensor matrix for intelligent grasping of objects using robotic grippers," 2021 International Symposium of Asian Control Association on Intelligent Robotics and Industrial Automation (IRIA), 2021, pp. 400-405, doi:10.1109/IRIA53009.2021.9588669.; G. Hwang, J. Park, D. S. D. Cortes, K. Hyeon and K. -U. Kyung, "Electroadhesion-Based High-Payload Soft Gripper With Mechanically Strengthened Structure," in IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 642-651, Jan. 2022, doi:10.1109/TIE.2021.3053887.; J. Guo, J. -H. Low, X. Liang, J. S. Lee, Y. -R. Wong and R. C. H. Yeow, "A Hybrid Soft Robotic Surgical Gripper System for Delicate Nerve Manipulation in Digital Nerve Repair Surgery," in IEEE/ASME Transactions on Mechatronics, vol. 24, no. 4, pp. 1440-1451, Aug. 2019, doi:10.1109/TMECH.2019.2924518.; C.I. Basson, G. Bright y A.J. Walker. “Testing flexible grippers for geometric and surface grasping conformity in reconfigurable assembly systems.” En: South African Journal of Industrial Engineering 29.1 (2018), pags. 128 -142. ISSN: 2224-7890.; Festo AG & Co.KG. “MultiChoiceGripper”. En: Variable gripping based on human hand (2018).; https://ultimaker.com/es/software/ultimaker-cura, consultado Noviembre de 2021.; IFR, “Definition of Industrial Robot.” [Online]. Available: https://ifr.org/industrial-robots. [Accessed: 15-Sep-2021].; A. A. Malik and A. Bilberg, “Collaborative robots in assembly: A practical approach for tasks distribution,” Procedia CIRP, vol. 81, pp. 665–670, Jan. 2019.; P. Andhare and S. Rawat, “Pick and place industrial robot controller with computer vision,” Proc. - 2nd Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2016, Feb. 2017.; J. Iqbal, Z. H. Khan, and A. Khalid, “Prospects of robotics in food industry,” Food Sci. Technol., vol. 37, no. 2, pp. 159–165, May 2017.; K. H. Tantawi, A. Sokolov, and O. Tantawi, “Advances in Industrial Robotics: From Industry 3.0 Automation to Industry 4.0 Collaboration,” TIMES-iCON 2019 - 2019 4th Technol. Innov. Manag. Eng. Sci. Int. Conf., Dec. 2019.; J. J. Vaca González, C. A. Peña Caro, and H. Vacca González, “Cinemática inversa de robot serial utilizando algoritmo genético basado en MCDS,” Rev. Tecnura, vol. 19, no. 44, p. 33, Apr. 2015.; O. A. Vivas Alban, M. F. Piamba Mamián, and Y. E. Otaya Bravo, “Diseño y construcción de una interfaz háptica de seis grados de libertad,” Tecnura, vol. 21, no. 54, pp. 33–40, Oct. 2017.; C. Ma, Y. Zhang, J. Cheng, B. Wang, and Q. Zhao, “Inverse kinematics solution for 6R serial manipulator based on RBF neural network,” Int. Conf. Adv. Mechatron. Syst. ICAMechS, vol. 0, pp. 350–355, Jul. 2016.; V. Noppeney, T. Boaventura, and A. Siqueira, “Task-space impedance control of a parallel Delta robot using dual quaternions and a neural network,” J. Brazilian Soc. Mech. Sci. Eng. 2021 439, vol. 43, no. 9, pp. 1–11, Aug. 2021.; M. Meghana et al., “Hand gesture recognition and voice-controlled robot,” Mater. Today Proc., vol. 33, pp. 4121–4123, Jan. 2020.; P. M. Reddy, S. P. Kalyan Reddy, G. R. Sai Karthik, and B. K. Priya, “Intuitive Voice Controlled Robot for Obstacle, Smoke and Fire Detection for Physically Challenged People,” Proc. 4th Int. Conf. Trends Electron. Informatics, ICOEI 2020, pp. 763–767, Jun. 2020.; G. Y. Luo, M. Y. Cheng, and C. L. Chiang, “Vision-based 3-D object pick-And-place tasks of industrial manipulator,” 2017 Int. Autom. Control Conf. CACS 2017, vol. 2017-November, pp. 1–7, Feb. 2018.; M. Zhao, Y. Peng, L. Li, and X. Qiao, “Detection and classification manipulator system for apple based on machine vision and optical technology,” ASABE 2020 Annu. Int. Meet., pp. 1-, 2020.; Annoni, Federico. 2000. “Sistemas de Sujecion y Soporte.” Journal of Petrology 369(1): 1689– 99. http://dx.doi.org/10.1016/j.jsames.2011.03.003%0Ahttps://doi.org/10.1016/j.gr.2017.08.001%0Ahtt p://dx.doi.org/10.1016/j.precamres.2014.12.018%0Ahttp://dx.doi.org/10.1016/j.precamres.2011.08. 005%0Ahttp://dx.doi.org/10.1080/00206814.2014.902757%0Ahttp://dx.“FT-TMH06.Pdf.”; Garzón, Yamid. 2020. “Sensores y Actuadores Introducción:” (2014): 1–32.; Hidai-go, Alfonso. 1987. “Construccion de Un Dinamometro Para Medir Fuerzas de Corte En La Operacion de Taladro.” Corporacion universitaria autonoma de occidente, programa de ingenieria.; Karabay, Sedat. 2007. “Analysis of Drill Dynamometer with Octagonal Ring Type Transducers for Monitoring of Cutting Forces in Drilling and Allied Process.” Materials and Design 28(2): 673–85.; Mohanraj, T., S. Shankar, R. Rajasekar, and M. S. Uddin. 2020. “Design, Development, Calibration, and Testing of Indigenously Developed Strain Gauge Based Dynamometer for Cutting Force Measurement in the Milling Process.” Journal of Mechanical Engineering and Sciences 14(2): 6594–6609.; Norton, Robert L. 2006. Diseño de Máquinas.; Ramírez, Luis Pablo. 2011. “Diseño De Un Dinamómetro Mediante El Método De Los Elementos Finitos.” Tendencias en Tecnología de Medición de Fuerza (6360).; Schmid, S Kalpakjian S R. 2002. ManufacturA, INGENIERÍA Y TecNOLOGÍA.; Setiyawan. 2013. 53 Journal of Chemical Information and Modeling Fundamentos de Manufactura Moderna 3edi Groover.; Morral, P. Metalurgía General, p. 1163, en Google Libros 2004.; Metalurgia general. II - F. R. Morral, P. Molera - Google Libros; Tecnitool. 2020. “DIFERENCIAS ENTRE LAS BROCAS DE TITANIO Y LAS DE COBALTO”. Diferencias entre broca acero rápido HSS con titanio y/o cobalto (tecnitool.es) demaquinasyherramientas1. 2010. “Partes de la broca”. De máquinas y herramientas. USAPartes Broca %7C De Máquinas y Herramientas (demaquinasyherramientas.com).; Esquivel R. 2017. “DISTINTOS TIPOS DE BROCAS PARA DISTINTOS TIPOS DE PROFESIONALES”. Revista Ferrepat. Distintos tipos de brocas para distintos tipos de profesionales (ferrepat.com).; Ingenieria mecánica y automotriz. 2020. “Qué es el Coeficiente de Poisson y cómo se calcula?”; ] Estudiantes metalografia. 2010. “Diagramas esfuerzo-deformación unitaria, convencional y real, para un material dúctil (acero) (no de escala)”. Universidad Tecnológica de Pereira.; Diagramas esfuerzo-deformación unitaria, convencional y real, para un material dúctil (acero) (no de escala) %7C METALOGRAFÍA – UNIVERSIDAD TECNOLÓGICA DE PEREIRA (utp.edu.co).; O. Herrera, A. Quino, B. Cabrera, “Control de cortinas”, noviembre 2021. [En línea]. Disponible en http://micro2verano2012.blogspot.com/2012/03/control-de-cortinas.html.; Fuenteelectronica.es, “Fotocelda – Control de dispositivos con la luz”, noviembre 2017. [En línea]. Disponible en: https://tuelectronica.es/fotocelda-control-de-dispositivos-con-la-luz/ [3] Electronicathidos, “Fotoresistencia LDR 5mm, 2 Mohms”, noviembre 2021. [En línea]. Disponible en: https://electronicathido.com/detallesProducto.php?id=MkxldEdPZ3AwbjNMUEV3aWdXb0pSdz09.; Real Academia Española,”Relé”, noviembre 2021.[En línea]. Disponible en: https://dle.rae.es/rel%C3%A9.; A.Perez-Paris,”RELÉS ELECTROMAGNÉTICOS Y ELECTRÓNICOS”, noviembre 2021 En línea]. Disponible en: http://www.vivatacademia.net/index.php/vivat/article/view/373/689.; Electro Club Didactic,”Potenciómetros (teoría y practica)”, noviembre 2021.[En línea]. Disponible en: http://www.electroclub.com.mx/2015/08/potenciometros-teoria-y-practica.html.; Chabonnier,”Potenciómetros”, noviembre 2021.[En línea]. Disponible en: https://deresistencias.com/wp-content/uploads/2020/08/Diagrama-en-blanco-64-1.png.; Pascual,J ,”Este gadget convierte tus viejas cortinas en cortinas inteligentes controladas con el móvil”,noviembre 2021 .[En línea]. Disponible en: https://computerhoy.com/noticias/life/gadgetconvierte-viejas-cortinas-cortinas-inteligentes-controladas-movil-516887.; Tecnología a tu alcance ,”¿Cómo hacer un circuito de apertura y cierre de cortinas?”,noviembre de 2021 .[En línea]. Disponible en: https://latecnologiaatualcance.com/como-hacer-un-circuito-deapertura-y-cierre-de-cortinas/.; Ruales.A ,”Diseño de puente Wheatstone para una fotoresistencia.”,noviembre de 2021.[En línea]. Disponible en: https://www.youtube.com/watch?v=Vz_6vPjn4Bo.; Figueiras.T ,”Cómo convertir el MOVIMIENTO ROTATORIO de un Motor en un MOVIMIENTO LINEAL”,noviembre de 2021 .[En línea]. Disponible en: https://youtu.be/WynJqz-hibA.; OMS, “Inocuidad de los alimentos”, 30/04 de 2020, [online]. Available at: https://www.who.int/es/news-room/fact-sheets/detail/food-safety.; Minsalud,” Enfermedades transmitidas por alimentos disminuyeron en 2020”,14/08/2020, [online]. Available at: https://www.minsalud.gov.co/Paginas/Enfermedades%20transmitidas%20por%20alimento s%20disminuyeron%20en%202020.aspx.; BES (Boletín Epidemiológico Semanal), “Vigilancia de brotes de enfermedades transmitidas por alimentos, Colombia, semana epidemiológica 31 de 2020”, 26/07 de 2020, [online]. Available at: https://www.ins.gov.co/buscador eventos/BoletinEpidemiologico/2020_Boletin_epidemiologico_semana_31.pdf.; BES (Boletín Epidemiológico Semanal),” Las enfermedades transmitidas por Alimentos-ETA”,23/12 de 2018, [online]. Available at: https://www.ins.gov.co/buscador eventos/boletinepidemiologico/2018%20bolet%C3%ADn%20epidemiol%C3%B3gico%20s emana%2052.pdf.; FAO, FIDA y PMA, Seguimiento de la seguridad alimentaria y la nutrición en apoyo de la Agenda 2030 para el Desarrollo Sostenible: Balance y perspectivas, 2016. [Online]. Available at: https://www.fao.org/3/i6188s/i6188s.pdf.; Ministerio de salud, Calidad e inocuidad de alimentos,15 de noviembre de 2021. [Online]. Available at: www.minsalud.gov.co/salud/Paginas/inocuidad-alimentos.aspx.; David K. Lewis,Method and apparatus for washing fruits and vegetables,2009. [Online]. Available at: patents.google.com/patent/US8293025B2/en?q=A23N12%2f02&oq=A23N12%2f02.; Garcia Portillo, M., 2015. Google Patents. [online] Patents.google.com. Available at: patents.google.com/patent/ES2544005A1/es?assignee=TECNIDEX&oq=TECNIDEX.; Di Pannini, H., 2011. Google Patents. [online] Patents.google.com. Available at:; J Goodale, R., 1975. US3880068A - Apparatus for washing and blanching of vegetables - Google Patents. [online] Patents.google.com. Available at: .; A Tiby, G., 1969. US3456659A - Apparatus for treating food articles - Google Patents. [online] Patents.google.com. Available at: .; Who.int, 2020.-"Inocuidad de los alimentos"-, [Online]. Available: .; Ministerio de salud, ABECÉ de la inocuidad de alimentos, 2017. [Online]. Available at: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/abc inocuidad.pdf.; E. I. Alimentos, Inocuidad alimentaria en América Latina, 2015. [Online]. Available: www.revistaialimentos.com/ediciones/edicion-19/inocuidad-alimentaria-en-america latina/>; Fao.org, CODEXALIMENTARIUS FAO-WHO, 1994 [online] Available at: www.fao.org/fao-who-codexalimentarius/es/> [Accessed 8 July 2021].; Fao.org. n.d. ,“Acerca del Codex %7C CODEXALIMENTARIUS FAO-WHO” ,not date, [online]. Available at: .; AJ Avances,” Normograma del Instituto Nacional de Vigilancia de Medicamentos y Alimentos, INVIMA”, 13 /12 de 2020, [online]. Available at: .; Miquel Mor,”¿aplicas biocidas? Descubre nueva formacion necesaria”, 29/10/2014, [online] Available at: .; LA VERDAD MULTIMEDIA, S.A,”Descontaminación superficial de alimentos que aumenta su vida útil”, 16/01 /2017,[online] Available at: .; Dirección Regional de Inocuidad de los Alimentos,”Guía para uso de cloro en desinfección de frutas y hortalizas de consumo fresco, equipos y superficies en establecimientos ”, 15/05/2019, [online] Available at:; Equipos, M., n.d. TRANSPORTADOR DE TORNILLO SIN FIN CHILE – MYP EQUIPOS. [online] Mypequipos.com. Available at: [Accessed 16 November 2021].; Intralogistica, I., 2018. Qué son las bandas transportadoras. [online] Irp intralogistica.com. Available at: [Accessed 16 November 2021].; Motorex. n.d. El uso de la faja transportadora en las industrias - Motorex. [online] Available at: [Accessed 16 November 2021].; Nittacorporation.com. n.d. Bandas transportadoras para alimentos. [online] Available at: .; Indomaxve.com. 2019. Conoce los tipos de Mangueras industriales que existen. [online] Available at: .; Blog de Ventageneradores. 2016. Tipos de Motobombas o Bombas de Agua: según tipos de aguas, caudal o presión. [online] Available at: .; GTE. n.d. Apuntes SEC. UIB. [online] Available at: .; Gecousb.com.ve. n.d. Motores 1LA7. [online] Available at: .; Appinventor.mit.edu. 2012. About Us. [online] Available at: .; Irdmailp.com. n.d. 37mm DC 12V Motor de Reducción de Velocidad Caja de Engranajes de Alta Fuerza de Tensión Motor Reductor de Velocidad 3.5/15/30/70RPM(70RPM). [online] Available at: .; López, S., 2020. Qué es Firebase: funcionalidades, ventajas y conclusiones. [online] DIGITAL55. Available at: .; Y. Rojas, K. Aguado, and I. González, “La nanomedicina y los sistemas de liberación de fármacos: ¿la (r)evolución de la terapia contra el cáncer?,” Educ. Quim., vol. 27, no. 4, pp. 286–291, 2016.; R. R. Wakaskar, “General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes,” J. Drug Target., vol. 26, no. 4, pp. 311–318, 2018.; B. Alfonso and C. Casado, “DENDRÍMEROS: MACROMOLÉCULAS VERSÁTILES CON INTERÉS INTERDISCIPLINAR,” J. Chem. Inf. Model., vol. 01, no. 01, pp. 1689–1699, 2016.; B. Haley and E. Frenkel, “Nanoparticles for drug delivery in cancer treatment,” Urol. Oncol. Semin. Orig. Investig., vol. 26, no. 1, pp. 57–64, 2008.; M. C. Urrejola et al., “Sistemas de Np Poliméricas II: Estructura, Métodos de Elaboración, Características, Propiedades, Biofuncionalización y Tecnologías de Auto-Ensamblaje Capa por Capa (Layer-by-Layer Self-Assembly),” Int. J. Morphol., vol. 36, no. 4, pp. 1463–1471, 2018.; F. Chávez, B. I. Olvera, A. Ganem, and D. Quintanar, “Liberación de sustancias lipofílicas a partir de nanocápsulas poliméricas,” J. Mex. Chem. Soc., vol. 46, no. 4, pp. 349–356, 2002.; Z. M. Avval et al., “Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application,” Drug Metab. Rev., vol. 52, no. 1, pp. 157–184, 2020.; L. Mohammed, H. G. Gomaa, D. Ragab, and J. Zhu, “Magnetic nanoparticles for environmental and biomedical applications: A review,” Particuology, vol. 30, pp. 1–14, 2017.; A. S. Lübbe et al., “Clinical experiences with magnetic drug targeting: A phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors,” Cancer Res., vol. 56, no. 20, pp. 4686– 4693, 1996.; H. D. Liu, W. Xu, S. G. Wang, and Z. J. Ke, “Hydrodynamic modeling of ferrofluid flow in magnetic targeting drug delivery,” Appl. Math. Mech. (English Ed., vol. 29, no. 10, pp. 1341–1349, 2008.; G. Zhang et al., “Oxygen-enriched Fe3O4/Gd2O3 nanopeanuts for tumor-targeting MRI and ROS-triggered dual-modal cancer therapy through platinum (IV) prodrugs delivery,” Chem. Eng. J., vol. 388, no. February, p. 124269, 2020.; S. Tong, H. Zhu, and G. Bao, “Magnetic iron oxide nanoparticles for disease detection and therapy,” Mater. Today, vol. 31, no. December, pp. 86–99, 2019.; M. Sosa, J. J. B. Alvarado, and J. L. Gonz, “Tecnicas biomagneticas y su comparacion con los metodos bioelectricos,” vol. 48, no. 5, pp. 490–500, 2002.; S. Bose and M. Banerjee, “Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling,” J. Magn. Magn. Mater., vol. 385, pp. 32–46, 2015.; M. Bartoszek and Z. Drzazga; “A study of magnetic anisotropy of blood cells,” vol. 197, pp. 573–575, 1999.; Y. Haik, V. Pai, and C. J. Chen, “Development of magnetic device for cell separation,” J. Magn. Magn. Mater., vol. 194, no. 1, pp. 254–261, 1999.; Z. Liu, Y. Zhu, R. R. Rao, J. R. Clausen, and C. K. Aidun, “Nanoparticle transport in cellular blood flow,” Comput. Fluids, vol. 172, pp. 609–620, 2018.; S. Y. Lee, M. Ferrari, and P. Decuzzi, “Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows,” Nanotechnology, vol. 20, no. 49, 2009.; G. A. Duncan and M. A. Bevan, “Computational design of nanoparticle drug delivery systems for selective targeting,” Nanoscale, vol. 7, no. 37, pp. 15332–15340, 2015.; K. Müller, D. A. Fedosov, and G. Gompper, “Margination of micro- and nano-particles in blood flow and its effect on drug delivery,” Sci. Rep., vol. 4, pp. 1–8, 2014.; Y. Haik, V. Pai, and C. J. Chen, “Apparent viscosity of human blood in a high static magnetic field,” J. Magn. Magn. Mater., vol. 225, no. 1–2, pp. 180–186, 2001.; S. Afkhami and Y. Renardy, “Ferrofluids and magnetically guided superparamagnetic particles in flows: a review of simulations and modeling,” J. Eng. Math., vol. 107, no. 1, pp. 231–251, 2017.; I. Rukshin, J. Mohrenweiser, P. Yue, and S. Afkhami, “Modeling superparamagnetic particles in blood flow for applications in magnetic drug targeting,” Fluids, vol. 2, no. 2, pp. 1–12, 2017.; M. O. Avilés, A. D. Ebner, H. Chen, A. J. Rosengart, M. D. Kaminski, and J. A. Ritter, “Theoretical analysis of a transdermal ferromagnetic implant for retention of magnetic drug carrier particles,” J. Magn. Magn. Mater., vol. 293, no. 1, pp. 605–615, 2005.; A. Hajiaghajani, S. Hashemi, and A. Abdolali, “Adaptable setups for magnetic drug targeting in human muscular arteries: Design and implementation,” J. Magn. Magn. Mater., vol. 438, pp. 173– 180, 2017.; V. R. Sharma, A. K. Sharma, V. Punj, and P. Priya, “Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: A focus on breast cancer,” Semin. Cancer Biol., vol. 59, no. July 2019, pp. 133–146, 2019.; M. E. Miller, Human Diseases and Yeast.Pdf, First edit. New York: Momentum Press Health, 2018.; A. S. Lübbe, C. Bergemann, W. Huhnt, T. Fricke, and H. Riess, “Lübbe1996_Preclinical,” pp. 4694–4701, 1996.; Lübbe., C. Bergemann, J. Brock, and D. G. McClure, “Physiological aspects in magnetic drug-targeting,” J. Magn. Magn. Mater., vol. 194, no. 1, pp. 149–155, 1999.; C. Alexiou et al., “Locoregional cancer treatment with magnetic drug targeting,” Cancer Res., vol. 60, no. 23, pp. 6641–6648, 2000.; C. Alexiou, A. Schmidt, R. Klein, P. Hulin, C. Bergemann, and W. Arnold, “Magnetic drug targeting: Biodistribution and dependency on magnetic field strength,” J. Magn. Magn. Mater., vol. 252, no. 1-3 SPEC. ISS., pp. 363–366, 2002.; K. Gitter and S. Odenbach, “Experimental investigations on a branched tube model in magnetic drug targeting,” J. Magn. Magn. Mater., vol. 323, no. 10, pp. 1413–1416, 2011.; M. G. Krukemeyer, V. Krenn, M. Jakobs, and W. Wagner, “Mitoxantrone-iron oxide biodistribution in blood, tumor, spleen, and liver - Magnetic nanoparticles in cancer treatment,” J. Surg. Res., vol. 175, no. 1, pp. 35–43, 2012.; M. M. Attar et al., “Thermal analysis of magnetic nanoparticle in alternating magnetic field on human HCT-116 colon cancer cell line,” Int. J. Hyperth., vol. 32, no. 8, pp. 858–867, 2016.; R. Eivazzadeh-Keihan, F. Radinekiyan, A. Maleki, M. Salimi Bani, Z. Hajizadeh, and S. Asgharnasl, “A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy,” Int. J. Biol. Macromol., vol. 140, pp. 407–414, 2019.; S. Shabestari Khiabani, M. Farshbaf, A. Akbarzadeh, and S. Davaran, “Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy,” Artif. Cells, Nanomedicine Biotechnol., vol. 45, no. 1, pp. 6–17, 2017.; K. T. Al-Jamal et al., “Magnetic Drug Targeting: Preclinical in Vivo Studies, Mathematical Modeling, and Extrapolation to Humans,” Nano Lett., vol. 16, no. 9, pp. 5652–5660, 2018.; M. Minbashi, A. A. Kordbacheh, A. Ghobadi, and V. V. Tuchin, “Optimization of power used in liver cancer microwave therapy by injection of Magnetic Nanoparticles (MNPs),” Comput. Biol. Med., vol. 120, no. February, p. 103741, 2020.; A. Nan, M. Suciu, I. Ardelean, M. Şenilă, and R. Turcu, “Characterization of the Nuclear Magnetic Resonance Relaxivity of Gadolinium Functionalized Magnetic Nanoparticles,” Anal. Lett., vol. 0, no. 0, pp. 1–16, 2020.; I. Cicha, S. Lyer, C. Alexiou, and C. D. Garlichs, “Nanomedicine in diagnostics and therapy of cardiovascular diseases: Beyond atherosclerotic plaque imaging,” Nanotechnol. Rev., vol. 2, no. 4, pp. 449–472, 2013.; M. Nahrendorf et al., “Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis,” Circulation, vol. 117, no. 3, pp. 379–387, 2008.; S. Jaimes, A. Gonzáles, C. Granados, D. Álvarez, and E. Espitia, “Redalyc.Nanotecnología: avances y expectativas en cirugía,” Rev. Colomb. Cirugía, vol. 27, pp. 158–166, 2012.; B. Méndez and C. Muñoz, “Nanochips y nanosensores para eldiagnóstico temprano de cáncer oral: una revisión,” no. 67, pp. 131–147, 2012.; D. Rodriguez, J. Moyano, and L. Roa, “Estudio por dinámica molecular browniana de np bajo efectos de Bs externos,” Ing. Mil., vol. 13, no. 9, pp. 90–98, 2018.; J. Gallo and C. Ossa, “Fabricación y caracterización de np de plata con potencial uso en el tratamiento del cáncer de piel,” Ing. y Desarro., vol. 37, no. 1, pp. 88–104, 2019.; J. Pantoja, “np magnéticas en flujo sanguíneo para tratamiento de cáncer,” Universidad Distrital Francisco José de Caldas, 2020.; https://hdl.handle.net/11349/31171; Universidad Distrital Francisco José de Caldas
Dostupnosť: https://hdl.handle.net/11349/31171
Nájsť tento článok vo Web of Science
Full Text Finder