Search Results - acm: c.: computer system organizacion/c.4: performance of system/c.4.0: design studies
-
1
Authors:
Contributors:
Subject Terms: 000 - Ciencias de la computación, información y obras generales, Local area networks (Computer networks), Computer algorithms, Computer networks - design and construction, Redes de área local (Computadores), Algoritmos (Computadores), Redes de computadores - Diseño y construcción, Auto-organización, Cooperación, Confianza, Adaptación, Redes ad-hoc, Self-organization, Cooperation, Trust, Adaptation, Ad-hoc networks
File Description: xvi, 57 páginas; application/pdf
Relation: Abdel-Halim, I T.; Fahmy, H M A.; Bahaa-Eldin, A M.: Agent-based trusted on-demand routing protocol for mobile ad-hoc networks. En: Wireless Networks 21 (2014), Nr. 2, p. 467–483; Anderegg, Luzi; Eidenbenz, Stephan: Ad hoc-VCG: a truthful and cost-efficient routing protocol for mobile ad hoc networks with selfish agents. En: Proceedings of the 9th annual international conference on Mobile computing and networking, 2003, p. 245–259; Ashwin, M; Kamalraj, S; Azath, M: Weighted Clustering Trust Model for Mobile Ad Hoc Networks. En: Wireless Personal Communications 94 (2017), Nr. 4, p. 2203– 2212; Axelrod, Robert; Hamilton, William D.: The evolution of cooperation. En: science 211 (1981), Nr. 4489, p. 1390–1396; Ayday, E; Fekri, F: An Iterative Algorithm for Trust Management and Adversary Detection for Delay-Tolerant Networks. En: IEEE Transactions on Mobile Computing 11 (2012), Nr. 9, p. 1514–1531; Bansal, Sorav; Baker, Mary: Observation-based cooperation enforcement in ad hoc networks. En: arXiv preprint cs/0307012 (2003); Bauer, Paul C.: Conceptualizing trust and trustworthiness. (2017); Bauer, Paul C.; Keusch, Florian; Kreuter, Frauke: Trust and cooperative behavior: Evidence from the realm of data-sharing. En: PloS one 14 (2019), Nr. 8, p. e0220115; Bisen, D; Sharma, S: An enhanced performance through agent-based secure approach for mobile ad hoc networks. En: International Journal of Electronics 105 (2018), Nr. 1, p. 116–136; Buchegger, Sonja; Le Boudec, Jean-Yves: Performance analysis of the CONFI- DANT protocol. En: Proceedings of the 3rd ACM international symposium on Mobile ad hoc networking & computing, 2002, p. 226–236; Chatterjee, P; Sengupta, I; Ghosh, S K.: STACRP: A secure trusted auction oriented clustering based routing protocol for MANET. En: Cluster Computing 15 (2012), Nr. 3, p. 303–320; Fadel, Etimad; Gungor, Vehbi C.; Nassef, Laila; Akkari, Nadine; Malik, MG A.; Almasri, Suleiman; Akyildiz, Ian F.: A survey on wireless sensor networks for smart grid. En: Computer Communications 71 (2015), p. 22–33; Fitzek, F.H.P.; Katz, M.D.: Cooperation in wireless networks: Principles and applications: Real egoistic behavior is to cooperate! Springer, 2006. – 1–641 p. – cited By 186; Friedman, Linda W.; Friedman, Hershey H.: Analyzing simulation output using the bootstrap method. En: Simulation 64 (1995), Nr. 2, p. 95–100; Gera, P; Garg, K; Misra, M: Trust-based multi-path routing for enhancing data security in MANETs. En: International Journal of Network Security 16 (2014), Nr. 2, p. 102–111; Gershenson, Carlos; Heylighen, Francis: When can we call a system self-organizing? En: European Conference on Artificial Life Springer, 2003, p. 606–614; Ghosekar, Pravin; Katkar, Girish; Ghorpade, Pradip: Mobile ad hoc networking: imperatives and challenges. En: IJCA Special issue on MANETs 3 (2010), p. 153–158; Hanbali, Ahmad; Ibrahim, Mouhamad; Simon, Vilmos; Varga, Endre; Carreras, Iacopo: A Survey of Message Diffusion Protocols in Mobile Ad Hoc Networks, 2008; Hardin, Garrett: The tragedy of the commons. En: science 162 (1968), Nr. 3859, p. 1243–1248; He, Qi; Wu, Dapeng; Khosla, Pradeep: SORI: A secure and objective reputation-based incentive scheme for ad-hoc networks. En: 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No. 04TH8733) Vol. 2 IEEE, 2004, p. 825–830; Hegde, S B.; Babu, B S.; Venkataram, P: A Cognitive Theory-based Opportunistic Resource-Pooling Scheme for Ad hoc Networks. En: Journal of Intelligent Systems 26 (2017), Nr. 1, p. 47–68; Hilbe, Christian; Šimsa, Štěpán; Chatterjee, Krishnendu; Nowak, Martin A.: Evolution of cooperation in stochastic games. En: Nature 559 (2018), Nr. 7713, p. 246–249; Jayanand, A; Chenthil Kumaran, N: Trusted and authentication based routing security for MANET. En: International Journal of Applied Engineering Research 10 (2015), Nr. 1, p. 105–120; Katz, M.; Lucani, D.E.; Seeling, P.: Mobile clouds as the building blocks of shareconomy: Sharing resources locally and widely. En: IEEE Vehicular Technology Magazine 9 (2014), Nr. 3, p. 63–71; Li, W; Parker, J; Joshi, A: Security through collaboration and trust in MANETs. En: Mobile Networks and Applications 17 (2012), Nr. 3, p. 342–352; Loo, Jonathan; Mauri, Jaime L.; Ortiz, Jesus H.: Mobile ad hoc networks: current status and future trends. CRC Press, 2016; Mandhare, V V.; Thool, V R.; Manthalkar, R R.: QoS Routing enhancement using metaheuristic approach in mobile ad-hoc network. En: Computer Networks 110 (2016), p. 180–191. – ISSN 1389–1286; Mani, P; Kamalakkannan, P: Conviction based packet promotion scheme for efficient detection of selfish nodes in mobile Ad Hoc networks. En: International Review on Computers and Software 9 (2014), Nr. 2, p. 212–218; Marias, Giannis F.; Georgiadis, Panagiotis; Flitzanis, D; Mandalas, K: Cooperation enforcement schemes for MANETs: A survey. En: Wireless Communications and Mobile Computing 6 (2006), Nr. 3, p. 319–332; Mejia, Angela M.: Evolución genética de estrategias para modelos de confianza en redes móviles ad-hoc basados en teoría de juegos. 2010. – unpublished thesis; Mejia, M; Peña, N; Muñoz, J L.; Esparza, O; Alzate, M A.: A game theoretic trust model for on-line distributed evolution of cooperation inMANETs. En: Journal of Network and Computer Applications 34 (2011), Nr. 1, p. 39–51; Mertens, J-F; Neyman, Abraham: Stochastic games. En: International Journal of Game Theory 10 (1981), Nr. 2, p. 53–66; Michiardi, Pietro; Molva, Refik: Core: a collaborative reputation mechanism to enforce node cooperation in mobile ad hoc networks. En: Advanced communications and multimedia security. Springer, 2002, p. 107–121; Myerson, Roger B.: Game theory. Harvard university press, 2013; Ninu, S B.; Behin Sam, S: A collaborative Intrusion Detection System for manet using data mining technique. En: ARPN Journal of Engineering and Applied Sciences 13 (2018), Nr. 14, p. 4387–4392; Ochoa, Gabriela: Setting the mutation rate: Scope and limitations of the 1/L heuristic. En: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, 2002, p. 495–502; Pariselvam, S; Parvathi, R M S.: Trust based security mechanism for service discovery in MANET. En: Journal of Theoretical and Applied Information Technology 56 (2013), Nr. 2, p. 226–234; Pouyan, A A.; Yadollahzadeh Tabari, M: FPN-SAODV: using fuzzy petri nets for securing AODV routing protocol in mobile Ad hoc network. En: International Journal of Communication Systems 30 (2017), Nr. 1; Rajeshwar, J; Narsimha, G: Secure way routing protocol for mobile ad hoc network. En: Wireless Networks 23 (2017), Nr. 2, p. 345–354; Rapoport, Anatol; Chammah, Albert M.; Orwant, Carol J.: Prisoner’s dilemma: A study in conflict and cooperation. Vol. 165. University of Michigan press, 1965; Raychaudhuri, Dipankar; Gerla, Mario: Emerging wireless technologies and the future mobile internet. Cambridge University Press, 2011; Mandayam, Narayan B.: Frontiers of wireless and mobile communications. En: Proceedings of the IEEE 100 (2012), Nr. 4, p. 824–840; Reddy, V B.; Venkataraman, S; Negi, A: A dynamic trust evolution model for MANETs based on mobility. En: International Journal of Ad Hoc and Ubiquitous Computing 28 (2018), Nr. 4, p. 230–246; Roughgarden, Tim: Algorithmic game theory. En: Communications of the ACM 53 (2010), Nr. 7, p. 78–86; Saha, H N.; Singh, R; Bhattacharyya, D; Banerjee, P K.: Modified Fidelity Based On-Demand Secure (MFBOD) Routing Protocol in Mobile Ad-Hoc Network. En: Foundations of Computing and Decision Sciences 40 (2015), Nr. 4, p. 267–298; Shannon, Claude E.: A mathematical theory of communication. En: ACM SIGMO- BILE mobile computing and communications review 5 (2001), Nr. 1, p. 3–55; Sridhar, S; Nagaraju, V; Bapu, B R T.; Shankar, R; Anitha, R: Trusted and optimized routing in mobile ad-hoc networks emphasizing quality of service. En: Applied Mathematics and Information Sciences 12 (2018), Nr. 3, p. 655–663; Thorat, S A.; Kulkarni, P J.: Opportunistic Routing in Presence of Selfish Nodes for MANET. En: Wireless Personal Communications 82 (2015), Nr. 2, p. 689–708; Tonguz, Ozan K.; Ferrari, Gianluigi: A communication-theoretic approach to ad hoc wireless networking. En: 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks Vol. 2 IEEE, 2006, p. 715–722; Vega, Diego A.; Ospina, Juan P.; Latorre, Julian F.; Ortiz, Jorge E.: An adaptive trust model for achieving emergent cooperation in ad hoc networks. En: Current Trends in Semantic Web Technologies: Theory and Practice. Springer, 2019, p. 85–100; Vekaria, Kanta; Clack, Chris: Selective crossover in genetic algorithms: An empirical study. En: International Conference on Parallel Problem Solving from Nature Springer, 1998, p. 438–447; Wooldridge, Michael: An introduction to multiagent systems. John Wiley & Sons, 2009; Yang, Hao; Shu, James; Meng, Xiaoqiao; Lu, Songwu: SCAN: self-organized network-layer security in mobile ad hoc networks. En: IEEE Journal on Selected Areas in Communications 24 (2006), Nr. 2, p. 261–273; Zhang, Qing; Yu, Ting; Irwin, Keith: A Classification Scheme for Trust Functions in Reputation-Based Trust Management. En: ISWC Workshop on Trust, Security, and Reputation on the Semantic Web Vol. 127 Citeseer, 2004; Zhang, Yujun; Yan, Tan; Tian, Jie; Hu, Qi; Wang, Guiling; Li, Zhongcheng: TOHIP: A topology-hiding multipath routing protocol in mobile ad hoc networks. En: Ad Hoc Networks 21 (2014), p. 109–122. – ISSN 1570–8705; Zhong, Sheng; Chen, Jiang; Yang, Yang R.: Sprite: A simple, cheat-proof, credit-based system for mobile ad-hoc networks. En: IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No. 03CH37428) Vol. 3 IEEE, 2003, p. 1987–1997; https://repositorio.unal.edu.co/handle/unal/80614; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
2
Authors: et al.
Contributors: et al.
Subject Terms: 570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales, Cell aggregates, Morphogenesis model, Tissue engineering, Cell rearrangement, Self-learning KMC, Morphogenesis, Bioprinting simulation, Bioconvergence, Agregados celulares, Modelo de morfogenesis, Ingenieria de tejidos, Morfogenesis, Bioconvergencia
File Description: 227 páginas; application/pdf
Relation: RedCol; LaReferencia; Sánchez Rodríguez, D.A., A.I. Ramos-Murillo, and R.D. Godoy-Silva, Tissue engineering, 3DBioprinting, morphogenesis modelling and simulation of biostructures: Relevance, underpinning biological principles and future trends. Bioprinting, 2021. 24: p. e00171.; Liu, N., et al., Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration. Bioactive Materials, 2021. 6(5): p. 1388-1401.; GODT. Global Observatory on Donation and Transplantation data. 2016 25 April 2020 [cited 2020; Available from: http://www.transplant-observatory.org/summary/.; Health Resources and Services Administration. Organ Procurement and Transplantation Network. 26 April 2020 [cited 2020; Available from: https://optn.transplant.hrsa.gov/data/.; Matai, I., et al., Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials, 2020. 226: p. 119536.; Dzobo, K., K.S.C.M. Motaung, and A. Adesida, Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review. International Journal of Molecular Sciences, 2019. 20(18): p. 4628.; Gomes, M.E., et al., Tissue Engineering and Regenerative Medicine: New Trends and Directions—A Year in Review. Tissue Engineering Part B: Reviews, 2017. 23(3): p. 211-224.; Lanza, R.P., R. Langer, and J. Vacanti, Chapter 1 - The History and Scope of Tissue Engineering. 2014. p. 3 - 8.; Murphy, S.V. and A. Atala, 3D bioprinting of tissues and organs. Nature biotechnology, 2014. 32(8): p. 773-85.; Neagu, A., Role of computer simulation to predict the outcome of 3D bioprinting. Journal of 3D Printing in Medicine, 2017. 1(2): p. 103-121.; Brody, H., Regenerative medicine. Nature, 2016. 540: p. S49.; Langer, R. and J. Vacanti, Tissue engineering. Science, 1993. 260(5110): p. 920-926.; Ballet, F., Hepatotoxicity in drug development: detection, significance and solutions. Journal of Hepatology, 1997. 26: p. 26-36.; Caponigro, G. and W.R. Sellers, Advances in the preclinical testing of cancer therapeutic hypotheses. Nature Reviews Drug Discovery, 2011. 10(3): p. 179-187.; Schutgens, F. and H. Clevers, Human Organoids: Tools for Understanding Biology and Treating Diseases. Annu Rev Pathol, 2020. 15: p. 211-234.; Clevers, H., Modeling Development and Disease with Organoids. Cell, 2016. 165(7): p. 1586- 1597.; Dzobo, K., Taking a Full Snapshot of Cancer Biology: Deciphering the Tumor Microenvironment for Effective Cancer Therapy in the Oncology Clinic. OMICS: A Journal of Integrative Biology, 2020. 24(4): p. 175-179.; Dzobo, K., et al., Three-Dimensional Organoids in Cancer Research: The Search for the Holy Grail of Preclinical Cancer Modeling. Omics, 2018. 22(12): p. 733-748.; Kaushik, G., M.P. Ponnusamy, and S.K. Batra, Concise Review: Current Status of Three- Dimensional Organoids as Preclinical Models. STEM CELLS, 2018. 36(9): p. 1329-1340.; Drost, J. and H. Clevers, Organoids in cancer research. Nature Reviews Cancer, 2018. 18(7): p. 407-418.; Cellink. Bioconvergence is the future of healthcare. 2021; Available from: https://www.cellink.com/bioconvergence/.; Authority, I.I. Bio-Convergence. The Future of Medicine. 2019; Available from: https://innovationisrael.org.il/en/reportchapter/bio-convergence.; Senthebane, D.A., et al., The Role of Tumor Microenvironment in Chemoresistance: To Survive, Keep Your Enemies Closer. International Journal of Molecular Sciences, 2017. 18(7). Bibliografía 217; Khademhosseini, A. and R. Langer, Microengineered hydrogels for tissue engineering. Biomaterials, 2007. 28(34): p. 5087-92.; Kim, J.D., et al., Piezoelectric inkjet printing of polymers: Stem cell patterning on polymer substrates. Polymer, 2010. 51(10): p. 2147-2154.; Mège, R.-M., Les molécules d'adhérence cellulaire: molécules morphogénétiques. médecine/sciences, 1991. 7: p. 544.; Glazier, J.A. and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1993. 47(3): p. 2128-2154.; Savill, N.J. and P. Hogeweg, Modelling Morphogenesis: From Single Cells to Crawling Slugs. Journal of Theoretical Biology, 1997. 184(3): p. 229 - 235.; Walker, D.C., et al., Agent-based computational modeling of wounded epithelial cell monolayers. IEEE Transactions on NanoBioscience, 2004. 3(3): p. 153-163.; Galle, J., et al., Individual cell-based models of tumor-environment interactions: Multiple effects of CD97 on tumor invasion. The American journal of pathology, 2006. 169(5): p. 1802-11.; Takeichi, M., Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 1991. 251(5000): p. 1451-5.; Pepper, M., et al., Post-Bioprinting Processing Methods to Improve Cell Viability and Pattern Fidelity in Heterogeneous Tissue Test Systems. Vol. 2010. 2010. 259-62.; Murphy, S.V., A. Skardal, and A. Atala, Evaluation of hydrogels for bio-printing applications. Journal of biomedical materials research. Part A, 2013. 101(1): p. 272-84.; Jakab, K., et al., Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures. Vol. 14. 2007.; Jakab, K., et al., Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication, 2010. 2(2): p. 022001-022001.; Nogueira, J.A., et al., Simulation of a 3D Bioprinted Human Vascular Segment. Computer Aided Chemical Engineering, 2015: p. 684-688; Gjorevski, N., et al., Designer matrices for intestinal stem cell and organoid culture. Nature, 2016. 539(7630): p. 560-564.; West, J.L. and J.A. Hubbell, Polymeric Biomaterials with Degradation Sites for Proteases Involved in Cell Migration. Macromolecules, 1999. 32(1): p. 241-244.; Schiller, M., D. Javelaud, and A. Mauviel, TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. Journal of dermatological science, 2004. 35(2): p. 83-92.; Tamamura, Y., et al., Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. The Journal of biological chemistry, 2005. 280(19): p. 19185-95.; Ingber, D.E., et al., Tissue engineering and developmental biology: going biomimetic. Tissue engineering, 2006. 12(12): p. 3265-83.; Behonick, D.J. and Z. Werb, A bit of give and take: the relationship between the extracellular matrix and the developing chondrocyte. Mechanisms of development, 2003. 120(11): p. 1327-36.; Hersel, U., C. Dahmen, and H. Kessler, RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, 2003. 24(24): p. 4385-415. 218 Título de la tesis o trabajo de investigación; Price, R.L., K.M. Haberstroh, and T.J. Webster, Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina. Medical and Biological Engineering and Computing, 2003. 41(3): p. 372-375.; Teixeira, A.I., P.F. Nealey, and C.J. Murphy, Responses of human keratocytes to micro- and nanostructured substrates. Journal of biomedical materials research. Part A, 2004. 71(3): p. 369- 76.; Discher, D.E., P. Janmey, and Y.L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science, 2005. 310(5751): p. 1139-43.; Hopp, B., et al., Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue engineering, 2005. 11(11-12): p. 1817-23.; Stevens, M.M. and J.H. George, Exploring and engineering the cell surface interface. Science, 2005. 310(5751): p. 1135-8.; Wu, Z., et al., Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Scientific Reports, 2016. 6: p. 24474.; Schon, B.S., G.J. Hooper, and T.B.F. Woodfield, Modular Tissue Assembly Strategies for Biofabrication of Engineered Cartilage. Annals of Biomedical Engineering, 2017. 45(1): p. 100- 114.; Murphy, S.V. and A. Atala, 3D bioprinting of tissues and organs. Nat Biotechnol, 2014. 32(8): p. 773-85.; Chang, R., J. Nam, and W. Sun, Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue engineering. Part C, Methods, 2008. 14(2): p. 157-66.; Nair, K., et al., Characterization of cell viability during bioprinting processes. Biotechnology journal, 2009. 4(8): p. 1168-77.; Cui, X., et al., Thermal inkjet printing in tissue engineering and regenerative medicine. Recent patents on drug delivery & formulation, 2012. 6(2): p. 149-55.; Robu, A., et al., Computer simulations of in vitro morphogenesis. Biosystems, 2012. 109(3): p. 430-43.; Zhou, B., et al., Simulation of the gelation process of hydrogel droplets in 3D bioprinting. Vol. 16. 2016. 117-118.; Fristrom, D., The cellular basis of epithelial morphogenesis. A review. Tissue and Cell, 1988. 20(5): p. 645 - 690.; Radisic, M., et al., Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(52): p. 18129-34.; Xu, T., et al., Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials, 2006. 27(19): p. 3580 - 3588.; Steinberg, M.S., Adhesion in development: an historical overview. Developmental biology, 1996. 180(2): p. 377-88.; Wang, Y., et al., Spheroid formation of hepatocarcinoma cells in microwells: Experiments and Monte Carlo simulations. PLoS ONE, 2016. 11(8).; Mironov, V., et al., Organ printing: tissue spheroids as building blocks. Biomaterials, 2009. 30(12): p. 2164-74.; Kelm, J.M., et al., A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. Journal of biotechnology, 2010. 148(1): p. 46-55.; Tejavibulya, N., et al., Directed self-assembly of large scaffold-free multi-cellular honeycomb structures. Biofabrication, 2011. 3(3): p. 034110.; Derby, B., Printing and prototyping of tissues and scaffolds. Science, 2012. 338(6109): p. 921-6. Bibliografía 219; Jakab, K., et al., Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(9): p. 2864-2869.; Jakab, K., et al., Relating cell and tissue mechanics: implications and applications. Developmental dynamics, 2008. 237(9): p. 2438-49.; Steinberg, M.S., Reconstruction of Tissues by Dissociated Cells. Science, 1963. 141(3579): p. 401-408.; Nakamura, M., et al., Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue engineering, 2005. 11(11-12): p. 1658-66.; Freutel, M., et al., Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin Biomech (Bristol, Avon), 2014. 29(4): p. 363-72.; Timpl, R., et al., Laminin--a glycoprotein from basement membranes. J Biol Chem, 1979. 254(19): p. 9933-7.; Pankov, R. and K.M. Yamada, Fibronectin at a glance. J Cell Sci, 2002. 115(Pt 20): p. 3861-3.; Vazin, T. and D.V. Schaffer, Engineering strategies to emulate the stem cell niche. Trends Biotechnol, 2010. 28(3): p. 117-24.; Gleghorn, J.P., et al., Inhibitory morphogens and monopodial branching of the embryonic chicken lung. Developmental dynamics, 2012. 241(5): p. 852-62.; Iber, D. and D. Menshykau, The control of branching morphogenesis. Open biology, 2013. 3(9): p. 130088-130088.; Marga, F., et al., Developmental biology and tissue engineering. Birth Defects Research Part C: Embryo Today: Reviews, 2007. 81(4): p. 320-8.; Betsch, M., et al., Incorporating 4D into Bioprinting: Real-Time Magnetically Directed Collagen Fiber Alignment for Generating Complex Multilayered Tissues. Advanced Healthcare Materials, 2018. 7(21): p. e1800894.; Heinrich, M.A., et al., Bioprinting: 3D Bioprinting: from Benches to Translational Applications (Small 23/2019). Small, 2019. 15(23): p. 1970126.; Hoshiba, T. and M. Tanaka, Decellularized matrices as in vitro models of extracellular matrix in tumor tissues at different malignant levels: Mechanism of 5-fluorouracil resistance in colorectal tumor cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2016. 1863(11): p. 2749-2757.; Kasza, K.E., et al., The cell as a material. Current opinion in cell biology, 2007. 19(1): p. 101-7.; Mironov, V., V. Kasyanov, and R.R. Markwald, Organ printing: from bioprinter to organ biofabrication line. Current opinion in biotechnology, 2011. 22(5): p. 667-73.; Marga, F., et al., Toward engineering functional organ modules by additive manufacturing. Biofabrication, 2012. 4(2): p. 022001.; A., N., et al., Simulation of a 3D Bioprinted Human Vascular, in 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering, J.K.H.a.R.G. Krist V. Gernaey, Editor. 2015, Elsevier B.V.: Copenhagen, Denmark. p. 684-688; Khoo, Z.X., et al., 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping, 2015. 10(3): p. 103-122.; An, J., C.K. Chua, and V. Mironov, A Perspective on 4D Bioprinting. International Journal of Bioprinting, 2016. 220 Título de la tesis o trabajo de investigación; Kamei, M., et al., Endothelial tubes assemble from intracellular vacuoles in vivo. Nature, 2006. 442(7101): p. 453-6.; Alajati, A., et al., Spheroid-based engineering of a human vasculature in mice. Nature methods, 2008. 5(5): p. 439-45.; Chang, R., J. Nam, and W. Sun, Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue engineering. Part A, 2008. 14(1): p. 41-8.; Gunther, A., et al., A microfluidic platform for probing small artery structure and function. Lab on a chip, 2010. 10(18): p. 2341-9.; Huh, D., et al., Reconstituting organ-level lung functions on a chip. Science, 2010. 328(5986): p. 1662-8.; Xu, F., et al., A three-dimensional in vitro ovarian cancer coculture model using a highthroughput cell patterning platform. Biotechnology journal, 2011. 6(2): p. 204-212.; Ghaemmaghami, A.M., et al., Biomimetic tissues on a chip for drug discovery. Drug discovery today, 2012. 17(3-4): p. 173-81.; Knowlton, S., et al., Bioprinting for cancer research. Trends in biotechnology, 2015. 33(9): p. 504-13.; Villasante, A. and G. Vunjak-Novakovic, Tissue-engineered models of human tumors for cancer research. Expert opinion on drug discovery, 2015. 10(3): p. 257-68.; Lancaster, M.A., et al., Cerebral organoids model human brain development and microcephaly. Nature, 2013. 501(7467): p. 373-379.; Wong, A.P., et al., Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nature Biotechnology, 2012. 30(9): p. 876-882.; Clevers, H., STEM CELLS. What is an adult stem cell? Science, 2015. 350(6266): p. 1319-20.; Eiraku, M. and Y. Sasai, Self-formation of layered neural structures in three-dimensional culture of ES cells. Current opinion in neurobiology, 2012. 22(5): p. 768-777.; Lancaster, M.A. and J.A. Knoblich, Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014. 345(6194): p. 1247125.; Dekkers, J.F., et al., A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nature Medicine, 2013. 19(7): p. 939-945.; Ciancanelli, M.J., et al., Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science, 2015. 348(6233): p. 448.; Firth, A.L., et al., Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs. Cell Rep, 2015. 12(9): p. 1385-90.; Benam, K.H., et al., Human Lung Small Airway-on-a-Chip Protocol, in 3D Cell Culture: Methods and Protocols, Z. Koledova, Editor. 2017, Springer New York: New York, NY. p. 345- 365.; Bhatia, S.N. and D.E. Ingber, Microfluidic organs-on-chips. Nature Biotechnology, 2014. 32(8): p. 760-772.; Kimura, H., Y. Sakai, and T. Fujii, Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metabolism and Pharmacokinetics, 2018. 33(1): p. 43-48.; Domansky, K., et al., Perfused multiwell plate for 3D liver tissue engineering. Lab on a chip, 2010. 10(1): p. 51-8.; Faulkner-Jones, A., et al., Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication, 2015. 7(4): p. 044102. Bibliografía 221; Ma, X., et al., Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proceedings of the National Academy of Sciences of the United States of America, 2016. 113(8): p. 2206-11.; Dinh, N.-D., et al., Effective Light Directed Assembly of Building Blocks with Microscale Control. Small, 2017. 13.; Kizawa, H., et al., Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery. Biochemistry and Biophysics Reports, 2017. 10: p. 186-191.; Stichler, S., et al., Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(ε-caprolactone) for MSC chondrogenesis. Biofabrication, 2017. 9(4).; Kang, K., et al., Three-Dimensional Bioprinting of Hepatic Structures with Directly Converted Hepatocyte-Like Cells. Tissue engineering. Part A, 2018. 24(7-8): p. 576-583.; Takebe, T., et al., Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013. 499(7459): p. 481-484.; Bhise, N.S., et al., A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication, 2016. 8(1): p. 014101.; Hirt, M.N., A. Hansen, and T. Eschenhagen, Cardiac Tissue Engineering. Circulation Research, 2014. 114(2): p. 354-367.; Lind, J.U., et al., Instrumented cardiac microphysiological devices via multimaterial threedimensional printing. Nature Materials, 2017. 16(3): p. 303-308.; Zhang, Y.S., et al., Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 2016. 110: p. 45-59.; Ma, X., et al., 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Advanced drug delivery reviews, 2018. 132: p. 235-251.; Jang, J., H.-G. Yi, and D.-W. Cho, 3D Printed Tissue Models: Present and Future. ACS Biomaterials Science & Engineering, 2016. 2(10): p. 1722-1731.; Koch, L., et al., Skin tissue generation by laser cell printing. Biotechnology and bioengineering, 2012. 109(7): p. 1855-63.; Lee, V., et al., Design and fabrication of human skin by three-dimensional bioprinting. Tissue engineering. Part C, Methods, 2014. 20(6): p. 473-84.; Randall, M.J., et al., Advances in the Biofabrication of 3D Skin in vitro: Healthy and Pathological Models. Frontiers in Bioengineering and Biotechnology, 2018. 6(154).; Lindberg, K., et al., In vitro propagation of human ocular surface epithelial cells for transplantation. Investigative Ophthalmology & Visual Science, 1993. 34(9): p. 2672-2679.; Pellegrini, G., et al., Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. The Lancet, 1997. 349(9057): p. 990-993.; Rama, P., et al., Limbal stem-cell therapy and long-term corneal regeneration. New England journal of medicine, 2010. 363(2): p. 147-155.; Lancaster, M.A. and J.A. Knoblich, Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014. 345(6194).; Longmire, T.A., et al., Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell stem cell, 2012. 10(4): p. 398-411.; Steinberg, M.S., Differential adhesion in morphogenesis: a modern view. Current Opinion in Genetics and Development 2007. 17(4): p. 281-6.; Horning, J.L., et al., 3-D Tumor Model for In Vitro Evaluation of Anticancer Drugs. Molecular Pharmaceutics, 2008. 5(5): p. 849-862. 222 Título de la tesis o trabajo de investigación; Flenner, E., et al., Kinetic Monte Carlo and Cellular Particle Dynamics Simulations of Multicellular Systems. Vol. 85. 2012. 031907.; Shin, C.S., et al., 3D cancer tumor models for evaluating chemotherapeutic efficacy, in Biomaterials for Cancer Therapeutics, K. Park, Editor. 2013, Woodhead Publishing. p. 445-460.; Hubert, C.G., et al., A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found In Vivo. Cancer Res, 2016. 76(8): p. 2465-77.; Fujii, M., et al., A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis. Cell Stem Cell, 2016. 18(6): p. 827-838.; Liverani, C., et al., A biomimetic 3D model of hypoxia-driven cancer progression. Scientific Reports, 2019. 9(1): p. 12263.; Tanner, K. and M.M. Gottesman, Beyond 3D culture models of cancer. Science Translational Medicine, 2015. 7(283): p. 283ps9-283ps9.; Roberts, S., S. Peyman, and V. Speirs, Current and Emerging 3D Models to Study Breast Cancer, in Breast Cancer Metastasis and Drug Resistance. 2019. p. 413-427.; Ringeisen, B.R., et al., Laser printing of pluripotent embryonal carcinoma cells. Tissue engineering, 2004. 10(3-4): p. 483-91.; Matsusaki, M., et al., Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing. Advanced Healthcare Materials, 2013. 2(4): p. 534-9.; Zhao, Y., et al., Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication, 2014. 6(3): p. 035001.; Yamada, K.M. and E. Cukierman, Modeling Tissue Morphogenesis and Cancer in 3D. Cell, 2007. 130(4): p. 601-610.; Nantasanti, S., et al., Disease modeling and gene therapy of copper storage disease in canine hepatic organoids. Stem cell reports, 2015. 5(5): p. 895-907.; Chaturvedi, R., et al., A Hybrid Discrete-Continuum Model for 3-D Skeletogenesis of the Vertebrate Limb, in International Conference on Cellular Automata. 2004. p. 543-552.; Hespel, A.M., R. Wilhite, and J. Hudson, Invited review-applications for 3D printers in veterinary medicine. Veterinary Radiology & Ultrasound, 2014. 55(4): p. 347-358.; Kamb, A., What's wrong with our cancer models? Nat Rev Drug Discov, 2005. 4(2): p. 161-5.; Guillotin, B., et al., Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 2010. 31(28): p. 7250-6.; Campbell, P.G., et al., Engineered spatial patterns of FGF-2 immobilized on fibrin direct cell organization. Biomaterials, 2005. 26(33): p. 6762-70.; Phillippi, J.A., et al., Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells, 2008. 26(1): p. 127-34.; Norotte, C., et al., Scaffold-free vascular tissue engineering using bioprinting. Biomaterials, 2009. 30(30): p. 5910-7.; Chrisey, D.B., Materials Processing: The Power of Direct Writing. Science, 2000. 289(5481): p. 879-81.; Kattamis, N.T., et al., Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Applied Physics Letters, 2007. 91(17): p. 171120.; Koch, L., et al., Laser printing of skin cells and human stem cells. Tissue engineering. Part C, Methods, 2010. 16(5): p. 847-54.; Gruene, M., et al., Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue engineering. Part C, Methods, 2011. 17(1): p. 79-87.; Duocastella, M., et al., Novel laser printing technique for miniaturized biosensors preparation. Sensors and Actuators B: Chemical, 2010. 145(1): p. 596-600. Bibliografía 223; Tekin, E., P.J. Smith, and U.S. Schubert, Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter, 2008. 4(4): p. 703-713.; Klebe, R.J., Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Experimental cell research, 1988. 179(2): p. 362-73.; Okamoto, T., T. Suzuki, and N. Yamamoto, Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nature biotechnology, 2000. 18(4): p. 438-41.; Xu, T., et al., High-throughput production of single-cell microparticles using an inkjet printing technology. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2008. 130(2): p. 0210171-0210175.; Cohen, D.L., et al., Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue engineering, 2006. 12(5): p. 1325-35.; Visser, J., et al., Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication, 2013. 5(3): p. 035007.; Khalil, S. and W. Sun, Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Materials Science & Engineering C, 2007. 27(3): p. 469-478.; Guvendiren, M., H.D. Lu, and J.A. Burdick, Shear-thinning hydrogels for biomedical applications. Soft Matter, 2012. 8(2): p. 260-272.; Hribar, K.C., et al., Light-assisted direct-write of 3D functional biomaterials. Lab on a Chip, 2014. 14(2): p. 268-275.; Morris, V.B., et al., Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography. Annals of Biomedical Engineering, 2017. 45(1): p. 286-296.; Abdel Fattah, A.R., et al., In Situ 3D Label-Free Contactless Bioprinting of Cells through Diamagnetophoresis. ACS Biomaterials Science & Engineering, 2016. 2(12): p. 2133-2138.; Tseng, H., et al., A three-dimensional co-culture model of the aortic valve using magnetic levitation. Acta Biomaterialia, 2014. 10(1): p. 173-182.; Hennink, W.E. and C.F. van Nostrum, Novel crosslinking methods to design hydrogels. Advanced drug delivery reviews, 2002. 54(1): p. 13-36.; Shin, S.R., et al., A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics. Advanced Materials, 2016. 28(17): p. 3280-3289.; Li, L., et al., In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Scientific reports, 2017. 7(1): p. 9416.; Hakimi, N., et al., Handheld skin printer: in situ formation of planar biomaterials and tissues. Lab on a chip, 2018. 18(10): p. 1440-1451.; Silva, C., et al., Rational Design of a Triple-Layered Coaxial Extruder System: in silico and in vitro Evaluations Directed Toward Optimizing Cell Viability. International journal of bioprinting, 2020. 6(4): p. 282-282.; Hufnagel, L., et al., On the mechanism of wing size determination in fly development. Proceedings of the National Academy of Sciences, 2007. 104(10): p. 3835-3840.; Vincent, J.-P., A.G. Fletcher, and L.A. Baena-Lopez, Mechanisms and mechanics of cell competition in epithelia. Nature Reviews Molecular Cell Biology, 2013. 14(9): p. 581-591.; Fletcher, A.G., F. Cooper, and R.E. Baker, Mechanocellular models of epithelial morphogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017. 372(1720): p. 20150519.; Kolesky, D.B., et al., 3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs. Advanced Materials, 2014. 26(19): p. 3124-3130.; Kolesky, D.B., et al., Three-dimensional bioprinting of thick vascularized tissues. Proceedings of the National Academy of Sciences, 2016. 113(12): p. 3179-3184.; Kang, H.-W., et al., A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature Biotechnology, 2016. 34(3): p. 312-319.; Neagu, A., et al., Role of physical mechanisms in biological self-organization. Physical review letters, 2005. 95(17): p. 178104.; Fleming, P.A., et al., Fusion of uniluminal vascular spheroids: a model for assembly of blood vessels. Developmental dynamics, 2010. 239(2): p. 398-406.; Carter, S.B., Haptotaxis and the Mechanism of Cell Motility. Nature, 1967. 213(5073): p. 256- 260.; Harris, A., Behavior of cultured cells on substrata of variable adhesiveness. Experimental cell research, 1973. 77(1): p. 285-97.; Galle, J., M. Loeffler, and D. Drasdo, Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. Biophysical journal, 2005. 88(1): p. 62-75.; Merks, R.M.H., et al., Contact-Inhibited Chemotaxis in De Novo and Sprouting Blood-Vessel Growth. PLOS Computational Biology, 2008. 4(9): p. e1000163.; Sengers, B.G., et al., Computational modelling of cell spreading and tissue regeneration in porous scaffolds. Biomaterials, 2007. 28(10): p. 1926-40.; Hynes, R.O., Integrins: bidirectional, allosteric signaling machines. Cell, 2002. 110(6): p. 673- 87.; Gumbiner, B.M., Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell, 1996. 84(3): p. 345-57.; Beysens, D.A., G. Forgacs, and J.A. Glazier, Cell sorting is analogous to phase ordering in fluids. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(17): p. 9467-9471.; Foty, R.A. and M.S. Steinberg, The differential adhesion hypothesis: a direct evaluation. Developmental Biology, 2005. 278(1): p. 255-263.; Steinberg, M.S., On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the organization of fused, heteronomic tissue fragments. Proceedings of the National Academy of Sciences of the United States of America, 1962. 48(10): p. 1769-76.; Gierer, A., et al., Regeneration of hydra from reaggregated cells. Nature: New biology, 1972. 239(91): p. 98-101.; Yamanaka, H., Y. Tanaka-Ohmura, and M. Dan-Sohkawa, What do dissociated embryonic cells of the starfish, Asterina pectinifera, do to reconstruct bipinnaria larvae? Journal of embryology and experimental morphology, 1986. 94: p. 61-71.; Kipper, M.J., H.K. Kleinman, and F.W. Wang, New method for modeling connective-tissue cell migration: improved accuracy on motility parameters. Biophysical journal, 2007. 93(5): p. 1797- 808.; Steinberg, M.S., Adhesion-guided multicellular assembly: a commentary upon the postulates, real and imagined, of the differential adhesion hypothesis, with special attention to computer simulations of cell sorting. Journal of Theoretical Biology, 1975. 55(2): p. 431 - 443.; Foty, R.A., et al., Liquid properties of embryonic tissues: Measurement of interfacial tensions. Physical review letters, 1994. 72(14): p. 2298-2301.; Foty, R.A., et al., Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development, 1996. 122(5): p. 1611-20. Bibliografía 225; Marmottant, P., et al., The role of fluctuations and stress on the effective viscosity of cell aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(41): p. 17271-17275.; Pajic-Lijakovic, I. and M. Milivojevic, Long-time viscoelasticity of multicellular surfaces caused by collective cell migration – Multi-scale modeling considerations. Seminars in Cell & Developmental Biology, 2019. 93: p. 87-96.; Griffith, L.G. and G. Naughton, Tissue Engineering-Current Challenges and Expanding Opportunities. Science, 2002. 295(5557): p. 1009-1014.; Norotte, C., et al., Experimental evaluation of apparent tissue surface tension based on the exact solution of the Laplace equation. Europhysics Letters, 2008. 81(46003).; Mgharbel, A., H. Delanoe-Ayari, and J.P. Rieu, Measuring accurately liquid and tissue surface tension with a compression plate tensiometer. HFSP journal, 2009. 3(3): p. 213-21.; Korff, T. and H.G. Augustin, Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. Journal of cell science, 1999. 112 ( Pt 19): p. 3249-58.; Friedl, P. and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer. Nature reviews. Molecular cell biology 2009. 10(7): p. 445-57.; Lo, C.M., et al., Cell movement is guided by the rigidity of the substrate. Biophysical journal, 2000. 79(1): p. 144-152.; Mayor, R. and C. Carmona-Fontaine, Keeping in touch with contact inhibition of locomotion. Trends in cell biology, 2010. 20(6): p. 319-28.; Goel, N.S. and G. Rogers, Computer simulation of engulfment and other movements of embryonic tissues. Journal of Theoretical Biology, 1978. 71(1): p. 103-140.; Glazier, J.A., S.P. Gross, and J. Stavans, Dynamics of two-dimensional soap froths. Physical Review A, 1987. 36(1): p. 306-312.; Stavans, J. and J.A. Glazier, Soap froth revisited: Dynamic scaling in the two-dimensional froth. Physical review letters, 1989. 62(11): p. 1318-1321.; Turing, A.M., The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1952. 237(641): p. 37-72.; Wittwer, L.C., Roberto; Aland, Sebastian; Iber, Dagmar, Simulating Organogenesis in COMSOL: Phase-Field Based Simulations of Embryonic Lung Branching Morphogenesis. 2016.; Wittwer, L.D., Phase-Field Based Simulations of Embryonic Branching Morphogenesis. 2017, ETH Zurich.; Metzger, R.J., et al., The branching programme of mouse lung development. Nature, 2008. 453(7196): p. 745-50.; Walker, D.C. and J. Southgate, The virtual cell--a candidate co-ordinator for 'middle-out' modelling of biological systems. Briefings in bioinformatics, 2009. 10(4): p. 450-61.; Andasari, V., et al., Integrating Intracellular Dynamics Using CompuCell3D and Bionetsolver: Applications to Multiscale Modelling of Cancer Cell Growth and Invasion. PLOS ONE, 2012. 7(3): p. e33726.; Ingber, D.E. and M. Levin, What lies at the interface of regenerative medicine and developmental biology? Development, 2007. 134(14): p. 2541-2547.; Andreea Robu, L.S.-T., SIMMMC – An Informatic Application for Mmodelling and Simulating the Evolution of Multicellular Systems in the Vicinity of Biomaterials. Romaninan Journal of Biophysics, 2016. 26(3).; Amar, J.G., The Monte Carlo Method in Science and Engineering. Computing in Science and Engineering, 2006. 8: p. 9-19.; Fichthorn, K.A. and W.H. Weinberg, Theoretical foundations of dynamical Monte Carlo simulations. The Journal of Chemical Physics, 1991. 95(2): p. 1090-1096.; Vineyard, G.H., Frequency factors and isotope effects in solid state rate processes. Journal of Physics and Chemistry of Solids, 1957. 3(1): p. 121-127.; Sun, Y. and Q. Wang, Modeling and simulations of multicellular aggregate self-assembly in biofabrication using kinetic Monte Carlo methods. Soft Matter, 2013. 9(7): p. 2172-2186.; Bortz, A.B., M.H. Kalos, and J.L. Lebowitz, A new algorithm for Monte Carlo simulation of Ising spin systems. Journal of Computational Physics, 1975. 17(1): p. 10-18.; NEAGU, A., et al., COMPUTATIONAL MODELING OF TISSUE SELF-ASSEMBLY. Modern Physics Letters B, 2006. 20(20): p. 1217-1231.; Schienbein, M., K. Franke, and H. Gruler, Random walk and directed movement: Comparison between inert particles and self-organized molecular machines. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1994. 49(6): p. 5462-5471.; Mombach, J.C. and J.A. Glazier, Single cell motion in aggregates of embryonic cells. Physical review letters, 1996. 76(16): p. 3032-3035.; Graner, F. and J.A. Glazier, Simulation of biological cell sorting using a two-dimensional extended Potts model. Physical review letters, 1992. 69(13): p. 2013-2016.; Glazier, J.A., A. Balter, and N.J. Poplawski, Magnetization to Morphogenesis: A Brief History of the Glazier-Graner Hogeweg Model, in Singl-Cell-Based Models in Biology and Medicine, M.A.J.C. A.R.A. Anderson, K.A. Rejniak, Editor. 2007, Mathematics and Biosciences in Interaction: Birkhäuser Verlag Basel / Switzerland. p. 79-106.; Cickovski, T., et al., A Framework for Three-Dimensional Simulation of Morphogenesis. IEEE/ACM transactions on computational biology and bioinformatics, 2005. 2: p. 273-88.; Merks, R.M.H. and P. Koolwijk, Modeling Morphogenesis in silico and in vitro: Towards Quantitative, Predictive, Cell-based Modeling. Mathematical Modelling of Natural Phenomena, 2009. 4(4): p. 149-171; Hester, S.D., et al., A multi-cell, multi-scale model of vertebrate segmentation and somite formation. PLoS computational biology, 2011. 7(10): p. e1002155.; Rowlinson, J.S., Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density”. Journal of Statistical Physics, 1979. 20(2): p. 197-200.; Yang, X., V. Mironov, and Q. Wang, Modeling fusion of cellular aggregates in biofabrication using phase field theories. Journal of theoretical biology, 2012. 303: p. 110-8.; Yang, X., Y. Sun, and Q. Wang, A phase field approach for multicellular aggregate fusion in biofabrication. Journal of biomechanical engineering, 2013. 135(7): p. 71005.; Flory, P.J., Principles of Polymer Chemistry. 1953, Ithaca, N.Y.: Cornell University Press.; Qin, R.S. and H.K. Bhadeshia, Phase field method. Materials Science and Technology, 2010. 26(7): p. 803-811.; Aland, S., Modelling of two-phase flow with surface active particles, in Der Fakultät Mathematik und Naturwissenschaften. 2012, Technischen Universität Dresden. p. 127.; Chen, L.-Q., Phase-Field Models for Microstructure Evolution. Annual Review of Materials Research, 2002. 32(1): p. 113-140.; Folch, R., et al., Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1999. 60(2 Pt B): p. 1724-33.; Cahn, J.W. and J.E. Hilliard, Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics, 1958. 28(2): p. 258-267. Bibliografía 227; Cahn, J.W. and J.E. Hilliard, Free Energy of a Nonuniform System. III. Nucleation in a Two‐ Component Incompressible Fluid. The Journal of Chemical Physics, 1959. 31(3): p. 688-699.; Lervåg, K.Y. and J. Lowengrub, Analysis of the diffuse-domain method for solving PDEs in complex geometries. Communications in mathematical sciences, 2015. 13: p. 1473.; Ibrahimi, O.A., et al., Analysis of mutations in fibroblast growth factor (FGF) and a pathogenic mutation in FGF receptor (FGFR) provides direct evidence for the symmetric two-end model for FGFR dimerization. Molecular and cellular biology, 2005. 25(2): p. 671-84.; Francavilla, C., et al., Functional Proteomics Defines the Molecular Switch Underlying FGF Receptor Trafficking and Cellular Outputs. Molecular Cell, 2013. 51(6): p. 707-722.; Donea, J., et al., Arbitrary Lagrangian–Eulerian Methods, in Encyclopedia of Computational Mechanics. 2004.; Iber, D., et al., Simulating tissue morphogenesis and signaling. Methods in molecular biology, 2015. 1189: p. 323-38.; Kockelkoren, J., H. Levine, and W.-J. Rappel, Computational approach for modeling intra- and extracellular dynamics. Physical Review E, 2003. 68(3): p. 037702.; Kurics, T., D. Menshykau, and D. Iber, Feedback, receptor clustering, and receptor restriction to single cells yield large Turing spaces for ligand-receptor-based Turing models. Physical Review E, 2014. 90(2): p. 022716.; Palsson, E. and H.G. Othmer, A model for individual and collective cell movement in Dictyostelium-discoideum. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(19): p. 10448-10453.; Dallon, J.C. and H.G. Othmer, How cellular movement determines the collective force generated by the Dictyostelium discoideum slug. Journal of theoretical biology, 2004. 231(2): p. 203-22.; Walker, D.C., et al., The epitheliome: agent-based modelling of the social behaviour of cells. Biosystems, 2004. 76(1-3): p. 89-100.; Drasdo, D. and S. Hoehme, A single-cell-based model of tumor growth in vitro: Monolayers and spheroids. Physical biology, 2005. 2: p. 133-47.; Chu, Y.S., et al., Johnson-Kendall-Roberts theory applied to living cells. Physical review letters, 2005. 94(2): p. 028102.; Hoehme, S. and D. Drasdo, A cell-based simulation software for multi-cellular systems. Bioinformatics, 2010. 26(20): p. 2641-2.; Hoehme, S., et al., Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(23): p. 10371-6.; Hoffmann, M., et al., Spatial Organization of Mesenchymal Stem Cells In Vitro—Results from a New Individual Cell-Based Model with Podia. PLOS ONE, 2011. 6(7): p. e21960.; Newman, T.J., Modeling Multicellular Systems Using Subcellular Elements. Mathematical Biosciences & Engineering, 2005. 2(3): p. 613-624.; Zaman, M.H., et al., Computational model for cell migration in three-dimensional matrices. Biophysical journal, 2005. 89(2): p. 1389-97.; Flenner, E., et al., Relating biophysical properties across scales, in Current Topics in Developmental Biology. 2008. p. 461-83.; Sandersius, S.A. and T.J. Newman, Modeling cell rheology with the Subcellular Element Model. Physical biology, 2008. 5(1): p. 015002.; Kosztin, I., G. Vunjak-Novakovic, and G. Forgacs, Colloquium: Modeling the dynamics of multicellular systems: Application to tissue engineering. Reviews of Modern Physics, 2012. 84(4): p. 1791-1805.; 259. Chaikin, P.M., Principles of Condensed Matter Physics. 2000: Cambridge University Press.; Alberts, B., et al., Molecular Biology of the Cell. 2002, New York: Garland Science.; Pathmanathan, P., et al., A computational study of discrete mechanical tissue models. Physical Biology, 2009. 6(3): p. 036001.; Phillips, J.C., et al., Scalable molecular dynamics with NAMD. Journal of computational chemistry, 2005. 26(16): p. 1781-802.; Shafiee, A., et al., Post-deposition bioink self-assembly: a quantitative study. Biofabrication, 2015. 7(4): p. 045005.; Cristea, A. and A. Neagu, Shape changes of bioprinted tissue constructs simulated by the Lattice Boltzmann method. Computers in biology and medicine, 2016. 70: p. 80-87.; Silva, H.S. and M.L. Martins, A cellular automata model for cell differentiation. Physica A: Statistical Mechanics and its Applications, 2003. 322: p. 555-566.; Garijo, N., et al., Stochastic cellular automata model of cell migration, proliferation and differentiation: Validation with in vitro cultures of muscle satellite cells. Journal of Theoretical Biology, 2012. 314: p. 1-9.; Van Scoy, G.K., et al., A cellular automata model of bone formation. Mathematical Biosciences, 2017. 286: p. 58-64.; Ben Youssef, B., Simulating Cell-Cell Interactions Using a Multicellular Three-Dimensional Computational Model of Tissue Growth. 2018. p. 215-228.; Sipahi, R. and G.K.H. Zupanc, Stochastic cellular automata model of neurosphere growth: Roles of proliferative potential, contact inhibition, cell death, and phagocytosis. Journal of Theoretical Biology, 2018. 445: p. 151-165.; Zupanc, G.K.H., F.B. Zupanc, and R. Sipahi, Stochastic cellular automata model of tumorous neurosphere growth: Roles of developmental maturity and cell death. Journal of Theoretical Biology, 2019. 467: p. 100-110.; Beros, A., M. Chyba, and K. Noe, Co-evolving cellular automata for morphogenesis. Discrete & Continuous Dynamical Systems - B, 2019. 24(5): p. 2053-2071.; Brodland, G.W. and J.H. Veldhuis, Assessing the mechanical energy costs of various tissue reshaping mechanisms. Biomech Model Mechanobiol, 2012. 11(8): p. 1137-47.; Steinberg, M.S., Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science, 1963. 141(3579): p. 401-8.; Brodland, G.W. and H.H. Chen, The mechanics of heterotypic cell aggregates: insights from computer simulations. J Biomech Eng, 2000. 122(4): p. 402-7.; Hwang, M., et al., Rule-Based Simulation of Multi-Cellular Biological Systems-A Review of Modeling Techniques. Cellular and molecular bioengineering, 2009. 2(3): p. 285-294.; Rezende, R.A., et al., Organ Printing as an Information Technology. Procedia Engineering, 2015. 110: p. 151-158.; Cohen, D.L., et al., Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng, 2006. 12(5): p. 1325-35.; Chang, R., J. Nam, and W. Sun, Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng Part C Methods, 2008. 14(2): p. 157-66.; Hopp, B., et al., Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng, 2005. 11(11-12): p. 1817-23. Bibliografía 229; Mironov, V., V. Kasyanov, and R.R. Markwald, Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol, 2011. 22(5): p. 667-73.; Xu, F., et al., A three-dimensional in vitro ovarian cancer coculture model using a highthroughput cell patterning platform. Biotechnol J, 2011. 6(2): p. 204-212.; Jiang, T., et al., Directing the Self-assembly of Tumour Spheroids by Bioprinting Cellular Heterogeneous Models within Alginate/Gelatin Hydrogels. Scientific Reports, 2017. 7(1): p. 4575.; Lind, J.U., et al., Instrumented cardiac microphysiological devices via multimaterial threedimensional printing. 2017. 16(3): p. 303-308.; Koti, P., et al., Use of GelMA for 3D printing of cardiac myocytes and fibroblasts. Journal of 3D printing in medicine, 2019. 3(1): p. 11-22.; Klebe, R.J., Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res, 1988. 179(2): p. 362-73.; Nakamura, M., et al., Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng, 2005. 11(11-12): p. 1658-66.; Cui, X., et al., Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul, 2012. 6(2): p. 149-55.; Okamoto, T., T. Suzuki, and N. Yamamoto, Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol, 2000. 18(4): p. 438-41.; Matsusaki, M., et al., Three-dimensional human tissue chips fabricated by rapid and automatic inkjet cell printing. Adv Healthc Mater, 2013. 2(4): p. 534-9.; Lee, V., et al., Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods, 2014. 20(6): p. 473-84.; Ringeisen, B.R., et al., Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng, 2004. 10(3-4): p. 483-91.; Gruene, M., et al., Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods, 2011. 17(1): p. 79-87.; Guillemot, F., et al., High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomaterialia, 2010. 6(7): p. 2494-2500.; Ali, M., et al., Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication, 2014. 6(4): p. 045001.; Stavans, J. and J.A. Glazier, Soap froth revisited: Dynamic scaling in the two-dimensional froth. Phys Rev Lett, 1989. 62(11): p. 1318-1321.; Glazier, J.A. and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1993. 47(3): p. 2128-2154.; Amar, J.G., The Monte Carlo Method in Science and Engineering. Computing in Science and Engg., 2006. 8(2): p. 9–19.; Steinberg, M.S., On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the organization of fused, heteronomic tissue fragments. Proc Natl Acad Sci U S A, 1962. 48(10): p. 1769-76.; Steinberg, M.S., Differential adhesion in morphogenesis: a modern view. Curr Opin Genet Dev, 2007. 17(4): p. 281-6.; Domansky, K., et al., Perfused multiwell plate for 3D liver tissue engineering. Lab Chip, 2010. 10(1): p. 51-8. 230 Título de la tesis o trabajo de investigación; Cickovski, T.M., et al., A framework for three-dimensional simulation of morphogenesis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2005. 2(4): p. 273-288.; Merks, R.M.H. and P. Koolwijk, Modeling Morphogenesis in silico and in vitro: Towards Quantitative, Predictive, Cell-based Modeling. Math. Model. Nat. Phenom., 2009. 4(4): p. 149- 171.; R. Chaturvedi, C.H., J. A. Izaguirre, S. A. Newman, J. A. Glazier, M. Alber, A Hybrid Discrete- Continuum Model for 3-D Skeletogenesis of the Vertebrate Limb. International Conference on Cellular Automata, 2004: p. 543-552.; Nicholas J.Savill, P., Modelling Morphogenesis: From Single Cells to Crawling Slugs. Journal of Theoretical Biology, 1997. 184(3): p. 229 - 235.; Galle, J., et al., Individual cell-based models of tumor-environment interactions: Multiple effects of CD97 on tumor invasion. Am J Pathol, 2006. 169(5): p. 1802-11.; Jakab, K., et al., Relating cell and tissue mechanics: implications and applications. Dev Dyn, 2008. 237(9): p. 2438-49.; Jakab, K., et al., Organ printing: fiction or science. Biorheology, 2004. 41(3-4): p. 371-5.; Yang, X., V. Mironov, and Q. Wang, Modeling fusion of cellular aggregates in biofabrication using phase field theories. J Theor Biol, 2012. 303: p. 110-8.; Voter, A.F. INTRODUCTION TO THE KINETIC MONTE CARLO METHOD. 2007. Dordrecht: Springer Netherlands.; Glazier James A, A.B.a.N.J.P., Magnetization to Morphogenesis: A Brief History of the Glazier- Graner Hogeweg Model, in Singl-Cell-Based Models in Biology and Medicine, M.A.J.C. A.R.A. Anderson, K.A. Rejniak, Editor. 2007, Mathematics and Biosciences in Interaction: Birkhäuser Verlag Basel / Switzerland. p. 79-106.; Steinberg, M.S., Adhesion in development: an historical overview. Dev Biol, 1996. 180(2): p. 377-88.; Chatterjee, A. and D.G. Vlachos, An overview of spatial microscopic and accelerated kinetic Monte Carlo methods. Journal of Computer-Aided Materials Design, 2007. 14(2): p. 253-308.; Folch, R., et al., Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1999. 60(2 Pt B): p. 1724-33.; Yang, X., Y. Sun, and Q. Wang, A phase field approach for multicellular aggregate fusion in biofabrication. J Biomech Eng, 2013. 135(7): p. 71005.; Cristea, A. and A. Neagu, Shape changes of bioprinted tissue constructs simulated by the Lattice Boltzmann method. Comput Biol Med, 2016. 70: p. 80-87.; Norris, J.R., Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. 1997, Cambridge: Cambridge University Press.; Feller, W., An Introduction to Probability Theory and Its Applications. Vol. 1. 1966.; Blue, J.L., I. Beichl, and F. Sullivan, Faster Monte Carlo simulations. Physical Review E, 1995. 51(2): p. R867-R868.; Rahman, T., et al., Atomistic studies of thin film growth. Optical Science and Technology, the SPIE 49th Annual Meeting. Vol. 5509. 2004: SPIE.; Trushin, O., et al., Self-learning kinetic Monte Carlo method: Application to Cu(111). Physical Review B, 2005. 72(11): p. 115401.; Foty, R.A., et al., Liquid properties of embryonic tissues: Measurement of interfacial tensions. Phys Rev Lett, 1994. 72(14): p. 2298-2301.; Freutel, M., et al., Finite element modeling of soft tissues: Material models, tissue interaction and challenges. Clinical Biomechanics, 2014. 29(4): p. 363-372. Bibliografía 231; Marmottant, P., et al., The role of fluctuations and stress on the effective viscosity of cell aggregates. Proceedings of the National Academy of Sciences, 2009. 106(41): p. 17271-17275.; Schienbein, M., K. Franke, and H. Gruler, Random walk and directed movement: Comparison between inert particles and self-organized molecular machines. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1994. 49(6): p. 5462-5471.; Kipper, M.J., H.K. Kleinman, and F.W. Wang, New method for modeling connective-tissue cell migration: improved accuracy on motility parameters. Biophys J, 2007. 93(5): p. 1797-808.; Mombach, J.C. and J.A. Glazier, Single cell motion in aggregates of embryonic cells. Phys Rev Lett, 1996. 76(16): p. 3032-3035.; Flenner, E., et al., Relating biophysical properties across scales. Curr Top Dev Biol, 2008. 81: p. 461-83.; Thomas, W.A. and J. Yancey, Can retinal adhesion mechanisms determine cell-sorting patterns: a test of the differential adhesion hypothesis. Development, 1988. 103(1): p. 37-48.; Frenkel, J., Viscous flow of crystalline bodies under the action of surface tension. The Journal of Physics, USSR, 1945. 9: p. 385-391.; J, D., Eshelby, Trans. AIME, 1949(185).; Ma, X., et al., 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev, 2018. 132: p. 235-251.; An, J., C.K. Chua, and V. Mironov, A Perspective on 4D Bioprinting. International Journal of Bioprinting; Vol 2, No 1 (2016), 2016.; Nogueira JA., L.a., Marques TS., Oliveira DS., Mironov V., da Silva and R.R. JV., Simulation of a 3D Bioprinted Human Vascular Segment, in 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering, J.K.H.a.R.G. Krist V. Gernaey, Editor. 2015, Elsevier B.V.: Copenhagen, Denmark. p. 684-688; Iber, D., et al., Simulating tissue morphogenesis and signaling. Methods Mol Biol, 2015. 1189: p. 323-38.; Douglas Brown, R.H., and Wolfgang Christian, Tracker Video Analysis and Modeling Tool. October, 2020.; Inc., T.M., Matlab. 2017.; Han, Y., et al., Cultivation of recombinant Chinese hamster ovary cells grown as suspended aggregates in stirred vessels. J Biosci Bioeng, 2006. 102(5): p. 430-5.; Pan, X., et al., Metabolic characterization of a CHO cell size increase phase in fed-batch cultures. Applied microbiology and biotechnology, 2017. 101(22): p. 8101-8113.; https://repositorio.unal.edu.co/handle/unal/82216; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
3
Authors: et al.
Contributors: et al.
Subject Terms: Redes neuronales convolucionales, Termodinámica, Diseño de prótesis, Diseño de prototipos, Algoritmos, Generadores eléctricos, Tendencias tecnológicas, Bioingeniería, Bioingeniería -- Congresos, conferencias, etc. -- Memorias, Energía -- Congresos, Sistemas de control inteligente -- Congresos, Procesamiento de señales -- Congresos, Automatización -- Congresos, etc. -- Memoria, Desarrollo de prototipos -- Congresos, Ingeniería biomédica -- Congresos, Redes eléctricas -- Congresos, Tecnologías de la información y de la comunicación -- Congresos, Procesamiento digital de imágenes -- Congresos, Redes neuronales (Computadores) -- Congresos, Nanotecnología -- Congresos, Telecomunicaciones -- Congresos, Convolutional Neural Networks, Thermodynamics, Prosthesis design
File Description: pdf; application/pdf
Relation: L. Coffey, P. Gallager, O. Horgan, D. Desmond, and M. MacLachlan. “Psychosocial adjustment to diabetes‐related lower limb amputation”. Oxford, Diabetic Medicine, 2009, pp.1063–1067.; DANE. “Censo de Población y Viviendas 2018”. Bogotá, D.C, Departamento Administrativo Nacional de Estadística, 2018.; D. Silverthorn, “Fisiología humana: un enfoque integrado” , 4ta ed, reimp- Bogotá - Panamericána, 2009.; K.J. Zuo, and J. L. Olson. “The evolution of functional hand replacement”: From iron prostheses to hand transplantation. Plastic Surgery, 22(1), 44-51, 2014.; D. Foord. “CHANGES IN TECHNOLOGIES AND MEANINGS OF UPPER LIMB PROSTHETICS: PART I-FROM ANCIENT EGYPT TO EARLY MODERN EUROPE”. In MEC Symposium Conference, July 2020.; K. Ashmore, S. Cialdella, A. Giuffrida, E. Kon, M. Marcacci, and B. Di Matteo. “ArtiFacts: Gottfried “Götz” von Berlichingen—The “Iron Hand” of the Renaissance”. Clinical Orthopaedics and Related Research®, 477(9), 2002-2004, 2019.; K. Moore, and A. Dalley. “Clinically oriented anatomy”. 7ª ed, UK, Wolters Klawer, 2013.; Àngels. (2017, Jan 16). “Cómo se llaman los huesos de la mano” [Online]. Available at:https://www.mundodeportivo.com/uncomo/educacion/articulo/como-se-llaman-los-huesos-de-la-mano-40009.html.; B. Maat, G. Smit, D. Plettenburg, and P. Breedveld. “Passive prosthetic hands and tools: A literature review”. Prosthetics and orthotics international, 42(1), 66-74, 2018.; A. Chadwell, L. Kenney, S. Thies, A. Galpin, and J. Head. “The reality of myoelectric prostheses: understanding what makes these devices difficult for some users to control”. Frontiers in neurorobotics, 10, 7, 2016.; T. Fujimaki et al., “Prevalence of floating toe and its relationship with static postural stability in children: The Yamanashi adjunct study of the Japan Environment and Children’s Study (JECS-Y),” PLoS One, vol. 16, no. 3 March, pp. 1–8, 2021, doi:10.1371/journal.pone.0246010.; L. A. Luengas-C, D. C. Toloza, and L. F. Wanumen, “Utilización de la Teoría de la Información para evaluar el comportamiento de la estabilidad estática en amputaciones transtibiales,” RISTI - Rev. Ibérica Sist. e Tecnol. Informação, vol. 40, no. 12, pp. 15–30, 2020, doi:10.17013/risti.40.15–30.; B. Olsen et al., “The Relationship Between Hip Strength and Postural Stability in Collegiate Athletes Who Participate in Lower Extremity Dominant Sports,” Int. J. Sports Phys. Ther., vol. 16, no. 1, pp. 64–71, 2021, doi:10.26603/001c.18817.; L. A. Luengas C. and D. C. Toloza, Análisis de estabilidad en amputados transtibiales unilaterales. Bogota: UD Editorial, 2019.; M. F. Peydro de Moya, J. M. Baydal, and M. J. Vivas, “Evaluación y rehabilitación del equilibrio mediante posturografía,” Rehabilitación, vol. 39, no. 6, pp. 315–323, 2005.; L. A. Luengas-C, J. López, and G. Sánchez Prieto, “Comportamiento de rangos articulares con alineación en amputados transtibiales,” Visión Electrónica Más que un estado sólido, vol. 1, no. 1, pp. 48–52, 2018.; A. Ruhe, R. Fejer, and B. Walker, “The test-retest reliability of centre of pressure measures in bipedal static task conditions - A systematic review of the literature,” Gait and Posture, vol. 32, no. 4. pp. 436–445, Oct. 2010, doi:10.1016/j.gaitpost.2010.09.012.; P. Schubert, M. Kirchner, S. Dietmar, and C. T. Haas, “About the structure of posturography: Sampling duration, parametrization, focus of attention (part I),” J. Biomed. Sci. Eng., vol. 5, pp. 496–507, 2012, doi: http://dx.doi.org/10.4236/jbise.2012.59062.; F. Martínez-Solís et al., “Algorithm to estimate the knee angle in normal gait: trajectory generation approach to intelligent transfemoral prosthesis,” Rev. Mex. Ing. Biomédica, vol. 37, no. 3, pp. 221–233, Sep. 2016, doi:10.17488/RMIB.37.3.7.; S. A. Ahmadi et al., “Towards computerized diagnosis of neurological stance disorders: data mining and machine learning of posturography and sway,” J. Neurol., vol. 266, no. s1, pp. 108–117, 2019, doi:10.1007/s00415-019-09458-y.; L. A. Luengas-C, “Computational Method to Verify Static Alignment of Transtibial Prosthesis,” Biomed. J. Sci. Tech. Res., vol. 31, no. 2, Oct. 2020, doi:10.26717/bjstr.2020.31.005074.; J. R. Chagdes, S. Rietdyk, M. H. Jeffrey, N. Z. Howard, and A. Raman, “Dynamic stability of a human standing on a balance board,” J. Biomech., vol. 46, no. 15, 2013, doi:10.1016/j.jbiomech.2013.08.012.; L. A. Luengas-C. and D. C. Toloza, “Frequency and Spectral Power Density Analysis of the Stability of Amputees Subjects,” TecnoLógicas, vol. 23, no. 48, pp. 1–16, 2020, doi: https://doi.org/10.22430/22565337.1453.; L. Verdichio, “Equilibrio y dominancia,” Universidad FASTA, 2016.; J. C. Segovia Martínez and J. C. Legido Arce, “Valores podoestabilométricos en la población deportiva infantil,” UNIVERSIDAD COMPLUTENSE DE MADRID, 2009.; B. Ristevski and M. Chen, “Big Data Analytics in Medicine and Healthcare,” J. Integr. Bioinform., vol. 15, no. 3, pp. 1–5, 2018, doi:10.1515/jib-2017-0030.; P. Schubert and M. Kirchner, “Ellipse area calculations and their applicability in posturography,” Gait Posture, vol. 39, no. 1, pp. 518–522, 2014, doi:10.1016/j.gaitpost.2013.09.001.; M. Duarte and S. M. Freitas, “Revision of posturography based on force plate for balance evaluation,” Rev. Bras. Fisioter., vol. 14, no. 3, pp. 183–192, 2010, doi: S1413-35552010000300003 [pii].; M. Duarte, “Comments on ‘ellipse area calculations and their applicability in posturography’ (schubert and kirchner, vol.39, pages 518-522, 2014),” Gait Posture, vol. 41, no. 1, pp. 44–45, 2015, doi:10.1016/j.gaitpost.2014.08.008.; M. Gómez, J. Serna, and L. Vélez, “Diagnosis of bearing with mechanical vibrations and virtual instruments,” Visión Electrónica Más que un estado sólido, vol. 8, no. 2, pp. 107–113, 2014.; Novel.de, “The pedar® system,” Novel GmbH, 2019. http://www.novel.de/novelcontent/pedar (accessed May 11, 2014).; D. A. Winter, Biomechanics and motor control of human movement, 4th ed. New Jersey: John Wiley & sons, Inc, 2009.; A. Bottaro, M. Casadio, P. G. Morasso, and V. Sanguineti, “Body sway during quiet standing: Is it the residual chattering of an intermittent stabilization process?,” in Human Movement Science, 2005, vol. 24, no. 4, pp. 588–615, doi:10.1016/j.humov.2005.07.006.; R. T. Disler et al., “Factors impairing the postural balance in COPD patients and its influence upon activities of daily living,” Eur. Respir. J., vol. 15, no. 1, 2019.; Bomberos Colombia. (2016). Guía para Certificar Equipos de Búsqueda y Rescate Urbano en los Cuerpos de Bomberos de Colombia. Disponible en: https://bomberos.mininterior.gov.co/sites/default/files/guia_final_bomberos_colombia_2017_.pdf.; Brigham and Women’s Hospital. (2019). Signos vitales (temperatura corporal, pulso, frecuencia respiratoria y presión arterial). Disponible en: https://healthlibrary.brighamandwomens.org/spanish/diseasesconditions/adult/NonTraumatic/85,P03963.; Catalogo de la Salud. (s.f). Monitoreo de signos vitales. Disponible en: https://www.catalogodelasalud.com/ficha-producto/Monitores-de-pacientes+102363.; CNN. (2012). Un dispositivo inalámbrico para monitorear signos vitales. Disponible en: https://cnnespanol.cnn.com/2012/05/25/un-dispositivo-inalambrico-para-monitorear-signos-vitales/.; OMS. (s.f). Terremotos. Disponible en: https://www.who.int/hac/techguidance/ems/earthquakes/es/.; OMS. (2017). 10 datos sobre la seguridad vial en el mundo – Organización Mundial de la Salud (OMS). Disponible en: https://www.who.int/features/factfiles/roadsafety/es/.; Ramírez López, L. J., Marín López, A. F., & Cifuentes Sanabria, Y. P. (2015). Aplicación de la biotelemetría para tres signos vitales. Ciencia Y Poder Aéreo, 10(1), 179-186. https://doi.org/10.18667/cienciaypoderaereo.428.; Rosenberg D. (2009). ICONIX Process for Embedded Systems - A roadmap for embedded system development using SysML. Tomado de: https://community.sparxsystems.com/white-papers/616-88iconix-process-for-embedded-systems-a-roadmap-for-embedded-system-development-using-sysml.; Salazar-Arbelaez, Gabriel. (2018). Terremotos y salud: lecciones y recomendaciones. Salud Pública de México, 60(Supl. 1), 6-15. https://doi.org/10.21149/9445.; SUMMA 112. (s.f). Módulo 7 Actuación ante Accidentes con Múltiples Víctimas y Catástrofes. Incidentes NBQR. Rescate sanitario. Manuel de enfermería. Disponible en: http://www.madrid.org/cs/Satellite?blobcol=urldata&blobheader=application%2Fpdf&blobheadername1=Content-Disposition&blobheadervalue1=filename%3DModulo+7.pdf&blobkey=id&blobtable=MungoBlobs&blobwhere=1352868957600&ssbinary=true.; Tecnológico de Monterrey. (2011). Sistema para la visualización de signos vitales con dispositivos móviles utilizando tecnología Bluetooth. Disponible en: https://repositorio.tec.mx/bitstream/handle/11285/632321/33068001111800.pdf?sequence=1&isAllowed=y.; UdeA. (2016). Monitor de signos vitales vestible. UdeA – Universidad de Antioquía, Medellín, Colombia. Disponible en: http://www.udea.edu.co/wps/portal/udea/web/inicio/extension/portafoliotecnologico/articulos/Monitor_de_signos_vitales_vestible.; Udistrital. (2018). Monitoreo remoto de signos corporales y transmisión de datos y alertas a una aplicación instalada en un smartphone. Udistrital – Universidad Distrital Francisco José de Caldas. Disponible en: https://repository.udistrital.edu.co/bitstream/handle/11349/13383/SarmientoG%C3%B3mezOscar2018.pdf?sequence=2&isAllowed=y.; Volcano Discovery. (2021). Informe de terremotos en todo el mundo por enero 2021. Disponible en: https://www.volcanodiscovery.com/es/earthquakes/monthly/news/118160/Informe-de-terremotos-en-todo-el-mundo-por-enero-2021.html.; A. F. Calvo Salcedo, A. Bejarano Martínez, y A. Castillo González, “Diseño prototipo de una red de sensores inalámbricos", Visión Electrónica, vol. 12, no. 1, pp. 43-50, 2018. https://doi.org/10.14483/22484728.13405.; E. Y. Rodríguez, L. F. Pedraza Martínez, y D. A. López Sarmiento, “Desarrollo y evaluación de un sistema de comunicación remota para el monitoreo de una máquina sopladora de botellas", Visión Electrónica, vol. 5, no. 1, pp. 89-102, 2011. https://doi.org/10.14483/22484728.3517.; T. Salamanca, “Prototipo para monitorización de signos vitales en espacios confinados", Visión Electrónica, vol. 12, no. 1, pp. 83-88, 2018. https://doi.org/10.14483/22484728.13401 [18] Volcano Discovery. (2021). Informe de terremotos en todo el mundo por enero 2021. Disponible en: https://www.volcanodiscovery.com/es/earthquakes/monthly/news/118160/Informe-de-terremotos-en-todo-el-mundo-por-enero-2021.html.; W. Enríquez, P. Nazate, y O. Marcillo, “Prototipo DAS basado en FPGA de 12 canales para monitoreo geodinámico", Visión Electrónica, vol. 12, no. 1, pp. 73-82, 2018. https://doi.org/10.14483/22484728.13782.; Y. Baquero, Z. Alezones Campos, y H. Borrero Guerrero, “Robot móvil controlado por comandos de voz LPC-DTW”, Visión Electrónica, vol. 5, no. 1, pp. 15-25, 2011. https://doi.org/10.14483/22484728.3524.; Cardona, O. (2007). La gestión del riesgo colectivo. Un marco conceptual que encuentra sustento en una ciudad laboratorio. Red de Estudios Sociales en Prevención de Desastres en América Latina.; Cardona, O. D., García, A. C., Mattingly, S., Trujillo, E. G. C., & Vega, D. F. P. (2003). Plan de emergencias de Manizales. Alcaldía de Manizales–Oficina Municipal para la Prevención y Atención de Desastres-OMPAD. Manizales.; Castro, F.D. (2008). Metodología de projeto centrada na casa da qualidade. Tesis de maestría, universidade federal rio grande do sul, Porto Alegre, Brasil.; Chowdhury, T. J., Elkin, C., Devabhaktuni, V., Rawat, D. B., & Oluoch, J. (2016). Advances on localization techniques for wireless sensor networks: A survey. Computer Networks, 110, 284-305.; Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., & Mankodiya, K. (2017). Towards fog-driven IoT eHealth: promises and challenges of IoT in medicine and healthcare. Future Generation Computer Systems.; García, A. M., & Castaño Dávila, A. C. (2013). SIG de deslizamientos para el departamento de Caldas.; Keipi, K., Mora-Castro, S., & Bastidas, P. (2005). Gestión de riesgo de amenazas naturales en proyectos de desarrollo: Lista de preguntas de verificación (" Checklist"). Inter-American Development Bank.; Kim, T., Ramos, C., & Mohammed, S. (2017). Smart City and IoT. Elsevier.; Lavell, A. (2001). Sobre la gestión del riesgo: apuntes hacia una definición. Biblioteca Virtual en Salud de Desastres-OPS. Consultado el, 4.; Liu, L., Guo, C., Li, J., Xu, H., Zhang, J., & Wang, B. (2016). Simultaneous life detection and localization using a wideband chaotic signal with an embedded tone. Sensors, 16(11), 1866.; Lomotey, R. K., Pry, J., & Sriramoju, S. (2017). Wearable IoT data stream traceability in a distributed health information system. Pervasive and Mobile Computing.; Morral, G., & Bianchi, P. (2016). Distributed on-line multidimensional scaling for self-localization in wireless sensor networks. Signal Processing, 120, 88-98.; Novák, D., Švecová, M., & Kocur, D. (2017). Multiple Person Localization Based on Their Vital Sign Detection Using UWB Sensor. In Microwave Systems and Applications. InTech.; Pahl, G., & Beitz, W. (2013). Engineering design: a systematic approach. Springer Science & Business Media.; Rising, L., & Janoff, N. S. (2000). The Scrum software development process for small teams. IEEE software, (4), 26-32.; Schwaber, K., & Sutherland, J. (2013). The definitive guide to Scrum: The rules of the game. online], Scrum. org, http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf. [Visitada en agosto de 2015].; Shalloway A, Bain S, Pugh K and Kolsky A. 2011. Essential Skills for the agile developer. A guide to better programming and desing. Ed. Addison-Wesley.; UNGRD (2017). Boletín de prensa 131, Unidad atención de riesgos y desastres. Tras avalancha en manizales, continúan los trabajos de recuperación.; J. Hartvigsen et al., “What low back pain is and why we need to pay attention,” Lancet, vol. 391, no. 10137, pp. 2356–2367, 2018, doi:10.1016/S0140-6736(18)30480-X.; A. Cieza, K. Causey, K. Kamenov, S. W. Hanson, S. Chatterji, and T. Vos, “Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019,” Lancet, vol. 396, no. 10267, pp. 2006–2017, 2020, doi:10.1016/S0140-6736(20)32340-0.; A. M. Briggs et al., “Musculoskeletal Health Conditions Represent a Global Threat to Healthy Aging: A Report for the 2015 World Health Organization World Report on Ageing and Health,” Gerontologist, vol. 56, pp. S243–S255, 2016, doi:10.1093/geront/gnw002.; (OMS) Organizacion Mundial de la Salud, “Rehabilitación,” 2020. https://www.who.int/es/news-room/fact-sheets/detail/rehabilitation.; (OMS) Organizacion Mundial de la Salud, “Rehabilitation 2030 Initiative.” https://www.who.int/initiatives/rehabilitation-2030.; F. A. Abdulla, S. Alsaadi, M. I. R. Sadat-Ali, F. Alkhamis, H. Alkawaja, and S. Lo, “Effects of pulsed low-frequency magnetic field therapy on pain intensity in patients with musculoskeletal chronic low back pain: Study protocol for a randomised double-blind placebo-controlled trial,” BMJ Open, vol. 9, no. 6, pp. 1–9, 2019, doi:10.1136/bmjopen-2018-024650.; H. Hu et al., “Promising application of Pulsed Electromagnetic Fields (PEMFs) in musculoskeletal disorders,” Biomed. Pharmacother., vol. 131, p. 110767, 2020, doi:10.1016/j.biopha.2020.110767.; J. D. Z. Guillot, “La magnetoterapia y su aplicación en la medicina,” Rev. Cuba. Med. Gen. Integr., vol. 18, no. 1, pp. 60–72, 2002.; (OMS) Organización Mundial de la Salud, “Campos electromagnéticos (CEM).” https://www.who.int/peh-emf/about/WhatisEMF/es/ (accessed Apr. 10, 2021).; E. Alonso Fustel, R. Garcia Vázquez, and C. Onaindia Olalde, “Campos electromagnéticos y efectos en salud.” Bizkaia, Vasco, 2012.; M. O. Mattsson and M. Simkó, “Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz,” Medical Devices: Evidence and Research, vol. 12. Dove Medical Press Ltd, pp. 347–368, 2019, doi:10.2147/MDER.S214152.; N. Bachl, G. Ruoff, B. Wessner, and H. Tschan, “Electromagnetic Interventions in Musculoskeletal Disorders,” Clinics in Sports Medicine, vol. 27, no. 1. pp. 87–105, Jan. 2008, doi:10.1016/j.csm.2007.10.006.; T. Paolucci, L. Pezzi, A. M. Centra, N. Giannandrea, R. G. Bellomo, and R. Saggini, “Electromagnetic field therapy: A rehabilitative perspective in the management of musculoskeletal pain – A systematic review,” J. Pain Res., vol. 13, pp. 1385–1400, 2020, doi:10.2147/JPR.S231778.; J. Multanen, A. Häkkinen, P. Heikkinen, H. Kautiainen, S. Mustalampi, and J. Ylinen, “Pulsed electromagnetic field therapy in the treatment of pain and other symptoms in fibromyalgia: A randomized controlled study,” Bioelectromagnetics, vol. 39, no. 5, pp. 405–413, 2018, doi:10.1002/bem.22127.; H. Mohajerani, F. Tabeie, F. Vossoughi, E. Jafari, and M. Assadi, “Effect of pulsed electromagnetic field on mandibular fracture healing: A randomized control trial, (RCT),” J. Stomatol. Oral Maxillofac. Surg., vol. 120, no. 5, pp. 390–396, Nov. 2019, doi:10.1016/j.jormas.2019.02.022.; A. M. Elshiwi, H. A. Hamada, D. Mosaad, I. M. A. Ragab, G. M. Koura, and S. M. Alrawaili, “Effect of pulsed electromagnetic field on nonspecific low back pain patients: a randomized controlled trial,” Brazilian J. Phys. Ther., vol. 23, no. 3, pp. 244–249, 2019, doi:10.1016/j.bjpt.2018.08.004.; H. L. Casalechi et al., “Acute effects of photobiomodulation therapy and magnetic field on functional mobility in stroke survivors: a randomized, sham-controlled, triple-blind, crossover, clinical trial,” Lasers Med. Sci., vol. 35, no. 6, pp. 1253–1262, 2020, doi:10.1007/s10103-019-02898-y.; L. Kopacz, Z. Ciosek, H. Gronwald, P. Skomro, R. Ardan, and D. Lietz-Kijak, “Comparative Analysis of the Influence of Selected Physical Factors on the Level of Pain in the Course of Temporomandibular Joint Disorders,” Pain Res. Manag., vol. 2020, 2020, doi:10.1155/2020/1036306.; E. Hattapoğlu, İ. Batmaz, B. Dilek, M. Karakoç, S. Em, and R. Çevik, “Efficiency of pulsed electromagnetic fields on pain, disability, anxiety, depression, and quality of life in patients with cervical disc herniation: A randomized controlled study,” Turkish J. Med. Sci., vol. 49, no. 4, pp. 1095–1101, 2019, doi:10.3906/sag-1901-65.; G. L. Bagnato, G. Miceli, N. Marino, D. Sciortino, and G. F. Bagnato, “Pulsed electromagnetic fields in knee osteoarthritis: A double blind, placebo-controlled, randomized clinical trial,” Rheumatol. (United Kingdom), vol. 55, no. 4, pp. 755–762, 2016, doi:10.1093/rheumatology/kev426.; L. Chen et al., “Effects of pulsed electromagnetic field therapy on pain, stiffness and physical function in patients with knee osteoarthritis: A systematic review and meta-analysis of randomized controlled trials,” J. Rehabil. Med., vol. 51, no. 11, pp. 821–827, 2019, doi:10.2340/16501977-2613.; T. Paolucci et al., “Efficacy of extremely low-frequency magnetic field in fibromyalgia pain: A pilot study,” J. Rehabil. Res. Dev., vol. 53, no. 6, pp. 1023–1034, 2016, doi:10.1682/JRRD.2015.04.0061.; A. El Zohiery, Y. El Miedany, T. Elserry, O. El Shazly, and S. Galal, “Impact of electromagnetic field exposure on pain, severity, functional status and depression in patients with primary fibromyalgia syndrome,” Egypt. Rheumatol., no. xxxx, pp. 0–4, 2020, doi:10.1016/j.ejr.2020.10.001.; C. L. Ross, I. Syed, T. L. Smith, and B. S. Harrison, “The regenerative effects of electromagnetic field on spinal cord injury,” Electromagn. Biol. Med., vol. 36, no. 1, pp. 74–87, 2017, doi:10.3109/15368378.2016.1160408.; T. Pesqueira, R. Costa-Almeida, and M. E. Gomes, “Magnetotherapy: The quest for tendon regeneration,” J. Cell. Physiol., vol. 233, no. 10, pp. 6395–6405, 2018, doi:10.1002/jcp.26637.; G. Vicenti et al., “Biophysical stimulation of the knee with PEMFs: from bench to bedside,” J. Biol. Regul. Homeost. Agents, vol. 32, no. 6, pp. 23–28, 2018.; K. Iwasa and A. H. Reddi, “Pulsed Electromagnetic Fields and Tissue Engineering of the Joints,” Tissue Engineering - Part B: Reviews, vol. 24, no. 2. Mary Ann Liebert Inc., pp. 144–154, Apr. 01, 2018, doi:10.1089/ten.teb.2017.0294.; A. Madroñero De La Cal, “Importancia de los aplicadores de campo magnético en los tratamientos electroterapéuticos en las personas mayores,” Rev. Esp. Geriatr. Gerontol., vol. 38, no. 6, pp. 355–368, 2003, doi:10.1016/s0211-139x(03)74917-8.; T. Wang et al., “Pulsed electromagnetic fields: promising treatment for osteoporosis,” Osteoporos. Int., vol. 30, no. 2, pp. 267–276, 2019, doi:10.1007/s00198-018-04822-6.; X. sheng Qiu, X. gang Li, and Y. xin Chen, “Pulsed electromagnetic field (PEMF): A potential adjuvant treatment for infected nonunion,” Med. Hypotheses, vol. 136, Mar. 2020, doi:10.1016/j.mehy.2019.109506.; J. Taradaj, M. Ozon, R. Dymarek, B. Bolach, K. Walewicz, and J. Rosinczuk, “Impact of selected magnetic fields on the therapeutic effect in patients with lumbar discopathy: A prospective, randomized, single-blinded, and placebo-controlled clinical trial,” Adv. Clin. Exp. Med., vol. 27, no. 5, pp. 649–666, 2018, doi:10.17219/acem/68690.; J. Zwolińska, M. Gąsior, E. Śniezek, and A. Kwolek, “The use of magnetic fields in treatment of patients with rheumatoid arthritis. Review of the literature,” Reumatologia, vol. 54, no. 4, pp. 201–206, 2016, doi:10.5114/reum.2016.62475.; Z. Wu et al., “Efficacy and safety of the pulsed electromagnetic field in osteoarthritis: A meta-analysis,” BMJ Open, vol. 8, no. 12, Dec. 2018, doi:10.1136/bmjopen-2018-022879.; L. Mori, “EFICACIA DE LA MAGNETOTERAPIA EN LA DISMINUCION DEL DOLOR EN ADULTOS MAYORES CON OSTEOARTROSIS CENTRO DE MEDICINA COMPLEMENTARIA ESSALUD TRUJILLO,” Tesis - Universidad Cesar Vallejo - Trujillo Perú, vol. 0, no. 12. p. Pág. 89-95-95, 2019, doi:10.5354/0717-8883.1986.23781.; K. Marycz, K. Kornicka, and M. Röcken, “Static Magnetic Field (SMF) as a Regulator of Stem Cell Fate – New Perspectives in Regenerative Medicine Arising from an Underestimated Tool,” Stem Cell Rev. Reports, vol. 14, no. 6, pp. 785–792, 2018, doi:10.1007/s12015-018-9847-4.; N. Kamei, N. Adachi, and M. Ochi, “Magnetic cell delivery for the regeneration of musculoskeletal and neural tissues,” Regen. Ther., vol. 9, pp. 116–119, 2018, doi:10.1016/j.reth.2018.10.001.; A. Catalano, S. Loddo, F. Bellone, C. Pecora, A. Lasco, and N. Morabito, “Pulsed electromagnetic fields modulate bone metabolism via RANKL/OPG and Wnt/β-catenin pathways in women with postmenopausal osteoporosis: A pilot study,” Bone, vol. 116. pp. 42–46, 2018, doi:10.1016/j.bone.2018.07.010.; H. Okano, H. Ishiwatari, A. Fujimura, and K. Watanuki, “The physiological influence of alternating current electromagnetic field exposure on human subjects,” 2017 IEEE Int. Conf. Syst. Man, Cybern. SMC 2017, vol. 2017-Janua, pp. 2442–2447, 2017, doi:10.1109/SMC.2017.8122989.; A. Maziarz et al., “How electromagnetic fields can influence adult stem cells: Positive and negative impacts,” Stem Cell Res. Ther., vol. 7, no. 1, 2016, doi:10.1186/s13287-016-0312-5.; E. I. Waldorff, N. Zhang, and J. T. Ryaby, “Pulsed electromagnetic field applications: A corporate perspective,” J. Orthop. Transl., vol. 9, pp. 60–68, 2017, doi:10.1016/j.jot.2017.02.006.; A. M. Nayback-Beebe, L. H. Yoder, B. J. Goff, S. Arzola, and C. Weidlich, “The effect of pulsed electromagnetic frequency therapy on health-related quality of life in military service members with chronic low back pain,” Nurs. Outlook, vol. 65, no. 5, pp. S26–S33, 2017, doi:10.1016/j.outlook.2017.07.012.; T. Klüter et al., “Electromagnetic transduction therapy and shockwave therapy in 86 patients with rotator cuff tendinopathy: A prospective randomized controlled trial,” Electromagn. Biol. Med., vol. 37, no. 4, pp. 175–183, 2018, doi:10.1080/15368378.2018.1499030.; J. Pasek, T. Pasek, K. Sieroń-Stołtny, G. Cieślar, and A. Sieroń, “Electromagnetic fields in medicine – The state of art,” Electromagn. Biol. Med., vol. 35, no. 2, pp. 170–175, Apr. 2016, doi:10.3109/15368378.2015.1048549.; A. Hochsprung, S. Escudero-Uribe, A. J. Ibáñez-Vera, and G. Izquierdo-Ayuso, “Effectiveness of monopolar dielectric transmission of pulsed electromagnetic fields for multiple sclerosis–related pain: A pilot study,” Neurologia, 2018, doi:10.1016/j.nrl.2018.03.003.; A. B. Camacho, Y. A. P. Borrego, M. J. R. Matas, V. S. León, L. M. Mateos, and A. Oliviero, “Protocolo terapéutico del dolor con técnicas de estimulación no invasiva,” Med., vol. 12, no. 75, pp. 4451–4454, 2019, doi:10.1016/j.med.2019.03.026.; J. Arabloo et al., “Health technology assessment of magnet therapy for relieving pain,” Med. J. Islam. Repub. Iran, vol. 31, no. 1, pp. 184–188, 2017, doi:10.18869/mjiri.31.31.; J. Chudorlinski and L. Ksiazek, “Medical device for physical therapy with a magnetic field and light,” 2019 Appl. Electromagn. Mod. Eng. Med. PTZE 2019, pp. 22–25, 2019, doi:10.23919/PTZE.2019.8781742.; J. Chudorlinski and L. Ksiazek, “Signals for magnetic field therapy and a method for their preparation,” 2018 Appl. Electromagn. Mod. Tech. Med. PTZE 2018, pp. 29–32, 2018, doi:10.1109/PTZE.2018.8503080.; A. Krawczyk, P. Murawski, and E. Korzeniewska, “New Magnetotherapeutical Device,” pp. 2–5, 2017.; Samuel K Au, Jeff Weber, and Hugh Herr. Biomechanical design of a powered ankle-foot prosthesis. In Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on, pages 298–303. IEEE, 2007.; Rouse, Elliott Jay; Mooney, Luke M.; Martinez-Villalpando, Ernesto C.; Herr, Hugh M. "Clutchable Series-Elastic Actuator: Design of a Robotic Knee Prosthesis for Minimum Energy Consumption". 13th International Conference on Rehabilitation Robotics, ICORR 2013.; Samuel K Au and Hugh M Herr. Powered ankle-foot prosthesis. IEEE Robotics & Automation Magazine, 15(3), 2008.; Dong, D., Ge, W., Liu, S., Xia, F., & Sun, Y. (2017). Design and optimization of a powered ankle-foot prosthesis using a geared five-bar spring mechanism. International Journal of Advanced Robotic Systems, 14(3), 1729881417704545.; Andrew K LaPre, Ryan D Wedge, Brian R Umberger, and Frank C Sup. Preliminary study of a robotic foot-ankle prosthesis with active alignment. In Rehabilitation Robotics (ICORR), 2017 International Conference on, pages 1299–1304. IEEE, 2017.; Maurice LeBlanc. Give hope-give a hand. The LN-4 Prosthetic Hand, 2014, 2008.; Dianbiao Dong, Wenjie Ge, Shumin Liu, Fan Xia, and Yuanxi Sun. Design and optimization of a powered ankle-foot prosthesis using a geared five-bar spring mechanism. International Journal of Advanced Robotic Systems, 14(3):1729881417704545, 2017.; Samuel K Au, Jeff Weber, and Hugh Herr. Powered ankle–foot prosthesis improves walking metabolic economy. IEEE Transactions on Robotics, 25(1):51–66, 2009.; Arthur D Kuo. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective. Human movement science, 26(4):617–656, 2007.; Mary M Rodgers. Dynamic biomechanics of the normal foot and ankle during walking and running. Physical therapy, 68(12):1822–1830, 1988.; Tan Thang Nguyen, Thanh-Phong Dao, and Shyh-Chour Huang. Bio- mechanical design of a novel six dof compliant prosthetic ankle-foot 2.0 for rehabilitation of amputee. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pages V05AT08A013–V05AT08A013. Ameri- can Society of Mechanical Engineers, 2017.; Joana Alves, Eurico Seabra, César Ferreira, Cristina P Santos, and Luís Paulo Reis. Design and dynamic modelling of an ankle-foot prosthesis for humanoid robot. In Autonomous Robot Systems and Competitions (ICARSC), 2017 IEEE International Conference on, pages 128–133. IEEE, 2017.; Lei Ren, Richard K Jones, and David Howard. Predictive modelling of human walking over a complete gait cycle. Journal of biomechanics, 40(7):1567–1574, 2007.; SK Au and H Herr. Initial experimental study on dynamic interaction between an amputee and a powered ankle-foot prosthesis. In Workshop on dynamic walking: Mechanics and control of human and robot locomotion, page 1, 2006.; Samuel K Au, Hugh Herr, Jeff Weber, and Ernesto C Martinez- Villalpando. Powered ankle-foot prosthesis for the improvement of amputee ambulation. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, pages 3020–3026. IEEE, 2007.; Grimmer, M., Eslamy, M., Gliech, S., & Seyfarth, A. (2012, May). A comparison of parallel-and series elastic elements in an actuator for mimicking human ankle joint in walking and running. In 2012 IEEE International Conference on Robotics and Automation (pp. 2463-2470). IEEE.; Soren Shashikant, 2017. Mechanical Leg. https://grabcad.com/library/mechanical-leg-2.; Guy Rouleau, 2014. From SolidWorks to SimMechanics Posted in July 10, 2014. Simulink & Model-Based Design. https://blogs.mathworks.com/simulink/2014/07/10/from-solidworks-to-simmechanics/.; Eilenberg, M. F., Geyer, H., & Herr, H. (2010). Control of a powered ankle–foot prosthesis based on a neuromuscular model. IEEE transactions on neural systems and rehabilitation engineering, 18(2), 164-173.; L. Agudelo, “La discapacidad en Colombia: una mirada global,” Revista Colombiana de Medicina Física y Rehabilitación, p. 16, 2012.; D. A. N. de E. (DANE), “Boletín Censo General 2005 DISCAPACIDAD-COLOMBIA,” 2005. Accessed: Oct. 08, 2020. [Online]. Available: https://www.dane.gov.co/files/censos/libroCenso2005nacional.pdf.; Ministerio de Salud y Protección Social, “Sala situacional de las Personas con Discapacidad,” 2019. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/MET/sala-situacional-discapacidad2019-2-vf.pdf (accessed Feb. 25, 2021).; MINISTERIO DE SALUD Y PROTECCIÓN SOCIAL, Resolución 2968 DE 2015. República de Colombia: Ministerio de Salud y Protección Social, 2015, pp. 1–16.; Ministerio de Salud y Protección Social, Decreto Número 4725 DE 2005. República de Colombia: Ministerio de Protección Social, 2005, pp. 1–31.; N. Dechev, W. L. Cleghorn, and S. Naumann, “Multiple finger, passive adaptive grasp prosthetic hand,” Mech. Mach. Theory, vol. 36, no. 10, pp. 1157–1173, Oct. 2001, doi:10.1016/S0094-114X(01)00035-0.; R. I. Flores Luna, “Repositorio de Tesis DGBSDI: Diseño de protesis mecatronica de mano,” Universidad Nacional Autónoma de México, 2007.; S. R. Kashef, S. Amini, and A. Akbarzadeh, “Robotic hand: A review on linkage-driven finger mechanisms of prosthetic hands and evaluation of the performance criteria,” Mechanism and Machine Theory, vol. 145. Elsevier Ltd, p. 103677, Mar. 01, 2020, doi:10.1016/j.mechmachtheory.2019.103677.; L. Roselia, P. León, and E. Luz González Muñoz, Rosalío Ávila Chaurand Dimensiones antropométricas de población latinoamericana. 2007.; M. Monar and L. Murillo, “DISEÑO Y CONSTRUCCIÓN DE UNA PRÓTESIS BIÓNICA DE MANO DE 7 GRADOS DE LIBERTAD UTILIZANDO MATERIALES INTELIGENTES Y CONTROL MIOELÉCTRICO ADAPTADA PARA VARIOS PATRONES DE SUJECIÓN,” Universidad de las Fuerzas Armadas, Latacunga, 2015.; J. Zhang, B. Wang, C. Zhang, Y. Xiao, and M. Y. Wang, “An EEG/EMG/EOG-Based Multimodal Human-Machine Interface to Real-Time Control of a Soft Robot Hand,” Front. Neurorobot., vol. 13, no. 7, p. 7, Mar. 2019, doi:10.3389/fnbot.2019.00007.; K. P. Biswajeet Champaty, Suraj Nayak, “Development of an Electrooculogram-based Human-Computer Interface for Hands-Free Control of Assistive Devices,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 4S, p. 11, 2019.; E. Camargo Casallas, L. A. Luengas C., y M. Balaguera, “Respuesta a carga de una prótesis transtibial con elementos infinitos durante el apoyo y balanceo", Visión Electrónica, vol. 6, no. 2, pp. 82-92, 2012.; Q. Huang et al., “An EOG-based wheelchair robotic arm system for assisting patients with severe spinal cord injuries,” J. Neural Eng, vol. 16, 2019, doi:10.1088/1741-2552/aafc88.; S. D and R. R. M, “A high performance asynchronous EOG speller system,” Biomed. Signal Process. Control, vol. 59, p. 101898, May 2020, doi:10.1016/j.bspc.2020.101898.; A. López, M. Fernández, H. Rodríguez, F. Ferrero, and O. Postolache, “Development of an EOG-based system to control a serious game,” Meas. J. Int. Meas. Confed., vol. 127, pp. 481–488, Oct. 2018, doi:10.1016/j.measurement.2018.06.017.; O. F. Avilés, R. D. Hernández, J. L. Loaiza, and J. M. Rosário, “Simulation model of an anthropomorphic hand,” Int. J. Appl. Eng. Res., vol. 11, no. 23, pp. 11114–11120, 2016, Accessed: Oct. 11, 2020. [Online]. Available: https://www.researchgate.net/publication/312979011_Simulation_Model_of_an_Anthropomorphic_Hand.; O. F. A. Sánchez, R. Gutiérrez, A. J. U. Quevedo, and J. M. Rosario, “(PDF) Antrohopomorphic Grippers - Modelling, Analysis and Implementation,” 2015. https://www.researchgate.net/publication/228090516_Antrhopomorphic_Grippers_-_Modelling_Analysis_and_Implementation (accessed Oct. 11, 2020).; A. Sharma, W. Niu, C. L. Hunt, G. Lévay, R. R. Kaliki, and N. Thakor, “Augmented Reality Prosthesis Training Setup for Motor Skill Enhancement,” 2019.; Y. Tsepkovskiy, L. Antonov, C. Kocev, F. Palis, and N. Shoylev, “DEVELOPMENT OF A 3D AND VRML VIRTUAL HAND MODELS FOR DIFFERENT MECHANICAL GRIPPER,” 2008.; S. T. Vite, C. F. Domínguez Velasco, J. B. Reséndiz Rodríguez, A. Hernández Valencia, y M. Ángel Padilla Castañeda, “Simulador de reparación de aneurismas cerebrales para entrenamiento médico Visión Electrónica, vol. 12, no. 1, pp. 51-57, 2018. https://doi.org/10.14483/22484728.13399.; F. J. Badesa et al., “Physiological responses during hybrid BNCI control of an upper-limb exoskeleton,” Sensors (Switzerland), vol. 19, no. 22, Nov. 2019, doi:10.3390/s19224931.; M. R. Cutkosky, “On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks,” IEEE Trans. Robot. Autom., vol. 5, no. 3, pp. 269–279, 1989, doi:10.1109/70.34763.; “Anexo A Norma DIN 33 402.”; J. F. Guerrero Martínez, “INGENIERÍA BIOMÉDICA Tema 2 Bioseñales 2.1. Introducción,” 2010.; L. Atanelov, S. A. Stiens, and M. A. Young, “History of physical medicine and rehabilitation and its ethical dimensions”, AMA journal of ethics, vol. 17, no. 6, pp. 568–574, 2015. DOI:10.1001/journalofethics.2015.17.6.mhst1-1506 URL: https://journalofethics.ama-assn.org/article/history-physical-medicine-and-rehabilitation-and-its-ethical-dimensions/2015-06.; M. C. Garcia and T. Vieira, “Surface electromyography: Why, when and how to use it”, Revista andaluza de medicina del deporte, vol. 4, no. 1, pp.17–28, 2011. URL: https://www.elsevier.es/es-revista-revista-andaluza-medicina-del-deporte-284-articulo-surface-electromyography-why-when-how-X1888754611201253.; J. C. Guerrero Pupo, I. Amell Muñoz, and R. Cañedo Andalia, “Tecnología, tecnología médica y tecnología de la salud: algunas consideraciones básicas”, Acimed, vol. 12, no. 4, pp. 1–1, 2004. URL: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1024-94352004000400007.; J. A. A. Londoño, E. C. Bravo, and J. F. C. García, “Aplicación de tecnologías de rehabilitación robótica en niños con lesión del miembro superior”, Revista Salud UIS, vol. 49, no. 1, pp. 103–114, 2017. DOI: http://dx.doi.org/10.18273/revsal.v49n1-2017010 URL: http://www.scielo.org.co/scielo.php?pid=S0121-08072017000100103&script=sci_abstract&tlng=es.; F. Salvuci and R. Kohanoff, Tecnologías de rehabilitación. Wiley-Interscience, 2016.; A. Merlo and I. Campanini, “Technical aspects of surface electromyography for clinicians”, The open rehabilitation journal, vol. 3, no. 1, 2010. DOI:10.2174/1874943701003010098 URL: https://benthamopen.com/ABSTRACT/TOREHJ-3-98 [7]. F. J. Juan, “Utilidad de la electromiografía de superficie en rehabilitación” URL: https://www.researchgate.net/profile/Francisco_Juan-Garcia/publication/316588275_UTILIDAD_DE_LA_ELECTROMIOGRAFIA_DE_SUPERFICIE_EN_REHABILITACION/links/5905b86c4585152d2e957860/UTILIDAD-DE-LA-ELECTROMIOGRAFIA-DE-SUPERFICIE-EN-REHABILITACION.pdf.; J. W. Meklenburg, S. K. Patrick, and S. D. Jung, “Surface electromyogram simulator for myoelectric prosthesis testing,” 2010. URL: https://digitalcommons.wpi.edu/mqp-all/1402/.; Merletti Roberto, and Dario Farina. Surface electromyography: physiology, engineering, and applications. Piscataway, NJ: IEEE Press, 2016, online. ISBN: 9781119082934, DOI:10.1002/9781119082934.; E. Guzmán, G. Méndez, “Electromiografía en las Ciencias de la Rehabilitación”, Salud Uninorte, Vol 3, no. 3, pp 753-765, 2018.; WOLFRAM S., y PACKARD N. H. Two-dimensional Cellular Autómata. J. Statist. Phys. 38, 1985.; MUÑOZ CASTAÑO, J. D., Artículo: Autómatas Celulares y Física Digital, en: Memorias del Primer Congreso Colombiano de Neuro Computación. Santa fe de Bogotá, D. C.: Academia Colombiana de Ciencias Exactas, Físicas y Naturales, p 28. ISBN 958-9205- 17-8. 1996.; HERNÁNDEZ, J. C., Algunas Generalizaciones en Autómatas Celulares. México: Consejo Nacional de Ciencia y Tecnología – CONACYT, 2008.; JUÁREZ, G. Teoría del Campo Promedio En Autómatas Celulares Similares a "The Game Of Life". México: Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 2000.; CUEVAS, E., ZALDÍVAR, D., & PÉREZ, M., Procesamiento digital de imágenes con MATLAB y Simulink. México: Alfaomega Grupo Editor; RA-MA Editorial. 2010.; MUÑOZ, M. A., Privacidad y ocultación de información digital ESTEGANOGRAFÍA protegiendo y atacando redes informáticas. Madrid, Bogotá., España, Colombia: Ra-ma, Ediciones de la U. 2017; PONCE, C., P. Inteligencia Artificial con aplicaciones a la ingeniería. México: Alfa Omega Grupo Editor. 2010.; WOLFRAM S., Cellular automata as simple self-organizing systems. Pasadena: Caltech prepint CAL-68-938. 1982.; ESPÍNOLA, M. Clasificación de Imágenes de Satélite mediante Autómatas Celulares. Almería: Universidad de Almería. 2011.; MOORE, E. F. Machine Models Of Self-Reproduction. U.S.A.: Proceedings of Symposia in Applied Mathematics. 1963.; GUERRERO, C. Á. “RapaNui – Isla de Pascua”. RapaNui, Chile. 20/06/2018.; CHEDDAD, A., CONDELL, J., CURRAN, K., & MCKEVITT, P. Digital image steganography: Survey and analysis of current methods. Northern Ireland: School of Computing and Intelligent Systems, University of Ulster at Magee. Signal Processing, 90 (3), 26. Obtenido de EL SEVIER, 2010.; DE LA CRUZ FRANCO, A. Implementación de un Algoritmo Computacional para Esteganografía basado en técnicas del bit menos significativo. Chetumal, México: Universidad de Quintana Roo. 2017.; VÁZQUEZ, J. I., & OLIVER, J. Evolución de Autómatas Celulares utilizando Algoritmos Genéticos. Bilbao, España: Universidad de Deusto. 2008.; MIRI, A., FAEZ, K. Adaptive Image Steganography based on transform domain via Genetic Algorithm. Tehran, Iran: Department of Electrical Engineering, Amirkabir University of Technology. Optika, 145, 10. Obtenido de EL SEVIER, 2017.; MUKJERJEE, S., ROY, S., & SANYAL, G. Image Steganography Using Mid Position Value Technique. Durgapur, India: National Institute of Technology Durgapur. Procedia Computer Science, 132, 7. Obtenido de EL SEVIER, 2018.; WESTFELD, A., PFIZMANN, A. Attacks on Steganographic System. Dresden, Germany: Department of Computer Science, Dresden University of Technology. Information Hiding, 15. 1999.; CABALLERO, H. Cálculo de la dispersión de pixels en imágenes RGB para Esteganografía con base en la teoría fractal. Toluca de Lerdo, México: Facultad de Ingeniería, Universidad Autónoma de México. 2020.; FRIDRICH, J., GOLJAN, M., & DU, R. Reliable Detection of LSB steganography in color and grayscale images. Binghamton, U.S.A.: Department of Electrical and Computer Engineering, Binghamton University, 7. 2002.; D. Galeano and I. Electr, “Robótica Médica,” p. 21.; J. Cornejo, J. A. Cornejo Aguilar, and J. P. Perales Villarroel, “Innovaciones Internacionales En Robótica Médica Para Mejorar El Manejo Del Paciente En Perú,” Rev. la Fac. Med. Humana, vol. 19, no. 4, pp. 105–113, 2019, doi:10.25176/rfmh.v19i4.2349.; E. Saraee, A. Joshi, and M. Betke, “A therapeutic robotic system for the upper body based on the Proficio robotic arm,” Int. Conf. Virtual Rehabil. ICVR, vol. 2017-June, 2017, doi:10.1109/ICVR.2017.8007498.; M. A. Soleimani, H. Zohoor, A. R. F. Yakhdani, M. Heravi, and E. Mohammadi, “Designing, Prototyping, and Controlling a Portable Rehabilitation Robot for the Shoulder Physiotherapy and Training,” ICRoM 2019 - 7th Int. Conf. Robot. Mechatronics, no. ICRoM, pp. 281–284, 2019, doi:10.1109/ICRoM48714.2019.9071844.; M. R. Sarder, F. Ahmed, and B. A. Shakhar, “Design and implementation of a lightweight telepresence robot for medical assistance,” ECCE 2017 - Int. Conf. Electr. Comput. Commun. Eng., pp. 779–783, 2017, doi:10.1109/ECACE.2017.7913008.; R. R. Murphy, D. Riddle, and E. Rasmussen, “Robot-assisted medical reachback: A survey of how medical personnel expect to interact with rescue robots,” Proc. - IEEE Int. Work. Robot Hum. Interact. Commun., pp. 301–306, 2004, doi:10.1109/roman.2004.1374777.; M. Cardona, F. Cortez, A. Palacios, and K. Cerros, “Mobile robots application against covid-19 pandemic,” 2020 Ieee Andescon, Andescon 2020, 2020, doi:10.1109/ANDESCON50619.2020.9272072.; R. M. Nope-Giraldo et al., “Mechatronic Systems Design of ROHNI-1: Hybrid Cyber-Human Medical Robot for COVID-19 Health Surveillance at Wholesale-Supermarket Entrances,” Pan Am. Heal. Care Exch. PAHCE, vol. 2021-May, 2021, doi:10.1109/GMEPE/PAHCE50215.2021.9434874.; P. Manikandan, G. Ramesh, G. Likith, D. Sreekanth, and G. Durga Prasad, “Smart Nursing Robot for COVID-19 Patients,” 2021 Int. Conf. Adv. Comput. Innov. Technol. Eng. ICACITE 2021, vol. 7, pp. 839–842, 2021, doi:10.1109/ICACITE51222.2021.9404698.; Coronavirus: 12 aspectos en los que cambiará radicalmente nuestras vidas”: BBC News, mayo 2020. https://www.bbc.com/mundo/noticias-52512680.; UN. “La enfermedad del coronavirus, una emergencia de salud mundial”. Naciones Unidas. https://www.un.org/es/coronavirus.; “Medidas tomadas por el gobierno.” GOV.CO. Fronteras, marzo 2020. https://coronaviruscolombia.gov.co/Covid19/acciones/acciones-de-fronteras.html.; “Cómo se propaga el COVID-19”. Centros para el Control y la Prevención de Enfermedades, julio 2021. https://espanol.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html.; OMS. “Protéjase a sí mismo y a los demás contra la COVID-19”. Organización Mundial de la Salud. Octubre 2020. https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019/advice-for-public.; M. A. Vivas. “Medidas para la reactivación económica en Colombia-Decreto 580 de 2021. Consultor Salud, junio 2021. https://consultorsalud.com/medidas-para-la-reactivacion-economica/.; C.R. Colombiana. “Consejos de autocuidado y prevención COVID-19”. Cruz Roja Colombiana. https://www.cruzrojacolombiana.org/consejos-de-autocuidado-y-prevencion/.; Cinco protocolos que se usan a diario y que no sirven contra el Covid”. Portafolio, febrero de 2021. https://www.portafolio.co/economia/cinco-protocolos-covid-19-que-no-sirven-contra-el-coronavirus-549048.; “Empresas deberán adaptar protocolo de bioseguridad de Minsalud a sus actividades”. Minsalud, abril 2020. https://www.minsalud.gov.co/Paginas/Empresas-deberan-adaptar-protocolo-de-bioseguridad-de-Minsalud-a-sus-actividades.aspx.; I. J. Molina Pineda. “¿Por qué el coronavirus se propaga ahora con tanta velocidad?”. BBC News, noviembre 2020. https://www.bbc.com/mundo/noticias-54794713.; “COVID-19: novedades científicas”. Instituto de Salud Global Barcelona, noviembre 2021. https://www.isglobal.org/covid-19-novedades-cientificas.; Lionex. “Proximiti-i”. Lionex. 2020. https://lionex.co/proximiti-i.; “La solución digital más confiable del mundo para mitigar la propagación de COVID-19”. KINEXON, 2020. https://kinexon.com/technology/safetag/.; “Coronavirus: el plan de Apple y Google para rastrear el covid-19 desde tu teléfono”. BBC News, abril 2020. https://www.bbc.com/mundo/noticias-52251843.; “Nissan incorporó un nuevo Dispositivo de Distanciamiento Físico para toda su red de concesionarios”. La Nación, marzo 2021. https://www.lanacion.com.ar/lifestyle/nissan-incorporo-un-nuevo-dispositivo-de-distanciamiento-fisico-para-toda-su-red-de-concesionarios-nid11032021/.; “Analítica de detección de tapabocas, para una reapertura segura”. SAC Seguridad, 2020. https://sacseguridad.com/iss-analitica-deteccion-tapabocas-termica/.; W. Yan. “¿Llevas puesta la mascarilla? Un software de reconocimiento está listo para checar si las personas cumplen con el correcto uso”. National Geographic, septiembre 2020. https://www.nationalgeographicla.com/ciencia/2020/09/software-reconocimiento-mascarillas.; K1T671TM-3XF”. HIKVISION, 2020. https://www.hikvision.com/es-la/products/Access-Control-Products/Face-Recognition-Terminals/Ultra-Series/ds-k1t671tm-3xf-/?q=ds-k1t671tm-3xf&position=5.; “SOLIDWORKS. Qué es y para qué sirve”. SolidBi. https://solid-bi.es/solidworks/.; “Sensor de distancia SHARP GP2Y0A02YK0F”. Naylamp Mechatronics. https://naylampmechatronics.com/sensores-proximidad/204-sensor-de-distancia-infrarrojo-sharp-gp2y0a02.html.; “Sensor ultrasónico HC-SR04”. Naylamp Mechatronics. https://naylampmechatronics.com/sensores-proximidad/10-sensor-ultrasonido-hc-sr04.html.; “Sensor de temperatura TMP36”. Prometec. https://www.prometec.net/sensor-tmp36/.; “Comprensión del reconocimiento facial mediante el algoritmo LBPH”. Analytics Vidhya, julio 2021. https://www.analyticsvidhya.com/blog/2021/07/understanding-face-recognition-using-lbph-algorithm/.; Y. M. Shum. “Situación Global Mobile 2020”. YS social media, 2020. https://yiminshum.com/mobile-movil-app-2020/.; F. Cortez, J. Cercado Mancero, A. Vera Lorenti, and E. Valle Flores, “Un panorama de las energías renovables en el Mundo, Latinoamérica y Colombia,” Espacios, vol. 39, p. 10, 2018.; G. A. Zapata and J. A. Valencia, “Guía práctica para la aplicación de los incentivos tributarios de la Ley 1715 de 2014,” Colombia.; J. Faiz and A. Nematsaberi, “Linear electrical generator topologies for direct-drive marine wave energy conversion- an overview,” IET Renew. Power Gener., vol. 11, no. 9, pp. 1163–1176, 2017.; X. Wang, F. Chen, R. Zhu, G. Yang, and C. Zhang, “A Review of the Design and Control of Free-Piston Linear Generator,” Energies, vol. 11, no. 8, p. 2179, 2018.; H. Chen, S. Zhao, H. Wang, and R. Nie, “A Novel Single-Phase Tubular Permanent Magnet Linear Generator,” IEEE Trans. Appl. Supercond., vol. 30, no. 4, pp. 2–6, 2020.; R. Guo, H. Yu, T. A. O. Xia, Z. Shi, W. Zhong, and X. Liu, “A Simplified Subdomain Analytical Model for the Design and Analysis of a Tubular Linear Permanent Magnet Oscillation Generator,” IEEE Access, vol. 6, pp. 42355–42367, 2018.; H. M. Zapata, F. A. Cabrera, M. A. Perez, C. A. Silva, and W. Jara, “Model of a permanent magnet linear generator,” IECON Proc. (Industrial Electron. Conf., vol. 2019-Octob, pp. 6992–6997, 2019.; H. Jing, N. Maki, T. Ida, and M. Izumi, “Electrical design of large-scale tubular PM linear generators for wave energy conversion,” IEEJ Trans. Electr. Electron. Eng., vol. 12, pp. S113–S119, 2017.; R. M. Korbekandi, N. J. Baker, and D. Wu, “A study of translator length in a tubular linear electrical machine designed for use in alinear combustion joule engine,” 2019 12th Int. Symp. Linear Drives Ind. Appl. LDIA 2019, pp. 1–6, 2019.; Y. Sun, Z. Xu, Q. Zhang, J. Lu, and L. Liu, “A Tubular Single-Phase Linear Generator with an Axially Magnetized PM Mover for Free-Piston Engines,” IEEJ Trans. Electr. Electron. Eng., vol. 16, no. 1, pp. 139–146, 2021.; J. Kim, J. Y. Kim, and J. B. Park, “Design and optimization of a 8kW linear generator for a direct-drive point absorber,” Ocean. 2013 MTS/IEEE - San Diego An Ocean Common, pp. 1–6, 2013.; S. Arslan and S. A. Oy, “Design and optimization of tube type interior permanent magnets generator for free piston applications,” TEM J., vol. 6, no. 2, pp. 214–221, 2017.; H. J.R. and T. J. E. Miller, Design of brushless permanetn magnet machines, vol. 732, no. 1. USA: Magna physycs publishing & Oxford University Press, 2010.; J. Zhang, H. Yu, and Z. Shi, “Analysis of a PM linear generator with double translators for complementary energy generation platform,” Energies, vol. 12, no. 24, 2019.; A. Musolino, R. Rizzo, and M. Raugi, “A semi-analytical model for the analysis of a Permanent Magnet tubular linear generator,” 2015 Int. Conf. Renew. Energy Res. Appl. ICRERA 2015, vol. 54, no. 1, pp. 1513–1517, 2015.; S. A. Nasar, “Permanent-Magnet Linear Alternators Part II: Design Guidelines,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-23, no. 1, pp. 79–82, 1987.; H. M. Quintero, E. R. Trujillo, and G. M. Tarazona Bermudez, “EVOLUTION OF WIND POWER TECHNOLOGY.” [Online]. Available: www.tjprc.org.; H. Montaña Quintero, E. Rivas Trujillo, and G. M. Tarazona, “TRENDS ON WIND POWER ELECTRIC GENERATORS,” vol. 15, no. 17, 2020, [Online]. Available: www.arpnjournals.com.; M. Abril Martínez, L. Carolina, R. Rodríguez, U. Militar, N. Granada, and D. P. Cuero, “Estado Del Arte Sobre Materiales Utilizados Para La Fabricación De Las Palas De Turbinas Eólicas Offshore.”; N. Javahiraly, A. Chakari, L. Calegari, and P. Meyrueis, “Determination of solid materials rigidity modulus by a new nondestructive optical method,” Optics & Laser Technology, vol. 36, no. 3, pp. 239–243, Apr. 2004, doi:10.1016/J.OPTLASTEC.2003.09.002.; I. M. Bragado, “Física General,” 2013.; H. A. Gonzáles - D. H. Meza, “LA IMPORTANCIA DEL MÉTODO EN LA SELECCION DE MATERIALES,” vol. 4, no. ISSN 0122-1701, 2004.; “Colección: LAS CIENCIAS NATURALES Y LA MATEMATICAS,” 2010.; Y. Jiang, B. Song, J. Hu, H. Liang, and S. Rao, “Time-dependent reliability of corroded circular steel tube structures: Characterization of statistical models for material properties,” Structures, vol. 33, pp. 792–803, Oct. 2021, doi:10.1016/J.ISTRUC.2021.04.091.; H. Zhang, B. Zhang, Q. Gao, J. Song, and G. Han, “A review on microstructures and properties of graphene-reinforced aluminum matrix composites fabricated by friction stir processing,” Journal of Manufacturing Processes, vol. 68, pp. 126–135, Aug. 2021, doi:10.1016/J.JMAPRO.2021.07.023.; W. Zhang, X. Zhang, Z. Qin, W. Zhang, and R. Yang, “Mechanical and flame retardant performance of fiberglass-reinforced polysilsesquioxane interpenetrated with poly(ethylene glycol)-urethane,” Composites Part A: Applied Science and Manufacturing, vol. 149, p. 106490, Oct. 2021, doi:10.1016/J.COMPOSITESA.2021.106490.; A. Zavdoveev et al., “Effect of heat treatment on the mechanical properties and microstructure of HSLA steels processed by various technologies,” Materials Today Communications, vol. 28, p. 102598, Sep. 2021, doi:10.1016/J.MTCOMM.2021.102598.; G. Kumar Sharma and B. Nidhi Vats, “A comparative study on mechanical and tribological properties of different grades of tool steels,” Materials Today: Proceedings, Mar. 2021, doi:10.1016/J.MATPR.2021.02.275.; F. Tariq and P. Bhargava, “Stress–strain curves and mechanical properties of corrosion damaged super ductile reinforcing steel,” Structures, vol. 33, pp. 1532–1543, Oct. 2021, doi:10.1016/J.ISTRUC.2021.05.039.; B. Nie, S. Xu, Z. Zhang, and A. Li, “Surface morphology characteristics and mechanical properties of corroded cold-formed steel channel sections,” Journal of Building Engineering, vol. 42, p. 102786, Oct. 2021, doi:10.1016/J.JOBE.2021.102786.; I. J. Delfin, F. Madrid, and R. Martínez Sánchez, “Tesis: EFECTO DE LA CERIA (CeO 2 ) EN LA MICROESTRUCTURA Y PROPIEDADES MECÁNICAS DE UNA ALEACIÓN DE ALUMINIO 2024 Que como requisito presenta.”; A. Baradeswaran and A. E. Perumal, “Wear and mechanical characteristics of Al 7075/graphite composites,” Composites Part B: Engineering, vol. 56, pp. 472–476, Jan. 2014, doi:10.1016/J.COMPOSITESB.2013.08.073.; P. Chakrapani and T. S. A. Suryakumari, “Mechanical properties of aluminium metal matrix composites-A review,” Materials Today: Proceedings, vol. 45, pp. 5960–5964, Jan. 2021, doi:10.1016/J.MATPR.2020.09.247.; N. Kumar, A. Bharti, and K. K. Saxena, “A re-investigation: Effect of powder metallurgy parameters on the physical and mechanical properties of aluminium matrix composites,” Materials Today: Proceedings, vol. 44, pp. 2188–2193, Jan. 2021, doi:10.1016/J.MATPR.2020.12.351.; B. Zhou, B. Liu, S. Zhang, R. Lin, Y. Jiang, and X. Lan, “Microstructure evolution of recycled 7075 aluminum alloy and its mechanical and corrosion properties,” Journal of Alloys and Compounds, vol. 879, p. 160407, Oct. 2021, doi:10.1016/J.JALLCOM.2021.160407.; M. Barhoumi, N. Sfina, M. Said, and S. Znaidia, “Elastic and mechanical properties of aluminium and silicon carbide using density functional theory and beyond,” Solid State Communications, vol. 334–335, p. 114369, Aug. 2021, doi:10.1016/J.SSC.2021.114369.; E. M. Ruiz Navas and B. Ruiz Palenzuela, “Sintering of Aluminum Alloys. Processing and Properties,” Encyclopedia of Materials: Metals and Allloys, pp. 343–352, Jan. 2022, doi:10.1016/B978-0-12-819726-4.00114-9.; Ankur, A. Bharti, D. Prasad, N. Kumar, and K. K. Saxena, “A Re-investigation: Effect of various parameter on mechanical properties of copper matrix composite fabricated by powder metallurgy,” Materials Today: Proceedings, vol. 45, pp. 4595–4600, Jan. 2021, doi:10.1016/J.MATPR.2021.01.009.; A. Agrawal and R. Mirzaeifar, “Copper-graphene composites; developing the MEAM potential and investigating their mechanical properties,” Computational Materials Science, vol. 188, p. 110204, Feb. 2021, doi:10.1016/J.COMMATSCI.2020.110204.; S. Thapliyal and A. Mishra, “Machine learning classification-based approach for mechanical properties of friction stir welding of copper,” Manufacturing Letters, vol. 29, pp. 52–55, Aug. 2021, doi:10.1016/J.MFGLET.2021.05.010.; J. Chi et al., “Titanium alloy components fabrication by laser depositing TA15 powders on TC17 forged plate: Microstructure and mechanical properties,” Materials Science and Engineering: A, vol. 818, p. 141382, Jun. 2021, doi:10.1016/J.MSEA.2021.141382.; D. Liović, M. Franulović, and D. Kozak, “Material models and mechanical properties of titanium alloys produced by selective laser melting,” Procedia Structural Integrity, vol. 31, pp. 86–91, Jan. 2021, doi:10.1016/J.PROSTR.2021.03.014.; J. Aguilar Pozzer and E. Guzowski, “Guía didáctica Materiales y materias primas.”; M. Z. R. Khan, S. K. Srivastava, and M. K. Gupta, “A state-of-the-art review on particulate wood polymer composites: Processing, properties and applications,” Polymer Testing, vol. 89, p. 106721, Sep. 2020, doi:10.1016/J.POLYMERTESTING.2020.106721.; C. Wu, N. Vahedi, A. P. Vassilopoulos, and T. Keller, “Mechanical properties of a balsa wood veneer structural sandwich core material,” Construction and Building Materials, vol. 265, p. 120193, Dec. 2020, doi:10.1016/J.CONBUILDMAT.2020.120193.; F. Tian, L. Chen, and X. Xu, “Dynamical mechanical properties of wood-high density polyethylene composites filled with recycled rubber,” Journal of Bioresources and Bioproducts, vol. 6, no. 2, pp. 152–159, May 2021, doi:10.1016/J.JOBAB.2021.02.007.; J. F. Shackelford, “Introducción a la ciencia de materiales para ingenieros 6a edición.”; S. Velu, J. K. Joseph, M. Sivakumar, V. K. Bupesh Raja, K. Palanikumar, and N. Lenin, “Experimental investigation on the mechanical properties of carbon-glass-jute fiber reinforced epoxy hybrid composites,” Materials Today: Proceedings, vol. 46, pp. 3566–3571, Jan. 2021, doi:10.1016/J.MATPR.2021.01.333.; W. Chen, Q. Meng, H. Hao, J. Cui, and Y. Shi, “Quasi-static and dynamic tensile properties of fiberglass/epoxy laminate sheet,” Construction and Building Materials, vol. 143, pp. 247–258, Jul. 2017, doi:10.1016/J.CONBUILDMAT.2017.03.074.; S. Y. Voronina, T. A. Shalygina, V. D. Voronchikhin, A. Y. Vlasov, A. N. Ovchinnikov, and N. N. Grotskaya, “Data for determining the surface properties of carbon fiber in contact interaction with polymeric binders,” Data in Brief, vol. 35, p. 106847, Apr. 2021, doi:10.1016/J.DIB.2021.106847.; C. Colombo and L. Vergani, “Influence of delamination on fatigue properties of a fibreglass composite,” Composite Structures, vol. 107, no. 1, pp. 325–333, Jan. 2014, doi:10.1016/J.COMPSTRUCT.2013.07.028.; L. Wang, J. Zhang, X. Yang, C. Zhang, W. Gong, and J. Yu, “Flexural properties of epoxy syntactic foams reinforced by fiberglass mesh and/or short glass fiber,” Materials & Design, vol. 55, pp. 929–936, Mar. 2014, doi:10.1016/J.MATDES.2013.10.065.; J. Viña, J. Bonhomme, V. Mollón, I. Viña, and A. Argüelles, “Mechanical properties of fibreglass and carbon-fibre reinforced polyetherimide after twenty years of outdoor environmental aging in the city of Gijón (Spain),” Composites Communications, vol. 22, p. 100522, Dec. 2020, doi:10.1016/J.COCO.2020.100522.; A. Armanfard and G. W. Melenka, “Experimental evaluation of carbon fibre, fibreglass and aramid tubular braided composites under combined tension–torsion loading,” Composite Structures, vol. 269, p. 114049, Aug. 2021, doi:10.1016/J.COMPSTRUCT.2021.114049.; Z. Sun et al., “Temperature-dependent mechanical properties of polyetherimide composites reinforced by graphene oxide-coated short carbon fibers,” Composite Structures, vol. 270, p. 114075, Aug. 2021, doi:10.1016/J.COMPSTRUCT.2021.114075.; V. Amigó, J. J. Payá, M. D. Salvador, J. M. Monzó, F. Segovia, and V. Borrachero, “MATERIALES COMPUESTOS 05.”; S. C. Das et al., “On the use of wood charcoal filler to improve the properties of natural fiber reinforced polymer composites,” Materials Today: Proceedings, vol. 44, pp. 926–929, Jan. 2021, doi:10.1016/J.MATPR.2020.10.808.; S. Yousef, S. P. Subadra, P. Griškevičius, S. Varnagiris, D. Milcius, and V. Makarevicius, “Superhydrophilic functionalized graphene/fiberglass/epoxy laminates with high mechanical, impact and thermal performance and treated by plasma,” Polymer Testing, vol. 90, p. 106701, Oct. 2020, doi:10.1016/J.POLYMERTESTING.2020.106701.; P. Karthick, A. A. E. Andrews, K. Subbareddy, K. Basha, V. Harshavardhan, and S. G. S. K. Reddy, “Investigation of mandatory properties of NaOH – KMnO4 Treated Banana/Fiberglass Hybrid Composite,” Materials Today: Proceedings, vol. 37, no. Part 2, pp. 63–66, Jan. 2021, doi:10.1016/J.MATPR.2020.03.072.; S. Saroj, S. Nayak, and D. Kumar Jesthi, “Effect of hybridization of carbon/glass/flax/kenaf fibre composite on flexural and impact properties,” Materials Today: Proceedings, Apr. 2021, doi:10.1016/J.MATPR.2021.03.094.; H. A. S. y. M. A. P., «ANÁLISIS DE TECNOLOGÍAS DE MEDICIÓN DE NIVEL DE TANQUES DE PRODUCTOS USADOS EN LA INDUSTRIA PETROLERA,» 5 Diciembre 2003. [En línea]. Available: https://repositorio.utb.edu.co/bitstream/handle/20.500.12585/3407/0024835.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; C. A. V. AGUILAR, «DISEÑO DE UN SISTEMA DE MONITOREO DE NIVEL DE LOS TANQUES DE EMERGENCIA DE EMCALI TELECOMUNICACIONES,» 9 Diciembre 2013. [En línea]. Available: https://red.uao.edu.co/bitstream/handle/10614/5683/T03722.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; A. A. Naranjo, «Diseño de control de nivel por medio de una medición continua en los tanques de almacenamiento de ACPM en la empresa de Colcafe S.A.,» 7 Marzo 2018. [En línea]. Available: https://repositorio.itm.edu.co/bitstream/handle/20.500.12622/3975/Rep_Itm_pre_Arbelaez.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; P. R. Martín, «¿Qué es una central de generación eléctrica diésel?,» 11 Junio 2020. [En línea]. Available: https://www.tecnatom.es/blog/que-es-una-central-de-generacion-electrica-diesel/. [Último acceso: 26 Septiembre 2021].; F. O. C. GUERRERO, «GENERACIÓN DE ENERGÍA ELÉCTRICA CON UN MOTOR DE COMBUSTIÓN INTERNA USANDO BIODIESEL DE ACEITE DE PIÑÓN (Jatropha curcas),» 2015. [En línea]. Available: https://repositorio.lamolina.edu.pe/bitstream/handle/UNALM/2152/P06-C118-T.pdf?sequence=1&isAllowed=y. [Último acceso: 26 Septiembre 2021].; El pensante.com , «¿Qué es el ACPM?,» E-Cultura Group, 7 Abril 2016. [En línea]. Available: https://elpensante.com/que-es-el-acpm/. [Último acceso: 25 Septiembre 2021].; D. Plaza, «El gasóleo o gasoil: propiedades y tipos,» motor.es, s.f. [En línea]. Available: https://www.motor.es/que-es/gasoil#:~:text=Es%20un%20hidrocarburo%20l%C3%ADquido%20que,carbono%20por%2026%20de%20hidr%C3%B3geno). [Último acceso: 25 Septiembre 2021].; C. Ribeiro, «Cómo funciona la medición automática de combustible en los tanques y cómo su estación puede beneficiarse,» 9 Agosto 2017. [En línea]. Available: https://blog.gilbarco.com/latam/como-funciona-la-medicion-automatica-de-combustible-en-los-tanques. [Último acceso: 25 Septiembre 2021].; Nation Unies, «Prescriptions uniformes relatives à l’homologation des véhicules en ce qui concerne,» 16 Octubre 1995. [En línea]. Available: https://unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/r083r4f.pdf. [Último acceso: 25 Septiembre 2021].; U.S. Environmental Protection Agency, «Code Of Federal Regulations Part 1065—Engine-Testing Procedures.,» 17 Septiembre 2021. [En línea]. Available: https://www.ecfr.gov/recent-changes?search%5Bhierarchy%5D%5Btitle%5D=16&search%5Blast_modified_after%5D=2021-09-10. [Último acceso: 25 Septirmbre 2021].; Code Of Federal Regulations, «VEHICLE-TESTING PROCEDURES,» 28 Abril 2014. [En línea]. Available: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-U/part-1066. [Último acceso: 25 Septiembre 2021].; L. B. M. y. H. C. F. Melissa Ávila Dávila, «Análisis gravimétrico y volumétrico,» 26 Agosto 2011. [En línea]. Available: https://www.monografias.com/trabajos89/analisis-gravimetrico-y-volumetrico/analisis-gravimetrico-y-volumetrico.shtml. [Último acceso: 27 Septienbre 2021].; C. B. ,. J. G. H. Richard D Burke, «Critical evaluation of on-engine fuel consumption measurement,» Automobile Engineering, vol. 225, nº 6, p. 829–844, Junio 2011.; O. NUNIGE, «EVALUACION Y COMPARACION DE METODOS DE MEDICION CONSUMO DE COMBUSTIBLE PARA LABORATORIO Y RUTA EN UN VEHICULO LIVIANO,» 2018. [En línea]. Available: http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/9465/T629.2538%20N972.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; W. E. L. C. F. d. R. Cesar V. Vargas, «Sistemas de Comunicación Inalámbrica MIMO - OFDM,» RevActaNova, vol. 3, nº 4, pp. 750-760, 2007.; F. E. Vargas Silva, «Sistema Digital De Medición De Nivel De Combustible En El Tanque Del Generador Para El Radar De ESUFA.,» 7 Noviembre 2019. [En línea]. Available: https://catalogosibfa.hosted.exlibrisgroup.com/exlibris/aleph/a23_1/apache_media/NIK8N7VLBTRRSKEGTLYUM76FF5BIB8.pdf. [Último acceso: 26 Septiembre 2021].; Quonty, «Tecnología inalámbrica, ¿cuáles son las redes y los dispositivos que más la utilizan?,» 21 Febrero 2018. [En línea]. Available: https://www.quonty.com/blog/tecnologia-inalambrica/. [Último acceso: 27 Septiembre 2021].; Morales, «Qué es la transmisión Wifi,» 11 Octubre 2019. [En línea]. Available: https://www.ticarte.com/contenido/que-es-la-transmision-wifi. [Último acceso: 27 Septiembre 2021].; J. Borlongan, «Cómo funciona la tecnología WiFi,» s.f. [En línea]. Available: https://techlandia.com/funciona-tecnologia-wifi-como_10752/. [Último acceso: 27 Septiembre 2021].; runestone.academy, «¿Qué es programación?,» s.f. [En línea]. Available: https://runestone.academy/runestone/static/pythoned/Introduction/QueEsProgramacion.html. [Último acceso: 28 Septiembre 2021].; aprendiendoarduino.wordpress.com, «Programación Arduino,» 23 Enero 2017. [En línea]. Available: https://aprendiendoarduino.wordpress.com/2017/01/23/programacion-arduino-5/. [Último acceso: 28 Septiembre 2021].; Arduino.cl, «Software de Arduino,» Enero 2019. [En línea]. Available: https://arduino.cl/programacion/. [Último acceso: 28 Septiembre 2021].; Arduino, «Arduino UNO,» s.f. [En línea]. Available: https://arduino.cl/arduino-uno/. [Último acceso: 27 Septiembre 2021].; L. LLAMAS, «MEDIR DISTANCIA CON ARDUINO Y SENSOR DE ULTRASONIDOS HC-SR04,» 16 Junio 2015. [En línea]. Available: https://www.luisllamas.es/medir-distancia-con-arduino-y-sensor-de-ultrasonidos-hc-sr04/. [Último acceso: 27 Septiembre 2021].; naylampmechatronics.com, «SENSOR ULTRASONIDO HC-SR04,» s.f. [En línea]. Available: https://naylampmechatronics.com/sensores-proximidad/10-sensor-ultrasonido-hc-sr04.html. [Último acceso: 27 Septiembre 2021].; L. Llamas, «COMUNICACIÓN INALÁMBRICA A 2.4GHZ CON ARDUINO Y NRF24L01,» 8 Diciembre 2016. [En línea]. Available: https://www.luisllamas.es/comunicacion-inalambrica-a-2-4ghz-con-arduino-y-nrf24l01/. [Último acceso: 28 Septiembre 2021].; robots-argentina.com.ar, «Arduino: Comunicación inalámbrica con NRF24L01,» 25 Diciembre 2019. [En línea]. Available: http://robots-argentina.com.ar/didactica/arduino-comunicacion-inalambrica-con-nrf24l01/. [Último acceso: 28 Septiembre 2021].; the Secretary of the Air Force, «TECHNICAL AND MANAGERIAL REFERENCE FOR MOTOR VEHICLE MAINTENANCE,» Published Under Authority, USA, 2004.; B. R. Serra, «VOLUMEN DE UN PRISMA RECTANGULAR,» 2014. [En línea]. Available: https://www.universoformulas.com/matematicas/geometria/volumen-prisma-rectangular/. [Último acceso: 28 Septiembre 2021].; extraconversion.com, «Metros Cúbicos a US Galones Líquidos Calculadora de Conversión,» s.f. [En línea]. Available: http://extraconversion.com/es/volumen/metros-cubicos/metros-cubicos-a-us-galones-liquidos.html. [Último acceso: 28 Septiembre 2021].; J. C. Najar Pacheco, «Exposición del activo más valioso de la organización, la “información", Visión Electrónica, vol. 11, no. 1, pp. 107-115, 2017. https://doi.org/10.14483/22484728.12345.; Clincy, V., & Shahriar, H., Web Application Firewall: Network Security Models and Configuration. Proceedings - International Computer Software and Applications Conference, 1, 835–836. https://doi.org/10.1109/COMPSAC.2018.00144, 2018.; C. Ping. "A second-order SQL injection detection method". Digital Object Identifier System. https://doi.org/10.1109/ITNEC.2017.8285104, 2018.; Tovar Valencia, O. (s. f.). INYECCIÓN DE SQL, TIPOS DE ATAQUES Y PREVENCION EN ASP.NET-C#. Universidad Piloto de Colombia. http://polux.unipiloto.edu.co:8080/00002026.pdf.; Rajashree, A. K., Sherekar, S. S., & Thakare, V. M. Detection of SQL injection attacks by removing the parameter values of SQL query. IEEE Conference Publication %7C IEEE Xplore. https://ieeexplore.ieee.org/document/8398896, 2018.; Gestión, Tecnología. Uso de apps y visitas a sitios web de alto riesgo subieron 161% debido a COVID. Gestión Tecnología. https://gestion.pe/tecnologia/uso-de-apps-y- visitas-a-sitios-web-de-alto-riesgo-subieron-161-debido-a-covid-noticia/, 2020.; Castillo, A., OWASP Top 1 - Ataques por Inyección SQL. Seguridad Ofensiva. https://seguridad-ofensiva.com/blog/owasp-top-10/owasp-top-1/, 2020.; A7:2017-Cross-Site Scripting (XSS) %7C OWASP, https://owasp.org/www-project-top-ten/2017/A7_2017-Cross-Site_Scripting_(XSS), 2017.; Vulnerabilidades OWASP - Ciberseguridad informática - Seguridad informática para Empresas. (n.d.). https://antimalwares.es/tecnologias/vulnerabilidades-owasp.; W. A. Barbosa y D. A. Buelvas Peñarredonda, “Implementación de redes privadas virtuales en la mediana empresa", Visión Electrónica, vol. 4, no. 2, pp. 106-121, 2010. https://revistas.udistrital.edu.co/index.php/visele/article/view/282/5573.; N. A. Gómez-Cruz and C. E. Maldonado, “Sistemas bio-inspirados: un marco teórico para la ingeniería de sistemas complejos,” Ing. Sist. complejos. Compil. las Conf. Present. en la Cuarta Asam. la Red Cart. Ing., p., 2011.; Y. Leidy, O. López, D. Guillermo, and B. Benavides, “Plataformas Bionpiradas Tipo Lego En Un Ambiente Conocido.”; Y. Jian and Y. Li, “Research on intelligent cognitive function enhancement of intelligent robot based on ant colony algorithm,” Cogn. Syst. Res., vol. 56, pp. 203–212, 2019, doi:10.1016/j.cogsys.2018.12.014.; L. M. Layos, E. L. Mundo, and D. E. L. A. S. Hormigas, “HORMIGAS,” 2006.; J. Rolando, C. López, N. Johanna Hernández Suárez, A. Del Pilar, and R. Tibaduiza, “Sistema de transporte y embalaje utilizando robótica cooperativa basada en teoría de colonias de hormigas mediante plataforma Mindstorm de LEGO® Transportation and Packaging System Using Cooperative Robotics Based on Theory of Ants Colonies Using Platform,” vol. 6, no. 1, pp. 60–71, 2015, doi:10.14483/udistrital.jour.redes.2015.1.a04.; Jaffe, “Evolucion de Sistemas de Comunicacion Quimico en Hormigas (Hymenoptera: Formicidae),” Folia Entomológica Mexicana, vol. 61. pp. 189–203, 1984.; Y. Leidy, O. López, G. Duvan, and B. Benavides, “Implementación de un sistema multirobot basado en el comportamiento de las hormigas.”; M. Dc and G. Motor, “Tank Mobile Platform Instrution Manual,” no. 112.; Alibaba.com. (2021). Professional Outdoor Solar Powered Automatic Weather Station. Tomado de: https://www.alibaba.com/product-detail/Professional-Outdoor-Solar-Powered-Automatic-Weather_60492093064.html.; BBC. (2021). River flooding - causes and management. Tomado de: https://www.bbc.co.uk/bitesize/guides/zx9kfrd/revision/1#:~:text=Flooding%20occurs%20when%20a%20river,interactions%20can%20increase%20the%20risk.; Bourdeau-Brien, M., & Kryzanowski, L. (2020). Natural disasters and risk aversion. Journal of Economic Behavior & Organization, 177, 818–835. Tomado de: https://doi.org/https://doi.org/10.1016/j.jebo.2020.07.007.; Boustan, L. P., Kahn, M. E., Rhode, P. W., & Yanguas, M. L. (2020). The effect of natural disasters on economic activity in US counties: A century of data. Journal of Urban Economics, 118, 103257. Tomado de: https://doi.org/https://doi.org/10.1016/j.jue.2020.103257.; Campo, P. A., Zafra K. (2013). SISTEMA ELECTRÓNICO INALÁMBRICO DE ALERTA TEMPRANA Y MONITOREO DEL COMPORTAMIENTO DEL NIVEL DE LOS RÍOS DE BAJO COSTO (Tesis de grado). Universidad San Buenaventura de Cali. Tomado de: http://bibliotecadigital.usbcali.edu.co/bitstream/10819/2144/1/Sistema_Electronico_Inalambrico_Monitoreo_Campo_2013.pdf.; Cao, H., & Wachowicz, M. (2019). The design of an IoT-GIS platform for performing automated analytical tasks. Computers, Environment and Urban Systems, 74, 23–40. Tomado de: https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2018.11.004.; CEPAL. (2018). Situación de las estadísticas e indicadores de eventos extremos y desastres. Tomado de: https://www.cepal.org/sites/default/files/presentations/2018-06-2areu-expertos-ea-4_2-cepal-pleonard.pdf.; Colombia Reports. (2020). Fatal landslide blocks road between Colombia’s capital and Medellin. Tomado de: https://colombiareports.com/fatal-landslide-blocks-road-between-colombias-capital-and-medellin/.; Confluence. (2021). Sensor T/H/CE de suelo CERES - IoT. Tomado de: https://nazaries.atlassian.net/wiki/spaces/IOT/pages/4654272/Sensor+T+H+CE+de+suelo+CERES.; CORTOLIMA. (s.f). Pérdida de suelos. Corporación Autónoma Regional del Tolima. Tomado de: https://www.cortolima.gov.co/sites/default/files/images/stories/centro_documentos/pom_totare/diagnostico/m_212perdida_de_suelos_totare.pdf.; Datos abiertos. (2021). Gov.co - Datos abiertos. Tomado de: https://www.datos.gov.co/.; Dorado, J.E. (2020). SISTEMA DE MONITOREO Y CONTROL DE ALERTA TEMPRANA DEL DESBORDAMIENTO DE UN RÍO (Tesis de grado). Universidad Piloto de Colombia. Tomado de: http://repository.unipiloto.edu.co/bitstream/handle/20.500.12277/7475/TESIS%20DE%20GRADO.pdf?sequence=1&isAllowed=y.; Duan, X., Bai, Z., Rong, L., Li, Y., Ding, J., Tao, Y., Li, J., Li, J., & Wang, W. (2020). Investigation method for regional soil erosion based on the Chinese Soil Loss Equation and high-resolution spatial data: Case study on the mountainous Yunnan Province, China. CATENA, 184, 104237. Tomado de: https://doi.org/https://doi.org/10.1016/j.catena.2019.104237.; FAO (Food and Agriculture Organization of the United Nations). (s.f). Lang & Water. Universal Soil Loss Equation. Tomado de: http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1236441/.; FloodList. (2017). Colombia – 11 Departments Hit by Heavy Rain, Floods and Landslides. Tomado de: http://floodlist.com/america/colombia-11-departments-floods-march-2017.; FloodList. (2020). Colombia – Rains Trigger Deadly Landslide in Antioquia. Tomado de: http://floodlist.com/america/colombia-landslide-floods-antioquia-november-2020.; Humanitarian RESPONSE. (2018). Colombia: Snapshot Desastres Naturales 2017 - OCHA Services. Tomado de: https://www.humanitarianresponse.info/en/operations/colombia/infographic/colombia-snapshot-desastres-naturales-2017.; IDEAM. S.f. Datos IDEAM. IDEAM: Instituto de Hidrología, Meteorología y Estudios Ambientales. Tomado de: http://www.ideam.gov.co/.; Insurance Information Institute (iii). (2019). Current graph - World Natural Catastrophes, 2019. Tomado de: https://www.iii.org/graph-archive/96134.; Jimenez N, A. (2005). LA INVESTIGACIÓN DE SUELOS EROSIONADOS: MÉTODOS E ÍNDICES DE DIAGNÓSTICO. Minería y Geología, vol. 21, num 2, 2005, pp. 1-18. Tomado de: https://www.redalyc.org/pdf/2235/223516049002.pdf.; Kamatchi Sundari, V., Nithyashri, J., Kuzhaloli, S., Subburaj, J., Vijayakumar, P., & Subha Hency Jose, P. (2021). Comparison analysis of IoT based industrial automation and improvement of different processes – review. Materials Today: Proceedings. Tomado de: https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.338.; Kong, D., Lin, Z., Wang, Y., & Xiang, J. (2021). Natural disasters and analysts’ earnings forecasts. Journal of Corporate Finance, 66, 101860. Tomado de: https://doi.org/https://doi.org/10.1016/j.jcorpfin.2020.101860.; Local Government Association. (s.f). Flood risk and flood risk management. Tomado de: https://www.local.gov.uk/topics/severe-weather/flooding/flood-and-coastal-erosion-risk-management/flood-risk-and-flood-risk.; McIvor, I., Youjun, H., Daoping, L., Eyles, G., & Pu, Z. (2014). Agroforestry: Conservation Trees and Erosion Prevention (N. K. B. T.-E. of A. and F. S. Van Alfen (ed.); pp. 208–221). Academic Press. Tomado de: https://doi.org/https://doi.org/10.1016/B978-0-444-52512-3.00247-3.; NETWORKWORLD. (2020). What is IoT? The internet of things explained. Tomado de: https://www.networkworld.com/article/3207535/what-is-iot-the-internet-of-things-explained.html.; Newark. (2014). A Brief History of Single Board Computers - electronicdesign. Tomado de: https://www.newark.com/wcsstore/ExtendedSitesCatalogAssetStore/cms/asset/pdf/americas/common/NE14-ElectronicDesignUncovered-Dec14.pdf.; OCHA. (2018). COLOMBIA Desastres Naturales 2017. Tomado de: https://www.humanitarianresponse.info/sites/www.humanitarianresponse.info/files/documents/files/20180420_snapshot_desastres_naturales_2017_-_v2.pdf.; OMM. (2016). Laboratorio virtual de la OMM para la enseñanza y formación en meteorología satelital. OMM - Organización Meteorológica Mundial. Tomado de: https://public.wmo.int/es/resources/bulletin/laboratorio-virtual-de-la-omm-para-la-ense%C3%B1anza-y-formaci%C3%B3n-en-meteorolog%C3%ADa.; Organización Mundial de la Salud (OMS). (s.f). Acción sanitaria en las crisis humanitarias - Inundaciones. Tomado de: https://www.who.int/hac/techguidance/ems/floods/es/.; Organización Mundial de la Salud (OMS). (s.f). Acción sanitaria en las crisis humanitarias - Corrimientos de tierra. Tomado de: https://www.who.int/hac/techguidance/ems/landslides/es/.; Organization of American States (OAS). (s.f). La erosión hídrica y las crecidas. Tomado de: https://www.oas.org/dsd/publications/Unit/oea23s/ch16.htm.; Osenga, E. C., Arnott, J. C., Endsley, K. A., & Katzenberger, J. W. (2019). Bioclimatic and Soil Moisture Monitoring Across Elevation in a Mountain Watershed: Opportunities for Research and Resource Management. Water Resources Research, 55(3), 2493–2503. Tomado de: https://doi.org/https://doi.org/10.1029/2018WR023653.; Paulino, Â., Guimarães, L., & Shiguemori, E. (2019). Hybrid Adaptive Computational Intelligence-based Multisensor Data Fusion applied to real-time UAV autonomous navigation. INTELIGENCIA ARTIFICIAL, 22, 162–195. Tomado de: https://doi.org/10.4114/intartif.vol22iss63pp162-195.; Pellet, C. and Hauck, C. (2017) Monitoring soil moisture from middle to high elevation in Switzerland: set-up and first results from the SOMOMOUNT network, Hydrol. Tomado de: Earth Syst. Sci., 21, 3199–3220, https://doi.org/10.5194/hess-21-3199-2017.; PreventivoWeb. (s.f). Disaster Data & statistics. Tomado de: https://www.preventionweb.net/knowledgebase/disaster-statistics.; R2D3. (s.f). A visual introduction to machine learning. Tomado de: http://www.r2d3.us/visual-intro-to-machine-learning-part-1/.; Raspberrypi. (s.f). Raspberry Pi 3 Model B+. Tomado de: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/.; Reggio, G., Leotta, M., Cerioli, M., Spalazzese, R., & Alkhabbas, F. (2020). What are IoT systems for real? An experts’ survey on software engineering aspects. Internet of Things, 12, 100313. Tomado de: https://doi.org/https://doi.org/10.1016/j.iot.2020.100313.; Scikit-learn.org. (2021). Scikit-learn machine learning in python. Tomado de: https://scikit-learn.org/stable/index.html.; sdxcentral. (s.f). IoT Definitions & Basics. Tomado de: https://www.sdxcentral.com/5g/iot/definitions/.; Thangamani, T., Prabha, R., Prasad, M., Kumari, U., KV, R., & Abidin, S. (2021). IoT Defense Machine Learning: Emerging Solutions and Future Problems. Microprocessors and Microsystems, 104043. Tomado de: https://doi.org/https://doi.org/10.1016/j.micpro.2021.104043.; Thibaud, M., Chi, H., Zhou, W., & Piramuthu, S. (2018). Internet of Things (IoT) in high-risk Environment, Health and Safety (EHS) industries: A comprehensive review. Decision Support Systems, 108, 79–95. Tomado de: https://doi.org/https://doi.org/10.1016/j.dss.2018.02.005.; towards data science. (2017). Types of Machine Learning Algorithms You Should Know. Tomado de: https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861.; UNGRD. 2018. Implementación del Sistema Nacional de información para la gestión del riesgo de desastres. Tomado de: http://portal.gestiondelriesgo.gov.co/Documents/Proyectos-Inversion/2015/proyecto_sistema_integrado_informacion_2015_2018.pdf.; Universidad de Chile. (s.f). Laboratorio de Meteorología (LM - DGF). Tomado de: http://uchile.cl/i91300.; University, C. for H. and R. R.-C.-C., University, C. for I. E. S. I. N.-C.-C., & Bank, I. B. for R. and D.-T. W. (2005). Global Multihazard Mortality Risks and Distribution. NASA Socioeconomic Data and Applications Center (SEDAC). Tomado de: https://doi.org/10.7927/H41J97NM.; University, C. for H. and R. R.-C.-C., University, C. for I. E. S. I. N.-C.-C., & Bank, I. B. for R. and D.-T. W. (2005). Global Landslide Mortality Risks and Distribution. NASA Socioeconomic Data and Applications Center (SEDAC). Tomado de: https://doi.org/10.7927/H4JH3J4N.; Waze. (2021). Acerca de Waze: Mapas con datos de tráfico en tiempo real. Tomado de: https://www.waze.com/es/about.; World Health Organization. (s.f). Lanslides. Tomado de: https://www.who.int/health-topics/landslides#tab=tab_2.; Zhang, H., Zhang, R., Qi, F., Liu, X., Niu, Y., Fan, Z., Zhang, Q., Li, J., Yuan, L., Song, Y., Yang, S., & Yao, X. (2018). The CSLE model based soil erosion prediction: Comparisons of sampling density and extrapolation method at the county level. CATENA, 165, 465–472. Tomado de: https://doi.org/https://doi.org/10.1016/j.catena.2018.02.007.; E. A. Avila Gomez, A. M. Martinez Daza, y S. A. Pinzon, “Estado de arte sobre infraestructura telemática para el teletrabajo", Visión Electrónica, vol. 11, no. 2, pp. 261-278, 2017.; F. E. Pineda Torres y A. de J. Chica Leal, “Propuesta de un estimador de fallas usando fracciones coprimas", Visión Electrónica, vol. 9, no. 2, pp. 172-181, 2015. https://doi.org/10.14483/22484728.11025.; F. N. Giraldo Ramos, F. Gonzalez, y E. Camargo Casallas, “Algoritmos de procesamiento de imágenes satelitales con tranformada Hough", Visión Electrónica, vol. 5, no. 2, pp. 26-41, 2011. https://doi.org/10.14483/22484728.3568.; H. J. Eslava Blanco, N. Serrano P., y F. A. Castro, “Sistema de alerta de riesgos en hogares mediante SMS”, Visión Electrónica, vol. 6, no. 2, pp. 15-30, 2012. https://doi.org/10.14483/22484728.3883.; J. O. Castellanos Millán, V. H. Amarillo Calvo, y R. M. Poveda Chaves, “Problema de asignación quadrática (pac) sobre gpu a través de una pga maestro-esclavo”, Visión Electrónica, vol. 10, no. 2, pp. 179-183, 2016.; J. C. Najar-Pacheco, J. A. Bohada-Jaime, y W. Y. Rojas-Moreno, “Vulnerabilidades en el internet de las cosas", Visión Electrónica, vol. 13, no. 2, pp. 312-321, 2019.; J. A. Londoño Alzate, A. Fonseca Velásquez, y E. A. Delgadillo, “Laboratorios remotos: estudio de caso con una planta térmica didáctica", Visión Electrónica, vol. 12, no. 2, pp. 265-277, 2018. https://doi.org/10.14483/22484728.14263.; J. Cortina, J. López-Lezama, And N. Muñoz-Galeano, “Metaheurísticas Aplicadas Al Problema De Interdicción En Sistemas De Potencia,” Inf. Tecnológica, Vol. 29, No. 2, Pp. 73–88, Mar. 2018, Doi:10.4067/S0718-07642018000200073.; C. A. Mora, “Problema De Interdicción De La Red Eléctrica.” Universidad Distrital Francisco José De Caldas, Bogotá, D. C., P. 16, 2020, [Online]. Available: Https://Drive.Google.Com/File/D/1qxg7pvhy1dndz9sgr0qug4ldnyzmpi5-/View?Usp=Sharing.; B. Mundial And Colombia, Análisis De La Gestión Del Riesgo De Desastres En Colombia, Primera. Bogotá, D. C.: Equilatero, 2012.; V. A. Gómez, R. A. Peña, And C. Hernández, “Identificación Y Localización De Fallas En Sistemas De Distribución Con Medidores De Calidad Del Servicio De Energía Eléctrica,” Inf. Tecnol., Vol. 23, No. 2, Pp. 109–116, 2012, Doi:10.4067/S0718-07642012000200013.; F. Olivari, “Diseño, Construcción Y Prueba De Un Sensor Sísmico Para Edificaciones.” Valparaiso, Nov. 2017, Accessed: Nov. 11, 2020. [Online]. Available: Http://Opac.Pucv.Cl/Pucv_Txt/Txt-2500/Ucc2795_01.Pdf.; C. Bonilla And Y. Gonzales, “Dispositivo De Adquisición De Señales Sísmicas”, Visión Electrónica, 2019, Accessed: Nov. 11, 2020. [Online]. Available: Http://Repository.Udistrital.Edu.Co/Bitstream/11349/22441/1/Bonillaseguracamilaalejandra2019.Pdf.; F. Torres And K. Chaca, “Diseño E Implementación De Un Digitalizador Sísmico De 4 Canales Con Acceso Ip,” Universidad De Cuenca, 2015.; D. García, J. Rio, D. Toma, And M. Blanco, “Array Sísmico Inalámbrico Y De Parámetros Ambientales Para La Caracterización De Precursores De Actividad Volcánica,” Universitat Politecnica De Catalunya, 2017.; Á. Herrera, “Prototipo Hardware De Bajo Coste Para La Alerta Sísmica Temprana Local,” 2016.; G. Martinez, “Diseño Y Construcción De Un Prototipo De Detección De Fallas Serie Para Disminuir El Tiempo De Interrupciones En El Sistema Eléctrico De Distribución,” Escuela Politécnica Nacional, 2019.; V. A. Gómez, R. A. Peña, And C. Hernández, “Identificación Y Localización De Fallas En Sistemas De Distribución Con Medidores De Calidad Del Servicio De Energía Eléctrica,” Inf. Tecnol., Vol. 23, No. 2, Pp. 109–116, 2012, Doi:10.4067/S0718-07642012000200013.; "Redes Sin", Xm, 2020, Accessed: Dic. 9, 2020. [En línea]. Available: Https://Www.Xm.Com.Co/Paginas/Transmision/Redes-Sistema-Interconectado-Nacional.Aspx.; R. Chokshi, “MPU-6000 and MPU-6050 Register Map and Descriptions Revision 4.0 MPU-6000/MPU-6050 Register Map and Descriptions,” MPU-6000 MPU-6050 Regist. Map Descr., vol. 1, no. 408, p. 48, 2012.N. Wolfberg, “Storage and retrieval for image and video databases”, SPIE Proceedings, pp. 27-32, 1993.; InvenSense Inc., “MPU-9150 Register Map and Descriptions,” vol. 1, no. 408, pp. 1–52, 2013.; “Raspberry pi foundation", Raspberrypi.org, 2020. [En linea]. Disponible en: https://www.raspberrypi.org.; VMware, “¿Qué son las redes definidas por software (SDN)? %7C Glosario de VMware %7C ES.” https://www.vmware.com/es/topics/glossary/content/software-defined-networking.html (accessed Sep. 22, 2021).; Citrix, “¿Qué son las redes definidas por software (SDN)? - Citrix Mexico.” https://www.citrix.com/es-mx/solutions/app-delivery-and-security/what-is-software-defined-networking.html (accessed Sep. 22, 2021).; M. Marchetti, “The road to riches,” Sales Mark. Manag., vol. 150, no. 10, p. 128, 2013, doi:10.2307/j.ctvc77cz1.22.; M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Software-Defined Networking Security: Pros and Cons,” IEEE Commun. Mag., vol. 53, no. September, pp. 48–54, 2015, doi:10.1109/MCOM.2015.7120048.; A. Feghali, R. Kilany, and M. Chamoun, “SDN security problems and solutions analysis,” Int. Conf. Protoc. Eng. ICPE 2015 Int. Conf. New Technol. Distrib. Syst. NTDS 2015 - Proc., 2015, doi:10.1109/NOTERE.2015.7293514.; S. Sidhu and H. Gupta, “A Security Mechanism for Software Defined Vulnerabilities,” 2019 4th International Conference on Information Systems and Computer Networks, ISCON 2019, pp. 59–62, 2019, doi:10.1109/ISCON47742.2019.9036247.; A. Pradhan and R. Mathew, “Solutions to Vulnerabilities and Threats in Software Defined Networking (SDN),” Procedia Comput. Sci., vol. 171, no. 2019, pp. 2581–2589, 2020, doi:10.1016/j.procs.2020.04.280.; F. W. Sanabria Navarro, J. G. Bustos, and W. E. Castellanos Hernández, “Adaptive video transmission over software defined networks,” Visión electrónica, vol. 13, no. 1, pp. 152–161, Feb. 2019, doi:10.14483/22484728.14398.; J. C. Najar Pacheco, “Exposición del activo más valioso de la organización, la ‘información,’” Visión electrónica, vol. 11, no. 1, pp. 107–115, Jun. 2017, doi:10.14483/22484728.12345.; A. M. Felicísimo, «Conceptos básicos, modelos y simulación.,» 2009. [En línea]. Available: http://www6. uniovi. es/~ feli/CursoMDT/Tema_1. pdf. [Último acceso: 10 Agosto 2021].; N. M. Chirinos y S. R. González, «Consideraciones teórico-epistémicas acerca del concepto de modelo,» Telos, vol. 13, nº 1, pp. 51-64, 2011.; E. López Moreno, Construcción de ciudades más equitativas. Políticas públicas para la inclusión en América Latina., Bogotá: CAF, 2014.; J. Linares-García, A. Hernández-Quirama y H. M. Rojas-Betancur, «Accesibilidad espacial e inclusión social: experiencias de ciudades incluyentes en Europa y Latinoamérica,» Civilizar: Ciencias Sociales y Humanas, vol. 18, nº 35, pp. 115-128, 2018.; É. A. López López y É. L. Álvarez-Aros, «Estrategia en ciudades inteligentes e inclusión social del adulto mayor,» Paakat: Revista de Tecnología y Sociedad, vol. 11, nº 20, pp. 1-29, 2021.; J. A. IREGUI DUARTE, «INCLUSIÓN DIGITAL: UN ANÁLISIS DE LA ESTRATEGIA DE TELETRABAJO EN BOGOTÁ,» PONTIFICIA UNIVERSIDAD JAVERIANA, BOGOTÁ D.C., 2018.; CMSI, «Declaración de Principios. Construir la Sociedad de la Información: un desafío global para el nuevo milenio,» CMSI, Ginebra, 2004.; K. Frey, «Gobernanza electrónica urbana e inclusión digital: experiencias en ciudades europeas y brasileñas,» Nueva Sociedad, nº 196, pp. 109-124, 2005.; D. Dávila, «Inclusión digital en colombia: Un análisis del plan vive digital I,» Pontificia Universidad Javeriana, Bogotá D.C., 2017.; F. Duarte y H. F. Pires, «INCLUSIÓN DIGITAL, TRES CONCEPTOS CLAVE: CONECTIVIDAD, ACCESIBILIDAD, COMUNICABILIDAD,» REVISTA ELECTRÓNICA DE RECURSOS EN INTERNET SOBRE GEOGRAFÍA Y CIENCIAS SOCIALES, nº 150, 2011.; E. Van der Klift y N. Kunc, «Beyond benevolence: Friendship and the politics of help,» de Creativity and collaborative learning: A practical guide to empowering students and teachers, Baltimore, Paul Brookes, 1994, pp. 391-401.; M. Sapon-Shevin, «La inclusión real: Una perspectiva de justicia social,» Revista de Investigación en Educación, vol. 3, nº 11, pp. 71-85, 2013.; G. A. Toledo, «Accesibilidad digital para usuarios con limitaciones visuales,» Universidad Nacional de la Plata, 2012.; Comisión Europea, «Aprovechar las TIC para la acción social: un programa de voluntariado digital,» Unión Europea, Luxemburgo, 2014.; E. M. Tapia, E. Munguia, «Activity recognition in the home setting using simple and ubiquitous sensors,» de international conference on pervasive computing, Berlin, Heidelberg, Springer Berlin Heidelberg, 2004, pp. 158--175.; C. Liming et al, «Sensor-based activity recognition,» IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, nº 6, pp. 790 - 808, 2012.; N. Wei et al, «Human activity detection and recognition for video surveillance,» de 2004 IEEE International Conference on Multimedia and Expo (ICME), IEEE, 2004, pp. 719--722.; M. S. Ryoo, «Human activity prediction: Early recognition of ongoing activities from streaming videos,» de 2011 International Conference on Computer Vision, IEEE, 2011, pp.; M. S. Ryoo, «Human activity prediction: Early recognition of ongoing activities from streaming videos,» de 2011 International Conference on Computer Vision, IEEE, 2011, pp. 1036--1043.; R. Nishkam, D. Nikhil et al., «Activity recognition from accelerometer data,» de Aaai, 2005, pp. 1541--1546.; Intille, L. Bao and S. S., «Activity recognition from user-annotated acceleration data,» de International conference on pervasive computing, 2004.; N. Belapurkar, S. Sagar and A. Baris, «The Case for Ambient Sensing for Human Activity Detection,» de Proceedings of the 8th International Conference on the Internet of Things, New, York, 2018.; D. Anguita et al, International workshop on ambient assisted living, Springer, 2012.; E. Kim, S. Helal and D. Cook, «Human activity recognition and pattern discovery,» IEEE Pervasive Computing/IEEE Computer Society [and] IEEE Communications Society, vol. 9, nº1, p. 48, 2010.; B. P. Clarkson, Life patterns: structure from wearable sensors, Massachusetts Institute of Technology, 2002.; J. Shotton, T. Sharp et al., «Real-time Human Pose Recognition in Parts from Single Depth Images,» Commun. ACM, vol. 56, nº 1, pp. 116--124, 2013.; R. Poppe, «A survey on vision-based human action recognition,» Image and vision computing, vol. 28, nº 6, pp. 976--990, 2010.; J. K Aggarwal and M. S. Ryoo, «Human activity analysis: A review,» ACM Computing Surveys (CSUR), vol. 43, nº 3, p. 16, 2011.; D. Weinland, R. Ronfard and Ed Boyer, «A survey of vision-based methods for actionrepresentation, segmentation and recognition,» Computer vision and image understanding, vol. 115, nº 2, pp. 224 -- 241, 2011.; V. Argyriou, M. Petrou and S. Barsky, «Photometric stereo with an arbitrary number of illuminants,» Computer Vision and Image Understanding, vol. 14, nº 8, pp. 887--900, 2010.; R. Chavarriaga, H. Sagha et al, «The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition,» Pattern Recognition Letters, vol. 34, nº 15, pp. 2033--2042, 2013.; T. Plötz, N. Y. Hammerla and P. Oliver, «Feature Learning for Activity Recognition in Ubiquitous Computing» de Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, AAAI Press, 2011, pp. 1729--1734.; A. Ferscha and F. Mattern, Pervasive Computing: Second International Conference, PERVASIVE 2004, Linz, Vienna: Springer, 2004.; N. Ravi, D. Nikhil et al, «Activity recognition from accelerometer data,» de Aaai, 2005, pp. 1541--1546.; L. B. a. S. Intille, «Activity recognition from user-annotated acceleration data,» de International conference on pervasive computing, 2004.; G. Z. Yang, and M. Yacoub, Body Sensor Networks. 2006, London: Springer, 2006.[22]. D. Anguita, A. Ghio et al, «A Public Domain Dataset for Human Activity Recognition using Smartphones,» de 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), 2013.; D. Roggen, K. Forster at al, «OPPORTUNITY: Towards opportunistic activity and context recognition systems,» de 2009 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks \& Workshops, 2009.; A. M. Khan, Y-K. Lee et al, «Human activity recognition via an accelerometer-enabled smartphone using kernel discriminant analysis,» de 2010 5th international conference on future information technology, 2010.; J. Reyes-Ortiz, L. Oneto et al, «Transition-aware human activity recognition using smartphones,» Transition-aware human activity recognition using smartphones, vol. 171, pp. 754--767, 2016.; S. I. Yang and S. B. Cho, «Recognizing human activities from accelerometer and physiological sensors,» de 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008.; R. Poovandran, «Human activity recognition for video surveillance,» de 2008 IEEE International Symposium on Circuits and Systems, 2008.; C. T. a. V. Hlavac, «Pose primitive based human action recognition in videos or still images,» de 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.; J. S. Caros, O. Chetelat, P. Celka et al, «Very low complexity algorithm for ambulatory activity classification,» de EMBEC, 2005.; M. F. Bin Abdullah et al, «Classification Algorithms in Human Activity Recognition using Smartphones,» World Academy of Science, Engineering and Technology International Journal of Biomedical and Biological Engineering, vol. 6, nº 1, 2012.; O. D. Lara and M. A. Labrador, «A survey on human activity recognition using wearable sensors,» pp. 1192-1209, 2013.; N. Robertson and I. Reid, «A general method for human activity recognition in video,» Computer Vision and Image Understanding, vol. 104, nº 2-3, pp. 232--248, 2006.; C. Thurau and V Hlavac, «Pose primitive based human action recognition in videos or still images,» de 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.; R. Poovsndran, «Human activity recognition for video surveillance,» de 2008 IEEE International Symposium on Circuits and Systems, 2008.; W. Niu, J. Long, D. Han and W. Yuan-Fang , «Human Activity Detection and Recognition for Video Surveillance,» 2004 IEEE International Conference on Multimedia and Expo (ICME), vol. 1, pp. 719-722, 2004.; J. M. Ermes, J. Parkka, J. Mantyjarvi, and I. Korhonen, «Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions,» TITB, vol. 12, nº 1, pp. 20--26, 2008.; X. Long, B. Yin and R. M. Aarts, «Singleaccelerometer-based daily physical activity classification,» de EMBS, 2009.; D. Karantonis, M. Narayanan, M. Mathier, et al, «Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring,» TITB, vol. 10, nº 1, pp. 156-167, 2006.; E. Heinz, K. Kunze, M. Gruber et al, «Using wearable sensors for Real-Time recognition tasks in games of martial arts - an initial experiment,» de GIC´06, 2006.; H. Markus, H. Takafumi, et al, «Chi-ball, an interactive device assisting martial arts,» de CHI´03, 2003.; J. Liao,Y. Bi and C. Nugent , «Activity recognition for smart Homes using Dempster-Shafer theory of evidence based on a revised lattice structure,» de 2010 Sixth International Conference on Intelligent Environments, 2010.; F. Cicirelli,G. Fortino, A. giordano et al, «On the design of smar homes framework for activyty recpgnition in home environment,» journal of medical systems, vol. 40, nº 9, p. 200, 2016.; S. C. Mukhopadhyay, «Wearable sensors for human activity monitoring: A review,» IEEE Sensors Journal, vol. 15, p. 1321–1330, 2015.; A. Reiss and D. Stricker, «Introducing a new benchmarked dataset for activity monitoring,» de International Symposium on Wearable Computers, 2012.; W. H. Wu, A. A. Bui, M.A. Batalin et al, «MEDIC: medical embedded device for individualized care,» Artificial Intelligence in Medicine, vol. 42, nº 2, pp. 137-152, 2008.; E. V. Someren, B. Vonk, W. Thijssen, J. Speelman et al, «A new actigraph for long-term registration of the duration and intensity of tremor and movement,» Biomedical Engineering, vol. 45, nº 3, pp. 386395, 1998.; D. J. Walker, P. S. Heslop, C. J. Plummer, et al, «A continuous patient activity,» Physiological Measurement, vol. 18, nº 1, pp. 49-59, 1997.; N. Hu, Z. Lou, G. Englebienne and B. Kröse, B., «Learning to Recognize Human Activities from Soft Labeled Data,» de Robotics: Science and Systems X, Berkeley, 2014.; G. Wu and S. Xue, «Portable preimpact fall detector with inertial sensors,» Neural Systems and Rehabilitation Engineering IEEE Transactions on,, vol. 16, nº 2, p. 178–183, 2008.; H. J. Busser, J. Ott, R. C. van Lummel et al, «Ambulatory monitoring of children’s activity,» Medical Engineering & Physics, vol. 19, nº 5, pp. 440-445, 1997.; B. G. Steele, B. Belza, K. Cain, C. Warms,, «Bodies in motion: Monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease,» Rehabilitation Research and Development, vol. 40, nº 5, 2003.; S. Bosch, M. Marin-Perianu, et al, «Keep on moving! activity monitoring and stimulation using wireless sensor networks,» de European Conference on Smart Sensing and Context, 2009.; F. Chen, Q. Zhong and F. Cannella, «Hand gesture modeling and recognition for human and robot interactive assembly using hidden markov models,» International Journal of Advanced Robotic Systems, vol. 12, nº 4, p. 48, 2015.; Ministerio de Minas y Energía, [En línea]. Available: https://www.minenergia.gov.co/ [Ultimo acceso: 24 agosto 2021].; Instituto de Planificación y Promoción de Soluciones Energéticas para Zonas no Interconectadas IPSE, [En línea]. Available: https://ipse.gov.co/ [Último acceso: 24 08 2021].; Unidad de Planeación Minero-Energética, [En línea]. Available: https://www1.upme.gov.co/Paginas/default.aspx [Último acceso: 24 08 2021].; Comisión de Regulación de Energía y Gas, [En línea]. Available: https://www.creg.gov.co/ [Último acceso: 6 septiembre 2021].; La Cámara Colombiana de Energía, [En línea]. Available: https://www.ccenergia.org.co/ [Ultimo acceso: 08 septiembre 2021].; Fondo de Energías No Convencionales y Gestión Eficiente de la Energía [En línea]. Available: https://fenoge.com/ [Último acceso: 7 septiembre 2021].; A. M. M. H. A. Al Hasib, «A Comparative Study of the Performance and Security Issues of AES and RSA Cryptography,» de Convergence Information Technology, International Conference, Finlandia, 2008.; Shamir R.L. Rivest and L. Adleman, (1978). A Method for Obtaining Digital Signatures and PublicKey Cryptosystems, Magazine Communications of the ACM, 1978.Volumen 21 págs. 120–126. https://doi.org/10.1145/359340.359342.; Castro Lechtaler, A., Cipriano, M., García, E., Liporace, J., Maiorano, A., Malvacio, E. and Tapia, N., (2021). Estudio de técnicas de criptoanálisis.XXI Workshop de Investigadores en Ciencias de la Computación. [online] Sedici.unlp.edu.ar. Available at: http://sedici.unlp.edu.ar/handle/10915/77269.; J. C. Mendoza T, «Universidad Politecnica Salesiana de Ecuador,» [En línea]. Available: https://dspace.ups.edu.ec/bitstream/123456789/8185/1/Demostraci%C3%B3n%20de%20cifrado%2 0sim%C3%A9trico%20y%20asim%C3%A9trico.pdf.; W. Dent, «Hybrid Cryptography,» 3 Junio 2009. [En línea]. Available: https://eprint.iacr.org/2004/210.ps.; Escobar Molero Gabriel. (2011). Clúster de alto rendimiento en un cloud: ejemplo de aplicación en criptoanálisis de funciones hash. Universidad de Almería. pg 60. http://repositorio.ual.es/bitstream/handle/10835/1202/PFC.pdf?sequence=1.; A. Pousa, «Universidad Nacional de la Plata,» Diciembre 2011. [En línea]. Available: https://postgrado.info.unlp.edu.ar/wp-content/uploads/2014/07/Pousa_Adrian.pdf.; A. Lenstra, «Key Lengths,» [En línea]. Available: https://infoscience.epfl.ch/record/164539/files/NPDF-32.pdf.; R. Avinash, A. Potnis, S. Kumar, P. Dwivedy y S. Soofi, «Internation Journal Of Engineering Research and Applications,» Agosto 2017. [En línea]. Available: http://www.ijera.com/papers/Vol7_issue8/Part-1/O0708019094.pdf.; A. Faget, «What are Cryptographic Signatures? %7C Introduction to the Most Common Schemes,» 14 Noviembre 2018. [En línea]. Available: https://coindoo.com/what-are-cryptographic-signaturesintroduction-to-the-most-common-schemes/.; Goldreich, O. (2000). Modern Cryptography, Probabilistic Proofs and Pseudorandomness (Second Edition - author's copy). Springer.pag 1-2, consultado en http://www.wisdom.weizmann.ac.il/~oded/PDF/mcppp-v2.pdf.; Muñoz, R., Muñoz, R., & completo, V. (2021). Algoritmo RSA en aplicación web. Retrieved 12 July 2021, from http://criptografiaverm1.blogspot.com/2013/07/tarea-5-algoritmo-rsa-en-aplicacionweb.html.; Eslava Blanco, H. J., Rocha, J. F., & Morales, J. I. (2011). Estudio de tráfico sobre una plataforma de virtualización. Visión electrónica, 5(2), 78-94. https://doi.org/10.14483/22484728.3572.; Congreso de Colombia. ley 1636 de 2013.; Lei Chen and Nansheng Yao, "Publishing Linked Data from relational databases using traditional views," 2010 3rd International Conference on Computer Science and Information Technology, 2010, pp. 9-12, doi:10.1109/ICCSIT.2010.5563576.; Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M. A., Saggion, H., Petrak, J., Li, Y., y Peters, W. (2017). Text Processing with GATE (Version 6).; C. Gardent and S. Narayan Multiple Adjunction in Feature-Based Tree-Adjoining Grammar In Computational Linguistics, Volume 41, Issue 1 - March 2015.; LM Vilches-Blázquez, B Villazón-Terrazas, O Corcho, A Gómez-Pérez. International Journal of Digital Earth 7 (7), 554-575, 2014.; R. Jessop, “El Futuro del Estado Capitalista”, Madrid: Ed. Catarata, Pag.124,2007.; M. Castells e Himanen, “Modelos de Desarrollo en la Era Global de la Información: Construcción de un Marco Analítico” en Castells e Himanen “reconceptualización del desarrollo en la era global de la información”. Santiago de Chile: FCE, Pag. 27, 2017.; C. H. Caicedo y A. Smida, “Intensidad informacional para la longitudinalidad asistencial en sistemas de salud", Visión Electrónica, vol. 10, no. 1, pp. 83-95, 2016. https://doi.org/10.14483/22484728.11612.; J. Van Dijck, “La Cultura de la Conectividad”, Siglo XXI. Bs. A. Pag 268, 2016.; S. Zuboff, “Atrapados en la era del capitalismo de Vigilancia y la Economía Predictiva”, El Espectador, p. 20, enero 10, 2020.; P. Virno, “Cuando el Verbo se hace Carne”. Madrid: Mapas, p.20, 2005.; E. Sadin, “La Siliconización del Mundo”, Bs As: Caja Negra, p.108, 2018.; M. Doueihi, “La Gran Conversión Digital”, Bs. As.: F.C.E. p. 21, 2010.; R. Echeverría. “Ontología del Lenguaje”, Chile: JC Sáez editor, Pag. 24 1997.; J.F. Lyotard, “La condition postmoderne: rapport sur le savoir”. París: Minuit, 1979.; O. Dallera, “La sociedad como sistema de comunicación. La teoría sociológica de Niklas Luhmann en 30 lecciones”, Buenos Aires: editorial Biblos, 2012.; S. Rozas,” Lenguaje y performatividad”, Psicología, Conocimiento y Sociedad, vol 6, no.2, pp. 280-298, 2016.; J. L. Austin, “Cómo hacer cosas con palabras”, Barcelona: Paidós, 1982.; S. Belli, R. Harré, L. Íñiguez, “Emociones en la tecnociencia: la performance de la velocidad”, Prisma Social, 3, pp. 1-41, 2009.; A. Heller, “Sociología de la vida cotidiana”, J. F. Yvars y E. Pérez Nadal (trads.). Barcelona: Península, 1977.; L. F. Aguilar, “En torno del concepto de racionalidad de Max Weber”, en l. Olivé, “Racionalidad Ensayos sobre la racionalidad en ética y política, ciencia y tecnología”, México: Siglo XXI Editores, Coediciones Temas: Ética, Filosofía política, Instituto de Investigaciones Filosóficas, 1988.; M. Weber, “El problema de la irracionalidad en las ciencias sociales”, Madrid: Tecnos, 192 p. 1985.; N. Luhmann, “Organización y decisión. Autopoiesis, acción y entendimiento comunicativo”, Rubí (Barcelona): Anthropos, 2005.; C.H., Caicedo E, “Fortalecimiento de la Gestión de la Investigación y la Extensión, condición para el avance del Sistema Nacional de Innovación”. Documento presentado como requisito para cambio de categoría de Profesor Asistente a Profesor Asociado, Bogotá: Facultad de Ingeniería de la Universidad Nacional de Colombia, 2006.; J. March, H. A. Simon, “Teoría de la organización”, Barcelona: Ariel Economía, 1980.; Joffre, Aurégan, Chédotel y Tellier, “Le Management Stratégique per le Projet”, París: Economica, P.45, 2006.; J. Neré, “Le Management de Projet”, Paris: Puf, p.4, 2015.; Garel, Giard y Midler, “Faire de la Recherche en Management de Projet”, París: FNEGE, Vuibert, p.1, 2004.; AMBROSE, W., Parallel translation of Riemannian curvature. Ann. of Math., 64, 337363. 1956.; APOSTOL TOM, Calculus vol. 1 y 2. Segunda edición. Reverté. 1982.; BERGER - GAUDUCHON - MAZET, Le Spectre d′une Varieté Rie- mannianne. Springer - Verlag. New York. 1971.; DO CARMO, M., Differential Geometry of Curves and Super- faces. Printece - Hall, New Jersy. 1976.; DO CARMO, M., Geometría Riemanniana. 2a Ed. Rio de Janeiro. Brasil. 1988.; CARTAN, E., Lecons sur la Géométrie des Espaces de Riemann (2‘eme édition). Paris, Gauthier-Villard. 1951.; FOMENKO, A. T., Symplectic Geometry. Moscuw. 1998.; FRANKEL, T., The Geometry of Physics. Cambrige University. 2001.; GALLOT-HULLIN-LAFONTAINE, Riemannian Geometry. 2a ed., Springer. 1990.; GUILLEMIN & POLLACK, Differential Topology. Prentice - Hall. 1974.; LIPSCHUTS MARTIN, Differential Geometry. Mc Graw-Hill. 1969. (Hay versión en Español).; HOWARDS H., HUTCHINGS M., MORGAN F., The isoperimetric Problem on surfaces. Monthly, vol. 106, Number 5, (1999) 430 - 439.; LIMA, ELON LARGE, Curso de Análise. Vol. 1 y 2. Terceira Ed. IMPA-Brasil. 1981.; MUNKRES JAMES, TOPOLOGY a first course. Prentice-Hall.New Jersey. 1975. (Hay versión en Español).; MUNKRES JAMES, Elements of Algebraic Topology. Addison- Wesley. 1984.; MYERS, S. B., Riemannian manifolds with positive mean cur- vatura. Duke Math. J., 8, 401-404. 1941.; NASH, J. F., The imbedding problem for Riemannian manifolds. Ann. of. Math., 63, 2063. 1956.; O’NEILL, B., Semi-Riemannianan Geometry: Aplication to Rela- tivity. University of California. Los Angeles California. Academic Press. 1983. 468 páginas.; POOR, W., Differential Geometric Structures. Dover Publications. New York. 1981.; RIEMANN, B.,Über die Hypothesen, welche der Geometrie zu Grunde liegen. Nature, 8 (183-184), 14-17, 36, 37. 1854.; SPIVAK, M., A comprehensive Introduction to DIFFERENTIAL GEOMETRY. Publish or Perish. 1990. 2.785 páginas en 5 volumenes.; SPIVAK, M., Cálculo en Variedades. Reverté. 1975.; WARNER F. W., Foundations of Differentiable Manifolds and Lie Groups. Springer. 1983.; A. Mouthon, “Los Beneficios de la Inteligencia Artificial,” 2017. https://www.eleconomista.es/firmas/noticias/8716667/11/17/Beneficios-de-la-inteligencia-artificial.html (accessed May 06, 2021).; A. Garcia-Serrano and S. Ossowski, “Inteligencia Artificial Distribuida y Sistemas Multiagentes,” Inteligencia Artificial, vol. 2, no. 6, pp. 1–6, 1998, doi:10.4114/ia.v2i6.614.; A. Turing, “Mind a Quarterly Review of Psychology and Philosophy,” Mind, vol. 8, no. 2, pp. 145– 166, 1899, doi:10.1093/mind/VIII.2.145.; M. A. Salichs, M. Malfaz, and J. F. Gorostiza, “Toma de Decisiones en Robótica,” Revista Iberoamericana de Automática e Informática Industrial RIAI, vol. 7, no. 4, pp. 5–16, 2010, doi:10.1016/s1697-7912(10)70055-8.; M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “Describing textures in the wild,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3606–3613, 2014, doi:10.1109/CVPR.2014.461.; Tensorflow, “TensorFlow 2 Detection Model Zoo.” https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo. md (accessed May 05, 2021).; L. F. Mahecha, N. F. Conde, H. Vacca-González, “Implementación de Redes Neuronales y Procesamiento de Imágenes en el Movimiento de Robots Modulares Tipo Cadena. SOMI XXXV Congreso de Instrumentación CDMX, México, 27 al 29 de octubre de 2021.; R. A. Valdesueiro, “Muestreo digital”, p. 12.; A. Hashemi Fath, F. Madanifar, y M. Abbasi, “Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems”, Petroleum, vol. 6, núm. 1, pp. 80–91, mar. 2020, doi:10.1016/j.petlm.2018.12.002.; L. O. González Salcedo, A. P. Guerrero Zúñiga, S. Delvasto Arjona, y A. L. E. Will, “Artificial Neural Model based on radial basis function networks used for prediction of compressive strength of fiber-reinforced concrete mixes”, Cien.Ing.Neogranadina, vol. 29, núm. 2, pp. 37–52, jun. 2019, doi:10.18359/rcin.3737.; A. Sudou, P. Hartono, R. Saegusa, y S. Hashimoto, “Signal reconstruction from sampled data using neural network”, en Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing, Martigny, Switzerland, 2002, pp. 707–715, doi:10.1109/NNSP.2002.1030082.; A. Ugena, “THE NEWTON NEURAL NET: A NEW APPROXIMATING NETWORK”, Int. J. of Pure and Appl. Math., vol. 82, núm. 4, feb. 2013, doi:10.12732/ijpam.v82i4.13.; N. M. Khan, “Audio Signal Reconstruction Using Cartesian Genetic Programming Evolved Artificial Neural Network (CGPANN)”, p. 6.; L. H. C. Casallas, E. H. M. Alfonso, y M. L. C. Martínez, “Clasificación de Plasmodium Falciparum por estadio en cultivos sincrónicos de eritrocitos”, Visión electrónica, vol. 5, núm. 1, Art. núm. 1, may 2011, doi:10.14483/22484728.3519.; J. A. P. Plaza, D. R. Zapata, y A. T. Tascón, “Implementación de redes neuronales utilizando dispositivos lógicos programables”, Visión electrónica, vol. 1, núm. 1, Art. núm. 1, jun. 2008, doi:10.14483/22484728.250.; O. L. Ramos, D. A. Rojas, y L. A. Góngora, “Reconocimiento de patrones de habla usando MFCC y RNA”, Visión electrónica, vol. 10, núm. 1, Art. núm. 1, jun. 2016, doi:10.14483/22484728.11712.; E. J. G. Monterroza, “Reconocimiento de primitivas 3D, usando autocorrelación y ANFIS”, Visión electrónica, vol. 1, núm. 1, Art. núm. 1, 2008, doi:10.14483/22484728.251.; L. F. P. Martínez, Ó. F. C. Camargo, y J. E. Roa, “Estudio comparativo de técnicas artificiales para la predicción de una serie de tiempo caótica”, Visión electrónica, vol. 2, núm. 2, Art. núm. 2, dic. 2008, doi:10.14483/22484728.792.; A. E. Díaz y L. A. Calderón, “Modelo tridimensional de extremidad inferior basado en imágenes de resonancia magnética”, Visión electrónica, vol. 3, núm. 1, Art. núm. 1, jun. 2009, doi:10.14483/22484728.686.; Ahl´en, J., Sundgren, D., Bengtsson, E.: Application of underwater hyperspectraldata for color correction purposes. Pattern Recognition and Image Analysis 17 (3 2007). https://doi.org/10.1134/S105466180701021X .; Arnold-Bos, A., Malkasse, J.P., Kervern, G.: A preprocessing framework for auto- matic underwater images denoising (3 2005), https://hal.archives-ouvertes.fr/hal- 00494314.; Bazeille, S., Quidu, I., Jaulin, L., Malkasse, J.P.: Automatic underwater image preprocessing. Proceedings of CMM’06 (4 2006).; Cetto, A.M.: La luz: en la naturaleza y en el laboratorio. Fondo de Cultura Econ´omica (2019).; Chambah, M., Semani, D., Renouf, A., Coutellemont, P., Rizzi, A.: Underwa- ter color constancy: Enhancement of automatic live fish recognition (2004), https://hal.archivesouvertes.fr/hal-00263734.; Iqbal, K., Odetayo, M., James, A., Salam, R.A., Talib, A.Z.H.: Enhancing the low quality images using unsupervised colour correction method. IEEE (10 2010). https://doi.org/10.1109/ICSMC.2010.5642311.; Jaffe, J.: Computer modeling and the design of optimal underwater imaging systems. IEEE Journal of Oceanic Engineering 15 (4 1990). https://doi.org/10.1109/48.50695.; McGlamery, B.L.: A computer model for underwater camera systems (3 1980). https://doi.org/10.1117/12.958279.; Schechner, Y., Karpel, N.: Recovery of underwater visibility and structure by polarization analysis. IEEE Journal of Oceanic Engineering 30 (7 2005). https://doi.org/10.1109/JOE.2005.850871.; Sears, F.W., Zemansky, M.W., Young, H.D., Freedman, R.A., Flores Flores, V.A., Rubio Ponce, A.: Fisica universitaria. Addison-Wesley; Pearson Educacion, Mexico (2009), oCLC: 991818413.; Serway, R.A.: Física para ciencias e ingenieria. McGraw-Hill, Mexico (2002), oCLC: 807250137.; Trucco, E., Olmos-Antillon, A.: Self-tuning underwater image restoration. IEEE Journal of Oceanic Engineering 31 (4 2006). https://doi.org/10.1109/JOE.2004.836395.; Wikipedia: Patron de muar´e — wikipedia, la enciclopedia libre (2020).; Pérez, M. A. A. (2009). Espacios De Color RGB, HSI Y Sus Generalizaciones A NDimensiones. PhD thesis, InstitutoNacional de Astrofísica, Óptica y Electrónica.; O. Ronneberger, P. Fischer, y T. Brox, «U-Net: Convolutional Networks for Biomedical Image Segmentation», CoRR, vol. abs/1505.04597, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1505.04597.; V. Badrinarayanan, A. Kendall, y R. Cipolla, «SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation», CoRR, vol. abs/1511.00561, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1511.00561.; S. Liu y W. Deng, «Very deep convolutional neural network based image classification using small training sample size», en 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), 2015, pp. 730-734. doi:10.1109/ACPR.2015.7486599.; J. Long, E. Shelhamer, y T. Darrell, «Fully Convolutional Networks for Semantic Segmentation», CoRR, vol. abs/1411.4038, 2014, [En línea]. Disponible en: http://arxiv.org/abs/1411.4038.; C. Szegedy et al., «Going Deeper with Convolutions», CoRR, vol. abs/1409.4842, 2014, [En línea]. Disponible en: http://arxiv.org/abs/1409.4842.; H. Zhao, J. Shi, X. Qi, X. Wang, y J. Jia, «Pyramid Scene Parsing Network», CoRR, vol. abs/1612.01105, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1612.01105.; K. He, X. Zhang, S. Ren, y J. Sun, «Deep Residual Learning for Image Recognition», CoRR, vol. abs/1512.03385, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1512.03385.; L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, y A. L. Yuille, «DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs», IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, n.o 4, pp. 834-848, 2018, doi:10.1109/TPAMI.2017.2699184.; L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, y A. L. Yuille, «DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs», CoRR, vol. abs/1606.00915, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1606.00915.; L.-C. Chen, G. Papandreou, F. Schroff, y H. Adam, «Rethinking Atrous Convolution for Semantic Image Segmentation», CoRR, vol. abs/1706.05587, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1706.05587.; R. Girshick, J. Donahue, T. Darrell, y J. Malik, «Rich feature hierarchies for accurate object detection and semantic segmentation». 2014.; R. Girshick, «Fast R-CNN». 2015.; S. Ren, K. He, R. Girshick, y J. Sun, «Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks». 2016.; T.-Y. Lin, P. Goyal, R. Girshick, K. He, y P. Dollor, «Focal Loss for Dense Object Detection». 2018.; W. Liu et al., «SSD: Single Shot MultiBox Detector», Lect. Notes Comput. Sci., p. 21-37, 2016, doi:10.1007/978-3-319-46448-0_2.; J. Redmon y A. Farhadi, «YOLO: Real-Time Object Detection». 2018.; J. Redmon y A. Farhadi, «YOLO9000: Better, Faster, Stronger». 2016.; J. Redmon y A. Farhadi, «YOLOv3: An Incremental Improvement». 2018.; F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, y K. Keutzer, «SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \textless1MB model size», CoRR, vol. abs/1602.07360, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1602.07360.; A. G. Howard et al., «MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications», CoRR, vol. abs/1704.04861, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1704.04861.; M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, y L.-C. Chen, «Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation», CoRR, vol. abs/1801.04381, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1801.04381.; G. Huang, S. Liu, L. van der Maaten, y K. Q. Weinberger, «CondenseNet: An Efficient DenseNet using Learned Group Convolutions», CoRR, vol. abs/1711.09224, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1711.09224.; X. Zhang, X. Zhou, M. Lin, y J. Sun, «ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices», CoRR, vol. abs/1707.01083, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1707.01083.; N. Ma, X. Zhang, H.-T. Zheng, y J. Sun, «ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design», CoRR, vol. abs/1807.11164, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1807.11164.; M. Tan, B. Chen, R. Pang, V. Vasudevan, y Q. V. Le, «MnasNet: Platform-Aware Neural Architecture Search for Mobile», CoRR, vol. abs/1807.11626, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1807.11626.; M. Tan y Q. V. Le, «EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks», CoRR, vol. abs/1905.11946, 2019, [En línea]. Disponible en: http://arxiv.org/abs/1905.11946.; M. Cordts et al., «The Cityscapes Dataset for Semantic Urban Scene Understanding». 2016.; J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, y L. Fei-Fei, «ImageNet: A Large-Scale Hierarchical Image Database», 2009.; K. C. L. Wong, M. Moradi, H. Tang, y T. F. Syeda-Mahmood, «3D Segmentation with Exponential Logarithmic Loss for Highly Unbalanced Object Sizes», CoRR, vol. abs/1809.00076, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1809.00076.; M. Willett, “Lessons of the SolarWinds Hack,” Survival (Lond)., vol. 63, no. 2, 2021, doi:10.1080/00396338.2021.1906001.; H. S. Lallie et al., “Cyber security in the age of COVID-19: A timeline and analysis of cyber-crime and cyber-attacks during the pandemic,” Comput. Secur., vol. 105, 2021, doi:10.1016/j.cose.2021.102248.; J. Aguirre, CURSO DE SEGURIDAD INFORMÁTICA Y CRIPTOGRAFÍA, vol. 3.1. 2003.; E. Biham and A. Shamir, “Differential cryptanalysis of DES-like cryptosystems,” J. Cryptol., vol. 4, no. 1, 1991, doi:10.1007/BF00630563.; J. Daemen and V. Rijmen, “AES proposal: Rijndael,” no. December, 1999.; N. Velasquez and N. Pineda, “Diseño e Implementacion de un Prototipo Criptoprocesador AES-Rijndael en FPGA,” Universidad de Los Llanos, 2007.; A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, and A. Poschmann, “PRESENT: An Ultra-Lightweight Block Cipher.; J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw, “The LED block cipher,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2011, vol. 6917 LNCS, doi:10.1007/978-3-642-23951-9_22.; F. Velásquez and J. F. Castaño, “Cryptographic Implementations for Fpga,” Rev. Visión Electron., vol. 5, no. 1, pp. 26–37, 2011.; F. Velásquez and J. A. Castaño, “Implementation of binary finite fields towers of extension 2,” Rev. Visión Electrónica, vol. 7, no. 2, pp. 89–96, 2013.; W. Enríquez, P. Nazate, and O. Marcillo, “Prototipo DAS basado en FPGA de 12 canales para monitoreo geodinámico,” Visión electrónica, vol. 12, no. 1, pp. 73–82, 2018, doi:10.14483/22484728.13782.; C. A. HERNANDEZ and E. JACINTO, “a New Methodology in the Design of Digital Filters Fir on Fpga,” Rev. Visión Electron., vol. 3, no. 2, pp. 40–47, 2009.; L. W. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, “THE SIMON AND SPECK FAMILIES OF LIGHTWEIGHT BLOCK CIPHERS,” Natl. Secur. Agency, p. 42, 2013.; P. Maene and I. Verbauwhede, “Single-cycle implementations of block ciphers,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9542, pp. 131–147, 2016, doi:10.1007/978-3-319-29078-2_8.; S. Abed, R. Jaffal, B. J. Mohd, and M. Alshayeji, “FPGA modeling and optimization of a SIMON lightweight block cipher,” Sensors (Switzerland), vol. 19, no. 4, 2019, doi:10.3390/s19040913.; A. Shahverdi, M. Taha, and T. Eisenbarth, “Lightweight Side Channel Resistance: Threshold Implementations of Simon,” IEEE Trans. Comput., vol. 66, no. 4, pp. 661–671, 2017, doi:10.1109/TC.2016.2614504.; S. B. Basturk, C. E. J. Dancer, and T. McNally, “High-throughput Configurable SIMON Architecture for Flexible Security,” Pharmacol. Res., p. 104743, 2020, doi:10.1016/j.mejo.2021.105085.; A. Muthumari et al., “High security for de-duplicated big data using optimal SIMON Cipher,” Comput. Mater. Contin., vol. 67, no. 2, pp. 1863–1879, 2021, doi:10.32604/cmc.2021.013614.; W. Diehl, A. Abdulgadir, J. P. Kaps, and K. Gaj, “Comparing the cost of protecting selected lightweight block ciphers against differential power analysis in low-cost FPGAs,” Computers, vol. 7, no. 2, pp. 128–135, 2018, doi:10.3390/computers7020028.; FAO, «Objetivos de Desarrollo Sostenible», Agenda 2030 para el desarrollo sostenible, 2021. http://www.fao.org/sustainable-development-goals/overview/fao-and-post-2015/sustainableagriculture/es/.; G. Spencer, Fundamentos de Acuaponía. 2018.; R. Adhikari, S. Rauniyar, N. Pokhrel, A. Wagle, T. Komai, y S. R. Paudel, «Nitrogen recovery via aquaponics in Nepal: current status, prospects, and challenges», SN Appl. Sci., vol. 2, n.o 7, 2020, doi:10.1007/s42452-020-2996-5.; P. Carneiro, A. Maria, M. Nunes, y R. Ujimoto, «Aquaponia: produção sustentável de peixes e vegetais», en Embrapa Tabuleiros Costeiros, 2015.; A. Caldas, I. Castillo, S. Prado, L. Rosales, y L. Vargas, «Diseño y construcción de sistemas acuapónicos a pequeña escala para familias de la región Piura», Pirhua, p. 205, 2019, [En línea]. Disponible en: https://pirhua.udep.edu.pe/handle/11042/4285.; C. M. Correa y J. F. Valencia, «Configuración de un control de temperatura en un sistema embebido de bajo costo, usando herramientas de inteligencia artificial y el internet de las cosas», Rev. Iber. Sist. y Tecnol. Inf., n.o 34, pp. 68-84, 2019, doi:10.17013/risti.34.68-84.; V. Jahnavi y S. Ahamed, «Red inteligente de sensores inalámbricos para invernaderos automatizados», IETE J. Res., vol. 61, n.o 2, pp. 180-185, 2015.; I. Lee y K. Lee, «The Internet of Things (IoT): Applications, investments, and challenges for enterprises», Bus. Horiz., vol. 58, n.o 4, pp. 431-440, 2015, doi:10.1016/j.bushor.2015.03.008.; E. Barrientos, D. Rico, L. A. Coronel, y F. R. Cuesta, «Granja inteligente: Definición de infraestructura basada en internet de las cosas, IpV6 y redes definidas por software», Rev. Ibérica Sist. e Tecnol. Informação, vol. E17, pp. 183-197, 2019.; F. Simanca, J. Paez, J. Cortés, E. Díaz, y J. Palacio, «Sistema de riego para cultivos controlado mediante una aplicación de IoT», Rev. Ibérica Sist. e Tecnol. Inf., pp. 410-424, 2020, [En línea]. Disponible en: www.estudioscualitativos.ec.; E. A. Q. Montoya, S. F. J. Colorado, W. Y. C. Muñoz, y G. E. C. Golondrino, «Propuesta de una Arquitectura para Agricultura de Precisión Soportada en IoT», RISTI - Rev. Iber. Sist. e Tecnol. Inf., n.o 24, pp. 39-56, 2017, doi:10.17013/risti.24.39-56.; S. M. A. Aguirre, D. R. M. Rivadeneira, L. R. G. Torrealba, L. D. N. Erazo, F. I. Rivas-Echeverría, y D. M. R. Albarran, «Metodología para el almacenamiento y visualización de datos masivos en invernadero basado en el Internet de las Cosas IoT.», Rev. Ibérica Sist. e Tecnol. Informação, n.o E15, pp. 1-12, 2018, [En línea]. Disponible en: https://search.proquest.com/docview/2041143320?accountid=134127%0Ahttp://link.periodicos.capes. gov.br/sfxlcl41?url_ver=Z39.882004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&genre=unknown&sid=ProQ:ProQ%3Ahightechjournals& atitle=Metodología+para+el+almacenam; G. E. Chanchí, L. M. Sierra, y W. Y. Campo, «Propuesta de una plataforma académica portable para la construcción de microservicios en entornos de IoT», Rev. Ibérica Sist. e Tecnol. Informação, n.o E27, pp. 1-13, 2020.; J. A. Brenes Carranza, A. Martínez Porras, C. U. Quesada López, y M. Jenkins Coronas, «Sistemas de apoyo a la toma de decisiones que usan inteligencia artificial en la agricultura de precisión», Rev. Ibérica Sist. y Tecnol. la Inf. núm E28, pp. 217-229, n.o 28, pp. 217-230, 2020.; A. Bárta, P. Soucek, V. Bozhynov, y P. Urbanová, «Automatic Multiparameter Acuisition in Aquaponics Systems», en 5th International Work-Conference, IWBBIO 2017 Granada, Spain, April 26– 28, 2017, Proceedings, Part II, 1.a ed., Springer, Ed. Granada, 2017, pp. 712-725.; O. A. O. Valero, P. A. R. Trujillo, N. L. M. Valderrama, M. E. de Oliveira, y A. R. B. Tech, «Monitoreo remoto automatizado de calidad del agua en sistemas acuapónicos en Sao Paulo, Brasil», Rev. Ibérica Sist. e Tecnol. Informação, n.o E31, pp. 223-235, 2020, [En línea]. Disponible en: http://ezproxy.unal.edu.co/scholarly-journals/monitoreo-remoto-automatizado-de-calidad-delagua/docview/2468684076/se-2?accountid=137090.; K. J. Keesman, O. Körner, K. Wagner, J. U. Urban, D. Karimanzira, y S. Rauschenbach, Thomas , Goddek, «Aquaponics Systems Modelling», en Aquaponics Food Production Systems, 1.a ed., Springer, Ed. Cham, 2019, pp. 273-299.; A. Ahmed, S. Zulfiqar, A. Ghandar, Y. Chen, M. Hanai, y G. Theodoropoulos, «Digital Twin Technology for Aquaponics: Towards Optimizing Food Production with Dynamic Data Driven Application Systems», en Methods and Applications for Modeling and Simulation of Complex Systems. 19th Asia Simulation Conference, AsiaSim 2019 Singapore, October 30 – November 1, 2019 Proceedings, Singapur: Springer, 2019, pp. 3-14.; Haryanto, M. Ulum, A. F. Ibadillah, R. Alfita, K. Aji, y R. Rizkyandi, «Smart aquaponic system based Internet of Things (IoT)», J. Phys. Conf. Ser., vol. 1211, n.o 1, 2019, doi:10.1088/17426596/1211/1/012047.; M. Dayahna Caro M., E. Romero-Riaño, M. Alexandra Espinosa C, y C. D. Guerrero, «Evaluando contribuciones de usabilidad en soluciones TIC-IOT para la agricultura: Una perspectiva desde la bibliometría», RISTI - Rev. Iber. Sist. e Tecnol. Inf., vol. 2020, n.o E28, pp. 681-692, 2020, [En línea]. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.085081040306&partnerID=40&md5=f59611d7803425f519635fe4470fdaca.; P. Rituay Trujillo, N. L. Murga Valderrama, M. D. P. Bustos Chavéz, P. Chauca Valqui, y J.-A. Campos Trigoso, «Evolución y tendencias investigativas de tecnologías aplicadas en los agronegocios : una revisión sistemática de la literatura», Iber. J. Inf. Syst. Technol., vol. 39, pp. 189-199, 2021.; S. F. Mejía S., L. Y. Flóres G., y C. D. Guerrero S., «Desarrollo tecnológico del IoT en el sector de la agricultura : una visión desde el análisis de patentes», Rev. Ibérica Sist. e Tecnol. Informação, n.o 28, pp. 375-386, 2020.; L. A. Rodríguez-umaña, «efectos de la variación de caudal sobre los niveles de amonio , nitrato y pH de un prototipo de cultivo acuapónico Evaluation of the effects of varying water flow on the levels of Ammonium , Nitrate and Ph of a prototype aquaponic system . Avaliação dos e», vol. 7, n.o 2, pp. 126-138, 2016.; M. Eck, K. Oliver, y M. H. Jijakli, «Nutrient Cycling in Aquaponics Systems», en Aquaponics Food Production Systems, 1ra ed., S. Goddek, A. Joyce, B. Kotzen, y G. Burnell M., Eds. Switzerland: Springer Nature Switzerland, 2020, pp. 231-246.; M. Á. Barrera Pérez, N. Y. Serrato Losada, E. Rojas Sánchez, y G. Mancilla Gaona, «Estado del arte en redes definidas por software (SDN)», Visión Electrónica, vol. 13, n.o 1, pp. 178-194, 2019, doi: https://doi.org/10.14483/22484728.14424.; J. C. Najar-Pacheco, J. A. Bohada-Jaime, y W. Y. Rojas-Moreno, «Vulnerabilidades en el internet de las cosas», Visión Electrónica, vol. 13, n.o 2, pp. 312-321, 2019, doi: https://doi.org/10.14483/22484728.14424.; J. A. Londoño Alzate, A. Fonseca Velásquez, y E. A. Delgadillo, «Laboratorios remotos: estudio de caso con una planta térmica didáctica», Visión Electrónica, vol. 12, n.o 2, pp. 265-277, 2018, doi: https://doi.org/10.14483/22484728.14263.; I. J. Donado Romero y J. C. Villamizar Rincón, «“Metodología para estandarización de componentes SCADA bajo normas ISA», Visión Electrónica, vol. 12, n.o 1, pp. 14-21, 2018, doi: https://doi.org/10.14483/22484728.13402.; O. L. Quintero, H. Medina, y E. A. Pineda Muñoz, «Automatización para dosificación de reactivos en clasificación de carbón», Visión Electrónica, vol. 11, n.o 1, pp. 45-54, 2017, doi: https://doi.org/10.14483/22484728.10995.; C. González, D. Zamara, S. R. González B, I. F. Mondragón B, y M. Moreno, «Inspección no invasiva de Physalis peruviana usando técnicas (Vir/Nir)», Visión Electrónica, vol. 10, n.o 1, pp. 22-28, 2016, doi: https://doi.org/10.14483/22484728.11702.; L. E. Galindo C, A. A. Aguilera, y L. A. Rojas Castellar, «Automatización en la industria de bolígrafos: El caso del estampado», Visión Electrónica, vol. 5, n.o 1, pp. 103-113, 2011, doi: https://doi.org/10.14483/22484728.3512.; A. Garcia Chacon, J. L. Martínez Rodríguez, y E. Y. Torres Castro, «Automatización de procesos en el sector plásticos: el caso de una inyectora», Visión Electrónica, vol. 2, n.o 2, pp. 52-63, 2008, [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/796.; Zamora Musa, Ronald, y “Laboratorios Remotos: Actualidad y Tendencias Futuras." Scientia Et Technica XVII, no. 51 (2012):113-118. Redalyc, https://www.redalyc.org/articulo.oa?id=84923910017.; C. I. Jiménez, «Propuesta pedagógica para el uso de laboratorios virtuales como actividad complementaria en las asignaturas teórico-prácticas,» Revista Mexicana De Investigación Educativa, 2014.; Nacional, M. d. (2 de septiembre de 2020). Ministerio de Educación Nacional. Obtenido de https://www.mineducacion.gov.co/1759/w3-article-400640.html?_noredirect=1.; Ramírez, E. A. (2014). Una Mirada Crítica al Papel de las TIC en la Educación Superior. Ibagué: Universidad del Tolima; A. F. Reinoso López y J. C. Forero Jiménez, «Diseño e implementación de un laboratorio con características de acceso remoto orientado hacia el calentamiento de agua» Universidad Distrital Francisco José de Caldas, Bogotá, 2021.; N. LabVIEW, «NI home,» [En línea]. Available: https://www.ni.com/academic/students/learnlabview/esa/environment.htm.; S. C. Giselle, «Laboratorio virtual y remoto, aprendiendo a través de la experimentación, » Universidad Tecnológica Nacional, 2017.; Heradio, R. et al. Virtual and remote labs in education: A bibliometric analysis. Computers & Education, Volume 98, 2016, Pages 14-3.; Unai H.J.; Javier G. Zubia. Remote measurement and instrumentation laboratory for training in real analog electronic experiments. Measurement, Volume 82, 2016, Pages 123-134.; B.R. Poorna chandra, K.P. Geevarghese, K.V. Gangadharan. Design and Implementation of Remote Mechatronics Laboratory for e-Learning Using LabVIEW and Smartphone and Cross-platform Communication Toolkit (SCCT), Procedia Technology, Volume 14, 2014, Pages 108-115.; Van Wylen, G. J.; Sonntag, R. E. Fundamentals of Classical Thermodynamics. Ed. John Wiley & Sons: Singapore, 3ra. edición, 1985.; Petrescu, R. V. V., Aversa, R., Apicella, A., Mirsayar, M., Kozaitis, S., Abu-Lebdeh, T. y Tiberiu Petrescu, F. I. (2017). The Inverse Kinematics of the Plane System 2-3 in a Mechatronic MP2R System, by a Trigonometric Method. Journal of Mechatronics and Robotics, 1(2), 75–87. https://doi.org/10.3844/jmrsp.2017.75.87.; Y Sethi, S. P., Sriskandarajah, C., Sorger, G., Blazewicz, J. y Kubiak, W. (1992). Sequencing of parts and robot moves in a robotic cell. International Journal of Flexible Manufacturing Systems, 4(3-4), 331–358. https://doi.org/10.1007/bf01324886.; Blazewicz, J., Eiselt, H.A., Finke, G., Laporte, G., Weglarz, J., 1991. Scheduling tasks and vehicles in a flexible manufacturing system. International Journal of Flexible Manufacturing Systems 4, 5–16.; Deuerlein, C., Müller, F., Seßner, J., Heß, P., & Franke, J. (2021). Improved design flexibility of open robot cells through tool-center-point monitoring. Procedia CIRP, 100, 295–300. https://doi.org/10.1016/j.procir.2021.05.069.; Veiga, G., Pires, J. N. y Nilsson, K. (2009). Experiments with service-oriented architectures for industrial robotic cells programming. Robotics and Computer-Integrated Manufacturing, 25(4-5), 746– 755. https://doi.org/10.1016/j.rcim.2008.09.001.; Zhao, Q., Sun, M., Cui, M., Yu, J., Qin, Y., & Zhao, X. (2015). Robotic Cell Rotation Based on the Minimum Rotation Force. IEEE Transactions on Automation Science and Engineering, 12(4), 1504– 1515. https://doi.org/10.1109/tase.2014.2360220.; G. Michalos, S. Makris, P. Tsarouchi, T. Guasch, D. Kontovrakis, G. Chryssolouris, Design Considerations for Safe Human-robot Collaborative Workplaces, in: Understanding the life cycle implications of manufacturing, 2015, pp. 248–253.; E. Magrini, F. Ferraguti, A.J. Ronga, F. Pini, A. de Luca, F. Leali, Human-robot coexistence and interaction in open industrial cells, in: Journal of Robotics and Computer-Integrated Manufacturing, 2019, p. 101846.; datasheet PCA9685PW. (2009, 16 de julio). DigChip IC database.; Zamora Navarro, F. J., & Valiente Cristancho, A. (2015). Tasa de muestreo ADC en microcontroladores avanzados de 8 bits. Visión electrónica, 9(1), 128-138. https://doi.org/10.14483/22484728.11022.; García-Guerrero, E., Inzunza-González, E., López-Bonilla, O., Cárdenas-Valdez, J., & TleloCuautle, E. (2020). Randomness improvement of chaotic maps for image encryption in a wireless communication scheme using PIC-microcontroller via Zigbee channels. Chaos, Solitons & Fractals, 133, 109646. https://doi.org/10.1016/j.chaos.2020.109646.; I2C - Puerto, Introducción, trama y protocolo - HETPRO/TUTORIALES. (s. f.). HETPRO/TUTORIALES. https://hetpro-store.com/TUTORIALES/i2c/.; Z. Boric and B. Markovic, "The talking thermometer simulator based on the DS1820 sensor and PIC18F45K22 microcontroller," 2012 20th Telecommunications Forum (TELFOR), 2012, pp. 544-547, doi:10.1109/TELFOR.2012.6419268.; Corke, P. I. (1996). A robotics toolbox for MATLAB. IEEE Robotics and Automation Magazine, 3(1), 24–32. https://doi.org/10.1109/100.486658.; Y. Fang and X. Chen, "Design and Simulation of UART Serial Communication Module Based on VHDL," 2011 3rd International Workshop on Intelligent Systems and Applications, 2011, pp. 1-4, doi:10.1109/ISA.2011.5873448.; Calderón Acero, J., & Parra Garzón, I. V. (2010). Controladores difusos en microcontroladores: software para diseño e implementación. Visión electrónica, 4(2), 64-76. https://doi.org/10.14483/22484728.273.; D’Souza, A., Vijayakumar, S., & Schaal, S. (2001). Learning inverse kinematics. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium (Cat. No.01CH37180). Published. https://doi.org/10.1109/iros.2001.973374.; R. Junge, B. König, M. Villarroel, T. Komives, and M. H. Jijakli, “Strategic points in aquaponics,” Water (Switzerland). 2017, doi:10.3390/w9030182.; C. Maucieri et al., “Life cycle assessment of a micro aquaponic system for educational purposes built using recovered material,” J. Clean. Prod., vol. 172, pp. 3119–3127, 2018, doi: https://doi.org/10.1016/j.jclepro.2017.11.097.; B. König, J. Janker, T. Reinhardt, M. Villarroel, and R. Junge, “Analysis of aquaponics as an emerging technological innovation system,” J. Clean. Prod., 2018, doi:10.1016/j.jclepro.2018.01.037.; Z. Hu, J. W. Lee, K. Chandran, S. Kim, A. C. Brotto, and S. K. Khanal, “Effect of plant species on nitrogen recovery in aquaponics,” Bioresour. Technol., vol. 188, pp. 92–98, 2015, doi: https://doi.org/10.1016/j.biortech.2015.01.013.; W. Kloas et al., “A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts,” Aquac. Environ. Interact., 2015, doi:10.3354/aei00146.; C. Maucieri et al., “Life cycle assessment of a micro aquaponic system for educational purposes built using recovered material,” J. Clean. Prod., 2018, doi:10.1016/j.jclepro.2017.11.097.; Y. Wei, W. Li, D. An, D. Li, Y. Jiao, and Q. Wei, “Equipment and Intelligent Control System in Aquaponics: A Review,” IEEE Access. 2019, doi:10.1109/ACCESS.2019.2953491.; Z. M. Gichana, D. Liti, H. Waidbacher, W. Zollitsch, S. Drexler, and J. Waikibia, “Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation,” Aquaculture International. 2018, doi:10.1007/s10499-018-0303-x.; W. A. Lennard and B. V. Leonard, “A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic test system,” Aquac. Int., 2006, doi:10.1007/s10499-006-9053-2.; I. Pinheiro et al., “Aquaponic production of Sarcocornia ambigua and Pacific white shrimp in biofloc system at different salinities,” Aquaculture, 2020, doi:10.1016/j.aquaculture.2019.734918.; Z. Schmautz et al., “Tomato productivity and quality in aquaponics: Comparison of three hydroponic methods,” Water (Switzerland), 2016, doi:10.3390/w8110533.; J. Dalsgaard, I. Lund, R. Thorarinsdottir, A. Drengstig, K. Arvonen, and P. B. Pedersen, “Farming different species in RAS in Nordic countries: Current status and future perspectives,” Aquac. Eng., vol. 53, pp. 2–13, 2013, doi: https://doi.org/10.1016/j.aquaeng.2012.11.008.; J. Suhl et al., Prospects and challenges of double recirculating aquaponic systems (DRAPS) for intensive plant production, vol. 1227. 2018.; H. R. Roosta and M. Hamidpour, “Effects of foliar application of some macro- and micronutrients on tomato plants in aquaponic and hydroponic systems,” Sci. Hortic. (Amsterdam)., vol. 129, no. 3, pp. 396–402, 2011, doi: https://doi.org/10.1016/j.scienta.2011.04.006.; Y. Fang et al., “Improving nitrogen utilization efficiency of aquaponics by introducing algalbacterial consortia,” Bioresour. Technol., vol. 245, pp. 358–364, 2017, doi: https://doi.org/10.1016/j.biortech.2017.08.116.; B. S. Cerozi and K. Fitzsimmons, “Phosphorus dynamics modeling and mass balance in an aquaponics system,” Agric. Syst., vol. 153, pp. 94–100, 2017, doi: https://doi.org/10.1016/j.agsy.2017.01.020.; D. Karimanzira, K. J. Keesman, W. Kloas, D. Baganz, and T. Rauschenbach, “Dynamic modeling of the INAPRO aquaponic system,” Aquac. Eng., vol. 75, pp. 29–45, 2016, doi: https://doi.org/10.1016/j.aquaeng.2016.10.004.; C. Lee and Y.-J. Wang, “Development of a cloud-based IoT monitoring system for Fish metabolism and activity in aquaponics,” Aquac. Eng., vol. 90, p. 102067, 2020, doi: https://doi.org/10.1016/j.aquaeng.2020.102067.; M. Manju, V. Karthik, S. Hariharan, and B. Sreekar, “Real time monitoring of the environmental parameters of an aquaponic system based on internet of things,” 2017, doi:10.1109/ICONSTEM.2017.8261342.; A. R. Yanes, P. Martinez, and R. Ahmad, “Towards automated aquaponics: A review on monitoring, IoT, and smart systems,” Journal of Cleaner Production. 2020, doi:10.1016/j.jclepro.2020.121571.; K. S. Khan, R. Kunz, J. Kleijnen, and G. Antes, “Five steps to conducting a systematic review,” J. R. Soc. Med., vol. 96, no. 3, pp. 118–121, 2003, doi:10.1258/jrsm.96.3.118.; M. Petticrew, “Petticrew_2001_Myths_Misconceptions,” vol. 322, no. January, 2001.; J. Mori and R. Smith, “Transmission of waterborne fish and plant pathogens in aquaponics and their control with physical disinfection and filtration: A systematized review,” Aquaculture. 2019, doi:10.1016/j.aquaculture.2019.02.009.; A. S. Oladimeji, S. O. Olufeagba, V. O. Ayuba, S. G. Sololmon, and V. T. Okomoda, “Effects of different growth media on water quality and plant yield in a catfish-pumpkin aquaponics system,” J. King Saud Univ. - Sci., vol. 32, no. 1, pp. 60–66, 2020, doi:10.1016/j.jksus.2018.02.001.; M. N. Mamatha and S. N. Namratha, “Design & implementation of indoor farming using automated aquaponics system,” 2017, doi:10.1109/ICSTM.2017.8089192.; P. Boonrawd, S. Nuchitprasitchai, and Y. Nilsiam, “Aquaponics Systems Using Internet of Things,” 2020, doi:10.1007/978-3-030-44044-2_5.; R. Calone et al., “Improving water management in European catfish recirculating aquaculture systems through catfish-lettuce aquaponics,” Sci. Total Environ., vol. 687, pp. 759–767, 2019, doi: https://doi.org/10.1016/j.scitotenv.2019.06.167.; J. P. Mandap et al., “Oxygen Monitoring and Control System Using Raspberry Pi as Network Backbone,” TENCON 2018 - 2018 IEEE Reg. 10 Conf., no. October, pp. 1381–1386, 2018.; S. E. Wortman, “Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system,” Sci. Hortic. (Amsterdam)., vol. 194, pp. 34–42, 2015, doi: https://doi.org/10.1016/j.scienta.2015.07.045.; S. Y. Choi and A. M. Kim, “Development of indoor aquaponics control system using a computational thinking-based convergence instructional model,” Univers. J. Educ. Res., 2019, doi:10.13189/ujer.2019.071509.; S. Goddek and O. Körner, “A fully integrated simulation model of multi-loop aquaponics: A case study for system sizing in different environments,” Agric. Syst., 2019, doi:10.1016/j.agsy.2019.01.010.; W. Vernandhes, N. S. Salahuddin, A. Kowanda, and S. P. Sari, “Smart aquaponic with monitoring and control system based on IoT,” Proc. 2nd Int. Conf. Informatics Comput. ICIC 2017, vol. 2018-Janua, pp. 1–6, 2018, doi:10.1109/IAC.2017.8280590.; D. Karimanzira and T. Rauschenbach, “Enhancing aquaponics management with IoT-based Predictive Analytics for efficient information utilization,” Inf. Process. Agric., vol. 6, no. 3, pp. 375– 385, 2019, doi: https://doi.org/10.1016/j.inpa.2018.12.003.; A. M. Nagayo, C. Mendoza, E. Vega, R. K. S. Al Izki, and R. S. Jamisola, “An automated solar-powered aquaponics system towards agricultural sustainability in the Sultanate of Oman,” 2017 IEEE Int. Conf. Smart Grid Smart Cities, ICSGSC 2017, pp. 42–49, 2017, doi:10.1109/ICSGSC.2017.8038547.; D. Pantazi, S. Dinu, and S. Voinea, “The smart aquaponics greenhouse – an interdisciplinary educational laboratory,” Rom. Reports Phys., 2019.; A. Tumbaco y B. Daniela, «Optimización del proceso productivo para incrementar la Utilidad en Mundo Verde, » Universidad de Guayaquil Facultad de Ciencias Administrativas, Guayaquil, Ecuador, 2017.; J. Montero y S. Cecilia, «Invernadero para la, » Institut de Recerca i Tecnología Agroalimentaries de Cabrils, España, 2008.; G. Ramón y F. Rodríguez, «Algoritmo De Navegación Reactiva De Robots, » Universidad de Almería, España, 2015.; K. Yingchun y S. Yue, «A Greenhouse Temperature and Humidity Controller Based on MIMO Fuzzy System, » International Conference on Intelligent System Design and Engineering Application, nº 1, pp. 35-39, 2010.; S. A. Giraldo, R. C. Castaño, C. Flesch y J. E. Normey-Rico, «Multivariable Greenhouse Control Using the Filtered Smith Predictor, » Journal of Control, Automation and Electrical Systems, vol. 27, nº 4, pp. 349-358, 2016.; M. Heidari, «Climate Control of An Agricultural Greenhouse by Using Fuzzy Logic SelfTuning PID Approach, » Proceedings of the 23rd International Conference on Automation & Computing, University of Huddersfield, 2017.; J. G. Jurado, «diseño de sistemas de control multivariable por desacoplo con controladores PID, » madrid, 2012.; M. Ajit K, Introduction to Control Engineering Modeling, Analysis and Desing, NEW AGE INTERNATIONAL PUBLISHERS, 2006.; M. G. Martínez, «Síntesis de controladores robustos mediante el análisis de la compatibilidad de especificaciones e incertidumbre, » Tesis de Grado- Universidad Pública de Navarra, 2001.; C. H. Houpis, S. N. Sheldon y J. J. D’Azzo, Linear Control System Analysis and Design: Fifth Edition, London: Revised and Expanded., 2003.; J. Elso, M. G. Martínez y M. Garcia-Sanz, «Quantitative Feedback Control for Multivariable Model Matching and Disturbance Rejection, » International Journal of Robust and Nonlinear Control, vol. 1, nº 27, pp. 121-134, 2017.; M. Gil-Martínez y M. García-Sanz, «Simultaneous meeting of robust control specifications in QFT, » International Journal of Robust and Nonlinear Control, vol. 7, nº 13, p. 643–656., 2003.; Y. Chait y O. Yaniv, «Multi-Input/Single-Output Computer-Aided Control Design Using the Quantitative Feedback Theory, » International Journal of Robust and Nonlinear Control, vol. 1, nº 3, pp. 47-54, 1993; Z. Hu, W. Wan and K. Harada, "Designing a Mechanical Tool for Robots With Two-Finger Parallel Grippers," in IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2981-2988, July 2019, doi:10.1109/LRA.2019.2924129.; L. Berscheid, T. Rühr and T. Kröger, "Improving Data Efficiency of Self-supervised Learning for Robotic Grasping," 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 2125-2131, doi:10.1109/ICRA.2019.8793952.; Y. Domae, A. Noda, T. Nagatani and W. Wan, "Robotic General Parts Feeder: Bin-picking, Regrasping, and Kitting," 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 5004-5010, doi:10.1109/ICRA40945.2020.9197056.; J. H. Sanchez, W. Amanhoud, A. Billard and M. Bouri, "Foot Control of a Surgical Laparoscopic Gripper via 5DoF Haptic Robotic Platform: Design, Dynamics and Haptic Shared Control," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 1255912566, doi:10.1109/ICRA48506.2021.9561887.; S. Ainetter and F. Fraundorfer, "End-to-end Trainable Deep Neural Network for Robotic Grasp Detection and Semantic Segmentation from RGB," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 13452-13458, doi:10.1109/ICRA48506.2021.9561398.; S. K. Rajput, A. Kaushal, R. K. Singh and A. K. Sharma, "A Study and Fabrication of SMA based 3D Printed Adaptive Gripper," 2021 Smart Technologies, Communication and Robotics (STCR), 2021, pp. 1-5, doi:10.1109/STCR51658.2021.9588838.; C. Son and S. Kim, "A Shape Memory Polymer Adhesive Gripper For Pick-and-Place Applications," 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 10010-10016, doi:10.1109/ICRA40945.2020.9197511.; S. D. Liyanage, A. M. Mazid and P. Dzitac, "An Innovative Whisker Tactile Sensor for Intelligent Robotic Grasping," IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, 2021, pp. 1-6, doi:10.1109/IECON48115.2021.9589765.; T. V. Prabhu, P. V. Manivannan, D. Roy and Yathishkumar, "A robust tactile sensor matrix for intelligent grasping of objects using robotic grippers," 2021 International Symposium of Asian Control Association on Intelligent Robotics and Industrial Automation (IRIA), 2021, pp. 400-405, doi:10.1109/IRIA53009.2021.9588669.; G. Hwang, J. Park, D. S. D. Cortes, K. Hyeon and K. -U. Kyung, "Electroadhesion-Based High-Payload Soft Gripper With Mechanically Strengthened Structure," in IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 642-651, Jan. 2022, doi:10.1109/TIE.2021.3053887.; J. Guo, J. -H. Low, X. Liang, J. S. Lee, Y. -R. Wong and R. C. H. Yeow, "A Hybrid Soft Robotic Surgical Gripper System for Delicate Nerve Manipulation in Digital Nerve Repair Surgery," in IEEE/ASME Transactions on Mechatronics, vol. 24, no. 4, pp. 1440-1451, Aug. 2019, doi:10.1109/TMECH.2019.2924518.; C.I. Basson, G. Bright y A.J. Walker. “Testing flexible grippers for geometric and surface grasping conformity in reconfigurable assembly systems.” En: South African Journal of Industrial Engineering 29.1 (2018), pags. 128 -142. ISSN: 2224-7890.; Festo AG & Co.KG. “MultiChoiceGripper”. En: Variable gripping based on human hand (2018).; https://ultimaker.com/es/software/ultimaker-cura, consultado Noviembre de 2021.; IFR, “Definition of Industrial Robot.” [Online]. Available: https://ifr.org/industrial-robots. [Accessed: 15-Sep-2021].; A. A. Malik and A. Bilberg, “Collaborative robots in assembly: A practical approach for tasks distribution,” Procedia CIRP, vol. 81, pp. 665–670, Jan. 2019.; P. Andhare and S. Rawat, “Pick and place industrial robot controller with computer vision,” Proc. - 2nd Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2016, Feb. 2017.; J. Iqbal, Z. H. Khan, and A. Khalid, “Prospects of robotics in food industry,” Food Sci. Technol., vol. 37, no. 2, pp. 159–165, May 2017.; K. H. Tantawi, A. Sokolov, and O. Tantawi, “Advances in Industrial Robotics: From Industry 3.0 Automation to Industry 4.0 Collaboration,” TIMES-iCON 2019 - 2019 4th Technol. Innov. Manag. Eng. Sci. Int. Conf., Dec. 2019.; J. J. Vaca González, C. A. Peña Caro, and H. Vacca González, “Cinemática inversa de robot serial utilizando algoritmo genético basado en MCDS,” Rev. Tecnura, vol. 19, no. 44, p. 33, Apr. 2015.; O. A. Vivas Alban, M. F. Piamba Mamián, and Y. E. Otaya Bravo, “Diseño y construcción de una interfaz háptica de seis grados de libertad,” Tecnura, vol. 21, no. 54, pp. 33–40, Oct. 2017.; C. Ma, Y. Zhang, J. Cheng, B. Wang, and Q. Zhao, “Inverse kinematics solution for 6R serial manipulator based on RBF neural network,” Int. Conf. Adv. Mechatron. Syst. ICAMechS, vol. 0, pp. 350–355, Jul. 2016.; V. Noppeney, T. Boaventura, and A. Siqueira, “Task-space impedance control of a parallel Delta robot using dual quaternions and a neural network,” J. Brazilian Soc. Mech. Sci. Eng. 2021 439, vol. 43, no. 9, pp. 1–11, Aug. 2021.; M. Meghana et al., “Hand gesture recognition and voice-controlled robot,” Mater. Today Proc., vol. 33, pp. 4121–4123, Jan. 2020.; P. M. Reddy, S. P. Kalyan Reddy, G. R. Sai Karthik, and B. K. Priya, “Intuitive Voice Controlled Robot for Obstacle, Smoke and Fire Detection for Physically Challenged People,” Proc. 4th Int. Conf. Trends Electron. Informatics, ICOEI 2020, pp. 763–767, Jun. 2020.; G. Y. Luo, M. Y. Cheng, and C. L. Chiang, “Vision-based 3-D object pick-And-place tasks of industrial manipulator,” 2017 Int. Autom. Control Conf. CACS 2017, vol. 2017-November, pp. 1–7, Feb. 2018.; M. Zhao, Y. Peng, L. Li, and X. Qiao, “Detection and classification manipulator system for apple based on machine vision and optical technology,” ASABE 2020 Annu. Int. Meet., pp. 1-, 2020.; Annoni, Federico. 2000. “Sistemas de Sujecion y Soporte.” Journal of Petrology 369(1): 1689– 99. http://dx.doi.org/10.1016/j.jsames.2011.03.003%0Ahttps://doi.org/10.1016/j.gr.2017.08.001%0Ahtt p://dx.doi.org/10.1016/j.precamres.2014.12.018%0Ahttp://dx.doi.org/10.1016/j.precamres.2011.08. 005%0Ahttp://dx.doi.org/10.1080/00206814.2014.902757%0Ahttp://dx.“FT-TMH06.Pdf.”; Garzón, Yamid. 2020. “Sensores y Actuadores Introducción:” (2014): 1–32.; Hidai-go, Alfonso. 1987. “Construccion de Un Dinamometro Para Medir Fuerzas de Corte En La Operacion de Taladro.” Corporacion universitaria autonoma de occidente, programa de ingenieria.; Karabay, Sedat. 2007. “Analysis of Drill Dynamometer with Octagonal Ring Type Transducers for Monitoring of Cutting Forces in Drilling and Allied Process.” Materials and Design 28(2): 673–85.; Mohanraj, T., S. Shankar, R. Rajasekar, and M. S. Uddin. 2020. “Design, Development, Calibration, and Testing of Indigenously Developed Strain Gauge Based Dynamometer for Cutting Force Measurement in the Milling Process.” Journal of Mechanical Engineering and Sciences 14(2): 6594–6609.; Norton, Robert L. 2006. Diseño de Máquinas.; Ramírez, Luis Pablo. 2011. “Diseño De Un Dinamómetro Mediante El Método De Los Elementos Finitos.” Tendencias en Tecnología de Medición de Fuerza (6360).; Schmid, S Kalpakjian S R. 2002. ManufacturA, INGENIERÍA Y TecNOLOGÍA.; Setiyawan. 2013. 53 Journal of Chemical Information and Modeling Fundamentos de Manufactura Moderna 3edi Groover.; Morral, P. Metalurgía General, p. 1163, en Google Libros 2004.; Metalurgia general. II - F. R. Morral, P. Molera - Google Libros; Tecnitool. 2020. “DIFERENCIAS ENTRE LAS BROCAS DE TITANIO Y LAS DE COBALTO”. Diferencias entre broca acero rápido HSS con titanio y/o cobalto (tecnitool.es) demaquinasyherramientas1. 2010. “Partes de la broca”. De máquinas y herramientas. USAPartes Broca %7C De Máquinas y Herramientas (demaquinasyherramientas.com).; Esquivel R. 2017. “DISTINTOS TIPOS DE BROCAS PARA DISTINTOS TIPOS DE PROFESIONALES”. Revista Ferrepat. Distintos tipos de brocas para distintos tipos de profesionales (ferrepat.com).; Ingenieria mecánica y automotriz. 2020. “Qué es el Coeficiente de Poisson y cómo se calcula?”; ] Estudiantes metalografia. 2010. “Diagramas esfuerzo-deformación unitaria, convencional y real, para un material dúctil (acero) (no de escala)”. Universidad Tecnológica de Pereira.; Diagramas esfuerzo-deformación unitaria, convencional y real, para un material dúctil (acero) (no de escala) %7C METALOGRAFÍA – UNIVERSIDAD TECNOLÓGICA DE PEREIRA (utp.edu.co).; O. Herrera, A. Quino, B. Cabrera, “Control de cortinas”, noviembre 2021. [En línea]. Disponible en http://micro2verano2012.blogspot.com/2012/03/control-de-cortinas.html.; Fuenteelectronica.es, “Fotocelda – Control de dispositivos con la luz”, noviembre 2017. [En línea]. Disponible en: https://tuelectronica.es/fotocelda-control-de-dispositivos-con-la-luz/ [3] Electronicathidos, “Fotoresistencia LDR 5mm, 2 Mohms”, noviembre 2021. [En línea]. Disponible en: https://electronicathido.com/detallesProducto.php?id=MkxldEdPZ3AwbjNMUEV3aWdXb0pSdz09.; Real Academia Española,”Relé”, noviembre 2021.[En línea]. Disponible en: https://dle.rae.es/rel%C3%A9.; A.Perez-Paris,”RELÉS ELECTROMAGNÉTICOS Y ELECTRÓNICOS”, noviembre 2021 En línea]. Disponible en: http://www.vivatacademia.net/index.php/vivat/article/view/373/689.; Electro Club Didactic,”Potenciómetros (teoría y practica)”, noviembre 2021.[En línea]. Disponible en: http://www.electroclub.com.mx/2015/08/potenciometros-teoria-y-practica.html.; Chabonnier,”Potenciómetros”, noviembre 2021.[En línea]. Disponible en: https://deresistencias.com/wp-content/uploads/2020/08/Diagrama-en-blanco-64-1.png.; Pascual,J ,”Este gadget convierte tus viejas cortinas en cortinas inteligentes controladas con el móvil”,noviembre 2021 .[En línea]. Disponible en: https://computerhoy.com/noticias/life/gadgetconvierte-viejas-cortinas-cortinas-inteligentes-controladas-movil-516887.; Tecnología a tu alcance ,”¿Cómo hacer un circuito de apertura y cierre de cortinas?”,noviembre de 2021 .[En línea]. Disponible en: https://latecnologiaatualcance.com/como-hacer-un-circuito-deapertura-y-cierre-de-cortinas/.; Ruales.A ,”Diseño de puente Wheatstone para una fotoresistencia.”,noviembre de 2021.[En línea]. Disponible en: https://www.youtube.com/watch?v=Vz_6vPjn4Bo.; Figueiras.T ,”Cómo convertir el MOVIMIENTO ROTATORIO de un Motor en un MOVIMIENTO LINEAL”,noviembre de 2021 .[En línea]. Disponible en: https://youtu.be/WynJqz-hibA.; OMS, “Inocuidad de los alimentos”, 30/04 de 2020, [online]. Available at: https://www.who.int/es/news-room/fact-sheets/detail/food-safety.; Minsalud,” Enfermedades transmitidas por alimentos disminuyeron en 2020”,14/08/2020, [online]. Available at: https://www.minsalud.gov.co/Paginas/Enfermedades%20transmitidas%20por%20alimento s%20disminuyeron%20en%202020.aspx.; BES (Boletín Epidemiológico Semanal), “Vigilancia de brotes de enfermedades transmitidas por alimentos, Colombia, semana epidemiológica 31 de 2020”, 26/07 de 2020, [online]. Available at: https://www.ins.gov.co/buscador eventos/BoletinEpidemiologico/2020_Boletin_epidemiologico_semana_31.pdf.; BES (Boletín Epidemiológico Semanal),” Las enfermedades transmitidas por Alimentos-ETA”,23/12 de 2018, [online]. Available at: https://www.ins.gov.co/buscador eventos/boletinepidemiologico/2018%20bolet%C3%ADn%20epidemiol%C3%B3gico%20s emana%2052.pdf.; FAO, FIDA y PMA, Seguimiento de la seguridad alimentaria y la nutrición en apoyo de la Agenda 2030 para el Desarrollo Sostenible: Balance y perspectivas, 2016. [Online]. Available at: https://www.fao.org/3/i6188s/i6188s.pdf.; Ministerio de salud, Calidad e inocuidad de alimentos,15 de noviembre de 2021. [Online]. Available at: www.minsalud.gov.co/salud/Paginas/inocuidad-alimentos.aspx.; David K. Lewis,Method and apparatus for washing fruits and vegetables,2009. [Online]. Available at: patents.google.com/patent/US8293025B2/en?q=A23N12%2f02&oq=A23N12%2f02.; Garcia Portillo, M., 2015. Google Patents. [online] Patents.google.com. Available at: patents.google.com/patent/ES2544005A1/es?assignee=TECNIDEX&oq=TECNIDEX.; Di Pannini, H., 2011. Google Patents. [online] Patents.google.com. Available at:; J Goodale, R., 1975. US3880068A - Apparatus for washing and blanching of vegetables - Google Patents. [online] Patents.google.com. Available at: .; A Tiby, G., 1969. US3456659A - Apparatus for treating food articles - Google Patents. [online] Patents.google.com. Available at: .; Who.int, 2020.-"Inocuidad de los alimentos"-, [Online]. Available: .; Ministerio de salud, ABECÉ de la inocuidad de alimentos, 2017. [Online]. Available at: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/abc inocuidad.pdf.; E. I. Alimentos, Inocuidad alimentaria en América Latina, 2015. [Online]. Available: www.revistaialimentos.com/ediciones/edicion-19/inocuidad-alimentaria-en-america latina/>; Fao.org, CODEXALIMENTARIUS FAO-WHO, 1994 [online] Available at: www.fao.org/fao-who-codexalimentarius/es/> [Accessed 8 July 2021].; Fao.org. n.d. ,“Acerca del Codex %7C CODEXALIMENTARIUS FAO-WHO” ,not date, [online]. Available at: .; AJ Avances,” Normograma del Instituto Nacional de Vigilancia de Medicamentos y Alimentos, INVIMA”, 13 /12 de 2020, [online]. Available at: .; Miquel Mor,”¿aplicas biocidas? Descubre nueva formacion necesaria”, 29/10/2014, [online] Available at: .; LA VERDAD MULTIMEDIA, S.A,”Descontaminación superficial de alimentos que aumenta su vida útil”, 16/01 /2017,[online] Available at: .; Dirección Regional de Inocuidad de los Alimentos,”Guía para uso de cloro en desinfección de frutas y hortalizas de consumo fresco, equipos y superficies en establecimientos ”, 15/05/2019, [online] Available at:; Equipos, M., n.d. TRANSPORTADOR DE TORNILLO SIN FIN CHILE – MYP EQUIPOS. [online] Mypequipos.com. Available at: [Accessed 16 November 2021].; Intralogistica, I., 2018. Qué son las bandas transportadoras. [online] Irp intralogistica.com. Available at: [Accessed 16 November 2021].; Motorex. n.d. El uso de la faja transportadora en las industrias - Motorex. [online] Available at: [Accessed 16 November 2021].; Nittacorporation.com. n.d. Bandas transportadoras para alimentos. [online] Available at: .; Indomaxve.com. 2019. Conoce los tipos de Mangueras industriales que existen. [online] Available at: .; Blog de Ventageneradores. 2016. Tipos de Motobombas o Bombas de Agua: según tipos de aguas, caudal o presión. [online] Available at: .; GTE. n.d. Apuntes SEC. UIB. [online] Available at: .; Gecousb.com.ve. n.d. Motores 1LA7. [online] Available at: .; Appinventor.mit.edu. 2012. About Us. [online] Available at: .; Irdmailp.com. n.d. 37mm DC 12V Motor de Reducción de Velocidad Caja de Engranajes de Alta Fuerza de Tensión Motor Reductor de Velocidad 3.5/15/30/70RPM(70RPM). [online] Available at: .; López, S., 2020. Qué es Firebase: funcionalidades, ventajas y conclusiones. [online] DIGITAL55. Available at: .; Y. Rojas, K. Aguado, and I. González, “La nanomedicina y los sistemas de liberación de fármacos: ¿la (r)evolución de la terapia contra el cáncer?,” Educ. Quim., vol. 27, no. 4, pp. 286–291, 2016.; R. R. Wakaskar, “General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes,” J. Drug Target., vol. 26, no. 4, pp. 311–318, 2018.; B. Alfonso and C. Casado, “DENDRÍMEROS: MACROMOLÉCULAS VERSÁTILES CON INTERÉS INTERDISCIPLINAR,” J. Chem. Inf. Model., vol. 01, no. 01, pp. 1689–1699, 2016.; B. Haley and E. Frenkel, “Nanoparticles for drug delivery in cancer treatment,” Urol. Oncol. Semin. Orig. Investig., vol. 26, no. 1, pp. 57–64, 2008.; M. C. Urrejola et al., “Sistemas de Np Poliméricas II: Estructura, Métodos de Elaboración, Características, Propiedades, Biofuncionalización y Tecnologías de Auto-Ensamblaje Capa por Capa (Layer-by-Layer Self-Assembly),” Int. J. Morphol., vol. 36, no. 4, pp. 1463–1471, 2018.; F. Chávez, B. I. Olvera, A. Ganem, and D. Quintanar, “Liberación de sustancias lipofílicas a partir de nanocápsulas poliméricas,” J. Mex. Chem. Soc., vol. 46, no. 4, pp. 349–356, 2002.; Z. M. Avval et al., “Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application,” Drug Metab. Rev., vol. 52, no. 1, pp. 157–184, 2020.; L. Mohammed, H. G. Gomaa, D. Ragab, and J. Zhu, “Magnetic nanoparticles for environmental and biomedical applications: A review,” Particuology, vol. 30, pp. 1–14, 2017.; A. S. Lübbe et al., “Clinical experiences with magnetic drug targeting: A phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors,” Cancer Res., vol. 56, no. 20, pp. 4686– 4693, 1996.; H. D. Liu, W. Xu, S. G. Wang, and Z. J. Ke, “Hydrodynamic modeling of ferrofluid flow in magnetic targeting drug delivery,” Appl. Math. Mech. (English Ed., vol. 29, no. 10, pp. 1341–1349, 2008.; G. Zhang et al., “Oxygen-enriched Fe3O4/Gd2O3 nanopeanuts for tumor-targeting MRI and ROS-triggered dual-modal cancer therapy through platinum (IV) prodrugs delivery,” Chem. Eng. J., vol. 388, no. February, p. 124269, 2020.; S. Tong, H. Zhu, and G. Bao, “Magnetic iron oxide nanoparticles for disease detection and therapy,” Mater. Today, vol. 31, no. December, pp. 86–99, 2019.; M. Sosa, J. J. B. Alvarado, and J. L. Gonz, “Tecnicas biomagneticas y su comparacion con los metodos bioelectricos,” vol. 48, no. 5, pp. 490–500, 2002.; S. Bose and M. Banerjee, “Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling,” J. Magn. Magn. Mater., vol. 385, pp. 32–46, 2015.; M. Bartoszek and Z. Drzazga; “A study of magnetic anisotropy of blood cells,” vol. 197, pp. 573–575, 1999.; Y. Haik, V. Pai, and C. J. Chen, “Development of magnetic device for cell separation,” J. Magn. Magn. Mater., vol. 194, no. 1, pp. 254–261, 1999.; Z. Liu, Y. Zhu, R. R. Rao, J. R. Clausen, and C. K. Aidun, “Nanoparticle transport in cellular blood flow,” Comput. Fluids, vol. 172, pp. 609–620, 2018.; S. Y. Lee, M. Ferrari, and P. Decuzzi, “Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows,” Nanotechnology, vol. 20, no. 49, 2009.; G. A. Duncan and M. A. Bevan, “Computational design of nanoparticle drug delivery systems for selective targeting,” Nanoscale, vol. 7, no. 37, pp. 15332–15340, 2015.; K. Müller, D. A. Fedosov, and G. Gompper, “Margination of micro- and nano-particles in blood flow and its effect on drug delivery,” Sci. Rep., vol. 4, pp. 1–8, 2014.; Y. Haik, V. Pai, and C. J. Chen, “Apparent viscosity of human blood in a high static magnetic field,” J. Magn. Magn. Mater., vol. 225, no. 1–2, pp. 180–186, 2001.; S. Afkhami and Y. Renardy, “Ferrofluids and magnetically guided superparamagnetic particles in flows: a review of simulations and modeling,” J. Eng. Math., vol. 107, no. 1, pp. 231–251, 2017.; I. Rukshin, J. Mohrenweiser, P. Yue, and S. Afkhami, “Modeling superparamagnetic particles in blood flow for applications in magnetic drug targeting,” Fluids, vol. 2, no. 2, pp. 1–12, 2017.; M. O. Avilés, A. D. Ebner, H. Chen, A. J. Rosengart, M. D. Kaminski, and J. A. Ritter, “Theoretical analysis of a transdermal ferromagnetic implant for retention of magnetic drug carrier particles,” J. Magn. Magn. Mater., vol. 293, no. 1, pp. 605–615, 2005.; A. Hajiaghajani, S. Hashemi, and A. Abdolali, “Adaptable setups for magnetic drug targeting in human muscular arteries: Design and implementation,” J. Magn. Magn. Mater., vol. 438, pp. 173– 180, 2017.; V. R. Sharma, A. K. Sharma, V. Punj, and P. Priya, “Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: A focus on breast cancer,” Semin. Cancer Biol., vol. 59, no. July 2019, pp. 133–146, 2019.; M. E. Miller, Human Diseases and Yeast.Pdf, First edit. New York: Momentum Press Health, 2018.; A. S. Lübbe, C. Bergemann, W. Huhnt, T. Fricke, and H. Riess, “Lübbe1996_Preclinical,” pp. 4694–4701, 1996.; Lübbe., C. Bergemann, J. Brock, and D. G. McClure, “Physiological aspects in magnetic drug-targeting,” J. Magn. Magn. Mater., vol. 194, no. 1, pp. 149–155, 1999.; C. Alexiou et al., “Locoregional cancer treatment with magnetic drug targeting,” Cancer Res., vol. 60, no. 23, pp. 6641–6648, 2000.; C. Alexiou, A. Schmidt, R. Klein, P. Hulin, C. Bergemann, and W. Arnold, “Magnetic drug targeting: Biodistribution and dependency on magnetic field strength,” J. Magn. Magn. Mater., vol. 252, no. 1-3 SPEC. ISS., pp. 363–366, 2002.; K. Gitter and S. Odenbach, “Experimental investigations on a branched tube model in magnetic drug targeting,” J. Magn. Magn. Mater., vol. 323, no. 10, pp. 1413–1416, 2011.; M. G. Krukemeyer, V. Krenn, M. Jakobs, and W. Wagner, “Mitoxantrone-iron oxide biodistribution in blood, tumor, spleen, and liver - Magnetic nanoparticles in cancer treatment,” J. Surg. Res., vol. 175, no. 1, pp. 35–43, 2012.; M. M. Attar et al., “Thermal analysis of magnetic nanoparticle in alternating magnetic field on human HCT-116 colon cancer cell line,” Int. J. Hyperth., vol. 32, no. 8, pp. 858–867, 2016.; R. Eivazzadeh-Keihan, F. Radinekiyan, A. Maleki, M. Salimi Bani, Z. Hajizadeh, and S. Asgharnasl, “A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy,” Int. J. Biol. Macromol., vol. 140, pp. 407–414, 2019.; S. Shabestari Khiabani, M. Farshbaf, A. Akbarzadeh, and S. Davaran, “Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy,” Artif. Cells, Nanomedicine Biotechnol., vol. 45, no. 1, pp. 6–17, 2017.; K. T. Al-Jamal et al., “Magnetic Drug Targeting: Preclinical in Vivo Studies, Mathematical Modeling, and Extrapolation to Humans,” Nano Lett., vol. 16, no. 9, pp. 5652–5660, 2018.; M. Minbashi, A. A. Kordbacheh, A. Ghobadi, and V. V. Tuchin, “Optimization of power used in liver cancer microwave therapy by injection of Magnetic Nanoparticles (MNPs),” Comput. Biol. Med., vol. 120, no. February, p. 103741, 2020.; A. Nan, M. Suciu, I. Ardelean, M. Şenilă, and R. Turcu, “Characterization of the Nuclear Magnetic Resonance Relaxivity of Gadolinium Functionalized Magnetic Nanoparticles,” Anal. Lett., vol. 0, no. 0, pp. 1–16, 2020.; I. Cicha, S. Lyer, C. Alexiou, and C. D. Garlichs, “Nanomedicine in diagnostics and therapy of cardiovascular diseases: Beyond atherosclerotic plaque imaging,” Nanotechnol. Rev., vol. 2, no. 4, pp. 449–472, 2013.; M. Nahrendorf et al., “Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis,” Circulation, vol. 117, no. 3, pp. 379–387, 2008.; S. Jaimes, A. Gonzáles, C. Granados, D. Álvarez, and E. Espitia, “Redalyc.Nanotecnología: avances y expectativas en cirugía,” Rev. Colomb. Cirugía, vol. 27, pp. 158–166, 2012.; B. Méndez and C. Muñoz, “Nanochips y nanosensores para eldiagnóstico temprano de cáncer oral: una revisión,” no. 67, pp. 131–147, 2012.; D. Rodriguez, J. Moyano, and L. Roa, “Estudio por dinámica molecular browniana de np bajo efectos de Bs externos,” Ing. Mil., vol. 13, no. 9, pp. 90–98, 2018.; J. Gallo and C. Ossa, “Fabricación y caracterización de np de plata con potencial uso en el tratamiento del cáncer de piel,” Ing. y Desarro., vol. 37, no. 1, pp. 88–104, 2019.; J. Pantoja, “np magnéticas en flujo sanguíneo para tratamiento de cáncer,” Universidad Distrital Francisco José de Caldas, 2020.; https://hdl.handle.net/11349/31171; Universidad Distrital Francisco José de Caldas
Availability: https://hdl.handle.net/11349/31171
-
4
Authors: et al.
Contributors: et al.
Subject Terms: 650 - Gerencia y servicios auxiliares::658 - Gerencia general, Aplicaciones móviles, Empresa manufacturera, Digitalización, Transformación digital, Beneficios de las Aplicaciones móviles, Ventajas, Mobile application, Manufacturing company, Digitisation, Digital transformation, Benefits of Apps, Advantages, Aplicación informática, Computer applications, Tecnología de la información, Information technology, TIC, ICT
File Description: 120 páginas; application/pdf
Relation: Alahuhta, P., Ahola, J., & Hakala, H. (2005). Mobilizing business applications.Technology Review, 16(7), 2005.; Alnawas, I. & Aburub, F, (2016). The effect of benefits generated from interacting with branded mobile apps on consumer satisfaction and purchase intentions. Journal of Retailing and Consumer Services, Elsevier, vol. 31(C), 313-322.; Arora, S., ter Hofstede, F., & Mahajan, V. (2017). The Implications of Offering Free Versions for the Performance of Paid Mobile Apps. Journal of Marketing, 81(6), 62–78. https://doi.org/10.1509/jm.15.0205; Appel, G., Libai, B, Muller, E., Shachar, R. (2020). On the monetization of mobile apps, International Journal of Research in Marketing, 37(1), 93-107. https://doi.org/10.1016/j.ijresmar.2019.07.007.; Aydın, Ö. (2020). The Impacts of Digital Transformation. Efeacademy, Istambul.; Bhaskar, R. (1998). Philosophy and Scientific Realism. In M. S. Archer, R. Bhaskar, A. Collier, T. Lawson, & A. Norrie (Eds.), Critical Realism. Essential Readings, 16-47. London: Routledge.; Bahillo, L. (2020). Historia de Internet: cómo nació y cuál fue su evolución. En M4rketing E-commerce. Recuperado de: https://marketing4ecommerce.cl/historia-de-internet/.; Barata, J., & Cunha, P. (2016). Mobile supply chain management: Moving where? Paper presented at the 13th European, Mediterranean and Middle Eastern Conference on Information Systems (EMCIS).; Basole, R. (2004). The Value and Impact of Mobile Information and Communication Technologies, Proceedings of the IFAC Symposium on Analysis, Modeling & Evaluation of Human-Machine Systems, 1-7.; Basole, R. (2005). Mobilizing the enterprise: A conceptual model of transformational value and enterprise readiness. 26th ASEM National Conference Proceedings, 364-371.; Bauernhansl, T., Hompel, M, & Vogel-Heuser, B (2014) Industrie 4.0 in Produktion, Automatisierung und Logistik: Anwendung-Technologien-Migration. Springer.; Bellman, S., Potter, R., Treleaven S., Robinson, J. & Varan, D. (2011). The Effectiveness of Branded Mobile Phone Apps. Journal of Interactive Marketing - J INTERACT MARK. 25. 191-200. https://doi.org/10.1016/j.intmar.2011.06.001.; Benko, G. (2000). Technopoles, High-tech Industries and Regional Development: A critical review. GeoJournal. 51, 157-167. https://doi.org/10.1023/A:1017509623931.; Bielefeld Universität. (2020). Portal der Datenschutzbeauftragten. Recuperado de https://www.uni-bielefeld.de/verwaltung/datenschutz/dsgvo/#tabs-comp_00005cc2662b_00000010e7_4d4f; Bolloju, N. & Turban, E. (2007). Organizational assimilation of web services technology: A research framework. J Organ. Comput. Electron. Commerce 17(1), 29–52.; Boyatzis, R. (1998). Transforming Qualitative Information: Thematic Analysis and Code Development. Sage Publications, Londres.; Byrne, P. & Heavey, C. (2006). The impact of information sharing and forecasting in capacitated industrial supply chains: A case study," International Journal of Production Economics, Elsevier,103(1), 420-437.; Carr, N. (2003). IT doesn’t matter. Harvard Business Review, 81(5), 41-49; Cassell, C., & Symon, G. (2004). Essential Guide to Qualitative Methods in Organizational Research. London: SAGE Publications.; CCOO de Industria. (2017). La digitalización y la industria 4.0, Impacto Industrial y laboral. Madrid, Secretaría de Estrategias Industriales. Toledo.; Centro Europeo de Posgrado - CEUPE (2020). Aplicaciones móviles: tipos, ventajas e inconvenientes. https://www.ceupe.com/blog/aplicaciones-moviles-tipos-ventajas-e-inconvenientes.html; Chaffey, D. (2018). Mobile Marketing Statistics 2018. Smart Insights. April 24. http://www.smartinsights.com/mobile-marketing/mobile-marketinganalytics/mobile-marketing-statistics/.; Chang, C. (2015). Exploring mobile application customer loyalty: The moderating effect of use contexts. Telecommunications Policy, 39(8), 678-690. https://doi.org/10.1016/j.telpol.2015.07.008; Chaves, J. (2004). Desarrollo Tecnológico en la primera Revolución Industrial. Norba, Revista de Historia. Vol 17. Universidad Extremadura.; Chen J., Lieffers J., Bauman A., Hanning R. & Allman-Farinelli M. (2017). The use of smartphone health apps and other mobile health (mHealth) technologies in dietetic practice: a three country study. J Hum Nutr Diet. 30, 439–452.; Cheung, M & To, W. (2017). The influence of the propensity to trust on mobile users’ attitudes toward in-app advertisements: An extension of the theory of planned behavior. Computers in Human Behavior. 76. https://doi.org/10.1016/j.chb.2017.07.011.; Choi, H., Kim, Y. & Kim, J. (2011). Driving factors of post adoption behavior in mobile data services. Journal of Business Research, 64, 1212-1217.; Claussen, J., Grohsjean, T., Luger, J. & Probst, G., (2014). Talent management and career development: what it takes to get promoted. J. World Bus. 49 (2), 236 -244. https://doi.org/10.1016/j.jwb.2013.11.007; Cooper, R., & Zmud, R. (1990). Information Technology Implementation Research: A Technological Diffusion Approach. Management Science, 36(2), 123-139. Retrieved January 13, 2021, from http://www.jstor.org/stable/2661451; Coriat, B. (1996). El Taller y el Robot. Ensayos sobre el Fordismo y la producción en masa en la era de la electrónica. México: Siglo Veintiuno Editores.; Correa, M. (2015). Capacidad de Tecnologías de Información, Capacidades Organizacionales y Desempeño Organizacional en Mipymes bogotanas que comercializan con textiles. Universidad Nacional de Colombia, Facultad de Ciencias Económicas. Bogotá.; Cox, D., & Rich, S. (1964). Perceived Risk and Consumer Decision-Making: The Case of Telephone Shopping. Journal of Marketing Research, 1(4), 32-39. doi:10.2307/3150375; Crowston, K. & Myers, M. (2004). Information technology and the transformation of industries: three research perspectives. The Journal of Strategic Information Systems, 13 (1), 5-28.; Danermark, B., Ekström, M., Jakobsen, L. & Karlsson, J. (2002). Explaining Society: Critical Realism in Social Sciences. https://doi.org/10.4324/9781351017831; Davenport, T., Harris, J. & Cantrell, S. (2004). Enterprise Systems and Ongoing Process Change. Business Process Management Journal. 10, 16-26. https://doi.org/10.1108/14637150410518301; Davenport, T. (2002). Mission Critical — Realizing the Promise of Enterprise Systems. Harvard Business School Press, Boston, MA.; De Reuver, M., Basole, R. & Sorensen, C. (2017). The digital platform: a research agenda, April 2017, Journal of Information Technology, 7- 33. https://doi.org/10.1057/s41265-016-0033 3.; De Meyer, A., Dutta, S., & Srivastava, S. (2002). The bright stuff: How innovative people and technology can make the old economy new, 1-251. Research Collection Lee Kong Chian School of Business.; Deloitte Consulting Group S.C. (2013). Administración de casos una solución flexible para un entorno cambiante. Ciudad de México. Recuperado de https://www2.deloitte.com/content/dam/Deloitte/mx/Documents/technology/admin_casos.pdf; Denzin, N., & Lincoln, Y. (2005). The SAGE handbook of qualitative research. Thousand Oaks: Sage Publications.; Díaz, B., Gómez, J., García, D., Melo, A., & Sanabria F. (2017). Contribución de las iniciativas de tecnologías de la información en las organizaciones: una revisión de la literatura. Innovar, 27(66), 41-55. doi:10.15446/innovar.v27n66.66710; Dinsmore, J., Swani, K. & Dugan, R. (2017). To ‘Free’ or Not to ‘Free’: Trait Predictors of Mobile App Purchasing Tendencies. Psychology and Marketing. 34. 10.1002/mar.20985.; Doolin, B., & Ali, E. (2008). Adoption of Mobile Technology in the Supply Chain. International Journal of E-Business Research, 4(4), 1–15. doi:10.4018/jebr.2008100101; Elias, S. (2009). Employee commitment in times of change: Assessing the importance of attitudes toward organizational change. Journal of Management, 35 (1), 37-55.; Euroestat (2021). What do you use the internet for in 2020?, European Commission. Recuperado de https://ec.europa.eu/eurostat/web/products-eurostat-news; European Comission (2020). General Data Protection Regulation (GDPR) Recuperado de https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-does-general-data-protection-regulation-gdpr-govern_en; Fang, J., Zhao, Z., Wen, C., & Wang, R. (2017). Design and performance attributes driving mobile travel application engagement. International Journal of Information Management, 37(4), 269-283.; Fichman, R. & Kemerer, C. (1997). The Assimilation of Software Process Innovations: An Organizational Learning Perspective, Management Science, 43 (10), 1345-1363.; Fink, L., Yogev, N., & Even, A. (2017). Business intelligence and organizational learning: An empirical investigation of value creation processes. Information & Management, 38–56.; Flick, U. (2004). Introducción a la Investigación Cualitativa, Ediciones Morata S. L., Madrid, 2004.; Flores, S. & Varguillas, C. (2007). Implicaciones conceptuales y metodológicas en la aplicación de la entrevista en profundidad. Laurus. 13. 249-262.; Freifin, B & Najmias, C. (2011). Flexibilidad e interactividad en la construcción del marco teórico de dos investigaciones cualitativas. Revista Espacio Abierto: Cuaderno Venezolano de Sociología. 20, 51-70.; Freude, A, & Freude, T. (2016). Echos of History: Understanding German Data Protection. Bertelsmann Foundation. http://bfna.insomnation.com/research/echos-of-historyunderstanding-german-data-protection/.; Ford Motor Company (2020). El legado de Henry Ford. Recuperado de https://www.ford.es/acerca-de-ford/historia.; Gabler, J., Klauck, R., Pink, M & Konig, H. (2013). uBeeMe – a Platform to Enable Mobile Collaborative Applications.188-196. http://dx.doi.org/10.4108/icst.collaboratecom.2013.254049.; Gallivan, M. (2001). Organizational adoption and assimilation of complex technological innovations: Development and application of a new framework. DATA BASE. 32. 51-85. https://doi.org/10.1145/506724.506729; Gawer, A. & Cusumano, M. (2014). Industry Platforms and Ecosystem Innovation. Journal of Product Innovation Management. 31. http://dx.doi.org/10.1111/jpim.12105; Gebauer, J., Shaw, M & Gribbins, M. (2010). Task-Technology Fit for Mobile Information Systems. JIT. 25(3):259-272. https://doi.org/10.1057/jit.2010.10; Giaglis, G., Rangone, A., & Renga, F. (2006). B2e mobile internet: An exploratory study of italian applications.Business Process Management Journal, 12(3), 330-343.; Gillig, H., Sailer, K. & Stolze, A. (2018). Entrepreneurial mindset as a driver for digital transformation - a novel educational approach from University-Industry Interactions, in: Proceedings of the 9th European Conference on Innovation and Entrepreneurship. 21.09.2018, Aveiro.; Giessmann, A., Stanoevska-Slabeva, K & Visser, B. (2012). Mobile Enterprise Applications: Current State and Future Directions. Proceedings of the Annual Hawaii International Conference on System Sciences. https://doi.org/10.1109/HICSS.2012.435; Gitman, L., (1997) Fundamentos de administración financiera. Editorial OUP Harla México, S.A. México.; Golsorkhi, D., Rouleau, L., Seidl, D., Vaara, E., (2015). Cambridge Handbook of Strategy as Practice. Cambridge University Press, Cambridge, UK.; Goggin, G., Ling, R., & Hjorth, L. (2015). “Must-read” mobile technology research: A field guide. Sydney: University of Sydney.; Gröger, C., Silcher, S., Westkämper, E., & Mitschang, B. (2013). Leveraging Apps in Manufacturing. A Framework for App Technology in the Enterprise, Paper presented at the Forty Sixth CIRP Conference on Manufacturing Systems 2013. Unversity of Stuttgart, Nobelstr. 12, 70569 Stuttgart, Germany. https://doi.org/10.1016/j.procir.2013.06.050; Gupta, M. & Kohli, A. (2006). Enterprise resource planning systems and its implications for operations function. Technovation,26, p 687-696. https://doi.org/10.1016/j.technovation.2004.10.005; Gurtner, S., Reinhardt, R. & Soyez, K. (2014). Designing Mobile Business Applications for Different Age Groups. Technological Forecasting and Social Change. 88. 10.1016/j.techfore.2014.06.020.; Hallfahrt, P. (2018). Así navega Alemania en internet: seis hechos. Das Deutschland-Portal deutschland.de. FAZIT Communication GmbH. Berlin. Recuperado de https://www.deutschland.de/es/topic/cultura/uso-de-internet-en-alemania-seis-datos-y-hechos.; Harvard Business Review (2012). How mobility is changing the enterprise. Harvard Business Publishing. Recuperado de https://www.absoft.co.uk/wp-content/uploads/2020/05/A-guide-to-how-mobility-is-changing-the-enterprise-SAP.pdf; Hasan, B., Marx, J., & Kurzhöfer, J. (2013). Towards a framework for designing secure mobile enterprise applications. MOBILITY 2013, the Third International Conference on Mobile Services, Resources, and Users, 90- 93.; Hew, J-J., Lee, V-H., Ooi, K-B & Wei, J. (2015). What catalyses mobile apps usage intention: an empirical analysis. Industrial Management & Data Systems. 115. 10.1108/IMDS-01-2015-0028.; Hickson, D., Pugh, D. & Pheysey, D. (1969). Operations technology and organization structure: an empirical reappraisal. Admin. Sci. Quart. 14, 378-97, Industrial Admin. Res. Unit, Univ. Aston, Birmingham, England.; Hofstede, G. (2003). What is culture? A reply to Baskerville. Accounting, Organizations and Society. https://doi.org/10.1016/S0361-3682(03)00018-7; Hong, K. & Kim, Y. (2002). The critical success factors for ERP implementation: An organizational fit perspective. Journal of International Management, 40(1), 25–40; Hong, H., Xu, D., Wang, G. & Fan, W. (2017). Understanding the determinants of online review helpfulness: A meta-analytic investigation. Decision Support Systems. 102. 1-11. 10.1016/j.dss.2017.06.007.; Hoos, E., Gröger, C. & Mitschang, B. (2014). Mobile Apps in Engineering: A Process-Driven Analysis of Business Potentials and Technical Challenges. Procedia CIRP. 33. https://doi.org/10.1016/j.procir.2015.06.005; Hsiao, K. & Chen, C. (2016). What drives in-app purchase intention for mobile games? An examination of perceived values and loyalty. Electronic Commerce Research and Applications. https://doi.org/10.1016/j.elerap.2016.01.001; Hsu, C. & Lin, J. (2014). What Drives Purchase Intention for Paid Mobile Apps? An Expectation Confirmation Model with Perceived Value. Electronic Commerce Research and Applications. https://doi.org/10.1016/j.elerap.2014.11.003.; Hsu, T. & Tang, J. (2019). Development of hierarchical structure and analytical model of key factors for mobile app stickiness. Journal of Innovation & Knowledge. 5. 10.1016/j.jik.2019.01.006.; Hurtado, J. (2000). Metodología de la investigación holística. Servicios y proyecciones para América Latina. Caracas.; IDG Research (2020). Día de Internet en tiempos de pandemia. Computeworld. Madrid Recuperado de https://www.computerworld.es/tecnologia/dia-de-internet-en-tiempos-de-pandemia; Ifinedo, P. & Nahar, N. (2009). Interactions between contingency, organizational IT factors, and ERP success. Industrial Management & Data Systems, 109(1),118-137.; Investing (2020). Deutschland - Einkaufsmanagerindex (EMI) Dienstleistungen Recuperado de https://de.investing.com/economic-calendar/german-services-pmi-140; i-SCOOP (2020). Digitization, digitalization and digital transformation: the differences. Brussels. https://www.i-scoop.eu/digital-transformation/digitization-digitalization-digital-transformation-disruption/; Jhonson, G., Scholes, K & Whittington,R. (2006) Dirección Estratégica. Pearson Education. Madrid.; Karjaluoto, H., Shaikh, A.,Saarijärvi, H., & Saraniemi, S. (2018). How perceived value drives the use of mobile financial services apps. International Journal of Information Management.; Kevin, Z. & Kraemer, K & Xu, S. (2006). The Process of Innovation Assimilation by Firms in Different Countries: A Technology Diffusion Perspective on E-Business. Management Science. 52. 1557-1576. https://doi.org/10.1287/mnsc.1050.0487.; Ketikidis, K., Koh,S., Dimitriadis, N., Gunasekaran, A. & Kehajova, M. (2008) The use of information systems for logistics and supply chain management in South East Europe: Current status and future direction. Omega, 36(4).592–599.; Kim, Y., Park, Y., Choi, J. & Yeon, J. (2015). An Empirical Study on the Adoption of “Fintech” Service: Focused on Mobile Payment Services. 136-140. http://dx.doi.org/10.14257/astl.2015.114.26.; Knoesen, H. & Seymour, L. (2016). Designing a process for identifying and managing the benefits of mobile enterprise applications in the insurance industry. Paper presented at the proceedings of the annual conference of the South African Institute of Computer Scientists and Information Technologists. https://doi.org/10.1145/2987491.2987520; Kumar. K. (1997). Da Sociedade Pós-Industrial à Pós-Moderna. Novas Teorias sobre o Mundo Contemporãneo. Rio de Janeiro: Jorge Zahar Editor.; Landes, D. (1979). Progreso Tecnológico y Revolución Industrial, Madrid, Tecnos, 15; Laud, R. & Thies, P. (1997). Great Expectations: Structuring IT Organizations That Really Deliver. Business Horizons, 40(4), 25-36; Landauer, T. (1995). The Trouble with Computers: Usefulness, Usability and Productivity. MIT Press, Cambridge, MA. Bulletin of Science, Technology & Society, 15(1), 60–61. https://doi.org/10.1177/027046769501500153; Lawrence, P. & Lorsch, J. (1967). Differentiation and Integration in Complex Organizations. Administrative Science Quarterly. 12. 1-47. 10.2307/2391211.; Lee, C., Cheng, H., & Cheng, H. (2007). An empirical study of mobile commerce in insurance industry: Task–Technology fit and individual differences. Decision Support.; Leidner, D. (2010). Globalization, culture, and information: Towards global knowledge transparency. The Journal of Strategic Information Systems. 9(2), 69-77. https://doi.org/10.1016/j.jsis.2010.02.006.; León, O (2009). Administración Financiera Fundamentos y Aplicaciones. Cuarta Edición; Levi, M., Kurtser, P., Pliskin, N & Fink, L. (2019) Mobile apps and employee behavior: An empirical investigation of the implementation of a fleet-management app. International Journal of Information Management 49.355–365; Levi-Bliech, M., Naveh, G., Pliskin, N., & Fink, L. (2018). Mobile technology and business process performance: The mediating role of collaborative supply–Chain capabilities. Information Systems Management, 35(4), 308–329. https://doi.org/10.1080/10580530.2018.1503803; Li, Y., Lu, J., & Xu, K. (2017). Crash risk prediction model of lane-change behavior on approaching intersections. Discrete Dynamics in Nature and Society. https://doi.org/10.1155/2017/7328562.; Lin, Y., Fang, C., & Hsu, C. (2014). Determining Uses and Gratifications for Mobile Phone Apps. Lecture Notes in Electrical Engineering. 309. 661-668. https://doi.org/10.1007/978-3-642-55038-6_103; Lines, R. (2005). The structure and function of attitudes toward organizational change. Human Resource Development, 4(1):8-32. https://doi.org/10.1177/1534484304273818.; Lobejko, S. (2020). Digital Transformation and innovativeness of enterprises. Efeacademy. İzmir.; Logan, K. (2017). Attitudes towards in-app advertising: A uses and gratifications perspective. International Journal of Mobile Communications. 15. 26. 10.1504/IJMC.2017.080575.; Lopezosa, C. (2020). Entrevistas semiestructuradas con NVivo: pasos para un análisis cualitativo eficaz. 10.31009/methodos.2020.i01.08.; Loveman, G. (1994). An Assessment of the Productivity Impact on Information Technologies. In: Allen, T.J. and Morton, M.S., Eds., Information Technology and the Corporation of the 1990s: Research Studies, MIT Press, Cambridge, MA.; Lu, J & Liu, C & Wei, J. (2016). How Important Are Enjoyment and Mobility for Mobile Applications?. Journal of Computer Information Systems. 57. 1-12. 10.1080/08874417.2016.1181463.; Lu, J & Wei, J. (2014). User Perceptions of Using Mobile Commerce on the Smartphone Platform,Proceedings of Southwest Decision Sciences Institute, Dallas.; Luján, S. (2002). Programación de aplicaciones web: historia, principios básicos y clientes web. Alicante : Editorial Club Universitario. ISBN 978-84-8454-206-3. 3-321; Lun, V., Shang, K., Lai, K., & Cheng, T. (2015). Examining the influence of organizational capability in innovative business operations and the mediation of profitability on customer satisfaction: An application in intermodal transport operators in Taiwan. International Journal of Production Economics.; Marker, G. (2020). ¿Qué es la tecnología? ¿Qué es la tecnología en informática?. En Tecnologia Informatica. https://www.tecnologia-informatica.com/que-es-tecnologia-informatica/; Manage IT (2015). Mobile Apps sind der Schlüssel zur Digitalisierung – Unternehmen nutzen Potenzial aber nicht. Recuperado de https://ap-verlag.de/mobile-apps-sind-der-schluessel-zur-digitalisierung-unternehmen-nutzen-potenzial-aber-nicht/13936/; Manyika, J., Chui, M., Bughin, J., Dobbs, R., Bisson, P., & Marrs, A. (2013). Disruptive technologies: Advances that will transform life, business, and the global economy. San Francisco: McKinsey Global Institute.; Markova, M., & Aula, A. (2007). Conceptualizing how usability of mobile services affects business performance. Management of Mobile Business, 2007. ICMB 2007.International Conference on the, 36-36.; Maxwell, J. (1996). Qualitative Research Design. An Interactive Approach. Thousand Oaks: SAGE.; McCurdy, D., Spradley, J., & Shandy, D. (2005). The cultural experience: Ethnography in complex society (2nd ed.). Long Grove, IL: Waveland Press.; Mejía, J. (2011). Problemas centrales del análisis de datos cualitativos. Revista Latinoamericana de Metodologia de la Investigacion Social.; Merikivi, J., Tuunainen, V. & Duyen, N. (2016). What makes continued mobile gaming enjoyable?. Computers in Human Behavior. 68. 10.1016/j.chb.2016.11.070.; Meo, A. & Navarro, A. (2009). La voz de los otros. El uso de la entrevista en la investigación social. Buenos Aires: Omicron System. Cap. 2 y 3; Meyer, A. & Goes, J. (1988). Organizational Assimilation of Innovations: A Multilevel Contextual Analysis. Academy of Management Journal. 31(4). 897–923. https://doi.org/10.2307/256344.; Miles, M. Huberman, A. & Saldaña, J. (2014). Qualitative Data Analysis. A Methods Sourcebook (3th ed.). Los Angeles: Sage Publications, Inc.; Mingers, J, Mutch, A., & Willcocks, L. (2013). Critical realism in Information Systems Research. MIS Quarterly, 37(3).; Morosan, C. & Defranco, A. (2016). Co-creating value in hotels using mobile devices: A conceptual model with empirical validation. International Journal of Hospitality Management. 52. 131-142. 10.1016/j.ijhm.2015.10.004; Motohashi, K. & Rammer, C. (2020). "Digitalization and New Product Development in Manufacturing SMEs: A Comparative Study of Germany and Japan," Policy Discussion Papers 20007, Research Institute of Economy, Trade and Industry (RIETI).; Montoya, J. (2020). Actividades económicas en Alemania. Recuperado de https://www.actividadeseconomicas.org/2013/04/actividades-economicas-de-alemania.html; Morey, T., Forbath, T. & Schoop, A. (2015). "Customer Data: Designing for Transparency and Trust." Harvard Business Review 93 (5): 96–105.; Muñoz, F., Climent, S., Liébana, F (2017) Determinants of intention to use the mobile banking apps: An extension of the classic TAM model, Spanish Journal of Marketing - ESIC,Volume 21, Issue 1,p 25-38.; Nah, F., Siau, K., & Sheng, H. (2005). The value of mobile applications: A utility company study.Communications of the ACM, 48(2), 85-90.; Nitzan, I. & Libai, B. (2011). Social effects on customer retention. Journal of Marketing, 75(6), 24–38; Ochoa, X. & Cordero, S. (2002). Las Nuevas Tecnologías de la Información y la Comunicación. Disponible en http://www.ruv.itesm.mx/especiales/citela/documentos/material/módulos/módulos2/contenidoii.htm; Ochoa, R., Peña, J. & Crovi, D. (2013). Aproximación a un modelo unificador de la difusión de innovaciones tecnológicas al interior de organizaciones. En: 1er Congreso Internacional “Análisis e innovación en las organizaciones”, 8 de noviembre de 2013, Mexicali.; Olsok, A. & Paulsen, N. (2018) Deutscher App-Markt knackt 1,5-Milliarden-Marke. Bitkom Ev.Berlin,Germany. Recuperado de https://www.bitkom.org/Presse/Presseinformation/Deutscher-App-Markt-knackt-15-Milliarden-Marke.html; Organización para la Cooperación y el Desarrollo Económico - OCDE (2012). Broadband Policies for Latin America and the Caribbean: A Digital Economy Toolkit. Recuperado de http://www.oecd.org/internet/broadband/lac-digital-toolkit/Data/; Organización para la Cooperación y el Desarrollo Económico - OCDE (2020). La crisis del COVID-19 ha generado una demanda sin precedentes sobre las redes de comunicación. Recuperado de http://www.oecd.org/coronavirus/policy-responses/manteniendo-el-internet-en-marchaen-tiempos-de-crisis-e5528cf8/#section-d1e81; Oppermann, A. (2020). 18.000 Großunternehmen. Und der Rest?. Mittelstands. Recuperado de: https://www.mittelstandswiki.de/wissen/Unternehmen_nach_Zahlen; Observatorio para la Sociedad de la Información en Latinoamérica y el Caribe - OSILAC (2007). Patrones de penetración de los bienes y servicios TIC en los hogares de América Latina y el Caribe. Análisis basado en datos de los Censos Nacionales de Población y Vivienda de la ronda del 2000. Disponible en https://www.cepal.org/es/publicaciones/32778-patrones-penetracion-bienes-servicios-tic-hogares-america-latina-caribe-analisis.; Owoseni, A. & Twinomurinzi, H. (2020). Evaluating mobile app usage by service sector micro and small enterprises in Nigeria: an abductive approach, Information Technology for Development, Taylor & Francis Journals, 26(4), 762-772.; Ozturk, A., Bilgihan, A., Nusair, K., & Okumus, F. (2016). What keeps the mobile hotel booking users loyal? Investigating the roles of self-efficacy, compatibility, perceived ease of use, and perceived convenience. International Journal of Information Management. 36. 10.1016/j.ijinfomgt.2016.04.005.; Ovčjak, B., Heričko, M., & Polančič, G. (2015). Factors impacting the acceptance of mobile data services–A systematic literature review. Computers in Human Behavior, 53, 24-47.; Parada, J. (2004). Realismo crítico en investigación en ciencias sociales: una introducción. Investigación y desarrollo: revista del Centro de Investigaciones en Desarrollo Humano, ISSN 0121-3261, Vol. 12, Nº 2, 2004, pags. 396-429.12.; Parasuraman, A. (2000). Technology Readiness Index (Tri): A Multiple-Item Scale to Measure Readiness to Embrace New Technologies. Journal of Service Research - J SERV RES. 2. 307-320. https://doi.org/10.1177/109467050024001.; Partridge, C. (2011). Realizing the Future of Wireless Data Communications. Commun. ACM. 54. 62-68. https://doi.org/10.1145/1995376.1995395.; Patton, M. (2002). Qualitative Research & Evaluation Methods. Thousand Oaks: SAGE.; Pavlou, P. & Fygenson, M. (2006). Understanding and predicting electronic commerce adoption: An extension of the theory of planned behavior. Management Information Systems Quarterly, 30(1), 115-143.; Perozo, E. & Nava, A. (2005) El impacto de la gestión tecnológica en el contexto empresarial. Revista Venezolana de Ciencias Sociales, vol. 9, núm. 2, diciembre, 2005, pp. 488-504. Universidad Nacional Experimental Rafael María Baralt. Cabimas, Venezuela.; Picoto, W., Palma-dos-Reis, A., & Bélanger, F. (2010). How does mobile business create value for firms? Mobile Business and 2010 Ninth Global Mobility Roundtable (ICMB-GMR), 2010 Ninth International Conference on, 9-16.; Piore, M. & Sabel, C. (1984). The second industrial divide: possibilities for prosperity. New York: Basic Books.; Posada, Y. (2020). Características socioculturales para las negociaciones Internacionales entre Alemania y Colombia. Universidad Autónoma de Occidente. Facultad de Ciencias Administrativas. Santiago de Cali.; Prognos (2016). Lage und Zukunft der deutschen Industrie, Perspektive 2030. Recuperado de https://www.bmwi.de/Redaktion/DE/Publikationen/Studien/lage-und-zukunft-der-deutschen-industrie-perspektive-30.html; Prognos (2015). Digitalisierung als Rahmenbedingung für Wachstum. Recuperado de https://www.prognos.com/uploads/tx_atwpubdb/150609_Prognos_vbw_Digitalisierung_als_Rahmenbedingung_fuer_Wachstum_01.pdf; PriceWaterhouseCoopers – PWC (2015). Insurance 2020: Turning change into opportunity. Recuperado de http://www.pwc.com/gx/en/industries/financialservices/insurance/publications/future-of-insurance.html; Quiroz, J. (2010). Taylorismo, Fordismo y Administración Científica en la Industria Automotriz. Gestión y Estrategia. 38, Julio / Diciembre. 75-87. Ciudad de México.; Ramírez, P. & Alfaro, J. (2011). El Nivel de la Inversión en Tecnología de Información No Afecta el Rendimiento Empresarial: Evidencia Empírica de las Industrias Manufactureras Chilenas. Journal of technology management & innovation, 6(4), 225-242. https://dx.doi.org/10.4067/S0718-27242011000400016; Rangone, A., Renga, F., Catti, P., Mitrione, F., & Mondini, C. (2007). Mobile & wireless business applications in the italian utility market: An empirical study and a decision model. Management of Mobile Business, 2007. ICMB 2007. International Conference on the, 22-22; Rauschnabel, P., Rossmann, A., & Tom, M. (2017). An Adoption Framework for Mobile Augmented Reality Games: The Case of Pokémon Go. Computers in Human Behavior. https://doi.org/10.1016/j.chb.2017.07.030.; Raymond, L. & Bergeron, F. (2008). Project management information systems: An empirical study of their impact on project managers and project success. International Journal of Project Management. 26, p. 213-220. https://doi.org/10.1016/j.ijproman.2007.06.002; Rivas, L. (2001). Nuevas teorías de la organización. Instituto Universitario Ortega y Gasset. Investigación Administrativa enero – junio, año 30 no. 88.; Robles, B. (2011). La entrevista en profundidad: una técnica útil dentro del campo antropofísico. Cuicuilco, 18(52), 39-49. Recuperado en 01 de octubre de 2020, de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S018516592011000300004&lng=es&tlng=es.; Rodríguez, G., Gil, J. & García, E. (1999). Metodología de la investigación cualitativa, Aljibe, Granada.; Rockmann, R., Weeger, A., & Gewald, H. (2014). Identifying organizational capabilities for the enterprise-wide usage of cloud computing. Presentado en Pacific Asia Conference on Information Systems (PACIS).; Rossi, M., Tuunainen, V. & Pesonen, M. (2007). Mobile technology in field customer service: Big improvements with small changes. Business Process Management Journal, 13(6), 853–865. https://doi.org/10.1108/14637150710834596.; Sanakulov, N., & Karjaluoto, H. (2015). Consumer adoption of mobile technologies: A literature review. International Journal of Mobile Communications.; Saraf, N., Langdon, C. & Gosain, S. (2007). “IS application capabilities and relational value ininterfirm partnerships”, Information Systems Research, Vol. 18 No. 3, pp. 320-39.; Savić, D. (2020). From Digitization and Digitalization to Digital Transformation: A Case for Grey Literature Management. Grey Journal. 16. 28-33.; Schroeder, W. (2017). La estrategia alemana Industria 4.0: El capitalismo renano en la era de la digitalización. Friedrich-Ebert-Stiftung. 1-29; Shang, S. & Seddon, P. (2002). Assessing and managing the benefits of enterprise systems: the business managers perspective. Assessing and managing the benefits of enterprise systems: the business managers perspective. https://doi.org/10.1046/j.1365-2575.2002.00132.; Shiau, W., Yan, C., & Lin, B. (2018). Exploration into the intellectual structure of mobile information systems. International Journal of Information Management. https://doi.org/10.1016/j.ijinfomgt.2018.10.025; Silverman, D. (2005). Interpreting Qualitative Data: Methods for Analyzing Talk, Text and Interaction. London: Sage; Siregar, J., & Wardaya, R. (2020). Design and Development of Knowledge Management System in the Small and Medium-Scale Enterprises Base on Mobile Apps (SMEs at Indonesia).; Socher, G., & Wilfer T. (2018). Bayern digital, Zukunft gestalten, Münchner Digital Dialog conferencia llevada a cabo en Munich, Alemania.; Sommer, (2010). Industrial Revolution - Industry 4.0: Are German Manufacturing SMEs the First Victims of this Revolution?.Journal of Industrial Engineering and Management 8(5): 1512-1532 http://dx.doi.org/10.3926/jiem.1470; Sørensen, C. (2011). Enterprise mobility: Tiny technology with global impact on work (1sted.). New York: Palgrave Macmillan.; Sørensen, C. & Landau, J. (2015). Academic agility in digital innovation research: The case of mobile ICT publications within information systems 2000–2014. The Journal of Strategic Information Systems, p 158–170.; Scornavacca, E., & Barnes, S. (2008). The strategic value of enterprise mobility: Case study insights. Information Knowledge Systems Management, 7(1, 2), 227-241.; Spargel von Hof Winkelmann – Das Mekka für Spargelfreunde. (2020). Recuperado de https://www.hallo-luebbecke.de/firmen-profil/spargelhof-winkelmann-480.html; Spargelhof Winkellmann (2020). Recuperado de https://spargelhof.de/; Spradley, J. (1979). The Ethnographic Interview. Holt Rinehart & Winston, New York; Statista (2018). Anzahl der Beschäftigten in Unternehmen in Deutschland nach Unternehmensgröße im Jahr 2018. Recuperado de https://de.statista.com/statistik/daten/studie/731962/umfrage/beschaeftigte-in-unternehmen-in-deutschland-nach-unternehmensgroesse/; Statista (2020). Most popular Apple App Store categories in May 2019. Recuperado de https://www.statista.com/statistics/270291/popular-categories-in-the-app-store/.; Statista (2020). Worldwide mobile app revenues in 2014 to 2023. Recuperado de https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast/; Statista (2020). Número mundial de usuarios de Internet 2005-2019. Recuperado de https://es.statista.com/estadisticas/541434/numero-mundial-de-usuarios-de-internet/; Stieglitz, S., & Brockmann, T. (2012). Increasing organizational performance by transforming into a mobile enterprise. MIS Quarterly Executive, 11(4); Strain, M (2015). "1983 to Today: A History of Mobile Apps %7C Media Network %7C The Guardian." Febrero 13. https://www.theguardian.com/medianetwork/2015/feb/13/history-mobile-apps-future-interactive-timeline.; Tsai, M. & Chuang, S. & Hsieh, W. (2009). An integrated process model of communication satisfaction and organizational outcomes. Social Behavior and Personality: an international journal. 37. 825-834. 10.2224/sbp.2009.37.6.825.; Thompson, A. & Strickland, A. (2004). Administración Estratégica. Editorial McGraw Hill, México. Unhelkar, B., & Murugesan, S. (2010). The enterprise mobile applications development framework. IT Professional, 12(3), 33-39; Vanegas, D. (2020). Herramienta para generación automática de aplicaciones web móviles. Universidad Nacional de Colombia Facultad de ingeniería, Departamento de Ingeniería de Sistemas e Industrial, Bogotá.; Vega, E. (2016). Paradigma en el ordenamiento de datos, Escuela de Estudios profesionales. Universidad Metropolitana. San Juan de Puerto Rico.; Vendrell-Herrero, F., Bustinza, O., Parry, G. & Georgantzis, N. (2016). Servitization, digitization and supply chain interdependency. Industrial Marketing Management. 60. https://doi.org/10.1016/j.indmarman.2016.06.013.; Venkatraman, N. & Ramanujam, V. (1986). Measurement of Business Performance in Strategy Research: A Comparison of Approaches. The Academy of Management Review. https://doi.org/10.5465/amr.1986.4283976; Verbeek, P. (2015). Beyond Interaction: a short introduction to mediation theory. En Interactions. Vol. 22, 3. May - June 2015. 26. DOI:10.1145/2751314.; Verissimo, J. (2016). Enablers and restrictors of mobile banking app use. A fuzzy set qualitative comparative analysis (QCA). Journal of Business Research. 69. 5456–5460. 10.1016/j.jbusres.2016.04.155.; Vidal, J. (2012). Information technology competency, knowledge processes and firm performance. Industrial Management & Data Systems. 112. 644-662. https://doi.org/10.1108/02635571211225521; Vuolle, M. (2011). Measuring Performance Impacts of Mobile Business Services from the Customer Perspective. Tampere University of Technology. Publication; Vol. 1013. Tampere.; Wang, R., Kim, S. & Malthouse, E. (2016). Branded Apps and Mobile Platforms as New Tools for Advertising. 10.13140/RG.2.1.3744.3042.; Weill, P. (1992). The Relationship Between Investment in Information Technology and Firm Performance: A Study of the Valve Manufacturing Sector, Information Systems Research (3:4), 307-331.; Wilson, D. (1993). Strategic information technology management: Perspectives on organizational growth and competitive advantage. January 1993. Cap. Assessing the impact of information technology on organizational performance. 471–514; Woodward, J. (1965). Industry and organization: Theory and practice. Oxford: Oxford University Press.; Wynn, D. & Williams, C. (2012). Principles for Conducting Critical Realist Case Study Research in Information Systems. MIS Quarterly. 36. 787-810. https://doi.org/10.2307/41703481; Yang, H. (2013). Bon Appétit for Apps: Young American Consumers Acceptance of Mobile Applications. Journal of Computer Information Systems. 53. 85-95. 10.1080/08874417.2013.11645635.; Yin, R. (1994). Case Study Research: Design and Methods. Sage Publications, Thousand Oaks, CA; Yin, R. K. (2003). Case study research. Design and methods (3rd ed.). London: Sage publications.; Yoo, B., Donthu, N. & Lee, S. (2000). An examination of selected marketing mix elements and brand equity. Academy of Marketing Science Journal.28, 195-211. https://doi.org/10.1177/0092070300282002; Zhang, M, Sarker, S., & McCullough, J. (2008). Measuring Information Technology Capability of Export-Focused Small or Medium Sized Enterprises in China: Scale Development and Validation. Journal of Global Information Management, 16(3), 1–25; Zhao, Y & Bacao, F. (2020). What factors determining customer continuingly using food delivery apps during 2019 novel coronavirus pandemic period? International Journal of Hospitality Management, 91, 1-12. https://doi.org/10.1016/j.ijhm.2020.102683.; https://repositorio.unal.edu.co/handle/unal/79685; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
5
Authors: et al.
Subject Terms: Farmacia, calidad, protocolo, estudios protocolizados, Organización y Administración, Documentación, quality, protocol, protocolled studies
File Description: 141-145
Availability: http://sedici.unlp.edu.ar/handle/10915/7037
-
6
Authors:
Contributors:
Subject Terms: 000 - Ciencias de la computación, información y obras generales, Investigación y desarrollo (I+D), Innovación, Redes colaborativas, Organización, Estrategia, Ecosistema de capacidades dinámicas
File Description: 139P; application/pdf
Relation: Aguilar, L. and Gagnepain, P. (2017). European cooperative R&D and firm performance: Evidence based on funding differences in key actions. International Journal of Industrial Organization, 53, 1-31. doi:10.1016/j.ijindorg.2016.12.007.; Aldieri, L., Sena, V. and Vinci, C. (2018). Domestic R&D spillovers and absorptive capacity: Some evidence for US, Europe and Japan. International Journal of Production Economics, 198, 38-49. doi:10.1016/j.ijpe.2018.01.015.; Alzate, I., Manotas, E., Boada, A. and Burbano, C. (2022). Meta-analysis of organizational and supply chain dynamic capabilities: A theoreticalconceptual relationship. Problems and Perspectives in Management, 20(3), 335-349. https://doi.org/10.21511/ppm.20(3).2022.27; Asociación Nacional de Empresarios de Colombia [ANDI]. (2019). Industria de alimentos: una industria que innova y construye país. https://www.andi.com.co/Uploads/ANDIAlimentos.pdf; Andrade, M., Ramírez, E. and Zhu, J. (2018). Innovation and network multiplexity: R&D and the concurrent effects of two collaboration networks in an emerging economy. Research Policy, 47(6), 1111- 1124. doi:10.1016/j.respol.2018.03.018.; Athaide, G. A., Stump, R. L. and Joshi, A. (2003). Understanding New Product Co-Development Relationships in Technology-Based, Industrial Markets. Journal of Marketing Theory and Practice,11(3), 46-58. doi:10.1080/10696679.2003.11658500.; Arratia, N. M., López, F., Schaeffer, S. E., Cruz-Reyes, L. (2016). Static R&D portfolio selection in public organizations. Decision Support Systems, 84, 53-63.; Baird, I. S., Lyles, M. A., Ji, S. and Wharton, R. (1990). Joint Venture Success: A Sino-U.S. Perspective. International Studies of Management and Organization, 20(1-2), 125-134. doi:10.1080/00208825.1990.11656529.; Barajas, A., Huergo, E. and Moreno, L. (2011). Measuring the economic impact of research joint ventures supported by the EU Framework Programme. The Journal of Technology Transfer, 37(6), 917-942. doi:10.1007/s10961-011-9222-y.; Bhattacharya, Y. (2015) Employee Engagement as a Predictor of Seafarer Retention: A Study among Indian Officers. Asian Journal of Shipping & Logistics, 31, 295-318. https://doi.org/10.1016/j. ajsl.2015.06.007.; Bayona, C., Garcı́a-Marco, T. and Huerta, E. (2001). Firms’ motivations for cooperative R&D: An empirical analysis of Spanish firms. Research Policy, 30(8), 1289-1307. doi:10.1016/s0048-7333(00)00151-7.; Bayati, S. and Peiris, K. D. (2018). Road to Success: How Newcomers Gain Reputation in the Open Source Community. In M. Tanabu and D. Senoo (Eds.), Pacis 2018: Opportunities and Challenges for the Digitized Society: Are We Ready? (pp. 285-299). AIS Electronic Library. https://aisel.aisnet.org/pacis2018.; Benaija, K. and Kjiri, L. (2014). Project portfolio selection: Multicriteria analysis and interactions between projects. International Journal of Computer Science, 11(6), 134-143. https://arxiv.org/ abs/1503.05366.; Biedenbach, T. and Müler, R. (2012). Absorptive, innovative and adaptive capabilities and their impact on project and project portfolio performance. International Journal of Project Management, 30(5), 621-635. doi:10.1016/j.ijproman.2012.01.016.; Bougrain, F. and Haudeville, B. (2001). Innovation, collaboration and SMEs internal research capacities. Research Policy, 31, 735-747.; Brod, A. and Shivakumar, R. (1997). R&D Cooperation and the Joint Exploitation of R&D. The Canadian Journal of Economics, 30(3), 673-684. doi:10.2307/136238.; Brandes, U., Robins, G., McCranie, A. and Wasserman, S. (2013). What is network science? Cambridge University Press, 1(1), 1-15. doi:10.1017/nws.2013.2.; Buckley, P. J. (1985). New Forms of International Industrial Co-operation. In P. Buckley and M. Casson (Authors), The Economic Theory of the Multinational Enterprise (pp. 39-59). Palgrave Macmillan.; Cavana, R. Y. and Maani, K. E. (2000). A Methodological Framework for Integrating Systems Thinking and System Dynamics. https:// n9.cl/4ker3.; Cobuloglu, H. I., Gungor, C., Turan, H. H., Erbiyik, H. and Tandiroglu, K. (2010). An assessment of implementation of municipality supported research projects. https://n9.cl/bl6fi2.; Corporación Ruta N. (2017). Informe de gestión 2017. https:// es.scribd.com/document/397545107/Informe-de-Gestion-Rutan2017Corporación Ruta N. (2018). Informe de gestión 2018. https:// n9.cl/neje0.; Cui, Z. and Taohua-Ouyang. (2017). Research from the perspective of resource orchestration on digital ecosystem. Cluster Computing, 21(1), 827-835. doi:10.1007/s10586-017-0906-4.; Cooper, R. (2011). Perspective. The Innovation Dilemma: How to Innovate When the Market Is Mature. Journal of Product Innovation Management, 28(s1), 2-27. doi:10.1111/j.1540-5885.2011.00858.; Cooper, R. (2013). Where Are All the Breakthrough New Products?: Using Portfolio Management to Boost Innovation. Research-Technology Management, 56(5), 25-33. doi:10.5437/08956308x5605123.; Cooper, R., Edgett, S. and Kleinschmidt, E. (1999). New product portfolio management: practices and performance. Journal of Product Innovation Management, 16(4), 333-351.; Cooper, R., Edgett, S. and Kleinschmidt, E. (2001). Portfolio management for new product development: results of an industry practices study. R&D Management, 31(4), 361-380.; Chen, Y., Vanhaverbeke, W. and Du, J. (2015). The interaction between internal R&D and different types of external knowledge sourcing: an empirical study of Chinese innovative firms. R&D Management, 46(s3), 1006-1023. doi:10.1111/radm.12162.; Chun, D., Hong, S., Chung, Y., Woo, C. and Seo, H. (2016). Influencing factors on hydrogen energy R&D projects: An ex-post performance evaluation. Renewable and Sustainable Energy Reviews, 53, 1252- 1258. doi:10.1016/j.rser.2015.09.074.; Chuev, I., Panchenko, T., Novikov, V., Konnova, O., Iraeva, N. and Karabulatova, I. (2016). Innovation and Integrated Structures of the Innovations in Modern Russia. International Review of Management and Marketing, 6(s1), 238-244. https://n9.cl/fxtwj.; Davis-Sramek, B., Germain, R. and Krotov, K. (2015). Examining the process R&D investment-performance chain in supply chain operations: Th eeffect of centralization. International Journal Production Economics, 167, 246-256. doi:10.1016/j.jipe.2015.05.037.; Davids, M. and Frenken, K. (2018). Proximity, knowledge base and the innovation process: towards an integrated framework. Journal of Regional Studies, 52(1), 23-34. doi:10.1080/00343404.2017.1287349.; Distanont, A. and Khongmalai, O. (2018). The role of innovation in creating a competitive advantage. Kasetsart Journal of Social Sciences, 1-7. doi:10.1016/j.kjss.2018.07.009.; Djellal, F., Francoz, D., Gallouj, C., Gallouj, F. and Jacquin, Y. (2003). Revising the definition of research and development in the light of the specificities of services. Science and Public Policy, 30(6), 415- 429. doi:10.3152/147154303781780227.; De Luca, L. M., Verona, G. and Vicari, S. (2010). Market Orientation and R&D Effectiveness in High-Technology Firms: An Empirical Investigation in the Biotechnology Industry. Journal of Product Innovation Management, 27(3), 299-320. doi:10.1111/j.1540- 5885.; Demidenko, D., Malevskaia-Malevich, E. and Dubolazova, J. (2019). Properties Evaluation Research Efficiency Based on R & D Multiplier. In E. Tome, F. Cesario and R. Soares (Eds.), 20th European Conference on Knowledge Management (pp. 262-266). Academic Conferences and Publishing.; Dessyllas, P. and Hughes, A. (2005). R&D And Patenting Activity And The Propensity To Acquire In High Technology Industries (Working Paper n.° 298). University of Cambridge.; Desyllas, P. and Hughes, A. (2009). The revealed preferences of high technology acquirers: An analysis of the innovation characteristics of their targets. Cambridge Journal of Economics, 33(6), 1089-1111. doi:10.1093/cje/bep004.; Dye, L. and Pennypacker, J. (Eds.). (1999). Project Portfolio Management: Selecting and Prioritizing Projects for Competitive Advantage. PM Solutions.; Edvardsson, B., Gustafsson, A., Kristensson, P. and Witell, L. (2010). Service Innovation and Customer Co-development. In P. Maglio, C. Kieliszewski and J. Spohrer (Eds.), Handbook of Service Science (pp. 561-577). Springer.; Elias, A. A. (2015). Analysing the stakes of stakeholders in research and development project management: a systems approach. R&D Management, 46(4), 749-760.; Elsevier. (n. d.). Technovation. Searched 11 November 2019. https:// n9.cl/cujpv; Elsevier. (n. d.). International Journal of Industrial Organization. Searched 30 December 2019. https://www.journals.elsevier.com/technovation; Falvey, R., Poyago-Theotoky, J. and Teerasuwannajak, K. (2013). Coordination costs and research joint ventures. Economic Modelling, 33(C), 965-976.; Fernandes, G., Moreira, S., Araújo, M., Pinto, E. B. and Machado, R. J. (2018). Project Management Practices for Collaborative UniversityIndustry R&D: A Hybrid Approach. Procedia Computer Science, 138, 805-814. doi:10.1016/j.procs.2018.10.105.; Floricel, S. and Ibanescu, M. (2008). Using R&D portfolio management to deal with dynamic risk. R&D Management, 38(5), 452-467. doi:10.1111/j.1467-9310.2008.00535.x.; Galván, C. (2017). Planificar un informe de lectura. En F. Navarro y G. Aparicio (Coords.), Manual de lectura, escritura y oralidad académicas para ingresantes a la universidad (pp. 63-92). Universidad Nacional de Quilmes.; Gómez, H. y Borda, S. (2018). Diagnóstico de las micro, pequeñas y medianas empresas: políticas e instituciones de fomento de Colombia. Cepal. https://n9.cl/la5vg.; Gómez-Trujillo, A. M. y Alzate, I. (2019). Presencia internacional y sostenibilidad en mercados emergentes: grupo Nutresa hacia un liderazgo global. Producción+Limpia, 14(1), 77-93. doi:10.22507/ pml.v14n1a4.; Gimenez-Fernandez, E. and Sandulli, F. (2016). Modes of inbound knowledge flows: are cooperation and outsourcing really complementary? Industry and Innovation, 24(8), 795-816. doi:10.1080/13662716.2016.1266928.; Gloor, P. (2006). Swarm Creativity. Oxford University Press.; Grimpe, C. and Kaiser, U. (2010). Balancing internal and external knowledge acquisition: The gains and pains from R&D outsourcing. Journal of Management Studies, 47(8), 1483-1509. doi:10.1111/j.1467-6486.2010.00946.x.; Han, S. Y. and Bae, S. J. (2014). Internalization of R&D outsourcing: An empirical study. International Journal of Production Economics, 150, 58-73. doi:10.1016/j.ijpe.2013.12.001.; Hashemi, S. H., Karimi, A. and Tavana, M. (2015). An integrated green supplier selection approach with analytic network process and improved Grey relational analysis. International Journal of Production Economics, 159, 178-191. doi:10.1016/j.ijpe.2014.09.027.; Hitt, M., Ireland, R. D., Sirmon, D. and Trahms, C. (2011). Strategic Entrepreneurship: Creating Value for Individuals, Organizations, and Society. Academy of Management Perspectives, 25(2), 57-75. doi:10.5465/amp.25.2.57.; Hullova, D., Simms, C. D., Trott, P. and Laczko, P. (2019). Critical capabilities for effective management of complementarity between product and process innovation: Cases from the food and drink industry. Research Policy, 48(1), 339-354. doi:10.1016/j. respol.2018.09.001.; IEEE Xplore Digital Library. (n.d.). IEEE Transactions on Engineering Management. Searched 8 December 2019. https://ieeexplore.ieee. org/xpl/RecentIssue.jsp?punumber=17.; International Journal of Production Economics. (n. d.). Homepage. Searched 11 November 2019. https://www.journals.elsevier.com/ international-journal-of-production-economics; Janáková, H. and Zatrochová, M. (2015). Creative Management and Innovation in Europe Automotive Dimension. European Scientific Journal, 11(10), 91-99.; Jenkins, M. (2017). The Role of Supply Chain Resource Orchestration and Supply Chain Knowledge in Improving Product Launch Performance in Emerging Markets [Doctoral Dissertation, University of Tennessee]. https://trace.tennessee.edu/utk_graddiss/4470v; Kabiraj, T. and Chattopadhyay, S. (2014). Cooperative vs. noncooperative R&D incentives under incomplete information. Economics of Innovation and New Technology, 24(6), 624-632. doi:10.1080/10438599.2014.991138.; Kogut, B. (1988). Joint ventures: Theoretical and empirical perspectives. Strategic Management Journal, 9(4), 319-332. doi:10.1002/ smj.4250090403.; Kim, H.-B. and Kim, Y.-S. (2015). Performance indices for quantitative measurement of R&D results in private construction companies. KSCE Journal of Civil Engineering, 19(4), 814-830. doi:10.1007/ s12205-015-2369-6.; Kim, E., Kim, S. and Kim, H. (2017). Development of an evaluation framework for publicly funded R&D projects: The case of Korea’s Next Generation Network. Evaluation and Program Planning, 63, 18-28. doi:10.1016/j.evalprogplan.2017.02.012.; Khurizan, N. S. and Mustafa, A. (2018). An efficiency analysis of grant awarded research projects: A case study of a Malaysian public university. International Journal of Public Sector Performance Management, 4(1), 80. doi:10.1504/ijpsp.; Lambert, D. M., Emmelhainz, M. A. and Gardner, J. T. (1999). Building Successful Logistics Partnership. Journal of Business Logistics, 20(1), 165-181.; Lane, P. J., Koka, B. and Pathak, S. (2002). A Thematic Analysis and Critical Assessment of Absorptive Capacity Research. Academy of Management Proceedings, (1), 1-6. doi:10.5465/ apbpp.2002.7516527.; Lee, J., Min, J. and Lee, H. (2016). The Effect of Organizational Structure on Open Innovation: A Quadratic Equation. Procedia Computer Science, 91, 492-501. doi:10.1016/j.procs.2016.07.128.; Lendel, V., Hittmár, Š. and Siantová, E. (2015). Management of Innovation Processes in Company. Procedia Economics and Finance, 23, 861- 866.; Li, X., Fang, S.-C., Guo, X., Deng, Z. and Qi, J. (2015). An extended model for project portfolio selection with project divisibility and interdependency. Journal of Systems Science and Systems Engineering, 25(1), 119-138. doi:10.1007/s11518-015-5281-1.; Liang, D., Xu, Z., Liu, D. and Wu, Y. (2018). Method for three-way decisions using ideal TOPSIS solutions at Pythagorean fuzzy information. Information Sciences, 435, 282-295. doi:10.1016/j. ins.2018.01.015.; Marasi, S., Bennett, R. J. and Budden, H. (2018). The Structure of an Organization: Does It Influence Workplace Deviance and Its’ Dimensions? And to What Extent? Journal of Managerial Issues, 30(1), 8-27.; Mark-Herbert, C. (2004). Innovation of a new product categoryfunctional foods. Technovation, 24, 713-719.; Marìn, A. and Petralia, S. (2018). Sources and contexts of interindustry differences in technological opportunities: the cases of Argentina and Brazil. Innovation and Development, 8(1), 29-57. doi:10.1080/2157930x.2018.1429191.; Martin-Ríos, C., Demen-Meier, C., Gössling, S. and Cornuz, C. (2018). Food waste management innovations in the foodservice industry. Waste Management, 79, 196-206. doi:10.1016/j.wasman.2018.07.033.; Martínez-Noya, A. and García-Canal, E. (2018). Location, shared suppliers and the innovation performance of R&D outsourcing agreements. Industry and Innovation, 25(3), 308-332. doi:10.1080/13662716.2017.1329085.; Meade, L. M. and Presley, A. (2002). R&D Project Selection Using the Analytic Network Process. IEEE Transaction on Engineering Management, 49(1), 59-66.; Mikkola Hsuan, J. (2001). Portfolio management of R&D projects: implications for innovation management. Technovation, 21, 423- 435.; Minbaeva, D., Pedersen, T., Björkman, I., Fey, C. F. and Park, H. J. (2003). MNC knowledge transfer, subsidiary absorptive capacity, and HRM. Journal of International Business Studies, 34(6), 586-599. doi:10.1057/palgrave.jibs.8400056.; Miyagiwa, K. and Ohno, Y. (2002). Uncertainty, Spillovers, and Cooperative R&D. International Journal of Industrial Organization, 20(6), 855-876.; Murat, I. and Baki, B. (2011). Antecedents and performance impacts of product versus process innovation. European Journal of Innovation Management, 14(2), 172-206. doi:10.1108/14601061111124885.; Nickols, F. W. (2005). Why a Stakeholder Approach to Evaluating Training. Advances in Developing Human Resources, 7(1), 121- 134. doi:10.1177/1523422304272175.; Organisation for Economic Cooperation and Development [OECD]. (1993). Proposed Standard Practice for Surveys of Research and Experimental Development: Frascati Manual. (5th ed.). OECD.; Osman, N. and Nura, A. (2018). A Review of Research and Development Evaluation Across the Globe. Journal of Business Management and Accounting, 5, 77-89.; Ogbo, A. I., Chibueze, N. F., Christopher, O. C. and Anthony, I. A. (2015). Impact of structure on organisational performance of seleceted technical and service firms in nigeria. Corporate Ownership and Control, 13(1), 1278-1284.; Parsons, T. (1956). Suggestions for a Sociological Approach to the Theory of Organizations-I. Administrative Science Quarterly, 1(1), 63-85.; Petro, Y. and Gardiner, P. (2015). An investigation of the influence of organizational design on project portfolio success, effectiveness and business efficiency for project-based organizations. International Journal of Project Management, 33(8), 1717-1729. doi:10.1016/j. ijproman.2015.08.004.; Piga, C. and Vivarelli, M. (2004). Internal and External R&D: A Sample Selection Approach. Oxford Bulletin of Economics and Statistics, 66(4), 457-482. doi:10.1111/j.1468-0084.2004.00089.x.; Pomponi, F., Fratocchi, L., Tafuri, S. R. and Palumbo, M. (2013). Horizontal collaboration in logistics: A comprehensive framework. Research in Logistics and Production, 3(4), 243-254. https://n9.cl/gy8l4; Research Policy. (n. d.). Homepage. Elsevier. Searched 3 October 2019. https://n9.cl/jjbz6; Robledo, J. (2019). Introducción a la gestión de la tecnología y la innovación empresarial. Universidad Nacional de Colombia.; Salancik, G. R. and Burt, R. S. (1995). Wanted: A Good Network Theory of Organization. Administrative Science Quarterly, 40(2), 345. doi:10.2307/2393642.; Sénat. (2007). L’Agence nationale de valorisation de la recherche (ANVAR) : une gestion à l’envers. https://www.senat.fr/rap/r06- 220/r06-2209.html; Silva, T., Jian, M. and Cheng, Y. (2014). Process Analytics Approach for R&D Project Selection. ACM Transactions on Management Information Systems, 5(4), 1-34. doi:10.1145/2629436.; Shults, A. (2008). Objectives and Tools of Science Communication in the Context of Globalization [Doctoral Dissertation, Univerität Des Saarlandes]. https://n9.cl/ippn7.; Shafiee, M. (2015). A fuzzy analytic network process model to mitigate the risks associated with offshore wind farms. Expert Systems with Applications, 42(4), 2143-2152. doi:10.1016/j.eswa.2014.10.019.; Spithoven, A. and Teirlinck, P. (2015). Internal capabilities, network resources and appropriation mechanisms as determinants of R&D outsourcing, Research Policy, 44(3), 711-725.; Steude, D. H. (2017). Change and Innovation Leadership in an Industrial Digital Environment. Management of Organizations: Systematic Research, 78(1), 95-107. doi:10.1515/mosr-2017-0018.; Stapleton, S. (1998). Team-Building Making Collaborative Practice Work. Journal of Nurse-Midwifery, 43(1), 12-18. doi:10.1016/ s0091-2182(97)00119-5.; Szakonyi, R. (1990). Establishing discipline in the selection, planning, and carrying out of R&D projects. Technovation, 10(7), 467-486. doi:10.1016/0166-4972(90)90026-G.; Álzate Rendón, Isabel Cristina. Boada, Antonio. ( 2023) Creación de redes para el fortalecimiento de la gestión de la investigación y desarrollo I+D en la organización moderna. Fondo Editorial Fundación Universitaria CEIPA Powered by Arizona State University.; https://hdl.handle.net/20.500.13018/276
Availability: https://hdl.handle.net/20.500.13018/276
-
7
Authors: et al.
Contributors: et al.
Subject Terms: Robótica, Agentes inteligentes, Inteligencia artificial, Redes neuronales, Automatización, Bioingeniería, Platafomas web, Prótesis, TIC, Procesamiento de datos, Generadores de energía, Energía -- Congresos, conferencias, etc. -- Memorias, Bioingeniería -- Congresos, Sistemas de control inteligente -- Congresos, Procesamiento de señales -- Congresos, Automatización -- Congresos, Desarrollo de prototipos -- Congresos, Ingeniería biomédica -- Congresos, Tecnologías de la información y de la comunicación -- Congresos, Procesamiento digital de imágenes -- Congresos, Redes neuronales (Computadores) -- Congresos, Inteligencia artificial -- Congresos, Robotics, Intelligent agents, Artificial intelligence, Neural networks, Automation, Bioengineering
File Description: pdf; application/pdf
Relation: Congreso Internacional de Electrónica Control y Telecomunicaciones.; Borrero Guerrero, H., Baquero Velasquez, A.E., Barrero, J.F., Côco, D.Z., Risardi, J.C., Magalhães, D.V. and Becker, M., 2014. “Orientation (yaw) fuzzy controller applied to a car-like mobile robot prototype”. In 2014 IEEE 5th Colombian Workshop on Circuits and Systems (CWCAS). pp. 1–6. doi:10.1109/CWCAS.2014.6994603.; Higuti, V.A.H., Guerrero, H.B., Velasquez, A.E.B., Pinto, R., Tinelli, L.M., Magalhães, D.V. and Milori, D., 2015. “Lowcost embedded computer for mobile robot platform based on raspberry board”. In ABCM International Congress of Mechanical Egineering (Cobem2015), Rio de Janeiro, Brazil.; Guerrero, H.B., 2016. Desenvolvimento de um sistema de controle em um robô móvel agrícola em escala reduzida para deslocamento entre fileiras de plantio. Ph.D. thesis, Escola de Engenharia de São Carlos, Universidad de Sao Paulo.; Guerrero, H.B., 2016. Desenvolvimento de um sistema de controle em um robô móvel agrícola em escala reduzida para deslocamento entre fileiras de plantio. Ph.D. tesis, Escola de Engenharia de São Carlos, Universidad de Sao Paulo.; Ni, J., Wang, Y., Li, H. and Du, H., 2022. “Path tracking motion control method of tracked robot based on improved lqr control”. 2022 41st Chinese Control Conference (CCC). doi:10.23919/CCC55666.2022.9902113.; Ben Halima Abid, D., Allagui, N.Y. and Derbel, N., 2017. “Navigation and trajectory tracking of mobile robot based on kinematic pi controller”. In 2017 18th International Conference on Sciences and; Allagui, N.Y., Abid, D.B. and Derbel, N., 2019. “Autonomous navigation of mobile robot with combined fractional order pi and fuzzy logic controllers”. In 2019 16th International Multi-Conference on Systems, Signals Devices (SSD). pp. 78–83. Doi:10.1109/SSD.2019.8893176.; Lentin, J., 2018. “Robot operating system for absolute beginners”. Apress, Berkeley, CA.; Nevludov, I., Sychova, O., Reznichenko, O., Novoselov, S., Mospan, D. and Mospan, V., 2021. “Control system for agricultural robot based on ros”. 2021 IEEE International Conference on Modern Electrical and Energy Systems (MEES). pp. 1–6. doi:10.1109/MEES52427.2021.9598560.; Megalingam, R.K., Nagalla, D., Nigam, K., Gontu, V. and Allada, P.K., 2020. “Pid based locomotion of multi-terrain robot using ros platform”. 2020 Fourth International Conference on Inventive Systems and Control (ICISC). pp. 751–755. doi:10.1109/ICISC47916.2020.9171152.; Alam Bhuiyan, Ifte Khairul. (2017). LiDAR Sensor for Autonomous Vehicle. 10.13140/RG.2.2.16982.34887/1.; Lin, Z., Xiong, Y., Dai, H. and Xia, X., 2017. “An experimental performance evaluation of the orientation accuracy of four nine-axis mems motion sensors”. 2017 5th International Conference on Enterprise Systems (ES). pp. 185–189. doi:10.1109/ES.2017.37.; Henry, B.G., David, Q.Y., Estivent, C.M.J., Arbey, C.C.L., Alexis, C.R.Y. and Andrés, S.R., 2020. “Lidar readings based mobile robot wall-following task using a reactive fuzzy control system - a low-cost experimental approach”. URL https://hemeroteca.unad.edu.co/index.php/memorias/article/view/4201.; Guerrero, H.B., 2016. Desenvolvimento de um sistema de controle em um robô móvel agrícola em escala reduzida para deslocamento entre fileiras de plantio. Ph.D. tesis, Escola de Engenharia de São Carlos, Universidade de Sao Paulo.; S.N. Sivanandam, S. Sumathi. and S.N. Deepa, "Introduction to Fuzzy Logic using MATLAB", Springer-Verlag, Berlin, Germany, 2007.; M. Garcia Sanz and M. Motilva Casado, "Herramientas para el estudio de robots de cinemática paralela: Simulador y prototipo experimental," Revista Iberoamericana de Automática e Informática Industrial, RIAI, vol. 2, no. 2, pp. 73-81, 2005. https://polipapers.upv.es/index.php/RIAI/article/view/8064; A. I. Aureles Cabrera, Robot paralelo tipo STEWART para la rehabilitación de tobillo, Hidalgo, Mexico: Universidad Politécnica de Tulancingo, 2019. http://www.upt.edu.mx/Contenido/Investigacion/Contenido/TESIS/MAC/2019/MAC_T_2 019_01_AAC.pdf; Instituto de Investigación de Seguridad en la Conducción IOWA, «Simulador NADS - 1,» Univesidad de Iowa, 2023. [En línea]. Available: https://dsri.uiowa.edu/nads-1. [Último acceso: 02 2023].; SIMAERO, "AIRBUS A340 FFS," SIMAERO, 2023. [Online]. Available: https://www.sim.aero/a340/. [Último acceso 02 2023].; O. Altuzarra, Y. San Martín, E. Amezua and A. Hernández, "Motion pattern analysis of parallel kinematic machines: A case study," Robotics and Computer-Integrated Manufacturing, vol. 25, no. 2, pp. 432-440, 2009. https://doi.org/10.1016/j.rcim.2008.01.007; J. Fernandes and A. Selvakumar, "Kinematic and Dynamic Analysis of 3PUU Parallel Manipulator for Medical Applications," Procedia Computer Science, vol. 133, no. 1, pp. 604-611, 2018. https://doi.org/10.1016/j.procs.2018.07.091; I. Ben Hamida, M. Amine Laribi, A. Mlika, L. Romdhane, S. Zeghloul and G. Carbone, "Multi-Objective optimal design of a cable driven parallel robot for rehabilitation tasks," Mechanism and Machine Theory, vol. 156, no. 1, pp. 104-141, 2021. https://doi.org/10.1016/j.mechmachtheory.2020.104141; K. Duarte Barón and C. Borrás Pinilla, «Generalidades de robots paralelos,» Revista visión electrónica, algo más que un estado sólido, vol. 10, nº 1, pp. 1-11, 2016. https://doi.org/10.14483/22484728.11711; K. Duarte Barón, C. Borrás Pinilla and J. J. Gil Pelaez, «Dynamic analysis and simulation of computed torque control of a parallel robot 3SPS - 1U,» de IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellín, Colombia, 2019. https://doi.org/10.1109/CCAC.2019.8921238; C. Gosselin and J. Angeles, "Singularity analysis of closed-loop kinematic chains," IEEE Transactions on Robotics and Automation, vol. 6, no. 3, pp. 281-290, 1990. https://doi.org/10.1109/70.56660; J. Kardos, "Robust Computed Torque Method of Robot Tracking Control," in 22nd International Conference on Process Control (PC19), Strbske Pleso, Slovakia, 2019. https://doi.org/10.1109/PC.2019.8815088; C. Jun and W. Lin, "Track Tracking of Double Joint Robot Based on Sliding Mode Control," in IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE), Dalian, China, 2020. https://doi.org/10.1109/ICISCAE51034.2020.9236895; W. X. Xu, G. Z. Cao, Y. P. Zhang, J. C. Chen, D. P. Tan and Z. Q. Ling, "Adaptive backstepping sliding mode control of lower limb exoskele-ton robot based on combined double power reaching law," in 2th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Baishan, China, 2022. https://doi.org/10.1109/CYBER55403.2022.9907279; X. Chen, H. Chen, Y. Huang and Q. Huang, "Adaptability Control Towards Complex Ground Based on Fuzzy Logic for Humanoid Robots," IEEE Transactions on Fuzzy Systems, vol. 30, no. 6, pp. 1574-1584, 2022. https://doi.org/10.1109/TFUZZ.2022.3167458; D. Li, J. Pan, J. Liu, M. Wang and J. Yu, "Model Predictive Control Based Path Following of an Amphibious Robot," in 0th Chinese Control Conference (CCC), 2021. https://doi.org/10.23919/CCC52363.2021.9549348; Y. Zhang, L. Sol and Y. Zhang, "Research on Algorithm of Humanoid Robot Arm Control System Based on Fuzzy PID Control," in International Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS), Bristol, United Kingdom, 2022. https://doi.org/10.1109/AIARS57204.2022.00082; K. Duarte Barón and C. Borrás Pinilla, Analisis, diseño y simulacion de un control robusto para un robot paralelo de 3 grados de libertad, Bucaramanga, Colombia, Universidad Industrial de Santander, 2019. https://noesis.uis.edu.co/items/c91bc6a4-e228-44f8- 8ab4-33000e9e8688; J. J. Slotine and W. Li, Applied nonlinear control, New Jersey: Prentice Hall, 1991.; S. Iqbal and A. I. Bhatti, "Robust sliding-mode controller design for a stewart platform," in Proceedings of International Bhurban Conference on Applied Sciences, Islamabad, Pakistan, 2007. https://doi.org/10.1109/IBCAST.2007.4379924; C. Zhang and L. Zhang, "Kinematics analysis and workspace investigation of a novel 2- DOF parallel manipulator applied in vehicle driving simulator," Robotics and ComputerIntegrated Manufacturing, vol. 29, no. 2, pp. 113-120, 2013. https://doi.org/10.1016/j.rcim.2012.11.005; Hongwei Gao, Jin An, Chee Kai Chua, David Bourell, Che-Nan Kuo, Dawn T.H. Tan, 3D printed optics and photonics: Processes, materials and applications, Materials Today, 2023, ISSN 1369-7021, https://doi.org/10.1016/j.mattod.2023.06.019; C. Wu, L. Wu, G. Shang and H. Guo, "Application and Research of 3D Printing Technology in the Field of Architecture," 2021 4th International Conference on Electron Device and Mechanical Engineering (ICEDME), Guangzhou, China, 2021, pp. 71-74, https://doi.org/10.1109/ICEDME52809.2021.00024; Jens Oprel, Gerjan Wolterink, Jurnan Schilder, Gijs Krijnen, Novel 3D printed capacitive shear stress sensor, Additive Manufacturing, Volume 73, 2023, 103674, ISSN 2214- 8604, https://doi.org/10.1016/j.addma.2023.103674; Jun Ren, Fan Wu, Erwei Shang, Dongya Li, Yu Liu, 3D printed smart elastomeric foam with force sensing and its integration with robotic gripper, Sensors and Actuators A: Physical, Volume 349, 2023, 113998, ISSN 0924-4247, https://doi.org/10.1016/j.sna.2022.113998; Guo Liang Goh, Wai Yee Yeong, Jannick Altherr, Jingyuan Tan, Domenico Campolo, 3D printing of soft sensors for soft gripper applications, Materials Today: Proceedings, Volume 70, 2022, Pages 224-229, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2022.09.025; W. Zhang, J. Li, H. Liu and G. Jin, "Research on Embedded 3D Printing for Magnetic Soft Robots," 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, 2021, pp. 518-523, https://doi.org/10.1109/NEMS51815.2021.9451436; M. Abouelmajd, A. Bahlaoui, I. Arroub, M. Lagache and S. Belhouideg, "Mechanical Characterization of PLA Used in Manufacturing of 3D Printed Medical Equipment for COVID-19 Pandemic," 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), Kenitra, Morocco, 2020, pp. 1-5, https://doi.org/10.1109/ICECOCS50124.2020.9314444; S. Zhang, G. Xia, X. Hao, Y. Zhang, W. Chen and Z. Zhou, "Design Optimization and Simulation Analysis of Screw Extrusion 3D Printing Screw," 2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), Ma'anshan, China, 2022, pp. 400-404, https://doi.org/10.1109/WCMEIM56910.2022.10021447; B. B. Kanbur, S. Shen, Y. Zhou and F. Duan, "Neural network-integrated multiobjective optimization of the 3D-printed conformal cooling channels," 2020 5th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 2020, pp. 1-6, https://doi.org/10.23919/SpliTech49282.2020.9243730; D. Wang, H. Wang and Y. Wang, "Continuity Path Planning for 3D Printed Lightweight Infill Structures," 2021 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS), Shenyang, China, 2021, pp. 959-962, https://doi.org/10.1109/TOCS53301.2021.9688877; M. H. Ali, G. Yerbolat and S. Amangeldi, "Material Optimization Method in 3D Printing," 2018 IEEE International Conference on Advanced Manufacturing (ICAM), Yunlin, Taiwan, 2018, pp. 365-368, https://doi.org/10.1109/AMCON.2018.8614886; R F. Peng, "Prototyping to Mass Production: Automated CAD Model and G-Code Optimization Framework for Industrial 3D Printing," 2023 9th International Conference on Mechatronics and Robotics Engineering (ICMRE), Shenzhen, China, 2023, pp. 203- 206, https://doi.org/10.1109/ICMRE56789.2023.10106588; Mohit Bhayana, Jaswinder Singh, Ankit Sharma, Manish Gupta, A review on optimized FDM 3D printed Wood/PLA bio composite material characteristics, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.03.029; Aliza Rabinowitz, Paul M. DeSantis, Cemile Basgul, Hannah Spece, Steven M. Kurtz, Taguchi optimization of 3D printed short carbon fiber polyetherketoneketone (CFR PEKK), Journal of the Mechanical Behavior of Biomedical Materials, Volume 145, 2023, 105981, ISSN 1751-6161, https://doi.org/10.1016/j.jmbbm.2023.105981; Mihir Mogra, Ofer Asaf, Aaron Sprecher, Oded Amir, Design optimization of 3D printed concrete elements considering buildability, Engineering Structures, Volume 294, 2023, 116735, ISSN 0141-0296, https://doi.org/10.1016/j.engstruct.2023.116735; C. Wu, C. Dai, G. Fang, Y. -J. Liu and C. C. L. Wang, “General Support-Effective Decomposition for Multi-Directional 3-D Printing”, IEEE Transactions on Automation Science and Engineering, vol. 17, no. 2, pp. 599-610, April 2020, doi: https://doi.org/10.1109/TASE.2019.2938219; L. Cheng and A. To, “Part-scale build orientation optimization for minimizing residual stress and support volume for metal additive manufacturing: Theory and experimental validation,” Computer-Aided Design, vol. 113, pp. 1–23, Aug. 2019, doi: https://doi.org/10.1016/j.cad.2019.03.004; J. Jiang, X. Xu, and J. Stringer, “Optimization of process planning for reducing material waste in extrusion based additive manufacturing,” Robotics and Computer-Integrated Manufacturing, vol. 59, pp. 317–325, Oct. 2019, doi: https://doi.org/10.1016/j.rcim.2019.05.007; George E. P. Box. “Evolutionary Operation: A Method for Increasing Industrial Productivity.” Journal of the Royal Statistical Society. Series C (Applied Statistics) 6, no. 2 (1957): 81–101. https://doi.org/10.2307/2985505; J. C. Guacheta-Alba, S. Gonzalez, D. A. Nunez, M. Mauledoux, O. Aviles, "3D printing part orientation optimization: discrete approximation of support volume". International Journal of Electrical and Computer Engineering, vol 12. pp. 5958-5966, 2022. https://doi.org/10.11591/ijece.v12i6.pp5958-5966; L. Wing-Yue Geoffrey , M. Sharaf and N. Goldie, "Human-Robot Interaction for Rehabilitation Robots," in Robotic Assistive Technologies: Principles and Practice, Boca Raton, CRC Press, Taylor & Francis Group, 2017, pp. 26-27, 40.; C. Bodine, L. Sliker, M. Marquez, C. Clark, B. Burne and J. Sandstrum, "Social Assistive Robots for Children with Complex Disabilities," in Robotic Assitive Tecnologies: Principles and Practice, Boca Raton, CRC Press, Taylor & Francis Group, 2017, pp. 263, 295.; R. Baker, "Gait analysis methods in rehabilitation," J. Neuroeng. Rehabil., vol. 3, p. 4, 2006.; J. C. Pulido, C. Suárez-Mejías, J. C. González, A. Dueñas Ruiz, P. Ferrand Ferri, M. E. Martínez Sahuquillo, C. Echevarría Ruiz De Vargas, P. Infante-Cossio and C. L. Parra Calderón, "A Socially Assistive Robotic Platform for Upper-Limb Rehabilitation," IEEE ROBOTICS & AUTOMATION MAGAZINE, pp. 24-39, 2019.; G. Emre Cemal, C. YuJung and K. ChangHwan , "Imitation of Human Upper-Body Motions by Humanoid Robots," 16th International Conference on Ubiquitous Robots (UR), p. 24, 2019.; K. Darvish, L. Penco, J. Ramos, R. Cisneros, J. Pratt, E. Yoshida, S. Ivaldi and D. Pucci, "Teleoperation of Humanoid Robots: A Survey," Computer Science, pp. 1-21, 202.; J. Valčík, Similarity Models for Human Motion Data, Brno: Masaryk University, 2016.; P. Kopniak, "Motion capture using multiple Kinect controllers," Przeglad. Elektrotechniczny, 91(8), pp. 26-29, 2015.; L. L. Gómez Echeverry, A. M. Jaramillo Henao, M. A. Ruiz Molina, S. . M. Velásquez Restrepo, C. A. Páramo Velásquez and G. J. Silva Bolívar, "Human motion capture and analysis systems: a systematic review," PROSPECTIVA Vol. 16 - No. 2, pp. 24-34, 2018.; N. Ltda., Axis Neuron User Guide.; A. M. Norjasween, F. A. khtar Hanapiah, R. A. Abdul Rahman and H. Yussof, "Emergence of Socially Assistive Robotics in Rehabilitation for Children with Cerebral Palsy: A Review," International Journal of Advanced Robotic Systems, pp. 1-7, 2016.; S. Fojt˚u, "Nao Localization and Navigation Based on Sparse 3D Point Cloud Reconstruction," CZECH TECHNICAL UNIVERSITY IN PRAGUE, Praga, 2011.; Revista de Robots, "ROBOT NAO PARA EMPRESA Y EDUCACIÓN," Revista de Robots, 8 junio 2023. [Online]. Available: https://revistaderobots.com/robots-y-robotica/robot-naocaracteristicas-y-precio/?cn-reloaded=1. [Accessed 2023 junio 24].; University of Wisconsin-Madison, "Biovision BVH," 2023. [Online]. Available: https://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html.; B. Lutjens, "perc-neuron-ros-ur10," 2019. [Online]. Available: https://github.com/blutjens/perc_neuron_ros_ur10.; S. Haller, "perception-neuron-ros," 2017. [Online]. Available: https://github.com/smhaller/perception-neuron-ros.; O. Robotics, "Open Robotics," 2019. [Online]. Available: http://wiki.ros.org/nao.; C. Girard, D. Calderón de León, A. Arafat Lemus, V. Ferman and J. Fajardo, "A Motion Mapping System for Humanoids that Provides Immersive Teleprescence Experiences," Universidad Galileo, 2020.; B. M. Lütjens, "Real-Time Teleoperation of Industrial Robots with the Motion Capture System Perception Neuron," TECHNISCHE UNIVERSITÄT MÜNCHEN, Munich, 2017.; I. Almetwally and M. Mallem, "Real-time Tele-operation and Tele-walking of Humanoid Robot Nao using Kinect Depth Camera," IEEE, pp. 1-4, 2013.; C. Gu, L. Weicong, X. He, Z. Lei and Z. Mingming, "IMU-based motion capture system for rehabilitation applications: A systematic review," Biomimetic Intelligence and Robotics, vol. 3, no. 2, pp. 1-13, 2023.; Ministerio de Educación Nacional, «¿Cómo formular e implementar los resultados de aprendizaje?,» 2021. [En línea]. Available: https://www.mineducacion.gov.co/1780/articles-408425_recurso_5.pdf. [Último acceso: 12 septiembre 2023].; NASA, «Los Rovers del Marte,» 23 marzo 2021. [En línea]. Available: https://spaceplace.nasa.gov/mars-rovers/sp/. [Último acceso: 10 septiembre 2023].; J. J. Lugo, «Rover espacial SR-001 diseñado para descubrir nuevos mundos,» 2023. [En línea]. Available: https://ideasdi.com/diseno-transporte/rover-espacial-sr-001/. [Último acceso: 9 septiembre 2023].; TN, «La NASA diseñó un rover que hace rápel para desniveles de otros planetas,» 16 octubre 2020. [En línea]. Available: https://tn.com.ar/tecno/2020/10/16/la-nasadiseno-un-rover-que-hace-rapel-para-desniveles-de-otros-planetas/. [Último acceso: 12 septiembre 2023].; x. m. J. G. y. R. L. Christian Montaleza, «Diseño de un prototipo de robot con geometría Rocker-Bogie,» Enfoque UTE , vol. 13, nº 1, pp. 82-96, 2022.; M. R. H. S. y. M. Santos, «Primera aproximación de diseño de un rover minimalista bio-inspirado,» de XXXVII jornada de automatica, Madrid, 2016.; C. A. L. Talavera, «Diseño de un vehículo a tracción humana para participar en el NASA Human Rover Challenge,» 2022. [En línea]. Available: https://hdl.handle.net/20.500.12404/24409. [Último acceso: 9 septiembre 2023].; D. L. L. y. J. A. A. O. Diana Marcela Hernandez Rincón, «Diseño y construccion de un vehículo autónomo tipo rover -DIDAJO-,» 2005. [En línea]. Available: http://biblioteca.usbbog.edu.co:8080/Biblioteca/BDigital/37506.pdf. [Último acceso: 8 septiembre 2023].; H. . A. Carvajal Pulido, J. D. Bohórquez Guerra y G. Carrasquilla Mercado, «Diseño y construcción de un prototipo a escala de vehículo tipo rover no tripulado para la siembra, fumigación y transporte de productos agrícolas en terrenos irregulares del corregimiento de Berlín Santander,» junio 2021. [En línea]. Available: https://repository.unab.edu.co/handle/20.500.12749/14232. [Último acceso: 5 septiembre 2023].; Pavcowavin, «5 beneficios de usar tuberías PVC en tu casa,» 12 marzo 2021. [En línea]. Available: https://pavcowavin.com.co/blog/beneficios-de-usar-tuberiaspvc#:~:text=Las%20tuber%C3%ADas%20de%20policloruro%20de,como%20aguas %20lluvia%20y%20ventilaci%C3%B3n. [Último acceso: 6 septiembre 2023].; Electrotekmega, «Motor Reductor Faulhaber,» 2023. [En línea]. Available: https://electrotekmega.com/producto/motor-reductor-faulhaber/. [Último acceso: 10 septiembre 2023].; Mvelectronica, «Motorreductor Faulhaber Con Encoder De Velocidad 12v 64:1 120rpm 2342l012cr,» 2023. [En línea]. Available: https://mvelectronica.com/producto/motorreductor-faulhaber-con-encoder-develocidad-12v-64-1-120rpm-2342l012cr. [Último acceso: 2 septiembre 2023].; Arduino.cl, «Arduino Mega 2560,» 2023. [En línea]. Available: https://arduino.cl/producto/arduino-mega2560/#:~:text=Arduino%20Mega%20es%20una%20tarjeta,implementa%20el%20len guaje%20Processing%2FWiring. [Último acceso: 10 septiembre 2023].; Arduino Spain, «Arduino Mega características y specificaciones,» 14 julio 2023. [En línea]. Available: https://arduino-spain.site/arduino-mega/. [Último acceso: 12 septiembre 2023].; Naylampmechatronics, «TUTORIAL DE USO DEL MÓDULO L298N,» 2023. [En línea]. Available: https://naylampmechatronics.com/blog/11_tutorial-de-uso-delmodulo-l298n.html. [Último acceso: 12 septiembre 2023].; Eneka SA, «MÓDULOS COMUNICACIÓN,» 2023. [En línea]. Available: https://www.eneka.com.uy/robotica/modulos-comunicacion/m%C3%B3dulobluetooth-hc05- detail.html#:~:text=Este%20m%C3%B3dulo%20bluetooth%20nos%20permite,opera ci%C3%B3n%20de%20un%20puerto%20serial. [Último acceso: 5 septiembre 2023].; Ambientesoluciones, «PRODUCTOS / BATERÍAS AGM,» 2023. [En línea]. Available: https://www.ambientesoluciones.com/portal/producto/bateria-12v9ah#:~:text=Detalles%3A,y%20descarga%20lenta%20y%20profunda. [Último acceso: 12 septiembre 2023].; Mlstatic, «FL1290,» 2023. [En línea]. Available: https://http2.mlstatic.com/D_NQ_NP_718370-MLA48587476540_122021-O.webp. [Último acceso: 10 septiembre 2023].; Habacuc Flores, «DEVELOPMENT OF A ROVER VEHICLE WITH ROCKER-BOGIE SUSPENSION FOR AGRICULTURAL INSPECTION,» 5 octubre 2016. [En línea]. Available: https://www.youtube.com/watch?v=7B1DlB6RcLQ&t=29s. [Último acceso: 7 septiembre 2023].; F. Cugurullo, "Urban Artificial Intelligence: From Automation to Autonomy in the Smart City," 2020.; Y. Liu, Q. Shi, W. Guo, and W. Liao, "A Real-time, Mobile-object Detection Approach for Unmanned Aerial Vehicle Based Forest Fire Surveillance System," 2020.; P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, "A Review of YOLO Algorithm Developments," 2022.; R. C. U. Chiroma, "Vehicle detection, counting, and classification in traffic videos: A survey," IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 10, pp. 3773-3785, 2021.; M. A. H. Akhand, "Vehicle Recognition from License Plate Number using Deep Learning," arXiv preprint arXiv:1903.09203, 2019.; J. W. Coral López, C. A. Pulgarín Ortiz, S. E. Nope, and A. Barandica, "Identificación de camiones de carga en movimiento por visión artificial," Tesis de pregrado, Escuela de Ingeniería Eléctrica y Electrónica, Universidad del Valle.; Á. Ramajo Ballester, J. González Cepeda, J. M. Armingol Moreno, and A. de la Escalera Hueso, "Reidentificación de camiones mediante técnicas de deep learning," Informe técnico, Laboratorio de Sistemas Inteligentes, Universidad Carlos III de Madrid.; R. A. Gonzalez, R. E. Ferro, and D. Liberona, "Government and governance in intelligent cities, smart transportation study case in Bogotá Colombia," Ain Shams Engineering Journal, vol. 11, no. 1, pp. 25-34, 2020.; Unesco.org. (2023, abril 20). IA por el Planeta: Destacando las innovaciones de IA para la movilidad sostenible y las ciudades inteligentes. [En línea]. Disponible en: https://www.unesco.org/es/articles/ia-por-el-planeta-destacando-las-innovaciones-de-ia-parala-movilidad-sostenible-y-las-ciudades; Redalyc.org. (S/f). [En línea]. Disponible en: https://www.redalyc.org/journal/852/85259689013/html/. Recuperado el 7 de julio de 2023.; Gómez Zapata, C. A. (2019). "Reconocimiento de objetos del hogar, usando redes neuronales convolucionales para personas con discapacidad visual." Revista Científica de Ingeniería y Tecnología, 2(2), 1-10. Disponible en: https://dialnet.unirioja.es/descarga/articulo/7436051.pdf.; Murgui, J., & García-Sánchez, A. J. (2018). "Clasificación y reconocimiento de imágenes con redes neuronales para aplicaciones industriales." Disponible en: https://riunet.upv.es/bitstream/handle/10251/115464/Murgui.pdf?sequence=1; Olabe, X. B. (s/f). "Redes Neuronales Artificiales y Sus Aplicaciones." Disponible en: https://ocw.ehu.eus/pluginfile.php/40137/mod_resource/content/1/redes_neuro/contenidos/pd f/libro-del-curso.pdf. Recuperado el 8 de julio de 2023.; Ortiz, G., & Sánchez, A. I. (2020). "Emprendimiento y tecnologías de la información y la comunicación en Bogotá." Cuadernos de Administración, 36(67), 199-211.; Torres, J., & Acosta, H. (2019). "La innovación en el ecosistema emprendedor de Bogotá." Cuadernos de Administración, 35(64), 251-262.; Uribe, F., & Guzmán, J. (2021). "La colaboración público-privada en el fomento de la innovación en Bogotá: el caso de la identificación de objetos en el contexto vial." Revista Internacional de Gestión y Economía Aplicada, 11(1), 89-101.; Bogotá se destaca como una ciudad innovadora en el CityLab 2021. (2021). [En línea]. Disponible en: https://bogota.gov.co/internacional/bogota-se-destaca-como-una-ciudadinnovadora-en-el-citylab-2021; Ministerio de Transporte y Agencia Nacional de Seguridad Vial adoptan la metodología para establecer velocidad límite y reglamentan los planes de gestión de la velocidad %7C ANSV. (2023). [En línea]. Disponible en: https://ansv.gov.co/es/prensa-comunicados/9955; Parámetros e hiperparámetros en el Machine Learning %7C Codificando Bits. (2023). [En línea]. Disponible en: https://www.codificandobits.com/blog/parametros-hiperparametrosmachine-learning/; ¿Qué es el ajuste de hiperparámetros? - Explicación de los métodos de ajuste de hiperparámetros - AWS. (2023). [En línea]. Disponible en: https://aws.amazon.com/es/whatis/hyperparameter-tuning/; Análisis del flujo vehicular Generalidades. (s/f). [En línea]. Disponible en: https://sjnavarro.files.wordpress.com/2008/08/analisis-de-flujo-vehicular-cal-y-mayor.pdf; "INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO ESCOM “Cálculo del flujo vehicular mediante segmentación de imágenes.” (s/f). [En línea]. Disponible en: https://tesis.ipn.mx/bitstream/handle/123456789/21133/C%C3%A1lculo%20del%20flujo%20v ehicular%20mediante%20segmentaci%C3%B3n%20de%20im%C3%A1genes.pdf?sequence =5&isAllowed=y; Oscar Javier Reyes-Ortiz, Mejia, M., & Juan Sebastián Useche-Castelblanco. (2019). "TÉCNICAS DE INTELIGENCIA ARTIFICIAL UTILIZADAS EN EL PROCESAMIENTO DE IMÁGENES Y SU APLICACIÓN EN EL ANÁLISIS DE PAVIMENTOS." Revista EIA, 16(31), 189–207. Disponible en: https://www.redalyc.org/journal/1492/149258931014/html/; Secretaría Distrital de Movilidad. (2014). Movilidadbogota.gov.co. https://www.movilidadbogota.gov.co/web/; L. Salcedo, "YOLO (You Only Look Once): Detección de Objetos en Tiempo Real," Mi Diario Python, Mi Diario Python, 19 de septiembre de 2018. Disponible en: https://pythondiario.com/2018/09/yolo-you-only-look-once-deteccion-de.html [26] Y. Shao, D. Zhang, H. Chu, X. Zhang, and Y. Rao, "A Review of YOLO Object Detection Based on Deep Learning," 2021.; Konda et al., "Real-Time Traffic Sign Detection and Recognition Using YOLOv3 and OpenCV," 2020.; Bhasin, "Real-time Object Detection with YOLO, OpenCV and Python," 2019.; Suresh et al., "Object Detection with YOLO for Intelligent Traffic Monitoring System," 2020.; S. Siddiqui, "Traffic Sign Detection Using YOLO v3 with OpenCV," 2020.; Propia, "Esquema general de entrenamiento usado para reconocimiento de imágenes con YOLO," [Figura], 2023.; A. Sharma, J. Pathak, M. Prakash, and J. N. Singh, "Object Detection using OpenCV and Python," International Journal of Innovative Research in Computer and Communication Engineering, vol. 8, no. 6, pp. 2736-2741, 2020.; R. Fernandez, "Detección de rostros, caras y ojos con Haar Cascad," Cursos de Programación de 0 a Experto © Garantizados, 10 de enero de 2018. Disponible en: https://unipython.com/deteccion-rostros-caras-ojos-haar-cascad/; Administrador, "Como crear tu propio DETECTOR DE OBJETOS con Haar Cascade %7C Python y OpenCV," omes-va.com, OMES, 29 de julio de 2020. Disponible en: https://omesva.com/como-crear-tu-propio-detector-de-objetos-con-haar-cascade-python-y-opencv/; E. Ángel and J. Ambrogio, "ARTÍCULOS PRESENTADOS A RADI %7C TECNOLOGÍA DE LA INFORMACIÓN Y COMUNICACIÓN." Disponible en: https://confedi.org.ar/wpcontent/uploads/2020/12/Articulo1-RADI16.pdf; Propia, "Esquema general de entrenamiento usado para reconocimiento de imágenes con Haar Cascade," [Figura], 2023.; S. S. Rao, "Vehicle detection and identification using computer vision and deep learning techniques," IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 10, pp. 2827-2836, 2018.; M. E. Gavilán, "Procesamiento de Imágenes y Visión Artificial con MATLAB," MathWorks, 2021.; MathWorks, "Visión Artificial con MATLAB: Detección y seguimiento de objetos," MathWorks, 2013.; Propia, "Esquema general de entrenamiento usado para reconocimiento de imágenes con Visión por computadora sin usar Deep Learning," [Figura], 2023.; A. Jayasree, M. Vari, P. Vishnu, and S. Medimi, "A comparative study of YOLO and Haar Cascade algorithm for helmet and license plate detection of motorcycles," 2022. [En línea]. Disponible en: https://www.diva-portal.org/smash/get/diva2:1707864/FULLTEXT02; J. Lamichhane, J. Aubertot, G. Begg, A. Birch, P. Boonekamp, S. Dachbrodt, J. Grønbech, M. Hovmøller, J. Jensen, L. Jørgensen, J. Kiss, P. Kudsk, A. Moonen, J. Rasplus, M. Sattin, J. Streito, A. Messéan, “Networking of integrated pest management: A powerful approach to address common challenges in agriculture”, J. Crop Protection, vol. 89, no. 1, pp. 139- 151, 2016. Doi: https://doi.org/10.1016/j.cropro.2016.07.011.; S. Azfar, A. Nadeem, A. Basit, “Pest detection and control techniques using wireless sensor network: a review”, J. Entomology and Zoology Studies, vol 3, no. 2, pp. 92-99, Jan. 2015.; J. Pretty, Z. Bharucha, “Integrated pest management for sustainable intensification of agriculture in Asia and Africa”, Insects, vol 6, no. 1, pp. 152-182, Mar. 2015. Doi: https://doi.org/10.3390/insects6010152.; D. Arcega, W. Lee, C. Lu, Y. Wu, P. Shih, S. Chen, J. Chung, T. Lin, “Edge-based wireless imaging system for continuous monitoring of insect pests in a remote outdoor mango orchard”, Computers and Electronics in Agriculture, vol 211, no. 108019, 2023. Doi: https://doi.org/10.1016/j.compag.2023.; H. Zhang, T. Islam, W. Lio, “Integrated pest management programme for cereal blast fungus Magnaporthe oryzae”, J. Integrative Agriculture, vol 21, no. 12, pp. 3420-3433. 2022. Doi: https://doi.org/10.1016/j.jia.2022.08.056.; D. Rustia, L. Chiu, C. Lu, Y. Wu, S. Chen, J. Chung, J. Hsu, T. Lin, “Towards intelligent and integrated pest management through an AIoT-based monitoring system”, Pest. Manage. Sci., vol 78, no. 10, pp. 4288–4302, 2022. Doi: https://doi.org/10.1002/ps.7048.; I. Ahmad and K. Pothuganti, "Smart Field Monitoring using ToxTrac: A Cyber-Physical System Approach in Agriculture", 2020 International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, pp. 723-727, 2020. Doi:10.1109/ICOSEC49089.2020.9215282.; S. Cecchi, S. Spinsante, A. Terenzi, S. Orcioni, “A Smart Sensor-Based Measurement System for Advanced Bee Hive Monitoring”, Sensors, vol 20, no. 2726, pp. 1-20, 2020. Doi: https://doi.org/10.3390/s20092726.; F. Murphy, M. Magno, P. Whelan and E. Vici, "b+WSN: Smart beehive for agriculture, environmental, and honey bee health monitoring — Preliminary results and analysis," 2015 IEEE Sensors Applications Symposium (SAS), Zadar, Croatia, pp. 1-6, 2020. Doi:10.1109/SAS.2015.7133587.; P. Saha, V. Kumar, S. Kathuria, A. Gehlot, V. Pachouri and A. S. Duggal, “Precision Agriculture Using Internet of Things and Wireless Sensor Networks”, 2023 International Conference on Disruptive Technologies (ICDT), Greater Noida, India, pp. 519-522, 2023. Doi:10.1109/ICDT57929.2023.10150678.; R. Singh, R. Berkvens and M. Weyn, “Energy Efficient Wireless Communication for IoT Enabled Greenhouses”, 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India, pp. 885-887, 2020. Doi:10.1109/COMSNETS48256.2020.9027392.; F. Kiani and A. Seyyedabbasi, “Wireless Sensor Network and Internet of Things in Precision Agriculture”, International Journal of Advanced Computer Science and Applications, vol 9, no. 6, pp. 99-103, 2018. Doi: http://dx.doi.org/10.14569/IJACSA.2018.090614.; O. Savale, A. Managave, D. Ambekar, S. Sathe, “Internet of Things in Precision Agriculture using Wireless Sensor Networks”, International Journal Of Advanced Engineering & Innovative Technology, vol 2, no. 3, pp. 1-4, Dec. 2015.; A. Sawant, J. Adinarayana and S. Durbha, “KrishiSense: A semantically aware web enabled wireless sensor network system for precision agriculture applications”, 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, pp. 4090-4093, 2014. Doi:10.1109/IGARSS.2014.6947385.; C. Prakash, L. Singh, A. Gupta, S. Lohan, “Advancements in smart farming: A comprehensive review of IoT, wireless communication, sensors, and hardware for agricultural automation”, Sensors and Actuators A: Physical, vol 362, no. 114605, pp. 1- 25, 2023. Doi: https://doi.org/10.1016/j.sna.2023.114605.; H. Jawad, R. Nordin, S. Gharghan, A. Jawad, M. Ismail, “Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review”, Sensors, vol 17, no. 1781, pp. 1-4, 2017. Doi: https://doi.org/10.3390/s17081781.; E. Avşar, N. Mowla, “Wireless communication protocols in smart agriculture: A review on applications, challenges and future trends”, Ad Hoc Networks, vol 136, no. 102982, pp. 1- 25, 2022. Doi: https://doi.org/10.1016/j.adhoc.2022.102982.; V. Starčević, M. Simić, V. Risojević and Z. Babić, “Integrated video-based bee counting and multi-sensors platform for remote bee yard monitoring”, 21st International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, pp. 1-6, 2022. Doi:10.1109/INFOTEH53737.2022.9751284.; H. Remli, K. Wan, N. Ismail, A. González, J. Corchado, M. Mohamad, “Recent Advancements and Challenges of AIoT Application in Smart Agriculture: A Review”, Sensors, vol 23, no. 7, pp. 1-22, 2023. Doi: https://doi.org/10.3390/s23073752.; S. Qazi, B. Khawaja and Q. U. Farooq, “IoT-Equipped and AI-Enabled Next Generation Smart Agriculture: A Critical Review, Current Challenges and Future Trends”, in IEEE Access, vol 10, pp. 21219-21235, 2022. Doi:10.1109/ACCESS.2022.3152544.; A. AlZubi and K. Galyna, “Artificial Intelligence and Internet of Things for Sustainable Farming and Smart Agriculture”, in IEEE Access, vol 11, pp. 78686-78692, 2023. Doi:10.1109/ACCESS.2023.3298215.; G. Sagar, B. Aastha, K. Laxman, “An introduction of fall armyworm (Spodoptera frugiperda) with management strategies: a review paper”, Nippon Journal of Environmental Science, vol 1, no. 1010, pp. 1-12, 2020. Doi: https://doi.org/10.46266/njes.1010.; C. Nicolas, B. Naila and R. Amar, “Energy efficient Firmware Over The Air Update for TinyML models in LoRaWAN agricultural networks”, 2022 32nd International Telecommunication Networks and Applications Conference (ITNAC), Wellington, New Zealand, pp. 21-27, 2022. Doi:10.1109/ITNAC55475.2022.9998338.; B. Miles, E. Bourennane, S. Boucherkha, S. Chikhi, “A study of LoRaWAN protocol performance for IoT applications in smart agriculture”, Computer Communications, vol. 164, pp. 148-157, 2020. Doi: https://doi.org/10.1016/j.comcom.2020.10.009.; D. Davcev, K. Mitreski, S. Trajkovic, V. Nikolovski and N. Koteli, “IoT agriculture system based on LoRaWAN”, 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS), Imperia, Italy, pp. 1-4, 2018. Doi:10.1109/WFCS.2018.8402368.; J. Tovar, C. Pareja, O. García, L. Gutiérrez, “Performance evaluation of LoRa technology for implementation in rural areas”, Dyna, vol 88, no. 216, pp. 69-78, Feb. 2021. Doi:10.15446/dyna.v88n216.88258.; P. Supanirattisai, K. Pimpin, W. Srituravanich and N. Damrongplasit, “Smart Agriculture Monitoring and Management System using IoT-enabled Devices based on LoRaWAN”, 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), Phuket, Thailand, pp. 679-682, 2022. Doi:10.1109/ITCCSCC55581.2022.9894956.; Y.M. Bar-On, R. Phillips, R. Milo, “The biomass distribution on earth”, Proc. Natl. Acad. Sci. U. S. A. 115, 6506–6511. 2018. https://doi.org/10.1073/pnas.1711842115; A. P. Genoud, J. Torsiello, M. Belson y B.P. Thomas, “Entomological photonic sensors: Estimating insect population density, its uncertainty and temporal resolution from transit data”, Ecological Informatics, 61, 101186, 2021. https://doi.org/10.1016/j.ecoinf.2020.101186; Murciaplaza, 2021. [En línea]. Disponible en https://murciaplaza.com/plagasenfermedades-cultivos-region-provocaron-120-millones-perdidas-2020.; N. Ardila, EL TIEMPO. 2020. [En línea]. Disponible en https://www.eltiempo.com/colombia/otras-ciudades/plaga-de-langostas-cultivosarrasados-en-los-llanos-orientales-por-una-plaga-noticias-hoy-518744; M. Huerga y S. San Juan, “El control de las plagas en la agricultura argentina. Estudio sectorial Agrícola Rural Banco Mundial/Centro de inversiones FAO”, Argentina. 2005; M. Vargas y D. Alvear, “Agricultura limpia: manejo racional de plaguicidas para control de plagas en invernaderos” [en línea]. Disponible en https://biblioteca.inia.cl/handle/123456789/6089; G. A. Holguin, B. L. Lehman, L. A. Hull, V. P. Jones y J. Park, “Electronic traps for automated monitoring of insect populations”. IFAC Proceedings Volumes, 43(26), 49- 54. 2010. https://doi.org/10.3182/20101206-3-JP-3009.00008; I. Rigakis, K. Varikou, A. Nikolakakis, Z. Skarakis, N. Tatlas y I. Potamitis, “The e-funnel trap: Automatic monitoring of lepidoptera; a case study of tomato leaf miner”. Computers and Electronics in Agriculture, 185, 106154. 2021, https://doi.org/10.1016/j.compag.2021.106154; I. Potamitis, I. Rigakis, N. Vidakis, M. Petousis y M. Weber, “Affordable Bimodal Optical Sensors to Spread the Use of Automated Insect Monitoring”. J. Sens. 2018. Article ID 3949415: https://doi.org/10.1155/2018/3949415; M. Weber, M. Geier, I. Potamitis, C. Pruszynski, M. Doyle, A. Rose, M. Geismar y J. Encarnacao. “The BG-counter, the first operative automatic mosquito counting device for online mosquito monitoring: field tests and technical outlook”. AMCA 2017 83rd Annual Meeting, 2017, pp 57.; M. Preti, F. Verheggen, S. Angeli, “Insect pest monitoring with camera-equipped traps: strengths and limitations”. J. Pest. Sci. 2020. https://doi.org/10.1007/s10340-020- 01309-4; N. Flórián, L. Gránicz, V. Gergócs, F. Tóth, M. Dombos, M. “Detecting Soil Microarthropods with a Camera-Supported Trap”. Insects. 11 (244) 2020. https://doi.org/10.3390/insects11040244; A. Gutierrez, A. Ansuategi, L. Susperregi, C. Tubío, I. Ranki ́c, L. Lenˇza, “Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases”. J. Sens. 1–15. 2019, https://doi.org/10.1155/2019/5219471; E. Goldshtein, Y. Cohen, A. Hetzroni, Y. Gazit, D. Timar, L. Rosenfeld y A. Mizrach, “Development of an automatic monitoring trap for Mediterranean fruit fly (Ceratitis capitata) to optimize control applications frequency”. Computers and Electronics in Agriculture, 139, 115-125, 2017. https://doi.org/10.1016/j.compag.2017.04.022; B. Keswani, A. Mohapatra, A. Mohanty, A. Khanna, J. Rodriguez, D. Gupta, V. De Albuquerque, “Adapting weather conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms”. Neural Comput. Appl. 31: 277–292, 2019. https://doi.org/10.1007/s00521-018-3737-1; L. García, L. Parra, J.M. Jimenez, J. Lloret, P. Lorenz, “IoT-Based Smart Irrigation Systems: An Overview on the Recent Trends on Sensors and IoT Systems for Irrigation in Precision Agriculture”. Sensors, 20(4),1042, 2020, https://doi.org/10.3390/s20041042; F.A. Paredes-Sánchez, G. Rivera, V. Bocanegra-García, H. Y. Martínez-Padrón, M. Berrones-Morales, N. Niño-García y V. Herrera-Mayorga. “Advances in control strategies against Spodoptera Frugiperda. A review”. Molecules, 26(18), 5587, 2021. https://doi.org/10.3390/molecules26185587; Ecobertura., Spodoptera frugiperda (Smith) 2023. [En línea]. Disponible en https://ecobertura.es/spodoptera-frugiperda/; Weather Spark., 2023. Average Weather in Villavicencio, Colombia. [En línea]. Disponible en https://weatherspark.com/y/24273/Average-Weather-in-VillavicencioColombia-Year-Round; S. A. Vaca Vargas, “Automated greenhouse, instrumentation and fuzzy logic”, Visión Electrónica, vol. 14, no. 1, pp. 119–127, ene. 2020. https://doi.org/10.14483/22484728.15907; A. M. Molano-Gómez; A. F. Neira-Reyes; L. H. Correa-Salazar; E. Bernal-Alzate, “Topological alternatives for photovoltaic integration in rural areas”, Visión electrónica, vol. 13, no. 1, januaryjune 2019, pp. 24-32.; Wohlers, T. (2020). "Wohlers Report 2020: 3D Printing and Additive Manufacturing State of the Industry." Wohlers Associates, Inc.; McKinsey & Company. (2018). "The next frontiers for additive manufacturing." McKinsey Digital.; Stockholm Environment Institute, J. A. Vega Araújo, M. Muñoz Cabré, y Stockholm Environment Institute, «Energía solar y eólica en Colombia: panorama y resumen de políticas 2022», Stockholm Environment Institute, mar. 2023. doi:10.51414/sei2023.016.; Wohlers, T. (2019). "Wohlers Report 2019: 3D Printing and Additive Manufacturing State of the Industry." Wohlers Associates, Inc.; Chua, C. K., Leong, K. F., & Lim, C. S. (2014). "Rapid Prototyping: Principles and Applications." World Scientific Publishing Company.; Kruth, J. P., Leu, M. C., & Nakagawa, T. (2003). "Progress in additive manufacturing and rapid prototyping." CIRP Annals - Manufacturing Technology, 52(2), 525-540.; Gibson, I., Rosen, D. W., & Stucker, B. (2015). "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing." Springer.; Cooper, R. G. (2019). "Product Leadership: Pathways to Profitable Innovation." Basic Books.; Ulrich, K. T., & Eppinger, S. D. (2015). "Product Design and Development." McGraw-Hill Education.; L. L. Hurtado-Cortés, J. A. Forero-Casallas, y V. E. Ruiz-Rosas, “Tecnologías automatizadas implementadas en la FMS HAS200”, Visión Electrónica, vol. 16, no. 1, jun. 2022.; McGrath, R. G. (2020). "Seeing Around Corners: How to Spot Inflection Points in Business Before They Happen." Houghton Mifflin Harcourt.; H. Beltrán-Cicery, D. Rojas-Sarmiento, y F. Barrera-Prieto, “Implementation of a manufacturing cell in assembly of Hanoi tower”, Visión Electrónica, vol. 16, no. 2, sep. 2022.; A. L. Vargas, "El profesional de mercadeo en tiempos de Inteligencia Artificial," IBM Colombia, 2017. [Online]. Available: https://www.revistapym.com.co/articulos/mercadeo/10851/el-profesional-de-mercadeo-entiempos-de-inteligencia-artificial.; C. F. Villa Gómez, "Mercadeo e Inteligencia Artificial," La República, 2020. [Online]. Available: https://www.larepublica.co/analisis/carlos-fernando-villa-gomez-400403/mercadeoe-inteligencia-artificial-3048716.; "Con el impulso de la Inteligencia Artificial, Colombia podría triplicar su productividad y aumentar su PIB hasta un 6.8%," Microsoft Noticias, 2019. [Online]. Available: https://news.microsoft.com/es-xl/con-el-impulso-de-la-inteligencia-artificial-colombia-podriatriplicar-su-productividad-y-aumentar-su-pib-hasta-un-6-8/; H. Wong, "Avances y Problemas en la Inteligencia Artificial de Colombia 2022," LinkedIn, 2022. [Online]. Available: https://es.linkedin.com/pulse/avances-y-problemas-en-lainteligencia-artificial-de-colombia-wong.; "IA y ChatGPT transformarán las prácticas de mercadeo," Portafolio, 2023. [Online]. Available: https://www.portafolio.co/tendencias/ia-y-chatgpt-transformaran-las-practicas-demercadeo-577916.; P. T. Hernández, "El Marco Ético para la Inteligencia Artificial en Colombia: una oportunidad para implementar proyectos de IA que beneficien a toda la ciudadanía," 2022. [Online]. Available: https://www.ccit.org.co/articulos-tictac/el-marco-etico-para-la-inteligencia-artificialen-colombia-una-oportunidad-para-implementar-proyectos-de-ia-que-beneficien-a-toda-laciudadania/.; "Inteligencia artificial: definición, historia, usos, peligros," DataScientest, 2023. [Online]. Available: https://datascientest.com/es/inteligencia-artificial-definicion.; A. Flores, "Conoce la historia del marketing digital y su evolución hasta el día de hoy," Crehana, 2021. [Online]. Available: https://www.crehana.com/blog/transformaciondigital/historia-del-marketing-digital/.; "Evolución del internet y mercadotecnia digital," Preceden, 2023. [Online]. Available: https://www.preceden.com/timelines/841917-evoluci-n-del-internet-y-mercadotecnia-digital.; "Colombia se adhiere a acuerdo sobre Inteligencia Artificial ante los países de la OCDE," Mintic, 2019. [Online]. Available: https://www.ccb.org.co/Clusteres/Cluster-de-Software-yTI/Noticias/2019/Mayo-2019/Colombia-se-adhiere-a-acuerdo-sobre-Inteligencia-Artificialante-los-paises-de-la-OCDE.; A. de Ignacio, "La Inteligencia Artificial en el marketing digital," 2023. [Online]. Available: https://www.cyberclick.es/numerical-blog/la-inteligencia-artificial-en-el-marketing-digital.; Meisam Mahdavi, Mohammad S. Javadi, João P.S. Catalão, Integrated generationtransmission expansion planning considering power system reliability and optimal maintenance activities, International Journal of Electrical Power & Energy Systems, Volume 145, 2023, 108688, ISSN 0142- 0615,https://doi.org/10.1016/j.ijepes.2022.108688. (https://www.sciencedirect.com/science/article/pii/S0142061522006846); Long Ding, Hong Wang, Kai Kang, Kai Wang, A novel method for SIL verification based on system degradation using reliability block diagram, Reliability Engineering & System Safety, Volume 132, 2014, Pages 36-45, ISSN 0951-8320, https://doi.org/10.1016/j.ress.2014.07.005. (https://www.sciencedirect.com/science/article/pii/S0951832014001604); ISO 55001:2014 Asset Management. Management systems – RequirementsThe British Standards Institution. 2014.; B. Dhilon, “Applied Reliability and Quality Fundamentals, Methods and Procedures, New Jersey: Springer, 2007.; Mohsen Firouzi, Abouzar Samimi, Abolfazl Salami, Reliability evaluation of a composite power system in the presence of renewable generations, Reliability Engineering & System Safety, Volume 222, 2022, 108396, ISSN 0951-8320, https://doi.org/10.1016/j.ress.2022.108396. (https://www.sciencedirect.com/science/article/pii/S0951832022000710); R. Yajun and M. Xiurui, "The reliability evaluation of the power system containing wind farm using the improved state space partition method," 2014 International Conference on Power System Technology, Chengdu, China, 2014, pp. 36-41, doi:10.1109/POWERCON.2014.6993498.; S. Anbazhagan, N. Kumarappan, Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT, Energy Conversion and Management, Volume 78, 2014, Pages 711-719, ISSN 0196-8904, https://doi.org/10.1016/j.enconman.2013.11.031.; Xudong Fan, Xijin Zhang, Xiong Bill Yu, Uncertainty quantification of a deep learning model for failure rate prediction of water distribution networks, Reliability Engineering & System Safety, Volume 236, 2023,109088, ISSN 0951-8320, https://doi.org/10.1016/j.ress.2023.109088. (https://www.sciencedirect.com/science/article/pii/S0951832023000030); Wei Qiu, Qiu Tang, Zhaosheng Teng, Wenxuan Yao, Jun Qiu, Failure rate prediction of electrical meters based on weighted hierarchical Bayesian,Measurement, Volume 142, 2019, Pages 21-29, ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2019.04.062. (https://www.sciencedirect.com/science/article/pii/S026322411930380X; C.Ramírez, “Phyton para finanzas CURSO PRÁCTICO”, Bogotá: Ediciones de la U, pp.223-233,2021.; C.Ramírez, “Phyton para finanzas CURSO PRÁCTICO”, Bogotá: Ediciones de la U, pp.279-311,2021.; J. Stock, “Introducción a la econometría”, Madrid: Pearson educación S.A, pp.373- 411, 2012.; G. Box, “Time Series Analysis Forecasting and Control”, New Jersey: John Wiley & Sons Ltd, pp. 2-43, 2016.; S. Raschka, “Machine Learning con PyTorch y Scikit-Learn”, Madrid: Alphaeditorial, pp.290-307, 2023.; Yanhui CHEN, Mengmeng Ma, Yuye Zou, Forecasting hourly electricity demand with nonparametric functional data analysis,Procedia Computer Science, Volume 214, 2022, Pages 428-436, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2022.11.195. (https://www.sciencedirect.com/science/article/pii/S1877050922019056); Ye Zhu, Shiwen Xie, Yongfang Xie, Xiaofang Chen, Temperature prediction of aluminum reduction cell based on integration of dual attention LSTM for non-stationary subsequence and ARMA for stationary sub-sequences, Control Engineering Practice, Volume 138, 2023,105567, ISSN 0967-0661, https://doi.org/10.1016/j.conengprac.2023.105567. (https://www.sciencedirect.com/science/article/pii/S0967066123001363); Shao, Y., Zhang, D., Chu, H., Zhang, X., & Rao, Y. (2021). A Review of YOLO Object Detection Based on Deep Learning.; Bhasin, S. (2019). Real-time Object Detection with YOLO, OpenCV and Python.; Suresh et al. (2020). Object Detection with YOLO for Intelligent Traffic Monitoring System.; Liu, Y., Shi, Q., Guo, W., & Liao, W. (2020). A Real-time, Mobile-object Detection Approach for Unmanned Aerial Vehicle Based Forest Fire Surveillance System.; Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022). A Review of YOLO Algorithm Developments.; Mauro Tucci, A. B. (s/f). "YOLO-S: A Lightweight and Accurate YOLO-like Network for Small Target Selection in Aerial Imagery".; Sharma, A., Pathak, J., Prakash, M., & Singh, J. N. (2020). Object Detection using OpenCV and Python. International Journal of Innovative Research in Computer and Communication Engineering, 8(6), 2736-2741.; “Procesamiento de Imágenes y Visión Artificial con MATLAB Video,” Mathworks.com, 2021. https://la.mathworks.com/videos/image-processing-and-computer-vision-with-matlab1597884648964.html (accessed Jul. 25, 2023).; Ricardo Alirio Gonzalez, R. Ferro, and Daríoo Liberona, “Government and governance in intelligent cities, smart transportation study case in Bogotá Colombia,” vol. 11, no. 1, pp. 25– 34, Mar. 2020, doi: https://doi.org/10.1016/j.asej.2019.05.002.; Beatriz Elena Pineda, Claudia Helena Muñoz, & Gil, H. (2018). Aspectos relevantes de la movilidad y su relación con el medio ambiente en el Valle de Aburrá: una revisión. Ingeniería Y Desarrollo, 36(2), 489–508. https://www.redalyc.org/journal/852/85259689013/html/; IA por el Planeta: Destacando las innovaciones de IA para la movilidad sostenible y las ciudades inteligentes. (2023). Unesco.org. https://www.unesco.org/es/articles/ia-por-elplaneta-destacando-las-innovaciones-de-ia-para-la-movilidad-sostenible-y-las-ciudades; Gómez Zapata, C. A. (2019). Reconocimiento de objetos del hogar, usando redes neuronales convolucionales para personas con discapacidad visual. Revista Científica de Ingeniería y Tecnología, 2(2), 1-10. https://dialnet.unirioja.es/descarga/articulo/7436051.pdf.; Olabe, X. B. (s/f). REDES NEURONALES ARTIFICIALES Y SUS APLICACIONES. Ehu.eus. Recuperado el 8 de julio de 2023, de URL: https://ocw.ehu.eus/pluginfile.php/40137/mod_resource/content/1/redes_neuro/contenidos/pd f/libro-del-curso.pdf; Murgui, J., & García-Sánchez, A. J. (2018). Clasificación y reconocimiento de imágenes con redes neuronales para aplicaciones industriales. URL: https://riunet.upv.es/bitstream/handle/10251/115464/Murgui.pdf?sequence=1; Ortiz, G., & Sánchez, A. I. (2020). Emprendimiento y tecnologías de la información y la comunicación en Bogotá. Cuadernos de Administración, 36(67), 199-211.; Torres, J., & Acosta, H. (2019). La innovación en el ecosistema emprendedor de Bogotá. Cuadernos de Administración, 35(64), 251-262.; Uribe, F., & Guzmán, J. (2021). La colaboración público-privada en el fomento de la innovación en Bogotá: el caso de la identificación de objetos en el contexto vial. Revista Internacional de Gestión y Economía Aplicada, 11(1), 89-101.; Centro de Investigación de la Universidad Distrital Francisco José de Caldas. (2023). Udistrital.edu.co. https://revistas.udistrital.edu.co/index.php/visele/article/view/18942/18701; Chiroma, R. C. U. (2021). Vehicle detection, counting, and classification in traffic videos: A survey. IEEE Transactions on Intelligent Transportation Systems, 22(10), 3773-3785. [20] Rao, S. S. (2018). Vehicle detection and identification using computer vision and deep learning techniques. IEEE Transactions on Intelligent Transportation Systems, 19(10), 2827- 2836.; Akhand, M. A. H. (2019). Vehicle Recognition from License Plate Number using Deep Learning. arXiv preprint arXiv:1903.09203.; Sandra Milena García Ávila, Cristian Alexander Vega Camacho, José Vicente Cadena López, Ricardo Alirio González Bustamante, Paola Andrea Mateus Abaunza. (2021). Diseño y aplicación de una herramienta para identificar y clasificar motocicletas mediante una red neuronal convolucional. researchgate.net. URL: https://doi.org/ISBN:978-958-53278-6-3; valentynsichkar, “Traffic Signs Detection by YOLO v3, OpenCV, Keras,” Kaggle.com, Apr. 15, 2022. https://www.kaggle.com/code/valentynsichkar/traffic-signs-detection-by-yolo-v3- opencv-keras (accessed Jul. 25, 2023).; Motor Colombia. (2022, February 23). 7.270 muertos en accidentes de tránsito en 2021. Motor Colombia; Motor Colombia. URL: https://www.motor.com.co/industria/7.270-muertos-enaccidentes-de-transito-en-2021-20220124-0001.html; R. Jiménez Moreno, O. Avilés, y D. M. Ovalle, “Red neuronal convolucional para discriminar herramientas en robótica asistencial”, Vis. Electron., vol. 12, no. 2, pp. 208–214, oct. 2018. https://doi.org/10.14483/22484728.13996; L. L. Hurtado-Cortés y J. A. Forero-Casallas, “Identification and fault detection in actuator using NN-NARX”, Vis. Electron., vol. 2, no. 2, pp. 304–312, dic. 2019. https://doi.org/10.14483/22484728.18432; Propia. (2023). Fragmento del conjunto de imágenes de entrenamiento para YOLO [Figura].; Propia. (2023). Matriz de confusión de una capacitación sobre imágenes de Camiones. [Figura].; Propia. (2023). Curva de precisión-confianza para el entrenamiento de imágenes de Camiones. [Figura].; Propia. (2023). Salida "Results.png" sobre el entrenamiento de imágenes de Camiones. [Figura].; Propia. (2023). Salida "Train.png" sobre el entrenamiento de imágenes de Camiones. [Figura].; Propia. (2023). Salida "Val.png" sobre el entrenamiento para Camiones. [Figura]; Propia. (2023). Salida de los gráficos de correlación de etiquetas para el entrenamiento de imágenes de Camiones. [Figura].; Propia. (2023). Esquema de entrenamiento general utilizado para el reconocimiento de imágenes con YOLO. [Figura]; Anagnoste, Sorin. "Robotic Automation Process – The operating system for the digital enterprise" Proceedings of the International Conference on Business Excellence, vol.12, no.1, 2018, pp.54-69. https://doi.org/10.2478/picbe-2018-0007; C. T. Kaya, M. Turkyilmaz, & B. Birol, “Impact of RPA Technologies on Accounting Systems”. Muhasebe ve Finansman Dergisi, pp. 235–250, Apr. 2019, https://doi.org/10.25095/mufad.536083; Morgan.O’ Mara., “How Much Paper is Used in One Day”, Record Nations, blog. https://www.recordnations.com/blog/how-much-paper-is-used-in-one-day/; Thomas Teunissen. Success factors for RPA application in small and medium sized enterprises. University of Twente. From https://essay.utwente.nl/77592/1/Teunissen_BA_EEMCS.pdf; James Barlow. 2023. OCRmyPDF documentation. Read the Docs. From: https://ocrmypdf.readthedocs.io/en/latest/index.html; T Malathi, et al. 2021. An Experimental Performance Analysis on Robotics Process Automation (RPA) With Open Source OCR Engines: Microsoft Ocr And Google Tesseract OCR. IOP Conf. Ser.: Mater. Sci. Eng. 1059 012004. https://doi.org/10.1088/1757-899X/1059/1/012004; Arkadiusz Januszewski et al. 2021. Benefits of and Obstacles to RPA Implementation in Accounting Firms. Procedia Computer Science 192 (2021). 4672–4680. https://doi.org/10.1016/j.procs.2021.09.245; Madakam, Somayya, Holmukhe, Rajesh M., and Jaiswal, Durgesh Kumar. (2019). The Future Digital Work Force: Robotic Process Automation (RPA). JISTEM - Journal of Information Systems and Technology Managements, 16, e201916001.https://doi.org/10.4301/S1807-1775201916001; Ribeiro, J., Lima, R., Paiva, S. (2021). Document Classification in Robotic Process Automation Using Artificial Intelligence—A Preliminary Literature Review. In: Sharma, H., Gupta, M.K., Tomar, G.S., Lipo, W. (eds) Communication and Intelligent Systems. Lecture Notes in Networks and Systems, vol 204. Springer, Singapore. https://doi.org/10.1007/978-981-16-1089-9_18; Leslie Willcocks, John Hindle & Mary Lacity. 2019. Keys to RPA Success - Executive Research Report. Knowledge Capital Partners. From: https://engineering.report/Resources/Whitepapers/9a46b779-a4a1-4188-8a1deb769ba4fbb1_Keys-RPA-Success.pdf; J. C. Diaz, D. Zunino, y G. Nicolino, “Análisis de la extracción de datos personales sin autorización de un dispositivo IoT”, Visión Electrónica, vol. 16, no. 2, dic. 2022.; S. Scheuber, and M. Vanhoy, "Emotional and Neurological Responses to Timbre in Electric Guitar and Voice," Paper 10505, (2021 May.).; J. Stanhope, and P. Weinstein, “The human health effects of singing bowls: A systematic review”, Complementary therapies in medicine, 51, 102412, (2020 Apr.).; C. J. Bless, “Análisis de la actividad EEG durante una sesión de estimulación multisensorial en una sala Snoezelen”, Universidad de Valladolid. Escuela Técnica Superior de Ingenieros de Telecomunicación, 2020.; L. Gong, M. Li, T. Zhang, W. Chen, “EEG emotion recognition using attention-based convolutional transformer neural network”, Biomedical Signal Processing and Control, Vol. 84, 2023.; C. Zeng, W. Lin, N. Li, Y. Wen, Y. Wang, W. Jiang, J. Zhang, H. Zhong, X. Chen, W. Luo, et al. “Electroencephalography (EEG)-Based Neural Emotional Response to the Vegetation Density and Integrated Sound Environment in a Green Space”, Forests, 2021.; S. N. Safder, M. U. Akram, M. N. Dar, A. A. Khan, S. G. Khawaja, A. R. Subhani, I. K. Niazi, S. Gul, “Analysis of EEG signals using deep learning to highlight effects of vibration-based therapy on brain”, Biomedical Signal Processing and Control, Vol. 83, 2023.; A. E. Nieto-Vallejo, O. F. Ramírez-Pérez, L. E. Ballesteros-Arroyave, and A. Aragón, “Design of a Neurofeedback Training System for Meditation Based on EEG Technology”, Revista Facultad de Ingeniería, 30(55), 2021; H.Y. Huang & P.C. Lo (2019) EEG dynamics of experienced Zen meditation practitioners probed by complexity index and spectral measure, Journal of Medical Engineering & Technology, 33:4, 314-321, DOI:10.1080/03091900802602677.; F. Ramos-Argüelles, G. Morales, S. Egozcue, R.M. Pabón, M.T. Alonso, “Técnicas básicas de electroencefalografía: principios y aplicaciones clínicas”, vol. 32, 2009.; J. Zain, “El uso de cuencos tibetanos como recurso vibroacústico en Musicoterapia Receptiva”, XVIII Forum estadual de Musicoterapia, 2012.; A. Ramírez Sánchez, C. Espinosa Calderón, A. F. Herrera Montenegro, E. Espinosa Calderón, A. Ramírez Moyano, “Beneficios de la psicoeducación de entrenamiento en técnicas de relajación en pacientes con ansiedad”, Revista Enfermería Docente, 2014.; M. Tobal, “Actividad Cerebral y Deporte: Un Estudio Mediante Mapas de Actividad Eléctrica Cerebral”, Universidad Complutense de Madrid, 1992.; EMOTIV. (2023, 6 abril). EMOTIV Insight 2 with 5 Channel EEG Headset %7C EMOTIV. https://www.emotiv.com/product/emotiv-insight-5-channel-mobile-brainwear/.; Sánchez, M. A. C. Lozano, M. S. G. (2016). El sonido que sana: Manual práctico de sanación a través del sonido. LA ESFERA DE LOS LIBROS, S.L.; Singing Bowl Tones and Frequencies: Complete Guide (2022). (s. f.). Shanti Bowl. https://www.shantibowl.com/blogs/blog/singing-bowl-tones-and-frequencies-complete-guide; Torrades, S. (2007, 1 noviembre). Estrés y burn out. Definición y prevención %7C Offarm. de:https://www.elsevier.es/es-revista-offarm-4-articulo-estres-burn-out-definicion-prevencion13112896; Domingues Hirsch, C., Devos Barlem, E. L., De Almeida, L. K., Tomaschewski Barlem, J. G., Lerch Lunardi, V., & Marcelino Ramos, A. (2018). Stress triggers in the educational environment from the perspective of nursing students. Texto & Contexto Enfermagem, 27(1), e0370014.; Zárate Depraect, N. E., Soto Decuir, M. G., Castro Castro, M. L., & Quintero Salazar, J. R. (2017). Estrés académico en estudiantes universitarios: Medidas preventivas. Revista de Alta Tecnología y la Sociedad, 9(4), 92-98.; Barlett. (1991). Stereo Microphone Techniques. Stoneham, Massachusetts: Reed Publishing (USA).; Holman, T. (2008). Sourround Sound: Up And Running. Burlington, Massachusets: Elsevier Inc.; Howard, D., & Angus, J. (2000). Acoustics and Psychoacoustics (2nd ed.). Routledge. https://doi.org/10.4324/9780080498522.; Burrough, P. A., & McDonnell, R. A. (1998). Principles of geographical information systems (2a ed.). Clarendon Press.; D. S. Garzón-Ramírez, M. S. Sanabria-Guio, y J. D. Cely-Fajardo, “Geolocation system and vehicular analysis for motorcyclists”, Vis. Electron., vol. 2, no. 1, pp. 95–106, mar. 2019. https://doi.org/10.14483/22484728.18416; Home. (2022, abril 15). Open Geospatial Consortium. https://www.ogc.org; Google. (s/f-b). Google.com. Recuperado el 31 de agosto de 2023, de https://earth.google.com/; Documentation. (s/f). Qgis.org. Recuperado el 15 de septiembre de 2023, de https://www.qgis.org/en/docs/index.html; GDAL — GDAL documentation. (s/f). Gdal.org. Recuperado el 15 de septiembre de 2023, de https://gdal.org/; GIS mapping software, location intelligence & spatial analytics. (s/f). Esri.com. Recuperado el 15 de septiembre de 2023, de https://www.esri.com/enus/home; P. F. Martín-Gómez, J. E. Rangel-Díaz, J. O. Montoya-Gómez, y J. L. RubianoFernández, “Automation of greenhouse pesticide application: design and construction”, Visión Electrónica, vol. 2, no. 1, pp. 129–133, mar. 2019. https://doi.org/10.14483/22484728.18419; F. A. Molina-Guzmán, S. A. Torres-Castillo, G. A. López-Martínez, “Use of wastewater and waste from Colombian pacific for electrical generation”, Visión Electrónica, vol. 16, no. 1, 2022.; B. Smith, A., & Johnson, “Automated Fruit Classification for Quality Control,” J. Agric. Technol., vol. 10, no. 4, pp. 1015–1027, 2018.; C. G. Peñaranda, “ANÁLISIS DE COSTOS DE LA PRODUCCIÓN DE DURAZNO (PRUNUS PÉRSICA) EN LA PROVINCIA DE PAMPLONA (NORTE DE SANTANDER),” Rev. la Fac. Ciencias Económicas y Empres., pp. 145–162, 2012.; 2. Camara de Comercio de Medellín, “HERRAMIENTAS EMPRESARIALESAUTOMATIZACIÓN DE LOS PROCESOS INDUSTRIALES,” 2018. http://herramientas.camaramedellin.com.co/Inicio/Buenaspracticasempresariales/Bibliot ecaProduccónyOperaciones/Automatizaciondelosprocesosindustriales.aspx.; C. García, A. López, and F. Fernández, “Deep Learning-Based Fruit Recognition and Classification System for Precision Agriculture,” Comput. Electron. Agric., vol. 180, p. 105832, 2020.; R. Patel, A. Sharma, and S. Kumar, “Real-time Fruit Recognition and Grading System for Robotic Harvesting,” Comput. Electron. Agric., vol. 157, pp. 306–316, 2019.; M. Megajothi, C. Meenakshi, and R. Rajakumari, “Automation of Fruit Quality Analysis System,” in 2nd International Conference on Applied Soft Computing Techniques C., 2022, pp. 424–425.; W. M. Syahrir, A. Suryanti, and C. Connsynn, “Color grading in Tomato Maturity Estimator using image processing technique,” in 2009 2nd IEEE International Conference on Computer Science and Information Technology, 2009, pp. 276–280, doi:10.1109/ICCSIT.2009.5234497.; Z. Ma, J.-H. Xue, A. Leijon, Z.-H. Tan, Z. Yang, and J. Guo, “Decorrelation of Neutral Vector Variables: Theory and Applications,” IEEE Trans. Neural Networks Learn. Syst., vol. 29, no. 1, pp. 129–143, 2018, doi:10.1109/TNNLS.2016.2616445.; L. Zhang, J. Jia, G. Gui, X. Hao, W. Gao, and M. Wang, “Deep Learning Based Improved Classification System for Designing Tomato Harvesting Robot,” IEEE Access, vol. 6, pp. 67940–67950, 2018, doi:10.1109/ACCESS.2018.2879324.; J. Chen, Z. Liu, H. Wang, A. Núñez, and Z. Han, “Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network,” IEEE Trans. Instrum. Meas, vol. 67, no. 2, pp. 257–269, 2018.; H. Yu, Z.-H. Tan, Z. Ma, R. Martin, and J. Guo, “Spoofing detection in automatic speaker verification systems using DNN classifiers and dynamic acoustic features,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 10, pp. 4633–4644, 2018.; and Y. A. X. Sun, G. Gui, Y. Li, R. P. Liu, “A novel deep neural network with feature reuse for Internet of Things,” IEEE Internet Things.; B. S and U. J, “Deep fruit detection in orchards,” IEEE Int. Conf. Robot. Autom, no. May, pp. 3626–3633, 2017.; Vanguardia, “¿Como Puede la inteligencia artificial mejorar nuestras vidas?,” 2016. http://www.lavanguardia.com/vida/20161218/412710361329/como-puede-lainteligencia-artificial-mejorar-nuestras-vidas.html.; C. Oehninger, “El Impacto de la Robótica y la Automatización del Empleo en Uruguay,” 2018.; R. Terminio and E. Rimbau-Gilabert, “La digitalización del entorno de trabajo: la llegada de la robótica, la automatización y la inteligencia artificial (RAIA) desde el punto de vista de los Informal learning and work View project Creative industry network of entrepreneurs-CINet View project,” no. May, 2018, [Online]. Available: https://www.researchgate.net/publication/325059719.; D. BROUGHAM and J. HAAR, “Employee assessment of their technological redundancy,” Labour y Ind., 2017.; McKinsey And Company, “UN FUTURO QUE FUNCIONA: AUTOMATIZACIÓN, EMPLEO Y PRODUCTIVIDAD,” New York, 2017. doi:10.1787/agr_outlook-2017-3-es; Agua Libre. "Lo que necesitas saber sobre la Telemetría," 2021. Disponible en: https://agualibre.cl/telemetria-2/; D. J. Cardoso Ortegón and J. D. Ramírez Tovar, "Propuesta de un sistema de potabilización de aguas subterráneas, caso de estudio pozo finca el arbolito-ubicado en la vereda Caimanera en el municipio de el Espinal - Tolima teniendo en cuenta la caracterización física, química y microbiológica," Proyecto de grado, Universidad Piloto de Colombia, 2021. Disponible en: http://repository.unipiloto.edu.co/handle/20.500.12277/10116.; A. Jiménez, F. Velásquez, y S. Puente, “Sistema inteligente de prescripción de riego agrícola basado en redes de sensores y modelado de cultivos”, Visión Electrónica, vol. 17, no. 1, feb. 2023.; Digital Senses. "Telemetría y Monitoreo efectivo de Pozos de Agua," Disponible en: https://www.digitalsenses.io/medidores-de-pozos-de-agua/; E. M. González-Clavijo, J. C. Contreras-Niño, y H. J. Eslava-Blanco, “Automatización del vivero Semigar”, Visión Electrónica, vol. 16, no. 1, jun. 2022.; Integra Instrumentación. "Instalación de telemetría para pozos," Disponible en: https://integrainstrumentacion.cl/instalacion-de-telemetria-para-pozos/; F. C. Castañeda-Árias y K. S. Novoa-Roldan, “Remote crops: case study of critical variables”, Visión. Electrónica, vol. 16, no. 1, ene. 2022.; Nettra. "Monitoreo de pozos de extracción de agua subterránea," Disponible en: https://nettra.tech/monitoreo-de-pozos-de-extraccion-de-agua-subterranea/; B. Böttcher, J. Badinger, N. Moriz, and O. Niggemann, “Design of industrial automation systems — Formal requirements in the engineering process,” in 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), 2013, pp. 1–4. doi:10.1109/ETFA.2013.6648148.; N. Papakonstantinou, J. Karttunen, S. Sierla, and V. Vyatkin, “Design to automation continuum for industrial processes: ISO 15926 – IEC 61131 versus an industrial case,” in 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 2019, pp. 1207–1212. doi:10.1109/ETFA.2019.8869325.; J. E. Martinez Baquero, “Diseño y construcción de equipo automatizado para separar mezclas,” Visión Electrónica Más que un estado sólido, vol. 8, no. 2, pp. 87–93, 2014, [Online]. Available: https://revistas.udistrital.edu.co/index.php/visele/article/view/9880; M. A. Monzón Herrera, “Diseño de un sistema dedicado al monitoreo y automatización de parámetros de proceso en una línea de producción de cartones moldeados (Doctoral dissertation).,” Universidad de San Carlos de Guatemala, 2019.; C. M. Bustamante Álvarez, J. E. Martínez Baquero, and C. Torres Gómez, “SCADA System of Physicochemical Variables in a Mixture Separator,” Rev. Inge CUC, vol. 11, no. 1, pp. 85–98, 2015, doi:10.17981/ingecuc.11.1.2015.09.; F. G. Astudillo, “Diseño y simulación de un control automático para una cámara de fermentación de pan por medio de un automáta programable,” ESCUELA POLITÉCNICA NACIONAL, 2010. [Online]. Available: https://bibdigital.epn.edu.ec/handle/15000/2231; P. A. Quinteros, M. C. Zurita, N. C. Zambrano, and L. M. Esthela, “Automatización de los procesos industriales,” J. Bus. Entrep. Stud., vol. 4, no. 2, pp. 123–131, 2020, [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=7888290; F. F. Cando Herrera and G. F. Medina Lescano, “Implementación de un sistema de control y monitoreo de nivel de agua para el sistema de riego Chambo –Guano en la provincia de Chimborazo,” 2021, [Online]. Available: https://www.dspace.espol.edu.ec/bitstream/123456789/56415/1/T-112772 Cando - Medina.pdf; J. D. Murcia Velez and L. F. Chacón Segura, “Diseño de un sistema automático de cultivo hidropónico para forraje verde,” Universidad de La Salle, 2018. [Online]. Available: https://ciencia.lasalle.edu.co/ing_automatizacionF.; P. Radu and L. Gheorghe, “Implementation of an automatic control system of technological process for disinfection of drinking water from treatment plants,” in Proceedings of 2012 IEEE International Conference on Automation, Quality and Testing, Robotics, 2012, pp. 144–149. doi:10.1109/AQTR.2012.6237691.; A. Chiavola, C. Di Marcantonio, M. D’Agostini, S. Leoni, and M. Lazzazzara, “A combined experimental-modeling approach for turbidity removal optimization in a coagulation– flocculation unit of a drinking water treatment plant,” J. Process Control, vol. 130, p. 103068, 2023, doi: https://doi.org/10.1016/j.jprocont.2023.103068.; E. A. Al-Sum, A. Sattar, and M. A. Aziz, “Automation of water treatment plants and its application in power and desalination plants,” Desalination, vol. 92, no. 1–3, 1993, doi:10.1016/0011-9164(93)80087-4.; H. Gulhan et al., “Use of water treatment plant sludge in high-rate activated sludge systems: A techno-economic investigation,” Sci. Total Environ., vol. 901, p. 166431, 2023, doi: https://doi.org/10.1016/j.scitotenv.2023.166431.; A. Ortega Ramírez, L. Cáceres Durán, and L. Castiblanco Molina, “INTRODUCCIÓN AL USO DE COAGULANTES NATURALES EN LOS PROCESOS DE POTABILIZACIÓN DEL AGUA,” Rev. Ambient. Agua, aire y suelo., vol. 11, no. 2, pp. 1–14, 2020, doi: https://doi.org/10.24054/aaas.v11i2.873.; H. A. Díaz Therán, M. Hincapié, L. Montoya, L. Galeano, A. Balaguera, and G. Carvajal, “Evaluación de la sostenibilidad para un sistema individual de potabilización de agua encomunidades rurales a través de la metodología de ACV,” in Encuentro Internacional de Educación en Ingeniería, 2023, 2023, p. 3128. [Online]. Available: 10.26507/paper.3128; R. C. Urban, L. Y. K. Nakada, and R. de L. Isaac, “A system dynamics approach for largescale water treatment plant sludge management: A case study in Brazil,” J. Clean. Prod., vol. 419, p. 138105, 2023, doi: https://doi.org/10.1016/j.jclepro.2023.138105.; N. Unidas, “Objetivo 6: Garantizar la disponibilidad de agua y su gestión sostenible y el saneamiento para todos.,” OBJETIVOS DE DESARROLLO SOSTENIBLE, 2015. https://www.un.org/sustainabledevelopment/es/water-and-sanitation/; C. J. Macuada, A. M. Oddershede, and L. E. Quezada, “DM methodology for automating technology system in water treatment plants,” in 2018 7th International Conference on Computers Communications and Control (ICCCC), 2018, pp. 265–269. doi:10.1109/ICCCC.2018.8390469.; M. Alissa, S. Al-Harahshah, and M. Ibrahim, “Monitoring of Surface Water Quality in King Talal Dam Using GIS: A Case Study,” Iraqi Geol. J., vol. 56, no. 2, pp. 36–47, 2023, doi:10.46717/igj.56.2A.3ms-2023-7-12.; F. Villacís Chimborazo and W. . Zambrano Vélez, “AUTOMATIZACIÓN DEL PROCESO DE TRATAMIENTO DE AGUAS RESIDUALES EN TECNOVA S . A .”,” Universidad Politécnica Salesiana. Ecuador, 2013. [Online]. Available: https://dspace.ups.edu.ec/handle/123456789/4118; M. Portección Social and M. Ambiente Vivienda y Desarrollo Territorial, Resolución 2115 de 2007, vol. 1. 2007, p. 23. [Online]. Available: https://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Legislac ión_del_agua/Resolución_2115.pdf.; Ministerio de Desarrollo Económico, “RAS 2000, Titulo A - Aspectos generales de los sistemas de agua potable y saneamiento básico. Ministerio de Vivienda Ciudad y Territorio Colombia,” Reglam. Técnico Del Sect. Agua Potable Y Saneam. Basico, p. 114, 2000.; G. Corporación Alemana, “Manual para la cloración del agua en sistemas de abastecimiento de agua potable en el ambito rural,” Corporación Alem. para la Coop. Int., p. 91, 2017, [Online]. Available: https://sswm.info/sites/default/files/reference_attachments/GIZ 2017. Manual para la cloración del agua en sistemas de abastecimiento de agua potable.pdf; AGUAVIVA, “Sistema de Acueducto,” 2021. https://www.aguavivaesp.gov.co/acueducto/; Anyasi, T. A., Jideani, A. I. O., & Mchau, G. (2013). Functional properties and postharvest utilization of commercial and noncommercial banana cultivars. Comprehensive Reviews in Food Science and Food Safety, 12(5), 509-522. https://doi.org/10.1111/1541-4337.12025; Al-Dairi, M., Pathare, P. B., Al-Yahyai, R., Jayasuriya, H. P. W., & Al-Attabi, Z. (2023). Postharvest Quality, Technologies, and Strategies to Reduce losses along the supply Chain of Banana: a review. Trends in Food Science and Technology, 134, 177-191. https://doi.org/10.1016/j.tifs.2023.03.003; S. A. Vaca Vargas, O. L. García Navarrete, y M. A. Colorado Gómez, “Diseño y construcción de un sistema acuapónico automatizado para cultivo acuaponico NFT de Carpa Roja y Lechuga Crespa”, Visión Electrónica, vol. 17, no. 1, ene. 2023.; Lidyce, Q. L. (s. f.). Elementos teóricos y prácticos sobre la bioimpedancia eléctrica en salud.http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1025- 02552016000500014; Caicedo-Eraso, J.C., Díaz-Arango, F.O., & Osorio-Alturo, A. (2019). Espectroscopia de impedancia eléctrica aplicada al control de la calidad en la industria alimentaria. http://www.scielo.org.co/pdf/ccta/v21n1/0122-8706-ccta-21-01-00100.pdf; Montes, L.M., Mejía-Gutiérrez, L.F., & Caicedo-Eraso, J.C. (2021). Espectroscopia de impedancia eléctrica, una herramienta para aplicaciones biotecnológicas con Lactobacillus casei ATCC 393. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123- 34752021000100055; Ocampo Hernández, Ó.H., Ruiz Villa, C.A., Aristizábal Botero, W., Olarte Echeverri, G., Gallego, P.A. (2017). Caracterización del tejido columnar del cérvix mediante espectroscopia de impedancia eléctrica y modelado computacional. Biosalud. https://www.semanticscholar.org/paper/216f9823cf95e0f9043636a052f656c4d318eed1; García Bello, J., Batista Luna, T., & Rodríguez de la Cruz, N. (2023). Principios básicos y uso en medicina de la espectroscopia de impedancia. Revista Cubana de Medicina Militar, 52(2), e02302316. Recuperado de https://revmedmilitar.sld.cu/index.php/mil/article/view/2316/1772; Carreño, A., & Gómez, C. (2013). Procesamiento de tejido de cuello uterino para estudio piloto de detección temprana de cáncer cervical basado en espectroscopia de impedancia eléctrica.; N. A. Ramírez-Pérez, L. E. Aparicio-Pico, y C. A. Pérez-Triana, “Medición sobre MRI para diagnóstico de cáncer de próstata”, Visión Electrónica, vol. 14, no. 2, pp. 196–206, jul. 2020. https://doi.org/10.14483/22484728.17965; Li, Yunhua; Cai, Chaozhi; Lee, Kok-Meng; Teng, Fengjian “A novel cascade temperature control system for a high-speed heat-airflow wind tunnel”, IEEE/ASME Transactions on Mechatronics, volumen 18, Issue 4, pages 1310 - 1319, 2013. https://doi:10.1109/TMECH.2013.2262077; Cai, Chaozhi; Li, Yunhua; Dong, Sujun, “Experimental Study on Gas Temperature Control for a High-Speed Heat-Airflow Wind Tunnel”, Journal of Aerospace Engineering, vol. 29, Issue. 6, nov 2016. https://doi.org/10.14483/22487638.6071; J. H. Fresneda-Alarcón, A. Escobar-Diaz, H. Vacca-González, y G. J. Rincón-Aponte, “Modelamiento e implementación de una planta térmica”, Visión Electrónica, vol. 15, no. 1, pp. 94–103, feb. 2021. https://doi.org/10.14483/22484728.17470; J. G. Ascanio-Villabona, B. E. Tarazona-Romero, y C. L. Sandoval, “Study of the behavior of the photovoltaic panel according to the installed surface”, Visión Electrónica, vol. 16, no. 2, dic. 2022.; LIU, Wei; ZHOU, Mengde, “An active damping vibration control system for wind tunnel models”, Chinese Journal of Aeronautics, vol. 32, pp. 2109-2120, sept 2019. https://doi.org/10.1016/j.cja.2019.04.014; Huang, Rui; Zhao, Yonghui; Hu, Haiyan, “Wind-Tunnel tests for active flutter control and closed-loop flutter identification”, AIAA Journal, vol. 54, Issue 7, pp. 2089-2099, 2016. https://doi.org/10.2514/1.J054649; FEEDBACK PT 326 Process Trainer User manual (e-lab) Crowborough, E. Sussex, England, 1999.; FEEDBACK Industry - PT 326 Process Trainer owner guide Crowborough, E. Sussex, England, 1999.; C. B. S. Dutra, F. K. Mendonca, G. C. Sousa, and N. G. Bonacorso, "Retrofitting of a plain table plotter for printed circuit boards prototyping," in Power Electronics Conference, 2009. COBEP '09. Brazilian, 2009, pp. 1027-1032.; K. Salonitis and S. Vatousianos, "Experimental Investigation of the Plasma Arc Cutting Process," Procedia CIRP, vol. 3, pp. 287-292, // 2012.; Lida Pan; Xiangkun Guo; Yan Luan; Hongliang Wang, “Design and realization of cutting simulation function of digital twin system of CNC machine tool”, Procedia Computer Science, vol. 183, pp. 261-266, 2021. https://doi.org/ https://doi.org/10.1016/j.procs.2021.02.057; A.M. Madni, C.C. Madni, S.D. Lucero, “Leveraging digital twin technology in modelbased systems engineering”, Systems, vol. 7, 2019. https://doi.org/ https://doi.org/10.3390/systems7010007; Ran, Meng, “Research on the key Technology of contour error control of machine tool based on digital twin”, ACM International Conference Proceeding Series, pp. 1070- 1075, dec 2022. https://doi.org/10.1145/3584376.3584567; Yu. G. KabaldinL, “Digital Twin for 3D Printing on CNC Machines”, Russian Engineering Research, vol. 39, pp. 848-851, 2019. https:// doiorg.bdigital.udistrital.edu.co/10.3103/S1068798X19100101; Hershberger, R. E., Morales, A. & Siegfried, J. D. Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals. Genet. Med. 12, 655–667 (2010). This review article provides a wide and detailed overview of clinical and genetic issues in specific types of genetic DCM.; Hershberger, R.E.; Hedges, D.J.; Morales, A. Dilated cardiomyopathy: The complexity of a diverse genetic architecture. Nat. Rev. Cardiol. 2013, 10, 531–547.; Antunes M de O, Scudeler TL. Hypertrophic cardiomyopathy. IJC Hear Vasc. 2020;27:100503.; Teekakirikul P, Zhu W, Huang HC, Fung E. Hypertrophic cardiomyopathy: An overview of genetics and management. Biomolecules. 2019;9(12):1–11.; Maron BJ. Clinical Course and Management of Hypertrophic Cardiomyopathy. N Engl J Med. 2018;379(7):655–68.; Maron, B. J. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113, 1807–1816 (2006).; Elliott, P. et al. Classification of the cardiomyopathies: a position statement from the european society of cardiology working group on myocardial and pericardial diseases. Eur. Heart J. 29, 270–276 (2007).; Richardson, P. et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation 93, 841–842 (1996); Rostán, S., Smiliansky, N., & Vaucher, A. (2020). Miocardiopatía por Influenza A H1N1. Reporte de un caso clínico. Revista Uruguaya De Medicina Interna, 5(3), 26-30. https://doi.org/10.26445/05.03.4; Galarza, G., Moreno, J., & Vasquez, G., (2021). Miocardiopatia secundaria a influenza. Revista Médica Vozandes, 32(1), 84-87. DOI:10.48018/rmv.v32.i1.2; Z. Wang, H. Shen, Y. Liu, Y. Cheng, R. Zhang, X. Wang, and A. L. Yuille, “Improving the accuracy of medical diagnosis with causal machine learning,” Nature Communications, vol. 11, no. 1, p. 18310, 2020.; M. M. Ahsan and Z. Siddique, “Machine learning-based heart disease diagnosis: A systematic literature review,” Artificial Intelligence in Medicine, vol. 128, p. 102289, 2022. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0933365722000549; A. Kumar and A. Singla, “Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda,” Journal of Ambient Intelligence and Humanized Computing, vol. 14, no. 7, pp. 1–28, 2022.; U. S. Acharya, S. Kulkarni, and P. Raju, “Artificial intelligence appliedto cardiomyopathies: Is it time for clinical application?” IEEE Access, vol. 10, pp. 16 264–16 282, 2022.; A. Regueiro Gómez, C. B. Busoch Morlán, C. Regueiro Busoch, y R. J. Díaz Martínez, “Biomedical Engineering: experiences in the research formation with MOODLE”, Visión Electrónica, vol. 14, no. 2, pp. 152–158, jul. 2020.; B. Forero, K. Velásquez, R. Hernández, y E. Mejía, “Simulation of transradial prosthesis using Virtual Reality Environment and electrooculography (EOG) signals for grip therapy”, Vis. Electrónica, vol. 16, no. 2, ago. 2022.; D. Sánchez-L., G. Sánchez, y L. A. Luengas-C., “Static postural stability: analysis in time and frequency through the development of a software tool”, Visión Electrónica, vol. 17, no. 1, abr. 2023.; J. L. Gerardo‐Nava, et al. "Transformative Materials to Create 3D Functional Human Tissue Models In Vitro in a Reproducible Manner." Advanced Healthcare Materials (2023): 2301030. doi.org/10.1002/adhm.202301030; C. Vesga-Castro, et al. “Contractile force assessment methods for in vitro skeletal muscle tissues.” eLife vol. 11 e77204. doi:10.7554/eLife.77204; K. Budde, J. Zimmermann, E. Neuhaus, M. Schröder, A. M. Uhrmacher and U. van Rienen, "Requirements for Documenting Electrical Cell Stimulation Experiments for Replicability and Numerical Modeling," 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 2019, pp. 1082-1088, doi:10.1109/EMBC.2019.8856863.; A.M. Kasper, et al. “Mimicking exercise in three-dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation.” Journal of cellular physiology vol. 233,3 (2018): 1985-1998. doi:10.1002/jcp.25840; M. Flaibani, et al. “Muscle differentiation and myotubes alignment is influenced by micropatterned surfaces and exogenous electrical stimulation.” Tissue engineering. Part A vol. 15,9 (2009): 2447-57. doi:10.1089/ten.tea.2008.0301; Fernández‐Costa, Juan M., et al. "Training‐on‐a‐Chip: A Multi‐Organ Device to Study the Effect of Muscle Exercise on Insulin Secretion in Vitro." Advanced Materials Technologies. vol. 8, no 7, p. 2200873 (2023). doi.org/10.1002/admt.202200873; Zhang, Xiaoning, et al. "Complex refractive indices measurements of polymers in visible and near-infrared bands." Applied optics. vol. 59, no 8, p. 2337-2344 (2020). Doi:org/10.1364/AO.383831; J. Fukushima, et al. “Effect of Aspect Ratio on the Permittivity of Graphite Fiber in Microwave Heating.” Materials (Basel, Switzerland) vol. 11,1 169. 22 Jan. 2018, doi:10.3390/ma11010169; K. K. Ravikumar, and K.K. Palanivelu. "Dielectric properties of natural rubber composites filled with graphite." Materials Today: Proceedings 16 (2019): 1338-1343. doi.org/10.1016/j.matpr.2019.05.233; S. Chen. “Dielectric constant measurement of P3HT, polystyrene, and polyethylene”, PhD. thesis., Faculty of Science and Engineering, 2017.; X. Y. Qi, et al. “Enhanced electrical conductivity in polystyrene nanocomposites at ultralow graphene content.” ACS applied materials & interfaces vol. 3,8 (2011): 3130-3. doi:10.1021/am200628c:10; K. Gadonna, et al. "Study of gas heating by a microwave plasma torch." Journal of Modern Physics. vol. 3, no 10, p. 1603. (2012): Doi.org/10.4236/jmp.2012.330198; E. Seran, et al. "What we can learn from measurements of air electric conductivity in 222Rn‐rich atmosphere." Earth and Space Science. vol. 4, no 2, p. 91-106 (2017). doi.org/10.1002/2016EA000241; K. Izdihar, et al. "Structural, mechanical, and dielectric properties of polydimethylsiloxane and silicone elastomer for the fabrication of clinical-grade kidney phantom." Applied Sciences. vol. 11, no 3, p. 1172 (2021). DOI:10.3390/app11031172; A. Müller, M. C. Wapler, and U. Wallrabe. "A quick and accurate method to determine the Poisson's ratio and the coefficient of thermal expansion of PDMS." Soft Matter. vol. 15, no 4, p. 779-784 (2019). DOI:10.1039/C8SM02105H; AZoM.com. (n.d.). Properties: Carbon - Graphite Materials. 2012.; Polystyrene %7C Designerdata. (n.d.). https://designerdata.nl/materials/plastics/thermoplastics/polystyrene; Poisson’s Ratio. (n.d.). https://polymerdatabase.com/polymer%20physics/Poisson%20Table.html; S, Shauheen, et al. “The elastic modulus of Matrigel as determined by atomic force microscopy.” Journal of structural biology. vol. 167, no 3, p. 216-219. doi:10.1016/j.jsb.2009.05.005; J.J. Vaca-González, et al. "Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid–Gelatin injectable hydrogels." Bioelectrochemistry. vol. 134, p. 107536 (2020). doi:10.1016/j.bioelechem.2020.107536; G. Agrawal, et al. “Skeletal muscle-on-a-chip: an in vitro model to evaluate tissue formation and injury.” Lab on a chip vol. 17,20 (2017): 3447-3461. doi:10.1039/c7lc00512a; G.; Renganathan et al., “ETH Library Foot Biomechanics with Emphasis on the Plantar Pressure Sensing: A Review Foot Biomechanics with Emphasis on the Plantar Pressure Sensing: A Review,” in Revolutions in Product Design for Healthcare, D. S. and Innovation, Ed. Singapore: Springer, 2022.; A. K. Buldt, J. J. Allan, K. B. Landorf, and H. B. Menz, “The relationship between foot posture and plantar pressure during walking in adults: A systematic review,” Gait and Posture, vol. 62. 2018, doi:10.1016/j.gaitpost.2018.02.026.; C. Deng, W. Tang, L. Liu, B. Chen, M. Li, and Z. L. Wang, “Self -Powered Insole Plantar Pressure Mapping System,” Adv. Funct. Mater., vol. 28, no. 29, Jul. 2018, doi:10.1002/ADFM.201801606.; J. L. Chen et al., “Plantar Pressure-Based Insole Gait Monitoring Techniques for Diseases Monitoring and Analysis: A Review,” Adv. Mater. Technol., vol. 7, no. 1, p. 2100566, Jan. 2022, doi:10.1002/ADMT.202100566.; Q. Zhang, Y. L. Wang, Y. Xia, X. Wu, T. V. Kirk, and X. D. Chen, “A low-cost and highly integrated sensing insole for plantar pressure measurement,” Sens. Bio-Sensing Res., vol. 26, 2019, doi:10.1016/j.sbsr.2019.100298.; J. F. Hafer, M. W. Lenhoff, J. Song, J. M. Jordan, M. T. Hannan, and H. J. Hillstrom, “Reliability of plantar pressure platforms,” Gait Posture, vol. 38, no. 3, 2013, doi:10.1016/j.gaitpost.2013.01.028.; H. Deepashini, B. Omar, A. Paungmali, N. Amaramalar, H. Ohnmar, and J. Leonard, “An insight into the plantar pressure distribution of the foot in clinical practice: Narrative review,” Polish Annals of Medicine, vol. 21, no. 1. 2014, doi:10.1016/j.poamed.2014.03.003.; K. Hébert-Losier and L. Murray, “Reliability of centre of pressure, plantar pressure, and plantar-flexion isometric strength measures: A systematic review,” Gait and Posture, vol. 75. 2020, doi:10.1016/j.gaitpost.2019.09.027.; P. R. Cavanagh, F. G. Hewitt, and J. E. Perry, “In-shoe plantar pressure measurement: a review,” The Foot, vol. 2, no. 4. 1992, doi:10.1016/0958-2592(92)90047-S.; X. Li, K. Wang, Y. L. Wang, and K. C. Wang, “Plantar pressure measurement system based on piezoelectric sensor: a review,” Sensor Review, vol. 42, no. 2. 2022, doi:10.1108/SR-09-2021-0333.; A. Ciniglio, A. Guiotto, F. Spolaor, and Z. Sawacha, “The design and simulation of a 16- sensors plantar pressure insole layout for different applications: From sports to clinics, a pilot study,” Sensors, vol. 21, no. 4, 2021, doi:10.3390/s21041450.; L. Luengas- Contreras.,and L. Wanumen-Silva. "Modelos computacionales en la posturografía". Tecnura, vol. 26, no. 73, 2022, 30-48. https://doi.org/10.14483/22487638.18060; R. de Fazio, E. Perrone, R. Velázquez, M. De Vittorio, and P. Visconti, “Development of a self-powered piezo-resistive smart insole equipped with low-power ble connectivity for remote gait monitoring,” Sensors, vol. 21, no. 13, 2021, doi:10.3390/s21134539.; H. Muhedinovic and D. Boskovic, “Design of iot solution for velostat footprint pressure sensor system,” in Lecture Notes of the Institute for Computer Sciences, SocialInformatics and Telecommunications Engineering, LNICST, 2016, vol. 187, doi:10.1007/978-3-319-51234-1_30.; AICMA, «Estadísticas de víctimas». Accedido: 26 de octubre de 2023. [En línea]. Disponible en: https://www.accioncontraminas.gov.co/Estadisticas/Paginas/Estadisticasde-Victimas.aspx; G. R. Hurley, R. McKenney, M. Robinson, M. Zadravec, y M. R. Pierrynowski, «The role of the contralateral limb in below-knee amputee gait», Prosthet Orthot Int, vol. 14, n.o 1, Art. n.o 1, abr. 1990, doi:10.3109/03093649009080314.; M. S. Pinzur, «The Effect of Prosthetic Alignment on Relative Limb Loading in Persons with Transtibial Amputation: A Preliminary Report», p. 5, 1995.; R. Gailey, «Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use», The Journal of Rehabilitation Research and Development, vol. 45, n.o 1, Art. n.o 1, dic. 2008, doi:10.1682/JRRD.2006.11.0147.; T. Kobayashi, M. S. Orendurff, y D. A. Boone, «Dynamic alignment of transtibial prostheses through visualization of socket reaction moments», Prosthetics and orthotics international, vol. 39, n.o 6, Art. n.o 6, 2015.; D. A. Boone et al., «Perception of socket alignment perturbations in amputees with transtibial prostheses», The Journal of Rehabilitation Research and Development, vol. 49, n.o 6, Art. n.o 6, 2012, doi:10.1682/JRRD.2011.08.0143.; H. Hashimoto, T. Kobayashi, F. Gao, y M. Kataoka, «A proper sequence of dynamic alignment in transtibial prosthesis: insight through socket reaction moments», Sci Rep, vol. 13, n.o 1, Art. n.o 1, ene. 2023, doi:10.1038/s41598-023-27438-1; S. L. Delp et al., «OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement», IEEE Transactions on Biomedical Engineering, vol. 54, n.o 11, Art. n.o 11, nov. 2007, doi:10.1109/TBME.2007.901024.; F. De Groote, A. L. Kinney, A. V. Rao, y B. J. Fregly, «Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem», Ann Biomed Eng, vol. 44, n.o 10, Art. n.o 10, oct. 2016, doi:10.1007/s10439-016-1591-9.; G. Serrancoli et al., «Subject-Exoskeleton Contact Model Calibration Leads to Accurate Interaction Force Predictions», IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, n.o 8, pp. 1597-1605, ago. 2019, doi:10.1109/TNSRE.2019.2924536.; S. Miller y Y. V. Weddingen, «Modeling Flexible Bodies with Simscape Multibody Software», 2017. Accedido: 10 de agosto de 2023. [En línea]. Disponible en: https://la.mathworks.com/content/dam/mathworks/tag-team/Objects/s/Modeling-FlexibleBodies-Simscape-Multibody-171122.pdf; M. Ackermann y A. J. van den Bogert, «Optimality Principles for Model-Based Prediction of Human Gait», J Biomech, vol. 43, n.o 6, Art. n.o 6, abr. 2010, doi:10.1016/j.jbiomech.2009.12.012.; T. W. Dorn, J. M. Wang, J. L. Hicks, y S. L. Delp, «Predictive Simulation Generates Human Adaptations during Loaded and Inclined Walking», PLOS ONE, vol. 10, n.o 4, Art. n.o 4, abr. 2015, doi:10.1371/journal.pone.0121407.; C. L. Dembia, N. A. Bianco, A. Falisse, J. L. Hicks, y S. L. Delp, «OpenSim Moco: Musculoskeletal optimal control», PLOS Computational Biology, vol. 16, n.o 12, p. e1008493, dic. 2020, doi:10.1371/journal.pcbi.1008493.; L. Nolan, A. Wit, K. Dudziñski, A. Lees, M. Lake, y M. Wychowañski, «Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees», Gait Posture, vol. 17, n.o 2, pp. 142-151, abr. 2003, doi:10.1016/s0966-6362(02)00066-8.; L. Nolan y A. Lees, «The functional demands on the intact limb during walking for active transfemoral and transtibial amputees», Prosthetics & Orthotics International, vol. 24, n.o 2, pp. 117-125, ago. 2000, doi:10.1080/03093640008726534.; W. Herzog, B. M. Nigg, L. J. Read, y E. Olsson, «Asymmetries in ground reaction force patterns in normal human gait», Medicine & Science in Sports & Exercise, vol. 21, n.o 1, p. 110, feb. 1989.; M. Roerdink, S. Roeles, S. C. H. van der Pas, O. Bosboom, y P. J. Beek, «Evaluating asymmetry in prosthetic gait with step-length asymmetry alone is flawed», Gait & Posture, vol. 35, n.o 3, pp. 446-451, mar. 2012, doi:10.1016/j.gaitpost.2011.11.005.; M. Roerdink y P. J. Beek, «Understanding Inconsistent Step-Length Asymmetries Across Hemiplegic Stroke Patients: Impairments and Compensatory Gait», Neurorehabil Neural Repair, vol. 25, n.o 3, pp. 253-258, mar. 2011, doi:10.1177/1545968310380687.; GP Fishwick, “Una introducción a Opensimulator y aplicaciones M&S basadas en agentes de entornos virtuales”, en Simulation Conference (WSC), Actas del invierno de 2009, diciembre de 2009, págs. 177 a 183,64.; Linden Research, Inc. Disponible en: http://lindenlab.com; M. Barbulescu, M. Marinescu, O. Grigoriu, G. Neculoiu, V. Sandulescu e I. Halcu, "GNU,GPL en el estudio de programas del campo de la ingeniería de sistemas", en Roedunet International Conference (RoEduNet), 10 de junio de 2011, pp. 1 –4.; Visor Hippo OpenSim, disponible: http://mjmlabs.com/viewer; Visor RealXtend, disponible: http://realxtend.org; M. Pattal, Y. Li y J. Zeng, “Web 3.0: ¡una verdadera web personal! Más oportunidades y más amenazas”, en Aplicaciones, servicios y tecnologías móviles de próxima generación, 2009. NGMAST '09. Tercera Internacional, Conferencia sobre, septiembre de 2009, pp. 125 –128.; McLeod, S. A; Piaget “Cognitive Theory” (en inglés). Simply Psychology. Consultado el 18 de marzo 2023.; Bronkart, J. P. y otros (1985). Vigotsky aujourd’hui. París: Delachaux & Niestlé. Consultado el 18 de marzo 2023; Bruner, J. (1980). Investigación sobre el desarrollo cognitivo. España: Pablo del Río.; Papert, S., & Harel, I. (2002). Situar el construccionismo. Alajuela: INCAE.; Ausubel, D. P. (2002). Adquisición y retención del conocimiento. Una perspectiva cognitiva. Barcelona: Ed. Paidós.; Athanassopoulos, N. Capítulo 7: Estudio comparativo del desarrollo de las inteligencias múltiples en alumnos que cursan o no estudios de danza en un conservatorio. innovando en educación.; Lave, J. (1991). Situating learning in communities of practice. En H. Resnick, S. Levine, & S. Teasley (Eds.), Perspective on socially shared cognition (pp.63-82). Washington, Estados Unidos: American Psycological Association.; Von Glasersfeld, E. 1984. An introduction to radical constructivism. En: P. Watzlawick. Theinvented reality. New York: Norton, pp. 17-40; MIT Media Lab (2016). Professor Emeritus Seymour Papert, pioneer of constructionist learning, dies at 88. MIT News, en http://news.mit.edu/2016/seymourpapertpioneer-of- constructionist-learning-dies-0801; Desarrollo de una aplicación con PLC Siemens, https://educatia.com.co/programacion-plc-logo-siemens-grafcet-a-ladder/; W. A. Bhat, A. Alzahrani, and M. A. Wani, “Can computer forensic tools be trusted in digital investigations?” Science and Justice, vol. 61, no. 2, pp. 198–203, Mar. 2021, [Online]. Disponible en: 10.1016/j.scijus.2020.10.002.; B. K. Akcam, “Forensic Science International we should give special mention to the observance of secrecy in the automotive industry in case of security relevant systems Digitizing Forensic Laboratories: The Turkish Criminal Police Laboratories Case.”; L. Xu, B. Wang, L. Wang, D. Zhao, X. Han, and S. Yang, “PLC-SEIFF: A programmable logic controller security incident forensics framework based on automatic construction of security constraints,” Computers and Security, vol. 92, May 2020, [Online]. Disponible en: 10.1016/j.cose.2020.101749.; M. I. Cohen, D. Bilby, and G. Caronni, “Distributed forensics and incident response in the enterprise,” in Digital Investigation, 2011, vol. 8, no. SUPPL. [Online]. Disponible en: 10.1016/j.diin.2011.05.012.; C. J. Courtney Mustaphi et al., “Guidelines for reporting and archiving 210Pb sediment chronologies to improve fidelity and extend data lifecycle,” Quaternary Geochronology, vol. 52, pp. 77–87, Jun. 2019, [Online]. Disponible en: 10.1016/j.quageo.2019.04.003.; P. Lutta, M. Sedky, M. Hassan, U. Jayawickrama, and B. Bakhtiari Bastaki, “The complexity of internet of things forensics: A state-of-the-art review,” Forensic Science International: Digital Investigation, vol. 38. Elsevier Ltd, Sep. 01, 2021. [Online]. Disponible en: 10.1016/j.fsidi.2021.301210.; W. Halboob, R. Mahmod, N. I. Udzir, and M. D. T. Abdullah, “Privacy levels for computer forensics: Toward a more efficient privacy-preserving investigation,” in Procedia Computer Science, 2015, vol. 56, no. 1, pp. 370–375. doi:10.1016/j.procs.2015.07.222.; G. Ma, Z. Wang, L. Zou, and Q. Zhang, “Computer forensics model based on evidence ring and evidence chain,” in Procedia Engineering, 2011, vol. 15, pp. 3663–3667.; M. Saadoon, S. H. Siti, H. Sofian, H. H. M. Altarturi, Z. H. Azizul, and N. Nasuha, “Fault tolerance in big data storage and processing systems: A review on challenges and solutions,” Ain Shams Engineering Journal, vol. 13, no. 2. Ain Shams University, Mar. 01, 2022.; D. Closser and E. Bou-Harb, “A live digital forensics approach for quantum mechanical computers,” Forensic Science International: Digital Investigation, vol. 40, p. 301341, Apr. 2022; G. Koorey, S. McMillan, and A. Nicholson, “Incident Management and Network Performance,” in Transportation Research Procedia, 2015, vol. 6, pp. 3–16.; K. Barik, S. Das, K. Konar, B. Chakrabarti Banik, and A. Banerjee, “Exploring user requirements of network forensic tools,” Global Transitions Proceedings, vol. 2, no. 2, pp. 350–354, Nov. 2021.; A. M. Marshall, “Digital forensic tool verification: An evaluation of options for establishing trustworthiness,” Forensic Science International: Digital Investigation, vol. 38, Sep. 2021.; T. Wu, F. Breitinger, and S. O’Shaughnessy, “Digital forensic tools: Recent advances and enhancing the status quo,” Forensic Science International: Digital Investigation, vol. 34, Sep. 2020.; W. A. Bhat, A. AlZahrani, and M. A. Wani, “Can computer forensic tools be trusted in digital investigations?” Science and Justice, vol. 61, no. 2, pp. 198–203, Mar. 2021.; A. Daniel D and S. E. Roslin, “Data validation and integrity verification for trust-based data aggregation protocol in WSN,” Microprocessors and Microsystems, vol. 80. Elsevier B.V., Feb. 01, 2021.; J. Tian and X. Jing, “Cloud data integrity verification scheme for associated tags,” Computers and Security, vol. 95, Aug. 2020.; C. Yang, F. Zhao, X. Tao, and Y. Wang, “Publicly verifiable outsourced data migration scheme supporting efficient integrity checking,” Journal of Network and Computer Applications, vol. 192, Oct. 2021.; Q. Zhao, S. Chen, Z. Liu, T. Baker, and Y. Zhang, “Blockchain-based privacypreserving remote data integrity checking scheme for IoT information systems,” Information Processing and Management, vol. 57, no. 6, Nov. 2020.; K. Porter, R. Nordvik, F. Toolan, and S. Axelsson, “Timestamp prefix carving for filesystem metadata extraction,” Forensic Science International: Digital Investigation, vol. 38, Sep. 2021.; R. Nordvik, K. Porter, F. Toolan, S. Axelsson, and K. Franke, “Generic Metadata Time Carving,” Forensic Science International: Digital Investigation, vol. 33, Jul. 2020.; M. Kiweler, M. Looso, and J. Graumann, “MARMoSET – Extracting Publication-ready Mass Spectrometry Metadata from RAW Files,” Molecular and Cellular Proteomics, vol. 18, no. 8, pp. 1700–1702, 2019.; N. K. Booker, P. Knights, J. D. Gates, and R. E. Clegg, “Applying principal component analysis (PCA) to the selection of forensic analysis methodologies,” Engineering Failure Analysis, vol. 132, Feb. 2022.; J. W. Ma, T. Czerniawski, and F. Leite, “An application of metadata-based image retrieval system for facility management,” Advanced Engineering Informatics, vol. 50, Oct. 2021.; L.E. Aparicio, “Informe Diagnóstico del estado actual de uso de las historias clínicas en hospitales de Bogotá”, 2010.; B. Schneier. Beyind Fear: Thinking Sensibly about Security in an Uncertain World. Copernicus Books, New York, NY, 2003.; R. Campbell, J. Al-Muhtadi, P. Naldurg, G. Sampemane, and M. Mickunas. Towards Security of Privacy for Pervasive Computing. En Proceedings of the International Symposium on Software Security, LNCS 2603, páginas 1-15, Springer-Verlag, 2002.; D. Garlan, D. Siewiprek, A. Smailagic, and P. Steenkiste. Project AURA: Toward Distraction-Free Pervasive Computing. IEEE Pervasive computing, 1(2):22-31, 2002.; M. Ulrich Legacy Systems: Transformation Strategies. Prentice Hall PTR, 2002.; J. H. Saltzer, D. P. Reed, and D.D. Clark. End-to-End Arguments in System Desing. ACM transactions on Computer Systems, 2(4):277-288, 1984.; Presentación del libro “Seguridad: una Introducción” Dr. MANUTA, Giovanni. Consultor y profesor de seguridad Cranfield University. Revista de Seguridad Corporativa. http//: www.seguridadcorporativa.org.; BORGHELLO. Cristian F. Tesis Seguridad Informática: Sus implicaciones e implementación. [En línea]. Junio 2001, (Citado nov., 05, 2004). Disponible en Internet:; FISHER ROYAL P. “Seguridad en los temas informáticos, Madrid; p 85, 1998.; JIMENEZ, José Alfredo. Evolución Seguridad de un Sistema de Información. [en línea]. Noviembre 2001, (Citado mar., 16, 2005). Disponible en Internet:; CALVO, Rafael Fernández. Glosario básico inglés-español para usuarios. [En línea]. Febrero 2000, (Citado mar., 16, 2005). Disponible en Internet:; ARDITA, Julio Cesar. Director de Cybsec S.A. Security System y ex-Hacker. Entrevista personal realizada el día 15 de enero del 2001 en Instalaciones de Cybsec S.A. http//: www.cybsec.com; MERLAT, Máximo. PAZ, Gonzalo. SOSA, Matias. MARTINEZ, Marcelo. Seguridad Informática: Hackers. [En línea]. Julio 2003. (Citado mar., 16, 2005). Disponible en Internet: http.//www.Seguridad InformáticaHackerilustrados_com.htm; KEITHE J. Jones, Superutilidades Hackers. México D.F: Mac Graw Hill, 2003, p. 282-288.; SUÑER, Francisco José. Hacker. [En línea]. Julio 2004. (Citado abr., 15, 2005). Disponible en Internet:< http://www.ciencia-ficcion.com/glosario/hacker.htm>; CANO. Jeimy. V Encuesta Nacional sobre Seguridad Informática en Colombia. [En línea]. Enero 2005, (Citado jul., 25, 2005). Disponible en Internet:; MENDEZ. Carlos E. Metodología Diseño y Desarrollo del Proceso de Investigación. Bogotá: Mc Graw Hill, 2005.; M. Bano, A. Qayyum, R. N. Bin Rais, and S. S. A. Gilani, “Soft-Mesh: A Robust Routing Architecture for Hybrid SDN and Wireless Mesh Networks,” IEEE Access, vol. 9, pp. 87715–87730, 2021, doi:10.1109/ACCESS.2021.3089020.; S. Kemp, “Digital in 2018: World’s internet users pass the 4 billion mark - We Are Social UK,” 2018. https://wearesocial.com/uk/blog/2018/01/global-digital-report-2018/ (accessed Sep. 01, 2023).; Z. Latif, K. Sharif, F. Li, M. Karim, and Y. Wang, “A Comprehensive Survey of Interface Protocols for Software Defined Networks,” 2019.; M. Paliwal and K. K. Nagwanshi, “Effective Flow Table Space Management Using PolicyBased Routing Approach in Hybrid SDN Network,” IEEE Access, vol. 10, pp. 59806– 59820, 2022, doi:10.1109/ACCESS.2022.3180333.; “Management, Control and Data plane - Cisco Community.” https://community.cisco.com/t5/switching/management-control-and-data-plane/tdp/2803553 (accessed Sep. 02, 2023).; “Management, Control, and Data Planes in Network Devices and Systems « ipSpace.net blog,” 2013. https://blog.ipspace.net/2013/08/management-control-and-data-planesin.html (accessed Mar. 12, 2023).; H. Farag, “CCNA-SEC Lec#4 %7C Securing Data Plane – Network-Masters,” 2017. https://networkmasters.wordpress.com/2017/01/27/ccna-sec-lec4-securing-data-plane/ (accessed Mar. 12, 2023).; “Difference Between Data Plane Vs Control Plane - Route XP Private Network Services.” https://www.routexp.com/2020/03/difference-between-data-plane-vs.html (accessed Mar. 12, 2023).; “Cisco SDN: Control Plane e Data Plane - Cisco Community.” https://community.cisco.com/t5/blogs-routing-y-switching/cisco-sdn-control-plane-edata-plane/ba-p/4655704 (accessed Sep. 02, 2023).; M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software defined networking: State of the art and research challenges,” 2014, doi:10.1016/j.comnet.2014.07.004.; C. Chaudet and Y. Haddad, “Wireless software defined networks: Challenges and opportunities,” 2013 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, COMCAS 2013, 2013, doi:10.1109/COMCAS.2013.6685237.; J. F. G. Orrego and J. P. U. Duque, “Throughput and delay evaluation framework integrating SDN and IEEE 802.11s WMN,” 2017 IEEE 9th Latin-American Conference on Communications, LATINCOM 2017, vol. 2017-January, pp. 1–6, Dec. 2017, doi:10.1109/LATINCOM.2017.8240186.; A. Drescher, “A Survey of Software-Defined Wireless Networks”, Accessed: Sep. 02, 2023. [Online]. Available: http://www.cse.wustl.edu/~jain/cse574-14/ftp/sdwn/index.html; D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015, doi:10.1109/JPROC.2014.2371999.; F. D. O. Silva, J. H. D. S. Pereira, P. F. Rosa, and S. T. Kofuji, “Enabling future internet architecture research and experimentation by using software defined networking,” Proceedings - European Workshop on Software Defined Networks, EWSDN 2012, pp. 73–78, 2012, doi:10.1109/EWSDN.2012.24.; E. Haleplidis and S. Salsano, “Overview of RFC7426: SDN Layers and Architecture Terminology - IEEE Software Defined Networks,” 2017. https://sdn.ieee.org/newsletter/september-2017/overview-of-rfc7426-sdn-layers-andarchitecture-terminology (accessed Feb. 18, 2023).; J. Espinoza, “Las API en Ambientes de Controladores de Red — Serie SDN №2 %7C by Jesus Espinoza %7C Medium,” 2021. https://jesuseduardoespinoza.medium.com/las-api-enambientes-de-controladores-de-red-serie-sdn-2-75139f6a10a2 (accessed Mar. 13, 2023).; J. E. Cáceres Guevara and C. A. Casilimas Fajardo, “Arquitectura y funcionamiento de redes definidas por software (SDN),” Repositorio Universidad Distrital Francisco José de Caldas, 2022.; “Open Networking Foundation.” https://opennetworking.org/ (accessed Sep. 07, 2023).; “Overview of Northbound Interfaces - eSight 21.0 Operation Guide 07 - Huawei.” https://support.huawei.com/enterprise/es/doc/EDOC1100208263/8ac892ef/northboundinterfaces (accessed Mar. 13, 2023).; D. J. Ramos Suavita, “Análisis de vulnerabilidades a nivel de seguridad en redes SDN para los planos de control y plano de datos,” Universidad Militar Nueva Granada, 2021, Accessed: Nov. 05, 2022. [Online]. Available: https://repository.unimilitar.edu.co/bitstream/handle/10654/41314/RamosSuavitaDairon Javier2022.pdf?sequence=1&isAllowed=y; L. Zhu, M. M. Karim, K. Sharif, F. Li, X. Du, and M. Guizani, “SDN Controllers: Benchmarking & Performance Evaluation,” Feb. 2019, [Online]. Available: http://arxiv.org/abs/1902.04491; D. Dudhal, “Performance Evaluation of SDN Controllers using Cbench and Iperf %7C by Disha Dudhal %7C Medium,” 2022. https://medium.com/@dishadudhal/performanceevaluation-of-sdn-controllers-using-cbench-and-iperf-e9296f63115c (accessed Apr. 30, 2023).; R. Kumar, M. Atulkar, and N. Kumar, Performance Comparison of Ryu and Floodlight Controllers in Different SDN Topologies. 2019.; R. Ramadhan, N. Armi, R. Magdalena, G. N. Nurkahfi, and M. M. M. Dinata, “QoS Performance of Software Define Network Using Open Network Operating System Controller,” in Proceeding - 2020 International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications, ICRAMET 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 124–128. doi:10.1109/ICRAMET51080.2020.9298662.; M. Z. Abdullah, N. A. Al-Awad, and F. W. Hussein, “Evaluating and Comparing the Performance of Using Multiple Controllers in Software Defined Networks,” Modern Education and Computer Science, vol. 8, pp. 27–34, 2019, doi:10.5815/ijmecs.2019.08.03.; A. Singh, N. Kaur, and H. Kaur, “Extensive performance analysis of OpenDayLight (ODL) and Open Network Operating System (ONOS) SDN controllers,” 2022, doi:10.1016/j.micpro.2022.104715.; “SDN Framework RYU Using OpenFlow 1.3 RYU project team”.; “ONOS - ONOS - Wiki.” https://wiki.onosproject.org/ (accessed Sep. 07, 2023).; H. Facchini, S. Perez, R. Blanchet, B. Roberti, and R. Azcarate, “Experimental performance contrast between SDN and traditional networks,” in 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021, Institute of Electrical and Electronics Engineers Inc., 2021. doi:10.1109/CHILECON54041.2021.9702982.; D. Bombal, “GNS3,” 2015. https://gns3.com/sdn-101-mininet-openflow-and-gns (accessed Sep. 07, 2023).; “OpenFlow.” https://wiki.wireshark.org/OpenFlow (accessed Sep. 08, 2023).; J. Mogul and S. Deering, “RFC 1191 - Path MTU discovery.” https://datatracker.ietf.org/doc/html/rfc1191 (accessed Sep. 07, 2023).; “Rendimiento del servicio de volumen en bloque.” https://docs.oracle.com/esww/iaas/Content/Block/Concepts/blockvolumeperformance.htm (accessed Sep. 07, 2023).; “Data Center Switches – Cisco Nexus - Cisco.” https://www.cisco.com/site/us/en/products/networking/cloud-networkingswitches/index.html (accessed Sep. 07, 2023).; “muestra la memoria virtual del sistema %7C Juniper Networks.” https://www.juniper.net/documentation/mx/es/software/junos/junos-overview/topics/ref/command/show-system-virtual-memory.html (accessed Sep. 07, 2023).; “Why Move to a Modern Network Operating System? White Paper - Cisco.” https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-xrsoftware/white-paper-c11-744829.html (accessed Sep. 04, 2023).; “Software-Defined Networking (SDN) Definition - Open Networking Foundation.” https://opennetworking.org/sdn-definition/ (accessed Sep. 03, 2023).; “threading — Thread-based parallelism — Python 3.11.5 documentation.” https://docs.python.org/3/library/threading.html (accessed Sep. 05, 2023).; 5gamericas, “5gamericas: Statistics - Latin America.” [Online]. Available: http://www.5gamericas.org/en/resources/statistics/statistics-latin-america/.; A. Navarro Cadavid, A. Arteaga, L. Vargas, J. Renteria, and M. Arciniegas, “Spectrum Monitoring System and Benchmarking of Mobile Networks Using Open Software Radios SIMONES,” IEEE Lat. Am. Trans., vol. 13, no. 11, pp. 3592–3597, 2015.; M. Iedema and H. Samra, Getting Started with OpenBTS. 2015.; A. Dubey, D. Vohra, K. Vachhani, and A. Rao, “Demonstration of vulnerabilities in GSM security with USRP B200 and open-source penetration tools,” in Proceedings - AsiaPacific Conference on Communications, APCC 2016, 2016, pp. 496–501.; B. Harmat et al., “The Security Implications of IMSI Catchers,” in International Conference on Security and Management (SAM’15), 2015, pp. 57–62.; Mesud Hadžialić; Mirko Škrbić; Kemal Huseinović; Irvin Kočan; Jasmin Mušović, “An Approach to Analyze Security of GSM Network,” 22nd Telecommun. forum TELFOR 2014, 2014.; S. Ghafoor, K. N. Brown, and C. J. Sreenan, “Experimental evaluation of a software defined radio-based prototype for a disaster response cellular network,” in Proceedings of the 2015 2nd International Conference on Information and Communication Technologies for Disaster Management, ICT-DM 2015, 2016, pp. 57–63.; K. Guevara, M. Rodriguez, N. Gallo, G. Velasco, K. Vasudeva, and I. Guvenc, “UAVbased GSM network for public safety communications,” in Conference Proceedings - IEEE SOUTHEASTCON, 2015, vol. 2015-June, no. June.; T. Di. Putri and T. Juhana, “Mobile-openbts implementation of natural disaster victims search,” in Proceedings - ICWT 2017: 3rd International Conference on Wireless and Telematics 2017, 2018, vol. 2017-July, pp. 149–154.; J. Mpala and G. Van Stam, “Open BTS, a GSM experiment in rural Zambia,” Africomm, Yaounde, Cameroon, pp. 1–9, 2012.; M. Zheleva, A. Paul, D. L. Johnson, and E. Belding, “Kwiizya: Local Cellular Network Services in Remote Areas,” in MobiSys, 2013, July, p. 417.; L. Angrisani, P. Daponte, and M. D'Apuzzo, “A measurement method based on time-frequency representations for testing GSM equipment,” IEEE Trans. Instrum. Meas., vol. 49, no. 5, pp. 1050–1056, 2000.; A. Aiello and D. Grimaldi, “Frequency error measurement in GMSK signals in a multipath propagation environment,” IEEE Trans. Instrum. Meas., vol. 52, no. 3, pp. 938–945, 2003.; K. Paul, “Introduction to GSM and GSM mobile RF transceiver derivation.; Union Internacional de Telecomunicaciones., “Definiciones de sistema radioeléctrico determinado por programas informáticos (RDI) y sistema radioeléctrico cognoscitivo (SRC),” vol. 2152, 2009.; T. ETSI Specification, “Digital cellular telecomm mmunications system (Phase e 2+) (GSM); GSM/EDGE Multiplexing and multiple access on the radio path (3GPP TS 45.0.002 version 13.3.1 Release 13).”; J. M. HUIDOBRO, Comunicaciones móviles: sistemas GSM, UMTS Y LTE, 2012th ed.; ETSI, Digital cellular telecommunications system (Phase 2+); Release independent frequency bands; Implementation guidelines (3GPP TS 05.14 version 7.2.0 Release 1998), vol. 0. 2001, pp. 0–31.; ETSI, Digital cellular telecommunications system (Phase 2+); Radio transmission and reception (3GPP TS 45.005 version 12.4.0 Release 12), vol. 0. 2008, pp. 0–40.; T. Specification, “ETSI TS 145 002,” vol. 0, pp. 0–112, 2014.; T. ETSI Specification, Technical Specification Group GSM/EDGE Radio Access Network; Digital cellular telecommunications system (Phase 2+); Modulation TS 05.04, vol. 0. 2003, pp. 1–28.; 3GPP, 3rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network; Digital cellular telecommunications system (Phase 2+); Radio subsystem synchronization. 1999.; ETSI, Digital cellular telecommunications system (Phase 2 and Phase 2+); Base Station System (BSS) equipment specification; Radio aspects (3GPP TS 11.21 version 8.6.0 Release 1999), vol. 0. 2008, pp. 0–40.; ETSI, EN 300 910 Digital cellular telecommunications system (Phase 2+); Radio transmission and reception (GSM 05.05 version 8.5.1 Release 1999), vol. 1. 1999, pp. 1– 10.; Keysight Technologies, “Understanding GSM/EDGE Transmitter and Receiver Measurements for Base Transceiver Stations and their Components.”; E. No. O. . U. S. A. Gbadamosi A. M. Aibinu, “Towards Independent Measurement of End to End Bit Error Rate in GSM Network,” pp. 1–4, 2014.; R. Communications, “Laboratory works in Radio Communications GSM Transceiver Measurements.” Prentice-Hall Inc, 1995.; T. ETSI Specification, 3GPP TS 05.05 3rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network; Radio transmission and reception, vol. 0. 2005.; E. Research, “USRP Hardware Driver and USRP Manual Version: 003.010.001.001-41- g6abf277.” [Online]. Available: http://openbts.org/hardware/.; R. Networks, C. C. Attribution-sharealike, and U. License, “OpenBTS Application Suite,” 2014; Agilent Technologies, “Making the Phase and Frequency Error Measurement.” [Online]. Available: http://literature.cdn.keysight.com/litweb/pdf/ads2001/vsaedgemeas/gsmmeas6.html.; D. Seidl et al., «The multiparameter station at Galeras Volcano (Colombia): concept and realization», Journal of Volcanology and Geothermal Research, vol. 125, n.o 1-2, pp. 1-12, 2003, doi:10.1016/s0377-0273(03)00075-1.; J. M, «Review of electric and magnetic fields accompanying seismic and volcanic activity», U.S. Geological Survey, vol. 18, n.o 5, pp. 441-475, 1997, doi:10.1023/A:1006500408086.; V. Surkov y V. Pilipenko, «Estimate of ULF electromagnetic noise caused by a fluid flow during seismic or volcano activity», Copernicus Publications, vol. 2, n.o 10, pp. 6475-6497, 2014, doi:10.5194/nhessd-2-6475-2014.; Y. Sasai et al., «Magnetic and electric field observations during the 2000 activity of Miyakejima volcano, Central Japan», Earth and Planetary Science Letters, vol. 203, n.o 2, pp. 769-777, 2002, doi:10.1016/S0012-821X(02)00857-9.; M. Valenciano, «Implementación de un radioenlace LPWAN con tecnología LoRa», Tesis, Universidad de Valladolid, Valladolid, 2022. [En línea]. Disponible en: https://uvadoc.uva.es/bitstream/handle/10324/57458/TFGG5892.pdf?sequence=1&isAllowed=y; R. Piyare, A. Murphy, M. Magno, y L. Benini, «On-Demand LoRa: Asynchronous TDMA for EnergyEfficient and Low Latency Communication in IoT», Sensors, vol. 18, n.o 3718, 2018, doi:10.3390/s18113718.; C. Guerrero, «Evaluación de los retardos en redes LoRaWAN multisalto con topología lineal», Tesis, Universidad Politécnica Nacional, Quito Ecuador, 2022.; H. Mahmood Jawad, R. Nordin, S. Kamel Gharghan, A. Mahmood Jawad, y Mahamod Ismail, «Energy-efficient wireless sensor networks for precision agriculture: A review», Sensors, vol. 17, n.o 8, p. 1781, 2017, doi:10.3390/s17081781.; R. Muñoz, «Modelado y evaluación de la eficiencia del estándar SCHC para el transporte de paquetes IP sobre LoRaWAN», Tesis Maestría, Universidad de Chile, Santiago de Chile, 2020. [En línea]. Disponible en: https://repositorio.uchile.cl/bitstream/handle/2250/177977/Modelado-y-evaluacion-de-laeficiencia-del-estandar-SCHC-para-el-transporte-de-paquetes-IP.pdf?sequence=1; W. Yong, L. Minzan, y Z. Man, «Remote-control system for greenhouse based on opensource hardware», IFAC, vol. 52, n.o 30, pp. 178-183, 2019, doi:10.1016/j.ifacol.2019.12.518.; L. Cilleruelo and A. Zubiaga, “Una aproximación a la Educación STEAM. Prácticas educativas en la encrucijada arte, ciencia y tecnología. Jornadas de Psicodidáctica, 18.,” 2014.; M. L. Matute Sánchez and C. R. Contreras Alvarado, “Diseño y desarrollo de un asistente robótico basado en sistemas embebidos y aplicaciones móviles como herramienta de soporte pedagógica para niños de uno a cinco años,” 2019.; E. Systems, “ESP8266EX,” 2023.; K. Arakadakis, P. Charalampidis, A. Makrogiannakis, and A. Fragkiadakis, “Firmware Over-the-air Programming Techniques for IoT Networks-A Survey,” ACM Comput. Surv., vol. 54, no. 9, pp. 1–24, 2022, doi:10.1145/3472292.; I. G. Juan, I. Garc, I. F. Milena, and I. G. Ezequiel, “Gestión de Redes Centralizado desde GNU / Linux,” Cordoba, 2021.; Y. T. Chávez Cujilán and J. M. Espinoza Ortíz, “Desarrollo de una plataforma web para el control y seguimiento de productos terminados en la empresa camaronera ambartex s.a. empleando la metodología kanban,” Universidad de Guayaquil, 2016.; M. docs Web, “Métodos de petición HTTP,” 2023. https://developer.mozilla.org/es/docs/Web/HTTP/Methods.; R. Pereira, C. de Souza, D. Patino, and J. Lata, “Platform for Distance Learning of Microcontrollers and Internet of Things; [Plataforma De Enseñanza a Distancia De Microcontroladores E Internet De Las Cosas],” Ingenius, vol. 2022, no. 28, pp. 53 – 62, 2022, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144095611&doi=10.17163%2Fings.n28.2022.05&partnerID=40&md5=cc9fd40b5b28 c66ac89ebf8f68ab3275.; M. Garduno-Aparicio, J. Rodriguez-Resendiz, G. Macias-Bobadilla, and S. Thenozhi, “A Multidisciplinary Industrial Robot Approach for Teaching Mechatronics-Related Courses,” IEEE Trans. Educ., vol. 61, no. 1, pp. 55–62, 2018, doi:10.1109/TE.2017.2741446.; P. Jacko et al., “Remote IoT Education Laboratory for Microcontrollers Based on the STM32 Chips,” Sensors, vol. 22, no. 4, 2022, doi:10.3390/s22041440.; Ð. Mijailović, A. Ðorđdević, M. Stefanovic, D. Vidojević, A. Gazizulina, and D. Projović, “A cloud-based with microcontroller platforms system designed to educate students within digitalization and the industry 4.0 paradigm,” Sustain., vol. 13, no. 22, 2021, doi:10.3390/su132212396.; J. Vega D, “Soporte para gestión remota ota sobre una picocelda GSM / GPRS OverThe-Air management on a GSM / GPRS picocell Graduado en Ingeniería de Tecnologías de Telecomunicación,” Universidad de Cantabria, 2014.; J. Molnár et al., “Weather Station IoT Educational Model Using Cloud Services,” JUCS - J. Univers. Comput. Sci., vol. 26, no. 11, pp. 1495–1512, Nov. 28AD, [Online]. Available: https://doi.org/10.3897/jucs.2020.079.; O. Velihorskyi, I. Nesterov, and M. Khomenko, “Remote Debugging of Embedded Systems in Stm32Cubemonitor,” pp. 22–25, 2020, doi:10.35598/mcfpga.2020.007.; G. Zhabelova, M. Vesterlund, S. Eschmann, Y. Berezovskaya, V. Vyatkin, and D. Flieller, “A Comprehensive Model of Data Center: From CPU to Cooling Tower,” IEEE Access, vol. 6, pp. 61254–61266, 2018, doi:10.1109/ACCESS.2018.2875623.; I. Marín, “un enfoque de neurociencia sobre la participación de los estudiantes en las clases de microcontroladores durante la pandemia covid19,” in 14a Conferencia Internacional Anual de Educación, Investigación e Innovación Actas JA - ICERI2021, pp. 5776-5783 urgencias-, doi:10.21125/iceri.2021.1303 Año anual - 2021.; S. P. De Araujo and L. Dias Souza, “STEAM Education y el Diseño de los modelos de aprendizaje MOE, TAS y COM,” i+Diseño. Rev. Científico-Académica Int. Innovación, Investig. y Desarro. en Diseño, vol. 17, pp. 23–34, 2022, doi:10.24310/idiseno.2022.v17i.15683.; E. Flores, “Ingenieria de Software,” 2021. https://ingenieriadesoftware.mex.tl/52666_Presentacion.html.; E. Inga, J. Inga, and A. Ortega, “Novel approach sizing and routing of wireless sensor networks for applications in smart cities,” Sensors, vol. 21, no. 14, pp. 1–17, 2021, doi:10.3390/s21144692.; T. Vince et al., “IoT implementation in remote measuring laboratory VMLab analyses,” J. Univers. Comput. Sci., vol. 26, no. 11, pp. 1402–1421, 2020, doi:10.3897/jucs.2020.074.; I. Olarte C and L. A. Rodriguez Umaña, “diseño de arquitectura estándar para la adquisición y transmisión de datos integrados en la automatización de cultivos acuaponicos,” Universidad Cooperativa de Colombia, 2022.; J. I. Vega Luna, F. J. Sánchez-Rangel, G. Salgado-Guzmán, J. F. Cosme-Aceves, V. N. Tapia-Vargas, and M. A. Lagos-Acosta, “Red de monitorización para automatizar el sistema de enfriamiento de un centro de datos,” Ingenius, no. 24, pp. 87–96, 2020, doi:10.17163/ings.n24.2020.09.; M. Rodríguez, S. Zafra y S. Ortega, «La revisión sistemática de la literatura científica y la necesidad de visualizar los resultados de las investigaciones.,» Revista Logos, Ciencia & Tecnología, vol. 7, nº 1, pp. 101-103, 2015.; M. Salcido, A. del Toro, N. Medina, F. RamÍrez, M. Gacia, A. Briceño y J. Jiménez, «Revisión sistemática: el más alto nivel de evidencia,» Orthotips AMOT, vol. 17, nº 4, pp. 217-22%7C, 2021.; B. Moreno, M. Muñoz, J. Cuellar, S. Domancic y J. Villanueva, «Revisiones Sistemáticas: definición y nociones básicas.,» Revista clínica de periodoncia, implantología y rehabilitación oral, vol. 11, nº 3, pp. 184-186, 2018.; C. Ierandi, L. Orihuela, I. Jurado, Á. Rodríguez Del Nozal y A. Tapia, «Revisión sistemática de la literatura en ingeniería de sistemas. Caso práctico: técnicas de estimación distribuida de sistemas ciberfísicos.,» Actas de las XXXVIII Jornadas de Automática, pp. 84-91, 2017.; H. García, «Conceptos fundamentales de las revisiones sistemáticas/metaanálisis.,» Urología colombiana, vol. 24, nº 1, pp. 28-34, 2015.; O. Beltrán, «Revisiones sistemáticas de la literatura.,» Revista colombiana de gastroenterología., vol. 20, nº 1, pp. 60-69, 2005.; C. Manterola, P. Astudillo, E. Arias y N. Claros, «Revisiones sistemáticas de la literatura. Qué se debe saber acerca de ellas.,» Cirugía española, vol. 91, nº 3, pp. 149-155, 2023.; L. Letelier, J. Manríquez y G. Rada, «Revisiones sistemáticas y metaanálisis:¿ son la mejor evidencia?,» Revista médica de Chile, vol. 133, nº 2, pp. 246-249, 2005.; OpenAI, «ChatGPT (Versión del 16 de octubre de 2023),» 2023. [En línea]. Available: https://chat.openai.com/.; G. Guevara, A. Verdesoto, S. Guevara y E. González, «Las Tecnologías de la Información y la Comunicación en la educación universitaria,» Revista Científica de Investigación actualización del mundo de las Ciencias, vol. 3, nº 3, pp. 409-422, 2019.; J. Cobo, «El concepto de tecnologías de la información. Benchmarking sobre las definiciones de las TIC en la sociedad del conocimiento.,» Revista de Estudios de Comunicación, vol. 14, nº 27, pp. 295-318, 2009.; Z. L. C. A. P. G. L. V. C. &. D. C. M. B. Aliaga, «Software educativo para favorecer la aprehensión de los contenidos de ingeniería de software,» Revista de Investigación en Tecnologías de la Información, pp. 5(9), 63-69., 2017.; B. Gros, El ordenador invisible. Hacia la apropiación del ordenador en la enseñanza, Barcelona, España: Editorial Gedisa, 2000.; S. Kumar, «Knowledge of software education,» Global Research Journal of Educaion, pp. 1-2, 2022.; H. Rosario N, «TIC EN AMBIENTES EDUCATIVOS,» Comunidad y Salud, vol. 5, nº 2, 2007.; ] U. IIEP, «Tecnologías de la información y la comunicación (TICs) en la educación,» IIEP Learning Portal, 22 Marzo 2023. [En línea]. Available: https://learningportal.iiep.unesco.org/es/fichas-praticas/mejorar-elaprendizaje/tecnologias-de-la-informacion-y-la-comunicacion-tics-en-la. [Último acceso: 5 Octubre 2023].; D. Correa y F. Pérez, «Los modelos pedagógicos: trayectos históricos,» Debates por la Historia., pp. 125-154, 2022.; B. Joyce y M. Weil, Los modelos de enseñanza., Madrid, España: Editorial Anaya, 1985.; F. García, «Los modelos didácticos como instrumento de análisis y de intervención en la realidad educativa.,» García Pérez, F. F. (2000). Los modelos didácticos como instrumento de análiBiblio 3w: Revista Bibliográfica de Geografía y Ciencias Sociales., pp. 1-12, 2000.; V. Niño, Metodología de la investigación. Diseño y ejecución., Bogotá, Colombia: Ediciones de la U, 2011.; G. Fidias, El proyecto de Investigación. Introducción a la metodología científica., Caracas, Venezuela: Editorial Episteme, CA., 2006.; L. Larriba, «La investigación de los modelos didácticos y de las estrategias de enseñanza.,» Enseñanza., pp. 73-88, 2001.; N. Romero y J. Moncada, «Modelo didáctico para la enseñanzade la educación ambiental en la Educación Superior Venezolana,» Revista de Pedagogía, pp. 443-476, 2007.; A. Brolpito, Digital Skills and Competence, and Digital and Online Learning., European Training Foundation., 2018.; O. Najar, «Tecnologías de la información y la comunicación aplicadas a la educación,» Praxis y Saber, vol. 7, nº 14, pp. 9-16, 2016.; E. Kispeter, What digital skills do adults need to succeed in the workplace now and in the next 10 years., Warwick Institute for Employement Research., 2018.; A. Gargallo, «La integración de las TIC en los procesos educativos y organizativos.,» Educar em Revista., vol. 34, nº 69, pp. 325-339, 2018.; J. Cabrero, Tecnología educativa. Diseño y utilización de medios en la enseñanza., Barcelona, España: Editorial Paidos, 2001.; L. Alvarez, Modelos de gestión, Bogotá: Fundación Universitaria del Área Andina, 2017.; T. Huertas, E. Suárez, M. Salgado, L. Jadán y B. Jiménez, «Diseño de un modelo de gestión. Base científica y práctica para su elaboración.,» Revista Universidad y Sociedad, 12(1), 165-177., vol. 12, nº 1, pp. 165-177, 2020.; L. Reginato, C. Pereira y R. Guerreiro, «Una investigacion sobre las caracteristicas del modelo de gestion: un estudio de caso.,» Reginato, L., Pereira, C. A., & Guerreiro, R. (2009). Una investigacion sobre las cara Iberoamerican journal of industrial engineering, vol. 1, nº 1, pp. 24-45, 2009.; L. Angulo, Gestión de ptoyectos. Bajo el enfoque del PMBOK, Lima: Editorial Macro, 215.; A. López y D. Lankenau, Administración de proyectos. La clave para la coordinación efectiva de actividades y recursos, México: Pearson, 2017.; R. Terrazas, «Modelo conceptual para la gestión de proyectos.,» Perspectivas, vol. 24, pp. 165-188, 2009.; A. Narvaez y R. Esperanza, «Modelos para la Gestión de Proyectos.,» Informador Técnico, vol. 71, pp. 53-58, 2007.; U. IIEP, «Tecnologías de la información y la comunicación (TICs) en la educación,» IIEP Learning Portal, 22 Marzo 2023. [En línea]. Available: https://learningportal.iiep.unesco.org/es/fichas-praticas/mejorar-elaprendizaje/tecnologias-de-la-informacion-y-la-comunicacion-tics-en-la. [Último acceso: 5 Octubre 2023].; J. A. Pineda Acero, «Diseño de proyectos educativos mediados por TIC: un marco de referencia,» Opción, vol. 32, nº 10, pp. 479-499, 2016.; UNESCO, Herramientas para la gestión de proyectos educativos con TIC, Buenos Aires: UNESCO, 2007.; E. H. Legresti, «Proyecto de incorporación de las TICs como herramienta de aprendizaje,» 2019.; D. &. C. S. L. Alan Neill, Procesos y fundamentos de la investigación científica. , 53(9)., Macha, Ecuador: Ediciones UTMACH, 2018.; A. Carli, La Ciencia como herramienta. Guía para la investigación y la realización de informes, monografías y tesis científicas., Buenos Aires: Editorial Biblos, 2008.; P. Suárez, Metodología de la investigación. Diseño y técnicas, Bogotá, Colombia: Orión Editores Ltda., 2004.; M. Medina, La investigación aplicada a proyectos. Identificación del proyecto y formulación de la investigación., Bogotá, Colombia: Ediciones Ántropos Ltda., 2007.; Aplicación y uso de drones: https://edu.gcfglobal.org/es/cultura-tecnologica/quees-un-dron-y-cuales-son-sus-usos/1/; Como funciona el Mapeo a partir de drones? : https://ts2.space/es/como-funcionael-sistema-de-mapeo-3d-de-un-dron/; Duarte, J. F., Galindo Gómez, S. F., Rodríguez Pupo, S., PayánDurán, L. F., & Velásquez-Rodrígue, C. E. (2022). Paso a paso para desarrollar innovaciones sociales. Documento Técnico del PCIS.; Hoyos Montoya, E. A., & de Souza Bías, E. (2021). [Título del artículo]. Recuperado dehttps://doi.org/10.22490/25394088.5609; UN (2022). Objetivos de Desarrollo Sosteninle Tomado de: https://www.un.org/sustainabledevelopment/es/waterand-sanitation/; MEN( 2022) titulado ORIENTACIONES CURRICULARES PARA EL ÁREA DETECNOLOGÍA E INFORMÁTICA EN LA EDUCACIÓN BÁSICA Y MEDIA https://www.colombiaaprende.edu.co/sites/default/files/files_public/2022- 11/Orientaciones_Curricures_Tecnologia.pdf; Secretaría de Ambiente. Bogotá está mejorando y en el Día Mundial de los Humedales reafirma su compromiso con estos ecosistemas. https://www.ambientebogota.gov.co/ (2022).; Cuellar, Y., Pérez, L. Modelado multitemporal y simulación de la dinámica compleja en humedales urbanos: el caso de Bogotá, Colombia. Representante científico 13 , 9374 (2023).https://doi.org/10.1038/s41598-023-36600-8; Ramsar. "Humedales urbanos: tierras preciadas, no terrenos baldíos ". https://www.ramsar.org/resources/publications (2018).; Das, N. y Mehrotra, S. Humedales en contextos urbanos: un caso de Bhoj Wetland. En 2021 Simposio internacional de geociencia y teledetección del IEEE IGARSS (págs. 6972-6975). IEEE(2021).; Van der Hammen, T. Los humedales de la Sabana: origen, evolución, degradación y restauración. en Los humedales de Bogotá y la Sabana, Conservación Internacional 19–51(2003).; Ramsar (2021). " Transformar la agricultura para sostener a las personas y mantener los humedales”. Tomado de: https://www.ramsar.org/sites/default/files/documents/library/rpb6_agriculture_s. pdf; Espínola Pérez, A. M. (2014). Clasificación de Imágenes de Satélite mediante AutómatasCelulares (Tesis doctoral). Universidad de Almería. Dirigida por Dr. D. Luis F. Iribarne Martínez, Dra. Dña. Rosa M. Ayala Palenzuela, y Dr. D. José Antonio Piedra Fernández.; He, W., Chen, S., Liu, X., & Chen, J. (2008). Water quality monitoring in a slightly-pollutedinland water body through remote sensing — Case study of the Guanting Reservoir in Beijing, China. Frontiers of Environmental Science & Engineering in China, 2, 163–171.; Carbonell Carrera, C., & Bermejo Asensio, L. A. (2017). Augmented reality as a digital teaching environment to develop spatial thinking. Cartography and Geographic Information Science, 44(3), 259-270. https://doi.org/10.1080/15230406.2016.1145556; Cuellar, Y., & Perez, L. (2023). Multitemporal modeling and simulation of the complex dynamics in urban wetlands: the case of Bogota, Colombia. Scientific Reports, 13, 9374.; Carbonell Carrera, C., & Bermejo Asensio, L. A. (2017). Augmented reality as a digital teachingenvironment to develop spatial thinking. Cartography and Geographic Information Science, 44(3), 259-270. https://doi.org/10.1080/15230406.2016.1145556; Alikhani, S., Nummi, P. & Ojala, A. Humedales urbanos: una revisión de los valores ecológicosy culturales. Agua 13 , 3301 (2021).; H. Mohapatra and S. I. Hosain, “Intermodal dispersion free few-mode (quadruple mode) fiber: A theoretical modelling,” Opt Commun, vol. 305, pp. 267–270, 2013, doi:10.1016/j.optcom.2013.05.018.; J. Tu, K. Long, and K. Saitoh, “Design and optimization of 3-mode×12-core dual-ring structured few-mode multi-core fiber,” Opt Commun, vol. 381, pp. 30–36, 2016, doi:10.1016/j.optcom.2016.06.049.; H. Zhu, Z. Cao, and Q. Shen, “Construction of the refractive index profiles for few-mode planar optical waveguides,” Opt Commun, vol. 260, no. 2, pp. 542–547, 2006, doi:10.1016/j.optcom.2005.11.011.; G. F. Fibers, H. Mohapatra, and S. I. Hosain, “Variational Approximations for LP l 1 Modes,” vol. 26, no. 4, pp. 372–375, 2014.; F. Ferreira, D. Fonseca, and H. Silva, “Design of few-mode fibers with up to 12 modes and low differential mode delay,” International Conference on Transparent Optical Networks, vol. 32, no. 3, pp. 353–360, 2014, doi:10.1109/ICTON.2014.6876696.; A. Rjeb, H. Seleem, H. Fathallah, and M. Machhout, “Design of 12 OAM-Graded index few mode fi bers for next generation short haul interconnect transmission,” Optical Fiber Technology, vol. 55, no. October 2019, p. 102148, 2020, doi:10.1016/j.yofte.2020.102148.; H. Kubota and T. Morioka, “Few-mode optical fiber for mode-division multiplexing,” Optical Fiber Technology, vol. 17, no. 5, pp. 490–494, 2011, doi:10.1016/j.yofte.2011.06.011.; J. Zhang and L. Mao, “Integrating multiple transportation modes into measures of spatial food accessibility,” J Transp Health, vol. 13, no. March, pp. 1–11, 2019, doi:10.1016/j.jth.2019.03.001.; A. E. Zhukov, V. A. Burdin, and A. V Bourdine, “Design of silica optical fibers with enlarged core diameter for a few-mode fiber optic links of onboard and industrial multiGigabit networks,” Procedia Eng, vol. 201, pp. 105–116, 2017, doi:10.1016/j.proeng.2017.09.675.; W. Jin et al., “Few-mode and large-mode-area fiber with circularly distributed cores,” Opt Commun, vol. 387, no. July 2016, pp. 79–83, 2017, doi:10.1016/j.optcom.2016.11.016.; J. Han and C. Qu, “Characterization of distributed mode crosstalk in few-mode fiber links with low MIMO complexity,” Physical Communication, vol. 25, pp. 310–314, 2017, doi:10.1016/j.phycom.2017.02.002.; S. Wei-Hua, X. Chuan-Xiang, and Y. Jing, “A new type of Few-mode Photonic Crystal Fiber with nearly-zero flattened Dispersion properties,” ICOCN 2017 - 16th International Conference on Optical Communications and Networks, vol. 2017-Novem, pp. 16–18, 2017, doi:10.1109/icocn.2017.8374406.; R. Miyazaki, M. Ohashi, H. Kubota, Y. Miyoshi, and N. Shibata, “Chromatic dispersion measurement of the high order mode in a few-mode fiber using an interferometric technique and a mode converter,” 2017 Opto-Electronics and Communications Conference, OECC 2017 and Photonics Global Conference, PGC 2017, vol. 2017- Novem, pp. 1–3, 2017, doi:10.1109/OECC.2017.8114866.; A. Marcos Aparicio, “Cable submarino, conexión DWDM entre continentes,” Sistema de Gestión de incidencias Open Source, 2017, [Online]. Available: http://oa.upm.es/48560/1/PFC_ANA_ISABEL_MARCOS_APARICIO.pdf; G. P. (Govind P. ) Agrawal, Fiber-optic communication systems. Wiley-Interscience, 2002.; S. Matthew, Elementos de electromagnetismo. 2009. doi: 10: 0-8400-5444-0.; D. Pozar, “Microwave Engineering 2nd Ed David Pozar,” pp. 1–736, 2008, [Online]. Available: papers2://publication/uuid/74B11176-09A2-4077-9BDE-1E89002D0735; R. Neri Vela and L. H. Porragas Beltrán, Líneas de transmisión, vol. 3, no. 2. 2012. doi:10.25009/uv.1998.124.; D. Gloge and E. A. J. Marcatili, “Multimode Theory of Graded-Core Fibers,” 1973.; M. Carmen. España Booquera, Comunicaciones ópticas : conceptos esenciales y resolución de ejercicios. Díaz de Santos, 2005. Accessed: Sep. 25, 2023. [Online]. Available: https://www.academia.edu/33300228/MAR%C3%8DA_CARMEN_ESPA%C3%91A_B OQUERA_COMUNICACIONES_%C3%93PTICAS_Conceptos_esenciales_y_resoluci %C3%B3n_de_ejercicios; K. Gomez, L. Goratti, F. Granelli, y T. Rasheed, «A Comparative Study of Scheduling Disciplines in 5G Systems for Emergency Communications», presentado en 1st International Conference on 5G for Ubiquitous Connectivity, Levi, Finland, 2014. doi:10.4108/icst.5gu.2014.257987.; K. Pedersen, G. Pocovi, J. Steiner, y A. Maeder, «Agile 5G Scheduler for Improved E2E Performance and Flexibility for Different Network Implementations», IEEE Commun. Mag., vol. 56, n.o 3, pp. 210-217, mar. 2018, doi:10.1109/MCOM.2017.1700517.; A. Akhtar y H. Arslan, «Downlink resource allocation and packet scheduling in multinumerology wireless systems», en 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Barcelona, abr. 2018, pp. 362-367. doi:10.1109/WCNCW.2018.8369012.; K. I. Pedersen, M. Niparko, J. Steiner, J. Oszmianski, L. Mudolo, y S. R. Khosravirad, «System Level Analysis of Dynamic User-Centric Scheduling for a Flexible 5G Design», en 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, dic. 2016, pp. 1-6. doi:10.1109/GLOCOM.2016.7842312.; S. A. AlQahtani and M. Alhassany, “Comparing different LTE scheduling schemes,” in 2013 9th international wireless communications and mobile computing conference (IWCMC), 2013, pp. 264–269.; T. Dikamba, “Downlink scheduling in 3GPP long term evolution (LTE),” 2011.; S. V. S. Prakash and M. Visali, “On demand SINR based scheduling algorithm (ODSSA) for mobile uplink communication in LTE networks,” in 2015 International Conference on Signal Processing and Communication Engineering Systems, 2015, pp. 453–457.; G. Muñoz, I. H. Solana, and M. Ángela, “Gestión de Recursos Radio en Redes Móviles Celulares Basadas en Tecnología OFDMA para la Provisión de QoS y Control de la Interferencia.”; C. So-In, R. Jain, y A. K. Tamimi, “A Deficit Round Robin with Fragmentation scheduler for IEEE 802.16e Mobile WiMAX”, en IEEE Sarnoff Symposium, 2009. SARNOFF ’09, 2009, pp. 1–7.; H. Fattah y C. Leung, “An Improved Round Robin Packet Scheduler for Wireless Networks”, International Journal of Wireless Information Networks, vol. 11, pp. 41–54, 2004.; J. Vihriala et al., «Numerology and frame structure for 5G radio access», en 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications; N. Siasi, A. Jaesim, A. Aldalbahi, y N. Ghani, «Link Failure Recovery in NFV for 5G and Beyond», en 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona, Spain, oct. 2019, pp. 144-148. doi:10.1109/WiMOB.2019.8923413.; D.-H. Kim, B.-H. Ryu, y C.-G. Kang, «Packet Scheduling Algorithm Considering a Minimum Bit Rate for Non-realtime Traffic in an OFDMA/FDD-Based Mobile Internet Access System», ETRI J., vol. 26, n.o 1, pp. 48-52, feb. 2004, doi:10.4218/etrij.04.0203.0005.; M. Yan, G. Feng, J. Zhou, Y. Sun, y Y.-C. Liang, «Intelligent Resource Scheduling for 5G Radio Access Network Slicing», IEEE Trans. Veh. Technol., vol. 68, n.o 8, pp. 7691- 7703, ago. 2019, doi:10.1109/TVT.2019.2922668.; A. A. Esswie y K. I. Pedersen, «Opportunistic Spatial Preemptive Scheduling for URLLC and eMBB Coexistence in Multi-User 5G Networks», IEEE Access, vol. 6, pp. 38451-38463, 2018, doi:10.1109/ACCESS.2018.2854292.; R. B. Abreu, G. Pocovi, T. H. Jacobsen, M. Centenaro, K. I. Pedersen, y T. E. Kolding, «Scheduling Enhancements and Performance Evaluation of Downlink 5G TimeSensitive Communications», IEEE Access, vol. 8, pp. 128106-128115, 2020, doi:10.1109/ACCESS.2020.3008598.; Z. Gu et al., «Knowledge-Assisted Deep Reinforcement Learning in 5G Scheduler Design: From Theoretical Framework to Implementation», ArXiv200908346 Cs Eess, feb. 2021, Accedido: feb. 06, 2021. [En línea]. Disponible en: http://arxiv.org/abs/2009.08346; Khaira, M. S., & Borkar, N. Y., «U.S. Patent No. 5,357,512. Washington, DC: U.S. Patent and Trademark Office.» 1994.; C. J. Katila, C. Buratti, M. D. Abrignani, y R. Verdone, «Neighbors-Aware Proportional Fair scheduling for future wireless networks with mixed MAC protocols», EURASIP J. Wirel. Commun. Netw., vol. 2017, n.o 1, p. 93, dic. 2017, doi:10.1186/s13638-017- 0875-6.; Humaira Rashid Khan, Fahd Sikandar Khan, Ahmed Shuja Syed, Javeed Akhtar, Chapter 27 - Nano-inks and their applications in packaging industries, Editor(s): Ram K. Gupta, Tuan Anh Nguyen, In Micro and Nano Technologies, Smart Multifunctional Nano-inks, Elsevier, 2023, Pages 687-698, ISBN 9780323911450, https://doi.org/10.1016/B978-0-323-91145-0.00015-3.; Muhammad Ifaz Shahriar Chowdhury, Yashdi Saif Autul, Sazedur Rahman, Md Enamul Hoque, 11 - Polymer nanocomposites for automotive applications, Editor(s): Md Enamul Hoque, Kumar Ramar, Ahmed Sharif, In Woodhead Publishing in Materials, Advanced Polymer Nanocomposites, Woodhead Publishing, 2022, Pages 267-317, ISBN 9780128244920, https://doi.org/10.1016/B978-0-12-824492-0.00010-6.; Harpreet Singh, Kirandeep Kaur, Role of nanotechnology in research fields: Medical sciences, military & tribology- A review on recent advancements, grand challenges and perspectives, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.02.061. (https://www.sciencedirect.com/science/article/pii/S2214785323005783); Priyanshi Saini, Kamalesu, Lalita, Manikanika, Review on nanotechnology “Impact on the food services industry”, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.04.377.; Aloysius F. Hepp, Jerry D. Harris, Allen W. Apblett, Andrew R. Barron, Chapter 17 - Commercialization of single-source precursors: Applications, intellectual property, and technology transfer, Editor(s): Allen W. Apblett, Andrew R. Barron, Aloysius F. Hepp, Nanomaterials via Single-Source Precursors, Elsevier, 2022, Pages 563-600, ISBN 9780128203408, https://doi.org/10.1016/B978-0-12-820340-8.00008-3.; Arkadiy Larionov, Yulia Larionova, Ludmila Selivanova, Regional Peculiarities of Energy Saving Development During the Exploitation of Housing and Underground Housing and Utility Sector Objects, Procedia Engineering, Volume 165, 2016, Pages 1229-1232, ISSN 1877-7058, https://doi.org/10.1016/j.proeng.2016.11.844.; Mahendra L. Shelar, Vinod B. Suryawanshi, Experimental investigation and characterization of the tensile and flexural properties of amine functionalized graphene enhanced nanocomposite prepregs, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.06.371.; A. B. Shivshambhu Kumar, "Potential applications of nanomaterials in oil and gas well cementing: Current status, challenges and prospects," Journal of Petroleum Science and Engineering, vol. 213, pp. 1-18, 2022.; L. Ivanov, O. Borisova and S. R. Miminova, "The inventions in nanotechnologies as practical solutions. Part I.," Nanotekhnologii v Stroitel'stve, vol. 11, no. 1, pp. 91-101, 2019.; F. A. Shilar, S. V. Ganachari y V. B. Patil, “Advancement of nano-based construction materials-A review”, Construction and Building Materials, vol. 359, pp. 1-41, 2022; M. Luna, J.J. Delgado, T. Montini, L.M.L. Almoraima Gil, P. Fornasiero and M.J. Mosquera, "Photocatalytic TiO2 nanosheets-SiO2 coatings on concrete and limestone: An enhancement of de-polluting and self-cleaning properties by nanoparticle design," Construction and Building Materials, vol. 338, pp. 1-13, 2022.; Z. Wang, Q. Yu, P. Feng and H. Brouwers, "Variation of self-cleaning performance of nano-TiO2 modified mortar caused by carbonation: From hydrates to carbonates," Cement and Concrete Research, vol. 158, pp. 1-15, 2022.; A. A. Firoozi, M. Naji, M. Dithinde and A. A. Firoozi, "A Review: Influence of Potential Nanomaterials for Civil Engineering Projects," Iranian Journal of Science and Technology, Transactions of Civil Engineering, vol. 45, p. 2057–2068, 2020.; A. A. Alizadehmojarad, X. Zhou, A. G. Beyene, K. E., Chacon, Y. Sung, R. Pinals, L. Vuković, "Binding Affinity and Conformational Preferences Influence Kinetic Stability of Short Oligonucleotides on Carbon Nanotubes," Advanced Materials Interfaces, vol. 7, no. 15, p. 2000353, 2020.; J. Tang, X. Wang, J. Zhang, J. Wang, W. Yin, D.S. Li, and T. Wu, "A chalcogenide-cluster-based semiconducting nanotube array with oriented photoconductive behavior," Nature Communications, vol. 12, no. 1, p. 4275, 2021.; A. S. Dahlan, "Smart and Functional Materials Based Nanomaterials in Construction Styles in Nano-Architecture," Silicon, vol. 11, pp. 1949-1953, 2019.; A. Adesina, "Overview of Workability and Mechanical Performance of Cement-Based Composites Incorporating Nanomaterials," Silicon, vol. 14, pp. 135-144, 2020.; A. M. Onaizi, G. F. Huseien, N. H. A. S. Lim, M. Amran and M. Samadi, "Effect of nanomaterials inclusion on sustainability of cement-based concretes: A comprehensive review," Construction and Building Materials, vol. 306, pp. 1-20, 2021.; A. Z. Aljenbaz y Ç. Çağnan, “Evaluation of Nanomaterials for Building Production within the Context of Sustainability”, European Journal of Sustainable Development, vol. 9, pp. 53-65, 2020.; P. D. Bonilla Nieto, J. S. Carrillo Sanabria, y J. R. Camargo López, “Solar energy manager with PSOC5LP”, Vis. Electron., vol. 13, n.º 1, pp. 112–122, ene. 2019. https://doi.org/10.14483/22484728.14426; D. J. Arcila Perozo, L. Y. López López, y K. S. Novoa Roldán, ”Robotic system based on ant behavior for optimizing shortest path finding”, Vis. Electron., vol. 17, n.º 1, abr. 2023.; Yener, S. C., & Mutlu, R. (2018). A microcontroller-based ECG signal generator design utilizing microcontroller PWM output and experimental ECG data. 2018 Electric Electronics, Computer Science, Biomedical Engineering’s’ Meeting, EBBT 2018, 1-4. https://doi.org/10.1109/EBBT.2018.8391465; Rangayyan, R. M. (2002). BIOMEDICAL SIGNAL ANALYSIS A Case-Study Approach.; León, F., Rodríguez Lozano, F. J., Cubero Fernández, A., Palomares, J. M., & Olivares, J. (2019). SysGpr: Sistema de generación de señales sintéticas pseudo-realistas. Revista Iberoamericana De Automática, 16 (3), 369-379.; Anowarul Fattah, S. (2012). Identifying the Motor Neuron Disease in EMG Signal Using Time and Frequency Domain Features with Comparison. Signal & Image Processing: An International Journal, 3 (2), 99-114. https://doi.org/10.5121/sipij.2012.3207; De Luca, C. J. (1979). Physiology and Mathematics of Myoelectric Signals. IEEE Transactions on Biomedical Engineering, BME-26 (6), 313-325. https://doi.org/10.1109/TBME.1979.326534; Selvan, V. A. (2011). Single-fiber EMG: A review. Ann Indian Acad Neurol.; Wu, J., Li, X., Liu, W., & Jane Wang, Z. (2019). SEMG Signal Processing Methods: A Review. Journal of Physics: Conference Series, 1237 (3). https://doi.org/10.1088/1742- 6596/1237/ 3/032008; Widodo, A., Puspitaningayu, P., Anifah, L., & Firmansyah, R. (2018). An ArdiunoSimulink Based ECG Waveform Generator. 2018 2nd Borneo International Conference on Ap- plied Mathematics and Engineering, BICAME 2018, 338-342. https://doi.org/10.1109/ BICAME45512.2018.1570504879; DALCAME. (2005). Electromiografía. http ://www.dalcame.com/emg.html#.X4o6m9BKjIV (accessed: 16.10.2020).; López Chávez, H. I. (2020). Detección de la LRD en el ritmo cardiaco. APUNTES DE CLASE. Mahabalagiri, A. K., Ahmed, K., & Schlereth, F. (2011). A novel approach for simulation, measurement and representation of surface EMG (sEMG) signals. Conference Record - Asilomar Conference on Signals, Systems and Computers, 476- 480. https://doi.org/10.1109/ACSSC.2011.6190045; Ruiz Rubio, R. (1999). Aplicaciones de las señales electromiográficas. http://www.encuentros.uma.es/encuentros53/aplicaciones.%20html#:∼:%20text=Las% 5C%20se%5C%C3%5C%B1ales%5C%20EMG%5C%20tienen%5C%20una%5C%20f recuencia%5C%20que%5C%20oscila%5C%20entre%5C%2050,ser%5C%20menor% 5C%20de%5C%20300%5C%20Hz. (accessed: 16.10.2020).; Tabernig, C., Acevedo, R., & Fernández, J. (2007). INFLUENCIA DE LA FATIGA MUSCULAR EN LA SEÑAL ELECTROMIOGRÁFICA DE MÚSCULOS ESTIMULADOS ELÉCTRICAMENTE. Revista EIA, 111-119.; Alvarés Osorio, L. (2007). Acondicionamiento de señales bioeléctricas. https://www.coursehero.com/file/p3rjpjoo/2-Tipos-de-se%5C%C3%5C%B1alesbioel%5C%C3%5C%A9ctricas-6-nervous-system-a-trav%5C%C3%5C%A9s-demotor-end-plates/(accessed: 16.10.2020).; Mcgill, K. C., Lateva, Z. C., & Marateb, H. R. (2005). EMGLAB. http://emglab.net/emglab/index.php; Nikolic, M. (2001). Detailed Analysis of Clinical Electromyography Signals EMG Decomposition, Findings and Firing Pattern Analysis in Controls and Patients with Myopathy and Amy- trophic Lateral Sclerosis [Tesis doctoral, Faculty of Health Science, University of Copenhagen].; Téllez, M., Mejía, J., López, H., & Hernández, C. (2020). Random Number Generator with LongRange Dependence and Multifractal Behavior Based on Memristor. Electronics, 9 (10). https://doi.org/10.3390/electronics9101607; Initial J. Barrios., Tratamiento del sindrome del tunel carpiano. estudio de un caso clinico, Available online: https://mbfisioterapia.wordpress.com/tag/tunel-carpiano/, 2012, (accessed on 27-08-2023).; Diego A. B. V. and Ferro R. E, Estudio de modelos propuestos para el nervio mediano sano y con síndrome de túnel carpiano. Available online: https://revistas.udistrital.edu.co/index.php/NoriaIE/article/view/16353/15643 , 2019, (accessed on 28-08-2023).; L. L. A., Síndrome del túnel del carpo, Available online: https://www.medigraphic.com/pdfs/orthotips/ot-2014/ot141g.pdf , 2014, (accessed on 28-08-2023). Revista Orthotips.; R. D. G. F and D. F, Síndrome del túnel carpiano carpal tunnel syndrome,Revista Habanera de Ciencias Médicas, vol. 13, pp. 728–741, 2014. [Online]. Available: http://scielo.sld.cu; M. E. D. Alguacil, A. C. Millán, R. L. Sánchez, A. M. Sánchez, M. F. Arrondo, and I. C. Hernández, Revisión bibliográfica síndrome del túnel carpiano. intervención enfermera. Available online: https://revistasanitariadeinvestigacion.com/revision-bibliograficasindrome-del-tunel-carpiano-intervencion-enfermera/ , 2022, (accessed on 29-08- 2023).; J. O. G, Síndrome de túnel carpiano y accidente de tráfico. https://www.peritajemedicoforense.com/OJEDA.htm#:∼:text=El%20S%C3%ADndrome %20de%20T%C3%%20BAnel%20Carpiano,a%20traumatismo%20sobre%20la%20mu %C3%B1eca, 2001, (accessed on 29-08-2023).; M. B. Tejedor, J. A. Cervera, R. G. Lahiguera, and A. L. Ferreres, Análisis de factores de riesgo laborales y no laborales en síndrome de túnel carpiano (stc) mediante análisis bivariante y multivariante, https://scielo.isciii.es/scielo.php?script=sci arttext&pid=S1132-62552016000300004, 2016, (accessed on 01-09-2023). Valencia. Revista Scielo.; A. M. R., Síndrome del túnel carpiano. revisión no sistemática de la literatura. https://revistas.unisanitas.edu.co/index.php/rms/article/view/436, 2019, (accessed on 01-09-2023). Revista Médica Sanitas.; G. C. G. P., A. F. G. E., and E. A. G. A., Síndrome del túnel del carpo. Revista morfología. https://revistas.unal.edu.co/index.php/morfolia/article/view/10857#:∼:text=El%20S%C 3%ADndrome%20del%20T%C3%BAnel%20de,causas%20locales,%20regionale s%20y%20sist%C3%A9micas., 2009, (accessed on 02-09-2023). Universidad Nacional de Colombia.; Y. A. M. M., L. V. C. S., and M. A. T. S., Prevalencia de signos y síntomas de síndrome del túnel carpiano y sus factores asociados, en empleados administrativos de la universidad santo tomás sede floridablanca, durante el semestre del 2016. https://repository.usta.edu.co/bitstream/handle/11634/10218/YohannaMirandaLizethcala-%202017.pdf?sequence=1&isAllowed=y, 2017, (accessed on 23-09-2023). Universidad Santo Tomás.; U. M. Vázquez, I. D. C. Carrera, A. Alonso-Calvete, and Y. González-González, Eficacia del kinesiotape en el síndrome del túnel carpiano. una revisión sistemática, https://scielo.isciii.es/scielo.php?pid=S1132- 62552022000100011&script=sciarttext&tlng=pt, 2022, accedido 6-09-2023.; E. Cabrera, “El coeficiente de correlacion de los rangos de spearman caracterizacion,”http://scielo.sld.cu/pdf/rhcm/v8n2/rhcm17209.pdf, 2009, accedido 8- 09-2023.; IBM, “Estadísticos de tablas cruzadas,” https://www.ibm.com/docs/es/spss-statistics/ saas?topic=crosstabs-statistics, 2021, accedido 8-09-2023.; H. L. J. Diego, E. C. Franklin, R. J. E, C. R. J. Gerardo, T. S. C. Andrés, A. T. M. Karina, C. S. S. Milena, and B. P. V. José, “Sobre el uso adecuado del coeficiente de correlación de pearson: definición, propiedades y suposiciones,” https://www.redalyc.org/journal/559/55963207025/55963207025.pdf, 2018, accedido 8- 09-2023.; S. I. M. Orlando, “Coeficiente de correlación; coeficiente de correlación de spearman; estadística; coeficiente de correlación por rangos,” http://repositorio.utn.edu.ec/handle/123456789/768, 2011, accedido 15-09-2023.; B. M.H., A. G. O.P, L. Serrato, and J. A. Garnica, “Correlación no-paramétrica y su aplicación en la investigaciones científica non-parametric correlation and its application in scientific research,” http://www.spentamexico.org/v9-n2/A5.9(2)31-40.pdf, 2014, accedido 15-09-2023.; NCAN National Center for Adaptative Neurotechnologies, Documentation 2nd Wadsworth BCI Dataset (P300 Evoked Potentials) Data Acquired Using BCI2000 P3 Speller Paradigm, 1, 2002.; M.S.S.T.N.H Yağan-Mussellim-Arslan-Çakar-Alp-Ozkan, "A new benchmark dataset for P300 ERP-based BCI applications", Digital Signal Processing, vol. 135, pp. 1-11, April 2023.https://doi.org/10.1016/j.dsp.2023.103950.; L. E. A. G. P. Korczowski-Ostaschenko-Andreev-Cattan-Coelho Rodrigues, et al. Brain Invaders calibration-less P300-based BCI using dry EEG electrodes Dataset, (bi2014a). [Research Report] GIPSA-lab. 2019. ffhal-02171575f; A. M. E. D. D. C. R. M. T. L. M. Gramfort-Luessi-Larson-Engemann-StrohmeierBrodbeck-Goj-Jas-Brooks-Parkkonen-Hämäläinen. MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience, 7(267):1–13, 2013. doi:10.3389/fnins.2013.00267.; Haghighatpanah, N., Amirfattahi, R., Abootalebi, V., & Nazari, B. (2012). A two stage single trial P300 detection algorithm based on independent component analysis and wavelet transforms. 2012 19th Iranian Conference of Biomedical Engineering (ICBME), 324-329.; Neda Haghighatpanah, Rasoul Amirfattahi, Vahid Abootalebi, and Behzad Nazari. A single channel-single trial p300 detection algorithm. In 2013 21st Iranian Conference on Electrical Engineering (ICEE), pages 1–5, 2013; S. K. Haider, A. Jiang, M. A. Jamshed, H. Pervaiz and S. Mumtaz, "Performance Enhancement in P300 ERP Single Trial by Machine Learning Adaptive Denoising Mechanism," in IEEE Networking Letters, vol. 1, no. 1, pp. 26-29, March 2019, doi:10.1109/LNET.2018.2883859.; Praveen Kumar Shukla, Rahul Kumar Chaurasiya, and Shrish Verma. Performance improvement of p300-based home appliances control classification using convolution neural network. Biomedical Signal Processing and Control, 63, 1 2021.; Samima, S., Sarma, M., Samanta, D. et al. Estimation and quantification of vigilance using ERPs and eye blink rate with a fuzzy model-based approach. Cogn Tech Work 21, 517–533 (2019). https://doi.org/10.1007/s10111-018-0533-8; A. Boudjella, M. Y. Boudjella and B. Bachir, "Epileptic Disease Prediction Using Graphic User Interface–Machine Learning Algorithm," 2022 7th International Conference on Image and Signal Processing and their Applications (ISPA), Mostaganem, Algeria, 2022, pp. 1-8, doi:10.1109/ISPA54004.2022.9786366.; Heras, J. M. (2019, noviembre 17). Precision, Recall, F1, Accuracy en clasificación. [Online] Iartificial.net. Available at https://www.iartificial.net/precision-recall-f1- accuracy-en-clasificacion/; C. F. Blanco-D ́ıaz, C. D. Guerrero-Méndez, and A. F. Ruiz-Olaya. Enhancing p300 detection using a band-selective filter bank for a visual p300 speller. IRBM, 44, 6 2023; E Solis-Escalante, G Gabriel Gentiletti, and O Yanez-Suarez. Single trial p300 detection based on the empirical mode decomposition. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 1157– 1160, 2006.; C. F. Blanco-D ́ıaz, C. D. Guerrero-M ́endez, and A. F. Ruiz-Olaya. Enhancing p300 detection using a band-selective filter bank for a visual p300 speller. IRBM, 44, 6 2023; R. A. Neira- Ricouz, " Fotografia Aerea", Tesis Ing, Universidad Austral de Chile, Valdivia, Chile, 2005.; D. I. Gómez, R. Castrillón, " Reconocimiento Automático De Ganado Bovino A Partir De Imágenes Aéreas Tomadas Con Drones: Un enfoque exploratorio", III Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y Móvil, 32-39, Pereira Colombia, 2019.; Airdroneview, 4 julio 2014, “Historia de la fotografía aérea”[Blog], [Online]. Recuperado de: https://airdroneview.com/2014/07/04/historia-de-la-fotografia-aerea/ .; F. Fernández García, " Fotografía aérea histórica e historia de la fotografía aérea en España”, Revista ERIA, Departamento de Geografía. Universidad de Oviedo, España, pp . 217-240, 2015.; M. Blanco Pérez. (2021). Fotografía aérea con tecnología drone. Tipología y aplicaciones. Discursos Fotograficos, 16(29), pp.76–101. https://doi.org/10.5433/1984-7939.2020v16n29p76; FJT Historia, medicina y otras artes, marzo 2016, “Las primeras fotografías aéreas de la Historia”[Blog],[Online]. Recuperado de: https://franciscojaviertostado.com/2016/03/14/las-primeras-fotografias-aereas-de-lahistoria/.; A Berrondo UrruzolaD. I, "Detección de carreteras en imágenes de reconocimiento remoto mediante deep", Grado en Ingeniería Informática Computación, Univeridad del pais vasco, Facultad de informatica, 2020.; A. Yasin Yiğit, A. Kocatepe, " Automatic road detection from orthophoto images", mersin photogrametri journal, 2(1); 10-17, e ISSN 2687-654X, 2020 .; Chaki, N., Shaikh, S.H., Saeed, K. (2014). A Comprehensive Survey on Image Binarization Techniques. In: Exploring Image Binarization Techniques. Studies in Computational Intelligence, vol 560. Springer, New Delhi. https://doi.org/10.1007/978- 81-322-1907-1_2; RAE, diccionario real academia de la lengua española, actualización 2022, “consulta del termino correlación”[Online]. Recuperado de: https://dle.rae.es/correlaci%C3%B3n?m=form; Máxima formación, julio 2020, “¿Qué Es La Correlación Estadística Y Cómo Interpretarla?”, [Blog], [Online]. Recuperado de: https://dle.rae.es/correlaci%C3%B3n?m=form; P. Sinha, B. Horgan, R. Ewing, E. Rampe, M. Lapotre, M. Nachon, M. Thorpe, A. Rudolph, C. Bedford, K. Maso2, E. Champion, P. Gray, E. Reid, M. Faragalli, “Decorrelation stretches(dcs) of visible images as a tool for sedimentary provenance investigationson earth and mars”, NTRS - NASA Technical Reports Server, March 16, 2020; Farrand, W. H., J. F. Bell III, J. R. Johnson, M. S. Rice, B. L. Jolliff, and R. E. Arvidson (2014), “Observations of rock spectral classes by the Opportunity rover’s Pancam on northern Cape York and on Matijevic Hill, Endeavour Crater, Mars”, J. Geophys. Res. Planets, 119, 2349–2369, doi:10.1002/2014JE00464.; M. Peikari, A. L. Martel, "Automatic cell detection and segmentation from H and E stained pathology slides using colorspace decorrelation stretching", Proc. SPIE 9791, Medical Imaging 2016: Digital Pathology, 979114 (23 March 2016); https://doi.org/10.1117/12.2216507; D. Hema1, S. Kannan. “Interactive Color Image Segmentation using HSV Color Space”, Science and Technology Journal, Vol. 7 Issue: 1 ISSN: 2321-3388, 2020; The MathWorks Inc,“Image Processing Toolbox For Use with MATLAB®”, decorstretch function, Version 3, User's Guide, https://www.mathworks.com/help/images/ref/decorrstretch.html.; T. Gevers, J. Weijer, H Stokman, “Color Image Processing: Chapter Color Feature Detection”. Social Science Computing Review, 1 st ed. England. edit. CRC Press, pp. 22, 2006. eBook ISBN9781315221526.; The MathWorks Inc,“Image Processing Toolbox For Use with MATLAB®”, imfill function, Version 3, User's Guide, https://la.mathworks.com/help/images/ref/imfill.html?searchHighlight=imfill&s_tid=srch title_support_results_1_imfill.; The MathWorks Inc,“Image Processing Toolbox For Use with MATLAB®”, bwareadopen function, Version 3, User's Guide. https://la.mathworks.com/help/images/ref/bwareaopen.html?searchHighlight=bwareao pen&s_tid=srchtitle_support_results_1_bwareaopen; Shutterstock,” Imágenes libres de regalías de Maldivas”, [Online]. Recuperado de: https://www.shutterstock.com/es/search/maldivas; National Geographic, “Vista aérea del complejo arqueoastronómico de Chankillo, en Perú”. Foto: Ministerio de Cultura de Perú, [Online]. Recuperado de: https://historia.nationalgeographic.com.es/a/chankillo-observatorio-solar-mas-antiguoamerica_19020; M. Franzese and A. Iuliano, “Hidden Markov models,” in Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Elsevier, 2018, pp. 753–762. Doi:10.1016/B978-0-12-809633-8.20488-3.; B.-J. Yoon, “Hidden Markov Models and their Applications in Biological Sequence Analysis,” Cur Genomics, vol. 10, no. 6, pp. 402–415, Sep. 2009, Doi:10.2174/138920209789177575.; P. C. Chang, J. J. Lin, J. C. Hsieh, and J. Weng, “Myocardial infarction classification with multilead ECG using hidden Markov models and Gaussian mixture models,” Applied Soft Computing Journal, vol. 12, no. 10, pp. 3165–3175, Oct. 2012, Doi:10.1016/j.asoc.2012.06.004.; T. Navarrete, “Detección de anomalías en la carga de un procesador utilizando modelos ocultos de Markov.,” Tesis de maestría, Instituto tecnológico de Morelia, Morelia, Michoacán, pp. 1, 2007. Accessed: Sep. 11, 2023. [Online]. Available: http://www.asiat.com.mx/tomas/tesismaestria/micrositio/node2.html; Ö. Yavuz, M. Calp, and H. Erkengel, “Prediction of breast cancer using machine learning algorithms on different datasets,” Ingenieria Solidaria, vol. 19, no. 1, pp. 1–32, Jun. 2023, doi:10.16925/2357-6014.2023.01.08.; DANE, “Estadísticas vitales (EEVV),” pp. 1, 2023. Accessed: Sep. 11, 2023. [Online]. Available: https://www.dane.gov.co/files/investigaciones/poblacion/pre_estadisticasvitales_IIItrim_2022p r.pdf; W. Gersch, P. Lilly, and E. Dong, “PVC Detection by the Heart-Beat Interval Data-Markov Chain Approach,” COMPUTERS AND BIOMEDICAL RESEARCH, vol. 8, pp. 370–378, 1975, Doi: https://doi.org/10.1016/0010-4809(75)90013-0.; A. H. Kadish et al., “ACC/AHA clinical competence statement on electrocardiography and ambulatory electrocardiography. A report of the ACC/AHA/ACP-ASIM Task Force on Clinical Competence (ACC/AHA Committee to Develop a Clinical Competence Statement on Electrocardiography and Ambulatory Electrocardiography),” J Am Coll Cardio, vol. 38, no. 7, pp. 2091–2100, 2001, Doi:10.1016/s0735-1097(01)01680-1.; R. V. Andreão, B. Dorizzi, and J. Boudy, “ECG signal analysis through hidden Markov models,” IEEE Trans Biomed Eng, vol. 53, no. 8, pp. 1541–1549, Aug. 2006, doi:10.1109/TBME.2006.877103.; M. H. Crawford et al., “ACC/AHA guidelines for ambulatory electrocardiography: Executive summary and recommendations: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the Guidelines for Ambulatory Electrocardiography): Developed in Collaboration with the North American Society for Pacing and Electrophysiology,” Circulation, vol. 100, no. 8. Lippincott Williams and Wilkins, pp. 886–893, Aug. 24, 1999. Doi:10.1161/01.CIR.100.8.886.; Sayed Khaled, A. Khalaf, and Y. Kadah, “Arrhythmia classification based on novel distance series transform of phase space trajectories,” Annu Int Conf IEEE Eng Med Biol Soc, pp. 5195– 8, 2015, Doi:10.1109/EMBC.2015.7319562.; M. Alvarez and R. Henao, “Combinacion de ppca y hmm para la identificación de infarto agudo de miocardio,” Scientia Et Technica, vol. 3, no. 32, pp. 139–144, 2006, doi: https://doi.org/10.22517/23447214.6253.; P. Laguna, A. Mark, A. Goldberg, and B. Moody, “A Database for Evaluation of Algorithms for Measurement of QT and Other Waveform Intervals in the ECG,” Compute Cardiol, pp. 673–76, 1997, Doi:10.1109/CIC.1997.648140.; A. L. Goldberger et al., “Physio Bank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals.,” Circulation, vol. 101, no. 23, pp. 1–6, 2000, Doi:10.1161/01.cir.101.23.e215.; G. Moody and R. Mark, “The impact of the MIT-BIH Arrhythmia Database,” IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 3, pp. 45–50, 2001, Doi:10.1109/51.932724.; A. Taddei et al., “The European ST-T database: standard for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography,” Eur Heart J, vol. 13, no. 9, pp. 1164– 1172, 1992, Doi:10.1093/oxfordjournals.eurheartj.a060332.; R. Bousseljot, D. Kreiseler, and A. Schnabel, “Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet,” Biomedizinische Technik, vol. 40, pp. 317–318, 1995, Doi: https://doi.org/10.1515/bmte.1995.40.s1.317.; F. Nolle, J. Badura, R. Catlett, H. Bowser, and M. Sketch, “CREI-GARD, a new concept in computerized arrhythmia monitoring systems,” Computers in Cardiology , pp. 515–518, 1987.; W. T. Cheng and K. L. Chan, “Classification of electrocardiogram using hidden Markov models,” Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. , vol. 20, no. 1, pp. 143–46, 1998, Doi:10.1109/IEMBS.1998.745850.; D. V. Filho and A. M. Cavalcanti, “MODELO PARA ANÁLISE DE ARRITMIAS CARDÍACAS USANDO CADEIAS DE MARKOV,” Proceedings of the XII SIBGRAPI , pp. 101–104, 1999, Accessed: Sep. 11, 2023. [Online]. Available: http://www.din.uem.br/sbpo/sbpo2005/pdf/arq0174.pdf; V. Kalidas and L. S. Tamil, “Detection of atrial fibrillation using discrete-state Markov models and Random Forests,” Compute Biol Med, vol. 113, pp. 1–14, Oct. 2019, Doi:10.1016/j.compbiomed.2019.103386.; P. Cheng and X. Dong, “Life-threatening ventricular arrhythmia detection with personalized features,” IEEE Access, vol. 5, pp. 14195–14203, Jul. 2017, Doi:10.1109/ACCESS.2017.2723258.; F. Nilsson, M. Stridh, and L. Sörnmo, “Frequency Tracking of Atrial Fibrillation using Hidden Markov Models,” Conf Proc IEEE Eng Med Biol Soc., pp. 1406–9, 2006, Doi:10.1109/IEMBS.2006.259677.; J. Oliveira, C. Sousa, and M. Coimbra, “Coupled hidden Markov model for automatic ECG and PCG segmentation,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, pp. 1023–27, 2017, Doi:10.1109/ICASSP.2017.7952311.; S. Petrutiu, A. V. Sahakian, and S. Swiryn, “Abrupt changes in fibrillatory wave characteristics at the termination of paroxysmal atrial fibrillation in humans,” Europace, vol. 9, no. 7, pp. 466– 470, Jul. 2007, Doi:10.1093/europace/eum096.; M. A F Pimentel, M. D. Santos, D. B. Springer, and G. D. Clifford, “Heart beat detection in multimodal physiological data using a hidden semi-Markov model and signal quality indices,” Physio Meas, vol. 36, no. 8, pp. 1717–1727, Aug. 2015, Doi:10.1088/0967-3334/36/8/1717.; A. K. Sangaiah, M. Arumugam, and G. Bin Bian, “An intelligent learning approach for improving ECG signal classification and arrhythmia analysis,” Artif Intell Med, vol. 103, pp. 1–14, Mar. 2020, Doi:10.1016/j.artmed.2019.101788.; H. Kwok, J. Coult, J. Blackwood, N. Sotoodehnia, P. Kudenchuk, and T. Rea, “A method for continuous rhythm classification and early detection of ventricular fibrillation during CPR,” Resuscitation, pp. 90–97, 2022, Doi:10.1016/j.resuscitation.2022.05.019.; L. A. Levin et al., “A cost-effectiveness analysis of screening for silent atrial fibrillation after ischaemic stroke,” Europace, vol. 17, no. 2, pp. 207–214, Dec. 2014, Doi:10.1093/europace/euu213.; G. H. Tison, J. Zhang, F. N. Delling, and R. C. Deo, “Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery,” Circ Cardiovasc Qual Outcomes, vol. 12, no. 9, pp. 1–12, Sep. 2019, Doi:10.1161/CIRCOUTCOMES.118.005289.; W. H. Tang, W. H. Ho, and Y. J. Chen, “Retrieving hidden atrial repolarization waves from standard surface ECGs,” Biomed Eng Online, vol. 17, pp. 1–11, Nov. 2018, Doi:10.1186/s12938-018-0576-3.; M. Altuve, G. Carrault, A. Beuchée, P. Pladys, and A. I. Hernández, “Online apnea–bradycardia detection based on hidden semi-Markov models,” Med Biol Eng Compute, vol. 53, no. 1, pp. 1– 13, Jan. 2015, Doi:10.1007/s11517-014-1207-1.; S. Masoudi and et al., “Early detection of apnea-bradycardia episodes in preterm infants based on coupled hidden Markov model,” IEEE International Symposium on Signal Processing and Information Technology, Athens, Greece, pp. 243–48, 2013, Doi:10.1109/ISSPIT.2013.6781887.; N. Montazeri Ghahjaverestan, M. B. Shamsollahi, D. Ge, A. Beuchée, and A. I. Hernández, “Apnea bradycardia detection based on new coupled hidden semi Markov model,” Med Biol Eng Comput, pp. 1–11, 2020, Doi:10.1007/s11517-020-02277-8.; A. Sadoughi, M. B. Shamsollahi, E. Fatemizadeh, A. Beuchée, A. I. Hernández, and N. Montazeri Ghahjaverestan, “Detection of Apnea Bradycardia from ECG Signals of Preterm Infants Using Layered Hidden Markov Model,” Ann Biomed Eng, vol. 49, no. 9, pp. 2159–2169, Sep. 2021, Doi:10.1007/s10439-021-02732-z.; E. D. Übeyli, “Combining recurrent neural networks with eigenvector methods for classification of ECG beats,” Digital Signal Processing: A Review Journal, vol. 19, no. 2, pp. 320–329, 2009, Doi:10.1016/j.dsp.2008.09.002.; C. Zhang, G. Wang, J. Zhao, P. Gao, J. Lin, and H. Yang, “Patient-specific ECG classification based on recurrent neural networks and clustering technique,” 2017 13th IASTED International Conference on Biomedical Engineering (BioMed), Innsbruck, Austria, pp. 63–67, 2017, Doi:10.2316/P.2017.852-029.; Z. Xiong, M. K. Stiles, and J. Zhao, “Robust ECG signal classification for detection of atrial fibrillation using a novel neural network,” in Computing in Cardiology, IEEE Computer Society, 2017, pp. 1–4. Doi:10.22489/CinC.2017.066-138; M. Liam and F. Precioso, “Atrial fibrillation detection and ECG classification based on convolutional recurrent neural network,” in Computing in Cardiology, IEEE Computer Society, 2017, pp. 1–4. Doi:10.22489/CinC.2017.171-325.; Y. C. Chang, S. H. Wu, L. M. Tseng, H. L. Chao, and C. H. Ko, “AF Detection by Exploiting the Spectral and Temporal Characteristics of ECG Signals with the LSTM Model,” in Computing in Cardiology, IEEE Computer Society, Sep. 2018, pp. 1–4. Doi:10.22489/CinC.2018.266.; H. W. Lui and K. L. Chow, “Multiclass classification of myocardial infarction with convolutional and recurrent neural networks for portable ECG devices,” Inform Med Unlocked, vol. 13, pp. 26–33, Jan. 2018, Doi:10.1016/j.imu.2018.08.002.; G. D. Clifford et al., “AF classification from a short single lead ECG recording: The PhysioNet/computing in cardiology challenge 2017,” in Computing in Cardiology, IEEE Computer Society, 2017, pp. 1–4. Doi:10.22489/CinC.2017.065-469.; S. Singh, S. K. Pandey, U. Pawar, and R. R. Janghel, “Classification of ECG Arrhythmia using Recurrent Neural Networks,” Procedia Compute Sci, vol. 132, pp. 1290–1297, 2018, Doi:10.1016/j.procs.2018.05.045.; Li X, Qi X, Chen Z, Hou Y, Yang Y, and Liang Q, “Affective Stress Rating Method Based on Improved Hidden Markov Model,” Chinese, vol. 33, no. 3, pp. 533–538, 2016.; C. Ying, Z. Xin, and C. Wenxi, “Automatic sleep staging based on ECG signals using hidden Markov models,” Annu Int Conf IEEE Eng Med Biol Soc ., pp. 530–3, 2015, Doi:10.1109/EMBC.2015.7318416.; F. Sandberg, M. Stridh, and L. Sörnmo, “Frequency tracking of atrial fibrillation using hidden Markov models,” IEEE Trans Biomed Eng, vol. 55, no. 2, pp. 502–511, Feb. 2008, Doi:10.1109/TBME.2007.905488.; L. Rincón, “Introducción a los procesos estocásticos,” UNAM, México, pp. 120-180, 2011. [Online]. Available: http://www.matematicas.unam.mx/lars; A. Alaa, S. Hu, and M. Schaar, “Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis,” International Conference on Machine Learning , pp. 60–69, 2017, Doi: https://doi.org/10.48550/arXiv.1705.05267.; J. Bilmes, “A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models,” International computer science institute, vol. 4, no. 510, p. 126, 1998, Accessed: Sep. 11, 2023. [Online]. Available: https://f.hubspotusercontent40.net/hubfs/8111846/Unicon_October2020/pdf/bilmes-emalgorithm.pdf; L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989, Doi:10.1109/5.18626.; A. Cohen, “Hidden Markov models in biomedical signal processing,” Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Biomedical Engineering Towards the Year 2000 and Beyond, vol. 3, pp. 1145–50, 1998, Doi:10.1109/IEMBS.1998.747073; Al-Hamadi, H., Gawanmeh, A., & Al-Qutayri, M. (2016). An automatic ECG generator for testing and evaluating ECG sensor algorithms. Proceeding of 2015 10th International Design and Test Symposium, IDT 2015, 78-83. https://doi.org/10.1109/IDT.2015.7396740; Yener, S. C., & Mutlu, R. (2018). A microcontroller-based ECG signal generator design utilizing microcontroller PWM output and experimental ECG data. 2018 ElectricElectronics, Computer Science, Biomedical Engineering’s’ Meeting, EBBT 2018, 1-4. https://doi.org/10.1109/EBBT.2018.8391465; Bear, M., Connors, B., & Paradiso, M. (2016). Neuroscience: Exploring the Brain. Wolters Kluwer. https://books.google.com.co/books?id=vVz4oAEACAAJ; López Chávez, H. I. (2020). Detección de la LRD en el ritmo cardiaco. APUNTES DE CLASE.; Park, K., & Willinger, W. (2000). Self-Similar Network Traffic and Performance Evaluation (1st). John Wiley & Sons, Inc.; Orozco, S. L., Cerda Villafaña, G., Cervantes, G. A., & Cisneros, M. T. (2010). Analysis of LRD Series with Time-Varying Hurst Parameter Análisis de Series LRD con Parámetro de Hurst Variante en el Tiempo. 13 (3), 295-312. http://www.fimee.ugto.mx/profesores/sledesma/documentos/; Ceballos, R. F., & Largo, F. F. (2018). On The Estimation of the Hurst Exponent Using Adjusted Rescaled Range Analysis, Detrended Fluctuation Analysis and Variance Time Plot: A Case of Exponential Distribution; Pujolle, G., Perros, H., Fdida, S., Korner, U., & Stavrakakis, I. (2000). Networking 2000 Broad- band Communications, High Performance Networking, and Performance of Communication Networks: IFIP-TC6/European Commission International Conference Paris, France, May 14–19, 2000 Proceedings. https://doi.org/10.1007/3-540-45551-5; Sheluhin, O., Smolskiy, S., & Osin, A. (2007). Self-Similar Processes in Telecommunications. John Wiley &; Sons, Inc.; Simonsen, I., Hansen, A., & Nes, O. M. (1998). Determination of the Hurst exponent by use of wavelet transforms. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 58 (3), 2779-2787. https://doi.org/10.1103/PhysRevE.58.2779; R. A. Robayo Salazar, P. E. Mattey Centeno, Y. F. Silva Urrego, D. M. Burgos Galindo y S. Delvasto Arjona, «Los residuos de la construcción y demolición en la ciudad de Cali: un análisis hacia su gestión, manejo y aprovechamiento,» Tecnura, vol. 19, nº 44, pp. 157-170, 2015.; Observatorio Ambiental de Bogotá, «Observatorio Ambiental de Bogotá,» 30 Julio 2023. [En línea]. Available: https://oab.ambientebogota.gov.co/residuos-de-construccion-ydemolicion/. [Último acceso: septiembre 2023].; Invías, «Normas y especificaciones 2012 invías,» 2012. [En línea]. Available: https://www.umv.gov.co/sisgestion2019/Documentos/APOYO/GLAB/GLAB-DE003_V1_Normas_Invias_Seccion_400-13.pdf. [Último acceso: septiembre 2023].; Normas técnicas Colombianas, «Concretos, especificaciones de los agragados para concreto NTC 174,» p. 5, 2000. [En línea]. Available: https://www.emcali.com.co/documents/148832/183512/NTC+174+de+2000.pdf/. [Último acceso: Septiembre 2023].; J. L. Rojas Ramírez y J. E. Berrío Mutiz, «Elaboración de concreto a partir de material de escombros de concreto,» Quindío - Colombia, 2019.; B. E. García Velásquez y L. M. Díaz Morales, «Proyecto de investigación evaluación de la resistencia a la compresión del concreto utilizando el cuesco proveniente de los residuos de fruto fresco de la palma africana y el concreto de residuos de construcción y demolición en obras civiles (rcd),» Villavicencio, 2019.; S. Peña Muñoz, J. F. Terán Puerta, J. A. Molina Sánchez, H. D. Cañola, A. BuilesJaramillo y . J. Ubany Zuluaga, «Evaluación de las propiedades de residuos de construcción y demolición de concreto,» Cuaderno, vol. 10, nº 1, pp. 79-90, 2018.; L. Perez Hernández, J. Gomez Chimento, A. Contreras Bravo y Padilla RuizLiseth, «Resistencia a la compresión del concreto,» Researchgate, Octubre 2018.; L. León Consuegra y M. Hernández Puentes, «Comparación de los valores de resistencia a compresión del hormigón a la edad de 7 y 28 días.,» Revista de Arquitectura e Ingeniería, vol. 10, nº 1, pp. 1-9, 2016.; À. Alegre Arias, «Hormigones en masa con áridos reciclados procedentes de rcd para su uso en la fabricación de bloques de defensa portuarios.,» Barcelona, 2012.; G. Bossini, M. G. Nuñez Cáceres y H. D. Anaya, «Influencia de agregados reciclados provenientes de (RCD) en hormigón,» de IX Jornadas de ciencias y tecnologías de facultades de ingeniería del NOA, Santiago del Estero, 2018.; C. J. Zega, «Hormigones reciclados: caracterización de los agregados gruesos reciclados,» (Tesis de maestría), p. 28, 2008.; E. Pavón, M. Etxeberria y I. Martínez, «Propiedades del hormigón de árido reciclado fabricado con adiciones, activa e inerte,» Revista de la construcción, vol. 10, nº 3, pp. 4- 15, 2011.; S. P. Muñoz Perez, D. M. Diaz Sanchez, E. E. Gamarra Capuñay y J. A. Chaname Bustamante , «La influencoa de los RCD en reemplazo de los agregados para la elaboración del concreto: una revisión literaria,» Ecuadorian Science Journal, vol. 5, nº 2, pp. 107-120, 2021.; C. A. Pacheco Bustos, L. G. Fuentes Pumarejo, É. H. Sánchez Cotte y H. A. Rondón Quintana, «Residuos de construcción y demolición (RCD), una perspectiva de aprovechamiento para la ciudad de barranquilla desde su modelo de gestión,» Ingeniería y Desarrollo, vol. 35, nº 2, pp. 533-555, 2017.; IEEE, IEEE Standard for Information technology—Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, vol. 2020. 2016. [Online]. Available: http://www.ieee.org/web/aboutus/whatis/policies/p9- 26.html.%0Ahttps://standards.ieee.org/standard/802_11ax-2021.html; “El nuevo 802.11ah conoce todo sobre Wi-Fi HaLow" :: Tecnocompras.” https://tecnocompras6.webnode.com.co/news/el-nuevo-802-11ah-conoce-todo-sobrewi-fi-halow/ (accessed Mar. 23, 2023).; Guías de Laboratorio para el estudio de señales Wi-Fi con el Equipo ANRITSU MS2830A de la Universidad Distrital Francisco José de Caldas, Manuel Fernando Cañas Soto, Brayan Alexander Estupiñan Avellaneda, José David Cely Callejas UDFJC 2023; M. Viseras, “Diseño De Una Guia De Prácticas De Laboratorio De Acuerdo Con Las Orientaciones Del Eees,” Enseñanza las Ciencias, Número Extra VIII Congr. Int. sobre Investig. en Didáctica las Ciencias, no. 1, pp. 1228–1233, 2009, [Online]. Available: https://pt.scribd.com/document/320878666/DISENO-DE-UNA-GUIA-DEPRACTICAS-DE-LABORATORIO-DE-ACUERDO-CON-LAS-ORIENTACIONESDEL-EEES; A. Alilla, A. Di Carlofelice, M. Faccio, I. Lucresi, and P. Tognolatti, “Software-defined satellite ranging measurements using laboratory signal analyzer,” 2014 IEEE Int. Work. Metrol. Aerospace, Metroaerosp. 2014 - Proc., pp. 332–336, 2014, doi:10.1109/METROAEROSPACE.2014.6865944.; P. Brochure, “Signal Analyzer,” SpringerReference, 2011, doi:10.1007/springerreference_24743.; A. Torres, “Ubiquiti airFiber – ¿Qué es BER (tasa de error de bit) en los radios airFiber? %7C Base de Conocimiento,” Ubiquiti. https://soporte.syscom.mx/es/articles/1439450- ubiquiti-airfiber-que-es-ber-tasa-de-error-de-bit-en-los-radios-airfiber (accessed Jul. 19, 2022).; O. Hernandez Cruz, “Diagrama de constelacion y modulaciones digitales avanzadas - Omar Hernández Cruz 17110937 Diagrama - StuDocu,” Universidad TecMilenio, 2021. https://www.studocu.com/es-mx/document/universidad-tecmilenio/ingenieria-decontrol/diagrama-de-constelacion-y-modulaciones-digitales-avanzadas/12619514 (accessed Jul. 19, 2022).; “Diagrama de constelación %7C PROMAX,” PROMAX, 2017. https://www.promax.es/esp/noticias/516/diagrama-de-constelacion/ (accessed Jul. 19, 2022).; Tektronix, “What Are Vector Network Analyzers %7C VNAs Explained %7C Tektronix.” https://www.tek.com/en/documents/primer/what-vector-network-analyzer-and-howdoes-it-work (accessed Jul. 19, 2022).; Tektronix, “Signal Generator %7C Tektronix.” https://www.tek.com/en/products/signalgenerators (accessed Jul. 19, 2022).; “Modelo pedagógico de la Facultad de Comunicaciones de la Universidad de Antioquia,” Feb. 2016. https://www.udea.edu.co/wps/wcm/connect/udea/fcc26266- 11ae-42c5-87abd8025d2bec9/MODELO+PEDAGÓGICO.pdf?MOD=AJPERES&CVID=lsLGwgF (accessed Aug. 05, 2022).; D. Noreña, “EL CONCEPTO DE PEDAGOGÍA EN LA OBRA PEDAGÓGICA DE RAFAEL FLÓREZ OCHOA ,” Univ. ANTIOQUIA Fac. Educ. Dep. Educ. Av. Maest. EN Educ. ÉNFASIS EN Form. Maest. , 2007, Accessed: Aug. 05, 2022. [Online]. Available: http://ayura.udea.edu.co:8080/jspui/bitstream/123456789/624/1/AA0384.pdf; M. Rosales, “Proceso evaluativo: evaluación sumativa, evaluación formativa y Assesment su impacto en la educación actual”; L. A. N. M. A. N. Committee, IEEE Std 802.11-2007: IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks-Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY, vol. 2020. 2007. [Online]. Available: http://scholar.google.com/scholar?q=related:K_aQPLd0dskJ:scholar.google.com/&hl= en&num=30&as_sdt=0,5%5Cnpapers3://publication/uuid/E731D645-DF33-45B5- 8882-A665213EA9D8; Anritsu MU181020A PPG 12.5Gb/s, “Anritsu corporation,” Analyzer, vol. 2, [Online]. Available: http://downloadfile.anritsu.com/Files/en-AU/Manuals/OperationManual/mu181020a_b_opm_e_17_0.pdf?f4739ea0f83b43ad1015d3937dbcf8be3aec 8f5de0897d0d745727bbd0217d9fa6b870ff705096c9d9cc39a9b064dd864b08e68938f 9ab5b245ce1c65ef3fe95eedc18d74c3ebd6bb939613a825ffb7; “Qué bandas de frecuencias WiFi hay: Explicación 2.4 GHz, 5 GHz y 6 GHz.” https://www.redeszone.net/tutoriales/redes-wifi/bandas-frecuencias-wi-fi/ (accessed Mar. 23, 2023).; F. G. Landa Barra, “Huella de carbono del transporte urbano para un plan de reducción de gases de efecto invernadero Puno 2021,” Repositorio Institucional - UCV, 2022, Accessed: Nov. 14, 2022. [Online]. https://repositorio.ucv.edu.pe/handle/20.500.12692/88703; S. Ankathi, Z. Lu, G. G. Zaimes, T. Hawkins, Y. Gan, and M. Wang, “Greenhouse gas emissions from the global transportation of crude oil: Current status and mitigation potential,” J Ind Ecol, 2022. https://doi.org/10.1111/jiec.13262; P. D. Faustino M. G., P. D. Florez S. Elkin, and M. Sc Guerrero G. G., “Mercados de energía en Colombia, una introducción,” 2021, Accessed: Nov. 14, 2022. [Online]. https://www.unipamplona.edu.co/unipamplona/portalIG/home_10/recursos/2021/documentos/ 19072021/mercados_energia.pdf.; A. Fernando et al., “Modelo de negocio para la implementación de estaciones de carga para vehículos eléctricos, en la empresa Biored energy,” 2020, Accessed: Nov. 26, 2022. [Online]. https://repository.udistrital.edu.co/handle/11349/28048.; Catagnia Chicaiza, L. D. (2020). Estimación de costos de energía eléctrica para la recarga de vehículos eléctricos basado en la óptima respuesta de la demanda (Bachelor's thesis). http://dspace.ups.edu.ec/handle/123456789/19333.; C. D. C. , Acosta Blanquiceth, J. M. , Chumbe Macana, J. F. , Ortigoza Ulloa, S. D. Palencia Pulido, and Sarmiento Baquero, “Estudio de factibilidad de la instalación de puntos de recarga para vehículos eléctricos en la ciudad de Bogotá,” 2021. https://hdl.handle.net/10882/11290; M. M. Rodríguez, “Impacto. Diseño de estaciones de carga eléctrica sostenible para vehículos eléctricos en Bogotá.,” 2021, Accessed: Nov. 26, 2022. [Online]. Available: http://repositorio.uan.edu.co/handle/123456789/1639.; Departamento Administrativo Nacional de Estadística, url: https://www.dane.gov.co.; Departamento Administrativo Nacional de Estadística https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-ypoblacion/proyecciones-de-poblacion.; Secretaría Distrital de Movilidad. https://www.movilidadbogota.gov.co/; Datos abiertos Bogotá. http://www.ideca.gov.co/recursos/glosario/datos-abiertos/.; Datos abiertos Bogotá. https://datosabiertos.bogota.gov.co/.; OpenStreetMap. https://www.openstreetmap.org/; F. C. Arias, “Estadística Espacial: Fundamentos y aplicación con Sistemas de Información Geográfica,” Revista Cartográfica, no. 105, 2022, doi:10.35424/rcarto.i105.1388. https://doi.org/10.35424/rcarto.i105.1388; V. Gómez Rubio, “Una introducción a la estadística espacial,” Boletín de Estadística e Investigación Operativa, vol. 38, 2022. https://www.seio.es/beio/una-introduccion-a-la-estadistica-espacial/; A. Rangel, A. Sánchez Ipia, W. Siabato, and J. Cely, “Geoestadística aplicada a estudios de contaminación ambiental,” UD y la Geomática, vol. 7 No.2, 2002. https://dialnet.unirioja.es/servlet/articulo?codigo=4797355.; D. Pascual, F. Pla, and S. Sánchez, “Algoritmos de agrupamiento,” Unpublished, 2007. https://repositorio.uci.cu/jspui/handle/123456789/7202; S. Wang, L. Sun, J. Rong, and Z. Yang, “Transit traffic analysis zone delineating method based on Thiessen polygon,” Sustainability (Switzerland), vol. 6, no. 4, 2014, doi:10.3390/su6041821. https://doi.org/10.3390/su6041821; “Geometría computacional,” http://asignatura.us.es/fgcitig/contenidos/gctem3ma.htm.; G. C. Henriques, “Arquitetura algorítmica: Técnicas, processos e fundamentos,” ENANPARQ IV Encontro da Associação Nacional de Pesquisa e Pós-Graduação em Arquitetura e Urbanismo, vol. 1, no. Sessão temática: projeto digital e fabricação na arquitetura, 2016.DOI:10.13140/RG.2.1.3479.3209; L. Jáuregui Álvarez and C. Vázquez Martínez, “MODELO DE NEGOCIO PARA LA GESTIÓN DE PUNTOS DE RECARGA Y ESTACIONAMIENTO NOCTURNO DE TURISMOS ELÉCTRICOS.” https://oa.upm.es/63478/; J. D. Gallo-Sanabria, P. A. Mozuca-Tamayo and R. I. Rincón-Fonseca, “Autonomous trajectory following for an UAV based on computer vision”, Visión electrónica, algo más que un estado sólido, vol. 14, no. 1, 2020; F. Campos Archila, V. Pinzón Saavedra, y F. Robayo Betancourt, “Fuzzy control of quadrotor Ar. Drone 2.0 in a controlled environment”, Vis. Electron., vol. 13, n.º 1, pp. 39–49, feb. 2019.; ] “Generación Eléctrica - Qué es, cómo se produce, renovables”. Concepto. Accedido el 27 de septiembre de 2023. https://concepto.de/generacion-electrica/; A. Gutierres. “Energías renovables: energías para un futuro más seguro”. Organizacion de las Naciones Unidas. Accedido el 1 de septiembre de 2023. https://www.un.org/es/climatechange/raising-ambition/renewable-energy; ] “Datos sobre producción eléctrica %7C Estadísticas mundiales sobre electricidad %7C Enerdata”. Estadísticas energéticas mundiales %7C Enerdata. Accedido el 27 de septiembre de 2023. https://datos.enerdata.net/electricidad/estadisticas-mundiales-produccion-electricidad.html; M. a. tamayo rincon, “PANORAMA ACTUAL DE LA GENERACIÓN HIDRÁULICA EN COLOMBIA Y ANTIOQUIA ANTE EL CRECIMIENTO DE LA DEMANDA DE ENERGÍA”, monografia, Univ. Antioquia, Medellin, 2022.; J. Rosero, L. Morales y D. Pozo, “Fuentes de Generación de Energía Eléctrica Convencional y Renovable a Nivel Mundial”, Rev. Politec., vol. 32, n.º 2, p. 13, 2013.; Malagón, E., 2020. La Hidroelectricidad, La Mayor Fuente De Energía Sostenible. ¡Aquí Te Decimos Por Qué! - Energía Para El Futuro. [Online] Energía para el futuro. Available at: [Accessed 21 October 2020].; Khan, A. A., & Khan, M. R. (2015). A simple and economical design of micro-hydro power generation system. 2015 Power Generation Systems and Renewable Energy Technologies, PGSRET 2015. https://doi.org/10.1109/PGSRET.2015.7312183; Ferro, L. M. C., Gato, L. M. C., & Falcão, A. F. O. (2011). Design of the rotor blades of a mini hydraulic bulb-turbine. Renewable Energy, 36(9), 2395–2403. https://doi.org/10.1016/j.renene.2011.01.037; E. R. Oviedo Ocaña, “Las Hidroeléctricas: efectos en los ecosistemas y en la salud ambiental”, Rev. Univ. Ind. Santander., vol. 50, n.º 3, 2018.; E. Sierra Vargas, A. F. Sierra Alarcon y C. A. Guerrero Fajardo. “Pequeñas y microcentrales hidroeléctricas: alternativa real de generación eléctrica. %7C Informador Técnico”. Revistas SENA. Accedido el 27 de septiembre de 2023. https://revistas.sena.edu.co/index.php/inf_tec/article/view/22/3439#info; Villarreal, J. L. S., Avalos, P. G., Galvan Gonzalez, S. R., & Dominguez Mota, F. J. (2019). Estimate electrical potential of municipal wastewater through a micro-hydroelectric plant. 2018 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2018, Ropec. https://doi.org/10.1109/ROPEC.2018.8661411; Qusay F. Hassan, "An Overview of Enabling Technologies for the Internet of Things," in Internet of Things A to Z: Technologies and Applications, IEEE, 2018, pp.77-112, doi:10.1002/9781119456735.ch3.; Hernandez Sampieri, R., Baptista Lucio, M. d. P., & Fernandez Collado, C. (2014). Metodologia de la investigacion (6a ed.). McGRAW-HILL / INTERAMERICANA EDITORES, S.A. DE C.V.; C M, S., Honnasiddaiah, R., Hindasageri, V., & Madav, V. (2021). Studies on application of vertical axis hydro turbine for sustainable power generation in irrigation channels with different bed slopes. Renewable Energy, 163, 845–857. https://doi.org/10.1016/j.renene.2020.09.015; Elbatran, A. H., Yaakob, O. B., Ahmed, Y. M., & Jalal, M. R. (2015). Novel approach of bidirectional diffuser-augmented channels system for enhancing hydrokinetic power generation in channels. Renewable Energy, 83, 809–819. https://doi.org/10.1016/j.renene.2015.05.038; Lucas D. Spies, E. A. T., Laboratorio. (2015). Diseño y Fabricación de una Turbina Eólica de Eje Vertical Impulsada por Drag. Revista Tecnología y Ciencia, 319–328.; Acevedo L, Lopez J, Sanchez S, (2008) Diseño de una turbina Banki para la recolección de aguas y generación de energía en una propiedad agrícola. Universidad tecnológica de Pereira, ingeniería mecatronica: http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/5770/62124A174.pdf;jsessionid=5 662092429514C805182C7EA731C6F45?sequence=1; Laboratorio de máquinas hidráulicas. (Universidad) (1923). Unidad 6 Turbina De Flujo Transversal O Michell Banki.2, 1–25. https://luiscalderonf.files.wordpress.com/2012/01/turbina-m-banki.pdf; Alfonso, C., & Gutiérrez, P. (2008). La turbina Mochell-Banki y su presencia en Colombia. Avances En Recursos Hidráulicos, 17, 33–42.; Bangi, V. K. T., Chaudhary, Y., Guduru, R. K., Aung, K. T., & Reddy, G. N. (2017). Preliminary investigation on generation of electricity using micro wind turbines placed on a car. International Journal of Renewable Energy Development, 6(1), 75–81. https://doi.org/10.14710/ijred.6.1.75-81; Ochoa, Y., Rodríguez, J., & Martínez, F. (2017). Sistema de regulación y control de carga para aerogenerador de baja potencia. Universidad Distrital Francisco José de Caldas - Facultad Tecnológica.; Hidrotu (empresa) "la turbina hidráulica del bulbo 0.1MW-10MW/la turbina del agua con descarga grande y el agua baja dirigen" Hoja técnica turbina de bulbo hidráulico., Spanish.hydrotu.com, 2020. [Online]. Available: http://spanish.hydrotu.com/china-; La_turbina_hidr_ulica_del_bulbo_0_1mw_10mw_la_turbina_del_agua_con_descarga_gra nde_y_el_agua_baja_di-295887.html. [Accessed: 08- Nov- 2020].; imagen turbina bulbo hidraulico- https://equipo2fae.wordpress.com/turbinas-kaplam/; Turbinas Kaplan. (2012). Recuperado 28 de diciembre de 2020, de EQUIPO2FAE website: https://equipo2fae.wordpress.com/turbinas-kaplam/; ] Vargas, J. A., Clavijo, F. V., & Torres Gómez, C. (2016). Desarrollo del prototipo de un hidrogenerador eléctrico como alternativa de generación de energía limpia en zonas rurales Development of the prototype of an electric hydro generator as an alternative for generating clean energy in rural areas. Ingeniare, 12(20), 91–101.; Naoe, N., Imazawa, A., Takehisa, K., & Nakamura, S. (2018). Bridge structure type micro hydropower-generating system and local region implementation. 2017 International Conference on Electrical, Electronics and System Engineering, ICEESE 2017, 2018-January, 78–83. https://doi.org/10.1109/ICEESE.2017.8298392; Plata, A. (2012). Diseño y desarrollo de un pico-generador hidroeléctrico para producción preindustrial. Universidad de Los Andes, 76.; Delgado Flores, A. F. (2016). Construcción de un convertidor CC-CC tipo reductor orientado a la enseñanza. Universidad Tecnológica de Pereira, 42.; Probe, M., & IoT, E. (2019). Power Consumption Measurements for IoT Applications Application Note. Rohde-Schwarz, 1–16.; Pane, D. N., Fikri, M. EL, & Ritonga, H. M. (2018). Análisis del consumo de energía promedio en dispositivos IoT de baja potencia con Blockchain como solución de seguridad. Journal of Chemical Information and Modeling, 53(9), 1689–1699.; Rose Karen, Eldridge Scott, C. L. (2015). LA INTERNET DE LAS COSAS-UNA BREVE RESEÑA. Internet Society, 83. https://doi.org/10.1007/978-0-85729-103-5_5; Kim, M., Lee, J., Kim, Y., & Song, Y. H. (2018). An analysis of energy consumption under various memory mappings for FRAM-based IoT devices. IEEE World Forum on Internet of Things, WF-IoT 2018 - Proceedings, 2018-January, 574–579. https://doi.org/10.1109/WFIoT.2018.8355212; Bonilla-Fabela Isaias Tavizon-Salazar Arturo Morales-Escobar Melisa Guajardo Muñoz Luz Tania & Laines-Alamina Cristina Isabel, “ISSN: 2448-5101 Año 2 Número 1 Julio 2015 - Junio 2016 2313 IOT, EL INTERNET DE LAS COSAS Y LA INNOVACIÓN DE SUS APLICACIONES”, Trabajo de grado, UANL Sch. Busines, Mexico, 2016.; S. Et. al., “Internet of Things (IoT): A Review”, Turkish J. Comput. Math. Educ. (TURCOMAT), vol. 12, n.º 2, pp. 521–526, abril de 2021. Accedido el 27 de septiembre de 2023, https://doi.org/10.17762/turcomat.v12i2.871; ] J. Flores Zermeño y E. G. Cosio Franco, “Aplicaciones, Enfoques y Tendencias del Internet de las Cosas (IoT): Revisión Sistemática de la Literatura”, Academia J., vol. 13, n.º 9, p. 9, 2021.; C. Chuquimarca, “Análisis comparativo entre arquitecturas de sistemas IoT”, RITI J., vol. 10, n.º 21, p. 16, 2021.; Anonimo. “¿Qué son los sensores IoT y para qué sirven? ¡Descúbrelo! %7C Tokio”. Tokio School. Accedido el 27 de septiembre de 2023, https://www.tokioschool.com/noticias/sensores-IoT/; F. D. Acevedo Garcés, "Diseño de una instalación solar fotovoltaica con capacidad para 3 kilovatios," Universidad Nacional Abierta y a Distancia Colombia, 2016.; M. Caro and R. Alejandro, "Dilemas éticos en la ingeniería," Retrieved 11 de 10 de 2021, from http://repositorio.uchile.cl/handle/2250/113296, 2012.; P. A. Castiblanco F. Luz A., "Trabajo de campo Sistema de Generación," En P. A. Castiblanco F. Luz A., Madrid, Cundinamarca, Cundinamarca, 2021.; T. D. Corcobado, "Instalaciones Solares Fotovoltaicas ciclo formativo de grado medio," Mc Graw Hill, Madrid, España, 2010.; Ministerio de Energía, "Energías Renovables no convencionales," En M. d. Energía. https://www.minenergia.gov.co/energias-renovables-no-convencionales, 2021.; J. Gómez Ramírez, "La energía solar fotovoltaica en Colombia: potenciales, antecedentes y perspectivas," Bogotá, 2017.; C. Guerrero, "Proyecto de Factibilidad para uso de Paneles Solares en Generación Fotovoltaica de Electricidad en el Complejo Habitacional “San Antonio” de Riobamba (Bachelor's thesis)," Riobamba, Ecuador, Ecuador, 2013.; I. S. JORGE, "Instalación y mantenimiento de sistemas solares fotovoltaicos. Capítulo 1, tema 1-2: La célula fotovoltaica. {En línea}. https://311cie.files.wordpress.com/2014/09/tema-1-2-la-celula-fotovoltaica.pdf," 2016.; P. &.-P. Marín-Cots, "En un entorno de 15 minutos: hacia la Ciudad de Proximidad, y su relación con el Covid-19 y la Crisis Climática, el caso de Málaga," Málaga, España, 2020.; Ministerio de Minas y Energía, "Ley 143 de 1994," En i. d. Régimen para la generación. Bogotá. https://www.minenergia.gov.co/documents/10180/667537/Ley_143_1994.pdf, 1994.; Monsolar, "Catálogo de productos," https://www.monsolar.com/bateria-gel-victron12v-165ah.html, 2023.; NASA, "Power Data Access View," https://power.larc.nasa.gov/data-access-viewer/, 2023.; G. C. Orrego, "Serie 3 Solera SE19 ORREGO G. CESAR A. Madrid Cundinamarca," 2019; R. Ortega, "Energías Renovables," Paraninfo, 2000.; UPME-Ideam, "Proyecciones de precios de los energéticos para generación eléctrica enero 2014 – diciembre 2037,"http://www.sipg.gov.co/sipg/documentos/precios_combustibles/Termicas_Marzo_ 2014. pdf, 2014.; WWF, "Glosario ambiental : Acuerdo de París," En WWF, París, Francia. https://www.wwf.org.co/?334976/Glosario-ambiental--Sabes-que-se-pacto-en-elAcuerdo-deParis#:~:text=Colombia%20en%20el%20Acuerdo%20de,de%20emisiones%20nac ionales%20de%202010, 2016.; (n.d.), «Buildings – Analysis - IEA,» 17 Abril 2023. [En línea]. Available: https://www.iea.org/reports/buildings.; C. t. d. l. e. e. España, « Seguridad estructural,» Documento básico SE., España, 2019.; F. Nemry, A. Uihlein, M. Colodel, C. Wetzel, A. Braune, B. Wittstock, I. Hasan, J. Kreißig, N. Gallon, S. Niemeier y Y. Frech, «Options to reduce the environmental impacts of residential buildings in the European Union—Potential and costs,» Energy Build, vol. 42, pp. 976-984, 2010.; Z. Ma, P. Cooper, D. Darly y L. Ledo, «Existing building retrofits: Methodology and stateof-the-art,» Energy Build, pp. 889-902, 2012.; reco2st, «reco2st,» programa de Investigación e Innovación Horizonte 2020 de la Unión Europea, 2020. [En línea]. Available: https://reco2st.eu/innovation/technologies/. [Último acceso: 14 11 2022].; C. o. B. S. Engineers, « Energy Efficiency in Buildings: CIBSE Guide F,» Chartered Institution of Building Services Engineers, 2004.; Objetivos y metas de desarrollo sostenible, «17 objetivos para transformar nuestro mundo,» NACIONES UNIDAS, 2017. [En línea]. Available: https://www.un.org/sustainabledevelopment/es/sustainable-development-goals/. [Último acceso: Noviembre 2022].; M. Santamouris y K. Vasilakopoulou, «Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation,» Electronics and Energy, vol. 1, 2021.; n.d, «Energy Efficiency 2019 – Analysis - IEA,» 17 Abril 2023. [En línea]. Available: https://www.iea.org/reports/energy-efficiency-2019.; L. Biardeau, L. Davis, P. Gertler y C. Wolfram, «Heat exposure and global air conditioning,» Nat Sustain, vol. 3, p. 25–28, 2020.; MITMA, «Documento Básico HS Salubiridad,» Ministerio de Transporte, Movilidad y Agenda Urbana, 2022.; J. Pradillo, ENFRIAMIENTO ADIABÁTICO INDIRECTO MEDIANTE CICL0 DE MAISOTSENKO Y APLICACIONES, wolf, 2015.; F. Rabadán, Evaluación de medidas de eficiencia energética en el, Sevilla: Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, 2021.; ABECE, «teoria sobre climatización adiabática,» Enero 2021. [En línea]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://asociacionbioclimatica.es/wpcontent/uploads/2021/01/TECNOLOGIAS-ADIABA%CC%81TICAS.pdf. [Último acceso: Noviembre 2022].; J. M. Arroyo and F. J. Fernández, “A genetic algorithm for power system vulnerability analysis under multiple contingencies,” Stud. Comput. Intell., vol. 482, pp. 41–68, 2013, doi:10.1007/978-3-642-37838-6_2.; D. K. Mishra, M. J. Ghadi, A. Azizivahed, L. Li, and J. Zhang, “A review on resilience studies in active distribution systems,” Renew. Sustain. Energy Rev., vol. 135, no. March 2020, 2021, doi:10.1016/j.rser.2020.110201.; J. Colombi, John M.; Miller, Michael E.; Schneider, Michael; McGrogan, Jason; Long, David S.; Plaga, “Towards Affordably Adaptable and Effective Systems,” Syst. Eng., vol. 14, no. 3, pp. 305–326, 2012, doi:10.1002/sys.; B. De Ataque and R. D. L. Sistemas, “A Bilevel Attacker-Defender Model for Enhancing Power Systems Resilience with Distributed Generation,” Sci. Tech., vol. 25, no. 4, pp. 540–547, 2020, doi:10.22517/23447214.23721.; P. H. Corredor and M. E. Ruiz, “Mitigating the Impact of Terrorist Activity on Colombia’s Power System,” IEEE Power Energy Mag., vol. 9, no. 2, pp. 59–66, 2011.; S. Cai, Y. Xie, Q. Wu, and Z. Xiang, “Robust MPC-based microgrid scheduling for resilience enhancement of distribution system,” Int. J. Electr. Power Energy Syst., vol. 121, no. April, p. 106068, 2020, doi:10.1016/j.ijepes.2020.106068.; S. N. Emenike and G. Falcone, “A review on energy supply chain resilience through optimization,” Renew. Sustain. Energy Rev., vol. 134, no. September, p. 110088, 2020, doi:10.1016/j.rser.2020.110088.; Z. Wan, Y. Mahajan, B. W. Kang, T. J. Moore, and J. H. Cho, “A Survey on Centrality Metrics and Their Network Resilience Analysis,” IEEE Access, vol. 9, pp. 104773–104819, 2021, doi:10.1109/ACCESS.2021.3094196.; L. Lotero and R. G. Hurtado, “Vulnerabilidad De Redes Complejas Y Una Revisión De La Literatura Vulnerability of Complex Networks and Urban Transportation Applications : a Literature Review,” Rev. EIA, vol. 11, no. 11, pp. 67–78, 2015.; T. Conferencia, M. D. E. Las, and R. D. E. Desastres, “Tercera Conferencia Mundial de las Naciones Unidas sobre la Reducción del Riesgo de Desastres,” 2015.; D. Sage, P. Fussey, and A. Dainty, “Securing and scaling resilient futures: neoliberalization, infrastructure, and topologies of power,” Environ. Plan. D Soc. Sp., vol. 33, no. 3, pp. 494–511, 2015, doi:10.1068/d14154p.; J. Pilatásig Lasluisa, “Resiliencia de Sistemas Eléctricos de Potencia mediante la Conmutación de Líneas de Transmisión – Estado del arte,” I+D Tecnológico, vol. 16, no. 2, 2020, doi:10.33412/idt.v16.2.2834.; B. M. Qu, T. Ding, L. Huang, and X. Wu, “Toward a Global Green Smart Microgrid,” pp. 55–69, 2020.; T. Khalili, A. Bidram, and M. J. Reno, “Impact study of demand response program on the resilience of dynamic clustered distribution systems,” IET Gener. Transm. Distrib., vol. 14, no. 22, pp. 5230–5238, 2020, doi:10.1049/iet-gtd.2020.0068.; J. Wu, H. Z. Deng, Y. J. Tan, and D. Z. Zhu, “Vulnerability of complex networks under intentional attack with incomplete information,” J. Phys. A Math. Theor., vol. 40, no. 11, pp. 2665–2671, 2007, doi:10.1088/1751-8113/40/11/005.; M. Azeroual, T. Lamhamdi, H. El Moussaoui, and H. El Markhi, “Simulation tools for a smart grid and energy management for microgrid with wind power using multi-agent system,” Wind Eng., vol. 44, no. 6, pp. 661–672, 2020, doi:10.1177/0309524X19862755.; Y. Wang et al., “Coordinating multiple sources for service restoration to enhance resilience of distribution systems,” IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 5781–5793, 2019, doi:10.1109/TSG.2019.2891515.; Q. Shi et al., “Network reconfiguration and distributed energy resource scheduling for improved distribution system resilience,” Int. J. Electr. Power Energy Syst., vol. 124, no. March 2020, p. 106355, 2021, doi:10.1016/j.ijepes.2020.106355.; K. Eshghi, B. K. Johnson, and C. G. Rieger, “Metrics required for power system resilient operations and protection,” Proc. - 2016 Resil. Week, RWS 2016, pp. 200–203, 2016, doi:10.1109/RWEEK.2016.7573333.; C. Ji, Y. Wei, and H. V. Poor, “Resilience of Energy Infrastructure and Services: Modeling, Data Analytics, and Metrics,” Proc. IEEE, vol. 105, no. 7, pp. 1354–1366, 2017, doi:10.1109/JPROC.2017.2698262.; D. J. M. Palacios, E. R. Trujillo, and J. M. López-Lezama, “Vulnerability analysis to maximize the resilience of power systems considering demand response and distributed generation,” Electron., vol. 10, no. 12, pp. 1–22, 2021, doi:10.3390/electronics10121498.; M. Bruneau et al., “A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities,” Earthq. Spectra, vol. 19, no. 4, pp. 733–752, 2003, doi:10.1193/1.1623497.; K. S. A. Sedzro, A. J. Lamadrid, and L. F. Zuluaga, “Allocation of Resources Using a Microgrid Formation Approach for Resilient Electric Grids,” IEEE Trans. Power Syst., vol. 33, no. 3, pp. 2633–2643, 2018, doi:10.1109/TPWRS.2017.2746622.; L. Yang, Y. Xu, H. Sun, M. Chow, and J. Zhou, “A multiagent system based optimal load restoration strategy in distribution systems,” Int. J. Electr. Power Energy Syst., vol. 124, no. May 2020, p. 106314, 2021, doi:10.1016/j.ijepes.2020.106314.; «Logra energía eólica a nivel mundial 1 TW de capacidad instalada», Energía Hoy. Accedido: 22 de agosto de 2023. [En línea]. Disponible en: https://energiahoy.com/2023/06/16/logra-energia-eolica-a-nivel-mundial-1-tw-de-capacidadinstalada/; P. M. Medina, «Colombia es uno de los países de la OCDE que más energía renovable genera», infobae. Accedido: 16 de agosto de 2023. [En línea]. Disponible en: https://www.infobae.com/colombia/2023/02/15/colombia-es-uno-de-los-paises-de-la-ocdeque-mas-energia-renovable-genera/; «Vista de Generador lineal para un generador eólico de baja potencia, selección, diseño y simulación en comsol multiphysic». Accedido: 16 de agosto de 2023. [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/vinculos/article/view/18620/17571; Mohan Ned, Undeland Tore, Robbins William, ELECTRONICA DE POTENCIA: Convertidores, aplicaciones y diseño, 3.a ed. Mc Graw Hill, 2009.; «Simscape Electrical». Accedido: 21 de julio de 2023. [En línea]. Disponible en: https://la.mathworks.com/products/simscape-electrical.html; M. H. Rashid, Electrónica de Potencia, 2.a ed. PRENTICE HALL HISPANOAMERICANA, S.A, 1993.; «Introducción a la identificación de sistemas», TÉCNICA INDUSTRIAL. Accedido: 24 de agosto de 2023. [En línea]. Disponible en: https://www.tecnicaindustrial.es/introduccion-a-laidentificacion-de-sistemas/; «System Identification Toolbox». Accedido: 24 de agosto de 2023. [En línea]. Disponible en: https://la.mathworks.com/products/sysid.html; L. J. Marín y V. M. Alfaro, «Sintonización de controladores por ubicación de polos y ceros», 2007.; S. C, «CONTROLADOR PI - Asignación de Polos [FÁCIL - Aprende]», Control Automático Educación. Accedido: 24 de agosto de 2023. [En línea]. Disponible en: https://controlautomaticoeducacion.com/control-realimentado/controlador-pi-por-asignacionde-polos/; «CONTROLADOR PI - Asignación de Polos [FÁCIL - Aprende]». Accedido: 24 de agosto de 2023. [En línea]. Disponible en: https://controlautomaticoeducacion.com/controlrealimentado/controlador-pi-por-asignacion-de-polos/; S. C, « Control Fuzzy - Mamdani - Simulink - [agosto, 2023 ]», Control Automático Educación. Accedido: 24 de agosto de 2023. [En línea]. Disponible en: https://controlautomaticoeducacion.com/control-realimentado/control-fuzzy-mamdanisimulink/; Agencia Internacional de Energía (AIE), "Perspectivas de tecnología energética 2020", AIE, 2020.; MA Ortega-Vázquez, MV Salas y KE Yeager, "Recursos energéticos distribuidos y su integración en el sistema de energía eléctrica", Proc. IEEE, vol. 99, núm. 1, págs. 28–39, enero de 2011.; N. Hatziargyriou, H. Asano, R. Iravani y C. Marnay, "Microgrids", IEEE Power Energy Mag., vol. 5, núm. 4, págs. 78–94, julio de 2007.; R. Pérez-García, F. González-Longatt y S. Carneiro, "Review of Distributed Energy Resources Integration in the IEEE Standards", en 2020 IEEE PES Transmission & Distribution Conference and Exposition (T&D), 2020; AS Al-Mohammed, RMO Al-Mohammed y M. Al- Mansoori, "Impacto de los recursos energéticos distribuidos en la calidad de la energía en las redes inteligentes: una revisión integral", Energías, vol. 13, núm. 7, pág. 1580, 2020.; S. A. Abbas, S. F. Hasan, D. R. Shin, “Analyzing the Integration of Distributed Generation into Smartgrids,” College of Information and Communications Engineering. Sungkyunkwan University. IEEE, 2015); G. Gross, J. Heinemann y F. Siefert, "Integración de energías renovables y su impacto en las operaciones de red",en 2010 IEEE PES Innovative Smart Grid Technologies, 2010.; K. Wang, Z. Xu y H. Wang, "Estándar IEEE y su aplicación en la regulación de microrredes", en 2012 Tercera Conferencia Internacional sobre Control Inteligente y Procesamiento de Información, 2012.; HY Kim, YS Cho y SS Kim, "Una revisión de la investigación sobre modelado y análisis de microrredes", Renew. Sostener. Energía Rev., vol. 59, págs. 1634-1640, 2016.; SR Mohanty, SN Singh y A. Kishor, "Una revisión de los métodos de detección de islas para la generación distribuida", Renew. Sostener. Energía Rev., vol. 13, núm. 8, págs. 1801- 1818, 2009.; ] F. Katiraei, MR Iravani y PW Lehn, "Operación autónoma de microredes durante y después del proceso de aislamiento", IEEE Trans. Entrega de energía, vol. 20, núm. 1, págs. 248-257.; M. Stadler et al., "Asignación y envío óptimos de recursos de energía distribuida: una revisión", IEEE Trans. Sistema de energía, vol. 22, núm. 1, págs. 107-116, 2007.; P. Palensky y D. Dietrich, "Gestión del lado de la demanda: respuesta a la demanda, sistemas de energía y cargas inteligentes", IEEE Trans. Indiana Informática, vol. 7, núm. 3, págs. 381-388, 2011.; CA Silva, SJ Rider y CS Yim, "Sistemas de almacenamiento de energía eléctrica: un análisis comparativo del costo del ciclo de vida", Renew. Sostener. Energía Rev., vol. 14, núm. 9, págs. 2717-2726, 2010.; E. Muljadi, CP Butterfield, A. Ellis y J. Meiman, "EnergyStorage for Stabilization of Wind Power", IEEE Trans. Solicitud de Indiana, vol. 37, núm. 1, págs. 272-280, 2001.; L. Zhong, X. Fang, J. Chen y Z. Zhang, "Regulación de carga de recursos energéticos distribuidos mediante controlpredictivo de modelos", en 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015.; P. Deane, G. O'Gallachoir y B. Ó. Gallachóir, "Revisión tecnoeconómica de una planta de almacenamiento de energía hidráulica por bombeo nueva y existente", Renovar. Sostener. Energía Rev., vol. 14, núm. 4, págs. 1293-1302, 2010.; E. Marín y P. Gómez, “Criterios e indicadores para la evaluación de la sostenibilidad de los sistemas energéticos”, Energía, vol. 32, núm. 12, págs. 2173-2181, 2007.; NK Roy, MT Naayagi y AM Ismail, "Análisis tecnoeconómico del sistema híbrido de almacenamiento deenergía para una planta de energía fotovoltaica independiente",Renew. Sostener. Energía Rev., vol. 69, págs. 1246-1256, 2017.; EG Talbi y K. Chekired, "Análisis económico y técnico de un sistema híbrido compuesto por paneles fotovoltaicos y baterías para un consumidor doméstico en Argelia", Energy Convers. Gestionar., vol. 47, núm. 18-19, págs. 3396-3409, 2006.; S. Deng, S. Zhong, Y. Fan y J. Du, "Operación óptima del almacenamiento de energía integrado y electrodomésticos inteligentes en microrredes considerando la respuesta a la demanda", IEEE Trans. Red inteligente, vol. 7, núm. 6, págs. 2831-2841, 2016.; https://hdl.handle.net/11349/40350
Availability: https://hdl.handle.net/11349/40350
-
8
Authors:
Subject Terms: Mudança tecnológica, Cambio organizacional, Organizational Change, Mudança Organizacional, Changement organisationnel, Health Organizations, Organizaciones en Salud, Organizações em Saúde, Organisations de Santé, Computer Systems, Sistemas informáticos, Systèmes informatiques, Organizaciones de salud, Cambio tecnológico, Technological change, Changement technologique
File Description: 14 páginas; application/pdf
Relation: 116; 79; 103; 31; Innovar; Aceto, G., Persico, V., & Pescapé, A. (2018). The role of Information and Communication Technologies in healthcare: taxonomies, perspectives, and challenges. Journal of Network and Computer Applications, 107, 125-154, https://doi.org/10.1016/j.jnca.2018.02.008; Aguirre, D. A. (2005). Reflexiones acerca de la competencia comunicativa profesional. Educación Médica Superior, 19(3), 1-10. http:// scielo.sld.cu/pdf/ems/v19n3/ems04305.pdf; Aguirre, N., Camacho. Y., Carvajal, M. P., Domínguez, J., Garzón, P., Guevara, L., … Rodríguez, M. (2018). Historia clínica electrónica en Bogotá: percepciones desde la atención primaria. Revista Salud Bosque, 8(2), 35-48. http://dx.doi.org/10.18270/rsb.v8i1.2492; Ashtari, S., & Bellamy, A. (2020). Factors impacting use of health it applications: Predicting nurses’ perception of performance, International Journal of Healthcare Information Systems and Informatics (ijhisi), 14(4), 33-55. https://doi.org/10.4018/ IJHISI.2019100103; Bansler, J. P., & Havn, E. (2004). Technology-use mediation. Making sense of electronic communication in an organizational context. Scandinavian Journal of Information Systems, 16, 57-84. https:// doi.org/10.1145/1027232.1027255; Barrett, M., Grant, D., & Wailes, N. (2006) ict and organizational change: Introduction to the special issue. The Journal of Applied Behavioral Science, 42(1), 6-22, https://doi. org/10.1177/0021886305285299; Bourgeois, D. (2014). Information systems for business and beyond. Saylor Foundationhttps://resources.saylor.org/wwwresources/archived/site/textbooks/Information%20Systems%20for%20Business%20and%20Beyond.pdf; Bushelle-Edghill, J., Brown, L., & Dong, S. (2017). An examination of ehr implementation impacts on patient-flow. Health Policy and Technology, 6(1), 114-120. https://doi.org/10.1016/j.hlpt.2016.11.005; Correa Ospina, M. L., & Díaz Pinzón, B. H. (2018). Capacidad en tecnologías de la información y desempeño organizacional: un estudio en el contexto colombiano. Innovar, 28(69), 99-116. https://doi. org/10.15446/innovar.v28n69.71699; Fagerström, C., Tuvesson, H., Axelsson, L., & Nilsson, L. (2017). The role of ict in nursing practice: An integrative literature review of the Swedish context. Scandinavian Journal of Caring Sciences, 31(3), 434-448. https://doi.org/10.1111/scs.12370; Farfán, G. M. (2013). Características de los registros de enfermería que hacen parte de expedientes de un tribunal de enfermería (Trabajo de grado). Pontificia Universidad Javeriana, Bogotá, Colombia. http://purl.org/coar/access_right/c_abf2 .; Flick, C., Zamani, E., Carsten, B., & Brem A. (2020). The future of ict for health and ageing: Unveiling ethical and social issues through horizon scanning foresight. Technological Forecasting and Social Change, 155, 119995. https://doi.org/10.1016/j. techfore.2020.119995; Galeano, E. (2004). Diseño de proyectos en la investigación cualitativa. Medellín: Fondo Editorial Universidad eafit.; Gonzales-Miranda, D., Ocampo-Salazar, C., & Gentilin, M. (2018). Organizational studies in Latin America. a literature review (2000- 2014). Innovar, 28(67), 89-109. https://doi.org/10.15446/innovar.v28n67.68615; Gutiérrez, V. A., Aguilar, J. J., & Medina, J. E. (2019). Cambio organizacional, institucional y tecnológico: una aproximación desde la teoría actor-red y el trabajo institucional. Cuadernos de Administración, 32(59). https://doi.org/10.11144/Javeriana.cao32-59.coit; Haluza, D., & Jungwirth, D. (2015). ict and the future of health care: Aspects of health promotion, International Journal of Medical Informatics, 84(1), 48-57. https://doi.org/10.1016/j. ijmedinf.2014.09.005; Harerimana, A., & Mtshali, N. (2020). Using exploratory and confirmatory factor analysis to understand the role of technology in nursing education, Nurse Education Today, 92, 104490. https://doi. org/10.1016/j.nedt.2020.104490; Health Level Seven International. (2019). About HL7. https://www.hl7. org/about/index.cfm?ref=nav; Hemmat, M., Ayatollahi, H., Maleki, M. R., & Saghafi, F. (2017). Future research in health information technology: A review. Perspectives in Health Information Management, 14(Winter), 1b. https://www. ncbi.nlm.nih.gov/pmc/articles/PMC5430110/; Leonardi, P. M., & Barley, S. R. (2010). What’s under construction here? Social action, materiality, and power in constructivist studies of technology and organizing. Academy of Management Annals, 4(1), 1-51. https://doi.org/10.1080/19416521003654160; Minota, T., & Cardona, D. (2016). Evolución de la historia clínica electrónica en el sector salud en Colombia. Quid, (27), 41-47. https://revistas.proeditio.com/iush/quid/article/view/1216; Mokel, M., & Canty, L. (2020). Educational outcomes of an online educational intervention teaching cultural competency to graduate nursing students. Nurse Education in Practice, 46, 102832. https:// doi.org/10.1016/j.nepr.2020.102832; Nery, V. de F., Franco, K. S., & Neiva, E. R. (2019). Attributes of the organizational change and its influence on attitudes toward organizational change and well-being at work: A longitudinal study. The Journal of Applied Behavioral Science, 55(4), 477-496. https:// doi.org/10.1177/0021886319848125; Omotosho, A., Ayegba, P., Emuoyibofarhe, J., & Meinel, C. (2019). Current state of ict in healthcare delivery in developing countries. International Journal of Online and Biomedical Engineering (ijoe), 15(8), 91-107. http://doi.org/10.3991/ijoe.v15i08.10294; Orlikowski, W. (1996). Improvising organizational transformation over time: A situated change perspective. Information Systems Research, 7(1), 63-92. https://doi.org/10.1287/isre.7.1.63; Orlikowski, W. & Scott, S. (2008). Sociomateriality: Challenging the separation of technology, work and organization. Academy of Management Annals. 2(1), (433-474). https://doi.org/10.5465/19416 520802211644; Papa, M., Daniels, T. & Spiker, B. (2008). Information technology. En Organizational Communication: Perspectives and Trends (pp. 161-192). Thousand Oaks: Sage Publications. http://dx.doi. org/10.4135/9781483329239.n7; Pettigrew, A. M., Woodman, R. W., & Cameron, K. S. (2001). Studying organizational change and development: Challenges for future research. The Academy of Management Journal, 44, 697-713. https://doi.org/10.5465/3069411; Ponelis, S. R. (2015). Using interpretive qualitative case studies for exploratory research in doctoral studies: A case of information systems research in small and medium enterprises. International Journal of Doctoral Studies, 10, 535-550. https://doi.org/10.28945/2339; Revilla, J. C., & Tovar, F. (2011). El control organizacional en el siglo xxi: en busca del trabajador autodisciplinado. Reis, 135, 47-68. http:// dx.doi.org/10.5477/cis/reis.135.47; Romero, J., Matamoros, S., & Campo, C. A. (2013). Sobre el cambio organizacional. Una revisión bibliográfica. Innovar, 23(50), 35-52. https://revistas.unal.edu.co/index.php/innovar/article/view/ 40572; Scott, S. V., & Orlikowski, W. J. (2014). Entanglements in practice: Performing anonymity through social media. mis Quarterly, 38(3), 873-893.; Svensson, A. (2020). Identifying motives for implementing eHealth by using activity theory. Sustainability, 12,1-11. https://doi. org/10.3390/su12041298; Tabares, J. (2017). El rol de la tecnología en las organizaciones productivas. En D. Gonzales-Miranda (Ed.), Organizaciones. Aproximaciones teóricas desde los estudios organizacionales (pp. 181-202). Medellín: Editorial Universidad eafit; Tabares, J., Correa, S. A., Herrera, J. M., & Loaiza, S. A. (2018). Mediación del uso de tecnologías de información en una organización de salud colombiana. Psicoperspectivas, 17(3), 1-12. http://doi. org/10.5027/psicoperspectivas-Vol17-Issue3-fulltext-1347; Taylor, S. J., & Bogdan, R. (1984). Introducción a los métodos cualitativos de investigación. Barcelona: Paidós.; Triantafillou, P. (2017). Making electronic health records support quality management: A narrative review. International Journal of Medical Informatics, 104, 105-119. http://dx.doi.org/10.1016/j. ijmedinf.2017.03.003; Trigg, R. H. & Bødker, S. (1994). From implementation to design: Tailoring and the emergence of systematization in cscw. En Proceedings of the Conference on Computer Supported Cooperative Work (October, Chapel Hill, NC), 44-54. https://doi. org/10.1145/192844.192869; Tsoukas H., & Chia, R. (2002). On organizational becoming: Rethinking organizational change. Organization Science, 13(5), 459-599. http://dx.doi.org/10.1287/orsc.13.5.567.7810; Urra, E., Jana, A., & García, M. (2011). Algunos aspectos esenciales del pensamiento de Jean Watson y su teoría de cuidados. Ciencia y Enfermería, 17(3), 11-22. http://dx.doi.org/10.4067/ S0717-95532011000300002; Van de Ven, A., & Poole, M. S. (1995). Explaining development and change in organizations. The Academy of Management Review, 20(3), 510-540. https://doi.org/10.2307/258786; VanHeuvelen, J., & Grace, M., (2020). Occupational heterogeneity in healthcare workers’ misgivings about organizational change. Work and Occupations, 47(3), 280-313, https://doi. org/10.1177/0730888420919144; Volkoff, O., Strong, D., & Elmes, M. (2007). Technological embeddedness and organizational change. Organization Science, 18(5), 749-883. http://dx.doi.org/10.1287/orsc.1070.0288; Walsham, G. (2006). Doing interpretive research. European Journal of Information Systems, 15(3), 320-330. https://doi.org/10.1057/ palgrave.ejis.3000589; Webb, L, Clough, J., O’Reilly, D., Wilmott, D., & Witham, G. (2017). The utility and impact of information communication technology (ict) for pre-registration nurse education: A narrative synthesis systematic review. Nurse Education Today, 48, 160-171, https://doi. org/10.1016/j.nedt.2016.10.007; Weick, K. E. (1995). Sensemaking in organizations. Thousand Oaks - Londres: Sage Publications.; Yuan, L. (2016). Rethinking organizational change: Implications from the Chinese Shi 势. Frontiers of Philosophy in China, 11(4), 540-555. https://doi.org/10.3868/s030-005-016-0039-1; Yunis, M., Tarhini, A., & Kassar, A. (2018). The role of ict and innovation in enhancing organizational performance: The catalysing effect of corporate entrepreneurship, Journal of Business Research, 88, 344- 356. https://doi.org/10.1016/j.jbusres.2017.12.030; https://dspace.tdea.edu.co/handle/tdea/2757
Availability: https://dspace.tdea.edu.co/handle/tdea/2757
-
9
Authors: et al.
Contributors: et al.
Subject Terms: Engineering, Agriculture Technology transfer (ATT), Smallholder farmer, Internet of things (IoT), Information systems, Electronic data processing, Computational linguistics, Agricultural technology, Agricultural development, Ingeniería, Sistemas de información, Procesamiento electrónico de datos, Linguística computacional, Tecnología agrícola, Desarrollo agrícola, Internet de las cosas (IoT), Transferencia de tecnología agrícola (TTA), Pequeños productores agricultores, Diseño centrado en el hombre (DCH)
Subject Geographic: Bucaramanga (Santander, Colombia), UNAB Campus Bucaramanga
Time: 2018-2022
File Description: application/pdf; text/html
Relation: [1] FAO, “Buenas prácticas en la FAO: Sistematización de experiencias para el aprendizaje continuo,” vol. 13, p. 12, 2013, [Online]. Available: www.fao.org/docrep/meeting/021/ma061s.pdf.; [2] D. A’Zami, “Citizen-peasants : modernity , international relations and the problem of difference in,” University of Sussex.; [3] J. James, ICT4D: Information and Communication Technology for Development, vol. 61, no. 1. 2010.; [4] FAO, “Small family farms data portrait: Basic information document,” p. 15, 2017, [Online]. Available: http://www.fao.org/fileadmin/user_upload/smallholders_dataportrait/docs/Data_portrait_variables_description_new2.pdf.; [5] B. E. Graeub et al., “The State of Family Farms in the World,” World Dev., vol. 87, no. JUNE, pp. 1–15, 2016, doi:10.1016/j.worlddev.2015.05.012.; [6] J. A. Berdegué and R. Fuentealba, “The state of smallholders in agriculture in Latin America,” in New Directions for Smallholder Agriculture, no. March, IFAD, Ed. Roma: Oxford University Press, 2014, pp. 115–152.; [7] L. Joyanes Aguilar, Internet de las Cosas. Un futuro conectado. Alfaomega Grupo Editor, 2021.; [8] K. Xing, D. H. Cropley, M. L. Oppert, and C. Singh, Readiness for Digital Innovation and Industry 4.0 Transformation: Studies on Manufacturing Industries in the City of Salisbury. 2021.; [9] F. Lombo and C. Prada, “Censo Nacional Agropecuario Caracterización de los productores residentes en el área.”; [10] M. Springmann et al., “Options for keeping the food system within environmental limits,” Nature, vol. 562, no. 7728, pp. 519–525, 2018, doi:10.1038/s41586-018-0594-0.; [11] G. Rapsomanikis, G. Sylvester, O. de las N. U. para la A. y la A. FAO, I. F. P. R. I. IFPRI, and O. para la C. y el D. E. OCDE, Information and Communication Technology (ICT) in Agriculture A Report to the G20 Agricultural Deputies. 2017.; [12] F. Freire Carrera, O. Chadrina, J. Moreano Velasco, B. Torres Blacio, and Y. D. V. Garcia Orellana, “Prototipo de un sistema de riego automatizado en árboles de cacao (Theobroma cacao) controlado vía internet con dispositivos móviles,” Av. Investig. en Ing., vol. 16, no. 2, pp. 93–106, 2019, doi:10.18041/1794-4953/avances.2.5257.; [13] J. P. Tovar Soto, J. D. los S. Solórzano Suárez, A. Badillo Rodríguez, and G. O. Rodríguez Cainaba, “Internet de las cosas aplicado a la agricultura: estado actual,” Lámpsakos, no. 22. p. 86, 2019, doi:10.21501/21454086.3253.; [14] T. R. Wheeler and J. Braun, “Climate Change Impacts on Global Food Security,” Nat. Syst. Chang. Clim., vol. 341, no. August, pp. 508–513, 2013, doi: DOI:10.1126/science.1239402 ARTICLE.; [15] C. Lau, A. Javis, and J. Ramírez, “Agricultura colombiana: adaptación al cambio climático %7C Portal Sobre Conservación y Equidad Social CES,” CIAT Políticas en Síntesis No. 1, 2011. https://www.portalces.org/biblioteca/cambio-climatico/agricultura-colombiana-adaptacion-al-cambio-climatico (accessed May 27, 2019).; [16] A. D. Boursianis et al., “Advancing Rational Exploitation of Water Irrigation Using 5G-IoT Capabilities: The AREThOU5A Project,” 2019 IEEE 29th Int. Symp. Power Timing Model. Optim. Simulation, PATMOS 2019, pp. 127–132, 2019, doi:10.1109/PATMOS.2019.8862146.; [17] Organización para la Cooperación y el Desarrollo Económicos (OCDE), “A Framework for Rural Development. Rural 3.0,” People-Centred Rural Policy, p. 28, 2019, [Online]. Available: https://www.oecd.org/rural/rural-development-conference/documents/Rural-3.0-Policy-Highlights.pdf.; [18] M. O. Thomas, B. A. Onyimbo, and R. Logeswaran, “Usability Evaluation Criteria for Internet of Things,” Int. J. Inf. Technol. Comput. Sci., vol. 8, no. 12, pp. 10–18, 2016, doi:10.5815/ijitcs.2016.12.02.; [19] J. Š. Novák, J. Masner, J. Vaněk, P. Šimek, and K. Hennyeyová, “User experience and usability in agriculture-selected aspects for design systems,” Agris On-line Pap. Econ. Informatics, vol. 11, no. 4, pp. 75–83, 2019, doi:10.7160/aol.2019.110407.; [20] D. Fajardo, M. Mejía, L. Gómez, M. Matheu, and OXFAM en Colombia, “Radiografía de la desigualdad. LO QUE NOS DICE EL ÚLTIMO CENSO AGROPECUARIO SOBRE LA DISTRIBUCIÓN DE LA TIERRA EN COLOMBIA,” 2017. Accessed: Jun. 05, 2019. [Online]. Available: https://www-cdn.oxfam.org/s3fs-public/file_attachments/radiografia_de_la_desigualdad.pdf.; [21] S. Ziegler, BID (Banco Interamericano de desarrollo), Agricultura), IICA (Instituto Interamericano de Cooperación para la, and Microsoft, “Habilidades digitales en la ruralidad: un imperativo para reducir brechas en américa latina y el caribe,” 2021. [Online]. Available: http://repositorio.iica.int/handle/11324/14462?locale-attribute=es.; [22] J. M. Perez, Luchas campesinas y reforma agraria Luchas campesinas y reforma agraria, Primera Ed. Colombia, 2010.; [23] DNP (Departamento Nacional de Planeación), MINSALUD (Ministerio de Salud y Protección Social), and Departamento Administrativo de la Presidencia de la República, Documento CONPES 3999. 2020, pp. 1–163.; [24] Consejería Presidencial para los derechos humanos y asuntos Internacionales, “INFORME Y RECOMENDACIONES II Durante la pandemia del COVID-19 a la luz de los derechos humanos,” 2020.; [25] DANE (Departamento Administrativo Nacional de Estadística), “Mayoristas Boletín Semanal,” Feb. 16, 2021. https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/sistema-de-informacion-de-precios-sipsa/mayoristas-boletin-semanal-1 (accessed Mar. 04, 2021).; [26] J. F. C. Díaz del Castillo, “La intermediación como un impedimento al desarrollo del pequeño productor de Medellín,” Corpoica Cienc. y Tecnol. Agropecu., vol. 14, no. 1, p. 27, 2013, doi:10.21930/rcta.vol14_num1_art:264.; [27] H. H. Mann, Social Framework of Agriculture, 2nd ed. India, Middle East, England: Routledge, 2020.; [28] G. Rapsomanikis, “The economic lives of smallholder farmers,” Fao, vol. 4, no. 4, pp. 1–4, 2015, doi:10.5296/rae.v6i4.6320.; [29] Ó. A. Orozco and G. Llano Ramírez, “Sistemas de Información enfocados en tecnologías de agricultura de precisión y aplicables a la caña de azúcar, una revisión,” Rev. Ing. Univ. Medellín, vol. 15, no. 28, pp. 103–124, 2016, doi:10.22395/rium.v15n28a6.; [30] F. Ahmad et al., “A smart agricultural model by integrating IoT, mobile and cloud-based big data analytics,” Proc. 2017 Int. Conf. Intell. Comput. Control. I2C2 2017, vol. 2018-Janua, no. 1, pp. 1–5, Mar. 2018, doi:10.1109/I2C2.2017.8321902.; [31] J. Parra Delgadillo, “MIGRACIONES EN COLOMBIA (CIUDAD-CAMPO): ANÁLISIS AL NEORURALISMO Y LAS NUEVAS RURALIDADES EN LAS AFUERAS DE BOGOTÁ (CUNDINAMARCA).,” Universidad Externado de Colombia, 2018.; [32] R. Pardo, “Diagnóstico de la Juventud Rural en Colombia. Grupos de Diálogo Rural, una estrategia de incidencia,” Santiago de Chile, 2017. [Online]. Available: www.rimisp.org.; [33] M. T. De Ossa, J. E. Londoño, and A. Valencia-Arias, “Model of technology transfer from biomedical engineering: A case study [Modelo de Transferencia Tecnológica desde la Ingeniería Biomédica: un estudio de caso],” Inf. Tecnol., vol. 29, no. 1, pp. 83–90, 2018, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042253656&doi=10.4067%2FS0718-07642018000100010&partnerID=40&md5=13e130c77728abaf07cbe0831c57f992.; [34] T. Kyung Sung and D. V Gibson, “Knowledge and Technology Transfer: Levels and Key Factors.” Accessed: May 27, 2019. [Online]. Available: http://www.ic2.utexas.edu/ictpi/mirror/curitiba2000/papers/S04P04.PDF.; [35] ENTERPRISE IRELAND, “A REVIEW OF THE PERFORMANCE OF THE IRISH TECHNOLOGY TRANSFER SYSTEM 2007-2012,” 2012. Accessed: May 27, 2019. [Online]. Available: https://www.knowledgetransferireland.com/Reports-Publications/A-review-of-the-performance-of-the-Irish-technology-transfer-system-2007-2012.pdf.; [36] M. Susuki, “Finding the social, economic and technological barriers and opportunities in the developing countries for designing the technology transfer and innovation regime in climate change,” 2010.; [37] M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E. H. M. Aggoune, “Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk,” IEEE Access, vol. 7, pp. 129551–129583, 2019, doi:10.1109/ACCESS.2019.2932609.; [38] S. Shibusawa, “Precision Farming Approaches for Small Scale Farms,” IFAC Proc. Vol., vol. 34, no. 11, pp. 22–27, 2001, doi:10.1016/s1474-6670(17)34099-5.; [39] Grupo de alto nivel de expertos (HLPE), “Inversión en la agricultura a pequeña escala en favor de la seguridad alimentaria,” 2013.; [40] DANE (Departamento Administrativo Nacional de Estadística), “Encuesta Nacional de Calidad de Vida ECV 2019,” 2020. [Online]. Available: https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/calidad-de-vida-ecv/encuesta-nacional-de-calidad-de-vida-ecv-2019.; [41] ICANH (Instituto Colombiano de Antropología e Historia) and D. (Departamento A. N. de Estadística), “Elementos para la conceptualización de lo ‘campesino’ en Colombia,” 2017.; [42] S. Agrawal and D. Vieira, “A survey on Internet of Things - DOI 10.5752/P.2316-9451.2013v1n2p78,” Abakós, vol. 1, no. 2, pp. 291–319, 2013, doi:10.5752/P.2316-9451.2013v1n2p78.; [43] M. Hadžiali, A. Čolaković, and M. Hadžialić, “A Review of Enabling Technologies, Challenges, and Open Research Issues Internet of Things (IoT): A Review of Enabling Technologies, Challenges, and Open Research Issues,” Comput. Networks, vol. 144, pp. 17–39, 2018, doi:10.1016/j.comnet.2018.07.017.; [44] D. A. Norman and S. W. D. Draper, User Centered System Design. New perspectives on Human-Computer Interaction. CRC Press, 1986.; [45] E. Almirón, “EL AGUA COMO ELEMENTO VITAL EN EL DESARROLLO DEL HOMBRE,” Observatorio de políticas de derechos humanos de Mercosur. https://www.observatoriomercosur.org.uy/libro/el_agua_como_elemento_vital_en_el_desarrollo_del_hombre_17.php.; [46] FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura), “Sistemas de riego son vitales para la agricultura dominicana,” Agronoticias: Actualidad agropecuaria de América Latina y el Caribe, 2017. https://www.fao.org/in-action/agronoticias/detail/es/c/1027860/.; [47] IDEAM (Instituto de Hidrología Meteorología y Estudios Ambientales), “Estudio Nacional del Agua,” Bogotá, Colombia, 2010.; [48] J. Carrazón, “Manual práctico para el diseño de sistemas de minirriego,” Programa Espec. para la Segur. Aliment., vol. 9, no. 5, pp. 5876–5891, 2018.; [49] UNESCO-WWAP, “Agua para todos, agua para la vida,” United Nations, p. 36, 2003, [Online]. Available: http://www.un.org/esa/sustdev/sdissues/water/WWDR-spanish-129556s.pdf.; [50] UNESCO (Organización de las Naciones Unidas para la Educación la Ciencia y la Cultura), “GROUNDWATER Making the invisible visible,” Paris, 2022. [Online]. Available: https://www.unesco.org/reports/wwdr/2022/es/download.; [51] FAO, “Evapotranspiración del cultivo en condiciones estándar Introducción a la Evapotranspiración del Cultivo (ET c),” 2018, [Online]. Available: http://www.fao.org/3/x0490s/x0490s00.htm.; [52] IDEAM, J. Cadena, and M. Gómez, Validación de las fórmulas de Evapotranspiración de Referencia (ETo) para Colombia. Instituto de Hidrología Meteorología y Estudios Ambientales. 2017.; [53] SEPOR, Uso de la bandeja de vaporación Clase A para la propagación del riego. 2010.; [54] A. Ríos Hernández, Máquinas agrícolas, tracción animal y labores manuales. Cuba: Instituto de Mecanización Agrícola (INFOIIMA), 2012.; [55] M. Liotta, “Los Sistemas De Riego Por Goteo Y Microaspersion,” Inst. Nac. Tecnol. Agropecu. Argentina, pp. 1–26, 2004.; [56] M. A. Rapela, Fostering Innovation for Agriculture 4.0. Cham: Springer International Publishing, 2019.; [57] J. Demenois et al., “Barriers and Strategies to Boost Soil Carbon Sequestration in Agriculture,” Front. Sustain. Food Syst., vol. 4, 2020, doi:10.3389/fsufs.2020.00037.; [58] Y. Liu, X. Ma, L. Shu, G. P. Hancke, and A. M. Abu-Mahfouz, “From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges,” IEEE Trans. Ind. Informatics, vol. 17, no. 6, pp. 4322–4334, Jun. 2021, doi:10.1109/TII.2020.3003910.; [59] A. Cravero, D. Lagos, and R. Espinosa, “Big Data / IoT Use in Wine Production: A Systematic Mapping Study,” IEEE Lat. Am. Trans., vol. 16, no. 5, pp. 1476–1484, May 2018, doi:10.1109/TLA.2018.8408444.; [60] I. Froiz-Míguez et al., “Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on LoRa and LoRaWAN Sensor Nodes,” Sensors, vol. 20, no. 23, p. 6865, Nov. 2020, doi:10.3390/s20236865.; [61] W. Liping, “Study on Agricultural Products Logistics Mode in Henan Province of China,” in Software Engineering and Knowledge Engineering: Theory and Practice, 2012, pp. 635–640.; [62] S. Ramya, A. M. Swetha, and M. Doraipandian, “IoT Framework for Smart Irrigation using Machine Learning Technique,” J. Comput. Sci., vol. 16, no. 3, pp. 355–363, Mar. 2020, doi:10.3844/jcssp.2020.355.363.; [63] M. Raj et al., “A survey on the role of Internet of Things for adopting and promoting Agriculture 4.0,” J. Netw. Comput. Appl., vol. 187, no. May, p. 103107, 2021, doi:10.1016/j.jnca.2021.103107.; [64] D. M. Rodríguez, E. Bayona, and A. A. Rosado, “Summary of the internet of things and its application in agro-industrial production,” J. Phys. Conf. Ser., vol. 1409, p. 012018, Nov. 2019, doi:10.1088/1742-6596/1409/1/012018.; [65] S. Safdar, M. Mohsin, L. A. Khan, and W. Iqbal, “Leveraging the internet of things for smart waters: Motivation, enabling technologies and deployment strategies for Pakistan,” Proc. - 2018 IEEE SmartWorld, Ubiquitous Intell. Comput. Adv. Trust. Comput. Scalable Comput. Commun. Cloud Big Data Comput. Internet People Smart City Innov. SmartWorld/UIC/ATC/ScalCom/CBDCo, pp. 2117–2124, 2018, doi:10.1109/SmartWorld.2018.00354.; [66] S. I. Hassan, M. M. Alam, U. Illahi, M. A. Al Ghamdi, S. H. Almotiri, and M. M. Su’ud, “A Systematic Review on Monitoring and Advanced Control Strategies in Smart Agriculture,” IEEE Access, vol. 9, pp. 32517–32548, 2021, doi:10.1109/ACCESS.2021.3057865.; [67] A. Madruga Peláez, A. A. Estevez Pérez, R. S. López, I. Santana Ching, and C. M. García Algora, “Red de Sensores Inalámbricos para la Adquisición de Datos en Casas de Cultivo,” Ingeniería, vol. 24, no. 3, pp. 224–234, Sep. 2019, doi:10.14483/23448393.14437.; [68] Z. Irani et al., “Managing food security through food waste and loss: Small data to big data,” Comput. Oper. Res., vol. 98, pp. 367–383, Oct. 2018, doi:10.1016/j.cor.2017.10.007.; [69] R. Kondaveti, A. Reddy, and S. Palabtla, “Smart Irrigation System Using Machine Learning and IOT,” Proc. - Int. Conf. Vis. Towar. Emerg. Trends Commun. Networking, ViTECoN 2019, 2019, doi:10.1109/ViTECoN.2019.8899433.; [70] E. Nigussie, T. Olwal, G. Musumba, T. Tegegne, A. Lemma, and F. Mekuria, “IoT-based irrigation management for smallholder farmers in rural Sub-Saharan Africa,” Procedia Comput. Sci., vol. 177, pp. 86–93, 2020, doi:10.1016/j.procs.2020.10.015.; [71] X. Jiang et al., “Hybrid Low-Power Wide-Area Mesh Network for IoT Applications,” IEEE Internet Things J., vol. 8, no. 2, pp. 901–915, 2021, doi:10.1109/JIOT.2020.3009228.; [72] INTA and PROCISUR, “Sistemas y Metodologías pra asesoramiento a Regantes,” Manfredi, Córdoba (Argentina), 2010. [Online]. Available: https://inta.gob.ar/documentos/riego-sistemas-y-metodologias-para-asesoramiento-a-regantes.; [73] H. Jafarieh, “Technology Transfer to Developing Countries: A Quantative Approach,” 2001.; [74] M. Dubickis and E. Gaile-Sarkane, “Perspectives on Innovation and Technology Transfer,” Procedia - Soc. Behav. Sci., vol. 213, pp. 965–970, Dec. 2015, doi:10.1016/j.sbspro.2015.11.512.; [75] D. J. Sánchez Preciado, Developing Technology Transfer Processes in rural contexts : The case of Cauca in Colombia, vol. 4, no. 41. 2018.; [76] J. O. A. Palacio Niño, “Análisis de transferencia tecnológica para una adecuada implementación de contenidos educativos en el sistema de TDT interactiva en Colombia.” p. 234, 2011.; [77] T. Huang, “The technology transfer of the ICT curriculum in Taiwan.” pp. 407–422, 2013.; [78] J. . Behrman and W. A. Fisher, Overseas R&D Activity of Transnational Companies. Oelgeschlager, Gunn and Hain, Cambridge, 1980.; [79] M. Blomström, TRANSNATIONAL CORPORATIONS AND MANUFACTURING EXPORTS FROM DEVELOPING COUNTRIES. New York, New York, USA: United Nations Publications, 1990.; [80] J. Bhagwati, The New International Economic Order. Massachusetts: MIT Press, 1978.; [81] A. HASSAN and Y. Jamaluddin, “Exploring the Factors Affecting the ICT Technology Transfer Process: An Empirical Study in Libya,” Mod. Appl. Sci., vol. 10, no. 7, p. 156, 2016, doi:10.5539/mas.v10n7p156.; [82] A. K. Saini and V. KumarKhurana, “ICT Based Communication Systems as Enabler for Technology Transfer,” IEEE, pp. 90–99, 2016.; [83] J. Londoño, S. Restrepo, M. Rodríguez, F. Cuartas, and N. Viana, “Identificación De Tipos, Modelos Y Mecanismos De Transferencia Tecnológica Que Apalancan La Innovación,” Revista CINTEX, vol. 23, no. 2. pp. 13–23, 2018.; [84] J. A. Pineda Insuasti and A. S. Duarte Trujillo, “Modelo de transferencia de tecnología ecuatoriano: una revisión.” pp. 1–24, 2016.; [85] R. Barquin, “Some Introductory Notes on Transfer of Technology,” in Industrial Development and Technology Transfer, 1981.; [86] H. S. Lee, J. W. Lee, H. Y. Kim, H. J. Jo, and B. G. Lee, “Promising ICT Transfer Fields for Promotion of Micro-Startups Hye.” pp. 779–788, 2016.; [87] J. González Sabater, Manual transferencia de tecnología y conocimiento, 2nd ed. THE TRANSFER INSTITUTE, 2011.; [88] A. Corsi, R. N. Pagani, J. L. Kovaleski, and V. Luiz, “Technology transfer for sustainable development: Social impacts depicted and some other answers to a few questions,” J. Clean. Prod., p. 118522, 2019, doi:10.1016/j.jclepro.2019.118522.; [89] P. J. Buckley, “Some Aspects of Foreign Private Investment in the Manufacturing Sector of the Economy of the Irish Republic,” Econ. Soc. Rev, no. 5, pp. 301–321, 1974.; [90] A. GÜNSEL, “Research on Effectiveness of Technology Transfer from a Knowledge Based perspective,” in Procedia - Social and Behavioral Sciences, 2015, vol. 207, pp. 777–785, doi:10.1016/j.sbspro.2015.10.165.; [91] M. Ismail, S. R. Hamzah, and R. Bebenroth, “Differentiating knowledge transfer and technology transfer: What should an organizational manager need to know?,” Eur. J. Train. Dev., vol. 42, no. 9, pp. 611–628, 2018, doi:10.1108/EJTD-04-2018-0042.; [92] S. S. Da Silva, P. R. Feldmann, R. G. Spers, and M. D. Bambini, “Analysis of the process of technology transfer in public research institutions,” Innov. Manag. Rev., vol. 16, no. 4, pp. 375–390, 2019, doi:10.1108/inmr-05-2018-0024.; [93] P. J. Buckley, “New Forms of International Industrial Co-operation,” in The Economic Theory of the Multinational Enterprise, Macmillan, Ed. London: Buckley & Casson, 1985, pp. 39–59.; [94] D. O´Neil and C. Huff, “Ensuring universal acces to telecommunications technologies for all citizens: Equity vs Economic considerations.” STAS 98. Wiring the World: The Impact of Information Technology on Society. Proceedings of the 1998 International Symposium on Technology and Society, pp. 170–175, 1998.; [95] D. V. Gibson and R. W. Smilor, “Key variables in technology transfer: A field-study based empirical analysis,” J. Eng. Technol. Manag., vol. 8, no. 3–4, pp. 287–312, Dec. 1991, doi:10.1016/0923-4748(91)90015-J.; [96] Y. Acea Valdez, “La transferencia de tecnología en Cuba.” pp. 139–149, 2016.; [97] A. Corsi, F. F. De Souza, R. N. Pagani, and J. L. Kovaleski, Technology transfer oriented to sustainable development : proposal of a theoretical model based on barriers and opportunities, vol. 126, no. 6. Springer International Publishing, 2021.; [98] J. Arenas and D. González, “Technology Transfer Models and Elements in the University-Industry Collaboration,” Adm. Sci., vol. 8, no. 2, p. 19, 2018, doi:10.3390/admsci8020019.; [99] A. Hassan, M. Y. Jamaluddin, and K. M. Menshawi, “International technology transfer models: A comparison study,” Journal of Theoretical and Applied Information Technology, vol. 78, no. 1. pp. 95–108, 2015.; [100] E. C. Avendaño Sánchez, “El Uso De La Transferencia De Tecnología En El Sector Empresarial: De La Innovación a La Apropiación Del Saber,” Ekp, vol. 13, no. 3. pp. 1576–1580, 2017.; [101] F. ÖZSUNGUR, “Adaptation Approach to Technology Transfer Strategy,” Afro Eurasian Stud., vol. 7, no. 1, pp. 134–178, 2018, doi:10.33722/afes.471087.; [102] C. L. García Wagner, “Modelo conceptual para el funcionamiento de una Oficina de Transferencia de Tecnología en la Universidad del Quindío.” 2018.; [103] B. Metz, O. R. Davidson, J.-W. Martens, S. N. M. Van Rooijen, and L. Van Wie McGregory, “Methodological and Technological Issues in Technology Transfer,” 2000. Accessed: Jun. 17, 2019. [Online]. Available: www.cup.cam.ac.uk.; [104] R. H. Acker and D. M. Kammen, “The quiet (energy) revolution: analysing the dissemination of photovoltaic power systems in Kenya,” Energy Policy, vol. 24, no. 1, pp. 81–111, 1996.; [105] D. C. Rose et al., “Integrated farm management for sustainable agriculture: Lessons for knowledge exchange and policy,” Land use policy, vol. 81, no. April 2017, pp. 834–842, 2019, doi:10.1016/j.landusepol.2018.11.001.; [106] K. T. Moreno Suarez and E. L. Oviedo Bahamón, “Tipificación de la agricultura realizada por los integrantes de la Asociación de Productores Indígenas y Campesinos - ASPROINCA ubicada en el departamento de Caldas,” Corporación Universitaria Minuto de Dios - UNIMINUTO, 2017.; [107] E. L. Hyman, A. T. International, M. O. Donnell, G. Patterson, and J. Skibiak, “An Economic Analysis of Small-Scale Technologies for Palm Oil Extraction in Central and West Africa,” World Dev., vol. 18, no. 3, pp. 455–476, 1990.; [108] N. Clark and E. Clay, “The Dryland Research Project at lndore ( 1974-80 ) - an Institutional Innovation in Rural Technology Transfer,” J. Rural Stud., vol. 3, no. 2, pp. 159–173, 1987.; [109] K. M. Baker and R. L. Edmonds, “Transfer of Taiwanese ideas and technology to The Gambia, West Africa: a viable approach to rural development?,” Geogr. J., vol. 170, no. 3, pp. 189–211, 2004, [Online]. Available: https://www.jstor.org/stable/3451252.; [110] Unión Europea and IICA (Instituto Interamericano de Cooperación para la Agricultura), Sistemas de innovación agrícola en Centroamérica y Panamá: estrategias para el uso de buenas prácticas de transferencia tecnológica, Primera. San José, Costa Rica: IICA, 2016.; [111] G. A. Van Norman and R. Eisenkot, “Technology Transfer: From the Research Bench to Commercialization: Part 2: The Commercialization Process,” JACC Basic to Transl. Sci., vol. 2, no. 2, pp. 197–208, 2017, doi:10.1016/j.jacbts.2017.03.004.; [112] W. Keller, “International technology diffusion,” J. Econ. Lit., vol. 3, no. 42, pp. 752–783, 2004.; [113] M. Nabin, X. Nguyen, and P. Sgro, “On the Relationship Between Technology Transfer and Economic Growth in Asian,” World Econ., 2013, doi:10.1111/twec.12049.; [114] R. Thornton, “Los 90 y el nuevo siglo en los sistemas de extensión rural y transferencia de tecnología públicos en el Mercosur,” La Pampa, Argentina, 2011. [Online]. Available: https://inta.gob.ar/documentos/los-90-y-el-nuevo-siglo-en-los-sistemas-de-extension-rural-y-transferencia-de-tecnologia-publicos-en-el-mercosur.; [115] W. G. Delgado Munevar, “Caracterización del proceso de transferencia y adopción tecnológica de pequeños y medianos productores de cebolla (allium cepa l.) en el municipio de Pasca (Cundinamarca),” 2009, Accessed: May 27, 2019. [Online]. Available: https://repository.javeriana.edu.co/handle/10554/134.; [116] J. Ardila, Extensión rural para el desarrollo de la agricultura y la seguridad alimentaria, no. Aspectos conceptuales, situación y una visión de futuro. 2015.; [117] D. S. MacCarthy, J. Kihara, P. Masikati, and S. G. K. Adiku, “Decision support tools for site-specific fertilizer recommendations and agricultural planning in selected countries in sub-Sahara Africa,” Nutr. Cycl. Agroecosystems, vol. 110, no. 3, pp. 343–359, Apr. 2018, doi:10.1007/s10705-017-9877-3.; [118] C. Gamboa, G. Van den Broeck, and M. Maertens, “Smallholders’ Preferences for Improved Quinoa Varieties in the Peruvian Andes,” Sustainability, vol. 10, no. 10, p. 3735, Oct. 2018, doi:10.3390/su10103735.; [119] O. Oyinbo et al., “Farmers’ preferences for high-input agriculture supported by site-specific extension services: Evidence from a choice experiment in Nigeria,” Agric. Syst., vol. 173, no. June 2018, pp. 12–26, 2019, doi:10.1016/j.agsy.2019.02.003.; [120] M. Banković et al., “Teaching graduate students how to review research articles and respond to reviewer comments,” 2020, pp. 1–63.; [121] L. J. Catania, “The science and technologies of artificial intelligence (AI),” in Foundations of Artificial Intelligence in Healthcare and Bioscience, Elsevier, 2021, pp. 29–72.; [122] S. Vajjala, B. Majumder, A. Gupta, and H. Surana, Practical Natural Language Processing. A comprehensive Guide to Building Real-World NLP System. 2020.; [123] M. B. Hernández and J. M. Gómez, “Aplicaciones de Procesamiento de Lenguaje Natural,” Rev. Politécnica, vol. 32, no. 1, pp. 87–96, 2013, [Online]. Available: http://www.revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/32.; [124] J. C. Campbell, A. Hindle, and E. Stroulia, “Latent Dirichlet Allocation: Extracting Topics from Software Engineering Data,” Art Sci. Anal. Softw. Data, vol. 3, pp. 139–159, 2015, doi:10.1016/B978-0-12-411519-4.00006-9.; [125] R. Kulshrestha, “A Beginner’s Guide to Latent Dirichlet Allocation(LDA),” towardsdatascience.com, 2019. https://towardsdatascience.com/latent-dirichlet-allocation-lda-9d1cd064ffa2.; [126] T. Ganegedara, “Intuitive Guide to Latent Dirichlet Allocation,” towardsdatascience.com, 2018. https://towardsdatascience.com/light-on-math-machine-learning-intuitive-guide-to-latent-dirichlet-allocation-437c81220158.; [127] Z. Tong and H. Zhang, “A Text Mining Research Based on LDA Topic Modelling,” pp. 201–210, 2016, doi:10.5121/csit.2016.60616.; [128] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Hierarchical Dirichlet processes,” J. Am. Stat. Assoc., vol. 101, no. 476, pp. 1566–1581, 2006, doi:10.1198/016214506000000302.; [129] E. Coronado Sroka, “Don’t be Afraid of Nonparametric Topic Models,” towardsdatascience.com, 2020. https://towardsdatascience.com/dont-be-afraid-of-nonparametric-topic-models-d259c237a840.; [130] J. Xu, “Topic Modeling with LSA, PLSA, LDA y Ida2Vec,” medium.com, 2018. https://medium.com/nanonets/topic-modeling-with-lsa-psla-lda-and-lda2vec-555ff65b0b05.; [131] S. Baldassarri Santalucía, “Computación Afectiva: tecnología y emociones para mejorar la experiencia de usuario,” Rev. Inst. la Fac. Inform., vol. no. 3, pp. 14–15, 2016.; [132] M. Soegaard and R. Friss Dam, Encyclopedia of Human -Computer Interaction, 3rd ed. THE INTERACTION DESIGN FOUNDATION.; [133] N. Eyar and R. Hoover, How to Build Habit-Forming Products. Penguin Randowm house LLC, 2014.; [134] N. Norman, The design of everyday things. New York, New York, USA: Basic Books, 2013.; [135] M. G. Domingo and E. M. Pera, “Diseño centrado en el usuario,” Diseño centrado en el usuario, vol. 2, no. 4, 2017.; [136] INTERACTION DESIGN FOUNDATION, “What is User Centered Design? %7C Interaction Design Foundation.” https://www.interaction-design.org/literature/topics/user-centered-design (accessed May 28, 2019).; [137] Design Council, “Design Methods Step 1: Discover,” Design Council, 2015. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-1-discover/.; [138] Design Council, “Design Methods Step 2: Define,” Design Council, 2018. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-2-define/.; [139] Design Council, “Design Methods Step 3: Develop,” Design Council, 2018. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-3-develop/.; [140] Design Council, “Design Methods Step 4: Deliver,” 2018. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-4-deliver/.; [141] K. Rodden, H. Hutchinson, and X. Fu, “Measuring the user experience on a large scale,” in Proceedings of the 28th international conference on Human factors in computing systems - CHI ’10, 2010, p. 2395, doi:10.1145/1753326.1753687.; [142] S. Sastoque, C. Narváez, and G. Garnica, “Metodología para la construcción de Interfaces Gráficas Centradas en el Usuario,” 2016.; [143] INTERACTION DESIGN FOUNDATION, “What is Design Thinking and Why Is It So Popular?” .; [144] I. Young, Practical Empathy for collaboration and creativity in your Work. Rosenfeld, 2015.; [145] C. D. Batson, “These Things Called Empathy: Eight Related but Distinct Phenomena,” in The Social Neuroscience of Empathy, The MIT Press, 2009, pp. 3–16.; [146] T. Wiseman, “A concept analysis of empathy,” J. Adv. Nurs., vol. 23, no. 6, pp. 1162–1167, Jun. 1996, doi:10.1046/j.1365-2648.1996.12213.x.; [147] B. A. Aubert, A. Schroeder, and J. Grimaudo, “IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology,” Decis. Support Syst., vol. 54, no. 1, pp. 510–520, Dec. 2012, doi:10.1016/j.dss.2012.07.002.; [148] S. O. Somers and L. Stapleton, “A Human-Centred approach to e-Agricultural systems,” IFAC-PapersOnLine, vol. 48, no. 24, pp. 213–218, Jan. 2015, doi:10.1016/J.IFACOL.2015.12.085.; [149] S. Somers and L. Stapleton, “e-Agricultural innovation using a human-centred systems lens, proposed conceptual framework,” AI Soc., vol. 29, no. 2, pp. 193–202, May 2014, doi:10.1007/s00146-013-0475-x.; [150] N. Theodorakopoulos, D. J. Snchez Preciado, and D. Bennett, “Transferring technology from university to rural industry within a developing economy context: The case for nurturing communities of practice,” Technovation, vol. 32, no. 9–10, pp. 550–559, 2012, doi:10.1016/j.technovation.2012.05.001.; [151] P. S. Ahmed Awad Talb Altalb, Tadeusz Filipek, “The role of extension in the transfer and adoption of agricultural technology,” J. Int. Agric. Ext. Educ., vol. 03, no. 05, pp. 63–68, 2015.; [152] G. Sylvester, SUCCESS STORIES ON INFORMATION AND COMMUNICATION TECHNOLOGIES FOR AGRICULTURE AND RURAL DEVELOPMENT. Bangkok: FAO, 2015.; [153] C. Leeuwis and A. Van den Ban, Communication for Rural Innovation : Rethinking Agricultural Extension, 3rd ed. Hoboken, United States: John Wiley & Sons, Ltd, 2007.; [154] P. Figueroa, P. Castillo, V. Vrsalovic, D. Gálvez, and S. Diez-de-medina, “Technology Transfer from Academia to Rural Communities : The Case of Caprines in vitro Fecundation and Local Livestock Market in Tamarugal Province in Chile,” vol. 8, no. 4, pp. 186–194, 2013, [Online]. Available: https://scielo.conicyt.cl/pdf/jotmi/v8n4/art17.pdf.; [155] S. O. Somers and L. Stapleton, “A Human-Centred approach to e-Agricultural systems,” IFAC-PapersOnLine, vol. 48, no. 24, pp. 213–218, Jan. 2015, doi:10.1016/j.ifacol.2015.12.085.; [156] J. Mwangi, “the Role of Extension in the Transfer and Adoption of Agricultural Technologies,” J. Int. Agric. Ext. Educ., vol. 5, no. 1, 1998, doi:10.5191/jiaee.1998.05108.; [157] W. Muzari, W. Gatsi, and S. Muvhunzi, “The Impacts of Technology Adoption on Smallholder Agricultural Productivity in Sub-Saharan Africa: A Review,” J. Sustain. Dev., vol. 5, no. 8, pp. 69–77, 2012, doi:10.5539/jsd.v5n8p69.; [158] B. E. Swanson, “Global Review of Good Agricultural Extension and Advisory Practices,” Food Agric. Organ. United Nations, p. 82345, 2008, [Online]. Available: https://www.fao.org/3/i0261e/i0261e00.htm.; [159] L. Kuhl, “Technology transfer and adoption for smallholder climate change adaptation: opportunities and challenges,” Clim. Dev., vol. 12, no. 4, pp. 353–368, 2020, doi:10.1080/17565529.2019.1630349.; [160] A. Hassan, M. Y. Jamaluddin, and A. Queiri, “Technology transfer model for the Libyan information and communication industry,” J. Teknol., vol. 78, no. 8, pp. 99–100, 2016, doi:10.11113/jt.v78.5872.; [161] A. Espinosa, J. Pineda, O. Ortega, A. J. Author, R. Sarmiento, and G. W. Archibold Taylor, “Trends, Challenges and Opportunities for IoT in Smallholder Agriculture Sector: An Evaluation from the Perspective of Good Practices,” in Trends and Applications in Information Systems and Technologies, SPRINGER, 2021, pp. 293–301.; [162] G. Natarajan and L. Ashok Kumar, “Implementation of IoT based smart village for the rural development,” Int. J. Mech. Eng. Technol., vol. 8, no. 8, pp. 1212–1222, 2017.; [163] G. Carrión, M. Huerta, and B. Barzallo, “Internet of Things (IoT) Applied to an Urban Garden,” in Proceedings - 2018 IEEE 6th International Conference on Future Internet of Things and Cloud, FiCloud 2018, 2018, pp. 155–161, doi:10.1109/FiCloud.2018.00030.; [164] D. Singh and A. Thakur, “Designing of smart drip irrigation system for remote hilly areas,” PDGC 2018 - 2018 5th Int. Conf. Parallel, Distrib. Grid Comput., vol. 8, no. 1, pp. 90–94, 2018, doi:10.1109/PDGC.2018.8745934.; [165] N. Ananthi, J. Divya, M. Divya, and V. Janani, “IoT based smart soil monitoring system for agricultural production,” Proc. - 2017 IEEE Technol. Innov. ICT Agric. Rural Dev. TIAR 2017, vol. 2018-Janua, pp. 209–214, 2018, doi:10.1109/TIAR.2017.8273717.; [166] K. P. Satamraju, K. Shaik, and N. Vellanki, “RURAL BRIDGE: A novel system for smart and co-operative farming using IoT architecture,” IMPACT 2017 - Int. Conf. Multimedia, Signal Process. Commun. Technol., no. 1, pp. 22–26, 2018, doi:10.1109/MSPCT.2017.8363966.; [167] K. A. Shah, M. Patel, M. Khasakiya, S. Kazi, and P. Khalasi, “CESIS: Cost-effective and self-regulating irrigation system,” in Lecture Notes on Data Engineering and Communications Technologies, vol. 27, Springer, Cham, 2019, pp. 167–181.; [168] T. S. Sondhi, A. R. Sambhaji, and K. Sharmila Banu, “InFEvoS: Integrated farming evolution system,” Int. J. Recent Technol. Eng., vol. 7, no. 6, pp. 932–936, 2019.; [169] U. J. L. dos Santos, G. Pessin, C. A. da Costa, and R. da Rosa Righi, “AgriPrediction: A proactive internet of things model to anticipate problems and improve production in agricultural crops,” Comput. Electron. Agric., vol. 161, no. July, pp. 202–213, 2019, doi:10.1016/j.compag.2018.10.010.; [170] M. Mancini et al., “An open source and low-cost internet of things-enabled service for irrigation management,” Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., vol. 2019-Octob, pp. 1714–1719, 2019, doi:10.1109/SMC.2019.8914230.; [171] C. C. Baseca, S. Sendra, J. Lloret, and J. Tomas, “A smart decision system for digital farming,” Agronomy, vol. 9, no. 5, 2019, doi:10.3390/agronomy9050216.; [172] P. Visconti, R. de Fazio, P. Primiceri, D. Cafagna, S. Strazzella, and N. I. Giannoccaro, “A solar-powered fertigation system based on low-cost wireless sensor network remotely controlled by farmer for irrigation cycles and crops growth optimization,” Int. J. Electron. Telecommun., vol. 66, no. 1, pp. 59–68, 2020, doi:10.24425/ijet.2019.130266.; [173] D. P. Holzworth et al., “Agricultural production systems modelling and software: Current status and future prospects,” Environ. Model. Softw., vol. 72, no. 1, pp. 276–286, Oct. 2015, doi:10.1016/j.envsoft.2014.12.013.; [175] A. Tendolkar and S. Ramya, “CareBro (Personal Farm Assistant):An IoT based Smart Agriculture with Edge Computing,” MPCIT 2020 - Proc. IEEE 3rd Int. Conf. "Multimedia Process. Commun. Inf. Technol., pp. 97–102, 2020, doi:10.1109/MPCIT51588.2020.9350481.; [176] P. L. Ramirez Izolan et al., “Low-Cost Fog Computing Platform for Soil Moisture Management,” Int. Conf. Inf. Netw., vol. 2020-Janua, pp. 499–504, 2020, doi:10.1109/ICOIN48656.2020.9016572.; [177] J. D. Borrero and A. Zabalo, “An autonomous wireless device for real-time monitoring of water needs,” Sensors (Switzerland), vol. 20, no. 7, pp. 1–16, 2020, doi:10.3390/s20072078.; [178] N. A. A. Abdellah and N. Thangadurai, “Real Time Application of IoT for the Agriculture in the Field along with Machine Learning Algorithm,” Proc. 2020 Int. Conf. Comput. Control. Electr. Electron. Eng. ICCCEEE 2020, 2021, doi:10.1109/ICCCEEE49695.2021.9429606.; [179] S. Casadei, F. Peppoloni, F. Ventura, R. Teodorescu, D. Dunea, and N. Petrescu, “Application of smart irrigation systems for water conservation in Italian farms,” Environ. Sci. Pollut. Res., vol. 28, no. 21, pp. 26488–26499, 2021, doi:10.1007/s11356-021-12524-6.; [180] F. J. Ruiz Ortega, K. Esquivel Murillo, D. O. Rodríguez Martinez, M. E. Rodríguez Torres, and R. Duarte Ramírez, “INTERNET DE LAS COSAS (IoT), UNA ALTERNATIVA PARA EL CUIDADO DEL AGUA,” Pist. Educ., vol. 40, no. 130, pp. 2318–2330, 2018.; [181] A. F. Jimenez, E. F. Herrera, B. V. Ortiz, A. Ruiz, and P. F. Cardenas, “Inference System for Irrigation Scheduling with an Intelligent Agent,” in Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II, J. C. Corrales, P. Angelov, and J. A. Iglesias, Eds. Cham: Springer International Publishing, 2019, pp. 1–20.; [182] J. D. Franco-Ramirez, T. A. Ramirez-Delreal, A. Garate-Garcia, M. A. Ruiz, and D. Villanueva-Vasquez, “MOSyG: Monitoring system for germination chamber using fuzzy control based on cloudino-IoT and FIWARE,” 2019 IEEE Int. Autumn Meet. Power, Electron. Comput. ROPEC 2019, no. Ropec, 2019, doi:10.1109/ROPEC48299.2019.9057127.; [183] J. A. Laverde Mena and C. G. Laverde Mena, “Internet de las cosas aplicado en la agricultura ecuatoriana: Una propuesta para sistemas de riego,” Rev. Dilemas Contemp., vol. 148, pp. 148–162, 2021.; [184] E. Gutierrez Leon, J. E. Montiel Arguijo, C. Carreto Arellano, and F. R. Menchaca García, “Propuesta de sistema de gestión inteligente basado en IoT para hidroponia,” Res. Comput. Sci., vol. 148, no. 10, pp. 219–233, 2019, doi:10.13053/rcs-148-10-19.; [185] F. A. Capraro Fuentes, S. R. Tosetti, and P. L. Campillo, “Sensor Network for Monitoring and Fault Detection in Drip Irrigation Systems Based on Embedded Systems,” IEEE Lat. Am. Trans., vol. 18, no. 2, pp. 383–391, 2020, doi:10.1109/TLA.2020.9085294.; [186] A. Oliveira-Jr et al., “IoT Sensing Platform as a Driver for Digital Farming in Rural Africa,” Sensors, vol. 20, no. 12, p. 3511, Jun. 2020, doi:10.3390/s20123511.; [187] J. Rodríguez-Robles, Á. Martin, S. Martin, J. A. Ruipérez-Valiente, and M. Castro, “Autonomous sensor network for rural agriculture environments, low cost, and energy self-charge,” Sustain., vol. 12, no. 15, 2020, doi:10.3390/SU12155913.; [188] A. Cabarcas, C. Arrieta, D. Cermeno, H. Leal, R. Mendoza, and C. Rosales, “Irrigation system for precision agriculture supported in the measurement of environmental variables,” Proc. - 2019 7th Int. Eng. Sci. Technol. Conf. IESTEC 2019, no. March 2020, pp. 671–676, 2019, doi:10.1109/IESTEC46403.2019.00125.; [189] M. J. Ibarra, E. Alcarraz, O. Tapia, Y. P. Atencio, Y. Mamani-Coaquira, and H. A. Huillcen Baca, “NFT-I technique using IoT to improve hydroponic cultivation of lettuce,” Proc. - Int. Conf. Chil. Comput. Sci. Soc. SCCC, vol. 2020-Novem, 2020, doi:10.1109/SCCC51225.2020.9281277.; [190] Superintendencia de Industria y Comercio (SIC), “¿Qué se puede patentar?,” Superintenedencia de Industria y Comercio (SIC), 2021. https://www.sic.gov.co/node/44#:~:text=Se protegen los inventos que consistan en productos,,un procedimiento para la obtención de un producto.; [191] H. Ben Salem and T. Smith, “Feeding strategies to increase small ruminant production in dry environments,” Small Rumin. Res., vol. 77, no. 2–3, pp. 174–194, 2008, doi:10.1016/j.smallrumres.2008.03.008.; [192] D. Singh and A. Thakur, “Advancing Rational Exploitation of Water Irrigation Using 5G-IoT Capabilities: The AREThOU5A project,” PDGC 2018 - 2018 5th Int. Conf. Parallel, Distrib. Grid Comput., vol. 8, no. 1, pp. 90–94, 2018, doi:10.1109/PDGC.2018.8745934.; [193] R. Torres-Sanchez, H. Navarro-Hellin, A. Guillamon-Frutos, R. San-Segundo, M. C. Ruiz-Abellón, and R. Domingo-Miguel, “A decision support system for irrigation management: Analysis and implementation of different learning techniques,” Water (Switzerland), vol. 12, no. 2, 2020, doi:10.3390/w12020548.; [194] S. Athani, C. Tejeshwar, M. M. Patil, P. Patil, and R. Kulkarni, “Soil moisture monitoring using IoT enabled arduino sensors with neural networks for improving soil management for farmers and predict seasonal rainfall for planning future harvest in North Karnataka - India,” Int. Conf. I-SMAC (IoT Soc. Mobile, Anal. Cloud), pp. 43–48, 2017.; [195] J. J. Dethier and A. Effenberger, “Agriculture and development: A brief review of the literature,” Econ. Syst., vol. 36, no. 2, pp. 175–205, 2012, doi:10.1016/j.ecosys.2011.09.003.; [196] M. Bures, “Internet of Things: Current Challenges in the Quality Assurance and Testing Methods.” Accessed: Nov. 22, 2018. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/1805/1805.01241.pdf.; [197] K. Pernapati, “IoT Based Low Cost Smart Irrigation System,” in Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT 2018, 2018, pp. 1312–1315, doi:10.1109/ICICCT.2018.8473292.; [198] T. W. Zougmore, S. Malo, F. Kagembega, and A. Togueyini, “Low cost IoT solutions for agricultures fish farmers in Afirca: A case study from Burkina Faso,” ICSCC 2018 - 1st Int. Conf. Smart Cities Communities, 2018, doi:10.1109/SCCIC.2018.8584549.; [199] E. Beza, L. Kooistra, P. Reidsma, P. Poortvliet, M. Belay, and B. Bijen, “Exploring farmers’ intentions to adopt mobile Short Message Service (SMS) for citizen science in agriculture,” j, vol. 151, 2018, doi:10.1016/j.compag.2018.06.015.; [200] K. Lova Raju and V. Vijayaraghavan, “IoT and Cloud hinged Smart Irrigation System for Urban and Rural Farmers employing MQTT Protocol,” ICDCS 2020 - 2020 5th Int. Conf. Devices, Circuits Syst., pp. 71–75, 2020, doi:10.1109/ICDCS48716.2020.243551.; [201] W. A. K. L. Sanjula, K. T. W. Kavinda, M. A. K. Malintha, W. M. D. L. Wijesuriya, S. Lokuliyana, and R. De Silva, “Automated water-gate controlling system for paddy fields,” ICAC 2020 - 2nd Int. Conf. Adv. Comput. Proc., pp. 61–66, 2020, doi:10.1109/ICAC51239.2020.9357312.; [202] S. Hernando Mejía, “MODELO DE DECISIÓN PARA LA SELECCIÓN DE SOLUCIONES IoT APOYANDO LA TRANSFERENCIA TECNOLÓGICA EN ZONAS RURALES DE SANTANDER,” 2020.; [203] M. D. Caro Meza, “Diseño de directrices para la evaluación de interfaces en soluciones IOT implementadas en zonas rurales santandereanas: apoyando la transferencia tecnológica desde la perspectiva de usabilidad,” Universidad Autónoma de Bucaramanga, 2020.; [204] A. C. Martínez Pinzón and K. J. Villamizar Calderón, “FRAMEWORK CONCEPTUAL PARA DESARROLLO DE INTERFACES MÓVILES EN SOLUCIONES IOT QUE PERMITAN APROPIACIÓN TECNOLÓGICA EN ZONAS RURALES ALEDAÑAS AL MUNICIPIO DE BUCARAMANGA DESDE LA PERSPECTIVA DE UX,” Universidad Autónoma de Bucaramanga, 2020.; [205] D. F. Aceros Orduz, “PROTOTIPO DE UNA RUTA TECNOLOGICA PARA EL IOT, ENFOCADA EN LAS TECNOLOGÍAS DE RIEGO, PARA LOS AGRICULTORES DE PEQUEÑA ESCALA EN COLOMBIA,” Universidad Autónoma de Bucaramanga, 2020.; [206] C. A. Meneses Montana and karen S. Prada Jaimes, “Empleando elementos reconocibles como potencializador del uso de internet en zonas rurales: una investigación desde la experiencia de usuario en pequeños productores agrícolas de Santander,” Universiad Autónoma de Bucaramanga, 2020.; [207] A. F. Rincón Benavides and E. A. Martinez Zavala, “Climagro: diseño de un mapa de ruta de tecnologías IOT empleadas en entornos rurales para el monitoreo del clima, dirigido para los pequeños productores campesinos de Santander, mediante técnicas de text mining e inteligencia artificial,” Universidad Autónoma de Bucaramanga, 2020.; [208] J. E. Duarte Pineda and O. M. Ortega Pineda, “Farmia: Diseño de arquitectura IOT orientado a desarrolladores para la inclusión de tecnologías de internet de las cosas aplicadas a la Agro rotación de cultivos de acuerdo con el plan estratégico presentado por GPS Santander: Caso de estudio Villanueva, ,” Universidad Autónoma de Bucaramanga, 2020.; [209] O. Y. Patiño Hernández, “KAKAW: Modelo de inteligencia artificial para la identificación de actores y su relación en el sector cacaotero de Santander,” Universidad Autónoma de Bucaramanga, 2020.; [210] A. F. Herrera Duarte, “Propuesta metodológica para la evaluación de modelos de transferencia tecnológica TIC en la agricultura de los pequeños productores campesinos de la región de Santander,” Universidad Autónoma de Bucaramanga, 2020.; [211] F. J. Vargas Pérez and A. P. Verdugo Beltrán, “Desarrollo de un prototipo funcional de red sensórica IoT para el monitoreo de variables en suelos agrícolas de la finca el Oasis de la Vereda Llanadas, municipio de Los Santos (Santander),” Universidad Autónoma de Bucaramanga, 2021.; [212] N. E. Castillo Suta, “Desarrollo de un modelo de transferencia y apropiación de tecnologías del internet de las cosas para los agricultores colombianos de pequeña escala – AGRIOT,” Universidad Autónoma de Bucaramanga, 2021.; [213] C. Kamienski et al., “Smart water management platform: IoT-based precision irrigation for agriculture,” Sensors (Switzerland), vol. 19, no. 2, 2019, doi:10.3390/s19020276.; [214] B. Edwards et al., “mAgri Design Toolkit: User-centered design for mobile agriculture,” p. 186, 2014, [Online]. Available: https://www.comminit.com/ict-4-development/content/magri-design-toolkit-user-centered-design-mobile-agriculture.; [215] E. J. M. Arruda Filho and R. Roy Dholakia, “Hedonismo como um fator de decisão e uso tecnológico,” Rev. Bras. Gest. Negocios, vol. 15, no. 48, pp. 343–361, 2013, doi:10.7819/rbgn.v15i48.1407.; [216] C. N. Jiménez-Hernández, O. F. Castellanos-Domínguez, and E. M. Villa-Enciso, “La gestión de tecnologías emergentes en el ámbito universitario,” TecnoLógicas, no. 26, p. 145, 2011, doi:10.22430/22565337.57.; [217] DANE (Departamento Administrativo Nacional de Estadística) and MADR (Ministerio de Agricultura y Desarrollo Rural), “Censo Nacional Agropecuario 2014,” 2015.; [218] M. A. Espinosa, E. Romero R., L. Y. Flórez G., and C. D. Guerrero, “DANDELION: Propuesta metodológica para recopilación y análisis de información de artículos científicos. Un enfoque desde la bibliometría y la revisión sistemática de la literatura,” RISTI - Rev. Iber. Sist. e Tecnol. Inf., vol. 28, pp. 110–122, 2020, [Online]. Available: https://search.proquest.com/openview/e3b85a7260c758fd943bc4d5a0447f13/1?pq-origsite=gscholar&cbl=1006393.; [219] J. R. Fraenkel, N. E. Wallen, and H. H. Hyun, How to design and evaluate research in education, vol. 1, no. 1. McGraw: Hill Education, 2012.; [220] Unidad Administrativa Especial de Catastro Distrital -Gerencia IDECA, “Metodología para la Analítica de datos,” pp. 1–34, 2019, [Online]. Available: www.ideca.gov.co.; [221] P. Chapman et al., CRISP-DM 1.0. SPSS, 2000.; [222] E. Romero-riaño, C. D. Guerrero-santander, and H. E. Martínez-ardila, “Agronomy research co-authorship networks in agricultural innovation systems Redes de coautoría en investigación sobre agronomía en sistemas de innovación agrícola,” Rev. UIS Ing., vol. 20, no. 1, pp. 161–175, 2021, doi:10.18273/revuin.v20n1-2021015.; [223] G. Ko, J. K. Routray, and M. M. Ahmad, “ICT infrastructure for rural community sustainability,” Community Dev., vol. 50, no. 1, pp. 51–72, Jan. 2019, doi:10.1080/15575330.2018.1557720.; [224] V. A. Eras Moreira, “EVALUACIÓN DE IMPACTO DE TRANSFERENCIA DE TECNOLOGÍA AGROPECUARIA EN LA PROVINCIA DE IMBABURA: CANTONES COTACACHI, PIMAMPIRO E IBARRA,” 2014.; [225] S.-R. Cipriano Juárez, “La agricultura y el problema del agua en la provincia de alicante,” a Vueltas Con La Agric. Una Act. Económica Necesaria Y Marginada, 2010.; [226] J. A. Ocampo, “Misión para la transformación del campo,” Misión para la Transform. del campo, p. 46, 2014, doi:10.1007/s13398-014-0173-7.2.; [227] P. S. Birthal and P. K. Joshi, “Smallholder Farmers’ Access to Markets for High-Value Agricultural Commodities in India,” Case Stud. Food Policy Dev. Ctries., pp. 51–60, 2019, doi:10.7591/9780801466373-007.; [228] D. J. Quiroga-Parra, J. Torrent-Sellens, and C. P. Murcia Zorrilla, “Usos de las TIC en América Latina: Una caracterización,” Ingeniare, vol. 25, no. 2, pp. 289–305, 2017, doi:10.4067/S0718-33052017000200289.; [229] M. Taylor and S. Bhasme, “Model farmers, extension networks and the politics of agricultural knowledge transfer,” J. Rural Stud., vol. 64, no. September, pp. 1–10, 2018, doi:10.1016/j.jrurstud.2018.09.015.; [230] ITU (International Telecommunication Union), El ecosistema digital y la masificación de las tecnologías de la información y las comunicaciones en Paraguay.; [231] MTC, “Misión para la transformación del campo - Diagnóstico económico del campo colombiano,” Inf. la Misión para la Transform. del Campo, p. 63, 2015.; [232] A. Sharma, A. Bailey, and I. Fraser, “Technology Adoption and Pest Control Strategies Among UK Cereal Farmers: Evidence from Parametric and Nonparametric Count Data Models,” J. Agric. Econ., vol. 62, no. 1, pp. 73–92, Feb. 2011, doi:10.1111/j.1477-9552.2010.00272.x.; [233] J. Sollleiro R., R. Castañón I., J. González C., J. Aguilar-Ávila, and N. Aguilar G., “Identificación de buenas prácticas de extensionismo, transferencia de tecnología e innovación para el sector agroalimentario de méxico.,” no. April, p. 57, 2017.; [234] Y. Valencia Villegas and Y. Sepúlveda Casadiego, “Implementación de sensores en los sistemas de riego automatizado,” Dec. 2019. doi:10.22490/ECAPMA.3417.; [235] R. Oad and P. King, “Irrigation system design for management in mountainous areas,” Irrig. Drain. Syst., vol. 5, no. 3, pp. 213–228, Aug. 1991, doi:10.1007/BF01112500.; [236] Á. Penagos, C. Ospina, C. Quesada, and F. Castellanos, “Una mirada al mercado laboral rural colombiano y un acercamiento a los posibles efectos de la pandemia,” RIMISP Cent. Latinoam. para el Desarro. Rural, 2020, [Online]. Available: https://www.rimisp.org/documentos/informes/una-mirada-al-mercado-laboral-rural-colombiano-y-un-acercamiento-a-los-posibles-efectos-de-la-pandemia/.; [237] J. Wadsworth and B. Carlisle, “TECHNOLOGY AND ITS CONTRIBUTION TO PRO-POOR AGRICULTURAL DEVELOPMENT,” UK, 2005. Accessed: May 20, 2019. [Online]. Available: http://www.fao.org/3/a-at358e.pdf.; [238] P. Martinez Corral, “Orígenes de la exclusión digital en el campo colombiano: abordaje sobre la política de telecomunicaciones sociales,” Poliantea, vol. 11, no. 21, p. 195, 2016, doi:10.15765/plnt.v11i21.709.; [239] F. Castillo Blanco, Historia de la Cultura Campesina Santandereana y su arraigo en el departamento de Santander, Primera. Bucaramanga, Colombia: Gobernación de Santander, 2012.; [240] P. Šimek, J. Vaněk, and J. Pavlík, “Usability of UX Methods in Agrarian Sector - Verification,” Agris On-line Pap. Econ. Informatics, vol. 7, no. 3, pp. 49–56, 2015, doi:10.7160/aol.2015.070305. [241] E. Gerónimo Bautista and R. Calderón García, “La formación de talento e innovación a través de la vinculación y los modelos de hélice basados en la sociedad del conocimiento,” RIDE Rev. Iberoam. para la Investig. y el Desarro. Educ., vol. 10, no. 20, Apr. 2020, doi:10.23913/ride.v10i20.641.; [241] E. Gerónimo Bautista and R. Calderón García, “La formación de talento e innovación a través de la vinculación y los modelos de hélice basados en la sociedad del conocimiento,” RIDE Rev. Iberoam. para la Investig. y el Desarro. Educ., vol. 10, no. 20, Apr. 2020, doi:10.23913/ride.v10i20.641.; [242] D. Rotolo, D. Hicks, and B. R. Martin, “What is an emerging technology?,” Res. Policy, vol. 44, no. 10, pp. 1827–1843, Dec. 2015, doi:10.1016/J.RESPOL.2015.06.006.; [243] G. Fortino, C. Savaglio, G. Spezzano, and M. Zhou, “Internet of Things as System of Systems: A Review of Methodologies, Frameworks, Platforms, and Tools,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 51, no. 1, pp. 223–236, 2021, doi:10.1109/TSMC.2020.3042898.; [244] D. Kayisire and J. Wei, “ICT Adoption and Usage in Africa: Towards an Efficiency Assessment,” Inf. Technol. Dev., vol. 22, no. 4, pp. 630–653, 2016, doi:10.1080/02681102.2015.1081862.; [245] M. Dayahna Caro M., E. Romero-Riaño, M. Alexandra Espinosa C, and C. D. Guerrero, “Evaluando contribuciones de usabilidad en soluciones TIC-IOT para la agricultura: Una perspectiva desde la bibliometría,” RISTI - Rev. Iber. Sist. e Tecnol. Inf., vol. 2020, no. E28, pp. 681–692, 2020, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081040306&partnerID=40&md5=f59611d7803425f519635fe4470fdaca.; [246] S. K. Gawali and M. K. Deshmukh, “Energy autonomy in IoT technologies,” Energy Procedia, vol. 156, no. September 2018, pp. 222–226, 2019, doi:10.1016/j.egypro.2018.11.132.; [247] M. Tahir, Q. Mamoon Ashraf, and M. Dabbagh, “Towards Enabling Autonomic Computing in IoT Ecosystem,” in 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Aug. 2019, pp. 646–651, doi:10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00122.; [248] J. Lukkien, “A systems of systems perspective on the internet of things,” ACM SIGBED Rev., vol. 13, no. 3, pp. 56–62, 2016, doi:10.1145/2983185.2983195.; [249] G. Fortino, A. Guerrieri, G. M. P. O’Hare, and A. Ruzzelli, “A flexible building management framework based on wireless sensor and actuator networks,” J. Netw. Comput. Appl., vol. 35, no. 6, pp. 1934–1952, Nov. 2012, doi:10.1016/j.jnca.2012.07.016.; [250] P. Desai, A. Sheth, and P. Anantharam, “Semantic Gateway as a Service Architecture for IoT Interoperability,” in 2015 IEEE International Conference on Mobile Services, Jun. 2015, pp. 313–319, doi:10.1109/MobServ.2015.51.; [251] A. Katasonov, O. Kaykova, O. Khriyenko, S. Nikitin, and V. Terziyan, “Smart semantic middleware for the internet of things,” ICINCO 2008 - Proc. 5th Int. Conf. Informatics Control. Autom. Robot., vol. ICSO, no. May 2014, pp. 169–178, 2008.; [252] G. Codeluppi, A. Cilfone, L. Davoli, and G. Ferrari, “VegIoT Garden: A modular IoT Management Platform for Urban Vegetable Gardens,” 2019 IEEE Int. Work. Metrol. Agric. For. MetroAgriFor 2019 - Proc., pp. 121–126, 2019, doi:10.1109/MetroAgriFor.2019.8909228.; [253] G. Codeluppi, A. Cilfone, L. Davoli, and G. Ferrari, “LoRaFarM: A LoRaWAN-Based Smart Farming Modular IoT Architecture,” Sensors, vol. 20, no. 7, p. 2028, Apr. 2020, doi:10.3390/s20072028.; [254] K. Yelamarthi, M. S. Aman, and A. Abdelgawad, “An application-driven modular IoT architecture,” Wirel. Commun. Mob. Comput., vol. 2017, 2017, doi:10.1155/2017/1350929.; [255] M. Benammar, A. Abdaoui, S. Ahmad, F. Touati, and A. Kadri, “A Modular IoT Platform for Real-Time Indoor Air Quality Monitoring,” Sensors, vol. 18, no. 2, p. 581, Feb. 2018, doi:10.3390/s18020581.; [256] K. Douzis, S. Sotiriadis, E. G. M. Petrakis, and C. Amza, “Modular and generic IoT management on the cloud,” Futur. Gener. Comput. Syst., vol. 78, pp. 369–378, Jan. 2018, doi:10.1016/j.future.2016.05.041.; [257] INTERACTION DESIGN FOUNDATION, “Useful, Usable, and Used: Why They Matter to Designers,” 2021. https://www.interaction-design.org/literature/article/useful-usable-and-used-why-they-matter-to-designers.; [258] J. M. Antonini, “Health Effects Associated with Welding,” in Comprehensive Materials Processing, Elsevier, 2014, pp. 49–70.; [259] D. McQuillen, “‘Taking Usability Offline,’” Darwin Magazine, 2003.; [260] M. Blusi, K. Asplund, and M. Jong, “Older family carers in rural areas: experiences from using caregiver support services based on Information and Communication Technology (ICT),” Eur. J. Ageing, vol. 10, no. 3, pp. 191–199, Sep. 2013, doi:10.1007/s10433-013-0260-1.; [261] B. Momir, I. Petroman, E. C. Constantin, A. Mirea, and D. Marin, “The Importance of Cross-Cultural Knowledge,” Procedia - Soc. Behav. Sci., vol. 197, pp. 722–729, Jul. 2015, doi:10.1016/j.sbspro.2015.07.077.; [262] A. N., “Where to Start and What to Consider?,” in Usability and Internationalization of Information Technology, N. Aykin, Ed. CRC Press, 2005.; [263] S. Vanka and D. Klein, “Colortool: An Information Tool for Cross Cultural Design,” Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 39, no. 5, pp. 341–345, Oct. 1995, doi:10.1177/154193129503900510.; [264] M. W. Azeem, A. Tariq, F. J. Sheikh, M. A. Butt, I. Tariq, and H. M. Shahid, “Cultural effects on metaphor design,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9186, no. August, pp. 113–121, 2015, doi:10.1007/978-3-319-20886-2_11.; [265] G. S. Choi, R. Oehlmann, H. Dalke, and D. Cottington, “Discovering Color Semantics as a Chance for Developing Cross-Cultural Design Frameworks,” in Social Intelligence Design 2007 CTIT, 2007, pp. 926–933.; [266] S. Vanka and D. Klein, “Colortool: An Information Tool for Cross Cultural Design,” Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 39, no. 5, pp. 341–345, Oct. 1995, doi:10.1177/154193129503900510.; [267] J. Thornborrow and S. Wareing, Patterns in language. An introduction to language and literary style. Routledge, 2019.; [268] P. Tiwari and K. Sorathia, “Visualising and systematizing a per-poor ICT intervention for Rural and Semi-urban Mothers in India,” in Proceedings of the 7th International Symposium on Visual Information Communication and Interaction - VINCI ’14, 2014, pp. 129–138, doi:10.1145/2636240.2636856.; [269] Yann, “UX Design for Agriculture in Africa: Case Study from Zambia,” YUX, 2019. https://yux.design/ux-design-agriculture-africa-case-study-zambia.; [270] V. K. Kool and R. Agrawal, “Technology and Hedonism,” in Psychology of Technology, Cham: Springer International Publishing, 2016, pp. 253–304.; [271] J. S. Martínez García, “El habitus. Una revisión analítica,” Rev. Int. Sociol., vol. 75, no. 3, p. 067, Sep. 2017, doi:10.3989/ris.2017.75.3.15.115.; [272] B. R. Belland, “Using the theory of habitus to move beyond the study of barriers to technology integration,” Comput. Educ., vol. 52, no. 2, pp. 353–364, 2009, doi:10.1016/j.compedu.2008.09.004.; [273] L.-A. Sutherland and I. Darnhofer, “Of organic farmers and ‘good farmers’: Changing habitus in rural England,” J. Rural Stud., vol. 28, no. 3, pp. 232–240, Jul. 2012, doi:10.1016/j.jrurstud.2012.03.003.; [274] O. Prokopenko, O. Kudrina, and V. Omelyanenko, “Analysis of ICT Application in Technology Transfer Management within Industry 4.0 Conditions (Education Based Approach),” CEUR Workshop Proc., vol. 2105, pp. 258–273, 2018.; [275] S. Heo, S. Song, J. Kim, and H. Kim, “RT-IFTTT: Real-Time IoT Framework with Trigger Condition-Aware Flexible Polling Intervals,” Proc. - Real-Time Syst. Symp., vol. 2018-Janua, pp. 266–276, 2018, doi:10.1109/RTSS.2017.00032.; [276] C. Dodd, M. Adam, and C. Dodd, “Designing User Interfaces for the Elderly : A Systematic Literature Review,” pp. 1–12, 2017, [Online]. Available: https://aisel.aisnet.org/acis2017/61.; [277] T. Walsh and P. Nurkka, “Approaches to cross-cultural design: Two case studies with UX web-surveys,” Proc. 24th Aust. Comput. Interact. Conf. OzCHI 2012, pp. 633–642, 2012, doi:10.1145/2414536.2414632.; [278] K. Finn and J. Johnson, “Designing for an aging population: Toward universal design,” Conf. Hum. Factors Comput. Syst. - Proc., vol. 07-12-May-, no. May, pp. 1011–1012, 2016, doi:10.1145/2851581.2856669.; [279] INTERACTION DESIGN FOUNDATION, “Accessibility.” https://www.interaction-design.org/literature/topics/accessibility.; [280] P. Štrukelj, “Technology, Wealth and Modern Management of Technology,” Manag. Glob. Transitions, vol. 10, no. 1, pp. 29–49, 2012.; [281] IEA, ITU, UNESCO (Organización de las Naciones Unidas para la Educación la Ciencia y la Cultura), UNOOSA, and WIPO, “Science , technology and innovation and intellectual property rights : The vision for development Thematic Think Piece,” 2012.; [282] D. M. Dueñas Quintero and L. A. Páez Guevara, “CONSTRUCCIÓN DE LA AGENDA INVESTIGACIÓN PARA EL SECTOR AGROINDUSTRIAL EN EL DEPARTAMENTO DE BOYACÁ: IDENTIFICACIÓN DE LÍNEAS DE INVESTIGACIÓN,” Rev. Tumbaga, vol. 1, no. 11, 2016.; [283] World Summit on the Information Society, “WSIS/SDGs Matrix WSIS Forum 2018: Outcomes Linking WSIS Action lines with the Sustainable Development Goals,” 2018. [Online]. Available: https://www.itu.int/net4/wsis/forum/2018/Files/documents/outcomes/WSISForum2018_WSIS-SDGSMatrix.pdf.; [284] D. A. Delgado, C. M. Cocha, J. E. García, and G. K. Gonzales, “Metodologías de diseño centrado en las personas: Experiencia vereda La Yunga y Río Hondo, Popayán, Colombia,” Rev. Espac., vol. 41, no. 36, pp. 0–2, 2020.; [285] S. Bhattacharya, J. Glazer, and D. E. . Sappington, “Licensing and the sharing of knowledge in research joint ventures,” J. Econ. Theory, vol. 56, no. 1, pp. 43–69, Feb. 1992, doi:10.1016/0022-0531(92)90068-S.; [286] J. P. Lane, “Understanding Technology Transfer,” Assist. Technol., vol. 11, no. 1, pp. 5–19, 1999, doi:10.1080/10400435.1999.10131981; [287] E. G. García, “Análisis de buenas prácticas en transferencia de tecnología en el sector TIC,” 2013.; [288] ITU (International Telecommunication Union), ANSI, and DIAL, Construir aldeas inteligentes: un plan de trabajo Proyecto piloto en el Níger. ITUPublicaciones, 2020.; [289] Ministerio de Ciencia Tecnología e Innovación Productiva (Argentina), “Guía de buenas prácticas en gestión de la transferencia de tecnología y de la propiedad intelectual en instituciones y organismos del sistema nacional de ciencia, tenología e innovación,” pp. 3–63, 2012.; [290] S. Salazar and P. Henr, Guía para la gestión de la propiedad en consorcios intelectual regionales de investigación agrícola. San José, Costa Rica: https://www.fontagro.org/es/publicaciones/publicaciones-fontagro/gui-para-la-gestion-de-la-propiedad-intelectual-en-consorcios-regionales-de-investigac/, 2013.; [291] A. Jaime, M. L. Lizarazo, and H. E. Martinez, “Buenas Prácticas en Transferencia de Tecnología en el Mundo,” 2016, [Online]. Available: https://www.researchgate.net/publication/309728561_Buenas_Practicas_en_Transferencia_de_Tecnologia_en_el_Mundo.; [292] NASA, “Plan for Accelerating Technology Transfer at NASA,” 2012.; [293] D. A. Comstock and D. Lockney, “NASA’s legacy of technology transfer and prospects for future benefits,” A Collect. Tech. Pap. - AIAA Sp. 2007 Conf., vol. 3, no. September, pp. 2969–2978, 2007, doi:10.2514/6.2007-6283.; [294] D. A. Maluf, T. Okimura, and M. Gurram, “NASA technology transfer system,” Proc. - 4th IEEE Int. Conf. Sp. Mission Challenges Inf. Technol. SMC-IT 2011, pp. 111–117, 2011, doi:10.1109/SMC-IT.2011.27.; [295] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin, “A model for technology transfer in practice,” IEEE Softw., vol. 23, no. 6, pp. 88–95, 2006, doi:10.1109/MS.2006.147.; [296] V. R. Basili, M. K. Daskalantonakis, and R. H. Yacobellis, “Technology transfer at Motorola,” IEEE Softw., vol. 11, no. 2, pp. 70–76, Mar. 1994, doi:10.1109/52.268959.; [297] H. L. Pieterse and M. W. Pretorius, “A MODEL FOR TELECOMMUNICATION TECHNOLOGY TRANSFER AND DIFFUSION INTO THE RURAL AREAS OF SOUTH AFRICA,” South African J. Ind. Eng., vol. 13, no. 1, pp. 119–129, Jan. 2012, doi:10.7166/13-1-322.; [298] A. Shiri, “Introduction to Modern Information Retrieval (2nd edition),” Libr. Rev., vol. 53, no. 9, pp. 462–463, 2004, doi:10.1108/00242530410565256.; [299] J. A. Sheikh, H. S. Dar, and F. J. Sheikh, “Usability guidelines for designing knowledge base in rural areas towards women empowerment,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8519 LNCS, no. PART 3, pp. 462–469, 2014, doi:10.1007/978-3-319-07635-5_45.; [300] A. Lodhi, “Usability heuristics as an assessment parameter: For performing usability testing,” in ICSTE, 2010, pp. 256–259.; [301] W. A. R. W. M. Isa et al., “Engineering rural informatics using agile user centered design,” in 2014 2nd International Conference on Information and Communication Technology (ICoICT), May 2014, pp. 367–372, doi:10.1109/ICoICT.2014.6914093.; [302] S. Adhy, B. Noranita, R. Kusumaningrum, P. W. Wirawan, D. D. Prasetya, and F. Zaki, “Usability testing of weather monitoring on a web application,” in 2017 1st International Conference on Informatics and Computational Sciences (ICICoS), Nov. 2017, pp. 131–136, doi:10.1109/ICICOS.2017.8276350.; [303] S. Wyche, T. R. Dillahunt, N. Simiyu, and S. Alaka, “‘if god gives me the chance i will design my own phone’: Exploring mobile phone repair and postcolonial approaches to design in rural Kenya,” UbiComp 2015 - Proc. 2015 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput., no. September, pp. 463–473, 2015, doi:10.1145/2750858.2804249.; [304] A. A. Adesina and J. Baidu-Forson, “Farmer’s perpections and adoption of new agricultural technology: evidence from analysis in Burkina Faso and Guiena, West Africa,” Agric. Econ., no. 13, pp. 1–9, 1995, doi:10.14358/PERS.81.6.451.; [305] F. Ssozi-Mugarura, E. Blake, and U. Rivett, “Codesigning with communities to support rural water management in Uganda,” CoDesign, vol. 13, no. 2, pp. 110–126, Apr. 2017, doi:10.1080/15710882.2017.1310904.; [307] B. Dhehibi, U. Rudiger, H. P. Moyo, and M. Z. Dhraief, “Agricultural technology transfer preferences of smallholder farmers in Tunisia’s arid regions,” Sustain., vol. 12, no. 1, 2020, doi:10.3390/SU12010421.; [308] D. Teka, Y. Dittrich, and M. Kifle, “Usability challenges in an Ethiopian software development organization,” in Proceedings of the 9th International Workshop on Cooperative and Human Aspects of Software Engineering, May 2016, pp. 114–120, doi:10.1145/2897586.2897604.; [309] P. S. Dey et al., “Assessment of Sustainable Agriculture Practices in Uttarakhand, India,” IEEE Reg. 10 Humanit. Technol. Conf. R10-HTC, vol. 2020-Decem, 2020, doi:10.1109/R10-HTC49770.2020.9357012.; [310] R. Augusto Sales Dantas, M. Vasconcelos da Gama Neto, I. Dimitry Zyrianoff, and C. Alberto Kamienski, “The SWAMP Farmer App for IoT-based Smart Water Status Monitoring and Irrigation Control,” in 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Nov. 2020, pp. 109–113, doi:10.1109/MetroAgriFor50201.2020.9277588.; [311] Corporacion PBA, Manual del facilitador rural Métodos y herramientas para ayudar a campesinos a conseguir sus metas. 2011.; [312] DANE (Departamento Administrativo Nacional de Estadística), “Censo Nacional Agropecuario Bogotá,” 2014.; [313] DANE (Departamento Administrativo Nacional de Estadística), Censo Nacional Agropecuario, Tomo 3 - Mapas. 2015.; [314] A. González-Cárdenas and L. A. Paipilla-Pardo, “Misión para la Transformación del Campo : Síntesis y algunas reflexiones,” Revista Palmas, Bogotá, Colombia, pp. 57–78, 2015.; [315] P. A. Aremu, I. N. Kolo, A. K. Gana, and F. A. Adelere, “The Crucial Role of Extension Workers In Agricultural Technologies Transfer and Adoption,” Glob. Adv. Res. J. Food Sci. Technol., vol. 4, no. 2, pp. 14–18, 2015.; [316] K. Kuutti, T. Jokela, M. Nieminen, and P. Jokela, “Assessing Human-Centred Design Processes in Product Development by Using the INUSE Maturity Model,” IFAC Proc. Vol., vol. 31, no. 26, pp. 89–94, Sep. 1998, doi:10.1016/S1474-6670(17)40074-7.; [317] S. B. Azumah, S. A. Donkoh, and J. A. Awuni, “The perceived effectiveness of agricultural technology transfer methods: Evidence from rice farmers in Northern Ghana,” Cogent Food Agric., vol. 4, no. 1, pp. 1–11, 2018, doi:10.1080/23311932.2018.1503798.; [318] K. A. Mottaleb, “Perception and adoption of a new agricultural technology: Evidence from a developing country,” Technol. Soc., vol. 55, no. April, pp. 126–135, 2018, doi:10.1016/j.techsoc.2018.07.007.; [319] D. J. Mayhew, The Usability Engineering Lifecycle: A Practitioner’s Handbook for User Interface Design (Interactive Technologies), Primera. London, United Kingdom: Morgan Kaufmann Publishers, 1999.; [320] S. Merzouk, A. Cherkaoui, A. Marzak, and S. Nawal, “IoT methodologies: Comparative study,” Procedia Comput. Sci., vol. 175, pp. 585–590, 2020, doi:10.1016/j.procs.2020.07.084.; [321] V. Sachdeva and L. Chung, “Handling non-functional requirements for big data and IOT projects in Scrum,” in 2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence, Jan. 2017, pp. 216–221, doi:10.1109/CONFLUENCE.2017.7943152.; [322] B. Vogel, B. Peterson, and B. Emruli, “Prototyping for Internet of Things with Web Technologies: A Case on Project-Based Learning using Scrum,” in 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), Jul. 2019, pp. 300–305, doi:10.1109/COMPSAC.2019.10223.; [323] K. Rose, S. Eldridge, and L. Chapin, “La internet de las Cosas — Una breve reseña,” 2015. https://www.internetsociety.org/es/resources/doc/2015/iot-overview.; [324] O. Elijah, S. Member, T. Abdul Rahman, I. Orikumhi, C. Yen Leow, and M. Nour Hindia, “An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges,” IEEE INTERNET THINGS J., vol. 5, no. 5, 2018, doi:10.1109/JIOT.2018.2844296.; [325] ITU (International Telecommunication Union), “Overview of the Internet of Things,” 2015. http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=Y.2060.; [326] E. Oriwoh and M. Conrad, “Towards a Definition of the Internet of Things (IoT),” Int. J. Internet Things, vol. 4, no. 1, pp. 1–5, 2015.; [327] U. S. Department of Labors, “National Census of Fatal Occupational Injuries Summary,” 2021.; [328] Minciencias, “Documento de Política Nacional de Ciencia, Tecnología e Innovación N° 1602: Actores del Sistema Nacional de Ciencia, Tecnología e Innovación.,” pp. 6–9, 2018.; [329] J. N. Rodriguez and S. J. Camacho, “¿Quiénes son los campensinos colombianos hoy? Universidad, Ciencia y desarrollo. Universidad del Rosario,” Universidad, Ciencia y desarrollo. Universidad del Rosario. p. 1,2, 2013, [Online]. Available: http://www.urosario.edu.co/campesinos-colombianos/.; [330] A. C. Machado Silvia Botello M, “Serie de documentos de trabajo - La Agricultura Familiar en Colombia,” 2013, [Online]. Available: www.rimisp.org.; [331] M. Chiriboga, “Desafios de la pequeña agricultura familiar frente a la globalización,” Perspect. Rural., pp. 9–24, 1997.; [332] R. Chapman, T. Slaymaker, W. Paper, R. Chapman, and T. Slaymaker, “ICTs and Rural Development: Review of the Literature, Current Interventions and Opportunities for Action,” 2002.; [333] T. Havemann and V. Muccione, “Mechanisms for agricultural climate change mitigation incentives for smallholders. CCAFS Report no. 6.,” 2011. [Online]. Available: www.ccafs.cgiar. org.; [334] M. E. Londoño Escobar, A. M. Lozano Hurtado, O. Gómez Martínez, carlos A. Ramirez López, and J. Solano Castrillón, Prácticas sociales campesinas. El caso Monterrey Buga, Valle del Cauca - Colombia, Primera Ed. Bogotá, Colombia: Corporación Universitaria Minuto de Dios - UNIMINUTO, 2019.; [335] Centro de Innovación pública digital, “Tecnologías emergentes,” 2021. https://centrodeinnovacion.mintic.gov.co/es/blogs/tecnologias-emergentes.; [336] Vicepresidencia de Innovación y Transformación Digital and Grupo Bancolombia, “Internet de las Cosas: ¿cómo lo ha adoptado Colombia?,” 2018. https://www.grupobancolombia.com/wps/portal/empresas/capital-inteligente/tendencias/innovacion/iot-como-lo-ha-adoptado-colombia.; [337] M. Danquah, “Technology transfer, adoption of technology and the efficiency of nations: Empirical evidence from sub Saharan Africa,” Technol. Forecast. Soc. Change, vol. 131, no. December 2016, pp. 175–182, 2018, doi:10.1016/j.techfore.2017.12.007.; [338] D. J. Sánchez Preciado, B. Claes, and N. Theodorakopoulos, “Transferring intermediate technologies to rural enterprises in developing economies : A conceptual framework,” in Prometheus, Informa UK Limited.; [339] B. Biagini, L. Kuhl, K. S. Gallagher, and C. Ortiz, “Technology transfer for adaptation,” Nat. Clim. Chang., vol. 4, no. 9, pp. 828–834, 2014, doi:10.1038/nclimate2305.; [340] S. O. N. Somers and L. Stapleton, “A Human-Centred approach to e-Agricultural systems,” IFAC-PapersOnLine, vol. 48, no. 24, pp. 213–218, 2015, doi:10.1016/j.ifacol.2015.12.085.; [341] J. A. Sheikh, H. S. Dar, and F. J. Sheikh, “Usability Guidelines for Designing Knowledge Base in Rural Areas,” 2014, pp. 462–469.; [342] A. . Valdés Cuervo, Familia y Desarrollo. Intervenciones en terapia familiar. México: Manual Moderno, 2007.; [343] K. Prins, Proceso y producto. Un balance. Lima, Perú: Escuela para el desarrollo, 1996.; [344] FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura), Training of Farmers Programme South Asia. FAO Regional Office for Asia and the Pacific, 2011.; [345] M. E. Nogueira and M. Urcola, “La agricultura familiar en el marco de los programas de desarrollo rural del FIDA en el norte argentino (1991-2014),” Ager, vol. 2015, no. 19, pp. 7–44, 2015, doi:10.4422/ager.2015.01.; [346] C. J. Romera, F. E. Forero Suárez, and J. A. Ruiz Hernández, “Technology and design for rural development: A methodological proposal and a pilot experience in two Colombian municipalities,” Ager, vol. 2017, no. 23, pp. 27–57, 2017, doi:10.4422/ager.2017.03.; [347] RIMISP (Centro Latinoamericano para el Desarrollo Rural), “Misión para la transformación del campo. Estrategia de Implementación del Programa de Desarrollo Rural Integral con Enfoque Territorial,” Bogotá, Colombia, 2014. [Online]. Available: https://www.dnp.gov.co/programas/agricultura/Paginas/mision-para-la-transformacion-del-campo-colombiano.aspx.; [348] M. Docampo Rama, H. De Ridder, and H. Bouma, “Technology generation and age in using layered user interfaces,” Gerontechnology, vol. 1, no. 1, 2001, doi:10.4017/gt.2001.01.01.003.00.; [349] R. Sackmann and O. Winkler, “Technology generations revisited: The internet generation,” Gerontechnology, vol. 11, no. 4, pp. 493–503, 2013, doi:10.4017/gt.2013.11.4.002.00.; [350] M. Chesher and W. Skok, “Roadmap for successful information technology transfer for small businesses,” Proc. ACM SIGCPR Conf., pp. 16–22, 2000, doi:10.1145/333334.333338.; [351] P. R. Childs, Mechanical Design Engineering Handbook, Second Edi., vol. 1999, no. December. Oxford, United Kingdom: Elsevier Ltd., 2019.; [352] Y. Bai and Q. Bai, “Subsea Pipelines,” in Subsea Engineering Handbook, 2019, pp. 919–940.; [353] M. F. Maradei García and F. M. Espinel Correal, Ergonomía para el Diseño, Primera. Bucaramanga, Colombia: Universidad Industrial de Santander - Escuela de Diseño Industrial, 2009.; [354] R. Gacula Pineda, Technology in Culture: A Theoretical Discourse on Convergence in Human-Technology Interaction, no. May. 2014.; [355] K. Dorst and N. Cross, “Creativity in the design process: Co-evolution of problem-solution,” Des. Stud., vol. 22, no. 5, pp. 425–437, 2001, doi:10.1016/S0142-694X(01)00009-6.; [356] OMPI, “¿Qué es la Propiedad Intelectual ?,” p. 23, 2005, [Online]. Available: https://cerlalc.org/wp-content/uploads/documentos-de-interes/odai/ODAI_DOCUMENTOS_DE_INTERES_Que_es_la_propiedad_intelectual_V1.pdf.; [357] Universidad EAFIT, “Mecanismos de protección de la propiedad intelectual,” Propiedad Intelectual. https://www.eafit.edu.co/institucional/propiedad-intelectual/Paginas/mecanismos-de-proteccion.aspx.; [358] G. Oh, D. Kim, S. Kim, and S. Rhew, “A Quality Evaluation Technique of RFID Middleware in Ubiquitous Computing,” in 2006 International Conference on Hybrid Information Technology, Nov. 2006, pp. 730–735, doi:10.1109/ICHIT.2006.253690.; [359] V. Nassar, “Common criteria for usability review,” Work, vol. 41, pp. 1053–1057, 2012, doi:10.3233/WOR-2012-0282-1053.; [360] N. Maalel, E. Natalizio, A. Bouabdallah, P. Roux, and M. Kellil, “Reliability for Emergency Applications in Internet of Things,” in 2013 IEEE International Conference on Distributed Computing in Sensor Systems, May 2013, pp. 361–366, doi:10.1109/DCOSS.2013.40.; [361] C. Prehofer, “From the Internet of Things to Trusted Apps for Things,” in 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Aug. 2013, pp. 2037–2042, doi:10.1109/GreenCom-iThings-CPSCom.2013.381.; [362] N. Nikmehr and M. Doroodchi, “New paradigm in evaluating usability of E-learning system,” in 2008 International Conference on Innovations in Information Technology, Dec. 2008, pp. 347–351, doi:10.1109/INNOVATIONS.2008.4781683.; [363] S. Jimenez-Fernandez, P. de Toledo, and F. del Pozo, “Usability and Interoperability in Wireless Sensor Networks for Patient Telemonitoring in Chronic Disease Management,” IEEE Trans. Biomed. Eng., vol. 60, no. 12, pp. 3331–3339, Dec. 2013, doi:10.1109/TBME.2013.2280967.; [364] N. Bevan, “Measuring usability as quality of use,” Softw. Qual. J., vol. 4, no. 2, pp. 115–130, Jun. 1995, doi:10.1007/BF00402715.; [365] FAO, Guía para la implementación de Centros Demostrativos de Capacitación CDC con enfoque agroecológico. 2016.; [366] M. M. Zinnah, J. L. Compton, and A. A. Adesina, “Research-Extension-Farmer Linkages within the Context of the Generation, Transfer and Adoption of Improved Mangrove Swamp Rice Technology in West Africa.,” Q. J. Int. Agric., vol. 32, no. 2, pp. 201–214, 1993.; [367] J. W. Creswell and V. L. Plano Clark, Designing and Conducting Mixed methods Research, Tercera. USA: Sage Publishing, 2017.; [368] C. Narrod, D. Roy, and I. Food, “The Role of Public-Private Partnerships and Collective Action in Ensuring Smallholder Participation in High Value Fruit and Vegetable Supply Chains,” Role Public-Private Partnerships Collect. Action Ensuring Smallhold. Particip. High Value Fruit Veg. Supply Chain., no. 70, 2007, doi:10.2499/capriwp70.; [369] L. Ermakova, F. Bordignon, N. Turenne, and M. Noel, “Is the Abstract a Mere Teaser? Evaluating Generosity of Article Abstracts in the Environmental Sciences,” Front. Res. Metrics Anal., vol. 3, May 2018, doi:10.3389/frma.2018.00016.; [370] CEPAL (Comisión Económica para América Latina y el Caribe), Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, and IICA (Instituto Interamericano de Cooperación para la Agricultura), Perspectivas de la agricultura y del desarrollo rural en las Américas: una mirada hacia América Latina y el Caribe 2017-2018. San José, Costa Rica, 2017.; [371] H. Zhang, Y. Cai, and Z. Li, “Towards a typology of university technology transfer organizations in China: evidences from Tsinghua University,” Triple Helix, vol. 5, no. 1, 2018, doi:10.1186/s40604-018-0061-9.; [372] A. Li, “Technology transfer in China–Africa relation: myth or reality.” Transnational corporations review, pp. 183–195, 2016.; [373] C. N. A. Iris, “TIERRAS, AGROPRODUCCIÓN Y CULTIVOS ILÍCITOS EN COLOMBIA,” p. 35, 2019.; [374] A. J. Paz Cardona, “Un millón de hogares campesinos en Colombia tienen menos tierra que una vaca,” Apr. 18, 2018.; [375] Ministerio de Agricultura de Chile, “Nuevo Modelo para un Sistema de Extensión y Transferencia Tecnológica en el Sector Silvoagropecuario Chileno,” 2014.; [376] CGIAR, “Transforming agriculture and food innovation systems to win the race to zero - 1391948,” Nov. 17, 2017. https://globalmeet.webcasts.com/starthere.jsp?ei=1391948&tp_key=b17757b8fa (accessed Mar. 07, 2021).; [377] IICA (Instituto Interamericano de Cooperación para la Agricultura), “Elementos para una hoja de ruta conjunta. Evento 4. %7C Facebook,” Evento 4 del Ciclo de foros virtuales: Reducción de #BrechaDigital en las Zonas Rurales de América Latina y El Caribe: Hacia una revolución agrícola digital, Feb. 22, 2020. https://m.facebook.com/story.php?story_fbid=262820852158961&id=436831050034 (accessed Mar. 07, 2021).; [378] M. B. Hernández and J. M. Gómez, “Aplicaciones de Procesamiento de Lenguaje Natural,” Rev. Politécnica, vol. 32, no. 1, pp. 87–96, 2013.; [379] D. H. Flórez Martínez, A. Morales Castañeda, and C. P. Uribe Galvis, Megatendencias en investigación, desarrollo e innovación para el sector agropecuario colombiano: perspectivas, estrategias y visiones de futuro, vol. I. Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), 2018.; [380] FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura) and OCDE (Organización para la Cooperación y el Desarrollo Económicos), OCDE/FAO Perspectivas Agrícolas 2019-2028 - Enfoque Especial: America Latina. Roma: OECD Publishing, 2019.; [381] L. Boer and J. Donovan, “Provotypes for participatory innovation,” in Proceedings of the Designing Interactive Systems Conference on - DIS ’12, 2012, p. 388, doi:10.1145/2317956.2318014.; https://apolo.unab.edu.co/es/persons/rom%C3%A1n-eduardo-sarmiento-porras; http://hdl.handle.net/20.500.12749/19092; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Availability: https://hdl.handle.net/20.500.12749/19092
-
10
Authors: et al.
Contributors: et al.
Subject Terms: Engineering, Technology management, Maturity model, Smart technologies, Smart-university, Technology adoption, Technological innovations, Technological change, Artificial intelligence, Computer networks, Communications technology, Ingeniería, Innovaciones tecnológicas, Cambio tecnológico, Inteligencia artificial, Redes de computadores, Tecnología de las comunicaciones, Gestión de tecnología, Modelo de madurez, Tecnologías inteligentes, Universidad inteligente, Adopción tecnológica
Subject Geographic: Norte de Santander (Colombia), UNAB Campus Bucaramanga
File Description: application/pdf
Relation: [1] C. U. ESPAÑOLAS, Analisis de las TIC en las Universidades Españolas. 2015. doi:10.1017/CBO9781107415324.004; [2] J. S. Rueda-Rueda, D. Rico-Bautista, and É. Flórez-Solano, “Education in ICT: Teaching to use, teaching to protect oneself and teaching to create [Educación en TIC: Enseñar a usar, enseñar a protegerse y enseñar a crear tecnología],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2019, no. 19, pp. 252–264, 2019.; [3] L. V. Glukhova, S. D. Syrotyuk, A. A. Sherstobitova, and S. V. Pavlova, Smart university development evaluation models, vol. 144. Springer Singapore, 2019. doi:10.1007/978-981-13-8260-4_47; [4] D. Rico-bautista, C. D. Guerrero, C. A. Collazos, and G. Maestre-góngora, “Smart University : A vision of technology adoption Universidad inteligente : Una visión de la adopción de la tecnología,” Revista Colombiana de Computación, vol. 22, no. 1, pp. 44–55, 2021, doi:10.29375/25392115.4153; [5] P. Pornphol and T. Tongkeo, “Transformation from a traditional university into a smart university,” Proceedings of the 6th International Conference on Information and Education Technology - ICIET ’18. ACM Press, pp. 144–148, 2018. doi:10.1145/3178158.3178167; [6] I. Staškevičiute and B. Neverauskas, “The intelligent university’s conceptual model,” Engineering Economics, vol. 4, no. 59, pp. 53–58, 2008, doi:10.5755/j01.ee.59.4.11563; [7] D. Rico-Bautista, C. D. Guerrero, C. A. Collazos, and G. Maestre-Gongora, “Maturity model of adoption of Information Technologies for universities: An approach from the Smart University perspective,” in 2021 16th Iberian Conference on Information Systems and Technologies (CISTI), Jun. 2021, pp. 1–6. doi:10.23919/CISTI52073.2021.9476468; [8] L. I. U. Xiong, “A Study on Smart Campus Model in the Era of Big Data,” Advances in Social Science, Education and Humanities Research, vol. 87, no. Icemeet 2016, pp. 919–922, 2017.; [9] D. Rico-Bautista, G. P. Maestre-Góngora, and C. D. Guerrero, “Smart university: Characterization of the current situation of intelligent technologies, based on two case studies [Caracterización de la situación actual de las tecnologías inteligentes para una universidad inteligente en Colombia/latinoamérica],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E27, pp. 484–501, 2020; [10] F. M. Pérez, J. V. B. Martínez, J. M. S. Bernabeu, I. L. Fonseca, and A. Fuster-Guilló, “Smart university: hacia una universidad más abierta.” 2016.; [11] D. Rico-Bautista, Y. Medina-Cárdenas, and C. D. Guerrero, “Smart University: A Review from the Educational and Technological View of Internet of Things,” in International Conference on Information Technology and Systems, ICITS 2019, vol. 918, P. M., F. C., and R. A., Eds. Systems and Informatics Department, Universidad Francisco de Paula Santander Ocaña, Algodonal Campus Vía Acolsure, Ocaña, 546551, Colombia: Springer Verlag, 2019, pp. 427–440. doi:10.1007/978-3-03011890-7_42; [12] J. P. Bakken, V. L. Uskov, S. V. Kuppili, A. V Uskov, N. Golla, and N. Rayala, Smart University: Conceptual Modeling and Systems’ Design, vol. 70. Cham: Springer International Publishing, 2018. doi:10.1007/978-3-319-59454-5.; [13] O. Akhrif, Y. E. B. El Idrissi, and N. Hmina, “Smart university: SOC-based study,” Proceedings of the 3rd International Conference on Smart City Applications - SCA ’18. ACM Press, 2018. doi:10.1145/3286606.3286798; [14] Aqeel-ur-Rehman, A. Z. Abbasi, and Z. A. Shaikh, “Building a Smart University Using RFID Technology,” in 2008 International Conference on Computer Science and Software Engineering, 2008, vol. 5, pp. 641–644. doi:10.1109/CSSE.2008.1528.; [15] K. Sargent, P. Hyland, and S. Sawang, “Factors influencing the adoption of information technology in a construction business,” Construction Economics and Building, vol. 12, no. 2, p. 86, Jun. 2012, doi:10.5130/AJCEB.v12i2.244; [16] S. Karkošková, “Towards Cloud Computing Management Model Based on ITIL Processes,” in Proceedings of the 2nd International Conference on Business and Information Management, Sep. 2018, pp. 1–5. doi:10.1145/3278252.3278265; [17] M. Comuzzi and A. Patel, “How organisations leverage: Big Data: A maturity model,” Industrial Management and Data Systems, vol. 116, no. 8, pp. 1468–1492, 2016, doi:10.1108/IMDS-12-20150495.; [18] N. V Semenova, E. A. Svyatkina, T. G. Pismak, and Z. Y. Polezhaeva, “The Realities of Smart Education in the Contemporary Russian Universities,” in Proceedings of the Internationsl Conference on Electronic Governance and Open Society: Challenges in Eurasia, 2017, pp. 48–52. doi:10.1145/3129757.3129767; [19] A. Fernández Martínez and F. Llorens Largo, Gobierno de las TI para universidades. 2016.; [20] C. Williams, D. Schallmo, K. Lang, and L. Boardman, “Digital Maturity Models for Small and Medium-sized Enterprises: A Systematic Literature Review,” ISPIM Conference Proceedings, no. June, pp. 1–15, 2019; [21] J. Rueda-Rueda, J. Manrique, and J. Cabrera Cruz, Internet de las Cosas en las Instituciones de Educación Superior. 2017.; [22] J. Becker, R. Knackstedt, and J. Pöppelbuß, “Developing Maturity Models for IT Management,” Business & Information Systems Engineering, vol. 1, no. 3, pp. 213–222, 2009, doi:10.1007/s12599009-0044-5.; [23] C. Heinemann and V. L. Uskov, “Smart University: Literature Review and Creative Analysis,” in Smart Universities, Germany: Springer International Publishing, 2018, pp. 11–46. doi:10.1007/978-3-31959454-5_2; [24] P. Rikhardsson and R. Dull, “An exploratory study of the adoption, application and impacts of continuous auditing technologies in small businesses,” International Journal of Accounting Information Systems, vol. 20, pp. 26–37, Apr. 2016, doi:10.1016/j.accinf.2016.01.003; [25] Y. C. Medina-Cárdenas and D. Rico-Bautista, “Strategic alignment under a technology management organizational approach: ITIL & ISO 20000,” Revista Tecnura, vol. 20, no. 1, pp. 82–94, 2016, doi:10.14483/22487638.11681; [26] D. Rico-Bautista et al., “Smart university: Strategic map since the adoption of technology [Universidad inteligente: Mapa estratégico desde la adopción de tecnología].,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E28, pp. 711–724, 2020.; [27] Dewar. Rico-Bautista, Y. Areniz Arévalo, and Y. C. Medina Cárdenas, “Strategic management appropriation: A question of organizational skills,” FACE: Revista de la Facultad de Ciencias Económicas y Empresariales, vol. 15, no. 2, pp. 71–80, Nov. 2015; [28] D. Rico-Bautista et al., “Smart university: Key factors for the adoption of internet of things and big data,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 201, no. 41, pp. 63–79, 2021, doi:10.17013/risti.41.63–79; [29] D. Rico-Bautista, C. A. Collazos, C. D. Guerrero, G. Maestre-Gongora, and Y. Medina-Cárdenas, “Latin American Smart University: Key Factors for a User-Centered Smart Technology Adoption Model,” in Sustainable Intelligent Systems, 2021, pp. 161–173. doi:10.1007/978-981-33-4901-8_1; [30] D. Rico-Bautista, Y. Medina-Cardenas, L. A. Coronel-Rojas, F. Cuesta-Quintero, G. Maestre-Gongora, and C. D. Guerrero, “Smart University: Key Factors for an Artificial Intelligence Adoption Model,” in Advances and Applications in Computer Science, Electronics and Industrial Engineering, vol. 1307, M. v. García, F. Fernández-Peña, and C. Gordón-Gallegos, Eds. Singapore: Springer Singapore, 2021, pp. 153–166. doi:10.1007/978-981-33-4565-2_10.; [31] D. Rico-Bautista, G. Maestre-Gongora, and C. D. Guerrero, “Smart University:IoT adoption model,” in 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), Jul. 2020, pp. 821–826. doi:10.1109/WorldS450073.2020.9210369. [32] D. Rico-Bautista, Y. Medina-Cardenas, Y. Areniz-Arevalo, E.; [32] D. Rico-Bautista, Y. Medina-Cardenas, Y. Areniz-Arevalo, E. Barrientos-Avendano, G. MaestreGongora, and C. D. Guerrero, “Smart University: Big Data adoption model,” in 2020 9th International Conference On Software Process Improvement (CIMPS), Oct. 2020, pp. 52–60. doi:10.1109/CIMPS52057.2020.9390151; [33] O. Akhrif, Y. E. B. El Idrissi, and N. Hmina, “Smart university, a new concept in the Internet of Things,” in Proceedings of the 3rd International Conference on Smart City Applications - SCA ’18, 2018, pp. 1– 6. doi:10.1145/3286606.3286798.; [34] C. de la república de Colombia, “Plan nacional de desarrollo 2014-2018,” 2015.; [35] Consejo Privado de Competitividad, “Informe nacional de competitividad 2017-2018,” p. 271, 2017, doi: ISSN 2016-1430; [36] P. Generales and C. De Calidad, “Modelo de acreditación CNA,” 2006; [37] L. Enrique and O. Silva, “La calidad de la universidad. Más allá de toda ambigüedad,” pp. 1–14, 1997; [38] A. Roa, “Hacia un modelo de aseguramiento de la calidad en la educación superior en Colombia: estándares básicos y acreditación de excelencia,” Educación superior, calidad y acreditación. Alfa Omega Colombiana, Bogotá, pp. 101–107, 2003; [39] Ministerio de Educación Nacional, “Propuesta metodológica para la distribución de recursos Artículo 87 de la Ley 30 de 1992 Vigencia 2013,” p. 6, 2013.; [40] M. Zapata-Ros, “La universidad inteligente La transición de los LMS a los Sistemas Inteligentes de Aprendizaje en Educación Superior The transition from Learning Management Systems (LMS) to Smart Learning Systems (SLS) in Higher Education,” RED. Revista de Educación a Distancia. Núm, vol. 57, no. 10, pp. 31–1, 2018, doi:10.6018/red/57/10; [41] J. Gómez, T. Jimenez, J. Gumbau, and F. Llorens, Universitic 2017 Análisis de las TIC en las Universidades Españolas. 2017; [42] F. Maciá, Smart University. Hacia una universidad más abierta, Primera. 2017.; [43] J. Gómez, T. Jimenez, J. Gumbau, and F. Llorens, “UNIVERSITIC 2016 Análisis de las TIC en las Universidades Españolas,” p. 150, 2016; Universidades Españolas,” p. 150, 2016. [44] ANUIES, Estado actual de las Tecnologías de la Información y las Comunicaciones en las Instituciones de Educación Superior en México. 2017.; [45] R. Padilla, S. Cadena, R. Enríquez, J. Córdova, and F. Lllorens, Estado de las tecnologías de la información y la comunicación en las universidades ecuatorianas. 2017.; [46] F. L. L. Antonio Fernández Martínez, Universitic Latam 2014, no. 1. 2014. doi:10.1007/s13398-0140173-7.2; [47] J. Valls, R. Villers, and G. Duque, Estado Actual de las Tecnologías de la Información y las Comunicaciones en las Instituciones de Educación Superior en México. 2016; [48] A. Whitmore, A. Agarwal, and L. Da Xu, “The Internet of Things—A survey of topics and trends,” Information Systems Frontiers, vol. 17, no. 2, pp. 261–274, 2015, doi:10.1007/s10796-014-9489-2; [49] N. Gershenfeld, R. Krikorian, and D. Cohen, The internet of things, vol. 291, no. 4. 2004. doi:10.1038/scientificamerican1004-76.; [50] C. (Software B. Williams, “Smart Systems,” Cybertalk, no. April, 2016; [51] O. Flauzac, C. Gonzalez, and F. Nolot, “New security architecture for IoT network,” in Procedia Computer Science, 2015, vol. 52, no. 1, pp. 1028–1033. doi:10.1016/j.procs.2015.05.099; [52] G. Maestre-Góngora, “Revisión de literatura sobre ciudades inteligentes: una perspectiva centrada en las TIC,” Ingeniare, vol. 19, no. 19, pp. 137–149, 2016.; [53] G. Perboli, A. De Marco, F. Perfetti, and M. Marone, “A New Taxonomy of Smart City Projects,” Transportation Research Procedia, vol. 3, pp. 470–478, 2014, doi:10.1016/j.trpro.2014.10; [54] L. Muñoz López, D. Proyecto, P. Antón Martínez, and S. Fernández Ciez, “Summary for Policymakers,” in Climate Change 2013 - The Physical Science Basis, Intergovernmental Panel on Climate Change, Ed. Cambridge: Cambridge University Press, 2015, pp. 1–30. doi:10.1017/CBO9781107415324.004.; [55] Y. Atif, S. S. Mathew, and A. Lakas, “Building a smart campus to support ubiquitous learning,” Journal of Ambient Intelligence and Humanized Computing, vol. 6, no. 2, pp. 223–238, 2015, doi:10.1007/s12652-014-0226-y; [56] E. M. Malatji, “The development of a smart campus - African universities point of view,” in 2017 8th International Renewable Energy Congress (IREC), Mar. 2017, pp. 1–5. doi:10.1109/IREC.2017.7926010; [57] A. Adamko, T. Kadek, and M. Kosa, “Intelligent and adaptive services for a smart campus,” in 5th IEEE Conference on Cognitive Infocommunications (CogInfoCom), Nov. 2014, pp. 505–509. doi:10.1109/CogInfoCom.2014.7020509; [58] Y. Khamayseh, W. Mardini, S. Aljawarneh, and M. B. Yassein, “Integration of Wireless Technologies in Smart University Campus Environment,” International Journal of Information and Communication Technology Education, vol. 11, no. 1, pp. 60–74, Jan. 2015, doi:10.4018/ijicte.2015010104.; [59] M. Rohs and J. Bohn, “Entry points into a smart campus environment - overview of the ETHOC system,” in 23rd International Conference on Distributed Computing Systems Workshops, 2003. Proceedings., 2003, pp. 260–266. doi:10.1109/ICDCSW.2003.1203564.; [60] S. Gul, M. Asif, S. Ahmad, M. Yasir, M. Majid, and M. S. A. Malik, “A Survey on role of Internet of Things in education,” IJCSNS International Journal of Computer Science and Network Security, vol. 17, no. 5, pp. 159–165, 2017; [61] L. Banica, E. Burtescu, and F. Enescu, “The impact of internet-of-things in higher education,” Scientific Bulletin-Economic Sciences, vol. 16, no. 1, pp. 53–59, 2017.; [62] D. Galego, C. Giovannella, and Ó. Mealha, “Determination of the Smartness of a University Campus: The Case Study of Aveiro,” Procedia - Social and Behavioral Sciences, vol. 223, pp. 147–152, 2016, doi:10.1016/j.sbspro.2016.05.336.; [63] R. Wendler, “The maturity of maturity model research: A systematic mapping study,” Information and Software Technology, vol. 54, no. 12, pp. 1317–1339, 2012, doi:10.1016/j.infsof.2012.07.007; [64] J. Fraser and S. Plewes, “Applications of a UX Maturity Model to Influencing HF Best Practices in Technology Centric Companies – Lessons from Edison,” Procedia Manufacturing, vol. 3, pp. 626–631, 2015, doi:10.1016/j.promfg.2015.07.285.; [65] J. Poeppelbuss, B. Niehaves, A. Simons, and J. Becker, “Maturity Models in Information Systems Research: Literature Search and Analysis,” Communications of the Association for Information Systems, vol. 29, no. 1, 2011, doi:10.17705/1cais.02927; [66] L. G. Pee and A. Kankanhalli, “A model of organisational knowledge management maturity based on people, process, and technology,” Journal of Information and Knowledge Management, vol. 8, no. 2, pp. 79–99, 2009, doi:10.1142/S0219649209002270; [67] L. Montañez Carrillo and J. P. Lis Gutiérrez, “A propósito de los modelos de madurez de gestión del conocimiento,” Revista Facultad de Ciencias Económicas, vol. 25, no. 2, pp. 63–81, 2017, doi:10.18359/rfce.3069; [68] F. Y. Hernández, R. I. Laguado, and J. P. Rodriguez, “Maturity analysis in project management in Colombian universities,” in Journal of Physics: Conference Series, 2018, vol. 1126, no. 1. doi:10.1088/1742-6596/1126/1/012055; [69] T. de Bruin, M. Rosemann, R. Freeze, and U. Kulkarni, “Understanding the main phases of developing a maturity assessment model,” 2005; [70] L. Lee‐Kelley, D. A. Blackman, and J. P. Hurst, “An exploration of the relationship between learning organisations and the retention of knowledge workers,” The Learning Organization, vol. 14, no. 3, pp. 204–221, Apr. 2007, doi:10.1108/09696470710739390.; [71] P. Jonsson and C. Wohlin, “An evaluation of k-nearest neighbour imputation using likert data,” in 10th International Symposium on Software Metrics, 2004. Proceedings., pp. 108–118. doi:10.1109/METRIC.2004.1357895; [72] J. Martínez Lozano, “Modelo de madurez en el dominio de los proyectos aplicado a organizaciones de gestión de proyectos en Medellín,” Universidad EAFIT, 2015.; [73] E. I. Pérez-Mergarejo, I. I. Pérez-Vergara, and Y. Rodríguez-Ruíz III, “Modelos de madurez y su idoneidad para aplicar en pequeñas y medianas empresas Maturity models and the suitability of its application in small and medium enterprises,” Ingeniería Industrial, vol. XXXV, no. 2, pp. 1815–5936, 2014, doi:10.1016/j.jag.2015.12.005.; [74] S. Marshall, “Change, technology and higher education: Are universities capable of organisational change?,” Australasian Journal of Educational Technology, vol. 26, no. 8, pp. 179–192, 2010, doi:10.14742/ajet.1018.; [75] C. L. Carvajal and A. M. Moreno, “The Maturity of Usability Maturity Models,” no. February, 2018, doi:10.1007/978-3-319-67383-7.; [76] T. C. Lacerda and C. G. von Wangenheim, “Systematic literature review of usability capability/maturity models,” Computer Standards and Interfaces, vol. 55, pp. 1339–1351, 2018, doi:10.1016/j.csi.2017.06.001; [77] J. Becker, B. Niehaves, J. Pöppelbuß, and A. Simons, “Maturity models in IS research,” 18th European Conference on Information Systems, ECIS 2010, 2010; [78] T. De Bruin, R. Freeze, U. Kaulkarni, and M. Rosemann, “Understanding the main phases of developing a maturity assessment model,” Australasian Chapter of the Association for Information Systems, pp. 8– 19, 2005, doi:10.1108/14637151211225225; [79] J. Becker, R. Knackstedt, and J. Pöppelbuß, “Developing maturity models for it management - A procedure model and its application [Entwicklung von reifegradmodellen für das it-management - VorgehensModell und praktische anwendung],” Business and Information Systems Engineering, vol. 51, no. 3, pp. 249–260, 2009, doi:10.1007/s11576-009-0167-9.; [80] J. Vuorio, J. Okkonen, and J. Viteli, “Enhancing user value of educational technology by three layer assessment,” in Proceedings of the 21st International Academic Mindtrek Conference, Sep. 2017, pp. 220–226. doi:10.1145/3131085.3131105.; [81] P. Martins and J. de S. D. Duarte, “Towards a Maturity Model for Higher Education Institutions,” Journal of Spatial and Organisational Dynamics, vol. 1, no. 1, 2013; [82] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “A gap analysis of Internet-of-Things platforms,” Computer Communications, vol. 89–90, 2016, doi:10.1016/j.comcom.2016.03.015; [83] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125–1142, 2017, doi:10.1109/JIOT.2017.2683200.; [84] M. A. Marotta, C. B. Both, J. Rochol, L. Z. Granville, and L. M. R. Tarouco, “Evaluating management architectures for Internet of Things devices,” IFIP Wireless Days, vol. 2015-Janua, no. January, 2015, doi:10.1109/WD.2014.7020811.; [85] T. Ara, P. Gajkumar Shah, and M. Prabhakar, “Internet of Things Architecture and Applications: A Survey,” Indian Journal of Science and Technology; Volume 9, Issue 45, December 2016, 2016.; [86] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: The internet of things architecture, possible applications and key challenges,” in Proceedings - 10th International Conference on Frontiers of Information Technology, FIT 2012, 2012, pp. 257–260. doi:10.1109/FIT.2012.53.; [87] J. I. Rodríguez Molano, C. E. Montenegro marín, J. M. Cueva Lovelle, J. Molano, C. Marin, and J. Cueva, “Introducción al Internet de las Cosas,” Redes de Ingeniería, vol. 6, no. 7, pp. 53–59, 2015, doi:10.14483/udistrital.jour.redes.2016.1.a04.; [88] T. Cao, X. Chen, R. Doss, J. Zhai, L. J. Wise, and Q. Zhao, “RFID ownership transfer protocol based on cloud,” Computer Networks, vol. 105, pp. 47–59, 2016, doi:10.1016/j.comnet.2016.05.017; [89] F. Maciá-Pérez, J. Berná-Martínez, J. Sánchez-Bernabéu, and I. Lorenzo, Smart university: hacia una universidad más abierta. Marcombo, 2016.; [90] S. Downes and C. E.-A. Campbell, “Smart University Utilising the Concept of the Internet of Things (IOT),” in 2018 UKSim-AMSS 20th International Conference on Computer Modelling and Simulation (UKSim), 2018, pp. 145–150. doi:10.1109/uksim.2018.00037.; [91] M. Zapata-ros, “La universidad inteligente La transición de los LMS a los Sistemas Inteligentes de Aprendizaje en Educación Superior The smart university,” vol. 57, no. 10, pp. 1–43, 2018.; [92] Y. S. Mitrofanova, A. A. Sherstobitova, and O. A. Filippova, Modeling the assessment of definition of a smart university infrastructure development level, vol. 144. Springer Singapore, 2019. doi:10.1007/978-981-13-8260-4_50; [93] S. Park and D. Ko, “Design of the Convergence Security Platform for Smart Universities,” vol. 3, no. 2. pp. 3–7, 2015.; [94] X. Cheng and R. Xue, “Construction of Smart Campus System Based on Cloud Computing,” Proceedings of the 2016 6th International Conference on Applied Science, Engineering and Technology (ICASET), vol. 77, no. Icaset, pp. 187–191, 2016, doi:10.2991/icaset-16.2016.37.; [95] A. Ben Rjab and S. Mellouli, “Smart cities in the era of artificial intelligence and internet of things,” no. 1, pp. 1–10, 2018, doi:10.1145/3209281.3209380; [96] S. Alqassemi, Y. K. Ever, and A. V. Rajan, “Maturity Level of Cloud Computing at HCT,” ITT 2017 - Information Technology Trends: Exploring Current Trends in Information Technology, Conference Proceedings, vol. 2018-Janua, no. Itt, pp. 5–8, 2018, doi:10.1109/CTIT.2017.8259558.; [97] C. N. Hung, M. D. Hwang, and Y. C. Liu, “Building a Maturity Model of Information Security Governance for Technological Colleges and Universities in Taiwan,” Applied Mechanics and Materials, vol. 284–287, pp. 3657–3661, 2013, doi:10.4028/www.scientific.net/amm.284-287.3657; [98] B. Sánchez-Torres, J. A. Rodríguez-Rodríguez, D. Rico-Bautista, and C. D. Guerrero, “Smart Campus: Trends in cybersecurity and future development,” Revista Facultad de Ingeniería, vol. 27, no. 47, pp. 93–101, Jan. 2018, doi:10.19053/01211129.v27.n47.2018.7807; [99] D. Rico-Bautista, Y. Medina-Cárdenas, and C. D. Guerrero, “Smart University: A Review from the Educational and Technological View of Internet of Things,” in International Conference on Information Technology and Systems, ICITS 2019, vol. 918, M. Paredes, C. Ferras, and A. Rocha, Eds. Systems and Informatics Department, Universidad Francisco de Paula Santander Ocaña, Algodonal Campus Vía Acolsure, Ocaña, 546551, Colombia: Springer Verlag, 2019, pp. 427–440. doi:10.1007/978-3-030-11890-7_42.; [100] D. Rico-Bautista, G. P. Maestre-Góngora, and C. D. Guerrero, “Smart university: Characterization of the current situation of intelligent technologies, based on two case studies [Caracterización de la situación actual de las tecnologías inteligentes para una universidad inteligente en Colombia/latinoamérica],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E27, pp. 484–501, 2020; [101] M. Ali and A. Majeed, “How Internet-of-Things ( IoT ) Making the University Campuses Smart ?,” pp. 646–648, 2018, doi:10.1109/CCWC.2018.8301774; [102] S. Hipwell, “Developing smart campuses #x2014; A working model,” 2014 International Conference on Intelligent Green Building and Smart Grid (IGBSG), pp. 1–6, 2014, doi:10.1109/IGBSG.2014.6835169.; [103] I. Staskeviciute and B. Neverauskas, “The Intelligent University’s Conceptual Model,” Inzinerine Ekonomika-Engineering Economics, no. 4, pp. 53–58, 2008; [104] J. Green, “The Internet of Things Reference Model,” Internet of Things World Forum, pp. 1–12, 2014; [105] S. Li, L. Da Xu, and S. Zhao, “The internet of things: a survey,” Information Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015, doi:10.1007/s10796-014-9492-7; [106] D. Airehrour, J. Gutierrez, and S. K. Ray, “Secure routing for internet of things: A survey,” Journal of Network and Computer Applications, vol. 66, 2016, doi:10.1016/j.jnca.2016.03.006; [107] Dewar. Rico-Bautista, Y. Medina-Cárdenas, and L. M. Santos Jaimes, “Ipsec de Ipv6 en la universidad de Pamplona,” Scientia Et Technica, vol. 2, no. 39, pp. 320–325, 2008, doi:10.22517/23447214.3239; [108] A. J. Jara, P. Moreno-Sanchez, A. F. Skarmeta, S. Varakliotis, and P. Kirstein, “IPv6 addressing proxy: Mapping native addressing from legacy technologies and devices to the internet of things (IPv6),” Sensors (Switzerland), vol. 13, no. 5, pp. 6687–6712, 2013, doi:10.3390/s130506687; [109] L. M. Santos and D. Rico-Bautista, “IPv6 en la Universidad de Pamplona: Estado del arte,” Scientia Et Technica, vol. XIII, pp. 415–420, 2007.; [110] T. Le Vinh, S. Bouzefrane, J. M. Farinone, A. Attar, and B. P. Kennedy, “Middleware to integrate mobile devices, sensors and cloud computing,” Procedia Computer Science, vol. 52, no. 1, pp. 234– 243, 2015, doi:10.1016/j.procs.2015.05.061.; [111] A. Kotsev, F. Pantisano, S. Schade, and S. Jirka, “Architecture of a service-enabled sensing platform for the environment,” Sensors (Switzerland), vol. 15, no. 2, pp. 4470–4495, 2015, doi:10.3390/s150204470; [112] M. Taneja and A. Davy, “Resource Aware Placement of Data Analytics Platform in Fog Computing,” Procedia Computer Science, vol. 97, pp. 153–156, 2016, doi:10.1016/j.procs.2016.08.295; [113] M. M. Rathore, A. Ahmad, and A. Paul, “Big Data and Internet of Things,” in Proceedings of the 2015 International Conference on Big Data Applications and Services - BigDAS ’15, 2015, vol. 20-23-Octo, pp. 58–65. doi:10.1145/2837060.2837067.; [114] M. Quwaider, M. Al-Alyyoub, and Y. Jararweh, “Cloud Support Data Management Infrastructure for Upcoming Smart Cities,” Procedia Computer Science, vol. 83, pp. 1232–1237, 2016, doi:10.1016/j.procs.2016.04.257.; [115] A. S. Yeole and D. R. Kalbande, “Use of Internet of Things (IoT) in Healthcare,” in Proceedings of the ACM Symposium on Women in Research 2016 - WIR ’16, 2016, vol. 21-22-Marc, pp. 71–76. doi:10.1145/2909067.2909079.; [116] S. V. Zanjal and G. R. Talmale, “Medicine Reminder and Monitoring System for Secure Health Using IOT,” in Physics Procedia, 2016, vol. 78, pp. 471–476. doi:10.1016/j.procs.2016.02.090; [117] D. Rico-Bautista, J. Rueda-Rueda, and S. Alvernia Acevedo, “Las TIC como agente social Una apuesta de la universidad Francisco de Paula Santander Ocaña,” in Simbiosis del aprendizaje con las tecnologías: experiencias innovadoras en el ámbito hispano, 2016, pp. 329–342.; [118] H. Aldowah, S. Ul Rehman, S. Ghazal, and I. Naufal Umar, “Internet of Things in Higher Education: A Study on Future Learning,” Journal of Physics: Conference Series, vol. 892, p. 012017, Sep. 2017, doi:10.1088/1742-6596/892/1/012017; [119] M. Coccoli, P. Maresca, and L. Stanganelli, “The role of big data and cognitive computing in the learning process,” Journal of Visual Languages and Computing, vol. 38, pp. 97–103, 2017, doi:10.1016/j.jvlc.2016.03.002; [120] J. Lobo and Dewar. Rico-Bautista, “Implementación de la seguridad del protocolo de internet versión 6,” Gerencia tecnológica informática, vol. 11, no. 29, pp. 35–46, 2012.; [121] B. Sánchez-Torres, J. A. Rodríguez-Rodríguez, D. W. Rico-Bautista, and C. D. Guerrero, “Smart Campus: Trends in cybersecurity and future development,” Revista Facultad de Ingeniería, vol. 27, no. 47, pp. 93–101, Jan. 2018, doi:10.19053/01211129.v27.n47.2018.7807; [122] Katz. Matías David, “Redes y seguridad,” Alfaomega grupo editor, no. Mexico, p. 87, 2013; [123] B. Aziz, “A formal model and analysis of an IoT protocol,” Ad Hoc Networks, vol. 36, pp. 49–57, Jan. 2016, doi:10.1016/J.ADHOC.2015.05.013; [124] N. Xiong, R. W. Liu, M. Liang, D. Wu, Z. Liu, and H. Wu, “Effective alternating direction optimization methods for sparsity-constrained blind image deblurring,” Sensors (Switzerland), vol. 17, no. 1, 2017, doi:10.3390/s17010174; [125] W. Mujun, “Smart Campus-Based Study on Optimization Model for the Computer Information Processing Technology in Universities and Colleges,” Revista de la Facultad de Ingeniería, vol. 32, no. 15, pp. 524–529, 2017; [126] M. Stočes, J. Vaněk, J. Masner, and J. Pavlík, “Internet of Things (IoT) in Agriculture - Selected Aspects,” Agris on-line Papers in Economics and Informatics, vol. VIII, no. 1, pp. 83–88, 2016, doi:10.7160/aol.2016.080108.; [127] K. Taylor et al., “Farming the Web of Things,” IEEE Intelligent Systems, vol. 28, no. 6, pp. 12–19, 2013, doi:10.1109/MIS.2013.102; [128] T. Arsan, “Smart Systems: From design to implementation of embedded Smart Systems,” in 2016 HONET-ICT, 2016, pp. 59–64. doi:10.1109/HONET.2016.7753420; [129] G. F. Hurlburt, J. Voas, and K. W. Miller, “The Internet of Things: A Reality Check,” IT Professional, vol. 14, no. June, pp. 56–59, 2012, doi:10.1109/MITP.2012.60.; [130] M. Weyrich and C. Ebert, “Reference architectures for the internet of things,” IEEE Software, vol. 33, no. 1, pp. 112–116, 2016, doi:10.1109/MS.2016.20.; [131] K. Dar, A. Taherkordi, H. Baraki, F. Eliassen, and K. Geihs, “A resource oriented integration architecture for the Internet of Things: A business process perspective,” Pervasive and Mobile Computing, vol. 20. pp. 145–159, 2015. doi:10.1016/j.pmcj.2014.11.0; [132] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Communications Surveys and Tutorials, vol. 17, no. 4, 2015, doi:10.1109/COMST.2015.2444095.; [133] D. Gagliardi, L. Schina, M. L. Sarcinella, G. Mangialardi, F. Niglia, and A. Corallo, “Information and communication technologies and public participation: interactive maps and value added for citizens,” Government Information Quarterly, vol. 34, no. 1, pp. 153–166, 2017, doi:10.1016/j.giq.2016.09.002.; [134] L. Tan, Lu Tan, and Neng Wang, “Future internet: The Internet of Things,” 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE), pp. V5-376-V5-380, 2010, doi:10.1109/ICACTE.2010.5579543; [135] European Technology Platform on Smart Systems Integration, Internet of Things in 2020. 2008. doi:10.1007/978-3-319-49736-5_2; [136] I. F. Akyildiz, S. Nie, S. C. Lin, and M. Chandrasekaran, “5G roadmap: 10 key enabling technologies,” Computer Networks, vol. 106, pp. 17–48, 2016, doi:10.1016/j.comnet.2016.06.010; [137] L. Atzori, A. Iera, and G. Morabito, “Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm,” Ad Hoc Networks, vol. 56, pp. 122–140, 2017, doi:10.1016/j.adhoc.2016.12.004; [138] M. Coccoli, A. Guercio, P. Maresca, and L. Stanganelli, “Smarter universities: A vision for the fast changing digital era,” Journal of Visual Languages & Computing, vol. 25, no. 6, pp. 1003–1011, Dec. 2014, doi:10.1016/j.jvlc.2014.09.007; [139] C. Heinemann and V. L. Uskov, Smart Universities, vol. 70. 2018. doi:10.1007/978-3-319-59454-5.; [140] M. Bertolli, G. Roark, S. Urrutia, and F. Chiodi, “Revisión de modelos de madurez en la medición del desempeño,” INGE CUC, vol. 13, no. 1, pp. 70–83, Jan. 2017, doi:10.17981/ingecuc.13.1.2017.07; [141] A. Acevedo, “Modelo de madurez para la transformación digital,” 2018.; [142] F. W. Van Dijk, F. Willem, J. Van Hillegersberg, and M. Daneva, “Van Dijk - Cloud maturity models,” 2017.; [143] D. Duarte and P. V. Martins, “A maturity model for higher education institutions,” CEUR Workshop Proceedings, vol. 731, pp. 25–45, 2011.; [144] F. W. Van Dijk, F. Willem, J. Van Hillegersberg, and M. Daneva, “Van Dijk - Cloud maturity models,” 2017.; [145] B. Henrik, “EVALUATION OF BIG DATA MATURITY MODELS - A BENCH- MARKING STUDY TO SUPPORT BIG DATA MATURITY AS- SESSMENT IN ORGANIZATIONS,” 2015; [146] M. Al-Ruithe and E. Benkhelifa, “Cloud data governance maturity model,” in Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing, Mar. 2017, pp. 1– 10. doi:10.1145/3018896.3036394; [147] I. Mitchell and S. Isherwood, Cloud adoption The definitive guide to a business technology revolution, Fujitsu Se. 2014. doi:10.1145/2554850.2555067; [148] B. White, H. Longenecker, P. Leidig, J. Reynolds, and D. Yarbrough, “Applicability of CMMI to the IS curriculum: a panel discussion,” Proceedings of the Information Systems Education Conference 2003, vol. 20, pp. 2–6, 2003; [149] C. Neuhauser, “A maturity model: Does it provide a path for online course design?,” Journal of Interactive Online Learning, vol. 3, no. 1, pp. 1–17, 2004; [150] I. Keshta, “A model for defining project lifecycle phases: Implementation of CMMI level 2 specific practice,” Journal of King Saud University - Computer and Information Sciences, Nov. 2019, doi:10.1016/j.jksuci.2019.10.013.; [151] E. Thompson et al., “Towards a learning process maturity model,” PhD Workshop 2004, vol. 9/2004, no. definition 3, pp. 8–16, 2004.; [152] S. Mattoon, B. Hensle, and J. Baty, “Cloud Computing Maturity Model Mattoon, S., Hensle, B., & Baty, J. (2011). Cloud Computing Maturity Model Guiding Success with Cloud Capabilities. Computing, (December), 13.Guiding Success with Cloud Capabilities,” Computing, no. December, p. 13, 2011.; [153] P. J. Schmidt, “Proposing a Cloud Computing Capability Maturity Model Proposing a Cloud Computing Capability Maturity Model,” 2015; [154] B. Henrik, “EVALUATION OF BIG DATA MATURITY MODELS - A BENCH- MARKING STUDY TO SUPPORT BIG DATA MATURITY AS- SESSMENT IN ORGANIZATIONS,” 2; [155] C. J. Galeano-Barrera, D. Bellón-Monsalve, S. A. Zabala-Vargas, E. Romero-Riaño, and V. uro-N. Duro-Novoa, “Identificación de los pilares que direccionan a una institución universitaria hacia un smart-campus,” Revista De Investigación, Desarrollo E Innovación, vol. 9, no. 1, pp. 127–145, 2018, doi:10.19053/20278306.v9.n1.2018.8511; [156] M. Coccoli, P. Maresca, L. Stanganelli, and A. Guercio, “An experience of collaboration using a PaaS for the smarter university model,” Journal of Visual Languages and Computing, vol. 31, pp. 275–282, 2015, doi:10.1016/j.jvlc.2015.10.014; [157] L. L. Ching, N. H. A. H. Malim, M. H. Husin, and M. M. Singh, “ICC - Smart university: reservation system with contactless technology,” in Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing - ICC ’17, 2017, p. 9. doi:10.1145/3018896.3018903; [158] W. Filho, J. B. Andrade Guerra, M. Mifsud, and R. Pretorius, Universities as Living Labs for sustainable development: A global perspective, vol. 26. 2017.; [159] O. Akhrif, Y. bouzekri el idrissi, and N. Hmina, “Enabling Smart Collaboration with Smart University Services,” 2019. doi:10.1145/3331453.3361311.; [160] O. Akhrif, C. Benfares, Y. El Bouzekri El Idrissi, and N. Hmina, “Collaborative learning services in the smart university environment,” ACM International Conference Proceeding Series, no. 3, 2019, doi:10.1145/3368756.3369020; [161] A. El Sayed, Š. Suad, Ć. Fuad, and A. Novali, New Technologies, Development and Application II, vol. 76. Cham: Springer International Publishing, 2020. doi:10.1007/978-3-030-18072-0.; [162] P. Pornphol and T. Tongkeo, “Transformation from a traditional university into a smart university,” in Proceedings of the 6th International Conference on Information and Education Technology, Jan. 2018, pp. 144–148. doi:10.1145/3178158.3178167; [163] O. J. Adeyemi, S. I. Popoola, A. A. Atayero, D. G. Afolayan, M. Ariyo, and E. Adetiba, “Exploration of daily Internet data traffic generated in a smart university campus,” Data in Brief, vol. 20, pp. 30–52, Oct. 2018, doi:10.1016/j.dib.2018.07.039; [164] M. V. López Cabrera, E. Hernandez-Rangel, G. P. Mejía Mejía, and J. L. Cerano Fuentes, “Factors that enable the adoption of educational technology in medical schools,” Educacion Medica, vol. 20, no. xx, pp. 3–9, 2019, doi:10.1016/j.edumed.2017.07.006; [165] J. Lin, H. Pu, Y. Li, and J. Lian, “Intelligent Recommendation System for Course Selection in Smart Education,” Procedia Computer Science, vol. 129, pp. 449–453, 2018, doi:10.1016/j.procs.2018.03.023.; [166] R. Bajaj and V. Sharma, “Smart Education with artificial intelligence based determination of learning styles,” Procedia Computer Science, vol. 132, pp. 834–842, 2018, doi:10.1016/j.procs.2018.05.095; [167] S. El Janati, A. Maach, and D. El Ghanami, “SMART education framework for adaptation content presentation,” Procedia Computer Science, vol. 127, pp. 436–443, 2018, doi:10.1016/j.procs.2018.01.141.; [168] P. Fraser, J. Moultrie, and M. Gregory, “The_use_of_maturity_models_grids_as_a_to.” Cambridge, Reino Unido, 2003. doi:10.1109 / IEMC.2002.1038431.; [169] C. M. Christensen, “The Innovator’s Dilemma,” Business, 1997, doi:10.1515/9783110215519.82; [170] C. M. Christensen, “The ongoing process of building a theory of disruption,” Journal of Product Innovation Management. 2006. doi:10.1111/j.1540-5885.2005.00180.x.; [171] M. Kuniavsky, “User Experience and HCI Section 1 : the boundaries of user experience,” HCI Handbook, pp. 1–37; [172] S. S. Rautaray and A. Agrawal, “Vision based hand gesture recognition for human computer interaction: a survey,” Artificial Intelligence Review, vol. 43, no. 1, pp. 1–54, 2012, doi:10.1007/s10462-012-93569.; [173] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and P. Tran-gia, “A Survey on Quality of Experience of HTTP Adaptive Streaming,” Ieee Communication Surveys & Tutorials, vol. 17, no. 1, pp. 469–492, 2015, doi:10.1109/COMST.2014.236094; [174] M. Turk, “Multimodal interaction: A review,” Pattern Recognition Letters, vol. 36, no. 1, pp. 189–195, 2014, doi:10.1016/j.patrec.2013.07.003; [175] H.-S. Yeo, B.-G. Lee, and H. Lim, “Hand tracking and gesture recognition system for human-computer interaction using low-cost hardware,” Multimedia Tools and Applications, vol. 74, no. 8, pp. 2687– 2715, Sep. 2015, doi:10.1007/s11042-013-1501-1; [176] K. Seaborn and D. I. Fels, “Gamification in theory and action: A survey,” International Journal of Human Computer Studies, vol. 74, pp. 14–31, 2015, doi:10.1016/j.ijhcs.2014.09.006.; [177] Y. Mengüç et al., “Wearable soft sensing suit for human gait measurement,” International Journal of Robotics Research, vol. 33, no. 14, pp. 1748–1764, 2014, doi:10.1177/0278364914543793; [178] D. González-Ortega, F. J. Díaz-Pernas, M. Martínez-Zarzuela, and M. Antón-Rodríguez, “A Kinectbased system for cognitive rehabilitation exercises monitoring,” Computer Methods and Programs in Biomedicine, vol. 113, no. 2, pp. 620–631, 2014, doi:10.1016/j.cmpb.2013.10.014; [179] S. Herath, M. Harandi, and F. Porikli, “Going deeper into action recognition: A survey,” Image and Vision Computing, vol. 60, pp. 4–21, Sep. 2017, doi:10.1016/j.imavis.2017.01.010; [180] C. Lallemand, G. Gronier, and V. Koenig, “User experience: A concept without consensus? Exploring practitioners’ perspectives through an international survey,” Computers in Human Behavior, vol. 43, pp. 35–48, Sep. 2015, doi:10.1016/j.chb.2014.10.048.; [181] P. K. Pisharady and M. Saerbeck, “Recent methods and databases in vision-based hand gesture recognition: A review,” Computer Vision and Image Understanding, vol. 141, pp. 152–165, Sep. 2015, doi:10.1016/j.cviu.2015.08.004.; [182] H. Cheng, L. Yang, and Z. Liu, “A Survey on 3D Hand Gesture Recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. PP, no. 99, p. 1, 2015, doi:10.1109/TCSVT.2015.2469551.; [183] P. Tsarouchi, S. Makris, and G. Chryssolouris, “Human – robot interaction review and challenges on task planning and programming,” International Journal of Computer Integrated Manufacturing, vol. 29, no. 8, pp. 916–931, Sep. 2016, doi:10.1080/0951192X.2015.1130251.; [184] J. Lorés and T. Granollers, “Ingeniería de la Usabilidad y de la Accesibilidad aplicada al diseño y desarrollo de sitios web,” no. May, pp. 3–7, 2004.; [185] J. Mariano and G. Romano, “Introducción a la IPO,” Metro, 2008; [186] T. Granollers, “Usability Evaluation with Heuristics . New Proposal from Integrating Two Trusted Sources 2 Combining Common Heuristic Sets,” pp. 1–16, 2018.; [187] L. Muñoz López, P. Antón Martínez, and S. Fernández Ciez, “Estudio y Guía metodológica sobre Ciudades Inteligentes,” 2015; [188] E. Ontiveros, D. Vizcaíno, and V. López Sabaer, Las ciudades del futuro : inteligentes , digitales y sostenibles futuro : inteligentes , digitales y sostenibles. 2016.; [189] E. Del and D. Une, “Norma Española Accesibilidad Universal en las Ciudades Inteligentes,” 2017.; [190] O. Iberoamericano, “Manual Iberoamericano de Indicadores de Educación Superior: Manual de Lima,” p. 88 p., 2016; [191] Ministerio de Modernización Innovación y Tecnología, “La Importancia de un Modelo de Planificación Estratégica para el Desarrollo de Ciudades Inteligentes,” p. 32, 2017; [192] P. Fernández, “Análisis de los factores de influencia en la adopción de herramientas colaborativas basadas en software social. Aplicación a entornos empresariales,” Universidad Politécnica de Madrid, 2015; [193] D. W. Rico-Bautista, “Conceptual framework for smart university,” Journal of Physics: Conference Series, vol. 1409, p. 012009, Nov. 2019, doi:10.1088/1742-6596/1409/1/012009.; [194] J. A. Parra Valencia, C. D. Guerrero, and D. Rico-Bautista, “IOT: una aproximación desde ciudad inteligente a universidad inteligente,” Revista Ingenio, vol. 13, no. 1, pp. 9–20, Jun. 2017, doi:10.22463/2011642X.2128.; [195] F. H. Cerdeira Ferreira and R. Mendes de Araujo, “Campus Inteligentes: Conceitos, aplicações, tecnologias e desafios.,” Relatórios Técnicos do DIA/UNIRIO, vol. 11, no. 1, pp. 4–19, 2018.; [196] D. Rico-Bautista, C. D. Guerrero, Y. Medina-Cárdenas, and A. García-Barreto, “Analysis of the potential value of technology: Case of universidad francisco de paula santander O; [197] D. Rico-Bautista, G. P. Maestre-Góngora, and C. D. Guerrero, “Caracterización de la situación actual de las tecnologías inteligentes para una Universidad inteligente en Colombia/Latinoamérica,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E27, pp. 484–501, 2020.; [198] D. Rico-Bautista et al., “Smart University: Strategic map since the adoption of technology,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E28, pp. 711–724, 2020; [199] D. Rico-Bautista et al., “Smart University: Key Factors for a Cloud Computing Adoption Model,” Lecture Notes in Networks and Systems, vol. 334, pp. 85–93, 2022, doi:10.1007/978-981-16-6369-7_8; [200] M. V. López Cabrera, E. Hernandez-Rangel, G. P. Mejía Mejía, and J. L. Cerano Fuentes, “Factores que facilitan la adopción de tecnología educativa en escuelas de medicina,” Educación Médica, vol. 20, pp. 3–9, Mar. 2019, doi:10.1016/j.edumed.2017.07.006; [202] A. V. Martín García, Á. García del Dujo, and J. M. Muñoz Rodríguez, “Factores determinantes de adopción de blended learning en educación superior. Adaptación del modelo UTAUT*,” Educación XX1, vol. 17, no. 2, May 2014, doi:10.5944/educxx1.17.2.11489; [203] M. Luzardo Briceño, B. E. Sandia Saldivia, A. S. Aguilar Jiménez, M. Macias Martínez, and J. Herrera Díaz, “Factores que influyen en la adopción de las Tecnologías de Información y Comunicación por parte de las universidades. Dimensión Enseñanza-Aprendizaje,” Educere, vol. 21, no. 68, pp. 143–153, 2017; [204] M. Frasquet Deltoro, A. Mollá Descals, and M. Eugenia Ruiz Molina, “Factores determinantes y consecuencias de la adopción del comercio electrónico B2C:una comparativa internacional,” Estudios Gerenciales, vol. 28, no. 123, pp. 101–120, Apr. 2012, doi:10.1016/S0123-5923(12)70207-3.; [205] D. Rico-Bautista et al., “Key Technology Adoption Indicators for Smart Universities: A Preliminary Proposal,” Lecture Notes in Networks and Systems, vol. 333, pp. 651–663, 2022, doi:10.1007/978-98116-6309-3_61.; [206] P. Hernández, R., Fernández, C. y Baptista, Libro Metodología de la Investigación 6ta edición SAMPIERI (PDF) %7C Metodologiaecs. 2014; [207] S. M. Takey and M. M. Carvalho, “Fuzzy front end of systemic innovations: A conceptual framework based on a systematic literature review,” Technological Forecasting and Social Change, vol. 111, pp. 97–109, Oct. 2016, doi:10.1016/j.techfore.2016.06.011; [208] P. Martins and J. de S. D. Duarte, “A Maturity Model for Higher Education Institutions,” Journal of Spatial and Organisational Dynamics , vol. 1, no. 1, 2013.; [209] Z. Liu, Y. Yin, W. Liu, and M. Dunford, “Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis,” Scientometrics, 2015, doi:10.1007/s11192-0141517-y.; [210] J. A. Wise, “The ecological approach to text visualization,” Journal of the American Society for Information Science, 1999, doi:10.1002/(SICI)1097-4571(1999)50:133.0.CO;2-4.; [211] J. E. Meissner, “VantagePoint,” Nursing, 1981, doi:10.1097/00152193-198101000-00010.; [212] L. Leydesdorff and T. Schank, “Dynamic animations of journal maps: Indicators of structural changes and interdisciplinary developments,” Journal of the American Society for Information Science and Technology, 2008, doi:10.1002/asi.20891; [213] “Science of Science (Sci2) Tool,” in Encyclopedia of Social Network Analysis and Mining, 2018. doi:10.1007/978-1-4939-7131-2_101025.; [214] N. J. Van Eck and L. Waltman, “VOSviewer: A computer program for bibliometric mapping,” 2009; [215] “Network Workbench Tool,” in Encyclopedia of Social Network Analysis and Mining, 2014. doi:10.1007/978-1-4614-6170-8_110035; [216] B. Vargas-Quesada and F. de Moya Aragón, Visualizing the structure of science. New York, NY, 2007.; [217] L. A. R. Hoeffner and R. P. Smiraglia, “Visualizing domain coherence: Social informatics as a case study,” 2014. doi:10.7152/acro.v23i1.14261.; [218] K. Fujita, Y. Kajikawa, J. Mori, and I. Sakata, “Detecting research fronts using different types of weighted citation networks,” Journal of Engineering and Technology Management - JET-M, vol. 32, pp. 129–146, 2014, doi:10.1016/j.jengtecman.2013.07.002.; [219] A. Angelakis and K. Galanakis, “A science-based sector in the making: the formation of the biotechnology sector in two regions,” Regional Studies, 2017, doi:10.1080/00343404.2016.1215601.; [220] A. Gaur, B. Scotney, G. Parr, and S. McClean, “Smart city architecture and its applications based on IoT,” in Procedia Computer Science, 2015, vol. 52, no. 1. doi:10.1016/j.procs.2015.05.122.; [221] R. Díaz-Díaz, L. Muñoz, and D. Pérez-González, “Business model analysis of public services operating in the smart city ecosystem: The case of SmartSantander,” Future Generation Computer Systems, 2017, doi:10.1016/j.future.2017.01.032.; [222] A. Sampri, A. Mavragani, and K. P. Tsagarakis, “Evaluating Google Trends as a Tool for Integrating the ‘Smart Health’ Concept in the Smart Cities’ Governance in USA,” Procedia Engineering, vol. 162, pp. 585–592, 2016, doi:10.1016/j.proeng.2016.11.104.; [223] U. Rosati and S. Conti, “What is a Smart City Project? An Urban Model or A Corporate Business Plan?,” Procedia - Social and Behavioral Sciences, vol. 223, pp. 968–973, 2016, doi:10.1016/j.sbspro.2016.05.332.; [224] C. M. et. Al, “Mapping Smart Cities in the EU,” European Parliament, pp. 23–49, 2015.; [225] G. P. Maestre Góngora, “Revisión de literatura sobre ciudades inteligentes: una perspectiva centrada en las TIC,” INGENIARE, no. 19, p. 137, Jul. 2015, doi:10.18041/1909-2458/ingeniare.19.531; [226] X. Nie, “Constructing Smart Campus Based on the Cloud Computing Platform and the Internet of Things,” 2013. doi:10.2991/iccsee.2013.395.; [227] M. Cata, “Smart university, a new concept in the Internet of Things,” in 2015 14th RoEduNet International Conference - Networking in Education and Research (RoEduNet NER), Sep. 2015, pp. 195–197. doi:10.1109/RoEduNet.2015.7311993; [228] V. A. F. Almeida, D. Doneda, and M. Monteiro, “Governance Challenges for the Internet of Things,” IEEE Internet Computing, vol. 19, no. 4, pp. 56–59, Jul. 2015, doi:10.1109/MIC.2015.86; [229] S. Thiel, J. Mitchell, and J. Williams, “Coordination or Collision? The Intersection of Diabetes Care, Cybersecurity, and Cloud-Based Computing,” Journal of Diabetes Science and Technology, vol. 11, no. 2, pp. 195–197, Mar. 2017, doi:10.1177/1932296816676189.; [230] E. Borgia, “The Internet of Things vision: Key features, applications and open issues,” Computer Communications, vol. 54, pp. 1–31, Dec. 2014, doi:10.1016/j.comcom.2014.09.008.; [231] A. Jara, P. Moreno-Sanchez, A. Skarmeta, S. Varakliotis, and P. Kirstein, “IPv6 Addressing Proxy: Mapping Native Addressing from Legacy Technologies and Devices to the Internet of Things (IPv6),” Sensors, vol. 13, no. 5, pp. 6687–6712, May 2013, doi:10.3390/s130506687.; [232] E. Chinkes, Las Tecnologías de la Información y la Comunicación Potenciando la Universidad del Siglo XXI: Claves para una política TIC universitaria, vol. 1. 2015. doi:10.1017/CBO9781107415324.004; [233] E. Chinkes, Potenciando la Universidad del Siglo XXI: Soluciones TIC para pensar la universidad del futuro. 2017; [234] RedCLARA, ACTAS TICAL 2016. 2016; [235] RedCLARA, ACTAS TICAL 2017. 2017; [236] RedCLARA, ACTAS TICAL 2018. 2018.; [237] RedCLARA, ACTAS TICAL 2019. 2019; [238] O. Akhri, Y. El Bouzekri El Idrissi, and N. Hmina, “Enabling smart collaboration with smart university services,” in ACM International Conference Proceeding Series, 2019. doi:10.1145/3331453.3361311.; [239] D. Rico-Bautista et al., “Smart university: Strategic map since the adoption of technology [Universidad inteligente: Mapa estratégico desde la adopción de tecnología],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E28, pp. 711–724, 2020; [240] M. de L. Sigg, J. L. V. Cisneros, S. V. Reyes, and J. A. R. Salcedo, “Explicación de la Adopción de Tecnologías de Información en Pequeñas Empresas Usando el Modelo del Usuario Perezoso: un Caso de Estudio,” Iberian Journal of Information Systems and Technologies, no. e1, pp. 91–104, Mar. 2014, doi:10.4304/risti.e1.91-104.; [241] L. O. S. A. Erasmus et al., “Adopción de las tecnologías infocomunicacionales (TI) en Docentes: actualizando enfoques.,” Revista Electrónica Teoría de la Educación. Educación y Cultura en La Sociedad de la Información., vol. 10, pp. 310–337, 2009; [242] P. Brous, M. Janssen, and P. Herder, “The dual effects of the Internet of Things (IoT): A systematic review of the benefits and risks of IoT adoption by organizations,” International Journal of Information Management, vol. 51, p. 101952, Apr. 2020, doi:10.1016/j.ijinfomgt.2019.05.008.; [243] J. Martín et al., “Review of IoT applications in agro-industrial and environmental fields,” vol. 142, no. 118, pp. 283–297, 2017, doi:10.1016/j.compag.2017.09.015.; [244] A. Abushakra and D. Nikbin, Knowledge Management in Organizations, vol. 1027. Cham: Springer International Publishing, 2019. doi:10.1007/978-3-030-21451-7; [245] D. Mourtzis, E. Vlachou, and N. Milas, “Industrial Big Data as a Result of IoT Adoption in Manufacturing,” Procedia CIRP, vol. 55, pp. 290–295, 2016, doi:10.1016/j.procir.2016.07.038.; [246] I. C. Ehie and M. A. Chilton, “Understanding the influence of IT/OT Convergence on the adoption of Internet of Things (IoT) in manufacturing organizations: An empirical investigation,” Computers in Industry, vol. 115, p. 103166, Feb. 2020, doi:10.1016/j.compind.2019.103166.; [247] L. Amodu, O. Odiboh, S. Usaini, D. Yartey, and T. Ekanem, “Data on security implications of the adoption of Internet of Things by public relations professionals,” Data in Brief, vol. 27, 2019, doi:10.1016/j.dib.2019.104663.; [248] H. Shaikh, M. S. Khan, Z. A. Mahar, M. Anwar, A. Raza, and A. Shah, “A Conceptual Framework for Determining Acceptance of Internet of Things (IoT) in Higher Education Institutions of Pakistan,” in 2019 International Conference on Information Science and Communication Technology (ICISCT), Mar. 2019, pp. 1–5. doi:10.1109/CISCT.2019.8777431.; [249] A. Abushakra and D. Nikbin, Knowledge Management in Organizations, vol. 1027. Cham: Springer International Publishing, 2019. doi:10.1007/978-3-030-21451-7.; [250] M. Mital, V. Chang, P. Choudhary, A. Papa, and A. K. Pani, “Adoption of Internet of Things in India: A test of competing models using a structured equation modeling approach,” Technological Forecasting and Social Change, vol. 136, pp. 339–346, 2018, doi:10.1016/j.techfore.2017.03.001.; [251] S. Lu and Y. P. Singh, “Scie enceDir rect ScienceDirect Analyz zing chal llenges t o Interne et of Thi ings ( IoT T ) adopt tion and ion : An Indian context c diffusi,” 2018, doi:10.1016/j.procs.2017.12.094; [252] Y. Kao, K. Nawata, and C. Huang, “An Exploration and Confirmation of the Factors Influencing Adoption of IoT-Based Wearable Fitness Trackers,” 2019.; [253] Y.-S. Kao, K. Nawata, and C.-Y. Huang, “An Exploration and Confirmation of the Factors Influencing Adoption of IoT-Based Wearable Fitness Trackers,” International Journal of Environmental Research and Public Health, vol. 16, no. 18, p. 3227, Sep. 2019, doi:10.3390/ijerph16183227.; [254] V. Venkatesh, J. Thong, and X. Xu, “Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead,” Journal of the Association for Information Systems, vol. 17, no. 5, pp. 328–376, May 2016, doi:10.17705/1jais.00428; [255] E. González Arza, “Validación de la Teoría Unificada de Aceptación y Uso de la Tecnología UTAUT en castellano en el ámbito de las consultas externas de la Red de Salud Mental de Bizkaia,” Universitat Oberta de Catalunya, 2013.; [256] T. Kr. Aune, H. Gjestland, J. Ø. Haagensen, B. Kittilsen, J. I. Skar, and H. Westengen, “Magnesium Alloys,” in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2003, pp. 1–19. doi:10.1002/14356007.a15_581; [257] P. Palos-Sanchez, A. Reyes-Menendez, and J. R. Saura, “Models of adoption of information technology and cloud computing in organizations,” Informacion Tecnologica, vol. 30, no. 3, pp. 3–12, 2019, doi:10.4067/S0718-07642019000300003; [258] P. Pinheiro, M. Aparicio, and C. Costa, “Adoption of cloud computing systems,” in Proceedings of the International Conference on Information Systems and Design of Communication - ISDOC ’14, 2014, pp. 127–131. doi:10.1145/2618168.2618188; [259] H. Vasudavan, K. Shanmugam, and H. A. Ahmada, “User Perceptions in Adopting Cloud Computing in Autonomous Vehicle,” in Proceedings of the 6th International Conference on Information Technology: IoT and Smart City - ICIT 2018, 2018, pp. 151–156. doi:10.1145/3301551.3301583; [260] F. Nikolopoulos and S. Likothanassis, “Using UTAUT2 for cloud computing technology acceptance modeling,” in Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing, Mar. 2017, no. March, pp. 1–6. doi:10.1145/3018896.3025153; [261] U. Nasir and M. Niazi, “Cloud computing adoption assessment model (CAAM),” in Proceedings of the 12th International Conference on Product Focused Software Development and Process Improvement - Profes ’11, 2011, vol. 44, no. 0, pp. 34–37. doi:10.1145/2181101.2181110.; [262] M. Al-Ruithe, E. Benkhelifa, and K. Hameed, “Current State of Cloud Computing Adoption – An Empirical Study in Major Public Sector Organizations of Saudi Arabia (KSA),” Procedia Computer Science, vol. 110, pp. 378–385, 2017, doi:10.1016/j.procs.2017.06.080; [263] P. Priyadarshinee, R. D. Raut, M. K. Jha, and B. B. Gardas, “Understanding and predicting the determinants of cloud computing adoption: A two staged hybrid SEM - Neural networks approach,” Computers in Human Behavior, vol. 76, pp. 341–362, Nov. 2017, doi:10.1016/j.chb.2017.07.027; [264] K. Njenga, L. Garg, A. K. Bhardwaj, V. Prakash, and S. Bawa, “The cloud computing adoption in higher learning institutions in Kenya: Hindering factors and recommendations for the way forward,” Telematics and Informatics, vol. 38, no. May, pp. 225–246, May 2019, doi:10.1016/j.tele.2018.10.007.; [265] I. Arpaci, “Antecedents and consequences of cloud computing adoption in education to achieve knowledge management,” Computers in Human Behavior, vol. 70, pp. 382–390, May 2017, doi:10.1016/j.chb.2017.01.024; [266] H. M. Sabi, F. E. Uzoka, K. Langmia, and F. N. Njeh, “Conceptualizing a model for adoption of cloud computing in education,” International Journal of Information Management, vol. 36, no. 2, pp. 183– 191, Apr. 2016, doi:10.1016/j.ijinfomgt.2015.11.010; [267] P. Palos-Sanchez, A. Reyes-Menendez, and J. R. Saura, “Modelos de Adopción de Tecnologías de la Información y Cloud Computing en las Organizaciones,” Información tecnológica, vol. 30, no. 3, pp. 3–12, Jun. 2019, doi:10.4067/S0718-07642019000300003; [268] M. Shorfuzzaman, M. S. Hossain, A. Nazir, G. Muhammad, and A. Alamri, “Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment,” Computers in Human Behavior, vol. 92, pp. 578–588, Mar. 2019, doi:10.1016/j.chb.2018.07.002; [269] F. P. S. Surbakti, W. Wang, M. Indulska, and S. Sadiq, “Factors influencing effective use of big data: A research framework,” Information & Management, vol. 57, no. 1, p. 103146, Jan. 2020, doi:10.1016/j.im.2019.02.001; [270] S. Das, “‘The Early Bird Catches the Worm - First Mover Advantage through IoT Adoption for Indian Public Sector Retail Oil Outlets,’” Journal of Global Information Technology Management, vol. 22, no. 4, pp. 280–308, Oct. 2019, doi:10.1080/1097198X.2019.1679588; [271] A. M. Al-Momani, M. A. Mahmoud, and M. S. Ahmad, “A Review of Factors Influencing Customer Acceptance of Internet of Things Services,” International Journal of Information Systems in the Service Sector, vol. 11, no. 1, pp. 54–67, Jan. 2019, doi:10.4018/IJISSS.2019010104; [272] D. Nikbin and A. Abushakra, “Internet of Things Adoption: Empirical Evidence from an Emerging Country,” in Communications in Computer and Information Science, 2019, pp. 348–352. doi:10.1007/978-3-030-21451-7_30; [273] B. Sivathanu, “Adoption of internet of things (IOT) based wearables for healthcare of older adults – a behavioural reasoning theory (BRT) approach,” Journal of Enabling Technologies, vol. 12, no. 4, pp. 169–185, Dec. 2018, doi:10.1108/JET-12-2017-0048; [274] A. M. Al-Momani, M. A. Mahmoud, and M. S. Ahmad, “Factors that Influence the Acceptance of Internet of Things Services by Customers of Telecommunication Companies in Jordan,” Journal of Organizational and End User Computing, vol. 30, no. 4, pp. 51–63, Oct. 2018, doi:10.4018/JOEUC.2018100104.; [275] E. E. Grandon, A. A. Ibarra, S. A. Guzman, P. Ramirez-Correa, and J. Alfaro-Perez, “Internet of Things: Factors that influence its adoption among Chilean SMEs,” in 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Jun. 2018, vol. 2018-June, pp. 1–6. doi:10.23919/CISTI.2018.8399183; [276] M. Tu, “An exploratory study of Internet of Things (IoT) adoption intention in logistics and supply chain management,” The International Journal of Logistics Management, vol. 29, no. 1, pp. 131–151, Feb. 2018, doi:10.1108/IJLM-11-2016-0274; [277] M. Trujillo Suárez, J. J. Aguilar, and C. Neira, “Los métodos más característicos del diseño centrado en el usuario -DCU-, adaptados para el desarrollo de productos materiales,” Iconofacto, vol. 12, no. 19, pp. 215–236, 2016, doi:10.18566/iconofact.v12.n19.a09.; [278] M. Greer and H. S. Harris, “User-Centered Design as a Foundation for Effective Online Writing Instruction,” Computers and Composition, vol. 49, no. 2017, pp. 14–24, 2018, doi:10.1016/j.compcom.2018.05.006; [278] M. Greer and H. S. Harris, “User-Centered Design as a Foundation for Effective Online Writing Instruction,” Computers and Composition, vol. 49, no. 2017, pp. 14–24, 2018, doi:10.1016/j.compcom.2018.05.006.; [279] Y. Han and M. Moghaddam, “Analysis of sentiment expressions for user-centered design,” Expert Systems with Applications, vol. 171, p. 114604, 2021, doi: https://doi.org/10.1016/j.eswa.2021.114604.; [280] T. Xu, Study on user experience design of mobile application interfaces, vol. 1018. Springer International Publishing, 2020. doi:10.1007/978-3-030-25629-6_80; [281] 2019 ISO Standard, “International Standard interactive systems,” Iso 9241-210:2019, vol. 2019, 2019.; [282] O. Ayalon and E. Toch, “User-Centered Privacy-by-Design: Evaluating the Appropriateness of Design Prototypes,” International Journal of Human Computer Studies, vol. 154, no. March, p. 102641, 2021, doi:10.1016/j.ijhcs.2021.102641; [283] M. François, F. Osiurak, A. Fort, P. Crave, and J. Navarro, “Usability and acceptance of truck dashboards designed by drivers: Two participatory design approaches compared to a user-centered design,” International Journal of Industrial Ergonomics, vol. 81, no. November 2019, p. 103073, 2021, doi:10.1016/j.ergon.2020.103073.; [284] A. C. Luis, T. E. M. Elizabeth, F. V. Jesús, R. U. M. Deyanira, and A. S. J., “Interacción HumanoComputadora,” pp. 195–232, 2016; [285] Ideo, “Diseño centrado en las personas,” 2019; [286] P. M. A. Desmet, H. Xue, and S. F. Fokkinga, “The Same Person Is Never the Same: Introducing MoodStimulated Thought/Action Tendencies for User-Centered Design,” She Ji, vol. 5, no. 3, pp. 167–187, 2019, doi:10.1016/j.sheji.2019.07.; [287] L. M. Kopf and J. Huh-Yoo, “A User-Centered Design Approach to Developing a Voice Monitoring System for Disorder Prevention,” Journal of Voice, vol. 3200, 2020, doi:10.1016/j.jvoice.2020.10.015; [288] L. Bu, C. H. Chen, K. K. H. Ng, P. Zheng, G. Dong, and H. Liu, “A user-centric design approach for smart product-service systems using virtual reality: A case study,” Journal of Cleaner Production, vol. 280, p. 124413, 2021, doi:10.1016/j.jclepro.2020.124413; [289] H. Khalajzadeh, T. Verma, A. J. Simmons, J. Grundy, M. Abdelrazek, and J. Hosking, “User-centred tooling for modelling of big data applications,” Proceedings - 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, MODELS-C 2020 - Companion Proceedings, pp. 31–35, 2020, doi:10.1145/3417990.3422004; [290] G. A. García-Mireles, M. Á. Moraga, and F. García, “Development of maturity models: A systematic literature review,” IET Seminar Digest, vol. 2012, no. 1, pp. 279–283, 2012, doi:10.1049/ic.2012.0036; [291] J. Wang and A. Moulden, “AI Trust Score: A User-Centered Approach to Building, Designing, and Measuring the Success of Intelligent Workplace Features,” Conference on Human Factors in Computing Systems - Proceedings, 2021, doi:10.1145/3411763.3443452.; [292] J. Escobar-Pérez and Á. Cuervo-Martínez, “Validez de contenido y juicio de expertos: una aproximación a su utilización,” Avances en medición, vol. 6, no. 1, pp. 27–36, 2008.; [293] G. C. Vázquez González, I. U. Jiménez Macías, and L. G. Juárez Hernández, “Construction-validation of the questionnaire: Maturity of knowledge management to educational innovation in universities,” Apertura, vol. 12, no. 1, Mar. 2020, doi:10.32870/Ap.v12n1.1767.; [294] J. Escobar and Á. Cuervo, “Validez de contenido y juicio de expertos: una aproximación a su utilización,” Polymer, 2008.; [295] J. S. Grant and L. L. Davis, “Selection and use of content experts for instrument development,” Research in Nursing & Health, vol. 20, no. 3, pp. 269–274, 1997, doi:10.1002/(sici)1098240x(199706)20:33.3.co;2-3; [296] R. Skjong and B. H. Wentworth, “Expert judgment and risk perception,” Proceedings of the International Offshore and Polar Engineering Conference, vol. 4, pp. 537–544, 2001.; [297] A. Raza, L. F. Capretz, and F. Ahmed, “An open source usability maturity model (OS-UMM),” Computers in Human Behavior, vol. 28, no. 4, pp. 1109–1121, 2012, doi:10.1016/j.chb.2012.01.018; [298] S. Beecham, T. Hall, C. Britton, M. Cottee, and A. Rainer, “Using an expert panel to validate a requirements process improvement model,” The journal of systems and software, vol. 76, pp. 251–275, 2005, doi:10.1016/j.jss.2004.06.004; [299] C. Shaoyong, T. Yirong, and L. Zhefu, “UNITA : A Reference Model of University IT Architecture,” ICCIS ’16: Proceedings of the 2016 International Conference on Communication and Information Systems, pp. 73–77, 2016, doi:10.1145/3023924.3023949; [300] H. Chaoui and I. Makdoun, “A new secure model for the use of cloud computing in big data analytics,” pp. 1–11, 2018, doi:10.1145/3018896.3018913; [301] S. Chaveesuk, P. Wutthirong, and W. Chaiyasoonthorn, “Cloud Computing Classroom Acceptance Model in Thailand Higher Education’s Institutes,” in Proceedings of the 2018 10th International Conference on Information Management and Engineering - ICIME 2018, 2018, pp. 141–145. doi:10.1145/3285957.3285989; [302] F. Nikolopoulos, “Using UTAUT2 for Cloud Computing Technology Acceptance Modeling,” no. 1995, 2017; [303] B. B. Rad, T. Diaby, and M. E. Rana, “Cloud Computing Adoption,” in Proceedings of the 2017 International Conference on E-commerce, E-Business and E-Government - ICEEG 2017, 2017, no. June, pp. 51–55. doi:10.1145/3108421.3108426; [304] E. H. Steele and I. R. Guzman, “Investigating the Role of Top Management and Institutional Pressures in Cloud Computing Adoption,” pp. 25–26, 2016.; [305] A. M. Shaaban, C. Schmittner, T. Gruber, G. Quirchmayr, and E. Schikuta, “CloudWoT - A Reference Model for Knowledge-based IoT Solutions,” 2018, doi:10.1145/3282373.3282400.; [306] M. Basingab, L. Rabelo, C. Rose, and E. Gutiérrez, “Business Modeling Based on Internet of Things : A Case Study of Predictive Maintenance Software Using ABS Model,” 2017, doi:10.1145/3018896.3018905; [307] M.-C. Vega-Hernández, M.-C. Patino-Alonso, and M.-P. Galindo-Villardón, “Multivariate characterization of university students using the ICT for learning,” Computers & Education, vol. 121, pp. 124–130, Jun. 2018, doi:10.1016/j.compedu.2018.03.004.; [308] u-planner, “U-planner,” 2019; [309] Bizagi, “Bizagi,” 2019; [309] Bizagi, “Bizagi,” 2019.; [310] Analytikus, “Analytikus,”; [311] Y. Medina and Dewar. Rico-Bautista, “Modelo de gestión de servicios para la universidad de Pamplona: ITIL,” Scientia Et Technica, vol. XIV, no. 39, pp. 314–319, 2008; [312] Y. Medina-Cárdenas and D. Rico- Bautista, “Modelo de gestión basado en el ciclo de vida del servicio de la Biblioteca de Infraestructura de Tecnologías de Información ( ITIL ),” Revista Virtual Universidad Católica del Norte, no. 27, pp. 1–21, 2009.; [313] M. V Bueno-Delgado, P. Pavón-Marino, A. De-Gea-García, and A. Dolón-García, “The Smart University Experience: An NFC-Based Ubiquitous Environment,” in 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, 2012, pp. 799–804. doi:10.1109/IMIS.2012.110; [314] O. A. Shvetsova, “Smart education in high school: New perspectives in global world,” in Proceedings of the 2017 International Conference “Quality Management, Transport and Information Security, Information Technologies”, IT and QM and IS 2017, 2017, pp. 688–691. doi:10.1109/ITMQIS.2017.8085917.; [315] T. Savov, V. Terzieva, K. Todorova, and P. Kademova-Katzarova, “CONTEMPORARY TECHNOLOGY SUPPORT FOR EDUCATION,” CBU International Conference Proceedings, vol. 5, pp. 802–806, Sep. 2017, doi:10.12955/cbup.v5.1029.; [316] A. M. Shaaban, C. Schmittner, T. Gruber, G. Quirchmayr, and E. Schikuta, “CloudWoT - A Reference Model for Knowledge-based IoT Solutions,” 2018, doi:10.1145/3282373.3282400.; [317] S. Chen, Y. Tang, and Z. Li, “UNITA: A reference model of university IT architecture,” in ACM International Conference Proceeding Series, 2016, pp. 73–77. doi:10.1145/3023924.3023949; [318] E. Barrientos-Avendaño and Y. Areniz-Arévalo, “Universidad inteligente: Oportunidades y desafíos desde la Industria 4.0,” Revista Ingenio UFPSO, vol. 16, no. 1, 2019, doi:10.22463/2011642X.2343.; [319] E. Barrientos-Avendaño, Y. Areniz-Arevalo, L. A. Coronel-Rojas, F. Cuesta-Quintero, and D. RicoBautista, “Industry foray model 4.0 applied to the food company your gourmet bread sas: Strategy for rebirth in the COVID-19 (SARS-CoV-2) pandemic [Modelo de incursión en la industria 4.0 aplicado a la compañía alimenticia tu pan gourmet sas: estrategia para el rena,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E34, pp. 436–449, 2020.; [320] C. D. Guerrero and D. Rico-Bautista, “Center for excellence and internet acquisition of things: A commitment to competitiveness from alliances between government, academia and productive sector [Centro de excelencia y apropiación en internet de las cosas: Una apuesta a la competitividad desde,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E28, pp. 615–628, 202; [321] D. Mourtzis, E. Vlachou, and N. Milas, “Industrial Big Data as a Result of IoT Adoption in Manufacturing,” Procedia CIRP, vol. 55, pp. 290–295, 2016, doi:10.1016/j.procir.2016.07.038.; [322] I. C. Ehie and M. A. Chilton, “Understanding the influence of IT/OT Convergence on the adoption of Internet of Things (IoT) in manufacturing organizations: An empirical investigation,” Computers in Industry, vol. 115, p. 103166, Feb. 2020, doi:10.1016/j.compind.2019.103166.; [323] H. Xu, “Application of Cloud Computing Information Processing System in Network Education,” in International Conference on Applications and Techniques in Cyber Intelligence, ATCI 2019, vol. 1017, A. J.H., C. K.-K.R., I. R., X. Z., and A. M., Eds. Dianchi College of Yunnan University, Kunming, 650000, China: Springer Verlag, 2020, pp. 1809–1815. doi:10.1007/978-3-030-25128-4_238; [324] Y. C. Medina Cárdenas, Y. Areniz Arévalo, and D. W. Rico Bautista, Modelo estratégico para la gestión tecnológica en la organización: plan táctico de la calidad (ITIL & ISO 20000), vol. 1. Instituto Tecnológico Metropolitano, 2016. doi:10.22430/9789585414006; [325] Y. Medina-Cárdenas and D. Rico-Bautista, “Model of Administration of Services for the Universidad of Pamplona: ITIL,” Scientia Et Technica Scientia et Technica Año XIV, vol. 14, no. 39, pp. 314–319, 2008; [326] R. D. Raut, P. Priyadarshinee, B. B. Gardas, and M. K. Jha, “Analyzing the factors influencing cloud computing adoption using three stage hybrid SEM-ANN-ISM (SEANIS) approach,” Technological Forecasting and Social Change, vol. 134, no. July 2017, pp. 98–123, Sep. 2018, doi:10.1016/j.techfore.2018.05.020; [327] R. El-Gazzar, E. Hustad, and D. H. Olsen, “Understanding cloud computing adoption issues: A Delphi study approach,” Journal of Systems and Software, vol. 118, pp. 64–84, Aug. 2016, doi:10.1016/j.jss.2016.04.061; [328] J. Cecil, “A Collaborative Manufacturing Approach supporting adoption of IoT Principles in Micro Devices Assembly,” Procedia Manufacturing, vol. 26, pp. 1265–1277, 2018, doi:10.1016/j.promfg.2018.07.141; [329] W. Hao, Z. Huang, and L. Shi, “Research on college students’ ideological and political education and daily performance evaluation model based on big data,” Journal of Advanced Oxidation Technologies, vol. 21, no. 2, 2018, doi:10.26802/jaots.2018.01625; [330] Y. H. Kim and J. Ahn, “A Study on the Application of Big Data to the Korean College Education System,” Procedia Computer Science, vol. 91, no. Itqm 2016, pp. 855–861, 2016, doi:10.1016/j.procs.2016.07.096; [331] T. G. Ramos, J. C. F. Machado, and B. P. V. Cordeiro, “Primary Education Evaluation in Brazil Using Big Data and Cluster Analysis,” Procedia Computer Science, vol. 55, no. Itqm, pp. 1031–1039, 2015, doi:10.1016/j.procs.2015.07.061; [332] R. H. Hamilton and W. A. Sodeman, “The questions we ask: Opportunities and challenges for using big data analytics to strategically manage human capital resources,” Business Horizons, vol. 63, no. 1, pp. 85–95, Jan. 2020, doi:10.1016/j.bushor.2019.10.001; [333] J. Wu, H. Li, L. Liu, and H. Zheng, “Adoption of big data and analytics in mobile healthcare market: An economic perspective,” Electronic Commerce Research and Applications, vol. 22, pp. 24–41, Mar. 2017, doi:10.1016/j.elerap.2017.02.002; [334] Z. Allam and Z. A. Dhunny, “On big data, artificial intelligence and smart cities,” Cities, vol. 89, no. January, pp. 80–91, Jun. 2019, doi:10.1016/j.cities.2019.01.032; [335] M. A. Goralski and T. K. Tan, “Artificial intelligence and sustainable development,” The International Journal of Management Education, vol. 18, no. 1, p. 100330, Mar. 2020, doi:10.1016/j.ijme.2019.100330.; [336] C. R. Deig, A. Kanwar, and R. F. Thompson, “Artificial Intelligence in Radiation Oncology,” Hematology/Oncology Clinics of North America, vol. 33, no. 6, pp. 1095–1104, Dec. 2019, doi:10.1016/j.hoc.2019.08.003; [337] M. Chassignol, A. Khoroshavin, A. Klimova, and A. Bilyatdinova, “Artificial Intelligence trends in education: a narrative overview,” Procedia Computer Science, vol. 136, pp. 16–24, 2018, doi:10.1016/j.procs.2018.08.233; [338] E. Barrientos-Avendaño, L. A. Coronel-Rojas, F. Cuesta-Quintero, and D. Rico-Bautista, “Store-tostore sales management system: Applying artificial intelligence techniques [Sistema de administración de ventas tienda a tienda: Aplicando técnicas de inteligencia artificial],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E27, pp. 677–689, 2020.; [339] A. Kankanhalli, Y. Charalabidis, and S. Mellouli, “IoT and AI for Smart Government: A Research Agenda,” Government Information Quarterly, vol. 36, no. 2, pp. 304–309, Apr. 2019, doi:10.1016/j.giq.2019.02.003; [340] A. Y. Sheikh and J. I. Fann, “Artificial Intelligence,” Thoracic Surgery Clinics, vol. 29, no. 3, pp. 339– 350, Aug. 2019, doi:10.1016/j.thorsurg.2019.03.011; [341] A. Haleem, M. Javaid, and I. H. Khan, “Current status and applications of Artificial Intelligence (AI) in medical field: An overview,” Current Medicine Research and Practice, vol. 9, no. 6, pp. 231–237, Nov. 2019, doi:10.1016/j.cmrp.2019.11.005; [342] T. Granollers i Saltiveri, “MPIu+a. Una metodología que integra la Ingeniería del Software, la Interacción Persona-Ordenador y la Accesibilidad en el contexto de equipos de desarrollo multidisciplinares,” 2004; [343] U. de Lleida, “Departament de Llenguatges i Sistemes Informàtics Universitat de Lleida Lleida, julio 2004,” Screen, 2004; [344] V. De Freitas, “Model of Maturity in Knowledge Management System, From a Holistic Approach,” Negotium, vol. Revista Ci, pp. 5–31, 2018; [345] F. RICHARDSON and G. LEóN, “Instrumento para determinar el nivel de madurez en la adopción de tecnologías escolar en la educación primaria en escuelas públicas de la República Dominicana,” 2019.; [346] L. C. Ñungo Pinzón, B. Torres González, and J. I. Palacios Osma, “Modelo de nivel de madurez para los procesos de emprendimiento en las pymes colombianas,” Ingeniería Solidaria, vol. 14, no. 26, Dec. 2018, doi:10.16925/in.v14i26.2456.; [347] L. v. Glukhova, S. D. Syrotyuk, A. A. Sherstobitova, and S. v. Pavlova, “Smart University Development Evaluation Models,” in Smart Innovation, Systems and Technologies, vol. 144, Springer Science and Business Media Deutschland GmbH, 2019, pp. 539–549. doi:10.1007/978-981-13-8260-4_47; [348] D. Lee, J. Gu, and H. Jung, “Process maturity models: Classification by application sectors and validities studies,” Journal of Software: Evolution and Process, vol. 31, no. 4, p. e2161, Apr. 2019, doi:10.1002/smr.2161.; [349] S. Beecham, T. Hall, and A. Rainer, “Defining a Requirements Process Improvement Model,” Software Quality Journal, vol. 13, no. 3, pp. 247–279, Sep. 2005, doi:10.1007/s11219-005-1752-9.; [350] U. Benjamín et al., “EVALUACIÓN DE LA MADUREZ DE LOS PRINCIPIOS LEAN EN PROYECTOS DE CONSTRUCCIÓN,” 2016; [351] M. Gina and P. M. Gongora, “FRAMEWORK DE GESTIÓN DE TECNOLOGÍAS DE INFORMACIÓN PARA CIUDADES INTELIGENTES: CASO COLOMBIANO TESIS DOCTORAL,” Barranquilla, 2017.; [352] L. C. Ñungo Pinzón, B. Torres González, and J. I. Palacios Osma, “Modelo de nivel de madurez para los procesos de emprendimiento en las pymes colombianas,” Ingeniería Solidaria, vol. 14, no. 26, 2018, doi:10.16925/in.v14i26.2456; [353] R. Morales Fernandez, J. A. Brieto Rojas, and J. A. Villaseñor Marcial, “CMMI - Capability Maturity Model Integration,” MIPRO 2008 - 31st International Convention Proceedings: Digital Economy - 5th ALADIN, Information Systems Security, Business Intelligence Systems, Local Government and Student Papers, vol. 5, no. Cmmi, pp. 229–234, 2008.; [354] E. Pérez Mergarejo, I. Pérez Vergara, and Y. Rodriguez Ruiz, “Modelos de madurez y su idoneidad para aplicar en pequeñas y medianas empresas / Maturity models and the suitability of its application in small and medium enterprises,” Ingeniería Industrial, vol. XXXV, no. 2, pp. 146–158, 20; [355] R. Galeano, “Diseño Hipermedia centrado en el usuario,” Universidad Pontificia Bolivariana, vol. 2, no. 4, pp. 1–15, 2008; [356] T. Granollers, “Diseño Centrado en el Usuario (DCU). El modelo MPlu+a,” p. 71, 2013; [357] M. Garreta Domingo and E. Mor Pera, “Diseño centrado en el usuario (I). Introducción,” El Profesional de la Informacion, vol. 12, no. 1, pp. 52–54, 2003, doi:10.1076/epri.12.1.52.19713.; [358] L. Perurena Cancio and M. Moráguez Bergues, “Usabilidad de los sitios Web, los métodos y las técnicas para la evaluación,” Usabilidad de los sitios Web, los métodos y las técnicas para la evaluación, vol. 24, no. 2, pp. 176–194, 2013; [359] E. E. Grandon, A. A. Ibarra, S. A. Guzman, P. Ramirez-Correa, and J. Alfaro-Perez, “Internet of Things: Factors that influence its adoption among Chilean SMEs,” in 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Jun. 2018, pp. 1–6. doi:10.23919/CISTI.2018.8399183.; [360] F. Authors, “An exploratory study of Internet of Things ( IoT ) adoption intention in logistics and supply chain management - a mixed research approach,” 2016; [361] P. Brous, M. Janssen, and P. Herder, “The dual effects of the Internet of Things ( IoT ): A systematic review of the benefits and risks of IoT adoption by organizations,” International Journal of Information Management, no. May, pp. 1–17, 2019, doi:10.1016/j.ijinfomgt.2019.05.008; [362] H. Shaikh, Z. A. Mahar, and A. Raza, “A Conceptual Framework for Determining Acceptance of Internet of Things ( IoT ) in Higher Education Institutions of Pakistan,” 2019 International Conference on Information Science and Communication Technology (ICISCT), pp. 1–5, 2019.; [363] M. Mital, P. Choudhary, V. Chang, A. Papa, and A. K. Pani, “Technological Forecasting & Social Change Adoption of Internet of Things in India : A test of competing models using a structured equation modeling approach,” Technological Forecasting & Social Change, pp. 1–8, 2017, doi:10.1016/j.techfore.2017.03.001; [364] S. Kang, H. B. Rn, E. Jung, and H. Hwang, “Survey on the demand for adoption of Internet of Things ( IoT ) -based services in hospitals : Investigation of nurses ’ perception in a tertiary university hospital,” Applied Nursing Research, vol. 47, no. May 2018, pp. 18–23, 2019, doi:10.1016/j.apnr.2019.03.005; [365] F. Authors, “Adoption of internet of things ( IOT ) based wearables for elderly healthcare – a behavioural reasoning theory ( BRT ) approach,” 2018, doi:10.1108/JET-12-2017-0048.; [366] R. BaÅ¡ková, Z. Struková, and M. Kozlovská, “Construction Cost Saving Through Adoption of IoT Applications in Concrete Works,” Lecture Notes in Civil Engineering, vol. 47, pp. 452–459, 2020, doi:10.1007/978-3-030-27011-7_57; [367] Y. Kao, K. Nawata, and C. Huang, “An Exploration and Confirmation of the Factors Influencing Adoption of IoT-Based Wearable Fitness Trackers,” 2019.; [368] M. Mital, P. Choudhary, V. Chang, A. Papa, and A. K. Pani, “Technological Forecasting & Social Change Adoption of Internet of Things in India : A test of competing models using a structured equation modeling approach,” Technological Forecasting & Social Change, pp. 1–8, 2017, doi:10.1016/j.techfore.2017.03.001; [369] M. Fahmideh and D. Zowghi, “An exploration of IoT platform development,” Information Systems, vol. 87, p. 101409, 2020, doi:10.1016/j.is.2019.06.005; [370] S. Kang, H. B. Rn, E. Jung, and H. Hwang, “Survey on the demand for adoption of Internet of Things ( IoT ) -based services in hospitals : Investigation of nurses ’ perception in a tertiary university hospital,” Applied Nursing Research, vol. 47, no. May 2018, pp. 18–23, 2019, doi:10.1016/j.apnr.2019.03.005; [371] M. Al-Emran, S. I. Malik, and M. N. Al-Kabi, “A Survey of Internet of Things (IoT) in Education: Opportunities and Challenges,” Studies in Computational Intelligence, vol. 846, pp. 197–209, 2020, doi:10.1007/978-3-030-24513-9_12; [372] H. Shaikh, Z. A. Mahar, and A. Raza, “A Conceptual Framework for Determining Acceptance of Internet of Things ( IoT ) in Higher Education Institutions of Pakistan,” 2019 International Conference on Information Science and Communication Technology (ICISCT), pp. 1–5, 2019.; [373] R. Scherer, F. Siddiq, and J. Tondeur, “The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education,” Computers and Education, vol. 128, pp. 13–35, 2019, doi:10.1016/j.compedu.2018.09.009.; [374] Y. S. Kao, K. Nawata, and C. Y. Huang, “An exploration and confirmation of the factors influencing adoption of IoT-basedwearable fitness trackers,” International Journal of Environmental Research and Public Health, vol. 16, no. 18, 2019, doi:10.3390/ijerph16183227.; [375] P. K. Paul, “Usability engineering and hci for promoting root-level social computation and informatics practice: A possible academic move in the indian perspective,” International Journal of Asian Business and Information Management, vol. 12, no. 2, pp. 96–109, 2021, doi:10.4018/IJABIM.20210401.oa6; [376] M. A. Castaño González, “Índice de madurez de transformación digital de las empresas Colombianas,” Cintel, pp. 1–36, 2016; [377] P. Pinheiro, M. Aparicio, and C. Costa, “Adoption of cloud computing systems,” in Proceedings of the International Conference on Information Systems and Design of Communication - ISDOC ’14, 2014, pp. 127–131. doi:10.1145/2618168.2618188; [378] H. Xu, International Conference on Applications and Techniques in Cyber Intelligence ATCI 2019, vol. 1017. Cham: Springer International Publishing, 2020. doi:10.1007/978-3-030-25128-4; [379] B. B. Rad, T. Diaby, and M. E. Rana, “Cloud Computing Adoption,” in Proceedings of the 2017 International Conference on E-commerce, E-Business and E-Government - ICEEG 2017, 2017, pp. 51– 55. doi:10.1145/3108421.3108426; [380] B. B. Rad, T. Diaby, and M. E. Rana, “Cloud Computing Adoption,” in Proceedings of the 2017 International Conference on E-commerce, E-Business and E-Government - ICEEG 2017, 2017, pp. 51– 55. doi:10.1145/3108421.3108426; [381] H. Vasudavan, K. Shanmugam, and H. A. Ahmada, “User Perceptions in Adopting Cloud Computing in Autonomous Vehicle,” in Proceedings of the 6th International Conference on Information Technology: IoT and Smart City - ICIT 2018, 2018, pp. 151–156. doi:10.1145/3301551.3301583; [382] D. S. Jat, M. S. Haodom, and A. Peters, “Relevance of Cloud Computing in Namibia,” in Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies - ICTCS ’16, 2016, pp. 1–4. doi:10.1145/2905055.2905301; [383] T. Branco, F. de Sá-Soares, and A. L. Rivero, “Key Issues for the Successful Adoption of Cloud Computing,” Procedia Computer Science, vol. 121, pp. 115–122, 2017, doi:10.1016/j.procs.2017.11.016.; [384] R. D. Raut, P. Priyadarshinee, B. B. Gardas, and M. K. Jha, “Analyzing the factors influencing cloud computing adoption using three stage hybrid SEM-ANN-ISM (SEANIS) approach,” Technological Forecasting and Social Change, vol. 134, no. July 2017, pp. 98–123, Sep. 2018, doi:10.1016/j.techfore.2018.05.020; [385] R. El-Gazzar, E. Hustad, and D. H. Olsen, “Understanding cloud computing adoption issues: A Delphi study approach,” Journal of Systems and Software, vol. 118, pp. 64–84, Aug. 2016, doi:10.1016/j.jss.2016.04.061; [386] D. S. Jat, M. S. Haodom, and A. Peters, “Relevance of Cloud Computing in Namibia,” in Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies - ICTCS ’16, 2016, pp. 1–4. doi:10.1145/2905055.29053; [387] M. Al-Ruithe, E. Benkhelifa, and K. Hameed, “Current State of Cloud Computing Adoption – An Empirical Study in Major Public Sector Organizations of Saudi Arabia (KSA),” Procedia Computer Science, vol. 110, pp. 378–385, 2017, doi:10.1016/j.procs.2017.06.080; [388] O. Sabri, “Measuring is Success Factors of Adopting Cloud Computing from Enterprise Overview,” in Proceedings of the The International Conference on Engineering & MIS 2015 - ICEMIS ’15, 2015, pp. 1–5. doi:10.1145/2832987.2832993; [389] F. Alharbi, A. Atkins, and C. Stanier, “Cloud Computing Adoption Readiness Assessment in Saudi Healthcare Organisations : A Strategic View,” 2017.; [390] U. Nasir and M. Niazi, “Cloud computing adoption assessment model (CAAM),” in Proceedings of the 12th International Conference on Product Focused Software Development and Process Improvement - Profes ’11, 2011, vol. 44, no. 0, pp. 34–37. doi:10.1145/2181101.2181110; [391] J. Cecil, “A Collaborative Manufacturing Approach supporting adoption of IoT Principles in Micro Devices Assembly,” Procedia Manufacturing, vol. 26, pp. 1265–1277, 2018, doi:10.1016/j.promfg.2018.07.141.; [392] R. F. El-gazzar, “An Overview of Cloud Computing Adoption Challenges in the Norwegian Context,” 2014.; [393] R. F. El-gazzar, “An Overview of Cloud Computing Adoption Challenges in the Norwegian Context,” 2014; [394] H. Hassan, “ScienceDirect ScienceDirect Organisational factors affecting cloud computing adoption in small and medium enterprises ( SMEs ) in service sector,” Procedia Computer Science, vol. 121, pp. 976–981, 2017, doi:10.1016/j.procs.2017.11.126; [395] I. Arpaci, “Antecedents and consequences of cloud computing adoption in education to achieve knowledge management,” Computers in Human Behavior, vol. 70, pp. 382–390, May 2017, doi:10.1016/j.chb.2017.01.024; [396] H. M. Sabi, F. E. Uzoka, K. Langmia, and F. N. Njeh, “Conceptualizing a model for adoption of cloud computing in education,” International Journal of Information Management, vol. 36, no. 2, pp. 183– 191, Apr. 2016, doi:10.1016/j.ijinfomgt.2015.11.010; [397] F. Gao and A. Sunyaev, “International Journal of Information Management Context matters : A review of the determinant factors in the decision to adopt cloud computing in healthcare,” International Journal of Information Management, vol. 48, no. February, pp. 120–138, 2019, doi:10.1016/j.ijinfomgt.2019.02.002.; [398] K. Njenga, L. Garg, A. K. Bhardwaj, V. Prakash, and S. Bawa, “The cloud computing adoption in higher learning institutions in Kenya: Hindering factors and recommendations for the way forward,” Telematics and Informatics, vol. 38, no. May, pp. 225–246, May 2019, doi:10.1016/j.tele.2018.10.007; [399] P. Priyadarshinee, R. D. Raut, M. K. Jha, and B. B. Gardas, “Understanding and predicting the determinants of cloud computing adoption: A two staged hybrid SEM - Neural networks approach,” Computers in Human Behavior, vol. 76, pp. 341–362, Nov. 2017, doi:10.1016/j.chb.2017.07.027.; [400] W. Hao, Z. Huang, and L. Shi, “Research on college students’ ideological and political education and daily performance evaluation model based on big data,” Journal of Advanced Oxidation Technologies, vol. 21, no. 2, 2018, doi:10.26802/jaots.2018.01625.; [401] J. Wu, H. Li, L. Liu, and H. Zheng, “Adoption of big data and analytics in mobile healthcare market: An economic perspective,” Electronic Commerce Research and Applications, vol. 22, pp. 24–41, Mar. 2017, doi:10.1016/j.elerap.2017.02.002; [402] Y. H. Kim and J. Ahn, “A Study on the Application of Big Data to the Korean College Education System,” Procedia Computer Science, vol. 91, no. Itqm 2016, pp. 855–861, 2016, doi:10.1016/j.procs.2016.07.096.; [403] M. Shorfuzzaman, M. S. Hossain, A. Nazir, G. Muhammad, and A. Alamri, “Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment,” Computers in Human Behavior, vol. 92, pp. 578–588, Mar. 2019, doi:10.1016/j.chb.2018.07.002; [403] M. Shorfuzzaman, M. S. Hossain, A. Nazir, G. Muhammad, and A. Alamri, “Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment,” Computers in Human Behavior, vol. 92, pp. 578–588, Mar. 2019, doi:10.1016/j.chb.2018.07.002. [404] T. G. Ramos, J. C. F. Machado, and B. P. V. Cordeiro, “Primary Education Evaluation in; [404] T. G. Ramos, J. C. F. Machado, and B. P. V. Cordeiro, “Primary Education Evaluation in Brazil Using Big Data and Cluster Analysis,” Procedia Computer Science, vol. 55, no. Itqm, pp. 1031–1039, 2015, doi:10.1016/j.procs.2015.07.061.; [405] R. H. Hamilton and W. A. Sodeman, “The questions we ask: Opportunities and challenges for using big data analytics to strategically manage human capital resources,” Business Horizons, vol. 63, no. 1, pp. 85–95, Jan. 2020, doi:10.1016/j.bushor.2019.10.001; [406] F. P. S. Surbakti, W. Wang, M. Indulska, and S. Sadiq, “Factors influencing effective use of big data: A research framework,” Information & Management, vol. 57, no. 1, p. 103146, Jan. 2020, doi:10.1016/j.im.2019.02.001; [407] U. D. Kumar, Analytics Education Ms Purvi Tiwari , Research Associates at DCAL , Indian Institute of Management. Elsevier Ltd, 2019. doi:10.1016/j.iimb.2019.10.014; [408] M. Zapata-ros, “La universidad inteligente La transición de los LMS a los Sistemas Inteligentes de Aprendizaje en Educación Superior The smart university,” vol. 57, no. 10, pp. 1–43, 2018.; [409] N. Mehta, A. Pandit, and S. Shukla, “Transforming Healthcare with Big Data Analytics and Artificial Intelligence: A Systematic Mapping Study,” Journal of Biomedical Informatics, p. 103311, 2019, doi:10.1016/j.jbi.2019.103311.; [410] J. A. Carrillo Ruiz et al., “Big Data En Los Entornos De Defensa Y Seguridad,” 2003.; [411] A. S. Leví, “Aproximación al Big Data . Análisis de su posible utilización en la universidad pública,” 2018; [412] Z. Allam and Z. A. Dhunny, “On big data, artificial intelligence and smart cities,” Cities, vol. 89, no. January, pp. 80–91, Jun. 2019, doi:10.1016/j.cities.2019.01.032; [413] M. A. Goralski and T. K. Tan, “Artificial intelligence and sustainable development,” The International Journal of Management Education, vol. 18, no. 1, p. 100330, Mar. 2020, doi:10.1016/j.ijme.2019.100330; [414] C. R. Deig, A. Kanwar, and R. F. Thompson, “Artificial Intelligence in Radiation Oncology,” Hematology/Oncology Clinics of North America, vol. 33, no. 6, pp. 1095–1104, Dec. 2019, doi:10.1016/j.hoc.2019.08.003; [415] M. Chassignol, A. Khoroshavin, A. Klimova, and A. Bilyatdinova, “Artificial Intelligence trends in education: a narrative overview,” Procedia Computer Science, vol. 136, pp. 16–24, 2018, doi:10.1016/j.procs.2018.08.233; [416] R. Bajaj and V. Sharma, “ScienceDirect ScienceDirect Smart Education with artificial intelligence based determination of Smart Education with artificial intelligence learning styles based determination of learning styles,” Procedia Computer Science, vol. 132, pp. 834–842, 2018, doi:10.1016/j.procs.2018.05.095; [417] A. Kankanhalli, Y. Charalabidis, and S. Mellouli, “IoT and AI for Smart Government: A Research Agenda,” Government Information Quarterly, vol. 36, no. 2, pp. 304–309, Apr. 2019, doi:10.1016/j.giq.2019.02.003; [418] A. Y. Sheikh and J. I. Fann, “Artificial Intelligence,” Thoracic Surgery Clinics, vol. 29, no. 3, pp. 339– 350, Aug. 2019, doi:10.1016/j.thorsurg.2019.03.011; [419] A. Blandford, “education : the potential offered by artificial intellige e tech s,” pp. 212–222, 1990; [420] A. Haleem, M. Javaid, and I. H. Khan, “Current status and applications of Artificial Intelligence (AI) in medical field: An overview,” Current Medicine Research and Practice, vol. 9, no. 6, pp. 231–237, Nov. 2019, doi:10.1016/j.cmrp.2019.11.005.; [421] I. y U. Ministerio de Ciencia, “Estrategia Española De I+D+I En Inteligencia Artificial,” p. 48, 2019; [422] J. G. Sierra Llorente, Y. A. Palmezano Córdoba, and B. S. Romero Mora, “CAUSAS QUE DETERMINAN LAS DIFICULTADES DE LA INCORPORACIÓN DE LAS TIC EN LAS AULAS DE CLASES - Causes that determine the difficulties in the onboarding process of ICT in classrooms,” Panorama, vol. 12, no. 22, pp. 31–41, 2018, doi:10.15765/pnrm.v12i22.1064; [423] MINTIC, “Análisis del sector dirección de gobierno digital,” Ministerio de las tecnologías de la información, vol. 57, no. 1, p. 31, 2019.; [424] H. A. Botello Peñaloza, O. E. Contreras Pacheco, and P. Avella. A. Cecilia, “Análisis empresarial de la influencia de las TIC en el desempeño de las empresas de servicios en Colombia,” Panorama, vol. 4, no. 8, pp. 3–15, 2013, doi:10.15765/pnrm.v4i8.57.; [425] M. E. Rojas Salgado, “Los recursos tecnológicos como soporte para la enseñanza de las ciencias naturales - Technological resources as support in natural sciences teaching,” Hamut’Ay, vol. 4, no. 1, p. 85, 2017, doi:10.21503/hamu.v4i1.1403; [426] Universidad Santo Tomás, “Documento Marco Tecnologías de la Información y la Comunicación,” 2015.; [427] F. I. Díazgranados et al., Uso De Recursos Educativos En Educación Superior. 2018. doi:10.2307/j.ctt2050wh0.7; [428] C. Alberto, F. Reboreda, C. Alberto, and F. Reboreda, “UD igital,” 2020; [429] D. Rico-Bautista, C. D. Guerrero, Y. Medina-Cárdenas, and A. García-Barreto, “Analysis of the potential value of technology: Case of universidad francisco de paula santander Ocaña [Análisis del valor potencial de la tecnología: Caso universidad francisco de paula santander Ocaña],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, no. E17, pp. 756–774, 2019; [430] D. Rico-Bautista and Y. Medina-Cárdenas, “Modelo institucional de autoevaluación y mejoramiento continuo: Proceso misional de investigación de la Universidad Francisco de Paula Santander Ocaña (UFPSO). Un caso de éxito,” Revista Iberoamericana CTS, vol. Abril, pp. 1–14, 2; [431] M. Arrieta, M. Sanguino, and C. Lobo, “Diseño de un plan estratégico de tecnologías de información para la Universidad Francisco de Paula Santander Ocaña,” 2015. [; [432] J. F. Rockart, “Chief executives define their own data needs.,” Harvard Business Review, 1979, doi: Article.; [433] M. Arrieta, M. Sanguino, and C. Lobo, “Diseño de un plan estratégico de tecnologías de información para la Universidad Francisco de Paula Santander Ocaña,” 2015.; [434] M. E. Porter, “Competitive Advantage,” Competitive Advantage: Creating and Sustaining Superior Performance. 1985. doi:10.1182/blood-2005-11-4354.; [435] D. S. Hidayat and D. I. Sensuse, “Knowledge Management Model for Smart Campus in Indonesia,” Data, vol. 7, no. 1, p. 7, Jan. 2022, doi:10.3390/data7010007; [436] V. Salazar Solano, J. M. Moreno Dena, I. S. Rojas Rodríguez, and L. A. Islas Olavarrieta, “Nivel de adopción de tecnologías de la información y la comunicación en empresas comercializadoras de mango en Nayarit – México,” Estudios Gerenciales, vol. 34, no. 148, pp. 292–304, Sep. 2018, doi:10.18046/j.estger.2018.148.2639; [437] S. Dalal, D. Khodyakov, R. Srinivasan, S. Straus, and J. Adams, “ExpertLens: A system for eliciting opinions from a large pool of non-collocated experts with diverse knowledge,” Technological Forecasting and Social; [438] S. Beecham, T. Hall, C. Britton, M. Cottee, and A. Rainer, “Using an expert panel to validate a requirements process improvement model,” Journal of Systems and Software, vol. 76, no. 3, pp. 251– 275, Jun. 2005, doi:10.1016/j.jss.2004.06.004.; [439] M. Kopyto, S. Lechler, H. A. von der Gracht, and E. Hartmann, “Potentials of blockchain technology in supply chain management: Long-term judgments of an international expert panel,” Technological Forecasting and Social Change, vol. 161, p. 120330, Dec. 2020, doi:10.1016/j.techfore.2020.120330; [440] L. A. Galicia Alarcón, J. A. Balderrama Trápaga, and R. Edel Navarro, “Content validity by experts judgment: Proposal for; [441] F. Sheikhshoaei, N. Naghshineh, S. Alidousti, M. Nakhoda, and H. Dehdarirad, “Development and validation of a measuring instrument for digital library maturity,” Library & Information Science Research, vol. 43, no. 3, p. 101101, Jul. 2021, doi:10.1016/j.lisr.2021.101101; [442] C. Á. Álvarez, “La relación teoría-práctica en los procesos de enseñanza-aprendizaje Theory-practice relationship in the processes of teaching and learning,” 2012.; [443] J. M. González-Varona, A. López-Paredes, J. Pajares, F. Acebes, and F. Villafáñez, “Aplicabilidad de los Modelos de Madurez de Business Intelligence a PYMES,” Direccion y Organizacion, no. 71, pp. 31–45, Jul. 2020, doi:10.37610/dyo.v0i71.577; [444] C. U. Españolas, “TIC 360o - Transformación Digital en la Universidad,” 2017; [445] L. F. Berdnikova, A. A. Sherstobitova, O. V. Schnaider, N. O. Mikhalenok, and O. E. Medvedeva, Smart university: Assessment models for resources and economic potential, vol. 144. Springer Singapore, 2019. doi:10.1007/978-981-13-8260-4_51; http://hdl.handle.net/20.500.12749/16730; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Availability: https://hdl.handle.net/20.500.12749/16730
-
11
Authors: et al.
Contributors: et al.
Subject Terms: Procesamiento de imagenes, Simulación, Energía, Sensores, Sistemas inteligentes, Inteligencia artificial, TIC, Cobertura 5G, Plataformas Web, Procesamiento digital de señales, Prototipos, Automatización, Control, Tecnologías remotas, Bioingeniería -- Congresos, conferencias, etc. -- Memorias, Energía -- Congresos, Sistemas de control inteligente -- Congresos, Procesamiento de señales -- Congresos, Automatización -- Congresos, etc. -- Memoria, Desarrollo de prototipos -- Congresos, Ingeniería biomédica -- Congresos, Tecnologías de la información y de la comunicación -- Congresos, Procesamiento digital de imágenes -- Congresos, Redes neuronales (Computadores) -- Congresos, Matemáticas -- Enseñanza -- Congresos, Inteligencia artificial -- Congresos
File Description: pdf; application/pdf
Relation: H. Y. Vivian-Ip, A. Abrishami, P. W. H. Peng, J. Wong, and F. Chung, “Predictors of Postoperative Pain and Analgesic Consumption: A Qualitative Systematic review”, Anesthesiology, vol. 111, no. 3, pp. 657–677, september 2009. https://doi.org/10.1097/ALN.0b013e3181aae87a.; O. L. Elvir-Lazo and P. F. White, “Postoperative pain management after ambulatory surgery: role of multimodal analgesia”, Anesthesiology Clinics, vol. 28, no. 2, pp. 217–224, june 2010. https://doi.org/10.1016/j.anclin.2010.02.011.; American Academy of Pain Medicine, “Get the facts on pain”. [Online]. Available at:http://www.painmed.org/patientcenter/facts-on-pain/.; P. J. Mathew and J. L. Mathew, “Assessment and management of pain in infants”,Postgraduate Medical Journal, vol. 79, no. 934, pp. 438–43, august 2003. http://dx.doi.org/10.1136/pmj.79.934.438.; M. Clarett, “Escalas de evaluación de dolor y protocolo de analgesia en terapia intensiva”,Clínica y Maternidad Suizo Argentina Instituto Argentino de Diagnóstico y Tratamiento, Buenos Aires, Argentina, 2012.; L. J. Duhn and J. M. Medves, “A systematic integrative review of infant pain assessmenttools”, Advance in Neonatal Care, vol. 4, no. 3, pp. 126–140, june 2004. 10.1016/j.adnc.2004.04.005.; R. Slater, A. Cantarella, L. Franck, J. Meek, and M. Fitzgerald, “How Well Do Clinical PainAssessment Tools Reflect Pain in Infants?” PLoS Medicine, vol. 5, no. 6, p. e129, june 2008. https://doi.org/10.1371/journal.pmed.0050129.; N. C. de Knegt. et al., “Behavioral Pain Indicators in People With Intellectual Disabilities: ASystematic Review”, The Journal of Pain, vol. 14, no. 9, pp. 885–896, september 2013. https://doi.org/10.1016/j.jpain.2013.04.016.; G. Zamzmi. et al., “An approach for automated multimodal analysis of infants’ pain”, in 201623rd International Conference on Pattern Recognition (ICPR), pp. 4148–4153, 2016.; V. Guruswamy, “Assessment of pain in nonverbal children”, Association of PaediatricAnaesthetists of Great Britain and Ireland, vol. APA Leeds, no. 41st Annual Scientific Meeting in Leeds, p. 33, 2014.; Registered Nurses’ Association of Ontario, Assessment and management of pain, vol. 3.Toronto, Canada, 2013.; R. Srouji, S. Ratnapalan, and S. Schneeweiss, “Pain in Children: Assessment andNonpharmacological Management”, International Journal of Pediatrics, july 2010. https://doi.org/10.1155/2010/474838.; K. Brand and A. Al-Rais, “Pain assessment in children”, Anaesthesia and Intensive CareMedicine, vol. 20, no. 6, pp. 314–317, june 2019. https://doi.org/10.1016/j.mpaic.2019.03.003.; D. Freund and B. N. Bolick, “Assessing a Child’s Pain”, AJN, American Journal of Nursing,vol. 119, no. 5, pp. 34–41, may 2019. 10.1097/01.NAJ.0000557888.65961.c6.; M. Pérez, G. A. Cavanzo Nisso, and F. Villavisán Buitrago, “Sistema embebido de detecciónde movimiento mediante visión artificial ", Visión Electrónica, vol. 12, no. 1, pp. 97-101, 2018. https://doi.org/10.14483/22484728.15087.; J. F. Pantoja Benavides, F. N. Giraldo Ramos, Y. S. Rubio Valderrama, and V. M. RojasLara, “Segmentación de imágenes utilizando campos aleatorios de Markov", Visión Electrónica, vol. 4, no. 2, pp. 5-16, 2010. https://doi.org/10.14483/22484728.432.; J. Forero C., C. Bohórquez, and V. H. Ruiz, “Medición automatizada de piezas torneadasusando visión artificial", Visión Electrónica, vol. 7, no. 2, pp. 36-44, 2013. https://doi.org/10.14483/22484728.5507.; S. Brahnam, C.-F. Chuang, R. S. Sexton, and F. Y. Shih, “Machine assessment of neonatalfacial expressions of acute pain”, Decision Support System, vol. 43, no. 4, pp. 1242–1254, august 2007. https://doi.org/10.1016/j.dss.2006.02.004.; A. Beltramini, K. Milojevic, and D. Pateron, “Pain Assessment in Newborns, Infants, andChildren”, Pediatric. Annals, vol. 46, no. 10, pp. e387–e395, october 2017. https://doi.org/10.3928/19382359-20170921-03.; X. Cong, J. M. McGrath, R. M. Cusson, and D. Zhang, “Pain Assessment and Measurementin Neonates: An Ipdated Review”, Advances in Neonatal Care, vol. 13, no. 6, pp. 379–395, december 2013. 10.1097/ANC.0b013e3182a41452.; C. L. von Baeyer and L. J. Spagrud, “Systematic review of observational (behavioral)measures of pain for children and adolescents aged 3 to 18 years”, Pain, vol. 127, no. 1–2, pp. 140–150, january 2007. https://doi.org/10.1016/j.pain.2006.08.014.; J. Zieliński, M. Morawska-Kochman, and T. Zatoński, “Pain assessment and managementin children in the postoperative period: A review of the most commonly used postoperative pain assessment tools, new diagnostic methods and the latest guidelines for postoperative pain therapy in children”, Advances in Clinical and Experimental Medicine, vol. 29, no. 3, pp. 365–374, febrary 2020. 10.17219/acem/112600.; C. Greco and C. Berde, “Pain Management in Children”, Gregory’s Pediatric Anesthesia,Wiley, pp. 929–954, 2020. https://doi.org/10.1002/9781119371533.ch37.; G. Zamzmi, R. Kasturi, D. Goldgof, R. Zhi, T. Ashmeade, and Y. Sun, “A Review ofAutomated Pain Assessment in Infants: Features, Classification Tasks, and Databases,” IEEE Reviews in Biomedical. Engineering, vol. 11, pp. 77–96, noviembre 2017. 10.1109/RBME.2017.2777907.; T. Voepel-Lewis, J. Zanotti, J. A. Dammeyer, and S. Merkel, “Reliability and Validity of theFace, Legs, Activity, Cry, Consolability Behavioral Tool in Assessing Acute Pain in Critically Ill Patients”, American Journal of Critical Care, vol. 19, no. 1, pp. 55–61, january 2010. https://doi.org/10.4037/ajcc2010624.; G. Guillen, “Digital Image Processing with Python and OpenCV”, Sensor Projects withRaspberry Pi, Springer, pp. 97–140, 2019. https://doi.org/10.1007/978-1-4842-5299-4_5.; Momtahina, R. Hossain, M. M. Rahman, and O. A. Tania, “Image Capturing and AutomaticFace Recognition”, Dhaka, Bangladesh, 2019.; O. Subea and G. Suciu, “Facial Analysis Method for Pain Detection”, InternationalConference on Future Access Enablers of Ubiquitous and Intelligent Infrastructures, pp. 167–180, 2019. https://doi.org/10.1007/978-3-030-23976-3_17.; D. E. King, “Dlib-ml: A Machine Learning Toolkit”, The Journal of Machine LearningResearch, vol. 10, pp. 1755–1758, december 2009. 10.1145/1577069.1755843.; K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”,Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. [Online]. Available at: https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html.; O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition”, Proceedings of theBritish Machine Vision Conference (BMVC), vol. 1, no. 3, p. 6, september 2015. https://dx.doi.org/10.5244/C.29.41.; S. J. Pan and Q. Yang, “A Survey on Transfer Learning”, IEEE Transactions on knowledgeand data engineering, vol. 22, no. 10, pp. 1345-1359, october 2010. 10.1109/TKDE.2009.191.; F. Zhuang. et al., “A Comprehensive Survey on Transfer Learning”, Proceedings of theIEEE, pp. 1-34, july 2019. 10.1109/JPROC.2020.3004555.; H.-W. Ng, V. D. Nguyen, V. Vonikakis, and S. Winkler, “Deep Learning for EmotionRecognition on Small Datasets using Transfer Learning”, Proceedings of the 2015 ACM on International Conference on Multimodal Interaction (ICMI ’15), pp. 443–449, november 2015. https://doi.org/10.1145/2818346.2830593.; W. Ding et al., “Audio and face video emotion recognition in the wild using deep neuralnetworks and small datasets”, Proceedings of the 18th ACM International Conference on Multimodal Interaction (ICMI ’1), pp. 506–513, october 2016. https://doi.org/10.1145/2993148.2997637.; K. Zhang, L. Tan, Z. Li, and Y. Qiao, “Gender and smile classification using deepconvolutional neural networks”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. [Online]. Available at: https://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/html/Zhang_Gender_and_Smile_CVPR_2016_paper.html.; V. Campos, A. Salvador, B. Jou, X. Giró-i-Nieto and B. Jou, “Diving Deep into Sentiment:Understanding Fine-tuned CNNs for Visual Sentiment Prediction”, Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia (ASM '15), pp. 57-62, october 2015. https://doi.org/10.1145/2813524.2813530.; H. Ding, S. K. Zhou, and R. Chellappa, “FaceNet2ExpNet: Regularizing a Deep FaceRecognition Net for Expression Recognition”, 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 118–126, june 2017. 10.1109/FG.2017.23.; F. Wang et al., “Regularizing face verification nets for pain intensity regression,” in 2017IEEE International Conference on Image Processing (ICIP), pp. 1087–1091, september 2017. 10.1109/ICIP.2017.8296449.; M. S. Hossain and G. Muhammad, “Emotion recognition using deep learning approach fromaudio–visual emotional big data,” Information Fusion, vol. 49, pp. 69–78, september 2019. https://doi.org/10.1016/j.inffus.2018.09.008.; “Una herramienta nueva de aprendizaje automático predice con exactitud el cáncer depróstataIndustriaMedimaging.es.”[Online].Available:https://www.medimaging.es/industria/articles/294777132/una-herramienta-nueva-de-aprendizaje-automatico-predice-con-exactitud-el-cancer-de-prostata.html. [Accessed: 06-Nov-2020].; N. A. Ram, “Clasificadores supervisados del cáncer de próstata a partir de imágenes deresonancia magnética en magnetic resonance images in T2 sequences .,” no. June, pp. 19–22, 2019.; Ramírez; N, Aparicio; E, Gómez; E, “SUPERVISED CLASSIFIERS OF PROSTATECANCER. A GEOMETRIC STUDY ON MAGNETIC RESONANCE IMAGES T2 WEIGHTED (T2W), BY DIFFUSION (DWI-ADC),” Congr. Int. electrónica, Control y telecomunicaciones, vol. 51, no. 1, p. 51, 2018.; J. C. Batlle et al., “Diagnóstico del cáncer de próstata mediante espectroscopia deresonancia magnetica endorectal,” Arch. Esp. Urol., vol. 59, no. 10, pp. 953–963, 2006.; "Diferenciación entre prostatitis y cáncer de próstata utilizando el sistema PI-RADS %7C.”[Online]. Available: https://cbseram.com/2016/06/22/diferenciacion-entre-prostatitis-y-cancer-de-prostata-utilizando-el-sistema-pi-rads/. [Accessed: 06-Nov-2020]; T. Hambrock et al., “Prospective assessment of prostate cancer aggressiveness using 3-Tdiffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort,” Eur. Urol., vol. 61, no. 1, pp. 177–184, 2012.; 7]“Cáncer de Próstata - SEOM: Sociedad Española de Oncología Médica © 2019.” [Online].Available: https://seom.org/info-sobre-el-cancer/prostata?showall=1. [Accessed: 06-Nov-2020].; A. B. Rosenkrantz and S. S. Taneja, “Radiologist, be aware: Ten pitfalls that confound theinterpretation of multiparametric prostate MRI,” American Journal of Roentgenology, vol. 202, no. 1. pp. 109–120, Jan-2014.; "The Radiology Assistant : Prostate Cancer - PI-RADS v2.” [Online]. Available:https://radiologyassistant.nl/abdomen/prostate/prostate-cancer-pi-rads-v2. [Accessed: 05-Nov-2020].; P. Guzmán F and A. Messina, “Cáncer de próstata, el problema del diagnóstico ¿Es laresonancia multiparamétrica de próstata la solución?,” Rev. Chil. Radiol., vol. 25, no. 2, pp. 60–66, 2019.; I. Robles, Identificacion de Biomarcadores Predictivos ,Pronosticos y de Respuesta alCancer de Prostata. 2018.; J. I. Díaz, “Matemáticas y Ciencias de la Salud,” pp. 65–67, 2005.; R. Cuocolo et al., “Machine learning applications in prostate cancer magnetic resonanceimaging,” Eur. Radiol. Exp., vol. 3, no. 1, 2019.; S. L. Goldenberg, G. Nir, and S. E. Salcudean, “A new era: artificial intelligence andmachine learning in prostate cancer,” Nat. Rev. Urol., vol. 16, no. 7, pp. 391–403, 2019.; S. Yoo, I. Gujrathi, M. A. Haider, and F. Khalvati, “Prostate Cancer Detection using DeepConvolutional Neural Networks,” Sci. Rep., vol. 9, no. 1, pp. 1–10, 2019.; I. Simon, C. R. Pound, A. W. Partin, J. Q. Clemens, and W. A. Christens-Barry, “Automatedimage analysis system for detecting boundaries of live prostate cancer cells,” Cytometry, vol. 31, no. 4, pp. 287–294, 1998.; S. Sarkar and S. Das, “A Review of Imaging Methods for Prostate Cancer Detection,”Biomed. Eng. Comput. Biol., vol. 7s1, p. BECB.S34255, 2016.; Christian, R., Juan, F. O., y-Alejandro, M. C. (2018). Detección precoz de cáncer depróstata: Controversias y recomendaciones actuales. Revista Médica Clínica Las Condes, 29(2), 128–135. https://doi.org/10.1016/j.rmclc.2018.02.013.; Hambrock, T., Hoeks, C., Hulsbergen-Van De Kaa, C., Scheenen, T., Futterer, J.,Bouwense, S., . Barentsz, J. (2012). Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. European Urology, 61(1), 177–184. https://doi.org/10.1016/j.eururo.2011.08.042.; Nguyen, K., Sabata, B., Jain, A. K. (2012). Prostate cancer grading: Gland segmentationand structural features. Pattern Recognition Letters, 33(7), 951–961. https://doi.org/10.1016/j.patrec.2011.10.001.; Ng, Y.-M. H. Diagnosis of sheet metal stamping processes base on 3-D thermal energydistribution. IEEE Transactions on automation science and engineering. Pp, 22-30. Jan. 2007.; Prakash Surya. 3D mapping of surface temperature using thermal stereo. 9th InternationalConference on Control, Automation, Robotics and Vision. ICARCV 2006. Pp, 1- 4. 5-8 Dec. 2006.; Fan, Y., X. Li, et al. (2009). "3D numerical simulation on temperature field and flow field inthe tuyere of blast furnace (BF) based on the fluent software." Tezhong Zhuzao Ji Youse Hejin/Special Casting and Nonferrous Alloys 29(4): 324-326.; Cornacchia, T. P. M., E. B. Las Casas, et al. (2010). "3D finite element analysis on estheticindirect dental restorations under thermal and mechanical loading." Medical and Biological Engineering and Computing: 1-7.; Chethan, Y. D., Ravindra, H. V., gowda, Y. T., & Bharath Kumar, S. (2015). Machine Visionfor Tool Status Monitoring in Turning Inconel 718 using Blob Analysis. In Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2015.07.124.; Siddhpura, A., & Paurobally, R. (2013). A review of flank wear prediction methods for toolcondition monitoring in a turning process. International Journal of Advanced Manufacturing Technology, 65(1–4), 371–393. https://doi.org/10.1007/s00170-012-4177-1.; Azimi, S. M., Britz, D., Engstler, M., & Fritz, M. (2018). Advanced Steel MicrostructureClassification by Deep Learning Methods. Scientifics Reports, 8, 1–14.; Kesireddy, A., & Mccaslin, S. (2015). Using Mathematica to Accurately Approximate thePercent Area of Grains and Phases in Digital Metallographic Images. Lecture Notes in Electrical Engineering, 313. https://doi.org/10.1007/978-3-319-06773-5.; Kesireddy, A., & McCaslin, S. (2015). Application of Image Processing Techniques to theIdentification of Phases in Steel Metallographich Specimens. Lecture Notes in Electrical Engineering, 312. https://doi.org/10.1007/978-3-319-06764-3.; E. J. Guerra Monterroza, “Reconocimiento de primitivas 3D, usando autocorrelación yANFIS", Visión Electrónica, vol. 1, no. 1, pp. 56-61,2008. https://revistas.udistrital.edu.co/index.php/visele/article/view/251.; Forero C., J., Bohórquez, C., & Ruiz, V. H. (2013). Medición automatizada de piezastorneadas usando visión artificial. Visión electrónica, 7(2), 36-44.https://doi.org/10.14483/22484728.5507.; Forero C., J., Gaitán, D., & Martínez, H. (2018). Recolector autónomo de bolas de tenismediante vision artificial. Visión electrónica, 7(2), 36-44. https://doi.org/10.14483/issn.2248-4728.; S. Andreo, «Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water,» Iaea Trs, Austria, 2000.; Sociedad Española de Oncología Médica SEOM, 2020. [En línea]. Available: https://seom.org/. [Último acceso: 03 2020].; Instituto Nacional de Salud, Observatorio Nacional de Salud, «Primer Informe ONS, aspectos relacionados con la frecuencia de uso de los servicios de salud, mortalidad y discapacidad en Colombia,» Imprenta Nacional de Colombia, Bogotá D.C., 2011.; F. SALVAT, J. M. FERNÁNDEZ-VAREA y J. SEMPAU, PENELOPE-2006: A code system for Monte Carlo simulation of electron and photon transport, Barcelona: OECD, 2006.; Computerized Imaging Reference Systems CIRS, Manual Tissue Simulation & Phantom Technology, Norfolk, Virginia, 2017.; A. Brosed, Fundamentos de física médica, vol. 1, Madrid: ADI, 2011.; H. Andreo, Fundamentals of ionizing radiation dosimetry, 2017.; Agostinelli, «Simulation toolkit, Nuclear instruments and methods in physics,» sciencedirect, vol. 506, nº 3, pp. 250- 303, 2003.; Ministerio de Salud y Protección Social, «https://www.minsalud.gov.co,» 25 Marzo 2020. [En línea]. Available: https://www.minsalud.gov.co/salud/publica/PET/Documents/Circular%2019.pdf.pdf. [Último acceso: 8 11 2020].; Asociación Colombiana de Infectologia, «Consenso colombiano de atención, diagnóstico y manejo de la infección,» Revista de la Asociación Colombiana de Infectologia, vol. 24, nº 3, pp. 20-21, 2020.; L. Gamboa O, «Atlas de mortalidad por cancer en Colombia,» Instituto Nacional de Cancerologia, vol. 1, nº 4, 2017.; G. de Fernicola, «Arsénico en el agua de bebida: un problema de salud pública,» Revista Brasileira de Ciências Farmacêuticas, vol. 39, nº 4, pp. 365-372, 2003.; J. C. Ramirez, «Tomografía computarizada por rayos X: fundamentos y actualidad,» Revista Ingeniería Biomédica, vol. 2, nº 4, 2008.; l.R.Raudales Díaz, «IMÁGENES DIAGNÓSTICAS: CONCEPTOS Y GENERALIDADES,» Revista Facultad Ciencias Médicas, vol. 1, nº 1, pp. 35-43, 2014.; A. P. Montenegro, «Repositorio Pontificia Universidad Javeriana,» 19 07 2019. [En línea]. Available: https://repository.javeriana.edu.co/handle/10554/44080. [Último acceso: 14 11 2020].; A. Amer, T. Marchant, J. Sykes, J. Czajka y C. Moore,, «Imaging doses from the Elekta Synergy X-ray cone beam CT system,» The British Journal of Radiology, vol. 80, nº 954, p.476–482, 2007.; CSN, «Interaccion de la radiación con la materia,» 2013. [En línea]. Available:http://csn.ciemat.es/MDCSN/recursos/ficheros_md/133100241_2411200913036.pdf.; A. Brosed, Fundamentos De Fisica Medica, vol. 2, ADI, 2012.; E. B. Podgorsak, Radiaton Physics for Medical Physicists, 2 ed., Springer, 2010.; CIRS, «IMRT Thorax Phantom,» [En línea]. Available: www.cirsinc.com. [Último acceso: 22 02 2020].; A. Castillo, «Caracteristicas del sistema de IGRT de ELEKTA,» Grupo CROASA, Granada.; Elekta AB, «Elekta Synergy Digital accelerator for advanced IGRT,» 2017. [En línea]. Available: https://www.elekta.com/radiotherapy/treatment-delivery-systems/elekta- synergy/. [Último acceso: 14 11 2020].; C. David, «Estudio de la viabilidad de las imágenes de CBCT para planeación de tratamientos,» Pontificia Universidad Javeriana, Bogotá, 2020.; J. Allison, «Geant4 Developments and Applications,» IEEE TRANSACTIONS ON NUCLEAR SCIENCE, vol. 53, 2006.; J DeMarco, «A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms,» PHYSICS IN MEDICINE ANDBIOLOGY, nº 50, p. 3989–4004, 2005.; O. Apostolakis, «The Geant4 Simulation Toolkit and Applications For the Geant4 Collaboration,» NATO Science for Peace and Security Series B: Physics and Biophysics, 2008.; C. Giraldo, «Desarrollo y aplicaciones de GEANT4 para radioterapia y microdosimetria en detectores y circuitos integrados,» 04 2011. [En línea]. Available: https://idus.us.es/handle/11441/15762. [Último acceso: 14 11 2020].; Geant4 Collaboration, Book For Application Developers, Geant4 Collaboration, 2017.; P. Montenegro, «Repositorio Pontificia Universidad Javeriana,» 19 07 2019. [En línea].Available: https://repository.javeriana.edu.co/handle/10554/44080. [Último acceso: 14 10 2020].; M. Mostazo Caro, «Interacción Radiación-Materia Conceptos B ásico,» de Técnicas Experimentales Avanzadas, 2013, pp. 4-6.; C. Vidal Silva and L. Pavesi Farriol, “Desarrollo De Un Sistema De Adquisición Y TratamientoDe Señales Electrocardiográficas,” Rev. Fac. Ing. - Univ. Tarapacá, vol. 13, no. 1, pp. 39–46, 2005, doi:10.4067/s0718-13372005000100005.; C. Correa Flórez, R. Bolaños Ocampo, and A. Escobar, “Análisis de esquemas de filtradoanálogo para señales ecg.,” Sci. Tech., vol. 5, no. 37, pp. 103–108, 2007.; Tortora, Gerald. Derrickson, Bryan. 2006. Principios de Anatomía y Fisiología. 11ª. Edición.Editorial Médica Panamericana. México DF. México. Cap 20.; M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep learning for cybersecurity intrusion detection: Approaches, datasets, and comparative study,” J. Inf. Secur. Appl., vol. 50, p. 102419, 2020, doi:10.1016/j.jisa.2019.102419.; G. Zeng, Y. He, Z. Yu, X. Yang, R. Yang, and L. Zhang, “Preparation of novel high copperions removal membranes by embedding organosilane-functionalized multi-walled carbon nanotube,” J. Chem. Technol. Biotechnol., vol. 91, no. 8, pp. 2322–2330, 2016, doi:10.1002/jctb.4820.; T. Park, Introduction to digital signal processing. Singapore: World Scientific, 2010.; M. O. Alzate, “Clasificación de Arritmias Cardíacas usando Transformada Waveleth - tesispregrado.pdf,” 2003.; A. D. E. Maquina and C. O. N. Interfaz, “Mediante Aprendizaje De Máquina Con Interfaz aUsuario Model of Dynamic Classification of Arrhythmias Cardiac By,” Leonardo, vol. 16, pp. 86–95, 2006.; A. Behrad and K. Faez, “New method for QRS-wave recognition in ECG using MART neuralnetwork,” ANZIIS 2001 - Proc. 7th Aust. New Zeal. Intell. Inf. Syst. Conf., no. November, pp. 291–296, 2001, doi:10.1109/ANZIIS.2001.974093.; M. Mitrokhin, A. Kuzmin, N. Mitrokhina, S. Zakharov, and M. Rovnyagin, “Deep learningapproach for QRS wave detection in ECG monitoring,” 11th IEEE Int. Conf. Appl. Inf. Commun. Technol. AICT 2017 - Proc., pp. 1–3, 2019, doi:10.1109/ICAICT.2017.8687235.; I. A. Tarmizi, S. S. N. A. S. Hassan, U. K. Ngah, and W. P. W. Ibrahim, “A journal of realpeak recognition of electrocardiogram (ECG) signals using neural network,” 2012 2nd Int. Conf. Digit. Inf. Commun. Technol. its Appl. DICTAP 2012, pp. 504–510, 2012, doi:10.1109/DICTAP.2012.6215429.; M. Llamedo and J. P. Martínez, “Clasificación de ECG basada en Características de Escala, Dirección y Ritmo,” Caseib 2009, pp. 2–5, 2009.; E. D. A. Botter, C. L. Nascimento, and T. Yoneyama, “A neural network with asymmetricbasis functions for feature extraction of ECG P waves,” IEEE Trans. Neural Networks, vol. 12, no. 5, pp. 1252–1255, 2001, doi:10.1109/72.950154.; S. H. El-Khafif and M. A. El-Brawany, “Artificial Neural Network-Based Automated ECGSignal Classifier,” ISRN Biomed. Eng., vol. 2013, pp. 1–6, 2013, doi:10.1155/2013/261917.; N. Maglaveras, T. Stamkopoulos, K. Diamantaras, C. Pappas, and M. Strintzis, “ECGpattern recognition and classification using non-linear transformations and neural networks: A review,” Int. J. Med. Inform., vol. 52, no. 1–3, pp. 191–208, 1998, doi:10.1016/S1386-5056(98)00138-5.; C. Rose-Gómez and M. Serna-Encinas, “Procesamiento del Electrocardiograma para laDetección de Cardiopatías,” Researchgate.Net, no. May, pp. 3–6, 2015, [Online]. Available: http://enc2014.cicese.mx/Memorias/paper_19.pdf%5Cnhttps://www.researchgate.net/profile/Cesar_Rose/publication/277324231_Procesamiento_del_Electrocardiograma_para_la_Deteccion_de_Cardiopatias/links/5567b77d08aeab77721eac2b.pdf.; S. Jiménez Serrano, “Clasificación automática de registros ECG para la detección deFibrilación Auricular y otros ritmos cardíacos,” 2018, [Online]. Available: https://riunet.upv.es:443/handle/10251/111113.; S. G. Artis, R. G. Mark, and G. B. Moody, “Detection of atrial fibrillation using artificial neuralnetworks,” Comput. Cardiol., pp. 173–176, 1992, doi:10.1109/cic.1991.169073.; J. Wang and W. Lu, “A method of electrocardiogram classification based on neural network,”Chinese J. Biomed. Eng., vol. 14, no. 4, pp. 306–311, 1995.; M. Hammad, A. Maher, K. Wang, F. Jiang, and M. Amrani, “Detection of abnormal heartconditions based on characteristics of ECG signals,” Meas. J. Int. Meas. Confed., vol. 125, pp. 634–644, 2018, doi:10.1016/j.measurement.2018.05.033.; T. H. Chen, Z. Yu, L. Q. Han, P. Y. Guo, and X. Y. He, “The sorting method of ECG signalsbased on neural network,” 2nd Int. Conf. Bioinforma. Biomed. Eng. iCBBE 2008, pp. 543–546, 2008, doi:10.1109/ICBBE.2008.132.; Taylor GJ. 150 Practice ECGs: Interpretation and Review. Blackwell Science, 2002. ISBN0-632-04623-6.; Committee on Engineering Education, "Educating the Engineer of 2020: AdaptingEngineering Education to New the Century", NAE, pp. 1-209, 2010. Available at: http://www.nap.edu/catalog/11338.html.; World Health Organization, “World health statistics overview 2019: monitoring health for theSDGs, sustainable development goals”, Geneva: World Health Organization; pp. 1-28, 2019 (WHO/DAD/2019.1). License: CC BY-NC-SA 3.0 IGO.; World Health Organization, “Human resources for medical devices, the role of biomedicalengineers”. Geneva: World Health Organization; pp.: 1-240, 2017. License: CCBY-NC- SA 3.0 IGO.; J. Sappey and S. Relf, “Digital Technology Education and its Impact on Traditional AcademicLists and Practice”. J. Univ. Teach. & Lear. Pract. 7(1), 7(3), 2007.; J. Candle-Valdés, “The challenges of the Cuban new university”. Paper presented at thePedagogy 2007, Havana, Cuba, pp. 1-14, feb. 2007.; K. M. Galotti, et al., “To New Way of Assessing Ways of Knowing: The Attitudes TowardsThinking and Learning Survey (ATTLS)”. Sex Lists, 40(9/10), 745-766, 1999.; Ministerio de Educación Superior, Documento Ejecutivo Plan de Estudio: IngenieríaBiomédica, MES, La Habana, Cuba, págs. 1-10, 15 julio, 2017.; T. T. Bekele, “Motivation and Satisfaction in Internet-Supported Learning Environments: ToReview”. Educ. Tech. & Soc., 13(2), 116-127, 2009.; S. N. Karagiannis, “The Conflicts Between Science Research and Teaching in HigherEducation: An Academic's Perspective”. J. Teach. and Lear. Higher Educ., 21(1), 75-83, 2010.; R. Garrote and T. Pettersson. “The use of learning management systems: A LongitudinalCase Study”. Eleed, 8. 2011.; R. Hernández-Sampieri y otros, “Metodología de la Investigación. 6ta Ed., Ed. McGraw-HillEducation. México D. F., págs. 1- 634, 2014.; R. N. Strickland, Image-Processing Techniques for Tumor Detection, Boca Raton, Florida: CRC Press, 2002.; J. Thirumaran y S. Shylaja, «Medical Image Processing – An Introduction,» International Journal of Science and Research (IJSR), vol. 4, nº 11, pp. 1197-1199., 2015.; F. Ballester y J. M. Udías, «Física Nuclear y Medicina,» Rev Esp Fís, vol. 22, nº 1, pp. 29- 36, 2008.; P. Mildenberger, M. Eichelberg y E. Martin, «Introduction to the DICOM standard,» European Radiology, vol. 12, p. 920–927, 2002.; C. E. J. Kahn, J. A. Carrino, M. J. Flynn, D. J. Peck y S. C. Horii, «DICOM and Radiology: Past, Present, and Future,» TECHNOLOGY TALK, vol. 4, nº 9, pp. 652-657, 2007.; A. P. Bhagat y M. Atique, «Medical images: Formats, compression techniques and DICOM image retrieval a survey,» 2012 International Conference on Devices, Circuits and Systems (ICDCS), pp. 172-176, 2012.; D. P. Hanson y R. A. Robb, «Chapter 45 - Three-Dimensional Visualization in Medicine and Biology,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 755-784.; El Hospital, Reconstrucción 3D de la anatomía humana a partir de imágenes médicas obtenidas por ayuda diagnóstica, 2016.; J. M. Selman R., «Aplicaciones clínicas del procesamiento digital,» Revista Médica Clínica Las Condes, vol. 15, nº 2, 2004.; M. Solaiyappan, «Chapter 44 - Visualization Pathways in Biomedicine,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 729-753.; J. Rogowska, «Chapter 5 - Overview and Fundamentals of Medical Image Segmentation,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 73- 90.; A. Escobar Díaz y L. A. Calderón, «Modelo tridimensional de extremidad inferior basado en imágenes de resonancia magnética,» Visión electrónica, vol. 3, nº 1, pp. 4-15, 2009.; DICOM Library & medDream, «Dicom Library (Modality CT),» 2011. [En línea]. Available: https://www.dicomlibrary.com/.; L. Atanelov, S. A. Stiens, and M. A. Young, “History of physical medicine and rehabilitationand its ethical dimensions”, AMA journal of ethics, vol. 17, no. 6, pp. 568–574, 2015. DOI:10.1001/journalofethics.2015.17.6.mhst1-1506 URL: https://journalofethics.ama-assn.org/article/history-physical-medicine-and-rehabilitation-and-its-ethical-dimensions/2015-06; M. C. Garcia and T. Vieira, “Surface electromyography: Why, when and how to use it”,Revista andaluza de medicina del deporte, vol. 4, no. 1, pp.17–28, 2011. URL: https://www.elsevier.es/es-revista-revista-andaluza-medicina-del-deporte-284-articulo-surface-electromyography-why-when-how-X1888754611201253.; J. C. Guerrero Pupo, I. Amell Muñoz, and R. Cañedo Andalia, “Tecnología, tecnologíamédica y tecnología de la salud: algunas consideraciones básicas”, Acimed, vol. 12, no. 4, pp. 1–1, 2004. URL: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1024-94352004000400007.; J. A. A. Londoño, E. C. Bravo, and J. F. C. García, “Aplicación de tecnologías derehabilitación robótica en niños con lesión del miembro superior”, Revista Salud UIS, vol. 49, no. 1, pp. 103–114, 2017. DOI: http://dx.doi.org/10.18273/revsal.v49n1-2017010 URL: http://www.scielo.org.co/scielo.php?pid=S012108072017000100103&script=sci_abstract&tlng=es.; F. Salvuci and R. Kohanoff, Tecnologías de rehabilitación. Wiley-Interscience, 2016.; A. Merlo and I. Campanini, “Technical aspects of surface electromyography for clinicians”,The open rehabilitation journal, vol. 3, no. 1, 2010. DOI:10.2174/1874943701003010098 URL: https://benthamopen.com/ABSTRACT/TOREHJ-3-98.; F. J. Juan, “Utilidad de la electromiografía de superficie en rehabilitación” URL:https://www.researchgate.net/profile/Francisco_Juan-Garcia/publication/316588275_UTILIDAD_DE_LA_ELECTROMIOGRAFIA_DE_SUPERFICIE_EN_REHABILITACION/links/5905b86c4585152d2e957860/UTILIDAD-DE-LA-ELECTROMIOGRAFIA-DE-SUPERFICIE-EN-REHABILITACION.pdf.; J. W. Meklenburg, S. K. Patrick, and S. D. Jung, “Surface electromyogram simulator formyoelectric prosthesis testing,” 2010. URL: https://digitalcommons.wpi.edu/mqp-all/1402/.; Merletti Roberto, and Dario Farina. Surface electromyography: physiology, engineering, andapplications. Piscataway, NJ: IEEE Press, 2016, online. ISBN: 9781119082934, DOI:10.1002/9781119082934.; E. Guzmán, G. Méndez, “Electromiografía en las Ciencias de la Rehabilitación”, SaludUninorte, Vol 3, no. 3, pp 753-765, 2018.; W. A. Marrison, “Apparatus for converting radiant energy to electromechanical energy”, U.S.,Patent 2919358, Dec. 29, 1959. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/e7/ce/c2/f8074398301da9/US2919358.pdf.; D. M. Chapin, C. S. Fuller and G. L. Pearson, “Solar energy converting apparatus”, U.S.,Patent US2780765, Feb. 5, 1957. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/36/ee/af/d21dacd3884160/US2780765.pdf.; H. E. Hall, “Solar motor”, U.S., Patent US3296469, Ene. 3, 1967. [En línea]. Disponible en:https://patentimages.storage.googleapis.com/7e/58/b3/09cf657161e51f/US3296469.pdf.; B. Sepp, “Rotating advertising device”, U.S., Patent US3325930, Ene. 20, 1967. [En línea].Disponible en: https://patentimages.storage.googleapis.com/2e/14/de/57d7f191d20af2/US3325930.pdf.; Y. Nakamats, “Apparatus for converting radiant energy such as light or heat directly intoturning force”, Japón, Patent US4634343, Ene. 6, 1987. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/78/4e/a0/414270d9bad0e0/US4634343.pdf.; H. Izawa, “Solar Energy Motor”, Japan. Patent 4751413, Jun. 14, 1988. [En línea]. Disponibleen: https://patentimages.storage.googleapis.com/3f/8b/a3/9e59494a100d1e/US4751413.pdf.; G. J. Shea, “Solar energy magnetic resonance motor”, U.S., Patent US5408167, Abr. 18,1995. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/77/c4/f7/c12b523e12bfdc/US5408167.pdf.; A. Coty, “Automatically switched photovoltaic motor”, Francia, Patent WO2010082007A3,Jul. 22, 2010. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/36/8f/25/4c5399bdb634a4/WO2010082007A3.pdf.; W. Amrhein, H. Mitterhofer, E. Marth, G. Bramerdorfer, “Aufbau eines Mendocino-Motors”,Ene 2018 [En línea]. Disponible en: http://www.bis0uhr.de/projekte/magnet/projektseminar.pdf.; T. Kornher, M. Noebels, J. Roeller, S. Schwieger, F. Weller, “Mendocino-Motor”, Feb 2018[En línea]. Disponible en: https://ap.physik.uni-konstanz.de/projektpraktikum/PP2011/Bericht_Mendocinomotor.pdf.; Z. Novák, M. Hofreiter. “Mendocino motor and a different approaches to its control”,Proceedings of 15th International Conference MECHATRONIKA, Prague, pp. 1-6, 2012. [En línea]. Disponible en: https://ieeexplore.ieee.org/document/6415075.; C.M. Estupiñán, J.P. Puerto-Reyes, M. A. Beltrán, “Desarrollo de un motor mendocinocomo herramienta de enseñanza en la aplicación de energías renovables y generación de alternativas energéticas”, Revista Loggin, vol. 1, no. 1, pp. 78-89, 2017.; K. Berger, et al, “Solar Electric Motor on Superconducting Bearings: Design and Tests inLiquid Nitrogen" en IEEE sobre aplicaciones de superconductividad, vol. 27, no. 4, pp. 1-5, Jun. 2017, https://doi.org/10.1109/TASC.2016.2642140.; Fawzi Boufatah. “Réalisation d’un moteur à énergie solaire sur paliers supraconducteurs”,2016, hal-01824246. [En línea]. Disponible en: https://hal.univ-lorraine.fr/hal-01824246/document.; W. K. Lane, “Light emitting unit for continuous light production”, U.S., PatentUS20130141900A1, Jun. 6, 2013. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/f6/89/60/242f9861427fb1/US20130141900A1.pdf.; Supermagnete, “Anillo imán”, Nov, 2019. [En línea]. Disponible en: https://www.supermagnete.de/eng/ring-magnets-neodymium/ring-magnet-25mm-4.2mm-5mm_R-25-04-05-N.; Supermagnete, “Disco magnético autoadhesivo” noviembre de 2019. [En línea]. Disponibleen: https://www.supermagnete.de/eng/adhesive-magnets-neodymium/disc-magnet-self-adhesive-25mm-2mm_S-25-02-FOAM?group=discs.; Supermagnete, “Bloque imán” diciembre de 2019. [En línea]. Disponible en: https://www.supermagnete.de/eng/block-magnets-neodymium/block-magnet-40mm-20mm-10mm_Q-40-20-10-N.; H. Polo, A. Valencia, J. Roldan, J.Diaz, “Evaluación de la seguridad estructural de unsistema de seguimiento solar en Colombia”, Colombia, Universidad Distrital Francisco José de Caldas, Oct. 06, 2013. [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/5522.; D. Gomez, J. Leal, H. Montaña, A. Sanchez, “Detección de posición a partir de la mediciónde un campo magnético”, Colombia, Universidad Distrital Francisco José de Caldas, Ene. 01, 2013. [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/4397.; A. Nataraj and B. Ramasamy, "Modeling and FEA analysis of axial flux PMG for low speedwind turbine applications," 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), pp. 1-5, Kollam, 2017. doi:10.1109/TAPENERGY.2017.8397290.; M. Carrillo, C. Claudio y A. Mayorga, “Caracterización de un generador de flujo axial paraaplicaciones en energía eólica,” Revista de Ciencia y Tecnología, INGENIUS, N°19, pp. 19-28, 2018. https://doi.org/10.17163/ings.n19.2018.02.; S. S. Laxminarayan, M. Singh, A. H. Saifee and A. Mital, “Design, Modeling and Simulationof Variable Speed Axial Flux Permanent Magnet Wind Generator”, ELSEVIER, Sustainable Energy Technologies and Assessments, India, 2017. https://doi.org/10.1016/j.seta.2017.01.004.; G. Ahmad and U. Amin, “Design, Construction and Study of Small-Scale Vertical Axis WindTurbine based on a Magnetically Levitated Axial Flux Permanent Magnet Generator”, ELSEVIER, Renewable Energy, 2016. https://doi.org/10.1016/j.renene.2016.08.027.; M. Castillo García, “Diseño Electromagnético de un Generador Eléctrico para Turbina Eólicade 100 kW”, trabajo de fin de grado, Universidad Politécnica de Madrid, Madrid, España, 2017. http://oa.upm.es/49261/1/TFG_MONTANA_CASTILLO_GARCIA.pdf.; C. F. González Velázquez, “Optimización de Banco de Pruebas y Sistema de Monitoreo deAerogenerador de Baja Potencia”, trabajo de fin de tecnólogo, Centro de Ingeniería y Desarrollo Industrial, Santiago de Querétaro, 2017. http://cidesi.repositorioinstitucional.mx/jspui/handle/1024/269.; J. Kappatou, G. Zalokostas and D. Spytatos, “3-D FEM Analysis, Prototyping and Tests ofan Axial Flux Permanent-Magnet Wind Generator,” Energies, Greece, 2017. https://doi.org/10.3390/en10091269.; R. D. Chavan and V. N. Bapat, "The study of different topologies of Axial Flux PermanentMagnet generator," IEEE, 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), pp. 202-206, Pune, 2016. doi:10.1109/ICACDOT.2016.7877579.; T. Asefi, J. Faiz and M. A. Khan, “Design of Dual Rotor Axial Flux Permanent MagnetGenerators with Ferrite and Rare-Earth Magnets”, IEEE, 18th International Power Electronics and Motion Control Conference (PEMC), Budapest, 2018. doi:10.1109/EPEPEMC.2018.8522004.; Yicheng Chen, Pragasen Pillay and A. Khan, "PM wind generator comparison of differenttopologies," IEEE; Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting., pp. 1405-1412 vol.3, Seattle, WA, USA, 2004. doi:10.1109/IAS.2004.1348606.; R. Rusmana, A. A. Melkias, N. Nurrohman and I. M. W. Kastawan, “Voltage GenerationCharacteristics of an Axial Flux Permanent Magnet (AFPM) Generator”, IOP Conference Series: Materials Science and Engineering, ICIEVE, Indonesia, 2019. doi:10.1088/1757-899X/830/4/042019; I. M. W. Kastawan and Rusmana, “Voltage Generation of Three-Phase Double SidedInternal Stator Axial Flux Permanent Magnet (AFPM) Generator”, IOP Conference Series: Materials Science and Engineering, 1st Annual Applied Science and Engineering Conference, Indonesia, 2017, doi:10.1088/1757-899X/180/1/012105.; H. Gör and E. Kurt, “Preliminary Studies of a New Permanent Magnet Generator (PMG)with the Axial and Radial Flux Morphology”, ELSEVIER, ScienceDirect, Turkey, 2016. https://doi.org/10.1016/j.ijhydene.2015.12.195.; H. Gor and E. Kurt, “Waveform Characteristics and Losses of a New Double Sided Axialand Radial Flux Generator”, ELSEVIER, ScienceDirect, Turkey, 2015. https://doi.org/10.1016/j.ijhydene.2015.12.172.; A. Habib, H. Che, N. Rahim, M. Tousizadeh and E. Sulaiman, “A fully coreless Multi-StatorMulti-Rotor (MSMR) AFPM generator with combination of conventional and Halbach magnet arrays,” Alexandria Engineering Journal, vol n. 59, Issue 2, pp 589-600, April 2020. https://doi.org/10.1016/j.aej.2020.01.039.; N. Georgiev, “Study of Three-Phase Axial Flux Generators”, IEEE, 20th InternationalSymposium on Electrical Apparatus and Technologies (SIELA), Bourgas, 2018. doi:10.1109/SIELA.2018.8447093.; E. Celik, H. Gör, N. Öztürk and E. Kurt, “Application of Artificial Neural Network to EstimatePower Generation and Efficiency of a New Axial Flux Permanent Magnet Synchronous Generator”, ELSEVIER, ScienceDirect, Turkey, 2017. https://doi.org/10.1016/j.ijhydene.2017.01.168.; M. R. Minaz and M. Celebi, “Design and Analysis of a New Axial Flux Coreless PMSG withThree Rotors and Double Stators”, ELSEVIER, Results in Physics, Turkey, 2016. https://doi.org/10.1016/j.rinp.2016.10.026.; M. Dranca, M. Chirca and S. Breban, “Comparative Design Analysis of Axial FluxPermanent Magnet Direct-Drive Wind Generators”, IEEE, The 11st International Symposium on Advanced Topics in Electrical Engineering, Technical University of Cluj-Napoca, Romania, 2019. doi:10.1109/ATEE.2019.8724928.; N. E. Lastra, “Diseño y Construcción de un Generador de Flujo Axial con ImanesPermanentes de Bajo Costo para Aplicaciones Eólicas”, ResearchGate, 2019, https://www.researchgate.net/publication/336071436_Diseno_y_Construccion_de_un_Generador_de_Flujo_Axial_con_Imanes_Permanentes_de_Bajo_Costo_para_Aplicaciones_Eolicas.; A. Rasekh, P. Sergeant and L. Vierendeels, “Fully Predictive Heat Transfer CoefficientModeling of an Axial Flux Permanent Magnet Synchronous Machine with Geometrical Parameters of the Magnets”, ELSEVIER, Applied Thermal Engineering, Ghent University, Belgium, 2016. https://doi.org/10.1016/j.applthermaleng.2016.09.019.; M. Irfan, R. F. Ariyanto, L. Syafaah, A. Faruq and N. Subeki, “Stator Slotted Design of AxialFlux Permanent Magnet Generator for Low-Speed Turbine”, IOP Conference Series: Materials Science and Engineering, ICEAT, Indonesia, 2020. doi:10.1088/1757-899X/821/1/012027.; H. Polinder, “2 - Principles of electrical design of permanent magnet generators for directdrive renewable energy systems,” Woodhead Publishing Limited, Delft University of Technology, pp. 30-50, The Netherlands, 2013. doi:10.1533/9780857097491.1.30.; V. N. Antipov, A. D. Grozov and A. V. Ivanova, “Design and Analysis of a New Axial FluxPermanent Magnet Synchronous Generator for Wind”, IOP Conference Series: Materials Science and Engineering, International Scientific Electric Power Conference, Russia, 2019. doi:10.1016/j.rinp.2016.10.026.; M.M. Radulescu, S. Breban and M. Chirca, “Novel topologies of low-speed axial-fluxpermanent- magnet micro-wind generator,” The 18 th National Conference on Electrical Drives, CNAE 2016, Acta Electrotechnica, vol. 57, n° 3-4, Special Issue, 2016. doi:10.4283/JMAG.2014.19.3.273.; B. J. Chalmers and E. Spooner, "An axial-flux permanent-magnet generator for a gearlesswind energy system," in IEEE Transactions on Energy Conversion, vol. 14, no. 2, pp. 251-257, June 1999. doi:10.1109/60.766991.; A. R. Dehghanzadeh, V. Behjat and M. R. Banaei, “Dynamic Modeling of Wind TurbineBased Axial Flux Permanent Magnetic Synchronous Generator Connected to the Grid with Switch Reduced Converter”, ELSEVIER, Ain Shams Engineering Journal, Azarbaijan Shahid Madani University, Iran, 2015. https://doi.org/10.1016/j.asej.2015.11.002.; N. Radwan-Praglowska, D. Borkowski and T. Wegiel, "Model of coreless axial fluxpermanent magnet generator," 2017 International Symposium on Electrical Machines (SME), pp. 1-6, Naleczow, 2017. doi:10.1109/ISEM.2017.7993568.; S. Khan, S. Amin and S. S. Hussain Bukhari, “Design and Comparative PerformanceAnalysis of Inner Rotor and Inner Stator Axial Flux Permanent Magnet Synchronous Generator for Wind Turbine Applications”, IEEE, International Conference on Computing-iCoMET, Sukkur IBA University, Pakistan, 2019. doi:10.1109/ICOMET.2019.8673537.; L. Wei, T. Nakamura and K. Imai, “Development and Optimization of Low-Speed and High-Efficiency Permanent Magnet Generator for Micro Hydro-Electrical Generation System”, ELSEVIER, Renewable Energy, Kyoto University, Japan, 2019. https://doi.org/10.1016/j.renene.2019.09.049.; M. Ardestani, N. Arish and H. Yaghobi, “A New HTS Dual Stator Linear Permanent MagnetVernier Machine with Halbach Array for Wave Energy Conversion”, ELSEVIER, Physyca C: Superconductivity and its Applications, Semman University, Iran, 2019. https://doi.org/10.1016/j.physc.2019.1353593.; P. Khatri and X. Wang, “Comprehensive Review of a Linear electrical Generator for OceanWave Energy Conversion”, IET Renewable Power Generation, IET, Vol. 14, Lss. 6, pp. 949-958, February, 2020. doi:10.1049/iet-rpg.2019.0624.; O. S. Muñoz Muñoz, “Dimensionamiento electromagnético de un Generador Lineal para laConversión de Energía Undimotriz de Acuerdo a las Características del Océano Pacífico Colombiano”, trabajo de fin de grado, Universidad del Valle, Colombia, 2020.; C. García Saiz, “Diseño, Dimensionado y Simulación de un Generador Lineal para elDesarrollo de una Boya de Generación de Energía Undimotriz”, trabajo de fin de grado, Universidad de Cantabria, España, 2015. https://repositorio.unican.es/xmlui/handle/10902/7332.; A. García Villalmanzo, “Diseño de un Motor Lineal de Reluctancia Autoconmutado conImanes Permanentes”, trabajo de fin de grado, Universidad Rovira I Virgili, Tarragona, 2017. http://deeea.urv.cat/public/PROPOSTES/pub/pdf/2459pub.pdf.; A. Shiri and A. Shoulaie, “End Effect Braking Force Reduction in High-Speed Single-SidedLinear Induction Machine”, ELSEVIER, Energy Conversion and Management, Iran University of Science and Technology, Iran, 2012. https://doi.org/10.1016/j.enconman.2011.11.014.; X. Chen, S. Zheng, J. Li, G. T. Ma and F. Yen, “A Linear Induction Motor with a CoatedConductor Superconducting Secondary”, ELSEVIER, Physyca C: Superconductivity and its Applications, Southwest Jiaotong University, China, 2017. https://doi.org/10.1016/j.physc.2018.04.002.; SS. Rathore, S. Mishra, M. K. Paswan and Sanjay, “A Review on Design and Developmentof Free Piston Linear Generators in Hybrid Vehicles”, IOP Conference Series: Materials Science and Engineering, ICCEMME, India, 2019. doi:10.1088/1757-899X/691/1/012053.; Y. Gao, S. Shao, H. Zou, M. Tang, H. Xu and C. Tian, “A Fully Floating System for WaveEnergy Converter with Direct-Driven Linear Generator”, ELSEVIER, Energy, Beijing, China, 2015. https://doi.org/10.1016/j.energy.2015.11.072.; J. F. Fortes, L. M. Ferraz and I. E. Chabu, “Optimized Double Sided Linear Generator forWave Energy in Sao Paulo’s Coast”, 7th International Conference on Ocean Energy (ICOE), Polytechnic School of University of Sao Paulo, France, 2018. https://www.icoe-conference.com/publication/optimized-double-sided-linear-generator-for-wave-energy-in-sao-paulo-s-coast/.; V. Boscaino, G. Cipriani, V. Di Dio, V. Franzitta and M. Trapanense, “Experimental Testand Simulations on a Linear Generator-Based Prototype of a Wave Energy Conversion System Designed with a Reliability-Oriented Approach”, MDPI, Sustainability, University or Palermo, 2017. doi:10.3390/su9010098.; O. Farrok, M. R. Islam, Y. G. Guo and J. G. Zhu, “Design and Analysis of a NovelLightweight Translator Permanent Magnet Linear Generator for Oceanic Wave Energy Conversion”, IEEE, 2015. doi:10.1109/TMAG.2017.2713770.; K. Cruz, F. Dator, J. Ong, N. Bumanlag and M. C. Pacis, “Harnessing of Wave Energy usingAxially Magnetized Linear Generator with Data Logger using Gizduino Microcontroller”, IOP Conference Series: Journal of Physics: Conference Series, CEEPE, Mapua University, Philippines, 2019. doi:10.1088/1742-6596/1304/1/012013.; A. Tapia-Hernández, M. Ponce-Silva, N. Mondragón-Escamilla y L. Hernández-González,“Impacto de la Geometría en el Efecto Fin de Generadores Lineales”, Información Tecnológica, Vol.27, No. 4, pp. 133-138, México, Agosto, 2016. http://dx.doi.org/10.4067/S0718-07642016000400014.; P. Naderi, M. Heidary and M. Vahedi, “Performance Analysis of Ladder-Secondary-LinearInduction Motor with Two Different Secondary Types using Magnetic Equivalent Circuit”, ELSEVIER, ISA Transactions, Shahid Beheshti University, Iran, 2020. https://doi.org/10.1016/j.isatra.2020.03.013.; Y. Xu, X. Xue, Y. Wang and M. Ai, “Performance Characteristics of Compressed Air-Driven-Free-Piston Linear Generator (FPLG) System – A Simulation Study”, ELSEVIER, Applied Thermal Engineering, 2019. https://doi.org/10.1016/j.applthermaleng.2019.114013.; J. Xi, Z. Dong, P. Liu and H. Ding, “Modeling and Identification of Iron-less PMLSM EndEffects for Reducing Ultra-Low-Velocity Fluctuations of Ultra-precision Air Bearing Linear Motion Stage”, ELSEVIER, Precision Engineering, Shanghai Jiaotong University, China, 2017. https://doi.org/10.1016/j.precisioneng.2017.01.016.; X. Luo, C. Zhang, S. Wang, E. Zio and X. Wang, “Modeling and Analysis of Mover Gaps inTubular Moving-Magnet Linear Oscillating Motors”, ELSEVIER, Chinese Journal of Aeronautics, Chinese Society of Aeronautics ans Astronautics & Beihang University, China, 2017. https://doi.org/10.1016/j.cja.2017.11.008; K. S. Rama Rao, T. Sunderan and M. Ref’at Adiris, “Performance and Design Optimizationof Two Model Based Wave Energy Permanent Magnet Linear Generators”, ELSEVIER, Renewable Energy, 2016. https://doi.org/10.1016/j.renene.2016.07.019.; M. F. M Naafi, T. Ibrahim, N. M. Nor and M. A. Firdaus bin M. Hamim, “Design and Modellingof a Portable Pico Linear Generator for Wave Energy Conversion System”, Applied Mechanics and Materials, Vol. 785, pp. 300-304, Malaysia, 2015. https://doi.org/10.4028/www.scientific.net/AMM.785.300.; W. Rentería Palacios, “Diseño y Evaluación Electromagnética de un Motor Síncrono Linealde Imanes Permanentes en Disposición Halbach”, trabajo de fin de máster, Universidad Autónoma de Occidente, Colombia, 2018. https://hdl.handle.net/10614/10454.; J. Kim, J. Y. Kim and J. B. Park, “Design and Optimization of a 8kW Linear Generator for aDirect-Drive Point Absorber”, IEEE, Yonsei University, Seoul, Korea, 2013. doi:10.23919/OCEANS.2013.6741125.; W. Li, T.W. Ching and K.T. Chau, “Design and Analysis of a New Parallel-Hybrid-ExcitedLinear Vernier Machine for Oceanic Wave Power Generation”, ELSEVIER, Applied Energy, China, 2017. https://doi.org/10.1016/j.apenergy.2017.09.061.; L. Huang, J. Liu, H. Yu, R. Qu, H. Chen and H. Fang, “Winding Configuration andPerformance Investigation of a Tubular Superconducting Flux-Switching Linear Generator”, IEEE, Transactions on Applied Superconductivity, Vol. 25, No. 3, 2015. doi:10.1109/TASC.2014.2382877.; X. Liu, H. Yu, Z. Shi, T. Xia and M. Hu, “Electromagnetic-Fluid-Thermal Field Calculationand Analysis of a Permanent Magnet Linear Motor”, ELSEVIER, Applied Thermal engineering, Southeast University, China, 2017. https://doi.org/10.1016/j.applthermaleng.2017.10.066.; 288; CREG - Comisión de Regulación de Energía y Gas, «Regulación Aplicable al Biogás,» Comisión de Regulación de Energía y Gas, 2009.; O. Harker, «Presentación del proyecto - Prototipo de Sistema de generación de energía eléctrica a partir de residuos sólidos,» Colciencias, Fusagasugá, 2019.; I. Vera, J. Martínez, M. Estrada y A. Ortiz, «Potencial de generación de biogás y energía eléctrica Parte I: excretas de ganado bovino y porcino,» Ingeniería Investigación y Tecnología, vol. 15, nº 3, pp. 429-436, 2014. Doi: https://doi.org/10.1016/S1405- 7743(14)70352-X.; I. D. B. Sierra, «Actualización del Plan de Gestión Integral de Residuos Sólidos PGIRS de Fusagasugá,» Alcaldía de Fusagasugá, Fusagasugá, 2017.; L. D. Romero, «EL ESPECTADOR,» Tratar las basuras, lucha contrarreloj, 18 Junio 2015. [En línea]. Available: https://www.elespectador.com/noticias/bogota/tratar-basuras-lucha- contrarreloj-articulo-567135. [Último acceso: 13 abril 2020].; J. Niemczewska y G. Kolodziejak, «Landfill Gas Energy Technologies,» Instytut Nafty I Gazu, Cracovia, 2010. Disponible: https://www.globalmethane.org/Data/1022_LFG-Handbook.pdf.; R. Bove y P. Lunghi, «Electric power generation from landfill gas using traditional,» Energy Conversion and Management, vol. 47, p. 11, 2006. Doi: https://doi.org/10.1016/j.enconman.2005.08.017.; G. Blanco, E. Santalla, V. Córdoba y A. Levy, «Generación de electricidad a partir de biogás capturado de residuos sólidos urbanos: Un análisis teórico-práctico,» División de Energía: Banco Interamericano de Desarrollo, Buenos Aires, 2017. Disponible: https://publications.iadb.org/publications/spanish/document/Generación-de-electricidad- a-partir-de-biogás-capturado-de-residuos-sólidos-urbanos-Un-análisis-teórico- práctico.pdf.; Cogenera Mexico, «COGENERA MEXICO,» 2012. [En línea]. Available: http://www.cogeneramexico.org.mx/menu.php?m=77. [Último acceso: 5 Junio 2020].; ICONTEC, «Norma Técnica Colombiana GTC-24 "Gestión Ambiental. Residuos Sólidos. Guía para la separación en la fuente".,» Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), 2009.; Universidad de Cundinamarca, «Anexo 1. Protocolo para el manejo y pretratamiento de los RSO de la Plaza de Mercado del municipio de Fusagasugá.,» Anexos convocatoria Colciencias 829 - 2018 , Fusagasugá , 2020.; A. Andrade, A. Restrepo y J. Tibaquirá, «Estimación de biogás de relleno sanitario, caso de estudio: Colombia,» Entre ciencia e ingeniería, vol. 12, pp. 40-47, 2018. Doi: http://dx.doi.org/10.31908/19098367.3701.; Aqualimpia Engineering , «Aqualimpia,» [En línea]. Available:https://www.aqualimpia.com/biodigestores/biogas-purificacion/. [Último acceso: 22 05 2020].; W. Lema, «DESOTEC Actived Carbon,» 14 05 2014. [En línea]. Available: https://www.desotec.com/es/carbonologia/casos/eliminaci-n-del-sulfuro-de-hidr-geno-en- el-biog-s-parte-1. [Último acceso: 2020].; COLCIENCIAS, «Presentación del proyecto - Prototipo de Sistema de generación de energía eléctrica a partir de residuos sólidos,» Fusagasugá, 2019.; “El papel de la ciencia y la tecnología en la sociedad de conocimiento,” OCyT. https://www.ocyt.org.co/el-papel-de-la-ciencia-y-la-tecnologia-en-la-sociedad-de conocimiento/ (accessed Oct. 27, 2020).; A. Kapoor, S. I. Bhat, S. Shidnal, and A. Mehra, “Implementation of IoT (Internet of Things) and Image processing in smart agriculture,” in 2016 International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), Bengaluru, India, Oct. 2016, pp. 21–26, doi:10.1109/CSITSS.2016.7779434.; J. Zhou, D. Xiao, and M. Zhang, “Feature Correlation Loss in Convolutional Neural Networks for Image Classification,” in 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, Mar. 2019, pp. 219–223, doi:10.1109/ITNEC.2019.8729534.; T. Treebupachatsakul and S. Poomrittigul, “Bacteria Classification using Image Processing and Deep learning,” in 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), JeJu, Korea (South), Jun. 2019, pp. 1–3, doi:10.1109/ITC-CSCC.2019.8793320.; S. Dutta Gupta and A. K. Pattanayak, “Intelligent image analysis (IIA) using artificial neural network (ANN) for non-invasive estimation of chlorophyll content in micropropagated plants of potato,” Vitro Cell. Dev. Biol. - Plant, vol. 53, no. 6, pp. 520–526, Dec. 2017, doi:10.1007/s11627-017-9825-6.; A. M. Moreno-Jiménez, S. Loza-Cornejo, and M. Ortiz-Morales, “Efecto de luz LED sobresemillas de Capsicum annuum L. var. serrano,” vol. 17, no. 3, p. 7, 2017.; A. Rojas, “Flora Urbana Del Área Metropolitana De Bucaramanga,” Innovaciencia Fac.Cienc. Exactas Físicas Nat., vol. 5, no. 1 S1, Dec. 2017, doi:10.15649/2346075X.454.; A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with DeepConvolutional Neural Networks,” in Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–1105.; Y. A. Arévalo Ortega, S. R. Corredor Vargas y G. A. Higuera Castro, «Análisis forense con herramientas de hacking en dispositivos android,» Visión Electrónica, vol. 13, nº 1, pp. 162-177, 2019.; L. iyuan y H. Wenfeng, «Development of Puzzle Game for IOS Platform Based on Unity3D,» de 3rd International Conference on Applied Computing and Information Technology/2nd International Conference on Computational Science and Intelligence (ACIT-CSI), 2015.; A. Lima y E. A. da Costa, «Experimental Approach of the Asymptotic Computational Complexity of Shaders for Mobile Devices with OpenGL ES,» de Brazilian Symposium on Computer Games and Digital Entertainment, 2014.; B. J. Cox, The objective-C environment: past, present, and future, 1987.; G. Bournoutian y A. Orailoglu, «On-device objective-C application optimization framework for high-performance mobile processors,» de Design, Automation & Test in Europe Conference & Exhibition (DATE), 2014.; R. Rawlings, «bjective-C: an object-oriented language for pragmatists,» de Colloquium on Applications of Object-Oriented Programming, 1989.; G. Song, S. Ren, D. Zhang, K. Liu, Y. Sun y X. A. Wang, «Research on War Strategy Games on Mobile Phone based on Cocos2d-JS,» de 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2015.; S. Guozhi, R. Shuxia, Z. Dakun, L. Kunliang, S. Yumeng y A. W. Xu, «Research on War Strategy Games on Mobile Phone,» 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 151-155, 2015.; B. A. Brady, A. K. Jones y I. S. Kourtev, «Efficient CAD development for emerging technologies using Objective-C and Cocoa,» de International Conference on Electronics, Circuits and Systems, 2004, 2004.; C. W. Cho, C. P. Hong, J. C. Piao, Y. K. Lim y S. D. Kim, «Performance optimization of 3D applications by OpenGL ES library hooking in mobile devices,» de 13th International Conference Computer and Information Science (ICIS), 2014 IEEE/ACIS , 2014.; J. C. Piao, C. W. Cho, C. G. Kim, B. Burgstaller y S. D. Kim, «An Adaptive LOD Setting Methodology with OpenGL ES Library on Mobile Devices,» de International Conference on Convergence and Security (ICITCS), 2014.; F. A. Manrique Suarez, L. C. Velásquez Rodríguez y G. M. Tarazona Bermúdez, «Estado del arte sobre aplicaciones móviles: caso de estudio enfocado a estudiantes universitarios en Bogotá, Colombia,» Visión Electrónica, vol. 11, nº 2, pp. 279-288, 2017.; R. Besas, R. O. Atienza, T. Tai y R. Cruz, «An implementation of a structured and highly engaging learning environment on educational games for elementary education,» de IT in Medicine and Education (ITME), 2011.; C. Carter, Q. Mehdi y T. Hartley, «Navigational techniques to improve usability and user experience in RPG games,» de 17th International Conference on Computer Games (CGAMES), 2012.; C. Le Marc, J. P. Mathieu, M. Pallot y S. Richir, «Serious gaming: From learning experience towards User Experience,» de International Technology Management Conference (ICE), 2010.; S. F. Hsiao, S. Y. Li y K. H. Tsao, «Low-power and high-performance design of OpenGL ES 2.0 graphics processing unit for mobile applications,» de International Conference on Digital Signal Processing (DSP) , 2015.; S. F. Hsiao, P. H. Wu, C. S. Wen y L. Y. Chen, «Design of a programmable vertex processor in OpenGL ES 2.0 mobile graphics processing units,» de International Symposium on VLSI Design, Automation, and Test (VLSI-DAT), 2013.; X. Zhao y X. Huang, «A general solution of script-based fragment animation,» de 6th IEEE International ConferenceSoftware Engineering and Service Science (ICSESS), 2015.; L. Wang, «Design and Implementation of Four Arithmetic Operations Learning Games in Primary Mathematics Based on cocos2d-js,» 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE), pp. 595-598, 2018.; M. P. A. Balayan, V. V. B. Conoza, J. M. M. Tolentino, R. C. Solamo y R. P. Feria, «On evaluating skillville: An educational mobile game on visual perception skills. In Information, Intelligence, Systems and Applications,» de The 5th International Conference IISA 2014,, 2014.; B. Cassidy, G. Stringer y M. H. Yap, «Mobile Framework for Cognitive Assessment: Trail Making Test and Reaction Time Test,» de Computer and Information Technology (CIT), 2014.; Y. Lu, W. Gao y F. Wu, «Efficient background video coding with static sprite generation and arbitrary-shape spatial prediction techniques,» Transactions on Circuits and Systems for Video Technology, vol. 13, nº 5, pp. 394-405, 2013.; Cocos2D-x, «ARCHITECTURE OVERVIEW,» [En línea]. Available: http://www.cocos2d-x.org/wiki/Engine_Architecture. [Último acceso: 14 02 2016].; Y. Lu, Y. Liu y S. Dey, «loud mobile 3D display gaming user experience modeling and optimization by asymmetric graphics rendering,» IEEE Journal of Selected Topics in Signal Processing, vol. 9, nº 3, pp. 517-532, 2015.; S. Arefin Riffat, F. Harun y T. Hassan, «An Interactive Tele-Medicine System via Android Application,» Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA), pp. 148-152, 2020.; Y. Liu, H. Dar y R. Sharp, «Mobile Gamer Modelling and Game Performance Preference Measurement,» IEEE Conference on Games (CoG), pp. 632-635, 2020.; J. C. Piao, C. W. Cho, C. G. Kim, B. Burgstaller y S. D. Kim, «An adaptive LOD setting methodology with OpenGL ES library on mobile devices,» de IT Convergence and Security (ICITCS), 2014.; E. C. Chan y B. G. , «Appendix B: Introduction to Objective-C Programming in iPhone,» de Introduction to Wireless Localization: With iPhone SDK Examples, pp. 261-304.; Simulation Study on Duoplasmatron With Optimization of Ion Beam Extraction System S.Park and Y. Kim. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 45, NO. 6, JUNE 2017 955.; Aceleradores de partículas: Modelos para su diseño y la dinámica del haz MODELIZACIÓNAPLICADA A LA INGENIERÍA. R. Strangis. CYCLOTOPE, Houston, Texas, Estados Unidos. Junio 2011.; Presente y futuro de la implantación iónica: se describe la naturaleza, características,ventajas y desventajas de los tratamientos de superficie por implantación iónica; además el actual estado de desarrollo de esta tecnología, sus aplicaciones y las previsiones de su evolución en los próximos años. T. Rodríguez. 1998.; Modificación superficial de un acero AISI SAE 1045 mediante la implantación de iones denitrógeno y titanio. D. V. Salinas, D. Y. Peña y L. F. Chinchilla. Universidad Industrial de Santander UIS. Universidad Pontificia Bolivariana UPB. Julio 2011.; Microcavity engineering by plasma immersion ion implantation, Materials Chemistry andPhysics. P. K. Chu and N. W. Cheung. 57, 1998, 1-16.; A review of recent developments in ion implantation for metallurgical application. Se realizaeste trabajo o proyecto con el objetivo de identificar oportunidades para la aplicación industrial de la implantación iónica. R. Hutchings. 1994.; Experimental investigation on corrosion and hardness of ion implanted AISI 316L stainlesssteel. Materials & design technology. V. Muthukumaran. 2010.; Una mirada a los medios para diagnóstico por imágenes desde la educación médica. L.Esquivel Sosa, Y. Fleites García y Y. Jiménez González. EDUMECENTRO 2018;10(1): ISSN 2077-2874 RNPS 2234 Santa Clara ene.-mar.; La revolución científico-técnica y su impacto en las ciencias médicas. M. Hernández Pino.La Habana: Universidad Virtual de Salud Manuel Fajardo. 6 Sep 2016.; Imágenes Médicas: adquisición, análisis, procesamiento e interpretación. G. Passariello yF.Mora. Eds. Venezuela: Equinoccio, Ediciones de la Universidad Simón Bolívar;1995.; IMÁGENES DIAGNÓSTICAS: CONCEPTOS Y GENERALIDADES DIAGNOSTICIMAGES: CONCEPTS AND GENERALITIES I. R. Raudales Díaz. Rev. Fac. Cienc. Méd. Enero -Junio 2014.; Getting started in clinical radiology from image to diagnosis. G. W. Eastman, C. Wald andJ.Crossin. Germany: Thieme; 2005.; «Organización Mundial de la Salud,» 1 febrero 2018. [En línea]. Available:http://www.who.int/es/newsroom/fact-sheets/detail/cancer.; El Cáncer. J. G. de la Garza Salazar y P. Juárez Sánchez. Universidad Autónoma de NuevoLeón. Centro, Monterrey, Nuevo León, México, C.P. 64000 Primera edición, 2014.; Hadronterapia. J. L. Herranz, E. Herraiz, S. Vicente, J. España, J. L. Cal-Gonzalez y J. M.Udías. Primer Encuentro Complutense para la Divulgación en Física Nuclear y de Partículas [Internet]. gfn; 2008.; Proton Therapy: state of the art and clinical applications. I. López Moranchel and P. I.Maurelos Castell, 1). Centro de Formación Profesional San Juan de Dios, GENUD Toledo Research Group. (Universidad de Castilla-La Mancha). REVISTA OFICIAL DE LA SOCIEDAD ESPAÑOLA DE ENFERMERÍA ONCOLÓGICA. 2019.; Proton Therapy. A. R. Smith. Med Phys. 26 de enero de 2009 [citado 20 de abril de2019];36(2):556-68.; The risk of radiation-induced second cancers in the high to medium dose region: acomparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors. M. Moteabbed, T. I. Yock, H. Paganetti. Phys Medicina Biol [Internet]. 21 de junio de 2014 [citado 20 de abril de 2019];59(12):2883-99. D.; A Sealed-Accelerator-Tube Neutron Generator for Boron Neutron Capture TherapyApplication. K. N. Leung, Y. Lee, J. M. Verbeke, J. Vujic, M. D. Williams, L. K. Wu, N. Zahir. Lawrence Berkeley National Laboratory University of California Berkeley Berkeley USA Nuclear Engineering Department. La jolla, CA septiembre 1998.; Evaluación Preliminar de la Aceleración de D en un Generador de Neutrones D-DCompacto de Alto Flujo. J. A. Cifuentes Parada, Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Física Bogotá D.C., Colombia 2019.; Physics. D. Halliday and R. Resnick. Wiley; Part 2 edition, 1978.; Educational Applets: https://www.falstad.com/vector2de, https://www.falstad.com/vector3de.; M. Sereday, M. Damiano, and S. Lapertosa, “Amputaciones de Miembros Inferiores endiabéticos y no diabéti-cos en el ámbito hospitalario,” Alad(Asociación Larinoamericana de Diabetes), pp. 9–15, 2009, [Online]. Available: http://www.revistaalad.com.ar/pdfs/0905_Amp_de_Miem.pdf.; C. Quintero Quiroz, A. Jaramillo Zapata, M. T. De Ossa Jiménez, and P. A. Villegas Bolaños,“Estudio descriptivo de condiciones del muñón en personas usuarias de prótesis de miembros inferiores,” Rev. Colomb. Médicina Física y Rehabil., vol. 25, no. 2, pp. 94–103, 2018, doi:10.28957/rcmfr.v25n2a1.; L. H. Lugo and G. Desarrollador, “Guía de Práctica Clínica.”; O. Horgan and M. M. A. C. Lachlan, “Psychosocial adjustment to lower-limb amputation : Areview,” 2004, doi:10.1080/09638280410001708869.; B. L. Martín, M. Jesús, and P. Hernández-Rico, “Amputación.”; "Convocatoria para proyectos de Ciencia, Tecnología e Innovación y su contribución a losretos de país- 2018 %7C Convocatoria 808 %7C COLCIENCIAS.” https://www.colciencias.gov.co/convocatorias/investigacion/convocatoria-para-proyectos-ciencia-tecnologia-e-innovacion-y-su-0 (accessed Aug. 04, 2019).; W. L. Childers, R. S. Kistenberg, and R. J. Gregor, “The Biomechanics of Cycling with aTranstibial Amputation: Recommendations for Prosthetic Design and Direction for Future Research,” Prosthet. Orthot. Int., vol. 33, no. 3, pp. 256–271, Sep. 2009, doi:10.1080/03093640903067234.; I. Pinilla Giménez, “Juego serio para terapias de rehabilitación motora y cognitiva conrealidad virtual,” 2017, Accessed: Aug. 29, 2019. [Online]. Available: http://uvadoc.uva.es/handle/10324/23073.; G. Fiedler, J. Akins, R. Cooper, S. Munoz, and R. A. Cooper, “Rehabilitation of People withLower-Limb Amputations,” Curr. Phys. Med. Rehabil. Reports, vol. 2, no. 4, pp. 263–272, Dec. 2014, doi:10.1007/s40141-014-0068-8.; Prodalca, “Rodillo personal trainer con regulador de esfuerzo,” 2019. https://prodalca.com.co/producto/rodillo-personal-trainer-con-regulador-de-esfuerzo/.; C. Sun and Z. Qing, “Design and Construction of a Virtual Bicycle Simulator for EvaluatingSustainable Facilities Design,” Adv. Civ. Eng., vol. 2018, 2018, doi:10.1155/2018/5735820.; T. Instruments and I. Sloa, “Chapter 16 Active Filter Design Techniques Excerpted from OpAmps for Everyone Literature Number: SLOD006A.”; L. Xiong et al., “IMU-based automated vehicle slip angle and attitude estimation aided byvehicle dynamics,” Sensors (Switzerland), vol. 19, no. 8, 2019, doi:10.3390/s19081930.; Arduino Uno Rev3 %7C Arduino Official Store.” https://store.arduino.cc/usa/arduino-uno-rev3.; S. Sanghani, Stumps and Cranks: An Introduction to Amputee Cycling.; M. Ambrož, “Raspberry Pi as a low-cost data acquisition system for human poweredvehicles,” Meas. J. Int. Meas. Confed., vol. 100, pp. 7–18, 2017, doi:10.1016/j.measurement.2016.12.037.; F. Villarreal, “Introducción a los modelos de pronósticos,” Univ. Nac. del Sur, pp. 1–121,2016.; “pySerial 3.0 documentation.” https://pythonhosted.org/pyserial/.; “python-drawnow: MATLAB-like drawnow to easily update a figure.” https://github.com/stsievert/python-drawnow.; J. D. Rairan-Antolines and J. M. Fonseca-Gómez, “Algoritmo para la aproximación de lavelocidad de giro de un eje mediante un encoder incremental,” Ing. y Univ., vol. 17, no. 2, pp. 293–309, 2013.; MinSalud, “33 mil personas al año mueren de Cáncer en Colombia.” https://www.minsalud.gov.co/Paginas/33-mil-personas-al-año-mueren-de-Cáncer-en-Colombia.aspx.; D. Raúl Pefaur, “Imaginología actual del cáncer pulmonar,” Rev. Médica Clínica Las Condes, vol. 24, no. 1, pp. 44–53, 2013, doi: https://doi.org/10.1016/S0716-8640(13)70128-7.; C. R. José Miguel, “Estado actual del tratamiento del cáncer pulmonar,” Rev. Médica Clínica Las Condes, vol. 24, no. 4, pp. 611–625, 2013, doi: https://doi.org/10.1016/S0716-8640(13)70200-1.; Society American Cancer, “Cancer Statistics Center,” 2020. https://cancerstatisticscenter.cancer.org/?_ga=2.68534866.2102841857.1593652002-2027832360.1593652002#!/.; Diariopresente.mx, “Google desarrolla algoritmo que detecta el cáncer de pulmón,” 2018. [Online]. Available: https://www.diariopresente.mx/actualidad/google-desarrolla-algoritmo-que-detecta-el-cancer-de-pulmon/218050.; M. F. Abbod, J. W. F. Catto, D. A. Linkens, and F. C. Hamdy, “Application of ArtificialIntelligence to the Management of Urological Cancer,” J. Urol., vol. 178, no. 4, pp. 1150–1156, 2007, doi: https://doi.org/10.1016/j.juro.2007.05.122.; J. M. Purswani, A. P. Dicker, C. E. Champ, M. Cantor, and N. Ohri, “Big Data From SmallDevices: The Future of Smartphones in Oncology,” Semin. Radiat. Oncol., vol. 29, no. 4, pp. 338–347, 2019, doi: https://doi.org/10.1016/j.semradonc.2019.05.008.; K. Cieślak, “Professional psychological support and psychotherapy methods for oncologypatients. Basic concepts and issues,” Reports Pract. Oncol. Radiother., vol. 18, no. 3, pp. 121–126, 2013, doi: https://doi.org/10.1016/j.rpor.2012.08.002.; H. Contreras, “Teoria de la Computacion para Ingeniería de Sistemas: Un enfoque practico.”Caracas: Saber, Ula. V, 2012, [Online]. Available: https://d1wqtxts1xzle7.cloudfront.net/39872592/tema1.pdf?1447177931=&response-content-disposition=inline%3B+filename%3DTema1.pdf&Expires=1594305464&Signature=Fe86rqeud4Y7osvWzUUhOYTIZCaL-k~pJaar2XxVbujlot-4xV9wYpduKdxkZ5zHaSPhUOCcpH1v0k7Y5shbONvWqbXmdTzdO.; A. GALIPIENSO, M. ISABEL, M. A. CAZORLA QUEVEDO, O. Colomina Pardo, F.ESCOLANO RUIZ, and M. A. LOZANO ORTEGA, Inteligencia artificial: modelos, técnicas y áreas de aplicación. Editorial Paraninfo, 2003.; J. V. González, O. A. V. Arenas, and V. V. González, “Semiología de los signos vitales:Una mirada novedosa a un problema vigente,” Arch. Med., vol. 12, no. 2, pp. 221–240, 2012, [Online]. Available: https://www.redalyc.org/pdf/2738/273825390009.pdf.; Liip.care, “Liip Smart Monitor,” 2019. https://liip.care/es/.; Welchallyn.com, “Equipos de signos vitales,” 2018.; Welchallyn.com, “Equipos de signos vitales,” 2018. https://www.welchallyn.com/content/welchallyn/latam/es/products/categories/patient-monitoring/vital-signs-devices.html#.; Scikit-learn.org, “Scikit-learn machine learning in python,” 2019. https://scikit-learn.org/stable/index.html.; Cancer Treatment Centers of America, “Lung cancer stages,” 2020. https://www.cancercenter.com/cancer-types/lung-cancer/stages.; NIH (Instituto Nacional del Cáncer), “¿Qué es el cancer?,” 2015. https://www.cancer.gov/espanol/cancer/naturaleza/que-es%0A.; Roger S. Pressman. (2010). Ingeniería del Software Un enfoque práctico. Vol. 3, SéptimaEdición. pp. 70.; Castro, F.D. (2008). Metodologia de projeto centrada na casa da qualidade. Tesis deMaestría, universidade federal rio grande do sul, Porto Alegre, Brasil.; Pahl, G., & Beits, W. (2013). Engineering design: a systematic approach. Springer ScienceBusiness Media.; R. De Armas, A. Alfonso, y L. Rojas, “Tomografía local con bases daubechies", VisiónElectrónica, vol. 9, no. 2, pp. 300-311, 2015.; C. H. Caicedo y A. Smida, “Intensidad informacional para la longitudinalidad asistencial ensistemas de salud", Visión Electrónica, vol. 10, no. 1, pp. 83-95, 2016. https://doi.org/10.14483/22484728.11612.; J. R. Torres Castillo, J. S. Pérez Lomelí, E. Camargo Casallas, y M. Ángel PadillaCastañeda, “Dispositivo háptico vibrotáctil inalámbrico para asistencia de actividades motoras", Visión Electrónica, vol. 12, no. 1, pp. 58-64, 2018. https://doi.org/10.14483/22484728.13310.; N. W. S. US Department of Commerce, NOAA, “Your National Weather Service: Evolvingto Build a Weather-Ready Nation,” 2017. https://www.weather.gov/about/wrn (accessed Oct. 17, 2020).; NOAA,“AboutOur Agency %7C National Oceanic and AtmosphericAdministration.” https://www.noaa.gov/about-our-agency (accessed Oct. 17, 2020).; NOAA, “Marina y aviación %7C Administración Nacional Oceánica y Atmosférica,” 2020.https://www.noaa.gov/marine-aviation (accessed Oct. 25, 2020).; N. NESDIS, “About %7C NOAA National Environmental Satellite, Data, and Information Service(NESDIS),” 2019. https://www.nesdis.noaa.gov/content/about (accessed Oct. 25, 2020).; NOAA,“Gráficos %7C Administración Nacional Oceánica yAtmosférica,”2020. https://www.noaa.gov/charting (accessed Oct. 25, 2020).; NOAA,“Educación Administración Nacional Oceánica y Atmosférica,”2019. https://www.noaa.gov/education (accessed Oct. 25, 2020).; N. N. O. and A. A. US Department of Commerce, “National Oceanic and AtmosphericAdministration (NOAA) Staff Directory Page,” 2018.; N. O. and A. A. US Department of Commerce, “NOAA’s National Ocean Service,” 2019.; R. Weiher, “Assessing the Economic & Social Benefits of NOAA Data,” 2008. Accessed:Nov. 19, 2020. [Online]. Available: https://www.oecd.org/sti/ieconomy/40066192.pdf.; H. Kite-Powell, “Estimating Economic Benefits from NOAA PORTS ® Information: A CaseStudy of Houston,” 2007. Accessed: Nov. 19, 2020. [Online]. Available: https://tidesandcurrents.noaa.gov/publications/EstimatingEconomicBenefitsfromNOAAPORTSIn formation_Houston-Galveston.pdf.; NASA, “Órbitas de Satélites,” 2020. https://scool.larc.nasa.gov/Spanish/orbits-sp.html(accessed Oct. 17, 2020).; N. OSPO, “GOES Status - Office of Satellite and Product Operations,” Aug. 15, 2019.https://www.ospo.noaa.gov/Operations/GOES/status.html (accessed Oct. 17, 2020).; N.OSPO, “POES Operational Status- POESStatus- OSPO,”Mar. 22, 2019. https://www.ospo.noaa.gov/Operations/POES/status.html (accessed Oct. 19, 2020).; NOAA, “NOAA Readies GOES-15 and GOES-14 for Orbital Storage %7C NOAA NationalEnvironmental Satellite, Data, and Information Service (NESDIS),” Jan. 29, 2020. https://www.nesdis.noaa.gov/content/noaa-readies-goes-15-and-goes-14-orbital-storage (accessed Oct. 17, 2020).; N. OSPO, “Suomi-NPP Operational Status - Office of Satellite and Product Operations,”Apr. 14, 2016. https://www.ospo.noaa.gov/Operations/SNPP/status.html (accessed Oct. 19, 2020).; X. Zou and X. Tian, “COMPARISON OF ATMS STRIPING NOISE BETWEEN NOAA-20AND S- NPP Xiaolei Zou and Xiaoxu Tian Earth System Science Interdisciplinary Center , University of Maryland , College Park , MD 20740,” IEEE Int. Geosci. Remote Sens. Symp., pp. 3105–3108, 2018, doi:10.1109/IGARSS.2018.8517482.; X. Tian, X. Zou, and N. Sun, “COMPARISON OF RO-ESTIMATED ATMS BIASESBETWEEN NOAA-20 AND S-NPP Earth System Science Interdisciplinary Center , University of Maryland , College Park , MD 20740 Earth Resources Technology ( ERT ), Inc ., Laurel , MD20707 , USA,” IEEE Int. Geosci. Remote Sens. Symp., pp. 3101–3104, 2018, doi:10.1109/IGARSS.2018.8519416.; W. Wang, C. Cao, Y. Bai, S. Blonski, and M. A. Schull, “Assessment of the NOAA S-NPPVIIRS geolocation reprocessing improvements,” Remote Sens., vol. 9, no. 10, 2017, doi:10.3390/rs9100974.; N. NESDIS, “Imágenes del sector: América del Sur - Norte - NOAA / NESDIS / STAR,”2020. https://www.star.nesdis.noaa.gov/GOES/sector.php?sat=G16§or=nsa (accessed Oct. 17, 2020).; S. A. Buehler, V. O. John, A. Kottayil, M. Milz, and P. Eriksson, “Efficient radiative transfersimulations for a broadband infrared radiometer-Combining a weighted mean of representative frequencies approach with frequency selection by simulated annealing,” J. Quant. Spectrosc. Radiat. Transf., vol. 111, no. 4, pp. 602–615, 2010, doi:10.1016/j.jqsrt.2009.10.018.; U.S. DEPARTMENT OF COMERCE, National Oceanic and Atmospheric Adminitration,and and National Environmental Satellite, Data, “National Oceanic and Atmospheric Administration User’s Guide for Building and Operating Environmental Satellite Receiving Stations,” Feb. 2009. Accessed: Oct.17,2020. [Online]. Available: https://noaasis.noaa.gov/NOAASIS/pubs/Users_GuideBuilding_Receive_Stations_March_2009.pdf.; J. Mitola, “The Software Radio Architecture,” Softw. Radio Technol., vol. 33, no. May, pp.26–38, 2009, doi:10.1109/9780470546444.ch1.; V. Dascal, P. Dolea, O. Cristea, and P. Tudor, “Advanced Vhf Ground Station for NoaaWeather Satellite Apt Image Reception,” Acta Tech. Napocensis, vol. 53, no. 3, pp. 1–7, 2012.; C. Bosquez, A. Ramos, and L. Noboa, “System for receiving NOAA meteorological satelliteimages using software defined radio,” Proc. 2016 IEEE ANDESCON, ANDESCON 2016, pp. 0– 3, 2016, doi:10.1109/ANDESCON.2016.7836233.; C. Velasco and C. Tipantuna, “Meteorological picture reception system using softwaredefined radio (SDR),” 2017 IEEE 2nd Ecuador Tech. Chapters Meet. ETCM 2017, vol. 2017-Janua, pp. 1–6, 2017, doi:10.1109/ETCM.2017.8247551.; E. B. Mikkelsen, “The Design of a Low Cost Beacon Receiver System using SoftwareDefined Radio,” Inst. Elektron. og telekommunikasjo, no. July, pp. 1–83, 2009, [Online]. Available: https://hdl.handle.net/11250/2369478.; D. J. M. Peralta, D. S. Dos Santos, A. Tikami, W. A. Dos Santos, and E. W. R. Pereira,“Satellite telemetry and image reception with software defineradio applied to space outreach projects in brazil,” An. Acad. Bras. Cienc., vol. 90, no. 3, pp. 3175–3184, 2018, doi:10.1590/0001- 3765201820170955.; A. G. C. Guerra, A. S. Ferreira, M. Costa, D. Nodar-López, and F. Aguado Agelet,“Integrating small satellite communication in an autonomous vehicle network: A case for oceanography,” Acta Astronaut., vol. 145, no. November 2017, pp. 229–237, 2018, doi:10.1016/j.actaastro.2018.01.022.; J. Lee Min, “Decoding Signals From Weather Satellites Using Software Defined Radio,”Electron.Theses Diss., vol. 3, no. 2, pp. 1–70, 2018, doi:10.18041/2382-3240/saber.2010v5n1.2536.; Icom, “INSTRUCTON MANUAL iPCR1500 iPCR2500,” Screen. Icom, Osaka, pp. 45–49,2006, [Online]. Available: http://www.icomamerica.com/es/products/receivers/pc/pcr1500/default.aspx.; National Instruments, “SPECIFICATIONS USRP-2920,” Jul. 13, 2017. https://www.ni.com/pdf/manuals/375839c.pdf (accessed Oct. 19, 2020).; RTL-SDR, “RTL-SDR Blog V3 Datasheet,” Feb. 2018. Accessed: Oct. 19, 2020. [Online].Available: https://www.rtl-sdr.com/wp-content/uploads/2018/02/RTL-SDR-Blog-V3- Datasheet.pdf.; N. Crisan and L. Cremene, “NOAA Signal Decoding And Image Processing Using GNU-Radio,” Acta Tech. Napocensis, vol. 49, no. 4, pp. 1–5, 2012.; D. Aguirre and P. R. Yanyachi, “Design of a parabolic patch antenna in band L, with doublelayer and air substrate, for weather satellite reception,” 2017 6th Int. Conf. Futur. Gener. Commun. Technol. FGCT 2017, pp. 10–14, 2017, doi:10.1109/FGCT.2017.8103395.; Y. Rafsyam, Z. Indra, E. E. Khairas, Jonifan, and W. A. Karimah, “Design of Double CrossDipole Antenna as NOAA Satellite Signal Receiver for Monitor Cloud Conditions Application,” J.Phys. Conf. Ser., vol. 1364, no. 1, 2019, doi:10.1088/1742-6596/1364/1/012059.; M. Fathurahman, Zulhelman, A. Maulana, and M. Widyawati, “Design and Development ofDipole Antenna for NOAA Satellite Image Acquisition System and Processing,” J. Phys. Conf. Ser., vol. 1364, no. 1, 2019, doi:10.1088/1742-6596/1364/1/012025.; F. P. A. Escobedo, H. R. Alvarez, H. Salazar, C. G. R. Percing, and R. L. J. M. De Oca,“Low cost optimization method of a double cross antenna satellite reception system for the processing and improvement of meteorological satellite signals and images NOAA 15-18-19,” Proc. 2019 IEEE 1st Sustain. Cities Lat. Am. Conf. SCLA 2019, pp. 1–6, 2019, doi:10.1109/SCLA.2019.8905749.; A. E. Quiroz-Olivares, N. I. Vargas-Cuentas, G. W. Zarate Segura, and A. Roman-Gonzalez, “Low-cost and portable ground station for the reception of NOAA satellite images,”Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 5, pp. 450–454, 2019, doi:10.14569/ijacsa.2019.0100557.; M. L. Keefer et al., “Evaluating the NOAA Coastal and Marine Ecological ClassificationStandard in estuarine systems: A Columbia River Estuary case study,” Estuar. Coast. Shelf Sci., vol. 78, no. 1, pp. 89–106, 2008, doi:10.1016/j.ecss.2007.11.020.; A. K. Mitra, P. K. Kundu, A. K. Sharma, and S. K. Roy Bhowmik, “A neural networkapproach for temperature retrieval from AMSU-a measurements onboard NOAA-15 and NOAA-16 satellites and a case study during Gonu cyclone,” Atmosfera, vol. 23, no. 3, pp. 225–239, 2010.; D. J. Schneider and M. J. Pavolonis, “ADVANCES IN VOLCANO MONITORING : THEROLE OF JPSS INSTRUMENTS U . S . Geological Survey-Alaska Volcano Observatory , Anchorage , AK NOAA Cooperative Institute for Meteorological Satellite Studies , Madison , WI,” IEEE Int. Geosci. Remote Sens. Symp., pp. 2798–2801, 2017, doi:10.1109/IGARSS.2017.8127579.; C. Muñoz, P. Acevedo, S. Salvo, G. Fagalde, and F. Vargas, “Detección de incendiosforestales utilizando imágenes NOAA/16-LAC en la Región de la Araucanía, Chile,” Bosque, vol. 28, no. 2, pp. 119–128, 2007, doi:10.4067/s0717-92002007000200004.; L. Carro-Calvo, C. Casanova-Mateo, J. Sanz-Justo, J. L. Casanova-Roque, and S.Salcedo- Sanz, “Efficient prediction of total column ozone based on support vector regression algorithms, numerical models and Suomi-satellite data,” Atmosfera, vol. 30, no. 1, pp. 1–10, 2017, doi:10.20937/ATM.2017.30.01.01.; A. Antón, R. Martínez, M. A. Salas, and A. Torre, “Performance analysis andimplementation of spatial and blind beamforming algorithms for tracking leo satellites with adaptive antenna arrays,” in European Conference on Antennas and Propagation, EuCAP 2009, Proceedings, 2009, pp. 216–220.; S. Soisuvarn, Z. Jelenak, P. S. Chang, Q. Zhu, and G. Sindic-Rancic, “Validation of noaa’snear real-time ascat ocean vector winds,” Int. Geosci. Remote Sens. Symp., vol. 1, no. 1, pp. 118–121, 2008, doi:10.1109/IGARSS.2008.4778807.; A. Huang, L. Gumley, K. Strabala, S. Mindock, R. Garcia, and G. Martin, “COMMUNITYSATELLITE PROCESSING PACKAGE FROM DIRECT BROADCAST : PROVIDING REAL- TIME SATELLITE DATA TO EVERY CORNER OF THE WORLD Space Science and Engineering Center ( SSEC ) Cooperative Institute for Meteorological Studies ( CIMSS ) University of Wisconsin,” IEEE Int. Geosci. Remote Sens. Symp., pp. 5532–5535, 2016, doi:10.1109/IGARSS.2016.7730443.; K. R. Al-Rawi and J. L. Casanova, “APLICACIÓN DE LAS REDES NEURONALES PARAEL CONTROL Y SEGUIMIENTO EN TIEMPO REAL DE LOS INCENDIOS FORESTALES MEDIANTE IMÁGENES NOAA-AVHRR,” in TELEDETECCION. Avances y Aplicaciones.VIII Congreso Nacional de teledeteccion, 1999, no. January, pp. 244–247.; Organización Meteorología Mundial, “IDEAM se fortalece en monitoreo y seguimiento dehuracanes (IDEAM, Columbia) %7C Organización Meteorológica Mundial,” Feb. 07, 2013. https://public.wmo.int/es/media/news-from-members/ideam-se-fortalece-en-monitoreo-y- seguimiento-de-huracanes-ideam-columbia (accessed Oct. 26, 2020). [49] IDEAM, “VISOR DE IMÁGENES SATÉLITALES - IDEAM.” http://www.pronosticosyalertas.gov.co/imagsatelital-portlet/html/imagsatelital/view.jsp (accessed Oct. 26, 2020).; NOAA, “National Oceanic and Atmospheric Administration %7C U.S. Department ofCommerce.” https://www.noaa.gov/ (accessed Oct. 26, 2020). IDEAM, “IDEAM - IDEAM.” http://www.ideam.gov.co/ (accessed Oct. 26, 2020).; J. S. M. G, J. E. Ar, and M. L. Su, “Comparacion De Herramientas De Software Para LaCoordinacion Internacional Del Roe En La Orbita Geoestacionaria,” Visión Electrónica algo más que un estado sólido, vol. 9, no. 1, pp. 5–12, 2016, doi:10.14483/22484728.11009.; Google Cloud, “Weather, climate big data from NOAA now in cloud %7C Google Cloud Blog,”Dec.19, 2019. https://cloud.google.com/blog/products/data-analytics/weather-climate-big-data-from-noaa-now-in-cloud (accessed Oct. 26, 2020).; Amazon Web Services, “Registry of Open Data on AWS,” Dec. 19, 2019.https://registry.opendata.aws/collab/noaa/ (accessed Oct. 26, 2020).; NOAA, “Cloud platforms unleash full potential of NOAA’s environmental data %7C NationalOceanic and Atmospheric Administration,” Dec. 19, 2019. https://www.noaa.gov/media-release/cloud- platforms-unleash-full-potential-of-noaa-s-environmental-data (accessed Oct. 26, 2020).; J. A. Niño, L. Y. Martínez y F. H. Fernández “Mano robótica como alternativa para laenseñanza de conceptos de programación en Arduino”, Revista Colombiana de Tecnologías de Avanzada, vol. 2, no. 28, pp. 132 - 139, may 2016.; C. Flores-Vázquez, A. Rojas y K. Trejo, “Operación remota de un robot móvil usando unteléfono inteligente” INGENIUS, núm. 17, 2017.; A. Cerón, “Sistemas robóticos teleoperados” Ciencia e Ingeniería Neogranadiana, no. 15,pp. 62-72, 2005.; A. M. Rivera, L. A. O’Farril, C. Miguélez, P. Martínez y I. O. Benítez “Caracterización del ez-robot para su utilización en la robótica educativa”, Serie Científica de la Universidad de las Ciencias Informáticas, vol. 12, no. 11, pp. 73 - 80, nov 2019.; M. G. da Silva, C. S. González “PequeBot: Propuesta de un Sistema Ludificado de RobóticaEducativa para la Educación Infantil”, Actas del V Congreso Internacional de Videojuegos y Educación (CIVE'17), 2017.; A. Marroquín, A. Gómez y A. Paz “Design and implementation of Explorer Mobile Robotcontrolled remotely using IoT Technology”, 2017.; R. Batista, " Diseño e implementación de un sistema de iluminación inteligente de interiores”, tesis Eng., Universidad Tecnológica de La Habana “José A. Echeverría” CUJAE, La Habana, Cuba, 2019.; S. Companioni, "Procesamiento de imágenes, obtenidas por un vehículo autónomo, para elreconocimiento de daños en cultivos ”, tesis Eng, Universidad Tecnológica de La Habana “José A.Echeverría” CUJAE, La Habana, Cuba, 2020.; J. A. Licona, “Diseño y desarrollo de un robotmóvil a bajo costo para niños: EcateBot”, thesisEng, Universidad Autónoma del estado de México, México D.F, México, 2019.; R. A. Moreno, Desarrollo de aplicaciones para Android usando MIT App Inventor 2, 1eraed. Bogotá: Autoedición, 2016.; L. A. Velazco, "Diseño de un sistema de control basado en linealización por realimentaciónpara robot móvil tipo Ackerman con velocidad variable y movimiento en doble sentido describiendo trayectorias óptimas " thesis MSc, Pontificia Universidad Católica del Perú, Lima, Perú, 2019.; C. Vázquez, "Framework de comunicaciones para robótica educativa, distributiva ycolaborativa” thesis Eng, Universidad de Extremadura, Badajoz, España, 2019.; L. Rodríguez, "Diseño e implementación de una Estación Meteorológica para la agriculturabasada en Arduino", thesis Eng, Universidad Tecnológica de La Habana “José A. Echeverría” CUJAE, La Habana, Cuba, 2019.; D. Higuera, J. Guzmán, A. Rojas “Implementando las metodologías steam y abp en laenseñanza de la física mediante Arduino”, III Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y Móvil AmITIC, pp 133 – 137, 2019.; J.M. Nova, " Diseño y desarrollo de una aplicación para monitorear la concentración deCO y CH4 en dispositivos móviles Android". thesis Eng, Universidad Pontificia Bolivariana, Bucaramanga, Colombia, 2018.; ECDRUM. “Circuito – inversión de giro de un motor de CD con relés”, 2018, [Online]Available at http: //ecdrumdownload.blogspot.com. “Manual de la GoPro H9”, 2017, [Online] Available at http: //www.google.com.; R. a. markets, «Research and Markets,» 2020.[En línea]. Available: https://www.globenewswire.com/news-release/2020/03/18/2002434/0/en/IoT-in-the-Global-Retail-Market-2020-2025-Analyzed-by-Platform-Hardware-Service-Application-and-Region.html. [Último acceso: 4 7 2020].; H. T. a. S. Dustdar, «Principles for Engineering IoT Cloud Systems,» IEEE Cloud Computing, vol. II, nº 2, pp. 68-76, 2015.; A. Rahmani, N. K. Thanigaivelan, T. N. Gia, J. Granados, B. Negash, P. Liljeberg y H. Tenhunen, «Smart e-Health Gateway :,» Consumer Communications and Networking Conference (CCNC), 12th Annual IEEE, pp. 826-834, 2015.; P. Desai, A. Sheth y P. Anantharam, «Semantic Gateway as a Service Architecture for IoT Interoperability,» 2015 IEEE International Conference on Mobile Services, pp. 313-319, 2015.; A. A. Sánchez Martín, E. González Guerrero y L. E. Barreto Santamaría, «Prospective integration between Environmental Intelligence (AMI), Data Analytics (DA), and Internet of Things (IoT),» 2019 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI ), pp. 1-6, 2019.; I. A. M. M. J.-M. R. J.-C. T. M. Berrouyne, «A Model-Driven Approach to Unravel the Interoperability Problem of the Internet of Things,» de Barolli, L., Amato, F., Moscato, F., Enokido, T., & Takizawa, M. (Eds.). (2020). Advanced Information Networking and Applications. Advances in Intelligent Systems and Computing. doi:10.1007/978-3-030-44041-1 , Caserta, Italia, 2020.; D. Yacchirema y C. E. Palau Salvador, «Smart IoT Gateway for Heterogeneous Devices Interoperability,» IEEE Latin America Transactions, vol. 14, nº 8, pp. 3900-3906, 2016.; C. Dergarabedian, «La fuerte apuesta de Samsung a la Internet de las cosas para simplificar la vida cotidiana de los usuarios,» iProfesional, 10 Enero 2018.; OpenIoT Consortium, «Open Source cloud solution for the Internet of Things,» OpenIoT, 1 Septiembre 2019. [En línea]. Available: http://www.openiot.eu/. [Último acceso: 02Marzo 2020].; E. González Guerrero, L. E. Barreto Santamaría y A. A. Sánchez Martín, «Integrated Model AmI-IoT-DA for Care of Elderly People,» de Advances in Computing. CCC 2018, Bogotá, 2018.; N. Al-Oudat, A. Aljaafreh, M. Saleh y M. Alaqtash, «IoT-Based Home and Community Energy Management System in Jordan,» Tafila Technical University, vol. CLX, pp. 142-148, 2019.; F. Herrera Araújo, M. A. Ardila Lara, E. Gutiérrez Gil y D. Herrera Téllez, «ODS en Colombia: Los retos para 2030,» Programa de las Naciones Unidas para el Desarrollo -PNUD-, Bogotá, 2018.; M. Unis, A. Nettsträter, F. Iml, J. Stefa, C. S. D. Suni, A. Salinas y U. Sapienza, «Internet of Things-Architecture IoT-A Final architectural reference model for the IoT,» 2013.; F. Leiva, «La agricultura de precisión: una producción más sostenible y competitiva con visión futurista,» VIII Congreso de la Sociedad Colombiana de Fitomejoramiento y Producción de Cultivos, vol. 93, nº 997-1006, p. 7, 2003.; F. A. Urbano Molano, «Wireless Sensor Networks Applied to Optimization in Precision Agriculture for Coffee Crops in Colombia,» Journal de Ciencia e Ingenier´ıa, vol. 5, nº 1, pp. 46-52, 2013.; IERC, «IoT Semantic Interoperability:Research Challenges, Best,» 2011.; M. MARJANI, F. NASARUDDIN, A. GANI, A. KARIM, I. A. TARGIO HASHEM, A. SIDDIQA y . I. YAQOOB, «Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges,» IEEE Access, vol. V, nº 2, p. 15, 2017.; W. Ruíz Martínez , Y. Díaz Gutiérrez, R. Ferro Escobar y L. Pallares, «Application of the Internet of Things through a Network of Wireless Sensors ina Coffee Crop for Monitoring and Control its Environmental Variables,» TecnoLógicas, vol. 22, nº 46, pp. 2-17, 2019.; C. A. Barry, «Choosing Qualitative Data Analysis Software: Atlas/ti and Nudist Compared,» Sociological Research Online, vol. III, nº 3, p. 16–28, 1998.; J. Macias, H. Pinilla, W. Castellanos y J. D. Alvarado, «Sistema de monitoreo de variables ambientales usando IOT,» Tech Fest, 2019.; J. Macías, H. Pinilla, W. Castellanos, J. D. Alvarado y A. Sánchez, «DISEÑO E IMPLEMENTACIÓN DE UN GATEWAY IOT MULTIPROTOCOLO,» 14° CONGRESO INTERNACIONAL DE ELECTRÓNICA, CONTROL Y TELECOMUNICACIONES, vol. 13, pp. 179-198, 2019.; A. A. Sánchez Martín, L. E. Barreto Santamaría, J. J. Ochoa Ortiz y S. E. Villanueva Navarro, «EMULADOR PARA DESARROLLO DE PROYECTOS IOT Y ANALITICAS DE DATOS,» de XII Congreso Internacional de Electrónica, Control y Telecomunicaciones, Bogota, 2019.; allmeteo, «Agro IoT Weather Sensor: AN AFFORDABLE SOLUTION FOR DISTRIBUTED WEATHER MONITORING FOR AGRICULTURE, FARMING & WINE YARDS.,» BARANI DESIGN Technologies s.r.o., 2018. [En línea]. Available: https://www.allmeteo.com/agriculture-iot-weather-station. [Último acceso: 02 03 2020].; LEMKEN, «LEMKEN: The Agrovision Company,» LEMKEN , 2020. [En línea]. Available: https://smartfarming.lemken.com/en/. [Último acceso: 02 03 2020].; RIGADO, «Cascade IoT Gateway: Edge Bluetooth® connectivity & secure data processing,» RIGADO, 2016-2020. [En línea]. Available: https://www.rigado.com/cascade-iot-gateway/. [Último acceso: 02 03 2020].; NXP Semiconductors, «IoT Gateway Solution: Complete development platform that brings together the building blocks for secure, production-ready IoT systems,» NXP Semiconductors, 2006-2020. [En línea]. Available: https://www.nxp.com/design/designs/iot-gateway-solution:IOT-GATEWAY-SOLUTION.[Último acceso: 02 03 2020].; Google, Google Big Query Analytics, United States of America : John Wiley & Sons, Inc., 2014.; P. P. Ray, «A survey of IoT cloud platforms,» Future Computing and Informatics Journal, vol. 1, nº 1-2, pp. 35-46, 2016.; J. C. Najar-Pacheco, J. A. Bohada-Jaime y W. Y. Rojas-Moreno, «Vulnerabilidades en el internet de las cosas,» Visión Electrónica, vol. 13, nº 2, pp. 312-321, 2019.; K. Husenovic, I. Bedi, and S. Maddens, Sentando las bases para la 5G: Oportunidades ydesafíos. ITU, 2018 [Online]. Available: https://www.itu.int/dms_pub/itu-d/opb/pref/D-PREF-BB.5G_01-2018-PDF-S.pdf; GSMA, “Study on Socio-Economic Benefits of 5G Services Provided in mmWave Bands.”Reportes GSMA, 2018 [Online]. Available: https://www.gsma.com/spectrum/wp-content/uploads/2019/10/mmWave-5G-benefits.pdf.; 5G Américas, Identificación de habilitadores para redes 4G y 5G en América Latina. 2020[Online]. Available: https://brechacero.com/wp-content/uploads/2020/04/WP-Identificaci%C3%B3n-de-habilitadores-para-la-implementaci%C3%B3n-de-redes-4G-y-5G-en-Am%C3%A9rica-Latina.pdf.; GSMA, The Mobile Economy. GSM Association, 2020 [Online]. Available:https://www.gsma.com/mobileeconomy/wpcontent/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf.; N. Vyakaranam and S. Dilip Krishna, “5G: Network As A Service - How 5G enables thetelecom operators to lease out their network,” 22-Mar-2018. [Online]. Available: https://netmanias.com/en/?m=view&id=blog&no=13311. [Accessed: 20-Nov-2020].; J. C. Martínez, J de J. Rugeles y E. P. Estupiñán. “Análisis de ocupación espectral bandaGSM 850 en Bogotá”. Visión Electrónica, algo más que un estado sólido, Vol. 12, No. 1, 5-13, enero-junio 2018. https://doi.org/10.14483/22484728.14801.; Ericsson, “5G architecture next mobile technology %7C Whitepaper,” 01-Jan-2017. [Online].Available: https://www.ericsson.com/en/reports-and-papers/white-papers/5g-systems--enabling-the-transformation-of-industry-and-society. [Accessed: 18-Nov-2020].; H. Ekström, “Non-standalone and Standalone: two paths to 5G,” 2019. [Online]. Available:https://www.ericsson.com/en/blog/2019/7/standalone-and-non-standalone-5g-nr-two-5g tracks. [Accessed: 16-Oct-2020].; 3 GPP, “Release 15 Description,” 3rd Generation Partnership Project (3GPP), 2019 [Online]Available:https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3389.; L. Casaccia, “Propelling 5G forward: A closer look at 3GPP Release 16.” 07-Jul-2020[Online]. Available: https://www.qualcomm.com/news/onq/2020/07/07/propelling-5g-forward-closer-look-3gpp-release-16. [Accessed: 12-Oct-2020].; M. Clark, C. Vanoli, and A. Smith, Abrir sendas hacia 5G. ITU News Magazine, 2017[Online]. Available: https://www.itu.int/en/itunews/Documents/2017/2017-02/2017_ITUNews02-es.pdf.; GSMA, “Espectro 5G Postura de la GSMA sobre política pública,” GSMA, 2018 [Online].Available: https://www.gsma.com/latinamerica/wp-content/uploads/2019/03/5G-Spectrum-Positions-SPA.pdf. [Accessed: 05-Oct-2020].; 5G Américas, Análisis de las recomendaciones de espectro de la UIT en América Latina.White Papers 5G Américas, 2019, p. 6-21 [Online]. Available: https://brechacero.com/wp-content/uploads/2019/08/ES-Analisis-de-las-Recomendaciones-de-Espectro-de-la-UIT-en-America-Latina-2019-vf.pdf.; 5G Américas, Espectro para 5G: Banda 3,5 GHZ en América Latina. 2019 [Online].Available: https://brechacero.com/wp-content/uploads/2019/06/3.5-GHz-esp-ok.pdf.; Poder Legislativo, "Ley No. 14.235," Centro De Información Oficial, Ago 3, 1974.; Council of State, "ACT of 2004 No.151," Official Gazette of the Republic of Suriname, 2004.; QoSi, “Etude de la qualité d’expérience des opérateurs mobiles en Guyane Francaise,”Publicaciones QoSi, Francia, 2019 [Online]. Available: https://www.5gmark.com/news/2019/Barometre_4Gmark_Guyane_2019.pdf. [Accessed: 17-Jul-2020].; F. Staff. (Jul 8,). Claro, de Carlos Slim, iniciará la carrera del 5G en Brasil. Available:https://www.forbes.com.mx/tecnologia-claro-slim-5g-brasil/.; Telesur. (s.f.). 5G - Beyond Connectivity. Available: https://www.telesur.sr/5g/.; NOKIA. (Apr 10,). ANTEL and Nokia make the first 5G call on a commercial network inLatin America. Available: https://www.nokia.com/about-us/news/releases/2019/04/10/antel-and-nokia-make-the-first-5g-call-on-a-commercial-network-in-latin-america/.; ENACOM, "LEY ARGENTINA DIGITAL," Boletín Oficial De La Republica De Argentina,Dec 19, 2014.; Secretaría de Tecnologías de la Información, "Documento base sobre la identificación dedesafíos y necesidades de Espectro Radioeléctrico en Argentina," Boletin Oficial De La Republica De Argentina, pp. 1-36, 2019.; Asamblea Legislativa Plurinacional, "Ley General de Telecomunicaciones, Tecnologías dela Información y Comunicación" Gaceta Oficial De Bolivia, Ago 8, 2011.; Agencia Boliviana Espacial, "Satélite TUPAC KATARI," 2019.; Poder Legislativo, "Ley No. 13.879," Diario Oficial De La Unión, vol. 1, Oct 4, 2019.; ANATEL, “Anatel aprova consulta pública para implementar o 5G,” 06-Feb-2020. [Online].Available: https://www.anatel.gov.br/institucional/component/content/article/171-manchete/2491-anatel-aprova-consulta-publica-para-licitar-faixas-de-frequencias-para-o-5g. [Accessed: 20-May-2020].; SUBTEL, "CONSULTA PÚBLICA SOBRE PLAN NACIONAL 5G PARA CHILE," 2018.; SUBTEL. (Jan 14,). Consulta Pública 5G: Gobierno licitará cuatro bandas para generarmayor competencia y eficiencia espectral en el mercado móvil. Available: https://www.subtel.gob.cl/consulta-publica-5g-gobierno-licitara-cuatro-bandas-para-generar-mayor-competencia-y-eficiencia-espectral-en-el-mercado-movil/.; MINTIC, Plan 5G Colombia. Colombia: Planes Nacionales del MINTIC, 2019.; 5G Américas, “Temas en Regulación de Telecomunicaciones: Ecuador,” Publicaciones 5GAméricas, 2019 [Online]. Available: https://brechacero.com/white-papers/. [Accessed: 26-Jul-2020].; PUC, "ACT NO. 18- TELECOMMUNICATIONS ACT," The Official Gazette, Ago 5, 2016.; F. D'Almeida and D. Margot, La Evolución De Las Telecomunicaciones Móviles EnAmérica Latina Y El Caribe. (Publicaciones BID ed.) 20182.; Poder Legislativo, "LEY No. 642 DE TELECOMUNICACIONES," Gaceta Oficial De LaRepública Del Paraguay, 1995.; J. M. Perrotta, "Conatel pone fecha al 5G en Paraguay para después de 2024,"TeleSemana.Com, Jun 11, 2020. Available: http://www.telesemana.com/blog/2020/06/11/conatel-pone-fecha-al-5g-en-paraguay-para-despues-de-2024/.; OSIPTEL, "Reporte estadístico" Publicaciones OSIPTEL, Perú, Abril. 2020.; J. O. Prats Cabrera and P. Puig Gabarró, La gobernanza de las telecomunicaciones: Haciala economía digital. 2017, pp. 49–51 [Online]. Available: https://publications.iadb.org/es/node/14083.; LEY ORGÁNICA DE TELECOMUNICACIONES, "LEY ORGÁNICA DE TELECOMUNICACIONES," Gaceta Oficial De Venezuela, Feb 7, 2011.; N. Larocca, "Venezuela presenta una penetración 4G que la región alcanzó en 2016," Mar1, 2019. Available: http://www.telesemana.com/blog/2019/03/01/venezuela-presenta-una-penetracion-4g-que-la-region-alcanzo-en-2016/.; ARCEP, La régulation de l’Arcep au service des territoires connectés. 2020 [Online].Available: https://www.arcep.fr/collectivites/larcep-et-les-territoires.htm.; J. E. Garcia Orjuela, “Descripcion planta de tratamiento de agua - Icononzo, Tolima,” J.Chem. Inf. Model., 2014.; Gobernación del Tolima, “Estadísticas 2011-2014,” BMC Public Health, vol. 5, no. 1, pp.1–8, 2017.; J. E. Garcia Orjuela, “Propuesta de reducción de cargas contaminantes en el municipiode Icononzo, Tolima.” 2018.; Gobernación del Tolima, “Municipio de Icononzo,” 2019. [Online]. Available:https://www.tolima.gov.co/publicaciones/21123/municipio-de-icononzo/. [Accessed: 26-Apr-2020].; "Clima promedio en Icononzo, Colombia, durante todo el año - Weather Spark.” [Online].Available: https://es.weatherspark.com/y/23362/Clima-promedio-en-Icononzo-Colombia-durante-todo-el-año. [Accessed: 26-Apr-2020].; “Ósmosis Inversa %7C SEFILTRA %7C Expertos en purificación de fluidos.” [Online]. Available:https://www.sefiltra.com/productos/osmosis-inversa/. [Accessed: 21-Nov-2020].; S. L. Sanderson, E. Roberts, J. Lineburg, and H. Brooks, “Fish mouths as engineeringstructures for vortical cross-step filtration,” Nat. Commun., vol. 7, Mar. 2016.; “Las barbas de las ballenas.” [Online]. Available: https://universomarino.com/2011/02/04/las-barbas-de-las-ballenas/. [Accessed: 26-Apr-2020].; "PROCEDIMIENTO PARA LA OBTENCIÓN DE M ICROPIBRAS DE QUERATINA APARTIR DE RESIDUOS GANADEROS’ DESCRIPCIÓN Objeto de la Invención,” Jul. 2006.; R. D. E. Estudios and E. N. Psicolox, “Plumas: Implicancia ambiental y uso en la industriaagropecuaria,” vol. 21, no. 3, pp. 225–237, 2013.; I. E. Roca Girón, “Estudio de las propiedades y aplicaciones industriales del polietilenode alta densidad (PEAD),” J. Chem. Inf. Model., vol. 12 Suppl 1, no. 9, pp. 1–29, 2005.; 12]“Filtración (II): selección del equipo de filtrado %7C iAgua.” [Online]. Available:https://www.iagua.es/blogs/miguel-angel-monge-redondo/filtracion-ii-seleccion-equipo-filtrado. [Accessed: 26-Apr-2020].; ATDI, «5G: A revolution in evolution, even in 2017,» de RadioExpo, 2017.; MinTic, «Boletin trimestral de las Tic: Cifras Segundo Trimestre de 2019,» Ministerio de Tecnologías de la Información y las Comunicaciones , 2020.; CRC, «Reporte de industria sector TIC 2016,» Comisión de regulación de las comunicaciones, 2017.; Gupta , A., & Jha , R., «A Survey of 5G Network: Architecture and Emerging Technologies,» IEEE Access, pp. 1206-1032, 2015.; K. E. Requena, D. M. Rozo y J. E. Arévalo, «Radiopropagation simulations comparison in millimeter waves frequencies for fifth generation (5G) mobile networks,» Actas de Ingeniería, pp. 97-105, 2017.; A. Durán Barrado, «Estudio y caracterización del canal y de la propagación en ondas milimétricas, orientada a su utilización en redes de comunicaciones móviles 5g.,» ETSIT UPM, 2017.; K. E. REQUENA Barrera y D. M. Rozo Moreno, «Análisis de desempeño de la propagación de señales en redes móviles de quinta generación (5g) en bandas de frecuencias de ondas milimétricas (mmwaves) empleando la herramienta de simulación ics telecom,» FUAC, 2017.; J. E. Arévalo Peña & R. A. González Bustamante, «Radiopropagation Performance Analysis Simulations ofMassive MIMO Configurations in 28 GHz,» CEUR-WS, p. 4, 2018.; P. Missud, «Extrayendo Clutter de imagenes Multiespectrales de Landsat 8,» ATDI, 2013.; Google,«Google Maps,» Google, 01 07 2018. [En línea].Available: https://www.google.com/maps. [Último acceso: 21 10 2020].; ITU, «Recomendación UIT-R P.526,» ITU, 2018.; IDEAM, «ideam.gov.co,» 31 05 2002. [En línea]. Available:https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.526-14-201801-I!!PDF-S.pdf.; M. Montoya Rendon, P. Zapata Saldarriaga & M. Correa Ochoa, «Contaminación ambiental por PM10 dentro y fuera del domicilio y capacidad respiratoria en Puerto Nare, Colombia,» salud pública, pp. 113-115, 2013.; CRC, «Áreas de cobertura del servicio,» Comisión de Regulación de Comunicaciones, 20 03 2009. [En línea]. Available: https://www.crcom.gov.co/es/pagina/reas-de-cobertura- del-servicio. [Último acceso: 21 10 2020].; ITU, «Guidelines for evaluation of radio interface technologies for IMT-2020,» ITU, 2017.; ITU, «UIT-R M.1073-1,» ITU, 1997.; Camino L. García. (2016). Enseñar con TIC: Nuevas y renovadas metodologías para laenseñanza superior. © 2016, CINEP/IPC. pp 26-27.; Charles Kadushin. (diciembre 2013). Comprender las redes sociales. Teorías, conceptosy hallazgos. Primera Edición. Moltalbán, 8. 28014 Madrid. pp. 93-95.; Roger S. Pressman. (2010). Ingeniería del Software Un enfoque práctico. Vol. 3, SéptimaEdición. pp. 70 Sitios web.; ICFES. (2019) Resultados de las pruebas ICFES. http://www2.icfesinteractivo.gov.co/resultadossaber2016web/pages/publicacionResultados/agregados/saber11/agregadosSecretarias.jsf#Noback button.; Juan Carlos Mejía Llanos (21 de marzo, 2019) Estadísticas de redes sociales 2019:USUARIOS DE FACEBOOK, TWITTER, INSTAGRAM, YOUTUBE, LINKEDIN, WHATSAPP Y OTROS. https://www.juancmejia.com/marketing-digital/estadisticas-de-redessocialesusuarios-de-facebook-instagram-linkedin-twitter-whatsapp-y-otrosinfografia/#Informe_detallado_usuarios_redes_sociales_WeAreSocial_y_Hootsuite (5 de mayo de 2019).; Psicología-Onlie (20 de agosto 2018) Teorías del aprendizaje según Brunner.https://www.psicologia-online.com/teorias-del-aprendizaje-segun-bruner-2605.html.; Revista Médica Clínica Las Condes (enero-febrero, 2015) Impacto de las redes socialese internet en la adolescencia: aspectos positivos y negativos. https://www.sciencedirect.com/science/article/pii/S0716864015000048#bib0005.; TeleMedellin (28 de septiembre, 2018) Preocupación por déficit de ingenieros enColombia. https://telemedellin.tv/deficit-ingenieros-colombia/284852/.; UNESCO (21 de septiembre, 2017) SERVICIO DE PRENSA: 617 millones de niños yadolescentes no están recibiendo conocimientos mínimos en lectura y matemática. http://www.unesco.org/new/es/mediaservices/singleview/news/617_million_children_and_adolescents_not_getting_the_minimum/.; Walter, L., Gallegos, Arias, & Huerta, Adriana Oblitas. (2014). Aprendizaje pordescubrimiento vs. Aprendizaje significativo: Un experimento en el curso de historia de la psicología. Boletim - Academia Paulista de Psicologia, 34(87), 455-471. http://pepsic.bvsalud.org/scielo.php?script=sci_arttext&pid=S1415711X2014000200010&lng=pt&tlng=es.Artículos.; L. A. Luengas, G. Sánchez, y S. M. Cárdenas, “Nuevas herramientas pedagógicas:laboratorio virtual", Visión Electrónica, vol. 9, no. 2, pp. 277-284,2015. https://doi.org/10.14483/22484728.11034.; M. Vergel Ortega, O. L. Rincón Leal, y L. A. Jaimes Contreras, “Prototipos electrónicosen el desarrollo de pensamientos formales", Visión Electrónica, vol. 9, no. 2, pp. 182-193, 2015. https://doi.org/10.14483/22484728.11026.; J. F. Pastrán Beltrán y F. Pinzón Herrera, “Software libre: una estrategia para aprendera factorizar ", Visión Electrónica, vol. 9, no. 1, pp. 139-148,2015. https://doi.org/10.14483/22484728.11024.; R. López Gonzalez, “Genealogía de cambio conceptual en la enseñanza de la ciencia",Visión Electrónica, vol. 1, no. 1, pp. 88-92, 2008. https://doi.org/10.14483/22484728.255.; F. P. Rodriguez, A. R. Torres, y H. Vacca, “Estudio con análisis por elementos finitos desistemas análogos circuitales en física", Visión Electrónica, vol. 6, no. 1, pp. 98-103, 2012. https://doi.org/10.14483/22484728.3750.; R. Lopez, “La propedéutica y el discurso sobre las tecnologías", Visión Electrónica, vol.7, no. 1, pp. 178-187, 2013. https://doi.org/10.14483/22484728.4399.; Arquitectura, L., Negocios, A. De, & Salimbeni, S. (2017). La Arquitectura Empresarial y elAnálisis de Negocios.; Basyarudin. (2018). Диф нарушениямиNo Title. Высшей Нервной Деятельности, 2, 227–249.; Clavijo, S., & Vera, A. (2013). Inversion en infraestructura.7–14.; CoronApp, la aplicación para que conocer la evolución del coronavirus - Rumble. (n.d.).Retrieved May 8, 2020, from https://rumble.com/embed/ubedx.v6h0k3/?rel=0.; Dashboard Coronavirus COVID-19 (Mobile). (n.d.). Retrieved May 8, 2020, from https://www.arcgis.com/apps/opsdashboard/index.html#/85320e2ea5424dfaaa75ae62e5c06e61.; Dussan, H., & Garzon, K. (2017). DIAGNÓSTICO PARA LA CREACIÓN DE UN MODELO BAJO LA ARQUITECTURA ORGANIZACIONAL TOGAF APLICADO EN LAS DEPENDENCIAS TIC DE LA UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS. 1–126.; Gasto en investigación y desarrollo (% del PIB) %7C Data. (n.d.). etrieved May 8, 2020, from https://datos.bancomundial.org/indicador/GB.XPD.RSDV.GD.ZS?name_desc=false&view=map.; Gobernanza Territorial, Identificación De Fortalezas, Áreas De. (2013).; González Campo, C. H., & Lozano Oviedo, J. (2020). Propuesta para la definición de la arquitectura empresarial. Dimensión Empresarial, 18((1)). https://doi.org/10.15665/dem.v18i(1).2109 Palacios-Urgilés, F. G., & Campoverde-Molina, M. A. (2019).; Análisis de la arquitectura empresarial como oportunidad de mejora en las microempresas de la ciudad de Cuenca. Dominio de Las Ciencias, 5(3), 487. https://doi.org/10.23857/dc.v5i3.949.; Ministerio de Tecnologías de la Información y las Comunicaciones. (2016). G . GEN . 03 . Guía General de un Proceso de Arquitectura Empresarial. 1–41. Retrieved from http://www.mintic.gov.co/arquitecturati/630/articles- 9435_Guia_Proceso.pdf.; PIB-real segundo trimestre de 2019 y revisión de pronósticos. (n.d.). Retrieved May 8, 2020,from https://www.larepublica.co/analisis/sergio-clavijo- 500041/pib-real-segundo-trimestre-de-2019-y-revision- de-pronosticos-2900103 PND. (2018). Bases del Plan Nacional de Desarrollo.; Presupuesto y estados financieros. (n.d.). Retrieved May 10, 2020, fromhttps://www.dane.gov.co/index.php/servicios-al-ciudadano/tramites/transparencia-y-acceso-a-la- informacion-publica/presupuesto-general- asignado#presupuesto-general.; Saboya, N., Loaiza, O., & Lévano, D. (2018). Diseño de un modelo de arquitecturaempresarial para publicaciones científicas basado en adm - Togaf 9.0. Retrieved May 10, 2020, from https://www.redalyc.org/jatsRepo/4676/467655911004/ html/index.html.; Carlo Batini y Monica Scannapieco, DATA AND INFORMATION QUALITY, I.Switzerland: Springer International Publishing, 2016.; C. Sammut y G. I. Webb, Eds., Encyclopedia of Machine Learning and Data Mining.Boston, MA: Springer US, 2017.; «Who we are - Eurostat». https://ec.europa.eu/eurostat/about/who-we-are (accedidoago. 23, 2020).; B. G. Grow y 2020 January 24, «Data Quality Predictions for 2020», Transforming Datawith Intelligence. https://tdwi.org/articles/2020/01/24/diq-all-data-quality-predictions-for- 2020.aspx (accedido ago. 21, 2020).; T. C. Redman, «Bad Data Costs the U.S. $3 Trillion Per Year», Harvard BusinessReview, sep. 22, 2016.; B. G. Grow y 2018 July 6, «Reducing the Impact of Bad Data on Your Business»,Transforming Data with Intelligence. https://tdwi.org/articles/2018/07/06/diq-all-reducing-the-impact-of-bad- data.aspx (accedido ago. 21, 2020).; B. G. Grow y 2019 May 3, «Data Quality Best Practices for Today’s Data- DrivenOrganization», Transforming Data with Intelligence. https://tdwi.org/articles/2019/05/03/diq-all-data-quality-best-practices-for- data-driven-organizations.aspx (accedido ago. 23, 2020).; C. W. Fisher y B. R. Kingma, «Criticality of data quality as exemplified in two disasters»,Inf. Manage., vol. 39, n.o 2, pp. 109-116, dic. 2001, doi:10.1016/S0378-7206(01)00083-0.; crodwflower, «2016 DATA SCIENCE REPORT», 2016.; S. Lohr, «For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights», The NewYork Times, ago. 17, 2014.; «ISO 9000:2015(en), Quality management systems — Fundamentals and vocabulary».https://www.iso.org/obp/ui/#iso:std:45481:en (accedido ago. 23, 2020).; C. Batini y M. Scannapieco, «Data Quality Dimensions», en Data and Information Quality,Springer, Cham, 2016, pp. 21-51.; «NORMAS ISO 25000». https://iso25000.com/index.php/normas-iso-25000 (accedidomar. 23, 2019).; C. Batini y M. Scannapieco, «Activities for Information Quality», en Data and InformationQuality, Springer, Cham, 2016, pp. 155-175.; C. Batini y M. Scannapieco, «Object Identification», en Data and Information Quality,Springer, Cham, 2016, pp. 177-215.; Tejada S, Knoblock C, Minton S, Learning object identification rules for informationintegration. 2001.; 2014 January 21, «New Techniques Detect Anomalies in Big Data», Transforming Datawith Intelligence. https://tdwi.org/articles/2014/01/21/detecting-big-data-anomalies.aspx (accedido ago. 26, 2020).; J. Taylor, «Clean your data with unsupervised machine learning», Towards Data Science,dic. 01, 2018. https://towardsdatascience.com/clean-your- data-with-unsupervised-machine-learning-8491af733595 (accedido mar. 17, 2019).; I. Taleb, H. T. E. Kassabi, M. A. Serhani, R. Dssouli, y C. Bouhaddioui.; I. Taleb, H. T. E. Kassabi, M. A. Serhani, R. Dssouli, y C. Bouhaddioui, «Big Data Quality: A Quality Dimensions Evaluation», en 2016 Intl IEEE Conferences on Ubiquitous Intelligence Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), jul. 2016, pp. 759-765, doi:10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0122.; H. Liu, T. K. A. Kumar, y J. P. Thomas, «Cleaning Framework for Big Data -Object Identification and Linkage», en 2015 IEEE International Congress on Big Data, jun.2015, pp. 215-221, doi:10.1109/BigDataCongress.2015.38.; «LEILA - Librería de calidad de datos — documentación de LEILA - 0.1». https://ucd-dnp.github.io/leila/ (accedido ago. 27, 2020).; H. Müller y J.-C. Freytag, «Problems, Methods, and Challenges in Comprehensive DataCleansing», p. 23.; «Google Colaboratory». https://colab.research.google.com/notebooks/welcome.ipynb?hl=es-419 (accedido jun. 29, 2020).; hrasheed-msft, «¿Qué es Azure HDInsight?» https://docs.microsoft.com/es- es/azure/hdinsight/hdinsight-overview (accedido abr. 27, 2020).; S. F. Fernández, J. M. C. Sánchez, A. Córdoba, y A. C. Largo, Estadística Descriptiva.ESIC Editorial, 2002.; F. Sidi, P. H. Shariat Panahy, L. S. Affendey, M. A. Jabar, H. Ibrahim, y A. Mustapha, «Dataquality: A survey of data quality dimensions», en 2012 International Conference on Information Retrieval Knowledge Management, mar. 2012, pp. 300-304,doi:10.1109/InfRKM.2012.6204995.; J. Wang, C. Zhang, X. Wu, H. Qi and J. Wang, «SVM-OD: A New SVM Algorithm forOutlier Detection - Google Académico», presentado en Proc. ICDM’03 Workshop Foundations and New Directions of Data Mining, 2003, Accedido: ago. 24, 2020. [En línea]. Disponible en: https://scholar.google.com/scholar?hl=es&as_sdt=0,5&q=SVM- OD%3A+A+New+SVM+Algorithm+for+Outlier+Detection&btnG=.; «Factores que afectan el peso y la salud %7C NIDDK», National Institute of Diabetes andDigestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/informacion-de-la- salud/control-de-peso/informacion-sobre-sobrepeso-obesidad- adultos/factores-afectan (accedido may 16, 2020).; Lean Yu, Shouyang Wang, y K. K. Lai, «An integrated data preparation scheme for neuralnetwork data analysis», IEEE Trans. Knowl. Data Eng., vol. 18, n.o 2, pp. 217-230, feb. 2006, doi:10.1109/TKDE.2006.22.; Sumithra V.S,Subu Surendran, «A Review of Various Linear and Non LinearDimensionality Reduction Techniques», Int. J. Comput. Sci. Inf. Technol., vol. 6.; D. Chicco y G. Jurman, «The advantages of the Matthews correlation coefficient (MCC)over F1 score and accuracy in binary classification evaluation», BMC Genomics, vol. 21, n.o 1, p.6, ene. 2020, doi:10.1186/s12864-019-6413-7.; Katrakazas, E. Michelaraki, M. Sekadakis, and G. Yannis, “A descriptive analysis of the effect of the COVID-19 pandemic on driving behavior and road safety,” Transp. Res. Interdiscip. Perspect., vol. 7, 2020, doi:10.1016/j.trip.2020.100186.; P. Pereira and J. Pais, “Main flexible pavement and mix design methods in Europe andchallenges for the development of an European method,” J. Traffic Transp. Eng. (English Ed., vol. 4, no. 4, pp. 316–346, 2017, doi:10.1016/j.jtte.2017.06.001.; A. P. Singh, A. Sharma, R. Mishra, M. Wagle, and A. K. Sarkar, “Pavement conditionassessment using soft computing techniques,” Int. J. Pavement Res. Technol., 2018.; Z. Zhang, Q. Liu, Q. Wu, H. Xu, P. Liu, and M. Oeser, “Damage evolution of asphalt mixtureunder freeze-thaw cyclic loading from a mechanical perspective,” Int. J. Fatigue, vol. 142, no. June 2020, pp. 1–9, 2021, doi:10.1016/j.ijfatigue.2020.105923.; K. B. Bai Kamara, E. Ganjian, and M. Khorami, “The effect of quarry waste dust andreclaimed asphalt filler in hydraulically bound mixtures containing plasterboard gypsum and GGBS,” J. Clean. Prod., vol. 279, 2021, doi:10.1016/j.jclepro.2020.123584.; D. M. Kusumawardani and Y. D. Wong, “The influence of aggregate shape properties onaggregate packing in porous asphalt mixture (PAM),” Constr. Build. Mater., vol. 255, 2020, doi:10.1016/j.conbuildmat.2020.119379.; T. M. Al Rousan, “Characterization of aggregate shape properties using a computerautomated system,” Texas A&M University, 2004.; C. García-González, J. Yepes, and M. A. Franesqui, “Geomechanical characterization ofvolcanic aggregates for paving construction applications and correlation with the rock properties,” Transp. Geotech., vol. 24, no. January, 2020, doi:10.1016/j.trgeo.2020.100383.; J. Hu and P. Stroeven, “Shape characterization of concrete aggregate,” Image Anal. Stereol.,vol. 25, no. 1, pp. 43–53, 2006, doi:10.5566/ias.v25.p43-53.; T. Roussillon, H. Piégay, I. Sivignon, L. Tougne, and F. Lavigne, “Automatic computationof pebble roundness using digital imagery and discrete geometry,” Comput. Geosci., vol. 35, no. 10, pp. 1992–2000, 2009, doi:10.1016/j.cageo.2009.01.013.; J. Zhang, X. Yang, W. Li, S. Zhang, and Y. Jia, “Automatic detection of moisture damagesin asphalt pavements from GPR data with deep CNN and IRS method,” Autom. Constr., vol. 113, no. September 2019, 2020, doi:10.1016/j.autcon.2020.103119.; L. Pei et al., “Pavement aggregate shape classification based on extreme gradientboosting,” Constr. Build. Mater., vol. 256, 2020, doi:10.1016/j.conbuildmat.2020.119356.; K. A. Ghuzlan, M. T. Obaidat, and M. M. Alawneh, “Cellular-phone-based computer visionsystem to extract shape properties of coarse aggregate for asphalt mixtures,” Eng. Sci. Technol. an Int. J., vol. 22, no. 3, pp. 767–776, 2019, doi:10.1016/j.jestch.2019.02.003.; J. Kim, B. S. Park, S. I. Woo, and Y. T. Choi, “Evaluation of ballasted-track condition basedon aggregate-shape characterization,” Constr. Build. Mater., vol. 232, 2020, doi:10.1016/j.conbuildmat.2019.117082.; O. J. Reyes-ortiz, M. Mejía, and J. S. Useche-Castelblanco, “Aggregate segmentation ofasphaltic mixes using digital image,” Bull. Polish Acad. Sci. Tech. Sci., vol. 67, no. 2, pp. 279–287, 2019.; S. M. E. Harb, N. Ashidi, M. Isa, and S. A. Salamah, “Improved image magnificationalgorithm based on Otsu,” Comput. Electr. Eng. J., vol. 46, pp. 338–355, 2015.; J. V. C. I. R, C. Sha, J. Hou, and H. Cui, “A robust 2D Otsu ’ s thresholding method in imagesegmentation q,” J. Vis. Commun. Image R. J., vol. 41, pp. 339–351, 2016.; O. J. Reyes-Ortiz, M. Mejia, and J. S. Useche-Castelblanco, “Digital image analysis appliedin asphalt mixtures for sieve size curve reconstruction and aggregate distribution homogeneity,” Int. J. Pavement Res. Technol., 2020, doi:10.1007/s42947-020-0315-6.; S. Yu, S. Jia, and C. Xu, “Convolutional neural networks for hyperspectral imageclassification,” Neurocomputing, vol. 219, pp. 88–98, 2017.; V. C. Janoo, “Quantification of shape, angularity, and surface texture of base coursematerials,” 1998.; E. Masad, T. M. Al Rousan, J. Button, and D. Little, Test Methods for CharacterizingAggregate Shape, Texture, and Angularity. United States of America, 2007.; E. dos S. Silva et al., “Evaluation of macro and micronutrient elements content from softdrinks using principal component analysis and Kohonen self-organizing maps,” Food Chem., vol. 273, no. May 2018, pp. 9–14, 2019, doi:10.1016/j.foodchem.2018.06.021.; B. Yang, S. Yang, J. Zhang, and D. Li, “Optimizing random searches on three-dimensionallattices,” Phys. A Stat. Mech. its Appl., vol. 501, pp. 120–125, Jul. 2018, doi:10.1016/J.PHYSA.2018.02.100.; Diego Heras, “Clasificador de imágenes de frutas basado en inteligencia artificial”, KillkanaTécnica, Vol. 1, no. 2, pp. 21-30, 2017.; SicTransCore Latinoamérica, Sic TransCore Sistemas de Identificación y control vehicular,2019. [Online]. Disponible en: https://www.sictranscore.com/.; V. M. Arévalo, J. González, G. Ambrosio, La Librería De Visión Artificial Opencv AplicaciónA La Docencia E Investigación, Dep.Sis. y Aut. Universidad de Málaga, España. [Online]. Disponible en: http://mapir.isa.uma.es/varevalo/drafts/arevalo2004lva1.pdf.; Bastián Nicolás Carvajal Ahumada, Reconocimiento Fotográfico De Patentes, Facultad deIngeniería, Pontificia Universidad Católica De Valparaíso, Valparaíso, Ciudad de Chile, 2018.; Guerra Monterroza, E. J. (2008). Reconocimiento de primitivas 3D, usando autocorrelación yANFIS. Visión electrónica, 1(1), 56-61. https://doi.org/10.14483/22484728.251.; Giraldo Ramos, F. N., Gonzalez, F., & Camargo Casallas, E. (2011). “Algoritmos deprocesamiento de imágenes satelitales con transformada Hough. Visión electrónica, 5(2), 26-41. https://doi.org/10.14483/22484728.3568.; Jiménez Moreno, R., Martínez Baquero, J. E., & Rodríguez Umaña, L. A. (2018). Sistemaautomático de clasificación de peces. Visión electrónica, 12(2), 258-264.https://doi.org/10.14483/22484728.14265.; A. Daneels and W. Salter, “WHAT IS SCADA?,” in International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, pp. 339–343, Accessed: Sep. 20, 2019. [Online]. Available: http://cds.cern.ch/record/532624/files/mc1i01.pdf.; Wikipedia, “Distributed control system,” 2019. https://en.wikipedia.org/wiki/Distributed_control_system (accessed Sep. 29, 2019).; R. Hunzinger, Scada fundamentals and applications in the IoT, 1st ed. Wiley Telecom, 2017.; S. Ray, Y. Jin, and A. Raychowdhury, “The Changing Computing Paradigm with Internet of Things: A Tutorial Introduction,” IEEE Des. Test, vol. 33, no. 2, pp. 76–96, 2016, doi:10.1109/MDAT.2016.2526612.; A. Bhatia, Z. Yusuf, D. Ritter, and N. Hunke, “Who Will Win the IoT Platform Wars?,” BCG Perspect., p. 6, 2017, [Online]. Available: https://image-src.bcg.com/Images/BCG-Who-Will-Win-the-IoT-Platform-Wars-June-2017_2_tcm58-162424.pdf.; L. Doron and Netafim, “The core results of the FIGARO project: the Platform,” in InternationalFIGARO Conference, 19 September 2016, Brussels, Belgium, 2016, [Online]. Available: http://www.figaro-irrigation.net/fileadmin/user_upload/figaro/docs/Lior_2_NET_FIGARO_project_summary.pdf.; A. (Eastern P. Chalimov, “IoT in Agriculture: 5 Technology Use Cases for Smart Farming(and 4 Challenges to Consider),” 2018. https://easternpeak.com/blog/iot-in-agriculture-5-technology-use-cases-for-smart-farming-and-4-challenges-to-consider/ (accessed Mar. 21, 2020).; L. Xiamen Ursalink Technology Co., “IoT-based Smart Irrigation,” 2019.https://www.ursalink.com/en/solution/agriculture/smart-irrigation (accessed May 30, 2020).; O. Pandithurai, S. Aishwarya, B. Aparna, and K. Kavitha, “Agro-tech: A digital model formonitoring soil and crops using internet of things (IOT),” ICONSTEM 2017 - Proc. 3rd IEEE Int. Conf. Sci. Technol. Eng. Manag., vol. 2018-Janua, pp. 342–346, 2018, doi:10.1109/ICONSTEM.2017.8261306.; A. N. Nassar A.S., Montasser A.H., “Smart Aquaponics System for Industrial Internet ofThings (IIoT),” Proc. Int. Conf. Adv. Intell. Syst. Informatics, vol. 639, no. 1, pp. 855–864, 2018, doi:10.1007/978-3-319-64861-3.; R. Nageswara Rao and B. Sridhar, “IoT based smart crop-field monitoring and automationirrigation system,” Proc. 2nd Int. Conf. Inven. Syst. Control. ICISC 2018, no. Icisc, pp. 478–483, 2018, doi:10.1109/ICISC.2018.8399118.; S. Bakalis et al., “Perspectives from CO+RE: How COVID-19 changed our food systemsand food security paradigms,” Curr. Res. Food Sci., vol. 3, pp. 166–172, 2020, doi:10.1016/j.crfs.2020.05.003.; J. M. Talavera et al., “Review of IoT applications in agro-industrial and environmental fields,”Comput. Electron. Agric., vol. 142, no. 118, pp. 283–297, 2017, doi:10.1016/j.compag.2017.09.015.; Wikipedia, “Druckschalter,” Wikipedia, 2013. https://de.wikipedia.org/wiki/Druckschalter#/media/Datei:Druckschalter_PSD_30.jpg (accessed Jun. 30, 2020).; P. IoT, “PARTICLE IoT-BORON,” 2019. https://docs.particle.io/datasheets/cellular/boron-datasheet/ (accessed Oct. 19, 2019).; The ThingsBoard Authors, “Smart farming and smart agriculture solutions,” ThingsBoard.io,2020. https://thingsboard.io/smart-farming/ (accessed Jun. 20, 2020).; A. Joseph Fernando, “How Africa Is Promoting Agricultural Innovations and Technologiesamidst the COVID-19 Pandemic,” Mol. Plant, vol. 13, no. 10, pp. 1345–1346, 2020, doi:10.1016/j.molp.2020.08.003.; E. Vargas, A. Guillermo Correa, P. C. souza, N. Rodrigues de Baptestini, F. Machado Zaidan y I. Ramos, "Avaliação da homogeneidade da expansão dos grãos de café torrados" de VIII Simpósio de Pesquisa dos Cafés do Brasil, novembro 2013.; Giraldo Cerón, A. F. "Tan cerca y tan lejos de la agricultura 4.0 en Colombia". Revista Universidad EAFIT, 55(175), 78-85.2020.; O. L. Ocampo López y L. M. Álvarez Herrera, «Tendencia de la producción y el consumo del café en Colombia,» Apuntes del CENES, vol. 36, nº 64, pp. 139-165, julio -diciembre 2017.; G. I. Puerta Quintero, Investigador Científico III y Centro Nacional deInvestigaciones, «COMPOSICIÓN QUÍMICA DE UNA TAZA DE CAFÉ,» Ciencia, tecnología e innovación para la caficultura colombiana, MANIZALES , 2011.; Samodro, Bayu, et al. "Maintaining the Quality and Aroma of Coffee with Fuzzy Logic Coffee Roasting Machine." IOP Conference Series: Earth and Environmental Science. Vol. 426. No. 1. IOP Publishing, 2020.; Fadri, R. A., et al. "Review of coffee roasting process and formation of acrylamide related to health." Journal of Applied Agricultural Science and Technology 3.1 (2019): 129-145.; Botero Lopez, Santiago, and Muhammad Salman Chaudhry. "Designing an Efficient Supply Chain for Specialty Coffee from Caldas-Colombia." (2020).; Suarez-Peña, Javier Andrés, et al. "Machine Learning for Cup Coffee Quality Prediction from Green and Roasted Coffee Beans Features." Workshop on Engineering Applications. Springer, Cham, 2020.; Putra, Satya Andika, Umi Hanifah, and Mirwan Ardiansyah Karim. "Theoretical study of fluidization and heat transfer on fluidized bed coffee roaster." AIP Conference Proceedings. Vol. 2097. No. 1. AIP Publishing LLC, 2019.; Benitez O, Campo-Ceballos D, «Evaluación de la calidad el café tostado utilizando herramientas de procesamiento digital de imágenes», ACCB, vol. 1, n.º 30, pp. 32-43, dic. 2018.; Meana, Vanessa Rose L., Nazer Sarapeo P. Kimkiman, and Alvin C. Dulay. "Design, Fabrication, and Performance Evaluation of a Batch-Type Fluidized Bed Coffee Roaster for Small-Scale Coffee Growers." Mountain Journal of Science and Interdisciplinary Research (formerly Benguet State University Research Journal) 79.2 (2019): 90-97.; Buesaquillo Imbaquingo, Luis Darío. Sistema de control para mejorar el desempeño de una máquina tostadora de café. BS thesis. 2019.; Abdul. Ghani, Nur Hamizah, et al. "Development of a novel 2D single coffee bean model and comparison with a 3D model under varying heating profiles." Journal ofFood Process Engineering 42.4 (2019).; Campo Ceballos D, et al. "Herramientas de cv para evaluar el color y matiz del café tostado: el color del café tostado y su relación con las propiedades organolépticas".EAE. 68 páginas. 2018.; N. Reddy, N. Maheshwari, D. K. Sahu, y G. K. Ananthasuresh, «Miniature CompliantGrippers With Vision-Based Force Sensing», IEEE Transactions on Robotics, vol. 26, no. 5, pp. 867–877, Oct. 2010.; Barraza, A., Rúa, J., Sosa, J., Yime, E., & Roldan, J. (2015). Modelado dinámico delmanipulador serial Mitsubishi Movemaster RV-M1 usando SolidWorks. Revista de la facultad de Ingenierías Físicas Mecánicas, 49-62.; Benbelkacem, Y., & Mohd-Mokhtar, R. (26-29 de Noviembre de 2012). Explicit kinematicmodel of the Mitsubishi RV-M1 robot arm. IEEE, 404-409. Obtenido de http://ieeexplore.ieee.org/document/6466627/.; Carrasco, B., & Alberto, J. (2015). Integración de un UAV (vehículo aéreo no tripulado)en la plataforma robótica ARGOS.; DARMOUL Saber. Reality for Manufacturing: A Robotic Cell Case Study. Department ofIndustrial Engineering. King Saud University. Saudi Arabia. 7pag. 2015.; Research on Assembly Modeling Process Based on Virtual Manufacturing InteractiveApplication Technology. School of Mechanical and Electronic Engineering. Wuhan University of Technology. Wuhan, China. 5 pág. 2017.; Forero, J., Hurtado, L., & Ruiz, V. (Febrero de 2015). Visión electrónica, Más que unestado sólido. Arquitectura paralela robótica: modelado y simulación con siemens NX. Recuperado el 10 de agosto de 2015, de http://revistas.udistrital.edu.co/ojs/index.php/visele/article/view/11018.; Marcu, C., Lazea, G., Herle, S., Robotin, R., & Tamas, L. (2010 de junio de 25). IEEEexplore Digital Library, 3D graphical simulation of an articulated serial manipulator based on kinematic models. Recuperado el 10 de Agosto de 2017, de http://ieeexplore.ieee.org/abstract/document/5524593/.; Luengas, L. A., Sánchez, G., & Cárdenas, S. M. (2015). Nuevas herramientaspedagógicas: laboratorio virtual. Visión electrónica, 9(2), 277-284.https://revistas.udistrital.edu.co/index.php/visele/article/view/11034.; Luengas, L. A., Rincón López, D. A., & Galeano, K. J. (2010). Realidad virtual noinmersiva: instrumentos electrónicos de aplicación educativa. Visión electrónica, 4(1), 94-105.https://revistas.udistrital.edu.co/index.php/visele/article/view/275.; K. Cacua, O. Amell y L. Olmos, "Estudio comparativo entre las propiedades decombustión de la mezcla biogás-aire normal y biogás-aire enriquecido con oxígeno", Revista Ingeniería e Investigación, vol. 1, pp. 233-241, 2011.; R. Liriano, Aplicación de biofertilizantes como alternativa nutricional, ambiental y económica en la agricultura urbana, España: Universidad de Girona, 2005.; A. Padilla y J. Rivero, "Producción de Biogás y compost a partir de Residuos Orgánicos recolectados del complejo arqueológico Huaca de la Luna", Ciencia y Tecnología, vol. 1, pp. 29-43, 2016.; L. O. González Salcedo y Y. Olaya Arboleda, Fundamentos para el diseño de Biodigestores, Departamento de Ingeniería, 2009.; M. T. Madigan, J. M. Martinko y J. Parker, Biología de los microorganismos, 10 ed, 2004.; A. Pulido y J. Espitia, Diseño e implementación de un sistema de supervisión, monitoreo y control de temperatura, presión y tiempo de proceso en un sistema de digestión anaerobia de biomasa (contenido ruminal bovino) a escala de laboratorio, Bogotá: Universidad Distrital Francisco José de Caldas, 2016.; G. Bastin, "On-line estimation and adaptive control of bioreactors", Elsevier, vol. 1, 2013.; S. Hassam, E. Ficara, A. Leva y J. Harmand, "A generic and systematic procedure to derive a simplified model from the anaerobic digestion model No. 1 (ADM1)", Biochemical Engineering Journal, pp. 99, 193-203, 2015.; E. Ficara, S. Hassam, A. Allegrini, A. Leva, F. Malpei y G. Ferretti, "Anaerobic digestion models: a comparative study. IFAC Proceedings.", vol. 45(2), pp. 1052- 1057, 2012.; J. A. Jiménez, G. Pomboza y J. A. Holgado, «El gesto aplicado al control de dispositivosen,» Jornadas SARTECO, Ecuador, 2017.; O. F. Olivera, J. A. Cuervo, y F. N. Giraldo Ramos, “Sistema de control de posición angularaplicado a dispositivos RF", Visión Electrónica, vol. 5, no. 2, pp. 42-58, 2011.; T. G. Zimmerman, J. Lanier, C. Blanchard, S. Bryson, and Y. Harvill, “A hand gestureinterface device,” ACM SIGCHI Bull., vol. 17, no. SI, pp. 189 192, 1986.; Omega engineering, «Omega ENGINEERING,» es.omega.com, [En línea]. Available:https://es.omega.com/prodinfo/acelerometro.html. [Último acceso: 11 08 2019].; tdk, «Datasheet MPU60XX,» [En línea]. Available: https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf. [Último acceso: 11 08 2020].; Naylamp Mechatronics, «Naylamp Mechatronics,» Naylamp Mechatronics, [En línea].Available:https://naylampmechatronics.com/blog/45_Tutorial-MPU6050-Acelerómetro-y-Giros copio.html. [Último acceso: 11 08 2019].; Arduino, «arduino.cl,» arduino.cl, [En línea]. Available: http://arduino.cl/arduino-nano/.[Último acceso: 15 08 2019].; J. J. M. Fuentes, Fundamentos de radiación y radiocomunicación, Sevilla: Departamentode Teoría de la Señal y Comunicaciones, 2012.; J. Vargas, G. Poveda y V. Martinez, «Dispositivo inalámbrico para el control de,»ESPACIOS, vol. 39, nº 45, p. 9, 2018.; M. A. Arenas, J. M. Palomares, L. Girard, J. Olivares y J. M., «Diseño y Construcciónde un Guante de Datos mediante Sensores de Flexibilidad y acelerómetro,» researchgate, España, 2011.; K. K. Abgaryan and I. S. Kolbin, “Calculation of Heat Transfer in NanosizedHeterostructures,” Russ. Microelectron., vol. 48, no. 8, pp. 559–563, 2019, doi:10.1134/S1063739719080031.; A. R. Shabaan, S. M. El-Metwally, M. M. A. Farghaly, and A. A. Sharawi, “PID and fuzzylogic optimized control for temperature in infant incubators,” 2013 Proc. Int. Conf. Model. Identif. Control. ICMIC 2013, no. Icmic, pp. 53–59, 2013.; D. M. Ovalle M and L. F. Cómbita A., “Teaching basic control concepts with a home-madethermal system,” IEEE Glob. Eng. Educ. Conf. EDUCON, no. April, pp. 739–744, 2014, doi:10.1109/EDUCON.2014.6826176.; S. A. Adnan, A. Muhammad, and Z. Shareef, “Development of a low cost thermalfeedback system for basic control education,” Proc. 14th IEEE Int. Multitopic Conf. 2011, INMIC 2011, pp. 228–232, 2011, doi:10.1109/INMIC.2011.6151478.; R. Urbieta Parrazales, “Diseño, Simulación y Construcci?n de un Control PID Aplicado aun Sistema Térmico,” Polibits, vol. 15, pp. 11–19, 1995, doi:10.17562/pb-15-2.; C. Close, Modeling and Analysis of Dynamic Systems. 2002.; F. Navas, “DISEÑO Y CONSTRUCCION DE CAJA DE TRANSFERENCIA DE CALOR (GUARDED HOT BOX ),” 2007.; J. Bravo, G. López, R. Rodríguez, and F. J. Sabina, “Acerca de la homogeneización ypropiedades efectivas de la ecuación del calor On homogenization and effective properties of the heat equation Resumen,” pp. 149–159, 2013.; E. Significativas, Electrónica : teoría de circuitos y dispositivos electrónicos.; P. E. Allen, Operational amplifiers and linear integrated circuits, vol. 71, no. 9. 2008.; N. Ruangpayoongsak, J. Sumroengrit, & M. Leanglum, “A floating waste scooperrobot on water surface”, In 2017 17th International Conference on Control, Automation and Systems (ICCAS), pp. 1543-1548, IEEE, October 2017.; I Baturone, Robótica: manipuladores y robots móviles. Marcombo, 2005.; P. Jorge-Sanz, "Robots industriales colaborativos: una nueva forma de trabajo",Seguridad y Salud en el trabajo 95, pp. 6-10, 2018.; H. Thomas, S. Bensch. "Understandable robots-what, why, and how." Paladyn,Journal of Behavioral Robotics 9,pp. 110-123. no. 1, 2018.; B. Andrew, E. F. Buffie, and L.F. Zanna. "Robots, growth, and inequality." Finance &Development 53, pp. 10-13, no. 3, 2016.; S. Martínez, A. Carvajal, D. Loza, A. Ibarra, and L. Segura. "Collaborative two-armrobotic torso for the development of an assembly process." In 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), pp. 1-6. IEEE, 2017.; T.I., Getting Started MSP430G2553 Value Line LaunchPad Workshop Series, [Enlínea]. Disponible en: https://training.ti.com/getting-started-msp430g2553-launchpad-part-1.; D. Anderson, G. Constante, and T. Arrigoni. "Arquitetura FPGAs CPLDs da Xilinx."; Creus-Solé, “Instrumentación industrial”, 8va. ed. México: Alfaomega Grupo Editor, 2011.; M. A. Pérez-García, et al., “Instrumentación electrónica”, Madrid: Thomson, 2004.; Manuel, et al., “Instrumentación virtual adquisición, procesado y análisis de señales”,1era ed. Barcelona: UPC, 2001.; O. F. Corredor, et al. “Diseño e implementación de filtros digitales”. Visión electrónica,vol. 3, no. 1, pp. 55-56,2009. https://doi.org/10.14483/22484728.691.; Silicon Labs, “Using microcontrollers in digital signal processing applications”. AN219, Rev. 0.2 8/08. https://www.silabs.com/documents/public/application-notes/an219.pdf.; Hernández y E. Jacinto, “Una nueva metodología en el diseño de filtros digitales FIR sobre FPGA”. Visión electrónica, vol. 3, no. 2, pp. 40-47, 2009. https://doi.org/10.14483/22484728.2834.; V. M. Gómez, et al. “Diagnóstico de rodamientos con vibraciones mecánicas einstrumentos virtuales”. Visión electrónica, vol. 8, no. 2, pp. 107-113, 2014. https://doi.org/10.14483/22484728.9881.; National Instruments, “Strain gauge measurement - A tutorial”, Aplication Note 078, 2018.; J. Horn y G. Gleason, “Weigh Scale Applications for the MCP3551”, AN1030 Microchip, 2006.; F. Quiles-Latorre, et al., “Diseño del interfaz de una balanza electrónica basada en una celda de carga,” en Libro de catas SAAAEI2018, Córdoba, pp. 272-277, 2018.; J. Hernández-Jiménez y M. Fabela-Gallegos, “Diseño y construcción de un prototipo para determinar el peso de vehículos ligeros en movimiento”, 2004.; Rice Lake Weighing Systems, “Load cell and weigh module handbook”, 2017.; OIML, “Metrological regulation of load cells”, OIML R 60-1, 2017.; National Instruments, “User guide and specifications NI USB-6008/6009”, 2007. C. E. Pardo-Beainy, “Instrumentación Virtual, Control y Adquisición de Datos para Unidades de Cuidados Intensivos”, 2007.; G. Tem, “Concurso en Ingeniería de Control 2020,” 2020.; G. G. Slabaugh, “Computing Euler angles from a rotation matrix,” denoted as TRTAImplement. from httpwww starfireresearch comservicesjava3dsamplecodeFlorinE ulers html, vol. 6, no. 2000, pp. 1–6, 1999.; L. Euler, “Formvlae generales pro translatione qvacvnqvve corporvm rigidor,” NoviCommentarii academiae scientiarum Petropolitanae, vol. 20. pp. 189–207, 1776.; D. Entwurf, “Der Entwurf linearer Regelungssysteme im Zustandsraum,” vol. 1, no. 8,1972.; D. D. E. I. Eléctrica and J. P. S. V, “Desarrollo de software para inspección técnica deuna aplicación CPM,” 2017.; S. C. C. Navarrete, “Control avanzado de un sistema de refrigeración,” 2019.; "Measures of controlled system performance.” [Online]. Available: http://www.online-courses.vissim.us/Strathclyde/measures_of_controlled_system_pe.htm. [Accessed: 20-Nov-2020].; Á. Valera Fernández, Modelado y control en el espacio de estados. 2016.; O. A. Esquivel Flores, “Análisis de observabilidad y controlabilidad para sistemasdiferenciaslmente planos. Aplicación a un sistema de oscilaciones de calcio,” p. 107, 2007.; J. Ángel and S. Blanco, “Diseño en el Espacio de Estados,” pp. 1–9, 2017.; https://hdl.handle.net/11349/31383; Universidad Distrital Francisco José de Caldas.
Availability: https://hdl.handle.net/11349/31383
-
12
Authors:
Contributors:
Subject Terms: 720 - Arquitectura::728 - Edificios residenciales y relacionados, 690 - Construcción de edificios, PROYECTOS DE VIVIENDA, VIVIENDA POPULAR, ARQUITECTURA-PROCESAMIENTO DE DATOS, Housing projects, Low cost housing, Architecture - data processing, Medición del desempeño, Vivienda Interés Social, Inteligencia empresarial, Analítica de datos, Indicadores, BIM, Building Information Modeling, Performance Measurement, Business intelligence, Data analysis, KPI
File Description: xvii, 142 páginas; application/pdf
Relation: Aguilar, J., Rueda, L., & Leguizamón, S. (2020). VENTAJAS DE LA METODOLOGÍA SCRUM EN LA PLANEACIÓN DE PROYECTOS DE CONSTRUCCIÓN DE VIVIENDA EN BOGOTÁ. Universidad EAN.; Alarcon, L. F., Grillo, A., Freire, J., & Diethelm, S. (2001). Learning from collaborative benchmarking in the construction industry. 9th Annual Conference of the International Group for Lean Construction. https://www.researchgate.net/publication/228558967; Albuquerque, F., Torres, A. S., & Berssaneti, F. T. (2020). Lean product development and agile project management in the construction industry. Revista de Gestão, 27(2), 135–151. https://doi.org/10.1108/REGE-01-2019-0021; Atkinson, R. (1999). Project management: cost, time and quality, two best guesses and a phenomenon, its time to accept other success criteria. International Journal of Project Management, 17(6), 337–342. https://doi.org/10.1016/S0263-7863(98)00069-6; Azhar, S., Khalfan, M., & Maqsood, T. (2012). Building information modelling (BIM): now and beyond. Construction Economics and Building, 12(4), 15–28. https://doi.org/10.5130/ajceb.v12i4.3032; Beatham, S., Anumba, C., Thorpe, T., & Hedges, I. (2004). KPIs: a critical appraisal of their use in construction. Benchmarking: An International Journal, 11(1), 93–117. https://doi.org/10.1108/14635770410520320; BIM Forum Colombia. (2020). 9. Fichas de usos BIM. En Camacol (Ed.), Guía para la adopción BIM en las organizaciones. https://bim.psu.edu/bim_uses/; BIM FORUM USA. (2023). LEVEL OF DEVELOPMENT (LOD) SPECIFICATION PART I. www.bimforum.org/lod; Bititci, U. S., Carrie, A. S., & McDevitt, L. (1997). Integrated performance measurement systems: a development guide. International Journal of Operations & Production Management, 17(5), 522–534. https://doi.org/10.1108/01443579710167230; Bockstael, D., & Issa, M. H. (2016). A methodology for contractor clash detection using building information modelling on commercial construction projects. Journal of Information Technology in Construction, 21(July 2015), 233–249.; Borrmann, A., König, M., Koch, C., & Beetz, J. (2018). Building information modeling: Why? What? How? En Building Information Modeling: Technology Foundations and Industry Practice (pp. 1–24). Springer International Publishing. https://doi.org/10.1007/978-3-319-92862-3_1; Botero, L. F., Álvarez, E., & Ramírez, C. (2007). Iniciativa colombiana en la definición de indicadores de desempeño como punto de partida de un sistema de referenciación para la construcción. Ambiente Construido, 7, 89–102. https://seer.ufrgs.br/ambienteconstruido/article/download/3756/2109; Bradley, Ken. (1997). Ken Bradley’s understanding PRINCE 2. SPOCE Project Management Ltd; Bryde, D., Broquetas, M., & Volm, J. M. (2013). The project benefits of building information modelling (BIM). International Journal of Project Management, 31(7), 971–980. https://doi.org/10.1016/j.ijproman.2012.12.001; Bygballe, L. E., & Ingemansson, M. (2014). The logic of innovation in construction. Industrial Marketing Management, 43(3), 512–524. https://doi.org/10.1016/j.indmarman.2013.12.019; Caballero, S., Zambrano, B., & Ponce, E. (2018). ESTADO ACTUAL DE LA APLICACIÓN DE LA METODOLOGÍA LEAN CONSTRUCTION EN LA GESTIÓN DE PROYECTOS DE CONSTRUCCIÓN EN COLOMBIA. Ingeniare, 25, 39–65. https://doi.org/10.18041/1909-2458/ingeniare.25.5968; CAMACOL. (2020a). Estrategia Nacional BIM.; CAMACOL. (2020b). Marco Nacional de Cualificaciones.; CAMACOL. (2022). Informe Económico 113. https://camacol.co/sites/default/files/descargables/Informe%20Econ%C3%B3mico%20113%20VF_%20Formato.pdf; CAMACOL, & McKinsey & Co. (2018). Informe de productividad. Sector construcción de edificaciones. https://camacol.co/sites/default/files/documentosinteres/INFORME PRODUCTIVIDAD VF.pdf; Chan, A., Ma, X., Yi, W., Zhou, X., & Xiong, F. (2018). Critical review of studies on building information modeling (BIM) in project management. Frontiers of Engineering Management, 5(3), 394–406. https://doi.org/10.15302/J-FEM-2018203; Chan, A. P. C., & Chan, A. P. L. (2004). Key performance indicators for measuring construction success. Benchmarking: An International Journal, 11(2), 203–221. https://doi.org/10.1108/14635770410532624; Ciric, D., Lalic, B., Gracanin, D., Tasic, N., Delic, M., & Medic, N. (2019). Agile vs. Traditional Approach in Project Management: Strategies, Challenges and Reasons to Introduce Agile. Procedia Manufacturing, 39, 1407–1414. https://doi.org/10.1016/J.PROMFG.2020.01.314; Clough, R., Sears, G., & Sears, K. (2008). Construction project management : a practical guide to field construction management (5a ed.). John Wiley & Sons, Inc.; Construction Industry Institute (CII). (2024, enero 14). Project Definition Rating Index (PDRI) Overview. https://www.construction-institute.org/pdri-overview.; Creswell, J. W. (2014). Research Design (4a ed.). SAGE Publications.; DANE. (2022a). Anexos_produccion_constantes_IV_2022. https://www.dane.gov.co/files/investigaciones/boletines/pib/Anexos_produccion_constantes_IV_2022.xlsx; DANE. (2022b). Boletín Técnico Indicadores económicos alrededor de la construcción (IEAC).; Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2011). BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors (2a ed.). John Wiley & Sons, Inc. https://doi.org/10.1002/9780470261309; EFQM. (2021). Modelo EFQM 2a edición.; Elmualim, A., & Gilder, J. (2014). BIM: innovation in design management, influence and challenges of implementation. Architectural Engineering & Design Management, 10(3/4), 183–199. https://doi.org/10.1080/17452007.2013.821399; Fazli, A., Fathi, S., Enferadi, M. H., Fazli, M., & Fathi, B. (2014). Appraising Effectiveness of Building Information Management (BIM) in Project Management. Procedia Technology, 16, 1116–1125. https://doi.org/10.1016/j.protcy.2014.10.126; González Forero, H. (2011). Presupuesto: su control en un proyecto arquitectónico. ECOE ediciones.; Hernández, G. (2022). Análisis de la aplicabilidad del marco de trabajo Scrum en proyectos de construcción de radio bases de telecomunicaciones. Universidad Santo Tomás.; Hernandez Sampieri, R., Fernandez Collado, C., & Baptista Lucio, M. del P. (2010). Metodología de la investigación (5a ed.). McGraw-Hill.; Hernández-Sampieri, R., & Mendoza, C. (2018). Metodología de la investigación: Las rutas cuantitativa, cualitativa y mixta.; Herrera, R. F., Mourgues, C., Alarcon, L. F., Pellicer, E., & Alarcón, L. F. (2019). Assessing design process performance of construction projects. CIB World Building Congress, June, 17–21. https://www.researchgate.net/publication/333929644; Jiménez, D. (2021). Análisis de Habilidades Gerenciales en la Gestión de proyectos de Construcción Aplicado para Residentes y/o Directores de obra. Universidad Nacional de Colombia.; Kadcha, Y., Legmouz, D., & Hajji, R. (2022). an Integrated Bim-Power Bi Approach for Data Extraction and Visualization. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 48(4/W4-2022), 67–73. https://doi.org/10.5194/isprs-archives-XLVIII-4-W4-2022-67-2022; Kaplan, R. S., & Norton, D. P. (1992). The Balanced Scorecard-Measures that Drive Performance. Harvard Business Review, 70(1), 71–79.; Kerzner, H. (2011). PROJECT MANAGEMENT METRICS, KPIs, AND DASHBOARDS (2a ed.). John Wiley & Sons, Inc.; Khanzadi, M., Sheikhkhoshkar, M., & Banihashemi, S. (2020). BIM applications toward key performance indicators of construction projects in Iran. International Journal of Construction Management, 20(4), 305–320. https://doi.org/10.1080/15623599.2018.1484852; Kreider, R. G., & Messner, J. I. (2013). The Uses of BIM - Classifying and Selecting BIM Uses. http://bim.psu.edu.; Kylili, A., Fokaides, P. A., & Lopez Jimenez, P. A. (2016). Key Performance Indicators (KPIs) approach in buildings renovation for the sustainability of the built environment: A review. Renewable and Sustainable Energy Reviews, 56, 906–915. https://doi.org/10.1016/j.rser.2015.11.096; Lalmi, A., Fernandes, G., & Boudemagh, S. S. (2022). Synergy between Traditional, Agile and Lean management approaches in construction projects: bibliometric analysis. Procedia Computer Science, 196, 732–739. https://doi.org/10.1016/j.procs.2021.12.070; Lalmi, A., Fernandes, G., & Souad, S. B. (2021). A conceptual hybrid project management model for construction projects. Procedia Computer Science, 181, 921–930. https://doi.org/10.1016/j.procs.2021.01.248; Lock, D. (2007). Project Management (9a ed.). Gower Publishing Company. www.projectmanagement9.com; Lu, W., Lai, C. C., & Tse, T. (2019). Big data for construction cost management (1a ed.). Taylor & Francis Group. https://doi.org/10.1201/9781351172325-6; Mahmoud, A. S., Ahmad, M. H., Yatim, Y. M., & Dodo, Y. A. (2020). Key performance indicators (KPIs) to promote building developers safety performance in the construction industry. Journal of Industrial Engineering and Management (JIEM), 13(2), 371–401. https://doi.org/10.3926/jiem.3099; Marzouk, M., & Enaba, M. (2019). Analyzing project data in BIM with descriptive analytics to improve project performance. Built Environment Project and Asset Management, 9(4), 476–488. https://doi.org/10.1108/BEPAM-04-2018-0069; Meneses, E., & Montoya, B. (2014). La utopía de la implementación del B.I.M en la industria de la construcción en Colombia. Proceedings of the XVIII Conference of the Iberoamerican Society of Digital Graphics: Design in Freedom, 1(8), 398–402. https://doi.org/10.5151/despro-sigradi2014-0080; Moradi, S., Ansari, R., & Taherkhani, R. (2022). A Systematic Analysis of Construction Performance Management: Key Performance Indicators from 2000 to 2020. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 46(1), 15–31. https://doi.org/10.1007/s40996-021-00626-7; Neely, A., Adams, C., & Kennerley, M. (2002). The Performance Prism: The Scorecard for Measuring and Managing Business Success.; Office of Government Commerce. (2009). Managing successful projects with PRINCE2 (5a ed.). TSO (The Stationary Office).; Olugboyega, O., Edwards, D. J., Windapo, A. O., Omopariola, E. D., & Martek, I. (2021). Development of a conceptual model for evaluating the success of BIM-based construction projects. Smart and Sustainable Built Environment, 10(4), 681–701. https://doi.org/10.1108/SASBE-02-2020-0013; Olugboyega, O., & Windapo, A. (2020). A Building Information Modelling-Integrated Model of Construction Project Performance Indicators. En The Construction Industry in the Fourth Industrial Revolution (pp. 144–157). Springer International Publishing. https://doi.org/10.1007/978-3-030-26528-1_15; Organización Internacional de Normalización. (2018). Organización y digitalización de la información en edificaciones y obras de ingeniería civil, incluyendo BIM (Building Information Modelling). Gestión de la información usando BIM. Parte 1: Conceptos y principios: Vol. ISO 19650.1-2018.; Orihuela, P., Pacheco, S., & Orihuela, J. (2017). Proposal of Performance Indicators for the Design of Housing Projects. Procedia Engineering, 196(June), 498–505. https://doi.org/10.1016/j.proeng.2017.07.230; Orihuela, P., Pacheco, S., & Orihuela, J. (2018). Control panel and indicators for production control in building projects. Organization, Technology and Management in Construction: an International Journal, 10(1), 1665–1673. https://doi.org/10.1515/otmcj-2016-0027; Parikh, D. V., & Phugat, S. (2008). PERFORMANCE MANAGEMENT IN ROAD CONSTRUCTION PROJECT. International Research Journal of Engineering and Technology, 1561. www.irjet.net; Peterson, F., Hartmann, T., Fruchter, R., & Fischer, M. (2011). Teaching construction project management with BIM support: Experience and lessons learned. Automation in Construction, 20(2), 115–125. https://doi.org/10.1016/j.autcon.2010.09.009; Plan BIM Perú. (2023). Guía Nacional BIM Gestión de la información para inversiones desarrolladas con BIM Versión 2023.; Planbim. (2019). Estándar BIM para proyectos públicos (1a ed.).; Pons, J. F. (2014). Introducción a Lean Construction (1a ed.). Fundación Laboral de la Construcción. www.fundacionlaboral.org; Presley, A., & Meade, L. (2010). Benchmarking for sustainability: an application to the sustainable construction industry. Benchmarking: An International Journal, 17(3), 435–451. https://doi.org/10.1108/14635771011049380; Project Management Institute. (2021). Guía de los Fundamentos para la Dirección de Proyectos y El Estándar para la Dirección de Proyectos. En Guía del PMBOK.; Rioja, S. (2022). PLANTEAMIENTO DE UNA HERRAMIENTA DE SEGUIMIENTO Y CONTROL DE PROYECTOS DE CONSTRUCCIÓN DE INFRAESTRUCTURA VIAL SOPORTADO EN POWER BI. Universidad de los Andes.; Rodrigues, F., Alves, A. D., & Matos, R. (2022). Construction Management Supported by BIM and a Business Intelligence Tool. Energies, 15(9). https://doi.org/10.3390/en15093412; Rokooei, S. (2015). Building Information Modeling in Project Management: Necessities, Challenges and Outcomes. Procedia - Social and Behavioral Sciences, 210, 87–95. https://doi.org/10.1016/j.sbspro.2015.11.332; Salvatierra, J. L., Gálvez, M. Á., Bastías, F., Castillo, T., Herrera, R. F., & Alarcón, L. F. (2019). Developing a benchmarking system for architecture design firms. Engineering, Construction and Architectural Management, 26(1), 139–152. https://doi.org/10.1108/ECAM-05-2018-0211; Schaufelberge, J., & Holm, L. (2017). Management of Construction Projects : A Constructors Perspective (2a ed.). Routledge.; Schwaber, K., & Sutherland, J. (2020). La Guía de Scrum.; Silva Sarmiento, E. J. (2022). ESTRUCTURACIÓN DE METODOLOGÍA DE TRABAJO PARA LA CONSTRUCCIÓN DE PROYECTOS VIS BASADA EN LEAN CONSTRUCTION. Universidad Militar Nueva Granada.; Sobieraj, J., Metelski, D., & Nowak, P. (2021). PMBoK vs. PRINCE2 in the context of Polish construction projects: Structural equation modelling approach. Archives of Civil Engineering, 67(2), 551–579. https://doi.org/10.24425/ace.2021.137185; Špundak, M. (2014). Mixed Agile/Traditional Project Management Methodology – Reality or Illusion? Procedia - Social and Behavioral Sciences, 119, 939–948. https://doi.org/10.1016/J.SBSPRO.2014.03.105; Stanitsas, M., Kirytopoulos, K., & Leopoulos, V. (2021). Integrating sustainability indicators into project management: The case of construction industry. Journal of Cleaner Production, 279. https://doi.org/10.1016/j.jclepro.2020.123774; Streule, T., Miserini, N., Bartlomé, O., Klippel, M., & De Soto, B. G. (2016). Implementation of Scrum in the Construction Industry. Procedia Engineering, 164, 269–276. https://doi.org/10.1016/j.proeng.2016.11.619; Succar, B. (2009). Building information modelling framework: A research and delivery foundation for industry stakeholders. Automation in Construction, 18(3), 357–375. https://doi.org/10.1016/j.autcon.2008.10.003; Succar, B., Sher, W., & Williams, A. (2012). Measuring BIM performance : Five metrics. Arquitectural Engineering and Design Management, 8(2), 120–142. https://doi.org/10.1080/17452007.2012.659506; Tennant, S., & Langford, D. (2008). The construction project balanced scorecard. Procs 24th Annual ARCOM Conference, 361–370.; The Computer Integrated Construction Research Program. (2010). BIM Project Execution Planning Guide (2a ed.). The Pennsylvania State University.; Toor, S. ur R., & Ogunlana, S. O. (2010). Beyond the “iron triangle”: Stakeholder perception of key performance indicators (KPIs) for large-scale public sector development projects. International Journal of Project Management, 28(3), 228–236. https://doi.org/10.1016/j.ijproman.2009.05.005; Torres, F. (2021). PLANIFICACIÓN Y ANÁLISIS FINANCIERO EN UN PROYECTO DE RENOVACIÓN DE REDES LOCALES DE ACUEDUCTO, ALCANTARILLADO SANITARIO Y PLUVIAL, UBICADO EN LA CIUDAD DE BOGOTÁ D.C., POR MEDIO DE METODOLOGÍAS AGILES. Universidad Católica de Colombia.; UNE. (2021). UNE-EN 17412-1:2021 Nivel de información necesario. Parte 1: Conceptos y principios.; Wang, T., & Chen, H.-M. (2023). Integration of building information modeling and project management in construction project life cycle. Automation in Construction, 150, 104832. https://doi.org/10.1016/j.autcon.2023.104832; Winch, G. M. (2003). How innovative is construction? Comparing aggregated data on construction innovation and other sectors – a case of apples and pears. Construction Management and Economics, 21(6), 651–654. https://doi.org/10.1080/0144619032000113708; Won, J., & Lee, G. (2016). How to tell if a BIM project is successful: A goal-driven approach. Automation in Construction, 69, 34–43. https://doi.org/10.1016/j.autcon.2016.05.022; Yang, H., Yeung, J. F. Y., Chan, A. P. C., Chiang, Y. H., & Chan, D. W. M. (2010). A critical review of performance measurement in construction. Journal of Facilities Management, 8(4), 269–284. https://doi.org/10.1108/14725961011078981; Yu, I., Kim, K., Jung, Y., & Chin, S. (2007). Comparable Performance Measurement System for Construction Companies. Journal of Management in Engineering, 23(3), 131–139. https://doi.org/10.1061/(asce)0742-597x(2007)23:3(131); https://repositorio.unal.edu.co/handle/unal/86650; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
13
Authors:
Contributors:
Subject Terms: 650 - Gerencia y servicios auxiliares::658 - Gerencia general, Equipos y Suministros de Hospitales, Equipment and Supplies, Hospital, Cadena de suministro hospitalaria, Coordinación, Determinantes, Desempeño, Gestión de cadenas de suministro, Hospital supply chain, Coordination, Determinants, Performance, Supply chain management, Lean manufacturing, Administración de la cadena de suministro
File Description: iv, 200 páginas; application/pdf
Relation: A. Clottey, T., & J. Grawe, S. (2014). Non-response bias assessment in logistics survey research: use fewer tests? International Journal of Physical Distribution & Logistics Management, 44(5), 412–426.; Abadie, A., Roux, M., Chowdhury, S., & Dey, P. (2023). Interlinking organisational resources, AI adoption and omnichannel integration quality in Ghana’s healthcare supply chain. Journal of Business Research, 162. https://doi.org/10.1016/j.jbusres.2023.113866; Abbas, H. (2018). Barriers to reverse logistics practices in pharmaceutical supply chains: an ISM approach. International Journal of Business Excellence, 16(1), 47–60.; Abdallah, A B, Rawadiah, O. M., Al-Byati, W., & Alhyari, S. (2021). Supply chain integration and export performance: the mediating role of supply chain performance. International Journal of Productivity and Performance Management. https://doi.org/10.1108/IJPPM-02-2021-0076; Abdallah, Ayman Bahjat, Abdullah, M. I., & Mahmoud Saleh, F. I. (2017). The effect of trust with suppliers on hospital supply chain performance: The mediating role of supplier integration. Benchmarking, 24(3), 694–715. https://doi.org/10.1108/BIJ-05-2016-0062; Abdeen, F. N., Sandanayake, Y. G., & Ramachandra, T. (2022). A framework for facilities management supply chain performance evaluation: case study of hotel buildings. Facilities, 40(3–4), 248–267. https://doi.org/10.1108/F-12-2020-0125; Abdulameer, S. S., & Yaacob, N. A. (2020). The moderating role of information sharing on the relationship between lean supply chain and supply chain performance: A conceptual framework. International Journal of Supply Chain Management, 9(1), 411–419.; Abdulsalam, Y., & Schneller, E. (2017). Hospital Supply Expenses: An Important Ingredient in Health Services Research. Medical Care Research and Review : MCRR, 76(2), 240–252. https://doi.org/10.1177/1077558717719928; Abu Zwaida, T., Elaroudi, K., & Beauregard, Y. (2022). The challenges of drug shortages in the Canadian hospital pharmacy supply chain — a systematic literature review. Journal of Public Health (Germany), 30(11), 2593–2604. https://doi.org/10.1007/s10389-021-01485-2; AbuKhousa, E., Al-Jaroodi, J., Lazarova-Molnar, S., & Mohamed, N. (2014). Simulation and Modeling Efforts to Support Decision Making in Healthcare Supply Chain Management. The Scientific World Journal, 2014, 354246. https://doi.org/10.1155/2014/354246; Adebanjo, D, Laosirihongthong, T., & Samaranayake, P. (2016). Prioritizing lean supply chain management initiatives in healthcare service operations: a fuzzy AHP approach. Production Planning and Control, 27(12), 953–966. https://doi.org/10.1080/09537287.2016.1164909; Adebanjo, Dotun, Laosirihongthong, T., & Samaranayake, P. (2016). The Management of Operations Prioritizing lean supply chain management initiatives in healthcare service operations : a fuzzy AHP approach Prioritizing lean supply chain management initiatives in healthcare service operations : a fuzzy AHP approach. Production Planning & Control, 7287, 1–14. https://doi.org/10.1080/09537287.2016.1164909; Aguilar-Escobar, V. G., Garrido-Vega, P., & Godino-Gallego, N. (2013). Improving a hospital’s supply chain through lean management . Revista de Calidad Asistencial, 28(6), 337–344. https://doi.org/10.1016/j.cali.2013.05.003; Ahmadi, E., Masel, D. T., Metcalf, A. Y., & Schuller, K. (2018). Inventory management of surgical supplies and sterile instruments in hospitals: a literature review. Health Systems (Basingstoke, England), 8(2), 134–151. https://doi.org/10.1080/20476965.2018.1496875; Ahmed, A., Ahmed, Z., & Khan, H. (2019). Relationship between environmental uncertainty and pharmaceutical supply chain risk: A review and research agenda. Journal of Advanced Research in Dynamical and Control Systems, 11(8 Special Issue), 984–993; Ahmed, Z., Mohamed, K., Zeeshan, S., & Dong, X. (2020). Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database : The Journal of Biological Databases and Curation, 2020, baaa010. https://doi.org/10.1093/database/baaa010; Akyuz, G. A., & Gursoy, G. (2013). Paradigm shift in supply chain management (SCM). 291–302; AL-Khatib, A. W., & Shuhaiber, A. (2022). Green Intellectual Capital and Green Supply Chain Performance: Does Big Data Analytics Capabilities Matter? Sustainability (Switzerland), 14(16). https://doi.org/10.3390/su141610054; AL-Shboul, M. A., Garza-Reyes, J. A., & Kumar, V. (2018). Best supply chain management practices and high-performance firms: The case of Gulf manufacturing firms. International Journal of Productivity and Performance Management, 67(9), 1482–1509. https://doi.org/10.1108/IJPPM-11-2016-0257; Alajmi, A., Adlan, N., & Lahyani, R. (2021). Assessment of Supply Chain Management Resilience within Saudi Medical Laboratories during Covid-19 Pandemic. In M. K. & W. T. (Eds.), 9th CIRP Global Web Conference on Sustainable, Resilient, and Agile Manufacturing and Service Operations: Lessons from COVID-19, CIRPe 2021 (Vol. 103, pp. 32–36). Elsevier B.V. https://doi.org/10.1016/j.procir.2021.10.004; Alali, A. M., Rejal, H. M. A. A., Abu, N. H. B., & Alali, H. (2022). The Impact of Supply Chain Preparedness on Healthcare Service Quality: A Literature Review. International Journal of Sustainable Development and Planning, 17(5), 1425–1430. https://doi.org/10.18280/ijsdp.170506; Alemsan, N, & Tortorella, G. L. (2022). Lean and Resilience in Healthcare Supply Chain: A Mediation Analysis. In B. A., D. A., B. H.H., I. D., L. D., & S. F. (Eds.), 10th IFAC Conference on Manufacturing Modelling, Management and Control, MIM 2022 (Vol. 55, Issue 10, pp. 436–441). Elsevier B.V. https://doi.org/10.1016/j.ifacol.2022.09.432; Alemsan, Najla, Tortorella, G., Taboada Rodriguez, C. M., Balouei Jamkhaneh, H., & Lima, R. M. (2022). Lean and resilience in the healthcare supply chain – a scoping review. International Journal of Lean Six Sigma, 13(5), 1058–1078. https://doi.org/10.1108/IJLSS-07-2021-0129; Ali, I., & Kannan, D. (2022). Mapping research on healthcare operations and supply chain management: a topic modelling-based literature review. Annals of Operations Research, 315(1), 29–55. https://doi.org/10.1007/s10479-022-04596-5; Ali, N., Habidin, N. F., Jamaludin, N. H., Khaidir, N. A., & Shazali, N. A. (2013). Customer Relationship Management and Performance in Malaysian Healthcare Industry. International Journal of Advancements in Research & Technology, 2(1), 1–5.; Alipour, J., Karimi, A., Ebrahimi, S., Ansari, F., & Mehdipour, Y. (2017). Success or failure of hospital information systems of public hospitals affiliated with Zahedan University of Medical Sciences: A cross sectional study in the Southeast of Iran. International Journal of Medical Informatics, 108, 49–54. https://doi.org/https://doi.org/10.1016/j.ijmedinf.2017.10.005; Alla, L., Bentalha, B., & Bouhtati, N. (2022). Assessing Supply Chain Performance in the Covid 19 Context: A Prospective Model. In J. F. & E. F. I.I. (Eds.), 14th IEEE International Conference of Logistics and Supply Chain Management, LOGISTIQUA 2022. Institute of Electrical and Khajouei s Engineers Inc. https://doi.org/10.1109/LOGISTIQUA55056.2022.9938083; Almutairi, A. M., Almanei, M., Al-Ashaab, A., & Salonitis, K. (2021). Prioritized Solutions for Overcoming Barriers When Implementing Lean in the Healthcare Supply Chain: A Saudi Perspective. Logistics, 5(1). https://doi.org/10.3390/logistics5010009; Almutairi, A. M., Salonitis, K., & Al-Ashaab, A. (2020). A framework for implementing lean principles in the supply chain management at health-care organizations: Saudi’s perspective. International Journal of Lean Six Sigma, 11(3), 463–492. https://doi.org/10.1108/IJLSS-01-2019-0002; Almutairi, A. M., Xu, Y., & Salonitis, K. (2017). Lean Six Sigma(LSS) practices of supply chain. European International Conference on Industrial Engineering and Operations Management.IEOM 2017, 2017(JUL), 218–220.; Alqudah, A., Abualrejal, H. M., & Elias, E. (2022). Hospital Supply Chain Management and Quality of Services Within Hospitals: A Preliminary Review. In Lecture Notes on Data Engineering and Communications Technologies (Vol. 127, pp. 775–784). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-98741-1_66; Alqudah, S., Shrouf, H., Suifan, T., & Alhyari, S. (2020). A moderated mediation model of lean, agile, resilient, and green paradigms in the supply chain. International Journal of Supply Chain Management, 9(4), 158–172.; Alshahrani, S., Rahman, S., & Chan, C. (2018). Hospital-supplier integration and hospital performance: evidence from Saudi Arabia. The International Journal of Logistics Management.; Anand, G., & Kodali, R. (2008). A conceptual framework for lean supply chain and its implementation. International Journal of Value Chain Management, 2(3), 313–357. https://doi.org/10.1504/IJVCM.2008.019517; Añasco Noguera, J., Cobo Larrahondo, Y. F., Martínez Caicedo, A. E., Osorio Cuellar, G. V., & Granada Aguirre, L. F. (2021). Sistemas de información de salud en Colombia. Interdisciplinary Journal of Epidemiology and Public Health, 4(1), 85–100. https://doi.org/10.18041/2665-427x/ijeph.1.7906; Antoine, V., de Wazières, B., & Houédé, N. (2015). [Professional’s expectations to improve quality of care and social services utilization in geriatric oncology]. Bulletin Du Cancer, 102(2), 150–161. https://doi.org/10.1016/j.bulcan.2014.12.011; Anurodhsingh, K., & Kumar, J. R. (2019). Supply chain integration: a review of enablers, dimensions and performance. Benchmarking: An International Journal, 27(1), 264–301. https://doi.org/10.1108/BIJ-07-2018-0217; Arana, K., Flores, K., Ramos, E., & Mesia, R. (2020). Developing a Two-Echelon Inventory Framework in Pharmaceutical Supply Chain: An Empirical Review. In M. B., T. S., K. W., D. N. M., & R. E. (Eds.), AHFE Virtual Conference on Production Management and Process Control, Human Aspects of Advanced Manufacturing and the Additive Manufacturing, Modeling Systems and 3D Prototyping, 2020: Vol. 1216 AISC (pp. 361–368). Springer. https://doi.org/10.1007/978-3-030-51981-0_46; Aranaz, J. M., Leutscher, E., Gea, M. T., & Vitaller, J. (2003). El aseguramiento y la acreditación sanitaria. Qué opinan sobre la acreditación los directivos sanitarios españoles. Revista de Calidad Asistencial, 18(2), 107–114. https://doi.org/10.1016/S1134-282X(03)77584-8; Arbab Kash, B., Spaulding, A., D. Gamm, L., & E. Johnson, C. (2014). Healthcare strategic management and the resource based view. Journal of Strategy and Management, 7(3), 251–264.; Arcidiacono, G., & Rauch, E. (2018). Applying Lean to Healthcare Delivery Processes - a Case-based Research Applying Lean to Healthcare Delivery Processes – a Case-based. February. https://doi.org/10.18517/ijaseit.8.1.4965; Argiyantari, B., Simatupang, T. M., & Basri, M. H. (2022). The lean framework for supporting the pharmaceutical supply chain transformation. International Journal of Services and Operations Management, 42(4), 454–479. https://doi.org/10.1504/ijsom.2022.125027; Ariadi, G., Surachman, Sumiati, & Rohman, F. (2021). The effect of lean and agile supply chain strategy on financial performance with mediating of strategic supplier integration & strategic customer integration: Evidence from bottled drinking-water industry in Indonesia. Cogent Business and Management, 8(1). https://doi.org/10.1080/23311975.2021.1930500; Arji, G., Ahmadi, H., Avazpoor, P., & Hemmat, M. (2023). Identifying resilience strategies for disruption management in the healthcare supply chain during COVID-19 by digital innovations: A systematic literature review. Informatics in Medicine Unlocked, 38. https://doi.org/10.1016/j.imu.2023.101199; Aronsson, H., Abrahamsson, M., Spens, K., Håkan, A., Mats, A., Karen, S., Aronsson, H., Abrahamsson, M., & Spens, K. (2011). Developing lean and agile health care supply chains. SUPPLY CHAIN MANAGEMENT-AN INTERNATIONAL JOURNAL, 16(3), 176–183. https://doi.org/10.1108/13598541111127164; Arshinder, K., Kabra, G., & Ramesh, A. (2015). Identification and prioritization of coordination barriers in humanitarian supply chain management. International Journal of Disaster Risk Reduction, 13, 128–138. https://doi.org/https://doi.org/10.1016/j.ijdrr.2015.01.011; Arshinder, K., Kanda, A., & Deshmukh, S. G. (2011). A Review on Supply Chain Coordination : Coordination Mechanisms , Managing Uncertainty and Research Directions. https://doi.org/10.1007/978-3-642-19257-9; Arshinder, Kanda, A., & Deshmukh, S. G. (2008). Supply chain coordination: Perspectives, empirical studies and research directions. International Journal of Production Economics, 115(2), 316–335. https://doi.org/10.1016/j.ijpe.2008.05.011; Arvitrida, N. I., Robinson, S., & Tako, A. A. (2016). How do competition and collaboration affect supply chain performance? An agent based modeling approach. Winter Simulation Conference, WSC 2015, 2016-Febru, 218–229. https://doi.org/10.1109/WSC.2015.7408166; Augusto, V., & Xie, X. (2009). Redesigning pharmacy delivery processes of a health care complex. Health Care Management Science, 12(2), 166–178. https://doi.org/10.1007/s10729-008-9086-3; Avkiran, N. K., & Ringle, C. M. (2018). Partial Least Squares Structural Equation Modeling: Recent Advances in Banking and Finance. In Springer.; Awang, Z., Afthanorhan, A., & Mamat, M. (2016). The Likert scale analysis using parametric based Structural Equation Modeling (SEM). Computational Methods in Social Sciences, 4(1), 13.; Baah, C., Opoku Agyeman, D., Acquah, I. S. K., Agyabeng-Mensah, Y., Afum, E., Issau, K., Ofori, D., & Faibil, D. (2022). Effect of information sharing in supply chains: understanding the roles of supply chain visibility, agility, collaboration on supply chain performance. Benchmarking, 29(2), 434–455. https://doi.org/10.1108/BIJ-08-2020-0453; Baayen, R. H. (2001). Word Frequencies BT - Word Frequency Distributions (R. H. Baayen (ed.); pp. 1–38). Springer Netherlands. https://doi.org/10.1007/978-94-010-0844-0_1; Balcázar-Camacho, D A, López-Bello, C. A., & Adarme-Jaimes, W. (2016). Strategic guidelines for supply chain coordination in healthcare and a mathematical model as a proposed mechanism for the measurement of coordination effects . DYNA (Colombia), 83(197), 204–212. https://doi.org/10.15446/dyna.v83n197.55596; Balcázar-Camacho, Delio Alexander, López-Bello, C. A., & Adarme-Jaimes, W. (2016). Lineamientos estratégicos para coordinación en la cadena de suministro de medicamentos y propuesta de un modelo matemático para medir los efectos de la coordinación. DYNA (Colombia), 83(197), 204–212. https://doi.org/10.15446/dyna.v83n197.55596; Bani Hani, J. (2022). THE INFLUENCE OF SUPPLY CHAIN MANAGEMENT PRACTICES ON SUPPLY CHAIN PERFORMANCE: THE MODERATING ROLE OF INFORMATION QUALITY. Business, Management and Economics Engineering, 20(1), 152–171. https://doi.org/10.3846/bmee.2022.16597; Barnas, K. (2011). ThedaCare’s business performance system: sustaining continuous daily improvement through hospital management in a lean environment. Joint Commission Journal on Quality and Patient Safety / Joint Commission Resources, 37(9), 387–399.; Barnett, V., & Lewis, T. (1994). Outliers in statistical data (Vol. 3, Issue 1). Wiley New York.; Barney, J. (1991a). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99–120.; Barney, J. (1991b). Special theory forum the resource-based model of the firm: origins, implications, and prospects. Journal of Management, 17(1), 97–98.; Barros, R. D. de, Costa, E. A., Santos, D. B. dos, Souza, G. S., Álvares, J., Guerra, A. A., Acurcio, F. de A., Guibu, I. A., Costa, K. S., & Karnikowski, M. G. de O. (2017). Access to medicines: relations with the institutionalization of pharmaceutical services. Revista de Saúde Pública, 51.; Barsing, P., Daultani, Y., Vaidya, O. S., & Kumar, S. (2018). Cross-docking Centre Location in a Supply Chain Network: A Social Network Analysis Approach. Global Business Review, 19(3_suppl), S218–S234. https://doi.org/10.1177/0972150918757847; Bartnik, R., & Park, Y. (2018). Technological change, information processing and supply chain integration: A conceptual model. Benchmarking, 25(5), 1279–1301. https://doi.org/10.1108/BIJ-03-2016-0039; Beal Partyka, R. (2022). Supply chain management: an integrative review from the agency theory perspective. Revista de Gestao, 29(2), 175–198. https://doi.org/10.1108/REGE-04-2021-0058; Beldek, T., Konyalıoğlu, A. K., & Akdağ, H. C. (2020). Supply Chain Management in Healthcare: A Literature Review. 19th International Symposium for Production Research, ISPR 2019 (pp. 570–579). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-31343-2_50; Benitez, J., Henseler, J., Castillo, A., & Schuberth, F. (2020). How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Information and Management, 57(2), 103168. https://doi.org/10.1016/j.im.2019.05.003; Benzekri, S., El Wartiti, M. A., & Bennana, A. (2018). Pharmaceutical supply chain: Review of the literature. Journal de Pharmacie Clinique, 37(4), 195–203. https://doi.org/10.1684/jpc.2018.0396; Benzidia, S., Makaoui, N., & Bentahar, O. (2021). The impact of big data analytics and artificial intelligence on green supply chain process integration and hospital environmental performance. Technological Forecasting and Social Change, 165, 120557. https://doi.org/https://doi.org/10.1016/j.techfore.2020.120557; Best, S., & Williams, S. J. (2021). What Have We Learnt About the Sourcing of Personal Protective Equipment During Pandemics? Leadership and Management in Healthcare Supply Chain Management: A Scoping Review. Frontiers in Public Health, 9. https://doi.org/10.3389/fpubh.2021.765501; Betcheva, L., Erhun, F., & Jiang, H. (2021). Supply chain thinking in healthcare: Lessons and outlooks. Manufacturing and Service Operations Management, 23(6), 1333–1353. https://doi.org/10.1287/msom.2020.0920; Bhakoo, V., & Choi, T. (2013). The iron cage exposed: Institutional pressures and heterogeneity across the healthcare supply chain. Journal of Operations Management, 31(6), 432–449. https://doi.org/10.1016/j.jom.2013.07.016; Bhaskar, S., Tan, J., Bogers, M. L. A. M., Minssen, T., Badaruddin, H., Israeli-Korn, S., & Chesbrough, H. (2020). At the Epicenter of COVID-19–the Tragic Failure of the Global Supply Chain for Medical Supplies. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.562882; Birhanu, Y., Gizaw, T., Teshome, D., Boche, B., & Gudeta, T. (2022). The mediating effect of information sharing on pharmaceutical supply chain integration and operational performance in Ethiopia: an analytical cross-sectional study. Journal of Pharmaceutical Policy and Practice, 15(1), 44. https://doi.org/10.1186/s40545-022-00440-0; Blossey, G., Hahn, G. J., & Koberstein, A. (2021). Managing uncertainty in pharmaceutical supply chains: A structured review. In B. T.X. (Ed.), 54th Annual Hawaii International Conference on System Sciences, HICSS 2021 (Vols. 2020-Janua, pp. 1435–1444). IEEE Computer Society.; Bohórquez, X. (2021). Tecnología en la Gestión Logística Hospitalaria de los Centros Clínicos de la Ciudad de Valledupar. RECITIUTM, 8(1), 115–128.; Borgatti, S., & Li, X. U. N. (2009). ON SOCIAL NETWORK ANALYSIS IN A SUPPLY CHAIN CONTEXT*. Journal of Supply Chain Management, 45(2), 5–22. https://doi.org/https://doi.org/10.1111/j.1745-493X.2009.03166.x; Borgatti, S. P., & Foster, P. C. (2003). The network paradigm in organizational research: A review and typology. Journal of Management, 29(6), 991–1013.; Borgatti, S. P., & Halgin, D. S. (2011). On network theory. Organization Science, 22(5), 1168–1181.; Borges, G. A., Tortorella, G. L., Rossini, M., & Staudacher, A. P. (2019). Lean implementation in healthcare supply chain : a scoping review. https://doi.org/10.1108/JHOM-06-2018-0176; Borges, G., Tortorella, G. L., Martinez, F., & Thürer, M. (2020). Simulation-based analysis of lean practices implementation on the supply chain of a public hospital. Production, 30, 1–16. https://doi.org/10.1590/0103-6513.20190131; Borsboom, D., Mellenbergh, G. J., & Van Heerden, J. (2004). The concept of validity. Psychological Review, 111(4), 1061.; Bortolini, M., Galizia, F. G., & Mora, C. (2017). Current research trend in lean and green supply chain management. 22nd Summer School “Francesco Turco” - Industrial Systems Engineering 2017, 2017-Septe(September), 16–20.; Bryman, A. (2006). Integrating quantitative and qualitative research: how is it done? Qualitative Research, 6(1), 97–113.; Buczak-Stec, E., Goryński Pawełand Nitsch-Osuch, A., Kanecki, K., & Tyszko, P. (2017). The impact of introducing a new hospital financing system (DRGs) in Poland on hospitalisations for atherosclerosis: An interrupted time series analysis (2004–2012). Health Policy, 121(11), 1186–1193. https://doi.org/https://doi.org/10.1016/j.healthpol.2017.09.009; Burnett, K. M., Scott, M. G., Fleming, G. F., Clark, C. M., & McElnay, J. C. (2009). Effects of an integrated medicines management program on medication appropriateness in hospitalized patients. American Journal of Health-System Pharmacy, 66(9), 854–859. https://doi.org/10.2146/ajhp080176; Burns, L. R. (2002). The health care value chain : producers, purchasers, and providers. San Francisco : Jossey-Bass.; Burt, R. S., & Soda, G. (2021). Network Capabilities: Brokerage as a Bridge Between Network Theory and the Resource-Based View of the Firm. Journal of Management, 47(7), 1698–1719. https://doi.org/10.1177/0149206320988764; C., van F. P., Bianca, K., & Henk, Z. (2014). Interorganizational Shared Services: Creating Value across Organizational Boundaries. In Shared Services as a New Organizational Form (Vol. 13, pp. 175–217). Emerald Group Publishing Limited. https://doi.org/10.1108/S1877-636120140000013009; Cachon, G. P. (2003). Supply Chain Coordination with Contracts. In Handbooks in Operations Research and Management Science (Vol. 11, Issue C, pp. 227–339). https://doi.org/10.1016/S0927-0507(03)11006-7; CaliŃski, T. (2014). Dendrogram. In Wiley StatsRef: Statistics Reference Online. https://doi.org/https://doi.org/10.1002/9781118445112.stat05624; Campuzano Zuluaga, C. (2021). Modelo logístico y de abastecimiento para la compra, almacenamiento y distribución interna de insumos y reactivos en un laboratorio clínico en la ciudad de Medellín, Colombia. Universidad EAFIT.; Carino, S., Porter, J., Malekpour, S., & Collins, J. (2020). Environmental Sustainability of Hospital Foodservices across the Food Supply Chain: A Systematic Review. Journal of the Academy of Nutrition and Dietetics, 120(5), 825–873. https://doi.org/10.1016/j.jand.2020.01.001; Carman, K. L., Paez, K., Stephens, J., Smeeding, L., Garfinkel, S., Blough, C., Devers, K., Hoover, M., Spaulding, T., & Mapes, D. (2014). Improving Care Delivery Through Lean: Implementation Case Studies. Prepared under contract HHSA290200600019. 13(13).; Carrión, G. C., Nitzl, C., & Roldán, J. L. (2017). Mediation analyses in partial least squares structural equation modeling: Guidelines and empirical examples. Partial Least Squares Path Modeling: Basic Concepts, Methodological Issues and Applications, 173–195.; Carter, C. R., Ellram, L. M., & Tate, W. (2007). THE USE OF SOCIAL NETWORK ANALYSIS IN LOGISTICS RESEARCH. Journal of Business Logistics, 28(1), 137–168. https://doi.org/10.1002/j.2158-1592.2007.tb00235.x; Carvalho, H., & Cruz Machado, V. (2009). Lean, agile, resilient and green supply chain: A review. 3rd International Conference on Management Science and Engineering Management, 66–76.; Castaño, R., Lopez, A., Marín, F., Moreano, D., & Prada, S. I. (2021). Modalidades prospectivas de pagos en salud: taxonomìa. 2999.; Centro de pensamiento: Medicamentos, I. y poder. (2022). Guía de Buenas Prácticas para la Compra de Medicamentos en Hospitales Públicos.; CEPAL. (2020). Balance Preliminar de las Economías de América Latina y el Caribe ▪ 2020.; Cepeda-Carrion, G., Cegarra-Navarro, J. G., & Cillo, V. (2019). Tips to use partial least squares structural equation modelling (PLS-SEM) in knowledge management. Journal of Knowledge Management, 23(1), 67–89. https://doi.org/10.1108/JKM-05-2018-0322; Chae, B. K., Olson, D., & Sheu, C. (2014). The impact of supply chain analytics on operational performance: A resource-based view. International Journal of Production Research, 52(16), 4695–4710. https://doi.org/10.1080/00207543.2013.861616; Chaharsooghi, S. K., & Heydari, J. (2010). Supply chain coordination for the joint determination of order quantity and reorder point using credit option. European Journal of Operational Research, 204(1), 86–95. https://doi.org/10.1016/j.ejor.2009.10.007; Chakraborty, S., & Gonzalez, J. (2018). An Integrated Lean Supply Chain Framework for U.S. Hospitals. Operations and Supply Chain Management, 11, 98–109. https://doi.org/10.31387/oscm0310206; Chandani, Y., Duffy, M., Lamphere, B., Noel, M., Heaton, A., & Andersson, S. (2017). Quality improvement practices to institutionalize supply chain best practices for iCCM: Evidence from Rwanda and Malawi. Research in Social and Administrative Pharmacy, 13(6), 1095–1109. https://doi.org/https://doi.org/10.1016/j.sapharm.2016.07.003; Chang, H. H., Wang, Y.-H., & Yang, W.-Y. (2009). The impact of e-service quality, customer satisfaction and loyalty on e-marketing: Moderating effect of perceived value. Total Quality Management, 20(4), 423–443; Chang, W., Joe, C., & Allaire, J. (2017). Shiny: Web Application Framework for R. https://cran.r-project.org/package=shiny; Cheah, J.-H., Kersten, W., Ringle, C. M., & Wallenburg, C. (2023). Guest editorial: Predictive modeling in logistics and supply chain management research using partial least squares structural equation modeling. International Journal of Physical Distribution & Logistics Management, 53(7/8), 709–717. https://doi.org/10.1108/IJPDLM-08-2023-552; Cheah, J.-H., Thurasamy, R., Memon, M. A., Chuah, F., & Ting, H. (2020). Multigroup analysis using SmartPLS: Step-by-step guidelines for business research. Asian Journal of Business Research, 10(3), I–XIX.; Cheah, J. H., Nitzl, C., Roldán, J. L., Cepeda-Carrion, G., & Gudergan, S. P. (2021). A Primer on the Conditional Mediation Analysis in PLS-SEM. Data Base for Advances in Information Systems, 52(SI), 43–100. https://doi.org/10.1145/3505639.3505645; Cheah, J. H., Thurasamy, R., Memon, M. A., Chuah, F., & Ting, H. (2020). Multigroup analysis using smartpls: Step-by-step guidelines for business research. Asian Journal of Business Research, 10(3), I–XIX. https://doi.org/10.14707/ajbr.200087; Chen, C.-L., Lai, Y.-L., Chen, C.-C., Zheng, C.-Y., & Chang, L.-C. (2016). A Non-Repudiated and Intelligent RFID Medication Safety Management System. Intelligent Automation & Soft Computing, 22(3), 415–421. https://doi.org/10.1080/10798587.2015.1126452; Chen, D., Preston, D., & Xia, W. (2013). Enhancing hospital supply chain performance: A relational view and empirical test. Journal of Operations Management, 31(6), 391–408. https://doi.org/10.1016/j.jom.2013.07.012; Chen, D. Q., Preston, D. S., & Xia, W. (2013). Enhancing hospital supply chain performance: A relational view and empirical test. Journal of Operations Management, 31(6), 391–408. https://doi.org/https://doi.org/10.1016/j.jom.2013.07.012; Chen, F. (2003). Information Sharing and Supply Chain Coordination. In Handbooks in Operations Research and Management Science (Vol. 11, Issue C, pp. 341–421). https://doi.org/10.1016/S0927-0507(03)11007-9; Chen, H., Daugherty, P. J., & Landry, T. D. (2009). SUPPLY CHAIN PROCESS INTEGRATION: A THEORETICAL FRAMEWORK. Journal of Business Logistics, 30(2), 27–46. https://doi.org/10.1002/j.2158-1592.2009.tb00110.x; Chen, L.-T. (2013). Dynamic supply chain coordination under consignment and vendor-managed inventory in retailer-centric B2B electronic markets. Industrial Marketing Management, 42(4), 518–531. https://doi.org/10.1016/j.indmarman.2013.03.004; Chen, X, Ai, X., & Zhong, L. (2018). The Impact of Medical Services and Medicine Separation Policy on Competitive Pharmaceutical Supply Chain Performance. 15th International Conference on Service Systems and Service Management, ICSSSM 2018. https://doi.org/10.1109/ICSSSM.2018.8464964; Chen, Xu, Yang, H., & Wang, X. (2019). Effects of price cap regulation on the pharmaceutical supply chain. Journal of Business Research, 97, 281–290. https://doi.org/https://doi.org/10.1016/j.jbusres.2018.01.030; Chen, Y.-K., Chiu, F.-R., & Chang, Y.-C. (2019). Implementing Green Supply Chain Management for Online Pharmacies through a VADD Inventory Model. International Journal of Environmental Research and Public Health, 16(22), 4454. https://doi.org/10.3390/ijerph16224454; Cheng, H., Guo, H., & Wang, X. (2010). Supply chain coordination based on the information asymmetry and virtual third party. Proceedings - 3rd International Symposium on Information Science and Engineering, ISISE 2010, 179–183. https://doi.org/10.1109/ISISE.2010.83; Cheng, N., & Xue, H. (2012). The study on the performance evaluation of the lean supply chain in chain retailers. 2012 International Conference on Computer Science and Service System, CSSS 2012, 1393–1396. https://doi.org/10.1109/CSSS.2012.351; Cherian, T. M., & Arun, C. J. (2022). COVID-19 impact in supply chain performance: a study on the construction industry. International Journal of Productivity and Performance Management. https://doi.org/10.1108/IJPPM-04-2021-0220; Cheung, G. W., & Wang, C. (2017). Current approaches for assessing convergent and discriminant validity with SEM: Issues and solutions. Academy of Management Proceedings, 2017(1), 12706.; Chiara, G., & Juliana, H. (2015). Collaborative purchasing of complex technologies in healthcare: Implications for alignment strategies. International Journal of Operations & Production Management, 35(3), 430–455. https://doi.org/10.1108/IJOPM-08-2013-0362; Chiarini, A., & Vagnoni, E. (2017). Strategies for modern operations management: Answers from European manufacturing companies. Benchmarking, 24(4), 1065–1081. https://doi.org/10.1108/BIJ-11-2015-0115; Chin, W. W. (1998). Issues and opinion on structural equation modeling ABI/INFORM Global pg. VII. Quarterly, 22.; Chtioui, A., Bouhaddou, I., Benghabrit, A., & Benabdellah, A. C. (2020). Impact of Covid-19 on the Hospital Supply Chain. 13th IEEE International Colloquium of Logistics and Supply Chain Management, LOGISTIQUA 2020. https://doi.org/10.1109/LOGISTIQUA49782.2020.9353868; Claeys, C., Nève, J., Tulkens, P. M., & Spinewine, A. (2012). Content validity and inter-rater reliability of an instrument to characterize unintentional medication discrepancies. Drugs & Aging, 29, 577–591.; Clark Granger, Ramos Forero Jorge Enrique, Melo Becerra Ligia Alba, & Silva Samudio Gisella Tatiana. (2023). Financiamiento del Sistema de Salud en Colombia_ Fuentes y usos. Borradores de Economia Banco de La Republica, 1223, 1–28.; Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Academic press.; Collis, D. J. (1994). Research note: how valuable are organizational capabilities? Strategic Management Journal, 15(S1), 143–152; Colliver, J. A., Conlee, M. J., & Verhulst, S. J. (2012). From test validity to construct validity… and back? Medical Education, 46(4), 366–371.; Contraloría General de la República. (2020). Denuncian sobrecostos en contratos de alimentos y salud por covid-19.; Contreras, N. (2017). Modelo operacional para dispensación de materias primas y centralización en la industria farmacéutica bajo un entorno justo a tiempo. Universidad de la SABANA.; Coustasse, A, Tomblin, S., & Slack, C. (2013). Impact of radio-frequency identification (RFID) technologies on the hospital supply chain: a literature review. Perspectives in Health Information Management / AHIMA, American Health Information Management Association, 10.; Coustasse, Alberto, Arvidson, C., & Rutsohn, P. (2010). Pharmaceutical Counterfeiting and the RFID Technology Intervention. Journal of Hospital Marketing & Public Relations, 20(2), 100–115. https://doi.org/10.1080/15390942.2010.493369; Creswell, J. W., & Plano Clark, V. L. (2017). Designing and conducting mixed methods research (S. Publications. (ed.); 3rd ed).; da Silva, M. S. A., C., M. M., M., Q. M., & Renato, T. (2020). The relationship between quality and governance mechanisms: A qualitative investigation in healthcare supply-chain networks. Benchmarking: An International Journal, 27(3), 1085–1104. https://doi.org/10.1108/BIJ-03-2019-0114; DANE. (2022). Exportaciones.; Danks, N. P., Ray, S., & Shmueli, G. (2019). Predictive Analysis and Out-of-Sample Generalizability of Construct-based Models Extended Abstract. Proceedings of the 2019 Pre-ICIS SIGDSA Symposium, 1–3.; De Cooman, E., & Marchand, M. (2017). Rules and incentives for hospitals: the Belgian financing system. Health Policy, 7(2), 227–239. https://doi.org/https://doi.org/10.1016/0168-8510(87)90034-0; de Klerk, K., & Singh, F. (2021). A systematic literature review of board diversity in agile healthcare supply chain. International Journal of Agile Systems and Management, 14(4), 576–613. https://doi.org/10.1504/IJASM.2021.120242; De, Negri, P. R., Patricia, G., & Amin, K. M. (2019). Are collaboration and trust sources for innovation in the reverse logistics? Insights from a systematic literature review. Supply Chain Management: An International Journal, 25(2), 176–222. https://doi.org/10.1108/SCM-03-2018-0129; de Vries, J., & Huijsman, R. (2011). Supply chain management in health services: an overview. Supply Chain Management: An International Journal, 16(3), 159–165. https://doi.org/10.1108/13598541111127146; Dev, N. K., & Shankar, R. (2016). Using interpretive structure modeling to analyze the interactions between environmental sustainability boundary enablers. Benchmarking, 23(3), 601–617. https://doi.org/10.1108/BIJ-05-2013-0063; Dheeraj, C., & Dinesh, K. (2019). Two-way assessment of key performance indicators to vaccine supply chain system in India. International Journal of Productivity and Performance Management, 68(1), 194–230. https://doi.org/10.1108/IJPPM-02-2018-0078; Diabat, A., Al-Aomar, R., Alrefaei, M., Alawneh, A., & Faisal, M. N. (2013). A framework for optimizing the supply chain performance of a steel producer. 1, 554–562.; Diamantopoulos, A., & Winklhofer, H. M. (2001). Diamantopoulos, Winklhofer (2001) JMR 38(2). XXXVIII(May), 269–277.; Dijkstra, T. K., & Henseler, J. (2015). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational Statistics and Data Analysis, 81, 10–23. https://doi.org/10.1016/j.csda.2014.07.008; Dillman, D. A. (2011). Mail and Internet surveys: The tailored design method--2007 Update with new Internet, visual, and mixed-mode guide. John Wiley & Sons.; Ding, B. (2018). Pharma Industry 4.0: Literature review and research opportunities in sustainable pharmaceutical supply chains. Process Safety and Environmental Protection, 119, 115–130. https://doi.org/10.1016/j.psep.2018.06.031; Ding, D., & Chen, J. (2007). Supply chain coordination with contracts game between complementary suppliers. International Journal of Information Technology and Decision Making, 6(1), 163–175. https://doi.org/10.1142/S0219622007002332; Dixit, A., Routroy, S., & Dubey, S. K. (2019). A systematic literature review of healthcare supply chain and implications of future research. International Journal of Pharmaceutical and Healthcare Marketing, 13(4), 405–435. https://doi.org/10.1108/IJPHM-05-2018-0028; Do, B. (2022). Institutional pressures and the mediating role of supply chain coordination in green export strategy: empirical research in Vietnam footwear industry. International Journal of Business Environment, 13(3), 326–344. https://doi.org/10.1504/IJBE.2022.123697; Dobrzykowski, D. (2019). Understanding the downstream healthcare supply chain: Unpacking regulatory and industry characteristics. Journal of Supply Chain Management, 55(2), 26–46.; Doko, I. A., Andrew, P., A., K. M. M., & Andrew, D. (2010). Construction procurement strategies of national health service in the UK: A critical review. Journal of Public Procurement, 10(1), 31–67. https://doi.org/10.1108/JOPP-10-01-2010-B002; Dou, Y., Mu, D., & Ren, H. (2022). Structural Characteristics of Chinese Chip Supply Chain Network Based on Complex Network Theory. In C. C. & Z. H. (Eds.), 10th International Symposium on Project Management, ISPM 2022 (pp. 100–109). Aussino Academic Publishing House. https://doi.org/10.52202/065147-0014; Downe‐Wamboldt, B. (1992). Content analysis: method, applications, and issues. Health Care for Women International, 13(3), 313–321.; Drohomeretski, E., Gouvea Da Costa, S. E., Pinheiro De Lima, E., & Wachholtz, H. (2012). Lean supply chain management: Practices and performance measures. 62nd IIE Annual Conference and Expo 2012, 1869–1880.; Duarte, S., Cabrita, M. D. R., & Cruz-Machado, V. (2021). Lean and Green Modelling in Healthcare Supply Chains: The Case of Massive COVID-19 Vaccine Distribution. In F. M., L. M., T. M., D. P., S. M.M., C. F., D. G. G., & P. R. (Eds.), 4th European International Conference on Industrial Engineering and Operations Management, IEOM 2021 (pp. 912–921). IEOM Society.; Duarte, S., & Cruz-Machado, V. (2013). Lean and green supply chain initiatives: A case study. IIE Annual Conference and Expo 2013, 2168–2177.; Duque-Uribe, V., Sarache, W., & Gutiérrez, E. V. (2019). Sustainable supply chain management practices and sustainable performance in hospitals: A systematic review and integrative framework. Sustainability (Switzerland), 11(21). https://doi.org/10.3390/su11215949; El Asri, A., El Farouk, I. I., Jawab, F., Arif, J., & Moufad, I. (2022). The Drug Supply Chain at the Public Hospital in Morocco: A Literature Review. In J. F. & E. F. I.I. (Eds.), 14th IEEE International Conference of Logistics and Supply Chain Management, LOGISTIQUA 2022. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/LOGISTIQUA55056.2022.9938022; Eltantawy, R., Paulraj, A., Giunipero, L., Naslund, D., & Thute, A. A. (2015). Towards supply chain coordination and productivity in a three echelon supply chain action research study. International Journal of Operations and Production Management, 35(6), 895–924. https://doi.org/10.1108/IJOPM-10-2013-0459; Emerson, R. W. (2015). Convenience sampling, random sampling, and snowball sampling: How does sampling affect the validity of research? Journal of Visual Impairment & Blindness, 109(2), 164–168.; Escobar-Pérez, J., & Cuervo-Martínez, Á. (2008). Validez de contenido y juicio de expertos: una aproximación a su utilización. Avances En Medición, 6(1), 27–36.; Essaber, F. E., Benmoussa, R., De Guio, R., & Dubois, S. (2021). A hybrid supply chain risk management approach for lean green performance based on AHP, RCA and TRIZ: A case study. Sustainability (Switzerland), 13(15). https://doi.org/10.3390/su13158492; Etikan, I., & Bala, K. (2017). Sampling and sampling methods. Biometrics & Biostatistics International Journal, 5(6), 149.; Ezugwu, A. E., Olusanya, M. O., & Govender, P. (2019). Mathematical model formulation and hybrid metaheuristic optimization approach for near-optimal blood assignment in a blood bank system. Expert Systems with Applications, 137, 74–99. https://doi.org/https://doi.org/10.1016/j.eswa.2019.06.059; Falagara Sigala, I., Sirenko, M., Comes, T., & Kovács, G. (2022). Mitigating personal protective equipment (PPE) supply chain disruptions in pandemics – a system dynamics approach. International Journal of Operations and Production Management, 42(13), 128–154. https://doi.org/10.1108/IJOPM-09-2021-0608; Falk, R. F., & Miller, N. B. (1992). A primer for soft modeling. University of Akron Press.; Farn, C.-K., Fan, Y.-W., & Chen, C.-D. (2008). Competing through supply chain process integration capabilities: An extension of the resource-based view. 5th European and Mediterranean Conference on Information Systems, EMCIS 2008.; Fassott, G., Henseler, J., & Coelho, P. S. (2016). Testing moderating effects in PLS path models with composite variables. Industrial Management and Data Systems, 116(9), 1887–1900. https://doi.org/10.1108/IMDS-06-2016-0248; Faul, F., Buchner, A., Erdfelder, E., & Mayr, S. (2007). A short tutorial of GPower. Tutorials in Quantitative Methods for Psychology, 3(2), 51–59.; Finol, K. G. (2014). Radriografia de la oferta de servicios de salud en Colombia. Banco de La Republica, 202.; Fiore, M., Capodici, A., Rucci, P., Bianconi, A., Longo, G., Ricci, M., Sanmarchi, F., & Golinelli, D. (2023). Blockchain for the Healthcare Supply Chain: A Systematic Literature Review. Applied Sciences (Switzerland), 13(2). https://doi.org/10.3390/app13020686; Florián, M. I. N., & Arciniegas, O. de J. S. (2019). Logística hospitalaria: una revisión bibliográfica. REDIIS/Revista de Investigación e Innovación En Salud, 2, 38–49.; Fong, A. J., Smith, M., & Langerman, A. (2016). Efficiency improvement in the operating room. The Journal of Surgical Research, 204(2), 371–383. https://doi.org/10.1016/j.jss.2016.04.054; Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Sage Publications Sage CA: Los Angeles, CA.; Fowler Jr, F. J. (2013). Survey research methods. Sage publications.; Gadde, L.-E., Huemer, L., & Håkansson, H. (2003). Strategizing in industrial networks. Industrial Marketing Management, 32(5), 357–364.; Galankashi, M. R., & Helmi, S. A. (2016). Assessment of hybrid Lean-Agile (Leagile) supply chain strategies. Journal of Manufacturing Technology Management, 27(4), 470–482. https://doi.org/10.1108/JMTM-08-2015-0069; Galaskiewicz, J. (2011). STUDYING SUPPLY CHAINS FROM A SOCIAL NETWORK PERSPECTIVE. Journal of Supply Chain Management, 47(1), 4–8. https://doi.org/https://doi.org/10.1111/j.1745-493X.2010.03209.x; Gao, L. (2015). Collaborative forecasting, inventory hedging and contract coordination in dynamic supply risk management. European Journal of Operational Research, 245(1), 133–145. https://doi.org/10.1016/j.ejor.2015.02.048; Gao, Lingyu, & Wang, X. (2019). Healthcare Supply Chain Network Coordination Through Medical Insurance Strategies with Reference Price Effect. International Journal of Environmental Research and Public Health, 16(18), 3479. https://doi.org/10.3390/ijerph16183479; Gao, T., & Tian, Y. (2014). Mechanism of supply chain coordination based on dynamic capability framework-the mediating role of manufacturing capabilities. Journal of Industrial Engineering and Management, 7(5), 1250–1267. https://doi.org/10.3926/jiem.1266; Garcia-Buendia, N., Kristensen, T. B., Moyano-Fuentes, J., & Maqueira-Marín, J. M. (2022). Performance measurement of lean supply chain management: a balanced scorecard proposal. Production Planning and Control. https://doi.org/10.1080/09537287.2022.2114960; García-Peñalvo, F. J. (2022). Desarrollo de estados de la cuestión robustos: Revisiones Sistemáticas de Literatura. Education in the Knowledge Society, 23, e28600. https://doi.org/10.14201/eks.28600; Gebicki, M., Mooney, E., Chen, S.-J. G., & Mazur, L. M. (2014). Evaluation of hospital medication inventory policies. Health Care Management Science, 17(3), 215–229. https://doi.org/10.1007/s10729-013-9251-1; Gefen, D., & Straub, D. (2005). A Practical Guide To Factorial Validity Using PLS-Graph: Tutorial And Annotated Example. Communications of the Association for Information Systems, 16, 91–109. https://doi.org/10.17705/1cais.01605; Gelves Alarcón, O. M., Navarro Romero, E. del C., & García Corrales, N. (2022). Estado del arte y la técnica de las prácticas lean en instituciones de salud en América Latina: Revisión de Literatura. Avances Investigación En Ingeniería, 19(1 SE-Artículos). https://doi.org/10.18041/1794-4953/avances.1.7892; Gendy, A. W. A., & Lahmar, A. (2019). Review on healthcare supply chain. 16th ACS/IEEE International Conference on Computer Systems and Applications, AICCSA 2019, 2019-Novem. https://doi.org/10.1109/AICCSA47632.2019.9035234; Geraldino, L. I. F., Arango, M. J. W., Romero, D., & Aguirre, S. (2016). Análisis de la Logística Hospitalaria aplicada en las Entidades de Salud de Nivel 3 y 4 en la ciudad de Barranquilla. Scientia et Technica, 21(4), 307–317.; Gerami, J., Kiani Mavi, R., Farzipoor Saen, R., & Kiani Mavi, N. (2023). A novel network DEA-R model for evaluating hospital services supply chain performance. Annals of Operations Research, 324(1–2), 1041–1066. https://doi.org/10.1007/s10479-020-03755-w; Ghadge, A., Bourlakis, M., kamble, S., & Seuring, S. (2022). Blockchain implementation in pharmaceutical supply chains: A review and conceptual framework. International Journal of Production Research. https://doi.org/10.1080/00207543.2022.2125595; Ghobakhloo, M., Tang, S. H., Sabouri, M. S., & Zulkifli, N. (2014). The impact of information system-enabled supply chain process integration on business performance: A resource-based analysis. International Journal of Information Technology and Decision Making, 13(5), 1075–1113. https://doi.org/10.1142/S0219622014500163; Ghosh, D., & Vogt, A. (2012). Outliers: An evaluation of methodologies. Joint Statistical Meetings, 12(1), 3455–3460.; Ghosh, P. K., Manna, A. K., Dey, J. K., & Kar, S. (2021). Supply chain coordination model for green product with different payment strategies: A game theoretic approach. Journal of Cleaner Production, 290. https://doi.org/10.1016/j.jclepro.2020.125734; Giraldo, E. (2016). Estudio sobre la aplicación de Lean Healthcare en el sector hospitalario en Medellin. 171.; Giraldo Villada, J. A., & Perilla Aristizabal, F. A. (2018). Procesos logísticos internos en la cadena de suministro hospitalaria: enfoque en la sala de operaciones.; Gligor, D., Feizabadi, J., Russo, I., Maloni, M. J., & Goldsby, T. J. (2020). The triple-a supply chain and strategic resources: developing competitive advantage. International Journal of Physical Distribution and Logistics Management, 50(2), 159–190. https://doi.org/10.1108/IJPDLM-08-2019-0258; Gobachew, A. M., Haasis, H.-D., & Berhan, E. (2023). Case assessment and identification of pharmaceutical supply chain performance measures and metrics. African Journal of Science, Technology, Innovation and Development. https://doi.org/10.1080/20421338.2022.2153981; Golec, A., & Karadeniz, G. (2020). Performance Analysis of Healthcare Supply Chain Management with Competency-Based Operation Evaluation. Computers & Industrial Engineering, 146, 106546. https://doi.org/10.1016/j.cie.2020.106546; Göleç, A., & Karadeniz, G. (2020). Performance analysis of healthcare supply chain management with competency-based operation evaluation. Computers & Industrial Engineering, 146, 106546.; Gonul Kochan, C., Nowicki, D. R., Sauser, B., & Randall, W. S. (2018). Impact of cloud-based information sharing on hospital supply chain performance: A system dynamics framework. International Journal of Production Economics, 195, 168–185. https://doi.org/10.1016/j.ijpe.2017.10.008; González Espitia, G. E. (2023). Modelo estratégico para la cadena de abasto en el sector hospitalario. Caso proveedor a centros de salud. Universidad Nacional de Colombia; Goudarzi, F. S., Bergey, P., & Olaru, D. (2023). Behavioral operations management and supply chain coordination mechanisms: a systematic review and classification of the literature. Supply Chain Management, 28(1), 140–161. https://doi.org/10.1108/SCM-03-2021-0111; Graban, M. (2011). Lean Hospitals: Improving Quality, Patient Safety, and Employee Engagement, (2 nd). Taylor & Francis Group.; Grandori, A., & Soda, G. (2006). A relational approach to organization design. Industry and Innovation, 13(2), 151–172.; Grant, R. M. (1991). The resource-based theory of competitive advantage: implications for strategy formulation. California Management Review, 33(3), 114–135.; Grant, R. M. (1996). Prospering in dynamically-competitive environments: Organizational capability as knowledge integration. Organization Science, 7(4), 375–387.; Gridchyna, I., Aulois-Griot, M., Maurain, C., & Bégaud, B. (2012). How innovative are pharmaceutical innovations? The case of medicines financed through add-on payments outside of the French DRG-based hospital payment system. Health Policy, 104(1), 69–75. https://doi.org/https://doi.org/10.1016/j.healthpol.2011.11.007; Gupta, A. K. (2012). JIT in Healthcare: An Integrated Approach.; Gupta, S., Modgil, S., & Gunasekaran, A. (2020). Big data in lean six sigma: a review and further research directions. International Journal of Production Research, 58(3), 947–969. https://doi.org/10.1080/00207543.2019.1598599; Gupta, U., & Ramesh, A. (2015). Analyzing the Barriers of Health Care Supply Chain in India: The Contribution and Interaction of Factors. Procedia - Social and Behavioral Sciences, 189, 217–228. https://doi.org/https://doi.org/10.1016/j.sbspro.2015.03.217; Gutierrez, E., David, O., Alejandro, D., Mock-kow, J. S., Zapata, I., & Julio, C. (2014). domiciliaria en el Valle del Cauca : caracterización y diagnóstico. Estudios Gerenciales, 30(133), 441–450. https://doi.org/10.1016/j.estger.2014.06.004; Habidin, N. F., Shazali, N. A., Ali, N., Khaidir, N. A., & Jamaludin, N. H. (2014). Exploring lean healthcare practice and supply chain innovation for Malaysian healthcare industry. International Journal of Business Excellence, 7(3), 394–410. https://doi.org/10.1504/IJBEX.2014.060782; Hadrawi, H. K. (2019). The impact of firm supply performance and lean processes on the relationship between supply chain management practices and competitive performance. Uncertain Supply Chain Management, 7(2), 341–350. https://doi.org/10.5267/j.uscm.2018.7.003; Hair, J., Hollingsworth, C. L., Randolph, A. B., & Chong, A. Y. L. (2017). An updated and expanded assessment of PLS-SEM in information systems research. Industrial Management and Data Systems, 117(3), 442–458. https://doi.org/10.1108/IMDS-04-2016-0130; Hair, Joe F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106–121. https://doi.org/10.1108/EBR-10-2013-0128; Hair, Joe F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414–433. https://doi.org/10.1007/s11747-011-0261-6; Hair, Joe F, Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152.; Hair, Joseph F., Astrachan, C. B., Moisescu, O. I., Radomir, L., Sarstedt, M., Vaithilingam, S., & Ringle, C. M. (2021). Executing and interpreting applications of PLS-SEM: Updates for family business researchers. Journal of Family Business Strategy, 12(3). https://doi.org/10.1016/j.jfbs.2020.100392; Hair, Joseph F., Ringle, C. M., Gudergan, S. P., Fischer, A., Nitzl, C., & Menictas, C. (2019). Partial least squares structural equation modeling-based discrete choice modeling: an illustration in modeling retailer choice. Business Research, 12(1), 115–142. https://doi.org/10.1007/s40685-018-0072-4; Hair, Joseph F., Sarstedt, M., Pieper, T. M., & Ringle, C. M. (2012). The Use of Partial Least Squares Structural Equation Modeling in Strategic Management Research: A Review of Past Practices and Recommendations for Future Applications. Long Range Planning, 45(5–6), 320–340. https://doi.org/10.1016/j.lrp.2012.09.008; Hair, Joseph F. (2009). Multivariate data analysis.; Hair, Joseph F. (2021). Reflections on SEM: An Introspective, Idiosyncratic Journey to Composite-Based Structural Equation Modeling. The DATA BASE for Advances in Information Systems, 52(SI), 101–113.; Hair, Joseph F, Hult, G. T. M., Ringle, C. M., Sarstedt, M., Castillo Apraiz, J., Cepeda Carrión, G., & Roldán, J. L. (2019). Manual de partial least squares structural equation modeling (pls-sem). OmniaScience Scholar.; Hair, Joseph F, Hult, G. T. M., Ringle, C. M., Sarstedt, M., & Thiele, K. O. (2017). Mirror, mirror on the wall: a comparative evaluation of composite-based structural equation modeling methods. Journal of the Academy of Marketing Science, 45, 616–632.; Hair, Joseph F, Ringle, C. M., Gudergan, S., Castillo Apraiz, J., Cepeda Carrión, G., & Roldán, J. L. (2021). Manual avanzado de Partial least squares structural equation modeling (PLS-SEM). OmniaScience Scholar.; Hair, Joseph F, Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24.; Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Ringle, C. M., & Hair, J. F. (2021). A primer on partial least squares structural equation modeling (PLS-SEM). In Handbook of market research (pp. 587–632). Sage publications.; Hald, K. S., & Spring, M. (2023). Actor–network theory: A novel approach to supply chain management theory development. Journal of Supply Chain Management, 59(2), 87–105. https://doi.org/10.1111/jscm.12296; Halldorsson, A., Kotzab, H., Mikkola, J. H., & Skjøtt-Larsen, T. (2007). Complementary theories to supply chain management. Supply Chain Management: An International Journal, 12, 284–296. https://doi.org/10.1108/13598540710759808; Halldorsson, A., & Stentoft, J. (2005). Research Methodologies in Supply Chain Management — What Do We Know? (pp. 107–122). https://doi.org/10.1007/3-7908-1636-1_8; Halling, B., & Wijk, K. (2013). Experienced Barriers to Lean in Swedish Manufacturing and Health Care. International Journal of Lean Thinking, 4(2), 43–63.; Hamdoun, M. (2020). The antecedents and outcomes of environmental management based on the resource-based view: A systematic literature review. Management of Environmental Quality: An International Journal.; Han, Y., Caldwell, N. D., & Ghadge, A. (2020). Social network analysis in operations and supply chain management: a review and revised research agenda. International Journal of Operations and Production Management, 40(7–8), 1153–1176. https://doi.org/10.1108/IJOPM-06-2019-0500; Hanna, B., Xu, G., Wang, X., & Hossain, J. (2022). Blockchain-enabled humanitarian supply chain management: sustainability and responsibility. In Blockchain in a Volatile-Uncertain-Complex-Ambiguous World (pp. 251–276). Elsevier. https://doi.org/10.1016/B978-0-323-89963-5.00001-0; Haque, M., & Islam, R. (2018). Impact of supply chain collaboration and knowledge sharing on organizational outcomes in pharmaceutical industry of Bangladesh. Journal of Global Operations and Strategic Sourcing, 11(3), 301–320. https://doi.org/10.1108/JGOSS-02-2018-0007; Harden, A., & Thomas, J. (2005). Methodological Issues in Combining Diverse Study Types in Systematic Reviews. International Journal of Social Research Methodology, 8(3), 257–271. https://doi.org/10.1080/13645570500155078; Harrison, M. I., Paez, K., Carman, K. L., Stephens, J., Smeeding, L., Devers, K. J., & Garfinkel, S. (2014). Effects of organizational context on Lean implementation in five hospital systems. Health Care Management Review, 00(0), 1. https://doi.org/10.1097/HMR.0000000000000049; Hashmi, A. R., Amirah, N. A., & Yusof, Y. (2020). Mediating Effect of Integrated Systems on the Relationship between Supply Chain Management Practices and Public Healthcare Performance: Structural Equation Modeling. International Journal of Management and Sustainability, 9(3 SE-Articles), 148–160. https://doi.org/10.18488/journal.11.2020.93.148.160; Haszlinna Mustaffa, N., & Potter, A. (2009). Healthcare supply chain management in Malaysia: a case study. Supply Chain Management: An International Journal, 14(3), 234–243. https://doi.org/10.1108/13598540910954575; Hausman, N. L., Javed, N., Bednar, M. K., Guell, M., Schaller, E., Nevill, R. E., & Kahng, S. (2022). Interobserver agreement: A preliminary investigation into how much is enough? Journal of Applied Behavior Analysis, 55(2), 357–368.; He, Q. (1999). Knowledge Discovery Through Co-Word Analysis. Libr. Trends, 48.; Hearnshaw, E. J. S., & Wilson, M. M. J. (2013). A complex network approach to supply chain network theory. International Journal of Operations and Production Management, 33(4), 442–469. https://doi.org/10.1108/01443571311307343; Helper, S., & Sako, M. (2012). Management innovation in supply chain: Appreciating Chandler in the twenty-first century. In Management Innovation: Essays in the Spirit of Alfred D. Chandler, Jr. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199695683.003.0006; Hennet, J.-C., & Arda, Y. (2008). Supply chain coordination: A game-theory approach. Engineering Applications of Artificial Intelligence, 21(3), 399–405.; Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., Ketchen Jr, D. J., Hair, J. F., Hult, G. T. M., & Calantone, R. J. (2014). Common beliefs and reality about PLS: Comments on Rönkkö and Evermann (2013). Organizational Research Methods, 17(2), 182–209.; Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8; Henseler, J., Ringle, C. M., & Sarstedt, M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3), 405–431.; Herbert Kotzab, Seuring, S., Müller, M., & Reiner, G. (2006). Research Methodologies in Supply Chain Management (Physica Heidelberg (ed.); 1st ed.). https://doi.org/https://doi.org/10.1007/3-7908-1636-1; Hernandez-Nieto, R. (2002). Contribuciones Al Analisis Estadistico de Datos: Sensibilidad (Estabilidad y Consistencia) de Varios Coeficientes de Variabilidad Relativa y el Coeficiente de Variacion Proporcional (Cvp). el Coeficiente de Validez de Contenido (Cvc) y el Coeficiente Kapp. CreateSpace Independent Publishing Platform.; Hernández–Nieto, R. (2002). Antecedentes del Problema, necesidad de un nuevo coeficiente. Contribuciones Al Análisis Estadístico: Coeficientes Cvp y Cvc. 1ra Ed. Mérida: ULA, IESINFO, 82–92.; Heru, F. (2016). Understanding why the role of accounting is unchanged in Indonesian public hospitals. Journal of Accounting & Organizational Change, 12(2), 203–222. https://doi.org/10.1108/JAOC-03-2014-0020; Herzog, N. V., & Tonchia, S. (2014). An instrument for measuring the degree of lean implementation in manufacturing. Strojniški Vestnik-Journal of Mechanical Engineering, 60(12), 797–803; Hinterplattner, M., Gerschberger, M., & Staberhofer, F. (2016). Supply Chain Management in Hospitals-Impetus from Organizational and Behavioral Theories. Journal of Marketing Development and Competitiveness, 10(2), 54.; Hopkins, S., Walter, M., & Collins, S. (2017). Lean Daily Management: Exploring the Effectiveness in Reducing Product Returns and Overnight Shipment Occurrences in a Materials Management Department. Health Care Manager, 36(3), 267–272. https://doi.org/10.1097/HCM.0000000000000173; Hossein, D., & Staffan, B. (2012). Differentiation by improving quality of services at the last touch point: The case of Tehran pharmacies. International Journal of Quality and Service Sciences, 4(4), 345–363. https://doi.org/10.1108/17566691211288331; Hu, Z., Sarfraz, M., Khawaja, K. F., Shaheen, H., & Mariam, S. (2022). The influence of knowledge management capacities on pharmaceutical firms competitive advantage: The mediating role of supply chain agility and moderating role of inter functional integration. Frontiers in Public Health, 10, 953478.; Huang, X., Choi, S.-M., & Ching, W.-K. (2010). Quantity discount contract for supply chain coordination with false failure returns. 2010 6th International Conference on Natural Computation, ICNC’10, 8, 4450–4454. https://doi.org/10.1109/ICNC.2010.5583488; Huang, Y.-S., Ho, J.-W., & Kao, W.-Y. (2022). Availability and reliability of information transmission for supply chain coordination with demand information sharing. Computers and Industrial Engineering, 172. https://doi.org/10.1016/j.cie.2022.108642; Huang, Y., Wang, K., Zhang, T., & Pang, C. (2016). Green supply chain coordination with greenhouse gases emissions management: A game-theoretic approach. Journal of Cleaner Production, 112, 2004–2014. https://doi.org/10.1016/j.jclepro.2015.05.137; Hult, G. T. M., Ketchen Jr., D. J., Cavusgil, S. T., & Calantone, R. J. (2006). Knowledge as a strategic resource in supply chains. Journal of Operations Management, 24(5), 458–475. https://doi.org/10.1016/j.jom.2005.11.009; Hundal, G. S., Thiyagarajan, S., Alduraibi, M., Laux, C. M., Furterer, S. L., Cudney, E. A., & Antony, J. (2022). The impact of Lean Six Sigma practices on supply chain resilience during COVID 19 disruption: a conceptual framework. Total Quality Management and Business Excellence, 33(15–16), 1913–1931. https://doi.org/10.1080/14783363.2021.2014313; Hunt, S. D., & Davis, D. F. (2012). Grounding Supply Chain Management in Resource-Advantage Theory: In Defense of a Resource-Based View of the Firm. Journal of Supply Chain Management, 48(2), 14–20. https://doi.org/10.1111/j.1745-493X.2012.03266.x; Huo, B., Han, Z., & Prajogo, D. (2016). Antecedents and consequences of supply chain information integration: a resource-based view. Supply Chain Management, 21(6), 661–677. https://doi.org/10.1108/SCM-08-2015-0336; Huo, B., Zhang, C., & Zhao, X. (2015). The effect of IT and relationship commitment on supply chain coordination: A contingency and configuration approach. Information and Management, 52(6), 728–740. https://doi.org/10.1016/j.im.2015.06.007; Hussain, M., Ajmal, M. M., Gunasekaran, A., & Khan, M. (2018). Exploration of social sustainability in healthcare supply chain. Journal of Cleaner Production, 203, 977–989.; Hussain, M., Khan, M., Ajmal, M., Sheikh, K. S., & Ahamat, A. (2019). A multi-stakeholders view of the barriers of social sustainability in healthcare supply chains. Sustainability Accounting, Management and Policy Journal, 10(2), 290–313. https://doi.org/10.1108/SAMPJ-05-2018-0140; ICP, I. de C. P. H. E. O. (2021). Adquisición de medicamentos en Colombia.; Ik-Whan, K., & Sung-Ho, K. (2018). Framework for successful supply chain implementation in healthcare area from provider’s prospective. Asia Pacific Journal of Innovation and Entrepreneurship, 12(2), 135–145. https://doi.org/10.1108/APJIE-04-2018-002; INVIMA. (2020). ESTABLECIMIENTOS NACIONALES FABRICANTES DE MEDICAMENTOS CERTIFICADOS CON BUENAS PRÁCTICAS DE MANUFACTURA.; Iqbal, M. J., Geer, M. I., & Dar, P. A. (2017). Medicines management in hospitals: A supply chain perspective. Systematic Reviews in Pharmacy, 8(1), 80.; Iyer, S. G., Pillai, V. K., & Mandal, S. (2020). Research avenues in ensuring safety of healthcare operations: a perspective through logistics/supply chain, technology, quality and waste management. International Journal of Indian Culture and Business Management, 20(2), 262–288.; Jadhav, J. S., & Deshmukh, J. (2022). A review study of the blockchain-based healthcare supply chain. Social Sciences and Humanities Open, 6(1). https://doi.org/10.1016/j.ssaho.2022.100328; Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of Consumer Research, 30(2), 199–218.; Jayaraman, R., Buyurgan, N., Rardin, R. L., Varghese, V. M., & Pazour, J. A. (2015). An Exploratory Pilot Study on Supply Chain Data Standards in a Hospital Pharmacy. Engineering Management Journal, 27(3), 141–151. https://doi.org/10.1080/10429247.2015.1062692; Jiménez, A. M., Guerrero, J. G., Amaya, C. a. A., & Velasco, N. (2007). Optimización de los recursos en los hospitales : revisión de la literatura sobre logística hospitalaria. Los Cuadernos de PYLO -Logística Hospitalaria-, 12.; Johnson-Hall, T. D., & Hall, D. C. (2022). Redefining Quality in Food Supply Chains via the Natural Resource Based View and Convention Theory. Sustainability (Switzerland), 14(15). https://doi.org/10.3390/su14159456; Jörg, H., Geoffrey, H., & Ash, R. P. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial Management & Data Systems, 116(1), 2–20. https://doi.org/10.1108/IMDS-09-2015-0382; Jovanovic, M., Radovanovic, S., Vukicevic, M., Van Poucke, S., & Delibasic, B. (2016). Building interpretable predictive models for pediatric hospital readmission using Tree-Lasso logistic regression. Artificial Intelligence in Medicine, 72, 12–21. https://doi.org/https://doi.org/10.1016/j.artmed.2016.07.003; Juying, Z. (2014). Semi-parametric identification of determinants of health expenditures – evidence from inpatients in China. Management Decision, 52(7), 1302–1318. https://doi.org/10.1108/MD-11-2012-0796; Kadiri, A., Azzouzi, H., & Sefiani, N. (2019). Enhancing hospital supply chain performance through an efficient hospital information System: First insights after a systematic literature review study. 12th International Colloquium on Logistics and Supply Chain Management, LOGISTIQUA 2019. https://doi.org/10.1109/LOGISTIQUA.2019.8907290; Kahlen, F.-J., & Patel, Y. (2011). Leaning the supply chain to maximize value delivery to the customer: A case study. Leadership and Management in Engineering, 11(2), 128–136. https://doi.org/10.1061/(ASCE)LM.1943-5630.0000112; Kanokphanvanich, C., Rattanawong, W., & Vongmanee, V. (2022). A Meta-Analysis of Health care Supply Chain Performance for Patient Safety. 14th International Conference on Software, Knowledge, Information Management and Applications, SKIMA 2022, 2022-Decem, 13–20. https://doi.org/10.1109/SKIMA57145.2022.10029487; Kanyoma, K. E., Agbola, F. W., & Oloruntoba, R. (2018). An evaluation of supply chain integration across multi-tier supply chains of manufacturing-based SMEs in Malawi. International Journal of Logistics Management, 29(3), 1001–1024. https://doi.org/10.1108/IJLM-10-2017-0277; Karakadilar, I. S., & Hicks, B. J. (2015). Exploring the moderating role of lean production on supplier performance: An empirical study of Turkish automotive part suppliers. Bogazici Journal, 29(2), 73–97. https://doi.org/10.21773/boun.29.2.5; Karuppasamy, S. K., & Uthayakumar, R. (2019). Coordination of a three-level supply chain with variable demand and order size dependent trade credit in healthcare industries. International Journal of System Assurance Engineering and Management, 10(2), 285–298. https://doi.org/10.1007/s13198-019-00782-0; Kathleen, I., Yao, Z., & Adam, F. (2013). Resell versus direct models in brand drug distribution. International Journal of Pharmaceutical and Healthcare Marketing, 7(4), 324–340. https://doi.org/10.1108/IJPHM-09-2012-0005; Kaufmann, L., & Gaeckler, J. (2015). A structured review of partial least squares in supply chain management research. Journal of Purchasing and Supply Management, 21(4), 259–272. https://doi.org/10.1016/j.pursup.2015.04.005; Kaur, A., Kanda, A., & Deshmukh, S. G. (2006). A graph theoretic approach for supply chain coordination. International Journal of Logistics Systems and Management, 2(4), 321–341. https://doi.org/10.1504/IJLSM.2006.010379; Kaur, P., Sharma, M., & Mittal, M. (2018). Big Data and Machine Learning Based Secure Healthcare Framework. Procedia Computer Science, 132, 1049–1059. https://doi.org/https://doi.org/10.1016/j.procs.2018.05.020; Kazmi, S. W., & Ahmed, W. (2022). Understanding dynamic distribution capabilities to enhance supply chain performance: a dynamic capability view. Benchmarking, 29(9), 2822–2841. https://doi.org/10.1108/BIJ-03-2021-0135; Kelle, P., Woosley, J., & Schneider, H. (2012). Pharmaceutical supply chain specifics and inventory solutions for a hospital case. Operations Research for Health Care, 1(2–3), 54–63. https://doi.org/10.1016/j.orhc.2012.07.001; Khajouei, R., Abbasi, R., & Mirzaee, M. (2018). Errors and causes of communication failures from hospital information systems to electronic health record: A record-review study. International Journal of Medical Informatics, 119, 47–53. https://doi.org/https://doi.org/10.1016/j.ijmedinf.2018.09.004; Khalil, M., Ravaghi, H., Samhouri, D., Abo, J., Ali, A., Sakr, H., & Camacho, A. (2022). What is “hospital resilience”? A scoping review on conceptualization, operationalization, and evaluation. In Frontiers in public health (Vol. 10, p. 1009400). https://doi.org/10.3389/fpubh.2022.1009400; Khaoula, K., & Abouabdellah, A. (2017). Redesigning the hospital supply chain for enhanced performance using a lean methodology. 7th Annual Conference on Industrial Engineering and Operations Management, IEOM 2017, 917–927.; Khare, A., & Khare, A. (2012). Determinants of Indian retailers’ attitude towards using mobile technology for supply chain coordination. International Journal of Logistics Systems and Management, 11(4), 473–491. https://doi.org/10.1504/IJLSM.2012.046702; Khlie, K., & Abouabdellah, A. (2016). Redesigning the hospital supply chain for enhanced performance using a lean methodology. International Review on Modelling and Simulations, 9(6), 407–413. https://doi.org/10.15866/iremos.v9i6.10808; Kholaif, M. M. N. H. K., Xiao, M., & Tang, X. (2023). Opportunities Presented by COVID-19 for Healthcare Green Supply Chain Management and Sustainability Performance: The Moderating Effect of Social Media Usage. IEEE Transactions on Engineering Management, 1–14. https://doi.org/10.1109/TEM.2023.3239504; Khorasani, S T, Maghazei, O., & Cross, J. A. (2015). A structured review of lean supply chain management in health care. In N. E.-H., L. S., & S. A. (Eds.), International Annual Conference of the American Society for Engineering Management 2015, ASEM 2015 (pp. 413–422). American Society for Engineering Management.; Khorasani, Sasan T, Cross, J., & Maghazei, O. (2020). Lean supply chain management in healthcare: a systematic review and meta-study. International Journal of Lean Six Sigma, 11, 1–34.; Khoukhi, S., Bojji, C., & Bensouda, Y. (2019). A review of medical distribution logistics in pharmaceutical supply chain. International Journal of Logistics Systems and Management, 34(3), 297–326. https://doi.org/10.1504/IJLSM.2019.103085; Kim, H. K., & Lee, C. W. (2021). Relationships among healthcare digitalization, social capital, and supply chain performance in the healthcare manufacturing industry. International Journal of Environmental Research and Public Health, 18(4), 1–13. https://doi.org/10.3390/ijerph18041417; Kleinheksel, A. J., Rockich-Winston, N., Tawfik, H., & Wyatt, T. R. (2020). Demystifying content analysis. American Journal of Pharmaceutical Education, 84(1).; Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of E-Collaboration (Ijec), 11(4), 1–10.; Kock, N., & Lynn, G. (2012). Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. Journal of the Association for Information Systems, 13(7).; Konrad, R., Vanberkel, P., & Lawley, M. (2017). A new data source to support hospital operations modeling, message-exchange protocols as illustrated through simulation. IISE Transactions on Healthcare Systems Engineering, 7(1), 30–42. https://doi.org/10.1080/19488300.2016.1255286; Konstantinos, D., Abdul, R., & H., K. P. (2006). The applicability of a multi‐attribute classification framework in the healthcare industry. Journal of Manufacturing Technology Management, 17(6), 772–785. https://doi.org/10.1108/17410380610678792; Kostoff, R. N. (1993). Co-Word Analysis BT - Evaluating R&D Impacts: Methods and Practice (B. Bozeman & J. Melkers (eds.); pp. 63–78). Springer US. https://doi.org/10.1007/978-1-4757-5182-6_4; Kotzab, H., & Seuring, S. (2005). Research methodologies in supply chain management. Springer.; Kritchanchai, D, Krichanchai, S., Hoeur, S., & Tan, A. (2019). Healthcare supply chain management: Macro and micro perspectives . Logforum, 15(4), 531–544. https://doi.org/10.17270/J.LOG.2019.371; Kritchanchai, Duangpun, Hoeur, S., & Engelseth, P. (2018). Develop a strategy for improving healthcare logistics performance. Supply Chain Forum: An International Journal, 19(1), 55–69. https://doi.org/10.1080/16258312.2017.1416876; Kumalaningrum, M. P., Ciptono, W. S., Indarti, N., & Purnomo, B. R. (2023). Ambidexterity in Indonesian SMEs: A systematic review and synthesis for future research. Cogent Business and Management, 10(1). https://doi.org/10.1080/23311975.2023.2199490; Kumar, A., Mani, V., Jain, V., Gupta, H., & Venkatesh, V. G. (2023). Managing healthcare supply chain through artificial intelligence (AI): A study of critical success factors. Computers and Industrial Engineering, 175. https://doi.org/10.1016/j.cie.2022.108815; Kumar, G. (2020). Collaboration between supply chain partners: when does it matter? Evidence from collaborative profiles. Journal of Business and Industrial Marketing, 36(6), 1042–1057. https://doi.org/10.1108/JBIM-07-2020-0307; Kummer, S., Herold, D. M., Dobrovnik, M., Mikl, J., & Schäfer, N. (2020). A systematic review of blockchain literature in logistics and supply chain management: Identifying research questions and future directions. Future Internet, 12(3). https://doi.org/10.3390/fi12030060; Kuupiel, D., Bawontuo, V., & Mashamba-Thompson, T. P. (2017). Improving the accessibility and efficiency of point-of-care diagnostics services in lowand middle-income countries: Lean and agile supply chain management. Diagnostics, 7(4). https://doi.org/10.3390/diagnostics7040058; Kwak, S. K., & Kim, J. H. (2017). Statistical data preparation: management of missing values and outliers. Korean Journal of Anesthesiology, 70(4), 407–411.; Kwong, K., & Wong, K. (2019). Confirmatory Tetrad Analysis, Quadratic Effect Modeling, and Heterogeneity Modeling in Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3. Mastering Partial Least Squares Structural Equation Modeling (PLS-SEM) in 38 Hours. February, 35.; Lahjouji, M., El Alami, J., Hlyal, M., & Lahjouji, O. (2023). A systematic literature review: the power of the blockchain technology to improve pharmaceutical supply chain. Journal of Theoretical and Applied Information Technology, 101(2), 952–971; Lambert, D. M. (2008). Supply chain management: processes, partnerships, performance. Supply Chain Management Inst.; Larson, P. D., & Halldorsson, A. (2004). Logistics versus supply chain management: An international survey. International Journal of Logistics Research and Applications, 7(1), 17–31. https://doi.org/10.1080/13675560310001619240; Lau, Y.-Y., Dulebenets, M. A., Yip, H.-T., & Tang, Y.-M. (2022). Healthcare Supply Chain Management under COVID-19 Settings: The Existing Practices in Hong Kong and the United States. Healthcare (Switzerland), 10(8). https://doi.org/10.3390/healthcare10081549; Le, P. L., & Nguyen, N. T. D. (2022). Prospect of lean practices towards construction supply chain management trends. International Journal of Lean Six Sigma, 13(3), 557–593. https://doi.org/10.1108/IJLSS-06-2020-0071; Lee, c., & ha, b.-c. (2020). The impact of interactional justice and supply-chain collaboration on sustainable SCM performance: The case of multinational pharmaceutical firms. The Journal of Asian Finance, Economics and Business, 7(2), 237–247.; Lee, C. K. M., Ho, W., Ho, G. T. S., & Lau, H. C. W. (2011). Design and development of logistics workflow systems for demand management with RFID. Expert Systems with Applications, 38(5), 5428–5437. https://doi.org/10.1016/j.eswa.2010.10.012; Lee, K. L., Romzi, P. N., Hanaysha, J. R., Alzoubi, H. M., & Alshurideh, M. (2022). Investigating the impact of benefits and challenges of IOT adoption on supply chain performance and organizational performance: An empirical study in Malaysia. Uncertain Supply Chain Management, 10(2), 537–550. https://doi.org/10.5267/j.uscm.2021.11.009; Lee, S. M., Lee, D., & Schniederjans, M. J. (2011). Supply chain innovation and organizational performance in the healthcare industry. International Journal of Operations and Production Management, 31(11), 1193–1214. https://doi.org/10.1108/01443571111178493; Lehoux, N., Damours, S., & Langevin, A. (2014). Inter-firm collaborations and supply chain coordination: Review of key elements and case study. Production Planning and Control, 25(10), 858–872. https://doi.org/10.1080/09537287.2013.771413; Lehyani, F., Zouari, A., Ghorbel, A., & Tollenaere, M. (2021). Defining and Measuring Supply Chain Performance: A Systematic Literature Review. EMJ - Engineering Management Journal, 33(4), 283–313. https://doi.org/10.1080/10429247.2020.1834309; Leite, H., Lindsay, C., & Kumar, M. (2021). COVID-19 outbreak: implications on healthcare operations. TQM Journal, 33(1), 247–256. https://doi.org/10.1108/TQM-05-2020-0111; Lemma, H. R., Singh, R., & Kaur, N. (2015). Determinants of supply chain coordination of milk and dairy industries in Ethiopia: a case of Addis Ababa and its surroundings. SpringerPlus, 4(1). https://doi.org/10.1186/s40064-015-1287-x; Leys, C., Klein, O., Dominicy, Y., & Ley, C. (2018). Detecting multivariate outliers: Use a robust variant of the Mahalanobis distance. Journal of Experimental Social Psychology, 74, 150–156.; Li, A. Q., & Found, P. (2016). Lean and Green Supply Chain for the Product-Services System (PSS): The Literature Review and A Conceptual Framework. In T. T., C. S., P. G., & C. E. (Eds.), Product-Service Systems across Life Cycle, 2016 (Vol. 47, pp. 162–167). Elsevier B.V. https://doi.org/10.1016/j.procir.2016.03.057; Li, J., Luo, X., Wang, Q., & Zhou, W. (2021). Supply chain coordination through capacity reservation contract and quantity flexibility contract. Omega (United Kingdom), 99. https://doi.org/10.1016/j.omega.2020.102195; Li, L., & Zhang, H. (2008). Confidentiality and information sharing in supply chain coordination. Management Science, 54(8), 1467–1481. https://doi.org/10.1287/mnsc.1070.0851; Li, S., Zhao, X., & Huo, B. (2018). Supply chain coordination and innovativeness: A social contagion and learning perspective. International Journal of Production Economics, 205, 47–61. https://doi.org/10.1016/j.ijpe.2018.07.033; Li, Y., Chen, R., & Li, L. (2009). Quantifying model of 3-echelon supply chain coordination complexity information entropy based. International Conference on Management and Service Science, MASS 2009. https://doi.org/10.1109/ICMSS.2009.5303821; Liang, Q., Li, L., & Bai, R. (2021). Welfare effects of vegetable producers’ inclusiveness in supply chain coordination: direct effects and spillovers. British Food Journal, 123(4), 1305–1323. https://doi.org/10.1108/BFJ-07-2020-0652; Little, J., & Coughlan, B. (2008). Optimal inventory policy within hospital space constraints. Health Care Management Science, 11(2), 177–183. https://doi.org/10.1007/s10729-008-9066-7; Liu, W., & Wang, Z. (2014). The research on the Supply-chain Management based on E-Business platform. 3551–3556. https://doi.org/10.1109/CCDC.2014.6852795; London, K., & Pablo, Z. (2017). An actor–network theory approach to developing an expanded conceptualization of collaboration in industrialized building housing construction. Construction Management and Economics, 35(8–9), 553–577.; Lopez, K. A., Rubio, M. O., Forero, I. E. D., & Molina, E. (2020). Desarrollo de la metodología lean healthcare en el servicio de medicina interna de una institución hospitalaria de carácter públicO. Revista Ingeniería, Matemáticas y Ciencias de La Información, 7(13 SE-Artículos).; Lorscheid, I., Meyer, M., Pakur, S., & Ringle, C. (2014). The PLS Agent – Agent Behavior Validation by Partial Least Squares.; Lowry, P. B., & Gaskin, J. (2014). Partial Least Squares (PLS) Structural Equation Modeling (SEM) for Building and Testing Behavioral Causal Theory: When to Choose It and How to Use It. IEEE Transactions on Professional Communication, 57(2), 123–146. https://doi.org/10.1109/TPC.2014.2312452; Luo, M., Li, G., Johnny Wan, C. L., Qu, R., & Ji, P. (2015). Supply chain coordination with dual procurement sources via real-option contract. Computers and Industrial Engineering, 80, 274–283. https://doi.org/10.1016/j.cie.2014.12.019; MacDonald, J. (2014). Systematic Approaches to a Successful Literature Review. The Journal of the Canadian Health Libraries Association, 34(1), 46. https://doi.org/10.5596/c13-009; Machado Guimarães, C., & Crespo de Carvalho, J. (2013). Strategic outsourcing: a lean tool of healthcare supply chain management. Strategic Outsourcing: An International Journal, 6(2), 138–166. https://doi.org/10.1108/SO-11-2011-0035; Mahdiraji, H. A., Kamardi, A. A., Beheshti, M., Hajiagha, S. H. R., & Rocha-Lona, L. (2022). Analysing supply chain coordination mechanisms dealing with repurposing challenges during Covid-19 pandemic in an emerging economy: a multi-layer decision making approach. Operations Management Research, 15(3–4), 1341–1360. https://doi.org/10.1007/s12063-021-00224-w; Mahmoudi, V., Feizpour, M. A., Mahdiraji, H. A., & Sharifabadi, B. D. (2019). Designing a Model for Assessing the Sustainable Supply Chain Performance of Governmental Hospitals using Grounded Theory Approach . Journal of Health Administration, 22(1), 103–118.; Maleki Minbashrazgah, M., & Shabani, A. (2019). Eco-capability role in healthcare facility’s performance: Natural-resource-based view and dynamic capabilities paradigm. Management of Environmental Quality: An International Journal, 30(1), 137–156.; Malone, T. W., & Crowston, K. (1994). The Interdisciplinary Study of Coordination. ACM Computing Surveys (CSUR), 26(1), 87–119. https://doi.org/10.1145/174666.174668; Mandal, S. (2017). The influence of organizational culture on healthcare supply chain resilience: moderating role of technology orientation. Journal of Business and Industrial Marketing, 32(8), 1021–1037. https://doi.org/10.1108/JBIM-08-2016-0187; Mandal, S. (2018). Influence of human capital on healthcare agility and healthcare supply chain performance. Journal of Business and Industrial Marketing, 33(7), 1012–1026. https://doi.org/10.1108/JBIM-06-2017-0141; Mandal, Santanu. (2017). The influence of dynamic capabilities on hospital-supplier collaboration and hospital supply chain performance. International Journal of Operations & Production Management, 37(5), 664–684. https://doi.org/10.1108/IJOPM-05-2016-0249; Mandal, Santanu, & Jha, R. R. (2018). Exploring the importance of collaborative assets to hospital-supplier integration in healthcare supply chains. International Journal of Production Research, 56(7), 2666–2683.; Mandal, Santanu, Nair, S., Sreedhar, A., & Vijeshwari, U. (2022). Exploring the impact of orientations on hospital-supplier collaboration: an empirical study. International Journal of Services and Operations Management, 42(1), 52–74.; Manzoor, U., Baig, S. A., Hashim, M., Sami, A., Rehman, H.-U., & Sajjad, I. (2022). The effect of supply chain agility and lean practices on operational performance: a resource-based view and dynamic capabilities perspective. TQM Journal, 34(5), 1273–1297. https://doi.org/10.1108/TQM-01-2021-0006; Marcel, P., Patrick, R., & Alexander, P. (2016). Enhancing supply chain visibility in a pharmaceutical supply chain: Solutions based on automatic identification technology. International Journal of Physical Distribution & Logistics Management, 46(9), 859–884. https://doi.org/10.1108/IJPDLM-06-2016-0151; Mari, S. I., Lee, Y. H., & Memon, M. S. (2015). Complex network theory-based approach for designing resilient supply chain networks. International Journal of Logistics Systems and Management, 21(3), 365–384. https://doi.org/10.1504/IJLSM.2015.069733; Marín, G. M., & Manrique, F. D. M. C. (2011). Gestión institucional bajo la presión del mercado competitivo en el sistema de salud Colombiano, 2007-2008. Iatreia, 24(1), 16–25.; Markus, L., & Irvine, L. (2003). The reform of hospital financing in Germany: an international solution? Journal of Health Organization and Management, 17(5), 360–372. https://doi.org/10.1108/14777260310505138; Marques, L., Martins, M., Araújo, C., & Marques, L. (2019). The Management of Operations The healthcare supply network : current state of the literature and research opportunities opportunities. Production Planning & Control, 0(0), 1–17. https://doi.org/10.1080/09537287.2019.1663451; Marques, L., Martins, M., & Marques, L. (2019). La red de suministros de salud : estado actual de la literatura y oportunidades de investigación. 7287. https://doi.org/10.1080/09537287.2019.1663451; Martins, K., Gomes, L., & Paula, M. (2022). Software IRaMuTeQ: una herramienta de ayuda en el Análisis Textual Discursivo. PARADIGMA, 205–227. https://doi.org/10.37618/PARADIGMA.1011-2251.2022.p205-227.id1224; Mathew, J., & John, J. (2013). New Trends in Healthcare Supply chain; Mathur, B., Gupta, S., Meena, M. L., & Dangayach, G. S. (2018). Healthcare supply chain management: literature review and some issues. Journal of Advances in Management Research, 15(3), 265–287. https://doi.org/10.1108/JAMR-09-2017-0090; Mathur, B., Gupta, S., Meena, M. L., Dangayach, G. S., Packowski, J., Streuber, P., Purvis, L., Spall, S., Naim, M., Spiegler, V., Rossini, M., Staudacher, A. P., Santos, G., Murmura, F., Bravi, L., Shang, Y., Guo, E., Tavčar, J., Demšar, I., … Samaranayake, P. (2017). Achieving Better Integration in Trauma Care Delivery in India: Insights from a Patient Survey. International Journal of Production Research, 25(1), 603–626. https://doi.org/10.2495/ISME20131171; Matt, D. T., Dallasega, P., & Rauch, E. (2014). Synchronization of the manufacturing process and on-site installation in ETO companies. 17, 457–462. https://doi.org/10.1016/j.procir.2014.01.058; Mazzocato, P., Savage, C., Brommels, M., Aronsson, H., & Thor, J. (2010). Lean thinking in healthcare: a realist review of the literature. Quality & Safety in Health Care, 19(5), 376–382. https://doi.org/10.1136/qshc.2009.037986; McLachlan, G. J. (1999). Mahalanobis distance. Resonance, 4(6), 20–26.; Meehan, J., Menzies, L., & Michaelides, R. (2017). The long shadow of public policy; Barriers to a value-based approach in healthcare procurement. Journal of Purchasing and Supply Management, 23(4), 229–241. https://doi.org/10.1016/j.pursup.2017.05.003; Meidute-Kavaliauskiene, I., Cebeci, H. I., Ghorbani, S., & Činčikaitė, R. (2021). An Integrated Approach for Evaluating Lean Innovation Practices in the Pharmaceutical Supply Chain. Logistics, 5(4). https://doi.org/10.3390/logistics5040074; Meijboom, B., Schmidt‐Bakx, S., & Westert, G. (2011). Supply chain management practices for improving patient‐oriented care. Supply Chain Management: An International Journal, 16(3), 166–175. https://doi.org/10.1108/13598541111127155; Meijer, R., van Limbeek, J., Kriek, B., Ihnenfeldt, D., Vermeulen, M., & de Haan, R. (2004). Prognostic social factors in the subacute phase after a stroke for the discharge destination from the hospital stroke-unit. A systematic review of the literature. Disability and Rehabilitation, 26(4), 191–197. https://doi.org/10.1080/09638280310001636437; Meisel, C. A., Meisel, J. D., Bermeo-Andrade, H., Carranza, L., & Zsifkovits, H. (2022). Social network analysis to understand the dynamics of global supply chains. Kybernetes. https://doi.org/10.1108/K-02-2022-0191; Melnyk, S. A., Page, T. J., Wu, S. J., & Burns, L. A. (2012). Would you mind completing this survey: Assessing the state of survey research in supply chain management. Journal of Purchasing and Supply Management, 18(1), 35–45.; Melodie, C. (2019). Midwives in Ontario Hospitals: The Mainstreaming of “Alternative” Childbearing. In R. P. Costa & S. L. Blair (Eds.), Childbearing and the Changing Nature of Parenthood: The Contexts, Actors, and Experiences of Having Children (Vol. 14, pp. 97–119). Emerald Publishing Limited. https://doi.org/10.1108/S1530-353520190000014005; Miemczyk, J., Howard, M., & Johnsen, T. E. (2016). Dynamic development and execution of closed-loop supply chains: a natural resource-based view. Supply Chain Management, 21(4), 453–469. https://doi.org/10.1108/SCM-12-2014-0405; Minhacienda, M. de H. y C. P. (2021). Informe de ejecución del Presupuesto General de la Nación Acumulado a diciembre de 2021.; Ministerio de Educación Nacional de Colombia, PNDU, & GQSP. (2020). Químico Farmacéutico.; Minsalud, M. de salud y protección social. (n.d.). Registro Especial de Prestadores de Servicios de Salud - REPS. https://prestadores.minsalud.gov.co/habilitacion/; Minsalud, M. de salud y protección social. (2020). Se actualiza Plan de Beneficios en Salud con cargo a la UPC. https://doi.org/https://www.minsalud.gov.co/Paginas/Se-actualiza-Plan-de-Beneficios-en-Salud-con-cargo-a-la-UPC.aspx; Minsalud, M. de salud y protección social. (2022). Colombia llegó al aseguramiento universal en salud al alcanzar el 99,6 %.; Minsalud, M. de salud y protección social. (2023). EPS VIGENTES DEL REGIMEN CONTRIBUTIVO Y SUBSIDIADO – SGSSS.; MINSALUD, M. de salud y protección social. (2022a). decreto 441 de 2022.; MINSALUD, M. de salud y protección social. (2022b). Plan Decenal de Salud Pública 2022-2031. Plan Decenal de Salud Pública 2022-2031, 32, 1–154; Mirdad, A., & Hussain, F. K. (2022). Blockchain-Based Pharmaceutical Supply Chain: A Literature Review. In B. L. (Ed.), 16th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 3PGCIC-2021 (Vol. 343, pp. 106–115). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-89899-1_11; Modgil, S., & Sharma, S. (2017). Impact of hard and soft TQM on supply chain performance: Empirical investigation of pharmaceutical industry. International Journal of Productivity and Quality Management, 20(4), 513–533. https://doi.org/10.1504/IJPQM.2017.082834; Mofrad, M. Y., Baghbani, S. M. G., & Rojui, M. (2019). Analyzing factors affecting knowledge sharing and their roles on supply chain performance through integrating hospitals suppliers in Mashhad . Journal of Health Administration, 22(2), 18–27.; Moharana, H. S., Murty, J. S., Senapati, S. K., & Khuntia, K. (2012). Coordination, collaboration and integration for supply chain management. International Journal of Interscience Management Review, 2(2), 46–50.; Montoya, M. P. (2019). Perfil Logistico Del Sector Farmacéutico De La Ciudad De Bogotá : Una Visión Hacia el mejoramiento estrategico de las operaciones.; Mooi, E., Sarstedt, M., & Mooi-Reci, I. (2018). Market research: The process, data, and methods using Stata. Springer.; Moons, K., Waeyenbergh, G., & Pintelon, L. (2019). Measuring the logistics performance of internal hospital supply chains – A literature study R. Omega, 82, 205–217. https://doi.org/10.1016/j.omega.2018.01.007; Moreno Romero, J. P. (2014). Prácticas logísticas hospitalarias-análisis de siete casos bogotanos.; Morgan, T. R., Gabler, C. B., & Manhart, P. S. (2023). Supply chain transparency: theoretical perspectives for future research. International Journal of Logistics Management. https://doi.org/10.1108/IJLM-02-2021-0115; Moro, V. R., Anna, D., & Pelin, G. A. (2017). Public–Private Partnerships for Sustainable Healthcare in Emerging Economies. In J. Leitão, E. de M. Sarmento, & J. Aleluia (Eds.), The Emerald Handbook of Public–Private Partnerships in Developing and Emerging Economies (pp. 407–437). Emerald Publishing Limited. https://doi.org/10.1108/978-1-78714-493-420171015; Moses, M., & Seshadri, S. (2000). Policy mechanisms for supply chain coordination. IIE Transactions (Institute of Industrial Engineers), 32(3), 245–262. https://doi.org/10.1080/07408170008963896; Moyano-Fuentes, J., Sacristán-Díaz, M., & Martínez-Jurado, P. J. (2012). Cooperation in the supply chain and lean production adoption: Evidence from the Spanish automotive industry. International Journal of Operations and Production Management, 32(9), 1075–1096. https://doi.org/10.1108/01443571211265701; Mu’ah, Purwanti, I., Sulton, M., & Arifin, M. S. (2020). The impact of supply chain management in service quality dimension on patient perception and hospital performance: Switching cost as a moderation. International Journal of Supply Chain Management, 9(1), 615–625.; Müller, M. (2005). Action Research in Supply Chain Management — An Introduction BT - Research Methodologies in Supply Chain Management: In Collaboration with Magnus Westhaus (H. Kotzab, S. Seuring, M. Müller, & G. Reiner (eds.); pp. 349–364). Physica-Verlag HD. https://doi.org/10.1007/3-7908-1636-1_23; Myers, M. D. (2019). Qualitative research in business and management. Qualitative Research in Business and Management, 1–364.; Nabelsi, V., & Gagnon, S. (2017). Information technology strategy for a patient-oriented, lean, and agile integration of hospital pharmacy and medical equipment supply chains. International Journal of Production Research, 55(14), 3929–3945.; Nakano, M., Akikawa, T., & Shimazu, M. (2013). Process integration mechanisms in internal supply chains: case studies from a dynamic resource-based view. International Journal of Logistics Research and Applications, 16(4), 328–347. https://doi.org/10.1080/13675567.2013.813919; Nakyanzi, J. K., Kitutu, F. E., Oria, H., & Kamba, P. F. (2010). Expiry of medicines in supply outlets in Uganda. Bulletin of the World Health Organization, 88(2), 154–158. https://doi.org/10.2471/BLT.08.057471; Nandi, M. L., Nandi, S., Moya, H., & Kaynak, H. (2020). Blockchain technology-enabled supply chain systems and supply chain performance: a resource-based view. Supply Chain Management, 25(6), 841–862. https://doi.org/10.1108/SCM-12-2019-0444; Nanyonjo, A., Counihan, H., Siduda, S. G., Belay, K., Sebikaari, G., & Tibenderana, J. (2019). Institutionalization of integrated community case management into national health systems in low- and middle-income countries: a scoping review of the literature. Global Health Action, 12(1), 1678283. https://doi.org/10.1080/16549716.2019.1678283; Narayana, S. A., Kumar Pati, R., & Vrat, P. (2014). Managerial research on the pharmaceutical supply chain - A critical review and some insights for future directions. Journal of Purchasing and Supply Management, 20(1), 18–40. https://doi.org/10.1016/j.pursup.2013.09.001; Nartey, E., Aboagye-Otchere, F. K., & Yaw Simpson, S. N. (2020). The contingency effects of supply chain integration on management control system design and operational performance of hospitals in Ghana. Journal of Accounting in Emerging Economies, 10(2), 207–241. https://doi.org/10.1108/JAEE-10-2018-0111; Nematollahi, M., Hosseini-Motlagh, S.-M., Ignatius, J., Goh, M., & Saghafi Nia, M. (2018). Coordinating a socially responsible pharmaceutical supply chain under periodic review replenishment policies. Journal of Cleaner Production, 172, 2876–2891. https://doi.org/10.1016/j.jclepro.2017.11.126; Neuendorf, K. A. (2017). The content analysis guidebook. sage.; Newbert, S. L. (2008). Value, rareness, competitive advantage, and performance: a conceptual‐level empirical investigation of the resource‐based view of the firm. Strategic Management Journal, 29(7), 745–768.; Nguyen, A. M., Johnson, C. E., Wood, S. J., & Dowling, W. L. (2021). Organizational factors affecting successful physician-system integration: A qualitative study of Washington State health executives. Health Care Management Review, 46(1), 35–43. https://doi.org/10.1097/HMR.0000000000000238; Nguyen, X., Le, T., Nguyen, A., Pham, T., & Tran, T. (2021). Supply chain risk, integration, risk resilience and firm performance in global supply chain: Evidence from Vietnam pharmaceutical industry. Uncertain Supply Chain Management, 9(4), 779–796.; Nitzl, C., Roldan, J. L., & Cepeda, G. (2016). Mediation analysis in partial least squares path modeling: Helping researchers discuss more sophisticated models. Industrial Management & Data Systems, 116(9), 1849–1864.; Noh, J., Kim, J. S., & Sarkar, B. (2019). Two-echelon supply chain coordination with advertising-driven demand under Stackelberg game policy. European Journal of Industrial Engineering, 13(2), 213–244. https://doi.org/10.1504/EJIE.2019.098516; Nollet, J., Beaulieu, M., & Fabbe-Costes, N. (2017). The impact of performance measurement on purchasing group dynamics: The Canadian experience. Journal of Purchasing and Supply Management, 23(1), 17–27. https://doi.org/https://doi.org/10.1016/j.pursup.2016.04.001; Nunnally, B., & Bernstein, I. (1994). Psychometric Theory. New York: Oxford Univer. Press.; O’mahony, L., McCarthy, K., O’donoghue, J., Teeling, S. P., Ward, M., & McNamara, M. (2021). Using lean six sigma to redesign the supply chain to the operating room department of a private hospital to reduce associated costs and release nursing time to care. International Journal of Environmental Research and Public Health, 18(21). https://doi.org/10.3390/ijerph182111011; OCDE. (2020a). Abordando la pandemia de COVID-19 en Latinoamérica y el Caribe.; OCDE. (2020b). COVID-19 en América Latina y el Caribe: panorama de las respuestas de los gobiernos a la crisis.; OCDE. (2020c). Gasto en Salud. https://www.oecd.org/espanol/estadisticas/gastoensalud.htm; OCDE. (2021). Panorama de la salud 2021: Indicadores de la OCDE. In OECD Publishing. https://doi.org/https://doi.org/10.1787/ae3016b9-en. No; Olhager, J., & Prajogo, D. I. (2012). The impact of manufacturing and supply chain improvement initiatives: A survey comparing make-to-order and make-to-stock firms. Omega, 40(2), 159–165. https://doi.org/10.1016/j.omega.2011.05.001; Oliveira-Dias, D., Moyano-Fuentes, J., & Maqueira-Marín, J. M. (2022). Understanding the relationships between information technology and lean and agile supply chain strategies: a systematic literature review. Annals of Operations Research, 312(2), 973–1005. https://doi.org/10.1007/s10479-022-04520-x; OMS. (2019). Los países están gastando más en salud, pero las personas siguen pagando demasiado de sus bolsillos. 1.; ONU. (2020). The Impact of COVID-19 on Women 9 A P R I L 2 0 2 0 The year 2020, marking the twenty-fifth anniversary of the Beijing Platform for.; OPS,. (2017). INEQUIDADES Y BARRERAS EN LOS SISTEMAS DE SALUD.; OPS,. (2019). ESTRATEGIA Y PLAN DE ACCIÓN SOBRE LA PROMOCIÓN DE LA SALUD EN EL CONTEXTO DE LOS OBJETIVOS DE DESARROLLO SOSTENIBLE 2019-2030. 46.; Ortiz, N. R., & Grass, H. C. (2016). Modelo integrado de calidad Lean Healthcare ISO 9001 en el Departamento de Emergencias diseñado a partir de revisión de literatura Quality Integrated. Researchgate.Net, August.; Ozawa, S., Chen, H.-H., Lee, Y.-F. A., Higgins, C. R., & Yemeke, T. T. (2022). Characterizing Medicine Quality by Active Pharmaceutical Ingredient Levels: A Systematic Review and Meta-Analysis across Low- and Middle-Income Countries. The American Journal of Tropical Medicine and Hygiene, 106(6), 1778–1790. https://doi.org/10.4269/ajtmh.21-1123; Packowski, J., & Francas, D. (2014). LEAN SCM - Part 1: Supply chain management for the VUCA world. Pharmazeutische Industrie, 76(1), 69–73.; Pakurár, M., Benedek, S. A., Popp, J., Magda, R., & Oláh, J. (2019). Trust or doubt: Accuracy of determining factors for supply chain performance . Polish Journal of Management Studies, 19(1), 283–297. https://doi.org/10.17512/pjms.2019.19.1.22; Park, K. C. (2022). Exploring the effects of lean practices and supply chain disruption on performance. International Journal of Services and Operations Management, 43(1), 88–108. https://doi.org/10.1504/ijsom.2022.126247; Park, K. W., & Dickerson, C. (2009). Can efficient supply management in the operating room save millions? Current Opinion in Anaesthesiology, 22(2), 242–248. https://doi.org/10.1097/ACO.0b013e32832798ef; Parthiban, P., Narayana, S. N. S., & Dhanalakshmi, R. (2022). Implementation of lean and green supply chain in medium scale automobile industries using AHP, VIKOR and fuzzy VIKOR. International Journal of Business Information Systems, 39(4), 532–549. https://doi.org/10.1504/IJBIS.2022.122876; Parveen, C. M., Kumar, A. R. P., & Narasimha Rao, T. V. V. L. (2011). Integration of lean and green supply chain - Impact on manufacturing firms in improving environmental efficiencies. 143–147. https://doi.org/10.1109/GTEC.2011.6167659; Patel, P., Samantaray, H., Mansharamani, R., Vora, D., Goyal, A., & Gupta, A. (2023). Analysis of Decentralized Pharmaceutical Supply Chain: A Systematic Review. 2023 International Conference on Artificial Intelligence and Smart Communication, AISC 2023, 800–805. https://doi.org/10.1109/AISC56616.2023.10085240; Patil, A., Shardeo, V., Dwivedi, A., Madaan, J., & Varma, N. (2021). Barriers to sustainability in humanitarian medical supply chains. Sustainable Production and Consumption, 27, 1794–1807.; Pedreira, M. L. G., & Marin, H. F. (2004). Patient safety initiatives in Brazil: a nursing perspective. International Journal of Medical Informatics, 73(7–8), 563–567. https://doi.org/10.1016/j.ijmedinf.2004.05.001; Peteraf, M. A. (1993). The cornerstones of competitive advantage: a resource‐based view. Strategic Management Journal, 14(3), 179–191.; Phichitchaisopa, N., & Naenna, T. (2013). Factors affecting the adoption of healthcare information technology. EXCLI Journal, 12, 413–436.; Piotrowicz, W. D., Ryciuk, U., & Szymczak, M. (2022). Lean and agile metrics. Literature review and framework for measuring leagile supply chain. International Journal of Productivity and Performance Management. https://doi.org/10.1108/IJPPM-10-2020-0560; Polater, A., Bektas, C., & Demirdogen, S. (2014). An investigation of government and private hospitals’ supply chain management. 2014 International Conference on Advanced Logistics and Transport (ICALT), 115–119. https://doi.org/10.1109/ICAdLT.2014.6864097; Poulin, E. (2003). Benchmarking The HospitalLogistics Process. CMA Management, 77(March 2003), 20–23.; Pourhejazy, P., & Kwon, O. K. (2016). The New Generation of Operations Research Methods in Supply Chain Optimization : A Review. https://doi.org/10.3390/su8101033; Prada-Ríos, S. I., Pérez-Castaño, A. M., & Rivera-Triviño, A. F. (2017). Clasificación de instituciones prestadores de servicios de salud según el sistema de cuentas de la salud de la Organización para la Cooperación y el Desarrollo Económico: El caso de Colombia. Revista Gerencia y Politicas de Salud, 16(32), 51–65. https://doi.org/10.11144/Javeriana.rgps16-32.cips; Prætorius, T., Chaudhuri, A., Venkataramanaiah, S., Hasle, P., & Singh, A. (2018). Achieving Better Integration in Trauma Care Delivery in India: Insights from a Patient Survey. Journal of Health Management, 20(3), 234–254. https://doi.org/10.1177/0972063418779896; Prajogo, D., Oke, A., & Olhager, J. (2016). Supply chain processes: Linking supply logistics integration, supply performance, lean processes and competitive performance. International Journal of Operations & Production Management, 36(2), 1–29. https://doi.org/http://dx.doi.org/10.1108/MRR-09-2015-0216; Preacher, K. J., & Hayes, A. F. (2008). Assessing mediation in communication research. The Sage sourcebook of advanced data analysis methods for communication; Punnakitikashem, P. (2014). The Impact of Lean Practices and Organizational Commitment on Operational Performance in Hospitals. Production Planning & Control, 1–10.; Purvis, L., Spall, S., Naim, M., & Spiegler, V. (2016). Developing a resilient supply chain strategy during ‘boom’ and ‘bust.’ Production Planning and Control, 27(7–8), 579–590. https://doi.org/10.1080/09537287.2016.1165306; Qamar, A., & Hall, M. (2018). Can Lean and Agile organisations within the UK automotive supply chain be distinguished based upon contextual factors? Supply Chain Management, 23(3), 239–254. https://doi.org/10.1108/SCM-05-2017-0185; Qi, X., Bard, J. F., & Yu, G. (2004). Supply chain coordination with demand disruptions. Omega, 32(4), 301–312. https://doi.org/10.1016/j.omega.2003.12.002; Qi, Y., Huo, B., Wang, Z., & Yeung, H. Y. J. (2017). The impact of operations and supply chain strategies on integration and performance. International Journal of Production Economics, 185, 162–174. https://doi.org/10.1016/j.ijpe.2016.12.028; Qrunfleh, S., Tarafdar, M., & Ragu-Nathan, T. S. (2012). Examining alignment between supplier management practices and information systems strategy. Benchmarking, 19(4), 604–617. https://doi.org/10.1108/14635771211258034; R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing.; Rachida, P., Chao-Hsien, C., & Heng, X. (2010). RFID Privacy Issues in Healthcare: Exploring the Roles of Technologies and Regulations. Journal of Information Privacy and Security, 6(3), 3–28. https://doi.org/10.1080/15536548.2010.10855891; Radnor, Z. (2011). Implementing Lean in Health Care: Making the link between the approach, readiness and sustainability. International Journal of Industrial Engineering and Management (IJIEM), 2(1), 1–12.; Raji, I. O., & Rossi, T. (2019). Exploring industry 4.0 technologies as drivers of lean and agile supply chain strategies. 4th North American IEOM Conference. IEOM 2019, 292–303.; Raji, I. O., Shevtshenko, E., Rossi, T., & Strozzi, F. (2021). Industry 4.0 technologies as enablers of lean and agile supply chain strategies: an exploratory investigation. International Journal of Logistics Management, 32(4), 1150–1189. https://doi.org/10.1108/IJLM-04-2020-0157; Rakovska, M. A., & Stratieva, S. V. (2018). A taxonomy of healthcare supply chain management practices. Supply Chain Forum: An International Journal, 19(1), 4–24. https://doi.org/10.1080/16258312.2017.1395276; Ramasco, J. J., Dorogovtsev, S. N., & Pastor-Satorras, R. (2004). Self-organization of collaboration networks. Physical Review E, 70(3), 36106.; Ramirez-Castellanos, M. P. (2022). Análisis de las características de los modelos de trazabilidad para los procesos logísticos en la industria farmacéutica en colombia.; Rasoolimanesh, S. M., Wang, M., Roldan, J. L., & Kunasekaran, P. (2021). Are we in right path for mediation analysis? Reviewing the literature and proposing robust guidelines. Journal of Hospitality and Tourism Management, 48, 395–405.; Ray, S. R. (2009). Healthcare interoperability-lessons learned from the manufacturing standards sector. 88–89. https://doi.org/10.1109/COASE.2009.5234092; Ray,S.,Danks,N.P.andCaleroValdez,A.(2022),“SEMinR:buildingandestimatingstructuralequation models”,availableat:https://CRAN.R-project.org/package5seminr The CVPAT code for the statistical software R and technical instructions for its application are availablefor download at the following webpage https://github.com/ECONshare/CVPAT/; Raza, S. A. (2018). Supply chain coordination under a revenue-sharing contract with corporate social responsibility and partial demand information. International Journal of Production Economics, 205, 1–14. https://doi.org/10.1016/j.ijpe.2018.08.023; Regattieri, A., Bartolini, A., Cima, M., Fanti, M. G., & Lauritano, D. (2018). An innovative procedure for introducing the lean concept into the internal drug supply chain of a hospital. TQM Journal, 30(6), 717–731. https://doi.org/10.1108/TQM-03-2018-0039; Rego, N., & Sousa, J. P. (2009). Supply Chain Coordination in Hospitals (Issue December 2014). https://doi.org/10.1007/978-3-642-04568-4; Rehman Khan, S. A., Ahmad, Z., Sheikh, A. A., & Yu, Z. (2022). Digital transformation, smart technologies, and eco-innovation are paving the way toward sustainable supply chain performance. Science Progress, 105(4). https://doi.org/10.1177/00368504221145648; Retmi, K., Tamir, M., & Ouzayd, F. (2021). Role of Digitalization in the Hospital Supply Chain Performance Improvement: Digitalization of Hospital Pharmacy. In F. M., L. M., T. M., D. P., S. M.M., C. F., D. G. G., & P. R. (Eds.), 4th European International Conference on Industrial Engineering and Operations Management, IEOM 2021 (pp. 1667–1675). IEOM Society.; Ringle, Christian M., Wende, Sven, & Becker, J.-M. (2022). SmartPLS 4 (No. 4). Oststeinbek: SmartPLS.; Ringle, C. M., & Sarstedt, M. (2016). Gain more insight from your PLS-SEM results: The importance-performance map analysis. Industrial Management & Data Systems, 116(9), 1865–1886.; Ringle, C. M., Sarstedt, M., Sinkovics, N., & Sinkovics, R. R. (2023). A perspective on using partial least squares structural equation modelling in data articles. Data in Brief, 48, 109074. https://doi.org/https://doi.org/10.1016/j.dib.2023.109074; Ritchi, H., Harnowo, A., Sugianto, L. P. M., Setiono, K., & Saputro, V. (2023). Reviving the information veracity in healthcare supply chain with blockchain: a systematic review. Supply Chain Forum. https://doi.org/10.1080/16258312.2023.2199904; Ritter, T., Wilkinson, I. F., & Johnston, W. J. (2004). Managing in complex business networks. Industrial Marketing Management, 33(3), 175–183.; Rivard‐Royer H, Sylvain, L., & Martin, B. (2002). Hybrid stockless: a case study: Lessons for health‐care supply chain integration. International Journal of Operations & Production Management, 22(4), 412–424. https://doi.org/10.1108/01443570210420412; Riyadi, S. (2020). The mediating role of technology competences, supply chain technology between supply chain management, total quality management and firms supply chain performance in Indonesian textile sector. International Journal of Supply Chain Management, 9(2), 452–459.; Roa, Á. (2016). Mejoramiento de la logística hospitalaria en el instituto del corazón de Bucaramanga SA. Bucaramanga: Universidad.; Roberts, N., & Thatcher, J. (2009). Conceptualizing and testing formative constructs: Tutorial and annotated example. ACM Sigmis Database: The Database for Advances in Information Systems, 40(3), 9–39.; Roberts, R. J., Wilson, A. E., & Quezado, Z. (2017). Using Lean Six Sigma Methodology to Improve Quality of the Anesthesia Supply Chain in a Pediatric Hospital. Anesthesia and Analgesia, 124(3), 922–924. https://doi.org/10.1213/ANE.0000000000001621; Rochmah, T. N., Fakhruzzaman, M. N., & Yustiawan, T. (2020). Hospital staff acceptance toward management information systems in Indonesia. Health Policy and Technology. https://doi.org/https://doi.org/10.1016/j.hlpt.2020.07.004; Rogan, M., & Mors, M. L. (2014). A network perspective on individual-level ambidexterity in organizations. Organization Science, 25(6), 1860–1877.; Rohner, P., & Mettler, T. (2010). Hospital Supplier relationship management: cooperation, coordination, and communication. International Journal of Applied Logistics (IJAL), 1(3), 44–61.; Rojas-Cortés, R. (2020). Substandard, falsified and unregistered medicines in Latin America, 2017-2018. Rev Panam Salud Publica;44, Sept. 2020. https://doi.org/https://doi.org/10.26633/RPSP.2020.125; Rosales, C. R., Magazine, M., & Rao, U. (2015). The 2Bin system for controlling medical supplies at point-of-use. European Journal of Operational Research, 243(1), 271–280. https://doi.org/10.1016/j.ejor.2014.10.041; Rossetti, C. L., Handfield, R., & Dooley, K. J. (2011). Forces, trends, and decisions in pharmaceutical supply chain management. International Journal of Physical Distribution and Logistics Management, 41(6), 601–622. https://doi.org/10.1108/09600031111147835; Rossini, M., & Staudacher, A. P. (2016). A comparison between lean and visibility approach in supply chain planning. 13-15-Sept, 215–219.; Rozo-Rojas, I., Piraquive, F., & Cárdenas, L. (2018). Revisión de literatura de prácticas para evaluar la calidad del servicio en instituciones de salud: Hacia un enfoque de Lean Healthcare.; Rucker, D. D., & Preacher, K. J. (2019). Mediation Analysis in Consumer Psychology: Models, Methods, and Considerations. In Handbook of Research Methods in Consumer Psychology (pp. 373–384). Routledge.; Ruíz-Orjuela, E. T., Gatica-González, G., & Adarme-Jaimes, W. (2023). Revisión de literatura con análisis bibliométrico de la cadena de suministro hospitalaria. Ingeniería, 28(Suppl SE-Industrial Engineering), e18987. https://doi.org/10.14483/23448393.18987; Ruiz-Orjuela, E. T., Pimiento, N. R. O., & Dueñas, D. A. C. (2023). Interpretative structural model development for the identification of key factors for implementing Lean Healthcare. Revista Ingenierías Universidad de Medellín, 22(42 SE-Articles). https://doi.org/10.22395/rium.v22n42a1; Ruiz, E. T., & Ortiz, N. R. (2015). LEAN HEALTHCARE: UNA REVISIÓN BIBLIOGRÁFICA Y FUTURAS LÍNEAS DE INVESTIGACIÓN. Scientia et Technica, 20(4 SE-Industrial), 358–365. https://doi.org/10.22517/23447214.11181; Ruíz, E. T., Rincon, O., & Adarme, W. (2023). Hospital Supply Chain Management: Cross-Disciplinarity Opportunities in the Post-Pandemic Era and Research Agenda. Operations and Supply Chain Management: An International Journal, 16(1), 47–61.; Rungtusanatham, M., Miller, J. W., & Boyer, K. K. (2014). Theorizing, testing, and concluding for mediation in SCM research: Tutorial and procedural recommendations. Journal of Operations Management, 32(3), 99–113.; Sadia, K., & David, B. (2000). Quality standards in drug and medical information departments. Aslib Proceedings, 52(4), 134–142. https://doi.org/10.1108/EUM0000000007008; Saeed, G., Kohler, J. C., Cuomo, R. E., & Mackey, T. K. (2022). A systematic review of digital technology and innovation and its potential to address anti-corruption, transparency, and accountability in the pharmaceutical supply chain. Expert Opinion on Drug Safety, 21(8), 1061–1088. https://doi.org/10.1080/14740338.2022.2091543; Saha, E., Rathore, P., Parida, R., & Rana, N. P. (2022). The interplay of emerging technologies in pharmaceutical supply chain performance: An empirical investigation for the rise of Pharma 4.0. Technological Forecasting and Social Change, 181. https://doi.org/10.1016/j.techfore.2022.121768; Salah, A. H., Ruzita, J., & Imam, G. (2013). Decentralization, perceived environmental uncertainty, managerial performance and management accounting system information in Egyptian hospitals. International Journal of Accounting and Information Management, 21(4), 314–330. https://doi.org/10.1108/IJAIM-02-2012-0005; Saleh, M., Sahin, K., Fikriye, Y., Z., Y. M., Fatih, S., Mustafa, K., Selami, Y., & Emeka, N. (2018). Impact of health sector reforms on hospital productivity in Turkey: Malmquist index approach. International Journal of Organization Theory & Behavior, 21(2), 72–84. https://doi.org/10.1108/IJOTB-03-2018-0025; Salema, G., & Buvik, A. (2016). The impact of buyer-supplier integration on supplier logistics performance in the hospital sector in Tanzania: The moderation effect of buyers’ cross functional integration. International Journal of Procurement Management, 9(2), 166–184. https://doi.org/10.1504/IJPM.2016.075263; Sameer, K., A., D. R., & Daewon, C. (2008). Rx for smart hospital purchasing decisions: The impact of package design within US hospital supply chain. International Journal of Physical Distribution & Logistics Management, 38(8), 601–615. https://doi.org/10.1108/09600030810915134; Santos, G., Murmura, F., & Bravi, L. (2019). Developing a model of vendor rating to manage quality in the supply chain. International Journal of Quality and Service Sciences, 11(1), 34–52. https://doi.org/10.1108/IJQSS-06-2017-0058; Sarstedt, M., Hair Jr, J. F., Cheah, J.-H., Becker, J.-M., & Ringle, C. M. (2019). How to specify, estimate, and validate higher-order constructs in PLS-SEM. Australasian Marketing Journal, 27(3), 197–211.; Saunders, M. N. K., & Tosey, P. (2015). Handbook of research methods on human resource development. Edward Elgar Publishing.; Sawyerr, E., & Harrison, C. (2023). Resilience in healthcare supply chains: a review of the UK’s response to the COVID19 pandemic. International Journal of Physical Distribution and Logistics Management, 53(3), 297–329. https://doi.org/10.1108/IJPDLM-09-2021-0403; Scavarda, A., Daú, G., Scavarda, L., & Korzenowski, A. (2019). A proposed healthcare supply chain management framework in the emerging economies with the sustainable lenses: The theory, the practice, and the policy. Resources, Conservation and Recycling, 141, 418–430. https://doi.org/10.1016/j.resconrec.2018.10.027; Schoenherr, T., Ellram, L. M., & Tate, W. L. (2015). A note on the use of survey research firms to enable empirical data collection. Journal of Business Logistics, 36(3), 288–300.; Schoenherr, T., Narasimhan, R., & Bandyopadhyay, P. (2015). The assurance of food safety in supply chains via relational networking: a social network perspective. International Journal of Operations & Production Management, 35(12), 1662–1687.; Schuberth, F., Henseler, J., & Dijkstra, T. K. (2018). Partial least squares path modeling using ordinal categorical indicators. Quality & Quantity, 52, 9–35.; Scott, J. (2011). Social network analysis: developments, advances, and prospects. Social Network Analysis and Mining, 1, 21–26.; Sedgwick, P. (2014). Non-response bias versus response bias. Bmj, 348.; Selvaraju, S., Ramakrishnan, S., & Testani, M. (2012). A framework for lean deployment in support areas in manufacturing. 62nd IIE Annual Conference and Expo 2012, 3006–3015.; Senna, P., Reis, A., Marujo, L. G., Ferro de Guimarães, J. C., Severo, E. A., & dos Santos, A. C. D. S. G. (2023). The influence of supply chain risk management in healthcare supply chains performance. Production Planning and Control. https://doi.org/10.1080/09537287.2023.2182726; Senna, P., Reis, A., Santos, I. L., Dias, A. C., & Coelho, O. (2021). A systematic literature review on supply chain risk management: is healthcare management a forsaken research field? Benchmarking, 28(3), 926–956. https://doi.org/10.1108/BIJ-05-2020-0266; Sequeiros, J., Pereira, M. T., Oliveira, M., & Ferreira, F. A. (2023). The Influence of COVID-19 on the Hospital Supply Chain – The Case of Portuguese NHS. In M. J., S. F., T. J., I. V., A. K., R. Y., M. V.K., & P. A. (Eds.), 2nd International Conference Innovation in Engineering, ICIE 2022 (pp. 305–315). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-09360-9_25; Serna, M. D. A., Jaime, W. A., & Portilla, P. C. (2011). Vendor Managed Inventory (VMI) in micro, small and medium enterprises (MSMEs)-Plantain agricultural-chain. Revista Facultad de Ingenieria, 59, 181–192.; Serrou, D., & Abouabdellah, A. (2017). Proposal for a multidimensional approach for supply chain performance measurement: Application to the hospital sector in Morocco . Journal of Decision Systems, 26(1), 64–92. https://doi.org/10.1080/12460125.2016.1232531; Settanni, E., Harrington, T. S., & Srai, J. S. (2017). Pharmaceutical supply chain models: A synthesis from a systems view of operations research. Operations Research Perspectives, 4, 74–95.; Seye, B., Richard, O., & Kingsley, A. (2020). Healthcare commodities for emergencies in Africa: review of logistics models, suggested model and research agenda. Journal of Humanitarian Logistics and Supply Chain Management, 10(3), 371–390. https://doi.org/10.1108/JHLSCM-09-2019-0064; Seyedshohadaie, S. R., & Zhang, Y. (2004). Centralized supply chain coordination: A service oriented architecture. In A. H.R., D. O., & C. S. (Eds.), Proceedings of the International Conference on Internet Computing, IC’04 (Vol. 2, pp. 993–998).; Seyitoğlu, F., & Ivanov, S. (2020). A conceptual framework of the service delivery system design for hospitality firms in the (post-)viral world: The role of service robots. International Journal of Hospitality Management, 91. https://doi.org/10.1016/j.ijhm.2020.102661; Sharma, P. N., Liengaard, B. D., Hair, J. F., Sarstedt, M., & Ringle, C. M. (2022). Predictive model assessment and selection in composite-based modeling using PLS-SEM: extensions and guidelines for using CVPAT. European Journal of Marketing, ahead-of-print.; Shazali, N., Habidin, N., & Ali, N. (2013). Lean Healthcare Practice and Healthcare Performance in Malaysian Healthcare Industry. International Journal of …, 3(1), 1–5.; Shen, B., Choi, T.-M., & Minner, S. (2019). A review on supply chain contracting with information considerations: information updating and information asymmetry. International Journal of Production Research, 57(15–16), 4898–4936. https://doi.org/10.1080/00207543.2018.1467062; Shi, X.-J., Zhang, Z.-X., & Zhu, F.-F. (2007). Trade credit term determination under supply chain coordination: A principal-agent model. In 3rd International Conference on Intelligent Computing, ICIC 2007: Vol. 4681 LNCS (pp. 56–67). Springer Verlag. https://doi.org/10.1007/978-3-540-74171-8_7; Shiffler, R. E. (1988). Maximum Z Scores and Outliers. The American Statistician, 42(1), 79–80. https://doi.org/10.1080/00031305.1988.10475530; Shin, H., & Tunca, T. I. (2010). Do firms invest in forecasting efficiently? the effect of competition on demand forecast investments and supply chain coordination. Operations Research, 58(6), 1592–1610. https://doi.org/10.1287/opre.1100.0876; Shmueli, G., & Koppius, O. R. (2011). Predictive analytics in information systems research. MIS Quarterly, 553–572.; Shmueli, G., Ray, S., Velasquez Estrada, J. M., & Chatla, S. B. (2016). The elephant in the room: Predictive performance of PLS models. Journal of Business Research, 69(10), 4552–4564. https://doi.org/https://doi.org/10.1016/j.jbusres.2016.03.049; Shou, Y., Zhao, X., Dai, J., & Xu, D. (2021). Matching traceability and supply chain coordination: Achieving operational innovation for superior performance. Transportation Research Part E: Logistics and Transportation Review, 145. https://doi.org/10.1016/j.tre.2020.102181; Siddh, M. M., Soni, G., Gadekar, G., & Jain, R. (2014). Integrating lean six sigma and supply chain approach for quality and business performance. 2014 2nd International Conference on Business and Information Management, ICBIM 2014, 53–57. https://doi.org/10.1109/ICBIM.2014.6970949; Silva, J. D. (2017). Gestión de la cadena de suministro: una revisión desde la logística y el medio ambiente. Entre Ciencia e Ingeniería, 11(22), 51–59; Sinaga, O., Nurfarina, A., Iskandar, A. D., Mozammel, S., & Rosita, A. (2019). The role of HR practices in enhancing firm supply chain performance. International Journal of Supply Chain Management, 8(2), 95–104.; Sineenart, K., & L., M. B. (2017). The adoption of vendor managed inventory for hospital pharmaceutical supply. The International Journal of Logistics Management, 28(3), 755–780. https://doi.org/10.1108/IJLM-01-2015-0010; Singh, K. M., Rajeev, R., & Mahipal, S. (2019). Just in time elements extraction and prioritization for health care unit using decision making approach. International Journal of Quality & Reliability Management, 36(7), 1243–1263. https://doi.org/10.1108/IJQRM-08-2018-0208; Singh, R. K., Kumar, P., & Chand, M. (2019). Evaluation of supply chain coordination index in context to Industry 4.0 environment. Benchmarking, 28(5), 1622–1637. https://doi.org/10.1108/BIJ-07-2018-0204; Singh, R. K., Kumar, R., & Kumar, P. (2016). Strategic issues in pharmaceutical supply chains: a review. International Journal of Pharmaceutical and Healthcare Marketing, 10(3), 234–257. https://doi.org/10.1108/IJPHM-10-2015-0050; Singhal, P., Agarwal, G., & Mittal, M. L. (2011). Supply chain risk management: Review, classification and future research directions. International Journal of Business Science and Applied Management, 6(3), 15–42.; Sireci, S. G. (1998). The construct of content validity. Social Indicators Research, 45, 83–117.; Skipworth, H., Delbufalo, E., & Mena, C. (2020). Logistics and procurement outsourcing in the healthcare sector: A comparative analysis. European Management Journal, 38(3), 518–532. https://doi.org/https://doi.org/10.1016/j.emj.2020.04.002; Smajgl, A., & Barreteau, O. (2014). Empirical agent-based modelling-challenges and solutions (Vol. 1). Springer.; Snowdon, A. W., & Wright, A. (2022). Supply chain capacity to respond to the COVID-19 pandemic in Ontario: Challenges faced by a health system in transition. Healthcare Management Forum, 35(2), 53–61. https://doi.org/10.1177/08404704211057664; Song, X., Li, J., Hou, X., & Yang, Z. (2023). The effect of repeating transactions on service supply chain performance under proprietary and agent modeS. Journal of Industrial and Management Optimization, 19(8), 5690–5723. https://doi.org/10.3934/jimo.2022191; Soto Lopez, D., Garshasbi, M., Kabir, G., Bari, A. B. M. M., & Ali, S. M. (2022). Evaluating interaction between internal hospital supply chain performance indicators: a rough-DEMATEL-based approach. International Journal of Productivity and Performance Management, 71(6), 2087–2113. https://doi.org/10.1108/IJPPM-02-2021-0085; Souza, A. C. de, Alexandre, N. M. C., & Guirardello, E. de B. (2017). Psychometric properties in instruments evaluation of reliability and validity. Epidemiologia e Servicos de Saude, 26, 649–659.; Souza, L. B. De. (2009). Trends and approaches in lean healthcare. Leadership in Health Services, 22(2), 121–139. https://doi.org/10.1108/17511870910953788; Srivastava, S., & Singh, R. K. (2021). Exploring integrated supply chain performance in healthcare: a service provider perspective. Benchmarking: An International Journal, 28(1), 106–130. https://doi.org/10.1108/BIJ-03-2020-0125; Staudacher, A. P., & Bush, A. (2014). Analyzing the Impact of Lean Approach in Pharmaceutical Supply Chain. International Conference on Health Care Systems Engineering, HCSE 2013, 61, 253–263. https://doi.org/10.1007/978-3-319-01848-5_20; Steiner, B., Lan, K., Unterschultz, J., & Boxall, P. (2017). Applying the resource-based view to alliance formation in specialized supply chains. Journal of Strategy and Management, 10(3), 262–292. https://doi.org/10.1108/JSMA-06-2016-0040; Stemler, S. E. (2004). A comparison of consensus, consistency, and measurement approaches to estimating interrater reliability. Practical Assessment, Research, and Evaluation, 9(1), 4.; Subramani, M. (2004). How do suppliers benefit from information technology use in supply chain relationships? MIS Quarterly: Management Information Systems, 28(1), 45–73. https://doi.org/10.2307/25148624; Supeekit, T, Somboonwiwat, T., & Kritchanchai, D. (2014). Causal relationship of supply chain efficiency and patient safety in measuring internal hospital supply chain performance applying DEMATEL. In K. C., C. G., & U. O. (Eds.), Joint International Symposium on “‘The Social Impacts of Developments in Information, Manufacturing and Service Systems’” 44th International Conference on Computers and Industrial Engineering, CIE 2014 and 9th International Symposium on Intelligent Manufa (pp. 988–1001). Computers and Industrial Engineering.; Supeekit, Tuangyot, Somboonwiwat, T., & Kritchanchai, D. (2016). DEMATEL-modified ANP to evaluate internal hospital supply chain performance. Computers & Industrial Engineering, 102, 318–330. https://doi.org/https://doi.org/10.1016/j.cie.2016.07.019; Superintendencia de Industria y Comercio. (2020). Estudios de mercado: sector farmacéutico en Colombia. Superintendencia de Industria y Comercio, 1–91.; Suteerachai, B., & Siraphatthada, Y. (2019). The Mediating Role of Alliance Integrated Network in the Relationship between Service Supply Chain Management Practices and the Indonesian Public Healthcare Organizational Performance. Int. J Sup. Chain. Mgt Vol, 8(4), 280.; Syahrir, I., Suparno, & Vanany, I. (2015). Healthcare and Disaster Supply Chain: Literature Review and Future Research. Procedia Manufacturing, 4, 2–9. https://doi.org/10.1016/j.promfg.2015.11.007; Syahrir, I., Suparno, & Vanany, I. (2019). Inventory management in healthcare supply chain under uncertainty and emergency: A literature review. Journal of Advanced Research in Dynamical and Control Systems, 11(7 Special Issue), 702–708.; Taheri, M., Ebrahimi, S. R., & Khoshalhan, F. (2014). Game-theoretic analysis of supply chain coordination under advertising and price dependent demand. International Journal of Industrial Engineering Computations, 5(3), 395–406. https://doi.org/10.5267/j.ijiec.2014.4.003; Tamir, M, Chiheb, R., & Ouzayd, F. (2018). A decision support platform based on cross-sorting methods for the selection of modeling methods: Case of the hospital supply chain performance analysis. International Journal of Advanced Computer Science and Applications, 9(10), 475–484. https://doi.org/10.14569/IJACSA.2018.091058; Tamir, Manal, Ouzayd, F., & Chiheb, R. (2017). Literature Review and Classification of Performance Analysis Methods: Hospital Supply Chain.; Tasdemir, C., & Gazo, R. (2018). A Systematic Literature Review for Better Understanding of Lean Driven Sustainability. https://doi.org/10.3390/su10072544; Tat, R., Heydari, J., & Rabbani, M. (2020). A mathematical model for pharmaceutical supply chain coordination: Reselling medicines in an alternative market. Journal of Cleaner Production, 268. https://doi.org/10.1016/j.jclepro.2020.121897; Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach’s alpha. International Journal of Medical Education, 2, 53.; Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18(7), 509–533.; Thamsatitdej, P., Jongpaiboon, M., Samaranayake, P., & Laosirihongthong, T. (2016). Green supply chain management, triple bottom line, and organizational theory-prioritization with fuzzy AHP method. IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2015, 2016-Janua, 1588–1592. https://doi.org/10.1109/IEEM.2015.7385915; Thanki, S., & Thakkar, J. (2018). A quantitative framework for lean and green assessment of supply chain performance. International Journal of Productivity and Performance Management, 67(2), 366–400. https://doi.org/10.1108/IJPPM-09-2016-0215; Tian, Y., Huang, D., & Liu, D.-B. (2008). Supply chain coordination involving retailer with flexible objectives. Huadong Ligong Daxue Xuebao /Journal of East China University of Science and Technology, 34(6), 837-842+901.; Tiep, N. C., Oanh, T. T. K., Thuan, T. D., Tien, D. V, & Ha, T. V. (2020). Industry 4.0, lean management and organizational support: A case of supply chain operations . Polish Journal of Management Studies, 22(1), 583–594. https://doi.org/10.17512/pjms.2020.22.1.37; Tigga, G. A., Kannabiran, G., & Arumugam, V. (2021). Exploring relationships among IT advancement, IT assimilation, supply chain capabilities and supply chain performance. Journal of Decision Systems, 30(4), 414–438. https://doi.org/10.1080/12460125.2021.1873022; Tobail, A., Egan, P., Abo-hamad, W., & Arisha, A. (2013). Application of Lean Thinking Using Simulation Modeling in A Private Hospital Application of Lean Thinking Using Simulation Modeling in A Private Hospital. October.; Tortorella, G. L., Marodin, G., Saurin, T. A., Li, W., & Staines, J. (2022). How have lean supply chains coped with the COVID-19 pandemic? A normal accidents theory perspective. Production Planning and Control. https://doi.org/10.1080/09537287.2022.2149433; Tortorella, G. L., Miorando, R. F., Fries, C. E., & Marodin, G. A. (2017). Lean supply chain: Empirical research on practices and performance. 7th Annual Conference on Industrial Engineering and Operations Management, IEOM 2017, 108–119.; Tortorella, G. L., Miorando, R., & Marodin, G. (2017). Lean supply chain management: Empirical research on practices, contexts and performance. International Journal of Production Economics, 193, 98–112. https://doi.org/10.1016/j.ijpe.2017.07.006; Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review* Introduction: the need for an evidence- informed approach. British Journal of Management, 14, 207–222.; Trappey, C. V, Trappey, A. J. C., Lin, G. Y. P., Liu, C. S., & Lee, W. T. (2007). Business and logistics hub integration to facilitate global supply chain linkage. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(7), 1221–1233. https://doi.org/10.1243/09544054JEM753; Tritos, L., Premaratne, S., & Dotun, A. (2014). Prioritizing lean supply chain management initiatives in healthcare service operations: A Fuzzy-AHP approach. 236–242. https://doi.org/10.1109/IEEM.2013.6962410; Tseng, M.-L., Ha, H. M., Lim, M. K., Wu, K.-J., & Iranmanesh, M. (2020). Sustainable supply chain management in stakeholders: supporting from sustainable supply and process management in the healthcare industry in Vietnam. International Journal of Logistics Research and Applications, 1–20. https://doi.org/10.1080/13675567.2020.1749577; Tukamuhabwa, B. R., Mutebi, H., & Ojok, B. A. (2023). Supply Chain Performance in the Wooden Furniture Industry: The Effect of Institutional Pressures and Supply Chain Integration in a Developing Country Context. Journal of African Business. https://doi.org/10.1080/15228916.2023.2215572; Tyagi, M., Kumar, P., & Kumar, D. (2015). Assessment of critical enablers for flexible supply chain performance measurement system using fuzzy DEMATEL approach. Global Journal of Flexible Systems Management, 16(2), 115–132. https://doi.org/10.1007/s40171-014-0085-6; Upadhyay, A., Mukhuty, S., Kumari, S., Garza-Reyes, J. A., & Shukla, V. (2022). A review of lean and agile management in humanitarian supply chains: analysing the pre-disaster and post-disaster phases and future directions. Production Planning and Control, 33(6–7), 641–654. https://doi.org/10.1080/09537287.2020.1834133; Uttley, J. (2019). Power analysis, sample size, and assessment of statistical assumptions—Improving the evidential value of lighting research. Leukos, 15(2–3), 143–162.; Valbuena, L. (2021). Retos en la Cadena de Suministro Farmacéutica: Caso vacunas COVID-19 en Bogotá (Vol. 3, Issue 1).; Valentina, B.-L., & Erin, K.-R. (2014). Demographic Trends and the Healthcare System in Moldova: Reforms and Challenges. In Family and Health: Evolving Needs, Responsibilities, and Experiences (Vol. 8B, pp. 105–130). Emerald Group Publishing Limited. https://doi.org/10.1108/S1530-35352014000008B013; van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3; Van Landeghem, H., Bauters, K., & Limère, V. (2013). A management system for sustainable lean implementation. IIE Annual Conference and Expo 2013, 941–950. https://doi.org/10.4018/978-1-4666-5039-8.ch009; van Weele, A. J., & van Raaij, E. M. (2014). The future of purchasing and supply management research: About relevance and rigor. Journal of Supply Chain Management, 50(1), 56–72. https://doi.org/10.1111/jscm.12042; Vanbrabant, L., Verdonck, L., Mertens, S., & Caris, A. (2023). Improving hospital material supply chain performance by integrating decision problems: A literature review and future research directions. Computers and Industrial Engineering, 180. https://doi.org/10.1016/j.cie.2023.109235; Vargas-Pérez, J. S. (2022). Análisis de la Gestión de Abastecimiento en la Logística Hospitalaria. Revista Científica Anfibios, 5(2), 110–125.; Vaske, J. J., Beaman, J., & Sponarski, C. C. (2017). Rethinking internal consistency in Cronbach’s alpha. Leisure Sciences, 39(2), 163–173.; Vasquez, M. A. F., & Medhekar, A. (2016). Service supply chain coordination factors: The case of Saudi Arabian hospitals. International Journal of Logistics Systems and Management, 23(3), 281–298. https://doi.org/10.1504/IJLSM.2016.074712; Velasco, N., & Amaya, C. (2012). Logística hospitalaria: Lecciones y retos para Colombia.; Velasco, N., Moreno, J.-P., & Rebolledo, C. (2018). Logistics practices in healthcare organizations in Bogota. Academia Revista Latinoamericana de Administración, 31(3), 519–533. https://doi.org/10.1108/ARLA-08-2016-0219; Viegas, C. V, Bond, A., Vaz, C. R., & Bertolo, R. J. (2019). Reverse flows within the pharmaceutical supply chain: A classificatory review from the perspective of end-of-use and end-of-life medicines. Journal of Cleaner Production, 238. https://doi.org/10.1016/j.jclepro.2019.117719; Vikram, B., Prakash, S., & Amrik, S. (2012). Collaborative management of inventory in Australian hospital supply chains: practices and issues. Supply Chain Management: An International Journal, 17(2), 217–230. https://doi.org/10.1108/13598541211212933; Villegas, J. C., Gutiérrez, E. V., Ferro, D. N., Muriel, A. F. A., Bayona, J. I. Y., Polanía, C. C., Guerrero, W. J., Hernández, D. B. C., López, L. U., Cadavid, L. R., Acevedo, T., Restrepo, P., Lopera, J., Manco, O. C. Ú., Sierra, Y. A. R., Díaz, H. L., Tobón, E. A. Á., Orrego, M. C. R., Quintero, A. R. U., … Jaén-Posada, J. S. (2020). Aplicaciones de investigación de operaciones en sistemas de salud en Colombia. https://doi.org/10.11144/javeriana.9789587815757; Visconti, R. M., & Morea, D. (2020). Healthcare digitalization and pay-for-performance incentives in smart hospital project financing. International Journal of Environmental Research and Public Health, 17(7). https://doi.org/10.3390/ijerph17072318; Vishwakarma, A., Dangayach, G. S., Meena, M. L., Gupta, S., & Luthra, S. (2022). Adoption of blockchain technology enabled healthcare sustainable supply chain to improve healthcare supply chain performance. Management of Environmental Quality: An International Journal. https://doi.org/10.1108/MEQ-02-2022-0025; Voeng, S., & Kritchanchai, D. (2019). Factors Influencing Supplier Selection for Vendor Managed Inventory Adoption in Hospitals. 2019 4th Technology Innovation Management and Engineering Science International Conference (TIMES-ICON), 1–5. https://doi.org/10.1109/TIMES-iCON47539.2019.9024418; Voigt, G. (2011). Supply Chain Coordination in Case of Asymmetric Information: Information Sharing and Contracting in a Just-in-Time environment. In V. G. (Ed.), Lecture Notes in Economics and Mathematical Systems (Vol. 650). https://doi.org/10.1007/978-3-642-20132-5; Voigt, G., & Inderfurth, K. (2012). Supply chain coordination with information sharing in the presence of trust and trustworthiness. IIE Transactions (Institute of Industrial Engineers), 44(8), 637–654. https://doi.org/10.1080/0740817X.2011.635179; Volland, J., Fügener, A., Schoenfelder, J., & Brunner, J. O. (2017). Material logistics in hospitals: A literature review. Omega, 69, 82–101. https://doi.org/https://doi.org/10.1016/j.omega.2016.08.004; Vosooghidizaji, M., Taghipour, A., & Canel-Depitre, B. (2020). Supply chain coordination under information asymmetry: a review. International Journal of Production Research, 58(6), 1805–1834. https://doi.org/10.1080/00207543.2019.1685702; Wang, J., Zhao, R., & Tang, W. (2009). Supply Chain Coordination by Single-Period and Long-Term Contracts with Fuzzy Market Demand. Tsinghua Science and Technology, 14(2), 218–224. https://doi.org/10.1016/S1007-0214(09)70033-1; Wang, S, Li, J., Song, J., Li, Y., & Sherk, M. (2018). Institutional pressures and product modularity: do supply chain coordination and functional coordination matter? International Journal of Production Research, 56(20), 6644–6657. https://doi.org/10.1080/00207543.2018.1444807; Wang, Siqi, Cheah, J.-H., Wong, C. Y., & Ramayah, T. (2023). Progress in partial least squares structural equation modeling use in logistics and supply chain management in the last decade: a structured literature review. International Journal of Physical Distribution & Logistics Management, ahead-of-print(ahead-of-print). https://doi.org/10.1108/IJPDLM-06-2023-0200; Wang, Y., & Gerchak, Y. (2001). Supply Chain Coordination when Demand Is Shelf-Space Dependent. Manufacturing and Service Operations Management, 3(1), 82–87. https://doi.org/10.1287/msom.3.1.82.9998; Wang, Y., Reivan Ortiz, G. G., Dextre-Martinez, W., & Zhang, L. (2022). Green Supply Chain Coordination During the COVID-19 Pandemic Based on Consignment Contract. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.899007; Wankhade, N., & Kundu, G. K. (2018). Supply chain performance management: A structured literature review. International Journal of Value Chain Management, 9(3), 209–240. https://doi.org/10.1504/ijvcm.2018.093885; Wernerfelt, B. (1984). A resource‐based view of the firm. Strategic Management Journal, 5(2), 171–180.; Wichmann, B. K., & Kaufmann, L. (2016). Social network analysis in supply chain management research: Social network analysis. International Journal of Physical Distribution and Logistics Management, 46(8), 740–762. https://doi.org/10.1108/IJPDLM-05-2015-0122; Wieser, P. (2011). From Health Logistics to Health Supply Chain Management. Supply Chain Forum: An International Journal, 12(1), 4–13. https://doi.org/10.1080/16258312.2011.11517249; Winter, S. G. (2003). Understanding dynamic capabilities. Strategic Management Journal, 24(10), 991–995.; Wong, W.-P., & Soh, K.-L. (2019). Review of Pharmaceutical Sea Freight and Malaysian Third-Party Logistics Service Providers—A Supply Chain Perspective. In Lecture Notes in Logistics (pp. 125–146). Springer Science and Business Media B.V. https://doi.org/10.1007/978-3-030-15398-4_8; Wu, J., Belinkov, Y., Sajjad, H., Durrani, N., Dalvi, F., & Glass, J. (2020). Similarity Analysis of Contextual Word Representation Models. https://doi.org/10.18653/v1/2020.acl-main.422; Wu, Y.-C., Goh, M., Yuan, C.-H., & Huang, S.-H. (2017). Logistics management research collaboration in Asia. International Journal of Logistics Management, 28(1), 206–223. https://doi.org/10.1108/IJLM-09-2013-0104; Xu, L., & Beamon, B. M. (2006). Supply chain coordination and cooperation mechanisms: An attribute-based approach. Journal of Supply Chain Management, 42(1), 4–12. https://doi.org/10.1111/j.1745-493X.2006.04201002.x; Yadav, A. K., & Kumar, D. (2022). A fuzzy decision framework of lean-agile-green (LAG) practices for sustainable vaccine supply chain. International Journal of Productivity and Performance Management. https://doi.org/10.1108/IJPPM-10-2021-0590; Yadav, P. (2015). Health Product Supply Chains in Developing Countries: Diagnosis of the Root Causes of Underperformance and an Agenda for Reform. Health Systems & Reform, 1(2), 142–154. https://doi.org/10.4161/23288604.2014.968005; Yan, D. (2011). Identify Improvement Areas in Supply Chain Coordination A exploratory methodology development. 1–99.; Yan, R., Wang, X., & Li, J. (2013). Supply chain coordination under service competition. WIT Transactions on Information and Communication Technologies, 46 VOLUME, 2289–2294. https://doi.org/10.2495/ISME20133083; Yanamandra, R. (2018). Development of an integrated healthcare supply chain model. Supply Chain Forum: An International Journal, 00(00), 1–11. https://doi.org/10.1080/16258312.2018.1475823; Yang, B., Hu, M.-H., Zhao, G., & Yang, Y.-B. (2019). Structural and state controllability study of the supply chain network based on the complex network theory. Journal of Internet Technology, 20(6), 1879–1887. https://doi.org/10.3966/160792642019102006018; Yang, Y., Jia, F., & Xu, Z. (2019). Towards an integrated conceptual model of supply chain learning: an extended resource-based view. Supply Chain Management, 24(2), 189–214. https://doi.org/10.1108/SCM-11-2017-0359; Yao, Y., Evers, P. T., & Dresner, M. E. (2007). Supply chain integration in vendor-managed inventory. Decision Support Systems, 43(2), 663–674. https://doi.org/10.1016/j.dss.2005.05.021; Yap, L. L., & Tan, C. L. (2012). The effect of service supply chain management practices on the public healthcare organizational performance. International Journal of Business and Social Science, 3(16).; Ying, X., Liz, B., Tom, C., Dingchang, Z., & James, A. C. (2016). An exploratory study of reverse exchange systems used for medical devices in the UK National Health Service (NHS). Supply Chain Management: An International Journal, 21(2), 194–215. https://doi.org/10.1108/SCM-07-2015-0278; Yousefi, N., & Alibabaei, A. (2015). Information flow in the pharmaceutical supply chain. Iranian Journal of Pharmaceutical Research : IJPR, 14(4), 1299–1303.; Yu, W., Chavez, R., Jacobs, M. A., & Feng, M. (2018). Data-driven supply chain capabilities and performance: A resource-based view. Transportation Research Part E: Logistics and Transportation Review, 114, 371–385. https://doi.org/10.1016/j.tre.2017.04.002; Zabeeulla, & Varalakshmi, S. (2022). An Effective Review of The Problems and Opportunities of The Supply Chain for Pharmaceuticals. In D. R.K., S. A.Kr., K. G., & B. S. (Eds.), 11th International Conference on System Modeling and Advancement in Research Trends, SMART 2022 (pp. 799–804). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/SMART55829.2022.10047275; Zajac, M., & Schwede, C. (2015). Cross-process production control by camera-based quality management inside a logistic assistance system. In Logistics and Supply Chain Innovation: Bridging the Gap between Theory and Practice (pp. 353–362). Springer International Publishing. https://doi.org/10.1007/978-3-319-22288-2_21; Zamora Aguas, J. P., Adarme Jaimes, W., & Vanegas Escamilla, E. P. (2016). Coordinación En Redes De Suministro De Medicamentos. Caso Aplicado Al Sector Salud Colombiano. Revista EIA, 13(25), 171–183. https://doi.org/10.24050/reia.v13i25.1025; Zepeda, B., Tlapa, D., Báez, Y., Romero, J., & Maldonado, A. (2015). Factores y Herramientas Importantes en Lean Healthcare. Academia Journals.; Zhang, M., Ying, S., & Xu, X. (2023). Dual-Channel Supply Chain Coordination with Loss-Averse Consumers. Discrete Dynamics in Nature and Society, 2023. https://doi.org/10.1155/2023/3172590; Zhang, T. L. (2011). Supply chain coordination under return policy with asymmetric information about cost of reverse logistics operations. Journal of Computers, 6(9), 1886–1890. https://doi.org/10.4304/jcp.6.9.1886-1890; Zhang, X., Song, H., Huang, G. Q., & Chen, W. (2010). Game-theoretic approach to tourism supply chain coordination under demand uncertainty for package holidays. Tourism Analysis, 15(3), 287–298. https://doi.org/10.3727/108354210X12801550666024; Zhang, Y., Hou, Z., Yang, F., Yang, M. M., & Wang, Z. (2021). Discovering the evolution of resource-based theory: Science mapping based on bibliometric analysis. Journal of Business Research, 137, 500–516.; Zhao, D., He, L., & Wang, Y. (2007). The framework of supply chain coordination mechanism choice: A view of transaction costs. 2007 IEEE International Conference on Automation and Logistics, ICAL 2007, 2544–2549. https://doi.org/10.1109/ICAL.2007.4339008; Zhao, L., & Jung, H.-B. (2018). The winning personality: Impact of founders’ personality traits and firms’ network relationships on Chinese apparel new venture performance. International Journal of Entrepreneurial Behaviour and Research, 24(2), 553–573. https://doi.org/10.1108/IJEBR-09-2016-0281; Zhao, X.-X., & Ning, L.-Y. (2009). Study of the lean logistics operating model based on RFID and its application in auto industry. https://doi.org/10.1109/CNMT.2009.5374587; Ziat, A., Sefiani, N., Reklaoui, K., & Azzouzi, H. (2020). A generic framework for hospital supply chain. International Journal of Healthcare Management, 13(sup1), 488–495. https://doi.org/10.1080/20479700.2019.1603415; Zidel, T. G. (2006). A Lean toolbox: Using Lean Principles and Techniques in Healthcare. Journal for Healthare Quality, 28(1), W1-7-W1-15.; Zikmund, W. G., Babin, B. J., Carr, J. C., & Griffin, M. (2013). Business research methods. Cengage learning.; Zuhair, A. R., & Bahjat, A. A. (2019). Lean management and operational performance in health care: Implications for business performance in private hospitals. International Journal of Productivity and Performance Management, 69(1), 1–21. https://doi.org/10.1108/IJPPM-09-2018-0342; Zwaida, T. A., Beauregard, Y., & Elarroudi, K. (2019). Comprehensive Literature Review about Drug Shortages in the Canadian Hospital’s Pharmacy Supply Chain. 2019 International Conference on Engineering, Science, and Industrial Applications, ICESI 2019. https://doi.org/10.1109/ICESI.2019.8863026; https://repositorio.unal.edu.co/handle/unal/85915; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
14
Authors:
Contributors:
Subject Terms: 370 - Educación, 650 - Gerencia y servicios auxiliares::658 - Gerencia general, 170 - Ética (Filosofía moral), Ética estudiantil - Enseñanza superior, Ética, Valores morales, Juegos educativos, Juegos serios, Diseño de juegos, Educación, Método de enseñanza, Ethics, Moral values, Educational games, Serious games, Game design, Education, Teaching methods
File Description: xviii, 293 páginas; application/pdf
Relation: Abt, C. C. (1970). Serious games. University Press of America.; Acedo, C., y Gomila, A. (2013). Confianza y cooperación. Una perspectiva evolutiva. Contrastes. Revista Internacional de Filosofía. Suplemento, 18, 221–238.; Acosta, A. T., y Pereda, A. M. (2018). El valor justicia: Una mirada desde el derecho Romano hacia la contemporaneidad. Revista Aequitas, 11, 16–26.; Ahrens, D. (2015). Serious Games – A New Perspective on Workbased Learning. Procedia - Social and Behavioral Sciences, 204(November 2014), 277–281. https://doi.org/10.1016/j.sbspro.2015.08.152; Aleven, V., Myers, E., Easterday, M., y Ogan, A. (2010). Toward a framework for the analysis and design of educational games. DIGITEL 2010 - The 3rd IEEE International Conference on Digital Game and Intelligent Toy Enhanced Learning, (May 2010), 69–76. https://doi.org/10.1109/DIGITEL.2010.55; Almonte, M., y Bravo, J. (2016). Gamificación y e-learning: estudio de un contexto universitario para la adecuación de su diseño. Revista Tecnología, Ciencia y Educación, 4(4), 52–60.; Alvarez, J., Rampnoux, O., Jessel, J. P., y Méthel, G. (2007). Serious game: Just a question of posture? AISB’07: Artificial and Ambient Intelligence, (January), 420–426.; Amory, A. (2007). Game object model version II: A theoretical framework for educational game development. Educational Technology Research and Development, 55(1), 51–77. https://doi.org/10.1007/s11423-006-9001-x; Annetta, L. A. (2010). The “I’s” Have It: A Framework for Serious Educational Game Design. Review of General Psychology, 14(2), 105–112. https://doi.org/10.1037/a0018985; Antezana, C. N., y Adler, A. H. (2015). Ética profesional en estudiantes de posgrado en dos universidades mexicanas. Revista Electrónica de Investigación Educativa, 17, 100–115.; Aquino, H. (2011). Trayectorias escolares e inserción laboral en un posgrado en educación. In Consejo Mexicano de Investigación y Educativa (COMIE) (Eds.), XI Congreso Nacional de Investigación Educativa, México, D. F (pp. 1–10). Retrieved from https://docplayer.es/15151705-Trayectorias-escolares-e-insercion-laboral-en-un.html; Área Metropolitana del Valle de Aburrá. (2019). Retrieved December 2, 2019, from https://www.metropol.gov.co/; Argandoña, A. (2010). El amor en la empresa. Barcelona.; Ariely, D. (2012). The (honest) truth about dishonesty. HarperCollins.; Arnab, S., Berta, R., Earp, J., De Freitas, S., y Popescu, M. (2012). Framing the Adoption of Serious Games in Formal Education. Electronic Journal of e.-Earning, 5(2), 159–171.; Arnab, S., Lim, T., Carvalho, M. B., Bellotti, F., De Freitas, S., Louchart, S., … De Gloria, A. (2015). Mapping learning and game mechanics for serious games analysis. British Journal of Educational Technology, 46(2), 391–411.; Avedon, E. M. (1971). The structural elements of games. In E. M. Avedon y B. Sutton-Smith (Eds.), The study of games (pp. 419–426). New York: John Wiley y Sons, Inc. Retrieved from https://archive.org/details/in.ernet.dli.2015.112077/page/n3/mode/2up; Avedon, E. M., y Sutton-Smith, B. (1971). The study of games. New York: John Wiley y Sons, Inc.; Baldor, R. O., Field, T. E., Gurwitz, J. E., y Anderson, M. B. (2001). Using the “question of scruples” game to teach managed care ethics to students. Academic Medicine, 76(5), 510–511. https://doi.org/10.1097/00001888-200105000-00040; Barbosa, A. F. S., Pereira, P. N. M., Dias, J. A. F. F., y Silva, F. G. M. (2014). A new methodology of design and development of serious games. International Journal of Computer Games Technology, (January), 1–8. https://doi.org/10.1155/2014/817167; Barilan, Y. (2012). Responsibility beyond Human Rights. In Human Dignity, Human Rights and Responsibility (pp. 261–293). The MIT Press. Retrieved from https://muse.jhu.edu/book/19753; Barreto, C., Gutiérrez, L., Pinilla, B., y Parra, C. (2006). Límites del constructivismo pedagógico. Educación y Educadores, 9(1), 11–31. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttextypid=S0123-12942006000100002ylng=enytlng=es; Bartle, R. (1996). Hearts, clubs, diamons, spades: Players who suit MUDS. Journal of MUD Research, 1(1).; Bedwell, W. L., Pavlas, D., Heyne, K., Lazzara, E. H., y Salas, E. (2012). Toward a Taxonomy Linking Game Attributes to Learning: An Empirical Study. Simulation y Gaming, 43(6), 729–760. https://doi.org/10.1177/1046878112439444; Beltrán, M. (2004). Tolerancia y derechos humanos. Política y Cultura, 21, 179–189.; Beltrão, K. I., y Barçante, L. C. (2016). Teaching principles and fundamentals of business excellence to undergraduate students through a game. Total Quality Management and Business Excellence, 27(5–6). https://doi.org/10.1080/14783363.2015.1043116; Ben-Zvi, T. (2010). The efficacy of business simulation games in creating Decision Support Systems: An experimental investigation. Decision Support Systems, 49(1), 61–69. https://doi.org/10.1016/j.dss.2010.01.002; Benedetti, Á. J. (2013). Análisis neoinstitucional del caso Agro Ingreso Seguro (AIS). Revista Ciencias Humanas, 10, 35–52.; Bereby-Meyer, Y., y Shalvi, S. (2015). Deliberate honesty. Current Opinion in Psychology, 6, 195–198. https://doi.org/10.1016/j.copsyc.2015.09.004; Bernabeu, N., y Goldstein, A. (2012). Creatividad y aprendizaje. El juego como herramienta pedagógica. Bogotá: Ediciones de la U.; Bonilla, A., Corredor, G., Lizcano, C., Galeano, M., Miranda, A., Aldana, J., … Suárez, C. (2011). Una aproximación hacia el concepto de honestidad en el ámbito laboral colombiano. Revista Iberomericana de Psicologia:Ciencia y Tecnologií, 4(2), 101–106.; Bortesi, L. (2004). Etica en los negocios. Quipukamayoc, 11(21), 17–22. https://doi.org/10.15381/quipu.v11i21.5484; Boyle, E. A., Hainey, T., Connolly, T. M., Gray, G., Earp, J., Ott, M., … Pereira, J. (2016). An update to the systematic literature review of empirical evidence of the impacts and outcomes of computer games and serious games. Computers y Education, 94, 178–192. https://doi.org/10.1016/j.compedu.2015.11.003; Braghirolli, L. F., Ribeiro, J. L. D., Weise, A. D., y Pizzolato, M. (2016). Benefits of educational games as an introductory activity in industrial engineering education. Computers in Human Behavior, 58, 315–324. https://doi.org/10.1016/j.chb.2015.12.063; Breuer, J., y Bente, G. (2010). Why so serious? On the relation of serious games and learning. Eludamos. Journal for Computer Game Culture, 4(1), 7–24. Retrieved from http://www.eludamos.org/index.php/eludamos/article/view/vol4no1-2; Brinkman, B. (2009). The heart of a whistle-blower: A corporate decision-making game for computer ethics classes. In SIGCSE’09 - Proceedings of the 40th ACM Technical Symposium on Computer Science Education (pp. 316–320). https://doi.org/10.1145/1508865.1508979; Brown, T., y Wyatt, J. (2010). Design Thinking for Social Innovation. Standford Social Innovation Review, Invierno, 29–35. Retrieved from www.ssireview.com; Bylieva, D., y Sastre, M. (2018). Classification of educational games according to their complexity and the player´s skills. In The European Proceedings of Social y Behavioural Sciences EpSBS - 18th PCSF 2018 Professional Culture of the Specialist of the Future (pp. 438–446). Future Academy. https://doi.org/https://dx.doi.org/10.15405/epsbs.2018.12.02.47; Caillois, R. (1958). Les jeux et les hommes: Le masque et le vertige. (Librairie Gallimard, Ed.) (5• édition). Paris.; Caldwell, C., y Dixon, R. D. (2010). Love, Forgiveness, and Trust: Critical Values of the Modern Leader. Journal of Business Ethics, 93, 91–101. https://doi.org/10.1007/s10551-009-0184-z; Camps, V. (1998). Los valores de la educación. Madrid: Grupo Anaya S.A.; Camps, V. (2013). Breve historia de la ética. Barcelona: RBA Libros S.A.; Campus Docent Sant Joan de Déu. (2012, May 28). Ethica, un juego de mesa para trabajar las finanzas éticas. Retrieved February 13, 2021, from https://www.santjoandedeu.edu.es/es/escola-universitaria-infermeria/noticias/ethica-un-juego-mesa-para-trabajar-finanzas-eticas; Capraro, V. (2017). Does the truth come naturally? Time pressure increases honesty in one-shot deception games. Economics Letters, 158, 54–57.; Carreras, L., Eijo, P., Estany, A., Gómez, M. T., Guich, R., Mir, V., … Serrats, M. G. (2002). Cómo educar en valores. Madrid: Narcea Editorial.; Carvalho, M. B., Bellotti, F., Berta, R., De Gloria, A., Sedano, C. I., Hauge, J. B., … Rauterberg, M. (2015). An activity theory-based model for serious games analysis and conceptual design. Computers y Education, 87, 166–181. https://doi.org/10.1016/j.compedu.2015.03.023; Casanova, C. (2007). La concepción de la justicia en la obra teórica de los sentimientos morales, de Adam Smith. Revista Chilena de Derecho, 34(3), 421–438. Retrieved from https://scielo.conicyt.cl/pdf/rchilder/v34n3/art04.pdf; Clarke, N., y Mahadi, N. (2017). Mutual Recognition Respect Between Leaders and Followers: Its Relationship to Follower Job Performance and Well-Being. Journal of Business Ethics, 141, 163–178. https://doi.org/DOI 10.1007/s10551-015-2724-z; Coloma, C. (1999). El constructivismo y sus implicancias en educación. Educación, 8(16), 217–244.; Connolly, T. M., Boyle, E. A., MacArthur, E., Hainey, T., y Boyle, J. M. (2012). A systematic literature review of empirical evidence on computer games and serious games. Computers y Education, 59(2), 661–686. https://doi.org/10.1016/j.compedu.2012.03.004; Corporacion Universitaria de Sabaneta. (2020). Especialización en Justicia Especial para la Paz. Retrieved January 17, 2020, from http://www.unisabaneta.edu.co/facultades/posgrados/especializacion-en-justicia-especial-para-la-paz/; Cortina, A. (2003). El mundo de los valores. Bogotá: Editorial El Búho.; Cortina, A. (2004). Las tres edades de la ética empresarial. In Construir confianza. Ética de la empresa en la sociedad de la información y las comunicaciones (pp. 17–37). Madrid: Trotta.; Cortina, A. (2008). Ética de la empresa: Claves para una nueva cultura empresarial (8a Edición). Editorial Trotta. https://doi.org/10.32418/rfs.2003.230.2371; Cortina, A. (2009). Ética de la empresa: No sólo responsabilidad social. Revista Portuguesa de Filosofia, 65, 113–127. Retrieved from http://www.jstor.org/stable/pdf/41220792.pdf; Cortina, A. (2010). Neuroética: ¿Las bases cerebrales de una ética universal con relevancia política? Isegoría, 0(42), 129–148. https://doi.org/10.3989/isegoria.2010.i42.687; Cortina, A., y Martínez, E. (1996). Ética. (1a Edición, Ed.). Madrid, España: Ediciones Akal.; Cota, A. (2002). La importancia de los valores en el desarrollo humano de la organización. Universidad Autónoma de Nuevo León, Nuevo León.; DANE. (2015). Clasificación industrial internacional uniforme de todas las actividades económicas - Revisión 4 adaptada para Colombia CIIU Rev. 4 A.C.; De Freitas, S., y Oliver, M. (2006). How can exploratory learning with games and simulations within the curriculum be most effectively evaluated? Computers and Education, 46(3), 249–264. https://doi.org/10.1016/j.compedu.2005.11.007; De George, R. T. (2011). Historia de la ética empresarial. In T. Editores (Ed.), Valores y ética para el siglo XXI (pp. 361–388). BBVA.; de Juan López, S. (2011). Educación y valores. Foro Educacional, 19, 83–107.; Decker, C., y Van Quaquebeke, N. (2015). Getting Respect from a Boss You Respect: How Different Types of Respect Interact to Explain Subordinates’ Job Satisfaction as Mediated by Self-Determination. Journal of Business Ethics, 131, 543–556. https://doi.org/DOI 10.1007/s10551-014-2291-8; Deterding, S., Dixon, D., Khaled, R., y Nacke, L. (2011). From Game Design Elements to Gamefulness: Defining “Gamification.” In MindTrek. Tampere: United Nations.; Deterding, Sebastian, Dixon, D., Khaled, R., y Nacke, L. (2011). Gamification: Toward a Definition. In CHI. Vancouver, Canada.; Dillon, R. S. (2010). Respect for persons, identity, and information technology. Ethics Inf Technol, 12, 17–28. https://doi.org/10.1007/s10676-009-9188-8; Djaouti, D., Alvarez, J., Jessel, J.-P., y Rampnoux, O. (2011). Origins of Serious Games. In Serious games and edutainment applications (pp. 25–43). Springer London.; Domínguez, A., Saenz-de-Navarrete, J., de-Marcos, L., Fernández-Sanz, L., Pagés, C., y Martínez-Herráiz, J.-J. (2013). Gamifying learning experiences: Practical implications and outcomes. Computers y Education, 63, 380–392. https://doi.org/10.1016/j.compedu.2012.12.020; Echeverría, A., García-Campo, C., Nussbaum, M., Gil, F., Villalta, M., Améstica, M., y Echeverría, S. (2011). A framework for the design and integration of collaborative classroom games. Computers and Education, 57(1), 1127–1136. https://doi.org/10.1016/j.compedu.2010.12.010; El Espectador. (2019). Corrupción en la Universidad Distrital: imputan cargos a Wilman Muñoz. Retrieved December 11, 2019, from https://www.elespectador.com/noticias/bogota/imputan-cargos-wilman-munoz-por-caso-de-corrupcion-en-la-u-distrital-articulo-891632; El tiempo. (2002). El libro de los valores. (Malsinet, Ed.). Bogotá: Casa Editorial El Tiempo.; El tiempo. (2017). Casos de corrupción más sonados en Colombia. Retrieved May 11, 2017, from http://www.eltiempo.com/justicia/delitos/casos-de-corrupcion-mas-sonados-en-colombia-82678; Elverdam, C., y Aarseth, E. (2007). Game Classification and Game Design Construction Through Critical Analysis. Games and Culture, 2, 3–22. https://doi.org/10.1177/1555412006286892; Emel’yanenko, V. D., Vetoshko, A. N., Malinnikov, S. G., Malashenko, I. V., y Vetoshko, L. I. (2016). Man´s values and ideologies as a basis of gamification. International Journal of Environmental and Science Education, 11(18), 12576–12592.; Escámez, S. (2008). Tolerancia y respeto en las sociedades modernas. Veritas: Revista de Filosofía y Teología, III(19), 229–252.; Eustace, K., Mason, C., y Swan, M. (2007). Scupper’s Island: Using game design and role play to learn about professional ethics. In ASCILITE 2007 - The Australasian Society for Computers in Learning in Tertiary Education (pp. 251–255).; Exmeyer, P. C., y Boden, D. (2020). The 8-Bit Bureaucrat: Can Video Games Teach Us About Administrative Ethics? Public Integrity, 22(5), 409–424. https://doi.org/10.1080/10999922.2020.1731056; Ferrara, J. (2013). Games for Persuasion: Argumentation, Procedurality, and the Lie of Gamification. Games and Culture, 8(4), 289–304. https://doi.org/10.1177/1555412013496891; FitzGerald, R., y Groff, J. (2010). Leveraging digital games for moral development in education: A practitioner’s reflection. In Designing Games for Ethics: Models, Techniques and Frameworks (pp. 234–251). https://doi.org/10.4018/978-1-60960-120-1.ch015; Flanagan, M., Howe, D. C., y Nissenbaum, H. (2005). Values at play: Tradeoffs in socially-oriented game design. In CHI 2005: Technology, Safety, Community: Conference Proceedings - Conference on Human Factors in Computing Systems (pp. 751–760).; Fromm, E. (1956). The art of loving. Harper, New York.; Frondizi, R. (2001). ¿Qué son los valores? México D.F.: Fondo de Cultura Económica.; Fundación Pública Andaluza. (2015). Manual de cooperación empresarial. Andalucía.; Garaigordobil, M. (2008). Importancia del juego infantil en el desarrollo humano. In El juego como estrategia didáctica Claves para la innovación educativa (Editorial Laberinto, pp. 13–20). Caracas, Venezuela: Laberinto Educativo.; García, O. (2018). Canvas de diseño de juegos aplicados y gamificación. Barcelona.; Gerodetti, N., y Nixon, D. (2014). Students as producers: Designing games to teach social science research methods and ethics. In Proceedings of the European Conference on Games-based Learning (Vol. 1, pp. 143–150).; Gómez, M. C. (2010). Definición de un método para el diseño de juegos orientados al desarrollo de habilidades gerenciales como estrategia de entrenamiento empresarial. Universidad Nacional de Colombia. Retrieved from http://www.bdigital.unal.edu.co/1968/; Gómez, M. C. (2012). Método para el Diseño de Juegos Orientados al Desarrollo de Habilidades Gerenciales. In Juegos Gerenciales (pp. 39–58). Medellín: Universidad Nacional de Colombia.; González, A. (2000). Precisiones conceptuales al principio de equidad. Pensamiento Educativo, 26(julio), 15–29.; González, E. (2013). Formación ética de los profesionales. Forjando el interés desde la razón y la emoción. Revista Internacional de Organizaciones, 10, 21–40.; González, L. (2016). ¿Estamos obligados a tolerar acciones intolerantes? Ideas y Valores, (162), 87–102. https://doi.org/10.15446/ideasyvalores.v65n162.46137; Gray, D., Brown, S., y Macanufo, J. (2012). Gamestorming: 83 juegos para innovadores, inconformistas y generadores del cambio. España: Deusto.; Greco, M., Baldissin, N., y Nonino, F. (2013). An Exploratory Taxonomy of Business Games. Simulation and Gaming, 44(5), 645–682. https://doi.org/10.1177/1046878113501464; Griffin, R. W., y Ebert, R. J. (1997). Negocios. Prentice Hall.; Groh, F. (2012). Gamification: State of the Art Definition and Utilization. In Proceedings of the 4th Seminar on Research Trends in Media Informatics (pp. 39–46).; Guerrero, J., Madrigal, D. S., y Minkler, M. (2014). What is . . . ? A research ethics jeopardyTM game to help community partners understand human subjects protections and their importance. Progress in Community Health Partnerships: Research, Education, and Action, 8(3). https://doi.org/10.1353/cpr.2014.0042; Guerrero, M. E., y Gómez, D. A. (2013). Enseñanza de la ética y la educación moral, ¿permanecen ausentes de los programas universitarios? Moral and Ethical Issues: Are They the Missing Links in University Programs?, 15(1), 122–135. Retrieved from http://search.ebscohost.com/login.aspx?direct=trueydb=ehhyAN=89452883ylang=esysite=ehost-live; Hamari, J., Koivisto, J., y Sarsa, H. (2014). Does gamification work? - A literature review of empirical studies on gamification. In Proceedings of the Annual Hawaii International Conference on System Sciences (Vol. January, pp. 3025–3034). https://doi.org/10.1109/HICSS.2014.377; Harris, C., Davis, M., Pritchard, M. S., y Rabins, M. J. (1996). Engineering Ethics: What? Why? How? And When? Journal of Engineering Education.; Haywood, M. E., McMullen, D. A., y Wygal, D. E. (2004). _Using Games to Enhance Student Understanding of Professional and Ethical Responsibilities. Issues in Accounting Education, 19(1), 85–99.; Hernández-Álvarez, M. (2008). El concepto de equidad y el debate sobre lo justo en salud. Revista de Salud Pública, 10(1), 72–82.; Hernández-Jácquez, L. F. (2018). Perfil sociodemográfico y académico en estudiantes universitarios respecto a su autoeficacia académica percibida. Psicogente, 21(39), 35–49. https://doi.org/10.17081/psico.21.39.2820; Hernández, A. (2007). Estrategia y cooperación: una visión de la gestión desde el paradigma de la colaboración interfirmas. Revista Facultad de Ciencias Económicas: Investigación y Reflexión, XV(2), 113–129.; Hernández, R., Fernández-Collado, C., y Baptista, P. (2010). Metodología de la investigación. México: McGraw Hill. Retrieved from https://competenciashg.files.wordpress.com/2012/10/sampieri-et-al-metodologia-de-la-investigacion-4ta-edicion-sampieri-2006_ocr.pdf; Herreras, E. (2012). CORTINA, Adela: Neuroética y neuropolítica. Sugerencias para la educación moral. Daímon, Revista Internacional de Filosofía, (55), 201–202.; Hickey, C., y Robeyns, I. (2020). Planetary justice: What can we learn from ethics and political philosophy? Earth System Governance, 1–8. https://doi.org/10.1016/j.esg.2020.100045; Hirumi, A., y Stapleton, C. (2009). Applying Pedagogy during Game Development to Enhance Game-Based Learning. In Games: Purpose and Potential in Education (pp. 127–162). Boston, MA: Springer. https://doi.org/10.1007/978-0-387-09775-6; Hodhod, R., Kudenko, D., y Cairns, P. (2009). Serious games to teach ethics. In Adaptive and Emergent Behaviour and Complex Systems - Proceedings of the 23rd Convention of the Society for the Study of Artificial Intelligence and Simulation of Behaviour, AISB 2009 (pp. 43–52).; Hodhod, R., Kudenko, D., y Cairns, P. (2010). Adaptive interactive narrative model to teach ethics. International Journal of Gaming and Computer-Mediated Simulations, 2(4). https://doi.org/10.4018/jgcms.2010100101; Hugh-Jones, D. (2016). Honesty, beliefs about honesty, and economic growth in 15 countries. Journal of Economic Behavior y Organization, 127, 99–114.; Huizinga, J. (1954). Homo Ludens. Londres: Routledge y Kegan Paul. Retrieved from https://eva.udelar.edu.uy/pluginfile.php/1074698/mod_resource/content/3/Huizinga - Homo Ludens %281%29.pdf; Hummel, K., Pfaff, D., y Rost, K. (2016). Does Economics and Business Education Wash Away Moral Judgment Competence? Journal of Business Ethics 2016 150:2, 150(2), 559–577. https://doi.org/10.1007/S10551-016-3142-6; Hunicke, R., Leblanc, M., y Zubek, R. (2004). MDA: A Formal Approach to Game Design and Game Research. In AAAI Workshop - Technical Report 1 (pp. 1–5).; Huotari, K., y Hamari, J. (2011). “Gamification” from the perspective of service marketing. In CHI 2011. Vancouver, Canada. Retrieved from http://gamification-research.org/wp-content/uploads/2011/04/14-Huotari.pdf; Ibrahim, R., y Jaafar, A. (2009). Educational games (EG) design framework: Combination of game design, pedagogy and content modeling. Proceedings of the 2009 International Conference on Electrical Engineering and Informatics, ICEEI 2009, 1(August), 293–298. https://doi.org/10.1109/ICEEI.2009.5254771; ISO 26000. (2010). ISO 26000:2010(es): Guía de responsabilidad social. Retrieved June 12, 2020, from https://www.iso.org/obp/ui#iso:std:iso:26000:ed-1:v1:es; Iten, N., y Petko, D. (2016). Learning with serious games: Is fun playing the game a predictor of learning success? British Journal of Educational Technology, 47(1), 151–163. https://doi.org/10.1111/bjet.12226; Jagger, S., Siala, H., y Sloan, D. (2016). It’s All in the Game: A 3D Learning Model for Business Ethics. Journal of Business Ethics, 137(2). https://doi.org/10.1007/s10551-015-2557-9; James, H. S. (2015). Why do good people do bad things in business?: Lessons from research for responsible business managers. In International Business Ethics and Growth Opportunities (pp. 1–23). https://doi.org/10.4018/978-1-4666-7419-6.ch001; Janodia, M., Sreedhar, D., Ligade, V., y Udupa, N. (2008). Importance of Management Games in Classroom learning - A perspective. Pharmaceutical Reviews, 6(1).; Johnson, M. (2000). _Preventing Good People from Making Bad Decisions. The Quill, 88(8), 76–77.; Jonson, E. P., McGuire, L. M., y O’Neill, D. (2015). Teaching Ethics to Undergraduate Business Students in Australia: Comparison of Integrated and Stand-alone Approaches. Journal of Business Ethics, 132(2), 477–491. https://doi.org/10.1007/s10551-014-2330-5; Juul, J. (2010). The Game, the Player, the World: Looking for a Heart of Gameness. PLURAIS - Revista Multidisciplinar, 1(2).; Kafai, Y. B., y Burke, Q. (2015). Constructionist Gaming: Understanding the Benefits of Making Games for Learning. Educational Psychologist, 50(4), 313–334. https://doi.org/10.1080/00461520.2015.1124022; Kapp, K. M. (2012). The gamification of learning and instruction: game-based methods and strategies for training and education. San Francisco: Pfeiffer.; Kebritchi, M., y Hirumi, A. “2c.” (2008). Examining the pedagogical foundations of modern educational computer games. Computers y Education, 51(4), 1729–1743. https://doi.org/10.1016/j.compedu.2008.05.004; Khenissi, M. A., Essalmi, F., y Jemni, M. (2015). Comparison Between Serious Games and Learning Version of Existing Games. Procedia - Social and Behavioral Sciences, 191, 487–494. https://doi.org/10.1016/j.sbspro.2015.04.380; Kooij, K. van der, Hoogendoorn, E., Spijkerman, R., y Visch, V. (2015). Validation of games for behavioral change: connecting the playful and serious. International Journal of Serious Games, 2(3), 63–75.; Laamarti, F., Eid, M., y Saddik, A. El. (2014). An Overview of Serious Games. International Journal of Computer Games Technology, 1–15. https://doi.org/10.1155/2014/358152; Landers, R. N. (2014). Developing a Theory of Gamified Learning: Linking Serious Games and Gamification of Learning. Simulation y Gaming, 45(6), 752–768. https://doi.org/10.1177/1046878114563660; Lau, S. W., Tan, T. P. L., y Goh, S. M. (2013). Teaching Engineering Ethics using BLOCKS Game. Science and Engineering Ethics, 19(3), 1357–1373. https://doi.org/10.1007/s11948-012-9406-3; Lauche, K., Crichton, M., y Bayerl, P. S. (2009). Tactical decision games: Developing scenario-based training for decision-making in distributed teams. In NDM9, Ninth International Conference on Naturalistic Decision Making, London.; Lee, J., y Hammer, J. (2011). Gamification in Education: What, How, Why Bother?, 15(2). Retrieved from https://www.uwstout.edu/soe/profdev/resources/upload/Lee-Hammer-AEQ-2011.pdf; Lépinard, P. (2018). Blocs Minecraft et briques LEGO ® : complémentarité des modalités ludopédagogiques pour la construction des connaissances en management Blocs Minecraft et briques LEGO ® : complémentarité des modalités ludopédagogiques pour la construction des connaissanc. 2èmes Journées de Recherche Du Groupe MACCA Management, (Ea 2354), 1–23.; Lépinard, P., y Vandangeon-Derumez, I. (2019). Apprendre le management autrement : la ludopédagogie au service du développement des soft skills des étudiant·e·s. In XXVIIIe Conférence Internationale de Management Stratégique (pp. 11–14).; Liu, C.-C., Cheng, Y.-B., y Huang, C.-W. (2011). The effect of simulation games on the learning of computational problem solving. Computers y Education, 57(3), 1907–1918. https://doi.org/10.1016/j.compedu.2011.04.002; Lloyd, P., y Van De Poel, I. (2008). Designing games to teach ethics. Science and Engineering Ethics, 14(3), 433–447. https://doi.org/10.1007/s11948-008-9077-2; Londoño, L. M. (2014). Diseño de un juego para enseñar y reforzar las relaciones de confianza. Universidad Nacional de Colombia.; López, R. (2013). Ética profesional en la educación superior. Perfiles Educativos %7C, xxxv(142), 15–24.; Lorenzini, C., Faita, C., Barsotti, M., Carrozzino, M., Tecchia, F., y Bergamasco, M. (2015). ADITHO – A serious game for training and evaluating medical ethics skills. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9353). https://doi.org/10.1007/978-3-319-24589-8_5; Lozano, J.-F. (2014). Educating for ethical decision making: the contributions of Neuroethics. In csr trends. beyond business as usual (Janusz, Re, pp. 49–69). Łódź, Poland: centrum strategii i rozwoju impact (csr impact).; Luján Escalante, M. A., Büscher, M., Petersen, K., Kerasidou, X., Gradinar, A., y Alter, H. (2019). Isitethical? Board game playing with speculative ethics of IT innovation in disaster and risk management. In ACM International Conference Proceeding Series. https://doi.org/10.1145/3358961.3358962; Lúquez, P., Fernández, O., y Bustos, C. (2014). Formación ética del estudiante universitario socialmente responsable. Omnia Año, 20(2), 120–134.; MacIntyre, A. (1996). Historia de la ética. Lectulandia.; Maddineshat, M., Yousefzadeh, M. R., Mohseni, M., Maghsoudi, Z., y Ghaffari, M. E. (2019). Teaching ethics using games: Impact on Iranian nursing students’ moral sensitivity. Indian Journal of Medical Ethics, 4(1), 14–20. https://doi.org/10.20529/IJME.2018.056; Marczewski, A. (2015). User types. In Even Ninja Monkeys Like to Play: Gamification, Game Thinking and Motivational Design (1st ed., pp. 65–80). CreateSpace Independent Publishing Platform.; Martínez, I., y Briones, A. (2004). La cooperación como una herramienta de aprendizaje: una aproximación empírica. In XIV Congreso de la Asociación Científica de Economía y Dirección de la Empresa (ACEDE). Murcia, España.; Martínez, J., Botero, N., y Saldarriaga, J. (2010). Características sociodemográficas de estudiantes universitarias y sus percepciones acerca de la equidad de género en Educación Superior. Revista Virtual Universidad Católica Del Norte, 30, 205–227. Retrieved from http://revistavirtual.ucn.edu.co/]; McCallum, S. (2012). Gamification and serious games for personalized health. Studies in Health Technology and Informatics, 177(February), 85–96. https://doi.org/10.3233/978-1-61499-069-7-85; McWilliams, V., y Nahavandi, A. (2006). Using live cases to teach ethics. Journal of Business Ethics, 67(4), 421–433. https://doi.org/10.1007/s10551-006-9035-3; Medrano, N. (2005). El gran libro de los juegos de mesa. Buenos Aires: Ediciones Andrómeda.; Méndez-Medrano, C. G., Torres-Gangotena, M. W., y Camatón-Arizábal, S. B. (2018). Importancia de la ética en la Educación Superior. Dominio de Las Ciencias, 4(2), 215–223. https://doi.org/10.23857/dc.v4i2.802; Mestre, A. (2008). La ética de la responsabilidad según Robert Spaemann. Universitas, Revista de Ciencias Sociales y Humanas, (10), 233–257.; Michael, D. R. ., y Chen, S. (2006). Serious games: Games that educate, train, and inform. Boston, MA: Thomson Course Technology.; Ministerio de Educación Nacional. (2019). Sistema Nacional de Información de la Educación Superior. Retrieved October 2, 2019, from https://snies.mineducacion.gov.co/consultasnies/institucion#; Ministerio de Educación Nacional de Colombia. (2019). Sistema educativo colombiano. Retrieved May 30, 2019, from https://www.mineducacion.gov.co/1759/w3-article-233839.html?_noredirect=1; Mitgutsch, K., y Alvarado, N. (2012). Purposeful by design?: a serious game design assessment framework. In Proceedings of the International Conference on the Foundations of Digital Games (FDG ’12) (pp. 121–128). New York, NY, USA: ACM. https://doi.org/10.1145/2282338.2282364; Moënne, K. (2010). El concepto de la solidaridad. Revista Chilena de Radiología, 16(2), 51.; Mogrovejo, A. B., Mamani, G., y Tipo, M. L. (2019). Game and Simulation of Television Contest Programs as a Didactic Technique to Improve the Learning of English Vocabulary in Spanish-Speaking Students. Información Tecnológica, 30(1), 225–236. https://doi.org/10.4067/S0718-07642019000100225; Moreno-Ger, P., Burgos, D., Martínez-Ortiz, I., Sierra, J. L., y Fernández-Manjón, B. (2008). Educational game design for online education. Computers in Human Behavior, 24(6), 2530–2540. https://doi.org/10.1016/j.chb.2008.03.012; Nadolski, R. J., Hummel, H. G. K., van den Brink, H. J., Hoefakker, R. E., Slootmaker, A., Kurvers, H. J., y Storm, J. (2008). EMERGO: A methodology and toolkit for developing serious games in higher education. Simulation and Gaming, 39(3), 338–352. https://doi.org/10.1177/1046878108319278; Nallar, D. (2019). Game Design Canvas: Una herramienta para el diseño de juegos. Retrieved March 17, 2020, from www.gamedesignla.com; Nay, J. L., y Zagal, J. P. (2017). Meaning without consequence: Virtue ethics and inconsequential choices in games. In ACM International Conference Proceeding Series (Vol. Part F1301). https://doi.org/10.1145/3102071.3102073; Newbery-Jones, C. (2016). Ethical experiments with the D-pad: Exploring the potential of video games as a phenomenological tool for experiential legal education. Law Teacher, 50(1). https://doi.org/10.1080/03069400.2016.1146465; Nino, C. S. (1993). Justicia. Doxa. Cuadernos de Filosofía Del Derecho, (14), 61–74. https://doi.org/10.14198/doxa1993.14.04; O’Boyle, E. J., y Sandonà, L. (2014). Teaching Business Ethics Through Popular Feature Films: An Experiential Approach. Journal of Business Ethics, 121(3), 329–340. https://doi.org/10.1007/s10551-013-1724-0; O’Brien, D., Lawless, K. A., y Schrader, P. G. (2010). A taxonomy of educational games. In Gaming for Classroom-Based Learning: Digital Role Playing as a Motivator of Study (Baek, Y., pp. 1–23). https://doi.org/doi:10.4018/978-1-61520-713-8.ch001; OECD. (2015). Manual de Frascati 2015. OECD. https://doi.org/10.1787/9789264239012-en; Olvera, J., y Arellano, D. (2015). El concepto de equidades y sus contradicciones: la política social mexicana. Revista Mexicana de Sociología, 77(4), 581–609. Retrieved from http://www.scielo.org.mx/pdf/rms/v77n4/0188-2503-rms-77-04-00581.pdf; Ordóñez, C. (2004). Pensar pedagógicamente desde el constructivismo. Revista de Estudios Sociales, (19), 7–12.; Otero, M. (2016). La responsabilidad moral. Una lectura crítica de R. Dworkin. Anuario de Filosofía Del Derecho, 2016(Xxxii), 451–474.; Ouariachi, T., Gutiérrez-Pérez, J., y Olvera-Lobo, M.-D. (2017). Criterios de evaluación de juegos en línea sobre cambio climático. Revista Mexicana de Investigación Educativa, 22(73), 445–474.; Paba, C. (2011). Identificación y caracterización de los estudiantes universitarios con talento científico. Psicogente, 14(25), 13–26. Retrieved from http://www.unisimonbolivar.edu.co/rdigital/psicogente/index.php/psicogente; Páez, M. M. (2013). Acercamiento teórico al concepto de solidaridad. Realitas Revista de Ciencias Sociales, Humanas y Artes, 1(1), 42–50.; Paracha, S., Jehanzeb, S., y Yoshie, O. (2015). A Serious Game for Inculcating Islamic Values in Children. In Proceedings - 2013 Taibah University International Conference on Advances in Information Technology for the Holy Quran and Its Sciences, NOORIC 2013 (pp. 172–177). https://doi.org/10.1109/NOORIC.2013.44; Pavlas, D., Bedwell, W., Wooten, S. R., Heyne, K., y Salas, E. (2009). Investigating The Attributes in Serious Games That Contribute to Learning. Proceedings of the Human Factors and Ergonomics Ssociety 53rd Annual Meeting—2009, 1999–2003. https://doi.org/10.1518/107118109X12524444845036; Pereira, G., Brisson, A., Prada, R., Paiva, A., Bellotti, F., Kravcik, M., y Klamma, R. (2012). Serious games for personal and social learning y ethics: Status and trends. In Procedia Computer Science. https://doi.org/10.1016/j.procs.2012.10.058; Pérez-Contreras, B., González-Otero, K., y Polo-Bolaño, Y. (2018). Perfil sociodemográfico y económico de estudiantes universitarios. Búsqueda, 5(20), 48–62. https://doi.org/10.21892/01239813.391; Perrotta, C., Featherstone, G., Aston, H., Houghton, E., Perrotta, C., Featherstone, G., … Houghton, E. (2013). Game-based learning: latest evidence and future directions. The NFER Research Programme. Retrieved from www.nfer.ac.uk; Pherez, G., Vargas, S., y Jerez, J. (2018). Neuroaprendizaje, una propuesta educativa: herramientas para mejorar la praxis del docente. Civilizar Ciencias Sociales y Humanas, 18(34), 149–166. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttextypid=S1657-89532018000100149ylang=es%0Ahttp://www.scielo.org.co/pdf/ccso/v18n34/1657-8953-ccso-18-34-00149.pdf; Prieto, R., López, J. R., Medina-Medina, N., Paderewski, P., y Gutiérrez-Vela, F. L. (2017). Design methodology for educational games based on graphical notations: Designing Urano. Entertainment Computing, 18, 1–14. https://doi.org/10.1016/j.entcom.2016.08.005; Prieto, R., y Medina-Medina, N. (2017). A Comprehensive Taxonomy for Serious Games. Journal of Educational Computing Research, 55(5), 629–672. https://doi.org/10.1177/0735633116681301; PRO Universitarios. (2018). Perfil del Estudiante Universitario. Retrieved July 5, 2019, from http://pro-universitarios.com/encuesta2018/#intro; Quintana, Y., y García, O. (2017). Serious games for health. Barcelona: Editoria Gedisa S.A.; Raphael, C., Bachen, C., Lynn, K.-M., Baldwin-Philippi, J., y McKee, K. A. (2010). Games for civic learning: A conceptual framework and agenda for research and design. Games and Culture, 5(2), 199–235. https://doi.org/10.1177/1555412009354728; Ratan, R., y Ritterfeld, U. (2009). Classifying Serious Games. In U. Ritterfeld, M. Cody, y P. Vorderer (Eds.), Serious Games: Mechanisms and Effects (pp. 10–24). New York/London: Routledge.; Real Academia Española. (2020). Definiciones. Retrieved April 2, 2020, from http://dle.rae.es/?w=juego; Rego, P., Moreira, P. M., y Reis, L. P. (2010). Serious Games for Rehabilitation: A survey and a classification towards a taxonomy. Proceedings of the 5th Iberian Conference on Information Systems and Technologies, CISTI 2010, (February 2014).; Reiss, S. (2000). Who Am I? The 16 basic desires that motivate our actions and define our personalities. New York: The Berkley Publishing Group.; Revista Dinero. (2019). Cómo va el proceso de Interbolsa. Retrieved December 11, 2019, from https://www.dinero.com/pais/articulo/como-va-el-proceso-de-interbolsa/279049; Revista Semana. (2012). La verdad sobre la comisionista InterBolsa. Retrieved May 11, 2017, from http://www.semana.com/nacion/articulo/la-verdad-sobre-comisionista-interbolsa/267355-3; Riemer, V., y Schrader, C. (2015). Learning with quizzes, simulations, and adventures: Students’ attitudes, perceptions and intentions to learn with different types of serious games. Computers y Education, 88, 160–168. https://doi.org/10.1016/j.compedu.2015.05.003; Robbins, S. P. (1997). La administración en el mundo de hoy. Pearson Educación.; Robson, K., Plangger, K., Kietzmann, J. H., McCarthy, I., y Pitt, L. (2015). Is it all a game? Understanding the principles of gamification. Business Horizons, 58(4), 411–420. https://doi.org/10.1016/j.bushor.2015.03.006; Rodríguez-Burgos, K., Martínez, A. A., y Rodríguez-Serpa, F. A. (2017). Estudio empírico sobre los valores democráticos de tolerancia y respeto en la generación milenaria. Justicia, 31, 135–150. https://doi.org/10.17081/just.22.31.2603; Rodríguez, E. (2001). El sembrador de valores. Mexico: El Cid Editor.; Rodríguez, M. P. (2006). Ética gerencial: Comportamientos éticos de los gerentes que más valoran los empleados en Colombia. Revista Universidad EAFIT, 42(143), 41–54.; Rodríguez, M. P. (2008). Formación gerencial en valores. Conceptos y Prácticas. Manizales: Universidad Nacional de Colombia.; Rooney, P. (2012). A Theoretical Framework for Serious Game Design: Exploring Pedagogy, Play and Fidelity and their Implications for the Design Process. International Journal of Game-Based Learning, 2(4), 41–60. https://doi.org/10.4018/ijgbl.2012100103; Ruiz, J. (2018). La narrativa en los videojuegos. Retrieved January 15, 2021, from https://www.doblandotentaculos.com/2018/07/18/narrativa-videojuegos/; Sadowski, J., Seager, T. P., Selinger, E., Spierre, S. G., y Whyte, K. P. (2013). An Experiential, Game-Theoretic Pedagogy for Sustainability Ethics. Science and Engineering Ethics, 19(3). https://doi.org/10.1007/s11948-012-9385-4; Salazar, F., y Sánchez, S. J. (2017). Concepciones de la cooperación social: Weber y Mises. Iustitia, (15), 85–105. https://doi.org/10.15332/iust.v0i15.2087; Salen, K., y Zimmerman, E. (2004). Rules of Play: Game Design Fundamentals. The MIT Press.; Sanchez, A. (1984). Ética (4a Edición). Barcelona: Editoria Crítica. Retrieved from http://ifdc6m.juj.infd.edu.ar/aula/archivos/repositorio/500/535/ETICA_Sanchez-Vazquez-Adolfo.pdf; Sauvé, L., Renaud, L., y Gauvin, M. (2009). Une analyse des écrits sur les impacts du jeu sur l’apprentissage. Revue Des Sciences de l’éducation, 33(1), 89–107.; Sawyer, B. (2007). The “Serious Games” Landscape. In the Instructional y Research Technology Symposium for Arts, Humanities and Social Sciences. Camden, USA.; Sawyer, B., y Smith, P. (2008). Serious Games Taxonomy (pp. 1–54). Retrieved from www.gamesforhealth.org; Schell, J. (2008). The art of game design: A book of lenses. Burlington, MA: Morgan Kaufmann Publishers.; Schiffman, L. G., Lazar Kanuk, L., y Wisenblit, J. (2010). Comportamiento del consumidor (10th ed.). Prentice Hall.; Schrier, K. (2015). EPIC: a framework for using video games in ethics education. Journal of Moral Education, 44(4). https://doi.org/10.1080/03057240.2015.1095168; Schrier, K. (2017). Designing Games for Moral Learning and Knowledge Building. Games and Culture, 14(4), 306–343. https://doi.org/10.1177/1555412017711514; Seijo, C. (2009). Los valores desde las principales teorías axiológicas: Cualidades apriorísticas e independientes de las cosas y los actos humanos. Clío América, 3(6), 152–164. https://doi.org/10.21676/23897848.388; Sekerka, L., y Marar, M. (2019). Respect as a Moral Response to Workplace Incivility. Philosophy of Management, 18, 249–271. https://doi.org/https://doi.org/10.1007/s40926-019-00113-0; Shaikh, S. H., Mansur, N., y Abdullah, Z. (2012). Analyzing the issue of respect and trust: determining the mediating role of religion. Social and Behavioral Sciences, 58, 614–623.; Shalvi, S., Eldar, O., y Bereby-Meyer, Y. (2012). Honesty Requires Time (and Lack of Justifications). Psychological Science, 23(10), 1264–1270. https://doi.org/10.1177/0956797612443835; Sharkasi, N. (2010). The Doctor Will Be You Now: A Case Study on Medical Ethics and Role-Play. In Designing Games for Ethics: Models, Techniques and Frameworks (pp. 275–290). https://doi.org/10.4018/978-1-60960-120-1.ch017; Sicart, M. (2008). Defining Game Mechanics. Game Studies: The International Journal of Computer Game Research, 8(2). Retrieved from http://gamestudies.org/0802/articles/sicart; Sicart, M. (2010). Values between Systems: Designing Ethical Gameplay. In Ethics and game design: Teaching values through play (p. 367). New York: Information Science Reference.; Sigmund, K. (2013). The basis of morality: Richard Alexander on indirect reciprocity. International Institute for Applied Systems Analysis. Austria. Retrieved from www.iiasa.ac.at; Silva, F. G. M. (2020). Practical methodology for the design of educational serious games. Information (Switzerland), 11(1), 1–13. https://doi.org/10.3390/info11010014; Smith-Robbins, S. (2011). “This Game Sucks”: How to Improve the Gamification of Higher Education; (New Horizons).; Song, M., y Zhang, S. (2008). EFM: A model for educational game design. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5093 LNCS, 509–517. https://doi.org/10.1007/978-3-540-69736-7_54; Soto, E., y Cárdenas, J. A. (2007). Ética en las Organizaciones. México. Editorial Mc Graw Hill.; Sparrow, L. A., Gibbs, M., y Arnold, M. (2020). Ludic Ethics: The Ethical Negotiations of Players in Online Multiplayer Games. Games and Culture. https://doi.org/10.1177/1555412020971534; Steinkuehler, C., y Simkins, D. W. (2008). Critical ethical reasoning and role-play. Games and Culture, 3(3–4). https://doi.org/10.1177/1555412008317313; Stenros, J. (2017). The Game Definition Game: A Review. Games and Culture, 12(6), 499–520. https://doi.org/10.1177/1555412016655679; Tamayo, L. G., Zuluaga, A., y Gómez, R. A. (2017). La ética, el diseño y la capacidad de innovación en las PYME en Colombia. In La ética organizacional y la ingeniería (pp. 59–78).; Teixes, F. (2014). Gamificación: Fundamentos y aplicaciones. Barcelona: Editorial UOC.; Thiry-Cherques, H. R. (2003). Responsabilidade moral e identidad empresarial. Revista de Administração Contemporânea, 7(spe), 31–50. https://doi.org/10.1590/s1415-65552003000500003; Toledano, R. (2009). La equidad como principio y política social. Análisis de sus implicaciones en educación básica. Tiempo de Educar, 10(20), 307–347. Retrieved from https://www.redalyc.org/pdf/311/31112987003.pdf; Toro, J., y Rodríguez, M. del P. (2017). Formación en Ética en las Organizaciones: Revisión de la Literatura. Información Tecnológica, 28(2), 167–180. https://doi.org/10.4067/S0718-07642017000200018; Torres, J. R. (1985). El concepto de tolerancia. Revista de Estudios Jurídicos, (48), 105–134. https://doi.org/10.2307/3538491; Touriñán, J. (2007). Valores y convivencia ciudadana: una responsabilidad de formación compartida y derivada. Bordón. Revista de Pedagogía, 59(2), 261–311.; Transparencia Internacional. (2021). Índice de percepción de la corrupción 2020. Transparency International. Retrieved from www.transparency.org/cpi; Universidad del Área Andina. (2005). Caracterización de los estudiantes de una Institución de educación superior de Pereira. Investigaciones Andina, 7(10), 10–16. Retrieved from http://www.redalyc.org/articulo.oa?id=239017675003; Vadi, M., y Jaakson, K. (2006). The importance of value honest: Determining factors. University of Tartu. Tartu University Press.; Valdés-Cuervo, Á.-A., Vera-Noriega, J.-Á., Carlos-Martínez, E.-A., y Estévez-Nenninger, E.-H. (2013). Perfiles de estudiantes de posgrado en ciencias e ingeniería en Sonora. Revista Iberoamericana de Educación Superior, IV(10), 22–39.; Valencia, S., Rojas, M., y Vera, E. (2018). Revisión de Formación Ética en La Universidad Nacional de Colombia , Sede Medellín. En Contexto. Revista de Investigacion En Administración, Contabilidad, Economía y Sociedad, 6(9), 1–5.; Vanden Abeele, V., De Schutter, B., Geurts, L., Desmet, S., Wauters, J., Husson, J., … Geerts, D. (2012). P-III: A player-centered, iterative, interdisciplinary and integrated framework for serious game design and development. Communications in Computer and Information Science, 280 CCIS(March 2014), 82–86. https://doi.org/10.1007/978-3-642-33814-4_14; Velásquez, J. D. (2014a). Una Guía Corta para Escribir Revisiones Sistemáticas de Literatura 3. DYNA (Colombia), 82(189), 9–12. https://doi.org/http://dx.doi.org/10.15446/dyna.v82n189.48931; Velásquez, J. D. (2014b). Una guía corta para escribir revisiones sistemáticas de literatura parte 1. DYNA (Colombia), 81(187), 9–10. https://doi.org/10.15446/dyna.v82n189.48931; Velásquez, J. D. (2015). Una guía corta para escribir revisiones sistemáticas de literatura parte 4. DYNA (Colombia), 82(190), 9–12. https://doi.org/10.15446/dyna.v82n190.49511; Velásquez, M. (2012). Éitca en los negocios: Conceptos y casos (Séptima). Mexico: Pearson Educación.; Veziridis, S., Karampelas, P., y Lekea, I. (2017). Learn by playing: A serious war game simulation for teaching military ethics. In IEEE Global Engineering Education Conference, EDUCON (pp. 920–925). https://doi.org/10.1109/EDUCON.2017.7942958; Villegas, G., y Toro, J. (2010). La igualdad y la equidad: Dos concepciones clave en al agenda de trabajo de los profesionales de la familia. Revista Latinoamericana de Estudios Familiares, 2, 98–116.; Vossen, D. P. (2004). The Nature and Classification of Games. Avante, 10(1), 53–68.; Waiyakoon, S., Khlaisang, J., y Koraneekij, P. (2015). Development of an Instructional Learning Object Design Model for Tablets Using Game-based Learning with Scaffolding to Enhance Mathematical Concepts for Mathematic Learning Disability Students. Procedia - Social and Behavioral Sciences, 174, 1489–1496. https://doi.org/10.1016/j.sbspro.2015.01.779; Wattanasoontorn, V., Boada, I., García, R., y Sbert, M. (2013). Serious games for health. Entertainment Computing (Vol. 4). https://doi.org/10.1016/j.entcom.2013.09.002; Weber, J. (1990). Measuring the impact of teaching ethics to future managers: A review, assessment, and recommendations. Journal of Business Ethics 1990 9:3, 9(3), 183–190. https://doi.org/10.1007/BF00382643; Wells, D. D., y Molina, A. D. (2017). The truth about honesty. Journal of Public and Nonprofit Affairs, 3(3), 292–308. https://doi.org/10.20899/jpna.3.3.292-308; Werbach, K., y Hunter, D. (2012). For the Win: How Game Thinking Can Revolutionize Your Business (1ts Editio). Philadelphia-Pennsylvania: Wharton Digital Press. Retrieved from https://fliphtml5.com/ndhs/wtqf; Westera, W., Nadolski, R. J., Hummel, H. G. K., y Wopereis, I. G. J. H. (2008). Serious games for higher education: A framework for reducing design complexity. Journal of Computer Assisted Learning, 24(5), 420–432. https://doi.org/10.1111/j.1365-2729.2008.00279.x; Wilson, C. C., Netting, F. E., y Henderson, S. K. (1988). Gaming as a method for learning to resolve ethical dilemmas in long term care. Health Education, 19(1). https://doi.org/10.1080/00970050.1988.10614536; Wilson, K. A., Bedwell, W. L., Lazzara, E., Salas, E., Burke, S. C., Estock, J. L., … Conkey, C. (2009). Relationships between game attributes and learning outcomes: Review and research proposals. Simulation and Gaming, 40(2), 217–266. https://doi.org/10.1177/1046878108321866; Witte, A. E., y Daly, P. (2014). Proverbial wisdom - A “serious” international business game. Journal of International Education in Business, 7(1). https://doi.org/10.1108/JIEB-12-2012-0029; Wolfe, J., y Fritzsche, D. J. (1998). Teaching business ethics with management and marketing games. Simulation and Gaming, 29(1), 44–59. https://doi.org/10.1177/1046878198291005; Xenos, M., y Velli, V. (2020). A Serious Game for Introducing Software Engineering Ethics to University Students. Advances in Intelligent Systems and Computing (Vol. 916). https://doi.org/10.1007/978-3-030-11932-4_55; Yusoff, A., Crowder, R., Gilbert, L., y Wills, G. (2009). A conceptual framework for serious games. Proceedings - 2009 9th IEEE International Conference on Advanced Learning Technologies, ICALT 2009, (April 2014), 21–23. https://doi.org/10.1109/ICALT.2009.19; Zambrano, E. (2007). El valor de la ética para alcanzar la excelencia en la gerencia universitaria. Revista Negotium / Ciencias Gerenciales, 3(8), 30–63. Retrieved from http://www.redalyc.org/articulo.oa?id=78230803; Žavcer, G., Mayr, S., y Petta, P. (2014). Design pattern Canvas: An introduction to unified serious game design patterns. Interdisciplinary Description of Complex Systems, 12(4), 280–292. https://doi.org/10.7906/indecs.12.4.2; Zyda, M. (2005). From Visual Simulation to Virtual Reality to Games. Computer, 38(9), 25–32.; https://repositorio.unal.edu.co/handle/unal/80053; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
15
Authors: et al.
Contributors: et al.
Subject Terms: 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería, Industria 4.0, Análisis de datos, Calidad de la energía, Computación en la nube, Internet de las cosas, Prácticas de laboratorio, Protocolos de comunicación, Cloud computing, Communication protocols, Data analysis, Industry 4.0, Internet of Things (IoT), Laboratory practices, Power quality, Energía eléctrica, Electric power
File Description: xvii, 125 páginas; application/pdf
Relation: Aceto, G., Persico, V., & Pescapé, A. (2020). Industry 4.0 and Health: Internet of Things, Big Data, and Cloud Computing for Healthcare 4.0. Journal of Industrial Information Integration, 18, 100129. https://doi.org/10.1016/j.jii.2020.100129; Almada-Lobo, F. (2016). The Industry 4.0 revolution and the future of Manufacturing Execution Systems (MES). Journal of Innovation Management, 3(4), 16–21. https://doi.org/10.24840/2183-0606_003.004_0003; ANDI. (2019). Informe de la Encuesta de Transformación Digital 2019.; Asociación Colombiana de Ingenieros (ACIEM). (2015). Manual de Referencia de Tarifas de Ingeniería (Tercera).; Assante, D., Caforio, A., Flamini, M., & Romano, E. (2019). Smart Education in the context of Industry 4.0. 2019 IEEE Global Engineering Education Conference (EDUCON), 1140–1145. https://doi.org/10.1109/EDUCON.2019.8725057; Assante, D., Castro, M., Hamburg, I., & Martin, S. (2016). The Use of Cloud Computing in SMEs. Procedia Computer Science, 83, 1207–1212. https://doi.org/10.1016/j.procs.2016.04.250; Assante, D., Fornaro, C., Weitschek, E., Castro, M., Martin, S., Hamburg, I., Owens, A., Gallo, R. T., Konstantinou, K., Spyros, S., Pascoal, A., Reis, C., Spatafora, M., & Cotovanu, A. M. (2017). Smart open online tool for adaptive education on Cloud Computing. 2017 IEEE Global Engineering Education Conference (EDUCON), 1183–1186. https://doi.org/10.1109/EDUCON.2017.7942998; Assante, D., Romano, E., Flamini, M., Castro, M., Martin, S., Lavirotte, S., Rey, G., Leisenberg, M., Migliori, M. O., Bagdoniene, I., Gallo, R. T., Pascoal, A., & Spatafora, M. (2018). Internet of Things education: Labor market training needs and national policies. 2018 IEEE Global Engineering Education Conference (EDUCON), 1846–1853. https://doi.org/10.1109/EDUCON.2018.8363459; Ayneto Gubert, X. (2019). La industria 4.0, el nuevo motor de la innovación industrial. Dirección y Organización, 69, 99–110. https://doi.org/10.37610/dyo.v0i69.563; Bajic, B., Rikalovic, A., Suzic, N., & Piuri, V. (2021). Industry 4.0 Implementation Challenges and Opportunities: A Managerial Perspective. IEEE Systems Journal, 15(1), 546–559. https://doi.org/10.1109/JSYST.2020.3023041; Baygin, M., Yetis, H., Karakose, M., & Akin, E. (2016). An effect analysis of industry 4.0 to higher education. 2016 15th International Conference on Information Technology Based Higher Education and Training (ITHET), 1–4. https://doi.org/10.1109/ITHET.2016.7760744; Benesova, A., Hirman, M., Steiner, F., & Tupa, J. (2018). Analysis of Education Requirements for Electronics Manufacturing within Concept Industry 4.0. 2018 41st International Spring Seminar on Electronics Technology (ISSE), 1–5. https://doi.org/10.1109/ISSE.2018.8443681; Biswas, A. R., & Giaffreda, R. (2014). IoT and cloud convergence: Opportunities and challenges. 2014 IEEE World Forum on Internet of Things (WF-IoT), 375–376. https://doi.org/10.1109/WF-IoT.2014.6803194; Brito, C. R., Ciampi, M. M., Feldgen, M., Clua, O., Santos, H. D., & Barros, V. A. (2020). Plenary: The Challenges of Education in Engineering, Computing and Technology without exclusions: Innovation in the era of the Industrial Revolution 4.0. 2020 IEEE World Conference on Engineering Education (EDUNINE), 1–3. https://doi.org/10.1109/EDUNINE48860.2020.9149488; Calderon, R. R., & Izquierdo, R. B. (2020). Machines for Industry 4.0 in Higher Education. 2020 IEEE World Conference on Engineering Education (EDUNINE), 1–4. https://doi.org/10.1109/EDUNINE48860.2020.9149501; Caratozzolo, P., Lara-Prieto, V., Martinez-Leon, C., Rodriguez-Ruiz, J., Ponce, R., Vazquez-Villegas, P., & Membrillo-Hernandez, J. (2022). Developing Skills for Industry 4.0: Challenges and Opportunities in Engineering Education. 2022 IEEE Frontiers in Education Conference (FIE), 1–5. https://doi.org/10.1109/FIE56618.2022.9962444; Carvajal Rojas, J. H. (2017). La Cuarta Revolución Industrial o Industria 4.0 y su Impacto en la Educación Superior en Ingeniería en Latinoamérica y el Caribe. 15th LACCEI International Multi-Conference for Engineering, Education, and Technology.; Cespedes Cubides, A. S., & Gualdron, E. B. (2020). Implementación de SCADA a través del protocolo MQTT. 2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA), 1–5. https://doi.org/10.1109/CIIMA50553.2020.9290302; Chacón-Ramírez, E. A., Cardillo-Albarrán, J. J., & Uribe-Hernández, J. (2020). Industria 4.0 en América Latina: Una ruta para su implantación. Revista Ingenio, 17(1), 28–35. https://doi.org/10.22463/2011642X.2386; Chen, J., & Zhou, J. (2018). Revisiting Industry 4.0 with a Case Study. 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 1928–1932. https://doi.org/10.1109/Cybermatics_2018.2018.00319; Chevalier, A., Copot, C., Ionescu, C., & De Keyser, R. (2017). A Three-Year Feedback Study of a Remote Laboratory Used in Control Engineering Studies. IEEE Transactions on Education, 60(2), 127–133. https://doi.org/10.1109/TE.2016.2605080; Chituc, C.-M. (2022). An Analysis of Technical Challenges for Education 4.0 and Digital Education Ecosystems. 2022 IEEE German Education Conference (GeCon), 1–5. https://doi.org/10.1109/GeCon55699.2022.9942758; Ciffolilli, A. (2016, octubre 14). Dove l’Italia ha un vantaggio nella tecnologia. https://www.lavoce.info/archives/43334/italia-in-vantaggio-nelle-tecnologie-abilitanti/; Ciffolilli, A., & Muscio, A. (2018). Industry 4.0: national and regional comparative advantages in key enabling technologies. European Planning Studies, 26(12), 2323–2343. https://doi.org/10.1080/09654313.2018.1529145; Cisco Systems NetFlow Services Export Version 9. (2004). https://doi.org/10.17487/rfc3954; RESOLUCIÓN CREG 108 DE 1997, Pub. L. No. CREG 108 DE 1997 (1997).; RESOLUCIÓN CREG 015 DE 2018, Pub. L. No. CREG 015 DE 2018 (2018).; RESOLUCIÓN CREG 038 DE 2018, Pub. L. No. CREG 038 DE 2018 (2018).; RESOLUCIÓN CREG 199 DE 2019, Pub. L. No. CREG 199 DE 2019 (2019).; Corallo, A., Lazoi, M., & Lezzi, M. (2020). Cybersecurity in the context of industry 4.0: A structured classification of critical assets and business impacts. Computers in Industry, 114, 103165. https://doi.org/10.1016/j.compind.2019.103165; da Silva Lisboa, F. G., Bigetti Guergoletto, G., & Zazula Beatriz, M. (2021). Industria 4.0 en la educación profesional en el Estado de Paraná: Análisis de los cursos de educación superior Senai-Brasil. Universidad Politécnica de Cartagena.; de Jesus Muriel-Perea, Y., Rodriguez Bernal, L. P., Galeano Camacho, E. G., Diaz-Piraquive, F. N., Acero Lopez, N. J., Acero Lopez, M. R., Alvarez Arteaga, L. M., Vargas Moreno, W. P., & Cantor Lopez, L. C. (2019). Impact of the Fourth Industrial Revolution in the Productivity of Public Enterprises of National Level in Colombia. 2019 Congreso Internacional de Innovación y Tendencias en Ingenieria (CONIITI ), 1–6. https://doi.org/10.1109/CONIITI48476.2019.8960870; Dimitris Paraskevopoulos. (2023, junio 21). Mapping 7,000 global cloud projects: AWS vs. Microsoft vs. Google vs. Oracle vs. Alibaba. IOT ANALYTICS. https://iot-analytics.com/global-cloud-projects/; Dueñas Ramírez, L. M., & Villegas López, G. A. (2020a). Computer science development and technologies associated with industry 4.0 applied to industrial maintenance in Colombia. Journal of Physics: Conference Series, 1513(1), 012002. https://doi.org/10.1088/1742-6596/1513/1/012002; Dueñas Ramírez, L. M., & Villegas López, G. A. (2020b). Technological advances in computer science that define maintenance concerns in industry 4.0 in Colombia. Journal of Physics: Conference Series, 1513(1), 012010. https://doi.org/10.1088/1742-6596/1513/1/012010; Dürkop, L., Imtiaz, J., Trsek, H., & Jasperneite, J. (2012). Service-oriented architecture for the autoconfiguration of real-time Ethernet systems. 3rd Annual Colloquium Communication in Automation (KommA).; Engineering Accreditation Commission. (2020, octubre 31). CRITERIA FOR ACCREDITING ENGINEERING PROGRAMS. www.abet.org.; Erez, N., & Wool, A. (2015). Control variable classification, modeling and anomaly detection in Modbus/TCP SCADA systems. International Journal of Critical Infrastructure Protection, 10, 59–70. https://doi.org/10.1016/j.ijcip.2015.05.001; Eyupoglu, C. (2019). Big Data in Cloud Computing and Internet of Things. 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 1–5. https://doi.org/10.1109/ISMSIT.2019.8932815; Digitization of Industrie – Plattform Industrie 4.0, Pub. L. No. DIN SPEC 91345., Federal Ministry for Economic Affairs and Energy (BMWi) (2016).; Feng, W. (2017). Industry 4.0: Advances of Germany’s manufacturing innovation (Extended abstract: Presentation-only). 2017 13th IEEE Conference on Automation Science and Engineering (CASE), 494–495. https://doi.org/10.1109/COASE.2017.8256152; Feria comercial líder mundial para la industria. (2011). Hannover Messe. https://www.hannovermesse.de/; Fu, R., Gao, F., Zeng, R., Hu, J., Luo, Y., & Qu, L. (2017). Big data and cloud computing platform for energy Internet. 2017 China International Electrical and Energy Conference (CIEEC), 681–686. https://doi.org/10.1109/CIEEC.2017.8388531; Garnero, P. (2018, septiembre 3). Industria 4.0, un informe sobre este desafio para Argentina. Banco Interamericano de Desarrollo. https://conexionintal.iadb.org/2018/09/03/industria-4-0-fabricando-el-futuro-3/; Garnica, A. (2020). Los retos de las Pymes en el contexto de la industria 4.0 : una revisión teórica (pp. 55–75).; Gokalp, M. O., Kayabay, K., Akyol, M. A., Eren, P. E., & Koçyiğit, A. (2016). Big Data for Industry 4.0: A Conceptual Framework. 2016 International Conference on Computational Science and Computational Intelligence (CSCI), 431–434. https://doi.org/10.1109/CSCI.2016.0088; Goldenberg, N., & Wool, A. (2013). Accurate modeling of Modbus/TCP for intrusion detection in SCADA systems. International Journal of Critical Infrastructure Protection, 6(2), 63–75. https://doi.org/10.1016/j.ijcip.2013.05.001; González-Hernández, I. J., Armas-Alvarez, B., Coronel-Lazcano, M., Maldonado-López, N., Vergara-Martínez, O., & Granillo-Macías, R. (2021). El desarrollo tecnológico en las revoluciones industriales. Ingenio y Conciencia Boletín Científico de la Escuela Superior Ciudad Sahagún, 8(16), 41–52. https://doi.org/10.29057/escs.v8i16.7118; Grodotzki, J., Ortelt, T. R., & Tekkaya, A. E. (2018). Remote and Virtual Labs for Engineering Education 4.0. Procedia Manufacturing, 26, 1349–1360. https://doi.org/10.1016/j.promfg.2018.07.126; Ground Electronics. (s/f). Medidor de Energía Multivariable Portátil. Ground Electronics. Recuperado el 9 de noviembre de 2023, de https://www.gndelectronics.com/epme/; SELECCIÓN Y CONEXIÓN DE EQUIPOS DEL SISTEMA DE MEDIDA DE ENERGÍA ELÉCTRICA, (2021).; Hormigo, J., & Rodriguez, A. (2019). Designing a Project for Learning Industry 4.0 by Applying IoT to Urban Garden. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 14(2), 58–65. https://doi.org/10.1109/RITA.2019.2922857; Hosseinian-Far, A., Ramachandran, M., & Slack, C. L. (2018). Emerging Trends in Cloud Computing, Big Data, Fog Computing, IoT and Smart Living. En Technology for Smart Futures (pp. 29–40). Springer International Publishing. https://doi.org/10.1007/978-3-319-60137-3_2; Ionescu, C. M., Fabregas, E., Cristescu, S. M., Dormido, S., & De Keyser, R. (2013). A Remote Laboratory as an Innovative Educational Tool for Practicing Control Engineering Concepts. IEEE Transactions on Education, 56(4), 436–442. https://doi.org/10.1109/TE.2013.2249516; Ishaq, M., Afzal, M. H., Tahir, S., & Ullah, K. (2021). A Compact Study of Recent Trends of Challenges and Opportunities in Integrating Internet of Things (IoT) and Cloud Computing. 2021 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), 1–4. https://doi.org/10.1109/ICECube53880.2021.9628191; K. Marcillo Parrales, E. Mero Lino, & M. Ortiz Hernández. (2021). Impresión 3d como eje de desarrollo en la industria 4.0. Serie Científica de la Universidad de las Ciencias Informáticas, 14(4), 151–160.; Kagermann, H., Anderl, R., Gausemeier, J., Schuh, G., Wahlster, W., & Winter, J. (2016). Industrie 4.0 in a Global Context: Strategies for Cooperating with International Partners (acatech STUDY).; Khan, M., Wu, X., Xu, X., & Dou, W. (2017). Big data challenges and opportunities in the hype of Industry 4.0. 2017 IEEE International Conference on Communications (ICC), 1–6. https://doi.org/10.1109/ICC.2017.7996801; Khare, S., & Totaro, M. (2019). Big Data in IoT. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1–7. https://doi.org/10.1109/ICCCNT45670.2019.8944495; Kizilkaya, B., Zhao, G., Sambo, Y. A., Li, L., & Imran, M. A. (2021). 5G-Enabled Education 4.0: Enabling Technologies, Challenges, and Solutions. IEEE Access, 9, 166962–166969. https://doi.org/10.1109/ACCESS.2021.3136361; Knud Lasse Lueth. (2023, julio 11). IoT solution development: Build, buy, or a bit of both? IOT ANALYTICS. https://iot-analytics.com/iot-solution-development/; Lee, S. J., Jung, A., & Yun, M. (2019). Creative Internet of Things (IoT) for Undergraduates. 2019 14th International Conference on Computer Science & Education (ICCSE), 567–572. https://doi.org/10.1109/ICCSE.2019.8845363; Lezzi, M., Lazoi, M., & Corallo, A. (2018). Cybersecurity for Industry 4.0 in the current literature: A reference framework. Computers in Industry, 103, 97–110. https://doi.org/10.1016/j.compind.2018.09.004; Lluna, A. (s/f). Industria 4.0 y Energía La Industria 4.0 en el sector del metal: la energía como eje transversal.; Losada-Gutierrez, C., Espinosa, F., Santos-Perez, C., Marron-Romera, M., & Rodriguez-Ascariz, J. M. (2020). Remote Control of a Robotic Unit: A Case Study for Control Engineering Formation. IEEE Transactions on Education, 63(4), 246–254. https://doi.org/10.1109/TE.2020.2975937; Maenpaa, H., Varjonen, S., Hellas, A., Tarkoma, S., & Mannisto, T. (2017). Assessing IOT Projects in University Education - A Framework for Problem-Based Learning. 2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering Education and Training Track (ICSE-SEET), 37–46. https://doi.org/10.1109/ICSE-SEET.2017.6; Maggi, C., Ramos Maldonado, M., & Vergara Guerra, R. (2020). Adopción de tecnologías digitales 4.0 por parte de pequeñas y medianas empresas manufactureras en la Región del Biobío (Chile). CEPAL.; Mahmud, R., Toosi, A. N., Ramamohanarao, K., & Buyya, R. (2020). Context-Aware Placement of Industry 4.0 Applications in Fog Computing Environments. IEEE Transactions on Industrial Informatics, 16(11), 7004–7013. https://doi.org/10.1109/TII.2019.2952412; Mahnke, W., & Leitner, S. (2009). Arquitectura OPC unificada. Revista ABB, 3, 56–61.; Manrique-Losada, B., Gómez-álvarez, M. C., & González-Palacio, L. (s/f). Transformation strategy for computer training: Towards the skills development in basic and secondary education for industry 4.0 in Medellín-Colombia [Estrategia de transformación para la formación en informática: Hacia el desarrollo de competencias en educación básica y media para la industria 4.0 en Medellín – Colombia]. Associacao Iberica de Sistemas e Tecnologias de Informacao. http://hdl.handle.net/11407/6041; Martínez Martínez, A., Álvarez, M., Garnica, A., Carrillo, J., Hualde, A., Taboada, E., Sámano, M., Salinas García, R., Gutiérrez, A., Isiordia Lachica, P., Rodriguez, R., & Valenzuela, A. (2020). Industria 4.0 en México. Elementos diagnósticos y puesta en práctica en sectores y empresas.; Matthieu Kulezak. (2022, marzo 15). The top 10 industrial software companies. IOT ANALYTICS. https://iot-analytics.com/industrial-software-companies/; Mejía Huidobro, M. A., Camacho Vera, A. D., & Marcelino Aranda, M. (2020). Estrategias del sector público y privado para la implementación de la Industria 4.0 en México. UPIICSA. Investigación Interdisciplinaria, 6(1).; Mellado Aceitón, J. E. (2020). El IOT-PLC : una nueva generación de controladores lógicos programables para la industria 4.0 [Pontificia Universidad Católica de Chile]. https://repositorio.uc.cl/handle/11534/50019; Mendoza Carrasco, M. S., Martí Audí, N., & Gracía Hernández, P. (2019). Design Thinking como metodología activa de aprendizaje. Aprendizaje, Innovación y Cooperación como impulsores del cambio metodológico, 539–544. https://doi.org/10.26754/CINAIC.2019.0110; Mendoza P., M. A., & Cuellar, S. (2020). Industry 4.0: Latin America SMEs Challenges. 2020 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI), 1–6. https://doi.org/10.1109/CONIITI51147.2020.9240428; Montesdeoca, J., & Rivera, F. (2023). STEM Education, a Powerful Tool on Industry 4.0. 2023 IEEE World Engineering Education Conference (EDUNINE), 1–4. https://doi.org/10.1109/EDUNINE57531.2023.10102824; Navarro, C., Quispe, C., Sotelo, F., & Barros, R. (2021). Analysis of Design Thinking activities as educational tool to promote critical thinking in university students. 2021 IEEE 1st International Conference on Advanced Learning Technologies on Education & Research (ICALTER), 1–4. https://doi.org/10.1109/ICALTER54105.2021.9675135; Naveen, S., & Kounte, M. R. (2019). Key Technologies and challenges in IoT Edge Computing. 2019 Third International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 61–65. https://doi.org/10.1109/I-SMAC47947.2019.9032541; Nguyen, T., Gosine, R. G., & Warrian, P. (2020). A Systematic Review of Big Data Analytics for Oil and Gas Industry 4.0. IEEE Access, 8, 61183–61201. https://doi.org/10.1109/ACCESS.2020.2979678; Ochiai, H., Nakagami, H., Teranishi, Y., & Esaki, H. (2014). Facility networking with IP over RS485: Packet control for master-slave cascaded networks. 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), 410–415. https://doi.org/10.1109/SmartGridComm.2014.7007681; Orive, D., López, A., Estévez Estévez, E., Orive, A., & Marcos, M. (2021). Desarrollo de gemelos digitales para la simulación e integración de activos de fabricación en la industria 4.0. En XLII JORNADAS DE AUTOMÁTICA : LIBRO DE ACTAS (pp. 709–716). Servizo de Publicacións da UDC. https://doi.org/10.17979/spudc.9788497498043.709; Profanter, S., Tekat, A., Dorofeev, K., Rickert, M., & Knoll, A. (2019). OPC UA versus ROS, DDS, and MQTT: Performance Evaluation of Industry 4.0 Protocols. 2019 IEEE International Conference on Industrial Technology (ICIT), 955–962. https://doi.org/10.1109/ICIT.2019.8755050; Pupo, F., & Simao, E. (2018, marzo 14). “Indústria 4.0” terá crédito de R$ 8,6 bi . Revista Valor. https://valor.globo.com/brasil/noticia/2018/03/14/industria-4-0-tera-credito-de-r-86-bi.ghtml; Rajeswari, S., Suthendran, K., & Rajakumar, K. (2017). A smart agricultural model by integrating IoT, mobile and cloud-based big data analytics. 2017 International Conference on Intelligent Computing and Control (I2C2), 1–5. https://doi.org/10.1109/I2C2.2017.8321902; Ramirez Mongui, J. de J., & Dávila Arias, J. Y. (2022). Hacia el mantenimiento basado en condición de los dispositivos inteligentes en la industria 4.0.; Rikalovic, A., Suzic, N., Bajic, B., & Piuri, V. (2021). Industry 4.0 Implementation Challenges and Opportunities: A Technological Perspective. IEEE Systems Journal, 1–14. https://doi.org/10.1109/JSYST.2021.3101673; Roblek, V., Meško, M., & Krapež, A. (2016). A Complex View of Industry 4.0. SAGE Open, 6(2), 215824401665398. https://doi.org/10.1177/2158244016653987; Rozo-García, F. (2020). Revisión de las tecnologías presentes en la industria 4.0. Revista UIS Ingenierías, 19(2), 177–191. https://doi.org/10.18273/revuin.v19n2-2020019; Sandoval Carrero, N. S., Acevedo Quintana, N. M., & Santos Jaimes, L. M. (2022). LINEAMIENTOS DESDE LA INDUSTRIA 4.0 A LA EDUCACIÓN 4.0: CASO TECNOLOGÍA IoT. REVISTA COLOMBIANA DE TECNOLOGIAS DE AVANZADA (RCTA), 1(39), 81–92. https://ojs.unipamplona.edu.co/ojsviceinves/index.php/rcta/article/view/1379; Satyajit Sinha. (2023, octubre 11). Telematics gateways: Driving the future and evolution of mobility. IOT ANALYTICS. https://iot-analytics.com/telematics-gateways-driving-future-evolution-of-mobility/; Schmitt, E., Britter, G., Pereira, R. D. A., & Frank, A. (2018, octubre). RUMO À INDÚSTRIA 4.0 - A TRANSFERÊNCIA DE INFORMAÇÃO DE UM ESCRITÓRIO DE PROJETOS DE ENGENHARIA. XXXVIII ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO.; Silveira Rocha, M., Serpa Sestito, G., Luis Dias, A., Celso Turcato, A., & Brandao, D. (2018). Performance Comparison Between OPC UA and MQTT for Data Exchange. 2018 Workshop on Metrology for Industry 4.0 and IoT, 175–179. https://doi.org/10.1109/METROI4.2018.8428342; Silvis-Cividjian, N. (2019). Teaching Internet of Things (IoT) Literacy: A Systems Engineering Approach. 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering Education and Training (ICSE-SEET), 50–61. https://doi.org/10.1109/ICSE-SEET.2019.00014; Simons, S., Abé, P., & Neser, S. (2017). Learning in the AutFab – The Fully Automated Industrie 4.0 Learning Factory of the University of Applied Sciences Darmstadt. Procedia Manufacturing, 9, 81–88. https://doi.org/10.1016/j.promfg.2017.04.023; Singkorn, S., Klinbumrung, K., & Akatimagool, S. (2022). Development of Innovation-Based Learning and Teaching Model for Technology Education in Thailand 4.0 Era. 2022 7th International STEM Education Conference (iSTEM-Ed), 1–4. https://doi.org/10.1109/iSTEM-Ed55321.2022.9920794; Taifa, I. W. R., Hayes, S. G., & Stalker, I. D. (2020). Computer modelling and simulation of an equitable order distribution in manufacturing through the Industry 4.0 framework. 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), 1–6. https://doi.org/10.1109/ICECCE49384.2020.9179275; Tambare, P., Meshram, C., Lee, C.-C., Ramteke, R. J., & Imoize, A. L. (2021). Performance Measurement System and Quality Management in Data-Driven Industry 4.0: A Review. Sensors, 22(1), 224. https://doi.org/10.3390/s22010224; Tu, J.-C., Liu, L.-X., & Wu, K.-Y. (2018). Study on the Learning Effectiveness of Stanford Design Thinking in Integrated Design Education. Sustainability, 10(8), 2649. https://doi.org/10.3390/su10082649; Unidad de Transformación Pedagógica. (s/f). Objetivos de Aprendizaje. Universidad Nacional de Colombia. Recuperado el 10 de noviembre de 2023, de http://diracad.bogota.unal.edu.co/utp/recursos/objetivos#tarjeta_c; Val Roman, J. L. (s/f). Industria 4.0: la transformación digital de la industria.; Vasilev, P. (2021). IEC/EN 62264 Augmented Reality Manufacturing Operations Research in the scope of Reference Architecture Model for Industry 4.0. 2021 International Conference Automatics and Informatics (ICAI), 219–222. https://doi.org/10.1109/ICAI52893.2021.9639673; Velásquez, L. D., López, L. M., Palencia Pérez, A. S., & Suárez, C. G. (2019). Aspectos Básicos de la Industria 4.0.; Velásquez, N., Estevez, E., & Pesado, P. (2018). Cloud Computing, Big Data and the Industry 4.0 Reference Architectures. Journal of Computer Science and Technology, 18(03), e29. https://doi.org/10.24215/16666038.18.e29; Wan, J., Tang, S., Shu, Z., Li, D., Wang, S., Imran, M., & Vasilakos, A. (2016). Software-Defined Industrial Internet of Things in the Context of Industry 4.0. IEEE Sensors Journal, 1–1. https://doi.org/10.1109/JSEN.2016.2565621; Weng, J., Wei, F., Jaiswal, A., & Noche, B. (2021). A Review of Industry 4.0 on National Level and A Concept of Industry 4.0 Stages based on Technical Level. 2021 17th International Conference on Distributed Computing in Sensor Systems (DCOSS), 252–258. https://doi.org/10.1109/DCOSS52077.2021.00049; Wermann, J., Colombo, A. W., Pechmann, A., & Zarte, M. (2019). Using an interdisciplinary demonstration platform for teaching Industry 4.0. Procedia Manufacturing, 31, 302–308. https://doi.org/10.1016/j.promfg.2019.03.048; Y., C. B., A., F., I., J. M., B., J. G., & L., M. (2017). El Entorno de la Industria 4.0: Implicaciones y Perspectivas Futuras. Conciencia Tecnológica. https://www.redalyc.org/articulo.oa?id=94454631006; Yamao, E., & Lescano, N. L. (2020). Smart Campus as a learning platform for Industry 4.0 and IoT ready students in higher education. 2020 IEEE International Symposium on Accreditation of Engineering and Computing Education (ICACIT), 1–4. https://doi.org/10.1109/ICACIT50253.2020.9277679; Ye, X., & Hong, S. H. (2018). An AutomationML/OPC UA-based Industry 4.0 Solution for a Manufacturing System. 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), 543–550. https://doi.org/10.1109/ETFA.2018.8502637; Yen, C.-T., Liu, Y.-C., Lin, C.-C., Kao, C.-C., Wang, W.-B., & Hsu, Y.-R. (2014). Advanced manufacturing solution to industry 4.0 trend through sensing network and Cloud Computing technologies. 2014 IEEE International Conference on Automation Science and Engineering (CASE), 1150–1152. https://doi.org/10.1109/CoASE.2014.6899471; https://repositorio.unal.edu.co/handle/unal/86710; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
16
Authors:
Contributors:
Subject Terms: 350 - Administración pública y ciencia militar::351 - Administración pública, C51 Construcción y estimación de modelos, I2 Education and Research Institutions, I2 Instituciones de educación e investigación, C51 Model Construction and Estimation, Spin Off, Modelo de negocio, Metodología de diseño, Conocimiento, Business model, Design methodology, Knowledge
File Description: 131 páginas; application/pdf
Relation: Ajimotokan, H. A. (2023). Research Techniques Qualitative, Quantitative and Mixed Methods Approaches for Engineers.; Ambito Juridico. (2023). Bicicletas abandonadas en patios serán entregadas a las autoridades territoriales. Ambito Juridico.; Amshoff, B., Dülme, C., Echterfeld, J., & Gausemeier, J. (2015). Business model patterns for disruptive technologies. International Journal of Innovation Management, 19(3). https://doi.org/10.1142/S1363919615400022; Andreini, D., & Bettinelli, C. (2017). International Series in Advanced Management Studies Business Model Innovation. http://www.springer.com/series/15195; Andreini, D., Bettinelli, C., Foss, N. J., & Mismetti, M. (2022). Business model innovation: a review of the process-based literature. Journal of Management and Governance, 26(4), 1089–1121. https://doi.org/10.1007/s10997-021-09590- w; Anzola-Román, P., & Bayona-Sáez, C. (2021). University Spin-Offs: A Case Study On Their Characterization, Challenges And Entrepreneurship Ecosystem.; Bellman, R., Clark, C. E., Malcolm, D. G., Craft, C. J., & Ricciardi, F. M. (1957). On the Construction of a Multi-Stage, Multi-Person Business Game. Operations Research, 5(4).; Bettinelli, C., & Cucculelli, M. (2014). “Business Models, Intangibles, and Firm performance.” Academy of Management Proceedings, 2014(1), 16260. https://doi.org/10.5465/ambpp.2014.16260abstract; Bissex, W. E. (2010). Documents for Spin-Outs and New Ventures. 4(January).; Bouwman, H., de Reuver, M., Solaimani, S., Daas, D., Iske, P., & Walenkamp, B. (2012). Business Models Tooling and a Research Agenda. https://www.researchgate.net/publication/235257203; Bouwman, H., De Vos, H., & Haaker, T. (2008). Mobile Service Innovation and Business Models.; Carayannis, E. G., Rogers, E. M., Kurihara, K., & Allbritton, M. M. (1998). HighTechnology spin-offs from government R&D laboratories and research universities (Vol. 18, Issue 1).; Chesbrough, H., & Rosenbloom, R. S. (2002). The role of the business model in capturing value from innovation: evidence from Xerox Corporation’s technology spin-off companies.; Clausen, T. H., & Rasmussen, E. (2013a). Parallel business models and the innovativeness of research-based spin-off ventures. Journal of Technology Transfer, 38(6), 836–849. https://doi.org/10.1007/s10961-012-9294-3; Clausen, T. H., & Rasmussen, E. (2013b). Parallel business models and the innovativeness of research-based spin-off ventures. Journal of Technology Transfer, 38(6), 836–849. https://doi.org/10.1007/s10961-012-9294-3; Corbo, L., Mahassel, S., & Ferraris, A. (2020). Translational mechanisms in business model design: introducing the continuous validation framework. Management Decision, 58(9), 2011–2026. https://doi.org/10.1108/MD-10-2019-1488; CRUZ, M. (2018). Qué se puede hacer con las bicicletas abandonadas. EL TIEMPO.; Daas, D., Hurkmans, T., Overbeek, S., & Bouwman, H. (2013). Developing a decision support system for business model design. Electronic Markets, 23(3), 251–265. https://doi.org/10.1007/s12525-012-0115-1; Danilo, D., & Ramos, V. (2011). PROPUESTA DE REFORMA DE LA EDUCACIÓN SUPERIOR. Principios, consideraciones y orientaciones para el debate. 1–9.; De Cleyn, S. H., & Braet, J. (2010). THE EVOLUTION OF SPIN-OFF VENTURES: AN INTEGRATED MODEL. In International Journal of Innovation and Technology Management (Vol. 7, Issue 1). http://www.ua.ac.be; Djokovic, D., & Souitaris, V. (2008). Spinouts from academic institutions: A literature review with suggestions for further research. Journal of Technology Transfer, 33(3), 225–247. https://doi.org/10.1007/s10961-006-9000-4; Druilhe, C., & Garnsey, E. (2003). Centre for Technology Management Do academic spin-outs differ and does it matter?; Druilhe, C., & Garnsey, E. (2004). Do academic spin-outs differ and does it matter? Journal of Technology Transfer, 29(3–4), 269–285. https://doi.org/10.1023/b:jott.0000034123.26133.97; D’Souza, A., Bouw, K., Velthuijsen, H., Huitema, G. B., & Wortmann, J. C. (2018). Designing viable multi-commodity energy business ecosystems: Corroborating the business model design framework for viability. Journal of Cleaner Production, 182, 124–138. https://doi.org/10.1016/j.jclepro.2018.01.256; Duersch, R. R. (1975). MODEL FOR BUSINESS COMBINATIONS. IEEE Transactions on Engineering Management, EM-22(3), 101–114. https://doi.org/10.1109/TEM.1975.6447217; Eichenbaum, M. S., Hansen, L. P., Singleton, K. J., Heckman, J., Huizinga, J., King, B., Kydland, F., Prescott, E., Richard, S., Skoog, G., & Eichenbaum, M. (1986). NBER WORKING PAPER SERIES A TIME SERIES ANALYSIS OF REPRESENTATIVE AGENT MODELS OF CONSUMPTION AND LEISURE CHOICE UNDER UNCERTAINTY A Time Series Analysis of Representative Agent Models of Consumption and Leisure Choice Under Uncertainty; Fengyang, J., & Ates, A. (2017). Business Model and the Value Theory: A critical review of the literature.; Foss, N. J., & Saebi, T. (2017). Fifteen Years of Research on Business Model Innovation: How Far Have We Come, and Where Should We Go? Journal of Management, 43(1), 200–227. https://doi.org/10.1177/0149206316675927; Gómez, M. E., & Botero, J. C. (2016). Startup y spinoff: una comparación desde las etapas para la creación de proyectos empresariales. Revista Ciencias Estratégicas, 24, 365–378.; Hedman, J., & Kalling, T. (2003). The business model concept: Theoretical underpinnings and empirical illustrations. European Journal of Information Systems, 12(1), 49–59. https://doi.org/10.1057/palgrave.ejis.3000446; Heikkilä, M., Solaimani, S., & Suoranta, M. (2014). Performance Estimation of Networked Business Models: Case Study on a Finnish eHealth Service Project Envision: Business model Innovation for SMEs View project PhD Thesis project View project. https://doi.org/10.5278/ojs.jbm.v2i1.724; Hvilsom, L. (2012). Business Model Components & Their Interrelations.; Hwang, J., & Macinnes, I. (2003). Association for Information Systems AIS Electronic Library (AISeL) Business Models for Peer to Peer Initiatives. http://aisel.aisnet.org/bled2003; Ide, M., Amagai, Y., Aoyama, M., & Kikushima, Y. (2015). A Lean Design Methodology for Business Models and Its Application to IoT Business Model Development. Proceedings - 2015 Agile Conference, Agile 2015, 107–111. https://doi.org/10.1109/Agile.2015.8; Jiménez, Y. (2017). Cambio cultural y creación de spin-offs universitarias. Un estudio de caso en una universidad pública. 1–31.; Konczal, E. F. (1975). Computer models are for managers, not mathematicians. Systems Management, 46–48.; Koster, S. (2004). Spin-off firms and individual start-ups. Are they really different? SPIN-OFF FIRMS AND INDIVIDUAL START-UPS.; Krémer, F., & Verstraete, T. (2022). Teaching the Alignment of Business Model Components: The Use of the Movie La La Land. Journal of Business Models, 10(2), 129–138. https://doi.org/10.5278/jbm.v10i2.6663; Lee, J. H., Shin, D. I., Hong, Y. S., & Kim, Y. S. (2011). BUSINESS MODEL DESIGN METHODOLOGY FOR INNOVATIVE PRODUCT-SERVICE SYSTEMS: A STRATEGIC AND STRUCTURED APPROACH. In INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN.; Lenway, S. A., Murtha, T. P., Boddewyn, J. J., Goldsmith, A., Ghoshal, S., Kobrin, S. J., Kudrle, R. T., Ricks, D., Ring, P. S., Roehl, T., Rugman, A., & Ryan, M. P. (1994). THE STATE AS STRATEGIST IN INTERNATIONAL BUSINESS RESEARCH. www.jstor.org; Leyshon, A. (1982). THE UK GOVERNMENT SMALL BUSINESS MODEL-A REVIEW A review of statements at the ministerial and senior official level plus an analysis of the legislative programme over the decade since Bolton has already been made by Beesley and.; Martins, L. L., Rindova, V. P., & Greenbaum, B. E. (2015). Unlocking the hidden value of concepts: A cognitive approach to business model innovation. Strategic Entrepreneurship Journal, 9(1), 99–117. https://doi.org/10.1002/sej.1191; Mcqueen, D. H., & Wallmark, J. T. (1982). SPIN-OFF COMPANIES FROM CHALMERS UNIVERSITY OF TECHNOLOGY.; Monge, M., Briones, A., & Perez, D. (2013). Factores determinantes de la creación de las Spin Off académicas: caso del Instituto Tecnológico de Costa Rica. Caudernos de Administración.; Montes, I. C. (2011). Transformaciones en las Funciones de la Universidad colombiana a partir del cambio institucional formal (Tesis de Maestría). 1–197. https://repository.eafit.edu.co/handle/10784/89#.VqTIJrhCM8%5Cnhttp://repository.eafit.edu.co/bitstream/handle/10784/89/IsabelCri stina_MontesGutierrez_2011.pdf?sequence=3&isAllowed=y; Montoya, D. (2016). Lineamientos de la política del SIEUNPertinencia, eficiencia, integración, inclusión y transparencia.; Montoya, D. (2016). Startup y Spinoff: definiciones, diferencias y potencialidades en el marco de la economía del comportamiento. Contexto, 5, 141. https://doi.org/10.18634/ctxj.5v.0i.657; Mustar, P., Renault, M., Colombo, M. G., Piva, E., Fontes, M., Lockett, A., Wright, M., Clarysse, B., & Moray, N. (2006). Conceptualising the heterogeneity of research-based spin-offs: A multi-dimensional taxonomy. Research Policy, 35(2), 289–308. https://doi.org/10.1016/j.respol.2005.11.001; Niskanen, J., Montonen, T., & Piispanen, V. V. (2017). Business models for research-based spin-offs: the strategic entrepreneurship perspective. International Journal of Knowledge Management Studies, 8(1/2), 38. https://doi.org/10.1504/ijkms.2017.10005269; Nurcahyo, R., Akbar, M. I., & Gabriel, D. S. (2018). Characteristics of startup company and its strategy: Analysis of Indonesia fashion startup companies. International Journal of Engineering and Technology(UAE), 7(2), 44–47. https://doi.org/10.14419/ijet.v7i2.34.13908; Oliveira, I., Figueiredo, J., Cardoso, A., & Cunha, M. N. (2023). Empirical evidence of the parent company’s influence on spin-off: from creation to performance. International Review of Economics, 70(3), 379–394. https://doi.org/10.1007/s12232-023-00423-w; Osterwalder, A., & Pigneur, Y. (2002). 5 th Bled Electronic Commerce Conference eReality: Constructing the e-Economy An e-Business Model Ontology for Modeling e-Business.; Osterwalder, A., & Pigneur, Y. (2010a). Business model generation_ A handbook for visionaries, game changers, and challengers.; Osterwalder, A., & Pigneur, Y. (2010b). Generacion De Modelos De Negocio. Deusto S.a. Ediciones, 288.; Osterwalder, A., Pigneur, Y., Berbarda, G., & Smith, A. (2014). Value Proposition Design; Osterwalder, A., Pigneur, Y., & Tucci, C. L. (2005). Clarifying Business Models: Origins, Present, and Future of the Concept. Communications of the Association for Information Systems, 16. https://doi.org/10.17705/1cais.01601; Ovans, A. (2015). What Is a Business Model?; Pateli, A. G., & Giaglis, G. M. (2004). A research framework for analysing eBusiness models. In European Journal of Information Systems (Vol. 13, Issue 4, pp. 302– 314). Palgrave Macmillan Ltd. https://doi.org/10.1057/palgrave.ejis.3000513; Perdomo Charry, W., Castro Castro, C., Marín, G., Giraldo Mejía, J., Botero Tabares, R., & Gómez Jaramillo, S. (2015). Modelamiento spin-off interinstitucional para la oferta de servicios en ingeniería del software. Revista Virtual Universidad Católica Del Norte, 1(44), 192–202.; Pimay, E., Surlemont, B., & Nlemvo, F. (2003). Toward a Typology of University Spin-offs. Small Business Economics, 21, 355–369.; Preciado Palacios, M. (2011). Business Models: Conceptual Framework Proposal for Productivity Centers. 23–34. http://www.bdigital.unal.edu.co/5152/1/940794.2011.pdf; Robertson, D. (1993). Establishing strategic direction in higher education institutions. Public Money and Management, 13(3), 45–51. https://doi.org/10.1080/09540969309387774; Sánchez, P. P. I., Maldonado, C. J., & Velasco, A. P. (2012). Caracterización de las Spin-Off universitarias como mecanismo de transferencia de tecnología a través de un análisis clúster. Revista Europea de Direccion y Economia de La Empresa, 21(3), 240–254. https://doi.org/10.1016/j.redee.2012.05.004; Sarfatti, V. R. (2006). Centro di Ricerca sui Processi di Innovazione e Internazionalizzazione Chiara Franzoni and Francesco Lissoni Academic entrepreneurship , patents , and. October.; Smilor, R. W., Gibson, D. V., & Dietrich, G. B. (1990). Universitu Spin-Out Companies:Technology Start-Ups From UT-Austin. Journal of Business Venturing, 63–73.; Sovacool, B. K., Kester, J., Noel, L., & Zarazua de Rubens, G. (2020). Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review. In Renewable and Sustainable Energy Reviews (Vol. 131). Elsevier Ltd. https://doi.org/10.1016/j.rser.2020.109963; Stankiewicz, R. (1994). Spin-off companies from universities. Science and Public Policy, 21(2), 99–107.; Stieber, J., & Primeaux, P. (1991). Economic Efficiency: A Paradigm for Business Ethics. In Source: Journal of Business Ethics (Vol. 10, Issue 5).; Storbacka, K., Frow, P., Nenonen, S., & Payne, A. (2012). Designing business models for value co-creation. Review of Marketing Research, 9, 51–78. https://doi.org/10.1108/S1548-6435(2012)0000009007; Tapscott, D. (1997). Strategy in the new economy. Strategy & Leadership, 25(6), 8– 14.; Terra, N. (2017). Explore business models and operations of start-up companies in healthcare. September, 105. https://repositorioaberto.up.pt/bitstream/10216/108601/2/227982.pdf; Tian, C. H., Ray, B. K., Lee, J., Cao, R., & Ding, W. (2008). BEAM: A framework for business ecosystem analysis and modeling &; Timmers, P. (1998). Focus THEME BUSINESS MODELS FOR ELECTRONIC MARKETS. www.emb.ch; Tina, S., Lasse, L., & Nicola, J. F. (2017). WHAT DRIVES BUSINESS MODEL ADAPTATION. http://wrap.warwick.ac.uk/98519; Tobergte, D. R., & Curtis, S. (2013). Institutional determinants of university spin-off quantity and quality: longitudinal, multilevel evidence from Italy, Norway and the UK. Journal of Chemical Information and Modeling, 53(9), 1689–1699.; Universidad Nacional de Colombia. (2020). Resolucion 391 de 2020.; Van Der Aalst, W., Mylopoulos, J., Sadeh, N. M., Shaw, M. J., & Szyperski, C. (2009). Value Creation in E-Business Management: 15th Americas Conference on Information Systems, AMCIS 2009, SIGeBIZ track, San Francisco, CA, USA, August 6-9, . Notes in Business Information Processing).; van der Beek, K., Krueger, C., & Swatman, P. (2003). Association for Information Systems AIS Electronic Library (AISeL) Business Model Formation within the Online News Market: The Core + Complement Business Model Framework. http://aisel.aisnet.org/bled2003/9; Verhagen, M., de Reuver, M., & Bouwman, H. (2023). Implementing Business Models Into Operations: Impact of Business Model Implementation on Performance. IEEE Transactions on Engineering Management, 70(1), 173–183. https://doi.org/10.1109/TEM.2020.3046365; Virk, R. (2019). Startup Myths and Models. In Startup Myths and Models. https://doi.org/10.7312/virk19452; Wei, Z., Yang, D., Sun, B., & Gu, M. (2014). The fit between technological innovation and business model design for firm growth: evidence from China.; Wirtz, B., Pistoia, A., Ullrich, S., & Gottel, V. (2016). Business Models Origin, Development and Future Research. Long Range Planning, 49, 36–54.; Wirtz, B. (2020). Business Model Management Design-Process-Instruments Second Edition. http://www.springer.com/series/10099; Worcester, R. M. (1997). Tomorrow’s company is the company you keep. In Journal of Communication Management (Vol. 1, Issue 3, pp. 256–261). https://doi.org/10.1108/eb023428; Yahi, S. (2016). Creación de un Modelo de Negocio para Spin- Off con Business Model Canvas. 1–136. https://riunet.upv.es/bitstream/handle/10251/75112/TFG Selma Yahi.pdf?sequence=3; https://repositorio.unal.edu.co/handle/unal/87044; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
17
Authors: et al.
Contributors: et al.
Subject Terms: 650 - Gerencia y servicios auxiliares::658 - Gerencia general, Transformación digital, Digitalización, Modelos de madurez de transformación digital, Transformación del modelo de negocio, Digital transformation, Digitization, Digital transformation maturity models, Business model transformation, Cambio tecnológico, Comportamiento innovador, Resistencia al cambio, Technological change, Innovation behaviour, Resistance to change
File Description: xx, 205 páginas; application/pdf
Relation: Acevedo, A. (IDOM T. C. (2018). Modelo de madurez para la transformación digital. Bogotá, D.C.: MinTIC -Subdirección de Comercio Electrónico, INNpulsa Colombia - Desarrollo Empresarial, 44. https://camaraarmenia.org.co/wp-content/uploads/2020/08/Modelo-de-transformacióndigital.pdf; Adner, R., Puranam, P., & Zhu, F. (2019). What Is Different About Digital Strategy? From Quantitative to Qualitative Change. Strategy Science, 4(4), 253–261. https://doi.org/10.1287/stsc.2019.0099; Aghamiri, S., Karima, J., & Cavus, N. (2022). Advantages of Digital Transformation Models and Frameworks for Business: A Systematic Literature Review. International Journal of Advanced Computer Science and Applications, 13(12). https://doi.org/10.14569/IJACSA.2022.0131206; Agostino, D., & Costantini, C. (2021). A measurement framework for assessing the digital transformation of cultural institutions: the Italian case. Meditari Accountancy Research. https://doi.org/10.1108/MEDAR-02-2021-1207; Albrecht, E., & Brummett, C. M. (2021). If you cannot measure it, you cannot improve it. Anaesthesia, 76(10), 1304–1307. https://doi.org/10.1111/anae.15480; Alcácer, V., & Cruz-Machado, V. (2019). Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems. Engineering Science and Technology, an International Journal, 22(3), 899–919. https://doi.org/10.1016/j.jestch.2019.01.006; Alekseev, A. N., Lobova, S. V., Bogoviz, A. V., & Ragulina, Y. V. (2019). Digitalization of the russian energy sector: state of the art and potential for future research. International Journal of Energy Economics and Policy, 9(5), 274–280. https://doi.org/10.32479/ijeep.7673; Alkan, D. P. (2020). Re-Shaping Business Strategy in the Era of Digitization. In Handbook of Research on Strategic Fit and Design in Business Ecosystems (pp. 76–97). https://doi.org/10.4018/978-1-7998-1125-1.ch004; Almasri, H., ZAKUAN, N., AMER, M. S., & MAJID, M. R. (2021). A developed systematic literature review procedure with application in the field of digital transformation. Studies of Applied Economics, 39(4). https://doi.org/10.25115/eea.v39i4.4559; AlMulhim, A. F. (2021). Smart supply chain and firm performance: the role of digital technologies. Business Process Management Journal, 27(5), 1353–1372. https://doi.org/10.1108/BPMJ-12- 2020-0573; Ambrosio da Silva, I., Cesar Macedo Barbalho, S., Adam, T., Heine, I., & Schmitt, R. (2021). Industry 4.0 Readiness: a new framework for maturity evaluation based on a bibliometric study of scientific articles from 2001 to 2020. DYNA, 88(218), 101–109. https://doi.org/10.15446/dyna.v88n218.92543; Anderson, C., & William, E. (2018). Digital Maturity Model - Achieving digital maturity to drive growth. Deloitte. https://www2.deloitte.com/content/dam/Deloitte/global/Documents/TechnologyMedia-Telecommunications/deloitte-digital-maturity-model.pdf; ANDI. (2019). Informe de la encuesta de transformacion digital 2019. Asociación Nacional de Industriales. http://www.andi.com.co/Uploads/ANALISIS - ENCUESTA DE TRANSFORMACIÓN DIGITAL 2019 - ANDI.pdf; ANDI. (2022). Colombia un país digital. Asociación Nacional de Industriales. https://www.andi.com.co/Uploads/02 PINZON 19052022 Panoransformación Digital en Colombia ILS VF SPGAMG.pdf; Appio, F. P., Frattini, F., Petruzzelli, A. M., & Neirotti, P. (2021). Digital Transformation and Innovation Management: A Synthesis of Existing Research and an Agenda for Future Studies. Journal of Product Innovation Management, 38(1), 4–20. https://doi.org/10.1111/jpim.12562; Archibugi, D. (2017). Blade Runner economics: Will innovation lead the economic recovery? Research Policy, 46(3), 535–543. https://doi.org/10.1016/j.respol.2016.01.021; Ashok, M., Madan, R., Joha, A., & Sivarajah, U. (2022). Ethical framework for Artificial Intelligence and Digital technologies. International Journal of Information Management, 62, 102433. https://doi.org/10.1016/j.ijinfomgt.2021.102433; Babkin, A., Tashenova, L., Mamrayeva, D., & Makhmudova, G. (2020). Digital platforms for industrial clusters and enterprises. Proceedings of the 2nd International Scientific Conference on Innovations in Digital Economy: SPBPU IDE-2020, 1–7. https://doi.org/10.1145/3444465.3444486; Bai, C., Quayson, M., & Sarkis, J. (2021). COVID-19 pandemic digitization lessons for sustainable development of micro-and small- enterprises. Sustainable Production and Consumption, 27(1), 1989–2001. https://doi.org/10.1016/j.spc.2021.04.035; Becker, J., Knackstedt, R., & Pöppelbuß, J. (2009). Developing Maturity Models for IT Management. Business & Information Systems Engineering, 1(3), 213–222. https://doi.org/10.1007/s12599- 009-0044-5; Becker, W., Ulrich, P., & Vogt, M. (2013). Digitalisierung im Mittelstand-Ergebnisbericht einer OnlineUmfrage. Univ., Lehrstuhl Für Betriebswirtschaftslehre, Insbes. Unternehmensführung Und Controlling. https://fis.unibamberg.de/bitstream/uniba/1505/1/BBB192DigiOnlineUmfrseA2.pdf; Bellantuono, N., Nuzzi, A., Pontrandolfo, P., & Scozzi, B. (2021). Digital transformation models for the i4.0 transition: Lessons from the change management literature. Sustainability (Switzerland), 13(23). https://doi.org/10.3390/su132312941; Berger, R. (2015). The digital transformation of industry. The Study Commissioned by the Federation of German Industries (BDI), Munich. https://bdi.eu/media/presse/publikationen/informationund-telekommunikation/Digital_Transformation.pdf; Berghaus, S., & Back, A. (2016). Stages in digital business transformation: results of an empirical maturity study. Mediterranean Conference on Information Systems (MCIS), (Paper 22), 1–17. https://core.ac.uk/download/pdf/301370037.pdf; Berghaus, S., Back, A., & Kaltenrieder, B. (2016). Digital maturity & transformation report 2016. Institut Für Wirtschaftsinformatik, Universität St.Gallen. https://www.digitaleschweiz.ch/wpcontent/uploads/2016/06/digital-maturity-transformation-report-2016-mit-best-practices.pdf; Berghaus, S., Back, A., & Kaltenrieder, B. (2017). Digital Maturity & Transformation Report 2017. Institut Für Wirtschaftsinformatik, Universität St.Gallen. https://office-roxx.de/wpcontent/uploads/2019/01/digital-maturity-transformation-report-2017.pdf; Bertello, A., Ferraris, A., Bresciani, S., & De Bernardi, P. (2021). Big data analytics (BDA) and degree of internationalization: the interplay between governance of BDA infrastructure and BDA capabilities. Journal of Management and Governance, 25(4), 1035–1055. https://doi.org/10.1007/s10997-020-09542-w; Bordeleau, F.-È., & Felden, C. (2019). After the plan: An exploration of the digitalization application barriers. 25th Americas Conference on Information Systems, AMCIS 2019.; Bouncken, R., & Barwinski, R. (2021). Shared digital identity and rich knowledge ties in global 3D printing—A drizzle in the clouds? Global Strategy Journal, 11(1), 81–108. https://doi.org/10.1002/gsj.1370; Brennen, J. S., & Kreiss, D. (2016). Digitalization. In The International Encyclopedia of Communication Theory and Philosophy (pp. 1–11). Wiley. https://doi.org/10.1002/9781118766804.wbiect111; Brown, N., & Brown, I. (2019). From digital business strategy to digital transformation - How?: A systematic literature review. PervasiveHealth: Pervasive Computing Technologies for Healthcare. https://doi.org/10.1145/3351108.3351122; Brozzi, R., Riedl, M., & Matta, D. (2020). Key Readiness Indicators to Assess the Digital Level of Manufacturing SMEs. Procedia CIRP, 96, 201–206. https://doi.org/10.1016/j.procir.2021.01.075; Calle, A. D. La, Freije, I., Ugarte, J. V., & Larrinaga, M. Á. (2020). Measuring the impact of digital capabilities on product-service innovation in Spanish industries. International Journal of Business Environment, 11(3), 254. https://doi.org/10.1504/IJBE.2020.110904; Caputo, F., Cillo, V., Candelo, E., & Liu, Y. (2019). Innovating through digital revolution. Management Decision, 57(8), 2032–2051. https://doi.org/10.1108/MD-07-2018-0833; Carrijo, P., Alturas, B., & Pedrosa, I. (2021). Analysis of Digital Transformation Maturity Models %7C Análise de modelos de maturidade deTransformação Digital. Iberian Conference on Information Systems and Technologies, CISTI. https://doi.org/10.23919/CISTI52073.2021.9476644; Castells, M. (2010). The Information Age Economy, Society, and Culture . Volume I The Rise of the Network Society. John Wiley & Sons Ltd.; Catlin, T., Scanlan, J., & Willmott, P. (2015). Raising your digital quotient. McKinsey Q. http://www.eurasiancommission.org/ru/act/dmi/workgroup/materials/Pages/Бизнес-среда в цифровом мире/Доклады консалтинговых агентств/Mckinsey_Raising your Digital Quotient_2016.pdf; CEPAL. (2018). Datos, algoritmos y políticas: la redefinición del mundo digital (LC/CMSI.6/4). In Comisión Económica para América Latina y el Caribe (CEPAL). Publicación de las Naciones Unidas. https://repositorio.cepal.org/bitstream/handle/11362/43477/7/S1800053_es.pdf; CEPAL. (2021). Tecnologías digitales para un nuevo futuro (LC/TS.2021/43). In Comisión Económica para América Latina y el Caribe (CEPAL). Publicación de las Naciones Unidas. https://repositorio.cepal.org/bitstream/handle/11362/46816/1/S2000961_es.pdf; CEPAL. (2022a). Un camino digital para el desarrollo sostenible de América Latina y el Caribe (LC/CMSI.8/3). In Comisión Económica para América Latina y el Caribe (CEPAL). Publicación de las Naciones Unidas. https://repositorio.cepal.org/bitstream/handle/11362/48460/4/S2200899_es.pdf; CEPAL. (2022b). Hacia la transformación del modelo de desarrollo en América Latina y el Caribe: producción, inclusión y sostenibilidad (LC/SES.39/3-P). In Comisión Económica para América Latina y el Caribe (CEPAL). Publicación de las Naciones Unidas. https://doi.org/10.18356/9789210055857; Chanias, S., & Hess, T. (2016). Understanding digital transformation strategy formation: insights from Europe’s automotive industry. Pacific Asia Conference on Information Systems, PACIS 2016 - Proceedings. Pacific Asia Conference on Information Systems, 296. https://aisel.aisnet.org/pacis2016/296; Chaparro-Peláez, J., Acquila-Natale, E., Hernández-García, Á., & Iglesias-Pradas, S. (2020). The Digital Transformation of the Retail Electricity Market in Spain. Energies, 13(8), 2085. https://doi.org/10.3390/en13082085; Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., & Yin, B. (2018). Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges. IEEE Access, 6, 6505–6519. https://doi.org/10.1109/ACCESS.2017.2783682; Chen, N., Sun, D., & Chen, J. (2022). Digital transformation, labour share, and industrial heterogeneity. Journal of Innovation & Knowledge, 7(2), 100173. https://doi.org/10.1016/j.jik.2022.100173; Cheng, Y., Zhou, X., & Li, Y. (2023). The effect of digital transformation on real economy enterprises’ total factor productivity. International Review of Economics & Finance, 85, 488–501. https://doi.org/10.1016/j.iref.2023.02.007; Chou, Y.-C., Hao-Chun Chuang, H., & Shao, B. B. M. (2014). The impacts of information technology on total factor productivity: A look at externalities and innovations. International Journal of Production Economics, 158, 290–299. https://doi.org/10.1016/j.ijpe.2014.08.003; Christensen, C., Schmitt, M. K., Larsen, M. S. S., & Heidemann Lassen, A. (2022). The Effect of Digital Maturity on Strategic Approaches to Digital Transformation. In Lecture Notes in Mechanical Engineering (pp. 754–761). https://doi.org/10.1007/978-3-030-90700-6_86; Clerck, J. (2017). Digitization, digitalization, digital and transformation: the differences. I-SCOOP. https://www.i-scoop.eu/digital-transformation/digitization-digitalization-digital-transformationdisruption/; Colli, M., Madsen, O., Berger, U., Møller, C., Wæhrens, B. V., & Bockholt, M. (2018). Contextualizing the outcome of a maturity assessment for Industry 4.0. IFAC-PapersOnLine, 51(11), 1347– 1352. https://doi.org/10.1016/j.ifacol.2018.08.343; Collin, J., Hiekkanen, K., Korhonen, J., The Heel, M., Itälä, T., & Helenius, M. (2015). IT Leadership in Transition-The Impact of digitalization on Finnish Organization. Research Report, Aalto University. Department of Computer Science.; Consoli, D. (2012). Literature analysis on determinant factors and the impact of ICT in SMEs. Procedia – Social and Behavioral Sciences, 62, 93–97.; Creswell, J. W. (2014). Research Desing. Qualitative, quantitative and mixed methods approaches. SAGE Publications, Inc.; Creswell, John W., & Creswell, J. D. (2018). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (Fifth edit). SAGE Publications, Inc.; Crittenden, W. F., Biel, I. K., & Lovely, W. A. (2019). Embracing Digitalization: Student Learning and New Technologies. Journal of Marketing Education, 41(1), 5–14. https://doi.org/10.1177/0273475318820895; DAFP. (2016). Decreto 415 de 2016. Departamento Administrativo de La Función Pública (DAFP). http://es.presidencia.gov.co/normativa/normativa/DECRETO 415 DEL 07 DE MARZO DE 2016.pdf; Davis, N., & O’Halloran, D. (2018). La cuarta revolución industrial impulsa la globalización 4.0. Foro Económico Mundial. https://es.weforum.org/agenda/2018/11/la-cuarta-revolucion-industrialimpulsa-la-globalizacion-4-0/; De Carolis, A., Macchi, M., Negri, E., & Terzi, S. (2017). A maturity model for assessing the digital readiness of manufacturing companies. In IFIP Advances in Information and Communication Technology (Vol. 513). https://doi.org/10.1007/978-3-319-66923-6_2; Dedehayir, O., Ortt, J. R., & Seppänen, M. (2017). Disruptive change and the reconfiguration of innovation ecosystems. Journal of Technology Management & Innovation, 12(3), 9–21. https://doi.org/10.4067/S0718-27242017000300002; Delgosha, M. S., Saheb, T., & Hajiheydari, N. (2020). Modelling the asymmetrical relationships between digitalisation and sustainable competitiveness: a cross-country configurational analysis. Information Systems Frontiers. https://doi.org/https://doi.org/10.1007/s10796- 020- 10029-0; Deloitte. (2018). Digital Maturity Model Achieving digital maturity to drive growth. Deloitte Digital. https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Technology-MediaTelecommunications/deloitte-digital-maturity-model.pdf; Demlehner, Q., & Laumer, S. (2020). Why Context Matters: Explaining the Digital Transformation of the Manufacturing Industry and the Role of the Industry’s Characteristics in It. Pacific Asia Journal of the Association for Information Systems, 12(3), 57–81. https://doi.org/10.17705/1pais.12303; Dethine, B., Enjolras, M., & Monticolo, D. (2020). Digitalization and SMEs’ Export Management: Impacts on Resources and Capabilities. Technology Innovation Management Review, 10(4), 18–34. https://doi.org/10.22215/timreview/1344; Devereux, M. P., & Vella, J. (2018). Debate: Implications of Digitalization for International Corporate Tax Reform. Intertax, 46(6), 550–559. https://kluwerlawonline.com/journalarticle/Intertax/46.6/TAXI2018056; Dini, M., Gligo, N., & Patiño, A. (2021). Transformación digital de las mipymes: Elementos para el diseño de políticas. Documentos de Proyectos (LC/TS.2021/99), Santiago, Comisión Económica Para América Latina y El Caribe (CEPAL), 61. https://repositorio.cepal.org/bitstream/handle/11362/47183/1/S2100372_es.pdf; DNP, D. N. de P. (2018). Plan Nacional de Desarrollo 2018-2022: Pacto por Colombia, pacto por la equidad. Departamento Nacional de Planeación. Departamento Nacional de Planeación; DNP, D. N. de P. (2019). COPES 3975: Política nacional para la transformación digital e inteligencia artificial. https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/3975.pdf; DNP, D. N. de P. (2023). Plan Nacional de Desarrollo 2023-2026: Colombia potencia mundial de la vida. Departamento Nacional de Planeación. https://colaboracion.dnp.gov.co/CDT/portalDNP/PND-2023/2023-05-04-bases-plan-nacionalde-inversiones-2022-2026.pdf; Dosi, G., & Virgillito, M. E. (2019). Whither the evolution of the contemporary social fabric? New technologies and old socio‐economic trends. International Labour Review, 158(4), 593–625. https://doi.org/10.1111/ilr.12145; Eden, R., Burton-Jones, A., Casey, V., & Draheim, M. (2019). Digital Transformation Requires Workforce Transformation. MIS Quarterly Executive, 18(1). https://doi.org/10.17705/2msqe.00005; Eling, M., & Lehmann, M. (2018). The Impact of Digitalization on the Insurance Value Chain and the Insurability of Risks. The Geneva Papers on Risk and Insurance - Issues and Practice, 43(3), 359–396. https://doi.org/10.1057/s41288-017-0073-0; Epicoco, M. (2021). Technological Revolutions and Economic Development: Endogenous and Exogenous Fluctuations. Journal of the Knowledge Economy, 12(3), 1437–1461. https://doi.org/10.1007/s13132-020-00671-z; Ernstsen, S. N., Whyte, J., Thuesen, C., & Maier, A. (2021). How Innovation Champions Frame the Future: Three Visions for Digital Transformation of Construction. Journal of Construction Engineering and Management, 147(1), 05020022. https://doi.org/10.1061/(ASCE)CO.1943- 7862.0001928; Escorsa, P., & Valls, J. (2005). Tecnología e Innovación en la empresa (2nd ed.). Editorial Alfaomega.; Farías Gaytán, S.-C., Ramirez-Montoya, M.-S., & Aguaded, I. (2020). Research plan on the digital transformation of faculty to advance to the global era. ACM International Conference Proceeding Series, 1048–1052. https://doi.org/10.1145/3434780.3436634; Feliciano-Cestero, M. M., Ameen, N., Kotabe, M., Paul, J., & Signoret, M. (2023). Is digital transformation threatened? A systematic literature review of the factors influencing firms’ digital transformation and internationalization. Journal of Business Research, 157, 113546. https://doi.org/10.1016/j.jbusres.2022.113546; Felippes, B., da Silva, I., Barbalho, S., Adam, T., Heine, I., & Schmitt, R. (2022). 3D-CUBE readiness model for industry 4.0: technological, organizational, and process maturity enablers. Production & Manufacturing Research, 10(1), 875–937. https://doi.org/10.1080/21693277.2022.2135628; Frank, A. G., Mendes, G. H. S., Ayala, N. F., & Ghezzi, A. (2019). Servitization and Industry 4.0 convergence in the digital transformation of product firms: A business model innovation perspective. Technological Forecasting and Social Change, 141, 341–351. https://doi.org/10.1016/j.techfore.2019.01.014; Freeman, C., & Perez, C. (1988). Structural crises of adjustment, business cycles and investment behaviour. In G. Dosi et al. (Eds.),Technical change and economic theory (pp. 38–66). Francis Pinter; Friedrich, R., Gröne, F., Koster, A., & Le Merle, M. (2011). Measuring industry digitization: Leaders and laggards in the digital economy. https://www.strategyand.pwc.com/gx/en/insights/2002- 2013/measuring-industry-digitization/strategyand-measuring-industry-digitization-leaderslaggards-digital-economy.pdf; Fujii-Takamoto, B., & Langford, G. (2022). Digital Transformation can Threaten your Organizational Survival without Digital Self-Awareness. PICMET 2022 - Portland International Conference on Management of Engineering and Technology: Technology Management and Leadership in Digital Transformation - Looking Ahead to Post-COVID Era, Proceedings. https://doi.org/10.23919/PICMET53225.2022.9882832; Gaffley, G., & Pelser, T. G. (2021). Developing a digital transformation model to enhance the strategy development process for leadership in the South African manufacturing sector. South African Journal of Business Management, 52(1). https://doi.org/10.4102/sajbm.v52i1.2357; Galvis-Lista, E. A., & Sánchez-Torres, J. M. (2014). Modelo de Referencia de Procesos de Gestión de Conocimiento aplicable a Organizaciones Desarrolladoras de Software del Contexto Colombiano. November, 270. https://doi.org/10.13140/2.1.3185.1207; Gebayew, C., Hardini, I. R., Panjaitan, G. H. A., Kurniawan, N. B., & Suhardi. (2018). A Systematic Literature Review on Digital Transformation. 2018 International Conference on Information Technology Systems and Innovation (ICITSI), 260–265. https://doi.org/10.1109/ICITSI.2018.8695912; Gebre-Mariam, M., & Bygstad, B. (2019). Digitalization mechanisms of health management information systems in developing countries. Information and Organization, 29(1), 1–22. https://doi.org/10.1016/j.infoandorg.2018.12.002; Ghobakhloo, M., & Fathi, M. (2019). Corporate survival in Industry 4.0 era: the enabling role of leandigitized manufacturing. Journal of Manufacturing Technology Management, 31(1), 1–30. https://doi.org/10.1108/JMTM-11-2018-0417; Ghobakhloo, M., & Iranmanesh, M. (2021). Digital transformation success under Industry 4.0: a strategic guideline for manufacturing SMEs. Journal of Manufacturing Technology Management, ahead-of-p(ahead-of-print). https://doi.org/10.1108/JMTM-11-2020-0455; Ghosh, S., Hughes, M., Hodgkinson, I., & Hughes, P. (2022). Digital transformation of industrial businesses: A dynamic capability approach. Technovation, 113, 102414. https://doi.org/10.1016/j.technovation.2021.102414; Gileva, T. A., Galimova, M. P., Babkin, A. V, & Gorshenina, M. E. (2021). Strategic management of industrial enterprise digital maturity in a global economic space of the ecosystem economy. IOP Conference Series: Earth and Environmental Science, 816(1), 012022. https://doi.org/10.1088/1755-1315/816/1/012022; Gill, M., & VanBoskirk, S. (2016). Digital Maturity Model 4.0. Benchmarks: Digital Transformation Playbook. Forrester Research, Inc. https://dixital.cec.es/wpcontent/uploads/presentacions/presentacion06.pdf; Gils, B. van, & Weigand, H. (2020). Towards Sustainable Digital Transformation. 2020 IEEE 22nd Conference on Business Informatics (CBI), 1, 104–113. https://doi.org/10.1109/CBI49978.2020.00019; Gimpel, H., Hosseini, S., Xaver, R., Huber, R., Probst, L., Röglinger, M., & Faisst, U. (2018). Structuring Digital Transformation: A Framework of Action Fields and its Application at ZEISS. Journal of Information Technology, 19(1), 31–54. https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1726&context=jitta; GipuzKoa Berritzen - Innobasque. (2011). Roadmapping : Una herramienta para definir estrategias de I + D + i de éxito. Agencia Vasca de La Innovación, 32.; Gobble, M. M. (2018). Digitalization, Digitization, and Innovation. Research-Technology Management, 61(4), 56–59. https://doi.org/10.1080/08956308.2018.1471280; Gökalp, E., & Martinez, V. (2021). Digital transformation capability maturity model enabling the assessment of industrial manufacturers. Computers in Industry, 132, 103522. https://doi.org/10.1016/j.compind.2021.103522; Gollhardt, T., Halsbenning, S., Hermann, A., Karsakova, A., & Becker, J. (2020). Development of a Digital Transformation Maturity Model for IT Companies. 2020 IEEE 22nd Conference on Business Informatics (CBI), 1, 94–103. https://doi.org/10.1109/CBI49978.2020.00018; González-Varona, J. M., López-Paredes, A., Poza, D., & Acebes, F. (2021). Building and development of an organizational competence for digital transformation in SMEs. Journal of Industrial Engineering and Management, 14(1), 15–24. https://doi.org/10.3926/jiem.3279; Gordon, R. J. (2013). Is U.S. Economic Growth Over?faltering innovation Confronts the Six headwinds. Voprosy Ekonomiki, 4, 49–67. https://doi.org/10.32609/0042-8736-2013-4-49-67; Gunsberg, D., Callow, B., Ryan, B., Suthers, J., Baker, P. A., & Richardson, J. (2018). Applying an organisational agility maturity model. Journal of Organizational Change Management, 31(6), 1315–1343. https://doi.org/10.1108/JOCM-10-2017-0398; Guo, X., Li, M., Wang, Y., & Mardani, A. (2023). Does digital transformation improve the firm’s performance? From the perspective of digitalization paradox and managerial myopia. Journal of Business Research, 163, 113868. https://doi.org/10.1016/j.jbusres.2023.113868; Hagberg, J., Sundstrom, M., & Egels-Zandén, N. (2016). The digitalization of retailing: an exploratory framework. International Journal of Retail & Distribution Management, 44(7), 694–712. https://doi.org/10.1108/IJRDM-09-2015-0140; Hanelt, A., Bohnsack, R., Marz, D., & Antunes Marante, C. (2021). A Systematic Review of the Literature on Digital Transformation: Insights and Implications for Strategy and Organizational Change. Journal of Management Studies, 58(5), 1159–1197. https://doi.org/10.1111/joms.12639; Haryanti, T., Rakhmawati, N. A., & Subriadi, A. P. (2023). The Extended Digital Maturity Model. Big Data and Cognitive Computing, 7(1), 17. https://doi.org/10.3390/bdcc7010017; Hellge, V., Schröder, D., & Bosse, C. (2019). Der Readiness-Check Digitalisierung Ein Instrument zur Bestimmung der digitalen Reife von KMU. Mittelstand 4.0-Kompetenzzentrum Kaiserslautern. https://kompetenzzentrum-kaiserslautern.digital/wpcontent/uploads/2019/01/Broschüre_Readiness_Check_Digitalisierung_Januar_2019_final.p df; Henriette, E., Feki, M., & Boughzala, I. (2015). The Shape of Digital Transformation: A Systematic Literature Review. MCIS 2015 Proceedings, 10. https://aisel.aisnet.org/mcis2015/10; Heredia, J., Castillo-Vergara, M., Geldes, C., Carbajal Gamarra, F. M., Flores, A., & Heredia, W. (2022). How do digital capabilities affect firm performance? The mediating role of technological capabilities in the “new normal.” Journal of Innovation & Knowledge, 7(2), 100171. https://doi.org/10.1016/j.jik.2022.100171; Hess, T., Matt, C., Benlian, A., & Wiesböck, F. (2016). Options for formulating a digital transformation strategy. MIS Quarterly Executive, 15(2), 123–139, ISSN 15401960.; Holmström, J., Holweg, M., Lawson, B., Pil, F. K., & Wagner, S. M. (2019). The digitalization of operations and supply chain management: Theoretical and methodological implications. Journal of Operations Management, 65(8), 728–734. https://doi.org/10.1002/joom.1073; Horlach, B., Drews, P., Schirmer, I., & Boehmann, T. (2017). Increasing the Agility of IT Delivery: Five Types of Bimodal IT Organization. https://doi.org/10.24251/HICSS.2017.656; Ifenthaler, D., & Egloffstein, M. (2020). Development and Implementation of a Maturity Model of Digital Transformation. TechTrends, 64(2), 302–309. https://doi.org/10.1007/s11528-019- 00457-4; Ifenthaler, Dirk, & Egloffstein, M. (2020). Development and Implementation of a Maturity Model of Digital Transformation. TechTrends, 64(2), 302–309. https://doi.org/10.1007/s11528-019- 00457-4; Isaev, E., Korovkina, N., & Tabakova, M. (2018). Evaluation of the readiness of a company’s IT department for digital business transformation. Business Informatics, 2018(2), 55–64. https://doi.org/10.17323/1998-0663.2018.2.55.64; Ishfaq, R., Davis-Sramek, E., & Gibson, B. (2021). Digital supply chains in omnichannel retail: A conceptual framework. Journal of Business Logistics. https://doi.org/10.1111/jbl.12277; Ismagilova, L. A., Gileva, T. A., Galimova, M. P., Sitnikova, L. V., & Gilev, G. A. (2019). The digital transformation trajectory of industrial enterprises. Proceedings of the 33rd International Business Information Management Association Conference, IBIMA 2019: Education Excellence and Innovation Management through Vision 2020, 2033–2045.; Jonathan, G. M., Rusu, L., & Van Grembergen, W. (2021). Business-IT Alignment and Digital Transformation: Setting A Research Agenda. In 29th International Conference on Information Systems Development. Association for Information Systems (AIS).; Jonathan, Gideon Mekonnen, Yalew, S. D., Gebremeskel, B. K., Rusu, L., & Perjons, E. (2023). IT Alignment: A Path Towards Digital Transformation Success. Procedia Computer Science, 219, 471–478. https://doi.org/10.1016/j.procs.2023.01.314; Kääriäinen, J., Pussinen, P., Saari, L., Kuusisto, O., Saarela, M., & Hänninen, K. (2021). Applying the positioning phase of the digital transformation model in practice for SMEs: toward systematic development of digitalization. International Journal of Information Systems and Project Management, 8(4), 24–43. https://doi.org/10.12821/ijispm080402; Kamalaldin, A., Linde, L., Sjödin, D., & Parida, V. (2020). Transforming provider-customer relationships in digital servitization: A relational view on digitalization. Industrial Marketing Management, 89, 306–325. https://doi.org/10.1016/j.indmarman.2020.02.004; Kane, G. C., Palmer, D., Nguyen Phillips, A., Kiron, D., & Buckley, N. (2016). Aligning the Organization for Its Digital Future. MIT Sloan Management Review and Deloitte University Press, (58180), 1–27. https://www2.deloitte.com/content/dam/insights/us/articles/mit-smrdeloitte-digital-transformation-strategy/2016_MIT_DeloitteAligningDigitalFuture.pdf; Kane, M., Crooks, T., & Cohen, A. (1999). Validating measures of performance. Educ. Meas.: Issues Pract.; Kane, M. T. (2006). Validation. Educ. Meas.; Karagiannaki, A., Vergados, G., & Fouskas, K. (2017). The impact of digital transformation in the financial services industry: Insights from an open innovation initiative in fintech in Greece. In Mediterranean Conference on Information Systems (MCIS). Association For Information Systems.; Khan, S. (2017). Leadership in the Digital Age – a study on the effects of digitalization on top management leadership (PDF) (Thesis). Stockholm Business School.; Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering – A systematic literature review. Information and Software Technology, 51(1), 7–15. https://doi.org/10.1016/j.infsof.2008.09.009; KPMG. (2016). Digital auf der Höhe der Zeit? KPMG. https://assets.kpmg/content/dam/kpmg/pdf/2016/04/digital-readiness-assessment-03-16.PDF; Lee, M., Yun, J., Pyka, A., Won, D., Kodama, F., Schiuma, G., Park, H., Jeon, J., Park, K., Jung, K., Yan, M.-R., Lee, S., & Zhao, X. (2018). How to Respond to the Fourth Industrial Revolution, or the Second Information Technology Revolution? Dynamic New Combinations between Technology, Market, and Society through Open Innovation. Journal of Open Innovation: Technology, Market, and Complexity, 4(3), 21. https://doi.org/10.3390/joitmc4030021; Lenka, S., Parida, V., & Wincent, J. (2017). Digitalization Capabilities as Enablers of Value CoCreation in Servitizing Firms. Psychology & Marketing, 34(1), 92–100. https://doi.org/10.1002/mar.20975; Leonardus, W., Wasono, M., Alamsjah, F., Elidjen, & Sasmoko. (2018). Digital transformation in the age of industry 4.0: Acceleration of transformational performance through business model innovation and co-creation strategy in indonesian ict firms %7C Transformación digital en la era de la industria 4.0: aceleración del rend. Opcion, 34(86), 2145–2159.; Lerch, C., & Gotsch, M. (2015). Digitalized Product-Service Systems in Manufacturing Firms: A Case Study Analysis. Research-Technology Management, 58(5), 45–52. https://doi.org/10.5437/08956308X5805357; Leyh, C., Schäffer, T., Bley, K., & Bay, L. (2017). The Application of the Maturity Model SIMMI 4.0 in Selected Enterprises. Twenty-Third Americas Conference on Information Systems, Boston. https://tu-dresden.de/bu/wirtschaft/winf/isih/ressourcen/dateien/isih_team/pdfs_team/Leyh-etal-2017-_-The-Application-of-the-Maturity-Model-SIMMI-4-0.pdf?lang=de; Leyh, C., Schäffer, T., Bley, K., & Forstenhäusler, S. (2016). SIMMI 4.0 – A Maturity Model for Classifying the Enterprise-wide IT and Software Landscape Focusing on Industry 4.0. 1297– 1302. https://doi.org/10.15439/2016F478; Li, F. (2020). The digital transformation of business models in the creative industries: A holistic framework and emerging trends. Technovation, 92–93. https://doi.org/10.1016/j.technovation.2017.12.004; Li, Feng. (2020). The digital transformation of business models in the creative industries: A holistic framework and emerging trends. Technovation, 92–93, 102012. https://doi.org/10.1016/j.technovation.2017.12.004; Lichtblau, K., & et al. (2017). Study: Industrie 4.0 Readiness. http://www.impulsstiftung.de/%0Adocuments/3581372/4875835/Industrie+4.0+Readniness+IMPULS+Studie+O ktober+2015.%0Apdf/447a6187-9759-4f25-b186-b0f5eac69974; Lichtblau, K., Stich, V., Bertenrath, R., Blum, M., Bleider, M., Millack, A., Schmitt, K., Schmitz, E., & Schröter, M. (2015). IMPULS - Industrie 4.0-Readiness. Impuls-Stiftung Des VDMA, AachenKöln. https://www.vdma.org/viewer/-/v2article/render/1084566; Liere-Netheler, K., Packmohr, S., & Vogelsang, K. (2018). Drivers of Digital Transformation in Manufacturing. https://doi.org/10.24251/HICSS.2018.493; Lorenzo, O. (2016). Cultura Digital: Construyendo nuevos comportamientos y habitos en la organización para maximizar el potencial de la tecnología. Boletin de Estudios Económicos, 71(217), 71–83. https://www.researchgate.net/publication/301297558_CULTURA_DIGITAL_CONSTRUYEND O_NUEVOS_COMPORTAMIENTOS_Y_HABITOS_EN_LA_ORGANIZACION_PARA_MAXI MIZAR_EL_POTENCIAL_DE_LA_TECNOLOGIA_DIGITAL_CULTURE_BUILDING_NEW_O RGANIZATIONAL_BEHAVIORS_AND_HABITS_TO_MAXIMI; Lorenzo Ochoa, O. (2016). Modelos de madurez digital: ¿En qué consisten y qué podemos aprender de ellos? Boletín de Estudios Económicos, 72(219), 573–590. file:///C:/Users/Monica Pelegrina/Downloads/BEEMadurezDigitalOLorenzo.pdf; Lundvall, B.-Å. (2017). Is there a technological fix for the current global stagnation? Research Policy, 46(3), 544–549. https://doi.org/10.1016/j.respol.2016.06.011; Machekhina, O. N. (2017). Digitalization of education as a trend of its modernization and reforming. https://www.semanticscholar.org/paper/Digitalization-of-education-as-a-trend-of-its-andMachekhina/3c78b5205e2d1b386d79de6b40af9ceb1628fb02; Maedche, A., Vom Brocke, J., & Hevner, A. (2017). Designing the Digital Transformation: 12th International Conference, DESRIST 2017.; Mahraz, M.-I., Benabbou, L., & Berrado, A. (2019). A systematic literature review of digital transformation. Proceedings of the International Conference on Industrial Engineering and Operations Management, 917–931.; Maltaverne, B. (2017). Digital transformation of Procurement: a good abuse of language? http://www.thedigitaltransformationpeople.com/; Manochehri, N. N., Al-Esmail, R., & Ashrafi, R. (2012). Examining the impact of information and communication technologies (ICT) on enterprise practices: a preliminary perspective from Qatar. The Electronic Journal on Information Systems in Developing Countries (EJISDC), 51(3), 1–16.; Manotti, J., Sanasi, S., Cavallo, A., Ghezzi, A., & Rangone, A. (2020). Digital innovation: A bibliometric review and research agenda. Proceedings of the European Conference on Innovation and Entrepreneurship, ECIE, 2020-Septe, 369–375. https://doi.org/10.34190/EIE.20.116; Marjanovic, U., Rakic, S., & Lalic, B. (2019). Digital Servitization: The Next “Big Thing” in Manufacturing Industries. In IFIP Advances in Information and Communication Technology (Vol. 566, pp. 510–517). https://doi.org/10.1007/978-3-030-30000-5_63; Martín-Peña, M.-L., Sánchez-López, J.-M., & Díaz-Garrido, E. (2019). Servitization and digitalization in manufacturing: the influence on firm performance. Journal of Business & Industrial Marketing, 35(3), 564–574. https://doi.org/10.1108/JBIM-12-2018-0400; Matt, C., Hess, T., & Benlian, A. (2015). Digital Transformation Strategies. Business & Information Systems Engineering, 57(5), 339–343. https://doi.org/10.1007/s12599-015-0401-5; Maxwell, L., & McCain, T. A. (1997). Gateway or gatekeeper: The implications of copyright and digitalization on education. Communication Education, 46(3), 141–157. https://doi.org/10.1080/03634529709379087; Maydanova, S., & Ilin, I. (2019). Strategic approach to global company digital transformation. Proceedings of the 33rd International Business Information Management Association Conference, IBIMA 2019: Education Excellence and Innovation Management through Vision 2020, 8818–8833.; Mihardjo, L. W. W., Sasmoko, S., Alamsjah, F., & Elidjen, E. (2019). Digital leadership role in developing business model innovation and customer experience orientation in industry 4.0. Management Science Letters, 9(11), 1749–1762. https://doi.org/10.5267/j.msl.2019.6.015; Mihova, T., & Chukalov, K. (2019). Digital business models in industrial enterprises. IOP Conference Series: Materials Science and Engineering, 618(1). https://doi.org/10.1088/1757- 899X/618/1/012074; MinTIC. (2019a). G.GEN.03 Guía general de un proceso de Arquitectura Empresarial. In Viceministerio de Economía Digital, Dirección de Gobierno Digital. Versión 2.2, Octubre 2019. Ministerio de Tecnologías de la Información y las Comunicaciones (MinTIC). https://mintic.gov.co/arquitecturati/630/articles-9435_Guia_Proceso.pdf; MinTIC. (2019b). MAE.G.GEN.01 – Documento Maestro del Modelo de Arquitectura Empresarial. In Viceministerio de Economía Digital, Dirección de Gobierno Digital. Versión 1, Octubre 2019. Ministerio de Tecnologías de la Información y las Comunicaciones (MinTIC). https://www.mintic.gov.co/arquitecturati/630/articles-144764_recurso_pdf.pdf; MinTIC. (2019c). Marco de Referencia de Arquitectura v. 2.0. Arquitectura TI Colombia, Ministerio de Tecnologías de La Información y Las Comunicaciones (MinTIC). https://www.mintic.gov.co/arquitecturati/630/w3-propertyvalue-8118.html; MinTIC. (2019d). MGGTI.G.GEN.01 – Documento Maestro del Modelo de Gestión y Gobierno de TI. In Viceministerio de Economía Digital, Dirección de Gobierno Digital. Versión 1, Octubre 2019. Ministerio de Tecnologías de la Información y las Comunicaciones (MinTIC). https://www.mintic.gov.co/arquitecturati/630/articles-144767_recurso_pdf.pdf; MinTIC. (2019e). MGPTI.G.GEN.01 – Documento Maestro del Modelo de Gestión de Proyectos TI. In Viceministerio de Economía Digital, Dirección de Gobierno Digital. Versión 1, Octubre 2019. https://www.mintic.gov.co/arquitecturati/630/articles-144766_recurso_pdf.pdf; MinTIC. (2020). Marco de la Transformación Digital para el Estado Colombiano. In Viceministerio de Economía Digital, Dirección de Gobierno Digital. Versión 1, Julio 2020. Ministerio de Tecnologías de la Información y las Comunicaciones (MinTIC). https://mintic.gov.co/portal/715/articles-149186_recurso_1.pdf; MinTIC, M. de T. de la I. y las C. (2018). Manual de Gobierno Digital. Ministerio de Tecnologías de la Información y las Comunicaciones (MinTIC). https://gobiernodigital.mintic.gov.co/692/channels-594_manual_gd.pdf; MinTIC, M. de T. de la I. y las C. (2022). MinTIC expide el Decreto 1263 de 2022 para definir los lineamientos y estándares aplicables a la transformación digital pública. Transformación Digital. https://www.mintic.gov.co/portal/inicio/Sala-de-prensa/Noticias/238232:MinTICexpide-el-Decreto-1263-de-2022-para-definir-los-lineamientos-y-estandares-aplicables-a-latransformacion-digital-publica; Morakanyane, R., Grace, A., & O’Reilly, P. (2017). Conceptualizing Digital Transformation in Business Organizations: A Systematic Review of Literature. Digital Transformation – From Connecting Things to Transforming Our Lives, 427–443. https://doi.org/10.18690/978-961- 286-043-1.30; Morley, J., Widdicks, K., & Hazas, M. (2018). Digitalisation, energy and data demand: The impact of Internet traffic on overall and peak electricity consumption. Energy Research & Social Science, 38, 128–137. https://doi.org/10.1016/j.erss.2018.01.018; Motta, J., Moreno, H., & Ascúa, R. (2019). Industria 4.0 en miPYMES manufactureras de la Argentina, Documentos de Proyectos (LC/TS.2019/93), Santiago. Comisión Económica Para América Latina y El Caribe (CEPAL).; Mullins, J., & Komisar, R. (2011). MEASURING UP: DASHBOARDING FOR INNOVATORS. Business Strategy Review, 22(1), 7–16. https://doi.org/10.1111/j.1467-8616.2011.00723.x; Nadler, D. A., & Tushman, M. L. (1980). A model for diagnosing organizational behavior. Organizational Dynamics, 9(2), 35–51. https://doi.org/10.1016/0090-2616(80)90039-X; Nambisan, S., Wright, M., & Feldman, M. (2019). The digital transformation of innovation and entrepreneurship: Progress, challenges and key themes. Research Policy, 48(8), 103773. https://doi.org/10.1016/j.respol.2019.03.018; Nasiri, M., Saunila, M., Ukko, J., Rantala, T., & Rantanen, H. (2020). Shaping Digital Innovation Via Digital-related Capabilities. Information Systems Frontiers. https://doi.org/10.1007/s10796- 020-10089-2; Ndou, A. T., Madonsela, N. S., & Twala, B. (2020). The era of digital technology: Analysis of factors contributing to economic growth and sustainability. Proceedings of the International Conference on Industrial Engineering and Operations Management, 59, 1109–1123.; Nerima, M., & Ralyté, J. (2021). Towards a Digital Maturity Balance Model for Public Organizations. In Lecture Notes in Business Information Processing: Vol. 415 LNBIP. https://doi.org/10.1007/978-3-030-75018-3_20; Newman, M. (2017). Digital Maturity Model (DMM) A blueprint for digital transformation. TM Forum. https://www.tmforum.org/wp-content/uploads/2017/05/DMM-WP-2017-Web.pdf; Núñez de Schilling, E. (2011). Gestión tecnológica en la empresa: definición de sus objetivos fundamentales. Revista de Ciencias Sociales (RCS), 17(1), 156–166.; Open Roads. (2017). Introduction to Open Digital Maturity Model. https://de.scribd.com/document/362559576/170810-Introduction-to-Open-Digital-MaturityModel-for-release-V2R9-pdf#download; Pan, W., Xie, T., Wang, Z., & Ma, L. (2022). Digital economy: An innovation driver for total factor productivity. Journal of Business Research, 139, 303–311. https://doi.org/10.1016/j.jbusres.2021.09.061; Pappas, I. O., Mikalef, P., Giannakos, M. N., Krogstie, J., & Lekakos, G. (2018). Big data and business analytics ecosystems: Paving the way towards digital transformation and sustainable societies. Information Systems and E-Business Management, 16(3), 479–491.; Parida, V., Sjödin, D. R., Lenka, S., & Wincent, J. (2015). Developing Global Service Innovation Capabilities: How Global Manufacturers Address the Challenges of Market Heterogeneity. Research-Technology Management, 58(5), 35–44. https://doi.org/10.5437/08956308X5805360; Paritala, P. K., Manchikatla, S., & Yarlagadda, P. K. D. V. (2017). Digital Manufacturing- Applications Past, Current, and Future Trends. Procedia Engineering, 174, 982–991. https://doi.org/10.1016/j.proeng.2017.01.250; Parviainen, P., Tihinen, M., Kääriäinen, J., & Teppola, S. (2017). Tackling the digitalization challenge: How to benefit from digitalization in practice. International Journal of Information Systems and Project Management, 5, 63–77. https://doi.org/http://dx.doi.org/10.12821/ijispm050104; Peng, Y., & Tao, C. (2022). Can digital transformation promote enterprise performance? —From the perspective of public policy and innovation. Journal of Innovation & Knowledge, 7(3), 100198. https://doi.org/10.1016/j.jik.2022.100198; Perez, C. (2010). Technological revolutions and techno-economic paradigms. Cambridge Journal of Economics, 34(1), 185–202. https://doi.org/10.1093/cje/bep051; Perez, Carlota. (2013). Unleashing a golden age after the financial collapse: Drawing lessons from history. Environmental Innovation and Societal Transitions, 6, 9–23. https://doi.org/10.1016/j.eist.2012.12.004; Peter, M. K. (2017). KMU-Transformation. Als KMU die Digitale Transformation erfolgreich umsetzen. Forschungsresultate und Praxisleitfaden. FHNW Fachhochschule Nordwestschweiz Hochschule Für Wirtschaft. https://kmu-transformation.ch/digitale-ausgabe/; Peyman, A., Faraby, N., Rossmann, A., Steimel, B., & Wichmann, K. (2014). Digital Transformation Report - eine empirische Studie. Köln. Neuland GmbH & Co. KG. https://www.wiwo.de/downloads/10773004/1/DTA_Report_neu.pdf; Piccinini, E., Gregory, R. W., & Kolbe, L. M. (2015). Changes in the Producer-Consumer Relationship - Towards Digital Transformation. Wirtschaftsinformatik Proceedings 2015, 109. https://aisel.aisnet.org/wi2015/109; Porter, M. E. (2002). Ventaja Competitiva, creación y sostenimiento de un desempeño superior (2da ed.). Compañía Editorial Continental (CECSA).; Proença, D., & Borbinha, J. (2016). Maturity Models for Information Systems - A State of the Art. Procedia Computer Science, 100, 1042–1049. https://doi.org/10.1016/j.procs.2016.09.279; PwC Colombia, & CINTEL. (2021). Digital Way Colombia 2021: Análisis de la transformación digital de las empresas Colombianas ganadoras del Premio de Transformación Digital. Consulting PwC Colombia. https://www.pwc.com/co/es/advisory/Tecnologia/digital-way/files/digital-waycolombia-2021-pwc-cintel.pdf; Queiroz, M. M., Fosso Wamba, S., Machado, M. C., & Telles, R. (2020). Smart production systems drivers for business process management improvement. Business Process Management Journal, 26(5), 1075–1092. https://doi.org/10.1108/BPMJ-03-2019-0134; Rachinger, M., Rauter, R., Müller, C., Vorraber, W., & Schirgi, E. (2019). Digitalization and its influence on business model innovation. Journal of Manufacturing Technology Management, 30(8), 1143–1160. https://doi.org/10.1108/JMTM-01-2018-0020; Reis, J., Amorim, M., Melão, N., Cohen, Y., & Rodrigues, M. (2020). Digitalization: A Literature Review and Research Agenda (pp. 443–456). https://doi.org/10.1007/978-3-030-43616-2_47; Remane, G., Hanelt, A., Wiesboeck, F., & Kolbe, L. (2017). Digital maturity in traditional industries– an exploratory analysis. Proceedings of the 25th European Conference on Information Systems (ECIS). https://www.researchgate.net/publication/316687803_DIGITAL_MATURITY_IN_TRADITION AL_INDUSTRIES_-_AN_EXPLORATORY_ANALYSIS; Reyes, J. F., Morocho, V., & Cedillo, P. (2022). Applying Maturity Models in Organizations for Digital Transformation: A Comparative Study. In Smart Innovation, Systems and Technologies (Vol. 252, pp. 721–731). https://doi.org/10.1007/978-981-16-4126-8_64; Riascos González, J. A. (2006). De la estructura por funciones al enfoque basado en procesos y a la visión sistémica de la organizació. In Revista Ciencias Estratégicas (Vol. 14, Issue 15).; Ringenson, T., Höjer, M., Kramers, A., & Viggedal, A. (2018). Digitalization and Environmental Aims in Municipalities. Sustainability, 10(4), 1278. https://doi.org/10.3390/su10041278; Rodríguez-Abitia, G., & Bribiesca-Correa, G. (2021). Assessing digital transformation in universities. Future Internet, 13(2), 1–17. https://doi.org/10.3390/fi13020052; Rodríguez-Abitia, Guillermo, & Bribiesca-Correa, G. (2021). Assessing Digital Transformation in Universities. Future Internet, 13(2), 52. https://doi.org/10.3390/fi13020052; Rogers, D. L. (2016). The Digital Transformation Playbook - Rethink Your Business for the Digital Age. Columbia University Press.; Romero, D., Flores, M., Herrera, M., & Resendez, H. (2019). Five Management Pillars for Digital Transformation Integrating the Lean Thinking Philosophy. 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), 1–8. https://doi.org/10.1109/ICE.2019.8792650; Rossmann, A. (2018). Digital Maturity: Conceptualization and Measurement Mode. ICIS 2018 Proceedings., 8. https://www.researchgate.net/profile/Alexander-Rossmann2/publication/345760193_Digital_Maturity_Conceptualization_and_Measurement_Model/links /5face798299bf18c5b6a0a20/Digital-Maturity-Conceptualization-and-Measurement-Model.pdf; Rozo, D., Moreira, J., & van Sinderen, M. (2020). Examining enterprise architecture for digital transformation. CEUR Workshop Proceedings, 2900.; Saleh, A., & Awny, M. M. (2020). Digital transformation strategy framework. Towards the Digital World and Industry X.0 - Proceedings of the 29th International Conference of the International Association for Management of Technology, IAMOT 2020, 1207–1219.; Salume, P. K., Barbosa, M. W., Pinto, M. R., & Sousa, P. R. (2021). Key dimensions of digital maturity: A study with retail sector companies in Brazil %7C DimensÕes-chave da maturidade digital: Um estudo com empresas do setor de varejo no Brasil. Revista de Administracao Mackenzie, 22(6). https://doi.org/10.1590/1678-6971/ERAMD210071; Salviotti, G., Gaur, A., & Pennarola, F. (2019). Strategic factors enabling digital maturity: an extended survey. The 13th Mediterranean Conference on Information Systems (MCIS), 1–13. https://aisel.aisnet.org/mcis2019/15; Sánchez-Torres, J. M., & Miles, I. (2017). The role of future-oriented technology analysis in eGovernment: a systematic review. European Journal of Futures Research, 5(1). https://doi.org/10.1007/S40309-017-0131-7; Satalkina, L., & Steiner, G. (2020). Digital entrepreneurship and its role in innovation systems: A systematic literature review as a basis for future research avenues for sustainable transitions. Sustainability (Switzerland), 12(7). https://doi.org/10.3390/su12072764; Schäfer, D., Rossmann, A., Vogel, R., & Wichmann, K. (2015). Digital Transformation Report 2015. Köln. WirtschaftsWoche & Neuland, 1–75.; Schallmo, D., Williams, C. A., & Boardman, L. (2017). Digital transformation of business models — Best practice, enablers, and roadmap. International Journal of Innovation Management, 21(08), 1740014. https://doi.org/10.1142/S136391961740014X; Schlaepfer, R., Von Radowitz, K., Koch, M., & Merkofer, P. (2017). Digital future readiness - How do companies prepare for the opportunities and challenges of digitalisation? Deloitte. https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/consumer-business/ch-cip-enswiss-transformation.pdf; Schuchmann, D., & Seufert, S. (2015). Corporate Learning in Times of Digital Transformation: A Conceptual Framework and Service Portfolio for the Learning Function in Banking Organisations. International Journal of Advanced Corporate Learning (IJAC), 8(1), 31. https://doi.org/10.3991/ijac.v8i1.4440; Schuh, G., Anderl, R., Gausemeier, J., ten Hompel, M., & Wolfgang Wahlster. (2017). Industrie 4.0 Maturity Index Managing the Digital Transformation of Companies. Acatech STUDY. https://en.acatech.de/publication/industrie-4-0-maturity-index-managing-the-digitaltransformation-of-companies/; Schumacher, A., Erol, S., & Sihn, W. (2016). A Maturity Model for Assessing Industry 4.0 Readiness and Maturity of Manufacturing Enterprises. Procedia CIRP, 52, 161–166. https://doi.org/10.1016/j.procir.2016.07.040; Schumpeter, J. A. (1939). Business cycles. A theoretical, historical and statistical analysis of the capitalistprocess. McGraw-Hill Book Co.; Schwab, K. (2017). The fourth industrial revolution. Crown Business. https://doi.org/10.5555/3137529; Schwab, Klaus. (2016). The fourth industrial revolution. https://law.unimelb.edu.au/__data/assets/pdf_file/0005/3385454/SchwabThe_Fourth_Industrial_Revolution_Klaus_S.pdf; Schwertner, K. (2017). Digital transformation of business. Trakia Journal of Science, 15(Suppl.1), 388–393. https://doi.org/10.15547/tjs.2017.s.01.065; Serinikli, N. (2020). Transformation of Business With Digital Processes. In Handbook of Research on Strategic Fit and Design in Business Ecosystems (pp. 53–75). https://doi.org/10.4018/978- 1-7998-1125-1.ch003; Sewpersadh, N. S. (2023). Disruptive business value models in the digital era. Journal of Innovation and Entrepreneurship, 12(1), 2. https://doi.org/10.1186/s13731-022-00252-1; Seyedghorban, Z., Samson, D., & Tahernejad, H. (2020). Digitalization opportunities for the procurement function: pathways to maturity. International Journal of Operations & Production Management, 40(11), 1685–1693. https://doi.org/10.1108/IJOPM-04-2020-0214; Shahi, C., & Sinha, M. (2021). Digital transformation: challenges faced by organizations and their potential solutions. International Journal of Innovation Science, 13(1), 17–33. https://doi.org/10.1108/IJIS-09-2020-0157; Sheng, X., Guo, S., & Chang, X. (2022). Managerial myopia and firm productivity: Evidence from China. Finance Research Letters, 49, 103083. https://doi.org/10.1016/j.frl.2022.103083; Sierra, Y. (2022). Transformación digital en Colombia según el MinTIC (2022). Lemontech Blog. https://blog.lemontech.com/transformacion-digital-colombia/; Soares, N., Monteiro, P., Duarte, F. J., & Machado, R. J. (2021). Extended Maturity Model for Digital Transformation. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 12952 LNCS. https://doi.org/10.1007/978-3-030-86973-1_13; Sousa-Zomer, T. T., Neely, A., & Martinez, V. (2020). Digital transforming capability and performance: a microfoundational perspective. International Journal of Operations & Production Management, 40(7/8), 1095–1128. https://doi.org/10.1108/IJOPM-06-2019-0444; Sousa, M. J., Cruz, R., Rocha, Á., & Sousa, M. (2019). Innovation Trends for Smart Factories: A Literature Review. In Advances in Intelligent Systems and Computing (Vol. 930, pp. 689–698). https://doi.org/10.1007/978-3-030-16181-1_65; Srai, J. S., & Lorentz, H. (2019). Developing design principles for the digitalisation of purchasing and supply management. Journal of Purchasing and Supply Management, 25(1), 78–98. https://doi.org/10.1016/j.pursup.2018.07.001; Steinmueller, W. E. (2017). Science fiction and innovation: A response. Research Policy, 46(3), 550– 553. https://doi.org/10.1016/j.respol.2016.07.009; Strutynska, I., Dmytrotsa, L., Kozbur, H., Melnyk, L., & Olha, H. (2020). Developing practical recommendations for increasing the level of digital business transformation index. CEUR Workshop Proceedings, 2732, 351–362.; Sturgeon, T. J. (2021). Upgrading strategies for the digital economy. Global Strategy Journal, 11(1), 34–57. https://doi.org/10.1002/gsj.1364; Taruta, A., & Gatautisa, R. (2014). ICT impact on SMEs performance. Procedia - Social and Behavioral Sciences, 110, 1218 – 1225.; Tarute, A., Duobiene, J., Kloviene, L., Vitkauskaite, E., & Varaniute, V. (2018). Identifying factors affecting digital transformation of SMEs. Proceedings of the International Conference on Electronic Business (ICEB), 2018-Decem, 373–381.; Tashakkori, A., & Teddlie, C. (2009). Integrating Qualitative and Quantitative Approaches to Research. In The SAGE Handbook of Applied Social Research Methods (pp. 283–317). SAGE Publications, Inc. https://doi.org/10.4135/9781483348858.n9; Teichert, R. (2019). Digital Transformation Maturity: A Systematic Review of Literature. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67(6), 1673–1687. https://doi.org/10.11118/actaun201967061673; Teubner, R. A. (2019). An Exploration into IT Programs and Their Management: Findings From Multiple Case Study Research. Information Systems Management, 36(1), 40–56. https://doi.org/10.1080/10580530.2018.1553648; Thordsen, T., & Bick, M. (2021). Towards a holistic digital maturity model. International Conference on Information Systems, ICIS 2020 - Making Digital Inclusive: Blending the Local and the Global.; Thordsen, Tristan, Murawski, M., & Bick, M. (2020). How to Measure Digitalization? A Critical Evaluation of Digital Maturity Models (pp. 358–369). https://doi.org/10.1007/978-3-030-44999- 5_30; Thorseng, A. A., & Grisot, M. (2017). Digitalization as institutional work: a case of designing a tool for changing diabetes care. Information Technology & People, 30(1), 227–243. https://doi.org/10.1108/ITP-07-2015-0155; Tiller, S. R. (2011). Effective Business Governance. Leadership and Management in Engineering, 11(3), 253–257. https://doi.org/10.1061/(ASCE)LM.1943-5630.0000128; Tortora, D., Chierici, R., Farina Briamonte, M., & Tiscini, R. (2021). ‘I digitize so I exist’. Searching for critical capabilities affecting firms’ digital innovation. Journal of Business Research, 129, 193–204. https://doi.org/10.1016/j.jbusres.2021.02.048; Tylecote, A. (2019). Biotechnology as a new techno-economic paradigm that will help drive the world economy and mitigate climate change. Research Policy, 48(4), 858–868. https://doi.org/10.1016/j.respol.2018.10.001; Usai, A., Fiano, F., Messeni Petruzzelli, A., Paoloni, P., Farina Briamonte, M., & Orlando, B. (2021). Unveiling the impact of the adoption of digital technologies on firms’ innovation performance. Journal of Business Research, 133, 327–336. https://doi.org/10.1016/j.jbusres.2021.04.035; Valdez-de-Leon, O. (2016). A digital maturity model for telecommunications service providers. Technology Innovation Management Review, 6(8), 19–32. https://timreview.ca/sites/default/files/article_PDF/Valdez-deLeon_TIMReview_August2016.pdf; Valenduc, G., & Vendramin, P. (2017). Digitalisation, between disruption and evolution. Transfer: European Review of Labour and Research, 23(2), 121–134. https://doi.org/10.1177/1024258917701379; van Steenbergen, M., Bos, R., Brinkkemper, S., van de Weerd, I., & Bekkers, W. (2010). The Design of Focus Area Maturity Models (pp. 317–332). https://doi.org/10.1007/978-3-642-13335-0_22; Veiga de Cabo, J., De La Fuente Díez, E., & Zimmermann Verdejo, M. (2008). Modelos de estudios en investigación aplicada: conceptos y criterios para el diseño. Medicina y Seguridad Del Trabajo, 54(210). https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0465- 546X2008000100011; Velasco Chaves, R., Ordóñez Arias, C., & Restrepo Sánchez, M. (2020). Analítica. INNpulsa Colombia. Micomercio. https://innpulsacolombia.com/sites/default/files/documentos-recursospdf/Analitica_II (1).pdf; Venkateswaran, V., & Jyotishi, A. (2017). Digital Strategy Performance Differential Between Government and Private Sector: An New Institutional Economics Perspective. 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), 1– 5. https://doi.org/10.1109/ICCIC.2017.8524567; Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Qi Dong, J., Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisciplinary reflection and research agenda. Journal of Business Research, 122, 889–901. https://doi.org/10.1016/j.jbusres.2019.09.022; Verhovnik, J., & Duh, E. S. (2021). The importance of Industry 4.0 and digital transformation for SMEs %7C Pomen Industrije 4.0 in digitalne transformacije za mikro, mala in srednje velika podjetja. Elektrotehniski Vestnik/Electrotechnical Review, 88(3), 147–149.; Voss, M., Jaspert, D., Ahlfeld, C., & Sucke, L. (2023). Developing a digital maturity model for the sales processes of industrial projects. Journal of Personal Selling & Sales Management, 1–21. https://doi.org/10.1080/08853134.2022.2151014; Wade, M., & Shan, J. (2020). Covid-19 Has Accelerated Digital Transformation, but May Have Made it Harder Not Easier. MIS Quarterly Executive, 19(3), 213–220. https://aisel.aisnet.org/misqe/vol19/iss3/7; Wade, Michael, & Shan, J. (2020). Covid-19 Has Accelerated Digital Transformation, but May Have Made it Harder Not Easier. MIS Quarterly Executive, 213–220. https://doi.org/10.17705/2msqe.00034; Wallner, J., & KPMG. (2016). New “Digital Readiness Assessment” from 2b AHEAD and KPMG. 2b AHEAD ThinkTank. https://www.zukunft.business/foresight/trendanalysen/analyse/digitalreadiness-assessment-von-2b-ahead-und-kpmg/; Wang, S., Wan, J., Li, D., & Zhang, C. (2016). Implementing Smart Factory of Industrie 4.0: An Outlook. International Journal of Distributed Sensor Networks, 12(1), 3159805. https://doi.org/10.1155/2016/3159805; Weking, J., Stöcker, M., Kowalkiewicz, M., Böhm, M., & Krcmar, H. (2020). Leveraging industry 4.0 – A business model pattern framework. International Journal of Production Economics, 225, 107588. https://doi.org/10.1016/j.ijpe.2019.107588; Wendler, R. (2014). Development of the organizational agility maturity model. Federated Conference on Computer Science and Information Systems (FedCSIS), 1197–1206.; Wendler, Roy. (2012). The maturity of maturity model research: A systematic mapping study. Information and Software Technology, 54(12), 1317–1339. https://doi.org/10.1016/j.infsof.2012.07.007; Wessel, L., Baiyere, A., Ologeanu-Taddei, R., Cha, J., & Blegind Jensen, T. (2021). Unpacking the Difference Between Digital Transformation and IT-Enabled Organizational Transformation. Journal of the Association for Information Systems, 22(1), 102–129. https://doi.org/10.17705/1jais.00655; Westerman, G. (2016). Why digital transformation needs a heart. MIT Sloan Management Review, 58(1), ISSN 15329194.; Westerman, G., Bonnet, D., & McAfee, A. (2014). The nine elements of digital transformation. MIT Sloan Management Review, 55(3), 1–6.; Westerman, G., Calméjane, C., Bonnet, D., Ferraris, P., & McAfee, A. (2011). Digital Transformation: A roadmap for billion-dollar organizations. MIT Center for Digital Business and Capgemini Consulting, 1, 1–68. https://www.capgemini.com/wpcontent/uploads/2017/07/Digital_Transformation__A_Road-Map_for_BillionDollar_Organizations.pdf; Westerman, G., Tannou, M., Bonnet, D., Ferraris, P., & McAfee, A. (2012). The digital advantage: how digital leaders outperform their peers in every industry. MITSloan Manag. Capgemini Consult, 2, 2–23. https://www.capgemini.com/wpcontent/uploads/2017/07/The_Digital_Advantage__How_Digital_Leaders_Outperform_their_ Peers_in_Every_Industry.pdf; Yamamoto, S. (2020). A Strategic Map for Digital Transformation. Procedia Computer Science, 176, 1374–1381. https://doi.org/10.1016/j.procs.2020.09.147; Yoo, Y., Lyytinen, K., Thummadi, V., & Weiss, A. (2010). Unbounded Innovation with Digitalization : A Case of Digital Camera. Proceedings of the Annual Meeting of the Academy of Management, AOM 2010.; Zhai, H., Yang, M., & Chan, K. C. (2022). Does digital transformation enhance a firm’s performance? Evidence from China. Technology in Society, 68, 101841. https://doi.org/10.1016/j.techsoc.2021.101841; https://repositorio.unal.edu.co/handle/unal/84991; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
18
Authors:
Contributors:
Subject Terms: Diseño, Tecnología, Co-exploración, Multidisciplinario, Discapacidad, Sentido colectivo, Co-diseño, Co-exploration, Multidisciplinary, Disability, Collective sense, Co-design
File Description: application/pdf
Relation: Agredo-Delgado, V., Ruiz Melenje, P. H., Collazos, C. A., Moreira, F., & Fardoune, H. M. (2020). Catálogo de lineamientos metodológicos para apoyar el proceso de aprendizaje colaborativo. Education in the Knowledge Society (EKS), 21, 16. https://doi.org/10.14201/eks.22204; Agree, E. M., & Freedman, V. A. (2003). A Comparison of Assistive Technology and Personal Care in Alleviating Disability and Unmet Need. The Gerontologist, 43(3), 335-344. https://doi.org/10.1093/geront/43.3.335; Ahmadvand, A., Gatchel, R., Brownstein, J., & Nissen, L. (2018). The Biopsychosocial-Digital Approach to Health and Disease: Call for a Paradigm Expansion. Journal of Medical Internet Research, 20(5), e189. https://doi.org/10.2196/jmir.9732; Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., & Angel, S. (1977). A pattern language: towns, buildings, construction. Oxford University Press.; Angelini, L., Carrino, S., Abou Khaled, O., Riva-Mossman, S., & Mugellini, E. (2016). Senior Living Lab: An Ecological Approach to Foster Social Innovation in an Ageing Society. Future Internet, 8(4), 50. https://doi.org/10.3390/fi8040050; Arango Morales, X. A., & Cuevas Pérez, V. A. (2015). Método de análisis estructural: matriz de impactos cruzados multiplicación aplicada a una clasificación (Micmac). Métodos y técnicas cualitativas y cuantitativas aplicables a la investigación en ciencias sociale, 165- 233; Arlati, S., Spoladore, D., Mottura, S., Zangiacomi, A., Ferrigno, G., Sacchetti, R., & Sacco, M. (2019). Analysis for the design of a novel integrated framework for the return to work of wheelchair users. Work, 61(4), 603-625. https://doi.org/10.3233/WOR-182829; Arnau Ripollés, M. S., & Toboso Martín, M. (2008). La discapacidad dentro del enfoque de capacidades y funcionamientos de Amartya en [Disability within Amartya en’s capabilities and operations approach]. Araucaria. Revista Iberoamericana de Filosofía, Política y Humanidades, Año 10(20), 64-94.; Aryana, B., Brewster, L., & Nocera, J. A. (2019). Design for mobile mental health: an exploratory review. Health and Technology, 9(4), 401-424. https://doi.org/10.1007/s12553-018-0271- 1; Ashby, W. R. (1991). Requisite Variety and Its Implications for the Control of Complex Systems. En Facets of Systems Science (pp. 405-417). Springer US. https://doi.org/10.1007/978-1- 4899-0718-9_28; Atlas.ti. (2018). Atlas.ti scientific software development GmbH: Qualitative data analysis.; Bacha, J. A. (2017). Mapping Use, Storytelling, and Experience Design. Journal of Business and Technical Communication, 32(2), 198-228. https://doi.org/10.1177/1050651917746708; Bahler, D., Dupont, C., & Bowen, J. (1995). Mixed quantitative/qualitative method for evaluating compromise solutions to conflicts in collaborative design. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing, 9(4), 325-336. https://doi.org/10.1017/S0890060400002869; Barbosa Ardila, S. D., Villegas Salazar, F., & Beltrán, J. (2020). El modelo médico como generador de discapacidad. Revista Latinoamericana de Bioética, 19(37-2), 111-122. https://doi.org/10.18359/rlbi.4303; Barthes, R. (1972). Mythologies (Annette Lavers, Trans.). New York: Hill and Wang, 137.; Benktzon, M. (1993). Designing for our future selves: the Swedish experience. Applied Ergonomics, 24(1), 19-27. https://doi.org/10.1016/0003-6870(93)90155-3; Berger, P. L., & Luckmann, T. (1967). The social construction of reality: A treatise in the sociology of knowledge. Penguin Group.; Bergvall-Kåreborn, B., & Ståhlbrost, A. (2008). Participatory design: one step back or two steps forward? Proceedings of the tenth anniversary conference on participatory design 2008, 102-111; Biddiss, E., McPherson, A., Shea, G., & McKeever, P. (2013). The Design and Testing of Interactive Hospital Spaces to Meet the Needs of Waiting Children. HERD: Health Environments Research & Design Journal, 6(3), 49-68. https://doi.org/10.1177/193758671300600305; Bixler, A. (2010). Accessibility Through Design. Occupational health & safety (Waco, Tex.), 79(9), 22-24; Brandt, E., Binder, T., & Sanders, E. B. N. (2012). Tools and techniques: Ways to engage telling, making and enacting. En J. Simonsen & T. Robertson (Eds.), Routledge International Handbook of Participatory Design. Routledge; Bratteteig, T., & Wagner, I. (2014). Disentangling Participation. En R. Harper (Ed.), Disentangling participation; Power and Decision-making in participatory design. Springer International Publishing. https://doi.org/10.1007/978-3-319-06163-4; Bratteteig, T., & Wagner, I. (2016). What is a participatory design result? Proceedings of the 14th Participatory Design Conference on Full papers - PDC ’16, 1, 141-150. https://doi.org/10.1145/2940299.2940316; Burgstahler, . (200 ). Universal Design : Process , Principles , and Applications. DO-IT.; Burkhardt, S. (2014). Biopsychosocial Approaches to Understanding Disability: Building Connections: How Teachers Matter. En Special Education International Perspectives: Biopsychosocial, Cultural, and Disability Aspects (Vol. 27, pp. 3-32). Emerald Group Publishing Limited. https://doi.org/10.1108/S0270-401320140000027001; Campbell, J., & Moyers, B. (1991). The Power of Myth. Anchor Books.; Castaneda, L. (2018). A Classificação Internacional de Funcionalidade, Incapacidade e Saúde (CIF) – um caminho para a Promoção da Saúde. Brazilian Journal of Kinanthropometry and Human Performance, 20(2), 229-233. https://doi.org/10.5007/1980- 0037.2018v20n2p229; Claes, C., van Hove, G., Vandevelde, S., van Loon, J., & Schalock, R. L. (2010). Person-centered planning: Analysis of research and effectiveness. Intellectual and Developmental Disabilities, 48(6), 432-453. https://doi.org/10.1352/1934-9556-48.6.432; Clarke, J., Hall, S., Jefferson, T., & Roberts, B. (1976). Subcultures, Cultures and Class: A theoretical overview. En Resistance Through Rituals (pp. 9-74). Routledge.; Cole, M., & Engeström, Y. (1993). A cultural-historical approach to distributed cognition. En G. Salomon (Ed.), Distributed Cognitions Psychological and Educational Considerations (pp. 23-74). Cambridge University Press; Collazos, C. A., Guerrero, L. A., Pino, J. A., & Ochoa, S. F. (2003). Collaborative Scenarios to Promote Positive Interdependence among Group Members. En Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 2806, pp. 356-370). https://doi.org/10.1007/978-3-540- 39850-9_30; Collazos, C. A., Padilla-zea, N., Pozzi, F., Guerrero, L. A., Gutierrez, F. L., Collazos, C. A., Padillazea, N., Pozzi, F., & Guerrero, L. A. (2014). Design guidelines to foster cooperation in digital environments. Technology, Pedagogy and Education, 23(3), 375-396. https://doi.org/10.1080/1475939X.2014.943277; Cooper, A., Reimann, R., & Cronin, D. (2007). About Face 3: The essentials of interaction design. En Wiley Publishing, Inc. (3.a ed.). Wiley.; Corbin, J., & Strauss, A. (2008). Basics of Qualitative Research (3rd ed.): Techniques and Procedures for Developing Grounded Theory. SAGE Publications, Inc. https://doi.org/10.4135/9781452230153; Cortés, E., & Cru , A. (201 ). enerative Design as Tool for ocial nnovation : A Methodological Approach. Back to the Future [icdhs 10th + 1 Conference] Proceedings Book, October, 44-48.; Cresswell, J. W. (2013). Qualitative Inquiry and Research Design, Third Edition. En Sage (Vol. 66). SAGE Publications, Inc.; Dawood, I., & Underwood, J. (2010). Prioritising Variables of SMEs / Private Sector through Interpretive Structural Model ( ISM ). TG65 & W065 - Special Track 18th CIB World Building Congress, 146-160; De Couvreur, L., & oossens, R. (2011). Design for (every)one : co-creation as a bridge between universal design and rehabilitation engineering. CoDesign, 7(2), 107-121. https://doi.org/10.1080/15710882.2011.609890; De Macedo Guimarães, L. B. (2012). Sociotechnical design for a sustainable world. Theoretical Issues in Ergonomics Science, 13(2), 240-269. https://doi.org/10.1080/1463922X.2011.641230; De Saussure, F. (1966). Course in general linguistics, Edited by Charles Bally and Albert Sechehaye in Collaboration With Albert Riedlinger. Translated, With an Introd. and Notes by Wade Baskin. McGraw-Hill; Debrah, Ralitsa D., de la Harpe, R., & M’Rithaa, M. K. (2017). Design probes and toolkits for healthcare: Identifying information needs in African communities through service design. The Design Journal, 20(sup1), S2120-S2134. https://doi.org/10.1080/14606925.2017.1352730; Debrah, Ralitsa Diana, de la Harpe, R., & M’Rithaa, M. K. (201 ). Exploring design strategies to determine information needs of caregivers. 7th International DEFSA Conference Proceedings, 67-77. https://doi.org/978-1-77012-137-9; Deci, E. L., & Ryan, R. M. (2000). The «what» and «why» of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11(4), 227-268. https://doi.org/10.1207/S15327965PLI1104_01; Desmet, P., & Hekkert, P. (2007). Framework of product experience. International Journal of Design, 1(1), 57-66.; Díaz Velázquez, E. (2009). Reflexiones epistemológicas para una sociología de la discapacidad. Intersticios. Revista sociológica de pensamiento crítico, 3(2), 85-98.; Dugstad, J., Eide, T., Nilsen, E. R., & Eide, H. (2019). Towards successful digital transformation through co-creation: a longitudinal study of a four-year implementation of digital monitoring technology in residential care for persons with dementia. BMC Health Services Research, 19(1), 366. https://doi.org/10.1186/s12913-019-4191-1; Elbers, S., van Gessel, C., Renes, R. J., van der Lugt, R., Wittink, H., & Hermsen, S. (2021). Innovation in Pain Rehabilitation Using Co-Design Methods During the Development of a 147 Relapse Prevention Intervention: Case Study. Journal of Medical Internet Research, 23(1), e18462. https://doi.org/10.2196/18462; Engel, G. (1977). The need for a new medical model: a challenge for biomedicine. Science, 196(4286), 129-136. https://doi.org/10.1126/science.847460; Engeström, Y. (1990). Learning, working and imagining : twelve studies in activity theory. Helsinki: Orienta-Konsultit Oy.; Engeström, Y. (1999). Innovative learning in work teams: Analyzing cycles of knowledge creation in practice. En Perspectives on Activity Theory (pp. 377-404). Cambridge University Press. https://doi.org/10.1017/CBO9780511812774.025; Federici, S., Meloni, F., & Borsci, S. (2016). The abandonment of assistive technology in Italy: a survey of National Health Service users. European journal of physical and rehabilitation medicine, 52(4), 516-526; Findeli, A., Brouillet, D., Martin, S., Moineau, C., & Tarrago, R. (2008). Research Through Design and Transdisciplinarity: A Tentative Contribution to the Methodology of Design Research. En «FOCUSED» — Current Design Research Projects and Methods Swiss Design Network Symposium (pp. 67-91).; Fine, M., & Asch, A. (1988). Disability Beyond Stigma: Social Interaction, Discrimination, and Activism. Journal of Social Issues, 44(1), 3-21. https://doi.org/10.1111/j.1540- 4560.1988.tb02045.x; Francis, P., Mellor, D., & Firth, L. (2009). Techniques and Recommendations for the Inclusion of Users with Autism in the Design of Assistive Technologies. Assistive Technology, 21(2), 57-68. https://doi.org/10.1080/10400430902945561; Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215-239. https://doi.org/10.1016/0378-8733(78)90021-7; Friedman, B., Hendry, D. G., & Borning, A. (2017). A Survey of Value Sensitive Design Methods. Foundations and Trends® in Human–Computer Interaction, 11(2), 63-125. https://doi.org/10.1561/1100000015; Friedman, B., Kahn, P. H., Borning, A., & Huldtgren, A. (2013). Value Sensitive Design and Information Systems. En interactions (Vol. 3, Número 6, pp. 55-95). https://doi.org/10.1007/978-94-007-7844-3_4; García-Acosta, G., Lange-Morales, K., Puentes Lagos, D. E., & Ruiz Ortiz, M. R. (2011). Addressing human factors and ergonomics in design process, product life cycle, and innovation: Trends in consumer product design. Human Factors and Ergonomics in Consumer Product Design: Methods and Techniques, 133-154.; García, V., Rubio, M., & García, G. (2007). Trauma Raquimedular. MEDICRIT Revista de Medicina Crítica, 4(3), 66-75. https://doi.org/10.5413/mrmc.2007.43.89; Gaver, B., Dunne, T., & Pacenti, E. (1999). Design: Cultural probes. Interactions, 6(1), 21-29. https://doi.org/10.1145/291224.291235; Gibbons, M., Limoges, C., Nowotny, H., Schwartzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge: The dynamics of science and research in contemporary societies. SAGE Publications.; Gibson, C. B. (2001). From knowledge accumulation to accommodation: cycles of collective cognition in work groups. Journal of Organizational Behavior, 22(2), 121-134. https://doi.org/10.1002/job.84; Godet, M. (1986). Introduction to la prospective. Futures, 18(2), 134-157. https://doi.org/10.1016/0016-3287(86)90094-7; reenhalgh, T., haw, ., Wherton, J., Hughes, ., Lynch, J., A’Court, C., Hinder, ., ahy, N., Byrne, E., Finlayson, A., Sorell, T., Procter, R., & Stones, R. (2016). SCALS: a fourthgeneration study of assisted living technologies in their organisational, social, political and policy context. BMJ Open, 6(2), e010208. https://doi.org/10.1136/bmjopen-2015-010208; Guba, E. G., & Lincoln, Y. S. (2012). Controversias paradigmáticas, contradicciones y confluencias emergentes. En Paradigmas y perspectivas en disputa. Manual de investigación cualitativa.: Vol. II (pp. 38-78). Editorial Gedisa, S.A.; Gustafsson, J. (2017). Single case studies vs. multiple case studies: A comparative study; Haraway, D. (2013). Situated Knowledges: The Science Question in Feminism and the Privilege of Partial Perspective. En Women, Science, and Technology (Vol. 3, Número 3, pp. 489- 506). Routledge. https://doi.org/10.4324/9780203427415-40; Hassenzahl, M. (2010). Experience Design: Technology for All the Right Reasons. Synthesis Lectures on Human-Centered Informatics, 3(1), 1-95. https://doi.org/10.2200/S00261ED1V01Y201003HCI008; Hassenzahl, M., Eckoldt, K., Diefenbach, S., Laschke, M., Lenz, E., & Kim, J. (2013). Designing moments of meaning and pleasure. Experience design and happiness. International Journal of Design, 7(3), 21-31.; Hernández, R., & Mendoza, C. (2018). Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta. McGraw-Hill Interamericana editores.; Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, M. del P. (2014). Metodología de la investigación (6.a ed.). McGraw-Hill.; Howard, J., Fisher, Z., Kemp, A. H., Lindsay, S., Tasker, L. H., & Tree, J. J. (2020). Exploring the barriers to using assistive technology for individuals with chronic conditions: a metasynthesis review. Disability and Rehabilitation: Assistive Technology, 1-19. https://doi.org/10.1080/17483107.2020.1788181; Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative Health Research, 15(9), 1277-1288. https://doi.org/10.1177/1049732305276687; Imrie, R. (2004). Demystifying disability: a review of the International Classification of Functioning, Disability and Health. Sociology of Health & iIlness, 26(3), 287-305. https://doi.org/10.1111/j.1467-9566.2004.00391.x; ISO. (2016). ISO - ISO 13485 — Medical devices. https://www.iso.org/iso-13485-medicaldevices.html; Jiménez Lara, A. (2007). Conceptos y tipologías de la discapacidad. Documentos y normativas de clasificación más relevantes. En R. de Lorenzo & L. Pérez, Cayo (Eds.), Tratado sobre discapacidad (Aranzadi, pp. 177-205); John, C. (2015). What is co-design? %7C Design for Europe. Design for Europe. http://designforeurope.eu/what-co-design; Jones, J., & Pal, J. (2015). Counteracting Dampeners: Understanding technologyamplified capabilities of people with disabilities in Sierra Leone. ACM International Conference Proceeding Series, 15, 6:1--6:10. https://doi.org/10.1145/2737856.2738025; Jones, P. (2018). Contexts of Co-creation: Designing with System Stakeholders (pp. 3-52). https://doi.org/10.1007/978-4-431-55639-8_1; Jones, P. H. (2014). Systemic Design Principles for Complex Social Systems. En G. S. Metcalf (Ed.), Social Systems and Design (pp. 91-128). Springer Japan. https://doi.org/10.1007/978-4-431-54478-4_4; Kalpokaite, N., & Radivojevic, I. (2019). Best Practice Article: Analyzing Code Frequencies with ATLAS.ti 8 Windows & Mac: The Code-Document Table. https://atlasti.com/2019/01/11/analyzing-code-frequencies-with-atlas-ti-8-windows-macthe-code-document-table/; Karadayi-Usta, S. (2020). An Interpretive Structural Analysis for Industry 4.0 Adoption Challenges. IEEE Transactions on Engineering Management, 67(3), 973-978. https://doi.org/10.1109/TEM.2018.2890443; Kinnear, T. C., & Taylor, J. W. (1989). Investigación de mercados: un enfoque aplicado. McGrawHill.; Kleinsmann, M. S. (2006). Understanding collaborative design. Delft University of Technology.; Krippendorff, K. (1989). On the Essential Contexts of Artifacts or on the Proposition That «Design Is Making Sense (Of Things)». Design Issues, 5(2), 9. https://doi.org/10.2307/1511512; Larsson Ranada, Å., & Lidström, H. (2019). Satisfaction with assistive technology device in relation to the service delivery process—A systematic review. Assistive Technology, 31(2), 82-97. https://doi.org/10.1080/10400435.2017.1367737; Lee, Y. (2008). Design participation tactics: the challenges and new roles for designers in the codesign process. CoDesign, 4(1), 31-50. https://doi.org/10.1080/15710880701875613; Li, G., Kou, G., & Peng, Y. (2018). A Group Decision Making Model for Integrating Heterogeneous Information. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(6), 982- 992. https://doi.org/10.1109/TSMC.2016.2627050; Li, J., Zhang, J., Ge, W., & Liu, X. (2004). Multi-scale methodology for complex systems. Chemical Engineering Science, 59(8-9), 1687-1700. https://doi.org/10.1016/j.ces.2004.01.025; Luborsky, M. R. (1993). Sociocultural Factors Shaping Technology Usage: Fulfilling the Promise. Technology and disability, 2(1), 71-78. https://doi.org/10.3233/TAD-1993-2110; Lyle O’Brien, C., O’Brien, J., & Mount, B. (1 7). Person-Centered Planning Has Arrived … or Has It? Mental Retardation, 35(6), 480-484. https://doi.org/10.1352/0047- 6765(1997)0352.0.CO;2; Maldonado, S. (2005). ¿Exclusión o discriminación?: el caso de las personas con discapacidad en el mercado laboral peruano. Observatorio de la Economía Latinoamericana, 3, 47.; Malinverni, L., Schaper, M.-M., & Pares, N. (2019). Multimodal methodological approach for participatory design of Full-Body Interaction Learning Environments. Qualitative Research, 19(1), 71-89. https://doi.org/10.1177/1468794118773299; Mansell, J., & Beadle-Brown, J. (2004). Person-centred planning or person-centred action? A response to the commentaries. Journal of Applied Research in Intellectual Disabilities, 17(1), 31-35. https://doi.org/10.1111/j.1468-3148.2004.00176.x; Manzini, E. (2015a). Design, when everybody designs: An introduction to design for social innovation. En MIT press. The MIT Press; Manzini, E. (2015b). Design in the transition phase: a new design culture for the emerging design. Design Philosophy Papers, 13(1), 57-62. https://doi.org/10.1080/14487136.2015.1085683; Margolin, V. (2007). Design for development: towards a history. Design Studies, 28(2), 111-115. https://doi.org/10.1016/j.destud.2006.11.008; Margolin, V., & Margolin, S. (2002). A «Social Model» of Design: Issues of Practice and Research. Design Issues, 18(4).; Mattelmäki, T. (2006). Design Probes. University of Art and Design Helsinki.; Mattelmäki, T. (2008). Probing for co-exploring. CoDesign, 4(1), 65-78. https://doi.org/10.1080/15710880701875027; Max-Neef, M. A. (2005). Foundations of transdisciplinarity. Ecological Economics, 53(1), 5-16. https://doi.org/10.1016/j.ecolecon.2005.01.014; McCarthy, J., & Wright, P. (2004). Technology as experience. interactions, 11(5), 42. https://doi.org/10.1145/1015530.1015549; McCarthy, J., Wright, P., Wallace, J., & Dearden, A. (2006). The experience of enchantment in human–computer interaction. Personal and Ubiquitous Computing, 10(6), 369-378. https://doi.org/10.1007/s00779-005-0055-2; McLellan, H. (2000). Experience Design. CyberPsychology & Behavior, 3(1), 59-69. https://doi.org/10.1089/109493100316238; Meskó, B., Radó, N., & yőrffy, Z. (201 ). Opinion leader empowered patients about the era of digital health: a qualitative study. BMJ Open, 9(3), e025267. https://doi.org/10.1136/bmjopen-2018-025267; Meyer, J. P., Allen, N. J., & Gellatly, I. R. (1990). Affective and continuance commitment to the organization: Evaluation of measures and analysis of concurrent and time-lagged relations. Journal of Applied Psychology, 75(6), 710-720. https://doi.org/10.1037/0021- 9010.75.6.710; Michener, W. K., Allard, S., Budden, A., Cook, R. B., Douglass, K., Frame, M., Kelling, S., Koskela, R., Tenopir, C., & Vieglais, D. A. (2012). Participatory design of DataONE—Enabling cyberinfrastructure for the biological and environmental sciences. Ecological Informatics, 11, 5-15. https://doi.org/10.1016/j.ecoinf.2011.08.007; Ministerio de Salud y Protección Social. (2020). DisCAPACIDAD. https://www.minsalud.gov.co/proteccionsocial/Paginas/DisCAPACIDAD.aspx; Moran, J. (2002). Interdisciplinarity (1.a ed.). Routledge.; Moreno, J. L., & Jennings, H. H. (1938). Statistics of Social Configurations. Sociometry, 1(3/4), 342. https://doi.org/10.2307/2785588; Mosleh, W. S., & Larsen, H. (2020). Exploring the complexity of participation. CoDesign, 1-19. https://doi.org/10.1080/15710882.2020.1789172; Murphy, R., & Jones, P. (2020). Leverage analysis. FormAkademisk - forskningstidsskrift for design og designdidaktikk, 13(2), 1-25. https://doi.org/10.7577/formakademisk.3384; Naciones Unidas Asamblea. (2006). Convención sobre los derechos de las personas con discapacidad. En Asamblea General de Naciones Unidas (pp. 1-30). Naciones Unidas Asamblea; Nasr, N., Leon, B., Mountain, G., Nijenhuis, S. M., Prange, G., Sale, P., & Amirabdollahian, F. (2016). The experience of living with stroke and using technology: opportunities to engage and co-design with end users. Disability and Rehabilitation: Assistive Technology, 11(8), 653-660. https://doi.org/10.3109/17483107.2015.1036469; Newman, M. E. J. (2011). Complex Systems: A Survey. American Journal of Physics, 79(8), 800- 810. https://doi.org/10.1119/1.3590372; Nielsen, J. (1992). The usability engineering life cycle. Computer, 25(3), 12-22. https://doi.org/10.1109/2.121503; Norman, D. A. (2004). Emotional Design: Why We Love (or Hate) Everyday Things. En Basic Books (Número 1). Basic Books.; Norman, D. A., & Stappers, P. J. (2015). DesignX: Complex Sociotechnical Systems. She Ji: The Journal of Design, Economics, and Innovation, 1(2), 83-106. https://doi.org/10.1016/j.sheji.2016.01.002; Norman, D., & Draper, S. (1986). User Centered System Design: New Perspectives on HumanComputer Interaction.; Oliva, R. (2004). Model structure analysis through graph theory: partition heuristics and feedback structure decomposition. System Dynamics Review, 20(4), 313-336. https://doi.org/10.1002/sdr.298; OMS. (2001). Clasificación Internacional del Funcionamiento, de la Discapacidad y de la Salud. Publicaciones de la Organización Mundial de la Salud, 1-288. https://doi.org/10.1097/01.pep.0000245823.21888.71; Oosterlaken, I. (2009). Design for Development: A Capability Approach. Design Issues, 25(4), 91- 102. https://doi.org/10.1162/desi.2009.25.4.91; Oosterlaken, I., & Hoven, J. van den. (2012). The Capability Approach, Technology and Design (Vol. 5). Springer Netherlands. https://doi.org/10.1007/978-94-007-3879-9; Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32(3), 245-251. https://doi.org/10.1016/j.socnet.2010.03.006; Ottino, J. M. (2003). Complex systems. AIChE Journal, 49(2), 292-299. https://doi.org/10.1002/aic.690490202; Papanek, V. (1985). Design for the Real World: Human Ecology and Social Change (2.a ed.). Thames & Hudson Ltd.; Patil, G. P. (2014). Weighted Distributions. En Wiley StatsRef: Statistics Reference Online (pp. 1- 11). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118445112.stat07359; Pérez Dalmeda, M. E., & Chhabra, G. (2019). Modelos teóricos de discapacidad: un seguimiento del desarrollo histórico del concepto de discapacidad en las últimas cinco décadas. Revista Española de Discapacidad, 7(1), 7-27. https://doi.org/10.5569/2340- 5104.07.01.01; Persson, H., Åhman, H., Yngling, A. A., & Gulliksen, J. (2015). Universal design, inclusive design, accessible design, design for all: different concepts—one goal? On the concept of accessibility—historical, methodological and philosophical aspects. Universal Access in the Information Society, 14(4), 505-526. https://doi.org/10.1007/s10209-014-0358-z; Pfisterer, K. J., Boger, J., & Wong, A. (2019). Prototyping the Automated Food Imaging and Nutrient Intake Tracking System: Modified Participatory Iterative Design Sprint. JMIR Human Factors, 6(2), e13017. https://doi.org/10.2196/13017; Phillips, B., & Zhao, H. (1993). Predictors of Assistive Technology Abandonment. Assistive Technology, 5(1), 36-45. https://doi.org/10.1080/10400435.1993.10132205; Pine, B. J., & Gilmore, J. H. (1998). Welcome to the experience economy. Harvard business review, 76(4), 97-105; Pirkl, J. J. (1 ). Transgenerational design : products for an aging population.; Press, M., & Cooper, R. (2003). The Design Experience. Routledge. https://doi.org/10.4324/9781315240329; Pressman, R. S. (2005). Software engineering: a practitioner’s approach (7.a ed.). Palgrave Macmillan.; Quintero, C. (2020). A review: accessible technology through participatory design. Disability and Rehabilitation: Assistive Technology, 1-7. https://doi.org/10.1080/17483107.2020.1785564; Quintero, C., & Gallego, J. (2020). Interdisciplinary Co-Design Process of Assistive Technology in Value Elicitation. 9th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion, 1-5. https://doi.org/10.1145/3439231.3439234; Rade, K. A., Pharande, V. A., & Saini, D. R. (2017). Interpretive Structural Modeling ( ISM ) for Recovery of Heat Energy. International Journal of Theoretical and Applied Mechanics, 12(1), 83-92.; Riemer-Reiss, M. L., & Wacker, R. R. (2000). Factors associated with assistive technology discontinuance among individuals with disabilities. Journal of Rehabilitation, 66(3), 44-50.; Rios, A., Miguel Cruz, A., Guarín, M. R., & Caycedo Villarraga, P. S. (2014). What factors are associated with the provision of assistive technologies: the Bogotá D.C. case. Disability and Rehabilitation: Assistive Technology, 9(5), 432-444. https://doi.org/10.3109/17483107.2014.936053; Robertson, T., & Wagner, I. (2013). Ethics: engagement, representation and politics-in-action. En Routledge International Handbook of Participatory Design (pp. 84-105). Routledge. https://doi.org/10.4324/9780203108543-11; Rodríguez Díaz, S., & Ferreira, M. A. V. (2010). Desde la dis-capacidad hacia la diversidad funcional. Un ejercicio de dis-normalización. Revista Internacional de Sociología, 68(2), 289-309. https://doi.org/10.3989/ris.2008.05.22; Ruiz, M. B. R., & Díaz, A. L. A. (2003). ESTRATEGIAS DE AFRONTAMIENTO Y PROCESO DE ADAPTACIÓN A LA LESIÓN MEDULAR; Ryan, R. M., & Deci, E. L. (2000). Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions. Contemporary Educational Psychology, 25(1), 54-67. https://doi.org/10.1006/ceps.1999.1020; Said Valbuena B, W., Montoya Carvajal, A., & Fernanda Pinzon, L. (2020). From a ludic Loom of Ideas to the Spiral of Intercultural Co-creation. Proceedings of the 16th Participatory Design Conference 2020 - Participation(s) Otherwise - Volume 1, 1, 85-95. https://doi.org/10.1145/3385010.3385022; Salcedo, A. S. (2006). PONENCIA XV JORNADAS EUBD. Tecnología de apoyo y sociedad de la información. Proyectos europeos. Revista General de Información y Documentación, 16(1), 51-63.; Sanders, E. B.-N. (2000). Generative Tools for Co-designing. En S. A. R. Scrivener, L. J. Ball, & A. Woodcock (Eds.), Collaborative Design (pp. 3-12). Springer London. https://doi.org/10.1007/978-1-4471-0779-8_1; Sanders, E. B. N., & Stappers, P. J. (2014). Probes, toolkits and prototypes: three approaches to making in codesigning. CoDesign, 10(1), 5-14. https://doi.org/10.1080/15710882.2014.888183; Sanders, Elizabeth B.-N., & Stappers, P. J. (2008). Co-creation and the new landscapes of design. CoDesign, 4(1), 5-18. https://doi.org/10.1080/15710880701875068; Santi, M. F. (2015). Vulnerabilidad y ética de la investigación social: perspectivas actuales. Revista Latinoamericana de Bioética, 15(29-2), 52. https://doi.org/10.18359/rlbi.535; Sarmiento Pelayo, M. P. (2015). Co-design: A central approach to the inclusion of people with disabilities. Revista de la Facultad de Medicina, 63, 149-154. https://doi.org/10.15446/revfacmed.v63n3sup.49345; Scaife, M., Rogers, Y., Aldrich, F., & Davies, M. (1997). Designing for or designing with? Informant design for interactive learning environments. Proceedings of the ACM SIGCHI Conference on Human factors in computing systems, 343-350. https://doi.org/10.1145/258549.258789; Scherer, M. J. (1996). Outcomes of assistive technology use on quality of life. Disability and Rehabilitation, 18(9), 439-448. https://doi.org/10.3109/09638289609165907; Scherer, M. J. (2015). Assistive Technology and Persons With Disabilities. En M. A. Stebnicki & I. Marini (Eds.), The Professional Counselor’s Desk Reference (pp. 475–481). Springer Publishing Company. https://doi.org/10.1891/9780826171825.0074; Scherer, M. J. (2020). It is time for the biopsychosocialtech model. Disability and Rehabilitation: Assistive Technology, 15(4), 363-364. https://doi.org/10.1080/17483107.2020.1752319; Scherer, M. J., & Lane, J. P. (1 7). Assessing consumer profiles of ‘ideal’ assistive technologies in ten categories: An integration of quantitative and qualitative methods. Disability and Rehabilitation, 19(12), 528-535. https://doi.org/10.3109/09638289709166046; Schwarzkopf, E. (2013). Accessibility Through Design.; Sharma, V., Grover, S., & Sharma, S. K. (2017). Analyzing the barriers affecting the effective utilization of quality tools and techniques using integrated ISM approach. Management Science Letters, 7(11), 525-540. https://doi.org/10.5267/j.msl.2017.8.003; Shedroff, N. (2009). Experience Design 1.1. En Nathan Shedroff. Experience Design Books; Silveira-Maia, M., Lopes-dos-Santos, P., Sanches-Ferreira, M., Alves, S., & Silveira-Maia, C. (2019). The use of the international classification of functioning, disability and health in an interactive perspective: the assessment and intervention of students’ additional support needs in Portugal. Disability and Rehabilitation, 41(25), 3016-3024. https://doi.org/10.1080/09638288.2018.1483433; Singh, B. P., & Das, U. D. (2020). Some Statistical Properties of a Weighted Distribution and Its Application to Waiting Time Data. Asian Journal of Probability and Statistics, 9(1), 1-12. https://doi.org/10.9734/ajpas/2020/v9i130216; Sistema Integrado de Información de la Protección Social – SISPRO. (2020). Observatorio Discapacidad. http://rssvr2.sispro.gov.co/ObservatorioDiscapacidad/; Span, M., Smits, C., Groen-van de ven, L., Jukema, J., Hettinga, M., Cremers, A., VernooijDassen, M., & Eefsting, J. (2014). Towards an interactive web tool that supports shared 156 decision making in dementia: Identifying user requirements. International Journal on Advances in Life Sciences, 6(3-4), 338-349.; Story, M. F. (1998). Maximizing Usability: The Principles of Universal Design. Assistive Technology, 10(1), 4-12. https://doi.org/10.1080/10400435.1998.10131955; Suchman, L. (2002). Located Accountabilities in Technology Production. Scand. J. Inf. Syst., 14(2), 91–105.; Sushil. (2012). Interpreting the Interpretive Structural Model. Global Journal of Flexible Systems Management, 13(2), 87-106. https://doi.org/10.1007/s40171-012-0008-3; Taffe, S. (2015). The hybrid designer/end-user: Revealing paradoxes in co-design. Design Studies, 40, 39-59. https://doi.org/10.1016/j.destud.2015.06.003; Tamayo y Tamayo, M. (2011). La interdisciplinariedad [Interdisciplinarity]. Cartillas para el Docente ICESI; No.12, 18.; Timmins, ., O’rourke, P., Bagnasco, A., Timmins, B., Ekins, R., Long, ., Aleo, ., & asso, L. (2017). Using videoed workshops in interdisciplinary research with people who have disabilities. Nurse Researcher, 25(2), 24-28. https://doi.org/10.7748/nr.2017.e1481; Tsatsou, P. (2020). Is digital inclusion fighting disability stigma? Opportunities, barriers, and recommendations. Disability & Society, 0(0), 1-27. https://doi.org/10.1080/09687599.2020.1749563; Velarde Lizama, V. (2016). Los modelos de la discapacidad: un recorrido histórico [The models of disability: a historical journey.]. Revista empresa y humanismo, XV(1), 115-136.; Verza, R., Carvalho, M. L. L., Battaglia, M. A., & Uccelli, M. M. (2006). An interdisciplinary approach to evaluating the need for assistive technology reduces equipment abandonment. Multiple Sclerosis Journal, 12(1), 88-93. https://doi.org/10.1191/1352458506ms1233oa; Vinodh, S., Ramesh, K., & Arun, C. S. (2016). Application of interpretive structural modelling for analysing the factors influencing integrated lean sustainable system. Clean Technologies and Environmental Policy, 18(2), 413-428. https://doi.org/10.1007/s10098-015-1025-7; Waldschmidt, A., Berressem, H., & Ingwersen, M. (2017). Culture-theory-disability: Encounters between disability studies and cultural studies. En A. Waldschmidt, H. Berressem, & M. Ingwersen (Eds.), Culture - Theory - Disability. transcript Verlag. https://doi.org/10.14361/9783839425336; Warfield, J. N. (1974a). Developing Subsystem Matrices in Structural Modeling. IEEE Transactions on Systems, Man and Cybernetics, SMC-4(1), 74-80. https://doi.org/10.1109/TSMC.1974.5408523; Warfield, J. N. (1974b). Toward Interpretation of Complex Structural Models. IEEE Transactions on Systems, Man and Cybernetics, 4(5), 405-417. https://doi.org/10.1109/TSMC.1974.4309336; Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge University Press.; Waters, R. L., Adkins, R. H., & Yakura, J. S. (1991). Definition of complete spinal cord injury. Paraplegia, 29(9), 573-581. https://doi.org/10.1038/sc.1991.85; Wittich, W., Granberg, S., Wahlqvist, M., Pichora-Fuller, M. K., & Mäki-Torkko, E. (2021). Device abandonment in deafblindness: a scoping review of the intersection of functionality and usability through the International Classification of Functioning, Disability and Health lens. BMJ Open, 11(1), e044873. https://doi.org/10.1136/bmjopen-2020-044873; Woodbury, E. Z. (2013). Auto-mobile: Disabled Drivers in New Zealand (Thesis, Doctor of Philosophy). University of Otago.; World Health Organization. (2011). World report on disability; World Health Organization. (2018). Disability and rehabilitation Global Cooperation on Assistive Technology (GATE). World Health Organization. https://www.who.int/phi/implementation/assistive_technology/phi_gate/en/; Yen, W.-T., Flinn, S. R., Sommerich, C. M., Lavender, S. A., & Sanders, E. B.-N. (2013). Preference of lid design characteristics by older adults with limited hand function. Journal of Hand Therapy, 26(3), 261-271. https://doi.org/10.1016/j.jht.2013.04.002; Yin, R. K. (1994). Discovering the Future of the Case Study. Method in Evaluation Research. Evaluation Practice, 15(3), 283-290. https://doi.org/10.1177/109821409401500309; Yin, R. K. (2003). Case Study Reserach - Design and Methods. En SAGE (Vol. 5).; Zamenopoulos, T., & Katerina, A. (2018). Co-Design as Collaborative Research. En Connected Communities Foundation Series; Zhang, Z., Guo, C., & Martinez, L. (2017). Managing Multigranular Linguistic Distribution Assessments in Large-Scale Multiattribute Group Decision Making. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(11), 3063-3076. https://doi.org/10.1109/TSMC.2016.2560521; https://repositorio.ucaldas.edu.co/handle/ucaldas/17388; Universidad de Caldas; Repositorio institucional Universidad de Caldas; https://repositorio.ucaldas.edu.co/
-
19
Authors: Bermon Angarita, Leonardo
Subject Terms: 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación, Ingeniería de software -- Administración -- Problemas, ejercicios, etc, Proceso de desarrollo de software, Desarrollo de software de aplicaciones, Medición de software, Software de entornos de trabajo, Lenguajes de modelado (Computación), Ingeniería de software -- Ciclo de vida -- Normas técnicas, Proceso de mejora continua -- Normas técnicas, Sistemas informáticos -- Gestión - - Problemas, Mejora de procesos, Metodología de desarrollo de software, Gestión de proyectos de software
File Description: 647 páginas; application/pdf; application/epub+zip; image/png
Relation: Anton, C. y Anton, D. (2001). ISO 9000:2000 Survival Guide: 30 Minutes to Understanding the Process. aem Consulting Group.; Balzer, R. (1990). What we do and don’t know about software process. En Proceedings of the 6th International Software Process Workshop’Support for the Software Process’ (pp. 61-62). IEEE Computer Society. https://doi.ieeecomputersociety.org/10.1109/ ISPW.1990.659574; Boehm, B. (2006). A view of 20th and 21st century software engineering. En Proceedings of the 28th International Conference on Software Engineering (pp. 12-29). https://doi. org/10.1145/1134285.1134288; Boehm, B. W. y Turner, R. (2004). Balancing agility and discipline: A guide for the perplexed. Addison-Wesley.; Bourque, P. y Fairley, R. E. (eds.) (2014). Guide to the software engineering body of knowledge, version 3.0. ieee Computer Society. http://artemisa.unicauca.edu.co/~cardila/ IS__SWEBOKv3.pdf; Brookse, F. (1986). No silver bullet: Essence and accident in software engineering. En Proceedings of the ifip 10th World Computing Conference, Dublin, Ireland (pp. 1069-1076).; Cignoni, G. A. (2000). Software process technologies and the competitiveness challenge. En R. Conradi (eds.), Software Process Technology. ewspt 2000. Lecture Notes in Computer Science (pp. 151-155). Springer. https://doi.org/10.1007/BFb0095024; Clarke, P. y O’Connor, R. V. (2012). The situational factors that affect the software development process: Towards a comprehensive reference framework. Information and Software Technology, 54(5), 433-447. https://doi.org/10.1016/j.infsof.2011.12.003; Conway, M. E. (1968). How do committees invent? Datamation, 14(4), 28-31. https:// hashingit.com/elements/research-resources/1968-04-committees.pdf; Emami, M. S., Ithnin, N. B. y Ibrahim, O. (2010). Software process engineering: Strengths, weaknesses, opportunities and threats. En INC2010: 6th International Conference on Networked Computing (pp. 1-5). IEEE.; Erdogmus, H. (2008). Seven essentials of software process. En Proceedings of the 1st International Workshop on Business Impact of Process Improvements (pp. 39-40). https://doi. org/10.1145/1370837.1370846; Estublier, J. (2005). Software are processes too. En M. Li, B. Boehm y L. J. Osterweil (eds.), Software Process Workshop (pp. 25-34). Springer. https://doi.org/10.1007/11608035_3; Fairley, R. E. (2009). Managing and leading software projects. John Wiley & Sons.; Feiler, P. H. y Humphrey, W. S. (1993). Software process development and enactment: Concepts and definitions. En Proceedings of the Second International Conference on the Software Process-Continuous Software Process Improvement (pp. 28-40). ieee. https:// doi.org/10.1109/SPCON.1993.236824; Finkelstein, A., Kramer, J. y Nuseibeh, B. (1994). Software process modelling and technology. Research Studies Press.; Florac, W., Park, R. y Carleton, A. (1997). Practical software measurement: Measuring for process management and improvement. cmu/sei-97-hb-003. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu.edu/documents/ 1627/1997_002_001_16529.pdf; Forrester, E. (2006). A process research framework: The International Process Research Consortium (iprc). Software Engineering Institute, Carnegie Mellon University. https:// insights.sei.cmu.edu/documents/1301/2006_014_001_30505.pdf; Fuggetta, A. (2000). Software process: A roadmap. En Proceedings of the Conference on the Future of Software Engineering (pp. 25-34). https://doi.org/10.1109/CERMA.2012.25; Garg, P. K. (1995). Process-centered software engineering environments. IEEE Computer Society Press.; Henderson-Sellers, B. y González-Pérez, C. (2005). A comparison of four process metamodels and the creation of a new generic standard. Information and Software Technology, 47(1), 49-65. https://doi.org/10.1016/j.infsof.2004.06.001; Humphrey, W. S. (1988). Characterizing the software process: A maturity framework. ieee Software, 5(2), 73-79. https://doi.org/10.1109/52.2014; Isaias, P. y Issa, T. (2015). High level models and methodologies for information systems. Springer. https://doi.org/10.1007/978-1-4614-9254-2; Jalote, P. (2002). Software project management in practice. Addison Wesley.; Kneuper, R. (2002). Supporting software processes using knowledge management. En S. K. Chang (ed.), Handbook of software engineering and knowledge engineering (vol. 2, pp. 579-606). World Scientific. https://doi.org/10.1142/9789812389701_0025; Kneuper, R. (2018). Software processes and life cycle models: An introduction to modelling, using and managing agile, plan-driven and hybrid processes. Springer.; Kroeger, T. A., Davidson, N. J. y Cook, S. C. (2014). Understanding the characteristics of quality for software engineering processes: A grounded theory investigation. Information and Software Technology, 56(2), 252-271. https://doi.org/10.1016/j.infsof. 2013.10.003; Kwan, I., Cataldo, M. y Damian, D. (2011). Conway’s law revisited: The evidence for a taskbased perspective. IEEE Software, 29(1), 90-93. https://doi.org/10.1109/MS.2012.3; Li, M. (2006). Expanding the horizons of software development processes: A 3-D integrated methodology. En M. Li, B. Boehm y L. J. Osterweil (eds.), Unifying the Software Process Spectrum. spw 2005. Lecture Notes in Computer Science (pp. 54-67). Springer. https:// doi.org/10.1007/11608035_6; Lonchamp, J. (1993). A structured conceptual and terminological framework for software process engineering. En Proceedings of the Second International Conference on the Software Process-Continuous Software Process Improvement (pp. 41-53). ieee. https://doi. org/10.1109/SPCON.1993.236823; Meyer, B. (2009). Touch of class: Learning to program well with objects and contracts. Springer. https://doi.org/10.1007/978-3-540-92145-5; Moore, J. W. (2005). The road map to software engineering: A standards-based guide. Wiley-ieee Computer Society; Mustafa, G., Hafeez, Y. y Abbas, M. A. (2011). Fundamental characteristics creating software process diversity. En International Conference on Computer Networks and Information Technology (pp. 341-344). ieee. https://doi.org/10.1109/ICCNIT.2011.6020891; O’Regan, G. (2017). Concise guide to software engineering: From fundamentals to application methods. Springer.; Osterweil, L. (2011). Software processes are software too. En P. Tarr y A. Wolf (eds.), Engineering of software (pp. 323-344). Springer. https://doi.org/10.1007/978-3-642- 19823-6_17; Pedreira, O., Piattini, M., Luaces, M. R. y Brisaboa, N. R. (2007). A systematic review of software process tailoring. acm sigsoft Software Engineering Notes, 32(3), 1-6. https:// doi.org/10.1145/1241572.1241584; Prodan, M., Prodan, A. y Purcarea, A. A. (2015). Three new dimensions to people, process, technology improvement model. En A. Rocha, A. Correia, S. Costanzo y L. Reis (eds.), New contributions in information systems and technologies: Advances in intelligent systems and computing (pp. 481-490). Springer. https://doi.org/10.1007/978-3-319-16486-1_47; Raman, S. (2000). It is software process, stupid: Next millennium software quality key. ieee Aerospace and Electronic Systems Magazine, 15(6), 33-37. https://doi. org/10.1109/62.847929; Ruiz-González, F. y Canfora, G. (2004). Software process: Characteristics, technology and environments. spt Software Process Technology, 5, 6-10.; Software Engineering Institute. (2010). cmmi for development, cmmi-dev version 1.3. cmu/sei- 2010-tr-033. https://insights.sei.cmu.edu/documents/87/2010_019_001_28782.pdf; Sommerville, I. (2015). Software engineering: Always learning. Pearson.; Suri, D. y Sebern, M. J. (2004). Incorporating software process in an undergraduate software engineering curriculum: Challenges and rewards. En 17th Conference on Software Engineering Education and Training, 2004. Proceedings (pp. 18-23). ieee. https://doi. org/10.1109/CSEE.2004.1276505; Sutton, S. M. (2000). The role of process in software start-up. ieee Software, 17(4), 33-39.; Wieczorek, M., Vos, D. y Bons, H. (2014). Systems and software quality. Springer. https://doi. org/10.1007/978-3-642-39971-8; Yang, D. y Xue, M. (2011). Software process paradigm and its constraint mechanisms. En 2011 ieee 2nd International Conference on Software Engineering and Service Science (pp. 842-845). ieee. https://doi.org/10.1109/ICSESS.2011.5982472; Arms, W. Y. (2022). Examples of software development processes. Cornell University Compunng and Information Science. https://www.cs.cornell.edu/courses/cs5150/2017sp/ slides/3-process-examples.pdf; Azam, F., Gull, H., Bibi, S. y Amjad, S. (2010). Back and forth (BnF) software process model. En 2010 Second International Conference on Computer Engineering and Applications (vol. 1, pp. 426-430). ieee. https://doi.org/10.1109/ICCEA.2010.89; Banker, R. D., Kauffman, R. J. y Zweig, D. (1993). Repository evaluation of software reuse. ieee Transactions on Software Engineering, 19(4), 379-389. https://doi. org/10.1109/32.223805; Boehm, B. W. (1996). Anchoring the software process. IEEE Software, 13(4), 73-82. https:// doi.org/10.1109/52.526834; Boehm, B. W. (1988). A spiral model of software development and enhancement. Computer, 21(5), 61-72. https://doi.org/10.1109/2.59; Boehm, B. W. y Hansen, W. J. (2000). Spiral development: Experience, principles and refinements. Special Report cmu/sei-2000-sr-008. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu.edu/documents/5439/2000_003_001_13655.pdf; Boehm, B. W. y Turner, R. (2004). Balancing agility and discipline: A guide for the perplexed. Addison-Wesley; Capers, J. (2012). Software engineering best practices: Lessons from successful projects in the top companies. McGraw-Hill; Carr, M. y Verner, J. (1997). Prototyping and software development approaches. https://citeseerx. ist.psu.edu/document?repid=rep1&type=pdf&doi=0b05add730e04843e- 234937a070f24b19efaadc3; Crnkovic, I. y Larsson, M. (2001). Component-based software engineering: New paradigm of software development. Mälardalen University.; Diebold, P. y Zehler, T. (2016). The right degree of agility in rich processes. En M. Kuhrmann, J. Münch, I. Richardson, A. Rausch y H. Zhang (eds.), Managing software process evolution (pp. 15-37). Springer. https://doi.org/10.1007/978-3-319-31545-4_2; Floyd, C. (1984). A systematic look at prototyping. En R. Budde, K. Kuhlenkamp, L. Mathiassen y H. Züllighoven (eds.), Approaches to prototyping (pp. 1-18). Springer. https:// doi.org/10.1007/978-3-642-69796-8_1; Gottesdiener, E. (1995). RAD realities: Beyond the hype to how rad really works. Application Development Trends, 2(8), 28-38.; Henninger, S. (1997). An evolutionary approach to constructing effective software reuse repositories. ACM Transactions on Software Engineering and Methodology (tosem), 6(2), 111-140. https://doi.org/10.1145/248233.248242; International Organization for Standardization. (2008). ISO/IEC 12207:1995/AMD2:2004. Information Technology - Software life cycle processes - Amendment 2.; Jirava, P. (2004). System development life cycle. https://dk.upce.cz/bitstream/handle/ 10195/32471/CL456.pdf?sequence=1&isAllowed=y; Jurgens, D. (2009). Survey on software engineering for scientific applications. Institute for Scientific Computing. https://leopard.tu-braunschweig.de/servlets/MCRFileNodeServlet/ dbbs_derivate_00006306/Juergens-Survey-Software-Eng-Scientific-Applications.pdf; Madachy, R. J. (2008). Software process dynamics. John Wiley & Sons.; Mathur, S. y Malik, S. (2010). Advancements in the V-Model. International Journal of Computer Applications, 1(12), 29-34. https://citeseerx.ist.psu.edu/document?repid=rep1&- type=pdf&doi=04aca97824d178d7ca3688bbed2118d0115dfaba; May, E. L. y Zimmer, B. A. (1996). The evolutionary development model for software. Hewlett Packard Journal, 47, 39-41. https://citeseerx.ist.psu.edu/document?repid=rep1&- type=pdf&doi=5304a6d70439f180af1e349d518cb1d20b99e4a8; Mills, H. D., Dyer, M. y Linger, R. C. (1987). Cleanroom software engineering. IEEE Software, 4(5), 19-25. https://doi.org/10.1109/MS.1987.231413; Munassar, N. M. A. y Govardhan, A (2010). Comparison between five models of software engineering. International Journal of Computer Science Issues, 7(5), 94-101. https:// www.ijcsi.org/papers/7-5-94-101.pdf; Petersen, K. y Wohlin, C. (2010). The effect of moving from a plan-driven to an incremental software development approach with agile practices: An industrial case study. Empirical Software Engineering, 15, 654-693. https://doi.org/10.1007/s10664-010-9136-6; Petersen, K., Wohlin, C. y Baca, D. (2009). The waterfall model in large-scale development. En F. Bomarius, M. Oivo, P. Jaring y P. Abrahamsson (eds.), Product-Focused Software Process Improvement. PROFES 2009. Lecture Notes in Business Information Processing (pp. 386-400). Springer. https://doi.org/10.1007/978-3-642-02152-7_29; Pressman, R. S. (2005). Software engineering: A practitioner’s approach (6.ª ed.). McGraw-Hill.; ProjectSmart. (2008). Which life cycle is best for your project? https://www.projectsmart.co.uk/ agile-project-management/which-life-cycle-is-best-for-your-project.php; Rastogi, V. (2015). Software development life cycle models-comparison, consequences. International Journal of Computer Science and Information Technologies, 6(1), 168-172. https://www.academia.edu/download/40003520/ijcsit2015060137.pdf; Royce, W. W. (1987). Managing the development of large software systems: Concepts and techniques. En Proceedings of the 9th International Conference on Software Engineering (ICSE ’87) (pp. 328-338).; Sabale, R. y Dani, A. (2012). Comparative study of prototype model for software engineering with system development life cycle. IOSR Journal of Engineering, 2(7), 21-24. https://www.iosrjen.org/Papers/vol2_issue7%20(part-2)/D0272124.pdf; Sharma, P. y Singh, D. (2015). Comparative study of various SDLC models on different parameters. International Journal of Engineering Research, 4(4), 188-191. https://citeseerx. ist.psu.edu/document?repid=rep1&type=pdf&doi=2628386ec0e41ed06dbb604bf9729e679f394cb2; Solinski, A. y Petersen, K. (2016). Prioritizing agile benefits and limitations in relation to practice usage. Software Quality Journal, 24, 447-482. https://doi.org/10.1007/ s11219-014-9253-3; Špundak, M. (2014). Mixed agile/traditional project management methodology: Reality or illusion? Procedia-Social and Behavioral Sciences, 119, 939-948. https://doi. org/10.1016/j.sbspro.2014.03.105; Tian, J. (2005). Software quality engineering: Testing, quality assurance, and quantifiable improvement. John Wiley & Sons.; Tilloo, R. (2013). What is incremental model in software engineering? http://www.technotrice. com/incremental-model-in-software-engineering; Wallin, C. y Land, R. (2005). Software development lifecycle models: The basic types. Research methodology for computer science and engineering. Mälardalen University.; Abrahamsson, P., Salo, O., Ronkainen, J. y Warsta, J. (2002). Agile software development methods: Review and analysis. vtt Electronics. https://doi.org/10.48550/arXiv.1709.08439; Abrahamsson, P., Warsta, J., Siponen, M. T. y Ronkainen, J. (2003). New directions on agile methods: A comparative analysis. En 25th International Conference on Software Engineering, 2003. Proceedings (pp. 244-254). IEEE. https://doi.org/10.1109/ ICSE.2003.1201204; Abrantes, J. F. y Travassos, G. H. (2011). Common agile practices in software processes. En 2011 International Symposium on Empirical Software Engineering and Measurement (pp. 355-358). IEEE. https://doi.org/10.1109/ESEM.2011.47; Adelyar, S. H. y Norta, A. (2016). Towards a secure agile software development process. En 2016 10th International Conference on the Quality of Information and Communications Technology (quatic) (pp. 101-106). IEEE. https://doi.org/10.1109/QUATIC.2016.028; Agile Manifesto. (2001). Manifesto for Agile Software Development. http://agilemanifesto.org/; Alqudah, M. y Razali, R. (2016). A review of scaling agile methods in large software development. International Journal on Advanced Science, Engineering and Information Technology, 6(6), 828-837. http://dx.doi.org/10.18517/ijaseit.6.6.1374; Ambler, S. (2002). Agile modeling: Effective practices for eXtreme Programming and the unified process. John Wiley & Sons.; Ambler, S. W. (2009). The agile scaling model (asm): Adapting agile methods for complex environments. https://scrummasters.com/wp-content/uploads/2022/02/White-Paper- Adapting-Agile.pdf; Ambler, S. W. y Lines, M. (2012). Disciplined Agile Delivery: A practitioner’s guide to agile software delivery in the enterprise. IBM Press; Ambler, S. W. y Lines, M. (2013). Going beyond scrum: Disciplined Agile Delivery, disciplined agile consortium. White Paper Series. https://www.classes.cs.uchicago.edu/ archive/2016/fall/51205-1/required.reading/BeyondScrum.pdf; Ambler, S. W. y Lines, M. (2016). The disciplined agile process decision framework. En D. Winkler, S. Biffl y J. Bergsmann (eds.), Software Quality: The Future of Systems- and Software Development. swqd 2016. Lecture Notes in Business Information Processing (pp. 3-14). Springer. https://doi.org/10.1007/978-3-319-27033-3_1; Anderson, L., Alleman, G. B., Beck, K., Blotner, J., Cunningham, W., Poppendieck, M. y Wirfs-Brock, R. (2003). Agile management-an oxymoron? Who needs managers anyway? En Companion of the 18th Annual acm sigplan Conference on Object-Oriented Programming, Systems, Languages, and Applications (pp. 275-277). https://doi. org/10.1145/949344.949410; Aoyama, M. (1998). Agile software process and its experience. En Proceedings of the 20th International Conference on Software Engineering (pp. 3-12). IEEE. https://doi.org/10.1109/ ICSE.1998.671097; Baca, D. y Carlsson, B. (2011). Agile development with security engineering activities. En Proceedings of the 2011 International Conference on Software and Systems Process (pp. 149-158). https://doi.org/10.1145/1987875.1987900; Barnett, L. y Schwaber, C. (2004). Adopting agile development processes: Improve time-to-benefits for software projects forrester research.; Bartsch, S. (2011). Practitioners’ perspectives on security in agile development. En 2011 Sixth International Conference on Availability, Reliability and Security (pp. 479-484). IEEE. https://doi.org/10.1109/ARES.2011.82; Beck, K. (2000). Extreme programming explained: Embrace change. Addison-Wesley.; Beck, K. (2002). Test driven development: By example. Addison-Wesley.; Beck, K. y Fowler, M. (2001). Planning eXtreme Programming. Addison-Wesley.; Ben Othmane, L., Angin, P., Weffers, H. y Bhargava, B. (2014). Extending the agile development process to develop acceptably secure software. ieee Transactions on Dependable and Secure Computing, 11(6), 497-509. https://doi.org/10.1109/TDSC.2014.2298011; Bessam, A., Kimour, M. T. y Melit, A. (2009). Separating users’ views in a development process for agile methods. En 2009 Fourth International Conference on Dependability of Computer Systems (pp. 61-68). IEEE. https://doi.org/10.1109/DepCoS-RELCOMEX. 2009.16; Boehm, B. y Turner, R. (2005). Management challenges to implementing agile processes in traditional development organizations. IEEE Software, 22(5), 30-39. https://doi. org/10.1109/MS.2005.129; Buglione, L. y Abran, A. (2013). Improving the user story agile technique using the invest criteria. En 2013 Joint Conference of the 23rd International Workshop on Software Measurement and the 8th International Conference on Software Process and Product Measurement (pp. 49-53). IEEE. https://doi.org/10.1109/IWSM-Mensura.2013.18; Canós, J., Letelier, P. y Penadés, M. (2003). Metodologías ágiles en el desarrollo de software. https://www.academia.edu/download/34546906/XP_Agil.pdf; Chowdhury, A. F. y Huda, M. N. (2011). Comparison between Adaptive Software Development and Feature-Driven Development. En Proceedings of 2011 International Conference on Computer Science and Network Technology (vol. 1, pp. 363-367). IEEE. https:// doi.org/10.1109/ICCSNT.2011.6181977; Coad, P., Lefebvre, E. y Luca, J. D. (1999). Feature-driven development. En Java modeling in color with UML: Enterprise components and process. Prentice Hall ptr.; Cockburn, A. (2004). Crystal clear: A human-powered methodology for small teams. Addison- Wesley.; Cohen D., Lindvall, M. y Costa P. (2004). An introduction to agile methods. Advances in Computers, 62(3), 1-66. https://doi.org/10.1016/S0065-2458(03)62001-2; Cohn, M. y Ford, D. (2003). Introducing an agile process to an organization [software development]. Computer, 36(6), 74-78. https://doi.org/10.1109/MC.2003.1204378; Coram, M. y Bohner, S. (2005). The impact of agile methods on software project management. En 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05) (pp. 363-370). IEEE. https://doi.org/10.1109/ ECBS.2005.68; Cugola, G. y Ghezzi, C. (1998). Software processes: A retrospective and a path to the future. Software Process: Improvement and Practice, 4(3), 101-123. https://doi.org/10.1002/ (SICI)1099-1670(199809)4:3%3C101::AID-SPIP103%3E3.0.CO;2-K; Deemer, P., Benefield, G., Larman, C. y Vodde, B. (2012). A lightweight guide to the theory and practice of scrum. Version 2.0. InfoQ Enterprise Software Development Series. https:// www.scruminc.com/wp-content/uploads/2014/05/scrumprimer20.pdf; Despa, M. L. (2014). Comparative study on software development methodologies. Database Systems Journal, 5(3), 37-56. https://dbjournal.ro/archive/17/17.pdf#page=38; Digital.ai. (2024, 4 de marzo). The 17th State of Agile Report. https://digital.ai/resource-center/ analyst-reports/state-of-agile-report/; DSDM Consortium. (2008). DSDM Atern Handbook V2/2. Whitehorse Press.; Fitzgerald, B., Hartnett, G. y Conboy, K. (2006). Customising agile methods to software practices at Intel Shannon. European Journal of Information Systems, 15(2), 200-213. https://doi.org/10.1057/palgrave.ejis.3000605; Fowler, M. (2005, 13 de diciembre). The new methodology. https://www.martinfowler.com/ articles/newMethodology.html; Fraser, S., Reinitz, R., Eckstein, J., Kerievsky, J., Mee, R. y Poppendieck, M. (2003). Xtreme programming and agile coaching. En Companion of the 18th Annual acm sigplan Conference on Object-Oriented Programming, Systems, Languages, and Applications (pp. 265-267). https://doi.org/10.1145/949344.949406; Ghani, I. y Yasin, I. (2013). Software security engineering in eXtreme Programming methodology: A systematic literature review. Science International, 25(2), 215-221. https:// citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fb3ac381f336911fe- 46c638abdde53376d74a5e5; Hewitt, B. y Walz, D. (2005). Using shared leadership to foster knowledge sharing in information systems development projects. En Proceedings of the 38th Annual Hawaii International Conference on System Sciences (pp. 256a-256a). ieee. https://doi.org/10.1109/ HICSS.2005.666; Highsmith, J. A. (2002). Agile software development ecosystems. Addison-Wesley.; Highsmith, J. A. (2004). Agile project management: Creating innovative products. Addison- Wesley.; Highsmith, J. A. (2013). Adaptive software development: A collaborative approach to managing complex systems. Addison-Wesley.; Highsmith, J. y Cockburn, A. (2001). Agile software development: The business of innovation. Computer, 34(9), 120-127. https://doi.org/10.1109/2.947100; Ionel, N. (2008). Critical analysis of the scrum project management methodology. Annals of the University of Oradea, Economic Science Series, 17(4), 435-441. https://anale.steconomiceuoradea. ro/volume/2008/v4-management-marketing/077.pdf; Kanwal, F., Junaid, K. y Fahiem, M. A. (2010). A hybrid software architecture evaluation method for fdd: An agile process model. En 2010 International Conference on Computational Intelligence And Software Engineering (pp. 1-5). IEEE. https://doi.org/10.1109/ CISE.2010.5676863; Khatri, S. K., Bahri, K. y Johri, P. (2014). Best practices for managing risk in adaptive agile process. En Proceedings of 3rd International Conference on Reliability, Infocom Technologies and Optimization (pp. 1-5). IEEE. https://doi.org/10.1109/ICRITO.2014.7014759; Kirkman, B. L. y Rosen, B. (1999). Beyond self-management: Antecedents and consequences of team empowerment. Academy of Management Journal, 42(1), 58-74. https://doi. org/10.5465/256874; Larman, C. (2004). Agile and iterative development: A manager’s guide. Addison-Wesley; Larman, C. y Vodde, B. (2008). Scaling lean & agile development: Thinking and organizational tools for large-scale scrum. Addison-Wesley.; Larman, C. y Vodde, B. (2013). Scaling agile development. CrossTalk, 9, 8-12. https://miroslawdabrowski. com/downloads/Scrum/Large%20Scale%20Scrum%20(LESS).pdf; Larman, C. y Vodde, B. (2016). Large-scale scrum: More with LeSS. Addison-Wesley.; Leffingwell, D. (2011). Scaling Agile Framework (SAFe). http://www.scaledagileframework.com/; Lindstrom, L. y Jeffries, R. (2005). Extreme Programming and agile software development methodologies. Information Systems Management, 21(3), 41-52.; Lui, T. W. y Piccoli, G. (2006). Degrees of agility: Implications for information systems design and firm strategy. En K. Desouza (ed.), Agile information systems (pp. 122-133). Routledge. https://doi.org/10.4324/9780080463681; Mahmud, D. M. y Abdullah, N. A. S. (2015). Reviews on agile methods in mobile application development process. En 2015 9th Malaysian Software Engineering Conference (MySEC) (pp. 161-165). IEEE. https://doi.org/10.1109/MySEC.2015.7475214; Marrington, A., Hogan, J. M. y Thomas, R. (2005). Quality assurance in a student-based agile software engineering process. En 2005 Australian Software Engineering Conference (pp. 324-331). IEEE. https://doi.org/10.1109/ASWEC.2005.38; Maximini, D. (2015). The scrum culture: Introducing agile methods in organizations. management for professionals. Springer. https://doi.org/10.1007/978-3-319-73842-0; Meng, X. X., Wang, Y. S., Shi, L. y Wang, F. J. (2007). A process pattern language for agile methods. En 14th Asia-Pacific Software Engineering Conference (apsec’07) (pp. 374-381). IEEE. https://doi.org/10.1109/ASPEC.2007.72; Meyer, B. (2014). Agile! The good, the hype and the ugly. Springer.; Millett, S., Blankenship, J. y Bussa, M. (2011). Pro agile: NET development with scrum. Apress.; Misra, S. C., Kumar, V. y Kumar, U. (2009). Identifying some important success factors in adopting agile software development practices. Journal of Systems and Software, 82(11), 1869-1890. https://doi.org/10.1016/j.jss.2009.05.052; Morgan, G. (2006). Images of organizations. Sage.; Müller, M. M. y Höfer, A. (2007). The effect of experience on the test-driven development process. Empirical Software Engineering, 12, 593-615. https://doi.org/10.1007/ s10664-007-9048-2; Mundra, A., Misra, S. y Dhawale, C. A. (2013). Practical scrum-scrum team: Way to produce successful and quality software. En 2013 13th International Conference on Computational Science and Its Applications (pp. 119-123). ieee. https://doi.org/10.1109/ ICCSA.2013.25; Nerur, S., Mahapatra, R. y Mangalaraj, G. (2005). Challenges of migrating to agile methodologies. Communications of the acm, 48(5), 72-78. https://doi.org/ 10.1145/1060710.1060712; Newkirk, J. (2002). Introduction to agile processes and eXtreme Programming. En Proceedings of the 24th International Conference on Software Engineering (pp. 695-696). https:// doi.org/10.1145/581339.581450; Paasivaara, M., Lassenius, C. y Heikkilä, V. T. (2012). Inter-team coordination in large-scale globally distributed scrum: Do scrum-of-scrums really work? En Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and Measurement (pp. 235-238). https://doi.org/10.1145/2372251.2372294; Palmer, S. R. y Felsing, M. (2002). A practical guide to Feature-Driven Development. Prentice Hall.; Pearce, C. L. (2004). The future of leadership: Combining vertical and shared leadership to transform knowledge work. Academy of Management Executive, 18(1), 47-57. https:// doi.org/10.5465/ame.2004.12690298; Pikkarainen, M., Salo, O. y Still, J. (2005). Deploying agile practices in organizations: A case study. En I. Richardson, P. Abrahamsson y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2005. Lecture Notes in Computer Science (pp. 16-27). Springer. https://doi.org/10.1007/11586012_3; Pohl, C. y Hof, H. J. (2015). Secure scrum: Development of secure software with scrum. En Proceedings of the Ninth International Conference on Emerging Security Information, Systems and Technologies (SECURWARE 2015). IARIA XPS Press. https://doi.org/10.48550/ arXiv.1507.02992; Poppendieck, M. y Poppendieck, T. (2003). Lean software development: An agile toolkit. Addison- Wesley.; Poppendieck, M. y Poppendieck, T. (2006). Implementing Lean Software Development: From concept to cash. Addison-Wesley.; Qumer, A. y Henderson-Sellers, B. (2008). An evaluation of the degree of agility in six agile methods and its applicability for method engineering. Information and Software Technology, 50(4), 280-295. https://doi.org/10.1016/j.infsof.2007.02.002; Reifer, D. (2002). How good are agile methods? IEEE Software, 19(4), 16-18. https://doi. org/10.1109/MS.2002.1020280; Rick, U., Vossen, R., Richert, A. y Henning, K. (2010). Designing agile processes in information management. En 2010 2nd IEEE International Conference on Information Management and Engineering (pp. 156-160). IEEE. https://doi.org/10.1109/ICIME.2010.5477776; Rieckmann, H. (1992). Dynaxibility - oder wie “systemisches”. Management in der Praxis funktionieren kann. En K. Henning y B. Harendt (eds.), Methodik und Praxis der Komplexitätsbewältigung (pp. 17-39). Duncker & Humblot.; Riehle, D. (2000). A comparison of the value systems of Adaptive Software Development and eXtreme Programming: How methodologies may learn from each other. En Proceedings of the First International Conference on Extreme Programming and Flexible Processes in Software Engineering (XP 2000) (pp. 35-50). https:// citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=807bd8be840eded41828ad9052e0d4d14b31865c; Rubin, K. S. (2012). Essential scrum: A practical guide to the most popular agile process. Addison- Wesley.; Rossberg, J. (2014). Beginning application lifecycle management. Apress.; Scale Agile Framework. (2020). SAFe 6.0. https://www.scaledagileframework.com/; Schuh, P. (2004). Integrating agile development in the real world. Charles River Media.; Schwaber, K. y Beedle, M. (2001). Agile software development with scrum. Prentice Hall PTR.; Sidky, A. S. (2007). A structured approach to adopting agile practices: The agile adoption framework (tesis de doctorado, Virginia Tech). https://vtechworks.lib.vt.edu/server/api/ core/bitstreams/4ff25112-51c4-4ce7-86f3-ee3e0c84100a/content; Singhal, A. (2012). Integration analysis of security activities from the perspective of agility. En 2012 Agile India (pp. 40-47). ieee. https://doi.org/10.1109/AgileIndia.2012.9; Sneed, H. M. (2014). Dealing with technical debt in agile development projects. En D. Winkler, S. Biffl y J. Bergsmann (eds.), Software Quality. Model-Based Approaches for Advanced Software and Systems Engineering. swqd 2014. Lecture Notes in Business Information Processing (pp. 48-62). Springer. https://doi.org/10.1007/978-3-319-03602-1_4; Stapleton, J. (1997). DSDM, dynamic systems development method: The method in practice. Cambridge University Press.; Sutherland, J. y Schwaber, K. (2020). The 2020 Scrum GuideTM. https://scrumguides.org/ scrum-guide.html; Tahir, F. y Manarvi, I. A. (2013). Agile process model and practices in distributed environment. En J. Stjepandić, G. Rock y C. Bil (eds.), Concurrent engineering approaches for sustainable product development in a multi-disciplinary environment (pp. 1169-1180). Springer. https://doi.org/10.1007/978-1-4471-4426-7_98; Tiltmann, T. (2007). Agile Entwicklung von cscw-Anwendungen für regionale Bildungswerke. Mainz.; Trist, E. (1981). The evolution of socio-technical systems: A conceptual framework and an action research program. Occasional Paper, 2. https://www.lmmiller.com/blog/ wp-content/uploads/2013/06/The-Evolution-of-Socio-Technical-Systems-Trist.pdf; Vaidya, A. (2014). Does dad know best, is it better to do less or just be safe? Adapting scaling agile practices into the Enterprise. En 32nd Annual Pacific Northwest Software Quality Conference - PNSQC 2014 (pp. 1-18). https://pnsqc.org/archives/dad-knowbest- better-less-just-enough-safe-adapting-agile-scaling-practices-enterprise/; Voigt, B. J., Glinz, M. y Seybold, D. I. C. (2004). Dynamic system development method. University of Zurich. https://files.ifi.uzh.ch/rerg/amadeus/teaching/seminars/seminar_ ws0304/14_Voigt_DSMD_Ausarbeitung.pdf; Walton, M. (1999). Strategies for lean product development: A compilation of lean aerospace initiative research. Research Paper, 2.; Womack, J. P. y Jones, D. T. (2003). Lean thinking: Banish waste and create wealth in your corporation. Free Press.; Womack, J. P., Jones, D. T. y Roos, D. (2007). The machine that changed the world: The story of lean production. Simon and Schuster.; Acuna, S. T., Juristo, N., Moreno, A. M. y Mon, A. (2006). A software process model handbook for incorporating people’s capabilities. Springer.; Alarcón, A., Martínez, N. y Sandoval, J. (2013). Use of learning strategies of swebok© guide proposed knowledge areas. En L. Uden, F. Herrera, J. Bajo Pérez y J. Corchado Rodríguez (eds.), 7th International Conference on Knowledge Management in Organizations: Service and Cloud Computing. Advances in Intelligent Systems and Computing pp. 243-254). Springer. https://doi.org/10.1007/978-3-642-30867-3_22; Bernardos, M.ª del S. (2004). Guideline for developing a software life cycle process in natural language generation projects. En A. Gelbukh (eds.), Computational Linguistics and Intelligent Text Processing. CICLing 2004. Lecture Notes in Computer Science (pp. 355-359). Springer. https://doi.org/10.1007/978-3-540-24630-5_43; Booch, G., Rumbaugh, J. y Jacobson, I. (2017). The unified modeling language user guide. Addison-Wesley.; Ceccarelli, A. y Silva, N. (2013). Qualitative comparison of aerospace standards: An objective approach. En 2013 ieee International Symposium on Software Reliability Engineering Workshops (issrew) (pp. 331-336). ieee. https://doi.org/10.1109/ISSREW. 2013.6688916; Dahhane, W., Berrich, J., Bouchentouf, T. y Rahmoun, M. (2016). semat Essence’s Kernel applied to O-MaSE. En 2016 5th International Conference on Multimedia Computing and Systems (icmcs) (pp. 799-804). ieee. https://doi.org/10.1109/ICMCS.2016.7905565; David, P. A. (1995). Standardization policies for network technologies: The flux between freedom and order revisited. En R. Hawkins, R. Mansell y J. Skea (eds.), Standards, innovation and competitiveness: The politics and economics of standards in natural and technical environments (pp. 15-35). Edward Elgar.; De Vries, H. J. (2013). Standardization: A business approach to the role of national standardization organizations. Springer.; Derniame, J. C., Kaba, B. A. y Wastell, D. (eds.) (1999). Software process: Principles, methodology, and technology. Springer.; Dupuis, R., Bourque, P. y Abran, A. (2003). swebok guide an overview of trial usages in the field of education. En Proceedings of the 33rd Annual Frontiers in Education (fie 2003). ieee. https://doi.org/10.1109/FIE.2003.1265987; ECSS-E-ST-10-02c - Verification (2009, 6 de marzo). https://ecss.nl/standard/ecss-e-st-10- 02c-verification/; ECSS-E-ST-10-06C - Technical requirements specification. (2009, 6 de marzo). https://ecss.nl/ standard/ecss-e-st-10-06c-technical-requirements-specification/; ECSS-E-ST-10c Rev.1 - System engineering general requirements. (2017, 15 de febrero). https://ecss.nl/standard/ecss-e-st-10c-rev-1-system-engineering-general-requirements- 15-february-2017/; ECSS-E-ST-40c - Software (2009, 6 de marzo). https://ecss.nl/standard/ecss-e-st-40c-software- general-requirements/; ECSS-Q-ST-30c Rev.1 - Dependability (2017, 15 de febrero). https://ecss.nl/standard/; ECSS-Q-ST-30c-rev-1-space-product-assurance-dependability-15-february-2017/; ECSS-Q-ST-40c - Safety. (2009, 6 de marzo). https://ecss.nl/standard/ecss-q-st-40c-safety/; ECSS-Q-ST-80C Rev.1 - Software product assurance. (2017, 15 de febrero). https://ecss.nl/ standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/; Elvesæter, B., Striewe, M., McNeile, A. y Berre, A. J. (2012). Towards an agile foundation for the creation and enactment of software engineering methods: The semat approach. En Proceedings of the Co-located Events at the 8th European Conference on Modelling Foundations and Applications (ecmfa 2012) (pp. 279-290). Technical University of Denmark. https://www.dcs.bbk.ac.uk/~amcnei01/docs/be_pmde_2012_paper.pdf; Emmerich, W. (1999). Software process: Standards, assessments and improvement. En J. C. Derniame, B. A. Kaba y D. Wastell (eds.), Software Process: Principles, Methodology, and Technology. Lecture Notes in Computer Science (pp. 15-25). Springer. https://doi. org/10.1007/3-540-49205-4_2; ESA Board for Software Standardisation and Control. (1995). Guide to the Software Engineering Standards. http://everyspec.com/ESA/ESA_PSS-05-06_ISSUE-1_REVISION- 1_10567/; Freericks, C. (2001). Open source standards on software process: A practical application. ieee Communications Magazine, 39(4), 116-123. https://doi.org/10.1109/35.917513; Halling, M., Zuser, W., Kohle, M. y Biffl, S. (2002). Teaching the unified process to undergraduate students. En Proceedings 15th Conference on Software Engineering Education and Training (csee&t 2002) (pp. 148-159). ieee. https://doi.org/10.1109/ CSEE.2002.995207; Hui, Y., Yan, Y., Quanyu, W. y Zhiwen, C. (2015). Compare essential unified process (EssUP) with rational unified process (RUP). En 2015 ieee 10th Conference on Industrial Electronics and Applications (iciea) (pp. 472-476). ieee. https://doi.org/10.1109/ICIEA. 2015.7334159; Ida, T. (2017). Evolutionary stability of de jure and de facto standards. Working Paper. ieee-std 1074. (2006). ieee Standard for Developing a Software Project Life Cycle Process, ieee Std 1074-2006 (Revision of ieee Std 1074-1997). https://doi.org/10.1109/ IEEESTD.2006.219190; ISO/IEC 15288:2015. (2015). Systems engineering - System life cycle processes. International Standardization Organization.; ISO/IEC 9000-3:2004. (2004). Software engineering - Guidelines for the application of ISO 9001:2000 to computer software. International Organization for Standardization.; ISO/IEC/IEEE 12207:2017. (2017). Systems and software engineering - Software life cycle processes. International Organization for Standardization.; Ivar Jacobson International. (2015). How to use the Agile Essentials Practice Pack. https:// www.ivarjacobson.com/services/agile-essentials-starter-pack-agile-practices; Jacobson, I., Ng, P. W., McMahon, P. E., Spence, I. y Lidman, S. (2012). The essence of software engineering: The semat kernel. Communications of the acm, 55(12), 42-49. http:// doi.acm.org/10.1145/2380656.2380670; Jones, M., Mortensen, U. K. y Fairclough, J. (1997). The esa software engineering standards: Past, present and future. En Proceedings of ieee International Symposium on Software Engineering Standards (pp. 119-126). ieee. https://doi.org/10.1109/SESS.1997.595952; Kajko-Mattsson, M., Striewe, M., Goedicke, M., Jacobson, I., Spence, I., Huang, S. … y Seymour, E. (2012). Refounding software engineering: The SEMAT initiative (Invited presentation). En 2012 34th International Conference on Software Engineering (icse) (pp. 1649-1650). ieee. https://doi.org/10.1109/ICSE.2012.6227214; Kempton, S., Sobell, C. y Withrow, C. (1988). dod-std-2167a applied to software maintenance. En 1988 Conference on Software Maintenance (pp. 159-164). ieee Computer Society. https://doi.ieeecomputersociety.org/10.1109/ICSM.1988.10156; Krishnan, M. S., Mukhopadhyay, T. y Zubrow, D. (1999). Software process models and project performance. Information Systems Frontiers, 1, 267-277. https://doi. org/10.1023/A:1010054412650; Kuhrmann, M., Münch, J., Richardson, I., Rausch, A. y Zhang, H. (eds.) (2016). Managing software process evolution: Traditional, agile and beyond–how to handle process change. Springer. https://doi.org/10.1007/978-3-319-31545-4; Land, S. K. y Walz, J. W. (2007). Practical support for ISO 9001 Software Project Documentation using IEEE Software Engineering Standards. Wiley-ieee Press.; Land, S. K., Smith, D. B. y Walz, J. W. (2012). Practical support for lean six sigma software process definition: Using ieee software engineering standards. John Wiley & Sons.; Mahonen, P. (2000). The standardization process in it-too slow or too fast? En Information technology standards and standardization: A global perspective (pp. 35-47). IGI Global. http://dx.doi.org/10.4018/978-1-878289-70-4.ch003; McCord, J. W. (1990). Software development-process and implementation: dod-std- 2167a vs. traditional methodologies. En ieee Conference on Aerospace and Electronics (pp. 681-687). IEEE. https://doi.org/10.1109/NAECON.1990.112848; Métrica v.3. (2020). Metodología de planificación, desarrollo y mantenimiento de sistemas de información. https://administracionelectronica.gob.es/pae_Home/pae_Documentacion/ pae_Metodolog/pae_Metrica_v3.html; Moore, J. W. (2006). The road map to software engineering: A standards-based guide. Wiley-ieee Computer Society Press.; Object Management Group. (2015). Essence - Kernel and Language for Software Engineering Methods. Version 1.1. https://www.omg.org/spec/Essence/1.0/PDF; OpenUP. (2022). Proceso unificado abierto. https://www.utm.mx/~caff/doc/OpenUPWeb/; Pino, F. J., Baldassarre, M. T., Piattini, M., Visaggio, G. y Caivano, D. (2010). Mapping software acquisition practices from iso 12207 and cmmi. En L. A. Maciaszek, C. González-Pérez y S. Jablonski (eds.), Evaluation of Novel Approaches to Software Engineering. enase enase 2009 2008. Communications in Computer and Information Science (pp. 234-247). Springer. https://doi.org/10.1007/978-3-642-14819-4_17; Pons, C., Giandini, R. y Baum, G. (2000). Dependency relations between models in the Unified Process. En Tenth International Workshop on Software Specification and Design. iwssd-10 2000 (pp. 149-157). ieee. https://doi.org/10.1109/IWSSD.2000.891136; Portuguese Institute of Quality. (2008). np en iso 9001:2008 - Quality Management Systems - Requirements.; Priestley, M. y Utt, M. H. (2000). A unified process for software and documentation development. En 18th Annual Conference on Computer Documentation. ipcc sigdoc 2000. Technology and Teamwork. Proceedings. ieee Professional Communication Society International Professional Communication Conference (pp. 221-238). ieee. https://doi.org/10.1109/ IPCC.2000.887279; Strandberg, T. (2016). What is iso/iec 15288? (A concise introduction). White Paper.; Valdés Cárdenas, L. E. (2005). Guía para la implementación de la Norma iso 9001:2000 en las empresas de software. Colciencias.; West, J. (2003). The role of standards in the creation and use of information systems. En Proceedings of the Workshop on Standard Making: A Critical Research Frontier for Information Systems (pp. 314-326). MIS Quarterly.; Amjad, A., Azam, F., Anwar, M. W., Butt, W. H. y Rashid, M. (2018). Event-driven process chain for modeling and verification of business requirements: A systematic literature review. ieee Access, 6, 9027-9048. https://doi.org/10.1109/ACCESS.2018.2791666; Atkinson, D. C., Weeks, D. C. y Noll, J. (2004). The design of evolutionary process modeling languages. En 11th Asia-Pacific Software Engineering Conference (pp. 73-82). ieee. https://doi.org/10.1109/APSEC.2004.98; Bandinelli, S. C., Fuggetta, A. y Ghezzi, C. (1993). Software process model evolution in the spade environment. ieee Transactions on Software Engineering, 19(12), 1128-1144. https://doi.org/10.1109/32.249659; Bendraou, R., Jézéquel, J. M., Gervais, M. P. y Blanc, X. (2010). A comparison of six uml-based languages for software process modeling. ieee Transactions on Software Engineering, 36(5), 662-675. https://doi.org/10.1109/TSE.2009.85; Brcina, R. (2007). Arbeiten zur Verfolgbarkeit und Aspekte des Verfolgbarkeitsprozesses. Softwaretechnik-Trends: Mitteilungen von mehreren Fachgruppen des Fachausschusses, 27(1), 3-8.; Brondani, C. H., da Cruz Mello, O. y Fontoura, L. M. (2019). A case study of a software development process model for sis-astros. En seke (pp. 600-776). http://ksiresearch. org/seke/seke19paper/seke19paper_98.pdf; Broy, M. y Rumpe B. (2007). Modulare hierarchische Modellierung als Grundlage der Software- und Systementwicklung. InformatikSpektrum, 30(1), 3-18. https://doi. org/10.1007/; Campos, A. L. N. y Oliveira, T. (2013). Software processes with bpmn: An empirical analysis. En J. Heidrich, M. Oivo, A. Jedlitschka y M. T. Baldassarre (eds.), Product- Focused Software Process Improvement. profes 2013. Lecture Notes in Computer Science (pp. 338-341). Springer. https://doi.org/10.1007/978-3-642-39259-7_29; Cempel, W. A. y Dąbal, D. (2014). idef0 as a project management tool in the simulation modeling and analysis process in emergency evacuation from hospital facility: A case study. En P. Pawlewski y A. Greenwood (eds.), Process Simulation and Optimization in Sustainable Logistics and Manufacturing. EcoProduction (pp. 155-166). Springer. https://doi.org/10.1007/978-3-319-07347-7_11; Conradi, R., Jaceheri, M. L., Mazzi, C., Nguyen y M. N., Aarsten, A. (1992). Design, use and implementation of spell: A language for software process modeling and evolution. En J. C. Derniame (eds.), Software Process Technology. ewspt 1992. Lecture Notes in Computer Science (pp. 167-177). Springer. https://doi.org/10.1007/BFb0017519; Decker, G. (2009). Design and analysis of process choreographies [tesis de doctorado, Universität Potsdam]. https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/ index/docId/3898/file/decker_diss.pdf; DeMarco, T. (2004). Was man nicht messen kann, kann man nicht kontrollieren. MitpVerlag.; Dowson, M. y Fernström, C. (1994). Towards requirements for enactment mechanisms. En B. C. Warboys (eds.), Software Process Technology. ewspt 1994. Lecture Notes in Computer Science (pp. 90-106). Springer. https://doi.org/10.1007/3-540-57739-4_13; Dumas, M., La Rosa, M., Mendling, J. y Reijers, H. A. (2013). Fundamentals of business process management. Springer. https://doi.org/10.1007/978-3-642-33143-5; Gallina, B., Pitchai, K. R. y Lundqvist, K. (2014). S-TunExSPEM: Towards an extension of spem 2.0 to model and exchange tunable safety-oriented processes. En R. Lee (eds.), Software Engineering Research, Management and Applications. Studies in Computational Intelligence (pp. 215-230). Springer. https://doi.org/10.1007/978-3-319-00948-3_14; García-Borgoñón, L., Barcelona, M. A., García-García, J. A., Alba, M. y Escalona, M. J. (2014). Software process modeling languages: A systematic literature review. Information and Software Technology, 56(2), 103-116. https://doi.org/10.1016/j.infsof. 2013.10.001; García-García, J. A., Enríquez, J. G. y Domínguez-Mayo, F. J. (2019). Characterizing and evaluating the quality of software process modeling language: Comparison of ten representative model-based languages. Computer Standards & Interfaces, 63, 52-66. https://doi.org/10.1016/j.csi.2018.11.008; Génova, G. (2012). Conceptos básicos de modelado. En Desarrollo de software dirigido por modelos: Conceptos, métodos y herramientas (pp. 67-80). Ra-Ma. http://www.lcc.uma. es/~av/Publicaciones/12/LibroDSDM.pdf; Harel, D. y Rumpe, B. (2004). Meaningful modeling: What’s the semantics of “semantics”? Computer, 37(10), 64-72. https://doi.org/10.1109/MC.2004.172; Hauser, R. (2010). Automatic transformation from graphical process models to executable code. eth Zürich. https://doi.org/10.3929/ethz-a-006050258; Holt, J. (2004). uml for systems engineering: Watching the wheels. iet.; Hunter, R. B. y Thayer, R. H. (eds.) (2001). Software process improvement (practitioners). ieee Computer Society; Hurtado Alegría, J. A., Bastarrica, M. C. y Bergel, A. (2011). Analyzing software process models with avispa. En Proceedings of the 2011 International Conference on Software and Systems Process (pp. 23-32). https://doi.org/10.1145/1987875.1987882; Kaiser, G. E., Barghouti, N. S. y Sokolsky, M. H. (1990). Preliminary experience with process modeling in the marvel software development environment kernel. En Proceedings of the 23rd International Conference on System Sciences (pp. 131-140). ieee. https:// doi.org/10.1109/HICSS.1990.205161; Kelemen, Z. D., Kusters, R., Trienekens, J. y Balla, K. (2013). Selecting a process modeling language for process based unification of multiple standards and models. https://www. academia.edu/download/40527680/Selecting_a_Process_Modeling_Language_ fo20151130-12371-180bp3v.pdf; Li, Y. B. y Mao, F. Q. (2010). Research of the verification in workflow process modeling on the application of Petri nets. En 2010 International Conference on e-Education, e-Business, e-Management and e-Learning (pp. 21-24). ieee. https://doi.org/10.1109/ IC4E.2010.71; Ludewig, J. y Lichter, H. (2023). Software engineering: Grundlagen, menschen, prozesse, techniken. Dpunkt Verlag GmbH.; Mendling, J., Neumann, G. y Nüttgens, M. (2005). Yet another Event-Driven Process Chain. En W. M. P. van der Aalst, B. Benatallah, F. Casati y F. Curbera (eds.), Business Process Management. bpm 2005. Lecture Notes in Computer Science (pp. 428-433). Springer. https://doi.org/10.1007/11538394_35; Mili, H., Tremblay, G., Jaoude, G. B., Lefebvre, É., Elabed, L. y Boussaidi, G. E. (2010). Business process modeling languages: Sorting through the alphabet soup. acm Computing Surveys (csur), 43(1), 1-56. https://doi.org/10.1145/1824795.1824799; Moro, M. (2004). Modellbasierte Qualitätsbewertung von Softwaresystemen. Books on Demand GmbH.; Nitto, E. D., Lavazza, L., Schiavoni, M., Tracanella, E. y Trombetta, M. (2002). Deriving executable process descriptions from uml. En Proceedings of the 24th International Conference on Software Engineering (pp. 155-165). https://doi.org/10.1145/581339.581361; Object Management Group. (2008a). Software & Systems Process Engineering Meta-Model Specification Version 2.0. omg Document Number: formal/2008-04-01. https://www.omg. org/spec/SPEM/2.0/PDF; Object Management Group. (2008b). Meta Object Facility (mof) Core Specification. Version 2.5.1. omg Document Number: formal/2019-10-01. https://www.omg.org/spec/MOF; Object Management Group. (2017). omg Unified Modeling Language (omg uml) Version 2.5.1. omg Document Number: formal/2017-12-05. https://www.omg.org/spec/UML/2.5.1/ PDF; OpenUP. (2012). Eclipse Process Framework Composer. http://www.utm.mx/~caff/doc/OpenUPWeb/ index.htm; Pawel, P. (2010). Using Petri nets to model and simulation production systems in process reengineering (case study). intech Open Access Publisher. https://www.intechopen.com/ chapters/9195; Pereira, E. B., Bastos, R. M., Oliveira, T. C. y Móra, M. C. (2012). A set of well-formedness rules to checking the consistency of the software processes based on spem 2.0. En R. Zhang, J. Zhang, Z. Zhang, J. Filipe y J. Cordeiro (eds.), Enterprise Information Systems. iceis 2011. Lecture Notes in Business Information Processing (pp. 284-299). Springer. https://doi.org/10.1007/978-3-642-29958-2_19; Ris-Ala, R. (2016). Scrum Framework Drawn in bpmn. https://www.linkedin.com/pulse/ scrum-drawn-bpmn-rafael-ris-ala-jos%C3%A9-jardim; Seidewitz, E. (2003). What models mean. ieee Software, 20(5), 26-32. https://doi. org/10.1109/MS.2003.1231147; Sutton, S. M., Heimbigner, D. y Osterweil, L. J. (1995). appl/a: A language for software process programming. acm Transactions on Software Engineering and Methodology (tosem), 4(3), 221-286. https://doi.org/10.1145/214013.214017; Van der Aalst, W. (2016). Process mining: Data science in action. Springer.; Basili, V. R., Caldiera, G. y Rombach, H. D. (1994). The goal question metric approach. En Encyclopedia of software engineering (pp. 528-532). Wiley & Sons Inc.; Bourque, P. y Fairley, R. E. (eds.) (2014). Guide to the software engineering body of knowledge, version 3.0. ieee Computer Society; Canfora, G., García, F., Piattini, M., Ruiz, F. y Visaggio, C. A. (2005). A family of experiments to validate metrics for software process models. Journal of Systems and Software, 77(2), 113-129. https://doi.org/10.1016/j.jss.2004.11.007; Deridder, D. (2002). A concept-oriented approach to support software maintenance and reuse activities. En Workshop on Knowledge-Based Object-Oriented Software Engineering at 16th European Conference on Object-Oriented Programming (ecoop 2002). Springer. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7785ac1e75fc7b343776cbb98c598e1b1a0be565; Fairley, R. E. (2011). Managing and leading software projects. John Wiley & Sons.; Farooq, S. U., Quadri, S. M. K. y Ahmad, N. (2011). Software measurements and metrics: Role in effective software testing. International Journal of Engineering Science and Technology, 3(1), 671-680. https://www.academia.edu/download/52482421/SOFTWARE_ MEASUREMENTS_AND_METRICS_ROLE_I20170404-6019-9p9zbx.pdf; Florak, W. A., Park, R. E. y Carleton, A. (1997). Practical software measurement: Measuring for process management and improvement. No. cmu/sei-97-hb-003. Software Engineering Institute, Carnegie Mellon University. https://citeseerx.ist.psu.edu/document? repid=rep1&type=pdf&doi=76aafd5d0ed49263488bca95f00f1fdad3729bec; Grady, R. B. (1992). Practical software metrics for project management and process improvement. Prentice-Hall.; Institute of Electrical and Electronics Engineers. (1990). 610.12-1990 - ieee Standard Glossary of Software Engineering Terminology. https://doi.org/10.1109/IEEESTD.1990.101064; ISO/IEC/IEEE 12207. (2017). ISO/IEC/IEEE 12207:2017 Systems and software engineering – Software life cycle processes.; ISO/IEC/IEEE 15288. (2015). ISO/IEC/IEEE 15288:2015 Systems and software engineering – System life cycle processes.; ISO/IEC/IEEE 15939. (2017). ISO/IEC/IEEE 15939:2017 Systems and software engineering – Measurement process.; Joint Committee for Guides in Metrology. (2012). jcgm 200:2012: International vocabulary of metrology. Basic and general concepts and associated terms (vim). https://www.bipm.org/ utils/common/documents/jcgm/JCGM_200_2012.pdf; Kurnia, R., Ferdiana, R. y Wibirama, S. (2018). Software metrics classification for agile scrum process: A literature review. En 2018 International Seminar on Research of Information Technology and Intelligent Systems (isriti) (pp. 174-179). ieee. https://doi. org/10.1109/ISRITI.2018.8864244; Menéndez Domínguez, V. H. y Castellanos Bolaños, M. E. (2015). spem: Software process engineering metamodel. Archivo de la Revista Latinoamericana de Ingeniería de Software, 3(2), 92-100. https://doi.org/10.18294/relais.2015.92-100; Mills, E. E. y Shingler, K. H. (1988). Software Metrics: sei Curriculum Module sei-cm-12-1.1. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu. edu/documents/1537/1988_007_001_15608.pdf; Noor, H., Hayat, D. B., Hamid, A., Wakeel, T. y Nasim, R. (2020). Software metrics: Investigating success factors, challenges, solutions and new research directions. International Journal of Scientific & Technology Research, 9(8), 38-44.; Park, R. E., Goethert, W. B. y Florac, W. A. (1996). Goal-driven software measurement: A guidebook. No. cmu/sei-96-hb-002. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu.edu/documents/1623/1996_002_001_16436.pdf; Piattini Velthuis, M. G., García Rubio, F. O., García Rodríguez de Guzmán, I. y Pino, F. J. (2011). Calidad de sistemas de información. Ra-Ma.; Pressman, R. S. (2005). Software engineering: A practitioner’s approach. McGraw-Hill.; Ruiz, F., Genero, M., García, F., Piattini, M. y Calero, C. (2003). A proposal of a software measurement ontology. En Proceedings of the Conference on Computer Science and Operational Research. Springer. https://www.academia.edu/download/68115968/A_proposal_ of_a_Software_Measurement_Ont20210715-13490-bwjmn6.pdf; Srinivasan, K. P. (2015). Unique fundamentals of software measurement and software metrics in software engineering. International Journal of Computer Science & Information Technology (ijcsit), 7(4), 29-43. https://www.airccse.org/journal/jcsit/7415ijcsit03.pdf; Tautz, C. y Von Wangenheim, C. (1998). refseno: A representation formalism for software engineering ontologies. Technical report No. 015.98/E, version 1.1. Fraunhofer iese. https://publica-rest.fraunhofer.de/server/api/core/bitstreams/05029db1-0b3f-408eb786- 468127baee2d/content; Xu, R., Xue, Y., Nie, P., Zhang, Y. y Li, D. (2006). Research on CMMI-based software process metrics. En First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS’06) (vol. 2, pp. 391-397). ieee. https://doi.org/10.1109/ IMSCCS.2006.260; Baldassarre, T., Boffoli, N., Caivano, D. y Visaggio, G. (2004). Managing Software Process Improvement (SPI) through statistical process control (spc). En F. Bomarius y H. Iida (eds.), Product Focused Software Process Improvement. profes 2004. Lecture Notes in Computer Science (pp. 30-46). Springer. https://doi.org/10.1007/978-3-540-24659-6_3; Caivano, D. (2005). Continuous Software Process Improvement through statistical process control. En Ninth European Conference on Software Maintenance and Reengineering (pp. 288-293). ieee. https://doi.org/10.1109/CSMR.2005.20; Card, D. N. y Glass, R. L. (1990). Measuring software design quality. Prentice-Hall.; Chang, C. W. y Tong, L. I. (2013). Monitoring the software development process using a short-run control chart. Software Quality Journal, 21, 479-499. https://doi. org/10.1007/s11219-012-9182-y; DeMarco, T. (1986). Controlling software projects: Management, measurement, and estimates. Prentice Hall.; Fine, E. S. (1997). What is wrong with spc? Quality, 36(10), 22-24.; Florac, W. A. y Carleton, A. D. (1999). Measuring the software process: Statistical process control for Software Process Improvement. Addison-Wesley.; Florac, W. A., Carleton, A. D. y Barnard, J. R. (2000). Statistical process control: Analyzing space shuttle onboard software process. ieee Software, 17(4), 97-106. https://doi. org/10.1109/52.854075; Florac, W. A., Park, R. E. y Carleton, A. (1997). Practical software measurement: Measuring for process management and improvement. No. cmu/sei-97-hb-003. Software Engineering Institute, Carnegie Mellon University. https://citeseerx.ist.psu.edu/document? repid=rep1&type=pdf&doi=76aafd5d0ed49263488bca95f00f1fdad3729bec; Gonçalves, L., Lima, L., Reis, R. Q., Nascimento, L. y Ribeiro, T. (2012). Support for statistic process control of software process. En 2012 xxxviii Conferencia Latinoamericana en Informática (clei) (pp. 1-10). ieee. https://doi.org/10.1109/CLEI.2012.6426915; Humphrey, W. S. (2005). psp (sm): A self-improvement process for software engineers. Addison-Wesley.; Jalote, P. y Saxena, A. (2002). Optimum control limits for employing statistical process control in software process. ieee Transactions on Software Engineering, 28(12), 1126-1134. https://doi.org/10.1109/TSE.2002.1158286; Komuro, M. (2006). Experiences of applying SPC techniques to software development processes. En Proceedings of the 28th international conference on Software engineering (pp. 577-584). https://doi.org/10.1145/1134285.1134367; Khurana, R. (2007). Software engineering: Principles and practices. Vikas.; Manlove, D. y Kan, S. H. (2007). Practical statistical process control for software metrics. Software Quality Professional Magazine, 9(4), 15-26.; Montgomery, D. C. (2012). Statistical quality control. Wiley Global Education.; Raczynski, B. y Curtis, B. (2008). Software data violate spc’s underlying assumptions. ieee Software, 25(3), 48-50.; Salazar, R. (2019). Quality Control Charts: x-bar chart, R-chart and Process Capability Analysis. Towards data science. https://towardsdatascience.com/quality-controlcharts- x-bar-chart-r-chart-and-process-capability-analysis-96caa9d9233e; Sargut, K. U. y Demirörs, O. (2006). Utilization of statistical process control (spc) in emergent software organizations: Pitfalls and suggestions. Software Quality Journal, 14, 135-157. https://doi.org/10.1007/s11219-006-7599-x; Şengöz, N. G. (2018). Control charts to enhance quality. En L. Kounis (ed.), Quality management systems: A selective presentation of case-studies showcasing its evolution (pp. 153-194). IntechOpen.; Shewhart, W. A. (1926). Quality control charts. Bell System Technical Journal, 5, 593-603. https://doi.org/10.1002/j.1538-7305.1926.tb00125.x; Tarhan, A. y Demirörs, O. (2006). Investigating suitability of software process and metrics for statistical process control. En I. Richardson, P. Runeson y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2006. Lecture Notes in Computer Science (pp. 88-99). Springer. https://doi.org/10.1007/11908562_9; Weller, E. y Card, D. (2008). Applying spc to software development where and why. ieee Software, 25(3), 48-50.; Wheeler, D. J. (1993). Understanding variation: The key to managing chaos. spc Press.; Wheeler, D. J. (1995). Advanced topics in statistical process control. spc Press.; Allison, I. (2005). Towards an agile approach to Software Process Improvement: Addressing the changing needs of software products. Communications of iima, 5(1), 67-76. https:// doi.org/10.58729/1941-6687.1256; American Society for Quality. (2020). Quality tools. https://asq.org/quality-resources/quality- tools; Antony, J. y Banuelas, R. (2002). Key ingredients for the effective implementation of Six Sigma program. Measuring Business Excellence, 6(4), 20-27. https://doi. org/10.1108/13683040210451679; Basili, V., Caldiera, G. y Rombach, D. (1994). Experience factory. En Encyclopedia of software engineering (vol. 1, pp. 476-496). John Wiley & Sons.; Beecham, S., Hall, T. y Rainer, A. (2003). Software process improvement problems in twelve software companies: An empirical analysis. Empirical Software Engineering, 8, 7-42. https://doi.org/10.1023/A:1021764731148; Bekaroo, G. y Warren, P. (2016). Self-tuning flowcharts: A priority-based approach to optimize diagnostic flowcharts. En 2016 ieee International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech) (pp. 279-285). IEEE. https://doi.org/10.1109/EmergiTech.2016.7737352; Birk, A. y Rombach, D. (2001). A practical approach to continuous improvement in software engineering. En M. Wieczorek y D. Meyerhoff (eds.), Software quality: State of the art in management, testing, and tools (pp. 34-45). https://doi.org/10.1007/978-3- 642-56529-8_3; Borstler, J., Carrington, D., Hislop, G. W., Lisack, S., Olson, K. y Williams, L. (2002). Teaching PSP: Challenges and lessons learned. ieee Software, 19(5), 42-48. https://doi. org/10.1109/MS.2002.1032853; British Standards Institution. (2011). Kick start guide TickITplus. https://www.tickitplus. org/en/standards-and-guidance/guidance.html?file=files/content/tickitplus/TickITplus_-_ Kick_Start_Guide_1.pdf&cid=33397; Bubevski, V. (2010). An application of Six Sigma and simulation in software testing risk assessment. En 2010 Third International Conference on Software Testing, Verification and Validation (pp. 295-302). ieee. https://doi.org/10.1109/ICST.2010.23; Cangussu, J. W., DeCarlo, R. A. y Mathur, A. P. (2003). Monitoring the software test process using statistical process control: A logarithmic approach. En Proceedings of the 9th European Software Engineering Conference held jointly with 11th acm sigsoft International Symposium on Foundations of Software Engineering (pp. 158-167). ieee. https://doi. org/10.1145/940071.940093; Cano, E. L., Moguerza, J. M. y Redchuk, A. (2012). Six Sigma with R: Statistical engineering for process improvement. Springer.; Chaudhary, M. y Chopra, A. (2017). CMMI for development: Implementation guide. Apress. https://doi.org/10.1007/978-1-4842-2529-5; Davis, P. T. y Lewis, B. D. (2018). Project management capability assessment: Performing iso 33000-Based capability assessments of project management. crc Press.; Ferreira, M. G. y Wazlawick, R. S. (2011). Complementing the sei-ideal model with deployers’ real experiences: The need to address human factors in spi Initiatives. En CIbSE (pp. 39-52). https://www.academia.edu/download/32809080/cibse_paper03.pdf; Fontana, R. M., Albuquerque, R., Luz, R., Moises, A. C., Malucelli, A. y Reinehr, S. (2018). Maturity models for agile software development: What are they? En X. Larrucea, I. Santamaria, R. O’Connor y R. Messnarz (eds.), Systems, Software and Services Process Improvement. EuroSPI 2018. Communications in Computer and Information Science (pp. 3-14). Springer. https://doi.org/10.1007/978-3-319-97925-0_1; Grütter, G. y Ferber, S. (2002). The Personal Software Process in practice: Experience in two cases over five years. En J. Kontio y R. Conradi (eds.), Software Quality - ecsq 2002. ecsq 2002. Lecture Notes in Computer Science (pp. 165-174). Springer. https:// doi.org/10.1007/3-540-47984-8_20; Gupta, P. y Rao, D. S. (2011). Best practices to achieve CMMI level 2 configuration management process area through vss tool. International Journal of Computer Technology and Applications, 2(3), 542-558.; Harry, M. y Schroeder, R. (2000). Six Sigma: The breakthrough management strategy revolutionizing the world’s top corporations. Doubleday.; Hauser, S. (2018). Analysis of requirement problems regarding their causes and effects for projects with the objective to model qualitative pris-empirical study. https://ceur-ws.org/Vol-2075/ DS-paper3.pdf; Humphrey, W. S. (2001). Winning with software: An executive strategy. Pearson Education.; Humphrey, W. S. y Over, J. W. (2010). Leadership, teamwork, and trust: Building a competitive software capability. Addison-Wesley.; Iqbal, J., Nasir, M. H. N., Khan, M., Awan, I. y Farid, S. (2020). Software process improvement implementation issues in small and medium enterprises that develop healthcare applications. Journal of Medical Imaging and Health Informatics, 10(10), 2393-2403. https://doi.org/10.1166/jmihi.2020.3187; ISO 33000. (2020). iso 33000. https://www.iso33000.es/; ISO/IEC 15504. (2003). International Organization for Standardization and the International Electrotechnical Commission (iso/iec). iso/iec 15504-2 - Information technology - Process assessment - Part 2: Performing an assessment.; Kandt, R. K. (2003). Ten steps to successful Software Process Improvement. https://dataverse. jpl.nasa.gov/api/access/datafile/6189?gbrecs=true; Kaplan, R. S. y Norton, D.P. (1992). The balanced scorecard: Measures that drive performance. Harvard Business Review, 70(1), 71-79. https://hbr.org/1992/01/the-balancedscorecard- measures-that-drive-performance-2; Kaplan, R. S. y Norton, D.P. (2009). El cuadro de mando integral. Gestión 2000.; Kazi, L., Radosav, D., Nikolic, M. y Chotaliya, N. (2011). Balanced scorecard framework in software project monitoring. Journal of Engineering Management and Competitiveness (jemc), 1(1-2), 51-56. http://www.tfzr.uns.ac.rs/JEMC/files/V1N1-22011-10.pdf; Kuhrmann, M., Konopka, C., Nellemann, P., Diebold, P. y Münch, J. (2015). Software process improvement: Where is the evidence? Initial findings from a systematic mapping study. En Proceedings of the 2015 International Conference on Software and System Process (pp. 107-116). https://doi.org/10.1145/2785592.2785600; Kuilboer, J. P. y Ashrafi, N. (2000). Software process and product improvement: An empirical assessment. Information and Software Technology, 42(1), 27-34. https://doi. org/10.1016/S0950-5849(99)00054-3; Lee, J. C., Hsu, W. C. y Chen, C. Y. (2018). Impact of absorptive capability on Software Process Improvement and firm performance. Information Technology and Management, 19, 21-35. https://doi.org/10.1007/s10799-016-0272-6; Liliana, L. (2016). A new model of Ishikawa diagram for quality assessment. En Iop Conference Series: Materials Science and Engineering, 161(1), 012099. https://doi. org/10.1088/1757-899X/161/1/012099; McFeeley, B. (1996). IDEAL: A user’s guide for Software Process Improvement. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu.edu/documents/ 1622/1996_002_001_16433.pdf; Mejía, J., Íñiguez, F. y Muñoz, M. (2017). Data Analysis for Software Process Improvement: A systematic literature review. En Á. Rocha, A. Correia, H. Adeli, L. Reis y S. Costanzo (eds.), Recent Advances in Information Systems and Technologies. WorldCIST 2017. Advances in Intelligent Systems and Computing (pp. 48-59). Springer. https://doi. org/10.1007/978-3-319-56535-4_5; Mills, H. D. y Linger, R. C. (2002). Cleanroom software engineering: Developing software under statistical quality control. En Encyclopedia of Software Engineering. John Wiley & Sons. https://doi.org/10.1002/0471028959.sof040; Niazi, M., Mishra, A. y Gill, A. Q. (2018). What do software practitioners really think about Software Process Improvement project success? An exploratory study. Arabian Journal for Science and Engineering, 43, 7719-7735. https://doi.org/10.1007/s13369- 018-3140-3; O’Regan, G. (2017). Concise guide to software engineering. Springer.; Pernstål, J., Feldt, R., Gorschek, T. y Florén, D. (2019). flex-rca: A lean-based method for root cause analysis in Software Process Improvement. Software Quality Journal, 27, 389-428. https://doi.org/10.1007/s11219-018-9408-8; Piattini Velthuis, M. G. y Garzás Parra, J. (2007). Fábricas de software: Experiencias, tecnologías y organización. ra-ma.; Pillai, A. K. R., Pundir, A. K. y Ganapathy, L. (2012). Implementing integrated Lean Six Sigma for software development: A flexibility framework for managing the continuity. Change dichotomy. Global Journal of Flexible Systems Management, 13, 107-116. https://doi.org/10.1007/s40171-012-0009-2; Pomeroy-Huff, M., Mullaney, J., Cannon, R. y Seburn, M. (2008). The Personal Software Process-SM (PSP-SM) Body of Knowledge, Version 1.0. No. cmu/sei-2005-sr-003. Software Engineering Institute, Carnegie Mellon University. https://apps.dtic.mil/sti/tr/ pdf/ADA636411.pdf; Poth, A., Sasabe, S. y Mas, A. (2017). Lean and agile Software Process Improvement: An overview and outlook. En J. Stolfa, S. Stolfa, R. O’Connor y R. Messnarz (eds.), Systems, Software and Services Process Improvement. EuroSPI 2017. Communications in Computer and Information Science (pp. 471-485). Springer. https://doi.org/10.1007/978-3- 319-64218-5_38; Pournaghshband, H. y Watson, J. (2017). Should Six Sigma be incorporated into software development & project management? En 2017 International Conference on Computational Science and Computational Intelligence (csci) (pp. 1021-1026). ieee. https://doi. org/10.1109/CSCI.2017.176; Pressman, R. S. (2005). Software engineering: A practitioner’s approach. Palgrave Macmillan.; Qumer, A., Henderson-Sellers, B. y Mcbride, T. (2007). Agile adoption and improvement model. En Proceedings European and Mediterranean Conference on Information Systems (emcis). The Information Institute, Brunel University. https://opus.lib.uts.edu.au/bitstream/ 10453/6833/1/2006014581.pdf; Salo, O. (2006). Enabling Software Process Improvement in agile software development teams and organisations [tesis de doctorado, vtt Technical Research Centre of Finland]. https://publications.vtt.fi/pdf/publications/2006/P618.pdf; Santana, C., Queiroz, F., Vasconcelos, A. y Gusmão, C. (2015). Software process improvement in agile software development a systematic literature review. En 2015 41st Euromicro Conference on Software Engineering and Advanced Applications (pp. 325-332). ieee. https://doi.org/10.1109/SEAA.2015.82; scampi Upgrade Team. (2011). scampi - Standard cmmi Appraisal Method for Process Improvement (scampi) A, Version 1.3: Method Definition Document. Technical Report cmu/sei-2011- hb-001. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA. https://insights.sei.cmu.edu/documents/1618/2011_002_001_15311. pdf; Shin, H., Choi, H. J. y Baik, J. (2007). Jasmine: A PSP supporting tool. En Q. Wang, D. Pfahl y D. M. Raffo (eds.), Software Process Dynamics and Agility. icsp 2007. Lecture Notes in Computer Science (pp. 73-83). Springer. https://doi.org/10.1007/978-3-540- 72426-1_7; Software Engineering Institute. (2010). cmmi para Desarrollo, Versión 1.3. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu.edu/ documents/87/2010_019_001_28782.pdf; Tague, N. R. (2005). The quality toolbox. asq Quality Press.; Wiegers, K. E. (1999). Process Improvement that works. Software Development, 7(10), 24-30.; Zahran, S. (1998). Software process improvement: Practical guidelines for business susccess. Addison-Wesley.; Amescua, A., Bermón Angarita, L., García, J. y Sánchez-Segura, M. I. (2010). Knowledge repository to improve agile development processes learning. iet Software, 4(6), 434-444. https://doi.org/10.1049/iet-sen.2010.0067; Bayona, S., Calvo Manzano, J., Cuevas, G. y San Feliu, T. (2013). Identify and classify the critical success factors for a successful process deployment. En R. Pooley, J. Coady, C. Schneider, H. Linger, C. Barry y M. Lang (eds.), Information systems development: Reflections, challenges and new directions (pp. 11-22). Springer. https:// doi.org/10.1007/978-1-4614-4951-5_2; Bermón Angarita, L. (2010). Librería de activos para la gestión del conocimiento sobre procesos de software: PAL-Wiki [tesis de doctorado, Universidad Carlos III de Madrid]. https://e-archivo.uc3m.es/handle/10016/10231#preview; Bourque, P. y Fairley, R. E. (eds.) (2014). Guide to the Software Engineering Body of Knowledge, Version 3.0. ieee Computer Society. https://cs.fit.edu/~kgallagher/Schtick/Serious/ SWEBOKv3.pdf; Chaghrouchni, T., Kabbaj, M. I. y Bakkoury, Z. (2016). Optimized approach for dynamic adaptation of process models. En A. El Oualkadi, F. Choubani y A. El Moussati (eds.), Proceedings of the Mediterranean Conference on Information & Communication Technologies 2015. Lecture Notes in Electrical Engineering (pp. 101-109). Springer. https://doi. org/10.1007/978-3-319-30298-0_11; Chaudhary, M. y Chopra, A. (2017). cmmi for development: Implementation guide. Apress. http://ndl.ethernet.edu.et/bitstream/123456789/27112/1/Mukund %20Chaudhary. pdf; Christensen, C. M. y Overdorf, M. (2000). Meeting the challenge of disruptive change. Harvard Business Review, 78(2), 66-77. http://innovbfa.viabloga.com/files/HBR___Christensen___ meeting_the_challenge_of_disruptive_change___2009.pdf; De Lucia, A., Fasano, F., Francese, R. y Tortora, G. (2004). ADAMS: An artefact-based process support system. En F. Maurer y G. Ruhe (eds.), Proceedings of the Seventh International Conference on Software Engineering and Knowledge Engineering (apeie) (pp. 31-36). IEEE.; De Oliveira, K. M., Zlot, F., Rocha, A. R., Travassos, G. H., Galotta, C. y de Menezes, C. S. (2004). Domain-oriented software development environment. Journal of Systems and Software, 72(2), 145-161. https://doi.org/10.1016/S0164-1212(03)00233-4; DeMarco, T. y Lister, T. (2013). Peopleware: Productive projects and teams. Addison-Wesley.; Dengler, F., Lamparter, S., Hefke, M. y Abecker, A., (2009). Collaborative process development using Semantic MediaWiki. En K. Hinkelmann y H. Wache (eds.), WM2009: 5th Conference on Professional Knowledge Management (pp. 97-107). Gesellschaft für Informatik e.V. https://new-dl.gi.de/bitstream/handle/20.500.12116/23326/giproc- 145-008.pdf?sequence=1&isAllowed=y; Dowson, M. (1993). Consistency maintenance in process sensitive environments. En Proceedings of Workshop on Process Sensitive Environments Architectures. Rocky Mountain Institute of Software Engineering.; Dybå, T. (2005). An empirical investigation of the key factors for success in Software Process Improvement. ieee transactions on Software Engineering, 31(5), 410-424. https://doi.org/10.1109/TSE.2005.53; Ebersbach, A., Glaser, M., Heigl, R. y Warta, A. (2008). Wiki: Web collaboration (2.ª ed.). Springer.; García, J., Amescua, A., Sánchez, M. I. y Bermón Angarita, L. (2011). Design guidelines for software processes knowledge repository development. Information and Software Technology, 53(8), 834-850. https://doi.org/10.1016/j.infsof.2011.03.002; García, S. y Turner, R. (2007). CMMI survival guide: Just enough process improvement. Addison-Wesley.; Gruhn, V. (2002). Process-centered software engineering environments: A brief history and future challenges. Annals of Software Engineering, 14, 363-382. https://doi. org/10.1023/A:1020522111961; Hasan, H. y Pfaff, C. C. (2006). The Wiki: An environment to revolutionise employees’ interaction with corporate knowledge. En Proceedings of the 18th Australia conference on Computer-Human Interaction: Design: Activities, Artefacts and Environments (pp. 377-380). https://doi.org/10.1145/1228175.1228250; Henderson, R. M. y Clark, K. B. (1990). Architectural innovation: The reconfiguration of existing product technologies and the failure of established firms. Administrative Science Quarterly, 35, 9-30. https://doi.org/10.2307/2393549; Humphrey, W. S. (2005). The software process: Global goals. En M. Li, B. Boehm y L. J. Osterweil (eds.), Unifying the Software Process Spectrum. spw 2005. Lecture Notes in Computer Science (pp. 35-42). Springer. https://doi.org/10.1007/11608035_4; Jiang, T., Ying, J., Wu, M. y Fang, M. (2006). An architecture of process-centered context- aware software development environment. En 2006 10th International Conference on Computer Supported Cooperative Work in Design (pp. 1-5). ieee. https://doi. org/10.1109/CSCWD.2006.253193; Kaltio, T. (2001). Software process asset management and deployment in a multi-site organization [tesis de doctorado, Helsinki University of Technology]. https://aaltodoc.aalto.fi/ server/api/core/bitstreams/627a1f2d-ca62-4915-a2af-5c69ba06d629/content; Kellner, M. I., Becker-Kornstaedt, U., Riddle, W. E., Tomal, J. y Verlage, M. (1998). Process guides: Effective guidance for process participants. ispa Press. https://publica-rest.fraunhofer. de/server/api/core/bitstreams/0cae4e01-20d2-490c-b565-3eb6dd58539a/content; Layman, B. (2005). Implementing an organizational Software Process Improvement program. IEEE Software Engineering, 2, 279-288.; Leuf, B. y Cunningham, W. (2001). The wiki way: Quick collaboration on the web. Addison- Wesley.; Maciel, R. S. P., da Silva, B. C., Magalhães, A. P. F. y Rosa, N. S. (2009). An integrated approach for model driven process modeling and enactment. En 2009 xxiii Brazilian Symposium on Software Engineering (pp. 104-114). ieee. https://doi. org/10.1109/SBES.2009.18; Maciel, R. S. P., Gomes, R. A., Magalhães, A. P., Silva, B. C. y Queiroz, J. P. B. (2013). Supporting model-driven development using a process-centered software engineering environment. Automated Software Engineering, 20, 427-461. https://doi.org/10.1007/ s10515-013-0124-0; Matinnejad, R. y Ramsin, R. (2012). An analytical review of process-centered software engineering environments. En 2012 ieee 19th International Conference and Workshops on Engineering of Computer-Based Systems (pp. 64-73). ieee. https://doi.org/10.1109/ ECBS.2012.11; Maurer, R. (2010). Beyond the wall of resistance: Why 70 % of all changes still fail-and what you can do about it. Bard Press.; Meso, P. y Jain, R. (2006). Agile software development: Adaptive systems principles and best practices. Information Systems Management, 23(3), 19-30. https://doi.org/10.120 1/1078.10580530/46108.23.3.20060601/93704.3; Messnarz, R., Ekert, D., Reiner, M. y O’Suilleabhain, G. (2008). Human resources based improvement strategies: The learning factor. Software Process: Improvement and Practice, 13(4), 355-362. https://doi.org/10.1002/spip.397; Moe, N. B. y Dybå, T. (2006). The use of an electronic process guide in a medium‐sized software development company. Software Process: Improvement and Practice, 11(1), 21-34. https://doi.org/10.1002/spip.250; Münch, J., Armbrust, O., Kowalczyk, M. y Sotó, M. (2012). Software process definition and management. Springer. https://doi.org/10.1007/978-3-642-24291-5; Nikula, U., Jurvanen, C., Gotel, O. y Gause, D. C. (2010). Empirical validation of the Classic Change Curve on a software technology change project. Information and Software Technology, 52(6), 680-696. https://doi.org/10.1016/j.infsof.2010.02.004; Osterweil, L. (2011). Software processes are software too. En P. Tarr y A. Wolf (eds.), Engineering of Software. Springer. https://doi.org/10.1007/978-3-642-19823-6_17; Rico, D. F. (2005). Practical metrics and models for Return on Investment. TickIT International, 7(2), 10-16. https://davidfrico.com/rico05p.pdf; Rogers, E. W. (2004). Introducing the pause and learn (pal) process: Adapting the Army after action review process to the nasa project world at the Goddard Space Flight Center. nasa Goddard Space Flight Center Knowledge Management Office; Schneider, D. M. y Goldwasser, C. (1998). Be a model leader of change. Management Review, 87(3), 41-45.; Scott, L., Carvalho, L., Jeffery, R., D’Ambra, J. y Becker-Kornstaedt, U. (2002). Understanding the use of an electronic process guide. Information and Software Technology, 44(10), 601-616. https://doi.org/10.1016/S0950-5849(02)00080-0; Smatti, M., Oussalah, M. y Ahmed Nacer, M. (2016). Supporting deviations on software processes: A literature overview. En P. Lorenz, J. Cardoso, L. Maciaszek y M. van Sinderen (eds.), Software Technologies. ICSOFT 2015. Communications in Computer and Information Science (pp. 191-209). Springer. https://doi.org/10.1007/978-3-319- 30142-6_11; Software Engineering Institute. (2010). cmmi® para Desarrollo, Versión 1.3. https://insights. sei.cmu.edu/documents/87/2010_019_001_28782.pdf; Van Solingen, R. (2004). Measuring the ROI of Software Process Improvement. ieee Software, 21(3), 32-38. https://doi.org/10.1109/MS.2004.1293070; Veterans Affairs. (2022). Process Asset Library. https://www.va.gov/process/artifacts.asp; Weber, S., Emrich, A., Broschart, J., Ras, E. y Ünalan, Ö. (2009). Supporting software development teams with a semantic process- and artifact-oriented collaboration environment. En Software Engineering 2009 - Workshopband (pp. 243-254). Gesellschaft für Informatik e.V. https://dl.gi.de/server/api/core/bitstreams/ac0c66ff-4de1-4aadbfee- da2ffb68ec0f/content; Wikipedia. (s. f.). Wiki. http://en.wikipedia.org/wiki/Wiki; Zahran, S. (1998). Software process improvement: Practical guidelines for business success. Addison-Wesley.; Ahonen, J. J., Forsell, M. y Taskinen, S. K. (2002). A modest but practical software process modeling technique for Software Process Improvement. Software Process: Improvement and Practice, 7(1), 33-44. https://doi.org/10.1002/spip.152; Alexandre, S., Renault, A. y Habra, N. (2006). OWPL: A gradual approach for Software Process Improvement in SMEs. En 32nd euromicro Conference on Software Engineering and Advanced Applications (euromicro’06) (pp. 328-335). ieee. https://doi.org/10.1109/ EUROMICRO.2006.48; Allen, P., Ramachandran, M. y Abushama, H. (2003). prisms: An approach to Software Process Improvement for small to medium enterprises. En Third International Conference on Quality Software, 2003. Proceedings (pp. 211-214). ieee. https://doi.org/10.1109/ QSIC.2003.1319105; Anacleto, R., Von Wangenheim, C. G., Salviano, C. F. y Savi, R. (2004). A method for process assessment in small software companies. En Proceedings of 4th International Software Process Improvement and Capability Determination Conference (SPICE04) (pp. 69-76). Springer. https://www.inf.ufsc.br/~c.wangenheim/download/MARESMethod_ spice2004_vref.pdf; Baskerville, R. y Pries-Heje, J. (1999). Knowledge capability and maturity in software management. acm sigmis Database: The database for Advances in Information Systems, 30(2), 26-43. https://doi.org/10.1145/383371.383374; Basri, S. y O’Connor, R. V. (2010). Understanding the perception of very small software companies towards the adoption of process standards. En A. Riel, R. O’Connor, S. Tichkiewitch y R. Messnarz (eds.), Systems, Software and Services Process Improvement. EuroSPI 2010. Communications in Computer and Information Science (pp. 153- 164). Springer. https://doi.org/10.1007/978-3-642-15666-3_14; Berander, P. y Andrews, A. (2005). Requirements prioritization. En A. Aurum y C. Wohlin (eds.), Engineering and managing software requirements (pp. 69-94). Springer. https:// doi.org/10.1007/3-540-28244-0_4; Bucci, G., Campanai, M. y Cignoni, G. A. (2000). Rapid assessment to solicit process improvement in SMEs. En Proceedings of 7th European Software Process Improvement Conference (EuroSPI). Springer. http://groups.di.unipi.it/~giovanni/CV/Pubb/GAC-2001- SQP-Doc.pdf; Calvo-Manzano Villalón, J. A., Cuevas Agustín, G., San Feliu Gilabert, T., De Amescua Seco, A., García Sánchez, L. y Pérez Cota, M. (2002). Experiences in the application of Software Process Improvement in SMEs. Software Quality Journal, 10, 261-273. https:// doi.org/10.1023/A:1021638523413; Cater-Steel, A. P. (2004). Low-rigour, rapid software process assessments for small software development firms. En 2004 Australian Software Engineering Conference. Proceedings (pp. 368-377). ieee. https://doi.org/10.1109/ASWEC.2004.1290490; Cater-Steel, A., Toleman, M. y Rout, T. (2006). Process improvement for small firms: An evaluation of the rapid assessment-based method. Information and Software Technology, 48(5), 323-334. https://doi.org/10.1016/j.infsof.2005.09.012; Chen, X. y Staples, M. (2007). Using practice outcome areas to understand perceived value of cmmi specific practices for SMEs. En P. Abrahamsson, N. Baddoo, T. Margaria y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2007. Lecture Notes in Computer Science (pp. 59-70). Springer. https://doi.org/10.1007/978-3-540-75381-0_6; Chin, A. (2000). 10 factors on fostering innovation in small and medium-sized organisations. En Proceedings of the 2000 ieee International Conference on Management of Innovation and Technology. icmit 2000.’Management in the 21st Century’(Cat. No. 00EX457) (vol. 1, pp. 473-478). ieee. https://doi.org/10.1109/ICMIT.2000.917383; Clarke, P. y O’Connor, R. V. (2012a). The influence of spi on business success in software SMEs: An empirical study. Journal of Systems and Software, 85(10), 2356-2367. https:// doi.org/10.1016/j.jss.2012.05.024; Coleman, G. y O’Connor, R. (2008). Investigating software process in practice: A grounded theory perspective. Journal of Systems and Software, 81(5), 772-784. https://doi.org/10.1016/j.jss.2007.07.027; Dybå, T. (2003). Factors of Software Process Improvement success in small and large organizations: An empirical study in the scandinavian context. acm sigsoft Software Engineering Notes, 28(5), 148-157. https://doi.org/10.1145/949952.940092; European Commission. (2020). What is a SME? https://ec.europa.eu/growth/smes/business- friendly-environment/sme-definition_en/; Fontana, R. M., Meyer, V., Reinehr, S. y Malucelli, A. (2015). Progressive outcomes: A framework for maturing in agile software development. Journal of Systems and Software, 102, 88-108. https://doi.org/10.1016/j.jss.2014.12.032; García Paucar, L. H., Laporte, C. Y., Arteaga, Y. y Bruggmann, M. (2015). Implementation and Certification of iso/iec 29110 in an IT Startup in Peru. Software Quality Professional Journal, 17(2), 16-29. https://profs.etsmtl.ca/claporte/Publications/Publications/iso- 29110-in-an-it-startup-in-peru.pdf; García-Mireles, G. A. y Rodríguez-Castillo, I. (2009). Software engineering area curricular evaluation method based in Moprosoft. En 2009 Mexican International Conference on Computer Science (pp. 272-279). ieee. https://doi.org/10.1109/ENC.2009.19; Hall, T., Rainer, A. y Baddoo, N. (2002). Implementing Software Process Improvement: An empirical study. Software Process: Improvement and Practice, 7(1), 3-15. https://doi. org/10.1002/spip.150; Hauck, J. C. R., Almeida, I., Araujo, R., Dymow, J. y Neto, M. F. (2015). Harmonizing mps. br and certics: A case study in a maturity level f organization. En 2015 29th Brazilian Symposium on Software Engineering (pp. 61-70). ieee. https://doi.org/10.1109/ SBES.2015.22; Hauck, J. C. R., Gresse Von Wangenheim, C., de Souza, R. H. y Thiry, M. (2008). Process reference guides: Support for improving software processes in alignment with reference models and standards. En R. V. O’Connor, N. Baddoo, K. Smolander y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2008. Communications in Computer and Information Science (pp. 70-81). Springer. https://doi.org/10.1007/978- 3-540-85936-9_7; Hoffman, L. (1998). Small projects and the CMM. En Key Practices to the CMM: Inappropriate for Small projects? Proceedings of the 1998 Software Engineering Process Group Conference (pp. 9-12). Chicago.; Horvat, R. V., Rozman, I. y Györkös, J. (2000). Managing the complexity of spi in small companies. Software Process: Improvement and Practice, 5(1), 45-54. https://doi. org/10.1002/(SICI)1099-1670(200003)5:1%3C45::AID-SPIP110%3E3.0.CO;2-2; ISO/IEC 29110-1. (2010). Software engineering - lifecycle profiles for very small entities (vse) - Part 1: vse profiles overview. International Organization for Standardization.; ISO/IEC 29110-2. (2010). Software engineering - lifecycle profiles for very Small entities (vse) - Part 2: Framework and taxonomy. International Organization for Standardization.; ISO/IEC 29110-3. (2010). Software engineering - lifecycle profiles for very small entities (vse) - Part 3: Assessment guide. International Organization for Standardization.; ISO/IEC 29110-4. (2010). Software engineering - lifecycle profiles for very small entities (vse) - Part 4: Specifications of VSE profiles. International Organization for Standardization.; ISO/IEC 29110-5. (2010). Software engineering - lifecycle profiles for very small entities (vse) - Part 5: Management and engineering guide. International Organization for Standardization.; ISO/IEC 42010. (2007). Systems and software engineering - recommended practice for architectural description of software-intensive systems. International Organization for Standardization; ITmark. (2020). Modelo ITmark. http://it-mark.eu/; Järvi, A., Mäkilä, T. y Hakonen, H. (2006). Changing role of SPI: Opportunities and challenges of process modeling. En I. Richardson, P. Runeson y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2006. Lecture Notes in Computer Science (pp. 135-146). Springer. https://doi.org/10.1007/11908562_13; Jeners, S., Clarke, P., O’Connor, R. V., Buglione, L. y Lepmets, M. (2013). Harmonizing software development processes with software development settings: A systematic approach. En F. McCaffery, R. V. O’Connor y R. Messnarz (eds.), Systems, Software and Services Process Improvement. EuroSPI 2013. Communications in Computer and Information Science (pp. 167-178). Springer. https://doi.org/10.1007/978-3-642-39179-8_15; Johnson, D. L. y Brodman, J. G. (1998). Applying the CMM to small organizations and small projects. En Proceedings of the 1998 Software Engineering Process Group Conference.; Kachigan, S. K. (1986). Statistical analysis: An interdisciplinary introduction to univariate & multivariate methods. Radius Press.; Kautz, K., Hansen, H. W. y Thaysen, K. (2000). Applying and adjusting a Software Process Improvement model in practice: The use of the ideal model in a small software enterprise. En Proceedings of the 22nd international conference on Software engineering (pp. 626-633). https://doi.org/10.1145/337180.337492; Kuvaja, P., Palo, P. y Bicego, A. (1999). tapistry: A Software Process Improvement approach tailored for small enterprises. Software Quality Journal, 8(2), 149-156. https://doi. org/10.1023/A:1008909011736; Lester, N. G., Wilkie, F. G., McFall, D. y Ware, M. P. (2007). Evaluating the internal consistency of the base questions in the Express Process Appraisal. En 33rd euromicro Conference on Software Engineering and Advanced Applications (euromicro 2007) (pp. 289-296). ieee. https://doi.org/10.1109/EUROMICRO.2007.30; Lester, N. G., Wilkie, F. G., McFall, D. y Ware, M. P. (2010). Investigating the role of cmmi with expanding company size for small‐to medium‐sized enterprises. Journal of Software Maintenance and Evolution: Research and Practice, 22(1), 17-31. https://doi. org/10.1002/spip.409; López, O., Esquivel-Vega, G., Valerio, A. L., Víquez-Acuña, L., Víquez-Acuña, O. y Umaña, D. (2012). Mejora de procesos para fomentar la competitividad de la pequeña y mediana industria del software de Iberoamérica. Instituto Tecnológico de Costa Rica. https://repositoriotec. tec.ac.cr/bitstream/handle/2238/3358/mejora-procesos-fomentar-competitividad. pdf?sequence=1&isAllowed=y; McCaffery, F. y Coleman, G. (2009). Lightweight spi assessments: What is the real cost? Software Process: Improvement and Practice, 14(5), 271-278. https://doi.org/10.1002/ spip.430; McCaffery, F., McFall, D. y Wilkie, F.G. (2005). Improving the Express Process Appraisal method. En F. Bomarius y S. Komi-Sirviö (eds.), Product Focused Software Process Improvement. profes 2005. Lecture Notes in Computer Science (pp. 286-298). Springer. https://doi.org/10.1007/11497455_24; McCaffery, F., Richardson, I. y Coleman, G. (2006). A Adept: A software process appraisal method for small to medium-sized Irish software development organisations. En Proceedings of the European Software Process Improvement and Innovation Conference (Euro- SPI06). https://eprints.dkit.ie/173/; Mishra, D. y Mishra, A. (2009). Software process improvement in SMEs: A comparative view. Computer Science and Information Systems, 6(1), 111-140. https://doi. org/10.2298/CSIS0901111M; MPS.BR. (2012). Melhoria de Processo de Software Brasileiro: Guia Geral. Softex.; Nawrocki, J. R., Jasiñski, M., Walter, B. y Wojciechowski, A. (2002). Combining eXtreme Programming with ISO 9000. En H. Shafazand y A. M. Tjoa (eds.), EurAsia-ICT 2002: Information and Communication Technology. EurAsia-ICT 2002. Lecture Notes in Computer Science (pp. 786-794). Springer. https://doi.org/10.1007/3-540-36087-5_91; Nawrocki, J., Walter, B. y Wojciechowski, A. (2001). Toward maturity model for eXtreme Programming. En Proceedings 27th euromicro Conference. 2001: A Net Odyssey (pp. 233-239). ieee. https://doi.org/10.1109/EURMIC.2001.952459; O’Connor, R. V. (2014). Early stage adoption of iso/iec 29110 software project management practices: A case study. En A. Mitasiunas, T. Rout, R. V. O’Connor y A. Dorling (eds.), Software Process Improvement and Capability Determination. spice 2014. Communications in Computer and Information Science (pp. 226-237). Springer. https://doi. org/10.1007/978-3-319-13036-1_20; O’Connor, R. V. y Laporte, C. Y. (2014). An innovative approach to the development of an international software process lifecycle standard for very small entities. International Journal Information Technologies and Systems Approach (ijitsa), 7(1), 1-22. https://doi. org/10.4018/ijitsa.2014010101; Oktaba, H. (dir.) (2005). Modelo de procesos para la industria de software MoProSoft por niveles de capacidad de procesos. Versión 1.3. nmx-059/01-nyce-2005. Organismo Nacional de Normalización y Evaluación de la Conformidad.; Oktaba, H., Alquicira Esquivel, C., Ramos, A. S., Palacios Elizalde, J., Pérez Escobar, C. J. y López Lira Hinojo, F. (2004). Método de evaluación de procesos para la industria del software, EvalProSoft V1.1. Secretaría de Economía de México.; Oktaba, H., García, F., Piattini, M., Ruiz, F., Pino, F. J. y Alquicira, C. (2007). Software process improvement: The Competisoft project. Computer, 40(10), 21-28. https://doi. org/10.1109/MC.2007.361; Paulk, M. C. (1998). Using the software CMM in small organizations. En The Joint 1998 Proceedings of the Pacific Northwest Software Quality Conference and the Eighth International Conference on Software Quality (pp. 350-361). Carnegie Mellon University. http://www.iso.staratel.com/iso/CMM/Article/cmm-small.pdf; Pettersson, F., Ivarsson, M., Gorschek, T. y Öhman, P. (2008). A practitioner’s guide to light weight software process assessment and improvement planning. Journal of Systems and Software, 81(6), 972-995. https://doi.org/10.1016/j.jss.2007.08.032; Piattini, M. y Garzás-Parra, J. (2007). Fábricas de software: Experiencias, tecnologías y organización. ra-ma.; Pino, F. J., García, F. y Piattini, M. (2008). Software process improvement in small and medium software enterprises: A systematic review. Software Quality Journal, 16, 237-261. https://doi.org/10.1007/s11219-007-9038-z; Raninen, A., Ahonen, J. J., Sihvonen, H. M., Savolainen, P. y Beecham, S. (2013). lappi: A light‐weight technique to practical process modeling and improvement target identification. Journal of Software: Evolution and Process, 25(9), 915-933. https://doi. org/10.1002/smr.1571; Regnell, B., Höst, M., och Dag, J. N., Beremark, P. y Hjelm, T. (2001). An industrial case study on distributed prioritisation in market-driven requirements engineering for packaged software. Requirements Engineering, 6, 51-62. https://doi.org/10.1007/ s007660170015; Richardson, I. (2002). SPI models: What characteristics are required for small software development companies? En J. Kontio y R. Conradi (eds.), Software Quality: ECSQ 2002. ECSQ 2002. Lecture Notes in Computer Science (pp. 100-113). Springer. https:// doi.org/10.1007/3-540-47984-8_14; Richardson, I. y Ryan, K. (2001). Software process improvements in a very small company. Software Quality professional, 3(2), 23-35. https://citeseerx.ist.psu.edu/document? repid=rep1&type=pdf&doi=37f9a4ce4e41816901f3c9f99eaec880f18f18c2; Rozman, I., Vajde Horvat, R., GyÓrkÓs, J. y Hericùko, M. (1997). Processus: Integration of sei cmm and iso quality models. Software Quality Journal, 6, 37-63. https://doi. org/10.1023/A:1018539413913; Saaty, T. L. y Vargas, L. G. (2012). Models, methods, concepts & applications of the analytic hierarchy process. Springer.; Sánchez-Gordón, M. L., Colomo-Palacios, R., de Amescua Seco, A. y O’Connor, R. V. (2016). The route to Software Process Improvement in small-and medium-sized enterprises. En M. Kuhrmann, J. Münch, I. Richardson, A. Rausch y H. Zhang (eds.), Managing software process evolution. Springer. https://doi.org/10.1007/978-3-319-31545-4_7; Santos, G., Kalinowski, M., Rocha, A. R., Travassos, G. H., Weber, K. C. y Antonioni, J. A. (2012). MPS. BR program and MPS model: Main results, benefits and beneficiaries of Software Process Improvement in Brazil. En 2012 Eighth International Conference on the Quality of Information and Communications Technology (pp. 137-142). ieee. https:// doi.org/10.1109/QUATIC.2012.42; Savolainen, P., Sihvonen, H. M. y Ahonen, J. J. (2007). SPI with lightweight software process modeling in a small software company. En P. Abrahamsson, N. Baddoo, T. Margaria y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2007. Lecture Notes in Computer Science (pp. 71-81). Springer. https://doi.org/10.1007/978-3-540-75381-0_7; Scott, L., Jeffery, R., Carvalho, L., D’ambra, J. y Rutherford, P. (2001). Practical Software Process Improvement-the IMPACT project. En Proceedings 2001 Australian Software Engineering Conference (pp. 182-189). ieee. https://doi.org/10.1109/ASWEC.2001.948512; Softex. (2020). Modelos de referência. https://softex.br/mpsbr/modelos/; Stambollian, A., Habra, N., Laporte, C. Y., Desharnais, J. M. y Renault, A. (2006). owpl: A light model & methodology for initiation Software Process Improvement. En Proceedings of the 6th SPICE Conference on Process Assessment and Improvement (pp. 97- 105).; Suwanya, S. y Kurutach, W. (2008). An analysis of Software Process Improvement for sustainable development in Thailand. En 2008 8th ieee International Conference on Computer and Information Technology (pp. 724-729). ieee. https://doi.org/10.1109/ CIT.2008.4594764; Turgeon, J. (2006). CMMI on the sly for the CMMI shy: Implementing Software Process Improvement in small teams and organizations. Presentation in sepg.; Vahaniitty, J. y Rautiainen, K. (2005). Towards an approach for managing the development portfolio in small product-oriented software companies. En Proceedings of the 38th Annual Hawaii International Conference on System Sciences (pp. 314c-314c). ieee. https:// doi.org/10.1109/HICSS.2005.636; Valdés, G., Astudillo, H., Visconti, M. y López, C. (2010). The Tutelkan SPI framework for small settings: A methodology transfer vehicle. En A. Riel, R. O’Connor, S. Tichkiewitch y R. Messnarz (eds.), Systems, Software and Services Process Improvement. EuroSPI 2010. Communications in Computer and Information Science (pp. 142-1529. Springer. https://doi.org/10.1007/978-3-642-15666-3_13; Valdés, G., Visconti, M. y Astudillo, H. (2011). The Tutelkan Reference Process: A reusable process model for enabling SPI in small settings. En R. V. O’Connor, J. Pries-Heje y R. Messnarz (eds.), Systems, Software and Service Process Improvement. EuroSPI 2011. Communications in Computer and Information Science (pp. 179-190). Springer. https:// doi.org/10.1007/978-3-642-22206-1_16; Valencia, L. S., Villas, P. A. y Ocampo, C. A. (2009). Modelo de calidad de software. Scientia et Technica, 2(42), 172-176. https://www.redalyc.org/pdf/849/84916714032.pdf; Valtanen, A. y Ahonen, J. J. (2008). Big improvements with small changes: Improving the processes of a small software company. En A. Jedlitschka y O. Salo (eds.), Product-Focused Software Process Improvement. profes 2008. Lecture Notes in Computer Science (pp. 258-272). Springer. https://doi.org/10.1007/978-3-540-69566-0_22; Villarroel, R., Gómez, Y., Gajardo, R. y Rodríguez, O. (2009). Implementation of an improvement cycle using the competisoft methodological framework and the Tutelkan platform. En 2009 International Conference of the Chilean Computer Science Society (pp. 97-104). ieee. https://doi.org/10.1109/SCCC.2009.20; Von Wangenheim, C. G., Anacleto, A. y Salviano, C. F. (2006). Helping small companies assess software processes. ieee Software, 23(1), 91-98. https://doi.org/10.1109/ MS.2006.13; Von Wangenheim, C. G., Weber, S., Hauck, J. C. R. y Trentin, G. (2006). Experiences on establishing software processes in small companies. Information and Software Technology, 48(9), 890-900. https://doi.org/10.1016/j.infsof.2005.12.010; Weber, K. C., Araújo, E. E. R., da Rocha, A. R. C., Machado, C. A. F., Scalet, D. y Salviano, C. F. (2005). Brazilian software process reference model and assessment method. En P. Yolum, T. Güngör, F. Gürgen y C. Özturan (eds.), Computer and Information Sciences - ISCIS 2005. ISCIS 2005. Lecture Notes in Computer Science (pp. 402-411). Springer. https://doi.org/10.1007/11569596_43; Wheelen, T. L., Hunger, J. D., Hoffman, A. N. y Bamford, C. E. (2017). Strategic management and business policy. Pearson; Wilkie, F. G., Mc Caffery, F., McFall, D., Lester, N. y Wilkinson, E. (2007). A Low‐overhead method for software process appraisal. Software Process: Improvement and Practice, 12(4), 339-349. https://doi.org/10.1002/spip.321; Zarour, M., Abran, A. y Desharnais, J. M. (2011). Evaluation of software process assessment methods: Case study. En R. V. O’Connor, T. Rout, F. McCaffery y A. Dorling (eds.), Software Process Improvement and Capability Determination. spice 2011. Communications in Computer and Information Science (pp. 42-51). Springer. https://doi. org/10.1007/978-3-642-21233-8_4; Akbar, R., Hassan, M. F. y Abdullah, A. (2011). A review of prominent work on agile processes Software Process Improvement and process tailoring practices. En J. M. Zain, W. M. b. Wan Mohd y E. El-Qawasmeh (eds.), Software Engineering and Computer Systems. icsecs 2011. Communications in Computer and Information Science (pp. 571-585). Springer. https://doi.org/10.1007/978-3-642-22203-0_49; Alavi, M. y Leidner, D. E. (2001). Knowledge management and knowledge management systems: Conceptual foundations and research issues. mis Quarterly, 25(1), 107-136. https://doi.org/10.2307/3250961; Alexander, C. (1979). The timeless way of building. Oxford University Press.; Anguswamy, R. y Frakes, W. B. (2012). A study of reusability, complexity, and reuse design principles. En Proceedings of the acm-ieee International Symposium on Empirical Software Engineering and Measurement (pp. 161-164). https://doi. org/10.1145/2372251.2372280; Armbrust, O., Katahira, M., Miyamoto, Y., Münch, J., Nakao, H. y Ocampo, A. (2009). Scoping software process lines. Software Process: Improvement and Practice, 14(3), 181-197. https://doi.org/10.1002/spip.412; Barreto, A. S., Murta, L. G. P. y Rocha, A. R. (2011). Software process definition: A reuse-based approach. Journal of Universal Computer Science (jucs), 17(13), 1765-1799. https:// www.jucs.org/jucs_17_13/software_process_definition_a/jucs_17_13_1765_1799_ barreto.pdf; Bermón Angarita, L. (2010). Librería de activos para la gestión del conocimiento sobre procesos de software: PAL-Wiki [tesis doctoral, Universidad Carlos III de Madrid]. https://e-archivo.uc3m.es/bitstream/handle/10016/10231/Tesis_Leonardo_Bermon. pdf?sequence=2&isAllowed=y; Bhuta, J., Boehm, B. y Meyers, S. (2006). Process elements: Components of software process architectures. En M. Li, B. Boehm y L. J. Osterweil (eds.), Unifying the Software Process Spectrum. spw 2005. Lecture Notes in Computer Science (pp. 332-346). Springer. https://doi.org/10.1007/11608035_28; Birk, A., Heller, G., John, I., Schmid, K., von der Maßen, T. y Muller, K. (2003). Product line engineering, the state of the practice. ieee Software, 20(6), 52-60. https://doi. org/10.1109/MS.2003.1241367; Chrissis, M. B., Konrad, M. y Shrum, S. (2006). CMMI: Guidelines for process integration and product improvement. Addison-Wesley.; Ezran, M., Morisio, M. y Tully, C. (2002). Practical software reuse. Springer.; Fenton, N. y Bieman, J. (2014). Software metrics: A rigorous and practical approach. crc Press.; Fitzgerald, B., Russo, N. y O’Kane, T. (2003). Software development method tailoring at Motorola. Communications of the acm, 46(4), 65-70. https://doi. org/10.1145/641205.641206; Forrester, E. (ed.) (2006). A process research framework: The international process research consortium. Carnegie Mellon University, Software Engineering Institute.; Fusaro, P., Tortorella, M. y Visaggio, G. (1998). rep-chaRacterising and exploiting process components: Results of experimentation. En Proceedings Fifth Working Conference on Reverse Engineering (Cat. No. 98TB100261) (pp. 20-29). ieee. https://doi.org/10.1109/ WCRE.1998.723172; Gallina, B., Kashiyarandi, S., Martin, H. y Bramberger, R. (2014). Modeling a safety-and automotive-oriented process line to enable reuse and flexible process derivation. En 2014 ieee 38th International Computer Software and Applications Conference Workshops (pp. 504-509). ieee. https://doi.org/10.1109/COMPSACW.2014.84; Gamma, E., Helm, R., Johnson, R. y Vlissides, J. (1994). Design patterns: Elements of reusable object-oriented software. Addison Wesley.; Gary, K. A. y Lindquist, T. E. (1999). Cooperating process components. En Proceedings. Twenty-Third Annual International Computer Software and Applications Conference (Cat. No. 99CB37032) (pp. 218-223). ieee. https://doi.org/10.1109/CMPSAC. 1999.812704; Ginsberg, M. P. y Quinn, L. H. (1995). Process tailoring and the software capability maturity model. Carnegie Mellon University, Software Engineering Institute. https://citeseerx. ist.psu.edu/document?repid=rep1&type=pdf&doi=fe11de0ed0212b58fb9d- 47152c94a34ab5b31974; Hansen, M. T., Nohria, N. y Tierney, T. (2000). What’s your strategy for managing knowledge? En J. A. Woods y J. Cortada (eds.), The knowledge management yearbook 2000-2001 (pp. 55-69). Routledge. https://doi.org/10.4324/9780080941042; Hassan, A. (2018). Style and meta-style: Another way to reuse software architecture evolution [tesis de doctorado, Universite de Nantes]. https://hal.science/tel-01917775/; Hollenbach, C. y Frakes, W. (1996). Software process reuse in an industrial setting. En Proceedings of Fourth ieee International Conference on Software Reuse (pp. 22-30). ieee. https://doi.org/10.1109/ICSR.1996.496110; Hurtado Alegria, J. A., Bastarrica, M. C., Quispe, A. y Ochoa, S. F. (2014). MDE‐based process tailoring strategy. Journal of Software: Evolution and Process, 26(4), 386-403. https://doi.org/10.1002/smr.1576; Institute of Electrical and Electronics Engineers. (2010). Std 1517-2010 ieee Standard for Information Technology - Software Life Cycle Processes - Reuse Processes - Description. ihs Standards.; Kalus, G. y Kuhrmann, M. (2013). Criteria for software process tailoring: A systematic review. En Proceedings of the 2013 International Conference on Software and System Process (pp. 171-180). IEEE. https://doi.org/10.1145/2486046.2486078; Karlsson, E. A. (ed.) (1995). Software reuse: A holistic approach. John Wiley & Sons.; Kneuper, R. (2018). Software processes and life cycle models: An introduction to modelling, using and managing agile, plan-driven and hybrid processes. Springer. https://doi. org/10.1007/978-3-319-98845-0; Kucza, T., Nättinen, M. y Parviainen, P. (2001). Improving knowledge management in software reuse process. En F. Bomarius y S. Komi-Sirviö (eds.), Product Focused Software Process Improvement. profes 2001. Lecture Notes in Computer Science (pp. 141-152). Springer. https://doi.org/10.1007/3-540-44813-6_15; Li, T. (2008). Overview of software processes and software evolution. En An approach to modelling software evolution processes (pp. 8-33). Springer. https://doi.org/10.1007/978-3- 540-79464-6_2; Lim, W. C. (1998). Managing software reuse: A comprehensive guide to strategically reengineering the organization for reusable components. Prentice-Hall.; Magdaleno, A. M., de Oliveira Barros, M., Werner, C. M. L., de Araujo, R. M. y Batista, C. F. A. (2015). Collaboration optimization in software process composition. Journal of Systems and Software, 103, 452-466. https://doi.org/10.1016/j.jss.2014.11.036; McIlroy, M. D., Buxton, J., Naur, P. y Randell, B. (1968). Mass-produced software components. En Proceedings of the 1st International Conference on Software Engineering, Garmisch Partenkirchen, Germany (pp. 88-98). Petrocelli/Charter Publishers. https:// st.inf.tu-dresden.de/files/teaching/ss16/cbse/slides/50-cbse-transconsistent-composition. pdf; Medina Domínguez, F. (2010). Marco metodológico para la mejora de la eficiencia de uso de los procesos de software [tesis doctoral, Universidad Carlos III de Madrid]. https://e-archivo. uc3m.es/bitstream/handle/10016/7433/Memoria%20Tesis-Fuensanta%20Medina% 20Dominguez.pdf?sequence=1&isAllowed=y; Nanda, V. (2001). On tailoring an organizational standard software development process for specific projects. En Proceedings of the 11th International Conference on Software Quality (pp. 1-13). ieee.; O’Regan, G. (2017). Concise guide to software engineering: From fundamentals to application methods. Springer. https://doi.org/10.1007/978-3-319-57750-0; Osterweil, L. (2011). Software processes are software too. En P. Tarr y A. Wolf (eds.), Engineering of software (pp 323-344). Springer. https://doi.org/10.1007/978-3-642-19823- 6_17; Pedreira, O., Piattini, M., Luaces, M. R. y Brisaboa, N. R. (2007). Una revisión sistemática de la adaptación del proceso de software. reicis: Revista Española de Innovación, Calidad e Ingeniería del Software, 3(2), 21-39. https://www.redalyc.org/pdf/922/92230204.pdf; Pesantes, M., Lemus, C., Mitre, H. A. y Mejía, J. (2012). Software process architecture: Roadmap. En 2012 ieee Ninth Electronics, Robotics and Automotive Mechanics Conference (pp. 111-116). ieee. https://doi.org/10.1109/CERMA.2012.25; Probst, G. J. B. (1998). Practical knowledge management: A model that works. En Managing knowledge: Building blocks for success (pp. 17-29). Wiley.; Rombach, D. (2006). Integrated software process and product lines. En M. Li, B. Boehm y L. J. Osterweil (eds.) Unifying the Software Process Spectrum. SPW 2005. Lecture Notes in Computer Science (pp 83-90). Springer. https://doi.org/10.1007/11608035_9; Rus, I., Lindvall, M. y Sinha, S. (2002). Knowledge management in software engineering. ieee Software, 19(3), 26-38.; Santos, V., Cortés, M. y Brasil, M. (2009). Dynamic management of the organizational knowledge using case-based reasoning. En L. A. Maciaszek, C. González-Pérez y S. Jablonski (eds.), Evaluation of Novel Approaches to Software Engineering. enase enase 2009 2008. Communications in Computer and Information Science (pp. 220-233). Springer. https://doi.org/10.1007/978-3-642-14819-4_16.; Software Engineering Institute. (2010). CMMI® para Desarrollo, Versión 1.3. Software Engineering Institute. Carnegie-Mellon University, Pittsburg, Pennsylvania.; Teixeira, E. N., Aleixo, F. A., de Sousa Amancio, F. D., Oliveira, E., Kulesza, U. y Werner, C. (2019). Software process line as an approach to support software process reuse: A systematic literature review. Information and Software Technology, 116, 106175. https://doi.org/10.1016/j.infsof.2019.08.007; Tran, H. N., Coulette B. y Dong, T. B. T. (2005). A classification of process patterns. En Proceedings of the International Conference on Software Development (swdc-rek 2005), Reykjavik.; Tran, H. N., Coulette, B. y Thuy, D. T. B. (2007). Broadening the use of process patterns for modeling processes. En seke (pp. 57-62). https://citeseerx.ist.psu.edu/document? repid=rep1&type=pdf&doi=a094027803f6fc090c35caef958b33924789c960#page= 77; Tran, H. N., Coulette, B., Tran, D. T. y Vu, M. H. (2011). Automatic reuse of process patterns in process modeling. En Proceedings of the 2011 acm Symposium on Applied Computing (pp. 1431-1438). https://doi.org/10.1145/1982185.1982494; Verma, A. y Tiwari, M. K. (2009). Role of corporate memory in the global supply chain environment. International Journal of Production Research, 47(19), 5311-5342. https:// doi.org/10.1080/00207540801918570; Washizaki, H. (2006). Deriving project-specific processes from process line architecture with commonality and variability. En 2006 4th ieee International Conference on Industrial Informatics (pp. 1301-1306). IEEE. https://doi.org/10.1109/INDIN.2006.275847; Xu, P. y Ramesh, B. (2008). Using process tailoring to manage software development challenges. IT Professional, 10(4), 39-45. https://doi.org/10.1109/MITP.2008.81; Abouzid, I. y Saidi, R. (2019). Proposal of bpmn extensions for modelling manufacturing processes. En 2019 5th International Conference on Optimization and Applications (icoa) (pp. 1-6). ieee. https://doi.org/10.1109/ICOA.2019.8727651; Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E. … y Zimmermann, T. (2019). Software engineering for machine learning: A case study. En 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (icse-seip) (pp. 291-300). ieee. https://doi.org/10.1109/ICSE-SEIP.2019.00042; arc. (2012). Automation expenditures for discrete industries. https://www.arcweb.com/market- studies/automation-software-expenditures-discrete-industries; Berkhout, F. y Hertin, J. (2001). Impacts of information and communication technologies on environmental sustainability: Speculations and evidence. oecd. https://www.oecd.org/science/ inno/1897156.pdf; Chakraborty, P., Shahriyar, R., Iqbal, A. y Bosu, A. (2018). Understanding the software development practices of blockchain projects: A survey. En Proceedings of the 12th acm/ieee International Symposium on Empirical Software Engineering and Measurement (pp. 1-10). https://doi.org/10.1145/3239235.3240298; Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C. y Wirth, R. (2000). crisp-dm 1.0: Step-by-step data mining guide. SPSS Inc, 9(13), 1-73.; Deep Intelligence. (2022). https://app.deepint.net/shared/c9d55a1f-6ec9daf4-0dd31924- 17429a774d9/dashboards/000001768ad911aa-d0711434-b94233c3-e0e- 32b99?lang=en#1; Dubey, A. (2011). Evaluating software engineering methods in the context of automation applications. En 2011 9th ieee International Conference on Industrial Informatics (pp. 585-590). ieee. https://doi.org/10.1109/INDIN.2011.6034944; Faruk, M. J. H., Islam, M., Alam, F., Shahriar, H. y Rahman, A. (2022a). Bie Vote: A Biometric Identification Enabled Blockchain-Based Secure and Transparent Voting Framework. En 2022 Fourth International Conference on Blockchain Computing and Applications (bcca) (pp. 253-258). ieee. https://doi.org/10.1109/BCCA55292.2022.9922588; Faruk, M. J. H., Subramanian, S., Shahriar, H., Valero, M., Li, X. y Tasnim, M. (2022b). Software engineering process and methodology in blockchain-oriented software development: A systematic study. En 2022 ieee/acis 20th International Conference on Software Engineering Research, Management and Applications (sera) (pp. 120-127). ieee. https://doi.org/10.1109/SERA54885.2022.9806817; Jain, A. K., Duin, R. P. W. y Mao, J. (2000). Statistical pattern recognition: A review. ieee Transactions on pattern analysis and machine intelligence, 22(1), 4-37. https://doi. org/10.1109/34.824819; Jain, A. K., Flynn, P. y Ross, A. A. (eds.) (2008). Handbook of biometrics. Springer.; Marchesi, L., Marchesi, M. y Tonelli, R. (2020). abcde: Agile block chain DApp engineering. Blockchain: Research and Applications, 1(1-2), 100002. https://doi.org/ 10.1016/j.bcra.2020.100002; Marchesi, M., Marchesi, L. y Tonelli, R. (2018). An agile software engineering method to design blockchain applications. En Proceedings of the 14th Central and Eastern European Software Engineering Conference Russia (pp. 1-8). https://doi.org/10.1145/3290621.3290627; Naumann, S., Dick, M., Kern, E. y Johann, T. (2011). The greensoft Model: A reference model for green and sustainable software and its engineering. Sustainable Computing: Informatics and Systems, 1(4), 294-304. https://doi.org/10.1016/j.suscom.2011.06.004; Shivers, R., Rahman, M. A., Faruk, M. J. H., Shahriar, H., Cuzzocrea, A. y Clincy, V. (2021). Ride-hailing for autonomous vehicles: Hyperledger fabric-based secure and decentralize blockchain platform. En 2021 ieee International Conference on Big Data (Big Data) (pp. 5450-5459). ieee. https://doi.org/10.1109/BigData52589.2021.9671379; Vyatkin, V. (2013). Software engineering in industrial automation: State-of-the-art review. ieee Transactions on Industrial Informatics, 9(3), 1234-1249. https://doi.org/10.1109/ TII.2013.2258165; Watanabe, S. (1985). Pattern recognition: Human and mechanical. John Wiley & Sons.; Wirth, R. y Hipp, J. (2000). crisp-dm: Towards a standard process model for data mining. En Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining (vol. 1, pp. 29-39). https://www.cs.unibo.it/~danilo. montesi/CBD/Beatriz/10.1.1.198.5133.pdf; Yousfi, A., Batoulis, K. y Weske, M. (2019). Achieving business process improvement via ubiquitous decision-aware business processes. acm Transactions on internet Technology (toit), 19(1), 1-19. https://doi.org/10.1145/3298986; Yousfi, A., Bauer, C., Saidi, R. y Dey, A. K. (2016). uBPMN: A bpmn extension for modeling ubiquitous business processes. Information and Software Technology, 74, 55-68. https://doi.org/10.1016/j.infsof.2016.02.002; Apple. (2004, 14 de enero). Apple Reports First Quarter Results. https://www.apple.com/ newsroom/2004/01/14Apple-Reports-First-Quarter-Results/#:~:text=CUPERTINO% 2C%20California%E2%80%94January%2014,,of%20%248%20million% 2C%20or%20%24.; Apple. (2007, 17 de enero). Apple reports third quarter results. https://www.apple.com/ newsroom/2007/01/17Apple-Reports-First-Quarter-Results/#:~:text=CUPERTINO% 2C%20California%E2%80%94January%2017,,or%20%241.14%20 per%20diluted%20share.; Bäcklander, G. (2019). Doing complexity leadership theory: How agile coaches at Spotify practise enabling leadership. Creativity and Innovation Management, 28(1), 42- 60. https://doi.org/10.1111/caim.12303; Butler, K. (1995). The economic benefits of software process improvement. Crosstalk, 8(7), 14-17.; Denning, S. (2019). How Amazon practices the three laws of agile management. Strategy & Leadership, 47(5), 36-41. https://doi.org/10.1108/SL-07-2019-0104; Diaz, M. y Sligo, J. (1997). How software process improvement helped Motorola. ieee software, 14(5), 75-81. https://doi.org/10.1109/52.605934; Dion, R. (1993). Process improvement and the corporate balance sheet. ieee Software, 10(4), 28-35. https://doi.org/10.1109/52.219618; Elwer, P. (2008). Agile Project Development at Intel: A scrum Odyssey. http://www.michaeljames. org/Intel-case-study.pdf; Forcano, R. (2018a, 14 de junio). hr goes Agile: A case study in bbva. https://www.linkedin. com/pulse/hr-goes-agile-case-study-bbva-ricardo-forcano; Forcano, R. (2018b, 16 de julio). rrhh se transforma a ‘agile’: Un caso de estudio en bbva. https://www.bbva.com/es/opinion/rrhh-transforma-agile-caso-estudio-bbva/; Ganguly, A., Nilchiani, R. y Farr, J. V. (2009). Evaluating agility in corporate enterprises. International Journal of Production Economics, 118(2), 410-423. https://doi. org/10.1016/j.ijpe.2008.12.009; Garzás, J. y Paulk, M. C. (2013). A case study of software process improvement with CMMI‐DEV and scrum in Spanish companies. Journal of Software: Evolution and Process, 25(12), 1325-1333. https://doi.org/10.1002/smr.1605; Gregory, P., Barroca, L., Taylor, K., Salah, D. y Sharp, H. (2015). Agile challenges in practice: A thematic analysis. En C. Lassenius, T. Dingsøyr y M. Paasivaara (eds.), Agile Processes in Software Engineering and Extreme Programming. xp 2015. Lecture Notes in Business Information Processing (vol. 212, pp. 64-80). Springer. https://doi.org/10.1007/978- 3-319-18612-2_6; Haley, T. J. (1996). Software process improvement at Raytheon. ieee Software, 13(6), 33-41. https://doi.org/10.1109/52.542292; Herbsleb, J. D. y Goldenson, D. R. (1996). A systematic survey of cmm experience and results. En Proceedings of ieee 18th International Conference on Software Engineering (pp. 323-330). IEEE. https://doi.org/10.1109/ICSE.1996.493427; Herbsleb, J., Carleton, A., Rozum, J., Siegel, J. y Zubrow, D. (1994). Benefits of CMM-based software process improvement: Executive summary of initial results. Carnegie Mellon University. https://insights.sei.cmu.edu/documents/1112/1994_005_001_16310.pdf; Humphrey, W. S., Snyder, T. R. y Willis, R. R. (1991). Software process improvement at Hughes Aircraft. IEEE Software, 8(4), 11-23. https://doi.org/10.1109/52.300031; Middleton, P. y Joyce, D. (2011). Lean software management: BBC worldwide case study. ieee Transactions on Engineering Management, 59(1), 20-32. https://doi.org/10.1109/ TEM.2010.2081675; NASA. (1997). Software Safety. nasa Technical Standard nasa-std-8719.13A.; Niazi, M. (2006). Software process improvement: A road to success. En J. Münch y M. Vierimaa (eds.), Product-Focused Software Process Improvement. profes 2006. Lecture Notes in Computer Science (vol. 4034, pp. 395-401). Springer. https://doi. org/10.1007/11767718_34; Olszewski, L. y Wingreen, S. C. (2011). The fbi sentinel project. Journal of Cases on Information Technology (jcit), 13(3), 84-102. https://doi.org/10.4018/jcit.2011070105; Pitterman, B. (2000). Telcordia technologies: The journey to high maturity. ieee Software, 17(4), 89-96. https://doi.org/10.1109/52.854074; Smite, D., Moe, N. B., Floryan, M., Levinta, G. y Chatzipetrou, P. (2020). Spotify guilds. Communications of the ACM, 63(3), 56-61. http://dx.doi.org/10.1145/3343146; Standish Group. (2020). CHAOS report: Beyond infinity. https://standishgroup.myshopify. com/; Striebeck, M. (2006). Ssh! We are adding a process… [agile practices]. En agile 2006 (agile’06) (pp. 9-193). ieee. https://doi.org/10.1109/AGILE.2006.48; Vassev, E., Sterritt, R., Rouff, C. y Hinchey, M. (2012). Swarm technology at nasa: Building resilient systems. IT Professional, 14(2), 36-42. https://doi.org/10.1109/MITP.2012.18; Yamamura, G. (1999). Software process satisfied employees. ieee Software, 16(5), 83-85.; Zelkowitz, M. V. (2009). An update to experimental models for validating computer technology. Journal of Systems and Software, 82(3), 373-376. https://doi.org/10.1016/j. jss.2008.06.040; Zelkowitz, M. V. y Wallace, D. R. (1998). Experimental models for validating technology. Computer, 31(5), 23-31. https://doi.org/10.1109/2.675630; Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J., Korkala, M. … y Salo, O. (2004). Mobile-D: An agile approach for mobile application development. En Companion to the 19th Annual acm sigplan Conference on Object-Oriented Programming, Systems, Languages, and Applications (pp. 174-175). https://doi. org/10.1145/1028664.1028736; Ågerfalk, P. J., Fitzgerald, B., Holmström, H., Lings, B., Lundell, B. y Conchúir, E. Ó. (2005). A framework for considering opportunities and threats in distributed software development. En Proceedings of the International Workshop on Distributed Software Development (pp. 47-61). Austrian Computer Society. https://researchrepository.ul.ie/ ndownloader/files/35267047/1; Akhtar, N. y Mian, A. (2018). Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access, 6, 14410-14430. https://doi.org/10.1109/ACCESS. 2018.2807385; Aldayel, A. y Alnafjan, K. (2017). Challenges and best practices for mobile application development. En Proceedings of the International Conference on Compute and Data Analysis (pp. 41-48). https://doi.org/10.1145/3093241.3093245; Ashishdeep, A., Bhatia, J. y Varma, K. (2016). Software process models for mobile application development: A review. Computer Science and Electronic Journal, 7(1), 150-153. https://csjournals.com/IJCSC/PDF7-1/20.%20Anitha.pdf; Basha, N. M. J., Moiz, S. A. y Rizwanullah, M. (2012). Model based software development: Issues & challenges. Special Issue of International Journal of Computer Science & Informatics (ijcsi), 2(1), 226-230. https://doi.org/10.47893/ijcsi.2013.1123; Beecham, S., Richardson, I. y Noll, J. (2015). Assessing the strength of global teaming practices: A pilot study. En 2015 ieee 10th International Conference on Global Software Engineering (pp. 110-114). ieee. https://doi.org/10.1109/ICGSE.2015.14; Bhatti, M. W. y Ahsan, A. (2016). Global software development: An exploratory study of challenges of globalization, HRM practices and process improvement. Review of Managerial Science, 10(4), 649-682. https://doi.org/10.1007/s11846-015-0171-y; Blum, F. R. (2016). Mining software process lines. En Proceedings of the 38th International Conference on Software Engineering Companion (pp. 839-842). https://doi. org/10.1145/2889160.2889267; Cabac, L. y Denz, N. (2008). Net components for the integration of process mining into agent-oriented software engineering. En K. Jensen, W. M. P. van der Aalst y J. Billington (eds.), Transactions on Petri nets and other models of concurrency I. Lecture notes in computer science (pp. 86-103). Springer. https://doi.org/10.1007/978-3-540-89287- 8_6; Caldeira, J. y Abreu, F. B. e. (2016). Software development process mining: Discovery, conformance checking and enhancement. En 2016 10th International Conference on the Quality of Information and Communications Technology (quatic) (pp. 254-259). ieee. https://doi.org/10.1109/QUATIC.2016.061; Conchúir, E. Ó. (2010). Global software development: A multiple-case study of the realisation of the benefits [tesis doctoral, University of Limerick]. https://researchrepository.ul.ie/ ndownloader/files/35241937/1; Da Cunha, T. F. V., Dantas, V. L. y Andrade, R. M. (2011). SLeSS: A Scrum and Lean Six Sigma integration approach for the development of sofware customization for mobile phones. En 2011 25th Brazilian Symposium on Software Engineering (pp. 283-292). ieee. https://doi.org/10.1109/SBES.2011.38; Del Carpio, A. F. y Angarita, L. B. (2020). Trends in software engineering processes using deep learning: A systematic literature review. En 2020 46th Euromicro Conference on Software Engineering and Advanced Applications (seaa) (pp. 445-454). ieee. https://doi. org/10.1109/SEAA51224.2020.00077; Dong, L., Liu, B., Li, Z., Wu, O., Babar, M. A. y Xue, B. (2017). A mapping study on mining software process. En 2017 24th Asia-Pacific Software Engineering Conference (apsec) (pp. 51-60). ieee. https://doi.org/10.1109/APSEC.2017.11; Ebert, C., Gallardo, G., Hernantes, J. y Serrano, N. (2016). DevOps. ieee Software, 33(3), 94-100. https://doi.org/10.1109/MS.2016.68; Erich, F. M., Amrit, C. y Daneva, M. (2017). A qualitative study of DevOps usage in practice. Journal of software: Evolution and Process, 29(6), e1885. https://doi.org/10.1002/ smr.1885; Fakhoury, S., Arnaoudova, V., Noiseux, C., Khomh, F. y Antoniol, G. (2018). Keep it simple: Is deep learning good for linguistic smell detection? En 2018 ieee 25Th international conference on software analysis, evolution and reengineering (saner) (pp. 602-611). ieee. https://doi.org/10.1109/SANER.2018.8330265; Falcini, F., Lami, G. y Costanza, A. M. (2017). Deep learning in automotive software. ieee Software, 34(3), 56-63. https://doi.org/10.1109/MS.2017.79; Fernández del Carpio, A. y Bermón Angarita, L. (2018). Techniques based on data science for software processes: A systematic literature review. En I. Stamelos, R. O’Connor, T. Rout y A. Dorling (eds.), Software Process Improvement and Capability Determination. spice 2018. Communications in Computer and Information Science (pp. 16-30). Springer. https://doi.org/10.1007/978-3-030-00623-5_2; Fuggetta, A. y Di Nitto, E. (2014). Software process. En Future of Software Engineering Proceedings (pp. 1-12). https://doi.org/10.1145/2593882.2593883; Godfrey, M. W., Hassan, A. E., Herbsleb, J., Murphy, G. C., Robillard, M., Devanbu, P. y Notkin, D. (2008). Future of mining software archives: A roundtable. ieee Software, 26(1), 67-70. https://doi.org/10.1109/MS.2009.10; Guo, J., Cheng, J. y Cleland-Huang, J. (2017). Semantically enhanced software traceability using deep learning techniques. En 2017 ieee/acm 39th International Conference on Software Engineering (ICSE) (pp. 3-14). ieee. https://doi.org/10.1109/ICSE.2017.9; Herbsleb, J. D. (2007). Global software engineering: The future of socio-technical coordination. En Future of software engineering (fose’07) (pp. 188-198). ieee. https://doi. org/10.1109/FOSE.2007.11; Hüttermann, M. (2012). Beginning devops for developers. En DevOps for Developers (pp. 3-13). Apress. https://doi.org/10.1007/978-1-4302-4570-4_1; Jeong, Y. J., Lee, J. H. y Shin, G. S. (2008). Development process of mobile application SW based on agile methodology. En 2008 10th International Conference on Advanced Communication Technology (vol. 1, pp. 362-366). ieee. https://doi.org/10.1109/ ICACT.2008.4493779; Kardoš, M. y Drozdová, M. (2010). Analytical method of cim to pim transformation in model driven architecture (MDA). Journal of Information and Organizational Sciences, 34(1), 89-99. https://hrcak.srce.hr/file/83906; Kaur, A. y Kaur, K. (2015). Suitability of existing software development life cycle (sdlc) in context of mobile application development life cycle (madlc). International Journal of Computer Applications, 116(19), 1-6. https://research.ijcaonline.org/volume116/number19/ pxc3902785.pdf; Kim, G., Humble, J., Debois, P., Willis, J. y Forsgren, N. (2016). The DevOps handbook: How to create world-class agility, reliability, & security in technology organizations. IT Revolution.; LeCun, Y., Bengio, Y. y Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-44. https://doi.org/10.1038/nature14539; Li, Z., Zhao, H., Shi, J., Huang, Y. y Xiong, J. (2019). An intelligent fuzzing data generation method based on deep adversarial learning. ieee Access, 7, 49327-49340. https://doi. org/10.1109/ACCESS.2019.2911121; Lwakatare, L. E., Kuvaja, P. y Oivo, M. (2015). Dimensions of DevOps. En C. Lassenius, T. Dingsøyr y M. Paasivaara (eds.), Agile Processes in Software Engineering and Extreme Programming. xp 2015. Lecture Notes in Business Information Processing (pp. 212-217). Springer. https://doi.org/10.1007/978-3-319-18612-2_19; Manoj Ray, D. y Samuel, P. (2016). Improving the productivity in global software development. En V. Snášel, A. Abraham, P. Krömer, M. Pant y A. Muda (eds.), Innovations in bio-inspired computing and applications: Advances in intelligent systems and computing (pp. 175-185). Springer. https://doi.org/10.1007/978-3-319-28031-8_15; Marshal, S. (2015). Machine learning an algorithm perspective. CRC Press.; Miralles, A. y Rouge, T. L. (2008). Modeling with enriched model driven architecture. En Encyclopedia of geographical information sciences (pp. 700-705). Springer. https:// dx.doi.org/10.1007/978-0-387-35973-1; Moreira, F., Cota, M. P. y Gonçalves, R. (2015). The influence of the use of mobile devices and the cloud computing in organizations. En A. Rocha, A. Correia, S. Costanzo y L. Reis (eds.), New contributions in information systems and technologies: Advances in intelligent systems and computing (vol. 1, pp. 275-284). Springer. https://doi. org/10.1007/978-3-319-16486-1_28; Murphy, K. P. (2011). Machine learning: A probabilistic perspective. MIT Press.; Ng, A., Ngiam, J., Foo, C. Y., Mai, Y., Suen, C., Coates, A. … y Tandon, S. (2013). Unsupervised feature learning and deep learning. https://redirect.cs.umbc.edu/courses/pub/ www/courses/graduate/678/spring15/visionaudio.pdf; Object Management Group (2014). Object Management Group Model Driven Architecture (MDA) MDA Guide rev. 2.0. https://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf; Object Management Group (2020). MDA® - The Architecture of Choice for a Changing World. https://www.omg.org/mda/; Overeem, M., Jansen, S. y Fortuin, S. (2018). Generative versus Interpretive Model-Driven Development: Moving Past ‘It Depends’. En L. Pires, S. Hammoudi y B. Selic (eds.), Model-Driven Engineering and Software Development. modelsward 2017. Communications in Computer and Information Science (pp. 222-246). Springer. https://doi. org/10.1007/978-3-319-94764-8_10; Paige, R. F., Kolovos, D. S. y Polack, F. A. (2014). A tutorial on metamodelling for grammar researchers. Science of Computer Programming, 96, 396-416. https://doi.org/10.1016/j. scico.2014.05.007; Popa, M. (2013). Considerations regarding the cross-platform mobile application development process. Economy Informatics, 13(1), 40-52. https://www.economyinformatics. ase.ro/content/EN13/04%20-%20Popa.pdf; Rahimian, V. y Ramsin, R. (2008). Designing an agile methodology for mobile software development: A hybrid method engineering approach. En 2008 Second International Conference on Research Challenges in Information Science (pp. 337-342). ieee. https:// doi.org/10.1109/RCIS.2008.4632123; Rubin, V., Günther, C. W., van der Aalst, W. M. P., Kindler, E., van Dongen, B. F. y Schäfer, W. (2007). Process mining framework for software processes. En Q. Wang, D. Pfahl y D. M. Raffo (eds.), Software Process Dynamics and Agility. ICSP 2007. Lecture Notes in Computer Science (pp. 169-181). Springer. https://doi.org/10.1007/978-3-540- 72426-1_15; Rui, Z., Tong, L., Qi, M., Zhenli, H., Qian, Y. y Yiquan, W. (2018). Data-driven bilayer software process mining. Journal of Software, 29(11), 3455-3483. http://dx.doi. org/10.13328/j.cnki.jos.005304; Sacks, M. (2012). DevOps principles for successful web sites. En Pro website development and operations: Streamlining DevOps for large-scale websites (pp. 1-14). Apress. https:// doi.org/10.1007/978-1-4302-3970-3_1; Schmidt, D. C. (2006). Guest editor’s introduction: Model-driven engineering. ieee Computer, 2(39), 25-31. https://doi.org/10.1109/MC.2006.58; Senapathi, M., Buchan, J. y Osman, H. (2018). DevOps capabilities, practices, and challenges: Insights from a case study. En Proceedings of the 22nd International Conference on Evaluation and Assessment in Software Engineering 2018 (pp. 57-67). https:// doi.org/10.1145/3210459.3210465; Shrestha, A. y Mahmood, A. (2019). Review of deep learning algorithms and architectures. ieee Access, 7, 53040-53065. https://doi.org/10.1109/ACCESS.2019.2912200; Swamynathan, M. (2019). Mastering machine learning with python in six steps: A practical implementation guide to predictive data analytics using python. Apress. https://doi. org/10.1007/978-1-4842-4947-5; Van der Aalst, W. M. (2011). Process mining: Discovery, conformance and enhancement of business processes. Springer.; Verdier, F., Seriai, A. D. y Tiam, R. T. (2019). Combining model-driven architecture and software product line engineering: Reuse of platform-specific assets. En S. Hammoudi, L. Pires y B. Selic (eds.), Model-Driven Engineering and Software Development. modelsward 2018. Communications in Computer and Information Science (pp. 430-454). Springer. https://doi.org/10.1007/978-3-030-11030-7_19; Vizcaíno, A., García, F. y Piattini, M. (2015). Visión general del desarrollo global de software. International Journal of Information Systems and Software Engineering for Big Companies, 1(1), 8-22. http://www.uajournals.com/ojs/index.php/ijisebc/article/view/1/1; Wang, J., Luo, W., Wu, X., Li, T., Qian, Y. y Xie, Z. (2012). An approach to modeling SaaS-oriented software service processes. En 2012 International Conference on System Science and Engineering (icsse) (pp. 573-577). ieee. https://doi.org/10.1109/ ICSSE.2012.6257252; Wasserman, A. I. (2010). Software engineering issues for mobile application development. En Proceedings of the fse/sdp workshop on Future of software engineering research (pp. 397-400). https://doi.org/10.1145/1882362.1882443; https://repositorio.unal.edu.co/handle/unal/87158; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
20
Authors:
Contributors:
Subject Terms: 610 - Medicina y salud::614 - Medicina Forense, incidencia de lesiones, heridas, enfermedades, medicina preventiva pública, Actividad Motora, Motor Activity, Esfuerzo Físico, Physical Exertion, Exergames, Fútbol, Imagen corporal, Deporte, Habilidades motoras, Balance, Anticipacion, Virtual reality, Anticipation time, Body image, Soccer
File Description: 257 páginas; application/pdf
Relation: A. Mark Williams, Keith Davids, J. G. P. W. (2005). Visual Perception and Action in Sport.; Abernethy, B. (1988). The effects of age and expertise upon perceptual skill development in a racquet sport. Research Quarterly for Exercise and Sport, 59(3), 210–221. https://doi.org/10.1080/02701367.1988.10605506; Aladro Gonzalvo, A. R., Esparza Yánez, D., Tricás Moreno, J. M., & Lucha López, M. O. (2017). Validation of a force platform clinical for the assessment of vertical jump height. Journal of Human Sport and Exercise, 12(2), 367–379. https://doi.org/10.14198/jhse.2017.122.13; Alan B. Craig, William R. Sherman, J. D. W. (2009). Developing Virtual Reality Applications: Foundations of Effective Design (Elsevier, ed.). Estados Unidos.; Ali, S. F., Noor, S., Azmat, S. A., Noor, A. U., & Siddiqui, H. (2018). Virtual reality as a physical training assistant. 2017 International Conference on Information and Communication Technologies, ICICT 2017, 2017-Decem, 191–196. https://doi.org/10.1109/ICICT.2017.8320189; Alpert, P. T. (2013). Postural Balance: Understanding This Complex Mechanism. Home Health Care Management and Practice, 25(6), 279–281. https://doi.org/10.1177/1084822313496790; Anderson, D. I., Magill, R. A., & Sekiya, H. (2001). Motor learning as a function of KR schedule and characteristics of task-intrinsic feedback. Journal of Motor Behavior, 33(1), 59–66. https://doi.org/10.1080/00222890109601903; Ángeles Saura Pérez, María Acaso López-Boch, Pedro J. Alonso Pérez, C. B. T. y D. Z. G. (2012). Las actuales enseñanzas de artes plásticas y diseño ( cultura y deporte Ministerio de educación, ed.). España.; Arroyo Izaga, M., Ansotegui, L., Pereira, E., Lacerda, F., Valador, N., Serrano, L., & Rocandio, A. M. (2008). Valoración de la composición corporal y de la percepción de la imagen en un grupo de mujeres universitarias del País Vasco. Nutricion Hospitalaria, 23(4), 366–372.; Arroyo Izaga, M., Rocandio Pablo, A., Ansotegui Alday, L., Herrera Mogollón, H., Salces Beti, M., & Rebato Ochoa, E. (2005). Percepción de la imagen corporal en estudiantes de la Universidad del País Vasco. Zainak. Cuadernos de Antropología-Etnografía, (27), 55–63.; Arroyo, M., González-de-Suso, J. M., Sanchez, C., Ansotegui, L., & Rocandio, A. M. (2008). Body image and body composition: Comparisons of young male elite soccer players and controls. International Journal of Sport Nutrition and Exercise Metabolism, 18(6), 628–638. https://doi.org/10.1123/ijsnem.18.6.628 Asci, F. H., Kosar, S. N. e Isler, A. K. (2001). The relationship of self-concept and perceived athletic competence to physical activity level and gender among Turkish early adolescents. Adolescence, 36(143), 499–507.; Assaiante, C., Barlaam, F., Cignetti, F., & Vaugoyeau, M. (2014). Body schema building during childhood and adolescence: A neurosensory approach.Neurophysiologie Clinique, 44(1), 3–12. https://doi.org/10.1016/j.neucli.2013.10.125; Avilés, C., Ruiz-Pérez, L. M., Navia, J. A., Rioja, N., & Sanz-Rivas, D. (2014). Perceptual-motor expertise and cognition in sport: From ecological and dynamic approach to enaction. Anales de Psicología, 30(2), 725–737. https://doi.org/http://dx.doi.org/10.6018/analesps.30.2.158611; Balsalobre, F. J. B., Sánchez, G. F. L., & Suárez, A. D. (2014). Relationships between Physical Fitness and Physical Self-concept in Spanish Adolescents. Procedia - Social and Behavioral Sciences, 132, 343–350. https://doi.org/10.1016/j.sbspro.2014.04.320; Baños, R. M., Botella, C., Garcia-Palacios, A., Villa, H., Perpiña, C., & Alcañiz, M. (2000). Presence and reality judgment in virtual environments: A unitary construct? Cyberpsychology and Behavior, 3(3), 327–335. https://doi.org/10.1089/10949310050078760; Battig, W. F. (1966). Facilitation and Interference. In E. A. Bilodeau (Ed.), Acquisition of Skill. In New York: Academic Press. (p. 215.244).; Belling, P. K., Suss, J., & Ward, P. (2015). Advancing theory and application of cognitive research in sport: Using representative tasks to explain and predict skilled anticipation, decision-making, and option-generation behavior. Psychology of Sport and Exercise, 16(P1), 45–59. https://doi.org/10.1016/j.psychsport.2014.08.001; Bhatt, T., Wening, J. D., & Pai, Y. C. (2006). Adaptive control of gait stability in reducing slip-related backward loss of balance. Experimental Brain Research, 170(1), 61–73. https://doi.org/10.1007/s00221-005-0189-5; Bideau, Benoit, Kulpa, R., Ménardais, S., Fradet, L., Multon, F., Delamarche, P., & Arnaldi, B. (2003). Real Handball Goalkeeper vs. Virtual Handball Thrower. Presence: Teleoperators and Virtual Environments, 12(4), 411–421. https://doi.org/10.1162/105474603322391631; Bideau, Benoit, Kulpa, R., Vignais, N., Brault, S., Multon, F., & Craig, C. (2010). Using virtual reality to analyze sports performance. IEEE Computer Graphics and Applications, 30(2), 14–21. https://doi.org/10.1109/MCG.2009.134; Bideau, Benoît, Multon, F., Kulpa, R., Fradet, L., & Arnaldi, B. (2004). Virtual reality applied to sports: Do handball goalkeepers react realistically to simulated synthetic opponents? Proceedings VRCAI 2004 - ACM SIGGRAPH International Conference on Virtual Reality Continuum and Its Applications in Industry, 210–216.; Bideau, Benoit, Multon, F., Kulpa, R., Fradet, L., Arnaldi, B., & Delamarche, P. (2004). Using virtual reality to analyze links between handball thrower kinematics and goalkeeper’s reactions. Neuroscience Letters, 372(1–2), 119–122. https://doi.org/10.1016/j.neulet.2004.09.023; Bishop, D. T., Wright, M. J., Jackson, R. C., & Abernethy, B. (2013). Neural bases for anticipation skill in soccer: An fMRI study. Journal of Sport and Exercise Psychology, 35(1), 98–109. https://doi.org/10.1123/jsep.35.1.98; Bootsma, R. J., Fernandez, L., Morice, A. H. P., & Montagne, G. (2010). Top-level players’ visual control of interceptive actions: Bootsma and Van Wieringen (1990) 20 years later. Journal of Experimental Psychology: Human Perception and Performance, 36(4), 1056–1063. https://doi.org/10.1037/a0019327; Borghi, A. M., & Cimatti, F. (2010). Embodied cognition and beyond: Acting and sensing the body. Neuropsychologia, 48(3), 763–773. https://doi.org/10.1016/j.neuropsychologia.2009.10.029; Bozkurt, S., Erkut, O., & Akkoç, O. (2017). Relationships between Static and Dynamic Balance and Anticipation Time, Reaction Time in School Children at the Age of 10-12 Years. Universal Journal of Educational Research, 5(6), 927–931. https://doi.org/10.13189/ujer.2017.050603; Brady, F. (2004). Contextual Interference: A Meta-Analytic Study. Perceptual and Motor Skills, 99(1), 116–126.; Brault, S., Kulpa, R., Duliscouët, L., Marin, A., & Bideau, B. (2015). Virtual kicker vs. real goalkeeper in soccer: A way to explore goalkeeper’s performance. Movement and Sports Sciences - Science et Motricite, 89(3), 79–88. https://doi.org/10.1051/sm/2015026; Brault, S., Kulpa, R., Duliscouët, L., Marin, A., & Bideau, B. (2016). Virtual kicker vs. real goalkeeper in soccer: A way to explore goalkeeper’s performance. Movement and Sports Sciences - Science et Motricite, 89(3), 79–88. https://doi.org/10.1051/sm/2015026; Burdeau, G., & Coiffet, P. (2003). Virtual Reality Technology.; Campbell, A., & Hausenblas, H. A. (2009). Effects of exercise interventions on body image: A meta-analysis. Journal of Health Psychology, 14(6), 780–793. https://doi.org/10.1177/1359105309338977; Capin, T. K., Noser, H., Thalmann, D., Pandzic, I. S., & Thalmann, N. M. (1997). Virtual human representation and communication in VLNet. IEEE Computer Graphics and Applications, 17(2), 42–53. https://doi.org/10.1109/38.574680; CD, G., JE, L., AL, S., & AS., L. (2004). Effect of clothing colour on body image perception. Perform Enhanc Health, 3(1), 15–19.; Cha, K., Lee, E. Y., Heo, M. H., Shin, K. C., Son, J., & Kim, D. (2015). Analysis of climbing postures and movements in sport climbing for realistic 3D climbing animations. Procedia Engineering, 112, 52–57. https://doi.org/10.1016/j.proeng.2015.07.175; Chardenon, A., Montagne, G., Buekers, M. J., & Laurent, M. (2002). The visual control of ball interception during human locomotion. Neuroscience Letters, 334(1), 13–16. https://doi.org/10.1016/S0304-3940(02)01000-5; Chen, K. B., Ponto, K., Tredinnick, R. D., & Radwin, R. G. (2015). Virtual exertions: Evoking the sense of exerting forces in virtual reality using gestures and muscle activity. Human Factors, 57(4), 658–673. https://doi.org/10.1177/0018720814562231; Cobo, C. M. S. (2012). Body image in older. Descriptive studie. Gerokomos, 23(1), 15–18. https://doi.org/10.4321/S1134-928X2012000100003; Cooper, N., Milella, F., Cant, I., Pinto, C., White, M., & Meyer, G. (2017). Augmented Cues Facilitate Learning Transfer from Virtual to Real Environments. Adjunct Proceedings of the 2016 IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct 2016, 194–198. https://doi.org/10.1109/ISMAR-Adjunct.2016.0075; Cooper, N., Milella, F., Pinto, C., Cant, I., White, M., & Meyer, G. (2018). The effects of substitute multisensory feedback on task performance and the sense of. PLoS ONE, 13(2), 1–25. https://doi.org/10.1371/journal.pone.0191846; Cordo, P. J., & Nashner, L. M. (1982). Properties of postural adjustments associated with rapid arm movements. Journal of Neurophysiology, 47(2), 287–302. https://doi.org/10.1152/jn.1982.47.2.287; Cortes, N., Blount, E., Ringleb, S., & Onate, J. A. (2011). Soccer-specific video simulation for improving movement assessment. Sports Biomechanics, 10(1), 22–34. https://doi.org/10.1080/14763141.2010.547591 Covaci Alexandra, O. A.-H. y M. F. (2014). Third person view and guidance for more natural motor behaviour in immersive basketball playing. Proceeding of the 20th ACM Symposium on Virtual Reality Software and Technology, 14, 55–64.; Craig, C. (2013). Understanding perception and action in sport: How can virtual reality technology help? Sports Technology, 6(4), 161–169. https://doi.org/10.1080/19346182.2013.855224; Craig, C. M., Bastin, J., & Montagne, G. (2011). How information guides movement: Intercepting curved free kicks in soccer. Human Movement Science, 30(5), 931–941. https://doi.org/10.1016/j.humov.2010.08.007; Craig, C. M., Berton, E., Rao, G., Fernandez, L., & Bootsma, R. J. (2006). Judging where a ball will go: The case of curved free kicks in football. Naturwissenschaften, 93(2), 97–101. https://doi.org/10.1007/s00114-005-0071-0; Craig, C. M., Goulon, C., Berton, E., Rao, G., Fernandez, L., & Bootsma, R. J. (2009). Optic variables used to judge future ball arrival position in expert and novice soccer players. Attention, Perception, and Psychophysics, 71(3), 515–522. https://doi.org/10.3758/APP.71.3.515; Crocetta, T. B., Guarnieri, R., Massetti, T., Silva, T. D. da, de Almeida Barbosa, R. T., Ferreira de Lima Antão, J. Y., … Monteiro, C. B. de M. (2019). Concurrent Validity and Reliability of Alternative Computer Game for the Coincidence-Anticipation Timing Task. Measurement in Physical Education and Exercise Science, 23(2), 169–185. https://doi.org/10.1080/1091367X.2018.1560297; Cullen, K. E. (2012). The vestibular system: Multimodal integration and encoding of self-motion for motor control. Trends in Neurosciences, 35(3), 185–196. https://doi.org/10.1016/j.tins.2011.12.001; Daneshjoo, A., Mokhtar, A. H., Rahnama, N., & Yusof, A. (2012). The Effects of Comprehensive Warm-Up Programs on Proprioception, Static and Dynamic Balance on Male Soccer Players. PLoS ONE, 7(12), 1–10. https://doi.org/10.1371/journal.pone.0051568; Daprati E, Sirigu A, N. D. (2010). Body and movement: Consciousness in the parietal lobes. Neuropsychologia, 48(3), 756–762.; David Ortega Pías, Pablo Camacho Lazarraga, A. M. B. (2020). La Anticipación en los deportes de Equipo: Los procesos perceptivos para su mejora. Españña.; David P, L. D. y T. J.-N. (1999). Interface homme/machine: réalité virtuelle. Revue Générale Des Chemins de Fer, 4, 9–27. del Cid, L. B. G., Rabert, E. R., & Ruiz, J. B. (2009). Evaluación Psicométrica de la Imagen Corporal: Validación de la versión española del multidimensional Body self relations questionnaire (MBSRQ). Revista Argentina de Clinica Psicologica, 18(3), 253–264.; Deliagina, T. G., Orlovsky, G. N., Zelenin, P. V., & Beloozerova, I. N. (2006). Neural bases of postural control. Physiology, 21(3), 216–225. https://doi.org/10.1152/physiol.00001.2006; Diaz, G. J., Fajen, B. R., & Phillips, F. (2012). Anticipation from biological motion: The goalkeeper problem. Journal of Experimental Psychology: Human Perception and Performance, 38(4), 848–864. https://doi.org/10.1037/a0026962; Dicks, M., Button, C., & Davids, K. (2010). Availability of advance visual information constrains association-football goalkeeping performance during penalty kicks. Perception, 39(8), 1111–1124. https://doi.org/10.1068/p6442; Diener, H. C., & Dichgans, J. (1988). On the role of vestibular, visual and somatosensory information for dynamic postural control in humans. Progress in Brain Research, 76(C), 253–262. https://doi.org/10.1016/S0079-6123(08)64512-4; Donnellan, M. B. Trzesniewski, K. H., Robins, R. W., Moffitt, T. E., & Caspi, A. (2005). Low Self-Esteem Is Related to Aggression, Antisocial Behavior, and Delinquency. Psychological Science, 4(16), 328–335.; Duane G. Millslagle. (2008). Effects of Increasing and Decreasing Intratrial. Perceptual and Motor Skills, 107(1998), 373–382.; Eadric Bressel, Joshua Yonker, John Kras, E. H. (2007). Comparison of Static and Dynamic Balance in Female Collegiate Soccer, Basketball, and Gymnastics Athletes. Journal of Athletic Training, 42(1), 42–46. https://doi.org/10.12968/hmed.2007.68.6.23571; Eikema, D. J. A., Hatzitaki, V., Tzovaras, D., & Papaxanthis, C. (2012). Age-dependent modulation of sensory reweighting for controlling posture in a dynamic virtual environment. Age, 34(6), 1381–1392. https://doi.org/10.1007/s11357-011-9310-9; Elsner, B., & Hommel, B. (2001). Effect anticipation and action control. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 229–240. https://doi.org/10.1037/0096-1523.27.1.229; ERKUT, O., RAMAZANOGLU, N., UZUN, S., CAMLIGUNEY, A. F., BOZKURT, S., TIRYAKI, C., … KARADENIZLI, Z. I. (2014). Comparision of dynamic and static balance in adolescents handball and soccer players. Turkish Journal of Sport and Exercise, 16(1), 47–47. https://doi.org/10.15314/tjse.201416111; Fajen, B. R., Riley, M. A., & Turvey, M. T. (2009). Information, affordances, and the control of action in sport. International Journal of Sport Psychology, 40(1), 79–107.; Faubert, J. (2013). Professional athletes have extraordinary skills for rapidly learning complex and neutral dynamic visual scenes. Scientific Reports, 3, 22–24. https://doi.org/10.1038/srep01154; Faure, C., Limballe, A., Bideau, B., & Kulpa, R. (2020). Virtual reality to assess and train team ball sports performance: A scoping review. Journal of Sports Sciences, 38(2), 192–205. https://doi.org/10.1080/02640414.2019.1689807; Ferrer-García, M., & Gutiérrez-Maldonado, J. (2012). The use of virtual reality in the study, assessment, and treatment of body image in eating disorders and nonclinical samples: A review of the literature. Body Image, 9(1), 1–11. https://doi.org/10.1016/j.bodyim.2011.10.001; Ferrer, C. D. R., Shishido, H., Kitahara, I., & Kameda, Y. (2020). Read-the-game: System for skill-based visual exploratory activity assessment with a full body virtual reality soccer simulation. PLoS ONE, 15(3). https://doi.org/10.1371/journal.pone.0230042; Féry, Y. A., & Crognier, L. (2001). On the tactical significance of game situations in anticipating ball trajectories in tennis. Research Quarterly for Exercise and Sport, 72(2), 143–149. https://doi.org/10.1080/02701367.2001.10608944; Freiherr, J., Lundström, J. N., Habel, U., & Reetz, K. (2013). Multisensory integration mechanisms during aging. Frontiers in Human Neuroscience, 7(DEC), 1–6. https://doi.org/10.3389/fnhum.2013.00863; Furley, P., Dicks, M., & Memmert, D. (2012). Nonverbal behavior in soccer: The influence of dominant and submissive body language on the impression formation and expectancy of success of soccer players. Journal of Sport and Exercise Psychology, 34(1), 61–82. https://doi.org/10.1123/jsep.34.1.61; Gahery, Y. (1987). Associated movements, postural adjustments and synergie: Some comments about the history and significance of three motor concepts. Archives Italiennes de Biologie, 125(4), 345–360. https://doi.org/10.4449/aib.v125i4.1001; García-Sánchez, A., Burgueño-Menjibar, R., López-Blanco, D., & Ortega, F. B. (2013). Condición física, adiposidad y autoconcepto en adolescentes. Estudio piloto. Revista de Psicologia Del Deporte, 22(2), 453–461.; García, A., & Luján, J. F. G. (2002). La anticipación defensiva en los deportes de equipo: un estudio de la importancia. Apunts: Educación Física y Deportes, 3(69), 37–43. Retrieved from http://dialnet.unirioja.es/servlet/articulo?codigo=287849; Garduño Sánchez, A., & Garduño Sánchez, L. (2009). La práctica del deporte a través del wii Nintendo. Razón y Palabra, (69), 59.; Gerbino, P. G., Griffin, E. D., & Zurakowski, D. (2007). Comparison of standing balance between female collegiate dancers and soccer players. Gait and Posture, 26(4), 501–507. https://doi.org/10.1016/j.gaitpost.2006.11.205; Gioftsidou, A., Malliou, P., Pafis, G., Beneka, A., Godolias, G., & Maganaris, C. N. (2006). The effects of soccer training and timing of balance training on balance ability. European Journal of Applied Physiology, 96(6), 659–664. https://doi.org/10.1007/s00421-005-0123-3; Gomez-Marmol, A., Sanchez- Alcaraz, B., & Mahedero-Navarrete, M. del P. (2013). Body Image Dissatisfaction and Distortion in Twelve To Seventeen Years Old Teenagers. Ágora Para La Ef Y El Deporte, 15(1), 54–63. Retrieved from https://dialnet.unirioja.es/servlet/articulo?codigo=4492434; González, C. A., & Ham-Chande, R. (2007). Functionality and health: A typology of aging in Mexico. Salud Publica de Mexico, 49(SUPPL. 4). https://doi.org/10.1590/s0036-36342007001000003; González, M. A. M., & Viveros, G. R. O. (2009). Trastorno alimentario y su relación con la imagen corporal y la autoestima en adolescentes. Terapia Psicologica, 27(2), 181–190. https://doi.org/10.4067/s0718-48082009000200004; Gorgy, O., Vercher, J.-L., Coyle, T., & Buloup, F. (2007). Coordination O F Upper and Lower Body During. Perceptual and Motor Skills, 105, 715–732.; Goulet, C., Bard, C., & Fleury, M. (2016). Expertise Differences in Preparing to Return a Tennis Serve: A Visual Information Processing Approach. Journal of Sport and Exercise Psychology, 11(4), 382–398. https://doi.org/10.1123/jsep.11.4.382; Gradl, S., Eskofier, B. M., Eskofier, D., Mutschler, C., & Otto, S. (2016). Virtual and augmented reality in sports-an overview and acceptance study. UbiComp 2016 Adjunct - Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 885–888. https://doi.org/10.1145/2968219.2968572 Gray, R. (2017). Transfer of training from virtual to real baseball batting. Frontiers in Psychology, 8(DEC), 1–11. https://doi.org/10.3389/fpsyg.2017.02183; Greffou, S., Bertone, A., Hanssens, J. M., & Faubert, J. (2008). Development of visually driven postural reactivity: A fully immersive virtual reality study. Journal of Vision, 8(11), 1–10. https://doi.org/10.1167/8.11.15; GreffouS, F. (2008). Life-span study of visually driven postural reactivity:a fully immersive virtual reality approach. J Vis, 8(6), 420–426.; Guillén, F., & Ramírez, M. (2011). Relación entre el autoconcepto y la condición física en alumnos del Tercer Ciclo de Primaria. Revista de Psicologia Del Deporte, 20(1), 45–59.; Gulec, U., Yilmaz, M., Isler, V., O’Connor, R. V., & Clarke, P. M. (2019). A 3D virtual environment for training soccer referees. Computer Standards and Interfaces, 64(August), 1–10. https://doi.org/10.1016/j.csi.2018.11.004; Hausenblas HA, F. E. (2006). Exercise and body image: A metaanalysis. Psychol Health, 21(1), 33–47.; Heidrich, C., & Chiviacowsky, S. (2015). Stereotype threat affects the learning of sport motor skills. Psychology of Sport and Exercise, 18(May 2015), 42–46. https://doi.org/10.1016/j.psychsport.2014.12.002; Hendry, D. T., Ford, P. R., Williams, A. M., & Hodges, N. J. (2015). Five evidence-based principles of effective practice and instruction. In En J. Baker & D. Farrow (Ed.), Manual de experiencia deportiva de Routledge (Routledge, pp. 414–429).; Heron, J., Hanson, J. V. M., & Whitaker, D. (2009). Effect before cause: Supramodal recalibration of sensorimotor timing. PLoS ONE, 4(11). https://doi.org/10.1371/journal.pone.0007681; Hick, W. . (1952). Quarterly Journal of Experimental On the rate of gain of information. Quarterly Journal of Experimental Psychology, 4(1), 11–26. https://doi.org/10.1080/17470215208416600; Hoffmann, C. P., Filippeschi, A., Ruffaldi, E., & Bardy, B. G. (2014). Energy management using virtual reality improves 2000-m rowing performance. Journal of Sports Sciences, 32(6), 501–509. https://doi.org/10.1080/02640414.2013.835435; Homan, K. J., & Tylka, T. L. (2014). Appearance-based exercise motivation moderates the relationship between exercise frequency and positive body image. Body Image, 11(2), 101–108. https://doi.org/10.1016/j.bodyim.2014.01.003; Horak, F. B. (2006). Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age and Ageing, 35(SUPPL.2), 7–11. https://doi.org/10.1093/ageing/afl077; Horak, F. B. (2014). Postural Compensation for Vestibular Loss. Restor Neurol Neurosci, 23(1), 1–7. https://doi.org/10.1038/jid.2014.371; Horak, F. B., Henry, S. M., & Shumway-Cook, A. (1997). Postural perturbations: New insights for treatment of balance disorders. Physical Therapy, 77(5), 517–533. https://doi.org/10.1093/ptj/77.5.517; Howarth, C., Walsh, W. D., & Abernethy, B. (1984). field examination of anticipation in squash: Some preliminary data. Australian Journal of Science & Medicine in Sport, 16, 6–10.; Hrysomallis, C. (2011). Balance ability and athletic performance. Sports Medicine, 41(3), 221–232.; Huang, Y., Churches, L., & Reilly, B. (2015). A Case Study on Virtual Reality American Football Training. ACM International Conference Proceeding Series, 08-10-Apri(April 2015). https://doi.org/10.1145/2806173.2806178; Ingledew, D. K., & Sullivan, G. (2002). Effects of body mass and body image on exercise motives in adolescence. Psychology of Sport and Exercise, 3(4), 323–338. https://doi.org/10.1016/S1469-0292(01)00029-2; Internacional, R., & Del, D. E. C. (2007). Analysis of the perceptual-motor and psychological complexity of the soccer penalty kick. International Journal, (21), 1–11.; Ioffe, M. E., Chernikova, L. A., & Ustinova, K. I. (2007). Role of cerebellum in learning postural tasks. Cerebellum, 6(1), 87–94. https://doi.org/10.1080/14734220701216440; Isableu, B., Ohlmann, T., Crémieux, J., & Amblard, B. (2003). Differential approach to strategies of segmental stabilisation in postural control. Experimental Brain Research, 150(2), 208–221. https://doi.org/10.1007/s00221-003-1446-0; Iskandar, Y. H. P., Gilbert, L., & Wills, G. B. (2008). Reducing latency when using virtual reality for teaching in sport. Proceedings - International Symposium on Information Technology 2008, ITSim, 4, 6–10. https://doi.org/10.1109/ITSIM.2008.4632076 Izquierdo, M., & Redín, M. I. (2008). Biomecnica y Bases Neuromusculares de la Actividad Fsica y el Deporte (Ed. Medica Panamericana, ed.). Buenos Aires.; J. Kevin Thompson, Leslie J. Heinberg, M. N. A. y S. T.-D. (2002). Exacting beauty: Theory, assessment, and treatment of body image disturbance (American P).; J Laurens , L Awai, C J Bockisch, S Hegemann, H J A van Hedel, V Dietz, D. S. (2010). Visual contribution to postural stability: Interaction between target fixation or tracking and static or dynamic large-field stimulus. Gait Posture., 31(1), 31–47. https://doi.org/doi:10.1016/j.gaitpost.2009.08.241.; Jancová, J. (2008). Measuring the balance control system--review. Acta Medica (Hradec Králové) / Universitas Carolina, Facultas Medica Hradec Králové, 51(3), 129–137. https://doi.org/10.14712/18059694.2017.14; Jin, S. A. A., & Park, N. (2009). Parasocial interaction with my avatar: Effects of interdependent self-construal and the mediating role of self-presence in an avatar-based console game, Wii. Cyberpsychology and Behavior, 12(6), 723–727. https://doi.org/10.1089/cpb.2008.0289; Johansson, R., Fransson, P. A., & Magnusson, M. (2009). Optimal coordination and control of posture and movements. Journal of Physiology Paris, 103(3–5), 159–177. https://doi.org/10.1016/j.jphysparis.2009.08.013; John J Jeka , Kelvin S Oie, T. K. (2008). Asymmetric adaptation with functional advantage in human sensorimotor control. Exp Brain Res, 191(4), 453–463.; Jones, C., & Miles, T. (1978). Use of advance cues in predicting the flight of a lawn tennis ball. Journal of Human Movement Studies, 4, 231–235.; Jörg, S., Normoyle, A., & Safonova, A. (2012). How responsiveness affects players’ perception in digital games. Proceedings, SAP 2012 - ACM Symposium on Applied Perception, 33–37. https://doi.org/10.1145/2338676.2338683; Jovens, E. M., & Masculinos, A. (2012). Satisfação com a imagem corporal e suas relações com variáveis antropométricas em jovens atletas masculinos. Revista; Mackenzie de Educação Física e Esporte, 11(2), 68–81. Kathleen E. Cullen. (2014). The vestibular system: multimodal integration and encoding of self-motion for motor control. Trends Neurosci, 23(1), 1–7. https://doi.org/10.1038/jid.2014.371; Katz, L., Parker, J., Tyreman, H., Kopp, G., Levy, R. M., & Chang, E. (2006). Virtual reality in sport and wellness: Promise and reality. International Journal of Computer Science in Sport, 4(1), 4–16. Retrieved from http://www.citeulike.org/group/532/article/775527; Keetels, M., & Vroomen, J. (2012). Exposure to delayed visual feedback of the hand changes motor-sensory synchrony perception. Experimental Brain Research, 219(4), 431–440. https://doi.org/10.1007/s00221-012-3081-0; Kejonen, P. (2002). Body movements during postural stabilization : measurements with a motion analysis system.; Kelly, A., & Hubbard, M. (2000). Design and construction of a bobsled driver training simulator. Sports Engineering, 3(1), 13–24. https://doi.org/10.1046/j.1460-2687.2000.00037.x; Kim, Y. M., Rhiu, I., & Yun, M. H. (2020). A Systematic Review of a Virtual Reality System from the Perspective of User Experience. International Journal of Human-Computer Interaction, 36(10), 893–910. https://doi.org/10.1080/10447318.2019.1699746; Kuan, Y. M., Zuhairi, N. A., Manan, F. A., Knight, V. F., & Omar, R. (2018). Visual reaction time and visual anticipation time between athletes and non-athletes. Malaysian Journal of Public Health Medicine, 2018(Specialissue1), 135–141.; Lee, H. G., Chung, S., & Lee, W. H. (2013). Presence in virtual golf simulators: The effects of presence on perceived enjoyment, perceived value, and behavioral intention. New Media and Society, 15(6), 930–946. https://doi.org/10.1177/1461444812464033; Lee, H. Y., Cherng, R. J., & Lin, C. H. (2004). Development of a virtual reality environment for somatosensory and perceptual stimulation in the balance assessment of children. Computers in Biology and Medicine, 34(8), 719–733. https://doi.org/10.1016/j.compbiomed.2003.10.004; Leslie K Allison , Tim Kiemel, J. J. J. (2006). Multisensory reweighting of vision and touch is intact in healthy and fall-prone older adults. Exp Brain Res, 175(2), 342–352.; Levac, D. E., Huber, M. E., & Sternad, D. (2019). Learning and transfer of complex motor skills in virtual reality: A perspective review. Journal of NeuroEngineering and Rehabilitation, 16(1), 1–15. https://doi.org/10.1186/s12984-019-0587-8; Li, Y., Shark, L., Hobbs, S., & Ingham, J. (2010). Real-Time Immersive Table Tennis Game for Two Players with Motion Tracking. International Conference Information Visualisation, 14, 500-505.; Linkenauger SA, Witt JK, Bakdash JZ, Stefanucci JK, P. D. (2009). Asymmetrical Body Perception: A Possible Role for Neural Body Representations. Psychol Sci, 20(11), 1373–1380.; Loffing, F., & Cañal-Bruland, R. (2017). Anticipation in sport. Current Opinion in Psychology, 16(16), 6–11. https://doi.org/10.1016/j.copsyc.2017.03.008 Loffing, F., Stern, R., & Hagemann, N. (2015). Pattern-induced expectation bias in visual anticipation of action outcomes. Acta Psychologica, 161, 45–53. https://doi.org/10.1016/j.actpsy.2015.08.007; Lopes, J. E., Jacobs, D. M., Travieso, D., & Araújo, D. (2014). Predicting the lateral direction of deceptive and non-deceptive penalty kicks in football from the kinematics of the kicker. Human Movement Science, 36, 199–216. https://doi.org/10.1016/j.humov.2014.04.004; López, E., Findling, L., & Mónica, A. (2006). Health Inequalities : Are Morbidity Perceptions Between Men and Women Different ? Salud Colectiva, 2(1), 61–74. Macaluso, E., & Maravita, A. (2010). The representation of space near the body through touch and vision. Neuropsychologia, 48(3), 782–795. https://doi.org/10.1016/j.neuropsychologia.2009.10.010; MacKenzie, I. S., & Ware, C. (1993). Lag as a determinant of human performance in interactive systems. Conference on Human Factors in Computing Systems - Proceedings, (May), 488–493. https://doi.org/10.1145/169059.169431; Magill, R. A. (1993). Motor Learning. Concepts & Aplications.; Mancini F, Longo MR, Iannetti GD, H. P. (2011). A supramodal representation of the body surface. Neuropsychologia, 49(5), 1194–1201.; Mann, D. L., Abernethy, B., & Farrow, D. (2010). Action specificity increases anticipatory performance and the expert advantage in natural interceptive tasks. Acta Psychologica, 135(1), 17–23. https://doi.org/10.1016/j.actpsy.2010.04.006; Mann, D. T. Y., Williams, A. M., Ward, P., & Janelle, C. M. (2007). Perceptual-Cognitive Expertise in Sport : A Meta-Analysis. 457–478.; Mann, D. Y., Williams, A. M., Ward, P., & Janelle, C. M. (2007). Perceptual-cognitive expertise in sport: A meta-analysis. Journal of Sport and Exercise Psychology, 29(4), 457–478. https://doi.org/10.1123/jsep.29.4.457 Manuel Martinez Marin, F. M. H. y L. M. R. P. (1999). CONTROL Y APRENDIZAJE MOTOR.; Mark Williams, A., Huys, R., Cañal-Bruland, R., & Hagemann, N. (2009). The dynamical information underpinning anticipation skill. Human Movement Science, 28(3), 362–370. https://doi.org/10.1016/j.humov.2008.10.006; Martin Ginis, K. A., Strong, H. A., Arent, S. M., Bray, S. R., & Bassett-Gunter, R. L. (2014). The effects of aerobic- versus strength-training on body image among young women with pre-existing body image concerns. Body Image, 11(3), 219–227. https://doi.org/10.1016/j.bodyim.2014.02.004; Martínez, M., Oña, A., & Moreno Hernández, F. (1998). La anticipación en el deporte y su entrenamiento a través de preíndices. Revista de Psicología Del Deporte, 7(1), 205–214.; Mazyn, L. I. N., Lenoir, M., Montagne, G., & Savelsbergh, G. J. P. (2004). The contribution of stereo vision to one-handed catching. Experimental Brain Research, 157(3), 383–390. https://doi.org/10.1007/s00221-004-1926-x; McGuckian, T. B., Cole, M. H., & Pepping, G. J. (2018). A systematic review of the technology-based assessment of visual perception and exploration behaviour in association football. Journal of Sports Sciences, 36(8), 861–880. https://doi.org/10.1080/02640414.2017.1344780; McLeod, P., Reed, N., Gilson, S., & Glennerster, A. (2008). How soccer players head the ball: A test of optic acceleration cancellation theory with virtual reality. Vision Research, 48(13), 1479–1487. https://doi.org/10.1016/j.visres.2008.03.016; Mcmorris, T. (2004). Acquisition and Performance of Sports Skills. England. Medina, J., & Coslett, H. B. (2010). From maps to form to space: Touch and the body schema. Neuropsychologia, 48(3), 645–654. https://doi.org/10.1016/j.neuropsychologia.2009.08.017; Meehan, M., Razzaque, S., Whitton, M. C., & Brooks, F. P. (2003). Effect of latency on presence in stressful virtual environments. Proceedings - IEEE Virtual Reality, 2003-Janua, 141–148. https://doi.org/10.1109/VR.2003.1191132; Meng, K., Zuhairi, N., Manan, F., Knight, V., Padri, M., & Omar, R. (2015). Role of Gender, Age and Ethnicities on Visual Reaction Time and Visual Anticipation Time of Junior Athletes. Australian Journal of Basic and Applied Sciences, 9(5), 129–134.; Michael Kent. (2003). DICCIONARIO OXFORD DE MEDICINA Y CIENCIAS DEL DEPORTE. Barcelona. Michalski, A., Glazebrook, C. M., Martin, A. J., Wong, W. W. N., Kim, A. J. W., Moody, K. D., … Zabjek, K. F. (2012). Assessment of the postural control strategies used to play two Wii FitTM videogames. Gait and Posture, 36(3), 449–453. https://doi.org/10.1016/j.gaitpost.2012.04.005; Michalski, S. C., Szpak, A., Saredakis, D., Ross, T. J., Billinghurst, M., & Loetscher, T. (2019). Getting your game on: Using virtual reality to improve real table tennis skills. PLoS ONE, 14(9), 1–15. https://doi.org/10.1371/journal.pone.0222351; Miles, H. C., Pop, S. R., Watt, S. J., Lawrence, G. P., & John, N. W. (2012). A review of virtual environments for training in ball sports. Computers and Graphics (Pergamon), 36(6), 714–726. https://doi.org/10.1016/j.cag.2012.04.007; Mitchell, N. G., Moore, J. B., Bibeau, W. S., & Rudasill, K. M. (2012). Cardiovascular fitness moderates the relations between estimates of obesity and physical self-perceptions in rural elementary school students. Journal of Physical Activity and Health, 9(2), 288–294. https://doi.org/10.1123/jpah.9.2.288; Mitsuo Ishida , Junko Saitoh, Maki Wada, M. N. (2010). Effects of anticipatory anxiety and visual input on postural sway in an aversive situation. Neurosci Lett., 474(1), 1–4.; Molet, T., Aubel, A., Çapin, T., Carion, S., Lee, E., Magnenat-Thalmann, N., … Thalmann, D. (1999). Anyone for tennis? Presence: Teleoperators and Virtual Environments, 8(2), 140–156. https://doi.org/10.1162/105474699566134 Moncada-Jiménez, J. (2015). Ejercicio físico, funcionamiento cerebral e imagen corporal. Revista Costarricense de Psicología, 29(43), 57. https://doi.org/10.22544/rcps.v29i43.05; Morel, M., Bideau, B., Lardy, J., & Kulpa, R. (2015). Advantages and limitations of virtual reality for balance assessment and rehabilitation. Neurophysiologie Clinique, 45(4–5), 315–326. https://doi.org/10.1016/j.neucli.2015.09.007; Moreno, F. & Oña, A. (1998). Analysis of professional tennis player to determine anticipatory pre-cues in the service. Jounwl of Human Movement Studies, 35, 219–231.; Morgado, F., Ferreira, M., Andrade, M., & Segheto, K. (2009). Analysis of the Body Image Evaluation Instruments. Fitness & Performance Journal, 8(3), 204–211. https://doi.org/10.3900/fpj.8.3.204.e; Mori, S., Ohtani, Y., & Imanaka, K. (2002). Reaction times and anticipatory skills of karate athletes. Human Movement Science, 21(2), 213–230. https://doi.org/10.1016/S0167-9457(02)00103-3; Müller, S., & Abernethy, B. (2012). Expert Anticipatory Skill in Striking Sports. Quarterly for Exercise and Sport, 83(2), 175–187.; Murray, E. G., Neumann, D. L., Moffitt, R. L., & Thomas, P. R. (2016). The effects of the presence of others during a rowing exercise in a virtual reality environment. Psychology of Sport and Exercise, 22, 328–336. https://doi.org/10.1016/j.psychsport.2015.09.007; Nadin, M. (2015). Anticipation - The underlying science of sport. Report on research in progress. International Journal of General Systems, 44(4), 422–441. https://doi.org/10.1080/03081079.2014.989224; Nakamoto, H., & Mori, S. (2012). Experts in fast-ball sports reduce anticipation timing cost by developing inhibitory control. Brain and Cognition, 80(1), 23–32. https://doi.org/10.1016/j.bandc.2012.04.004; Nam Gyun Kim, Choong Ki Yoo, & Jae Joong Im. (1999). A new rehabilitation training system for postural balance control using virtual reality technology. IEEE Transactions on Rehabilitation Engineering, 7(4), 482–485. https://doi.org/10.1109/86.808952; Navia, J. A., Avilés, C., López, S., & Ruiz, L. M. (2018a). A current approach to anticipation in sport. Estudios de Psicologia, 39(1), 1–19. https://doi.org/10.1080/02109395.2017.1412705; Navia, J. A., Avilés, C., López, S., & Ruiz, L. M. (2018b). A current approach to anticipation in sport / Un enfoque actual de la anticipación en el deporte. Estudios de Psicologia, 39(1), 1–19. https://doi.org/10.1080/02109395.2017.1412705; Neumann, D. L., Moffitt, R. L., Thomas, P. R., Loveday, K., Watling, D. P., Lombard, C. L., … Tremeer, M. A. (2018). A systematic review of the application of interactive virtual reality to sport. Virtual Reality, 22(3), 183–198. https://doi.org/10.1007/s10055-017-0320-5; Nishigami, T., Mibu, A., Osumi, M., Son, K., Yamamoto, S., Kajiwara, S., … Tanabe, A. (2015). Are tactile acuity and clinical symptoms related to differences in perceived body image in patients with chronic nonspecific lower back pain? Manual Therapy, 20(1), 63–67. https://doi.org/10.1016/j.math.2014.06.010; North, J. S., Ward, P., Ericsson, A., & Williams, A. M. (2011). Mechanisms underlying skilled anticipation and recognition in a dynamic and temporally constrained domain. Memory, 19(2), 155–168. https://doi.org/10.1080/09658211.2010.541466 Noser, H., Pandzic, I. S., & Capin, T. K. (1998). Playing Games through the Virtual Life Network.; Olchowik, G., Tomaszewski, M., Olejarz, P., Warchoł, J., Różańska-Boczula, M., & Maciejewski, R. (2015). The human balance system and gender. Acta of Bioengineering and Biomechanics, 17(1), 69–74. https://doi.org/10.5277/ABB-00002-2014-05; Pagé, C., Bernier, P. M., & Trempe, M. (2019). Using video simulations and virtual reality to improve decision-making skills in basketball. Journal of Sports Sciences, 37(21), 2403–2410. https://doi.org/10.1080/02640414.2019.1638193; Page, P. (2006). Sensorimotor training: A “global” approach for balance training. Journal of Bodywork and Movement Therapies, 10(1), 77–84.; Palmieri, R. M., Ingersoll, C. D., Stone, M. B., & Krause, B. A. (2002). Center-of-pressure parameters used in the assessment of postural control. Journal of Sport Rehabilitation, 11(1), 51–66. https://doi.org/10.1123/jsr.11.1.51; Park, S., & Lee, G. (2020). Full-immersion virtual reality: Adverse effects related to static balance. Neuroscience Letters, 733. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0304394020302445?via%3Dihub; Parton, B. J., & Neumann, D. L. (2019). The effects of competitiveness and challenge level on virtual reality rowing performance. Psychology of Sport and Exercise, 41, 191–199. https://doi.org/10.1016/j.psychsport.2018.06.010; Pasch, M., Bianchi-Berthouze, N., van Dijk, B., & Nijholt, A. (2009). Movement-based sports video games: Investigating motivation and gaming experience. Entertainment Computing, 1(2), 49–61. https://doi.org/10.1016/j.entcom.2009.09.004; Pataky, T. C., & Lamb, P. F. (2018). Effects of physical randomness training on virtual and laboratory golf putting performance in novices. Journal of Sports Sciences, 36(12), 1355–1362. https://doi.org/10.1080/02640414.2017.1378493; Pedro Inmaculada de la Serna. (2004). Alteraciones de la imagen corporal. Monografías de Psiquiatría, 16(2), 1–2.; Peláez, B. (2009). Futbol y Videojuegos: Reinventando el juego. Razón y Palabra, 14, 1–14.; Peterka, R. J. (2002). Sensorimotor integration in human postural control. Journal of Neurophysiology, 88(3), 1097–1118. https://doi.org/10.1152/jn.2002.88.3.1097; Petit, J. P., & Ripoll, H. (2008). Scene perception and decisión making in sport simulation: a masked priming investigation. . . International Journal of Sport Psychology, 39(1), 1–19.; Petri, K., Bandow, N., & Witte, K. (2018). Using several types of virtual characters in sports - A literature survey. International Journal of Computer Science in Sport, 17(1), 1–48. https://doi.org/10.2478/ijcss-2018-0001; Petri, Katharina, Emmermacher, P., Danneberg, M., Masik, S., Eckardt, F., Weichelt, S., Witte, K. (2019). Training using virtual reality improves response behavior in karate kumite. Sports Engineering, 22(1), 0. https://doi.org/10.1007/s12283-019-0299-0; Philippe Fuchs, G. M. y P. G. (2006). Virtual Reality: Concepts and Technologies.; PHYSIOMED. (2018). Technology Therapy. Retrieved from Plataforma COBS double website: https://www.physiomed.de/en/products/cobs-platform-double/; Pierre Parlebas. (2001). JUEGOS, DEPORTE Y SOCIEDADES. Léxico de praxeología motriz. Barcelona.; Piponnier, J. C., Hanssens, J. M., & Faubert, J. (2009). Effect of visual field locus and oscillation frequencies on posture control in an ecological environment. Journal of Vision, 9(1), 1–10. https://doi.org/10.1167/9.1.13; Pollock, A. S., Durward, B. R., Rowe, P. J., & Paul, J. P. (2000). What is balance? Clinical Rehabilitation, 14(4), 402–406. https://doi.org/10.1191/0269215500cr342oa; Poulton, E. C. (1957). ON PREDICTION IN SKILLED MOVEMENTS 1 No attempt will be made to give a detailed account of the role of predic- tion in a large number of specialized manual skills . Instead there will first be a discussion of prediction in a single activity , pursuit or t. Psychological Bulletin, 54(6), 467–478.; Pozzo, T., Berthoz, A., Lefort, L., & Vitte, E. (1991). Head stabilization during various locomotor tasks in humans - II. Patients with bilateral peripheral vestibular deficits. Experimental Brain Research, 85(1), 208–217. https://doi.org/10.1007/BF00230002; Prasertsakul, T., Kaimuk, P., Chinjenpradit, W., Limroongreungrat, W., & Charoensuk, W. (2018). The effect of virtual reality-based balance training on motor learning and postural control in healthy adults: A randomized preliminary study TCTR20180430005 TCTR 17 Psychology and Cognitive Sciences 1701 Psychology 11 Medical and Health Sciences 1106 Hum. BioMedical Engineering Online, 17(1), 1–18. https://doi.org/10.1186/s12938-018-0550-0; Quesada, D. C., & Schmidt, R. A. (1970). A test of the adams-creamer decay hypothesis for the timing of motor responses. Journal of Motor Behavior, 2(4), 273–283. https://doi.org/10.1080/00222895.1970.10734885; Raich, R. M. (2004). Una perspectiva desde la psicología de la salud de la imagen corporal. Avances En Psicología Latinoamericana, 22, 15–27.; Rauter, G., Sigrist, R., Koch, C., Crivelli, F., Van Raai, M., Riener, R., & Wolf, P. (2013). Transfer of complex skill learning from virtual to real rowing. PLoS ONE, 8(12). https://doi.org/10.1371/journal.pone.0082145; Real academia española. (2019). Real academia española. Retrieved from Definicón futbol website: https://dle.rae.es/fútbo; Rector, K., Bennett, C. L., & Kientz, J. A. (2013). Eyes-free yoga: An exergame using depth cameras for blind & low vision exercise. Proceedings of the 15th International ACM SIGACCESS Conference on Computers and Accessibility, ASSETS 2013. https://doi.org/10.1145/2513383.2513392; Ricotti, L., & Ravaschio, A. (2011). Break dance significantly increases static balance in 9 years-old soccer players. Gait and Posture, 33(3), 462–465. https://doi.org/10.1016/j.gaitpost.2010.12.026 riemann 1999.pdf. (n.d.).; Roca, A., Ford, P. R., McRobert, A. P., & Williams, A. M. (2011). Identifying the processes underpinning anticipation and decision-making in a dynamic time-constrained task. Cognitive Processing, 12(3), 301–310. https://doi.org/10.1007/s10339-011-0392-1; Roca, A., Ford, P. R., McRobert, A. P., & Williams, A. M. (2013). Perceptual-cognitive skills and their interaction as a function of task constraints in soccer. Journal of Sport and Exercise Psychology, 35(2), 144–155. https://doi.org/10.1123/jsep.35.2.144; Rohde, M., & Ernst, M. O. (2013). To lead and to lag-forward and backward recalibration of perceived visuo-motor simultaneity. Frontiers in Psychology, 3(JAN), 1–8. https://doi.org/10.3389/fpsyg.2012.00599; Romeas, T., Guldner, A., & Faubert, J. (2016). 3D-Multiple Object Tracking training task improves passing decision-making accuracy in soccer players. Psychology of Sport and Exercise, 22, 1–9. https://doi.org/10.1016/j.psychsport.2015.06.002; Rosalie, S. M., & Müller, S. (2014). Expertise facilitates the transfer of anticipation skill across domains. Quarterly Journal of Experimental Psychology, 67(2), 319–334. https://doi.org/10.1080/17470218.2013.807856 Ross, S. E., & Guskiewicz, K. M. (2003). Time to stabilization: A method for analyzing dynamic postural stability. Athletic Therapy Today, 8(3), 37–39. https://doi.org/10.1123/att.8.3.37; Ruiz Clarisa, Ayala Jairo, G. C. y S. J. (2015). Estadísticas de Escuelas Deportivas en Bogotá 2015. Bogotá.; Russo, G., & Ottoboni, G. (2019). The perceptual – Cognitive skills of combat sports athletes: A systematic review. Psychology of Sport and Exercise, 44(April), 60–78. https://doi.org/10.1016/j.psychsport.2019.05.004; S. Glasauer, E. Schneider, K. Jahn, M. Strupp, T. B. (2005). How the eyes move the body. Neurology, 65(8), 1291–1293. https://doi.org/10.1212/01.wnl.0000175132.01370.fc; Salaberria, Karmele; Rodríguez, Susana; Cruz, S. (2007). Percepción de la imagen corporal. Osasunaz. Cuadernos de Ciencias Médicas, 8, 171–183.; Sallés L, Gironès X, L. J. (2015). Organización motora del córtex cerebral y el papel del sistema de las neuronas espejo. Repercusiones clínicas para la rehabilitación. Med Clínica, 144(1), 30–34.depth cameras for blind & low vision exercise. Proceedings of the 15th International ACM SIGACCESS Conference on Computers and Accessibility, ASSETS 2013. https://doi.org/10.1145/2513383.2513392; Rohde, M., & Ernst, M. O. (2013). To lead and to lag-forward and backward recalibration of perceived visuo-motor simultaneity. Frontiers in Psychology, 3(JAN), 1–8. https://doi.org/10.3389/fpsyg.2012.00599 Romeas, T., Guldner, A., & Faubert, J. (2016). 3D-Multiple Object Tracking training task improves passing decision-making accuracy in soccer players. Psychology of Sport and Exercise, 22, 1–9. https://doi.org/10.1016/j.psychsport.2015.06.002; Rosalie, S. M., & Müller, S. (2014). Expertise facilitates the transfer of anticipation skill across domains. Quarterly Journal of Experimental Psychology, 67(2), 319–334. https://doi.org/10.1080/17470218.2013.807856; Ross, S. E., & Guskiewicz, K. M. (2003). Time to stabilization: A method for analyzing dynamic postural stability. Athletic Therapy Today, 8(3), 37–39. https://doi.org/10.1123/att.8.3.37; Salaberria, Karmele; Rodríguez, Susana; Cruz, S. (2007). Percepción de la imagen corporal. Osasunaz. Cuadernos de Ciencias Médicas, 8, 171–183. Sallés L, Gironès X, L. J. (2015). Organización motora del córtex cerebral y el papel del sistema de las neuronas espejo. Repercusiones clínicas para la rehabilitación. Med Clínica, 144(1), 30–34.; Sallés L, Gironès X, L. J. (2015). Organización motora del córtex cerebral y el papel del sistema de las neuronas espejo. Repercusiones clínicas para la rehabilitación. Med Clínica, 144(1), 30–34.; Salmela, J. H., & Fiorito, P. (1979). Visual cues in ice hockey goaltending. Can J Appl Sport Sci, 4(1), 9–10.; Sánchez Pato, A., Davis Remilllard, J., Sánchez Pato, A., & Davis Remilllard, J. (2018). eSport: Towards a Hermeneutic of Virtual Sport eSport: hacia una hermenéutica del deporte virtual CORRESPONDENCIA: eSPORT: TOWARDS A HERMENEUTIC OF VIRTUAL SPORT Introduction and objectives. 137–145.; Sanes JN, D. J. (2000). Plasticity and primary motor cortex. Annu Rev Neurosci, 23(1), 444–452. Savelsbergh, G. J. P., Van der Kamp, J., Williams, A. M., & Ward, P. (2005). Anticipation and visual search behaviour in expert soccer goalkeepers. Ergonomics, 48(11–14), 1686–1697. https://doi.org/10.1080/00140130500101346; Savelsbergh, G. J. P., Williams, A. M., Van Der Kamp, J., & Ward, P. (2002). Visual search, anticipation and expertise in soccer goalkeepers. Journal of Sports Sciences, 20(3), 279–287. https://doi.org/10.1080/026404102317284826; Saygin, O., Goral, K., & Ceylan, H. I. (2016). An Examination of the Coincidence Anticipation Performance of Soccer Players according to their Playing Positions and Different Stimulus Speeds. Sport Journal, (August 2016), 1. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=jlh&AN=117819172&site=ehost-live; Schlaffke L, Lissek S, Lenz M, Brüne M, Juckel G, H. T. (2014). Sports and brain morphology – A voxel-based morphometry study with endurance athletes and martial artists. Neuroscience, 259, 35–42.; Schmid, M., Bottaro, A., Sozzi, S., & Schieppati, M. (2011). Adaptation to continuous perturbation of balance: Progressive reduction of postural muscle activity with invariant or increasing oscillations of the center of mass depending on perturbation frequency and vision conditions. Human Movement Science, 30(2), 262–278. https://doi.org/10.1016/j.humov.2011.02.002; Sebastián López , Sara Suárez, A. R. y E. J. M. L. (2017). Exergames: Videojuegos activos para la promoción de la Actividad Física y el desarrollo cognitivo en educacion primaria y secundaria (Primera Ed; WANCEULEN EDITORIAL S.L, Ed.). Sevilla.; Sell, T. C. (2012). An examination, correlation, and comparison of static and dynamic measures of postural stability in healthy, physically active adults. Physical Therapy in Sport, 13(2), 80–86. https://doi.org/10.1016/j.ptsp.2011.06.006; Shafizadeh, M., & Platt, G. K. (2012). Effect of verbal cueing on trajectory anticipation in the penalty kick among novice fotball goalkepers. Perceptual and Motor Skills, 114(1), 174–184. https://doi.org/10.2466/05.23.25.PMS.114.1.174-184; Shan, G., & Westerhoff, P. (2005). Soccer: Full‐body kinematic characteristics of the maximal instep Soccer kick by male soccer players and parameters related to kick quality. Sports Biomechanics, 4(1), 59–72. https://doi.org/10.1080/14763140508522852; Shih, Y. L., & Lin, C. Y. (2016). The relationship between action anticipation and emotion recognition in athletes of open skill sports. Cognitive Processing, 17(3), 259–268. https://doi.org/10.1007/s10339-016-0764-7 Shim, J., Carlton, L. G., Chow, J. W., & Chae, W. S. (2005). The use of anticipatory visual cues by highly skilled tennis players. Journal of Motor Behavior, 37(2), 164–175. https://doi.org/10.3200/JMBR.37.2.164-175; Shultz, S. J., Perrin, D. H., Adams, J. M., Arnold, B. L., Gansneder, B. M., & Granata, K. P. (2000). Assessment of neuromuscular response characteristics at the knee following a functional perturbation. Journal of Electromyography and Kinesiology, 10(3), 159–170. https://doi.org/10.1016/S1050-6411(00)00002-X; Slobounov, S., Hallett, M., Stanhope, S., & Shibasaki, H. (2005). Role of cerebral cortex in human postural control: An EEG study. Clinical Neurophysiology, 116(2), 315–323. https://doi.org/10.1016/j.clinph.2004.09.007; Smeddinck, J. D., Malaka, R., Voges, J., & Herrlich, M. (2014). Comparing modalities for kinesiatric exercise instruction. Conference on Human Factors in Computing Systems - Proceedings, 2377–2382. https://doi.org/10.1145/2559206.2581367; Smith, D. M. (2016). Neurophysiology of action anticipation in athletes: A systematic review. Neuroscience and Biobehavioral Reviews, 60, 115–120. https://doi.org/10.1016/j.neubiorev.2015.11.007; Soltani, P., Figueiredo, P., Fernandes, R. J., & Vilas-Boas, J. P. (2016). Do player performance, real sport experience, and gender affect movement patterns during equivalent exergame? Computers in Human Behavior, 63, 1–8. https://doi.org/10.1016/j.chb.2016.05.009; Soltani, P., Figueiredo, P., Ribeiro, J., Fernandes, R. J., & Vilas-Boas, J. P. (2017). Physiological demands of a swimming-based video game: Influence of gender, swimming background, and exergame experience. Scientific Reports, 7(1), 1–7. https://doi.org/10.1038/s41598-017-05583-8; Song, C. G., Kim, J. Y., & Kim, N. G. (2004). A new postural balance control system for rehabilitation training based on virtual cycling. IEEE Transactions on Information Technology in Biomedicine, 8(2), 200–207. https://doi.org/10.1109/TITB.2004.828887; Song, C., Wu, Q., Zhang, W., & Lu, Z. (2013). Índice de masa corporal, preocupación por la delgadez y satisfacción corporal en adolescentes. Dianbo Kexue Xuebao/Chinese Journal of Radio Science, Vol. 28, pp. 1127–1132. St George, R. J., & Fitzpatrick, R. C. (2011). The sense of self-motion, orientation and balance explored by vestibular stimulation. Journal of Physiology, 589(4), 807–813. https://doi.org/10.1113/jphysiol.2010.197665; Steuer, J. (1992). Defining Virtual Reality: Dimensions Determining Telepresence. Journal of Communication, 42(4), 73–93. https://doi.org/10.1111/j.1460-2466.1992.tb00812.x Stinson, C., & Bowman, D. A. (2014). Feasibility of training athletes for high-pressure situations using virtual reality. IEEE Transactions on Visualization and Computer Graphics, 20(4), 606–615. https://doi.org/10.1109/TVCG.2014.23; Surgent, O. J., Dadalko, O. I., Pickett, K. A., & Travers, B. G. (2019). Balance and the brain: A review of structural brain correlates of postural balance and balance training in humans. Gait and Posture, 71(November 2018), 245–252. https://doi.org/10.1016/j.gaitpost.2019.05.011; Swami, V., Steadman, L., & Tovée, M. J. (2009). A comparison of body size ideals, body dissatisfaction, and media influence between female track athletes, martial artists, and non-athletes. Psychology of Sport and Exercise, 10(6), 609–614. https://doi.org/10.1016/j.psychsport.2009.03.003; Swann, W. B., Chang-Schneider, C., & McClarty, K. L. (2007). Do people’s self-views matter? Self-concept and self-esteem in everyday life. American Psychologist, 62(2), 84–94. https://doi.org/10.1037/0003-066X.62.2.84; Tamorr S. (2004). Procesos mentales del atleta (12th ed.; Paidotribo, Ed.). Barcelona.; Tarr, M. J., & Warren, W. H. (2002). Virtual reality in behavioral neuroscience and beyond. Nature Neuroscience, 5(11s), 1089–1092. https://doi.org/10.1038/nn948; Tenenbaum, G., Sar-El, T., & Bar-Eli, M. (2000). Anticipation of ball location in low and high-skill performers: A developmental perspective. Psychology of Sport and Exercise, 1(2), 117–128. https://doi.org/10.1016/S1469-0292(00)00008-X; Tirp, J., Steingröver, C., Wattie, N., Baker, J., & Schorer, J. (2015). Virtual realities as optimal learning environments in sport – A transfer study of virtual and real dart throwing. Psychological Test and Assessment Modeling, 57(1), 57–69.; Todorov, E., Shadmehr, R., & Bizzi, E. (1997). Augmented feedback presented in a virtual environment accelerates learning of a difficult motor task. Journal of Motor Behavior, 29(2), 147–158. https://doi.org/10.1080/00222899709600829; Tornese, D., Botta, M., Mattei, V., & Alpini, D. C. (2011). Self-experienced virtual reality to improve balance reflexes in ice dancers. A pilot study. Sport Sciences for Health, 6(2–3), 45–50. https://doi.org/10.1007/s11332-011-0097-y; Triolet, C., Benguigui, N., Le Runigo, C., & Williams, M. (2013). Quantifying the nature of anticipation in professional tennis. Journal of Sports Sciences, 31(8), 820–830. https://doi.org/10.1080/02640414.2012.759658 Tsai, W.-L., Chung, M.-F., Pan, T.-Y., & Hu, M.-C. (2017). Train in Virtual Court. MultiEdTech´17, 3–10. https://doi.org/10.1145/3132390.3132394 Urrutia, S., Azpillaga, I., Cos, G. L. de, & Muñoz, D. (2010). Relación entre la percepción de estado de salud con la práctica físicodeportiva y la imagen corporal en adolescentes. Cuadernos de Psicología Del Deporte, 10(2), 51–56.; Valori, I., McKenna-Plumley, P. E., Bayramova, R., Callegher, C. Z., Altoè, G., & Farroni, T. (2020). Proprioceptive accuracy in Immersive Virtual Reality: A developmental perspective. PLoS ONE, 15(1), 1–24. https://doi.org/10.1371/journal.pone.0222253; Van Der Kamp, J., Rivas, F., Van Doorn, H., & Savelsbergh, G. (2008). Ventral and dorsal system contributions to visual anticipation in fast ball sports. International Journal of Sport Psychology, 39(2), 100–130.; Vaquero-Cristóbal, R., Alacid, F., Muyor, J. M., & López-Miñarro, P. Á. (2013a). Imagen corporal; revisión bibliográfica. Nutricion Hospitalaria, 28(1), 27–35. https://doi.org/10.3305/nh.2013.28.1.6016; Vaquero-Cristóbal, R., Alacid, F., Muyor, J. M., & López-Miñarro, P. Á. (2013b). Imagen corporal. Nutricion Hospitalaria, 28(1), 27–35. https://doi.org/10.3305/nh.2013.28.1.6016; Vernadakis, N., Derri, V., Tsitskari, E., & Antoniou, P. (2014). The effect of Xbox Kinect intervention on balance ability for previously injured young competitive male athletes: A preliminary study. Physical Therapy in Sport, 15(3), 148–155. https://doi.org/10.1016/j.ptsp.2013.08.004; Vianka, C., Perdomo, D., Beatriz, C., Ferrer, D., Noraida, M., Domínguez, C., … Castillo, S. (2015). Eficacia de la plataforma Cobs en trastornos de equilibrio, postura y marcha del adulto mayor. In Revista Cubana de Medicina Física y Rehabilitación (Vol. 7). Retrieved from https://www.medigraphic.com/pdfs/revcubmedfisreah/cfr-2015/cfr151d.pdf; Vickers, J. N. (2007). Perception, Cognition, and Decision Training: The Quiet Eye in Action (S. Psychological, Ed.). United States.; Victoria, M., & García, A. (2003). ACOSTA GARCÍA y GÓMEZ PERESMITRÉ. Insatisfacción corporal y seguimiento de dieta Insatisfacción corporal y seguimiento de dieta. Una comparación transcultural entre adolescentes de España y México. International Journal of Clinical and Health Psychology, 3(1), 9–21.; Vignais, N., Kulpa, R., Brault, S., Presse, D., & Bideau, B. (2015a). Which technology to investigate visual perception in sport: Video vs. virtual reality. Human Movement Science, 39, 12–26. https://doi.org/10.1016/j.humov.2014.10.006; Vignais, N., Kulpa, R., Brault, S., Presse, D., & Bideau, B. (2015b). Which technology to investigate visual perception in sport: Video vs. virtual reality. Human Movement Science, 39, 12–26. https://doi.org/10.1016/j.humov.2014.10.006; Vilalta Abella, F., Pla Sanjuanelo, J., Ferrer García, M., & Gutiérrez Maldonado, J. (2015).Terapia de exposición mediante Realidad Virtual en los trastornos alimentarios: presente y futuro. Tesis Psicológica: Revista de La Facultad de Psicología, 10(2), 12–37.; Wallace, J. L., & Norton, K. I. (2014). Evolution of World Cup soccer final games 1966-2010: Game structure, speed and play patterns. Journal of Science and Medicine in Sport, 17(2), 223–228. https://doi.org/10.1016/j.jsams.2013.03.016; Waltemate, T., Hülsmann, F., Pfeiffer, T., Kopp, S., & Botsch, M. (2015). Realizing a low-latency virtual reality environment for motor learning. Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST, 13-15-Nove, 139–147. https://doi.org/10.1145/2821592.2821607; Ware, C., & Balakrishnan, R. (1994). Reaching for Objects in VR Displays: Lag and Frame Rate. ACM Transactions on Computer-Human Interaction (TOCHI), 1(4), 331–356. https://doi.org/10.1145/198425.198426; William R. Sherman, A. B. C. (2003). Understanding Virtual Reality: Interface, Application, and Design. Estados Unidos.; Williams, A. M., & Jackson, R. C. (2019). Anticipation in sport: Fifty years on, what have we learned and what research still needs to be undertaken? Psychology of Sport and Exercise, 42, 16–24. https://doi.org/10.1016/j.psychsport.2018.11.014; Williams, A. Mark, & Ericsson, K. A. (2005). Perceptual-cognitive expertise in sport: Some considerations when applying the expert performance approach. Human Movement Science, 24(3), 283–307. https://doi.org/10.1016/j.humov.2005.06.002; Williams, A. Mark, & Ford, P. R. (2008). Expertise and expert performance in sport. International Review of Sport and Exercise Psychology, 1(1), 4–18. https://doi.org/10.1080/17509840701836867; Williams, A. Mark, Ward, P., Knowles, J. M., & Smeeton, N. J. (2002). Anticipation skill in a real-world task: Measurement, training, and transfer in tennis. Journal of Experimental Psychology: Applied, 8(4), 259–270. https://doi.org/10.1037/1076-898X.8.4.259; Williams, L. R. T. (2000a). Coincidence timing of a soccer pass: Effects of stimulus velocity and movement distance. Perceptual and Motor Skills, 91(1), 39–52. https://doi.org/10.2466/pms.2000.91.1.39 Williams, L. R. T. (2000b). Coincidence timing of a soccer pass: Effects of stimulus velocity and movement distance. Perceptual and Motor Skills, 91(1), 39–52. https://doi.org/10.2466/pms.2000.91.1.39; Williams, M., Davids, K., Burwitz, L., & Williams, J. (1993). Cognitive Knowledge and Soccer Performance. Perceptual and Motor Skills, 76(2), 579–593. https://doi.org/10.2466/pms.1993.76.2.579; Witte, K., Emmermacher, P., Bandow, N., & Masik, S. (2012). Usage of Virtual Reality Technology to Study Reactions in Karate-Kumite. ISSN International Journal of Sports Science and Engineering, 06(01), 1750–9823.; Wolf S, Brölz E, Keune PM, Wesa B, Hautzinger M, B. N. (2015). Motor skill failure or flow-experience? Functional brain asymmetry and brain connectivity in elite and amateur table tennis players. Biol Psychol, 105, 95–105.; Wright, M. J., Bishop, D. T., Jackson, R. C., & Abernethy, B. (2010). Functional MRI reveals expert-novice differences during sport-related anticipation. NeuroReport, 21(2), 94–98. https://doi.org/10.1097/WNR.0b013e328333dff2; Wright, M. J., Bishop, D. T., Jackson, R. C., & Abernethy, B. (2013). Brain regions concerned with the identification of deceptive soccer moves by higher-skilled and lower-skilled players. Frontiers in Human Neuroscience, 7(DEC), 1–15. https://doi.org/10.3389/fnhum.2013.00851; Yaggie, J. A., & McGregor, S. J. (2002). Effects of isokinetic ankle fatigue on the maintenance of balance and postural limits. Archives of Physical Medicine and Rehabilitation, 83(2), 224–228. https://doi.org/10.1053/apmr.2002.28032; Zaal, F. T. J. M., & Bootsma, R. J. (2011). Virtual reality as a tool for the study of perception-action: The case of running to catch fly balls. Presence: Teleoperators and Virtual Environments, 20(1), 93–103. https://doi.org/10.1162/pres_a_00037; Zemková, E. (2014). Sport-specific balance. Sports Medicine, 44(5), 579–590. https://doi.org/10.1007/s40279-013-0130-1; Zhang, L., Brunnett, G., Petri, K., Danneberg, M., Masik, S., Bandow, N., & Witte, K. (2018). KaraKter: An autonomously interacting Karate Kumite character for VR-based training and research. Computers and Graphics (Pergamon), 72, 59–69. https://doi.org/10.1016/j.cag.2018.01.008; Zhou, Y. (2016). Application of automatic choreography software based on virtual technology in the gymnastics teaching. International Journal of Emerging Technologies in Learning, 11(5), 39–44. https://doi.org/10.3991/ijet.v11i05.5692; https://repositorio.unal.edu.co/handle/unal/79812; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
Nájsť tento článok vo Web of Science