Search Results - acm: c.: computer system organization/c.1: proceso architecture~

Refine Results
  1. 1
  2. 2
  3. 3
  4. 4

    Source: Electronic Notes in Theoretical Computer Science ; Proceedings of the Second International Workshop on Developments in Computational Models (DCM 2006) ; https://inria.hal.science/hal-00911535 ; Proceedings of the Second International Workshop on Developments in Computational Models (DCM 2006), Jul 2006, Venice, Italy. pp.55-75, ⟨10.1016/j.entcs.2006.11.035⟩

    Subject Geographic: Venice, Italy

    Time: Venice, Italy

    Relation: info:eu-repo/grantAgreement//15964/EU/Algorithmic Principles for Building Efficient Overlay Computers/AEOLUS

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

    Source: IEEE eHPWAS'16: Fourth international IEEE workshop on e-health pervasive wireless applications and services 2016 ; https://hal.science/hal-01462870 ; IEEE. IEEE eHPWAS'16: Fourth international IEEE workshop on e-health pervasive wireless applications and services 2016, Oct 2016, New York, United States. , 2016, Proceeding og the 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), ⟨10.1109/WiMOB.2016.7763167⟩ ; www.ieee.org

    Subject Geographic: New York, United States

  11. 11

    Source: 16th International Conference on Intelligent Systems Design and Applications
    https://inria.hal.science/hal-01462993
    16th International Conference on Intelligent Systems Design and Applications, Dec 2016, Porto, Portugal. pp.738-748, ⟨10.1007/978-3-319-53480-0_73⟩

    Subject Geographic: Porto, Portugal

    Time: Porto, Portugal

  12. 12

    1. American Heart Association. (2021). Heart disease and stroke statistics—2021 update. Circulation, 143(8), e254-e743. 2. Rahman, M., Al Amin, M., Hasan, R., Hossain, S. T., Rahman, M. H., & Rashed, R. A. M. (2025). A Predictive AI Framework for Cardiovascular Disease Screening in the US: Integrating EHR Data with Machine and Deep Learning Models. British Journal of Nursing Studies, 5(2), 40-48. 3. ZakirHossain, M., Khan, M. M., Thapa, S., Uddin, R., Meem, E. J., Niloy, S. K., ... & Bhavani, G. D. (2025, February). Advanced Deep Learning Techniques for Precision Diagnosis of Tea Leaf Diseases. In 2025 IEEE International Conference on Emerging Technologies and Applications (MPSec ICETA) (pp. 1-6). IEEE. 4. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785-794). ACM. 5. Damen, J. A., Hooft, L., Schuit, E., Debray, T. P., Collins, G. S., Tzoulaki, I., Lassale, C. M., Siontis, G. C., Chiocchia, V., Roberts, C., Schlüssel, M. M., Gerry, S., Black, J. A., Heus, P., van der Schouw, Y. T., Peelen, L. M., & Moons, K. G. (2016). Prediction models for cardiovascular disease risk in the general population: systematic review. BMJ, 353, i2416. 6. Framingham Heart Study. (1948). Framingham Heart Study cohort research data. National Heart, Lung, and Blood Institute. 7. Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L. H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L. A., & Mark, R. G. (2016). MIMIC-III, a freely accessible critical care database. Scientific Data, 3, 160035. 8. Krittanawong, C., Zhang, H., Wang, Z., Aydar, M., & Kitai, T. (2017). Artificial intelligence in precision cardiovascular medicine. Journal of the American College of Cardiology, 69(21), 2657-2664. 9. Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems 30 (NIPS 2017) (pp. 4765-4774). 10. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830. 11. Shameer, K., Johnson, K. W., Glicksberg, B. S., Dudley, J. T., & Sengupta, P. P. (2018). Machine learning in cardiovascular medicine: are we there yet? Heart, 104(14), 1156-1164. 12. Steyerberg, E. W., Vergouwe, Y., & van Calster, B. (2019). Towards better clinical prediction models: seven steps for development and an ABCD for validation. European Heart Journal, 40(15), 1255–1264. 13. Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M., Liu, B., Matthews, P., Ong, G., Pell, J., Silman, A., Young, A., Sprosen, T., Peakman, T., & Collins, R. (2015). UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLOS Medicine, 12(3), e1001779. 14. Weng, S. F., Reps, J., Kai, J., Garibaldi, J. M., & Qureshi, N. (2017). Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLOS ONE, 12(4), e0174944. 15. World Health Organization. (2021). Cardiovascular diseases (CVDs). Retrieved from https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) 16. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., ... Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16) (pp. 265–283). 17. Chollet, F. (2015). Keras (Version 2.4.0) [Computer software]. https://github.com/fchollet/keras

    Authors: Okunola, Abiodun

  13. 13
  14. 14
  15. 15
  16. 16
  17. 17

    Source: https://hal.univ-reims.fr/tel-01872131 ; Réseaux et télécommunications [cs.NI]. Université de Reims - Champagne Ardenne, 2013.

  18. 18
  19. 19
  20. 20