Výsledky vyhledávání - acm: c.: computer system organization/c.2: computer-communication networks/c.2.0: general~

Upřesnit hledání
  1. 1

    Zdroj: IEEE eHPWAS'16: Fourth international IEEE workshop on e-health pervasive wireless applications and services 2016 ; https://hal.science/hal-01462870 ; IEEE. IEEE eHPWAS'16: Fourth international IEEE workshop on e-health pervasive wireless applications and services 2016, Oct 2016, New York, United States. , 2016, Proceeding og the 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), ⟨10.1109/WiMOB.2016.7763167⟩ ; www.ieee.org

    Geografické téma: New York, United States

  2. 2

    1. American Heart Association. (2021). Heart disease and stroke statistics—2021 update. Circulation, 143(8), e254-e743. 2. Rahman, M., Al Amin, M., Hasan, R., Hossain, S. T., Rahman, M. H., & Rashed, R. A. M. (2025). A Predictive AI Framework for Cardiovascular Disease Screening in the US: Integrating EHR Data with Machine and Deep Learning Models. British Journal of Nursing Studies, 5(2), 40-48. 3. ZakirHossain, M., Khan, M. M., Thapa, S., Uddin, R., Meem, E. J., Niloy, S. K., ... & Bhavani, G. D. (2025, February). Advanced Deep Learning Techniques for Precision Diagnosis of Tea Leaf Diseases. In 2025 IEEE International Conference on Emerging Technologies and Applications (MPSec ICETA) (pp. 1-6). IEEE. 4. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785-794). ACM. 5. Damen, J. A., Hooft, L., Schuit, E., Debray, T. P., Collins, G. S., Tzoulaki, I., Lassale, C. M., Siontis, G. C., Chiocchia, V., Roberts, C., Schlüssel, M. M., Gerry, S., Black, J. A., Heus, P., van der Schouw, Y. T., Peelen, L. M., & Moons, K. G. (2016). Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ, 353, i2416. 6. Framingham Heart Study. (1948). Framingham Heart Study cohort research data. National Heart, Lung, and Blood Institute. 7. Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L. H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L. A., & Mark, R. G. (2016). MIMIC-III, a freely accessible critical care database. Scientific Data, 3, 160035. 8. Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial intelligence in precision cardiovascular medicine. Journal of the American College of Cardiology, 69(21), 2657-2664. 9. Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems 30 (NIPS 2017) (pp. 4765-4774). 10. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830. 11. Shameer, K., Johnson, K. W., Glicksberg, B. S., Dudley, J. T., & Sengupta, P. P. (2018). Machine learning in cardiovascular medicine: are we there yet? Heart, 104(14), 1156-1164. 12. Steyerberg, E. W., Vergouwe, Y., & van Calster, B. (2019). Towards better clinical prediction models: seven steps for development and an ABCD for validation. European Heart Journal, 40(15), 1255–1264. 13. Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M., Liu, B., Matthews, P., Ong, G., Pell, J., Silman, A., Young, A., Sprosen, T., Peakman, T., & Collins, R. (2015). UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLOS Medicine, 12(3), e1001779. 14. Weng, S. F., Reps, J., Kai, J., Garibaldi, J. M., & Qureshi, N. (2017). Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLOS ONE, 12(4), e0174944. 15. World Health Organization. (2021). Cardiovascular diseases (CVDs). Retrieved from https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) 16. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., ... Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16) (pp. 265–283). 17. Chollet, F. (2015). Keras (Version 2.4.0) [Computer software]. https://github.com/fchollet/keras

    Autoři: Okunola, Abiodun

  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    Přispěvatelé: Cosnard, Michel Liquori, Luigi Chand, Raphael a další

    Zdroj: Electronic Notes in Theoretical Computer Science ; Proceedings of the Second International Workshop on Developments in Computational Models (DCM 2006) ; https://hal.inria.fr/hal-00911535 ; Proceedings of the Second International Workshop on Developments in Computational Models (DCM 2006), Jul 2006, Venice, Italy. pp.55-75, ⟨10.1016/j.entcs.2006.11.035⟩

    Geografické téma: Venice, Italy

    Time: Venice, Italy

    Relation: info:eu-repo/grantAgreement//15964/EU/Algorithmic Principles for Building Efficient Overlay Computers/AEOLUS; hal-00911535; https://hal.inria.fr/hal-00911535; https://hal.inria.fr/hal-00911535/document; https://hal.inria.fr/hal-00911535/file/Arigatoni_colonies_proc.pdf

  8. 8
  9. 9
  10. 10
  11. 11

    Zdroj: https://hal.univ-reims.fr/tel-01872131 ; Réseaux et télécommunications [cs.NI]. Université de Reims - Champagne Ardenne, 2013.

  12. 12
  13. 13

    Zdroj: 10th IEEE/ACM International Conference on Utility and Cloud Computing UCC 2017
    https://hal.archives-ouvertes.fr/hal-01633339
    10th IEEE/ACM International Conference on Utility and Cloud Computing UCC 2017, Dec 2017, Austin, United States. ⟨10.1145/3147213.3147220⟩

    Geografické téma: Austin, United States

  14. 14

    Přispěvatelé: Sidhom, Sahbi Haton, Jean-Paul Ghenima, Malek a další

    Zdroj: https://hal.inria.fr/inria-00580162 ; Jean-Paul Haton and Sahbi Sidhom and Malek Ghenima. 1, IGA Morocco, pp.529, 2011, IGA Morocco.

    Relation: inria-00580162; https://hal.inria.fr/inria-00580162

  15. 15

    Přispěvatelé: Liouane, Zaineb Lemlouma, Tayeb Roose, Philippe a další

    Zdroj: 16th International Conference on Intelligent Systems Design and Applications
    https://hal.inria.fr/hal-01462993
    16th International Conference on Intelligent Systems Design and Applications, Dec 2016, Porto, Portugal. pp.738-748, ⟨10.1007/978-3-319-53480-0_73⟩

    Geografické téma: Porto, Portugal

    Time: Porto, Portugal

  16. 16

    Přispěvatelé: Sun, Wen Simon, Véronique Monnet, Sébastien a další

    Zdroj: ACM Sigmetrics 2017- International Conference on Measurement and Modeling of Computer Systems ; https://inria.hal.science/hal-01494235 ; ACM Sigmetrics 2017- International Conference on Measurement and Modeling of Computer Systems, Jun 2017, Urbana-Champaign, Illinois, United States. pp.51--51, ⟨10.1145/3078505.3078531⟩ ; http://www.sigmetrics.org/sigmetrics2017/

    Geografické téma: Urbana-Champaign, Illinois, United States

    Relation: info:eu-repo/semantics/altIdentifier/arxiv/1701.00335; hal-01494235; https://inria.hal.science/hal-01494235; ARXIV: 1701.00335

  17. 17
  18. 18
  19. 19
  20. 20