Výsledky vyhledávání - acm: c.: computer system organizacion/c.1: processes architectures/c.1.4: parallel architectural~
-
1
Autoři: a další
Přispěvatelé: a další
Témata: Voice processing systems, Automatic voice recognition, Systems engineering, Telematics, Investigations, New technologies, Internet of things, Speech recognition, Ubiquitous computing, Sistemas de procesamiento de voz, Reconocimiento automático de la voz, Ingeniería de sistemas, Telemática, Investigaciones, Nuevas tecnologías, Internet de las cosas, Middleware, Reconocimiento del habla, Computación ubicua
Geografické téma: Bucaramanga (Colombia), UNAB Campus Bucaramanga
Popis souboru: application/pdf; application/octet-stream
Relation: Manrique Hernández, Johana Andrea (2018). Switch: un Middleware para el desarrollo de aplicaciones IOT con interfaces basadas en voz. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB; Abdmeziem, M. R., Tandjaoui, D., & Romdhani, I. (2016). Architecting the internet of things: state of the art. In Robots and Sensor Clouds (pp. 55–75). Springer.; Abreu, D. P., Velasquez, K., Curado, M., & Monteiro, E. (2017). A resilient Internet of Things architecture for smart cities. Annals of Telecommunications, 72(1–2), 19–30.; Adams, K. (2015). Non-functional Requirements in Systems Analysis and Design. Springer.; Addo, I. D., Ahamed, S. I., Yau, S. S., & Buduru, A. (2014). A reference architecture for improving security and privacy in Internet of Things applications. In Mobile Services (MS), 2014 IEEE International Conference on (pp. 108–115).; Afonso, S., Laranjo, I., Braga, J., Alves, V., & Neves, J. (2015). Multilingual Voice Control for Endoscopic Procedures. In Internet of Things. User-Centric IoT (pp. 229–235). Springer.; Akash, S. A., Menon, A., Gupta, A., Wakeel, M. W., Praveen, M. N., & Meena, P. (2014). A novel strategy for controlling the movement of a smart wheelchair using internet of things. In Global Humanitarian Technology Conference-South Asia Satellite (GHTC-SAS), 2014 IEEE (pp. 154–158).; Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376.; Al-Jaroodi, J., Aziz, J., & Mohamed, N. (2009). Middleware for RFID systems: An overview. In Computer Software and Applications Conference, 2009. COMPSAC’09. 33rd Annual IEEE International (Vol. 2, pp. 154–159).; Aldosari, H. M. (2015). A Proposed Security Layer for the Internet of Things Communication Reference Model. Procedia Computer Science, 65, 95–98.; Alhamedi, A. H., Snasel, V., Aldosari, H. M., & Abraham, A. (2014). Internet of things communication reference model. In Computational Aspects of Social Networks (CASoN), 2014 6th International Conference on (pp. 61–66).; Association for computing machinery ACM. (2012). CCS 2012.; Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805. http://doi.org/doi.org/10.1016/j.comnet.2010.05.010; Baccaglini, E., Gavelli, M., Morello, M., & Vergori, P. (2015). A multimodal user interface using the webinos platform to connect a smart input device to the Web of Things. In Pervasive and Embedded Computing and Communication Systems (PECCS), 2015 International Conference on (pp. 1–5).; Bai, J. G., Wei, J. G., Chen, L., He, Y. Q., Wang, J. R., & Dang, J. W. (2013). Design and Implementation of a Housekeeper System. In Applied Mechanics and Materials (Vol. 437, pp. 394–398).; Banda, G., Chaitanya, K., & Mohan, H. (2015). An IoT protocol and framework for OEMs to make IoT-enabled devices forward compatible. In Signal-Image Technology & Internet-Based Systems (SITIS), 2015 11th International Conference on (pp. 824–832).; Bandyopadhyay, S., Sengupta, M., Maiti, S., & Dutta, S. (2011). A Survey of Middleware for Internet of Things. In A. Özcan, J. Zizka, & D. Nagamalai (Eds.), Recent Trends in Wireless and Mobile Networks: Third International Conferences, WiMo 2011 and CoNeCo 2011, Ankara, Turkey, June 26-28, 2011. Proceedings (pp. 288–296). Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-21937-5_27; Bassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S., & Meissner, S. (Eds.). (2013). Enabling Things to Talk. Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-40403-0; Bell, A. G. (1881). The production of sound by radiant energy. Science, 2(48), 242– 253.; Bernabe, J. B., Hernández, J. L., Moreno, M. V., & Gomez, A. F. S. (2014). Privacypreserving security framework for a social-aware internet of things. In International conference on ubiquitous computing and ambient intelligence (pp. 408–415).; Berners-Lee, T., Cailliau, R., Groff, J.-R., & Pollermann, B. (1992). World-Wide Web: The Information Universe. Electronic Networking: Research, Applications and Policy, 2(1), 52–58.; Besacier, L., Barnard, E., Karpov, A., & Schultz, T. (2014). Automatic speech recognition for under-resourced languages: A survey. Speech Communication, 56, 85–100.; Blackstock, M., & Lea, R. (2016). FRED: A Hosted Data Flow Platform for the IoT. In Proceedings of the 1st International Workshop on Mashups of Things and APIs (p. 2:1--2:5). New York, NY, USA: ACM. http://doi.org/10.1145/3007203.3007214; Bochmann, G. V. (1990). Protocol specification for OSI. Computer Networks and ISDN Systems, 18(3), 167–184.; Borgia, E. (2014). The Internet of Things vision: Key features, applications and open issues. Computer Communications, 54, 1–31.; Bouraoui, H., Jerad, C., Chattopadhyay, A., & Hadj-Alouane, N. Ben. (2017). Hardware Architectures for Embedded Speaker Recognition Applications: A Survey. ACM Transactions on Embedded Computing Systems (TECS), 16(3), 78.; Boussard, M., Meissner, S., Nettsträter, A., Olivereau, A., Segura, A. S., Thoma, M.,& Walewski, J. W. (2013). A Process for Generating Concrete Architectures. In Enabling Things to Talk (pp. 45–111). Springer.; Brown, A. (2016). The role of voice in IoT applications. Retrieved from https://www.strategyanalytics.com/strategy-analytics/blogs/iot/2016/02/19/therole- of-voice-in-the-internet-of-things#.WD3wMPkrLcc; Buyya, R., & Dastjerdi, A. V. (2016). Internet of Things: Principles and paradigms. Elsevier.; Cavalcante, E., Alves, M. P., Batista, T., Delicato, F. C., & Pires, P. F. (2015). An analysis of reference architectures for the internet of things. In Proceedings of the 1st International Workshop on Exploring Component-based Techniques for Constructing Reference Architectures (pp. 13–16). Ccori, P. C., De Biase, L. C. C., Zuffo, M. K., & da Silva, F. S. C. (2016). Device discovery strategies for the IoT. In Consumer Electronics (ISCE), 2016 IEEE International Symposium on (pp. 97–98).; Chaqfeh, M. A., & Mohamed, N. (2012). Challenges in middleware solutions for the internet of things. In Collaboration Technologies and Systems (CTS), 2012 International Conference on (pp. 21–26).; Chelloug, S. A., & El-Zawawy, M. A. (2017). Middleware for Internet of Things: Survey and Challenges. Intelligent Automation & Soft Computing, 0(0), 1–9. http://doi.org/10.1080/10798587.2017.1290328; CISCO. (2014). The Internet of Things Reference Model. San José, California. Retrieved from http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_ 4_2014.pdf; CISCO. (2016). Internet of Things at a Glance. Retrieved from https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/ata- glance-c45-731471.pdf; Colciencias. (2016). Tipología de proyectos calificados como de carácter cientifíco, tecnológico e innovación (Vol. 4).; Costa, N., Pereira, A., & Serodio, C. (2007). Virtual Machines Applied to WSN’s: The state-of-the-art and classification. In Systems and Networks Communications, 2007. ICSNC 2007. Second International Conference on (p. 50).; Coulouris, G. F., Dollimore, J., & Kindberg, T. (2005). Distributed systems: concepts and design (Fifth edit). Pearson education.; Davis, K. H., Biddulph, R., & Balashek, S. (1952). Automatic recognition of spoken digits. The Journal of the Acoustical Society of America, 24(6), 637–642.; De, S., Carrez, F., Reetz, E., Tönjes, R., & Wang, W. (2013). Test-enabled architecture for IoT service creation and provisioning. In The Future Internet Assembly (pp. 233–245).; Delicato, F. C., Pires, P. F., & Batista, T. (2017). The Resource Management Challenge in IoT. In Resource Management for Internet of Things (pp. 7–18). Springer.; Dino, J. (2008). Ames Technology Capabilities and Facilities. Retrieved January 5, 2017, from https://www.nasa.gov/centers/ames/research/technologyonepagers/ hc-computing.html; Eisenhauer, M., Rosengren, P., & Antolin, P. (2010). HYDRA: A Development Platform for Integrating Wireless Devices and Sensors into Ambient Intelligence Systems. In D. Giusto, A. Iera, G. Morabito, & L. Atzori (Eds.), The Internet of Things: 20th Tyrrhenian Workshop on Digital Communications (pp. 367–373). New York, NY: Springer New York. http://doi.org/10.1007/978-1-4419-1674- 7_36; European Lighthouse Integrated Project. (2016). Internet of things Architecture IoTA. Retrieved November 1, 2016, from http://www.iota. eu/public/requirements/copy_of_requirements; Evans, D. (2011). The Internet of Things: How the next evolution of the internet is changing everything. Retrieved from http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FIN AL.pdf; EY. (2016). Internet of Things: Human machine interactions that unlock possibilities. United Kingdom. Retrieved from http://www.ey.com/Publication/vwLUAssets/ey-m-e-internet-ofthings/$ FILE/ey-m-e-internet-of-things.pdf; Fernandes, J., Nati, M., Loumis, N. S., Nikoletseas, S., Raptis, T. P., Krco, S., … Ziegler, S. (2015). IoT Lab: Towards co-design and IoT solution testing using the crowd. In Recent Advances in Internet of Things (RIoT), 2015 International Conference on (pp. 1–6).; Ferreira, H. G. C., Canedo, E. D., & de Sousa, R. T. (2013). IoT architecture to enable intercommunication through REST API and UPnP using IP, ZigBee and arduino. In 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 53–60). http://doi.org/10.1109/WiMOB.2013.6673340; Ferreira, H. G., & Sousa Junior, R. T. (2017). Security Analysis of a Proposed Internet of Things Middleware. Cluster Computing, 20(1), 651–660. http://doi.org/10.1007/s10586-017-0729-3; Formisano, C., Pavia, D., Gurgen, L., Yonezawa, T., Galache, J. A., Doguchi, K., & Matranga, I. (2015). The advantages of IoT and cloud applied to smart cities. In Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on (pp. 325–332).; Fremantle, P. (2015). A reference architecture for Internet of Things. Sri Lanka. Retrieved from https://wso2.com/whitepapers/a-reference-architecture-for-theinternet- of-things/; Gartner Inc. (2014). IT Glossary. Retrieved January 4, 2017, from http://www.gartner.com/it-glossary/telematics/; Gartner Inc. (2016). Hype Cycle for Emerging Technologies, 2016.; Gartnet Inc. (2017). Hype Cycle for Emerging Technologies, 2017. USA.; Gilchrist, A. (2016). IIoT Reference Architecture. In Industry 4.0 (pp. 65–86). Springer.; Gluhak, A., Hauswirth, M., Krco, S., Stojanovic, N., Bauer, M., Nielsen, R. H., … Corcho, O. (2011). An Architectural Blueprint for a Real-World Internet. In Future Internet Assembly (pp. 67–80).; Gluhak, A., Munoz, L., Sotres, P., Sanchez, L., Roux, P., Sanchez, B., … Hernandez, A. L. (2013). Third Cycle Architecture Specification.; Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. http://doi.org/10.1016/j.future.2013.01.010; Guo, B., Zhang, D., Wang, Z., Yu, Z., & Zhou, X. (2013). Opportunistic IoT: exploring the harmonious interaction between human and the internet of things. Journal of Network and Computer Applications, 36(6), 1531–1539.; Hadim, S., & Mohamed, N. (2006). Middleware: Middleware challenges and approaches for wireless sensor networks. IEEE Distributed Systems Online, 7(3), 1.; Han, X., & Rashid, M. A. (2016). Gesture and voice control of Internet of Things. In Industrial Electronics and Applications (ICIEA), 2016 IEEE 11th Conference on (pp. 1791–1795).; Haridas, A. V., Marimuthu, R., & Sivakumar, V. G. (2018). A critical review and analysis on techniques of speech recognition: The road ahead. International Journal of Knowledge-Based and Intelligent Engineering Systems, 22(1), 39– 57.; Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2010). Metodología de la investigación. McGraw-Hill (Quinta Edi). México DF.; Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014a). Architecture Reference Model. In From Machine-To-Machine to the Internet of Things (pp. 167–197). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00007-3; Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014b). IoT Architecture – State of the Art. In From Machine-To-Machine to the Internet of Things (pp. 145–165). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00006-1; Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014c). IoT Reference Architecture. In From Machine-To-Machine to the Internet of Things (pp. 199–223). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00008-5; Hollosi, D., Nagy, G., Rodigast, R., Goetze, S., & Cousin, P. (2013). Enhancing wireless sensor networks with acoustic sensing technology: use cases, applications & experiments. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing (pp. 335–342).; Huang, Z., Lin, K. J., & Shih, C. S. (2016). Supporting Edge Intelligence in Service- Oriented Smart IoT Applications. In 2016 IEEE International Conference on Computer and Information Technology (CIT) (pp. 492–499). Nadi, Fiji: IEEE. http://doi.org/10.1109/CIT.2016.40; Huang, Z., Tsai, B. L., Chou, J. J., Chen, C. Y., Chen, C. H., Chuang, C. C., … Shih, C. S. (2015). Context and user behavior aware intelligent home control using WuKong middleware. In 2015 IEEE International Conference on Consumer Electronics - Taiwan (pp. 302–303). Taipei, Taiwan: IEEE. http://doi.org/10.1109/ICCE-TW.2015.7216911; Hui, G. (2014). How the Internet of Things changes Business Models. Retrieved from https://hbr.org/2014/07/how-the-internet-of-things-changes-business-models; IEEE. (1990). IEEE Standard Glossary of Software Engineering Terminology.; IEEE Computer Society. (2014). Guide to the Software Engineering - Body of Knowledge. (P. Bourque & R. E. Fairley, Eds.)IEEE Computer Society (V3 ed.). http://doi.org/10.1234/12345678; Igure, V. M., Laughter, S. A., & Williams, R. D. (2006). Security issues in SCADA networks. Computers & Security, 25(7), 498–506.; International Organization for Standardization - ISO. Software product quality, 1 ISO/IEC 25010 34 (2011).; International Telecommunication Union - ITU. (2012). Recommendation ITU-T Y.2060: Overview of the Internet of things. Series Y: Global information infrastructure, internet protocol aspects and next-generation networks - Frameworks and functional architecture models. Retrieved from https://www.itu.int/rec/T-REC-Y.2060-201206-I; International Telecomunication Union - ITU. (2005). The Internet of Things. ITU Internet Reports.; Internet Society. (2015). The Internet of Things (IoT): An Overview. Geneva, Switzerland. Retrieved from https://www.internetsociety.org/doc/iot-overview; IoT-A Project. (2016). Requirements — IOT-A: Internet of Things Architecture.; IoT Analytics. (2016). IoT Platforms: Market Report 2015-2021. Hamburg, Germany. Retrieved from https://iot-analytics.com/product/iot-platforms-market-report- 2015-2021-3/; ISO/IEC/IEEE. (2010). ISO/IEC/IEEE 24765:2010 Systems and software engineering - Vocabulary.; ISO/IEC JTC 1. (2009). Study on Sensor Networks (Version 3).; ISO, & IEEE. Systems and software engineering - Vocabulary, ISO/IEC/IEEE 24765:2010(E) 1–418 (2010). http://doi.org/10.1109/IEEESTD.2010.5733835; Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili, M., … Hamida, A. Ben. (2011). Service-oriented middleware for the Future Internet: state of the art and research directions. Journal of Internet Services and Applications, 2(1), 23–45. http://doi.org/10.1007/s13174-011-0021-3; Itakura, F. (1975). Minimum prediction residual principle applied to speech recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 23(1), 67–72.; Jelinek, F., Bahl, L., & Mercer, R. (1975). Design of a linguistic statistical decoder for the recognition of continuous speech. IEEE Transactions on Information Theory, 21(3), 250–256.; Juang, B.-H., Hou, W., & Lee, C.-H. (1997). Minimum classification error rate methods for speech recognition. IEEE Transactions on Speech and Audio Processing, 5(3), 257–265.; Juang, B.-H., & Rabiner, L. R. (2005). Automatic speech recognition-a brief history of the technology development. Elsevier Encyclopedia of Language and Linguistics, 1, 24.; Kaneko, M., Arima, K., Usami, M., Sugimura, H., Isshiki, M., & Koh, K. (2015). Development of information living integrated by home appliances and web services. In Consumer Electronics (GCCE), 2015 IEEE 4th Global Conference on (pp. 311–312).; Keh, H.-C., Shih, C.-C., Chou, K.-Y., Cheng, Y.-C., Ho, H.-K., Yu, P.-Y., & Huang, N.-C. (2014). Integrating unified communications and internet of m-health things with micro wireless physiological sensors, 17(3), 319–328.; Khurana, T. (2017). IPv6 Enables Global Mobile IoT Innovation and Proliferation. Retrieved February 26, 2017, from https://goo.gl/B1E1eF; Kim, J., Lee, J., Kim, J., & Yun, J. (2014). M2M service platforms: survey, issues, and enabling technologies. IEEE Communications Surveys & Tutorials, 16(1), 61–76.; Kostelnik, P., Sarnovsk, M., & Furdik, K. (2011). The semantic middleware for networked embedded systems applied in the internet of things and services domain. Scalable Computing: Practice and Experience, 12(3), 307–316.; Krco, S., Pokric, B., & Carrez, F. (2014). Designing IoT architecture (s): A European perspective. In Internet of Things (WF-IoT), 2014 IEEE World Forum on (pp. 79–84).; Kubitza, T. (2016). Using Speech for End User Programming of Smart Environments in the Internet of Thing. Germany.; Kubitza, T., & Schmidt, A. (2016). Rapid Interweaving of Smart Things with the meSchup IoT Platform. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (pp. 313–316). New York, NY, USA: ACM. http://doi.org/10.1145/2968219.2971379; Kubitza, T., & Schmidt, A. (2017). meSchup: A Platform for Programming Interconnected Smart Things. Computer, 50(11), 38–49.; Kumar, A., Mishra, A., Makula, P., Karan, K., & Mittal, V. K. (2015). Smart Robotic Assistant. In Region 10 Symposium (TENSYMP), 2015 IEEE (pp. 25–28).; Lee, G. M., Crespi, N., Choi, J. K., & Boussard, M. (2013). Internet of things. In Evolution of Telecommunication Services (pp. 257–282). Springer.; Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431–440.; Lin, K. J., Reijers, N., Wang, Y. C., Shih, C. S., & Hsu, J. Y. (2013). Building Smart M2M Applications Using the WuKong Profile Framework. In 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing (pp. 1175–1180). Beijing, China: IEEE. http://doi.org/10.1109/GreenCom-iThings- CPSCom.2013.204; Loucopoulus, P., & Karakostas, V. (1995). System Requirements Engineering. McGraw-Hill, Inc.; Ma, M., Wang, P., & Chu, C.-H. (2013). Data management for internet of things: challenges, approaches and opportunities. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing (pp. 1144–1151).; MacGillivray, C. (2016). Worldwide Internet of Things Forecast Update, 2015-2019.; Mamei, M., & Zambonelli, F. (2006). Field-based coordination for pervasive multiagent systems. Springer Science & Business Media.; Manrique, J. ., Rueda-Rueda, J., & Portocarrero, J. . (2016). Contrasting Internet of Things and Wireless Sensor Network from a conceptual overview. In 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (p. 6). IEEE Computer Society. http://doi.org/978-1-5090-5880-8/16; Marulli, F., Pareschi, R., & Baldacci, D. (2016). The internet of speaking things and its applications to Cultural Heritage. In Proceedings of IoTBD2016 Conference, SCITEPRESS.; McCulloch, W. S., & Pitts, W. (1990). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 52(1), 99–115.; Meier, R., & Cahill, V. (2002). Steam: Event-based middleware for wireless ad hoc networks. In Distributed Computing Systems Workshops, 2002. Proceedings. 22nd International Conference on (pp. 639–644).; Mineraud, J., Mazhelis, O., Su, X., & Tarkoma, S. (2016). A gap analysis of Internetof-Things platforms. Computer Communications, 89, 5–16.; Miranda, J., Mäkitalo, N., Garcia-Alonso, J., Berrocal, J., Mikkonen, T., Canal, C., & Murillo, J. M. (2015). From the Internet of Things to the Internet of People. IEEE Internet Computing, 19(2), 40–47.; Mittal, Y., Toshniwal, P., Sharma, S., Singhal, D., Gupta, R., & Mittal, V. K. (2015). A voice-controlled multi-functional Smart Home Automation System. In India Conference (INDICON), 2015 Annual IEEE (pp. 1–6).; Monteiro, C., Oliveira, M., Bastos, J., Ramrekha, T., & Rodriguez, J. (2014). Social Networks and Internet of Things, an Overview of the SITAC Project. In International Wireless Internet Conference (pp. 191–196).; Mottola, L., Murphy, A. L., & Picco, G. Pietro. (2006). Pervasive games in a moteenabled virtual world using tuple space middleware. In Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games (p. 29).; Nagata, K., Kato, Y., & Chiba, S. (1964). Spoken digit recognizer for Japanese language. In Audio Engineering Society Convention 16.; Nakagawa, E. Y., Oquendo, F., & Becker, M. (2012). Ramodel: A reference model for reference architectures. In Software Architecture (WICSA) and European Conference on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP Conference on (pp. 297–301).; Ngu, A. H., Gutierrez, M., Metsis, V., Nepal, S., & Sheng, Q. Z. (2017). IoT middleware: A survey on issues and enabling technologies. IEEE Internet of Things Journal, 4(1), 1–20.; Nia, A. M., & Jha, N. K. (2016). A comprehensive study of security of internet-ofthings. IEEE Transactions on Emerging Topics in Computing.; Nitti, M., Pilloni, V., Colistra, G., & Atzori, L. (2016). The virtual object as a major element of the internet of things: a survey. IEEE Communications Surveys & Tutorials, 18(2), 1228–1240.; Nuance Communications. (2016). Majority of Consumers Want Intelligent, Personalized Dialogue with Customer Service. Retrieved February 27, 2017, from https://www.nuance.com/about-us/newsroom/press-releases/opusintelligent- assistants-and-authentication-conference-2016.html; Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service- Oriented Computing: State of the Art and Research Challenges. Computer, 40(11), 38–45. http://doi.org/10.1109/MC.2007.400; Park, K.-J., Zheng, R., & Liu, X. (2012). Cyber-physical systems: Milestones and research challenges. Computer Communications, 36(1), 1–7.; Patel, P., & Cassou, D. (2015). Enabling high-level application development for the Internet of Things. Journal of Systems and Software, 103, 62–84.; Payne, G. (2014). The Internet of Things brings a new era of connectivity… and a talking fridge. Retrieved February 27, 2017, from http://whatsnext.nuance.com/connected-living/the-internet-of-thingsconnectivity/; Petrolo, R., Mitton, N., Soldatos, J., Hauswirth, M., & Schiele, G. (2014). Integrating wireless sensor networks within a city cloud. In 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking Workshops (SECON Workshops) (pp. 24–27). http://doi.org/10.1109/SECONW.2014.6979700; Pressman, R. (2010). Ingeniería del software: un enfoque práctico (Séptima Ed). México DF: McGraw-Hill Interamericana.; Rabiner, L., Levinson, S., Rosenberg, A., & Wilpon, J. (1979). Speaker-independent recognition of isolated words using clustering techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 27(4), 336–349.; Rabiner, L. R., & Juang, B. H. (2004). Statistical methods for the recognition and understanding of speech. Encyclopedia of language and linguistics.; Ratkowski, A. (2016). Architecture for Internet of Things Analytical Ecosystem. In Dependability Engineering and Complex Systems (pp. 385–393). Springer.; Raveendran, V., Sanjeev, M. R., Paul, N., & Jijina, K. P. (2016). Speech only interface approach for personal computing environment. In Engineering and Technology (ICETECH), 2016 IEEE International Conference on (pp. 372–377).; Razzaque, M. A., Milojevic-Jevric, M., Palade, A., & Clarke, S. (2016). Middleware for internet of things: a survey. IEEE Internet of Things Journal, 3(1), 70–95.; Richards, M. (2015). Software architecture patterns. O’Reilly Media, Incorporated.; Robles, T., Alcarria, R., de Andrés, D. M., Navarro, M., Calero, R., Iglesias, S., & López, M. (2015). An IoT based reference architecture for smart water management processes. JoWUA, 6(1), 4–23.; Sakai, T., & Doshita, S. (1962). The Phonetic Typewriter. In IFIP Congress (Vol. 445, p. 449).; Sanchez, L., Muñoz, L., Galache, J. A., Sotres, P., Santana, J. R., Gutierrez, V., … others. (2014). SmartSantander: IoT experimentation over a smart city testbed. Computer Networks, 61, 217–238.; Sanchez, S., Angel Sicilia, M., & Rodriguez, D. (2012). Ingeniería del Sofware. Un enfoque desde la guía SWEBOK. Alfaomega.; Santos, J. F. M., Guessi, M., Galster, M., Feitosa, D., & Nakagawa, E. Y. (2013). A Checklist for Evaluation of Reference Architectures of Embedded Systems. In SEKE (Vol. 13, pp. 1–4).; Sarma, S., Brock, D., & Engels, D. (2001). Radio Frequency Identification and the Electronic Product Code. IEEE Micro, 21(6), 50–54. http://doi.org/10.1109/40.977758; Schauer, P., & Debita, G. (2015). Internet of Things Service Systems Architecture.; Seo, S., Kim, J., Yun, S., Huh, J., & Maeng, S. (2015). HePA: Hexagonal Platform Architecture for Smart Home Things. In Parallel and Distributed Systems (ICPADS), 2015 IEEE 21st International Conference on (pp. 181–189).; Shen, S., & Carugi, M. (2014). Standardizing the Internet of Things in an evolutionary way. In ITU Kaleidoscope Academic Conference: Living in a converged world- Impossible without standards?, Proceedings of the 2014 (pp. 249–254).; Shih, C. S., Lin, K. J., Chou, J. J., & Chuang, C. C. (2014). Autonomous Service Management for Location and Context Aware Service. In 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications (pp. 246–251). Matsue, Japan: IEEE. http://doi.org/10.1109/SOCA.2014.10; Shin, D.-G., & Jun, M.-S. (2015). Home IoT device certification through speaker recognition. In Advanced Communication Technology (ICACT), 2015 17th International Conference on (pp. 600–603).; Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. In Industrial Engineering and Engineering Management (IEEM), 2014 IEEE International Conference on (pp. 697–701).; Singh, S., & Singh, N. (2015). Internet of Things (IoT): Security challenges, business opportunities & reference architecture for E-commerce. In Green Computing and Internet of Things (ICGCIoT), 2015 International Conference on (pp. 1577– 1581).; Sinha, S., Agrawal, S. S., & Jain, A. (2013). Continuous density Hidden Markov Model for context dependent Hindi speech recognition. In Advances in Computing, Communications and Informatics (ICACCI), 2013 International Conference on (pp. 1953–1958).; Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte, J.-P., Riahi, M., … Herzog, R. (2015). OpenIoT: Open Source Internet-of-Things in the Cloud. In I. Podnar Žarko, K. Pripužić, & M. Serrano (Eds.), Interoperability and Open- Source Solutions for the Internet of Things: International Workshop, FP7 OpenIoT Project, Held in Conjunction with SoftCOM 2014, Split, Croatia,September 18, 2014, Invited Papers (pp. 13–25). Cham: Springer International Publishing. http://doi.org/10.1007/978-3-319-16546-2_3; Sommerville, I. (2011). Ingeniería del Software. PEARSON.; Souza, R., & Cardozo, E. (2016). A Resource-Oriented Architecture for the Internet of Things (IoT). In Connectivity Frameworks for Smart Devices (pp. 99–116). Springer.; Stravoskoufos, K., Sotiriadis, S., & Petrakis, E. (2016). IoT-A and FIWARE: bridging the barriers between the cloud and IoT systems design and implementation. In Proc. 6th Int’l Conf. Cloud Computing and Services Science (pp. 146–153).; Sundmaeker, H., Guillemin, P., Friess, P., & Woelfflé, S. (2010). Vision and challenges for realising the Internet of Things. (Cluster of European research projects on the Internet of Things, Ed.)European Commision.; Suzuki, J., & Nakata, K. (1961). Recognition of Japanese vowels - Preliminary to the recognition of speech. Journal of the Radio Research Laboratory, 8(37), 193– 212.; Talavera Portocarrero, J. M. (2016). RAMSES: Reference Architectue of Self- Adaptative Middleware for Wireless Sensor Networks. Universidade Federal fo Rio de Janeiro.; Techopedia. (2017). What is Modeling Language?; The Institute of Electrical and Electronics Engineers. (2014). 2014 IEEE Thesaurus. Retrieved from http://www.ieee.org/documents/ieee_thesaurus_2013.pdf; Turck, M. (2018). Growing Pains: The 2018 Internet of Things Landscape. Retrieved April 2, 2018, from http://mattturck.com/iot2018/; United Nations Educational Scientific and Cultural Organization. (2016). UNESCO Thesaurus. Retrieved August 29, 2016, from http://vocabularies.unesco.org/; United Nations Educational Scientific and Cultural Organization (UNESCO). (2016). UNESCO Thesaurus. Retrieved April 11, 2016, from http://vocabularies.unesco.org/browser/thesaurus/en/; Unnibhavi, A. H., & Jangamshetti, D. S. (2016). A survey of speech recognition on south Indian Languages. In Signal Processing, Communication, Power and Embedded System (SCOPES), 2016 International Conference on (pp. 1122– 1126).; Usländer, T., & Epple, U. (2015). Reference model of industrie 4.0 service architectures. At-Automatisierungstechnik, 63(10), 858–866.; Verdouw, C. N., Robbemond, R. M., Verwaart, T., Wolfert, J., & Beulens, A. J. M. (2015). A reference architecture for IoT-based logistic information systems in agri-food supply chains. Enterprise Information Systems, 1–25.; Wang, M.-M., Cao, J.-N., Li, J., & Dasi, S. K. (2008). Middleware for wireless sensor networks: A survey. Journal of Computer Science and Technology, 23(3), 305– 326.; Weiser, M. (1991). The computer for the 21st century. Scientific American, 265(3), 94–104.; Weyrich, M., & Ebert, C. (2016). Reference architectures for the internet of things. IEEE Software, 33(1), 112–116.; Whittaker, E. W. D. (2000). Statistical language modelling for automatic speech recognition of Russian and English. University of Cambridge.; Wiener, N. (1961). Cybernetics or Control and Communication in the Animal and the Machine (Vol. 25). MIT press.; Wortmann, F., Flüchter, K., & others. (2015). Internet of things. Business & Information Systems Engineering, 57(3), 221–224. http://doi.org/10.1007/s12599-015-0383-3; Xu, B., Zhang, D., & Yang, W. (2012). Research on architecture of the Internet of Things for grain monitoring in storage. In Internet of Things (pp. 431–438). Springer.; Zhong, N., Ma, J., Huang, R., Liu, J., Yao, Y., Zhang, Y., & Chen, J. (2016). Research challenges and perspectives on Wisdom Web of Things (W2T). In Wisdom Web of Things (pp. 3–26). Springer.; Zhou, S., Liu, G., & Lin, C. (2012). An Embedded Voice Inquiry Experimental Platform for Temperature and Humidity Measurement on the Internet of Things. In Emerging Computation and Information teChnologies for Education (pp. 533– 539). Springer.; http://hdl.handle.net/20.500.12749/3547; reponame:Repositorio Institucional UNAB
Dostupnost: https://hdl.handle.net/20.500.12749/3547
-
2
Autoři: a další
Přispěvatelé: a další
Témata: 690 - Construcción de edificios, 620 - Ingeniería y operaciones afines::624 - Ingeniería civil, Construcción - Métodos de simulación, Construcción - Simulación por computadores, Construcción - Control de costos, Construcción - Presupuestos, Industria de la construcción - Planificación, Industria de la construcción - Predicciones, Proyecto de Construcción, Modelamiento de procesos de construcción, Simulaciones Computacionales en construcción, Predicción Costo y cronograma, Construction Project, Model construction processes, Computer Simulations In construction, Prediction, Cost and schedule
Popis souboru: 234 páginas; application/pdf
Relation: LaReferencia; Abdelgawad, M., & Fayek, A. (2010). Risk Management in the Construction Industry Using Combined Fuzzy FMEA and Fuzzy AHP. Journal of Construction Engineering and Management-Asce - J CONSTR ENG MANAGE-ASCE, 136. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000210; Abdelmegid, M., Gonzalez, V., Poshdar, M., O'Sullivan, M., Walker, C., Ying, F. (2020). Barriers to adopting simulation modelling in construction industry. Automation in Construction. 111. 103046. 10.1016/j.autcon.2019.103046.; Abdelouahed, S. M., Abla, R., Asmae, E., & Abdellah, A. (2024). Harnessing feature engineering to improve machine learning: A review of different data processing techniques. 2024 International Conference on Intelligent Systems and Computer Vision (ISCV), 1–6. https://doi.org/10.1109/ISCV60512.2024.10620105; Abdomerovic, M. (2022). Project Management Planning. In From Practice to Applied Research. Peter Lang Verlag. https://doi.org/10.3726/b19696; Abedjan, Z., Chu, X., Deng, D., Fernandez, R. C., Ilyas, I. F., Ouzzani, M., Papotti, P., Stonebraker, M., & Tang, N. (2016). Detecting data errors: where are we and what needs to be done? Proc. VLDB Endow., 9(12), 993–1004. https://doi.org/10.14778/2994509.2994518; Aboura, K., Kljajić, M., & Eskandarian, A. (2012). The need for simulation in complex industrial systems. Organizacija, 45. https://doi.org/10.2478/v10051-012-0022-4; AbouRizk, M. (2010). ‘Role of simulation in construction engineering and management’. In: Journal of Construction Engineering and Management 136.10, pp. 1140–1153.; Adekunle, S. A., Onatayo Damilola, A., Madubuike, O. C., Aigbavboa, C., & Ejohwomu, O. (2024). Machine Learning Algorithm Application in the Construction Industry – A Review. In S. Skatulla & H. Beushausen (Eds.), Advances in Information Technology in Civil and Building Engineering (pp. 263–271). Springer International Publishing.; Agarwal, A. L., & Mahajan, D. A. (2017). A Probability Analysis of Construction Project Schedule Using Risk Management Tool. MATTER: International Journal of Science and Technology, 3(1), 104 - 109.; Al-Baldawi Zainaband, A., & Hussein, I. (2021). Estimating the Optimum Completion Time of Project Using Binomial Distribution and Probabilistic PERT Network. In R.-X. and P. S. Peng Sheng-Lung and Hao (Ed.), Proceedings of First International Conference on Mathematical Modeling and Computational Science (pp. 627–637). Springer Singapore.; Albarello, N., & Welcomme, J.-B. (2012). A model-based method for the generation and optimization of complex systems architectures. 2012 IEEE International Systems Conference SysCon 2012, 1–6. https://doi.org/10.1109/SysCon.2012.6189456; Ali, A. (2024). The utilization of the discrete event simulation method in scheduling repetitive construction. IOP Conference Series: Earth and Environmental Science, 1355, 012015. https://doi.org/10.1088/1755-1315/1355/1/012015; Alzarrad, A. (2020). Fuzzy Monte Carlo Simulation to Optimize Resource Planning and Operations. https://doi.org/10.5772/intechopen.93632; Amirzehni, P., Samadianfard, S., Nazemi, A., & Sadraddini, A. (2023). Evaluating capabilities of the spline and cubic spline interpolation functions in reference evapotranspiration estimation implementing satellite image data. Earth Science Informatics, 16. https://doi.org/10.1007/s12145-023-01127-z; Ankarali, H., Pasin, Ö., Gönenç, S., & Al Mahmood, A. K. (2023). Interaction between numerical variables in regression model, and its graphical interpretation. Bangladesh Journal of Medical Science, 22(1), 189–194. https://doi.org/10.3329/bjms.v22i1.63078; Asfoor, H. M. A., AL-Jandeel, A. A. T., Igorevich, K. K., & Ivanovna, L. A. (2022). Control of Time, Cost and Quality of Construction Project Management. E3S Web Conf., 336. https://doi.org/10.1051/e3sconf/202233600072; Babar, S., Thaheem, MJ y Ayub, B. (2017). Costo estimado al finalizar: integración del riesgo en la gestión del valor ganado. Revista de Ingeniería y Gestión de la Construcción , 143 (3). https://doi.org/10.1061/(asce)co.1943-7862.0001245; Baghalzadeh Shishehgarkhaneh, M., Moehler, R. C., Fang, Y., Aboutorab, H., & Hijazi, A. A. (2024). Construction supply chain risk management. Automation in Construction, 162, 105396. https://doi.org/https://doi.org/10.1016/j.autcon.2024.105396; Ballard, G. (2000). Sistema de ejecución de proyectos ajustados (Revisión 1). http://www.leanconstruction.org/pdf/WP8-LPDS.pdf; Ballard, G. (2008). El sistema de ejecución de proyectos Lean: una actualización. www.leanconstructionjournal.org; Barbu, A., & Zhu, S.-C. (2020). Introduction to Monte Carlo Methods. In A. Barbu & S.-C. Zhu (Eds.), Monte Carlo Methods (pp. 1–17). Springer Singapore. https://doi.org/10.1007/978-981-13-2971-5_1; Bauce, G. (2007). El problema de investigación. Revista de La Facultad de Medicina, 30, 115–118.; Ben-Alon, L & Sacks R. (2017). ‘Simulating the behavior of trade crews in construction using agents and building information modeling’. In: Automation in Construction 74, pp. 12–27.; Berthold, M. R., Borgelt, C., Höppner, F., Klawonn, F., & Silipo, R. (2020). Deployment and Model Management. In M. R. Berthold, C. Borgelt, F. Höppner, F. Klawonn, & R. Silipo (Eds.), Guide to Intelligent Data Science: How to Intelligently Make Use of Real Data (pp. 319–328). Springer International Publishing. https://doi.org/10.1007/978-3-030-45574-3_10; Bhattacharya, S. P. (2023). The Fundamentals of Resource Optimization in Construction Projects. In V. J. (Ed.), Building Construction and Technology (pp. 139–156). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3526-0_10; Bhosale, T., Biradar, A., Bhat, K., Barhate, S., & Kotwal, J. (2023). Applied Deep Learning for Safety in Construction Industry. In I. J. Jacob, S. Kolandapalayam Shanmugam, & I. Izonin (Eds.), Data Intelligence and Cognitive Informatics (pp. 167–181). Springer Nature Singapore.; Bishop, C.M. (2006) Pattern Recognition and Machine Learning. Springer, Berlin. https://link.springer.com/book/9780387310732; Bokor, O., Florez-Perez, L., Osborne, A., Gledson, B. (2019). Overview of construction simulation approaches to model construction processes. Organization, Technology and Management in Construction: an International Journal. 11. 1853-1861. 10.2478/otmcj-2018-0018.; Botero, L. F. (2002). Análisis de Rendimientos y consumos de mano de obra en actividades de construcción. Revista Universidad EAFIT. https://doi.org/10.1080/17549507.2022.2055145; Brioso, X., Murguía, D., & Urbina, A. (2017). Comparación de tres métodos de programación utilizando modelos BIM en el sistema Last Planner. Organización, tecnología y gestión en la construcción: una revista internacional, 9 (1), 1604–1614. https://doi.org/10.1515/otmcj-2016-0024; Cabrera, A. G. (2010). Simulación de procesos constructivos. Revista Ingenieria de Construccion, 25(1), 121–141. https://doi.org/10.4067/s0718-50732010000100006; Camacol y Sena. (2015). Proyecto de investigación del sector de la construcción de edificación en Colombia .; Carvajal, H. (2013). EL DISEÑO DE EJECUCIÓN “Un planteamiento metodológico para la enseñanza de la planeación de obras a constructores, arquitectos e ingenieros civiles” (Primera edición). Universidad Nacional de Colombia - Sede Medellín.; Chiou, S. H., Xu, G., Yan, J., & Huang, C. Y. (2023). Regression Modeling for Recurrent Events Possibly with an Informative Terminal Event Using R Package reReg. Journal of Statistical Software, 105(5), 1–34. https://doi.org/10.18637/jss.v105.i05; CII. (2013a). Improving the Accuracy and Timeliness of Project Outcome Predictions.; CII. (2013 b). Cuatro lanzamientos para una previsibilidad temprana y precisa. Recurso de implementación 291-2 .; CIRIA. (2013). Implementación de Lean en la construcción: descripción general de las guías CIRIA y una breve introducción a Lean .; Codina, L. (2022). Revisiones de la literatura y cómo llevarlas a cabo con garantías: systematic reviews y SALSA Framework. https://www.lluiscodina.com/revision-sistematica-salsa-framework/; Cohen, S. (2021). Chapter 5 - Dealing with data: strategies of preprocessing data. In S. Cohen (Ed.), Artificial Intelligence and Deep Learning in Pathology (pp. 77–92). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-67538-3.00005-1; Contreras, J. (2013). Aplicación de la herramienta time-lapse para la identificación y reducción de pérdidas en edificaciones con estructura en concreto; Cooke-Davies, T. (2011). Aspectos de complejidad: Gestión de Proyectos en un mundo complejo (Primera). Instituto de manejo proyectos.; Corlatti, L. (2021). Regression Models, Fantastic Beasts, and Where to Find Them: A Simple Tutorial for Ecologists Using R. Bioinformatics and Biology Insights, 15. https://doi.org/10.1177/11779322211051522; Creswell, J. (2013). Qualitative Inquary & Research Design (V. Knight, Ed.; 3rd ed., Vol. 3). Sage.; Datta, S. D., Islam, M., Rahman Sobuz, Md. H., Ahmed, S., & Kar, M. (2024). Artificial intelligence and machine learning applications in the project lifecycle of the construction industry: A comprehensive review. Heliyon, 10(5). https://doi.org/10.1016/j.heliyon.2024.e26888; Dave, B., Koskela, L., & Kiviniemi, A. (2013). Implementing Lean in construction. Assets.Highways.Gov.Uk, 44+29-44+29. http://assets.highways.gov.uk/specialist-information/knowledge-compendium/2011-13-knowledge-programme/Lean and the Sustainability Agenda.pdf; Dayal, V. (2020). Graphs for Time Series. In V. Dayal (Ed.), Quantitative Economics with R: A Data Science Approach (pp. 259–271). Springer Singapore. https://doi.org/10.1007/978-981-15-2035-8_13; De Carvalho Servia, M. Á., & del Rio Chanona, E. A. (2023). Model Structure Identification. In D. Zhang & E. A. del Río Chanona (Eds.), Machine Learning and Hybrid Modelling for Reaction Engineering: Theory and Applications (Vol. 26, p. 0). Royal Society of Chemistry. https://doi.org/10.1039/BK9781837670178-00085; Denzin, N. K., & Lincoln, Y. S. (2005). The Sage handbook of qualitative Research; Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. North American Chapter of the Association for Computational Linguistics. https://api.semanticscholar.org/CorpusID:52967399; Diaz, M. (2019). MEDIDAS ESTADÌSTICAS BIVARIANTES. https://www.goconqr.com/mapamental/17124557/medidas-estadisticas-bivariantes; Duarte, N., & Pinilla, J. J. (2014). Razón de costo-efectividad de la implementación de la metodología BIM y la metodología tradicional en la planeación y control de un proyecto de construcción de vivienda en Colombia. Pontificia Universidad Javeriana; Echeverry, J., & Giraldo, M. (2012). Mejoramiento de Procesos Constructivos de una Edificación a Partir de Simulación Digital y Videos Time Lapse.; Elhilbawi, H., Eldawlatly, S., & Mahdi, H. (2021). The Importance of Discretization Methods in Machine Learning Applications: A Case Study of Predicting ICU Mortality. In A.-E. Hassanien, K.-C. Chang, & T. Mincong (Eds.), Advanced Machine Learning Technologies and Applications (pp. 214–224). Springer International Publishing.; Elsahly, O. M., Ahmed, S., & Abdelfatah, A. (2023). Systematic Review of the Time-Cost Optimization Models in Construction Management. In Sustainability (Switzerland) (Vol. 15, Issue 6). MDPI. https://doi.org/10.3390/su15065578; Ensign, P. C. (2009). Construction of Variables. In P. C. Ensign (Ed.), Knowledge Sharing among Scientists: Why Reputation Matters for R&D in Multinational Firms (pp. 63–93). Palgrave Macmillan US. https://doi.org/10.1057/9780230617131_4; Fadjar, A., Nirmalawati, N., & Hidayat, N. (2022). Estimating Project Completion Time with Monte Carlo Simulation. REKONSTRUKSI TADULAKO: Civil Engineering Journal on Research and Development, 3(2), 21–26. https://doi.org/10.22487/renstra.v3i2.448; Faraji, A., Rashidi, M., Perera, S., & Samali, B. (2022). Applicability-Compatibility Analysis of PMBOK Seventh Edition from the Perspective of the Construction Industry Distinctive Peculiarities. Buildings, 12(2). https://doi.org/10.3390/buildings12020210; Faraway, J. J. (2016). Does data splitting improve prediction? Statistics and Computing, 26(1), 49–60. https://doi.org/10.1007/s11222-014-9522-9; Fleming, Q. W., & Koppelman, J. M. (2016). Earned Value Project Management (Fourth Edition). Project Management Institute. https://books.google.com.co/books?id=yOSuDgAAQBAJ; Frącz, P., Dąbrowski, I., Wotzka, D., Zmarzły, D., & Mach, Ł. (2023). Identification of Differences in the Seasonality of the Developer and Individual Housing Market as a Basis for Its Sustainable Development. Buildings, 13(2). https://doi.org/10.3390/buildings13020316; Gaitán, J. & Gómez-Cabrera, A. (2014). Uso de la metodología BRIM (Bridge Information Modeling) como herramienta para la planificación de la construcción de un puente de concreto en Colombia. Ciencia e Ingeniería Neogranadina. 24. 145. 10.18359/rcin.398.; Gantt, HL (1910). Trabajo, salario y beneficio. Nuevo. En The Engineering Magacine (Ed.), Biblioteca de Gestión Industrial (Segunda Edi). http://www.nber.org/papers/w16019; Gell-Mann, M. (1995). El quark y el jaguar: Aventuras en lo simple y lo complejo (Tusquets, Ed.).; Geng, S. (2024). Analysis of the Different Statistical Metrics in Machine Learning. Highlights in Science, Engineering and Technology, 88, 350–356. https://doi.org/10.54097/jhq3tv19; Gerasymenko, V., Protsenko, О., Bielykh, I., & Tymchenko, I. (2023). Implementation of Artificial Neural Networks and Fuzzy Logic in Civil and Industrial Construction. https://doi.org/10.21203/rs.3.rs-3669381/v1; Ghosh, S., & Dasgupta, R. (2022). Model Selection for Machine Learning. In S. Ghosh & R. Dasgupta (Eds.), Machine Learning in Biological Sciences: Updates and Future Prospects (pp. 51–57). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-8881-2_5; Gómez-Cabrera, A. (2013). Implementación de metodologías BIM en el entorno Colombiano.; Gómez-Cabrera, A. Pulido, N. & Díaz, J. (2015). Simulación de eventos discretos y líneas de balance, aplicadas al mejoramiento del proceso constructivo de la cimentación de un edificio. Ingeniería y Ciencia. 11. 157-175. 10.17230/ingciencia.11.21.8.; González, Jaime & Suarez, Sandra.(2017).Evaluación de la influencia del pmi® sobre la triple restricción de un proyecto de consultoría de infraestructura: caso de estudio basado en diseños de obras civiles para servicio público domiciliario en Bogotá.; González-Cruz, M.-C., Ballesteros-Pérez, P., Lucko, G., & Zhang, J.-X. (2022). Critical Duration Index: Anticipating Project Delays from Deterministic Schedule Information. Journal of Construction Engineering and Management, 148(11), 4022121. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002387; Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. www.deeplearningbook.org; Government Accountability Office. (2015). Guía de evaluación de cronogramas: mejores prácticas para cronogramas de proyectos.; Granados, Alejandra & Ivonne, Perez.(2014).Simulación Para El Mejoramiento De La Logística De Materiales y Equipos En Un Proyecto De Edificación; Grau, D., Back, WE y Aguilar, GM (2013). Cuatro lanzamientos para una previsibilidad temprana y precisa. Recurso de implementación , 291–292.; Grau, D., y Back, NOSOTROS (2015). Índice de previsibilidad: métrica novedosa para evaluar el costo y el rendimiento del cronograma. Revista de Ingeniería y Gestión de la Construcción , 141 (12), 1–8. https://doi.org/10.1061/(asce)co.1943-7862.0000994; Gupta, M., Rajpoot, V., Chaturvedi, A., & Agrawal, R. (2022). A detailed Study of different Clustering Algorithms in Data Mining. 2022 2nd International Conference on Intelligent Technologies (CONIT), 1–6. https://doi.org/10.1109/CONIT55038.2022.9848233; Gupta, P., & Bagchi, A. (2024). Machine Learning. In P. Gupta & A. Bagchi (Eds.), Essentials of Python for Artificial Intelligence and Machine Learning (pp. 283–448). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-43725-0_8; Hamdan, Samer Bu et al. (2015). ‘A BIM-based simulation model for inventory management in panelized construction’. In: Proceedings of the International Symposium on Automation and Robotics in Construction. Vol. 32. IAARC Publications, p. 1.; Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics).; Heikki, Halttula., Harri, Haapasalo., Risto, Silvola. (2020). 3. Managing data flows in infrastructure projects: the lifecycle process model. Journal of Information; Hendradewa, A. (2019). Schedule Risk Analysis by Different Phases of Construction Project Using CPM-PERT and Monte-Carlo Simulation. IOP Conference Series: Materials Science and Engineering, 528, 012035. https://doi.org/10.1088/1757-899X/528/1/012035; Hermano, V., & Martín-Cruz, N. (2019). Expanding the Knowledge on Project Management Standards: A Look into the PMBOK® with Dynamic Lenses. 19–34. https://doi.org/10.1007/978-3-319-92273-7_2; Hernández R, Fernández C, Baptista P. Metodología de la Investigación. México: McGraw-Hill; 1998:9-13.; Hillson, D., & Simon, P. (2012). Practical project risk management : the ATOM methodology (Second edition). Management Concepts Press. http://site.ebrary.com/id/10850167; Ho, V. L., Ho, N., & Pedersen, T. B. (2023). Mining Seasonal Temporal Patterns in Time Series. 2023 IEEE 39th International Conference on Data Engineering (ICDE), 2249–2261. https://doi.org/10.1109/ICDE55515.2023.00174; Huang, L., Qin, J., Zhou, Y., Zhu, F., Liu, L., & Shao, L. (2023). Normalization Techniques in Training DNNs: Methodology, Analysis and Application. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(8), 10173–10196. https://doi.org/10.1109/TPAMI.2023.3250241; Huang, Y., Shi, Q., Zuo, J., Pena-Mora, F., & Chen, J. (2021). Research Status and Challenges of Data-Driven Construction Project Management in the Big Data Context. In Advances in Civil Engineering (Vol. 2021). Hindawi Limited. https://doi.org/10.1155/2021/6674980; Huaping, X. (2024). Optimization Control of Construction Project Management Project Based on Deep Learning Algorithm. https://doi.org/10.1109/APCIT62007.2024.10673593; IBM. (2024). ¿Qué es la simulación Montecarlo? https://www.ibm.com/es-es/topics/monte-carlo-simulation; IBM. (nd). Sistema de estadísticas IBM SPSS . Recuperado el 11 de agosto de 2023 de https://www.ibm.com/docs/es/spss-statistics/saas?topic=regression-nonlinear; Industrial Conconcreto S.A.S. (2019). Declaración Ambiental de Producto ARENA, TRITURADO 1” Y 3/8”.; Izquierdo, Luis R.; Galán, José M.;Santos, José I.;del Olmo, Ricardo (2008). Modelado de sistemas complejos mediante simulación basada en agentes y mediante dinámica de sistemas; Jaafari, A., Pazhouhan, I. y Bettinger, P. (2021). Modelado de aprendizaje automático de los costos de construcción de caminos forestales. Bosques , 12 (9). https://doi.org/10.3390/f12091169; Jang, J.-S., Sun, C.-T., & Mizutani, E. (1997). In Neuro-Fuzzy and Soft Computing (Vol. 34).; Jie, D., & Wei, J. (2022). Estimating Construction Project Duration and Costs upon Completion Using Monte Carlo Simulations and Improved Earned Value Management. Buildings, 12(12). https://doi.org/10.3390/buildings12122173; Kadang, T., Hidayah, P. W., Simarmata, K., Putri, N. A., & Krisvinus, K. (2024a). Analysis of Consultant Building Project Management Using the CPM (Critical Path Method). Journal of Business Management and Economic Development, 2(03), 1169–1179. https://doi.org/10.59653/jbmed.v2i03.891; Kalita, J. K., Bhattacharyya, D. K., & Roy, S. (2024). 3 - Data preparation. In J. K. Kalita, D. K. Bhattacharyya, & S. Roy (Eds.), Fundamentals of Data Science (pp. 31–46). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-32-391778-0.00010-7; Kamandang, Z. R. (2023). Risk Assessment of Construction Project Scheduling. In B. S. and S. M. and S. A. Kristiawan Stefanus Adi and Gan (Ed.), Proceedings of the 5th International Conference on Rehabilitation and Maintenance in Civil Engineering (pp. 863–872). Springer Nature Singapore; Kedir, N., Siraj, N., & Fayek, A. R. (2023). Application of System Dynamics in Construction Engineering and Management: Content Analysis and Systematic Literature Review. Advances in Civil Engineering, 2023(1), 1058063. https://doi.org/https://doi.org/10.1155/2023/1058063; Kenley, R. y Seppänen, O. (2009). Gestión de proyectos de construcción basada en la ubicación: parte de una nueva tipología de metodologías de programación de proyectos. En actas - Conferencia de simulación de invierno . https://doi.org/10.1109/WSC.2009.5429669; Kerzner, H. (2022). Gestión de proyectos de innovación: métodos, estudios de casos y herramientas para la gestión de proyectos de innovación . Wiley. https://books.google.com.co/books?id=cWedEAAAQBAJ; Kerzner, H. R. (2013). Project management: a systems approach to planning, scheduling, and controlling. John Wiley & Sons.; Klir, G.J. and Yuan, B. (1995) Fuzzy Sets and Fuzzy Logic, Theory and Applications. Prentice Hall Inc., Upper Saddle River.; Kloppenborg, T. J., Anantatmula, V. S., & Wells, K. N. (2023). Contemporary Project Management: Organize, Lead, Plan, Perform. Cengage. https://books.google.com.co/books?id=XwU90AEACAAJ; Koren, M., Peretz, O., & Koren, O. (2023). Feature Engineering Procedure for Information Enrichment. 2023 International Conference on Advanced Enterprise Information System (AEIS), 28–34. https://doi.org/10.1109/AEIS61544.2023.00012; Koreshi, Z. U. (2022). Chapter 7 - The Monte Carlo method. In Z. U. Koreshi (Ed.), Nuclear Engineering Mathematical Modeling and Simulation (pp. 305–336). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-90618-0.00007-7; Koskela, L., Ferrantelli, A., Niiranen, J., Pikas, E. y Dave, B. (2019). Explicación epistemológica de la construcción Lean. Revista de Ingeniería y Gestión de la Construcción , 145 (2), 1–10. https://doi.org/10.1061/(asce)co.1943-7862.0001597; Koskela, LJ, Ballard, G. y Tommelein, I. (2002). Los fundamentos de la construcción lean . https://www.researchgate.net/publication/28578914; Kostrzewa-Demczuk, P. (2024). Construction Schedule versus Various Constraints and Risks. Applied Sciences, 14(1). https://doi.org/10.3390/app14010196; Koulinas, G. K., Sidas, K. A., & Koulouriotis, D. E. (2023). Project Makespan Prediction and Risk Analysis Using Simulation: Application in a Seawater Desalination Plant Construction Project. In N. F. Matsatsinis, F. C. Kitsios, M. A. Madas, & M. I. Kamariotou (Eds.), Operational Research in the Era of Digital Transformation and Business Analytics (pp. 149–157). Springer International Publishing.; Ladnykh, I. A., & Ibadov, N. (2024). Estimating the Duration of Construction Works Using Fuzzy Modeling to Assess the Impact of Risk Factors. Applied Sciences, 14(9). https://doi.org/10.3390/app14093847; Law, Averill M and W David Kelton (2000). Simulation modeling and analysis. Vol. 3. McGraw-Hill New York.; Liu, B. D., Yang, B., Han, Y., Xiao, J. Z., & Dong, M. S. (2023). Establishment and Application of Multi-agent Simulation System Based on On-Site Construction Performers. In G. Geng, X. Qian, L. H. Poh, & S. D. Pang (Eds.), Proceedings of The 17th East Asian-Pacific Conference on Structural Engineering and Construction, 2022 (pp. 284–304). Springer Nature Singapore.; Liu, M., Le, Y., Hu, Y., Xia, B., Skitmore, M., & Gao, X. (2019). System dynamics modeling for construction management research: critical review and future trends. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 25, 1–12. https://doi.org/10.3846/jcem.2019.10518; Liu, W., Meng, Q., Zhi, H., Li, Z., & Hu, X. (2024). A REVIEW OF AGENT-BASED MODELING IN CONSTRUCTION MANAGEMENT: AN ANALYTICAL FRAMEWORK BASED ON MULTIPLE OBJECTIVES. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT, 30, 200–219. https://doi.org/10.3846/jcem.2024.20949; Lukman, S., Nazaruddin, Y., ai, bo, He, R., & Joelianto, E. (2019). Estimation of Received Signal Power for 5G-Railway Communication Systems. https://doi.org/10.1109/ICEVT48285.2019.8994017; Madrakhimov, S., Makharov, K., & Lolaev, M. (2021). Data preprocessing on input. AIP Conference Proceedings, 2365(1), 030003. https://doi.org/10.1063/5.0058132; Mahesh Babu, P., Pedro, L., & GhaffarianHoseini, A. (2024). Construction projects: interactions of the causes of delays. Smart and Sustainable Built Environment. https://doi.org/10.1108/SASBE-11-2023-0334; Mansoor, A., Liu, S., Ali, G. M., Bouferguene, A., & Al-Hussein, M. (2022). Scientometric analysis and critical review on the application of deep learning in the construction industry. Canadian Journal of Civil Engineering, 50(4), 253–269. https://doi.org/10.1139/cjce-2022-0379; Marinelli, M., & Janardhanan, M. (2023). The Value Proposition of Machine Learning in Construction Management: Exploring the Trends in Construction 4.0 and Beyond (pp. 247–272). https://doi.org/10.4018/978-1-6684-5643-9.ch010; Marsh, ER (1975). El armograma de Carol Adamiecki. Revista de la Academia de Gestión , 18 (2), 358–364. https://doi.org/10.2307/255537; Mohagheghi, V., Mousavi, S. M., & Vahdani, B. (2017). Analyzing project cash flow by a new interval type-2 fuzzy model with an application to construction industry. Neural Computing and Applications, 28(11), 3393–3411. https://doi.org/10.1007/s00521-016-2235-6; Mohamed, HH, Ibrahim, AH y Soliman, AA (2021). Hacia la reducción del tiempo de entrega de proyectos de construcción con recursos limitados. Sostenibilidad (Suiza) , 13 (19), 1–17. https://doi.org/10.3390/su1; Morín, E. (1990). Introducción al Pensamiento Complejo (Gedisa, Ed.; 10ª, 2011ª ed.).; Mosquera, R., Parra Osorio, L., & Castrillón, O. (2016). Metodología para la Predicción del Grado de Riesgo Psicosocial en Docentes de Colegios Colombianos utilizando Técnicas de Minería de Datos. Información Tecnológica, 27, 259–272. https://doi.org/10.4067/S0718-07642016000600026; Mossman, A. (2020). Construction is Broken. In Lean construction blog (Issue 2003, pp. 1–18). https://leanconstructionblog.com/construction-is-broken.html; Mossman, A., Ballard, G., & Pasquire, & C. (2013). Lean Project Delivery - Innovation in Integrated Design & Delivery. The Design Manager’s Handbook, January, 165–190. https://doi.org/10.1002/9781118486184.app1; Mykytyuk, P., Brych, V., Manzhula, V., Borysiak, O., Sachenko, A., Banasik, A., Kempa, W. M., Mykytyuk, Y., Czupryna-Nowak, A., & Lebid, I. (2024). Efficient Management of Material Resources in Low-Carbon Construction. Energies, 17(3). https://doi.org/10.3390/en17030575; Nascimento, J., Silva, J., Cupertino Bernardes, R., Costa, G., & Emiliano, P. (2024). Statistical data transformation in agrarian sciences for variance analysis: a systematic review. F1000Research, 13, 459. https://doi.org/10.12688/f1000research.144805.2; Neethidevan, V., & Anand, S. (2022). Implementing and evaluating the performance of various Machine Learning algorithms with different datasets. International Journal of Health Sciences, 4684–4694. https://doi.org/10.53730/ijhs.v6nS1.5890; Ogunbayo, B. F., Ramabodu, M. S., Adewale, B. A., & Ogundipe, K. E. (2024). Strategies for Successful Monitoring and Evaluation Practices in Construction Projects. 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), 1–7. https://doi.org/10.1109/SEB4SDG60871.2024.10630137; Olivieri, H., Seppänen, O. y Denis Granja, A. (2018). Mejorar el flujo de trabajo y el uso de recursos en los cronogramas de construcción a través del sistema de gestión basado en la ubicación (LBMS). Gestión y economía de la construcción , 36 (2), 109–124. https://doi.org/10.1080/01446193.2017.1410561; Olubajo, O., Hughes, W., & Schweber, L. (2019). Construction Programmes and Programming: A Critical Review. In I. Lill & E. Witt (Eds.), 10th Nordic Conference on Construction Economics and Organization (Vol. 2, pp. 189–194). Emerald Publishing Limited. https://doi.org/10.1108/S2516-285320190000002045; Orozco, A. (2012). Estos nuevos escenarios teóricos, se plantearon variando la cantidad y tipos de recursos.; Ortiz-Pimiento, N. R. (2020). Modelo de solución al problema de programación de proyectos de desarrollo de nuevos productos con recursos restringidos, inserción de tareas y duración aleatoria Solution model to the resource constrained project scheduling problem RCPSP with insertion task and random duration.; Osorio-Sandoval, C. A. (2021). BIM-based construction simulation modelling.; Parhizkar, T. (2022). Simulation-based Probabilistic Risk Assessment.; Pascual, J. (2021, July 17). Regresión Logística para clasificadores de Machine Learning I: la curva de regresión logística. https://analisisyprogramacionoop.blogspot.com/2021/07/regresion-logistica-machine-learning.html; Paterson, SJC (2017). Desarrollo de un modelo de puntuación utilizando las mejores prácticas de evaluación de cronogramas de la GAO: vol. VI . www.pmworldlibrary.net; Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., & Louppe, G. (2012). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12.; Pellerin, R. y Perrier, N. (2019). Una revisión de métodos, técnicas y herramientas para la planificación y control de proyectos. Revista internacional de investigación de producción , 57 (7), 2160–2178. https://doi.org/10.1080/00207543.2018.1524168; Peña, D. (2001). «Deducción de distribuciones: el método de Monte Carlo», en Fundamentos de Estadística. Madrid: Alianza Editorial. ISBN 84-206-8696-4.; Perez-Cruz, F., Van Vaerenbergh, S., Murillo-Fuentes, J., Lázaro-Gredilla, M., & Santamaria, I. (2013). Gaussian Processes for Nonlinear Signal Processing: An Overview of Recent Advances. Signal Processing Magazine, IEEE, 30, 40–50. https://doi.org/10.1109/MSP.2013.2250352; Pilnik, N., Pospelov, I. G., & Stankevich, I. (2015). On the Use of Dummy Variables to Solve the Problem of Seasonality in General Equilibrium Models. HSE Economic Journal, 19, 249–270. https://api.semanticscholar.org/CorpusID:119708184; Plebankiewicz, E., Zima, K., & Wieczorek, D. (2021). Modelling of time, cost and risk of construction with using fuzzy logic. Journal of Civil Engineering and Management, 27, 412–426. https://doi.org/10.3846/jcem.2021.15255; PMI. (2016). Extensión de construcción de la guía PMBOK® (Inc. Project Management Institute, Ed.; 2ª ed.).; PMI. (2017). Guía de los fundamentos para la dirección de proyectos (Guía del PMBOK) (Inc. Project Management Institute, Ed.; Sexta Edic). Project Management Institute, Inc.; PMI. (2021). A guide to the project management body of knowledge (PMBOK guide) (Seventh ed). Project Management Institute.; Popîrlan, C., & Popîrlan, C.-I. (2023). New Techniques in Numerical Analysis for Artificial Intelligence. 2023 25th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 76–81. https://doi.org/10.1109/SYNASC61333.2023.00017; Portland Cement Association. (2014). Declaración Ambiental de Producto Cementos adicionados (según ASTM C595, ASTM C1157, AASHTOM240, o CSA A3001). www.astm.org; Poslavskaya, E., & Korolev, A. (2023). Encoding categorical data: Is there yet anything “hotter” than one-hot encoding? https://arxiv.org/abs/2312.16930; Rafieian, B., Hermosilla, P., & Vázquez, P.-P. (2023). Improving Dimensionality Reduction Projections for Data Visualization. Applied Sciences, 13(17). https://doi.org/10.3390/app13179967; Rahman, A. U., Alam, S. M., Dallasega, P., Marengo, E., & Nutt, W. (2020). Increasing Control in Construction Processes: The Role of Digitalization. Lecture Notes in Business Information Processing, 397(May), 263–275. https://doi.org/10.1007/978-3-030-66498-5_20; Rao, S., & Moon, K. (2021). Literature Search for Systematic Reviews. In S. Patole (Ed.), Principles and Practice of Systematic Reviews and Meta-Analysis (pp. 11–31). Springer International Publishing. https://doi.org/10.1007/978-3-030-71921-0_2; Ravitch, S., & Carl, N. M. (2016). Qualitative Research: Bridging the Conceptual, Theoretical, and Methodological. Thousand Oaks, CA: Sage Publications.; Remington, K., & Pollack, J. (2016). Tools for Complex Projects (Vol. 1). Routledge.; Restrepo, A. F., Rúa, C. A., & Arias, Y. P. (2024). OPTIMIZATION IN THE DESIGN OF CONCRETE MIXES FOR THE SUSTAINABILITY OF A SOUTH AMERICAN METROPOLITAN AREA BY IMPLEMENTING MATERIAL LIFE CYCLE ANALYSIS. Habitat Sustentable, 14(1), 44–65. https://doi.org/10.22320/07190700.2024.14.01.04; Rios Quiroz, M. F. (2018). Propuesta de mejora en la productividad de mano de obra y equipos del proceso ejecución de obra del área de operaciones en empresa especializada en construcciones civiles de instalación del servicio de agua en sistemas de irrigación. Universidad Peruana de Ciencias Aplicadas (UPC). http://hdl.handle.net/10757/622894; Rodríguez-Ponce, R. (2022). MAC-based Artificial Neural network for voice command recognition. Revista Del Diseño Innovativo, 19–25. https://doi.org/10.35429/JID.2022.15.6.19.25; Rojas, M. (2017).Guía de gestión de la calidad para los proyectos constructivos de la empresa Navarro y Avilés S.A.; Rúa Machado, C. A., Arboleda López, S. A., & Serna Machado, N. (2022). Pilotos para la transferencia de conocimiento entorno a la digitalización en la construcción en Medellín, Colombia. Revista M, 19. https://doi.org/10.15332/rev.m.v19i1.2833; Rúa-Machado, C. A. (2022). Gestión de la construcción para una era digital. Tecnología, transformación y cooperación como retos del ejercicio pedagógico en la gestión del diseño y la construcción de edificios. In Universidad Nacional de Colombia Sede Medellín (Ed.), Construcción Temas y reflexiones (pp. 121–155). Facultad de Arquitectura.; Rudeli, N. (2019). Proyectos de construcción: determinación de causas principales de retraso y desarrollo de modelos estadísticos para la mejora.; Rudeli, N., Santilli, A., Puente, I., & Viles, E. (2017). Statistical Model for Schedule Prediction: Validation in a Housing-Cooperative Construction Database. Journal of Construction Engineering and Management, 143(11). https://doi.org/10.1061/(asce)co.1943-7862.0001396; Rudeli, N., Viles, E. y Santilli, A. (2018). Una herramienta de gestión de la construcción: determinación de los comportamientos típicos del cronograma de un proyecto mediante el análisis de conglomerados. Academia Mundial de Ciencia, Ingeniería y Tecnología Revista Internacional de Ingeniería Civil y Ambiental Vol:12, No:5, 2018 , 12 (5), 485–492. https://doi.org/10.1999/1307-6892/10008879; Rudeli, Natalia. (2019). Proyectos de construcción: determinación de causas principales de retraso y desarrollo de modelos estadísticos para la mejora.; Russell, S.J. and Norvig, P. (2016) Artificial Intelligence: A Modern Approach. Pearson Education Limited, Malaysia.; Sawhney, A., Reley, M. e Irizarry, J. (2020). Construcción 4.0. Una plataforma de innovación para el entorno construido. En Routledge . Routledge es una marca de Taylor & Francis Group, una empresa informa ©.; Senses, S., & Kumral, M. (2024). Trade-off between time and cost in project planning: a simulation-based optimization approach. SIMULATION, 100(2), 127–143. https://doi.org/10.1177/00375497231196889; S. y McCarthy, D. (2019). Causas de retrasos y herramientas digitales emergentes: un modelo novedoso de análisis de retrasos, que incluye la entrega integrada de proyectos y el PMBOK. En edificios (Vol. 9, Número 9). https://doi.org/10.3390/buildings9090191; Serna-Gutiérrez, E. (2023). Propuesta metodológica para la planificación y control de proyectos de construcción basada en un complemento informático. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/84031; Shubham, S., Saloni, S., & Sidra-Tul-Muntaha. (2023). Optimizing construction processes and improving building performance through data engineering and computation. World Journal of Advanced Research and Reviews, 18, 390–398. https://doi.org/10.30574/wjarr.2023.18.1.0614; Singh, U. P. (2023). Decision Making and Predictive Analysis for Real Time Data. In Advances in Data Science and Analytics (pp. 21–38). https://doi.org/https://doi.org/10.1002/9781119792826.ch2; Sreram, P. K., & Thomas, A. (2023). A Value Stream Mapping-Based Discrete Event Simulation Template For Lean Off-Site Construction Activities. 2023 Winter Simulation Conference (WSC), 2768–2776. https://doi.org/10.1109/WSC60868.2023.10407723; Stake, R. (1999). Investigación con estudios de caso. In Mejía Lequerica (Ed.), Investigacion con estudios de casos (Ediciones Morata, Vol. 2). Sage Publication. https://www.redalyc.org/pdf/2810/281021548015.pdf; Surya-Prakash, S., Joseph, S. M., Kishore, D., & Yamini-Devi, Y. (2023). Stochastic Computing Solutions Challenges and Application. Advances in Transdisciplinary Engineering, 32, 71–77. https://doi.org/10.3233/ATDE221239; Szeliski, R. (2010) Computer Vision: Algorithms and Applications. Springer, London, UK.; SZÓSTAK, M. (2023). Forecasting the Course of Cumulative Cost Curves for Different Construction Projects. Civil and Environmental Engineering Reports, 33(1), 71–89. https://doi.org/10.59440/ceer-2023-0005; Taghaddos, Hosein (2010). ‘Developing a generic resource allocation framework for construction simulation’. Doctoral dissertation. University of Alberta.; Tan, J., Yang, J., Wu, S., Chen, G., & Zhao, J. (2021). A critical look at the current train/test split in machine learning. https://doi.org/10.48550/arXiv.2106.04525; Templ, M. (2023). Enhancing Precision in Large-Scale Data Analysis: An Innovative Robust Imputation Algorithm for Managing Outliers and Missing Values. Mathematics, 11(12). https://doi.org/10.3390/math11122729; Theingi Aung, Liana, SR, Htet, A. y Amiya Bhaumik. (2023). Uso del aprendizaje automático para predecir sobrecostos en proyectos de construcción. Revista de Innovación Tecnológica y Energía , 2 (2), 1–7. https://doi.org/10.56556/jtie.v2i2.511; Tsegaye, M. (2019). Procedimiento Eficiente para la Programación de Proyectos de Construcción en la Fase de Planificación. Revista Báltica de Economía Inmobiliaria y Gestión de la Construcción , 7 , 60–80. https://doi.org/10.2478/bjreecm-2019-0004; Vanhoucke, M. (2012). Gestión de proyectos con programación dinámica (págs. 11 a 35). https://doi.org/10.1007/978-3-642-25175-7_2; Vanhoucke, M. (2013). Gestión de proyectos con programación dinámica. En Gestión de Proyectos con Programación Dinámica . https://doi.org/10.1007/978-3-642-40438-2; Velandia, J. (2022). Estudio de rendimientos y consumos de la mano de obra en actividades de cimentación en la construcción de vivienda unifamiliar en el municipio de Tame, departamento de Arauca. Universidad Nacional de Colombia.; Velásquez, J. D. (2015). Una guía corta para escribir revisiones sistemáticas de literatura parte 3. DYNA (Colombia), 82(189), 9–12. https://doi.org/10.15446/dyna.v82n189.48931; Venkatesh, K. A., Mishra, D., & Manimozhi, T. (2023). 9 - Model selection and regularization. In T. Goswami & G. R. Sinha (Eds.), Statistical Modeling in Machine Learning (pp. 159–178). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-91776-6.24001-3; Wang, Shihyi & Halpin, Daniel. (2005). Simulation experiment for improving construction processes. Proceedings - Winter Simulation Conference. 2. 1252- 1259 vol.2. 10.1109/WSC.2004.1371457.; WEF, Rodríguez de Almeida, P., Solas, M., Renz, A., Bühler, MM, Gerbert, P., Castagnino, S. y Rothballer, C. (2016). Dar forma al futuro de la construcción: un gran avance en la mentalidad y la tecnología (Foro Económico Mundial). https://doi.org/10.13140/RG.2.2.21381.37605; WEF. (2016). Construction A Breakthrough in Mindset and Technology. In World Economic Forum (WEF) (Issue May). https://www.bcgperspectives.com/Images/Shaping_the_Future_of_Construction_may_2016.pdf; WEF. (2020). El Informe Global de Riesgos 2020 . www.weforum.org; Wesz, J. G. B., Formoso, C. T., & Tzortzopoulos, P. (2018). Planning and controlling design in engineered-to-order prefabricated building systems. Engineering, Construction and Architectural Management, 25(2), 134–152. https://doi.org/10.1108/ECAM-02-2016-0045; White, R. W., & Hassan Awadallah, A. (2019). Task Duration Estimation. Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, 636–644. https://doi.org/10.1145/3289600.3290997; Whiting, N. W., Roy, C. J., Duque, E., Lawrence, S., & Oberkampf, W. L. (2023). Assessment of Model Validation, Calibration, and Prediction Approaches in the Presence of Uncertainty. Journal of Verification, Validation and Uncertainty Quantification, 8(1). https://doi.org/10.1115/1.4056285; Witteman, H P J (1997). Styles of Learning and Regulation in an Interactive Learning Group System, Nijgh & Van Ditmar; Wu, CL y Chau, KW (2013). Predicción de series temporales de precipitaciones mediante métodos modulares de computación blanda. Aplicaciones de ingeniería de la inteligencia artificial , 26 (3), 1–20.; Wu, L., AbouRizk, S., & Li, K. (2022). System Dynamics Modeling of the Construction Supply Chain in Industrial Modularized Construction Projects. 2022 Winter Simulation Conference (WSC), 2409–2420. https://doi.org/10.1109/WSC57314.2022.10015329; Xing-xia, W., & Jian-wen, H. (2009). Risk Analysis of Construction Schedule Based on Monte Carlo Simulation. https://doi.org/10.1109/CNMT.2009.5374816; Yahaya, B. H., Ahmed, A. A., & Anikajogun, B. O. (2023). Economic Sustainability of Building and Construction Projects Based on Artificial Intelligence Techniques. The Asian Review of Civil Engineering, 12(1), 34–40. https://doi.org/10.51983/tarce-2023.12.1.3677; Yazıcıoğlu, E. y Kanoglu, A. (2022). Un modelo de adquisición de proyectos que permite la competencia por concepto de diseño mediante la integración de herramientas de evaluación basada en el desempeño (PBA), estimación basada en procesos (PBE) y modelado de redes de costos (CNM) . 12 , 65–92. https://doi.org/10.14424/ijcscm120222-65-92; Yin, M., Iannelli, A., & Smith, R. S. (2022). Data-Driven Prediction with Stochastic Data: Confidence Regions and Minimum Mean-Squared Error Estimates. 2022 European Control Conference (ECC), 853–858. https://doi.org/10.23919/ECC55457.2022.9838046; Yu, X., & Zuo, H. (2022). Intelligent Construction Optimization Control of Construction Project Schedule Based on the Fuzzy Logic Neural Network Algorithm. Mathematical Problems in Engineering, 2022, 1–11. https://doi.org/10.1155/2022/8111504; Yudistira, A., Nariswari, R., Arifin, S., Abdillah, A. A., Prasetyo, P., & Susyanto, N. (2024). Program Evaluation and Review Technique (PERT) Analysis to Predict Completion Time and Project Risk Using Discrete Event System Simulation Method. CommIT (Communication and Information Technology) Journal, 18, 67–76. https://doi.org/10.21512/commit.v18i1.8495; Zadeh, L.A. (1965) Fuzzy Sets. Information Control, 8, 338-353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X; Zargar, S. H., Sadeghi, J., & Brown, N. C. (2022). Agent-based modelling for early-stage optimization of spatial structures. International Journal of Architectural Computing, 21(1), 84–99. https://doi.org/10.1177/14780771221143493; Zeng, Z., & Gao, Y. (2024). Cost Control Management of Construction Projects Based on Fuzzy Logic and Auction Theory. IEEE Access, PP, 1. https://doi.org/10.1109/ACCESS.2024.3438291; Zhang, H. (2015). Discrete-Event Simulation for Estimating Emissions from Construction Processes. Journal of Management in Engineering, 31, 04014034. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000236; Zhang, Q. (2024). Building Engineering Cost Prediction Based On Deep Learning: Model Construction and Real - Time Optimization. Journal of Electrical Systems, 20, 151–164. https://doi.org/10.52783/jes.1887; Zhang, S., & Li, X. (2022). A comparative study of machine learning regression models for predicting construction duration. Journal of Asian Architecture and Building Engineering, 1–17. https://doi.org/10.1080/13467581.2023.2278887; Zhou, S., & Chen, Y. (2022). Explaining Covariance Structure: Principal Components. In Industrial Data Analytics for Diagnosis and Prognosis (pp. 61–80). John Wiley & Sons, Ltd. https://doi.org/https://doi.org/10.1002/9781119666271.ch4; Zhou, Y., Wang, X., Gosling, J., & Naim, M. (2023). The System Dynamics of Engineer-to-Order Construction Projects: Past, Present, and Future. Journal of Construction Engineering and Management, 149. https://doi.org/10.1061/JCEMD4.COENG-12926; Zowghi, M., Haghighi, M. y Zohouri, B. (2011). Enfoque de control de costos y cronogramas en un entorno difuso. Editor de la Academia de Ciencias Revista internacional de investigación y reseñas en ciencias de la información , 1 , 2046–6439.; Галина, Р., Honcharenko, T., Predun, K., Petrukha, N., Malykhina, O., & Khomenko, O. (2023). Using of Fuzzy Logic for Risk Assessment of Construction Enterprise Management System. https://doi.org/10.1109/SIST58284.2023.10223560; https://repositorio.unal.edu.co/handle/unal/88154; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
3
Autoři: Bermon Angarita, Leonardo
Témata: 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación, Ingeniería de software -- Administración -- Problemas, ejercicios, etc, Proceso de desarrollo de software, Desarrollo de software de aplicaciones, Medición de software, Software de entornos de trabajo, Lenguajes de modelado (Computación), Ingeniería de software -- Ciclo de vida -- Normas técnicas, Proceso de mejora continua -- Normas técnicas, Sistemas informáticos -- Gestión - - Problemas, Mejora de procesos, Metodología de desarrollo de software, Gestión de proyectos de software
Popis souboru: 647 páginas; application/pdf; application/epub+zip; image/png
Relation: Anton, C. y Anton, D. (2001). ISO 9000:2000 Survival Guide: 30 Minutes to Understanding the Process. aem Consulting Group.; Balzer, R. (1990). What we do and don’t know about software process. En Proceedings of the 6th International Software Process Workshop’Support for the Software Process’ (pp. 61-62). IEEE Computer Society. https://doi.ieeecomputersociety.org/10.1109/ ISPW.1990.659574; Boehm, B. (2006). A view of 20th and 21st century software engineering. En Proceedings of the 28th International Conference on Software Engineering (pp. 12-29). https://doi. org/10.1145/1134285.1134288; Boehm, B. W. y Turner, R. (2004). Balancing agility and discipline: A guide for the perplexed. Addison-Wesley.; Bourque, P. y Fairley, R. E. (eds.) (2014). Guide to the software engineering body of knowledge, version 3.0. ieee Computer Society. http://artemisa.unicauca.edu.co/~cardila/ IS__SWEBOKv3.pdf; Brookse, F. (1986). No silver bullet: Essence and accident in software engineering. En Proceedings of the ifip 10th World Computing Conference, Dublin, Ireland (pp. 1069-1076).; Cignoni, G. A. (2000). Software process technologies and the competitiveness challenge. En R. Conradi (eds.), Software Process Technology. ewspt 2000. Lecture Notes in Computer Science (pp. 151-155). Springer. https://doi.org/10.1007/BFb0095024; Clarke, P. y O’Connor, R. V. (2012). The situational factors that affect the software development process: Towards a comprehensive reference framework. Information and Software Technology, 54(5), 433-447. https://doi.org/10.1016/j.infsof.2011.12.003; Conway, M. E. (1968). How do committees invent? Datamation, 14(4), 28-31. https:// hashingit.com/elements/research-resources/1968-04-committees.pdf; Emami, M. S., Ithnin, N. B. y Ibrahim, O. (2010). Software process engineering: Strengths, weaknesses, opportunities and threats. En INC2010: 6th International Conference on Networked Computing (pp. 1-5). IEEE.; Erdogmus, H. (2008). Seven essentials of software process. En Proceedings of the 1st International Workshop on Business Impact of Process Improvements (pp. 39-40). https://doi. org/10.1145/1370837.1370846; Estublier, J. (2005). Software are processes too. En M. Li, B. Boehm y L. J. Osterweil (eds.), Software Process Workshop (pp. 25-34). Springer. https://doi.org/10.1007/11608035_3; Fairley, R. E. (2009). Managing and leading software projects. John Wiley & Sons.; Feiler, P. H. y Humphrey, W. S. (1993). Software process development and enactment: Concepts and definitions. En Proceedings of the Second International Conference on the Software Process-Continuous Software Process Improvement (pp. 28-40). ieee. https:// doi.org/10.1109/SPCON.1993.236824; Finkelstein, A., Kramer, J. y Nuseibeh, B. (1994). Software process modelling and technology. Research Studies Press.; Florac, W., Park, R. y Carleton, A. (1997). Practical software measurement: Measuring for process management and improvement. cmu/sei-97-hb-003. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu.edu/documents/ 1627/1997_002_001_16529.pdf; Forrester, E. (2006). A process research framework: The International Process Research Consortium (iprc). Software Engineering Institute, Carnegie Mellon University. https:// insights.sei.cmu.edu/documents/1301/2006_014_001_30505.pdf; Fuggetta, A. (2000). Software process: A roadmap. En Proceedings of the Conference on the Future of Software Engineering (pp. 25-34). https://doi.org/10.1109/CERMA.2012.25; Garg, P. K. (1995). Process-centered software engineering environments. IEEE Computer Society Press.; Henderson-Sellers, B. y González-Pérez, C. (2005). A comparison of four process metamodels and the creation of a new generic standard. Information and Software Technology, 47(1), 49-65. https://doi.org/10.1016/j.infsof.2004.06.001; Humphrey, W. S. (1988). Characterizing the software process: A maturity framework. ieee Software, 5(2), 73-79. https://doi.org/10.1109/52.2014; Isaias, P. y Issa, T. (2015). High level models and methodologies for information systems. Springer. https://doi.org/10.1007/978-1-4614-9254-2; Jalote, P. (2002). Software project management in practice. Addison Wesley.; Kneuper, R. (2002). Supporting software processes using knowledge management. En S. K. Chang (ed.), Handbook of software engineering and knowledge engineering (vol. 2, pp. 579-606). World Scientific. https://doi.org/10.1142/9789812389701_0025; Kneuper, R. (2018). Software processes and life cycle models: An introduction to modelling, using and managing agile, plan-driven and hybrid processes. Springer.; Kroeger, T. A., Davidson, N. J. y Cook, S. C. (2014). Understanding the characteristics of quality for software engineering processes: A grounded theory investigation. Information and Software Technology, 56(2), 252-271. https://doi.org/10.1016/j.infsof. 2013.10.003; Kwan, I., Cataldo, M. y Damian, D. (2011). Conway’s law revisited: The evidence for a taskbased perspective. IEEE Software, 29(1), 90-93. https://doi.org/10.1109/MS.2012.3; Li, M. (2006). Expanding the horizons of software development processes: A 3-D integrated methodology. En M. Li, B. Boehm y L. J. Osterweil (eds.), Unifying the Software Process Spectrum. spw 2005. Lecture Notes in Computer Science (pp. 54-67). Springer. https:// doi.org/10.1007/11608035_6; Lonchamp, J. (1993). A structured conceptual and terminological framework for software process engineering. En Proceedings of the Second International Conference on the Software Process-Continuous Software Process Improvement (pp. 41-53). ieee. https://doi. org/10.1109/SPCON.1993.236823; Meyer, B. (2009). Touch of class: Learning to program well with objects and contracts. Springer. https://doi.org/10.1007/978-3-540-92145-5; Moore, J. W. (2005). The road map to software engineering: A standards-based guide. Wiley-ieee Computer Society; Mustafa, G., Hafeez, Y. y Abbas, M. A. (2011). Fundamental characteristics creating software process diversity. En International Conference on Computer Networks and Information Technology (pp. 341-344). ieee. https://doi.org/10.1109/ICCNIT.2011.6020891; O’Regan, G. (2017). Concise guide to software engineering: From fundamentals to application methods. Springer.; Osterweil, L. (2011). Software processes are software too. En P. Tarr y A. Wolf (eds.), Engineering of software (pp. 323-344). Springer. https://doi.org/10.1007/978-3-642- 19823-6_17; Pedreira, O., Piattini, M., Luaces, M. R. y Brisaboa, N. R. (2007). A systematic review of software process tailoring. acm sigsoft Software Engineering Notes, 32(3), 1-6. https:// doi.org/10.1145/1241572.1241584; Prodan, M., Prodan, A. y Purcarea, A. A. (2015). Three new dimensions to people, process, technology improvement model. En A. Rocha, A. Correia, S. Costanzo y L. Reis (eds.), New contributions in information systems and technologies: Advances in intelligent systems and computing (pp. 481-490). Springer. https://doi.org/10.1007/978-3-319-16486-1_47; Raman, S. (2000). It is software process, stupid: Next millennium software quality key. ieee Aerospace and Electronic Systems Magazine, 15(6), 33-37. https://doi. org/10.1109/62.847929; Ruiz-González, F. y Canfora, G. (2004). Software process: Characteristics, technology and environments. spt Software Process Technology, 5, 6-10.; Software Engineering Institute. (2010). cmmi for development, cmmi-dev version 1.3. cmu/sei- 2010-tr-033. https://insights.sei.cmu.edu/documents/87/2010_019_001_28782.pdf; Sommerville, I. (2015). Software engineering: Always learning. Pearson.; Suri, D. y Sebern, M. J. (2004). Incorporating software process in an undergraduate software engineering curriculum: Challenges and rewards. En 17th Conference on Software Engineering Education and Training, 2004. Proceedings (pp. 18-23). ieee. https://doi. org/10.1109/CSEE.2004.1276505; Sutton, S. M. (2000). The role of process in software start-up. ieee Software, 17(4), 33-39.; Wieczorek, M., Vos, D. y Bons, H. (2014). Systems and software quality. Springer. https://doi. org/10.1007/978-3-642-39971-8; Yang, D. y Xue, M. (2011). Software process paradigm and its constraint mechanisms. En 2011 ieee 2nd International Conference on Software Engineering and Service Science (pp. 842-845). ieee. https://doi.org/10.1109/ICSESS.2011.5982472; Arms, W. Y. (2022). Examples of software development processes. Cornell University Compunng and Information Science. https://www.cs.cornell.edu/courses/cs5150/2017sp/ slides/3-process-examples.pdf; Azam, F., Gull, H., Bibi, S. y Amjad, S. (2010). Back and forth (BnF) software process model. En 2010 Second International Conference on Computer Engineering and Applications (vol. 1, pp. 426-430). ieee. https://doi.org/10.1109/ICCEA.2010.89; Banker, R. D., Kauffman, R. J. y Zweig, D. (1993). Repository evaluation of software reuse. ieee Transactions on Software Engineering, 19(4), 379-389. https://doi. org/10.1109/32.223805; Boehm, B. W. (1996). Anchoring the software process. IEEE Software, 13(4), 73-82. https:// doi.org/10.1109/52.526834; Boehm, B. W. (1988). A spiral model of software development and enhancement. Computer, 21(5), 61-72. https://doi.org/10.1109/2.59; Boehm, B. W. y Hansen, W. J. (2000). Spiral development: Experience, principles and refinements. Special Report cmu/sei-2000-sr-008. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu.edu/documents/5439/2000_003_001_13655.pdf; Boehm, B. W. y Turner, R. (2004). Balancing agility and discipline: A guide for the perplexed. Addison-Wesley; Capers, J. (2012). Software engineering best practices: Lessons from successful projects in the top companies. McGraw-Hill; Carr, M. y Verner, J. (1997). Prototyping and software development approaches. https://citeseerx. ist.psu.edu/document?repid=rep1&type=pdf&doi=0b05add730e04843e- 234937a070f24b19efaadc3; Crnkovic, I. y Larsson, M. (2001). Component-based software engineering: New paradigm of software development. Mälardalen University.; Diebold, P. y Zehler, T. (2016). The right degree of agility in rich processes. En M. Kuhrmann, J. Münch, I. Richardson, A. Rausch y H. Zhang (eds.), Managing software process evolution (pp. 15-37). Springer. https://doi.org/10.1007/978-3-319-31545-4_2; Floyd, C. (1984). A systematic look at prototyping. En R. Budde, K. Kuhlenkamp, L. Mathiassen y H. Züllighoven (eds.), Approaches to prototyping (pp. 1-18). Springer. https:// doi.org/10.1007/978-3-642-69796-8_1; Gottesdiener, E. (1995). RAD realities: Beyond the hype to how rad really works. Application Development Trends, 2(8), 28-38.; Henninger, S. (1997). An evolutionary approach to constructing effective software reuse repositories. ACM Transactions on Software Engineering and Methodology (tosem), 6(2), 111-140. https://doi.org/10.1145/248233.248242; International Organization for Standardization. (2008). ISO/IEC 12207:1995/AMD2:2004. Information Technology - Software life cycle processes - Amendment 2.; Jirava, P. (2004). System development life cycle. https://dk.upce.cz/bitstream/handle/ 10195/32471/CL456.pdf?sequence=1&isAllowed=y; Jurgens, D. (2009). Survey on software engineering for scientific applications. Institute for Scientific Computing. https://leopard.tu-braunschweig.de/servlets/MCRFileNodeServlet/ dbbs_derivate_00006306/Juergens-Survey-Software-Eng-Scientific-Applications.pdf; Madachy, R. J. (2008). Software process dynamics. John Wiley & Sons.; Mathur, S. y Malik, S. (2010). Advancements in the V-Model. International Journal of Computer Applications, 1(12), 29-34. https://citeseerx.ist.psu.edu/document?repid=rep1&- type=pdf&doi=04aca97824d178d7ca3688bbed2118d0115dfaba; May, E. L. y Zimmer, B. A. (1996). The evolutionary development model for software. Hewlett Packard Journal, 47, 39-41. https://citeseerx.ist.psu.edu/document?repid=rep1&- type=pdf&doi=5304a6d70439f180af1e349d518cb1d20b99e4a8; Mills, H. D., Dyer, M. y Linger, R. C. (1987). Cleanroom software engineering. IEEE Software, 4(5), 19-25. https://doi.org/10.1109/MS.1987.231413; Munassar, N. M. A. y Govardhan, A (2010). Comparison between five models of software engineering. International Journal of Computer Science Issues, 7(5), 94-101. https:// www.ijcsi.org/papers/7-5-94-101.pdf; Petersen, K. y Wohlin, C. (2010). The effect of moving from a plan-driven to an incremental software development approach with agile practices: An industrial case study. Empirical Software Engineering, 15, 654-693. https://doi.org/10.1007/s10664-010-9136-6; Petersen, K., Wohlin, C. y Baca, D. (2009). The waterfall model in large-scale development. En F. Bomarius, M. Oivo, P. Jaring y P. Abrahamsson (eds.), Product-Focused Software Process Improvement. PROFES 2009. Lecture Notes in Business Information Processing (pp. 386-400). Springer. https://doi.org/10.1007/978-3-642-02152-7_29; Pressman, R. S. (2005). Software engineering: A practitioner’s approach (6.ª ed.). McGraw-Hill.; ProjectSmart. (2008). Which life cycle is best for your project? https://www.projectsmart.co.uk/ agile-project-management/which-life-cycle-is-best-for-your-project.php; Rastogi, V. (2015). Software development life cycle models-comparison, consequences. International Journal of Computer Science and Information Technologies, 6(1), 168-172. https://www.academia.edu/download/40003520/ijcsit2015060137.pdf; Royce, W. W. (1987). Managing the development of large software systems: Concepts and techniques. En Proceedings of the 9th International Conference on Software Engineering (ICSE ’87) (pp. 328-338).; Sabale, R. y Dani, A. (2012). Comparative study of prototype model for software engineering with system development life cycle. IOSR Journal of Engineering, 2(7), 21-24. https://www.iosrjen.org/Papers/vol2_issue7%20(part-2)/D0272124.pdf; Sharma, P. y Singh, D. (2015). Comparative study of various SDLC models on different parameters. International Journal of Engineering Research, 4(4), 188-191. https://citeseerx. ist.psu.edu/document?repid=rep1&type=pdf&doi=2628386ec0e41ed06dbb604bf9729e679f394cb2; Solinski, A. y Petersen, K. (2016). Prioritizing agile benefits and limitations in relation to practice usage. Software Quality Journal, 24, 447-482. https://doi.org/10.1007/ s11219-014-9253-3; Špundak, M. (2014). Mixed agile/traditional project management methodology: Reality or illusion? Procedia-Social and Behavioral Sciences, 119, 939-948. https://doi. org/10.1016/j.sbspro.2014.03.105; Tian, J. (2005). Software quality engineering: Testing, quality assurance, and quantifiable improvement. John Wiley & Sons.; Tilloo, R. (2013). What is incremental model in software engineering? http://www.technotrice. com/incremental-model-in-software-engineering; Wallin, C. y Land, R. (2005). Software development lifecycle models: The basic types. Research methodology for computer science and engineering. Mälardalen University.; Abrahamsson, P., Salo, O., Ronkainen, J. y Warsta, J. (2002). Agile software development methods: Review and analysis. vtt Electronics. https://doi.org/10.48550/arXiv.1709.08439; Abrahamsson, P., Warsta, J., Siponen, M. T. y Ronkainen, J. (2003). New directions on agile methods: A comparative analysis. En 25th International Conference on Software Engineering, 2003. Proceedings (pp. 244-254). IEEE. https://doi.org/10.1109/ ICSE.2003.1201204; Abrantes, J. F. y Travassos, G. H. (2011). Common agile practices in software processes. En 2011 International Symposium on Empirical Software Engineering and Measurement (pp. 355-358). IEEE. https://doi.org/10.1109/ESEM.2011.47; Adelyar, S. H. y Norta, A. (2016). Towards a secure agile software development process. En 2016 10th International Conference on the Quality of Information and Communications Technology (quatic) (pp. 101-106). IEEE. https://doi.org/10.1109/QUATIC.2016.028; Agile Manifesto. (2001). Manifesto for Agile Software Development. http://agilemanifesto.org/; Alqudah, M. y Razali, R. (2016). A review of scaling agile methods in large software development. International Journal on Advanced Science, Engineering and Information Technology, 6(6), 828-837. http://dx.doi.org/10.18517/ijaseit.6.6.1374; Ambler, S. (2002). Agile modeling: Effective practices for eXtreme Programming and the unified process. John Wiley & Sons.; Ambler, S. W. (2009). The agile scaling model (asm): Adapting agile methods for complex environments. https://scrummasters.com/wp-content/uploads/2022/02/White-Paper- Adapting-Agile.pdf; Ambler, S. W. y Lines, M. (2012). Disciplined Agile Delivery: A practitioner’s guide to agile software delivery in the enterprise. IBM Press; Ambler, S. W. y Lines, M. (2013). Going beyond scrum: Disciplined Agile Delivery, disciplined agile consortium. White Paper Series. https://www.classes.cs.uchicago.edu/ archive/2016/fall/51205-1/required.reading/BeyondScrum.pdf; Ambler, S. W. y Lines, M. (2016). The disciplined agile process decision framework. En D. Winkler, S. Biffl y J. Bergsmann (eds.), Software Quality: The Future of Systems- and Software Development. swqd 2016. Lecture Notes in Business Information Processing (pp. 3-14). Springer. https://doi.org/10.1007/978-3-319-27033-3_1; Anderson, L., Alleman, G. B., Beck, K., Blotner, J., Cunningham, W., Poppendieck, M. y Wirfs-Brock, R. (2003). Agile management-an oxymoron? Who needs managers anyway? En Companion of the 18th Annual acm sigplan Conference on Object-Oriented Programming, Systems, Languages, and Applications (pp. 275-277). https://doi. org/10.1145/949344.949410; Aoyama, M. (1998). Agile software process and its experience. En Proceedings of the 20th International Conference on Software Engineering (pp. 3-12). IEEE. https://doi.org/10.1109/ ICSE.1998.671097; Baca, D. y Carlsson, B. (2011). Agile development with security engineering activities. En Proceedings of the 2011 International Conference on Software and Systems Process (pp. 149-158). https://doi.org/10.1145/1987875.1987900; Barnett, L. y Schwaber, C. (2004). Adopting agile development processes: Improve time-to-benefits for software projects forrester research.; Bartsch, S. (2011). Practitioners’ perspectives on security in agile development. En 2011 Sixth International Conference on Availability, Reliability and Security (pp. 479-484). IEEE. https://doi.org/10.1109/ARES.2011.82; Beck, K. (2000). Extreme programming explained: Embrace change. Addison-Wesley.; Beck, K. (2002). Test driven development: By example. Addison-Wesley.; Beck, K. y Fowler, M. (2001). Planning eXtreme Programming. Addison-Wesley.; Ben Othmane, L., Angin, P., Weffers, H. y Bhargava, B. (2014). Extending the agile development process to develop acceptably secure software. ieee Transactions on Dependable and Secure Computing, 11(6), 497-509. https://doi.org/10.1109/TDSC.2014.2298011; Bessam, A., Kimour, M. T. y Melit, A. (2009). Separating users’ views in a development process for agile methods. En 2009 Fourth International Conference on Dependability of Computer Systems (pp. 61-68). IEEE. https://doi.org/10.1109/DepCoS-RELCOMEX. 2009.16; Boehm, B. y Turner, R. (2005). Management challenges to implementing agile processes in traditional development organizations. IEEE Software, 22(5), 30-39. https://doi. org/10.1109/MS.2005.129; Buglione, L. y Abran, A. (2013). Improving the user story agile technique using the invest criteria. En 2013 Joint Conference of the 23rd International Workshop on Software Measurement and the 8th International Conference on Software Process and Product Measurement (pp. 49-53). IEEE. https://doi.org/10.1109/IWSM-Mensura.2013.18; Canós, J., Letelier, P. y Penadés, M. (2003). Metodologías ágiles en el desarrollo de software. https://www.academia.edu/download/34546906/XP_Agil.pdf; Chowdhury, A. F. y Huda, M. N. (2011). Comparison between Adaptive Software Development and Feature-Driven Development. En Proceedings of 2011 International Conference on Computer Science and Network Technology (vol. 1, pp. 363-367). IEEE. https:// doi.org/10.1109/ICCSNT.2011.6181977; Coad, P., Lefebvre, E. y Luca, J. D. (1999). Feature-driven development. En Java modeling in color with UML: Enterprise components and process. Prentice Hall ptr.; Cockburn, A. (2004). Crystal clear: A human-powered methodology for small teams. Addison- Wesley.; Cohen D., Lindvall, M. y Costa P. (2004). An introduction to agile methods. Advances in Computers, 62(3), 1-66. https://doi.org/10.1016/S0065-2458(03)62001-2; Cohn, M. y Ford, D. (2003). Introducing an agile process to an organization [software development]. Computer, 36(6), 74-78. https://doi.org/10.1109/MC.2003.1204378; Coram, M. y Bohner, S. (2005). The impact of agile methods on software project management. En 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05) (pp. 363-370). IEEE. https://doi.org/10.1109/ ECBS.2005.68; Cugola, G. y Ghezzi, C. (1998). Software processes: A retrospective and a path to the future. Software Process: Improvement and Practice, 4(3), 101-123. https://doi.org/10.1002/ (SICI)1099-1670(199809)4:3%3C101::AID-SPIP103%3E3.0.CO;2-K; Deemer, P., Benefield, G., Larman, C. y Vodde, B. (2012). A lightweight guide to the theory and practice of scrum. Version 2.0. InfoQ Enterprise Software Development Series. https:// www.scruminc.com/wp-content/uploads/2014/05/scrumprimer20.pdf; Despa, M. L. (2014). Comparative study on software development methodologies. Database Systems Journal, 5(3), 37-56. https://dbjournal.ro/archive/17/17.pdf#page=38; Digital.ai. (2024, 4 de marzo). The 17th State of Agile Report. https://digital.ai/resource-center/ analyst-reports/state-of-agile-report/; DSDM Consortium. (2008). DSDM Atern Handbook V2/2. Whitehorse Press.; Fitzgerald, B., Hartnett, G. y Conboy, K. (2006). Customising agile methods to software practices at Intel Shannon. European Journal of Information Systems, 15(2), 200-213. https://doi.org/10.1057/palgrave.ejis.3000605; Fowler, M. (2005, 13 de diciembre). The new methodology. https://www.martinfowler.com/ articles/newMethodology.html; Fraser, S., Reinitz, R., Eckstein, J., Kerievsky, J., Mee, R. y Poppendieck, M. (2003). Xtreme programming and agile coaching. En Companion of the 18th Annual acm sigplan Conference on Object-Oriented Programming, Systems, Languages, and Applications (pp. 265-267). https://doi.org/10.1145/949344.949406; Ghani, I. y Yasin, I. (2013). Software security engineering in eXtreme Programming methodology: A systematic literature review. Science International, 25(2), 215-221. https:// citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fb3ac381f336911fe- 46c638abdde53376d74a5e5; Hewitt, B. y Walz, D. (2005). Using shared leadership to foster knowledge sharing in information systems development projects. En Proceedings of the 38th Annual Hawaii International Conference on System Sciences (pp. 256a-256a). ieee. https://doi.org/10.1109/ HICSS.2005.666; Highsmith, J. A. (2002). Agile software development ecosystems. Addison-Wesley.; Highsmith, J. A. (2004). Agile project management: Creating innovative products. Addison- Wesley.; Highsmith, J. A. (2013). Adaptive software development: A collaborative approach to managing complex systems. Addison-Wesley.; Highsmith, J. y Cockburn, A. (2001). Agile software development: The business of innovation. Computer, 34(9), 120-127. https://doi.org/10.1109/2.947100; Ionel, N. (2008). Critical analysis of the scrum project management methodology. Annals of the University of Oradea, Economic Science Series, 17(4), 435-441. https://anale.steconomiceuoradea. ro/volume/2008/v4-management-marketing/077.pdf; Kanwal, F., Junaid, K. y Fahiem, M. A. (2010). A hybrid software architecture evaluation method for fdd: An agile process model. En 2010 International Conference on Computational Intelligence And Software Engineering (pp. 1-5). IEEE. https://doi.org/10.1109/ CISE.2010.5676863; Khatri, S. K., Bahri, K. y Johri, P. (2014). Best practices for managing risk in adaptive agile process. En Proceedings of 3rd International Conference on Reliability, Infocom Technologies and Optimization (pp. 1-5). IEEE. https://doi.org/10.1109/ICRITO.2014.7014759; Kirkman, B. L. y Rosen, B. (1999). Beyond self-management: Antecedents and consequences of team empowerment. Academy of Management Journal, 42(1), 58-74. https://doi. org/10.5465/256874; Larman, C. (2004). Agile and iterative development: A manager’s guide. Addison-Wesley; Larman, C. y Vodde, B. (2008). Scaling lean & agile development: Thinking and organizational tools for large-scale scrum. Addison-Wesley.; Larman, C. y Vodde, B. (2013). Scaling agile development. CrossTalk, 9, 8-12. https://miroslawdabrowski. com/downloads/Scrum/Large%20Scale%20Scrum%20(LESS).pdf; Larman, C. y Vodde, B. (2016). Large-scale scrum: More with LeSS. Addison-Wesley.; Leffingwell, D. (2011). Scaling Agile Framework (SAFe). http://www.scaledagileframework.com/; Lindstrom, L. y Jeffries, R. (2005). Extreme Programming and agile software development methodologies. Information Systems Management, 21(3), 41-52.; Lui, T. W. y Piccoli, G. (2006). Degrees of agility: Implications for information systems design and firm strategy. En K. Desouza (ed.), Agile information systems (pp. 122-133). Routledge. https://doi.org/10.4324/9780080463681; Mahmud, D. M. y Abdullah, N. A. S. (2015). Reviews on agile methods in mobile application development process. En 2015 9th Malaysian Software Engineering Conference (MySEC) (pp. 161-165). IEEE. https://doi.org/10.1109/MySEC.2015.7475214; Marrington, A., Hogan, J. M. y Thomas, R. (2005). Quality assurance in a student-based agile software engineering process. En 2005 Australian Software Engineering Conference (pp. 324-331). IEEE. https://doi.org/10.1109/ASWEC.2005.38; Maximini, D. (2015). The scrum culture: Introducing agile methods in organizations. management for professionals. Springer. https://doi.org/10.1007/978-3-319-73842-0; Meng, X. X., Wang, Y. S., Shi, L. y Wang, F. J. (2007). A process pattern language for agile methods. En 14th Asia-Pacific Software Engineering Conference (apsec’07) (pp. 374-381). IEEE. https://doi.org/10.1109/ASPEC.2007.72; Meyer, B. (2014). Agile! The good, the hype and the ugly. Springer.; Millett, S., Blankenship, J. y Bussa, M. (2011). Pro agile: NET development with scrum. Apress.; Misra, S. C., Kumar, V. y Kumar, U. (2009). Identifying some important success factors in adopting agile software development practices. Journal of Systems and Software, 82(11), 1869-1890. https://doi.org/10.1016/j.jss.2009.05.052; Morgan, G. (2006). Images of organizations. Sage.; Müller, M. M. y Höfer, A. (2007). The effect of experience on the test-driven development process. Empirical Software Engineering, 12, 593-615. https://doi.org/10.1007/ s10664-007-9048-2; Mundra, A., Misra, S. y Dhawale, C. A. (2013). Practical scrum-scrum team: Way to produce successful and quality software. En 2013 13th International Conference on Computational Science and Its Applications (pp. 119-123). ieee. https://doi.org/10.1109/ ICCSA.2013.25; Nerur, S., Mahapatra, R. y Mangalaraj, G. (2005). Challenges of migrating to agile methodologies. Communications of the acm, 48(5), 72-78. https://doi.org/ 10.1145/1060710.1060712; Newkirk, J. (2002). Introduction to agile processes and eXtreme Programming. En Proceedings of the 24th International Conference on Software Engineering (pp. 695-696). https:// doi.org/10.1145/581339.581450; Paasivaara, M., Lassenius, C. y Heikkilä, V. T. (2012). Inter-team coordination in large-scale globally distributed scrum: Do scrum-of-scrums really work? En Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and Measurement (pp. 235-238). https://doi.org/10.1145/2372251.2372294; Palmer, S. R. y Felsing, M. (2002). A practical guide to Feature-Driven Development. Prentice Hall.; Pearce, C. L. (2004). The future of leadership: Combining vertical and shared leadership to transform knowledge work. Academy of Management Executive, 18(1), 47-57. https:// doi.org/10.5465/ame.2004.12690298; Pikkarainen, M., Salo, O. y Still, J. (2005). Deploying agile practices in organizations: A case study. En I. Richardson, P. Abrahamsson y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2005. Lecture Notes in Computer Science (pp. 16-27). Springer. https://doi.org/10.1007/11586012_3; Pohl, C. y Hof, H. J. (2015). Secure scrum: Development of secure software with scrum. En Proceedings of the Ninth International Conference on Emerging Security Information, Systems and Technologies (SECURWARE 2015). IARIA XPS Press. https://doi.org/10.48550/ arXiv.1507.02992; Poppendieck, M. y Poppendieck, T. (2003). Lean software development: An agile toolkit. Addison- Wesley.; Poppendieck, M. y Poppendieck, T. (2006). Implementing Lean Software Development: From concept to cash. Addison-Wesley.; Qumer, A. y Henderson-Sellers, B. (2008). An evaluation of the degree of agility in six agile methods and its applicability for method engineering. Information and Software Technology, 50(4), 280-295. https://doi.org/10.1016/j.infsof.2007.02.002; Reifer, D. (2002). How good are agile methods? IEEE Software, 19(4), 16-18. https://doi. org/10.1109/MS.2002.1020280; Rick, U., Vossen, R., Richert, A. y Henning, K. (2010). Designing agile processes in information management. En 2010 2nd IEEE International Conference on Information Management and Engineering (pp. 156-160). IEEE. https://doi.org/10.1109/ICIME.2010.5477776; Rieckmann, H. (1992). Dynaxibility - oder wie “systemisches”. Management in der Praxis funktionieren kann. En K. Henning y B. Harendt (eds.), Methodik und Praxis der Komplexitätsbewältigung (pp. 17-39). Duncker & Humblot.; Riehle, D. (2000). A comparison of the value systems of Adaptive Software Development and eXtreme Programming: How methodologies may learn from each other. En Proceedings of the First International Conference on Extreme Programming and Flexible Processes in Software Engineering (XP 2000) (pp. 35-50). https:// citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=807bd8be840eded41828ad9052e0d4d14b31865c; Rubin, K. S. (2012). Essential scrum: A practical guide to the most popular agile process. Addison- Wesley.; Rossberg, J. (2014). Beginning application lifecycle management. Apress.; Scale Agile Framework. (2020). SAFe 6.0. https://www.scaledagileframework.com/; Schuh, P. (2004). Integrating agile development in the real world. Charles River Media.; Schwaber, K. y Beedle, M. (2001). Agile software development with scrum. Prentice Hall PTR.; Sidky, A. S. (2007). A structured approach to adopting agile practices: The agile adoption framework (tesis de doctorado, Virginia Tech). https://vtechworks.lib.vt.edu/server/api/ core/bitstreams/4ff25112-51c4-4ce7-86f3-ee3e0c84100a/content; Singhal, A. (2012). Integration analysis of security activities from the perspective of agility. En 2012 Agile India (pp. 40-47). ieee. https://doi.org/10.1109/AgileIndia.2012.9; Sneed, H. M. (2014). Dealing with technical debt in agile development projects. En D. Winkler, S. Biffl y J. Bergsmann (eds.), Software Quality. Model-Based Approaches for Advanced Software and Systems Engineering. swqd 2014. Lecture Notes in Business Information Processing (pp. 48-62). Springer. https://doi.org/10.1007/978-3-319-03602-1_4; Stapleton, J. (1997). DSDM, dynamic systems development method: The method in practice. Cambridge University Press.; Sutherland, J. y Schwaber, K. (2020). The 2020 Scrum GuideTM. https://scrumguides.org/ scrum-guide.html; Tahir, F. y Manarvi, I. A. (2013). Agile process model and practices in distributed environment. En J. Stjepandić, G. Rock y C. Bil (eds.), Concurrent engineering approaches for sustainable product development in a multi-disciplinary environment (pp. 1169-1180). Springer. https://doi.org/10.1007/978-1-4471-4426-7_98; Tiltmann, T. (2007). Agile Entwicklung von cscw-Anwendungen für regionale Bildungswerke. Mainz.; Trist, E. (1981). The evolution of socio-technical systems: A conceptual framework and an action research program. Occasional Paper, 2. https://www.lmmiller.com/blog/ wp-content/uploads/2013/06/The-Evolution-of-Socio-Technical-Systems-Trist.pdf; Vaidya, A. (2014). Does dad know best, is it better to do less or just be safe? Adapting scaling agile practices into the Enterprise. En 32nd Annual Pacific Northwest Software Quality Conference - PNSQC 2014 (pp. 1-18). https://pnsqc.org/archives/dad-knowbest- better-less-just-enough-safe-adapting-agile-scaling-practices-enterprise/; Voigt, B. J., Glinz, M. y Seybold, D. I. C. (2004). Dynamic system development method. University of Zurich. https://files.ifi.uzh.ch/rerg/amadeus/teaching/seminars/seminar_ ws0304/14_Voigt_DSMD_Ausarbeitung.pdf; Walton, M. (1999). Strategies for lean product development: A compilation of lean aerospace initiative research. Research Paper, 2.; Womack, J. P. y Jones, D. T. (2003). Lean thinking: Banish waste and create wealth in your corporation. Free Press.; Womack, J. P., Jones, D. T. y Roos, D. (2007). The machine that changed the world: The story of lean production. Simon and Schuster.; Acuna, S. T., Juristo, N., Moreno, A. M. y Mon, A. (2006). A software process model handbook for incorporating people’s capabilities. Springer.; Alarcón, A., Martínez, N. y Sandoval, J. (2013). Use of learning strategies of swebok© guide proposed knowledge areas. En L. Uden, F. Herrera, J. Bajo Pérez y J. Corchado Rodríguez (eds.), 7th International Conference on Knowledge Management in Organizations: Service and Cloud Computing. Advances in Intelligent Systems and Computing pp. 243-254). Springer. https://doi.org/10.1007/978-3-642-30867-3_22; Bernardos, M.ª del S. (2004). Guideline for developing a software life cycle process in natural language generation projects. En A. Gelbukh (eds.), Computational Linguistics and Intelligent Text Processing. CICLing 2004. Lecture Notes in Computer Science (pp. 355-359). Springer. https://doi.org/10.1007/978-3-540-24630-5_43; Booch, G., Rumbaugh, J. y Jacobson, I. (2017). The unified modeling language user guide. Addison-Wesley.; Ceccarelli, A. y Silva, N. (2013). Qualitative comparison of aerospace standards: An objective approach. En 2013 ieee International Symposium on Software Reliability Engineering Workshops (issrew) (pp. 331-336). ieee. https://doi.org/10.1109/ISSREW. 2013.6688916; Dahhane, W., Berrich, J., Bouchentouf, T. y Rahmoun, M. (2016). semat Essence’s Kernel applied to O-MaSE. En 2016 5th International Conference on Multimedia Computing and Systems (icmcs) (pp. 799-804). ieee. https://doi.org/10.1109/ICMCS.2016.7905565; David, P. A. (1995). Standardization policies for network technologies: The flux between freedom and order revisited. En R. Hawkins, R. Mansell y J. Skea (eds.), Standards, innovation and competitiveness: The politics and economics of standards in natural and technical environments (pp. 15-35). Edward Elgar.; De Vries, H. J. (2013). Standardization: A business approach to the role of national standardization organizations. Springer.; Derniame, J. C., Kaba, B. A. y Wastell, D. (eds.) (1999). Software process: Principles, methodology, and technology. Springer.; Dupuis, R., Bourque, P. y Abran, A. (2003). swebok guide an overview of trial usages in the field of education. En Proceedings of the 33rd Annual Frontiers in Education (fie 2003). ieee. https://doi.org/10.1109/FIE.2003.1265987; ECSS-E-ST-10-02c - Verification (2009, 6 de marzo). https://ecss.nl/standard/ecss-e-st-10- 02c-verification/; ECSS-E-ST-10-06C - Technical requirements specification. (2009, 6 de marzo). https://ecss.nl/ standard/ecss-e-st-10-06c-technical-requirements-specification/; ECSS-E-ST-10c Rev.1 - System engineering general requirements. (2017, 15 de febrero). https://ecss.nl/standard/ecss-e-st-10c-rev-1-system-engineering-general-requirements- 15-february-2017/; ECSS-E-ST-40c - Software (2009, 6 de marzo). https://ecss.nl/standard/ecss-e-st-40c-software- general-requirements/; ECSS-Q-ST-30c Rev.1 - Dependability (2017, 15 de febrero). https://ecss.nl/standard/; ECSS-Q-ST-30c-rev-1-space-product-assurance-dependability-15-february-2017/; ECSS-Q-ST-40c - Safety. (2009, 6 de marzo). https://ecss.nl/standard/ecss-q-st-40c-safety/; ECSS-Q-ST-80C Rev.1 - Software product assurance. (2017, 15 de febrero). https://ecss.nl/ standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/; Elvesæter, B., Striewe, M., McNeile, A. y Berre, A. J. (2012). Towards an agile foundation for the creation and enactment of software engineering methods: The semat approach. En Proceedings of the Co-located Events at the 8th European Conference on Modelling Foundations and Applications (ecmfa 2012) (pp. 279-290). Technical University of Denmark. https://www.dcs.bbk.ac.uk/~amcnei01/docs/be_pmde_2012_paper.pdf; Emmerich, W. (1999). Software process: Standards, assessments and improvement. En J. C. Derniame, B. A. Kaba y D. Wastell (eds.), Software Process: Principles, Methodology, and Technology. Lecture Notes in Computer Science (pp. 15-25). Springer. https://doi. org/10.1007/3-540-49205-4_2; ESA Board for Software Standardisation and Control. (1995). Guide to the Software Engineering Standards. http://everyspec.com/ESA/ESA_PSS-05-06_ISSUE-1_REVISION- 1_10567/; Freericks, C. (2001). Open source standards on software process: A practical application. ieee Communications Magazine, 39(4), 116-123. https://doi.org/10.1109/35.917513; Halling, M., Zuser, W., Kohle, M. y Biffl, S. (2002). Teaching the unified process to undergraduate students. En Proceedings 15th Conference on Software Engineering Education and Training (csee&t 2002) (pp. 148-159). ieee. https://doi.org/10.1109/ CSEE.2002.995207; Hui, Y., Yan, Y., Quanyu, W. y Zhiwen, C. (2015). Compare essential unified process (EssUP) with rational unified process (RUP). En 2015 ieee 10th Conference on Industrial Electronics and Applications (iciea) (pp. 472-476). ieee. https://doi.org/10.1109/ICIEA. 2015.7334159; Ida, T. (2017). Evolutionary stability of de jure and de facto standards. Working Paper. ieee-std 1074. (2006). ieee Standard for Developing a Software Project Life Cycle Process, ieee Std 1074-2006 (Revision of ieee Std 1074-1997). https://doi.org/10.1109/ IEEESTD.2006.219190; ISO/IEC 15288:2015. (2015). Systems engineering - System life cycle processes. International Standardization Organization.; ISO/IEC 9000-3:2004. (2004). Software engineering - Guidelines for the application of ISO 9001:2000 to computer software. International Organization for Standardization.; ISO/IEC/IEEE 12207:2017. (2017). Systems and software engineering - Software life cycle processes. International Organization for Standardization.; Ivar Jacobson International. (2015). How to use the Agile Essentials Practice Pack. https:// www.ivarjacobson.com/services/agile-essentials-starter-pack-agile-practices; Jacobson, I., Ng, P. W., McMahon, P. E., Spence, I. y Lidman, S. (2012). The essence of software engineering: The semat kernel. Communications of the acm, 55(12), 42-49. http:// doi.acm.org/10.1145/2380656.2380670; Jones, M., Mortensen, U. K. y Fairclough, J. (1997). The esa software engineering standards: Past, present and future. En Proceedings of ieee International Symposium on Software Engineering Standards (pp. 119-126). ieee. https://doi.org/10.1109/SESS.1997.595952; Kajko-Mattsson, M., Striewe, M., Goedicke, M., Jacobson, I., Spence, I., Huang, S. … y Seymour, E. (2012). Refounding software engineering: The SEMAT initiative (Invited presentation). En 2012 34th International Conference on Software Engineering (icse) (pp. 1649-1650). ieee. https://doi.org/10.1109/ICSE.2012.6227214; Kempton, S., Sobell, C. y Withrow, C. (1988). dod-std-2167a applied to software maintenance. En 1988 Conference on Software Maintenance (pp. 159-164). ieee Computer Society. https://doi.ieeecomputersociety.org/10.1109/ICSM.1988.10156; Krishnan, M. S., Mukhopadhyay, T. y Zubrow, D. (1999). Software process models and project performance. Information Systems Frontiers, 1, 267-277. https://doi. org/10.1023/A:1010054412650; Kuhrmann, M., Münch, J., Richardson, I., Rausch, A. y Zhang, H. (eds.) (2016). Managing software process evolution: Traditional, agile and beyond–how to handle process change. Springer. https://doi.org/10.1007/978-3-319-31545-4; Land, S. K. y Walz, J. W. (2007). Practical support for ISO 9001 Software Project Documentation using IEEE Software Engineering Standards. Wiley-ieee Press.; Land, S. K., Smith, D. B. y Walz, J. W. (2012). Practical support for lean six sigma software process definition: Using ieee software engineering standards. John Wiley & Sons.; Mahonen, P. (2000). The standardization process in it-too slow or too fast? En Information technology standards and standardization: A global perspective (pp. 35-47). IGI Global. http://dx.doi.org/10.4018/978-1-878289-70-4.ch003; McCord, J. W. (1990). Software development-process and implementation: dod-std- 2167a vs. traditional methodologies. En ieee Conference on Aerospace and Electronics (pp. 681-687). IEEE. https://doi.org/10.1109/NAECON.1990.112848; Métrica v.3. (2020). Metodología de planificación, desarrollo y mantenimiento de sistemas de información. https://administracionelectronica.gob.es/pae_Home/pae_Documentacion/ pae_Metodolog/pae_Metrica_v3.html; Moore, J. W. (2006). The road map to software engineering: A standards-based guide. Wiley-ieee Computer Society Press.; Object Management Group. (2015). Essence - Kernel and Language for Software Engineering Methods. Version 1.1. https://www.omg.org/spec/Essence/1.0/PDF; OpenUP. (2022). Proceso unificado abierto. https://www.utm.mx/~caff/doc/OpenUPWeb/; Pino, F. J., Baldassarre, M. T., Piattini, M., Visaggio, G. y Caivano, D. (2010). Mapping software acquisition practices from iso 12207 and cmmi. En L. A. Maciaszek, C. González-Pérez y S. Jablonski (eds.), Evaluation of Novel Approaches to Software Engineering. enase enase 2009 2008. Communications in Computer and Information Science (pp. 234-247). Springer. https://doi.org/10.1007/978-3-642-14819-4_17; Pons, C., Giandini, R. y Baum, G. (2000). Dependency relations between models in the Unified Process. En Tenth International Workshop on Software Specification and Design. iwssd-10 2000 (pp. 149-157). ieee. https://doi.org/10.1109/IWSSD.2000.891136; Portuguese Institute of Quality. (2008). np en iso 9001:2008 - Quality Management Systems - Requirements.; Priestley, M. y Utt, M. H. (2000). A unified process for software and documentation development. En 18th Annual Conference on Computer Documentation. ipcc sigdoc 2000. Technology and Teamwork. Proceedings. ieee Professional Communication Society International Professional Communication Conference (pp. 221-238). ieee. https://doi.org/10.1109/ IPCC.2000.887279; Strandberg, T. (2016). What is iso/iec 15288? (A concise introduction). White Paper.; Valdés Cárdenas, L. E. (2005). Guía para la implementación de la Norma iso 9001:2000 en las empresas de software. Colciencias.; West, J. (2003). The role of standards in the creation and use of information systems. En Proceedings of the Workshop on Standard Making: A Critical Research Frontier for Information Systems (pp. 314-326). MIS Quarterly.; Amjad, A., Azam, F., Anwar, M. W., Butt, W. H. y Rashid, M. (2018). Event-driven process chain for modeling and verification of business requirements: A systematic literature review. ieee Access, 6, 9027-9048. https://doi.org/10.1109/ACCESS.2018.2791666; Atkinson, D. C., Weeks, D. C. y Noll, J. (2004). The design of evolutionary process modeling languages. En 11th Asia-Pacific Software Engineering Conference (pp. 73-82). ieee. https://doi.org/10.1109/APSEC.2004.98; Bandinelli, S. C., Fuggetta, A. y Ghezzi, C. (1993). Software process model evolution in the spade environment. ieee Transactions on Software Engineering, 19(12), 1128-1144. https://doi.org/10.1109/32.249659; Bendraou, R., Jézéquel, J. M., Gervais, M. P. y Blanc, X. (2010). A comparison of six uml-based languages for software process modeling. ieee Transactions on Software Engineering, 36(5), 662-675. https://doi.org/10.1109/TSE.2009.85; Brcina, R. (2007). Arbeiten zur Verfolgbarkeit und Aspekte des Verfolgbarkeitsprozesses. Softwaretechnik-Trends: Mitteilungen von mehreren Fachgruppen des Fachausschusses, 27(1), 3-8.; Brondani, C. H., da Cruz Mello, O. y Fontoura, L. M. (2019). A case study of a software development process model for sis-astros. En seke (pp. 600-776). http://ksiresearch. org/seke/seke19paper/seke19paper_98.pdf; Broy, M. y Rumpe B. (2007). Modulare hierarchische Modellierung als Grundlage der Software- und Systementwicklung. InformatikSpektrum, 30(1), 3-18. https://doi. org/10.1007/; Campos, A. L. N. y Oliveira, T. (2013). Software processes with bpmn: An empirical analysis. En J. Heidrich, M. Oivo, A. Jedlitschka y M. T. Baldassarre (eds.), Product- Focused Software Process Improvement. profes 2013. Lecture Notes in Computer Science (pp. 338-341). Springer. https://doi.org/10.1007/978-3-642-39259-7_29; Cempel, W. A. y Dąbal, D. (2014). idef0 as a project management tool in the simulation modeling and analysis process in emergency evacuation from hospital facility: A case study. En P. Pawlewski y A. Greenwood (eds.), Process Simulation and Optimization in Sustainable Logistics and Manufacturing. EcoProduction (pp. 155-166). Springer. https://doi.org/10.1007/978-3-319-07347-7_11; Conradi, R., Jaceheri, M. L., Mazzi, C., Nguyen y M. N., Aarsten, A. (1992). Design, use and implementation of spell: A language for software process modeling and evolution. En J. C. Derniame (eds.), Software Process Technology. ewspt 1992. Lecture Notes in Computer Science (pp. 167-177). Springer. https://doi.org/10.1007/BFb0017519; Decker, G. (2009). Design and analysis of process choreographies [tesis de doctorado, Universität Potsdam]. https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/deliver/ index/docId/3898/file/decker_diss.pdf; DeMarco, T. (2004). Was man nicht messen kann, kann man nicht kontrollieren. MitpVerlag.; Dowson, M. y Fernström, C. (1994). Towards requirements for enactment mechanisms. En B. C. Warboys (eds.), Software Process Technology. ewspt 1994. Lecture Notes in Computer Science (pp. 90-106). Springer. https://doi.org/10.1007/3-540-57739-4_13; Dumas, M., La Rosa, M., Mendling, J. y Reijers, H. A. (2013). Fundamentals of business process management. Springer. https://doi.org/10.1007/978-3-642-33143-5; Gallina, B., Pitchai, K. R. y Lundqvist, K. (2014). S-TunExSPEM: Towards an extension of spem 2.0 to model and exchange tunable safety-oriented processes. En R. Lee (eds.), Software Engineering Research, Management and Applications. Studies in Computational Intelligence (pp. 215-230). Springer. https://doi.org/10.1007/978-3-319-00948-3_14; García-Borgoñón, L., Barcelona, M. A., García-García, J. A., Alba, M. y Escalona, M. J. (2014). Software process modeling languages: A systematic literature review. Information and Software Technology, 56(2), 103-116. https://doi.org/10.1016/j.infsof. 2013.10.001; García-García, J. A., Enríquez, J. G. y Domínguez-Mayo, F. J. (2019). Characterizing and evaluating the quality of software process modeling language: Comparison of ten representative model-based languages. Computer Standards & Interfaces, 63, 52-66. https://doi.org/10.1016/j.csi.2018.11.008; Génova, G. (2012). Conceptos básicos de modelado. En Desarrollo de software dirigido por modelos: Conceptos, métodos y herramientas (pp. 67-80). Ra-Ma. http://www.lcc.uma. es/~av/Publicaciones/12/LibroDSDM.pdf; Harel, D. y Rumpe, B. (2004). Meaningful modeling: What’s the semantics of “semantics”? Computer, 37(10), 64-72. https://doi.org/10.1109/MC.2004.172; Hauser, R. (2010). Automatic transformation from graphical process models to executable code. eth Zürich. https://doi.org/10.3929/ethz-a-006050258; Holt, J. (2004). uml for systems engineering: Watching the wheels. iet.; Hunter, R. B. y Thayer, R. H. (eds.) (2001). Software process improvement (practitioners). ieee Computer Society; Hurtado Alegría, J. A., Bastarrica, M. C. y Bergel, A. (2011). Analyzing software process models with avispa. En Proceedings of the 2011 International Conference on Software and Systems Process (pp. 23-32). https://doi.org/10.1145/1987875.1987882; Kaiser, G. E., Barghouti, N. S. y Sokolsky, M. H. (1990). Preliminary experience with process modeling in the marvel software development environment kernel. En Proceedings of the 23rd International Conference on System Sciences (pp. 131-140). ieee. https:// doi.org/10.1109/HICSS.1990.205161; Kelemen, Z. D., Kusters, R., Trienekens, J. y Balla, K. (2013). Selecting a process modeling language for process based unification of multiple standards and models. https://www. academia.edu/download/40527680/Selecting_a_Process_Modeling_Language_ fo20151130-12371-180bp3v.pdf; Li, Y. B. y Mao, F. Q. (2010). Research of the verification in workflow process modeling on the application of Petri nets. En 2010 International Conference on e-Education, e-Business, e-Management and e-Learning (pp. 21-24). ieee. https://doi.org/10.1109/ IC4E.2010.71; Ludewig, J. y Lichter, H. (2023). Software engineering: Grundlagen, menschen, prozesse, techniken. Dpunkt Verlag GmbH.; Mendling, J., Neumann, G. y Nüttgens, M. (2005). Yet another Event-Driven Process Chain. En W. M. P. van der Aalst, B. Benatallah, F. Casati y F. Curbera (eds.), Business Process Management. bpm 2005. Lecture Notes in Computer Science (pp. 428-433). Springer. https://doi.org/10.1007/11538394_35; Mili, H., Tremblay, G., Jaoude, G. B., Lefebvre, É., Elabed, L. y Boussaidi, G. E. (2010). Business process modeling languages: Sorting through the alphabet soup. acm Computing Surveys (csur), 43(1), 1-56. https://doi.org/10.1145/1824795.1824799; Moro, M. (2004). Modellbasierte Qualitätsbewertung von Softwaresystemen. Books on Demand GmbH.; Nitto, E. D., Lavazza, L., Schiavoni, M., Tracanella, E. y Trombetta, M. (2002). Deriving executable process descriptions from uml. En Proceedings of the 24th International Conference on Software Engineering (pp. 155-165). https://doi.org/10.1145/581339.581361; Object Management Group. (2008a). Software & Systems Process Engineering Meta-Model Specification Version 2.0. omg Document Number: formal/2008-04-01. https://www.omg. org/spec/SPEM/2.0/PDF; Object Management Group. (2008b). Meta Object Facility (mof) Core Specification. Version 2.5.1. omg Document Number: formal/2019-10-01. https://www.omg.org/spec/MOF; Object Management Group. (2017). omg Unified Modeling Language (omg uml) Version 2.5.1. omg Document Number: formal/2017-12-05. https://www.omg.org/spec/UML/2.5.1/ PDF; OpenUP. (2012). Eclipse Process Framework Composer. http://www.utm.mx/~caff/doc/OpenUPWeb/ index.htm; Pawel, P. (2010). Using Petri nets to model and simulation production systems in process reengineering (case study). intech Open Access Publisher. https://www.intechopen.com/ chapters/9195; Pereira, E. B., Bastos, R. M., Oliveira, T. C. y Móra, M. C. (2012). A set of well-formedness rules to checking the consistency of the software processes based on spem 2.0. En R. Zhang, J. Zhang, Z. Zhang, J. Filipe y J. Cordeiro (eds.), Enterprise Information Systems. iceis 2011. Lecture Notes in Business Information Processing (pp. 284-299). Springer. https://doi.org/10.1007/978-3-642-29958-2_19; Ris-Ala, R. (2016). Scrum Framework Drawn in bpmn. https://www.linkedin.com/pulse/ scrum-drawn-bpmn-rafael-ris-ala-jos%C3%A9-jardim; Seidewitz, E. (2003). What models mean. ieee Software, 20(5), 26-32. https://doi. org/10.1109/MS.2003.1231147; Sutton, S. M., Heimbigner, D. y Osterweil, L. J. (1995). appl/a: A language for software process programming. acm Transactions on Software Engineering and Methodology (tosem), 4(3), 221-286. https://doi.org/10.1145/214013.214017; Van der Aalst, W. (2016). Process mining: Data science in action. Springer.; Basili, V. R., Caldiera, G. y Rombach, H. D. (1994). The goal question metric approach. En Encyclopedia of software engineering (pp. 528-532). Wiley & Sons Inc.; Bourque, P. y Fairley, R. E. (eds.) (2014). Guide to the software engineering body of knowledge, version 3.0. ieee Computer Society; Canfora, G., García, F., Piattini, M., Ruiz, F. y Visaggio, C. A. (2005). A family of experiments to validate metrics for software process models. Journal of Systems and Software, 77(2), 113-129. https://doi.org/10.1016/j.jss.2004.11.007; Deridder, D. (2002). A concept-oriented approach to support software maintenance and reuse activities. En Workshop on Knowledge-Based Object-Oriented Software Engineering at 16th European Conference on Object-Oriented Programming (ecoop 2002). Springer. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7785ac1e75fc7b343776cbb98c598e1b1a0be565; Fairley, R. E. (2011). Managing and leading software projects. John Wiley & Sons.; Farooq, S. U., Quadri, S. M. K. y Ahmad, N. (2011). Software measurements and metrics: Role in effective software testing. International Journal of Engineering Science and Technology, 3(1), 671-680. https://www.academia.edu/download/52482421/SOFTWARE_ MEASUREMENTS_AND_METRICS_ROLE_I20170404-6019-9p9zbx.pdf; Florak, W. A., Park, R. E. y Carleton, A. (1997). Practical software measurement: Measuring for process management and improvement. No. cmu/sei-97-hb-003. Software Engineering Institute, Carnegie Mellon University. https://citeseerx.ist.psu.edu/document? repid=rep1&type=pdf&doi=76aafd5d0ed49263488bca95f00f1fdad3729bec; Grady, R. B. (1992). Practical software metrics for project management and process improvement. Prentice-Hall.; Institute of Electrical and Electronics Engineers. (1990). 610.12-1990 - ieee Standard Glossary of Software Engineering Terminology. https://doi.org/10.1109/IEEESTD.1990.101064; ISO/IEC/IEEE 12207. (2017). ISO/IEC/IEEE 12207:2017 Systems and software engineering – Software life cycle processes.; ISO/IEC/IEEE 15288. (2015). ISO/IEC/IEEE 15288:2015 Systems and software engineering – System life cycle processes.; ISO/IEC/IEEE 15939. (2017). ISO/IEC/IEEE 15939:2017 Systems and software engineering – Measurement process.; Joint Committee for Guides in Metrology. (2012). jcgm 200:2012: International vocabulary of metrology. Basic and general concepts and associated terms (vim). https://www.bipm.org/ utils/common/documents/jcgm/JCGM_200_2012.pdf; Kurnia, R., Ferdiana, R. y Wibirama, S. (2018). Software metrics classification for agile scrum process: A literature review. En 2018 International Seminar on Research of Information Technology and Intelligent Systems (isriti) (pp. 174-179). ieee. https://doi. org/10.1109/ISRITI.2018.8864244; Menéndez Domínguez, V. H. y Castellanos Bolaños, M. E. (2015). spem: Software process engineering metamodel. Archivo de la Revista Latinoamericana de Ingeniería de Software, 3(2), 92-100. https://doi.org/10.18294/relais.2015.92-100; Mills, E. E. y Shingler, K. H. (1988). Software Metrics: sei Curriculum Module sei-cm-12-1.1. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu. edu/documents/1537/1988_007_001_15608.pdf; Noor, H., Hayat, D. B., Hamid, A., Wakeel, T. y Nasim, R. (2020). Software metrics: Investigating success factors, challenges, solutions and new research directions. International Journal of Scientific & Technology Research, 9(8), 38-44.; Park, R. E., Goethert, W. B. y Florac, W. A. (1996). Goal-driven software measurement: A guidebook. No. cmu/sei-96-hb-002. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu.edu/documents/1623/1996_002_001_16436.pdf; Piattini Velthuis, M. G., García Rubio, F. O., García Rodríguez de Guzmán, I. y Pino, F. J. (2011). Calidad de sistemas de información. Ra-Ma.; Pressman, R. S. (2005). Software engineering: A practitioner’s approach. McGraw-Hill.; Ruiz, F., Genero, M., García, F., Piattini, M. y Calero, C. (2003). A proposal of a software measurement ontology. En Proceedings of the Conference on Computer Science and Operational Research. Springer. https://www.academia.edu/download/68115968/A_proposal_ of_a_Software_Measurement_Ont20210715-13490-bwjmn6.pdf; Srinivasan, K. P. (2015). Unique fundamentals of software measurement and software metrics in software engineering. International Journal of Computer Science & Information Technology (ijcsit), 7(4), 29-43. https://www.airccse.org/journal/jcsit/7415ijcsit03.pdf; Tautz, C. y Von Wangenheim, C. (1998). refseno: A representation formalism for software engineering ontologies. Technical report No. 015.98/E, version 1.1. Fraunhofer iese. https://publica-rest.fraunhofer.de/server/api/core/bitstreams/05029db1-0b3f-408eb786- 468127baee2d/content; Xu, R., Xue, Y., Nie, P., Zhang, Y. y Li, D. (2006). Research on CMMI-based software process metrics. En First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS’06) (vol. 2, pp. 391-397). ieee. https://doi.org/10.1109/ IMSCCS.2006.260; Baldassarre, T., Boffoli, N., Caivano, D. y Visaggio, G. (2004). Managing Software Process Improvement (SPI) through statistical process control (spc). En F. Bomarius y H. Iida (eds.), Product Focused Software Process Improvement. profes 2004. Lecture Notes in Computer Science (pp. 30-46). Springer. https://doi.org/10.1007/978-3-540-24659-6_3; Caivano, D. (2005). Continuous Software Process Improvement through statistical process control. En Ninth European Conference on Software Maintenance and Reengineering (pp. 288-293). ieee. https://doi.org/10.1109/CSMR.2005.20; Card, D. N. y Glass, R. L. (1990). Measuring software design quality. Prentice-Hall.; Chang, C. W. y Tong, L. I. (2013). Monitoring the software development process using a short-run control chart. Software Quality Journal, 21, 479-499. https://doi. org/10.1007/s11219-012-9182-y; DeMarco, T. (1986). Controlling software projects: Management, measurement, and estimates. Prentice Hall.; Fine, E. S. (1997). What is wrong with spc? Quality, 36(10), 22-24.; Florac, W. A. y Carleton, A. D. (1999). Measuring the software process: Statistical process control for Software Process Improvement. Addison-Wesley.; Florac, W. A., Carleton, A. D. y Barnard, J. R. (2000). Statistical process control: Analyzing space shuttle onboard software process. ieee Software, 17(4), 97-106. https://doi. org/10.1109/52.854075; Florac, W. A., Park, R. E. y Carleton, A. (1997). Practical software measurement: Measuring for process management and improvement. No. cmu/sei-97-hb-003. Software Engineering Institute, Carnegie Mellon University. https://citeseerx.ist.psu.edu/document? repid=rep1&type=pdf&doi=76aafd5d0ed49263488bca95f00f1fdad3729bec; Gonçalves, L., Lima, L., Reis, R. Q., Nascimento, L. y Ribeiro, T. (2012). Support for statistic process control of software process. En 2012 xxxviii Conferencia Latinoamericana en Informática (clei) (pp. 1-10). ieee. https://doi.org/10.1109/CLEI.2012.6426915; Humphrey, W. S. (2005). psp (sm): A self-improvement process for software engineers. Addison-Wesley.; Jalote, P. y Saxena, A. (2002). Optimum control limits for employing statistical process control in software process. ieee Transactions on Software Engineering, 28(12), 1126-1134. https://doi.org/10.1109/TSE.2002.1158286; Komuro, M. (2006). Experiences of applying SPC techniques to software development processes. En Proceedings of the 28th international conference on Software engineering (pp. 577-584). https://doi.org/10.1145/1134285.1134367; Khurana, R. (2007). Software engineering: Principles and practices. Vikas.; Manlove, D. y Kan, S. H. (2007). Practical statistical process control for software metrics. Software Quality Professional Magazine, 9(4), 15-26.; Montgomery, D. C. (2012). Statistical quality control. Wiley Global Education.; Raczynski, B. y Curtis, B. (2008). Software data violate spc’s underlying assumptions. ieee Software, 25(3), 48-50.; Salazar, R. (2019). Quality Control Charts: x-bar chart, R-chart and Process Capability Analysis. Towards data science. https://towardsdatascience.com/quality-controlcharts- x-bar-chart-r-chart-and-process-capability-analysis-96caa9d9233e; Sargut, K. U. y Demirörs, O. (2006). Utilization of statistical process control (spc) in emergent software organizations: Pitfalls and suggestions. Software Quality Journal, 14, 135-157. https://doi.org/10.1007/s11219-006-7599-x; Şengöz, N. G. (2018). Control charts to enhance quality. En L. Kounis (ed.), Quality management systems: A selective presentation of case-studies showcasing its evolution (pp. 153-194). IntechOpen.; Shewhart, W. A. (1926). Quality control charts. Bell System Technical Journal, 5, 593-603. https://doi.org/10.1002/j.1538-7305.1926.tb00125.x; Tarhan, A. y Demirörs, O. (2006). Investigating suitability of software process and metrics for statistical process control. En I. Richardson, P. Runeson y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2006. Lecture Notes in Computer Science (pp. 88-99). Springer. https://doi.org/10.1007/11908562_9; Weller, E. y Card, D. (2008). Applying spc to software development where and why. ieee Software, 25(3), 48-50.; Wheeler, D. J. (1993). Understanding variation: The key to managing chaos. spc Press.; Wheeler, D. J. (1995). Advanced topics in statistical process control. spc Press.; Allison, I. (2005). Towards an agile approach to Software Process Improvement: Addressing the changing needs of software products. Communications of iima, 5(1), 67-76. https:// doi.org/10.58729/1941-6687.1256; American Society for Quality. (2020). Quality tools. https://asq.org/quality-resources/quality- tools; Antony, J. y Banuelas, R. (2002). Key ingredients for the effective implementation of Six Sigma program. Measuring Business Excellence, 6(4), 20-27. https://doi. org/10.1108/13683040210451679; Basili, V., Caldiera, G. y Rombach, D. (1994). Experience factory. En Encyclopedia of software engineering (vol. 1, pp. 476-496). John Wiley & Sons.; Beecham, S., Hall, T. y Rainer, A. (2003). Software process improvement problems in twelve software companies: An empirical analysis. Empirical Software Engineering, 8, 7-42. https://doi.org/10.1023/A:1021764731148; Bekaroo, G. y Warren, P. (2016). Self-tuning flowcharts: A priority-based approach to optimize diagnostic flowcharts. En 2016 ieee International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech) (pp. 279-285). IEEE. https://doi.org/10.1109/EmergiTech.2016.7737352; Birk, A. y Rombach, D. (2001). A practical approach to continuous improvement in software engineering. En M. Wieczorek y D. Meyerhoff (eds.), Software quality: State of the art in management, testing, and tools (pp. 34-45). https://doi.org/10.1007/978-3- 642-56529-8_3; Borstler, J., Carrington, D., Hislop, G. W., Lisack, S., Olson, K. y Williams, L. (2002). Teaching PSP: Challenges and lessons learned. ieee Software, 19(5), 42-48. https://doi. org/10.1109/MS.2002.1032853; British Standards Institution. (2011). Kick start guide TickITplus. https://www.tickitplus. org/en/standards-and-guidance/guidance.html?file=files/content/tickitplus/TickITplus_-_ Kick_Start_Guide_1.pdf&cid=33397; Bubevski, V. (2010). An application of Six Sigma and simulation in software testing risk assessment. En 2010 Third International Conference on Software Testing, Verification and Validation (pp. 295-302). ieee. https://doi.org/10.1109/ICST.2010.23; Cangussu, J. W., DeCarlo, R. A. y Mathur, A. P. (2003). Monitoring the software test process using statistical process control: A logarithmic approach. En Proceedings of the 9th European Software Engineering Conference held jointly with 11th acm sigsoft International Symposium on Foundations of Software Engineering (pp. 158-167). ieee. https://doi. org/10.1145/940071.940093; Cano, E. L., Moguerza, J. M. y Redchuk, A. (2012). Six Sigma with R: Statistical engineering for process improvement. Springer.; Chaudhary, M. y Chopra, A. (2017). CMMI for development: Implementation guide. Apress. https://doi.org/10.1007/978-1-4842-2529-5; Davis, P. T. y Lewis, B. D. (2018). Project management capability assessment: Performing iso 33000-Based capability assessments of project management. crc Press.; Ferreira, M. G. y Wazlawick, R. S. (2011). Complementing the sei-ideal model with deployers’ real experiences: The need to address human factors in spi Initiatives. En CIbSE (pp. 39-52). https://www.academia.edu/download/32809080/cibse_paper03.pdf; Fontana, R. M., Albuquerque, R., Luz, R., Moises, A. C., Malucelli, A. y Reinehr, S. (2018). Maturity models for agile software development: What are they? En X. Larrucea, I. Santamaria, R. O’Connor y R. Messnarz (eds.), Systems, Software and Services Process Improvement. EuroSPI 2018. Communications in Computer and Information Science (pp. 3-14). Springer. https://doi.org/10.1007/978-3-319-97925-0_1; Grütter, G. y Ferber, S. (2002). The Personal Software Process in practice: Experience in two cases over five years. En J. Kontio y R. Conradi (eds.), Software Quality - ecsq 2002. ecsq 2002. Lecture Notes in Computer Science (pp. 165-174). Springer. https:// doi.org/10.1007/3-540-47984-8_20; Gupta, P. y Rao, D. S. (2011). Best practices to achieve CMMI level 2 configuration management process area through vss tool. International Journal of Computer Technology and Applications, 2(3), 542-558.; Harry, M. y Schroeder, R. (2000). Six Sigma: The breakthrough management strategy revolutionizing the world’s top corporations. Doubleday.; Hauser, S. (2018). Analysis of requirement problems regarding their causes and effects for projects with the objective to model qualitative pris-empirical study. https://ceur-ws.org/Vol-2075/ DS-paper3.pdf; Humphrey, W. S. (2001). Winning with software: An executive strategy. Pearson Education.; Humphrey, W. S. y Over, J. W. (2010). Leadership, teamwork, and trust: Building a competitive software capability. Addison-Wesley.; Iqbal, J., Nasir, M. H. N., Khan, M., Awan, I. y Farid, S. (2020). Software process improvement implementation issues in small and medium enterprises that develop healthcare applications. Journal of Medical Imaging and Health Informatics, 10(10), 2393-2403. https://doi.org/10.1166/jmihi.2020.3187; ISO 33000. (2020). iso 33000. https://www.iso33000.es/; ISO/IEC 15504. (2003). International Organization for Standardization and the International Electrotechnical Commission (iso/iec). iso/iec 15504-2 - Information technology - Process assessment - Part 2: Performing an assessment.; Kandt, R. K. (2003). Ten steps to successful Software Process Improvement. https://dataverse. jpl.nasa.gov/api/access/datafile/6189?gbrecs=true; Kaplan, R. S. y Norton, D.P. (1992). The balanced scorecard: Measures that drive performance. Harvard Business Review, 70(1), 71-79. https://hbr.org/1992/01/the-balancedscorecard- measures-that-drive-performance-2; Kaplan, R. S. y Norton, D.P. (2009). El cuadro de mando integral. Gestión 2000.; Kazi, L., Radosav, D., Nikolic, M. y Chotaliya, N. (2011). Balanced scorecard framework in software project monitoring. Journal of Engineering Management and Competitiveness (jemc), 1(1-2), 51-56. http://www.tfzr.uns.ac.rs/JEMC/files/V1N1-22011-10.pdf; Kuhrmann, M., Konopka, C., Nellemann, P., Diebold, P. y Münch, J. (2015). Software process improvement: Where is the evidence? Initial findings from a systematic mapping study. En Proceedings of the 2015 International Conference on Software and System Process (pp. 107-116). https://doi.org/10.1145/2785592.2785600; Kuilboer, J. P. y Ashrafi, N. (2000). Software process and product improvement: An empirical assessment. Information and Software Technology, 42(1), 27-34. https://doi. org/10.1016/S0950-5849(99)00054-3; Lee, J. C., Hsu, W. C. y Chen, C. Y. (2018). Impact of absorptive capability on Software Process Improvement and firm performance. Information Technology and Management, 19, 21-35. https://doi.org/10.1007/s10799-016-0272-6; Liliana, L. (2016). A new model of Ishikawa diagram for quality assessment. En Iop Conference Series: Materials Science and Engineering, 161(1), 012099. https://doi. org/10.1088/1757-899X/161/1/012099; McFeeley, B. (1996). IDEAL: A user’s guide for Software Process Improvement. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu.edu/documents/ 1622/1996_002_001_16433.pdf; Mejía, J., Íñiguez, F. y Muñoz, M. (2017). Data Analysis for Software Process Improvement: A systematic literature review. En Á. Rocha, A. Correia, H. Adeli, L. Reis y S. Costanzo (eds.), Recent Advances in Information Systems and Technologies. WorldCIST 2017. Advances in Intelligent Systems and Computing (pp. 48-59). Springer. https://doi. org/10.1007/978-3-319-56535-4_5; Mills, H. D. y Linger, R. C. (2002). Cleanroom software engineering: Developing software under statistical quality control. En Encyclopedia of Software Engineering. John Wiley & Sons. https://doi.org/10.1002/0471028959.sof040; Niazi, M., Mishra, A. y Gill, A. Q. (2018). What do software practitioners really think about Software Process Improvement project success? An exploratory study. Arabian Journal for Science and Engineering, 43, 7719-7735. https://doi.org/10.1007/s13369- 018-3140-3; O’Regan, G. (2017). Concise guide to software engineering. Springer.; Pernstål, J., Feldt, R., Gorschek, T. y Florén, D. (2019). flex-rca: A lean-based method for root cause analysis in Software Process Improvement. Software Quality Journal, 27, 389-428. https://doi.org/10.1007/s11219-018-9408-8; Piattini Velthuis, M. G. y Garzás Parra, J. (2007). Fábricas de software: Experiencias, tecnologías y organización. ra-ma.; Pillai, A. K. R., Pundir, A. K. y Ganapathy, L. (2012). Implementing integrated Lean Six Sigma for software development: A flexibility framework for managing the continuity. Change dichotomy. Global Journal of Flexible Systems Management, 13, 107-116. https://doi.org/10.1007/s40171-012-0009-2; Pomeroy-Huff, M., Mullaney, J., Cannon, R. y Seburn, M. (2008). The Personal Software Process-SM (PSP-SM) Body of Knowledge, Version 1.0. No. cmu/sei-2005-sr-003. Software Engineering Institute, Carnegie Mellon University. https://apps.dtic.mil/sti/tr/ pdf/ADA636411.pdf; Poth, A., Sasabe, S. y Mas, A. (2017). Lean and agile Software Process Improvement: An overview and outlook. En J. Stolfa, S. Stolfa, R. O’Connor y R. Messnarz (eds.), Systems, Software and Services Process Improvement. EuroSPI 2017. Communications in Computer and Information Science (pp. 471-485). Springer. https://doi.org/10.1007/978-3- 319-64218-5_38; Pournaghshband, H. y Watson, J. (2017). Should Six Sigma be incorporated into software development & project management? En 2017 International Conference on Computational Science and Computational Intelligence (csci) (pp. 1021-1026). ieee. https://doi. org/10.1109/CSCI.2017.176; Pressman, R. S. (2005). Software engineering: A practitioner’s approach. Palgrave Macmillan.; Qumer, A., Henderson-Sellers, B. y Mcbride, T. (2007). Agile adoption and improvement model. En Proceedings European and Mediterranean Conference on Information Systems (emcis). The Information Institute, Brunel University. https://opus.lib.uts.edu.au/bitstream/ 10453/6833/1/2006014581.pdf; Salo, O. (2006). Enabling Software Process Improvement in agile software development teams and organisations [tesis de doctorado, vtt Technical Research Centre of Finland]. https://publications.vtt.fi/pdf/publications/2006/P618.pdf; Santana, C., Queiroz, F., Vasconcelos, A. y Gusmão, C. (2015). Software process improvement in agile software development a systematic literature review. En 2015 41st Euromicro Conference on Software Engineering and Advanced Applications (pp. 325-332). ieee. https://doi.org/10.1109/SEAA.2015.82; scampi Upgrade Team. (2011). scampi - Standard cmmi Appraisal Method for Process Improvement (scampi) A, Version 1.3: Method Definition Document. Technical Report cmu/sei-2011- hb-001. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA. https://insights.sei.cmu.edu/documents/1618/2011_002_001_15311. pdf; Shin, H., Choi, H. J. y Baik, J. (2007). Jasmine: A PSP supporting tool. En Q. Wang, D. Pfahl y D. M. Raffo (eds.), Software Process Dynamics and Agility. icsp 2007. Lecture Notes in Computer Science (pp. 73-83). Springer. https://doi.org/10.1007/978-3-540- 72426-1_7; Software Engineering Institute. (2010). cmmi para Desarrollo, Versión 1.3. Software Engineering Institute, Carnegie Mellon University. https://insights.sei.cmu.edu/ documents/87/2010_019_001_28782.pdf; Tague, N. R. (2005). The quality toolbox. asq Quality Press.; Wiegers, K. E. (1999). Process Improvement that works. Software Development, 7(10), 24-30.; Zahran, S. (1998). Software process improvement: Practical guidelines for business susccess. Addison-Wesley.; Amescua, A., Bermón Angarita, L., García, J. y Sánchez-Segura, M. I. (2010). Knowledge repository to improve agile development processes learning. iet Software, 4(6), 434-444. https://doi.org/10.1049/iet-sen.2010.0067; Bayona, S., Calvo Manzano, J., Cuevas, G. y San Feliu, T. (2013). Identify and classify the critical success factors for a successful process deployment. En R. Pooley, J. Coady, C. Schneider, H. Linger, C. Barry y M. Lang (eds.), Information systems development: Reflections, challenges and new directions (pp. 11-22). Springer. https:// doi.org/10.1007/978-1-4614-4951-5_2; Bermón Angarita, L. (2010). Librería de activos para la gestión del conocimiento sobre procesos de software: PAL-Wiki [tesis de doctorado, Universidad Carlos III de Madrid]. https://e-archivo.uc3m.es/handle/10016/10231#preview; Bourque, P. y Fairley, R. E. (eds.) (2014). Guide to the Software Engineering Body of Knowledge, Version 3.0. ieee Computer Society. https://cs.fit.edu/~kgallagher/Schtick/Serious/ SWEBOKv3.pdf; Chaghrouchni, T., Kabbaj, M. I. y Bakkoury, Z. (2016). Optimized approach for dynamic adaptation of process models. En A. El Oualkadi, F. Choubani y A. El Moussati (eds.), Proceedings of the Mediterranean Conference on Information & Communication Technologies 2015. Lecture Notes in Electrical Engineering (pp. 101-109). Springer. https://doi. org/10.1007/978-3-319-30298-0_11; Chaudhary, M. y Chopra, A. (2017). cmmi for development: Implementation guide. Apress. http://ndl.ethernet.edu.et/bitstream/123456789/27112/1/Mukund %20Chaudhary. pdf; Christensen, C. M. y Overdorf, M. (2000). Meeting the challenge of disruptive change. Harvard Business Review, 78(2), 66-77. http://innovbfa.viabloga.com/files/HBR___Christensen___ meeting_the_challenge_of_disruptive_change___2009.pdf; De Lucia, A., Fasano, F., Francese, R. y Tortora, G. (2004). ADAMS: An artefact-based process support system. En F. Maurer y G. Ruhe (eds.), Proceedings of the Seventh International Conference on Software Engineering and Knowledge Engineering (apeie) (pp. 31-36). IEEE.; De Oliveira, K. M., Zlot, F., Rocha, A. R., Travassos, G. H., Galotta, C. y de Menezes, C. S. (2004). Domain-oriented software development environment. Journal of Systems and Software, 72(2), 145-161. https://doi.org/10.1016/S0164-1212(03)00233-4; DeMarco, T. y Lister, T. (2013). Peopleware: Productive projects and teams. Addison-Wesley.; Dengler, F., Lamparter, S., Hefke, M. y Abecker, A., (2009). Collaborative process development using Semantic MediaWiki. En K. Hinkelmann y H. Wache (eds.), WM2009: 5th Conference on Professional Knowledge Management (pp. 97-107). Gesellschaft für Informatik e.V. https://new-dl.gi.de/bitstream/handle/20.500.12116/23326/giproc- 145-008.pdf?sequence=1&isAllowed=y; Dowson, M. (1993). Consistency maintenance in process sensitive environments. En Proceedings of Workshop on Process Sensitive Environments Architectures. Rocky Mountain Institute of Software Engineering.; Dybå, T. (2005). An empirical investigation of the key factors for success in Software Process Improvement. ieee transactions on Software Engineering, 31(5), 410-424. https://doi.org/10.1109/TSE.2005.53; Ebersbach, A., Glaser, M., Heigl, R. y Warta, A. (2008). Wiki: Web collaboration (2.ª ed.). Springer.; García, J., Amescua, A., Sánchez, M. I. y Bermón Angarita, L. (2011). Design guidelines for software processes knowledge repository development. Information and Software Technology, 53(8), 834-850. https://doi.org/10.1016/j.infsof.2011.03.002; García, S. y Turner, R. (2007). CMMI survival guide: Just enough process improvement. Addison-Wesley.; Gruhn, V. (2002). Process-centered software engineering environments: A brief history and future challenges. Annals of Software Engineering, 14, 363-382. https://doi. org/10.1023/A:1020522111961; Hasan, H. y Pfaff, C. C. (2006). The Wiki: An environment to revolutionise employees’ interaction with corporate knowledge. En Proceedings of the 18th Australia conference on Computer-Human Interaction: Design: Activities, Artefacts and Environments (pp. 377-380). https://doi.org/10.1145/1228175.1228250; Henderson, R. M. y Clark, K. B. (1990). Architectural innovation: The reconfiguration of existing product technologies and the failure of established firms. Administrative Science Quarterly, 35, 9-30. https://doi.org/10.2307/2393549; Humphrey, W. S. (2005). The software process: Global goals. En M. Li, B. Boehm y L. J. Osterweil (eds.), Unifying the Software Process Spectrum. spw 2005. Lecture Notes in Computer Science (pp. 35-42). Springer. https://doi.org/10.1007/11608035_4; Jiang, T., Ying, J., Wu, M. y Fang, M. (2006). An architecture of process-centered context- aware software development environment. En 2006 10th International Conference on Computer Supported Cooperative Work in Design (pp. 1-5). ieee. https://doi. org/10.1109/CSCWD.2006.253193; Kaltio, T. (2001). Software process asset management and deployment in a multi-site organization [tesis de doctorado, Helsinki University of Technology]. https://aaltodoc.aalto.fi/ server/api/core/bitstreams/627a1f2d-ca62-4915-a2af-5c69ba06d629/content; Kellner, M. I., Becker-Kornstaedt, U., Riddle, W. E., Tomal, J. y Verlage, M. (1998). Process guides: Effective guidance for process participants. ispa Press. https://publica-rest.fraunhofer. de/server/api/core/bitstreams/0cae4e01-20d2-490c-b565-3eb6dd58539a/content; Layman, B. (2005). Implementing an organizational Software Process Improvement program. IEEE Software Engineering, 2, 279-288.; Leuf, B. y Cunningham, W. (2001). The wiki way: Quick collaboration on the web. Addison- Wesley.; Maciel, R. S. P., da Silva, B. C., Magalhães, A. P. F. y Rosa, N. S. (2009). An integrated approach for model driven process modeling and enactment. En 2009 xxiii Brazilian Symposium on Software Engineering (pp. 104-114). ieee. https://doi. org/10.1109/SBES.2009.18; Maciel, R. S. P., Gomes, R. A., Magalhães, A. P., Silva, B. C. y Queiroz, J. P. B. (2013). Supporting model-driven development using a process-centered software engineering environment. Automated Software Engineering, 20, 427-461. https://doi.org/10.1007/ s10515-013-0124-0; Matinnejad, R. y Ramsin, R. (2012). An analytical review of process-centered software engineering environments. En 2012 ieee 19th International Conference and Workshops on Engineering of Computer-Based Systems (pp. 64-73). ieee. https://doi.org/10.1109/ ECBS.2012.11; Maurer, R. (2010). Beyond the wall of resistance: Why 70 % of all changes still fail-and what you can do about it. Bard Press.; Meso, P. y Jain, R. (2006). Agile software development: Adaptive systems principles and best practices. Information Systems Management, 23(3), 19-30. https://doi.org/10.120 1/1078.10580530/46108.23.3.20060601/93704.3; Messnarz, R., Ekert, D., Reiner, M. y O’Suilleabhain, G. (2008). Human resources based improvement strategies: The learning factor. Software Process: Improvement and Practice, 13(4), 355-362. https://doi.org/10.1002/spip.397; Moe, N. B. y Dybå, T. (2006). The use of an electronic process guide in a medium‐sized software development company. Software Process: Improvement and Practice, 11(1), 21-34. https://doi.org/10.1002/spip.250; Münch, J., Armbrust, O., Kowalczyk, M. y Sotó, M. (2012). Software process definition and management. Springer. https://doi.org/10.1007/978-3-642-24291-5; Nikula, U., Jurvanen, C., Gotel, O. y Gause, D. C. (2010). Empirical validation of the Classic Change Curve on a software technology change project. Information and Software Technology, 52(6), 680-696. https://doi.org/10.1016/j.infsof.2010.02.004; Osterweil, L. (2011). Software processes are software too. En P. Tarr y A. Wolf (eds.), Engineering of Software. Springer. https://doi.org/10.1007/978-3-642-19823-6_17; Rico, D. F. (2005). Practical metrics and models for Return on Investment. TickIT International, 7(2), 10-16. https://davidfrico.com/rico05p.pdf; Rogers, E. W. (2004). Introducing the pause and learn (pal) process: Adapting the Army after action review process to the nasa project world at the Goddard Space Flight Center. nasa Goddard Space Flight Center Knowledge Management Office; Schneider, D. M. y Goldwasser, C. (1998). Be a model leader of change. Management Review, 87(3), 41-45.; Scott, L., Carvalho, L., Jeffery, R., D’Ambra, J. y Becker-Kornstaedt, U. (2002). Understanding the use of an electronic process guide. Information and Software Technology, 44(10), 601-616. https://doi.org/10.1016/S0950-5849(02)00080-0; Smatti, M., Oussalah, M. y Ahmed Nacer, M. (2016). Supporting deviations on software processes: A literature overview. En P. Lorenz, J. Cardoso, L. Maciaszek y M. van Sinderen (eds.), Software Technologies. ICSOFT 2015. Communications in Computer and Information Science (pp. 191-209). Springer. https://doi.org/10.1007/978-3-319- 30142-6_11; Software Engineering Institute. (2010). cmmi® para Desarrollo, Versión 1.3. https://insights. sei.cmu.edu/documents/87/2010_019_001_28782.pdf; Van Solingen, R. (2004). Measuring the ROI of Software Process Improvement. ieee Software, 21(3), 32-38. https://doi.org/10.1109/MS.2004.1293070; Veterans Affairs. (2022). Process Asset Library. https://www.va.gov/process/artifacts.asp; Weber, S., Emrich, A., Broschart, J., Ras, E. y Ünalan, Ö. (2009). Supporting software development teams with a semantic process- and artifact-oriented collaboration environment. En Software Engineering 2009 - Workshopband (pp. 243-254). Gesellschaft für Informatik e.V. https://dl.gi.de/server/api/core/bitstreams/ac0c66ff-4de1-4aadbfee- da2ffb68ec0f/content; Wikipedia. (s. f.). Wiki. http://en.wikipedia.org/wiki/Wiki; Zahran, S. (1998). Software process improvement: Practical guidelines for business success. Addison-Wesley.; Ahonen, J. J., Forsell, M. y Taskinen, S. K. (2002). A modest but practical software process modeling technique for Software Process Improvement. Software Process: Improvement and Practice, 7(1), 33-44. https://doi.org/10.1002/spip.152; Alexandre, S., Renault, A. y Habra, N. (2006). OWPL: A gradual approach for Software Process Improvement in SMEs. En 32nd euromicro Conference on Software Engineering and Advanced Applications (euromicro’06) (pp. 328-335). ieee. https://doi.org/10.1109/ EUROMICRO.2006.48; Allen, P., Ramachandran, M. y Abushama, H. (2003). prisms: An approach to Software Process Improvement for small to medium enterprises. En Third International Conference on Quality Software, 2003. Proceedings (pp. 211-214). ieee. https://doi.org/10.1109/ QSIC.2003.1319105; Anacleto, R., Von Wangenheim, C. G., Salviano, C. F. y Savi, R. (2004). A method for process assessment in small software companies. En Proceedings of 4th International Software Process Improvement and Capability Determination Conference (SPICE04) (pp. 69-76). Springer. https://www.inf.ufsc.br/~c.wangenheim/download/MARESMethod_ spice2004_vref.pdf; Baskerville, R. y Pries-Heje, J. (1999). Knowledge capability and maturity in software management. acm sigmis Database: The database for Advances in Information Systems, 30(2), 26-43. https://doi.org/10.1145/383371.383374; Basri, S. y O’Connor, R. V. (2010). Understanding the perception of very small software companies towards the adoption of process standards. En A. Riel, R. O’Connor, S. Tichkiewitch y R. Messnarz (eds.), Systems, Software and Services Process Improvement. EuroSPI 2010. Communications in Computer and Information Science (pp. 153- 164). Springer. https://doi.org/10.1007/978-3-642-15666-3_14; Berander, P. y Andrews, A. (2005). Requirements prioritization. En A. Aurum y C. Wohlin (eds.), Engineering and managing software requirements (pp. 69-94). Springer. https:// doi.org/10.1007/3-540-28244-0_4; Bucci, G., Campanai, M. y Cignoni, G. A. (2000). Rapid assessment to solicit process improvement in SMEs. En Proceedings of 7th European Software Process Improvement Conference (EuroSPI). Springer. http://groups.di.unipi.it/~giovanni/CV/Pubb/GAC-2001- SQP-Doc.pdf; Calvo-Manzano Villalón, J. A., Cuevas Agustín, G., San Feliu Gilabert, T., De Amescua Seco, A., García Sánchez, L. y Pérez Cota, M. (2002). Experiences in the application of Software Process Improvement in SMEs. Software Quality Journal, 10, 261-273. https:// doi.org/10.1023/A:1021638523413; Cater-Steel, A. P. (2004). Low-rigour, rapid software process assessments for small software development firms. En 2004 Australian Software Engineering Conference. Proceedings (pp. 368-377). ieee. https://doi.org/10.1109/ASWEC.2004.1290490; Cater-Steel, A., Toleman, M. y Rout, T. (2006). Process improvement for small firms: An evaluation of the rapid assessment-based method. Information and Software Technology, 48(5), 323-334. https://doi.org/10.1016/j.infsof.2005.09.012; Chen, X. y Staples, M. (2007). Using practice outcome areas to understand perceived value of cmmi specific practices for SMEs. En P. Abrahamsson, N. Baddoo, T. Margaria y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2007. Lecture Notes in Computer Science (pp. 59-70). Springer. https://doi.org/10.1007/978-3-540-75381-0_6; Chin, A. (2000). 10 factors on fostering innovation in small and medium-sized organisations. En Proceedings of the 2000 ieee International Conference on Management of Innovation and Technology. icmit 2000.’Management in the 21st Century’(Cat. No. 00EX457) (vol. 1, pp. 473-478). ieee. https://doi.org/10.1109/ICMIT.2000.917383; Clarke, P. y O’Connor, R. V. (2012a). The influence of spi on business success in software SMEs: An empirical study. Journal of Systems and Software, 85(10), 2356-2367. https:// doi.org/10.1016/j.jss.2012.05.024; Coleman, G. y O’Connor, R. (2008). Investigating software process in practice: A grounded theory perspective. Journal of Systems and Software, 81(5), 772-784. https://doi.org/10.1016/j.jss.2007.07.027; Dybå, T. (2003). Factors of Software Process Improvement success in small and large organizations: An empirical study in the scandinavian context. acm sigsoft Software Engineering Notes, 28(5), 148-157. https://doi.org/10.1145/949952.940092; European Commission. (2020). What is a SME? https://ec.europa.eu/growth/smes/business- friendly-environment/sme-definition_en/; Fontana, R. M., Meyer, V., Reinehr, S. y Malucelli, A. (2015). Progressive outcomes: A framework for maturing in agile software development. Journal of Systems and Software, 102, 88-108. https://doi.org/10.1016/j.jss.2014.12.032; García Paucar, L. H., Laporte, C. Y., Arteaga, Y. y Bruggmann, M. (2015). Implementation and Certification of iso/iec 29110 in an IT Startup in Peru. Software Quality Professional Journal, 17(2), 16-29. https://profs.etsmtl.ca/claporte/Publications/Publications/iso- 29110-in-an-it-startup-in-peru.pdf; García-Mireles, G. A. y Rodríguez-Castillo, I. (2009). Software engineering area curricular evaluation method based in Moprosoft. En 2009 Mexican International Conference on Computer Science (pp. 272-279). ieee. https://doi.org/10.1109/ENC.2009.19; Hall, T., Rainer, A. y Baddoo, N. (2002). Implementing Software Process Improvement: An empirical study. Software Process: Improvement and Practice, 7(1), 3-15. https://doi. org/10.1002/spip.150; Hauck, J. C. R., Almeida, I., Araujo, R., Dymow, J. y Neto, M. F. (2015). Harmonizing mps. br and certics: A case study in a maturity level f organization. En 2015 29th Brazilian Symposium on Software Engineering (pp. 61-70). ieee. https://doi.org/10.1109/ SBES.2015.22; Hauck, J. C. R., Gresse Von Wangenheim, C., de Souza, R. H. y Thiry, M. (2008). Process reference guides: Support for improving software processes in alignment with reference models and standards. En R. V. O’Connor, N. Baddoo, K. Smolander y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2008. Communications in Computer and Information Science (pp. 70-81). Springer. https://doi.org/10.1007/978- 3-540-85936-9_7; Hoffman, L. (1998). Small projects and the CMM. En Key Practices to the CMM: Inappropriate for Small projects? Proceedings of the 1998 Software Engineering Process Group Conference (pp. 9-12). Chicago.; Horvat, R. V., Rozman, I. y Györkös, J. (2000). Managing the complexity of spi in small companies. Software Process: Improvement and Practice, 5(1), 45-54. https://doi. org/10.1002/(SICI)1099-1670(200003)5:1%3C45::AID-SPIP110%3E3.0.CO;2-2; ISO/IEC 29110-1. (2010). Software engineering - lifecycle profiles for very small entities (vse) - Part 1: vse profiles overview. International Organization for Standardization.; ISO/IEC 29110-2. (2010). Software engineering - lifecycle profiles for very Small entities (vse) - Part 2: Framework and taxonomy. International Organization for Standardization.; ISO/IEC 29110-3. (2010). Software engineering - lifecycle profiles for very small entities (vse) - Part 3: Assessment guide. International Organization for Standardization.; ISO/IEC 29110-4. (2010). Software engineering - lifecycle profiles for very small entities (vse) - Part 4: Specifications of VSE profiles. International Organization for Standardization.; ISO/IEC 29110-5. (2010). Software engineering - lifecycle profiles for very small entities (vse) - Part 5: Management and engineering guide. International Organization for Standardization.; ISO/IEC 42010. (2007). Systems and software engineering - recommended practice for architectural description of software-intensive systems. International Organization for Standardization; ITmark. (2020). Modelo ITmark. http://it-mark.eu/; Järvi, A., Mäkilä, T. y Hakonen, H. (2006). Changing role of SPI: Opportunities and challenges of process modeling. En I. Richardson, P. Runeson y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2006. Lecture Notes in Computer Science (pp. 135-146). Springer. https://doi.org/10.1007/11908562_13; Jeners, S., Clarke, P., O’Connor, R. V., Buglione, L. y Lepmets, M. (2013). Harmonizing software development processes with software development settings: A systematic approach. En F. McCaffery, R. V. O’Connor y R. Messnarz (eds.), Systems, Software and Services Process Improvement. EuroSPI 2013. Communications in Computer and Information Science (pp. 167-178). Springer. https://doi.org/10.1007/978-3-642-39179-8_15; Johnson, D. L. y Brodman, J. G. (1998). Applying the CMM to small organizations and small projects. En Proceedings of the 1998 Software Engineering Process Group Conference.; Kachigan, S. K. (1986). Statistical analysis: An interdisciplinary introduction to univariate & multivariate methods. Radius Press.; Kautz, K., Hansen, H. W. y Thaysen, K. (2000). Applying and adjusting a Software Process Improvement model in practice: The use of the ideal model in a small software enterprise. En Proceedings of the 22nd international conference on Software engineering (pp. 626-633). https://doi.org/10.1145/337180.337492; Kuvaja, P., Palo, P. y Bicego, A. (1999). tapistry: A Software Process Improvement approach tailored for small enterprises. Software Quality Journal, 8(2), 149-156. https://doi. org/10.1023/A:1008909011736; Lester, N. G., Wilkie, F. G., McFall, D. y Ware, M. P. (2007). Evaluating the internal consistency of the base questions in the Express Process Appraisal. En 33rd euromicro Conference on Software Engineering and Advanced Applications (euromicro 2007) (pp. 289-296). ieee. https://doi.org/10.1109/EUROMICRO.2007.30; Lester, N. G., Wilkie, F. G., McFall, D. y Ware, M. P. (2010). Investigating the role of cmmi with expanding company size for small‐to medium‐sized enterprises. Journal of Software Maintenance and Evolution: Research and Practice, 22(1), 17-31. https://doi. org/10.1002/spip.409; López, O., Esquivel-Vega, G., Valerio, A. L., Víquez-Acuña, L., Víquez-Acuña, O. y Umaña, D. (2012). Mejora de procesos para fomentar la competitividad de la pequeña y mediana industria del software de Iberoamérica. Instituto Tecnológico de Costa Rica. https://repositoriotec. tec.ac.cr/bitstream/handle/2238/3358/mejora-procesos-fomentar-competitividad. pdf?sequence=1&isAllowed=y; McCaffery, F. y Coleman, G. (2009). Lightweight spi assessments: What is the real cost? Software Process: Improvement and Practice, 14(5), 271-278. https://doi.org/10.1002/ spip.430; McCaffery, F., McFall, D. y Wilkie, F.G. (2005). Improving the Express Process Appraisal method. En F. Bomarius y S. Komi-Sirviö (eds.), Product Focused Software Process Improvement. profes 2005. Lecture Notes in Computer Science (pp. 286-298). Springer. https://doi.org/10.1007/11497455_24; McCaffery, F., Richardson, I. y Coleman, G. (2006). A Adept: A software process appraisal method for small to medium-sized Irish software development organisations. En Proceedings of the European Software Process Improvement and Innovation Conference (Euro- SPI06). https://eprints.dkit.ie/173/; Mishra, D. y Mishra, A. (2009). Software process improvement in SMEs: A comparative view. Computer Science and Information Systems, 6(1), 111-140. https://doi. org/10.2298/CSIS0901111M; MPS.BR. (2012). Melhoria de Processo de Software Brasileiro: Guia Geral. Softex.; Nawrocki, J. R., Jasiñski, M., Walter, B. y Wojciechowski, A. (2002). Combining eXtreme Programming with ISO 9000. En H. Shafazand y A. M. Tjoa (eds.), EurAsia-ICT 2002: Information and Communication Technology. EurAsia-ICT 2002. Lecture Notes in Computer Science (pp. 786-794). Springer. https://doi.org/10.1007/3-540-36087-5_91; Nawrocki, J., Walter, B. y Wojciechowski, A. (2001). Toward maturity model for eXtreme Programming. En Proceedings 27th euromicro Conference. 2001: A Net Odyssey (pp. 233-239). ieee. https://doi.org/10.1109/EURMIC.2001.952459; O’Connor, R. V. (2014). Early stage adoption of iso/iec 29110 software project management practices: A case study. En A. Mitasiunas, T. Rout, R. V. O’Connor y A. Dorling (eds.), Software Process Improvement and Capability Determination. spice 2014. Communications in Computer and Information Science (pp. 226-237). Springer. https://doi. org/10.1007/978-3-319-13036-1_20; O’Connor, R. V. y Laporte, C. Y. (2014). An innovative approach to the development of an international software process lifecycle standard for very small entities. International Journal Information Technologies and Systems Approach (ijitsa), 7(1), 1-22. https://doi. org/10.4018/ijitsa.2014010101; Oktaba, H. (dir.) (2005). Modelo de procesos para la industria de software MoProSoft por niveles de capacidad de procesos. Versión 1.3. nmx-059/01-nyce-2005. Organismo Nacional de Normalización y Evaluación de la Conformidad.; Oktaba, H., Alquicira Esquivel, C., Ramos, A. S., Palacios Elizalde, J., Pérez Escobar, C. J. y López Lira Hinojo, F. (2004). Método de evaluación de procesos para la industria del software, EvalProSoft V1.1. Secretaría de Economía de México.; Oktaba, H., García, F., Piattini, M., Ruiz, F., Pino, F. J. y Alquicira, C. (2007). Software process improvement: The Competisoft project. Computer, 40(10), 21-28. https://doi. org/10.1109/MC.2007.361; Paulk, M. C. (1998). Using the software CMM in small organizations. En The Joint 1998 Proceedings of the Pacific Northwest Software Quality Conference and the Eighth International Conference on Software Quality (pp. 350-361). Carnegie Mellon University. http://www.iso.staratel.com/iso/CMM/Article/cmm-small.pdf; Pettersson, F., Ivarsson, M., Gorschek, T. y Öhman, P. (2008). A practitioner’s guide to light weight software process assessment and improvement planning. Journal of Systems and Software, 81(6), 972-995. https://doi.org/10.1016/j.jss.2007.08.032; Piattini, M. y Garzás-Parra, J. (2007). Fábricas de software: Experiencias, tecnologías y organización. ra-ma.; Pino, F. J., García, F. y Piattini, M. (2008). Software process improvement in small and medium software enterprises: A systematic review. Software Quality Journal, 16, 237-261. https://doi.org/10.1007/s11219-007-9038-z; Raninen, A., Ahonen, J. J., Sihvonen, H. M., Savolainen, P. y Beecham, S. (2013). lappi: A light‐weight technique to practical process modeling and improvement target identification. Journal of Software: Evolution and Process, 25(9), 915-933. https://doi. org/10.1002/smr.1571; Regnell, B., Höst, M., och Dag, J. N., Beremark, P. y Hjelm, T. (2001). An industrial case study on distributed prioritisation in market-driven requirements engineering for packaged software. Requirements Engineering, 6, 51-62. https://doi.org/10.1007/ s007660170015; Richardson, I. (2002). SPI models: What characteristics are required for small software development companies? En J. Kontio y R. Conradi (eds.), Software Quality: ECSQ 2002. ECSQ 2002. Lecture Notes in Computer Science (pp. 100-113). Springer. https:// doi.org/10.1007/3-540-47984-8_14; Richardson, I. y Ryan, K. (2001). Software process improvements in a very small company. Software Quality professional, 3(2), 23-35. https://citeseerx.ist.psu.edu/document? repid=rep1&type=pdf&doi=37f9a4ce4e41816901f3c9f99eaec880f18f18c2; Rozman, I., Vajde Horvat, R., GyÓrkÓs, J. y Hericùko, M. (1997). Processus: Integration of sei cmm and iso quality models. Software Quality Journal, 6, 37-63. https://doi. org/10.1023/A:1018539413913; Saaty, T. L. y Vargas, L. G. (2012). Models, methods, concepts & applications of the analytic hierarchy process. Springer.; Sánchez-Gordón, M. L., Colomo-Palacios, R., de Amescua Seco, A. y O’Connor, R. V. (2016). The route to Software Process Improvement in small-and medium-sized enterprises. En M. Kuhrmann, J. Münch, I. Richardson, A. Rausch y H. Zhang (eds.), Managing software process evolution. Springer. https://doi.org/10.1007/978-3-319-31545-4_7; Santos, G., Kalinowski, M., Rocha, A. R., Travassos, G. H., Weber, K. C. y Antonioni, J. A. (2012). MPS. BR program and MPS model: Main results, benefits and beneficiaries of Software Process Improvement in Brazil. En 2012 Eighth International Conference on the Quality of Information and Communications Technology (pp. 137-142). ieee. https:// doi.org/10.1109/QUATIC.2012.42; Savolainen, P., Sihvonen, H. M. y Ahonen, J. J. (2007). SPI with lightweight software process modeling in a small software company. En P. Abrahamsson, N. Baddoo, T. Margaria y R. Messnarz (eds.), Software Process Improvement. EuroSPI 2007. Lecture Notes in Computer Science (pp. 71-81). Springer. https://doi.org/10.1007/978-3-540-75381-0_7; Scott, L., Jeffery, R., Carvalho, L., D’ambra, J. y Rutherford, P. (2001). Practical Software Process Improvement-the IMPACT project. En Proceedings 2001 Australian Software Engineering Conference (pp. 182-189). ieee. https://doi.org/10.1109/ASWEC.2001.948512; Softex. (2020). Modelos de referência. https://softex.br/mpsbr/modelos/; Stambollian, A., Habra, N., Laporte, C. Y., Desharnais, J. M. y Renault, A. (2006). owpl: A light model & methodology for initiation Software Process Improvement. En Proceedings of the 6th SPICE Conference on Process Assessment and Improvement (pp. 97- 105).; Suwanya, S. y Kurutach, W. (2008). An analysis of Software Process Improvement for sustainable development in Thailand. En 2008 8th ieee International Conference on Computer and Information Technology (pp. 724-729). ieee. https://doi.org/10.1109/ CIT.2008.4594764; Turgeon, J. (2006). CMMI on the sly for the CMMI shy: Implementing Software Process Improvement in small teams and organizations. Presentation in sepg.; Vahaniitty, J. y Rautiainen, K. (2005). Towards an approach for managing the development portfolio in small product-oriented software companies. En Proceedings of the 38th Annual Hawaii International Conference on System Sciences (pp. 314c-314c). ieee. https:// doi.org/10.1109/HICSS.2005.636; Valdés, G., Astudillo, H., Visconti, M. y López, C. (2010). The Tutelkan SPI framework for small settings: A methodology transfer vehicle. En A. Riel, R. O’Connor, S. Tichkiewitch y R. Messnarz (eds.), Systems, Software and Services Process Improvement. EuroSPI 2010. Communications in Computer and Information Science (pp. 142-1529. Springer. https://doi.org/10.1007/978-3-642-15666-3_13; Valdés, G., Visconti, M. y Astudillo, H. (2011). The Tutelkan Reference Process: A reusable process model for enabling SPI in small settings. En R. V. O’Connor, J. Pries-Heje y R. Messnarz (eds.), Systems, Software and Service Process Improvement. EuroSPI 2011. Communications in Computer and Information Science (pp. 179-190). Springer. https:// doi.org/10.1007/978-3-642-22206-1_16; Valencia, L. S., Villas, P. A. y Ocampo, C. A. (2009). Modelo de calidad de software. Scientia et Technica, 2(42), 172-176. https://www.redalyc.org/pdf/849/84916714032.pdf; Valtanen, A. y Ahonen, J. J. (2008). Big improvements with small changes: Improving the processes of a small software company. En A. Jedlitschka y O. Salo (eds.), Product-Focused Software Process Improvement. profes 2008. Lecture Notes in Computer Science (pp. 258-272). Springer. https://doi.org/10.1007/978-3-540-69566-0_22; Villarroel, R., Gómez, Y., Gajardo, R. y Rodríguez, O. (2009). Implementation of an improvement cycle using the competisoft methodological framework and the Tutelkan platform. En 2009 International Conference of the Chilean Computer Science Society (pp. 97-104). ieee. https://doi.org/10.1109/SCCC.2009.20; Von Wangenheim, C. G., Anacleto, A. y Salviano, C. F. (2006). Helping small companies assess software processes. ieee Software, 23(1), 91-98. https://doi.org/10.1109/ MS.2006.13; Von Wangenheim, C. G., Weber, S., Hauck, J. C. R. y Trentin, G. (2006). Experiences on establishing software processes in small companies. Information and Software Technology, 48(9), 890-900. https://doi.org/10.1016/j.infsof.2005.12.010; Weber, K. C., Araújo, E. E. R., da Rocha, A. R. C., Machado, C. A. F., Scalet, D. y Salviano, C. F. (2005). Brazilian software process reference model and assessment method. En P. Yolum, T. Güngör, F. Gürgen y C. Özturan (eds.), Computer and Information Sciences - ISCIS 2005. ISCIS 2005. Lecture Notes in Computer Science (pp. 402-411). Springer. https://doi.org/10.1007/11569596_43; Wheelen, T. L., Hunger, J. D., Hoffman, A. N. y Bamford, C. E. (2017). Strategic management and business policy. Pearson; Wilkie, F. G., Mc Caffery, F., McFall, D., Lester, N. y Wilkinson, E. (2007). A Low‐overhead method for software process appraisal. Software Process: Improvement and Practice, 12(4), 339-349. https://doi.org/10.1002/spip.321; Zarour, M., Abran, A. y Desharnais, J. M. (2011). Evaluation of software process assessment methods: Case study. En R. V. O’Connor, T. Rout, F. McCaffery y A. Dorling (eds.), Software Process Improvement and Capability Determination. spice 2011. Communications in Computer and Information Science (pp. 42-51). Springer. https://doi. org/10.1007/978-3-642-21233-8_4; Akbar, R., Hassan, M. F. y Abdullah, A. (2011). A review of prominent work on agile processes Software Process Improvement and process tailoring practices. En J. M. Zain, W. M. b. Wan Mohd y E. El-Qawasmeh (eds.), Software Engineering and Computer Systems. icsecs 2011. Communications in Computer and Information Science (pp. 571-585). Springer. https://doi.org/10.1007/978-3-642-22203-0_49; Alavi, M. y Leidner, D. E. (2001). Knowledge management and knowledge management systems: Conceptual foundations and research issues. mis Quarterly, 25(1), 107-136. https://doi.org/10.2307/3250961; Alexander, C. (1979). The timeless way of building. Oxford University Press.; Anguswamy, R. y Frakes, W. B. (2012). A study of reusability, complexity, and reuse design principles. En Proceedings of the acm-ieee International Symposium on Empirical Software Engineering and Measurement (pp. 161-164). https://doi. org/10.1145/2372251.2372280; Armbrust, O., Katahira, M., Miyamoto, Y., Münch, J., Nakao, H. y Ocampo, A. (2009). Scoping software process lines. Software Process: Improvement and Practice, 14(3), 181-197. https://doi.org/10.1002/spip.412; Barreto, A. S., Murta, L. G. P. y Rocha, A. R. (2011). Software process definition: A reuse-based approach. Journal of Universal Computer Science (jucs), 17(13), 1765-1799. https:// www.jucs.org/jucs_17_13/software_process_definition_a/jucs_17_13_1765_1799_ barreto.pdf; Bermón Angarita, L. (2010). Librería de activos para la gestión del conocimiento sobre procesos de software: PAL-Wiki [tesis doctoral, Universidad Carlos III de Madrid]. https://e-archivo.uc3m.es/bitstream/handle/10016/10231/Tesis_Leonardo_Bermon. pdf?sequence=2&isAllowed=y; Bhuta, J., Boehm, B. y Meyers, S. (2006). Process elements: Components of software process architectures. En M. Li, B. Boehm y L. J. Osterweil (eds.), Unifying the Software Process Spectrum. spw 2005. Lecture Notes in Computer Science (pp. 332-346). Springer. https://doi.org/10.1007/11608035_28; Birk, A., Heller, G., John, I., Schmid, K., von der Maßen, T. y Muller, K. (2003). Product line engineering, the state of the practice. ieee Software, 20(6), 52-60. https://doi. org/10.1109/MS.2003.1241367; Chrissis, M. B., Konrad, M. y Shrum, S. (2006). CMMI: Guidelines for process integration and product improvement. Addison-Wesley.; Ezran, M., Morisio, M. y Tully, C. (2002). Practical software reuse. Springer.; Fenton, N. y Bieman, J. (2014). Software metrics: A rigorous and practical approach. crc Press.; Fitzgerald, B., Russo, N. y O’Kane, T. (2003). Software development method tailoring at Motorola. Communications of the acm, 46(4), 65-70. https://doi. org/10.1145/641205.641206; Forrester, E. (ed.) (2006). A process research framework: The international process research consortium. Carnegie Mellon University, Software Engineering Institute.; Fusaro, P., Tortorella, M. y Visaggio, G. (1998). rep-chaRacterising and exploiting process components: Results of experimentation. En Proceedings Fifth Working Conference on Reverse Engineering (Cat. No. 98TB100261) (pp. 20-29). ieee. https://doi.org/10.1109/ WCRE.1998.723172; Gallina, B., Kashiyarandi, S., Martin, H. y Bramberger, R. (2014). Modeling a safety-and automotive-oriented process line to enable reuse and flexible process derivation. En 2014 ieee 38th International Computer Software and Applications Conference Workshops (pp. 504-509). ieee. https://doi.org/10.1109/COMPSACW.2014.84; Gamma, E., Helm, R., Johnson, R. y Vlissides, J. (1994). Design patterns: Elements of reusable object-oriented software. Addison Wesley.; Gary, K. A. y Lindquist, T. E. (1999). Cooperating process components. En Proceedings. Twenty-Third Annual International Computer Software and Applications Conference (Cat. No. 99CB37032) (pp. 218-223). ieee. https://doi.org/10.1109/CMPSAC. 1999.812704; Ginsberg, M. P. y Quinn, L. H. (1995). Process tailoring and the software capability maturity model. Carnegie Mellon University, Software Engineering Institute. https://citeseerx. ist.psu.edu/document?repid=rep1&type=pdf&doi=fe11de0ed0212b58fb9d- 47152c94a34ab5b31974; Hansen, M. T., Nohria, N. y Tierney, T. (2000). What’s your strategy for managing knowledge? En J. A. Woods y J. Cortada (eds.), The knowledge management yearbook 2000-2001 (pp. 55-69). Routledge. https://doi.org/10.4324/9780080941042; Hassan, A. (2018). Style and meta-style: Another way to reuse software architecture evolution [tesis de doctorado, Universite de Nantes]. https://hal.science/tel-01917775/; Hollenbach, C. y Frakes, W. (1996). Software process reuse in an industrial setting. En Proceedings of Fourth ieee International Conference on Software Reuse (pp. 22-30). ieee. https://doi.org/10.1109/ICSR.1996.496110; Hurtado Alegria, J. A., Bastarrica, M. C., Quispe, A. y Ochoa, S. F. (2014). MDE‐based process tailoring strategy. Journal of Software: Evolution and Process, 26(4), 386-403. https://doi.org/10.1002/smr.1576; Institute of Electrical and Electronics Engineers. (2010). Std 1517-2010 ieee Standard for Information Technology - Software Life Cycle Processes - Reuse Processes - Description. ihs Standards.; Kalus, G. y Kuhrmann, M. (2013). Criteria for software process tailoring: A systematic review. En Proceedings of the 2013 International Conference on Software and System Process (pp. 171-180). IEEE. https://doi.org/10.1145/2486046.2486078; Karlsson, E. A. (ed.) (1995). Software reuse: A holistic approach. John Wiley & Sons.; Kneuper, R. (2018). Software processes and life cycle models: An introduction to modelling, using and managing agile, plan-driven and hybrid processes. Springer. https://doi. org/10.1007/978-3-319-98845-0; Kucza, T., Nättinen, M. y Parviainen, P. (2001). Improving knowledge management in software reuse process. En F. Bomarius y S. Komi-Sirviö (eds.), Product Focused Software Process Improvement. profes 2001. Lecture Notes in Computer Science (pp. 141-152). Springer. https://doi.org/10.1007/3-540-44813-6_15; Li, T. (2008). Overview of software processes and software evolution. En An approach to modelling software evolution processes (pp. 8-33). Springer. https://doi.org/10.1007/978-3- 540-79464-6_2; Lim, W. C. (1998). Managing software reuse: A comprehensive guide to strategically reengineering the organization for reusable components. Prentice-Hall.; Magdaleno, A. M., de Oliveira Barros, M., Werner, C. M. L., de Araujo, R. M. y Batista, C. F. A. (2015). Collaboration optimization in software process composition. Journal of Systems and Software, 103, 452-466. https://doi.org/10.1016/j.jss.2014.11.036; McIlroy, M. D., Buxton, J., Naur, P. y Randell, B. (1968). Mass-produced software components. En Proceedings of the 1st International Conference on Software Engineering, Garmisch Partenkirchen, Germany (pp. 88-98). Petrocelli/Charter Publishers. https:// st.inf.tu-dresden.de/files/teaching/ss16/cbse/slides/50-cbse-transconsistent-composition. pdf; Medina Domínguez, F. (2010). Marco metodológico para la mejora de la eficiencia de uso de los procesos de software [tesis doctoral, Universidad Carlos III de Madrid]. https://e-archivo. uc3m.es/bitstream/handle/10016/7433/Memoria%20Tesis-Fuensanta%20Medina% 20Dominguez.pdf?sequence=1&isAllowed=y; Nanda, V. (2001). On tailoring an organizational standard software development process for specific projects. En Proceedings of the 11th International Conference on Software Quality (pp. 1-13). ieee.; O’Regan, G. (2017). Concise guide to software engineering: From fundamentals to application methods. Springer. https://doi.org/10.1007/978-3-319-57750-0; Osterweil, L. (2011). Software processes are software too. En P. Tarr y A. Wolf (eds.), Engineering of software (pp 323-344). Springer. https://doi.org/10.1007/978-3-642-19823- 6_17; Pedreira, O., Piattini, M., Luaces, M. R. y Brisaboa, N. R. (2007). Una revisión sistemática de la adaptación del proceso de software. reicis: Revista Española de Innovación, Calidad e Ingeniería del Software, 3(2), 21-39. https://www.redalyc.org/pdf/922/92230204.pdf; Pesantes, M., Lemus, C., Mitre, H. A. y Mejía, J. (2012). Software process architecture: Roadmap. En 2012 ieee Ninth Electronics, Robotics and Automotive Mechanics Conference (pp. 111-116). ieee. https://doi.org/10.1109/CERMA.2012.25; Probst, G. J. B. (1998). Practical knowledge management: A model that works. En Managing knowledge: Building blocks for success (pp. 17-29). Wiley.; Rombach, D. (2006). Integrated software process and product lines. En M. Li, B. Boehm y L. J. Osterweil (eds.) Unifying the Software Process Spectrum. SPW 2005. Lecture Notes in Computer Science (pp 83-90). Springer. https://doi.org/10.1007/11608035_9; Rus, I., Lindvall, M. y Sinha, S. (2002). Knowledge management in software engineering. ieee Software, 19(3), 26-38.; Santos, V., Cortés, M. y Brasil, M. (2009). Dynamic management of the organizational knowledge using case-based reasoning. En L. A. Maciaszek, C. González-Pérez y S. Jablonski (eds.), Evaluation of Novel Approaches to Software Engineering. enase enase 2009 2008. Communications in Computer and Information Science (pp. 220-233). Springer. https://doi.org/10.1007/978-3-642-14819-4_16.; Software Engineering Institute. (2010). CMMI® para Desarrollo, Versión 1.3. Software Engineering Institute. Carnegie-Mellon University, Pittsburg, Pennsylvania.; Teixeira, E. N., Aleixo, F. A., de Sousa Amancio, F. D., Oliveira, E., Kulesza, U. y Werner, C. (2019). Software process line as an approach to support software process reuse: A systematic literature review. Information and Software Technology, 116, 106175. https://doi.org/10.1016/j.infsof.2019.08.007; Tran, H. N., Coulette B. y Dong, T. B. T. (2005). A classification of process patterns. En Proceedings of the International Conference on Software Development (swdc-rek 2005), Reykjavik.; Tran, H. N., Coulette, B. y Thuy, D. T. B. (2007). Broadening the use of process patterns for modeling processes. En seke (pp. 57-62). https://citeseerx.ist.psu.edu/document? repid=rep1&type=pdf&doi=a094027803f6fc090c35caef958b33924789c960#page= 77; Tran, H. N., Coulette, B., Tran, D. T. y Vu, M. H. (2011). Automatic reuse of process patterns in process modeling. En Proceedings of the 2011 acm Symposium on Applied Computing (pp. 1431-1438). https://doi.org/10.1145/1982185.1982494; Verma, A. y Tiwari, M. K. (2009). Role of corporate memory in the global supply chain environment. International Journal of Production Research, 47(19), 5311-5342. https:// doi.org/10.1080/00207540801918570; Washizaki, H. (2006). Deriving project-specific processes from process line architecture with commonality and variability. En 2006 4th ieee International Conference on Industrial Informatics (pp. 1301-1306). IEEE. https://doi.org/10.1109/INDIN.2006.275847; Xu, P. y Ramesh, B. (2008). Using process tailoring to manage software development challenges. IT Professional, 10(4), 39-45. https://doi.org/10.1109/MITP.2008.81; Abouzid, I. y Saidi, R. (2019). Proposal of bpmn extensions for modelling manufacturing processes. En 2019 5th International Conference on Optimization and Applications (icoa) (pp. 1-6). ieee. https://doi.org/10.1109/ICOA.2019.8727651; Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E. … y Zimmermann, T. (2019). Software engineering for machine learning: A case study. En 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (icse-seip) (pp. 291-300). ieee. https://doi.org/10.1109/ICSE-SEIP.2019.00042; arc. (2012). Automation expenditures for discrete industries. https://www.arcweb.com/market- studies/automation-software-expenditures-discrete-industries; Berkhout, F. y Hertin, J. (2001). Impacts of information and communication technologies on environmental sustainability: Speculations and evidence. oecd. https://www.oecd.org/science/ inno/1897156.pdf; Chakraborty, P., Shahriyar, R., Iqbal, A. y Bosu, A. (2018). Understanding the software development practices of blockchain projects: A survey. En Proceedings of the 12th acm/ieee International Symposium on Empirical Software Engineering and Measurement (pp. 1-10). https://doi.org/10.1145/3239235.3240298; Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C. y Wirth, R. (2000). crisp-dm 1.0: Step-by-step data mining guide. SPSS Inc, 9(13), 1-73.; Deep Intelligence. (2022). https://app.deepint.net/shared/c9d55a1f-6ec9daf4-0dd31924- 17429a774d9/dashboards/000001768ad911aa-d0711434-b94233c3-e0e- 32b99?lang=en#1; Dubey, A. (2011). Evaluating software engineering methods in the context of automation applications. En 2011 9th ieee International Conference on Industrial Informatics (pp. 585-590). ieee. https://doi.org/10.1109/INDIN.2011.6034944; Faruk, M. J. H., Islam, M., Alam, F., Shahriar, H. y Rahman, A. (2022a). Bie Vote: A Biometric Identification Enabled Blockchain-Based Secure and Transparent Voting Framework. En 2022 Fourth International Conference on Blockchain Computing and Applications (bcca) (pp. 253-258). ieee. https://doi.org/10.1109/BCCA55292.2022.9922588; Faruk, M. J. H., Subramanian, S., Shahriar, H., Valero, M., Li, X. y Tasnim, M. (2022b). Software engineering process and methodology in blockchain-oriented software development: A systematic study. En 2022 ieee/acis 20th International Conference on Software Engineering Research, Management and Applications (sera) (pp. 120-127). ieee. https://doi.org/10.1109/SERA54885.2022.9806817; Jain, A. K., Duin, R. P. W. y Mao, J. (2000). Statistical pattern recognition: A review. ieee Transactions on pattern analysis and machine intelligence, 22(1), 4-37. https://doi. org/10.1109/34.824819; Jain, A. K., Flynn, P. y Ross, A. A. (eds.) (2008). Handbook of biometrics. Springer.; Marchesi, L., Marchesi, M. y Tonelli, R. (2020). abcde: Agile block chain DApp engineering. Blockchain: Research and Applications, 1(1-2), 100002. https://doi.org/ 10.1016/j.bcra.2020.100002; Marchesi, M., Marchesi, L. y Tonelli, R. (2018). An agile software engineering method to design blockchain applications. En Proceedings of the 14th Central and Eastern European Software Engineering Conference Russia (pp. 1-8). https://doi.org/10.1145/3290621.3290627; Naumann, S., Dick, M., Kern, E. y Johann, T. (2011). The greensoft Model: A reference model for green and sustainable software and its engineering. Sustainable Computing: Informatics and Systems, 1(4), 294-304. https://doi.org/10.1016/j.suscom.2011.06.004; Shivers, R., Rahman, M. A., Faruk, M. J. H., Shahriar, H., Cuzzocrea, A. y Clincy, V. (2021). Ride-hailing for autonomous vehicles: Hyperledger fabric-based secure and decentralize blockchain platform. En 2021 ieee International Conference on Big Data (Big Data) (pp. 5450-5459). ieee. https://doi.org/10.1109/BigData52589.2021.9671379; Vyatkin, V. (2013). Software engineering in industrial automation: State-of-the-art review. ieee Transactions on Industrial Informatics, 9(3), 1234-1249. https://doi.org/10.1109/ TII.2013.2258165; Watanabe, S. (1985). Pattern recognition: Human and mechanical. John Wiley & Sons.; Wirth, R. y Hipp, J. (2000). crisp-dm: Towards a standard process model for data mining. En Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining (vol. 1, pp. 29-39). https://www.cs.unibo.it/~danilo. montesi/CBD/Beatriz/10.1.1.198.5133.pdf; Yousfi, A., Batoulis, K. y Weske, M. (2019). Achieving business process improvement via ubiquitous decision-aware business processes. acm Transactions on internet Technology (toit), 19(1), 1-19. https://doi.org/10.1145/3298986; Yousfi, A., Bauer, C., Saidi, R. y Dey, A. K. (2016). uBPMN: A bpmn extension for modeling ubiquitous business processes. Information and Software Technology, 74, 55-68. https://doi.org/10.1016/j.infsof.2016.02.002; Apple. (2004, 14 de enero). Apple Reports First Quarter Results. https://www.apple.com/ newsroom/2004/01/14Apple-Reports-First-Quarter-Results/#:~:text=CUPERTINO% 2C%20California%E2%80%94January%2014,,of%20%248%20million% 2C%20or%20%24.; Apple. (2007, 17 de enero). Apple reports third quarter results. https://www.apple.com/ newsroom/2007/01/17Apple-Reports-First-Quarter-Results/#:~:text=CUPERTINO% 2C%20California%E2%80%94January%2017,,or%20%241.14%20 per%20diluted%20share.; Bäcklander, G. (2019). Doing complexity leadership theory: How agile coaches at Spotify practise enabling leadership. Creativity and Innovation Management, 28(1), 42- 60. https://doi.org/10.1111/caim.12303; Butler, K. (1995). The economic benefits of software process improvement. Crosstalk, 8(7), 14-17.; Denning, S. (2019). How Amazon practices the three laws of agile management. Strategy & Leadership, 47(5), 36-41. https://doi.org/10.1108/SL-07-2019-0104; Diaz, M. y Sligo, J. (1997). How software process improvement helped Motorola. ieee software, 14(5), 75-81. https://doi.org/10.1109/52.605934; Dion, R. (1993). Process improvement and the corporate balance sheet. ieee Software, 10(4), 28-35. https://doi.org/10.1109/52.219618; Elwer, P. (2008). Agile Project Development at Intel: A scrum Odyssey. http://www.michaeljames. org/Intel-case-study.pdf; Forcano, R. (2018a, 14 de junio). hr goes Agile: A case study in bbva. https://www.linkedin. com/pulse/hr-goes-agile-case-study-bbva-ricardo-forcano; Forcano, R. (2018b, 16 de julio). rrhh se transforma a ‘agile’: Un caso de estudio en bbva. https://www.bbva.com/es/opinion/rrhh-transforma-agile-caso-estudio-bbva/; Ganguly, A., Nilchiani, R. y Farr, J. V. (2009). Evaluating agility in corporate enterprises. International Journal of Production Economics, 118(2), 410-423. https://doi. org/10.1016/j.ijpe.2008.12.009; Garzás, J. y Paulk, M. C. (2013). A case study of software process improvement with CMMI‐DEV and scrum in Spanish companies. Journal of Software: Evolution and Process, 25(12), 1325-1333. https://doi.org/10.1002/smr.1605; Gregory, P., Barroca, L., Taylor, K., Salah, D. y Sharp, H. (2015). Agile challenges in practice: A thematic analysis. En C. Lassenius, T. Dingsøyr y M. Paasivaara (eds.), Agile Processes in Software Engineering and Extreme Programming. xp 2015. Lecture Notes in Business Information Processing (vol. 212, pp. 64-80). Springer. https://doi.org/10.1007/978- 3-319-18612-2_6; Haley, T. J. (1996). Software process improvement at Raytheon. ieee Software, 13(6), 33-41. https://doi.org/10.1109/52.542292; Herbsleb, J. D. y Goldenson, D. R. (1996). A systematic survey of cmm experience and results. En Proceedings of ieee 18th International Conference on Software Engineering (pp. 323-330). IEEE. https://doi.org/10.1109/ICSE.1996.493427; Herbsleb, J., Carleton, A., Rozum, J., Siegel, J. y Zubrow, D. (1994). Benefits of CMM-based software process improvement: Executive summary of initial results. Carnegie Mellon University. https://insights.sei.cmu.edu/documents/1112/1994_005_001_16310.pdf; Humphrey, W. S., Snyder, T. R. y Willis, R. R. (1991). Software process improvement at Hughes Aircraft. IEEE Software, 8(4), 11-23. https://doi.org/10.1109/52.300031; Middleton, P. y Joyce, D. (2011). Lean software management: BBC worldwide case study. ieee Transactions on Engineering Management, 59(1), 20-32. https://doi.org/10.1109/ TEM.2010.2081675; NASA. (1997). Software Safety. nasa Technical Standard nasa-std-8719.13A.; Niazi, M. (2006). Software process improvement: A road to success. En J. Münch y M. Vierimaa (eds.), Product-Focused Software Process Improvement. profes 2006. Lecture Notes in Computer Science (vol. 4034, pp. 395-401). Springer. https://doi. org/10.1007/11767718_34; Olszewski, L. y Wingreen, S. C. (2011). The fbi sentinel project. Journal of Cases on Information Technology (jcit), 13(3), 84-102. https://doi.org/10.4018/jcit.2011070105; Pitterman, B. (2000). Telcordia technologies: The journey to high maturity. ieee Software, 17(4), 89-96. https://doi.org/10.1109/52.854074; Smite, D., Moe, N. B., Floryan, M., Levinta, G. y Chatzipetrou, P. (2020). Spotify guilds. Communications of the ACM, 63(3), 56-61. http://dx.doi.org/10.1145/3343146; Standish Group. (2020). CHAOS report: Beyond infinity. https://standishgroup.myshopify. com/; Striebeck, M. (2006). Ssh! We are adding a process… [agile practices]. En agile 2006 (agile’06) (pp. 9-193). ieee. https://doi.org/10.1109/AGILE.2006.48; Vassev, E., Sterritt, R., Rouff, C. y Hinchey, M. (2012). Swarm technology at nasa: Building resilient systems. IT Professional, 14(2), 36-42. https://doi.org/10.1109/MITP.2012.18; Yamamura, G. (1999). Software process satisfied employees. ieee Software, 16(5), 83-85.; Zelkowitz, M. V. (2009). An update to experimental models for validating computer technology. Journal of Systems and Software, 82(3), 373-376. https://doi.org/10.1016/j. jss.2008.06.040; Zelkowitz, M. V. y Wallace, D. R. (1998). Experimental models for validating technology. Computer, 31(5), 23-31. https://doi.org/10.1109/2.675630; Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J., Korkala, M. … y Salo, O. (2004). Mobile-D: An agile approach for mobile application development. En Companion to the 19th Annual acm sigplan Conference on Object-Oriented Programming, Systems, Languages, and Applications (pp. 174-175). https://doi. org/10.1145/1028664.1028736; Ågerfalk, P. J., Fitzgerald, B., Holmström, H., Lings, B., Lundell, B. y Conchúir, E. Ó. (2005). A framework for considering opportunities and threats in distributed software development. En Proceedings of the International Workshop on Distributed Software Development (pp. 47-61). Austrian Computer Society. https://researchrepository.ul.ie/ ndownloader/files/35267047/1; Akhtar, N. y Mian, A. (2018). Threat of adversarial attacks on deep learning in computer vision: A survey. IEEE Access, 6, 14410-14430. https://doi.org/10.1109/ACCESS. 2018.2807385; Aldayel, A. y Alnafjan, K. (2017). Challenges and best practices for mobile application development. En Proceedings of the International Conference on Compute and Data Analysis (pp. 41-48). https://doi.org/10.1145/3093241.3093245; Ashishdeep, A., Bhatia, J. y Varma, K. (2016). Software process models for mobile application development: A review. Computer Science and Electronic Journal, 7(1), 150-153. https://csjournals.com/IJCSC/PDF7-1/20.%20Anitha.pdf; Basha, N. M. J., Moiz, S. A. y Rizwanullah, M. (2012). Model based software development: Issues & challenges. Special Issue of International Journal of Computer Science & Informatics (ijcsi), 2(1), 226-230. https://doi.org/10.47893/ijcsi.2013.1123; Beecham, S., Richardson, I. y Noll, J. (2015). Assessing the strength of global teaming practices: A pilot study. En 2015 ieee 10th International Conference on Global Software Engineering (pp. 110-114). ieee. https://doi.org/10.1109/ICGSE.2015.14; Bhatti, M. W. y Ahsan, A. (2016). Global software development: An exploratory study of challenges of globalization, HRM practices and process improvement. Review of Managerial Science, 10(4), 649-682. https://doi.org/10.1007/s11846-015-0171-y; Blum, F. R. (2016). Mining software process lines. En Proceedings of the 38th International Conference on Software Engineering Companion (pp. 839-842). https://doi. org/10.1145/2889160.2889267; Cabac, L. y Denz, N. (2008). Net components for the integration of process mining into agent-oriented software engineering. En K. Jensen, W. M. P. van der Aalst y J. Billington (eds.), Transactions on Petri nets and other models of concurrency I. Lecture notes in computer science (pp. 86-103). Springer. https://doi.org/10.1007/978-3-540-89287- 8_6; Caldeira, J. y Abreu, F. B. e. (2016). Software development process mining: Discovery, conformance checking and enhancement. En 2016 10th International Conference on the Quality of Information and Communications Technology (quatic) (pp. 254-259). ieee. https://doi.org/10.1109/QUATIC.2016.061; Conchúir, E. Ó. (2010). Global software development: A multiple-case study of the realisation of the benefits [tesis doctoral, University of Limerick]. https://researchrepository.ul.ie/ ndownloader/files/35241937/1; Da Cunha, T. F. V., Dantas, V. L. y Andrade, R. M. (2011). SLeSS: A Scrum and Lean Six Sigma integration approach for the development of sofware customization for mobile phones. En 2011 25th Brazilian Symposium on Software Engineering (pp. 283-292). ieee. https://doi.org/10.1109/SBES.2011.38; Del Carpio, A. F. y Angarita, L. B. (2020). Trends in software engineering processes using deep learning: A systematic literature review. En 2020 46th Euromicro Conference on Software Engineering and Advanced Applications (seaa) (pp. 445-454). ieee. https://doi. org/10.1109/SEAA51224.2020.00077; Dong, L., Liu, B., Li, Z., Wu, O., Babar, M. A. y Xue, B. (2017). A mapping study on mining software process. En 2017 24th Asia-Pacific Software Engineering Conference (apsec) (pp. 51-60). ieee. https://doi.org/10.1109/APSEC.2017.11; Ebert, C., Gallardo, G., Hernantes, J. y Serrano, N. (2016). DevOps. ieee Software, 33(3), 94-100. https://doi.org/10.1109/MS.2016.68; Erich, F. M., Amrit, C. y Daneva, M. (2017). A qualitative study of DevOps usage in practice. Journal of software: Evolution and Process, 29(6), e1885. https://doi.org/10.1002/ smr.1885; Fakhoury, S., Arnaoudova, V., Noiseux, C., Khomh, F. y Antoniol, G. (2018). Keep it simple: Is deep learning good for linguistic smell detection? En 2018 ieee 25Th international conference on software analysis, evolution and reengineering (saner) (pp. 602-611). ieee. https://doi.org/10.1109/SANER.2018.8330265; Falcini, F., Lami, G. y Costanza, A. M. (2017). Deep learning in automotive software. ieee Software, 34(3), 56-63. https://doi.org/10.1109/MS.2017.79; Fernández del Carpio, A. y Bermón Angarita, L. (2018). Techniques based on data science for software processes: A systematic literature review. En I. Stamelos, R. O’Connor, T. Rout y A. Dorling (eds.), Software Process Improvement and Capability Determination. spice 2018. Communications in Computer and Information Science (pp. 16-30). Springer. https://doi.org/10.1007/978-3-030-00623-5_2; Fuggetta, A. y Di Nitto, E. (2014). Software process. En Future of Software Engineering Proceedings (pp. 1-12). https://doi.org/10.1145/2593882.2593883; Godfrey, M. W., Hassan, A. E., Herbsleb, J., Murphy, G. C., Robillard, M., Devanbu, P. y Notkin, D. (2008). Future of mining software archives: A roundtable. ieee Software, 26(1), 67-70. https://doi.org/10.1109/MS.2009.10; Guo, J., Cheng, J. y Cleland-Huang, J. (2017). Semantically enhanced software traceability using deep learning techniques. En 2017 ieee/acm 39th International Conference on Software Engineering (ICSE) (pp. 3-14). ieee. https://doi.org/10.1109/ICSE.2017.9; Herbsleb, J. D. (2007). Global software engineering: The future of socio-technical coordination. En Future of software engineering (fose’07) (pp. 188-198). ieee. https://doi. org/10.1109/FOSE.2007.11; Hüttermann, M. (2012). Beginning devops for developers. En DevOps for Developers (pp. 3-13). Apress. https://doi.org/10.1007/978-1-4302-4570-4_1; Jeong, Y. J., Lee, J. H. y Shin, G. S. (2008). Development process of mobile application SW based on agile methodology. En 2008 10th International Conference on Advanced Communication Technology (vol. 1, pp. 362-366). ieee. https://doi.org/10.1109/ ICACT.2008.4493779; Kardoš, M. y Drozdová, M. (2010). Analytical method of cim to pim transformation in model driven architecture (MDA). Journal of Information and Organizational Sciences, 34(1), 89-99. https://hrcak.srce.hr/file/83906; Kaur, A. y Kaur, K. (2015). Suitability of existing software development life cycle (sdlc) in context of mobile application development life cycle (madlc). International Journal of Computer Applications, 116(19), 1-6. https://research.ijcaonline.org/volume116/number19/ pxc3902785.pdf; Kim, G., Humble, J., Debois, P., Willis, J. y Forsgren, N. (2016). The DevOps handbook: How to create world-class agility, reliability, & security in technology organizations. IT Revolution.; LeCun, Y., Bengio, Y. y Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-44. https://doi.org/10.1038/nature14539; Li, Z., Zhao, H., Shi, J., Huang, Y. y Xiong, J. (2019). An intelligent fuzzing data generation method based on deep adversarial learning. ieee Access, 7, 49327-49340. https://doi. org/10.1109/ACCESS.2019.2911121; Lwakatare, L. E., Kuvaja, P. y Oivo, M. (2015). Dimensions of DevOps. En C. Lassenius, T. Dingsøyr y M. Paasivaara (eds.), Agile Processes in Software Engineering and Extreme Programming. xp 2015. Lecture Notes in Business Information Processing (pp. 212-217). Springer. https://doi.org/10.1007/978-3-319-18612-2_19; Manoj Ray, D. y Samuel, P. (2016). Improving the productivity in global software development. En V. Snášel, A. Abraham, P. Krömer, M. Pant y A. Muda (eds.), Innovations in bio-inspired computing and applications: Advances in intelligent systems and computing (pp. 175-185). Springer. https://doi.org/10.1007/978-3-319-28031-8_15; Marshal, S. (2015). Machine learning an algorithm perspective. CRC Press.; Miralles, A. y Rouge, T. L. (2008). Modeling with enriched model driven architecture. En Encyclopedia of geographical information sciences (pp. 700-705). Springer. https:// dx.doi.org/10.1007/978-0-387-35973-1; Moreira, F., Cota, M. P. y Gonçalves, R. (2015). The influence of the use of mobile devices and the cloud computing in organizations. En A. Rocha, A. Correia, S. Costanzo y L. Reis (eds.), New contributions in information systems and technologies: Advances in intelligent systems and computing (vol. 1, pp. 275-284). Springer. https://doi. org/10.1007/978-3-319-16486-1_28; Murphy, K. P. (2011). Machine learning: A probabilistic perspective. MIT Press.; Ng, A., Ngiam, J., Foo, C. Y., Mai, Y., Suen, C., Coates, A. … y Tandon, S. (2013). Unsupervised feature learning and deep learning. https://redirect.cs.umbc.edu/courses/pub/ www/courses/graduate/678/spring15/visionaudio.pdf; Object Management Group (2014). Object Management Group Model Driven Architecture (MDA) MDA Guide rev. 2.0. https://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf; Object Management Group (2020). MDA® - The Architecture of Choice for a Changing World. https://www.omg.org/mda/; Overeem, M., Jansen, S. y Fortuin, S. (2018). Generative versus Interpretive Model-Driven Development: Moving Past ‘It Depends’. En L. Pires, S. Hammoudi y B. Selic (eds.), Model-Driven Engineering and Software Development. modelsward 2017. Communications in Computer and Information Science (pp. 222-246). Springer. https://doi. org/10.1007/978-3-319-94764-8_10; Paige, R. F., Kolovos, D. S. y Polack, F. A. (2014). A tutorial on metamodelling for grammar researchers. Science of Computer Programming, 96, 396-416. https://doi.org/10.1016/j. scico.2014.05.007; Popa, M. (2013). Considerations regarding the cross-platform mobile application development process. Economy Informatics, 13(1), 40-52. https://www.economyinformatics. ase.ro/content/EN13/04%20-%20Popa.pdf; Rahimian, V. y Ramsin, R. (2008). Designing an agile methodology for mobile software development: A hybrid method engineering approach. En 2008 Second International Conference on Research Challenges in Information Science (pp. 337-342). ieee. https:// doi.org/10.1109/RCIS.2008.4632123; Rubin, V., Günther, C. W., van der Aalst, W. M. P., Kindler, E., van Dongen, B. F. y Schäfer, W. (2007). Process mining framework for software processes. En Q. Wang, D. Pfahl y D. M. Raffo (eds.), Software Process Dynamics and Agility. ICSP 2007. Lecture Notes in Computer Science (pp. 169-181). Springer. https://doi.org/10.1007/978-3-540- 72426-1_15; Rui, Z., Tong, L., Qi, M., Zhenli, H., Qian, Y. y Yiquan, W. (2018). Data-driven bilayer software process mining. Journal of Software, 29(11), 3455-3483. http://dx.doi. org/10.13328/j.cnki.jos.005304; Sacks, M. (2012). DevOps principles for successful web sites. En Pro website development and operations: Streamlining DevOps for large-scale websites (pp. 1-14). Apress. https:// doi.org/10.1007/978-1-4302-3970-3_1; Schmidt, D. C. (2006). Guest editor’s introduction: Model-driven engineering. ieee Computer, 2(39), 25-31. https://doi.org/10.1109/MC.2006.58; Senapathi, M., Buchan, J. y Osman, H. (2018). DevOps capabilities, practices, and challenges: Insights from a case study. En Proceedings of the 22nd International Conference on Evaluation and Assessment in Software Engineering 2018 (pp. 57-67). https:// doi.org/10.1145/3210459.3210465; Shrestha, A. y Mahmood, A. (2019). Review of deep learning algorithms and architectures. ieee Access, 7, 53040-53065. https://doi.org/10.1109/ACCESS.2019.2912200; Swamynathan, M. (2019). Mastering machine learning with python in six steps: A practical implementation guide to predictive data analytics using python. Apress. https://doi. org/10.1007/978-1-4842-4947-5; Van der Aalst, W. M. (2011). Process mining: Discovery, conformance and enhancement of business processes. Springer.; Verdier, F., Seriai, A. D. y Tiam, R. T. (2019). Combining model-driven architecture and software product line engineering: Reuse of platform-specific assets. En S. Hammoudi, L. Pires y B. Selic (eds.), Model-Driven Engineering and Software Development. modelsward 2018. Communications in Computer and Information Science (pp. 430-454). Springer. https://doi.org/10.1007/978-3-030-11030-7_19; Vizcaíno, A., García, F. y Piattini, M. (2015). Visión general del desarrollo global de software. International Journal of Information Systems and Software Engineering for Big Companies, 1(1), 8-22. http://www.uajournals.com/ojs/index.php/ijisebc/article/view/1/1; Wang, J., Luo, W., Wu, X., Li, T., Qian, Y. y Xie, Z. (2012). An approach to modeling SaaS-oriented software service processes. En 2012 International Conference on System Science and Engineering (icsse) (pp. 573-577). ieee. https://doi.org/10.1109/ ICSSE.2012.6257252; Wasserman, A. I. (2010). Software engineering issues for mobile application development. En Proceedings of the fse/sdp workshop on Future of software engineering research (pp. 397-400). https://doi.org/10.1145/1882362.1882443; https://repositorio.unal.edu.co/handle/unal/87158; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
4
Autoři: a další
Přispěvatelé: a další
Témata: Enterprise architecture, Public sector, Principles of architecture, Software development, Information systems, Public administration, Systems engineer, Software management, Software application, New technologies, Research, Teaching, Sistemas de información, Administración pública, Ingeniería de sistemas, Gestión de software, Aplicación de software, Nuevas tecnologías, Investigaciones, Enseñanza, Arquitectura empresarial, TOGAF, Sector público, Principios de arquitectura, Desarrollo de software
Geografické téma: Bucaramanga (Colombia), UNAB Campus Bucaramanga
Popis souboru: application/pdf
Relation: Cruz Bueno, Hernán Darío (2014). Lineamientos iníciales para implementación de arquitecturas empresariales utilizando TOGAF en entidades públicas colombianas, caso de estudio Hospital Universitario de Santander (HUS). Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB; Aagesen G., & Van Veenstra A. (2011). The Entanglement of Enterprise Architecture and IT-Governance: The Cases of Norway and the Netherlands, Proceedings of the 44th Hawaii International Conference on System Sciences. ISBN: 978-0-7695-4282-9; Abul Kalam M., & Ali Khan A. (2008). Government Enterprise Architectures: Present Status of Bangladesh and Scope of Development. ICEGOV2008, 2nd International Conference on Theory and Practice of Electronic Governance, December 1-4, 2008, Cairo, Egypt.; Aier S. (2012). The role of organizational culture for grounding, management, guidance and effectiveness of enterprise architecture principles. Information Systems and e-Business Management ISSN: 1617-9854 (Online); Al-Nasrawi S., & Ibrahim M. (2013). An Enterprise Architecture Mapping Approach for Realizing e-Government. The 3rd International Conference on communications and information technology (ICCIT-2013): Digital information management & security, Beirut. Junio 19-21, 2013. IEEE.; Andreas Ask, Karin Hedström, 2011 - Taking Initial Steps towards Enterprise Architecture in Local Government, Department of Informatics, Swedish Business School at Örebro University, Sweden, Springer 2011; Avison, D., Jones, J., Powell, 2004 - Using and Validating the Strategic Alignment Model. The Journal of Strategic Information Systems, Vol. 13, Issue 3, September 2004; Bejarano G. & Ropero E., 2012, Análisis y diseño de una arquitectura empresarial como solución al proceso de certificación de competencias laborales en el sistema nacional de formación para el trabajo-SENA, Proyecto de Maestría en Gestión Aplicación y Desarrollo de Software, UNAB, 2012.; D. Greefhorst, 2011, A Practical Approach to the Formulation and Use of Architecture Principles, 2011 15th IEEE International Enterprise Distributed Object Computing Conference Workshops; Doucet, G., Gøtze J., & Saha P. (2008), Coherency Management: Using Enterprise Architecture for Alignment, Agility, and Assurance, Journal of Enterprise Architecture, 2008. ISSN 2166-6792 (online); Ebrahim Z., & Irani Z. (2006). E-government adoption: architecture and barriers. Business Process Management Journal, Vol. 11 No. 5, 2005, pp. 589-611. Emerald Group Publishing. ISSN: 1463-7154; Ecopetrol innova parte1, 2011 - El mapa de decisiones, Revista Innova Ecopetrol, Edición 7 - 2011, http://www.ecopetrol.com.co/especiales/RevistaInnova7ed/innovaciones16.html, Revisado 17 Octubre 2013; Espinosa A., & Fong W. (2011). The Organizational Impact of Enterprise Architecture: A Research Framework. Proceedings of the 44th Hawaii International Conference on System Sciences, 2011. IEEE Computer Society Washington, ISBN: 978-0-7695-4282-9.; Espinosa A., & Fong W. (2009). Coordination and Governance in Geographically Distributed Enterprise Architecting: An Empirical Research Design. Proceedings of the 42nd Hawaii International Conference on System Sciences – 2009. 5-8 Junio. 2009. ISBN: 978-0-7695-3450-3; FEAF, 2012 - Federal Enterprise Architecture (FEA) Recuperado Octubre 25 de 2013, http://www.whitehouse.gov/omb/e-gov/fea/; G. Doucet, J. Gøtze, P. Saha, S. Bernard, 2008 - “Coherency Management: Using Enterprise Architecture for Alignment, Agility, and Assurance,” Journal of Enterprise Architecture, May, 2008.; Guijarro L. (2007). Interoperability frameworks and enterprise architectures in e-governmentinitiatives in Europe and the United States. Government Information Quarterly 24 (2007) 89 – 101. ISSN: 0740-624X; Gobierno en Línea, 2011 – Programa de Gobierno electrónico colombiano, http://programa.gobiernoenlinea.gov.co/index.shtml; González L., 2005 - Arquitectura de Empresa. Visión General, IX Congreso de Ingeniería de Organización, 2005. Recuperado Octubre 17 de 2013, http://dialnet.unirioja.es/servlet/articulo?codigo=3250017; Hannu Larsson, 2011 - Ambiguities in the Early Stages of Public Sector Enterprise Architecture Implementation: Outlining Complexities of Interoperability, IFIP International Federation for Information Processing 2011.; Hans Jochen Scholl, Herbert Kubicek, Ralf Cimander, 2011 - Interoperability, Enterprise Architectures, and IT Governance in Government, IFIP International Federation for Information Processing 2011.; Hirvonen, A, 2005 - “Enterprise Architecture Planning in Practice – The Perspectives of Information and Communication Technology Service Provider and End-User”, Doctoral dissertation, University of Jyväskylä; Hjort-Madsen K., & Pries-Heje J. (2009). Enterprise Architecture in Government: Fad or Future? , Proceedings of the 42nd Hawaii International Conference on System Sciences – 2009. 5-8 Junio. 2009. ISBN: 978-0-7695-3450-3; Hjort-Madsen K. (2007). Institutional patterns of enterprise architecture adoption in government. Transforming Government: People, Process and Policy Vol. 1 No. 4, 2007 pp. 333-349. Emerald Group Publishing. ISSN: 1750-6166; Hugoson M., & Magoulas T. (2010). Enterprise Architecture Design Principles and Business-Driven IT Management. BIS 2010, 13th International Conference on Business Information Systems, Berlin, Germany 3-5 Mayo, 2010. LNBIP 57, pp. 144–155. ISBN 978-3-642-15401-0; ICBF- Instituto Colombiano de Bienestar Familiar, 2013, F02 - Anexo– Condiciones Técnicas para la prestación del servicio y/o entrega de bien, Recuperado Octubre 20 de 2013, http://www.icbf.gov.co/portal/page/portal/PortalICBF/NormatividadGestion/EstudiosdeMercado/Estudios2013/Direcci%C3%B3n%20de%20Informaci%C3%B3n%20y%20Tecnolog%C3%ADa/Tab1/ARQUITECTURA%20EMP%20-%20FCTEPS%20060513.pdf; ICFES, 2010- Convocatoria Pública ICFES CP No. 002-2010, “Contratar los servicios de consultoría especializada para el diseño y definición de la Arquitectura Empresarial del ICFES, plantear los proyectos para su implementación, y realizar por demanda mantenimiento a la Arquitectura.”, Recuperado Noviembre 23 de 2013, http://web.icfes.gov.co/component/docman/doc_view/3290-cp-002-acto-de-adjudicacion?Itemid=59; ISO/IEC/IEEE 42010, 2013 - System and Software Engineering - Recommende Practice for Architectural Description of Software-Intensive Systems. Recuperado Octubre 20 de 2013, de http://www.iso-architecture.org/ieee-1471/afs; Iyamu T. (2009). The Factors affecting Institutionalisation of Enterprise Architecture in the Organisation. 2009 IEEE Conference on Commerce and Enterprise Computing. 20-23 Julio 2009. IEEE computer society.; Janssen, M., & Hjort-Madsen, K. (2007). Analyzing Enterprise Architecture in National Governments: The Cases of Denmark and the Netherlands. Proceedings of the 40th Hawaii International Conference on System Sciences (HICSS'07), IEEE, Big Island, Hawaii, 2007. ISBN:0-7695-2755-8; Janssen M. (2012). Sociopolitical Aspects of Interoperability and Enterprise Architecture in E-Government, Social Science Computer Review 30(1) 24-36. SAGE Journals; Janssen M., & Klievink B. (2010). ICT-project failure in public administration: The need to include risk management in enterprise architectures. Proceedings of the 11th Annual International Conference on Digital Government Research. Mexico, Mayo 17 - 17, 2010. ISBN: 978-1-4503-0070-4; Janssen M., & Klievink B. (2009). Can enterprise architectures reduce failure in development projects. 2009 International Conference on Electrical Engineering and Informatics. Transforming Government: People, Process and Policy. Vol. 6 No. 1, 2012, pp. 27-40. Emerald Group Publishing. ISSN: 1750-6166; Jin y Kung, 2010 - Research of Information System Technology Architecture-2010 2nd IEEE -2010, International Conference on Industrial and Information Systems; J. Carrillo, 2010 - Roadmap for the implementation of an Enterprise Architecture Framework Oriented to Institutions of Higher Education in Ecuador - Universidad Politécnica de Madrid, 2010; Kaisler, S.H., Valivullah, M., (2005). Enterprise Architecting: Critical Problems. Proceedings of the 38th Annual Hawaii International Conference on System Sciences - Volume 09. ISBN:0-7695-2268-8-9.; Kamal M.M. (2006). IT innovation adoption in the government sector: identifying the critical success factors. Journal of Enterprise Information Management. Vol. 19 No. 2, 2006, pp. 192-222. Emerald Group Publishing Limited. ISSN: 1741-0398.; Kamal M., Hackney R., & Ali M. (2013). Facilitating enterprise application integration adoption: An empirical analysis of UK local government authorities. International Journal of Information Management 33 (2013) pp. 61-75. ISSN: 0268-4012; Kamal M. M., Weerakkody V., & Jones S. (2009). The case of EAI in facilitating e-Government services in a Welsh authority. International Journal of Information Management 29 (2009) pp 161–165. ISSN: 0268-4012; Kristian Hjort-Madsen, Jan Pries-Heje, 2009 - Enterprise Architecture in Government: Fad or Future? , Proceedings of the 42nd Hawaii International Conference on System Sciences – 2009, IT-University of Copenhagen.; Kristian Hjort-Madsen, 2007 - Institutional patterns of enterprise architecture adoption in government, Transforming Government: People, Process and Policy Vol. 1 No. 4, 2007, IT-University of Copenhagen.; Kaisler, S.H., Valivullah, M., 2005 - Enterprise Architecting: Critical Problems”, Proceedings of the 38th Hawaii International Conference on System Sciences; K. Valtonen, M. Leppänen, M. Pulkkinen, 2011 - “Enterprise Architecture Descriptions for Enhancing Local Government Transformation and Coherency Management”, 15th IEEE International Enterprise Distributed Object Computing Conference Workshops 2011.; Larsson H. (2011). Ambiguities in the Early Stages of Public Sector Enterprise Architecture Implementation: Outlining Complexities of Interoperability. IFIP – 10th conference on electronic government, EGOV 2011. Agosto 28 a Septiembre 02 de 2011. Springer, ISBN 978-3-642-22877-3.; M. EsmaeilZadeh, G. Millar, 2012, Mapping the Enterprise Architecture Principles in TOGAF to the Cybernetic Concepts – An Exploratory Study; Lineamientos Marco referencia Gestión de TI, 2014, Ministerio de Tecnologías de Información y Comunicaciones, Recuperado Junio 18 de 2014 http://www.mintic.gov.co/portal/604/w3-article-6301.html; Marco referencia AE Colombia, 2014, Ministerio de Tecnologías de Información y Comunicaciones, Recuperado Junio 18 de 2014 http://www.mintic.gov.co/portal/604/w3-article-6313.html; Maya E., 2010 – ArquitecturaEmpresarial: un nuevo reto para las empresas de hoy – INTERACTIC (Articulos de Interes No 15 Año 3) - CINTEL (Centro de Investigación de Telecomunicaciones).; Martin N., & Gregor S. (2005). Using a Common Architecture in Australian e-Government – The Case of Smart Service Queensland. ICEC '04 Proceedings of the 6th international conference on Electronic commerce. ISBN:1-58113-930-6; Marijn Janssen, Bram Klievink, 2010, ICT-project failure in public administration: The need to include risk management in enterprise architectures, Proceedings of the 11th Annual International Conference on Digital Government Research – 2010; Marijn Janssen, 2012 - Sociopolitical Aspects of Interoperability and Enterprise Architecture in E-Government, Social Science Computer Review 30(1) 24-36.; Marijn Janssen, Kristian Hjort-Madsen, 2007, Analyzing Enterprise Architecture in National Governments: The cases of Denmark and the Netherlands, Proceedings of the 40th Hawaii International Conference on System Sciences - 2007.; Mats-Åke Hugoson, Thanos Magoulas, 2010, Enterprise Architecture Design Principles and Business-Driven IT Management, BIS 2010 Workshops, LNBIP 57, pp. 144–155, 2010; Mohamed Ali Mohamed, Galal Hassan Galal-Edeen, Hesham Ahmed Hassan, 2012, An Evaluation of Enterprise Architecture Frameworks for E-Government, Faculty of Computers and Information, Cairo University, Egypt – 2012, IEEE.; Ministerio de Tecnologías de la Información y las Comunicaciones, (2011), Programa de Gobierno electrónico colombiano Colombia, Recuperado (2013, octubre 18) de http://programa.gobiernoenlinea.gov.co/apc-aa-files/eb0df10529195223c011ca6762bfe39e/manual-3.1.pdf; Ministerio de Tecnologías de la Información y las Comunicaciones, Plan Vive Digital, (2012), Colombia, Agenda estratégica de Innovación Arquitectura de TI, Recuperado (2013, octubre 21) de http://vivedigital.gov.co/idi/wp-content/uploads/2012/10/ATI_AEI__Vectores_v_1-2-0.pdf; Mosquera L., Andrade D., Sierra L. (2013). A Guide to support the priorization of the risk in information techonologies project management. Gerencia Tecnológica Informática, Vol. 12 - N° 33 - pp 15 - 32. ISSN: 2027-8330; N. Umeh, C. Dagli, 2007 - TOGAF vs. DoDAF: Architecting Frameworks for Net-centric Systems, Njideka Umeh, Cihan Dagli; Nodo arquitectura, 2012 – Documento de agenda estratégica de innovación, Recuperado Octubre 20 de 2013, http://vivedigital.gov.co/idi/wp-content/uploads/2012/10/ATI_AEI__Vectores_v_1-2-0.pdf; Ojo, A., Janowski, T. & Estevez, E. (2012). Improving Government Enterprise Architecture Practice – Maturity Factor Analysis. 45th Hawaii International Conference on System Sciences, 4- 7 de enero 2012, USA. ISBN:9781457719257; Paz, R. y Macedo, R., 2010 - The Open Group Architecture Framework, Paz Renato y Macedo Ricardo, Universidad Catolica San Pablo, Recuperado Octubre 18 de 2013, tis-2010-g1.googlecode.com/svn-history/r4/trunk/TOGAF.doc; Plan Vive Digital, Ministerio Tecnologías de Información y Comunicaciones (2012), Recuperado (2014, Abril 28) de http://www.mintic.gov.co/portal/vivedigital/612/w3-propertyvalue-6106.html; Penttinen K., & Isomäki H. (2010). Stakeholders’ Views on Government Enterprise Architecture: Strategic Goals and New Public Services. First International Conference, EGOVIS 2010, Bilbao, Spain, Agosto 31 – Septiembre 2, 2010. Proceedings. ISBN: 978-3-642-15172-9 (Online).; Pessi, K., Magoulas, T. & Hugoson, M., 2011, “The Impact of Enterprise Architecture Principles on the Management of IT Investments” The Electronic Journal Information Systems Evaluation Volume 14 Issue 1 2011, (pp53-62), ISSN 1566-6379; Pulkkinen, M., Hirvonen, A., 2005 - EA Planning, Development and Management Process for Agile Enterprise Development, Proceedings of the 38th Hawaii International Conference on System Sciences; Richardson L., Jackson B. M., & Dickson G. (1990). A principle-based enterprise architecture: Lessons From Texaco and Star Enterprise. MIS Quarterly, 14, 385–403.; Richard A. Martin, Edward L. Robertson, 2005, Architectural Principles for Enterprise Frameworks, IFIP — The International Federation for Information Processing, Volume 183, 2005, pp 79-91; Robert Winter, Stephan Aier, 2011, How are Enterprise Architecture Design Principles Used?, 2011 15th IEEE International Enterprise Distributed Object Computing Conference Workshops; Saha, P. (2007). Handbook of Enterprise Systems Architecture in Practice. IGI Global Information Science Reference, Hershey, 2007. ISBN13: 9781599041896; Saha P. (2009). Architecting the Connected Government: Practices and Innovations in Singapore. The 3rd International Conference on Theory and Practice of Electronic Governance (ICEGOV2009). 10 - 13 Noviembre 2009. ACM.; Schekkerman, J. (2005). Enterprise Architecture: How are Organizations Progressing? Web-form Based. Institute For Enterprise architecture Developments. 2005, pp 79-84; Scholl H., & Kubicek H. (2011). Interoperability, Enterprise Architectures, and IT Governance in Government. 10th conference on electronic government, EGOV 2011. Agosto 28 a Septiembre 02 de 2011. ISBN 978-3-642-22877-3. IFIP International Federation for Information Processing 2011 LNCS 6846, pp. 345–354; Sessions R., 2007 - “Comparison of the Top Four Enterprise Architecture Methodologies”, object watch, 2007, Revisado el 21 de Octubre de 2013. http://msdn.microsoft.com/en-us/library/bb466232.aspx; Seppänen V., Heikkilä J., & Liimatainen K. (2009). Key Issues in EA-implementation: Case study of two Finnish government agencies, 11th IEEE Conference on Commerce and Enterprise Computing (CEC’09). 20-23 Julio 2009.; Servicio Nacional de Aprendizaje SENA, (2012). Colombia. Estudio de mercado, oficina de sistemas – Arquitectura Empresarial, Recuperado (2013, noviembre 23) de http://contratacion.sena.edu.co/_file/solicitudes/2321_1.pdf; Sistema de Investigación, Desarrollo e Innovación, Ministerio Tecnologías e Información, (2012). Colombia, Documento de plan de acción Nodo de innovación en Arquitectura TI para Gobierno, Recuperado (2013, octubre 21) de http://vivedigital.gov.co/idi/wp-content/uploads/2012/07/Plan_de_Accion_NDI_Arquitectura_V2_0_0.pdf; Stephan Aier, 2012 - The role of organizational culture for grounding, management, guidance and effectiveness of enterprise architecture principles, Springer-Verlag Berlin Heidelberg 2012, University of St. Gallen , Switzerland.; Superintendencia Sociedades, (2012). Colombia, Resolución No. 511-004064 de 2012 de Superintendencia de Sociedades, Recuperado (2013, octubre 20) de http://www.supersociedades.gov.co/ss/drvisapi.dll?MIval=muestra&id_pag=33550&t=1; S. Lusa y D. Sensuse, 2011 - Enterprise Architecture Model For Implementation Knowledge Management System (KMS) - Sofian Lusa y Dana Indra Sensuse , University of Indonesia - Depok, Indonesia – IEEE 2011; Tambouris E., & Kaliva E. (2012). A reference requirements set for public service provision enterprise architectures, Springer. Software & Systems Modeling. ISSN: 1619-1374 (Online); Togaf v9, 2009 - The Open Group .La arquitectura abierta del Grupo Marco (TOGAF) versión 9 Enterprise Edition. 2009 (Online):\url{http://www.opengroup.org/architecture/togaf9-doc/arch/index.html /; The Open Group, 2013 - The Open Group Architecture Framework (TOGAF). Versión 9.1. Disponible en: http://pubs.opengroup.org/architecture/togaf9-doc/arch/; The Open Group Principles, 2013 - The Open Group Architecture Framework (TOGAF). Principles, Versión 9.1. Disponible en: http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap04.html; Tuo Zheng, Lei Zheng, 2013 - Examining e-government enterprise architecture research in China: A systematic approach and research agenda Government Information Quarterly 30 (2013) S59–S67.; U. Franke, D. Hook, J. Konig, R. Lagerstrom, 2009 - “ EAF2 – A Framework for Categorizing Enterprise Architecture Frameworks”, 10th ACIS International Conference on Software Engineering, pp. 327–633, 2009; Valtonen, K. & Leppanen M. (2009). Business Architecture Development at Public Administration – Insights from Government EA Method Engineering Project in Finland. Information Systems Development. ISBN: 978-0-387-84810-5 (Online) Pages 765-774; Valtonen K., Leppänen M., & Pulkkinen M. (2011). Enterprise Architecture Descriptions for Enhancing Local Government Transformation and Coherency Management. 15th IEEE International Enterprise Distributed Object Computing Conference Workshops. (EDOCW 2011). ISBN:9781457708695; Valtonen K., & Seppänen V. (2009). Government Enterprise Architecture Grid Adaptation in Finland. Proceedings of the 42nd Hawaii International Conference on System Sciences – 2009. IEEE Computer Society. ISBN: 978-0-7695-3450-3; Ville Seppänen, Jukka Heikkilä, Katja Liimatainen, 2009 - Key Issues in EA-implementation: Case study of two Finnish government agencies, 2009 IEEE Conference on Commerce and Enterprise Computing; http://hdl.handle.net/20.500.12749/3343; reponame:Repositorio Institucional UNAB
Dostupnost: https://hdl.handle.net/20.500.12749/3343
-
5
Autoři: a další
Přispěvatelé: a další
Témata: Redes neuronales convolucionales, Termodinámica, Diseño de prótesis, Diseño de prototipos, Algoritmos, Generadores eléctricos, Tendencias tecnológicas, Bioingeniería, Bioingeniería -- Congresos, conferencias, etc. -- Memorias, Energía -- Congresos, Sistemas de control inteligente -- Congresos, Procesamiento de señales -- Congresos, Automatización -- Congresos, etc. -- Memoria, Desarrollo de prototipos -- Congresos, Ingeniería biomédica -- Congresos, Redes eléctricas -- Congresos, Tecnologías de la información y de la comunicación -- Congresos, Procesamiento digital de imágenes -- Congresos, Redes neuronales (Computadores) -- Congresos, Nanotecnología -- Congresos, Telecomunicaciones -- Congresos, Convolutional Neural Networks, Thermodynamics, Prosthesis design
Popis souboru: pdf; application/pdf
Relation: L. Coffey, P. Gallager, O. Horgan, D. Desmond, and M. MacLachlan. “Psychosocial adjustment to diabetes‐related lower limb amputation”. Oxford, Diabetic Medicine, 2009, pp.1063–1067.; DANE. “Censo de Población y Viviendas 2018”. Bogotá, D.C, Departamento Administrativo Nacional de Estadística, 2018.; D. Silverthorn, “Fisiología humana: un enfoque integrado” , 4ta ed, reimp- Bogotá - Panamericána, 2009.; K.J. Zuo, and J. L. Olson. “The evolution of functional hand replacement”: From iron prostheses to hand transplantation. Plastic Surgery, 22(1), 44-51, 2014.; D. Foord. “CHANGES IN TECHNOLOGIES AND MEANINGS OF UPPER LIMB PROSTHETICS: PART I-FROM ANCIENT EGYPT TO EARLY MODERN EUROPE”. In MEC Symposium Conference, July 2020.; K. Ashmore, S. Cialdella, A. Giuffrida, E. Kon, M. Marcacci, and B. Di Matteo. “ArtiFacts: Gottfried “Götz” von Berlichingen—The “Iron Hand” of the Renaissance”. Clinical Orthopaedics and Related Research®, 477(9), 2002-2004, 2019.; K. Moore, and A. Dalley. “Clinically oriented anatomy”. 7ª ed, UK, Wolters Klawer, 2013.; Àngels. (2017, Jan 16). “Cómo se llaman los huesos de la mano” [Online]. Available at:https://www.mundodeportivo.com/uncomo/educacion/articulo/como-se-llaman-los-huesos-de-la-mano-40009.html.; B. Maat, G. Smit, D. Plettenburg, and P. Breedveld. “Passive prosthetic hands and tools: A literature review”. Prosthetics and orthotics international, 42(1), 66-74, 2018.; A. Chadwell, L. Kenney, S. Thies, A. Galpin, and J. Head. “The reality of myoelectric prostheses: understanding what makes these devices difficult for some users to control”. Frontiers in neurorobotics, 10, 7, 2016.; T. Fujimaki et al., “Prevalence of floating toe and its relationship with static postural stability in children: The Yamanashi adjunct study of the Japan Environment and Children’s Study (JECS-Y),” PLoS One, vol. 16, no. 3 March, pp. 1–8, 2021, doi:10.1371/journal.pone.0246010.; L. A. Luengas-C, D. C. Toloza, and L. F. Wanumen, “Utilización de la Teoría de la Información para evaluar el comportamiento de la estabilidad estática en amputaciones transtibiales,” RISTI - Rev. Ibérica Sist. e Tecnol. Informação, vol. 40, no. 12, pp. 15–30, 2020, doi:10.17013/risti.40.15–30.; B. Olsen et al., “The Relationship Between Hip Strength and Postural Stability in Collegiate Athletes Who Participate in Lower Extremity Dominant Sports,” Int. J. Sports Phys. Ther., vol. 16, no. 1, pp. 64–71, 2021, doi:10.26603/001c.18817.; L. A. Luengas C. and D. C. Toloza, Análisis de estabilidad en amputados transtibiales unilaterales. Bogota: UD Editorial, 2019.; M. F. Peydro de Moya, J. M. Baydal, and M. J. Vivas, “Evaluación y rehabilitación del equilibrio mediante posturografía,” Rehabilitación, vol. 39, no. 6, pp. 315–323, 2005.; L. A. Luengas-C, J. López, and G. Sánchez Prieto, “Comportamiento de rangos articulares con alineación en amputados transtibiales,” Visión Electrónica Más que un estado sólido, vol. 1, no. 1, pp. 48–52, 2018.; A. Ruhe, R. Fejer, and B. Walker, “The test-retest reliability of centre of pressure measures in bipedal static task conditions - A systematic review of the literature,” Gait and Posture, vol. 32, no. 4. pp. 436–445, Oct. 2010, doi:10.1016/j.gaitpost.2010.09.012.; P. Schubert, M. Kirchner, S. Dietmar, and C. T. Haas, “About the structure of posturography: Sampling duration, parametrization, focus of attention (part I),” J. Biomed. Sci. Eng., vol. 5, pp. 496–507, 2012, doi: http://dx.doi.org/10.4236/jbise.2012.59062.; F. Martínez-Solís et al., “Algorithm to estimate the knee angle in normal gait: trajectory generation approach to intelligent transfemoral prosthesis,” Rev. Mex. Ing. Biomédica, vol. 37, no. 3, pp. 221–233, Sep. 2016, doi:10.17488/RMIB.37.3.7.; S. A. Ahmadi et al., “Towards computerized diagnosis of neurological stance disorders: data mining and machine learning of posturography and sway,” J. Neurol., vol. 266, no. s1, pp. 108–117, 2019, doi:10.1007/s00415-019-09458-y.; L. A. Luengas-C, “Computational Method to Verify Static Alignment of Transtibial Prosthesis,” Biomed. J. Sci. Tech. Res., vol. 31, no. 2, Oct. 2020, doi:10.26717/bjstr.2020.31.005074.; J. R. Chagdes, S. Rietdyk, M. H. Jeffrey, N. Z. Howard, and A. Raman, “Dynamic stability of a human standing on a balance board,” J. Biomech., vol. 46, no. 15, 2013, doi:10.1016/j.jbiomech.2013.08.012.; L. A. Luengas-C. and D. C. Toloza, “Frequency and Spectral Power Density Analysis of the Stability of Amputees Subjects,” TecnoLógicas, vol. 23, no. 48, pp. 1–16, 2020, doi: https://doi.org/10.22430/22565337.1453.; L. Verdichio, “Equilibrio y dominancia,” Universidad FASTA, 2016.; J. C. Segovia Martínez and J. C. Legido Arce, “Valores podoestabilométricos en la población deportiva infantil,” UNIVERSIDAD COMPLUTENSE DE MADRID, 2009.; B. Ristevski and M. Chen, “Big Data Analytics in Medicine and Healthcare,” J. Integr. Bioinform., vol. 15, no. 3, pp. 1–5, 2018, doi:10.1515/jib-2017-0030.; P. Schubert and M. Kirchner, “Ellipse area calculations and their applicability in posturography,” Gait Posture, vol. 39, no. 1, pp. 518–522, 2014, doi:10.1016/j.gaitpost.2013.09.001.; M. Duarte and S. M. Freitas, “Revision of posturography based on force plate for balance evaluation,” Rev. Bras. Fisioter., vol. 14, no. 3, pp. 183–192, 2010, doi: S1413-35552010000300003 [pii].; M. Duarte, “Comments on ‘ellipse area calculations and their applicability in posturography’ (schubert and kirchner, vol.39, pages 518-522, 2014),” Gait Posture, vol. 41, no. 1, pp. 44–45, 2015, doi:10.1016/j.gaitpost.2014.08.008.; M. Gómez, J. Serna, and L. Vélez, “Diagnosis of bearing with mechanical vibrations and virtual instruments,” Visión Electrónica Más que un estado sólido, vol. 8, no. 2, pp. 107–113, 2014.; Novel.de, “The pedar® system,” Novel GmbH, 2019. http://www.novel.de/novelcontent/pedar (accessed May 11, 2014).; D. A. Winter, Biomechanics and motor control of human movement, 4th ed. New Jersey: John Wiley & sons, Inc, 2009.; A. Bottaro, M. Casadio, P. G. Morasso, and V. Sanguineti, “Body sway during quiet standing: Is it the residual chattering of an intermittent stabilization process?,” in Human Movement Science, 2005, vol. 24, no. 4, pp. 588–615, doi:10.1016/j.humov.2005.07.006.; R. T. Disler et al., “Factors impairing the postural balance in COPD patients and its influence upon activities of daily living,” Eur. Respir. J., vol. 15, no. 1, 2019.; Bomberos Colombia. (2016). Guía para Certificar Equipos de Búsqueda y Rescate Urbano en los Cuerpos de Bomberos de Colombia. Disponible en: https://bomberos.mininterior.gov.co/sites/default/files/guia_final_bomberos_colombia_2017_.pdf.; Brigham and Women’s Hospital. (2019). Signos vitales (temperatura corporal, pulso, frecuencia respiratoria y presión arterial). Disponible en: https://healthlibrary.brighamandwomens.org/spanish/diseasesconditions/adult/NonTraumatic/85,P03963.; Catalogo de la Salud. (s.f). Monitoreo de signos vitales. Disponible en: https://www.catalogodelasalud.com/ficha-producto/Monitores-de-pacientes+102363.; CNN. (2012). Un dispositivo inalámbrico para monitorear signos vitales. Disponible en: https://cnnespanol.cnn.com/2012/05/25/un-dispositivo-inalambrico-para-monitorear-signos-vitales/.; OMS. (s.f). Terremotos. Disponible en: https://www.who.int/hac/techguidance/ems/earthquakes/es/.; OMS. (2017). 10 datos sobre la seguridad vial en el mundo – Organización Mundial de la Salud (OMS). Disponible en: https://www.who.int/features/factfiles/roadsafety/es/.; Ramírez López, L. J., Marín López, A. F., & Cifuentes Sanabria, Y. P. (2015). Aplicación de la biotelemetría para tres signos vitales. Ciencia Y Poder Aéreo, 10(1), 179-186. https://doi.org/10.18667/cienciaypoderaereo.428.; Rosenberg D. (2009). ICONIX Process for Embedded Systems - A roadmap for embedded system development using SysML. Tomado de: https://community.sparxsystems.com/white-papers/616-88iconix-process-for-embedded-systems-a-roadmap-for-embedded-system-development-using-sysml.; Salazar-Arbelaez, Gabriel. (2018). Terremotos y salud: lecciones y recomendaciones. Salud Pública de México, 60(Supl. 1), 6-15. https://doi.org/10.21149/9445.; SUMMA 112. (s.f). Módulo 7 Actuación ante Accidentes con Múltiples Víctimas y Catástrofes. Incidentes NBQR. Rescate sanitario. Manuel de enfermería. Disponible en: http://www.madrid.org/cs/Satellite?blobcol=urldata&blobheader=application%2Fpdf&blobheadername1=Content-Disposition&blobheadervalue1=filename%3DModulo+7.pdf&blobkey=id&blobtable=MungoBlobs&blobwhere=1352868957600&ssbinary=true.; Tecnológico de Monterrey. (2011). Sistema para la visualización de signos vitales con dispositivos móviles utilizando tecnología Bluetooth. Disponible en: https://repositorio.tec.mx/bitstream/handle/11285/632321/33068001111800.pdf?sequence=1&isAllowed=y.; UdeA. (2016). Monitor de signos vitales vestible. UdeA – Universidad de Antioquía, Medellín, Colombia. Disponible en: http://www.udea.edu.co/wps/portal/udea/web/inicio/extension/portafoliotecnologico/articulos/Monitor_de_signos_vitales_vestible.; Udistrital. (2018). Monitoreo remoto de signos corporales y transmisión de datos y alertas a una aplicación instalada en un smartphone. Udistrital – Universidad Distrital Francisco José de Caldas. Disponible en: https://repository.udistrital.edu.co/bitstream/handle/11349/13383/SarmientoG%C3%B3mezOscar2018.pdf?sequence=2&isAllowed=y.; Volcano Discovery. (2021). Informe de terremotos en todo el mundo por enero 2021. Disponible en: https://www.volcanodiscovery.com/es/earthquakes/monthly/news/118160/Informe-de-terremotos-en-todo-el-mundo-por-enero-2021.html.; A. F. Calvo Salcedo, A. Bejarano Martínez, y A. Castillo González, “Diseño prototipo de una red de sensores inalámbricos", Visión Electrónica, vol. 12, no. 1, pp. 43-50, 2018. https://doi.org/10.14483/22484728.13405.; E. Y. Rodríguez, L. F. Pedraza Martínez, y D. A. López Sarmiento, “Desarrollo y evaluación de un sistema de comunicación remota para el monitoreo de una máquina sopladora de botellas", Visión Electrónica, vol. 5, no. 1, pp. 89-102, 2011. https://doi.org/10.14483/22484728.3517.; T. Salamanca, “Prototipo para monitorización de signos vitales en espacios confinados", Visión Electrónica, vol. 12, no. 1, pp. 83-88, 2018. https://doi.org/10.14483/22484728.13401 [18] Volcano Discovery. (2021). Informe de terremotos en todo el mundo por enero 2021. Disponible en: https://www.volcanodiscovery.com/es/earthquakes/monthly/news/118160/Informe-de-terremotos-en-todo-el-mundo-por-enero-2021.html.; W. Enríquez, P. Nazate, y O. Marcillo, “Prototipo DAS basado en FPGA de 12 canales para monitoreo geodinámico", Visión Electrónica, vol. 12, no. 1, pp. 73-82, 2018. https://doi.org/10.14483/22484728.13782.; Y. Baquero, Z. Alezones Campos, y H. Borrero Guerrero, “Robot móvil controlado por comandos de voz LPC-DTW”, Visión Electrónica, vol. 5, no. 1, pp. 15-25, 2011. https://doi.org/10.14483/22484728.3524.; Cardona, O. (2007). La gestión del riesgo colectivo. Un marco conceptual que encuentra sustento en una ciudad laboratorio. Red de Estudios Sociales en Prevención de Desastres en América Latina.; Cardona, O. D., García, A. C., Mattingly, S., Trujillo, E. G. C., & Vega, D. F. P. (2003). Plan de emergencias de Manizales. Alcaldía de Manizales–Oficina Municipal para la Prevención y Atención de Desastres-OMPAD. Manizales.; Castro, F.D. (2008). Metodología de projeto centrada na casa da qualidade. Tesis de maestría, universidade federal rio grande do sul, Porto Alegre, Brasil.; Chowdhury, T. J., Elkin, C., Devabhaktuni, V., Rawat, D. B., & Oluoch, J. (2016). Advances on localization techniques for wireless sensor networks: A survey. Computer Networks, 110, 284-305.; Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., & Mankodiya, K. (2017). Towards fog-driven IoT eHealth: promises and challenges of IoT in medicine and healthcare. Future Generation Computer Systems.; García, A. M., & Castaño Dávila, A. C. (2013). SIG de deslizamientos para el departamento de Caldas.; Keipi, K., Mora-Castro, S., & Bastidas, P. (2005). Gestión de riesgo de amenazas naturales en proyectos de desarrollo: Lista de preguntas de verificación (" Checklist"). Inter-American Development Bank.; Kim, T., Ramos, C., & Mohammed, S. (2017). Smart City and IoT. Elsevier.; Lavell, A. (2001). Sobre la gestión del riesgo: apuntes hacia una definición. Biblioteca Virtual en Salud de Desastres-OPS. Consultado el, 4.; Liu, L., Guo, C., Li, J., Xu, H., Zhang, J., & Wang, B. (2016). Simultaneous life detection and localization using a wideband chaotic signal with an embedded tone. Sensors, 16(11), 1866.; Lomotey, R. K., Pry, J., & Sriramoju, S. (2017). Wearable IoT data stream traceability in a distributed health information system. Pervasive and Mobile Computing.; Morral, G., & Bianchi, P. (2016). Distributed on-line multidimensional scaling for self-localization in wireless sensor networks. Signal Processing, 120, 88-98.; Novák, D., Švecová, M., & Kocur, D. (2017). Multiple Person Localization Based on Their Vital Sign Detection Using UWB Sensor. In Microwave Systems and Applications. InTech.; Pahl, G., & Beitz, W. (2013). Engineering design: a systematic approach. Springer Science & Business Media.; Rising, L., & Janoff, N. S. (2000). The Scrum software development process for small teams. IEEE software, (4), 26-32.; Schwaber, K., & Sutherland, J. (2013). The definitive guide to Scrum: The rules of the game. online], Scrum. org, http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf. [Visitada en agosto de 2015].; Shalloway A, Bain S, Pugh K and Kolsky A. 2011. Essential Skills for the agile developer. A guide to better programming and desing. Ed. Addison-Wesley.; UNGRD (2017). Boletín de prensa 131, Unidad atención de riesgos y desastres. Tras avalancha en manizales, continúan los trabajos de recuperación.; J. Hartvigsen et al., “What low back pain is and why we need to pay attention,” Lancet, vol. 391, no. 10137, pp. 2356–2367, 2018, doi:10.1016/S0140-6736(18)30480-X.; A. Cieza, K. Causey, K. Kamenov, S. W. Hanson, S. Chatterji, and T. Vos, “Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019,” Lancet, vol. 396, no. 10267, pp. 2006–2017, 2020, doi:10.1016/S0140-6736(20)32340-0.; A. M. Briggs et al., “Musculoskeletal Health Conditions Represent a Global Threat to Healthy Aging: A Report for the 2015 World Health Organization World Report on Ageing and Health,” Gerontologist, vol. 56, pp. S243–S255, 2016, doi:10.1093/geront/gnw002.; (OMS) Organizacion Mundial de la Salud, “Rehabilitación,” 2020. https://www.who.int/es/news-room/fact-sheets/detail/rehabilitation.; (OMS) Organizacion Mundial de la Salud, “Rehabilitation 2030 Initiative.” https://www.who.int/initiatives/rehabilitation-2030.; F. A. Abdulla, S. Alsaadi, M. I. R. Sadat-Ali, F. Alkhamis, H. Alkawaja, and S. Lo, “Effects of pulsed low-frequency magnetic field therapy on pain intensity in patients with musculoskeletal chronic low back pain: Study protocol for a randomised double-blind placebo-controlled trial,” BMJ Open, vol. 9, no. 6, pp. 1–9, 2019, doi:10.1136/bmjopen-2018-024650.; H. Hu et al., “Promising application of Pulsed Electromagnetic Fields (PEMFs) in musculoskeletal disorders,” Biomed. Pharmacother., vol. 131, p. 110767, 2020, doi:10.1016/j.biopha.2020.110767.; J. D. Z. Guillot, “La magnetoterapia y su aplicación en la medicina,” Rev. Cuba. Med. Gen. Integr., vol. 18, no. 1, pp. 60–72, 2002.; (OMS) Organización Mundial de la Salud, “Campos electromagnéticos (CEM).” https://www.who.int/peh-emf/about/WhatisEMF/es/ (accessed Apr. 10, 2021).; E. Alonso Fustel, R. Garcia Vázquez, and C. Onaindia Olalde, “Campos electromagnéticos y efectos en salud.” Bizkaia, Vasco, 2012.; M. O. Mattsson and M. Simkó, “Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz,” Medical Devices: Evidence and Research, vol. 12. Dove Medical Press Ltd, pp. 347–368, 2019, doi:10.2147/MDER.S214152.; N. Bachl, G. Ruoff, B. Wessner, and H. Tschan, “Electromagnetic Interventions in Musculoskeletal Disorders,” Clinics in Sports Medicine, vol. 27, no. 1. pp. 87–105, Jan. 2008, doi:10.1016/j.csm.2007.10.006.; T. Paolucci, L. Pezzi, A. M. Centra, N. Giannandrea, R. G. Bellomo, and R. Saggini, “Electromagnetic field therapy: A rehabilitative perspective in the management of musculoskeletal pain – A systematic review,” J. Pain Res., vol. 13, pp. 1385–1400, 2020, doi:10.2147/JPR.S231778.; J. Multanen, A. Häkkinen, P. Heikkinen, H. Kautiainen, S. Mustalampi, and J. Ylinen, “Pulsed electromagnetic field therapy in the treatment of pain and other symptoms in fibromyalgia: A randomized controlled study,” Bioelectromagnetics, vol. 39, no. 5, pp. 405–413, 2018, doi:10.1002/bem.22127.; H. Mohajerani, F. Tabeie, F. Vossoughi, E. Jafari, and M. Assadi, “Effect of pulsed electromagnetic field on mandibular fracture healing: A randomized control trial, (RCT),” J. Stomatol. Oral Maxillofac. Surg., vol. 120, no. 5, pp. 390–396, Nov. 2019, doi:10.1016/j.jormas.2019.02.022.; A. M. Elshiwi, H. A. Hamada, D. Mosaad, I. M. A. Ragab, G. M. Koura, and S. M. Alrawaili, “Effect of pulsed electromagnetic field on nonspecific low back pain patients: a randomized controlled trial,” Brazilian J. Phys. Ther., vol. 23, no. 3, pp. 244–249, 2019, doi:10.1016/j.bjpt.2018.08.004.; H. L. Casalechi et al., “Acute effects of photobiomodulation therapy and magnetic field on functional mobility in stroke survivors: a randomized, sham-controlled, triple-blind, crossover, clinical trial,” Lasers Med. Sci., vol. 35, no. 6, pp. 1253–1262, 2020, doi:10.1007/s10103-019-02898-y.; L. Kopacz, Z. Ciosek, H. Gronwald, P. Skomro, R. Ardan, and D. Lietz-Kijak, “Comparative Analysis of the Influence of Selected Physical Factors on the Level of Pain in the Course of Temporomandibular Joint Disorders,” Pain Res. Manag., vol. 2020, 2020, doi:10.1155/2020/1036306.; E. Hattapoğlu, İ. Batmaz, B. Dilek, M. Karakoç, S. Em, and R. Çevik, “Efficiency of pulsed electromagnetic fields on pain, disability, anxiety, depression, and quality of life in patients with cervical disc herniation: A randomized controlled study,” Turkish J. Med. Sci., vol. 49, no. 4, pp. 1095–1101, 2019, doi:10.3906/sag-1901-65.; G. L. Bagnato, G. Miceli, N. Marino, D. Sciortino, and G. F. Bagnato, “Pulsed electromagnetic fields in knee osteoarthritis: A double blind, placebo-controlled, randomized clinical trial,” Rheumatol. (United Kingdom), vol. 55, no. 4, pp. 755–762, 2016, doi:10.1093/rheumatology/kev426.; L. Chen et al., “Effects of pulsed electromagnetic field therapy on pain, stiffness and physical function in patients with knee osteoarthritis: A systematic review and meta-analysis of randomized controlled trials,” J. Rehabil. Med., vol. 51, no. 11, pp. 821–827, 2019, doi:10.2340/16501977-2613.; T. Paolucci et al., “Efficacy of extremely low-frequency magnetic field in fibromyalgia pain: A pilot study,” J. Rehabil. Res. Dev., vol. 53, no. 6, pp. 1023–1034, 2016, doi:10.1682/JRRD.2015.04.0061.; A. El Zohiery, Y. El Miedany, T. Elserry, O. El Shazly, and S. Galal, “Impact of electromagnetic field exposure on pain, severity, functional status and depression in patients with primary fibromyalgia syndrome,” Egypt. Rheumatol., no. xxxx, pp. 0–4, 2020, doi:10.1016/j.ejr.2020.10.001.; C. L. Ross, I. Syed, T. L. Smith, and B. S. Harrison, “The regenerative effects of electromagnetic field on spinal cord injury,” Electromagn. Biol. Med., vol. 36, no. 1, pp. 74–87, 2017, doi:10.3109/15368378.2016.1160408.; T. Pesqueira, R. Costa-Almeida, and M. E. Gomes, “Magnetotherapy: The quest for tendon regeneration,” J. Cell. Physiol., vol. 233, no. 10, pp. 6395–6405, 2018, doi:10.1002/jcp.26637.; G. Vicenti et al., “Biophysical stimulation of the knee with PEMFs: from bench to bedside,” J. Biol. Regul. Homeost. Agents, vol. 32, no. 6, pp. 23–28, 2018.; K. Iwasa and A. H. Reddi, “Pulsed Electromagnetic Fields and Tissue Engineering of the Joints,” Tissue Engineering - Part B: Reviews, vol. 24, no. 2. Mary Ann Liebert Inc., pp. 144–154, Apr. 01, 2018, doi:10.1089/ten.teb.2017.0294.; A. Madroñero De La Cal, “Importancia de los aplicadores de campo magnético en los tratamientos electroterapéuticos en las personas mayores,” Rev. Esp. Geriatr. Gerontol., vol. 38, no. 6, pp. 355–368, 2003, doi:10.1016/s0211-139x(03)74917-8.; T. Wang et al., “Pulsed electromagnetic fields: promising treatment for osteoporosis,” Osteoporos. Int., vol. 30, no. 2, pp. 267–276, 2019, doi:10.1007/s00198-018-04822-6.; X. sheng Qiu, X. gang Li, and Y. xin Chen, “Pulsed electromagnetic field (PEMF): A potential adjuvant treatment for infected nonunion,” Med. Hypotheses, vol. 136, Mar. 2020, doi:10.1016/j.mehy.2019.109506.; J. Taradaj, M. Ozon, R. Dymarek, B. Bolach, K. Walewicz, and J. Rosinczuk, “Impact of selected magnetic fields on the therapeutic effect in patients with lumbar discopathy: A prospective, randomized, single-blinded, and placebo-controlled clinical trial,” Adv. Clin. Exp. Med., vol. 27, no. 5, pp. 649–666, 2018, doi:10.17219/acem/68690.; J. Zwolińska, M. Gąsior, E. Śniezek, and A. Kwolek, “The use of magnetic fields in treatment of patients with rheumatoid arthritis. Review of the literature,” Reumatologia, vol. 54, no. 4, pp. 201–206, 2016, doi:10.5114/reum.2016.62475.; Z. Wu et al., “Efficacy and safety of the pulsed electromagnetic field in osteoarthritis: A meta-analysis,” BMJ Open, vol. 8, no. 12, Dec. 2018, doi:10.1136/bmjopen-2018-022879.; L. Mori, “EFICACIA DE LA MAGNETOTERAPIA EN LA DISMINUCION DEL DOLOR EN ADULTOS MAYORES CON OSTEOARTROSIS CENTRO DE MEDICINA COMPLEMENTARIA ESSALUD TRUJILLO,” Tesis - Universidad Cesar Vallejo - Trujillo Perú, vol. 0, no. 12. p. Pág. 89-95-95, 2019, doi:10.5354/0717-8883.1986.23781.; K. Marycz, K. Kornicka, and M. Röcken, “Static Magnetic Field (SMF) as a Regulator of Stem Cell Fate – New Perspectives in Regenerative Medicine Arising from an Underestimated Tool,” Stem Cell Rev. Reports, vol. 14, no. 6, pp. 785–792, 2018, doi:10.1007/s12015-018-9847-4.; N. Kamei, N. Adachi, and M. Ochi, “Magnetic cell delivery for the regeneration of musculoskeletal and neural tissues,” Regen. Ther., vol. 9, pp. 116–119, 2018, doi:10.1016/j.reth.2018.10.001.; A. Catalano, S. Loddo, F. Bellone, C. Pecora, A. Lasco, and N. Morabito, “Pulsed electromagnetic fields modulate bone metabolism via RANKL/OPG and Wnt/β-catenin pathways in women with postmenopausal osteoporosis: A pilot study,” Bone, vol. 116. pp. 42–46, 2018, doi:10.1016/j.bone.2018.07.010.; H. Okano, H. Ishiwatari, A. Fujimura, and K. Watanuki, “The physiological influence of alternating current electromagnetic field exposure on human subjects,” 2017 IEEE Int. Conf. Syst. Man, Cybern. SMC 2017, vol. 2017-Janua, pp. 2442–2447, 2017, doi:10.1109/SMC.2017.8122989.; A. Maziarz et al., “How electromagnetic fields can influence adult stem cells: Positive and negative impacts,” Stem Cell Res. Ther., vol. 7, no. 1, 2016, doi:10.1186/s13287-016-0312-5.; E. I. Waldorff, N. Zhang, and J. T. Ryaby, “Pulsed electromagnetic field applications: A corporate perspective,” J. Orthop. Transl., vol. 9, pp. 60–68, 2017, doi:10.1016/j.jot.2017.02.006.; A. M. Nayback-Beebe, L. H. Yoder, B. J. Goff, S. Arzola, and C. Weidlich, “The effect of pulsed electromagnetic frequency therapy on health-related quality of life in military service members with chronic low back pain,” Nurs. Outlook, vol. 65, no. 5, pp. S26–S33, 2017, doi:10.1016/j.outlook.2017.07.012.; T. Klüter et al., “Electromagnetic transduction therapy and shockwave therapy in 86 patients with rotator cuff tendinopathy: A prospective randomized controlled trial,” Electromagn. Biol. Med., vol. 37, no. 4, pp. 175–183, 2018, doi:10.1080/15368378.2018.1499030.; J. Pasek, T. Pasek, K. Sieroń-Stołtny, G. Cieślar, and A. Sieroń, “Electromagnetic fields in medicine – The state of art,” Electromagn. Biol. Med., vol. 35, no. 2, pp. 170–175, Apr. 2016, doi:10.3109/15368378.2015.1048549.; A. Hochsprung, S. Escudero-Uribe, A. J. Ibáñez-Vera, and G. Izquierdo-Ayuso, “Effectiveness of monopolar dielectric transmission of pulsed electromagnetic fields for multiple sclerosis–related pain: A pilot study,” Neurologia, 2018, doi:10.1016/j.nrl.2018.03.003.; A. B. Camacho, Y. A. P. Borrego, M. J. R. Matas, V. S. León, L. M. Mateos, and A. Oliviero, “Protocolo terapéutico del dolor con técnicas de estimulación no invasiva,” Med., vol. 12, no. 75, pp. 4451–4454, 2019, doi:10.1016/j.med.2019.03.026.; J. Arabloo et al., “Health technology assessment of magnet therapy for relieving pain,” Med. J. Islam. Repub. Iran, vol. 31, no. 1, pp. 184–188, 2017, doi:10.18869/mjiri.31.31.; J. Chudorlinski and L. Ksiazek, “Medical device for physical therapy with a magnetic field and light,” 2019 Appl. Electromagn. Mod. Eng. Med. PTZE 2019, pp. 22–25, 2019, doi:10.23919/PTZE.2019.8781742.; J. Chudorlinski and L. Ksiazek, “Signals for magnetic field therapy and a method for their preparation,” 2018 Appl. Electromagn. Mod. Tech. Med. PTZE 2018, pp. 29–32, 2018, doi:10.1109/PTZE.2018.8503080.; A. Krawczyk, P. Murawski, and E. Korzeniewska, “New Magnetotherapeutical Device,” pp. 2–5, 2017.; Samuel K Au, Jeff Weber, and Hugh Herr. Biomechanical design of a powered ankle-foot prosthesis. In Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on, pages 298–303. IEEE, 2007.; Rouse, Elliott Jay; Mooney, Luke M.; Martinez-Villalpando, Ernesto C.; Herr, Hugh M. "Clutchable Series-Elastic Actuator: Design of a Robotic Knee Prosthesis for Minimum Energy Consumption". 13th International Conference on Rehabilitation Robotics, ICORR 2013.; Samuel K Au and Hugh M Herr. Powered ankle-foot prosthesis. IEEE Robotics & Automation Magazine, 15(3), 2008.; Dong, D., Ge, W., Liu, S., Xia, F., & Sun, Y. (2017). Design and optimization of a powered ankle-foot prosthesis using a geared five-bar spring mechanism. International Journal of Advanced Robotic Systems, 14(3), 1729881417704545.; Andrew K LaPre, Ryan D Wedge, Brian R Umberger, and Frank C Sup. Preliminary study of a robotic foot-ankle prosthesis with active alignment. In Rehabilitation Robotics (ICORR), 2017 International Conference on, pages 1299–1304. IEEE, 2017.; Maurice LeBlanc. Give hope-give a hand. The LN-4 Prosthetic Hand, 2014, 2008.; Dianbiao Dong, Wenjie Ge, Shumin Liu, Fan Xia, and Yuanxi Sun. Design and optimization of a powered ankle-foot prosthesis using a geared five-bar spring mechanism. International Journal of Advanced Robotic Systems, 14(3):1729881417704545, 2017.; Samuel K Au, Jeff Weber, and Hugh Herr. Powered ankle–foot prosthesis improves walking metabolic economy. IEEE Transactions on Robotics, 25(1):51–66, 2009.; Arthur D Kuo. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective. Human movement science, 26(4):617–656, 2007.; Mary M Rodgers. Dynamic biomechanics of the normal foot and ankle during walking and running. Physical therapy, 68(12):1822–1830, 1988.; Tan Thang Nguyen, Thanh-Phong Dao, and Shyh-Chour Huang. Bio- mechanical design of a novel six dof compliant prosthetic ankle-foot 2.0 for rehabilitation of amputee. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pages V05AT08A013–V05AT08A013. Ameri- can Society of Mechanical Engineers, 2017.; Joana Alves, Eurico Seabra, César Ferreira, Cristina P Santos, and Luís Paulo Reis. Design and dynamic modelling of an ankle-foot prosthesis for humanoid robot. In Autonomous Robot Systems and Competitions (ICARSC), 2017 IEEE International Conference on, pages 128–133. IEEE, 2017.; Lei Ren, Richard K Jones, and David Howard. Predictive modelling of human walking over a complete gait cycle. Journal of biomechanics, 40(7):1567–1574, 2007.; SK Au and H Herr. Initial experimental study on dynamic interaction between an amputee and a powered ankle-foot prosthesis. In Workshop on dynamic walking: Mechanics and control of human and robot locomotion, page 1, 2006.; Samuel K Au, Hugh Herr, Jeff Weber, and Ernesto C Martinez- Villalpando. Powered ankle-foot prosthesis for the improvement of amputee ambulation. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, pages 3020–3026. IEEE, 2007.; Grimmer, M., Eslamy, M., Gliech, S., & Seyfarth, A. (2012, May). A comparison of parallel-and series elastic elements in an actuator for mimicking human ankle joint in walking and running. In 2012 IEEE International Conference on Robotics and Automation (pp. 2463-2470). IEEE.; Soren Shashikant, 2017. Mechanical Leg. https://grabcad.com/library/mechanical-leg-2.; Guy Rouleau, 2014. From SolidWorks to SimMechanics Posted in July 10, 2014. Simulink & Model-Based Design. https://blogs.mathworks.com/simulink/2014/07/10/from-solidworks-to-simmechanics/.; Eilenberg, M. F., Geyer, H., & Herr, H. (2010). Control of a powered ankle–foot prosthesis based on a neuromuscular model. IEEE transactions on neural systems and rehabilitation engineering, 18(2), 164-173.; L. Agudelo, “La discapacidad en Colombia: una mirada global,” Revista Colombiana de Medicina Física y Rehabilitación, p. 16, 2012.; D. A. N. de E. (DANE), “Boletín Censo General 2005 DISCAPACIDAD-COLOMBIA,” 2005. Accessed: Oct. 08, 2020. [Online]. Available: https://www.dane.gov.co/files/censos/libroCenso2005nacional.pdf.; Ministerio de Salud y Protección Social, “Sala situacional de las Personas con Discapacidad,” 2019. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/MET/sala-situacional-discapacidad2019-2-vf.pdf (accessed Feb. 25, 2021).; MINISTERIO DE SALUD Y PROTECCIÓN SOCIAL, Resolución 2968 DE 2015. República de Colombia: Ministerio de Salud y Protección Social, 2015, pp. 1–16.; Ministerio de Salud y Protección Social, Decreto Número 4725 DE 2005. República de Colombia: Ministerio de Protección Social, 2005, pp. 1–31.; N. Dechev, W. L. Cleghorn, and S. Naumann, “Multiple finger, passive adaptive grasp prosthetic hand,” Mech. Mach. Theory, vol. 36, no. 10, pp. 1157–1173, Oct. 2001, doi:10.1016/S0094-114X(01)00035-0.; R. I. Flores Luna, “Repositorio de Tesis DGBSDI: Diseño de protesis mecatronica de mano,” Universidad Nacional Autónoma de México, 2007.; S. R. Kashef, S. Amini, and A. Akbarzadeh, “Robotic hand: A review on linkage-driven finger mechanisms of prosthetic hands and evaluation of the performance criteria,” Mechanism and Machine Theory, vol. 145. Elsevier Ltd, p. 103677, Mar. 01, 2020, doi:10.1016/j.mechmachtheory.2019.103677.; L. Roselia, P. León, and E. Luz González Muñoz, Rosalío Ávila Chaurand Dimensiones antropométricas de población latinoamericana. 2007.; M. Monar and L. Murillo, “DISEÑO Y CONSTRUCCIÓN DE UNA PRÓTESIS BIÓNICA DE MANO DE 7 GRADOS DE LIBERTAD UTILIZANDO MATERIALES INTELIGENTES Y CONTROL MIOELÉCTRICO ADAPTADA PARA VARIOS PATRONES DE SUJECIÓN,” Universidad de las Fuerzas Armadas, Latacunga, 2015.; J. Zhang, B. Wang, C. Zhang, Y. Xiao, and M. Y. Wang, “An EEG/EMG/EOG-Based Multimodal Human-Machine Interface to Real-Time Control of a Soft Robot Hand,” Front. Neurorobot., vol. 13, no. 7, p. 7, Mar. 2019, doi:10.3389/fnbot.2019.00007.; K. P. Biswajeet Champaty, Suraj Nayak, “Development of an Electrooculogram-based Human-Computer Interface for Hands-Free Control of Assistive Devices,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 4S, p. 11, 2019.; E. Camargo Casallas, L. A. Luengas C., y M. Balaguera, “Respuesta a carga de una prótesis transtibial con elementos infinitos durante el apoyo y balanceo", Visión Electrónica, vol. 6, no. 2, pp. 82-92, 2012.; Q. Huang et al., “An EOG-based wheelchair robotic arm system for assisting patients with severe spinal cord injuries,” J. Neural Eng, vol. 16, 2019, doi:10.1088/1741-2552/aafc88.; S. D and R. R. M, “A high performance asynchronous EOG speller system,” Biomed. Signal Process. Control, vol. 59, p. 101898, May 2020, doi:10.1016/j.bspc.2020.101898.; A. López, M. Fernández, H. Rodríguez, F. Ferrero, and O. Postolache, “Development of an EOG-based system to control a serious game,” Meas. J. Int. Meas. Confed., vol. 127, pp. 481–488, Oct. 2018, doi:10.1016/j.measurement.2018.06.017.; O. F. Avilés, R. D. Hernández, J. L. Loaiza, and J. M. Rosário, “Simulation model of an anthropomorphic hand,” Int. J. Appl. Eng. Res., vol. 11, no. 23, pp. 11114–11120, 2016, Accessed: Oct. 11, 2020. [Online]. Available: https://www.researchgate.net/publication/312979011_Simulation_Model_of_an_Anthropomorphic_Hand.; O. F. A. Sánchez, R. Gutiérrez, A. J. U. Quevedo, and J. M. Rosario, “(PDF) Antrohopomorphic Grippers - Modelling, Analysis and Implementation,” 2015. https://www.researchgate.net/publication/228090516_Antrhopomorphic_Grippers_-_Modelling_Analysis_and_Implementation (accessed Oct. 11, 2020).; A. Sharma, W. Niu, C. L. Hunt, G. Lévay, R. R. Kaliki, and N. Thakor, “Augmented Reality Prosthesis Training Setup for Motor Skill Enhancement,” 2019.; Y. Tsepkovskiy, L. Antonov, C. Kocev, F. Palis, and N. Shoylev, “DEVELOPMENT OF A 3D AND VRML VIRTUAL HAND MODELS FOR DIFFERENT MECHANICAL GRIPPER,” 2008.; S. T. Vite, C. F. Domínguez Velasco, J. B. Reséndiz Rodríguez, A. Hernández Valencia, y M. Ángel Padilla Castañeda, “Simulador de reparación de aneurismas cerebrales para entrenamiento médico Visión Electrónica, vol. 12, no. 1, pp. 51-57, 2018. https://doi.org/10.14483/22484728.13399.; F. J. Badesa et al., “Physiological responses during hybrid BNCI control of an upper-limb exoskeleton,” Sensors (Switzerland), vol. 19, no. 22, Nov. 2019, doi:10.3390/s19224931.; M. R. Cutkosky, “On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks,” IEEE Trans. Robot. Autom., vol. 5, no. 3, pp. 269–279, 1989, doi:10.1109/70.34763.; “Anexo A Norma DIN 33 402.”; J. F. Guerrero Martínez, “INGENIERÍA BIOMÉDICA Tema 2 Bioseñales 2.1. Introducción,” 2010.; L. Atanelov, S. A. Stiens, and M. A. Young, “History of physical medicine and rehabilitation and its ethical dimensions”, AMA journal of ethics, vol. 17, no. 6, pp. 568–574, 2015. DOI:10.1001/journalofethics.2015.17.6.mhst1-1506 URL: https://journalofethics.ama-assn.org/article/history-physical-medicine-and-rehabilitation-and-its-ethical-dimensions/2015-06.; M. C. Garcia and T. Vieira, “Surface electromyography: Why, when and how to use it”, Revista andaluza de medicina del deporte, vol. 4, no. 1, pp.17–28, 2011. URL: https://www.elsevier.es/es-revista-revista-andaluza-medicina-del-deporte-284-articulo-surface-electromyography-why-when-how-X1888754611201253.; J. C. Guerrero Pupo, I. Amell Muñoz, and R. Cañedo Andalia, “Tecnología, tecnología médica y tecnología de la salud: algunas consideraciones básicas”, Acimed, vol. 12, no. 4, pp. 1–1, 2004. URL: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1024-94352004000400007.; J. A. A. Londoño, E. C. Bravo, and J. F. C. García, “Aplicación de tecnologías de rehabilitación robótica en niños con lesión del miembro superior”, Revista Salud UIS, vol. 49, no. 1, pp. 103–114, 2017. DOI: http://dx.doi.org/10.18273/revsal.v49n1-2017010 URL: http://www.scielo.org.co/scielo.php?pid=S0121-08072017000100103&script=sci_abstract&tlng=es.; F. Salvuci and R. Kohanoff, Tecnologías de rehabilitación. Wiley-Interscience, 2016.; A. Merlo and I. Campanini, “Technical aspects of surface electromyography for clinicians”, The open rehabilitation journal, vol. 3, no. 1, 2010. DOI:10.2174/1874943701003010098 URL: https://benthamopen.com/ABSTRACT/TOREHJ-3-98 [7]. F. J. Juan, “Utilidad de la electromiografía de superficie en rehabilitación” URL: https://www.researchgate.net/profile/Francisco_Juan-Garcia/publication/316588275_UTILIDAD_DE_LA_ELECTROMIOGRAFIA_DE_SUPERFICIE_EN_REHABILITACION/links/5905b86c4585152d2e957860/UTILIDAD-DE-LA-ELECTROMIOGRAFIA-DE-SUPERFICIE-EN-REHABILITACION.pdf.; J. W. Meklenburg, S. K. Patrick, and S. D. Jung, “Surface electromyogram simulator for myoelectric prosthesis testing,” 2010. URL: https://digitalcommons.wpi.edu/mqp-all/1402/.; Merletti Roberto, and Dario Farina. Surface electromyography: physiology, engineering, and applications. Piscataway, NJ: IEEE Press, 2016, online. ISBN: 9781119082934, DOI:10.1002/9781119082934.; E. Guzmán, G. Méndez, “Electromiografía en las Ciencias de la Rehabilitación”, Salud Uninorte, Vol 3, no. 3, pp 753-765, 2018.; WOLFRAM S., y PACKARD N. H. Two-dimensional Cellular Autómata. J. Statist. Phys. 38, 1985.; MUÑOZ CASTAÑO, J. D., Artículo: Autómatas Celulares y Física Digital, en: Memorias del Primer Congreso Colombiano de Neuro Computación. Santa fe de Bogotá, D. C.: Academia Colombiana de Ciencias Exactas, Físicas y Naturales, p 28. ISBN 958-9205- 17-8. 1996.; HERNÁNDEZ, J. C., Algunas Generalizaciones en Autómatas Celulares. México: Consejo Nacional de Ciencia y Tecnología – CONACYT, 2008.; JUÁREZ, G. Teoría del Campo Promedio En Autómatas Celulares Similares a "The Game Of Life". México: Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, 2000.; CUEVAS, E., ZALDÍVAR, D., & PÉREZ, M., Procesamiento digital de imágenes con MATLAB y Simulink. México: Alfaomega Grupo Editor; RA-MA Editorial. 2010.; MUÑOZ, M. A., Privacidad y ocultación de información digital ESTEGANOGRAFÍA protegiendo y atacando redes informáticas. Madrid, Bogotá., España, Colombia: Ra-ma, Ediciones de la U. 2017; PONCE, C., P. Inteligencia Artificial con aplicaciones a la ingeniería. México: Alfa Omega Grupo Editor. 2010.; WOLFRAM S., Cellular automata as simple self-organizing systems. Pasadena: Caltech prepint CAL-68-938. 1982.; ESPÍNOLA, M. Clasificación de Imágenes de Satélite mediante Autómatas Celulares. Almería: Universidad de Almería. 2011.; MOORE, E. F. Machine Models Of Self-Reproduction. U.S.A.: Proceedings of Symposia in Applied Mathematics. 1963.; GUERRERO, C. Á. “RapaNui – Isla de Pascua”. RapaNui, Chile. 20/06/2018.; CHEDDAD, A., CONDELL, J., CURRAN, K., & MCKEVITT, P. Digital image steganography: Survey and analysis of current methods. Northern Ireland: School of Computing and Intelligent Systems, University of Ulster at Magee. Signal Processing, 90 (3), 26. Obtenido de EL SEVIER, 2010.; DE LA CRUZ FRANCO, A. Implementación de un Algoritmo Computacional para Esteganografía basado en técnicas del bit menos significativo. Chetumal, México: Universidad de Quintana Roo. 2017.; VÁZQUEZ, J. I., & OLIVER, J. Evolución de Autómatas Celulares utilizando Algoritmos Genéticos. Bilbao, España: Universidad de Deusto. 2008.; MIRI, A., FAEZ, K. Adaptive Image Steganography based on transform domain via Genetic Algorithm. Tehran, Iran: Department of Electrical Engineering, Amirkabir University of Technology. Optika, 145, 10. Obtenido de EL SEVIER, 2017.; MUKJERJEE, S., ROY, S., & SANYAL, G. Image Steganography Using Mid Position Value Technique. Durgapur, India: National Institute of Technology Durgapur. Procedia Computer Science, 132, 7. Obtenido de EL SEVIER, 2018.; WESTFELD, A., PFIZMANN, A. Attacks on Steganographic System. Dresden, Germany: Department of Computer Science, Dresden University of Technology. Information Hiding, 15. 1999.; CABALLERO, H. Cálculo de la dispersión de pixels en imágenes RGB para Esteganografía con base en la teoría fractal. Toluca de Lerdo, México: Facultad de Ingeniería, Universidad Autónoma de México. 2020.; FRIDRICH, J., GOLJAN, M., & DU, R. Reliable Detection of LSB steganography in color and grayscale images. Binghamton, U.S.A.: Department of Electrical and Computer Engineering, Binghamton University, 7. 2002.; D. Galeano and I. Electr, “Robótica Médica,” p. 21.; J. Cornejo, J. A. Cornejo Aguilar, and J. P. Perales Villarroel, “Innovaciones Internacionales En Robótica Médica Para Mejorar El Manejo Del Paciente En Perú,” Rev. la Fac. Med. Humana, vol. 19, no. 4, pp. 105–113, 2019, doi:10.25176/rfmh.v19i4.2349.; E. Saraee, A. Joshi, and M. Betke, “A therapeutic robotic system for the upper body based on the Proficio robotic arm,” Int. Conf. Virtual Rehabil. ICVR, vol. 2017-June, 2017, doi:10.1109/ICVR.2017.8007498.; M. A. Soleimani, H. Zohoor, A. R. F. Yakhdani, M. Heravi, and E. Mohammadi, “Designing, Prototyping, and Controlling a Portable Rehabilitation Robot for the Shoulder Physiotherapy and Training,” ICRoM 2019 - 7th Int. Conf. Robot. Mechatronics, no. ICRoM, pp. 281–284, 2019, doi:10.1109/ICRoM48714.2019.9071844.; M. R. Sarder, F. Ahmed, and B. A. Shakhar, “Design and implementation of a lightweight telepresence robot for medical assistance,” ECCE 2017 - Int. Conf. Electr. Comput. Commun. Eng., pp. 779–783, 2017, doi:10.1109/ECACE.2017.7913008.; R. R. Murphy, D. Riddle, and E. Rasmussen, “Robot-assisted medical reachback: A survey of how medical personnel expect to interact with rescue robots,” Proc. - IEEE Int. Work. Robot Hum. Interact. Commun., pp. 301–306, 2004, doi:10.1109/roman.2004.1374777.; M. Cardona, F. Cortez, A. Palacios, and K. Cerros, “Mobile robots application against covid-19 pandemic,” 2020 Ieee Andescon, Andescon 2020, 2020, doi:10.1109/ANDESCON50619.2020.9272072.; R. M. Nope-Giraldo et al., “Mechatronic Systems Design of ROHNI-1: Hybrid Cyber-Human Medical Robot for COVID-19 Health Surveillance at Wholesale-Supermarket Entrances,” Pan Am. Heal. Care Exch. PAHCE, vol. 2021-May, 2021, doi:10.1109/GMEPE/PAHCE50215.2021.9434874.; P. Manikandan, G. Ramesh, G. Likith, D. Sreekanth, and G. Durga Prasad, “Smart Nursing Robot for COVID-19 Patients,” 2021 Int. Conf. Adv. Comput. Innov. Technol. Eng. ICACITE 2021, vol. 7, pp. 839–842, 2021, doi:10.1109/ICACITE51222.2021.9404698.; Coronavirus: 12 aspectos en los que cambiará radicalmente nuestras vidas”: BBC News, mayo 2020. https://www.bbc.com/mundo/noticias-52512680.; UN. “La enfermedad del coronavirus, una emergencia de salud mundial”. Naciones Unidas. https://www.un.org/es/coronavirus.; “Medidas tomadas por el gobierno.” GOV.CO. Fronteras, marzo 2020. https://coronaviruscolombia.gov.co/Covid19/acciones/acciones-de-fronteras.html.; “Cómo se propaga el COVID-19”. Centros para el Control y la Prevención de Enfermedades, julio 2021. https://espanol.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html.; OMS. “Protéjase a sí mismo y a los demás contra la COVID-19”. Organización Mundial de la Salud. Octubre 2020. https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019/advice-for-public.; M. A. Vivas. “Medidas para la reactivación económica en Colombia-Decreto 580 de 2021. Consultor Salud, junio 2021. https://consultorsalud.com/medidas-para-la-reactivacion-economica/.; C.R. Colombiana. “Consejos de autocuidado y prevención COVID-19”. Cruz Roja Colombiana. https://www.cruzrojacolombiana.org/consejos-de-autocuidado-y-prevencion/.; Cinco protocolos que se usan a diario y que no sirven contra el Covid”. Portafolio, febrero de 2021. https://www.portafolio.co/economia/cinco-protocolos-covid-19-que-no-sirven-contra-el-coronavirus-549048.; “Empresas deberán adaptar protocolo de bioseguridad de Minsalud a sus actividades”. Minsalud, abril 2020. https://www.minsalud.gov.co/Paginas/Empresas-deberan-adaptar-protocolo-de-bioseguridad-de-Minsalud-a-sus-actividades.aspx.; I. J. Molina Pineda. “¿Por qué el coronavirus se propaga ahora con tanta velocidad?”. BBC News, noviembre 2020. https://www.bbc.com/mundo/noticias-54794713.; “COVID-19: novedades científicas”. Instituto de Salud Global Barcelona, noviembre 2021. https://www.isglobal.org/covid-19-novedades-cientificas.; Lionex. “Proximiti-i”. Lionex. 2020. https://lionex.co/proximiti-i.; “La solución digital más confiable del mundo para mitigar la propagación de COVID-19”. KINEXON, 2020. https://kinexon.com/technology/safetag/.; “Coronavirus: el plan de Apple y Google para rastrear el covid-19 desde tu teléfono”. BBC News, abril 2020. https://www.bbc.com/mundo/noticias-52251843.; “Nissan incorporó un nuevo Dispositivo de Distanciamiento Físico para toda su red de concesionarios”. La Nación, marzo 2021. https://www.lanacion.com.ar/lifestyle/nissan-incorporo-un-nuevo-dispositivo-de-distanciamiento-fisico-para-toda-su-red-de-concesionarios-nid11032021/.; “Analítica de detección de tapabocas, para una reapertura segura”. SAC Seguridad, 2020. https://sacseguridad.com/iss-analitica-deteccion-tapabocas-termica/.; W. Yan. “¿Llevas puesta la mascarilla? Un software de reconocimiento está listo para checar si las personas cumplen con el correcto uso”. National Geographic, septiembre 2020. https://www.nationalgeographicla.com/ciencia/2020/09/software-reconocimiento-mascarillas.; K1T671TM-3XF”. HIKVISION, 2020. https://www.hikvision.com/es-la/products/Access-Control-Products/Face-Recognition-Terminals/Ultra-Series/ds-k1t671tm-3xf-/?q=ds-k1t671tm-3xf&position=5.; “SOLIDWORKS. Qué es y para qué sirve”. SolidBi. https://solid-bi.es/solidworks/.; “Sensor de distancia SHARP GP2Y0A02YK0F”. Naylamp Mechatronics. https://naylampmechatronics.com/sensores-proximidad/204-sensor-de-distancia-infrarrojo-sharp-gp2y0a02.html.; “Sensor ultrasónico HC-SR04”. Naylamp Mechatronics. https://naylampmechatronics.com/sensores-proximidad/10-sensor-ultrasonido-hc-sr04.html.; “Sensor de temperatura TMP36”. Prometec. https://www.prometec.net/sensor-tmp36/.; “Comprensión del reconocimiento facial mediante el algoritmo LBPH”. Analytics Vidhya, julio 2021. https://www.analyticsvidhya.com/blog/2021/07/understanding-face-recognition-using-lbph-algorithm/.; Y. M. Shum. “Situación Global Mobile 2020”. YS social media, 2020. https://yiminshum.com/mobile-movil-app-2020/.; F. Cortez, J. Cercado Mancero, A. Vera Lorenti, and E. Valle Flores, “Un panorama de las energías renovables en el Mundo, Latinoamérica y Colombia,” Espacios, vol. 39, p. 10, 2018.; G. A. Zapata and J. A. Valencia, “Guía práctica para la aplicación de los incentivos tributarios de la Ley 1715 de 2014,” Colombia.; J. Faiz and A. Nematsaberi, “Linear electrical generator topologies for direct-drive marine wave energy conversion- an overview,” IET Renew. Power Gener., vol. 11, no. 9, pp. 1163–1176, 2017.; X. Wang, F. Chen, R. Zhu, G. Yang, and C. Zhang, “A Review of the Design and Control of Free-Piston Linear Generator,” Energies, vol. 11, no. 8, p. 2179, 2018.; H. Chen, S. Zhao, H. Wang, and R. Nie, “A Novel Single-Phase Tubular Permanent Magnet Linear Generator,” IEEE Trans. Appl. Supercond., vol. 30, no. 4, pp. 2–6, 2020.; R. Guo, H. Yu, T. A. O. Xia, Z. Shi, W. Zhong, and X. Liu, “A Simplified Subdomain Analytical Model for the Design and Analysis of a Tubular Linear Permanent Magnet Oscillation Generator,” IEEE Access, vol. 6, pp. 42355–42367, 2018.; H. M. Zapata, F. A. Cabrera, M. A. Perez, C. A. Silva, and W. Jara, “Model of a permanent magnet linear generator,” IECON Proc. (Industrial Electron. Conf., vol. 2019-Octob, pp. 6992–6997, 2019.; H. Jing, N. Maki, T. Ida, and M. Izumi, “Electrical design of large-scale tubular PM linear generators for wave energy conversion,” IEEJ Trans. Electr. Electron. Eng., vol. 12, pp. S113–S119, 2017.; R. M. Korbekandi, N. J. Baker, and D. Wu, “A study of translator length in a tubular linear electrical machine designed for use in alinear combustion joule engine,” 2019 12th Int. Symp. Linear Drives Ind. Appl. LDIA 2019, pp. 1–6, 2019.; Y. Sun, Z. Xu, Q. Zhang, J. Lu, and L. Liu, “A Tubular Single-Phase Linear Generator with an Axially Magnetized PM Mover for Free-Piston Engines,” IEEJ Trans. Electr. Electron. Eng., vol. 16, no. 1, pp. 139–146, 2021.; J. Kim, J. Y. Kim, and J. B. Park, “Design and optimization of a 8kW linear generator for a direct-drive point absorber,” Ocean. 2013 MTS/IEEE - San Diego An Ocean Common, pp. 1–6, 2013.; S. Arslan and S. A. Oy, “Design and optimization of tube type interior permanent magnets generator for free piston applications,” TEM J., vol. 6, no. 2, pp. 214–221, 2017.; H. J.R. and T. J. E. Miller, Design of brushless permanetn magnet machines, vol. 732, no. 1. USA: Magna physycs publishing & Oxford University Press, 2010.; J. Zhang, H. Yu, and Z. Shi, “Analysis of a PM linear generator with double translators for complementary energy generation platform,” Energies, vol. 12, no. 24, 2019.; A. Musolino, R. Rizzo, and M. Raugi, “A semi-analytical model for the analysis of a Permanent Magnet tubular linear generator,” 2015 Int. Conf. Renew. Energy Res. Appl. ICRERA 2015, vol. 54, no. 1, pp. 1513–1517, 2015.; S. A. Nasar, “Permanent-Magnet Linear Alternators Part II: Design Guidelines,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-23, no. 1, pp. 79–82, 1987.; H. M. Quintero, E. R. Trujillo, and G. M. Tarazona Bermudez, “EVOLUTION OF WIND POWER TECHNOLOGY.” [Online]. Available: www.tjprc.org.; H. Montaña Quintero, E. Rivas Trujillo, and G. M. Tarazona, “TRENDS ON WIND POWER ELECTRIC GENERATORS,” vol. 15, no. 17, 2020, [Online]. Available: www.arpnjournals.com.; M. Abril Martínez, L. Carolina, R. Rodríguez, U. Militar, N. Granada, and D. P. Cuero, “Estado Del Arte Sobre Materiales Utilizados Para La Fabricación De Las Palas De Turbinas Eólicas Offshore.”; N. Javahiraly, A. Chakari, L. Calegari, and P. Meyrueis, “Determination of solid materials rigidity modulus by a new nondestructive optical method,” Optics & Laser Technology, vol. 36, no. 3, pp. 239–243, Apr. 2004, doi:10.1016/J.OPTLASTEC.2003.09.002.; I. M. Bragado, “Física General,” 2013.; H. A. Gonzáles - D. H. Meza, “LA IMPORTANCIA DEL MÉTODO EN LA SELECCION DE MATERIALES,” vol. 4, no. ISSN 0122-1701, 2004.; “Colección: LAS CIENCIAS NATURALES Y LA MATEMATICAS,” 2010.; Y. Jiang, B. Song, J. Hu, H. Liang, and S. Rao, “Time-dependent reliability of corroded circular steel tube structures: Characterization of statistical models for material properties,” Structures, vol. 33, pp. 792–803, Oct. 2021, doi:10.1016/J.ISTRUC.2021.04.091.; H. Zhang, B. Zhang, Q. Gao, J. Song, and G. Han, “A review on microstructures and properties of graphene-reinforced aluminum matrix composites fabricated by friction stir processing,” Journal of Manufacturing Processes, vol. 68, pp. 126–135, Aug. 2021, doi:10.1016/J.JMAPRO.2021.07.023.; W. Zhang, X. Zhang, Z. Qin, W. Zhang, and R. Yang, “Mechanical and flame retardant performance of fiberglass-reinforced polysilsesquioxane interpenetrated with poly(ethylene glycol)-urethane,” Composites Part A: Applied Science and Manufacturing, vol. 149, p. 106490, Oct. 2021, doi:10.1016/J.COMPOSITESA.2021.106490.; A. Zavdoveev et al., “Effect of heat treatment on the mechanical properties and microstructure of HSLA steels processed by various technologies,” Materials Today Communications, vol. 28, p. 102598, Sep. 2021, doi:10.1016/J.MTCOMM.2021.102598.; G. Kumar Sharma and B. Nidhi Vats, “A comparative study on mechanical and tribological properties of different grades of tool steels,” Materials Today: Proceedings, Mar. 2021, doi:10.1016/J.MATPR.2021.02.275.; F. Tariq and P. Bhargava, “Stress–strain curves and mechanical properties of corrosion damaged super ductile reinforcing steel,” Structures, vol. 33, pp. 1532–1543, Oct. 2021, doi:10.1016/J.ISTRUC.2021.05.039.; B. Nie, S. Xu, Z. Zhang, and A. Li, “Surface morphology characteristics and mechanical properties of corroded cold-formed steel channel sections,” Journal of Building Engineering, vol. 42, p. 102786, Oct. 2021, doi:10.1016/J.JOBE.2021.102786.; I. J. Delfin, F. Madrid, and R. Martínez Sánchez, “Tesis: EFECTO DE LA CERIA (CeO 2 ) EN LA MICROESTRUCTURA Y PROPIEDADES MECÁNICAS DE UNA ALEACIÓN DE ALUMINIO 2024 Que como requisito presenta.”; A. Baradeswaran and A. E. Perumal, “Wear and mechanical characteristics of Al 7075/graphite composites,” Composites Part B: Engineering, vol. 56, pp. 472–476, Jan. 2014, doi:10.1016/J.COMPOSITESB.2013.08.073.; P. Chakrapani and T. S. A. Suryakumari, “Mechanical properties of aluminium metal matrix composites-A review,” Materials Today: Proceedings, vol. 45, pp. 5960–5964, Jan. 2021, doi:10.1016/J.MATPR.2020.09.247.; N. Kumar, A. Bharti, and K. K. Saxena, “A re-investigation: Effect of powder metallurgy parameters on the physical and mechanical properties of aluminium matrix composites,” Materials Today: Proceedings, vol. 44, pp. 2188–2193, Jan. 2021, doi:10.1016/J.MATPR.2020.12.351.; B. Zhou, B. Liu, S. Zhang, R. Lin, Y. Jiang, and X. Lan, “Microstructure evolution of recycled 7075 aluminum alloy and its mechanical and corrosion properties,” Journal of Alloys and Compounds, vol. 879, p. 160407, Oct. 2021, doi:10.1016/J.JALLCOM.2021.160407.; M. Barhoumi, N. Sfina, M. Said, and S. Znaidia, “Elastic and mechanical properties of aluminium and silicon carbide using density functional theory and beyond,” Solid State Communications, vol. 334–335, p. 114369, Aug. 2021, doi:10.1016/J.SSC.2021.114369.; E. M. Ruiz Navas and B. Ruiz Palenzuela, “Sintering of Aluminum Alloys. Processing and Properties,” Encyclopedia of Materials: Metals and Allloys, pp. 343–352, Jan. 2022, doi:10.1016/B978-0-12-819726-4.00114-9.; Ankur, A. Bharti, D. Prasad, N. Kumar, and K. K. Saxena, “A Re-investigation: Effect of various parameter on mechanical properties of copper matrix composite fabricated by powder metallurgy,” Materials Today: Proceedings, vol. 45, pp. 4595–4600, Jan. 2021, doi:10.1016/J.MATPR.2021.01.009.; A. Agrawal and R. Mirzaeifar, “Copper-graphene composites; developing the MEAM potential and investigating their mechanical properties,” Computational Materials Science, vol. 188, p. 110204, Feb. 2021, doi:10.1016/J.COMMATSCI.2020.110204.; S. Thapliyal and A. Mishra, “Machine learning classification-based approach for mechanical properties of friction stir welding of copper,” Manufacturing Letters, vol. 29, pp. 52–55, Aug. 2021, doi:10.1016/J.MFGLET.2021.05.010.; J. Chi et al., “Titanium alloy components fabrication by laser depositing TA15 powders on TC17 forged plate: Microstructure and mechanical properties,” Materials Science and Engineering: A, vol. 818, p. 141382, Jun. 2021, doi:10.1016/J.MSEA.2021.141382.; D. Liović, M. Franulović, and D. Kozak, “Material models and mechanical properties of titanium alloys produced by selective laser melting,” Procedia Structural Integrity, vol. 31, pp. 86–91, Jan. 2021, doi:10.1016/J.PROSTR.2021.03.014.; J. Aguilar Pozzer and E. Guzowski, “Guía didáctica Materiales y materias primas.”; M. Z. R. Khan, S. K. Srivastava, and M. K. Gupta, “A state-of-the-art review on particulate wood polymer composites: Processing, properties and applications,” Polymer Testing, vol. 89, p. 106721, Sep. 2020, doi:10.1016/J.POLYMERTESTING.2020.106721.; C. Wu, N. Vahedi, A. P. Vassilopoulos, and T. Keller, “Mechanical properties of a balsa wood veneer structural sandwich core material,” Construction and Building Materials, vol. 265, p. 120193, Dec. 2020, doi:10.1016/J.CONBUILDMAT.2020.120193.; F. Tian, L. Chen, and X. Xu, “Dynamical mechanical properties of wood-high density polyethylene composites filled with recycled rubber,” Journal of Bioresources and Bioproducts, vol. 6, no. 2, pp. 152–159, May 2021, doi:10.1016/J.JOBAB.2021.02.007.; J. F. Shackelford, “Introducción a la ciencia de materiales para ingenieros 6a edición.”; S. Velu, J. K. Joseph, M. Sivakumar, V. K. Bupesh Raja, K. Palanikumar, and N. Lenin, “Experimental investigation on the mechanical properties of carbon-glass-jute fiber reinforced epoxy hybrid composites,” Materials Today: Proceedings, vol. 46, pp. 3566–3571, Jan. 2021, doi:10.1016/J.MATPR.2021.01.333.; W. Chen, Q. Meng, H. Hao, J. Cui, and Y. Shi, “Quasi-static and dynamic tensile properties of fiberglass/epoxy laminate sheet,” Construction and Building Materials, vol. 143, pp. 247–258, Jul. 2017, doi:10.1016/J.CONBUILDMAT.2017.03.074.; S. Y. Voronina, T. A. Shalygina, V. D. Voronchikhin, A. Y. Vlasov, A. N. Ovchinnikov, and N. N. Grotskaya, “Data for determining the surface properties of carbon fiber in contact interaction with polymeric binders,” Data in Brief, vol. 35, p. 106847, Apr. 2021, doi:10.1016/J.DIB.2021.106847.; C. Colombo and L. Vergani, “Influence of delamination on fatigue properties of a fibreglass composite,” Composite Structures, vol. 107, no. 1, pp. 325–333, Jan. 2014, doi:10.1016/J.COMPSTRUCT.2013.07.028.; L. Wang, J. Zhang, X. Yang, C. Zhang, W. Gong, and J. Yu, “Flexural properties of epoxy syntactic foams reinforced by fiberglass mesh and/or short glass fiber,” Materials & Design, vol. 55, pp. 929–936, Mar. 2014, doi:10.1016/J.MATDES.2013.10.065.; J. Viña, J. Bonhomme, V. Mollón, I. Viña, and A. Argüelles, “Mechanical properties of fibreglass and carbon-fibre reinforced polyetherimide after twenty years of outdoor environmental aging in the city of Gijón (Spain),” Composites Communications, vol. 22, p. 100522, Dec. 2020, doi:10.1016/J.COCO.2020.100522.; A. Armanfard and G. W. Melenka, “Experimental evaluation of carbon fibre, fibreglass and aramid tubular braided composites under combined tension–torsion loading,” Composite Structures, vol. 269, p. 114049, Aug. 2021, doi:10.1016/J.COMPSTRUCT.2021.114049.; Z. Sun et al., “Temperature-dependent mechanical properties of polyetherimide composites reinforced by graphene oxide-coated short carbon fibers,” Composite Structures, vol. 270, p. 114075, Aug. 2021, doi:10.1016/J.COMPSTRUCT.2021.114075.; V. Amigó, J. J. Payá, M. D. Salvador, J. M. Monzó, F. Segovia, and V. Borrachero, “MATERIALES COMPUESTOS 05.”; S. C. Das et al., “On the use of wood charcoal filler to improve the properties of natural fiber reinforced polymer composites,” Materials Today: Proceedings, vol. 44, pp. 926–929, Jan. 2021, doi:10.1016/J.MATPR.2020.10.808.; S. Yousef, S. P. Subadra, P. Griškevičius, S. Varnagiris, D. Milcius, and V. Makarevicius, “Superhydrophilic functionalized graphene/fiberglass/epoxy laminates with high mechanical, impact and thermal performance and treated by plasma,” Polymer Testing, vol. 90, p. 106701, Oct. 2020, doi:10.1016/J.POLYMERTESTING.2020.106701.; P. Karthick, A. A. E. Andrews, K. Subbareddy, K. Basha, V. Harshavardhan, and S. G. S. K. Reddy, “Investigation of mandatory properties of NaOH – KMnO4 Treated Banana/Fiberglass Hybrid Composite,” Materials Today: Proceedings, vol. 37, no. Part 2, pp. 63–66, Jan. 2021, doi:10.1016/J.MATPR.2020.03.072.; S. Saroj, S. Nayak, and D. Kumar Jesthi, “Effect of hybridization of carbon/glass/flax/kenaf fibre composite on flexural and impact properties,” Materials Today: Proceedings, Apr. 2021, doi:10.1016/J.MATPR.2021.03.094.; H. A. S. y. M. A. P., «ANÁLISIS DE TECNOLOGÍAS DE MEDICIÓN DE NIVEL DE TANQUES DE PRODUCTOS USADOS EN LA INDUSTRIA PETROLERA,» 5 Diciembre 2003. [En línea]. Available: https://repositorio.utb.edu.co/bitstream/handle/20.500.12585/3407/0024835.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; C. A. V. AGUILAR, «DISEÑO DE UN SISTEMA DE MONITOREO DE NIVEL DE LOS TANQUES DE EMERGENCIA DE EMCALI TELECOMUNICACIONES,» 9 Diciembre 2013. [En línea]. Available: https://red.uao.edu.co/bitstream/handle/10614/5683/T03722.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; A. A. Naranjo, «Diseño de control de nivel por medio de una medición continua en los tanques de almacenamiento de ACPM en la empresa de Colcafe S.A.,» 7 Marzo 2018. [En línea]. Available: https://repositorio.itm.edu.co/bitstream/handle/20.500.12622/3975/Rep_Itm_pre_Arbelaez.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; P. R. Martín, «¿Qué es una central de generación eléctrica diésel?,» 11 Junio 2020. [En línea]. Available: https://www.tecnatom.es/blog/que-es-una-central-de-generacion-electrica-diesel/. [Último acceso: 26 Septiembre 2021].; F. O. C. GUERRERO, «GENERACIÓN DE ENERGÍA ELÉCTRICA CON UN MOTOR DE COMBUSTIÓN INTERNA USANDO BIODIESEL DE ACEITE DE PIÑÓN (Jatropha curcas),» 2015. [En línea]. Available: https://repositorio.lamolina.edu.pe/bitstream/handle/UNALM/2152/P06-C118-T.pdf?sequence=1&isAllowed=y. [Último acceso: 26 Septiembre 2021].; El pensante.com , «¿Qué es el ACPM?,» E-Cultura Group, 7 Abril 2016. [En línea]. Available: https://elpensante.com/que-es-el-acpm/. [Último acceso: 25 Septiembre 2021].; D. Plaza, «El gasóleo o gasoil: propiedades y tipos,» motor.es, s.f. [En línea]. Available: https://www.motor.es/que-es/gasoil#:~:text=Es%20un%20hidrocarburo%20l%C3%ADquido%20que,carbono%20por%2026%20de%20hidr%C3%B3geno). [Último acceso: 25 Septiembre 2021].; C. Ribeiro, «Cómo funciona la medición automática de combustible en los tanques y cómo su estación puede beneficiarse,» 9 Agosto 2017. [En línea]. Available: https://blog.gilbarco.com/latam/como-funciona-la-medicion-automatica-de-combustible-en-los-tanques. [Último acceso: 25 Septiembre 2021].; Nation Unies, «Prescriptions uniformes relatives à l’homologation des véhicules en ce qui concerne,» 16 Octubre 1995. [En línea]. Available: https://unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/r083r4f.pdf. [Último acceso: 25 Septiembre 2021].; U.S. Environmental Protection Agency, «Code Of Federal Regulations Part 1065—Engine-Testing Procedures.,» 17 Septiembre 2021. [En línea]. Available: https://www.ecfr.gov/recent-changes?search%5Bhierarchy%5D%5Btitle%5D=16&search%5Blast_modified_after%5D=2021-09-10. [Último acceso: 25 Septirmbre 2021].; Code Of Federal Regulations, «VEHICLE-TESTING PROCEDURES,» 28 Abril 2014. [En línea]. Available: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-U/part-1066. [Último acceso: 25 Septiembre 2021].; L. B. M. y. H. C. F. Melissa Ávila Dávila, «Análisis gravimétrico y volumétrico,» 26 Agosto 2011. [En línea]. Available: https://www.monografias.com/trabajos89/analisis-gravimetrico-y-volumetrico/analisis-gravimetrico-y-volumetrico.shtml. [Último acceso: 27 Septienbre 2021].; C. B. ,. J. G. H. Richard D Burke, «Critical evaluation of on-engine fuel consumption measurement,» Automobile Engineering, vol. 225, nº 6, p. 829–844, Junio 2011.; O. NUNIGE, «EVALUACION Y COMPARACION DE METODOS DE MEDICION CONSUMO DE COMBUSTIBLE PARA LABORATORIO Y RUTA EN UN VEHICULO LIVIANO,» 2018. [En línea]. Available: http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/9465/T629.2538%20N972.pdf?sequence=1&isAllowed=y. [Último acceso: 25 Septiembre 2021].; W. E. L. C. F. d. R. Cesar V. Vargas, «Sistemas de Comunicación Inalámbrica MIMO - OFDM,» RevActaNova, vol. 3, nº 4, pp. 750-760, 2007.; F. E. Vargas Silva, «Sistema Digital De Medición De Nivel De Combustible En El Tanque Del Generador Para El Radar De ESUFA.,» 7 Noviembre 2019. [En línea]. Available: https://catalogosibfa.hosted.exlibrisgroup.com/exlibris/aleph/a23_1/apache_media/NIK8N7VLBTRRSKEGTLYUM76FF5BIB8.pdf. [Último acceso: 26 Septiembre 2021].; Quonty, «Tecnología inalámbrica, ¿cuáles son las redes y los dispositivos que más la utilizan?,» 21 Febrero 2018. [En línea]. Available: https://www.quonty.com/blog/tecnologia-inalambrica/. [Último acceso: 27 Septiembre 2021].; Morales, «Qué es la transmisión Wifi,» 11 Octubre 2019. [En línea]. Available: https://www.ticarte.com/contenido/que-es-la-transmision-wifi. [Último acceso: 27 Septiembre 2021].; J. Borlongan, «Cómo funciona la tecnología WiFi,» s.f. [En línea]. Available: https://techlandia.com/funciona-tecnologia-wifi-como_10752/. [Último acceso: 27 Septiembre 2021].; runestone.academy, «¿Qué es programación?,» s.f. [En línea]. Available: https://runestone.academy/runestone/static/pythoned/Introduction/QueEsProgramacion.html. [Último acceso: 28 Septiembre 2021].; aprendiendoarduino.wordpress.com, «Programación Arduino,» 23 Enero 2017. [En línea]. Available: https://aprendiendoarduino.wordpress.com/2017/01/23/programacion-arduino-5/. [Último acceso: 28 Septiembre 2021].; Arduino.cl, «Software de Arduino,» Enero 2019. [En línea]. Available: https://arduino.cl/programacion/. [Último acceso: 28 Septiembre 2021].; Arduino, «Arduino UNO,» s.f. [En línea]. Available: https://arduino.cl/arduino-uno/. [Último acceso: 27 Septiembre 2021].; L. LLAMAS, «MEDIR DISTANCIA CON ARDUINO Y SENSOR DE ULTRASONIDOS HC-SR04,» 16 Junio 2015. [En línea]. Available: https://www.luisllamas.es/medir-distancia-con-arduino-y-sensor-de-ultrasonidos-hc-sr04/. [Último acceso: 27 Septiembre 2021].; naylampmechatronics.com, «SENSOR ULTRASONIDO HC-SR04,» s.f. [En línea]. Available: https://naylampmechatronics.com/sensores-proximidad/10-sensor-ultrasonido-hc-sr04.html. [Último acceso: 27 Septiembre 2021].; L. Llamas, «COMUNICACIÓN INALÁMBRICA A 2.4GHZ CON ARDUINO Y NRF24L01,» 8 Diciembre 2016. [En línea]. Available: https://www.luisllamas.es/comunicacion-inalambrica-a-2-4ghz-con-arduino-y-nrf24l01/. [Último acceso: 28 Septiembre 2021].; robots-argentina.com.ar, «Arduino: Comunicación inalámbrica con NRF24L01,» 25 Diciembre 2019. [En línea]. Available: http://robots-argentina.com.ar/didactica/arduino-comunicacion-inalambrica-con-nrf24l01/. [Último acceso: 28 Septiembre 2021].; the Secretary of the Air Force, «TECHNICAL AND MANAGERIAL REFERENCE FOR MOTOR VEHICLE MAINTENANCE,» Published Under Authority, USA, 2004.; B. R. Serra, «VOLUMEN DE UN PRISMA RECTANGULAR,» 2014. [En línea]. Available: https://www.universoformulas.com/matematicas/geometria/volumen-prisma-rectangular/. [Último acceso: 28 Septiembre 2021].; extraconversion.com, «Metros Cúbicos a US Galones Líquidos Calculadora de Conversión,» s.f. [En línea]. Available: http://extraconversion.com/es/volumen/metros-cubicos/metros-cubicos-a-us-galones-liquidos.html. [Último acceso: 28 Septiembre 2021].; J. C. Najar Pacheco, «Exposición del activo más valioso de la organización, la “información", Visión Electrónica, vol. 11, no. 1, pp. 107-115, 2017. https://doi.org/10.14483/22484728.12345.; Clincy, V., & Shahriar, H., Web Application Firewall: Network Security Models and Configuration. Proceedings - International Computer Software and Applications Conference, 1, 835–836. https://doi.org/10.1109/COMPSAC.2018.00144, 2018.; C. Ping. "A second-order SQL injection detection method". Digital Object Identifier System. https://doi.org/10.1109/ITNEC.2017.8285104, 2018.; Tovar Valencia, O. (s. f.). INYECCIÓN DE SQL, TIPOS DE ATAQUES Y PREVENCION EN ASP.NET-C#. Universidad Piloto de Colombia. http://polux.unipiloto.edu.co:8080/00002026.pdf.; Rajashree, A. K., Sherekar, S. S., & Thakare, V. M. Detection of SQL injection attacks by removing the parameter values of SQL query. IEEE Conference Publication %7C IEEE Xplore. https://ieeexplore.ieee.org/document/8398896, 2018.; Gestión, Tecnología. Uso de apps y visitas a sitios web de alto riesgo subieron 161% debido a COVID. Gestión Tecnología. https://gestion.pe/tecnologia/uso-de-apps-y- visitas-a-sitios-web-de-alto-riesgo-subieron-161-debido-a-covid-noticia/, 2020.; Castillo, A., OWASP Top 1 - Ataques por Inyección SQL. Seguridad Ofensiva. https://seguridad-ofensiva.com/blog/owasp-top-10/owasp-top-1/, 2020.; A7:2017-Cross-Site Scripting (XSS) %7C OWASP, https://owasp.org/www-project-top-ten/2017/A7_2017-Cross-Site_Scripting_(XSS), 2017.; Vulnerabilidades OWASP - Ciberseguridad informática - Seguridad informática para Empresas. (n.d.). https://antimalwares.es/tecnologias/vulnerabilidades-owasp.; W. A. Barbosa y D. A. Buelvas Peñarredonda, “Implementación de redes privadas virtuales en la mediana empresa", Visión Electrónica, vol. 4, no. 2, pp. 106-121, 2010. https://revistas.udistrital.edu.co/index.php/visele/article/view/282/5573.; N. A. Gómez-Cruz and C. E. Maldonado, “Sistemas bio-inspirados: un marco teórico para la ingeniería de sistemas complejos,” Ing. Sist. complejos. Compil. las Conf. Present. en la Cuarta Asam. la Red Cart. Ing., p., 2011.; Y. Leidy, O. López, D. Guillermo, and B. Benavides, “Plataformas Bionpiradas Tipo Lego En Un Ambiente Conocido.”; Y. Jian and Y. Li, “Research on intelligent cognitive function enhancement of intelligent robot based on ant colony algorithm,” Cogn. Syst. Res., vol. 56, pp. 203–212, 2019, doi:10.1016/j.cogsys.2018.12.014.; L. M. Layos, E. L. Mundo, and D. E. L. A. S. Hormigas, “HORMIGAS,” 2006.; J. Rolando, C. López, N. Johanna Hernández Suárez, A. Del Pilar, and R. Tibaduiza, “Sistema de transporte y embalaje utilizando robótica cooperativa basada en teoría de colonias de hormigas mediante plataforma Mindstorm de LEGO® Transportation and Packaging System Using Cooperative Robotics Based on Theory of Ants Colonies Using Platform,” vol. 6, no. 1, pp. 60–71, 2015, doi:10.14483/udistrital.jour.redes.2015.1.a04.; Jaffe, “Evolucion de Sistemas de Comunicacion Quimico en Hormigas (Hymenoptera: Formicidae),” Folia Entomológica Mexicana, vol. 61. pp. 189–203, 1984.; Y. Leidy, O. López, G. Duvan, and B. Benavides, “Implementación de un sistema multirobot basado en el comportamiento de las hormigas.”; M. Dc and G. Motor, “Tank Mobile Platform Instrution Manual,” no. 112.; Alibaba.com. (2021). Professional Outdoor Solar Powered Automatic Weather Station. Tomado de: https://www.alibaba.com/product-detail/Professional-Outdoor-Solar-Powered-Automatic-Weather_60492093064.html.; BBC. (2021). River flooding - causes and management. Tomado de: https://www.bbc.co.uk/bitesize/guides/zx9kfrd/revision/1#:~:text=Flooding%20occurs%20when%20a%20river,interactions%20can%20increase%20the%20risk.; Bourdeau-Brien, M., & Kryzanowski, L. (2020). Natural disasters and risk aversion. Journal of Economic Behavior & Organization, 177, 818–835. Tomado de: https://doi.org/https://doi.org/10.1016/j.jebo.2020.07.007.; Boustan, L. P., Kahn, M. E., Rhode, P. W., & Yanguas, M. L. (2020). The effect of natural disasters on economic activity in US counties: A century of data. Journal of Urban Economics, 118, 103257. Tomado de: https://doi.org/https://doi.org/10.1016/j.jue.2020.103257.; Campo, P. A., Zafra K. (2013). SISTEMA ELECTRÓNICO INALÁMBRICO DE ALERTA TEMPRANA Y MONITOREO DEL COMPORTAMIENTO DEL NIVEL DE LOS RÍOS DE BAJO COSTO (Tesis de grado). Universidad San Buenaventura de Cali. Tomado de: http://bibliotecadigital.usbcali.edu.co/bitstream/10819/2144/1/Sistema_Electronico_Inalambrico_Monitoreo_Campo_2013.pdf.; Cao, H., & Wachowicz, M. (2019). The design of an IoT-GIS platform for performing automated analytical tasks. Computers, Environment and Urban Systems, 74, 23–40. Tomado de: https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2018.11.004.; CEPAL. (2018). Situación de las estadísticas e indicadores de eventos extremos y desastres. Tomado de: https://www.cepal.org/sites/default/files/presentations/2018-06-2areu-expertos-ea-4_2-cepal-pleonard.pdf.; Colombia Reports. (2020). Fatal landslide blocks road between Colombia’s capital and Medellin. Tomado de: https://colombiareports.com/fatal-landslide-blocks-road-between-colombias-capital-and-medellin/.; Confluence. (2021). Sensor T/H/CE de suelo CERES - IoT. Tomado de: https://nazaries.atlassian.net/wiki/spaces/IOT/pages/4654272/Sensor+T+H+CE+de+suelo+CERES.; CORTOLIMA. (s.f). Pérdida de suelos. Corporación Autónoma Regional del Tolima. Tomado de: https://www.cortolima.gov.co/sites/default/files/images/stories/centro_documentos/pom_totare/diagnostico/m_212perdida_de_suelos_totare.pdf.; Datos abiertos. (2021). Gov.co - Datos abiertos. Tomado de: https://www.datos.gov.co/.; Dorado, J.E. (2020). SISTEMA DE MONITOREO Y CONTROL DE ALERTA TEMPRANA DEL DESBORDAMIENTO DE UN RÍO (Tesis de grado). Universidad Piloto de Colombia. Tomado de: http://repository.unipiloto.edu.co/bitstream/handle/20.500.12277/7475/TESIS%20DE%20GRADO.pdf?sequence=1&isAllowed=y.; Duan, X., Bai, Z., Rong, L., Li, Y., Ding, J., Tao, Y., Li, J., Li, J., & Wang, W. (2020). Investigation method for regional soil erosion based on the Chinese Soil Loss Equation and high-resolution spatial data: Case study on the mountainous Yunnan Province, China. CATENA, 184, 104237. Tomado de: https://doi.org/https://doi.org/10.1016/j.catena.2019.104237.; FAO (Food and Agriculture Organization of the United Nations). (s.f). Lang & Water. Universal Soil Loss Equation. Tomado de: http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1236441/.; FloodList. (2017). Colombia – 11 Departments Hit by Heavy Rain, Floods and Landslides. Tomado de: http://floodlist.com/america/colombia-11-departments-floods-march-2017.; FloodList. (2020). Colombia – Rains Trigger Deadly Landslide in Antioquia. Tomado de: http://floodlist.com/america/colombia-landslide-floods-antioquia-november-2020.; Humanitarian RESPONSE. (2018). Colombia: Snapshot Desastres Naturales 2017 - OCHA Services. Tomado de: https://www.humanitarianresponse.info/en/operations/colombia/infographic/colombia-snapshot-desastres-naturales-2017.; IDEAM. S.f. Datos IDEAM. IDEAM: Instituto de Hidrología, Meteorología y Estudios Ambientales. Tomado de: http://www.ideam.gov.co/.; Insurance Information Institute (iii). (2019). Current graph - World Natural Catastrophes, 2019. Tomado de: https://www.iii.org/graph-archive/96134.; Jimenez N, A. (2005). LA INVESTIGACIÓN DE SUELOS EROSIONADOS: MÉTODOS E ÍNDICES DE DIAGNÓSTICO. Minería y Geología, vol. 21, num 2, 2005, pp. 1-18. Tomado de: https://www.redalyc.org/pdf/2235/223516049002.pdf.; Kamatchi Sundari, V., Nithyashri, J., Kuzhaloli, S., Subburaj, J., Vijayakumar, P., & Subha Hency Jose, P. (2021). Comparison analysis of IoT based industrial automation and improvement of different processes – review. Materials Today: Proceedings. Tomado de: https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.338.; Kong, D., Lin, Z., Wang, Y., & Xiang, J. (2021). Natural disasters and analysts’ earnings forecasts. Journal of Corporate Finance, 66, 101860. Tomado de: https://doi.org/https://doi.org/10.1016/j.jcorpfin.2020.101860.; Local Government Association. (s.f). Flood risk and flood risk management. Tomado de: https://www.local.gov.uk/topics/severe-weather/flooding/flood-and-coastal-erosion-risk-management/flood-risk-and-flood-risk.; McIvor, I., Youjun, H., Daoping, L., Eyles, G., & Pu, Z. (2014). Agroforestry: Conservation Trees and Erosion Prevention (N. K. B. T.-E. of A. and F. S. Van Alfen (ed.); pp. 208–221). Academic Press. Tomado de: https://doi.org/https://doi.org/10.1016/B978-0-444-52512-3.00247-3.; NETWORKWORLD. (2020). What is IoT? The internet of things explained. Tomado de: https://www.networkworld.com/article/3207535/what-is-iot-the-internet-of-things-explained.html.; Newark. (2014). A Brief History of Single Board Computers - electronicdesign. Tomado de: https://www.newark.com/wcsstore/ExtendedSitesCatalogAssetStore/cms/asset/pdf/americas/common/NE14-ElectronicDesignUncovered-Dec14.pdf.; OCHA. (2018). COLOMBIA Desastres Naturales 2017. Tomado de: https://www.humanitarianresponse.info/sites/www.humanitarianresponse.info/files/documents/files/20180420_snapshot_desastres_naturales_2017_-_v2.pdf.; OMM. (2016). Laboratorio virtual de la OMM para la enseñanza y formación en meteorología satelital. OMM - Organización Meteorológica Mundial. Tomado de: https://public.wmo.int/es/resources/bulletin/laboratorio-virtual-de-la-omm-para-la-ense%C3%B1anza-y-formaci%C3%B3n-en-meteorolog%C3%ADa.; Organización Mundial de la Salud (OMS). (s.f). Acción sanitaria en las crisis humanitarias - Inundaciones. Tomado de: https://www.who.int/hac/techguidance/ems/floods/es/.; Organización Mundial de la Salud (OMS). (s.f). Acción sanitaria en las crisis humanitarias - Corrimientos de tierra. Tomado de: https://www.who.int/hac/techguidance/ems/landslides/es/.; Organization of American States (OAS). (s.f). La erosión hídrica y las crecidas. Tomado de: https://www.oas.org/dsd/publications/Unit/oea23s/ch16.htm.; Osenga, E. C., Arnott, J. C., Endsley, K. A., & Katzenberger, J. W. (2019). Bioclimatic and Soil Moisture Monitoring Across Elevation in a Mountain Watershed: Opportunities for Research and Resource Management. Water Resources Research, 55(3), 2493–2503. Tomado de: https://doi.org/https://doi.org/10.1029/2018WR023653.; Paulino, Â., Guimarães, L., & Shiguemori, E. (2019). Hybrid Adaptive Computational Intelligence-based Multisensor Data Fusion applied to real-time UAV autonomous navigation. INTELIGENCIA ARTIFICIAL, 22, 162–195. Tomado de: https://doi.org/10.4114/intartif.vol22iss63pp162-195.; Pellet, C. and Hauck, C. (2017) Monitoring soil moisture from middle to high elevation in Switzerland: set-up and first results from the SOMOMOUNT network, Hydrol. Tomado de: Earth Syst. Sci., 21, 3199–3220, https://doi.org/10.5194/hess-21-3199-2017.; PreventivoWeb. (s.f). Disaster Data & statistics. Tomado de: https://www.preventionweb.net/knowledgebase/disaster-statistics.; R2D3. (s.f). A visual introduction to machine learning. Tomado de: http://www.r2d3.us/visual-intro-to-machine-learning-part-1/.; Raspberrypi. (s.f). Raspberry Pi 3 Model B+. Tomado de: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/.; Reggio, G., Leotta, M., Cerioli, M., Spalazzese, R., & Alkhabbas, F. (2020). What are IoT systems for real? An experts’ survey on software engineering aspects. Internet of Things, 12, 100313. Tomado de: https://doi.org/https://doi.org/10.1016/j.iot.2020.100313.; Scikit-learn.org. (2021). Scikit-learn machine learning in python. Tomado de: https://scikit-learn.org/stable/index.html.; sdxcentral. (s.f). IoT Definitions & Basics. Tomado de: https://www.sdxcentral.com/5g/iot/definitions/.; Thangamani, T., Prabha, R., Prasad, M., Kumari, U., KV, R., & Abidin, S. (2021). IoT Defense Machine Learning: Emerging Solutions and Future Problems. Microprocessors and Microsystems, 104043. Tomado de: https://doi.org/https://doi.org/10.1016/j.micpro.2021.104043.; Thibaud, M., Chi, H., Zhou, W., & Piramuthu, S. (2018). Internet of Things (IoT) in high-risk Environment, Health and Safety (EHS) industries: A comprehensive review. Decision Support Systems, 108, 79–95. Tomado de: https://doi.org/https://doi.org/10.1016/j.dss.2018.02.005.; towards data science. (2017). Types of Machine Learning Algorithms You Should Know. Tomado de: https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861.; UNGRD. 2018. Implementación del Sistema Nacional de información para la gestión del riesgo de desastres. Tomado de: http://portal.gestiondelriesgo.gov.co/Documents/Proyectos-Inversion/2015/proyecto_sistema_integrado_informacion_2015_2018.pdf.; Universidad de Chile. (s.f). Laboratorio de Meteorología (LM - DGF). Tomado de: http://uchile.cl/i91300.; University, C. for H. and R. R.-C.-C., University, C. for I. E. S. I. N.-C.-C., & Bank, I. B. for R. and D.-T. W. (2005). Global Multihazard Mortality Risks and Distribution. NASA Socioeconomic Data and Applications Center (SEDAC). Tomado de: https://doi.org/10.7927/H41J97NM.; University, C. for H. and R. R.-C.-C., University, C. for I. E. S. I. N.-C.-C., & Bank, I. B. for R. and D.-T. W. (2005). Global Landslide Mortality Risks and Distribution. NASA Socioeconomic Data and Applications Center (SEDAC). Tomado de: https://doi.org/10.7927/H4JH3J4N.; Waze. (2021). Acerca de Waze: Mapas con datos de tráfico en tiempo real. Tomado de: https://www.waze.com/es/about.; World Health Organization. (s.f). Lanslides. Tomado de: https://www.who.int/health-topics/landslides#tab=tab_2.; Zhang, H., Zhang, R., Qi, F., Liu, X., Niu, Y., Fan, Z., Zhang, Q., Li, J., Yuan, L., Song, Y., Yang, S., & Yao, X. (2018). The CSLE model based soil erosion prediction: Comparisons of sampling density and extrapolation method at the county level. CATENA, 165, 465–472. Tomado de: https://doi.org/https://doi.org/10.1016/j.catena.2018.02.007.; E. A. Avila Gomez, A. M. Martinez Daza, y S. A. Pinzon, “Estado de arte sobre infraestructura telemática para el teletrabajo", Visión Electrónica, vol. 11, no. 2, pp. 261-278, 2017.; F. E. Pineda Torres y A. de J. Chica Leal, “Propuesta de un estimador de fallas usando fracciones coprimas", Visión Electrónica, vol. 9, no. 2, pp. 172-181, 2015. https://doi.org/10.14483/22484728.11025.; F. N. Giraldo Ramos, F. Gonzalez, y E. Camargo Casallas, “Algoritmos de procesamiento de imágenes satelitales con tranformada Hough", Visión Electrónica, vol. 5, no. 2, pp. 26-41, 2011. https://doi.org/10.14483/22484728.3568.; H. J. Eslava Blanco, N. Serrano P., y F. A. Castro, “Sistema de alerta de riesgos en hogares mediante SMS”, Visión Electrónica, vol. 6, no. 2, pp. 15-30, 2012. https://doi.org/10.14483/22484728.3883.; J. O. Castellanos Millán, V. H. Amarillo Calvo, y R. M. Poveda Chaves, “Problema de asignación quadrática (pac) sobre gpu a través de una pga maestro-esclavo”, Visión Electrónica, vol. 10, no. 2, pp. 179-183, 2016.; J. C. Najar-Pacheco, J. A. Bohada-Jaime, y W. Y. Rojas-Moreno, “Vulnerabilidades en el internet de las cosas", Visión Electrónica, vol. 13, no. 2, pp. 312-321, 2019.; J. A. Londoño Alzate, A. Fonseca Velásquez, y E. A. Delgadillo, “Laboratorios remotos: estudio de caso con una planta térmica didáctica", Visión Electrónica, vol. 12, no. 2, pp. 265-277, 2018. https://doi.org/10.14483/22484728.14263.; J. Cortina, J. López-Lezama, And N. Muñoz-Galeano, “Metaheurísticas Aplicadas Al Problema De Interdicción En Sistemas De Potencia,” Inf. Tecnológica, Vol. 29, No. 2, Pp. 73–88, Mar. 2018, Doi:10.4067/S0718-07642018000200073.; C. A. Mora, “Problema De Interdicción De La Red Eléctrica.” Universidad Distrital Francisco José De Caldas, Bogotá, D. C., P. 16, 2020, [Online]. Available: Https://Drive.Google.Com/File/D/1qxg7pvhy1dndz9sgr0qug4ldnyzmpi5-/View?Usp=Sharing.; B. Mundial And Colombia, Análisis De La Gestión Del Riesgo De Desastres En Colombia, Primera. Bogotá, D. C.: Equilatero, 2012.; V. A. Gómez, R. A. Peña, And C. Hernández, “Identificación Y Localización De Fallas En Sistemas De Distribución Con Medidores De Calidad Del Servicio De Energía Eléctrica,” Inf. Tecnol., Vol. 23, No. 2, Pp. 109–116, 2012, Doi:10.4067/S0718-07642012000200013.; F. Olivari, “Diseño, Construcción Y Prueba De Un Sensor Sísmico Para Edificaciones.” Valparaiso, Nov. 2017, Accessed: Nov. 11, 2020. [Online]. Available: Http://Opac.Pucv.Cl/Pucv_Txt/Txt-2500/Ucc2795_01.Pdf.; C. Bonilla And Y. Gonzales, “Dispositivo De Adquisición De Señales Sísmicas”, Visión Electrónica, 2019, Accessed: Nov. 11, 2020. [Online]. Available: Http://Repository.Udistrital.Edu.Co/Bitstream/11349/22441/1/Bonillaseguracamilaalejandra2019.Pdf.; F. Torres And K. Chaca, “Diseño E Implementación De Un Digitalizador Sísmico De 4 Canales Con Acceso Ip,” Universidad De Cuenca, 2015.; D. García, J. Rio, D. Toma, And M. Blanco, “Array Sísmico Inalámbrico Y De Parámetros Ambientales Para La Caracterización De Precursores De Actividad Volcánica,” Universitat Politecnica De Catalunya, 2017.; Á. Herrera, “Prototipo Hardware De Bajo Coste Para La Alerta Sísmica Temprana Local,” 2016.; G. Martinez, “Diseño Y Construcción De Un Prototipo De Detección De Fallas Serie Para Disminuir El Tiempo De Interrupciones En El Sistema Eléctrico De Distribución,” Escuela Politécnica Nacional, 2019.; V. A. Gómez, R. A. Peña, And C. Hernández, “Identificación Y Localización De Fallas En Sistemas De Distribución Con Medidores De Calidad Del Servicio De Energía Eléctrica,” Inf. Tecnol., Vol. 23, No. 2, Pp. 109–116, 2012, Doi:10.4067/S0718-07642012000200013.; "Redes Sin", Xm, 2020, Accessed: Dic. 9, 2020. [En línea]. Available: Https://Www.Xm.Com.Co/Paginas/Transmision/Redes-Sistema-Interconectado-Nacional.Aspx.; R. Chokshi, “MPU-6000 and MPU-6050 Register Map and Descriptions Revision 4.0 MPU-6000/MPU-6050 Register Map and Descriptions,” MPU-6000 MPU-6050 Regist. Map Descr., vol. 1, no. 408, p. 48, 2012.N. Wolfberg, “Storage and retrieval for image and video databases”, SPIE Proceedings, pp. 27-32, 1993.; InvenSense Inc., “MPU-9150 Register Map and Descriptions,” vol. 1, no. 408, pp. 1–52, 2013.; “Raspberry pi foundation", Raspberrypi.org, 2020. [En linea]. Disponible en: https://www.raspberrypi.org.; VMware, “¿Qué son las redes definidas por software (SDN)? %7C Glosario de VMware %7C ES.” https://www.vmware.com/es/topics/glossary/content/software-defined-networking.html (accessed Sep. 22, 2021).; Citrix, “¿Qué son las redes definidas por software (SDN)? - Citrix Mexico.” https://www.citrix.com/es-mx/solutions/app-delivery-and-security/what-is-software-defined-networking.html (accessed Sep. 22, 2021).; M. Marchetti, “The road to riches,” Sales Mark. Manag., vol. 150, no. 10, p. 128, 2013, doi:10.2307/j.ctvc77cz1.22.; M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Software-Defined Networking Security: Pros and Cons,” IEEE Commun. Mag., vol. 53, no. September, pp. 48–54, 2015, doi:10.1109/MCOM.2015.7120048.; A. Feghali, R. Kilany, and M. Chamoun, “SDN security problems and solutions analysis,” Int. Conf. Protoc. Eng. ICPE 2015 Int. Conf. New Technol. Distrib. Syst. NTDS 2015 - Proc., 2015, doi:10.1109/NOTERE.2015.7293514.; S. Sidhu and H. Gupta, “A Security Mechanism for Software Defined Vulnerabilities,” 2019 4th International Conference on Information Systems and Computer Networks, ISCON 2019, pp. 59–62, 2019, doi:10.1109/ISCON47742.2019.9036247.; A. Pradhan and R. Mathew, “Solutions to Vulnerabilities and Threats in Software Defined Networking (SDN),” Procedia Comput. Sci., vol. 171, no. 2019, pp. 2581–2589, 2020, doi:10.1016/j.procs.2020.04.280.; F. W. Sanabria Navarro, J. G. Bustos, and W. E. Castellanos Hernández, “Adaptive video transmission over software defined networks,” Visión electrónica, vol. 13, no. 1, pp. 152–161, Feb. 2019, doi:10.14483/22484728.14398.; J. C. Najar Pacheco, “Exposición del activo más valioso de la organización, la ‘información,’” Visión electrónica, vol. 11, no. 1, pp. 107–115, Jun. 2017, doi:10.14483/22484728.12345.; A. M. Felicísimo, «Conceptos básicos, modelos y simulación.,» 2009. [En línea]. Available: http://www6. uniovi. es/~ feli/CursoMDT/Tema_1. pdf. [Último acceso: 10 Agosto 2021].; N. M. Chirinos y S. R. González, «Consideraciones teórico-epistémicas acerca del concepto de modelo,» Telos, vol. 13, nº 1, pp. 51-64, 2011.; E. López Moreno, Construcción de ciudades más equitativas. Políticas públicas para la inclusión en América Latina., Bogotá: CAF, 2014.; J. Linares-García, A. Hernández-Quirama y H. M. Rojas-Betancur, «Accesibilidad espacial e inclusión social: experiencias de ciudades incluyentes en Europa y Latinoamérica,» Civilizar: Ciencias Sociales y Humanas, vol. 18, nº 35, pp. 115-128, 2018.; É. A. López López y É. L. Álvarez-Aros, «Estrategia en ciudades inteligentes e inclusión social del adulto mayor,» Paakat: Revista de Tecnología y Sociedad, vol. 11, nº 20, pp. 1-29, 2021.; J. A. IREGUI DUARTE, «INCLUSIÓN DIGITAL: UN ANÁLISIS DE LA ESTRATEGIA DE TELETRABAJO EN BOGOTÁ,» PONTIFICIA UNIVERSIDAD JAVERIANA, BOGOTÁ D.C., 2018.; CMSI, «Declaración de Principios. Construir la Sociedad de la Información: un desafío global para el nuevo milenio,» CMSI, Ginebra, 2004.; K. Frey, «Gobernanza electrónica urbana e inclusión digital: experiencias en ciudades europeas y brasileñas,» Nueva Sociedad, nº 196, pp. 109-124, 2005.; D. Dávila, «Inclusión digital en colombia: Un análisis del plan vive digital I,» Pontificia Universidad Javeriana, Bogotá D.C., 2017.; F. Duarte y H. F. Pires, «INCLUSIÓN DIGITAL, TRES CONCEPTOS CLAVE: CONECTIVIDAD, ACCESIBILIDAD, COMUNICABILIDAD,» REVISTA ELECTRÓNICA DE RECURSOS EN INTERNET SOBRE GEOGRAFÍA Y CIENCIAS SOCIALES, nº 150, 2011.; E. Van der Klift y N. Kunc, «Beyond benevolence: Friendship and the politics of help,» de Creativity and collaborative learning: A practical guide to empowering students and teachers, Baltimore, Paul Brookes, 1994, pp. 391-401.; M. Sapon-Shevin, «La inclusión real: Una perspectiva de justicia social,» Revista de Investigación en Educación, vol. 3, nº 11, pp. 71-85, 2013.; G. A. Toledo, «Accesibilidad digital para usuarios con limitaciones visuales,» Universidad Nacional de la Plata, 2012.; Comisión Europea, «Aprovechar las TIC para la acción social: un programa de voluntariado digital,» Unión Europea, Luxemburgo, 2014.; E. M. Tapia, E. Munguia, «Activity recognition in the home setting using simple and ubiquitous sensors,» de international conference on pervasive computing, Berlin, Heidelberg, Springer Berlin Heidelberg, 2004, pp. 158--175.; C. Liming et al, «Sensor-based activity recognition,» IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, nº 6, pp. 790 - 808, 2012.; N. Wei et al, «Human activity detection and recognition for video surveillance,» de 2004 IEEE International Conference on Multimedia and Expo (ICME), IEEE, 2004, pp. 719--722.; M. S. Ryoo, «Human activity prediction: Early recognition of ongoing activities from streaming videos,» de 2011 International Conference on Computer Vision, IEEE, 2011, pp.; M. S. Ryoo, «Human activity prediction: Early recognition of ongoing activities from streaming videos,» de 2011 International Conference on Computer Vision, IEEE, 2011, pp. 1036--1043.; R. Nishkam, D. Nikhil et al., «Activity recognition from accelerometer data,» de Aaai, 2005, pp. 1541--1546.; Intille, L. Bao and S. S., «Activity recognition from user-annotated acceleration data,» de International conference on pervasive computing, 2004.; N. Belapurkar, S. Sagar and A. Baris, «The Case for Ambient Sensing for Human Activity Detection,» de Proceedings of the 8th International Conference on the Internet of Things, New, York, 2018.; D. Anguita et al, International workshop on ambient assisted living, Springer, 2012.; E. Kim, S. Helal and D. Cook, «Human activity recognition and pattern discovery,» IEEE Pervasive Computing/IEEE Computer Society [and] IEEE Communications Society, vol. 9, nº1, p. 48, 2010.; B. P. Clarkson, Life patterns: structure from wearable sensors, Massachusetts Institute of Technology, 2002.; J. Shotton, T. Sharp et al., «Real-time Human Pose Recognition in Parts from Single Depth Images,» Commun. ACM, vol. 56, nº 1, pp. 116--124, 2013.; R. Poppe, «A survey on vision-based human action recognition,» Image and vision computing, vol. 28, nº 6, pp. 976--990, 2010.; J. K Aggarwal and M. S. Ryoo, «Human activity analysis: A review,» ACM Computing Surveys (CSUR), vol. 43, nº 3, p. 16, 2011.; D. Weinland, R. Ronfard and Ed Boyer, «A survey of vision-based methods for actionrepresentation, segmentation and recognition,» Computer vision and image understanding, vol. 115, nº 2, pp. 224 -- 241, 2011.; V. Argyriou, M. Petrou and S. Barsky, «Photometric stereo with an arbitrary number of illuminants,» Computer Vision and Image Understanding, vol. 14, nº 8, pp. 887--900, 2010.; R. Chavarriaga, H. Sagha et al, «The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition,» Pattern Recognition Letters, vol. 34, nº 15, pp. 2033--2042, 2013.; T. Plötz, N. Y. Hammerla and P. Oliver, «Feature Learning for Activity Recognition in Ubiquitous Computing» de Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, AAAI Press, 2011, pp. 1729--1734.; A. Ferscha and F. Mattern, Pervasive Computing: Second International Conference, PERVASIVE 2004, Linz, Vienna: Springer, 2004.; N. Ravi, D. Nikhil et al, «Activity recognition from accelerometer data,» de Aaai, 2005, pp. 1541--1546.; L. B. a. S. Intille, «Activity recognition from user-annotated acceleration data,» de International conference on pervasive computing, 2004.; G. Z. Yang, and M. Yacoub, Body Sensor Networks. 2006, London: Springer, 2006.[22]. D. Anguita, A. Ghio et al, «A Public Domain Dataset for Human Activity Recognition using Smartphones,» de 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), 2013.; D. Roggen, K. Forster at al, «OPPORTUNITY: Towards opportunistic activity and context recognition systems,» de 2009 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks \& Workshops, 2009.; A. M. Khan, Y-K. Lee et al, «Human activity recognition via an accelerometer-enabled smartphone using kernel discriminant analysis,» de 2010 5th international conference on future information technology, 2010.; J. Reyes-Ortiz, L. Oneto et al, «Transition-aware human activity recognition using smartphones,» Transition-aware human activity recognition using smartphones, vol. 171, pp. 754--767, 2016.; S. I. Yang and S. B. Cho, «Recognizing human activities from accelerometer and physiological sensors,» de 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2008.; R. Poovandran, «Human activity recognition for video surveillance,» de 2008 IEEE International Symposium on Circuits and Systems, 2008.; C. T. a. V. Hlavac, «Pose primitive based human action recognition in videos or still images,» de 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.; J. S. Caros, O. Chetelat, P. Celka et al, «Very low complexity algorithm for ambulatory activity classification,» de EMBEC, 2005.; M. F. Bin Abdullah et al, «Classification Algorithms in Human Activity Recognition using Smartphones,» World Academy of Science, Engineering and Technology International Journal of Biomedical and Biological Engineering, vol. 6, nº 1, 2012.; O. D. Lara and M. A. Labrador, «A survey on human activity recognition using wearable sensors,» pp. 1192-1209, 2013.; N. Robertson and I. Reid, «A general method for human activity recognition in video,» Computer Vision and Image Understanding, vol. 104, nº 2-3, pp. 232--248, 2006.; C. Thurau and V Hlavac, «Pose primitive based human action recognition in videos or still images,» de 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.; R. Poovsndran, «Human activity recognition for video surveillance,» de 2008 IEEE International Symposium on Circuits and Systems, 2008.; W. Niu, J. Long, D. Han and W. Yuan-Fang , «Human Activity Detection and Recognition for Video Surveillance,» 2004 IEEE International Conference on Multimedia and Expo (ICME), vol. 1, pp. 719-722, 2004.; J. M. Ermes, J. Parkka, J. Mantyjarvi, and I. Korhonen, «Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions,» TITB, vol. 12, nº 1, pp. 20--26, 2008.; X. Long, B. Yin and R. M. Aarts, «Singleaccelerometer-based daily physical activity classification,» de EMBS, 2009.; D. Karantonis, M. Narayanan, M. Mathier, et al, «Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring,» TITB, vol. 10, nº 1, pp. 156-167, 2006.; E. Heinz, K. Kunze, M. Gruber et al, «Using wearable sensors for Real-Time recognition tasks in games of martial arts - an initial experiment,» de GIC´06, 2006.; H. Markus, H. Takafumi, et al, «Chi-ball, an interactive device assisting martial arts,» de CHI´03, 2003.; J. Liao,Y. Bi and C. Nugent , «Activity recognition for smart Homes using Dempster-Shafer theory of evidence based on a revised lattice structure,» de 2010 Sixth International Conference on Intelligent Environments, 2010.; F. Cicirelli,G. Fortino, A. giordano et al, «On the design of smar homes framework for activyty recpgnition in home environment,» journal of medical systems, vol. 40, nº 9, p. 200, 2016.; S. C. Mukhopadhyay, «Wearable sensors for human activity monitoring: A review,» IEEE Sensors Journal, vol. 15, p. 1321–1330, 2015.; A. Reiss and D. Stricker, «Introducing a new benchmarked dataset for activity monitoring,» de International Symposium on Wearable Computers, 2012.; W. H. Wu, A. A. Bui, M.A. Batalin et al, «MEDIC: medical embedded device for individualized care,» Artificial Intelligence in Medicine, vol. 42, nº 2, pp. 137-152, 2008.; E. V. Someren, B. Vonk, W. Thijssen, J. Speelman et al, «A new actigraph for long-term registration of the duration and intensity of tremor and movement,» Biomedical Engineering, vol. 45, nº 3, pp. 386395, 1998.; D. J. Walker, P. S. Heslop, C. J. Plummer, et al, «A continuous patient activity,» Physiological Measurement, vol. 18, nº 1, pp. 49-59, 1997.; N. Hu, Z. Lou, G. Englebienne and B. Kröse, B., «Learning to Recognize Human Activities from Soft Labeled Data,» de Robotics: Science and Systems X, Berkeley, 2014.; G. Wu and S. Xue, «Portable preimpact fall detector with inertial sensors,» Neural Systems and Rehabilitation Engineering IEEE Transactions on,, vol. 16, nº 2, p. 178–183, 2008.; H. J. Busser, J. Ott, R. C. van Lummel et al, «Ambulatory monitoring of children’s activity,» Medical Engineering & Physics, vol. 19, nº 5, pp. 440-445, 1997.; B. G. Steele, B. Belza, K. Cain, C. Warms,, «Bodies in motion: Monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease,» Rehabilitation Research and Development, vol. 40, nº 5, 2003.; S. Bosch, M. Marin-Perianu, et al, «Keep on moving! activity monitoring and stimulation using wireless sensor networks,» de European Conference on Smart Sensing and Context, 2009.; F. Chen, Q. Zhong and F. Cannella, «Hand gesture modeling and recognition for human and robot interactive assembly using hidden markov models,» International Journal of Advanced Robotic Systems, vol. 12, nº 4, p. 48, 2015.; Ministerio de Minas y Energía, [En línea]. Available: https://www.minenergia.gov.co/ [Ultimo acceso: 24 agosto 2021].; Instituto de Planificación y Promoción de Soluciones Energéticas para Zonas no Interconectadas IPSE, [En línea]. Available: https://ipse.gov.co/ [Último acceso: 24 08 2021].; Unidad de Planeación Minero-Energética, [En línea]. Available: https://www1.upme.gov.co/Paginas/default.aspx [Último acceso: 24 08 2021].; Comisión de Regulación de Energía y Gas, [En línea]. Available: https://www.creg.gov.co/ [Último acceso: 6 septiembre 2021].; La Cámara Colombiana de Energía, [En línea]. Available: https://www.ccenergia.org.co/ [Ultimo acceso: 08 septiembre 2021].; Fondo de Energías No Convencionales y Gestión Eficiente de la Energía [En línea]. Available: https://fenoge.com/ [Último acceso: 7 septiembre 2021].; A. M. M. H. A. Al Hasib, «A Comparative Study of the Performance and Security Issues of AES and RSA Cryptography,» de Convergence Information Technology, International Conference, Finlandia, 2008.; Shamir R.L. Rivest and L. Adleman, (1978). A Method for Obtaining Digital Signatures and PublicKey Cryptosystems, Magazine Communications of the ACM, 1978.Volumen 21 págs. 120–126. https://doi.org/10.1145/359340.359342.; Castro Lechtaler, A., Cipriano, M., García, E., Liporace, J., Maiorano, A., Malvacio, E. and Tapia, N., (2021). Estudio de técnicas de criptoanálisis.XXI Workshop de Investigadores en Ciencias de la Computación. [online] Sedici.unlp.edu.ar. Available at: http://sedici.unlp.edu.ar/handle/10915/77269.; J. C. Mendoza T, «Universidad Politecnica Salesiana de Ecuador,» [En línea]. Available: https://dspace.ups.edu.ec/bitstream/123456789/8185/1/Demostraci%C3%B3n%20de%20cifrado%2 0sim%C3%A9trico%20y%20asim%C3%A9trico.pdf.; W. Dent, «Hybrid Cryptography,» 3 Junio 2009. [En línea]. Available: https://eprint.iacr.org/2004/210.ps.; Escobar Molero Gabriel. (2011). Clúster de alto rendimiento en un cloud: ejemplo de aplicación en criptoanálisis de funciones hash. Universidad de Almería. pg 60. http://repositorio.ual.es/bitstream/handle/10835/1202/PFC.pdf?sequence=1.; A. Pousa, «Universidad Nacional de la Plata,» Diciembre 2011. [En línea]. Available: https://postgrado.info.unlp.edu.ar/wp-content/uploads/2014/07/Pousa_Adrian.pdf.; A. Lenstra, «Key Lengths,» [En línea]. Available: https://infoscience.epfl.ch/record/164539/files/NPDF-32.pdf.; R. Avinash, A. Potnis, S. Kumar, P. Dwivedy y S. Soofi, «Internation Journal Of Engineering Research and Applications,» Agosto 2017. [En línea]. Available: http://www.ijera.com/papers/Vol7_issue8/Part-1/O0708019094.pdf.; A. Faget, «What are Cryptographic Signatures? %7C Introduction to the Most Common Schemes,» 14 Noviembre 2018. [En línea]. Available: https://coindoo.com/what-are-cryptographic-signaturesintroduction-to-the-most-common-schemes/.; Goldreich, O. (2000). Modern Cryptography, Probabilistic Proofs and Pseudorandomness (Second Edition - author's copy). Springer.pag 1-2, consultado en http://www.wisdom.weizmann.ac.il/~oded/PDF/mcppp-v2.pdf.; Muñoz, R., Muñoz, R., & completo, V. (2021). Algoritmo RSA en aplicación web. Retrieved 12 July 2021, from http://criptografiaverm1.blogspot.com/2013/07/tarea-5-algoritmo-rsa-en-aplicacionweb.html.; Eslava Blanco, H. J., Rocha, J. F., & Morales, J. I. (2011). Estudio de tráfico sobre una plataforma de virtualización. Visión electrónica, 5(2), 78-94. https://doi.org/10.14483/22484728.3572.; Congreso de Colombia. ley 1636 de 2013.; Lei Chen and Nansheng Yao, "Publishing Linked Data from relational databases using traditional views," 2010 3rd International Conference on Computer Science and Information Technology, 2010, pp. 9-12, doi:10.1109/ICCSIT.2010.5563576.; Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts, I., Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., Heitz, T., Greenwood, M. A., Saggion, H., Petrak, J., Li, Y., y Peters, W. (2017). Text Processing with GATE (Version 6).; C. Gardent and S. Narayan Multiple Adjunction in Feature-Based Tree-Adjoining Grammar In Computational Linguistics, Volume 41, Issue 1 - March 2015.; LM Vilches-Blázquez, B Villazón-Terrazas, O Corcho, A Gómez-Pérez. International Journal of Digital Earth 7 (7), 554-575, 2014.; R. Jessop, “El Futuro del Estado Capitalista”, Madrid: Ed. Catarata, Pag.124,2007.; M. Castells e Himanen, “Modelos de Desarrollo en la Era Global de la Información: Construcción de un Marco Analítico” en Castells e Himanen “reconceptualización del desarrollo en la era global de la información”. Santiago de Chile: FCE, Pag. 27, 2017.; C. H. Caicedo y A. Smida, “Intensidad informacional para la longitudinalidad asistencial en sistemas de salud", Visión Electrónica, vol. 10, no. 1, pp. 83-95, 2016. https://doi.org/10.14483/22484728.11612.; J. Van Dijck, “La Cultura de la Conectividad”, Siglo XXI. Bs. A. Pag 268, 2016.; S. Zuboff, “Atrapados en la era del capitalismo de Vigilancia y la Economía Predictiva”, El Espectador, p. 20, enero 10, 2020.; P. Virno, “Cuando el Verbo se hace Carne”. Madrid: Mapas, p.20, 2005.; E. Sadin, “La Siliconización del Mundo”, Bs As: Caja Negra, p.108, 2018.; M. Doueihi, “La Gran Conversión Digital”, Bs. As.: F.C.E. p. 21, 2010.; R. Echeverría. “Ontología del Lenguaje”, Chile: JC Sáez editor, Pag. 24 1997.; J.F. Lyotard, “La condition postmoderne: rapport sur le savoir”. París: Minuit, 1979.; O. Dallera, “La sociedad como sistema de comunicación. La teoría sociológica de Niklas Luhmann en 30 lecciones”, Buenos Aires: editorial Biblos, 2012.; S. Rozas,” Lenguaje y performatividad”, Psicología, Conocimiento y Sociedad, vol 6, no.2, pp. 280-298, 2016.; J. L. Austin, “Cómo hacer cosas con palabras”, Barcelona: Paidós, 1982.; S. Belli, R. Harré, L. Íñiguez, “Emociones en la tecnociencia: la performance de la velocidad”, Prisma Social, 3, pp. 1-41, 2009.; A. Heller, “Sociología de la vida cotidiana”, J. F. Yvars y E. Pérez Nadal (trads.). Barcelona: Península, 1977.; L. F. Aguilar, “En torno del concepto de racionalidad de Max Weber”, en l. Olivé, “Racionalidad Ensayos sobre la racionalidad en ética y política, ciencia y tecnología”, México: Siglo XXI Editores, Coediciones Temas: Ética, Filosofía política, Instituto de Investigaciones Filosóficas, 1988.; M. Weber, “El problema de la irracionalidad en las ciencias sociales”, Madrid: Tecnos, 192 p. 1985.; N. Luhmann, “Organización y decisión. Autopoiesis, acción y entendimiento comunicativo”, Rubí (Barcelona): Anthropos, 2005.; C.H., Caicedo E, “Fortalecimiento de la Gestión de la Investigación y la Extensión, condición para el avance del Sistema Nacional de Innovación”. Documento presentado como requisito para cambio de categoría de Profesor Asistente a Profesor Asociado, Bogotá: Facultad de Ingeniería de la Universidad Nacional de Colombia, 2006.; J. March, H. A. Simon, “Teoría de la organización”, Barcelona: Ariel Economía, 1980.; Joffre, Aurégan, Chédotel y Tellier, “Le Management Stratégique per le Projet”, París: Economica, P.45, 2006.; J. Neré, “Le Management de Projet”, Paris: Puf, p.4, 2015.; Garel, Giard y Midler, “Faire de la Recherche en Management de Projet”, París: FNEGE, Vuibert, p.1, 2004.; AMBROSE, W., Parallel translation of Riemannian curvature. Ann. of Math., 64, 337363. 1956.; APOSTOL TOM, Calculus vol. 1 y 2. Segunda edición. Reverté. 1982.; BERGER - GAUDUCHON - MAZET, Le Spectre d′une Varieté Rie- mannianne. Springer - Verlag. New York. 1971.; DO CARMO, M., Differential Geometry of Curves and Super- faces. Printece - Hall, New Jersy. 1976.; DO CARMO, M., Geometría Riemanniana. 2a Ed. Rio de Janeiro. Brasil. 1988.; CARTAN, E., Lecons sur la Géométrie des Espaces de Riemann (2‘eme édition). Paris, Gauthier-Villard. 1951.; FOMENKO, A. T., Symplectic Geometry. Moscuw. 1998.; FRANKEL, T., The Geometry of Physics. Cambrige University. 2001.; GALLOT-HULLIN-LAFONTAINE, Riemannian Geometry. 2a ed., Springer. 1990.; GUILLEMIN & POLLACK, Differential Topology. Prentice - Hall. 1974.; LIPSCHUTS MARTIN, Differential Geometry. Mc Graw-Hill. 1969. (Hay versión en Español).; HOWARDS H., HUTCHINGS M., MORGAN F., The isoperimetric Problem on surfaces. Monthly, vol. 106, Number 5, (1999) 430 - 439.; LIMA, ELON LARGE, Curso de Análise. Vol. 1 y 2. Terceira Ed. IMPA-Brasil. 1981.; MUNKRES JAMES, TOPOLOGY a first course. Prentice-Hall.New Jersey. 1975. (Hay versión en Español).; MUNKRES JAMES, Elements of Algebraic Topology. Addison- Wesley. 1984.; MYERS, S. B., Riemannian manifolds with positive mean cur- vatura. Duke Math. J., 8, 401-404. 1941.; NASH, J. F., The imbedding problem for Riemannian manifolds. Ann. of. Math., 63, 2063. 1956.; O’NEILL, B., Semi-Riemannianan Geometry: Aplication to Rela- tivity. University of California. Los Angeles California. Academic Press. 1983. 468 páginas.; POOR, W., Differential Geometric Structures. Dover Publications. New York. 1981.; RIEMANN, B.,Über die Hypothesen, welche der Geometrie zu Grunde liegen. Nature, 8 (183-184), 14-17, 36, 37. 1854.; SPIVAK, M., A comprehensive Introduction to DIFFERENTIAL GEOMETRY. Publish or Perish. 1990. 2.785 páginas en 5 volumenes.; SPIVAK, M., Cálculo en Variedades. Reverté. 1975.; WARNER F. W., Foundations of Differentiable Manifolds and Lie Groups. Springer. 1983.; A. Mouthon, “Los Beneficios de la Inteligencia Artificial,” 2017. https://www.eleconomista.es/firmas/noticias/8716667/11/17/Beneficios-de-la-inteligencia-artificial.html (accessed May 06, 2021).; A. Garcia-Serrano and S. Ossowski, “Inteligencia Artificial Distribuida y Sistemas Multiagentes,” Inteligencia Artificial, vol. 2, no. 6, pp. 1–6, 1998, doi:10.4114/ia.v2i6.614.; A. Turing, “Mind a Quarterly Review of Psychology and Philosophy,” Mind, vol. 8, no. 2, pp. 145– 166, 1899, doi:10.1093/mind/VIII.2.145.; M. A. Salichs, M. Malfaz, and J. F. Gorostiza, “Toma de Decisiones en Robótica,” Revista Iberoamericana de Automática e Informática Industrial RIAI, vol. 7, no. 4, pp. 5–16, 2010, doi:10.1016/s1697-7912(10)70055-8.; M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “Describing textures in the wild,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3606–3613, 2014, doi:10.1109/CVPR.2014.461.; Tensorflow, “TensorFlow 2 Detection Model Zoo.” https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo. md (accessed May 05, 2021).; L. F. Mahecha, N. F. Conde, H. Vacca-González, “Implementación de Redes Neuronales y Procesamiento de Imágenes en el Movimiento de Robots Modulares Tipo Cadena. SOMI XXXV Congreso de Instrumentación CDMX, México, 27 al 29 de octubre de 2021.; R. A. Valdesueiro, “Muestreo digital”, p. 12.; A. Hashemi Fath, F. Madanifar, y M. Abbasi, “Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems”, Petroleum, vol. 6, núm. 1, pp. 80–91, mar. 2020, doi:10.1016/j.petlm.2018.12.002.; L. O. González Salcedo, A. P. Guerrero Zúñiga, S. Delvasto Arjona, y A. L. E. Will, “Artificial Neural Model based on radial basis function networks used for prediction of compressive strength of fiber-reinforced concrete mixes”, Cien.Ing.Neogranadina, vol. 29, núm. 2, pp. 37–52, jun. 2019, doi:10.18359/rcin.3737.; A. Sudou, P. Hartono, R. Saegusa, y S. Hashimoto, “Signal reconstruction from sampled data using neural network”, en Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing, Martigny, Switzerland, 2002, pp. 707–715, doi:10.1109/NNSP.2002.1030082.; A. Ugena, “THE NEWTON NEURAL NET: A NEW APPROXIMATING NETWORK”, Int. J. of Pure and Appl. Math., vol. 82, núm. 4, feb. 2013, doi:10.12732/ijpam.v82i4.13.; N. M. Khan, “Audio Signal Reconstruction Using Cartesian Genetic Programming Evolved Artificial Neural Network (CGPANN)”, p. 6.; L. H. C. Casallas, E. H. M. Alfonso, y M. L. C. Martínez, “Clasificación de Plasmodium Falciparum por estadio en cultivos sincrónicos de eritrocitos”, Visión electrónica, vol. 5, núm. 1, Art. núm. 1, may 2011, doi:10.14483/22484728.3519.; J. A. P. Plaza, D. R. Zapata, y A. T. Tascón, “Implementación de redes neuronales utilizando dispositivos lógicos programables”, Visión electrónica, vol. 1, núm. 1, Art. núm. 1, jun. 2008, doi:10.14483/22484728.250.; O. L. Ramos, D. A. Rojas, y L. A. Góngora, “Reconocimiento de patrones de habla usando MFCC y RNA”, Visión electrónica, vol. 10, núm. 1, Art. núm. 1, jun. 2016, doi:10.14483/22484728.11712.; E. J. G. Monterroza, “Reconocimiento de primitivas 3D, usando autocorrelación y ANFIS”, Visión electrónica, vol. 1, núm. 1, Art. núm. 1, 2008, doi:10.14483/22484728.251.; L. F. P. Martínez, Ó. F. C. Camargo, y J. E. Roa, “Estudio comparativo de técnicas artificiales para la predicción de una serie de tiempo caótica”, Visión electrónica, vol. 2, núm. 2, Art. núm. 2, dic. 2008, doi:10.14483/22484728.792.; A. E. Díaz y L. A. Calderón, “Modelo tridimensional de extremidad inferior basado en imágenes de resonancia magnética”, Visión electrónica, vol. 3, núm. 1, Art. núm. 1, jun. 2009, doi:10.14483/22484728.686.; Ahl´en, J., Sundgren, D., Bengtsson, E.: Application of underwater hyperspectraldata for color correction purposes. Pattern Recognition and Image Analysis 17 (3 2007). https://doi.org/10.1134/S105466180701021X .; Arnold-Bos, A., Malkasse, J.P., Kervern, G.: A preprocessing framework for auto- matic underwater images denoising (3 2005), https://hal.archives-ouvertes.fr/hal- 00494314.; Bazeille, S., Quidu, I., Jaulin, L., Malkasse, J.P.: Automatic underwater image preprocessing. Proceedings of CMM’06 (4 2006).; Cetto, A.M.: La luz: en la naturaleza y en el laboratorio. Fondo de Cultura Econ´omica (2019).; Chambah, M., Semani, D., Renouf, A., Coutellemont, P., Rizzi, A.: Underwa- ter color constancy: Enhancement of automatic live fish recognition (2004), https://hal.archivesouvertes.fr/hal-00263734.; Iqbal, K., Odetayo, M., James, A., Salam, R.A., Talib, A.Z.H.: Enhancing the low quality images using unsupervised colour correction method. IEEE (10 2010). https://doi.org/10.1109/ICSMC.2010.5642311.; Jaffe, J.: Computer modeling and the design of optimal underwater imaging systems. IEEE Journal of Oceanic Engineering 15 (4 1990). https://doi.org/10.1109/48.50695.; McGlamery, B.L.: A computer model for underwater camera systems (3 1980). https://doi.org/10.1117/12.958279.; Schechner, Y., Karpel, N.: Recovery of underwater visibility and structure by polarization analysis. IEEE Journal of Oceanic Engineering 30 (7 2005). https://doi.org/10.1109/JOE.2005.850871.; Sears, F.W., Zemansky, M.W., Young, H.D., Freedman, R.A., Flores Flores, V.A., Rubio Ponce, A.: Fisica universitaria. Addison-Wesley; Pearson Educacion, Mexico (2009), oCLC: 991818413.; Serway, R.A.: Física para ciencias e ingenieria. McGraw-Hill, Mexico (2002), oCLC: 807250137.; Trucco, E., Olmos-Antillon, A.: Self-tuning underwater image restoration. IEEE Journal of Oceanic Engineering 31 (4 2006). https://doi.org/10.1109/JOE.2004.836395.; Wikipedia: Patron de muar´e — wikipedia, la enciclopedia libre (2020).; Pérez, M. A. A. (2009). Espacios De Color RGB, HSI Y Sus Generalizaciones A NDimensiones. PhD thesis, InstitutoNacional de Astrofísica, Óptica y Electrónica.; O. Ronneberger, P. Fischer, y T. Brox, «U-Net: Convolutional Networks for Biomedical Image Segmentation», CoRR, vol. abs/1505.04597, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1505.04597.; V. Badrinarayanan, A. Kendall, y R. Cipolla, «SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation», CoRR, vol. abs/1511.00561, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1511.00561.; S. Liu y W. Deng, «Very deep convolutional neural network based image classification using small training sample size», en 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), 2015, pp. 730-734. doi:10.1109/ACPR.2015.7486599.; J. Long, E. Shelhamer, y T. Darrell, «Fully Convolutional Networks for Semantic Segmentation», CoRR, vol. abs/1411.4038, 2014, [En línea]. Disponible en: http://arxiv.org/abs/1411.4038.; C. Szegedy et al., «Going Deeper with Convolutions», CoRR, vol. abs/1409.4842, 2014, [En línea]. Disponible en: http://arxiv.org/abs/1409.4842.; H. Zhao, J. Shi, X. Qi, X. Wang, y J. Jia, «Pyramid Scene Parsing Network», CoRR, vol. abs/1612.01105, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1612.01105.; K. He, X. Zhang, S. Ren, y J. Sun, «Deep Residual Learning for Image Recognition», CoRR, vol. abs/1512.03385, 2015, [En línea]. Disponible en: http://arxiv.org/abs/1512.03385.; L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, y A. L. Yuille, «DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs», IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, n.o 4, pp. 834-848, 2018, doi:10.1109/TPAMI.2017.2699184.; L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, y A. L. Yuille, «DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs», CoRR, vol. abs/1606.00915, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1606.00915.; L.-C. Chen, G. Papandreou, F. Schroff, y H. Adam, «Rethinking Atrous Convolution for Semantic Image Segmentation», CoRR, vol. abs/1706.05587, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1706.05587.; R. Girshick, J. Donahue, T. Darrell, y J. Malik, «Rich feature hierarchies for accurate object detection and semantic segmentation». 2014.; R. Girshick, «Fast R-CNN». 2015.; S. Ren, K. He, R. Girshick, y J. Sun, «Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks». 2016.; T.-Y. Lin, P. Goyal, R. Girshick, K. He, y P. Dollor, «Focal Loss for Dense Object Detection». 2018.; W. Liu et al., «SSD: Single Shot MultiBox Detector», Lect. Notes Comput. Sci., p. 21-37, 2016, doi:10.1007/978-3-319-46448-0_2.; J. Redmon y A. Farhadi, «YOLO: Real-Time Object Detection». 2018.; J. Redmon y A. Farhadi, «YOLO9000: Better, Faster, Stronger». 2016.; J. Redmon y A. Farhadi, «YOLOv3: An Incremental Improvement». 2018.; F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, y K. Keutzer, «SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \textless1MB model size», CoRR, vol. abs/1602.07360, 2016, [En línea]. Disponible en: http://arxiv.org/abs/1602.07360.; A. G. Howard et al., «MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications», CoRR, vol. abs/1704.04861, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1704.04861.; M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, y L.-C. Chen, «Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation», CoRR, vol. abs/1801.04381, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1801.04381.; G. Huang, S. Liu, L. van der Maaten, y K. Q. Weinberger, «CondenseNet: An Efficient DenseNet using Learned Group Convolutions», CoRR, vol. abs/1711.09224, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1711.09224.; X. Zhang, X. Zhou, M. Lin, y J. Sun, «ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices», CoRR, vol. abs/1707.01083, 2017, [En línea]. Disponible en: http://arxiv.org/abs/1707.01083.; N. Ma, X. Zhang, H.-T. Zheng, y J. Sun, «ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design», CoRR, vol. abs/1807.11164, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1807.11164.; M. Tan, B. Chen, R. Pang, V. Vasudevan, y Q. V. Le, «MnasNet: Platform-Aware Neural Architecture Search for Mobile», CoRR, vol. abs/1807.11626, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1807.11626.; M. Tan y Q. V. Le, «EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks», CoRR, vol. abs/1905.11946, 2019, [En línea]. Disponible en: http://arxiv.org/abs/1905.11946.; M. Cordts et al., «The Cityscapes Dataset for Semantic Urban Scene Understanding». 2016.; J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, y L. Fei-Fei, «ImageNet: A Large-Scale Hierarchical Image Database», 2009.; K. C. L. Wong, M. Moradi, H. Tang, y T. F. Syeda-Mahmood, «3D Segmentation with Exponential Logarithmic Loss for Highly Unbalanced Object Sizes», CoRR, vol. abs/1809.00076, 2018, [En línea]. Disponible en: http://arxiv.org/abs/1809.00076.; M. Willett, “Lessons of the SolarWinds Hack,” Survival (Lond)., vol. 63, no. 2, 2021, doi:10.1080/00396338.2021.1906001.; H. S. Lallie et al., “Cyber security in the age of COVID-19: A timeline and analysis of cyber-crime and cyber-attacks during the pandemic,” Comput. Secur., vol. 105, 2021, doi:10.1016/j.cose.2021.102248.; J. Aguirre, CURSO DE SEGURIDAD INFORMÁTICA Y CRIPTOGRAFÍA, vol. 3.1. 2003.; E. Biham and A. Shamir, “Differential cryptanalysis of DES-like cryptosystems,” J. Cryptol., vol. 4, no. 1, 1991, doi:10.1007/BF00630563.; J. Daemen and V. Rijmen, “AES proposal: Rijndael,” no. December, 1999.; N. Velasquez and N. Pineda, “Diseño e Implementacion de un Prototipo Criptoprocesador AES-Rijndael en FPGA,” Universidad de Los Llanos, 2007.; A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, and A. Poschmann, “PRESENT: An Ultra-Lightweight Block Cipher.; J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw, “The LED block cipher,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2011, vol. 6917 LNCS, doi:10.1007/978-3-642-23951-9_22.; F. Velásquez and J. F. Castaño, “Cryptographic Implementations for Fpga,” Rev. Visión Electron., vol. 5, no. 1, pp. 26–37, 2011.; F. Velásquez and J. A. Castaño, “Implementation of binary finite fields towers of extension 2,” Rev. Visión Electrónica, vol. 7, no. 2, pp. 89–96, 2013.; W. Enríquez, P. Nazate, and O. Marcillo, “Prototipo DAS basado en FPGA de 12 canales para monitoreo geodinámico,” Visión electrónica, vol. 12, no. 1, pp. 73–82, 2018, doi:10.14483/22484728.13782.; C. A. HERNANDEZ and E. JACINTO, “a New Methodology in the Design of Digital Filters Fir on Fpga,” Rev. Visión Electron., vol. 3, no. 2, pp. 40–47, 2009.; L. W. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, “THE SIMON AND SPECK FAMILIES OF LIGHTWEIGHT BLOCK CIPHERS,” Natl. Secur. Agency, p. 42, 2013.; P. Maene and I. Verbauwhede, “Single-cycle implementations of block ciphers,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9542, pp. 131–147, 2016, doi:10.1007/978-3-319-29078-2_8.; S. Abed, R. Jaffal, B. J. Mohd, and M. Alshayeji, “FPGA modeling and optimization of a SIMON lightweight block cipher,” Sensors (Switzerland), vol. 19, no. 4, 2019, doi:10.3390/s19040913.; A. Shahverdi, M. Taha, and T. Eisenbarth, “Lightweight Side Channel Resistance: Threshold Implementations of Simon,” IEEE Trans. Comput., vol. 66, no. 4, pp. 661–671, 2017, doi:10.1109/TC.2016.2614504.; S. B. Basturk, C. E. J. Dancer, and T. McNally, “High-throughput Configurable SIMON Architecture for Flexible Security,” Pharmacol. Res., p. 104743, 2020, doi:10.1016/j.mejo.2021.105085.; A. Muthumari et al., “High security for de-duplicated big data using optimal SIMON Cipher,” Comput. Mater. Contin., vol. 67, no. 2, pp. 1863–1879, 2021, doi:10.32604/cmc.2021.013614.; W. Diehl, A. Abdulgadir, J. P. Kaps, and K. Gaj, “Comparing the cost of protecting selected lightweight block ciphers against differential power analysis in low-cost FPGAs,” Computers, vol. 7, no. 2, pp. 128–135, 2018, doi:10.3390/computers7020028.; FAO, «Objetivos de Desarrollo Sostenible», Agenda 2030 para el desarrollo sostenible, 2021. http://www.fao.org/sustainable-development-goals/overview/fao-and-post-2015/sustainableagriculture/es/.; G. Spencer, Fundamentos de Acuaponía. 2018.; R. Adhikari, S. Rauniyar, N. Pokhrel, A. Wagle, T. Komai, y S. R. Paudel, «Nitrogen recovery via aquaponics in Nepal: current status, prospects, and challenges», SN Appl. Sci., vol. 2, n.o 7, 2020, doi:10.1007/s42452-020-2996-5.; P. Carneiro, A. Maria, M. Nunes, y R. Ujimoto, «Aquaponia: produção sustentável de peixes e vegetais», en Embrapa Tabuleiros Costeiros, 2015.; A. Caldas, I. Castillo, S. Prado, L. Rosales, y L. Vargas, «Diseño y construcción de sistemas acuapónicos a pequeña escala para familias de la región Piura», Pirhua, p. 205, 2019, [En línea]. Disponible en: https://pirhua.udep.edu.pe/handle/11042/4285.; C. M. Correa y J. F. Valencia, «Configuración de un control de temperatura en un sistema embebido de bajo costo, usando herramientas de inteligencia artificial y el internet de las cosas», Rev. Iber. Sist. y Tecnol. Inf., n.o 34, pp. 68-84, 2019, doi:10.17013/risti.34.68-84.; V. Jahnavi y S. Ahamed, «Red inteligente de sensores inalámbricos para invernaderos automatizados», IETE J. Res., vol. 61, n.o 2, pp. 180-185, 2015.; I. Lee y K. Lee, «The Internet of Things (IoT): Applications, investments, and challenges for enterprises», Bus. Horiz., vol. 58, n.o 4, pp. 431-440, 2015, doi:10.1016/j.bushor.2015.03.008.; E. Barrientos, D. Rico, L. A. Coronel, y F. R. Cuesta, «Granja inteligente: Definición de infraestructura basada en internet de las cosas, IpV6 y redes definidas por software», Rev. Ibérica Sist. e Tecnol. Informação, vol. E17, pp. 183-197, 2019.; F. Simanca, J. Paez, J. Cortés, E. Díaz, y J. Palacio, «Sistema de riego para cultivos controlado mediante una aplicación de IoT», Rev. Ibérica Sist. e Tecnol. Inf., pp. 410-424, 2020, [En línea]. Disponible en: www.estudioscualitativos.ec.; E. A. Q. Montoya, S. F. J. Colorado, W. Y. C. Muñoz, y G. E. C. Golondrino, «Propuesta de una Arquitectura para Agricultura de Precisión Soportada en IoT», RISTI - Rev. Iber. Sist. e Tecnol. Inf., n.o 24, pp. 39-56, 2017, doi:10.17013/risti.24.39-56.; S. M. A. Aguirre, D. R. M. Rivadeneira, L. R. G. Torrealba, L. D. N. Erazo, F. I. Rivas-Echeverría, y D. M. R. Albarran, «Metodología para el almacenamiento y visualización de datos masivos en invernadero basado en el Internet de las Cosas IoT.», Rev. Ibérica Sist. e Tecnol. Informação, n.o E15, pp. 1-12, 2018, [En línea]. Disponible en: https://search.proquest.com/docview/2041143320?accountid=134127%0Ahttp://link.periodicos.capes. gov.br/sfxlcl41?url_ver=Z39.882004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&genre=unknown&sid=ProQ:ProQ%3Ahightechjournals& atitle=Metodología+para+el+almacenam; G. E. Chanchí, L. M. Sierra, y W. Y. Campo, «Propuesta de una plataforma académica portable para la construcción de microservicios en entornos de IoT», Rev. Ibérica Sist. e Tecnol. Informação, n.o E27, pp. 1-13, 2020.; J. A. Brenes Carranza, A. Martínez Porras, C. U. Quesada López, y M. Jenkins Coronas, «Sistemas de apoyo a la toma de decisiones que usan inteligencia artificial en la agricultura de precisión», Rev. Ibérica Sist. y Tecnol. la Inf. núm E28, pp. 217-229, n.o 28, pp. 217-230, 2020.; A. Bárta, P. Soucek, V. Bozhynov, y P. Urbanová, «Automatic Multiparameter Acuisition in Aquaponics Systems», en 5th International Work-Conference, IWBBIO 2017 Granada, Spain, April 26– 28, 2017, Proceedings, Part II, 1.a ed., Springer, Ed. Granada, 2017, pp. 712-725.; O. A. O. Valero, P. A. R. Trujillo, N. L. M. Valderrama, M. E. de Oliveira, y A. R. B. Tech, «Monitoreo remoto automatizado de calidad del agua en sistemas acuapónicos en Sao Paulo, Brasil», Rev. Ibérica Sist. e Tecnol. Informação, n.o E31, pp. 223-235, 2020, [En línea]. Disponible en: http://ezproxy.unal.edu.co/scholarly-journals/monitoreo-remoto-automatizado-de-calidad-delagua/docview/2468684076/se-2?accountid=137090.; K. J. Keesman, O. Körner, K. Wagner, J. U. Urban, D. Karimanzira, y S. Rauschenbach, Thomas , Goddek, «Aquaponics Systems Modelling», en Aquaponics Food Production Systems, 1.a ed., Springer, Ed. Cham, 2019, pp. 273-299.; A. Ahmed, S. Zulfiqar, A. Ghandar, Y. Chen, M. Hanai, y G. Theodoropoulos, «Digital Twin Technology for Aquaponics: Towards Optimizing Food Production with Dynamic Data Driven Application Systems», en Methods and Applications for Modeling and Simulation of Complex Systems. 19th Asia Simulation Conference, AsiaSim 2019 Singapore, October 30 – November 1, 2019 Proceedings, Singapur: Springer, 2019, pp. 3-14.; Haryanto, M. Ulum, A. F. Ibadillah, R. Alfita, K. Aji, y R. Rizkyandi, «Smart aquaponic system based Internet of Things (IoT)», J. Phys. Conf. Ser., vol. 1211, n.o 1, 2019, doi:10.1088/17426596/1211/1/012047.; M. Dayahna Caro M., E. Romero-Riaño, M. Alexandra Espinosa C, y C. D. Guerrero, «Evaluando contribuciones de usabilidad en soluciones TIC-IOT para la agricultura: Una perspectiva desde la bibliometría», RISTI - Rev. Iber. Sist. e Tecnol. Inf., vol. 2020, n.o E28, pp. 681-692, 2020, [En línea]. Disponible en: https://www.scopus.com/inward/record.uri?eid=2-s2.085081040306&partnerID=40&md5=f59611d7803425f519635fe4470fdaca.; P. Rituay Trujillo, N. L. Murga Valderrama, M. D. P. Bustos Chavéz, P. Chauca Valqui, y J.-A. Campos Trigoso, «Evolución y tendencias investigativas de tecnologías aplicadas en los agronegocios : una revisión sistemática de la literatura», Iber. J. Inf. Syst. Technol., vol. 39, pp. 189-199, 2021.; S. F. Mejía S., L. Y. Flóres G., y C. D. Guerrero S., «Desarrollo tecnológico del IoT en el sector de la agricultura : una visión desde el análisis de patentes», Rev. Ibérica Sist. e Tecnol. Informação, n.o 28, pp. 375-386, 2020.; L. A. Rodríguez-umaña, «efectos de la variación de caudal sobre los niveles de amonio , nitrato y pH de un prototipo de cultivo acuapónico Evaluation of the effects of varying water flow on the levels of Ammonium , Nitrate and Ph of a prototype aquaponic system . Avaliação dos e», vol. 7, n.o 2, pp. 126-138, 2016.; M. Eck, K. Oliver, y M. H. Jijakli, «Nutrient Cycling in Aquaponics Systems», en Aquaponics Food Production Systems, 1ra ed., S. Goddek, A. Joyce, B. Kotzen, y G. Burnell M., Eds. Switzerland: Springer Nature Switzerland, 2020, pp. 231-246.; M. Á. Barrera Pérez, N. Y. Serrato Losada, E. Rojas Sánchez, y G. Mancilla Gaona, «Estado del arte en redes definidas por software (SDN)», Visión Electrónica, vol. 13, n.o 1, pp. 178-194, 2019, doi: https://doi.org/10.14483/22484728.14424.; J. C. Najar-Pacheco, J. A. Bohada-Jaime, y W. Y. Rojas-Moreno, «Vulnerabilidades en el internet de las cosas», Visión Electrónica, vol. 13, n.o 2, pp. 312-321, 2019, doi: https://doi.org/10.14483/22484728.14424.; J. A. Londoño Alzate, A. Fonseca Velásquez, y E. A. Delgadillo, «Laboratorios remotos: estudio de caso con una planta térmica didáctica», Visión Electrónica, vol. 12, n.o 2, pp. 265-277, 2018, doi: https://doi.org/10.14483/22484728.14263.; I. J. Donado Romero y J. C. Villamizar Rincón, «“Metodología para estandarización de componentes SCADA bajo normas ISA», Visión Electrónica, vol. 12, n.o 1, pp. 14-21, 2018, doi: https://doi.org/10.14483/22484728.13402.; O. L. Quintero, H. Medina, y E. A. Pineda Muñoz, «Automatización para dosificación de reactivos en clasificación de carbón», Visión Electrónica, vol. 11, n.o 1, pp. 45-54, 2017, doi: https://doi.org/10.14483/22484728.10995.; C. González, D. Zamara, S. R. González B, I. F. Mondragón B, y M. Moreno, «Inspección no invasiva de Physalis peruviana usando técnicas (Vir/Nir)», Visión Electrónica, vol. 10, n.o 1, pp. 22-28, 2016, doi: https://doi.org/10.14483/22484728.11702.; L. E. Galindo C, A. A. Aguilera, y L. A. Rojas Castellar, «Automatización en la industria de bolígrafos: El caso del estampado», Visión Electrónica, vol. 5, n.o 1, pp. 103-113, 2011, doi: https://doi.org/10.14483/22484728.3512.; A. Garcia Chacon, J. L. Martínez Rodríguez, y E. Y. Torres Castro, «Automatización de procesos en el sector plásticos: el caso de una inyectora», Visión Electrónica, vol. 2, n.o 2, pp. 52-63, 2008, [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/796.; Zamora Musa, Ronald, y “Laboratorios Remotos: Actualidad y Tendencias Futuras." Scientia Et Technica XVII, no. 51 (2012):113-118. Redalyc, https://www.redalyc.org/articulo.oa?id=84923910017.; C. I. Jiménez, «Propuesta pedagógica para el uso de laboratorios virtuales como actividad complementaria en las asignaturas teórico-prácticas,» Revista Mexicana De Investigación Educativa, 2014.; Nacional, M. d. (2 de septiembre de 2020). Ministerio de Educación Nacional. Obtenido de https://www.mineducacion.gov.co/1759/w3-article-400640.html?_noredirect=1.; Ramírez, E. A. (2014). Una Mirada Crítica al Papel de las TIC en la Educación Superior. Ibagué: Universidad del Tolima; A. F. Reinoso López y J. C. Forero Jiménez, «Diseño e implementación de un laboratorio con características de acceso remoto orientado hacia el calentamiento de agua» Universidad Distrital Francisco José de Caldas, Bogotá, 2021.; N. LabVIEW, «NI home,» [En línea]. Available: https://www.ni.com/academic/students/learnlabview/esa/environment.htm.; S. C. Giselle, «Laboratorio virtual y remoto, aprendiendo a través de la experimentación, » Universidad Tecnológica Nacional, 2017.; Heradio, R. et al. Virtual and remote labs in education: A bibliometric analysis. Computers & Education, Volume 98, 2016, Pages 14-3.; Unai H.J.; Javier G. Zubia. Remote measurement and instrumentation laboratory for training in real analog electronic experiments. Measurement, Volume 82, 2016, Pages 123-134.; B.R. Poorna chandra, K.P. Geevarghese, K.V. Gangadharan. Design and Implementation of Remote Mechatronics Laboratory for e-Learning Using LabVIEW and Smartphone and Cross-platform Communication Toolkit (SCCT), Procedia Technology, Volume 14, 2014, Pages 108-115.; Van Wylen, G. J.; Sonntag, R. E. Fundamentals of Classical Thermodynamics. Ed. John Wiley & Sons: Singapore, 3ra. edición, 1985.; Petrescu, R. V. V., Aversa, R., Apicella, A., Mirsayar, M., Kozaitis, S., Abu-Lebdeh, T. y Tiberiu Petrescu, F. I. (2017). The Inverse Kinematics of the Plane System 2-3 in a Mechatronic MP2R System, by a Trigonometric Method. Journal of Mechatronics and Robotics, 1(2), 75–87. https://doi.org/10.3844/jmrsp.2017.75.87.; Y Sethi, S. P., Sriskandarajah, C., Sorger, G., Blazewicz, J. y Kubiak, W. (1992). Sequencing of parts and robot moves in a robotic cell. International Journal of Flexible Manufacturing Systems, 4(3-4), 331–358. https://doi.org/10.1007/bf01324886.; Blazewicz, J., Eiselt, H.A., Finke, G., Laporte, G., Weglarz, J., 1991. Scheduling tasks and vehicles in a flexible manufacturing system. International Journal of Flexible Manufacturing Systems 4, 5–16.; Deuerlein, C., Müller, F., Seßner, J., Heß, P., & Franke, J. (2021). Improved design flexibility of open robot cells through tool-center-point monitoring. Procedia CIRP, 100, 295–300. https://doi.org/10.1016/j.procir.2021.05.069.; Veiga, G., Pires, J. N. y Nilsson, K. (2009). Experiments with service-oriented architectures for industrial robotic cells programming. Robotics and Computer-Integrated Manufacturing, 25(4-5), 746– 755. https://doi.org/10.1016/j.rcim.2008.09.001.; Zhao, Q., Sun, M., Cui, M., Yu, J., Qin, Y., & Zhao, X. (2015). Robotic Cell Rotation Based on the Minimum Rotation Force. IEEE Transactions on Automation Science and Engineering, 12(4), 1504– 1515. https://doi.org/10.1109/tase.2014.2360220.; G. Michalos, S. Makris, P. Tsarouchi, T. Guasch, D. Kontovrakis, G. Chryssolouris, Design Considerations for Safe Human-robot Collaborative Workplaces, in: Understanding the life cycle implications of manufacturing, 2015, pp. 248–253.; E. Magrini, F. Ferraguti, A.J. Ronga, F. Pini, A. de Luca, F. Leali, Human-robot coexistence and interaction in open industrial cells, in: Journal of Robotics and Computer-Integrated Manufacturing, 2019, p. 101846.; datasheet PCA9685PW. (2009, 16 de julio). DigChip IC database.; Zamora Navarro, F. J., & Valiente Cristancho, A. (2015). Tasa de muestreo ADC en microcontroladores avanzados de 8 bits. Visión electrónica, 9(1), 128-138. https://doi.org/10.14483/22484728.11022.; García-Guerrero, E., Inzunza-González, E., López-Bonilla, O., Cárdenas-Valdez, J., & TleloCuautle, E. (2020). Randomness improvement of chaotic maps for image encryption in a wireless communication scheme using PIC-microcontroller via Zigbee channels. Chaos, Solitons & Fractals, 133, 109646. https://doi.org/10.1016/j.chaos.2020.109646.; I2C - Puerto, Introducción, trama y protocolo - HETPRO/TUTORIALES. (s. f.). HETPRO/TUTORIALES. https://hetpro-store.com/TUTORIALES/i2c/.; Z. Boric and B. Markovic, "The talking thermometer simulator based on the DS1820 sensor and PIC18F45K22 microcontroller," 2012 20th Telecommunications Forum (TELFOR), 2012, pp. 544-547, doi:10.1109/TELFOR.2012.6419268.; Corke, P. I. (1996). A robotics toolbox for MATLAB. IEEE Robotics and Automation Magazine, 3(1), 24–32. https://doi.org/10.1109/100.486658.; Y. Fang and X. Chen, "Design and Simulation of UART Serial Communication Module Based on VHDL," 2011 3rd International Workshop on Intelligent Systems and Applications, 2011, pp. 1-4, doi:10.1109/ISA.2011.5873448.; Calderón Acero, J., & Parra Garzón, I. V. (2010). Controladores difusos en microcontroladores: software para diseño e implementación. Visión electrónica, 4(2), 64-76. https://doi.org/10.14483/22484728.273.; D’Souza, A., Vijayakumar, S., & Schaal, S. (2001). Learning inverse kinematics. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium (Cat. No.01CH37180). Published. https://doi.org/10.1109/iros.2001.973374.; R. Junge, B. König, M. Villarroel, T. Komives, and M. H. Jijakli, “Strategic points in aquaponics,” Water (Switzerland). 2017, doi:10.3390/w9030182.; C. Maucieri et al., “Life cycle assessment of a micro aquaponic system for educational purposes built using recovered material,” J. Clean. Prod., vol. 172, pp. 3119–3127, 2018, doi: https://doi.org/10.1016/j.jclepro.2017.11.097.; B. König, J. Janker, T. Reinhardt, M. Villarroel, and R. Junge, “Analysis of aquaponics as an emerging technological innovation system,” J. Clean. Prod., 2018, doi:10.1016/j.jclepro.2018.01.037.; Z. Hu, J. W. Lee, K. Chandran, S. Kim, A. C. Brotto, and S. K. Khanal, “Effect of plant species on nitrogen recovery in aquaponics,” Bioresour. Technol., vol. 188, pp. 92–98, 2015, doi: https://doi.org/10.1016/j.biortech.2015.01.013.; W. Kloas et al., “A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts,” Aquac. Environ. Interact., 2015, doi:10.3354/aei00146.; C. Maucieri et al., “Life cycle assessment of a micro aquaponic system for educational purposes built using recovered material,” J. Clean. Prod., 2018, doi:10.1016/j.jclepro.2017.11.097.; Y. Wei, W. Li, D. An, D. Li, Y. Jiao, and Q. Wei, “Equipment and Intelligent Control System in Aquaponics: A Review,” IEEE Access. 2019, doi:10.1109/ACCESS.2019.2953491.; Z. M. Gichana, D. Liti, H. Waidbacher, W. Zollitsch, S. Drexler, and J. Waikibia, “Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation,” Aquaculture International. 2018, doi:10.1007/s10499-018-0303-x.; W. A. Lennard and B. V. Leonard, “A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic test system,” Aquac. Int., 2006, doi:10.1007/s10499-006-9053-2.; I. Pinheiro et al., “Aquaponic production of Sarcocornia ambigua and Pacific white shrimp in biofloc system at different salinities,” Aquaculture, 2020, doi:10.1016/j.aquaculture.2019.734918.; Z. Schmautz et al., “Tomato productivity and quality in aquaponics: Comparison of three hydroponic methods,” Water (Switzerland), 2016, doi:10.3390/w8110533.; J. Dalsgaard, I. Lund, R. Thorarinsdottir, A. Drengstig, K. Arvonen, and P. B. Pedersen, “Farming different species in RAS in Nordic countries: Current status and future perspectives,” Aquac. Eng., vol. 53, pp. 2–13, 2013, doi: https://doi.org/10.1016/j.aquaeng.2012.11.008.; J. Suhl et al., Prospects and challenges of double recirculating aquaponic systems (DRAPS) for intensive plant production, vol. 1227. 2018.; H. R. Roosta and M. Hamidpour, “Effects of foliar application of some macro- and micronutrients on tomato plants in aquaponic and hydroponic systems,” Sci. Hortic. (Amsterdam)., vol. 129, no. 3, pp. 396–402, 2011, doi: https://doi.org/10.1016/j.scienta.2011.04.006.; Y. Fang et al., “Improving nitrogen utilization efficiency of aquaponics by introducing algalbacterial consortia,” Bioresour. Technol., vol. 245, pp. 358–364, 2017, doi: https://doi.org/10.1016/j.biortech.2017.08.116.; B. S. Cerozi and K. Fitzsimmons, “Phosphorus dynamics modeling and mass balance in an aquaponics system,” Agric. Syst., vol. 153, pp. 94–100, 2017, doi: https://doi.org/10.1016/j.agsy.2017.01.020.; D. Karimanzira, K. J. Keesman, W. Kloas, D. Baganz, and T. Rauschenbach, “Dynamic modeling of the INAPRO aquaponic system,” Aquac. Eng., vol. 75, pp. 29–45, 2016, doi: https://doi.org/10.1016/j.aquaeng.2016.10.004.; C. Lee and Y.-J. Wang, “Development of a cloud-based IoT monitoring system for Fish metabolism and activity in aquaponics,” Aquac. Eng., vol. 90, p. 102067, 2020, doi: https://doi.org/10.1016/j.aquaeng.2020.102067.; M. Manju, V. Karthik, S. Hariharan, and B. Sreekar, “Real time monitoring of the environmental parameters of an aquaponic system based on internet of things,” 2017, doi:10.1109/ICONSTEM.2017.8261342.; A. R. Yanes, P. Martinez, and R. Ahmad, “Towards automated aquaponics: A review on monitoring, IoT, and smart systems,” Journal of Cleaner Production. 2020, doi:10.1016/j.jclepro.2020.121571.; K. S. Khan, R. Kunz, J. Kleijnen, and G. Antes, “Five steps to conducting a systematic review,” J. R. Soc. Med., vol. 96, no. 3, pp. 118–121, 2003, doi:10.1258/jrsm.96.3.118.; M. Petticrew, “Petticrew_2001_Myths_Misconceptions,” vol. 322, no. January, 2001.; J. Mori and R. Smith, “Transmission of waterborne fish and plant pathogens in aquaponics and their control with physical disinfection and filtration: A systematized review,” Aquaculture. 2019, doi:10.1016/j.aquaculture.2019.02.009.; A. S. Oladimeji, S. O. Olufeagba, V. O. Ayuba, S. G. Sololmon, and V. T. Okomoda, “Effects of different growth media on water quality and plant yield in a catfish-pumpkin aquaponics system,” J. King Saud Univ. - Sci., vol. 32, no. 1, pp. 60–66, 2020, doi:10.1016/j.jksus.2018.02.001.; M. N. Mamatha and S. N. Namratha, “Design & implementation of indoor farming using automated aquaponics system,” 2017, doi:10.1109/ICSTM.2017.8089192.; P. Boonrawd, S. Nuchitprasitchai, and Y. Nilsiam, “Aquaponics Systems Using Internet of Things,” 2020, doi:10.1007/978-3-030-44044-2_5.; R. Calone et al., “Improving water management in European catfish recirculating aquaculture systems through catfish-lettuce aquaponics,” Sci. Total Environ., vol. 687, pp. 759–767, 2019, doi: https://doi.org/10.1016/j.scitotenv.2019.06.167.; J. P. Mandap et al., “Oxygen Monitoring and Control System Using Raspberry Pi as Network Backbone,” TENCON 2018 - 2018 IEEE Reg. 10 Conf., no. October, pp. 1381–1386, 2018.; S. E. Wortman, “Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system,” Sci. Hortic. (Amsterdam)., vol. 194, pp. 34–42, 2015, doi: https://doi.org/10.1016/j.scienta.2015.07.045.; S. Y. Choi and A. M. Kim, “Development of indoor aquaponics control system using a computational thinking-based convergence instructional model,” Univers. J. Educ. Res., 2019, doi:10.13189/ujer.2019.071509.; S. Goddek and O. Körner, “A fully integrated simulation model of multi-loop aquaponics: A case study for system sizing in different environments,” Agric. Syst., 2019, doi:10.1016/j.agsy.2019.01.010.; W. Vernandhes, N. S. Salahuddin, A. Kowanda, and S. P. Sari, “Smart aquaponic with monitoring and control system based on IoT,” Proc. 2nd Int. Conf. Informatics Comput. ICIC 2017, vol. 2018-Janua, pp. 1–6, 2018, doi:10.1109/IAC.2017.8280590.; D. Karimanzira and T. Rauschenbach, “Enhancing aquaponics management with IoT-based Predictive Analytics for efficient information utilization,” Inf. Process. Agric., vol. 6, no. 3, pp. 375– 385, 2019, doi: https://doi.org/10.1016/j.inpa.2018.12.003.; A. M. Nagayo, C. Mendoza, E. Vega, R. K. S. Al Izki, and R. S. Jamisola, “An automated solar-powered aquaponics system towards agricultural sustainability in the Sultanate of Oman,” 2017 IEEE Int. Conf. Smart Grid Smart Cities, ICSGSC 2017, pp. 42–49, 2017, doi:10.1109/ICSGSC.2017.8038547.; D. Pantazi, S. Dinu, and S. Voinea, “The smart aquaponics greenhouse – an interdisciplinary educational laboratory,” Rom. Reports Phys., 2019.; A. Tumbaco y B. Daniela, «Optimización del proceso productivo para incrementar la Utilidad en Mundo Verde, » Universidad de Guayaquil Facultad de Ciencias Administrativas, Guayaquil, Ecuador, 2017.; J. Montero y S. Cecilia, «Invernadero para la, » Institut de Recerca i Tecnología Agroalimentaries de Cabrils, España, 2008.; G. Ramón y F. Rodríguez, «Algoritmo De Navegación Reactiva De Robots, » Universidad de Almería, España, 2015.; K. Yingchun y S. Yue, «A Greenhouse Temperature and Humidity Controller Based on MIMO Fuzzy System, » International Conference on Intelligent System Design and Engineering Application, nº 1, pp. 35-39, 2010.; S. A. Giraldo, R. C. Castaño, C. Flesch y J. E. Normey-Rico, «Multivariable Greenhouse Control Using the Filtered Smith Predictor, » Journal of Control, Automation and Electrical Systems, vol. 27, nº 4, pp. 349-358, 2016.; M. Heidari, «Climate Control of An Agricultural Greenhouse by Using Fuzzy Logic SelfTuning PID Approach, » Proceedings of the 23rd International Conference on Automation & Computing, University of Huddersfield, 2017.; J. G. Jurado, «diseño de sistemas de control multivariable por desacoplo con controladores PID, » madrid, 2012.; M. Ajit K, Introduction to Control Engineering Modeling, Analysis and Desing, NEW AGE INTERNATIONAL PUBLISHERS, 2006.; M. G. Martínez, «Síntesis de controladores robustos mediante el análisis de la compatibilidad de especificaciones e incertidumbre, » Tesis de Grado- Universidad Pública de Navarra, 2001.; C. H. Houpis, S. N. Sheldon y J. J. D’Azzo, Linear Control System Analysis and Design: Fifth Edition, London: Revised and Expanded., 2003.; J. Elso, M. G. Martínez y M. Garcia-Sanz, «Quantitative Feedback Control for Multivariable Model Matching and Disturbance Rejection, » International Journal of Robust and Nonlinear Control, vol. 1, nº 27, pp. 121-134, 2017.; M. Gil-Martínez y M. García-Sanz, «Simultaneous meeting of robust control specifications in QFT, » International Journal of Robust and Nonlinear Control, vol. 7, nº 13, p. 643–656., 2003.; Y. Chait y O. Yaniv, «Multi-Input/Single-Output Computer-Aided Control Design Using the Quantitative Feedback Theory, » International Journal of Robust and Nonlinear Control, vol. 1, nº 3, pp. 47-54, 1993; Z. Hu, W. Wan and K. Harada, "Designing a Mechanical Tool for Robots With Two-Finger Parallel Grippers," in IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2981-2988, July 2019, doi:10.1109/LRA.2019.2924129.; L. Berscheid, T. Rühr and T. Kröger, "Improving Data Efficiency of Self-supervised Learning for Robotic Grasping," 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 2125-2131, doi:10.1109/ICRA.2019.8793952.; Y. Domae, A. Noda, T. Nagatani and W. Wan, "Robotic General Parts Feeder: Bin-picking, Regrasping, and Kitting," 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 5004-5010, doi:10.1109/ICRA40945.2020.9197056.; J. H. Sanchez, W. Amanhoud, A. Billard and M. Bouri, "Foot Control of a Surgical Laparoscopic Gripper via 5DoF Haptic Robotic Platform: Design, Dynamics and Haptic Shared Control," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 1255912566, doi:10.1109/ICRA48506.2021.9561887.; S. Ainetter and F. Fraundorfer, "End-to-end Trainable Deep Neural Network for Robotic Grasp Detection and Semantic Segmentation from RGB," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 13452-13458, doi:10.1109/ICRA48506.2021.9561398.; S. K. Rajput, A. Kaushal, R. K. Singh and A. K. Sharma, "A Study and Fabrication of SMA based 3D Printed Adaptive Gripper," 2021 Smart Technologies, Communication and Robotics (STCR), 2021, pp. 1-5, doi:10.1109/STCR51658.2021.9588838.; C. Son and S. Kim, "A Shape Memory Polymer Adhesive Gripper For Pick-and-Place Applications," 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 10010-10016, doi:10.1109/ICRA40945.2020.9197511.; S. D. Liyanage, A. M. Mazid and P. Dzitac, "An Innovative Whisker Tactile Sensor for Intelligent Robotic Grasping," IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, 2021, pp. 1-6, doi:10.1109/IECON48115.2021.9589765.; T. V. Prabhu, P. V. Manivannan, D. Roy and Yathishkumar, "A robust tactile sensor matrix for intelligent grasping of objects using robotic grippers," 2021 International Symposium of Asian Control Association on Intelligent Robotics and Industrial Automation (IRIA), 2021, pp. 400-405, doi:10.1109/IRIA53009.2021.9588669.; G. Hwang, J. Park, D. S. D. Cortes, K. Hyeon and K. -U. Kyung, "Electroadhesion-Based High-Payload Soft Gripper With Mechanically Strengthened Structure," in IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 642-651, Jan. 2022, doi:10.1109/TIE.2021.3053887.; J. Guo, J. -H. Low, X. Liang, J. S. Lee, Y. -R. Wong and R. C. H. Yeow, "A Hybrid Soft Robotic Surgical Gripper System for Delicate Nerve Manipulation in Digital Nerve Repair Surgery," in IEEE/ASME Transactions on Mechatronics, vol. 24, no. 4, pp. 1440-1451, Aug. 2019, doi:10.1109/TMECH.2019.2924518.; C.I. Basson, G. Bright y A.J. Walker. “Testing flexible grippers for geometric and surface grasping conformity in reconfigurable assembly systems.” En: South African Journal of Industrial Engineering 29.1 (2018), pags. 128 -142. ISSN: 2224-7890.; Festo AG & Co.KG. “MultiChoiceGripper”. En: Variable gripping based on human hand (2018).; https://ultimaker.com/es/software/ultimaker-cura, consultado Noviembre de 2021.; IFR, “Definition of Industrial Robot.” [Online]. Available: https://ifr.org/industrial-robots. [Accessed: 15-Sep-2021].; A. A. Malik and A. Bilberg, “Collaborative robots in assembly: A practical approach for tasks distribution,” Procedia CIRP, vol. 81, pp. 665–670, Jan. 2019.; P. Andhare and S. Rawat, “Pick and place industrial robot controller with computer vision,” Proc. - 2nd Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2016, Feb. 2017.; J. Iqbal, Z. H. Khan, and A. Khalid, “Prospects of robotics in food industry,” Food Sci. Technol., vol. 37, no. 2, pp. 159–165, May 2017.; K. H. Tantawi, A. Sokolov, and O. Tantawi, “Advances in Industrial Robotics: From Industry 3.0 Automation to Industry 4.0 Collaboration,” TIMES-iCON 2019 - 2019 4th Technol. Innov. Manag. Eng. Sci. Int. Conf., Dec. 2019.; J. J. Vaca González, C. A. Peña Caro, and H. Vacca González, “Cinemática inversa de robot serial utilizando algoritmo genético basado en MCDS,” Rev. Tecnura, vol. 19, no. 44, p. 33, Apr. 2015.; O. A. Vivas Alban, M. F. Piamba Mamián, and Y. E. Otaya Bravo, “Diseño y construcción de una interfaz háptica de seis grados de libertad,” Tecnura, vol. 21, no. 54, pp. 33–40, Oct. 2017.; C. Ma, Y. Zhang, J. Cheng, B. Wang, and Q. Zhao, “Inverse kinematics solution for 6R serial manipulator based on RBF neural network,” Int. Conf. Adv. Mechatron. Syst. ICAMechS, vol. 0, pp. 350–355, Jul. 2016.; V. Noppeney, T. Boaventura, and A. Siqueira, “Task-space impedance control of a parallel Delta robot using dual quaternions and a neural network,” J. Brazilian Soc. Mech. Sci. Eng. 2021 439, vol. 43, no. 9, pp. 1–11, Aug. 2021.; M. Meghana et al., “Hand gesture recognition and voice-controlled robot,” Mater. Today Proc., vol. 33, pp. 4121–4123, Jan. 2020.; P. M. Reddy, S. P. Kalyan Reddy, G. R. Sai Karthik, and B. K. Priya, “Intuitive Voice Controlled Robot for Obstacle, Smoke and Fire Detection for Physically Challenged People,” Proc. 4th Int. Conf. Trends Electron. Informatics, ICOEI 2020, pp. 763–767, Jun. 2020.; G. Y. Luo, M. Y. Cheng, and C. L. Chiang, “Vision-based 3-D object pick-And-place tasks of industrial manipulator,” 2017 Int. Autom. Control Conf. CACS 2017, vol. 2017-November, pp. 1–7, Feb. 2018.; M. Zhao, Y. Peng, L. Li, and X. Qiao, “Detection and classification manipulator system for apple based on machine vision and optical technology,” ASABE 2020 Annu. Int. Meet., pp. 1-, 2020.; Annoni, Federico. 2000. “Sistemas de Sujecion y Soporte.” Journal of Petrology 369(1): 1689– 99. http://dx.doi.org/10.1016/j.jsames.2011.03.003%0Ahttps://doi.org/10.1016/j.gr.2017.08.001%0Ahtt p://dx.doi.org/10.1016/j.precamres.2014.12.018%0Ahttp://dx.doi.org/10.1016/j.precamres.2011.08. 005%0Ahttp://dx.doi.org/10.1080/00206814.2014.902757%0Ahttp://dx.“FT-TMH06.Pdf.”; Garzón, Yamid. 2020. “Sensores y Actuadores Introducción:” (2014): 1–32.; Hidai-go, Alfonso. 1987. “Construccion de Un Dinamometro Para Medir Fuerzas de Corte En La Operacion de Taladro.” Corporacion universitaria autonoma de occidente, programa de ingenieria.; Karabay, Sedat. 2007. “Analysis of Drill Dynamometer with Octagonal Ring Type Transducers for Monitoring of Cutting Forces in Drilling and Allied Process.” Materials and Design 28(2): 673–85.; Mohanraj, T., S. Shankar, R. Rajasekar, and M. S. Uddin. 2020. “Design, Development, Calibration, and Testing of Indigenously Developed Strain Gauge Based Dynamometer for Cutting Force Measurement in the Milling Process.” Journal of Mechanical Engineering and Sciences 14(2): 6594–6609.; Norton, Robert L. 2006. Diseño de Máquinas.; Ramírez, Luis Pablo. 2011. “Diseño De Un Dinamómetro Mediante El Método De Los Elementos Finitos.” Tendencias en Tecnología de Medición de Fuerza (6360).; Schmid, S Kalpakjian S R. 2002. ManufacturA, INGENIERÍA Y TecNOLOGÍA.; Setiyawan. 2013. 53 Journal of Chemical Information and Modeling Fundamentos de Manufactura Moderna 3edi Groover.; Morral, P. Metalurgía General, p. 1163, en Google Libros 2004.; Metalurgia general. II - F. R. Morral, P. Molera - Google Libros; Tecnitool. 2020. “DIFERENCIAS ENTRE LAS BROCAS DE TITANIO Y LAS DE COBALTO”. Diferencias entre broca acero rápido HSS con titanio y/o cobalto (tecnitool.es) demaquinasyherramientas1. 2010. “Partes de la broca”. De máquinas y herramientas. USAPartes Broca %7C De Máquinas y Herramientas (demaquinasyherramientas.com).; Esquivel R. 2017. “DISTINTOS TIPOS DE BROCAS PARA DISTINTOS TIPOS DE PROFESIONALES”. Revista Ferrepat. Distintos tipos de brocas para distintos tipos de profesionales (ferrepat.com).; Ingenieria mecánica y automotriz. 2020. “Qué es el Coeficiente de Poisson y cómo se calcula?”; ] Estudiantes metalografia. 2010. “Diagramas esfuerzo-deformación unitaria, convencional y real, para un material dúctil (acero) (no de escala)”. Universidad Tecnológica de Pereira.; Diagramas esfuerzo-deformación unitaria, convencional y real, para un material dúctil (acero) (no de escala) %7C METALOGRAFÍA – UNIVERSIDAD TECNOLÓGICA DE PEREIRA (utp.edu.co).; O. Herrera, A. Quino, B. Cabrera, “Control de cortinas”, noviembre 2021. [En línea]. Disponible en http://micro2verano2012.blogspot.com/2012/03/control-de-cortinas.html.; Fuenteelectronica.es, “Fotocelda – Control de dispositivos con la luz”, noviembre 2017. [En línea]. Disponible en: https://tuelectronica.es/fotocelda-control-de-dispositivos-con-la-luz/ [3] Electronicathidos, “Fotoresistencia LDR 5mm, 2 Mohms”, noviembre 2021. [En línea]. Disponible en: https://electronicathido.com/detallesProducto.php?id=MkxldEdPZ3AwbjNMUEV3aWdXb0pSdz09.; Real Academia Española,”Relé”, noviembre 2021.[En línea]. Disponible en: https://dle.rae.es/rel%C3%A9.; A.Perez-Paris,”RELÉS ELECTROMAGNÉTICOS Y ELECTRÓNICOS”, noviembre 2021 En línea]. Disponible en: http://www.vivatacademia.net/index.php/vivat/article/view/373/689.; Electro Club Didactic,”Potenciómetros (teoría y practica)”, noviembre 2021.[En línea]. Disponible en: http://www.electroclub.com.mx/2015/08/potenciometros-teoria-y-practica.html.; Chabonnier,”Potenciómetros”, noviembre 2021.[En línea]. Disponible en: https://deresistencias.com/wp-content/uploads/2020/08/Diagrama-en-blanco-64-1.png.; Pascual,J ,”Este gadget convierte tus viejas cortinas en cortinas inteligentes controladas con el móvil”,noviembre 2021 .[En línea]. Disponible en: https://computerhoy.com/noticias/life/gadgetconvierte-viejas-cortinas-cortinas-inteligentes-controladas-movil-516887.; Tecnología a tu alcance ,”¿Cómo hacer un circuito de apertura y cierre de cortinas?”,noviembre de 2021 .[En línea]. Disponible en: https://latecnologiaatualcance.com/como-hacer-un-circuito-deapertura-y-cierre-de-cortinas/.; Ruales.A ,”Diseño de puente Wheatstone para una fotoresistencia.”,noviembre de 2021.[En línea]. Disponible en: https://www.youtube.com/watch?v=Vz_6vPjn4Bo.; Figueiras.T ,”Cómo convertir el MOVIMIENTO ROTATORIO de un Motor en un MOVIMIENTO LINEAL”,noviembre de 2021 .[En línea]. Disponible en: https://youtu.be/WynJqz-hibA.; OMS, “Inocuidad de los alimentos”, 30/04 de 2020, [online]. Available at: https://www.who.int/es/news-room/fact-sheets/detail/food-safety.; Minsalud,” Enfermedades transmitidas por alimentos disminuyeron en 2020”,14/08/2020, [online]. Available at: https://www.minsalud.gov.co/Paginas/Enfermedades%20transmitidas%20por%20alimento s%20disminuyeron%20en%202020.aspx.; BES (Boletín Epidemiológico Semanal), “Vigilancia de brotes de enfermedades transmitidas por alimentos, Colombia, semana epidemiológica 31 de 2020”, 26/07 de 2020, [online]. Available at: https://www.ins.gov.co/buscador eventos/BoletinEpidemiologico/2020_Boletin_epidemiologico_semana_31.pdf.; BES (Boletín Epidemiológico Semanal),” Las enfermedades transmitidas por Alimentos-ETA”,23/12 de 2018, [online]. Available at: https://www.ins.gov.co/buscador eventos/boletinepidemiologico/2018%20bolet%C3%ADn%20epidemiol%C3%B3gico%20s emana%2052.pdf.; FAO, FIDA y PMA, Seguimiento de la seguridad alimentaria y la nutrición en apoyo de la Agenda 2030 para el Desarrollo Sostenible: Balance y perspectivas, 2016. [Online]. Available at: https://www.fao.org/3/i6188s/i6188s.pdf.; Ministerio de salud, Calidad e inocuidad de alimentos,15 de noviembre de 2021. [Online]. Available at: www.minsalud.gov.co/salud/Paginas/inocuidad-alimentos.aspx.; David K. Lewis,Method and apparatus for washing fruits and vegetables,2009. [Online]. Available at: patents.google.com/patent/US8293025B2/en?q=A23N12%2f02&oq=A23N12%2f02.; Garcia Portillo, M., 2015. Google Patents. [online] Patents.google.com. Available at: patents.google.com/patent/ES2544005A1/es?assignee=TECNIDEX&oq=TECNIDEX.; Di Pannini, H., 2011. Google Patents. [online] Patents.google.com. Available at:; J Goodale, R., 1975. US3880068A - Apparatus for washing and blanching of vegetables - Google Patents. [online] Patents.google.com. Available at: .; A Tiby, G., 1969. US3456659A - Apparatus for treating food articles - Google Patents. [online] Patents.google.com. Available at: .; Who.int, 2020.-"Inocuidad de los alimentos"-, [Online]. Available: .; Ministerio de salud, ABECÉ de la inocuidad de alimentos, 2017. [Online]. Available at: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/abc inocuidad.pdf.; E. I. Alimentos, Inocuidad alimentaria en América Latina, 2015. [Online]. Available: www.revistaialimentos.com/ediciones/edicion-19/inocuidad-alimentaria-en-america latina/>; Fao.org, CODEXALIMENTARIUS FAO-WHO, 1994 [online] Available at: www.fao.org/fao-who-codexalimentarius/es/> [Accessed 8 July 2021].; Fao.org. n.d. ,“Acerca del Codex %7C CODEXALIMENTARIUS FAO-WHO” ,not date, [online]. Available at: .; AJ Avances,” Normograma del Instituto Nacional de Vigilancia de Medicamentos y Alimentos, INVIMA”, 13 /12 de 2020, [online]. Available at: .; Miquel Mor,”¿aplicas biocidas? Descubre nueva formacion necesaria”, 29/10/2014, [online] Available at: .; LA VERDAD MULTIMEDIA, S.A,”Descontaminación superficial de alimentos que aumenta su vida útil”, 16/01 /2017,[online] Available at: .; Dirección Regional de Inocuidad de los Alimentos,”Guía para uso de cloro en desinfección de frutas y hortalizas de consumo fresco, equipos y superficies en establecimientos ”, 15/05/2019, [online] Available at:; Equipos, M., n.d. TRANSPORTADOR DE TORNILLO SIN FIN CHILE – MYP EQUIPOS. [online] Mypequipos.com. Available at: [Accessed 16 November 2021].; Intralogistica, I., 2018. Qué son las bandas transportadoras. [online] Irp intralogistica.com. Available at: [Accessed 16 November 2021].; Motorex. n.d. El uso de la faja transportadora en las industrias - Motorex. [online] Available at: [Accessed 16 November 2021].; Nittacorporation.com. n.d. Bandas transportadoras para alimentos. [online] Available at: .; Indomaxve.com. 2019. Conoce los tipos de Mangueras industriales que existen. [online] Available at: .; Blog de Ventageneradores. 2016. Tipos de Motobombas o Bombas de Agua: según tipos de aguas, caudal o presión. [online] Available at: .; GTE. n.d. Apuntes SEC. UIB. [online] Available at: .; Gecousb.com.ve. n.d. Motores 1LA7. [online] Available at: .; Appinventor.mit.edu. 2012. About Us. [online] Available at: .; Irdmailp.com. n.d. 37mm DC 12V Motor de Reducción de Velocidad Caja de Engranajes de Alta Fuerza de Tensión Motor Reductor de Velocidad 3.5/15/30/70RPM(70RPM). [online] Available at: .; López, S., 2020. Qué es Firebase: funcionalidades, ventajas y conclusiones. [online] DIGITAL55. Available at: .; Y. Rojas, K. Aguado, and I. González, “La nanomedicina y los sistemas de liberación de fármacos: ¿la (r)evolución de la terapia contra el cáncer?,” Educ. Quim., vol. 27, no. 4, pp. 286–291, 2016.; R. R. Wakaskar, “General overview of lipid–polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes,” J. Drug Target., vol. 26, no. 4, pp. 311–318, 2018.; B. Alfonso and C. Casado, “DENDRÍMEROS: MACROMOLÉCULAS VERSÁTILES CON INTERÉS INTERDISCIPLINAR,” J. Chem. Inf. Model., vol. 01, no. 01, pp. 1689–1699, 2016.; B. Haley and E. Frenkel, “Nanoparticles for drug delivery in cancer treatment,” Urol. Oncol. Semin. Orig. Investig., vol. 26, no. 1, pp. 57–64, 2008.; M. C. Urrejola et al., “Sistemas de Np Poliméricas II: Estructura, Métodos de Elaboración, Características, Propiedades, Biofuncionalización y Tecnologías de Auto-Ensamblaje Capa por Capa (Layer-by-Layer Self-Assembly),” Int. J. Morphol., vol. 36, no. 4, pp. 1463–1471, 2018.; F. Chávez, B. I. Olvera, A. Ganem, and D. Quintanar, “Liberación de sustancias lipofílicas a partir de nanocápsulas poliméricas,” J. Mex. Chem. Soc., vol. 46, no. 4, pp. 349–356, 2002.; Z. M. Avval et al., “Introduction of magnetic and supermagnetic nanoparticles in new approach of targeting drug delivery and cancer therapy application,” Drug Metab. Rev., vol. 52, no. 1, pp. 157–184, 2020.; L. Mohammed, H. G. Gomaa, D. Ragab, and J. Zhu, “Magnetic nanoparticles for environmental and biomedical applications: A review,” Particuology, vol. 30, pp. 1–14, 2017.; A. S. Lübbe et al., “Clinical experiences with magnetic drug targeting: A phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors,” Cancer Res., vol. 56, no. 20, pp. 4686– 4693, 1996.; H. D. Liu, W. Xu, S. G. Wang, and Z. J. Ke, “Hydrodynamic modeling of ferrofluid flow in magnetic targeting drug delivery,” Appl. Math. Mech. (English Ed., vol. 29, no. 10, pp. 1341–1349, 2008.; G. Zhang et al., “Oxygen-enriched Fe3O4/Gd2O3 nanopeanuts for tumor-targeting MRI and ROS-triggered dual-modal cancer therapy through platinum (IV) prodrugs delivery,” Chem. Eng. J., vol. 388, no. February, p. 124269, 2020.; S. Tong, H. Zhu, and G. Bao, “Magnetic iron oxide nanoparticles for disease detection and therapy,” Mater. Today, vol. 31, no. December, pp. 86–99, 2019.; M. Sosa, J. J. B. Alvarado, and J. L. Gonz, “Tecnicas biomagneticas y su comparacion con los metodos bioelectricos,” vol. 48, no. 5, pp. 490–500, 2002.; S. Bose and M. Banerjee, “Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling,” J. Magn. Magn. Mater., vol. 385, pp. 32–46, 2015.; M. Bartoszek and Z. Drzazga; “A study of magnetic anisotropy of blood cells,” vol. 197, pp. 573–575, 1999.; Y. Haik, V. Pai, and C. J. Chen, “Development of magnetic device for cell separation,” J. Magn. Magn. Mater., vol. 194, no. 1, pp. 254–261, 1999.; Z. Liu, Y. Zhu, R. R. Rao, J. R. Clausen, and C. K. Aidun, “Nanoparticle transport in cellular blood flow,” Comput. Fluids, vol. 172, pp. 609–620, 2018.; S. Y. Lee, M. Ferrari, and P. Decuzzi, “Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows,” Nanotechnology, vol. 20, no. 49, 2009.; G. A. Duncan and M. A. Bevan, “Computational design of nanoparticle drug delivery systems for selective targeting,” Nanoscale, vol. 7, no. 37, pp. 15332–15340, 2015.; K. Müller, D. A. Fedosov, and G. Gompper, “Margination of micro- and nano-particles in blood flow and its effect on drug delivery,” Sci. Rep., vol. 4, pp. 1–8, 2014.; Y. Haik, V. Pai, and C. J. Chen, “Apparent viscosity of human blood in a high static magnetic field,” J. Magn. Magn. Mater., vol. 225, no. 1–2, pp. 180–186, 2001.; S. Afkhami and Y. Renardy, “Ferrofluids and magnetically guided superparamagnetic particles in flows: a review of simulations and modeling,” J. Eng. Math., vol. 107, no. 1, pp. 231–251, 2017.; I. Rukshin, J. Mohrenweiser, P. Yue, and S. Afkhami, “Modeling superparamagnetic particles in blood flow for applications in magnetic drug targeting,” Fluids, vol. 2, no. 2, pp. 1–12, 2017.; M. O. Avilés, A. D. Ebner, H. Chen, A. J. Rosengart, M. D. Kaminski, and J. A. Ritter, “Theoretical analysis of a transdermal ferromagnetic implant for retention of magnetic drug carrier particles,” J. Magn. Magn. Mater., vol. 293, no. 1, pp. 605–615, 2005.; A. Hajiaghajani, S. Hashemi, and A. Abdolali, “Adaptable setups for magnetic drug targeting in human muscular arteries: Design and implementation,” J. Magn. Magn. Mater., vol. 438, pp. 173– 180, 2017.; V. R. Sharma, A. K. Sharma, V. Punj, and P. Priya, “Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: A focus on breast cancer,” Semin. Cancer Biol., vol. 59, no. July 2019, pp. 133–146, 2019.; M. E. Miller, Human Diseases and Yeast.Pdf, First edit. New York: Momentum Press Health, 2018.; A. S. Lübbe, C. Bergemann, W. Huhnt, T. Fricke, and H. Riess, “Lübbe1996_Preclinical,” pp. 4694–4701, 1996.; Lübbe., C. Bergemann, J. Brock, and D. G. McClure, “Physiological aspects in magnetic drug-targeting,” J. Magn. Magn. Mater., vol. 194, no. 1, pp. 149–155, 1999.; C. Alexiou et al., “Locoregional cancer treatment with magnetic drug targeting,” Cancer Res., vol. 60, no. 23, pp. 6641–6648, 2000.; C. Alexiou, A. Schmidt, R. Klein, P. Hulin, C. Bergemann, and W. Arnold, “Magnetic drug targeting: Biodistribution and dependency on magnetic field strength,” J. Magn. Magn. Mater., vol. 252, no. 1-3 SPEC. ISS., pp. 363–366, 2002.; K. Gitter and S. Odenbach, “Experimental investigations on a branched tube model in magnetic drug targeting,” J. Magn. Magn. Mater., vol. 323, no. 10, pp. 1413–1416, 2011.; M. G. Krukemeyer, V. Krenn, M. Jakobs, and W. Wagner, “Mitoxantrone-iron oxide biodistribution in blood, tumor, spleen, and liver - Magnetic nanoparticles in cancer treatment,” J. Surg. Res., vol. 175, no. 1, pp. 35–43, 2012.; M. M. Attar et al., “Thermal analysis of magnetic nanoparticle in alternating magnetic field on human HCT-116 colon cancer cell line,” Int. J. Hyperth., vol. 32, no. 8, pp. 858–867, 2016.; R. Eivazzadeh-Keihan, F. Radinekiyan, A. Maleki, M. Salimi Bani, Z. Hajizadeh, and S. Asgharnasl, “A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy,” Int. J. Biol. Macromol., vol. 140, pp. 407–414, 2019.; S. Shabestari Khiabani, M. Farshbaf, A. Akbarzadeh, and S. Davaran, “Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy,” Artif. Cells, Nanomedicine Biotechnol., vol. 45, no. 1, pp. 6–17, 2017.; K. T. Al-Jamal et al., “Magnetic Drug Targeting: Preclinical in Vivo Studies, Mathematical Modeling, and Extrapolation to Humans,” Nano Lett., vol. 16, no. 9, pp. 5652–5660, 2018.; M. Minbashi, A. A. Kordbacheh, A. Ghobadi, and V. V. Tuchin, “Optimization of power used in liver cancer microwave therapy by injection of Magnetic Nanoparticles (MNPs),” Comput. Biol. Med., vol. 120, no. February, p. 103741, 2020.; A. Nan, M. Suciu, I. Ardelean, M. Şenilă, and R. Turcu, “Characterization of the Nuclear Magnetic Resonance Relaxivity of Gadolinium Functionalized Magnetic Nanoparticles,” Anal. Lett., vol. 0, no. 0, pp. 1–16, 2020.; I. Cicha, S. Lyer, C. Alexiou, and C. D. Garlichs, “Nanomedicine in diagnostics and therapy of cardiovascular diseases: Beyond atherosclerotic plaque imaging,” Nanotechnol. Rev., vol. 2, no. 4, pp. 449–472, 2013.; M. Nahrendorf et al., “Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis,” Circulation, vol. 117, no. 3, pp. 379–387, 2008.; S. Jaimes, A. Gonzáles, C. Granados, D. Álvarez, and E. Espitia, “Redalyc.Nanotecnología: avances y expectativas en cirugía,” Rev. Colomb. Cirugía, vol. 27, pp. 158–166, 2012.; B. Méndez and C. Muñoz, “Nanochips y nanosensores para eldiagnóstico temprano de cáncer oral: una revisión,” no. 67, pp. 131–147, 2012.; D. Rodriguez, J. Moyano, and L. Roa, “Estudio por dinámica molecular browniana de np bajo efectos de Bs externos,” Ing. Mil., vol. 13, no. 9, pp. 90–98, 2018.; J. Gallo and C. Ossa, “Fabricación y caracterización de np de plata con potencial uso en el tratamiento del cáncer de piel,” Ing. y Desarro., vol. 37, no. 1, pp. 88–104, 2019.; J. Pantoja, “np magnéticas en flujo sanguíneo para tratamiento de cáncer,” Universidad Distrital Francisco José de Caldas, 2020.; https://hdl.handle.net/11349/31171; Universidad Distrital Francisco José de Caldas
Dostupnost: https://hdl.handle.net/11349/31171
-
6
Autoři: a další
Přispěvatelé: a další
Témata: Procesamiento de imagenes, Simulación, Energía, Sensores, Sistemas inteligentes, Inteligencia artificial, TIC, Cobertura 5G, Plataformas Web, Procesamiento digital de señales, Prototipos, Automatización, Control, Tecnologías remotas, Bioingeniería -- Congresos, conferencias, etc. -- Memorias, Energía -- Congresos, Sistemas de control inteligente -- Congresos, Procesamiento de señales -- Congresos, Automatización -- Congresos, etc. -- Memoria, Desarrollo de prototipos -- Congresos, Ingeniería biomédica -- Congresos, Tecnologías de la información y de la comunicación -- Congresos, Procesamiento digital de imágenes -- Congresos, Redes neuronales (Computadores) -- Congresos, Matemáticas -- Enseñanza -- Congresos, Inteligencia artificial -- Congresos
Popis souboru: pdf; application/pdf
Relation: H. Y. Vivian-Ip, A. Abrishami, P. W. H. Peng, J. Wong, and F. Chung, “Predictors of Postoperative Pain and Analgesic Consumption: A Qualitative Systematic review”, Anesthesiology, vol. 111, no. 3, pp. 657–677, september 2009. https://doi.org/10.1097/ALN.0b013e3181aae87a.; O. L. Elvir-Lazo and P. F. White, “Postoperative pain management after ambulatory surgery: role of multimodal analgesia”, Anesthesiology Clinics, vol. 28, no. 2, pp. 217–224, june 2010. https://doi.org/10.1016/j.anclin.2010.02.011.; American Academy of Pain Medicine, “Get the facts on pain”. [Online]. Available at:http://www.painmed.org/patientcenter/facts-on-pain/.; P. J. Mathew and J. L. Mathew, “Assessment and management of pain in infants”,Postgraduate Medical Journal, vol. 79, no. 934, pp. 438–43, august 2003. http://dx.doi.org/10.1136/pmj.79.934.438.; M. Clarett, “Escalas de evaluación de dolor y protocolo de analgesia en terapia intensiva”,Clínica y Maternidad Suizo Argentina Instituto Argentino de Diagnóstico y Tratamiento, Buenos Aires, Argentina, 2012.; L. J. Duhn and J. M. Medves, “A systematic integrative review of infant pain assessmenttools”, Advance in Neonatal Care, vol. 4, no. 3, pp. 126–140, june 2004. 10.1016/j.adnc.2004.04.005.; R. Slater, A. Cantarella, L. Franck, J. Meek, and M. Fitzgerald, “How Well Do Clinical PainAssessment Tools Reflect Pain in Infants?” PLoS Medicine, vol. 5, no. 6, p. e129, june 2008. https://doi.org/10.1371/journal.pmed.0050129.; N. C. de Knegt. et al., “Behavioral Pain Indicators in People With Intellectual Disabilities: ASystematic Review”, The Journal of Pain, vol. 14, no. 9, pp. 885–896, september 2013. https://doi.org/10.1016/j.jpain.2013.04.016.; G. Zamzmi. et al., “An approach for automated multimodal analysis of infants’ pain”, in 201623rd International Conference on Pattern Recognition (ICPR), pp. 4148–4153, 2016.; V. Guruswamy, “Assessment of pain in nonverbal children”, Association of PaediatricAnaesthetists of Great Britain and Ireland, vol. APA Leeds, no. 41st Annual Scientific Meeting in Leeds, p. 33, 2014.; Registered Nurses’ Association of Ontario, Assessment and management of pain, vol. 3.Toronto, Canada, 2013.; R. Srouji, S. Ratnapalan, and S. Schneeweiss, “Pain in Children: Assessment andNonpharmacological Management”, International Journal of Pediatrics, july 2010. https://doi.org/10.1155/2010/474838.; K. Brand and A. Al-Rais, “Pain assessment in children”, Anaesthesia and Intensive CareMedicine, vol. 20, no. 6, pp. 314–317, june 2019. https://doi.org/10.1016/j.mpaic.2019.03.003.; D. Freund and B. N. Bolick, “Assessing a Child’s Pain”, AJN, American Journal of Nursing,vol. 119, no. 5, pp. 34–41, may 2019. 10.1097/01.NAJ.0000557888.65961.c6.; M. Pérez, G. A. Cavanzo Nisso, and F. Villavisán Buitrago, “Sistema embebido de detecciónde movimiento mediante visión artificial ", Visión Electrónica, vol. 12, no. 1, pp. 97-101, 2018. https://doi.org/10.14483/22484728.15087.; J. F. Pantoja Benavides, F. N. Giraldo Ramos, Y. S. Rubio Valderrama, and V. M. RojasLara, “Segmentación de imágenes utilizando campos aleatorios de Markov", Visión Electrónica, vol. 4, no. 2, pp. 5-16, 2010. https://doi.org/10.14483/22484728.432.; J. Forero C., C. Bohórquez, and V. H. Ruiz, “Medición automatizada de piezas torneadasusando visión artificial", Visión Electrónica, vol. 7, no. 2, pp. 36-44, 2013. https://doi.org/10.14483/22484728.5507.; S. Brahnam, C.-F. Chuang, R. S. Sexton, and F. Y. Shih, “Machine assessment of neonatalfacial expressions of acute pain”, Decision Support System, vol. 43, no. 4, pp. 1242–1254, august 2007. https://doi.org/10.1016/j.dss.2006.02.004.; A. Beltramini, K. Milojevic, and D. Pateron, “Pain Assessment in Newborns, Infants, andChildren”, Pediatric. Annals, vol. 46, no. 10, pp. e387–e395, october 2017. https://doi.org/10.3928/19382359-20170921-03.; X. Cong, J. M. McGrath, R. M. Cusson, and D. Zhang, “Pain Assessment and Measurementin Neonates: An Ipdated Review”, Advances in Neonatal Care, vol. 13, no. 6, pp. 379–395, december 2013. 10.1097/ANC.0b013e3182a41452.; C. L. von Baeyer and L. J. Spagrud, “Systematic review of observational (behavioral)measures of pain for children and adolescents aged 3 to 18 years”, Pain, vol. 127, no. 1–2, pp. 140–150, january 2007. https://doi.org/10.1016/j.pain.2006.08.014.; J. Zieliński, M. Morawska-Kochman, and T. Zatoński, “Pain assessment and managementin children in the postoperative period: A review of the most commonly used postoperative pain assessment tools, new diagnostic methods and the latest guidelines for postoperative pain therapy in children”, Advances in Clinical and Experimental Medicine, vol. 29, no. 3, pp. 365–374, febrary 2020. 10.17219/acem/112600.; C. Greco and C. Berde, “Pain Management in Children”, Gregory’s Pediatric Anesthesia,Wiley, pp. 929–954, 2020. https://doi.org/10.1002/9781119371533.ch37.; G. Zamzmi, R. Kasturi, D. Goldgof, R. Zhi, T. Ashmeade, and Y. Sun, “A Review ofAutomated Pain Assessment in Infants: Features, Classification Tasks, and Databases,” IEEE Reviews in Biomedical. Engineering, vol. 11, pp. 77–96, noviembre 2017. 10.1109/RBME.2017.2777907.; T. Voepel-Lewis, J. Zanotti, J. A. Dammeyer, and S. Merkel, “Reliability and Validity of theFace, Legs, Activity, Cry, Consolability Behavioral Tool in Assessing Acute Pain in Critically Ill Patients”, American Journal of Critical Care, vol. 19, no. 1, pp. 55–61, january 2010. https://doi.org/10.4037/ajcc2010624.; G. Guillen, “Digital Image Processing with Python and OpenCV”, Sensor Projects withRaspberry Pi, Springer, pp. 97–140, 2019. https://doi.org/10.1007/978-1-4842-5299-4_5.; Momtahina, R. Hossain, M. M. Rahman, and O. A. Tania, “Image Capturing and AutomaticFace Recognition”, Dhaka, Bangladesh, 2019.; O. Subea and G. Suciu, “Facial Analysis Method for Pain Detection”, InternationalConference on Future Access Enablers of Ubiquitous and Intelligent Infrastructures, pp. 167–180, 2019. https://doi.org/10.1007/978-3-030-23976-3_17.; D. E. King, “Dlib-ml: A Machine Learning Toolkit”, The Journal of Machine LearningResearch, vol. 10, pp. 1755–1758, december 2009. 10.1145/1577069.1755843.; K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition”,Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. [Online]. Available at: https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html.; O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition”, Proceedings of theBritish Machine Vision Conference (BMVC), vol. 1, no. 3, p. 6, september 2015. https://dx.doi.org/10.5244/C.29.41.; S. J. Pan and Q. Yang, “A Survey on Transfer Learning”, IEEE Transactions on knowledgeand data engineering, vol. 22, no. 10, pp. 1345-1359, october 2010. 10.1109/TKDE.2009.191.; F. Zhuang. et al., “A Comprehensive Survey on Transfer Learning”, Proceedings of theIEEE, pp. 1-34, july 2019. 10.1109/JPROC.2020.3004555.; H.-W. Ng, V. D. Nguyen, V. Vonikakis, and S. Winkler, “Deep Learning for EmotionRecognition on Small Datasets using Transfer Learning”, Proceedings of the 2015 ACM on International Conference on Multimodal Interaction (ICMI ’15), pp. 443–449, november 2015. https://doi.org/10.1145/2818346.2830593.; W. Ding et al., “Audio and face video emotion recognition in the wild using deep neuralnetworks and small datasets”, Proceedings of the 18th ACM International Conference on Multimodal Interaction (ICMI ’1), pp. 506–513, october 2016. https://doi.org/10.1145/2993148.2997637.; K. Zhang, L. Tan, Z. Li, and Y. Qiao, “Gender and smile classification using deepconvolutional neural networks”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. [Online]. Available at: https://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w18/html/Zhang_Gender_and_Smile_CVPR_2016_paper.html.; V. Campos, A. Salvador, B. Jou, X. Giró-i-Nieto and B. Jou, “Diving Deep into Sentiment:Understanding Fine-tuned CNNs for Visual Sentiment Prediction”, Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia (ASM '15), pp. 57-62, october 2015. https://doi.org/10.1145/2813524.2813530.; H. Ding, S. K. Zhou, and R. Chellappa, “FaceNet2ExpNet: Regularizing a Deep FaceRecognition Net for Expression Recognition”, 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 118–126, june 2017. 10.1109/FG.2017.23.; F. Wang et al., “Regularizing face verification nets for pain intensity regression,” in 2017IEEE International Conference on Image Processing (ICIP), pp. 1087–1091, september 2017. 10.1109/ICIP.2017.8296449.; M. S. Hossain and G. Muhammad, “Emotion recognition using deep learning approach fromaudio–visual emotional big data,” Information Fusion, vol. 49, pp. 69–78, september 2019. https://doi.org/10.1016/j.inffus.2018.09.008.; “Una herramienta nueva de aprendizaje automático predice con exactitud el cáncer depróstataIndustriaMedimaging.es.”[Online].Available:https://www.medimaging.es/industria/articles/294777132/una-herramienta-nueva-de-aprendizaje-automatico-predice-con-exactitud-el-cancer-de-prostata.html. [Accessed: 06-Nov-2020].; N. A. Ram, “Clasificadores supervisados del cáncer de próstata a partir de imágenes deresonancia magnética en magnetic resonance images in T2 sequences .,” no. June, pp. 19–22, 2019.; Ramírez; N, Aparicio; E, Gómez; E, “SUPERVISED CLASSIFIERS OF PROSTATECANCER. A GEOMETRIC STUDY ON MAGNETIC RESONANCE IMAGES T2 WEIGHTED (T2W), BY DIFFUSION (DWI-ADC),” Congr. Int. electrónica, Control y telecomunicaciones, vol. 51, no. 1, p. 51, 2018.; J. C. Batlle et al., “Diagnóstico del cáncer de próstata mediante espectroscopia deresonancia magnetica endorectal,” Arch. Esp. Urol., vol. 59, no. 10, pp. 953–963, 2006.; "Diferenciación entre prostatitis y cáncer de próstata utilizando el sistema PI-RADS %7C.”[Online]. Available: https://cbseram.com/2016/06/22/diferenciacion-entre-prostatitis-y-cancer-de-prostata-utilizando-el-sistema-pi-rads/. [Accessed: 06-Nov-2020]; T. Hambrock et al., “Prospective assessment of prostate cancer aggressiveness using 3-Tdiffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort,” Eur. Urol., vol. 61, no. 1, pp. 177–184, 2012.; 7]“Cáncer de Próstata - SEOM: Sociedad Española de Oncología Médica © 2019.” [Online].Available: https://seom.org/info-sobre-el-cancer/prostata?showall=1. [Accessed: 06-Nov-2020].; A. B. Rosenkrantz and S. S. Taneja, “Radiologist, be aware: Ten pitfalls that confound theinterpretation of multiparametric prostate MRI,” American Journal of Roentgenology, vol. 202, no. 1. pp. 109–120, Jan-2014.; "The Radiology Assistant : Prostate Cancer - PI-RADS v2.” [Online]. Available:https://radiologyassistant.nl/abdomen/prostate/prostate-cancer-pi-rads-v2. [Accessed: 05-Nov-2020].; P. Guzmán F and A. Messina, “Cáncer de próstata, el problema del diagnóstico ¿Es laresonancia multiparamétrica de próstata la solución?,” Rev. Chil. Radiol., vol. 25, no. 2, pp. 60–66, 2019.; I. Robles, Identificacion de Biomarcadores Predictivos ,Pronosticos y de Respuesta alCancer de Prostata. 2018.; J. I. Díaz, “Matemáticas y Ciencias de la Salud,” pp. 65–67, 2005.; R. Cuocolo et al., “Machine learning applications in prostate cancer magnetic resonanceimaging,” Eur. Radiol. Exp., vol. 3, no. 1, 2019.; S. L. Goldenberg, G. Nir, and S. E. Salcudean, “A new era: artificial intelligence andmachine learning in prostate cancer,” Nat. Rev. Urol., vol. 16, no. 7, pp. 391–403, 2019.; S. Yoo, I. Gujrathi, M. A. Haider, and F. Khalvati, “Prostate Cancer Detection using DeepConvolutional Neural Networks,” Sci. Rep., vol. 9, no. 1, pp. 1–10, 2019.; I. Simon, C. R. Pound, A. W. Partin, J. Q. Clemens, and W. A. Christens-Barry, “Automatedimage analysis system for detecting boundaries of live prostate cancer cells,” Cytometry, vol. 31, no. 4, pp. 287–294, 1998.; S. Sarkar and S. Das, “A Review of Imaging Methods for Prostate Cancer Detection,”Biomed. Eng. Comput. Biol., vol. 7s1, p. BECB.S34255, 2016.; Christian, R., Juan, F. O., y-Alejandro, M. C. (2018). Detección precoz de cáncer depróstata: Controversias y recomendaciones actuales. Revista Médica Clínica Las Condes, 29(2), 128–135. https://doi.org/10.1016/j.rmclc.2018.02.013.; Hambrock, T., Hoeks, C., Hulsbergen-Van De Kaa, C., Scheenen, T., Futterer, J.,Bouwense, S., . Barentsz, J. (2012). Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. European Urology, 61(1), 177–184. https://doi.org/10.1016/j.eururo.2011.08.042.; Nguyen, K., Sabata, B., Jain, A. K. (2012). Prostate cancer grading: Gland segmentationand structural features. Pattern Recognition Letters, 33(7), 951–961. https://doi.org/10.1016/j.patrec.2011.10.001.; Ng, Y.-M. H. Diagnosis of sheet metal stamping processes base on 3-D thermal energydistribution. IEEE Transactions on automation science and engineering. Pp, 22-30. Jan. 2007.; Prakash Surya. 3D mapping of surface temperature using thermal stereo. 9th InternationalConference on Control, Automation, Robotics and Vision. ICARCV 2006. Pp, 1- 4. 5-8 Dec. 2006.; Fan, Y., X. Li, et al. (2009). "3D numerical simulation on temperature field and flow field inthe tuyere of blast furnace (BF) based on the fluent software." Tezhong Zhuzao Ji Youse Hejin/Special Casting and Nonferrous Alloys 29(4): 324-326.; Cornacchia, T. P. M., E. B. Las Casas, et al. (2010). "3D finite element analysis on estheticindirect dental restorations under thermal and mechanical loading." Medical and Biological Engineering and Computing: 1-7.; Chethan, Y. D., Ravindra, H. V., gowda, Y. T., & Bharath Kumar, S. (2015). Machine Visionfor Tool Status Monitoring in Turning Inconel 718 using Blob Analysis. In Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2015.07.124.; Siddhpura, A., & Paurobally, R. (2013). A review of flank wear prediction methods for toolcondition monitoring in a turning process. International Journal of Advanced Manufacturing Technology, 65(1–4), 371–393. https://doi.org/10.1007/s00170-012-4177-1.; Azimi, S. M., Britz, D., Engstler, M., & Fritz, M. (2018). Advanced Steel MicrostructureClassification by Deep Learning Methods. Scientifics Reports, 8, 1–14.; Kesireddy, A., & Mccaslin, S. (2015). Using Mathematica to Accurately Approximate thePercent Area of Grains and Phases in Digital Metallographic Images. Lecture Notes in Electrical Engineering, 313. https://doi.org/10.1007/978-3-319-06773-5.; Kesireddy, A., & McCaslin, S. (2015). Application of Image Processing Techniques to theIdentification of Phases in Steel Metallographich Specimens. Lecture Notes in Electrical Engineering, 312. https://doi.org/10.1007/978-3-319-06764-3.; E. J. Guerra Monterroza, “Reconocimiento de primitivas 3D, usando autocorrelación yANFIS", Visión Electrónica, vol. 1, no. 1, pp. 56-61,2008. https://revistas.udistrital.edu.co/index.php/visele/article/view/251.; Forero C., J., Bohórquez, C., & Ruiz, V. H. (2013). Medición automatizada de piezastorneadas usando visión artificial. Visión electrónica, 7(2), 36-44.https://doi.org/10.14483/22484728.5507.; Forero C., J., Gaitán, D., & Martínez, H. (2018). Recolector autónomo de bolas de tenismediante vision artificial. Visión electrónica, 7(2), 36-44. https://doi.org/10.14483/issn.2248-4728.; S. Andreo, «Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water,» Iaea Trs, Austria, 2000.; Sociedad Española de Oncología Médica SEOM, 2020. [En línea]. Available: https://seom.org/. [Último acceso: 03 2020].; Instituto Nacional de Salud, Observatorio Nacional de Salud, «Primer Informe ONS, aspectos relacionados con la frecuencia de uso de los servicios de salud, mortalidad y discapacidad en Colombia,» Imprenta Nacional de Colombia, Bogotá D.C., 2011.; F. SALVAT, J. M. FERNÁNDEZ-VAREA y J. SEMPAU, PENELOPE-2006: A code system for Monte Carlo simulation of electron and photon transport, Barcelona: OECD, 2006.; Computerized Imaging Reference Systems CIRS, Manual Tissue Simulation & Phantom Technology, Norfolk, Virginia, 2017.; A. Brosed, Fundamentos de física médica, vol. 1, Madrid: ADI, 2011.; H. Andreo, Fundamentals of ionizing radiation dosimetry, 2017.; Agostinelli, «Simulation toolkit, Nuclear instruments and methods in physics,» sciencedirect, vol. 506, nº 3, pp. 250- 303, 2003.; Ministerio de Salud y Protección Social, «https://www.minsalud.gov.co,» 25 Marzo 2020. [En línea]. Available: https://www.minsalud.gov.co/salud/publica/PET/Documents/Circular%2019.pdf.pdf. [Último acceso: 8 11 2020].; Asociación Colombiana de Infectologia, «Consenso colombiano de atención, diagnóstico y manejo de la infección,» Revista de la Asociación Colombiana de Infectologia, vol. 24, nº 3, pp. 20-21, 2020.; L. Gamboa O, «Atlas de mortalidad por cancer en Colombia,» Instituto Nacional de Cancerologia, vol. 1, nº 4, 2017.; G. de Fernicola, «Arsénico en el agua de bebida: un problema de salud pública,» Revista Brasileira de Ciências Farmacêuticas, vol. 39, nº 4, pp. 365-372, 2003.; J. C. Ramirez, «Tomografía computarizada por rayos X: fundamentos y actualidad,» Revista Ingeniería Biomédica, vol. 2, nº 4, 2008.; l.R.Raudales Díaz, «IMÁGENES DIAGNÓSTICAS: CONCEPTOS Y GENERALIDADES,» Revista Facultad Ciencias Médicas, vol. 1, nº 1, pp. 35-43, 2014.; A. P. Montenegro, «Repositorio Pontificia Universidad Javeriana,» 19 07 2019. [En línea]. Available: https://repository.javeriana.edu.co/handle/10554/44080. [Último acceso: 14 11 2020].; A. Amer, T. Marchant, J. Sykes, J. Czajka y C. Moore,, «Imaging doses from the Elekta Synergy X-ray cone beam CT system,» The British Journal of Radiology, vol. 80, nº 954, p.476–482, 2007.; CSN, «Interaccion de la radiación con la materia,» 2013. [En línea]. Available:http://csn.ciemat.es/MDCSN/recursos/ficheros_md/133100241_2411200913036.pdf.; A. Brosed, Fundamentos De Fisica Medica, vol. 2, ADI, 2012.; E. B. Podgorsak, Radiaton Physics for Medical Physicists, 2 ed., Springer, 2010.; CIRS, «IMRT Thorax Phantom,» [En línea]. Available: www.cirsinc.com. [Último acceso: 22 02 2020].; A. Castillo, «Caracteristicas del sistema de IGRT de ELEKTA,» Grupo CROASA, Granada.; Elekta AB, «Elekta Synergy Digital accelerator for advanced IGRT,» 2017. [En línea]. Available: https://www.elekta.com/radiotherapy/treatment-delivery-systems/elekta- synergy/. [Último acceso: 14 11 2020].; C. David, «Estudio de la viabilidad de las imágenes de CBCT para planeación de tratamientos,» Pontificia Universidad Javeriana, Bogotá, 2020.; J. Allison, «Geant4 Developments and Applications,» IEEE TRANSACTIONS ON NUCLEAR SCIENCE, vol. 53, 2006.; J DeMarco, «A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms,» PHYSICS IN MEDICINE ANDBIOLOGY, nº 50, p. 3989–4004, 2005.; O. Apostolakis, «The Geant4 Simulation Toolkit and Applications For the Geant4 Collaboration,» NATO Science for Peace and Security Series B: Physics and Biophysics, 2008.; C. Giraldo, «Desarrollo y aplicaciones de GEANT4 para radioterapia y microdosimetria en detectores y circuitos integrados,» 04 2011. [En línea]. Available: https://idus.us.es/handle/11441/15762. [Último acceso: 14 11 2020].; Geant4 Collaboration, Book For Application Developers, Geant4 Collaboration, 2017.; P. Montenegro, «Repositorio Pontificia Universidad Javeriana,» 19 07 2019. [En línea].Available: https://repository.javeriana.edu.co/handle/10554/44080. [Último acceso: 14 10 2020].; M. Mostazo Caro, «Interacción Radiación-Materia Conceptos B ásico,» de Técnicas Experimentales Avanzadas, 2013, pp. 4-6.; C. Vidal Silva and L. Pavesi Farriol, “Desarrollo De Un Sistema De Adquisición Y TratamientoDe Señales Electrocardiográficas,” Rev. Fac. Ing. - Univ. Tarapacá, vol. 13, no. 1, pp. 39–46, 2005, doi:10.4067/s0718-13372005000100005.; C. Correa Flórez, R. Bolaños Ocampo, and A. Escobar, “Análisis de esquemas de filtradoanálogo para señales ecg.,” Sci. Tech., vol. 5, no. 37, pp. 103–108, 2007.; Tortora, Gerald. Derrickson, Bryan. 2006. Principios de Anatomía y Fisiología. 11ª. Edición.Editorial Médica Panamericana. México DF. México. Cap 20.; M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep learning for cybersecurity intrusion detection: Approaches, datasets, and comparative study,” J. Inf. Secur. Appl., vol. 50, p. 102419, 2020, doi:10.1016/j.jisa.2019.102419.; G. Zeng, Y. He, Z. Yu, X. Yang, R. Yang, and L. Zhang, “Preparation of novel high copperions removal membranes by embedding organosilane-functionalized multi-walled carbon nanotube,” J. Chem. Technol. Biotechnol., vol. 91, no. 8, pp. 2322–2330, 2016, doi:10.1002/jctb.4820.; T. Park, Introduction to digital signal processing. Singapore: World Scientific, 2010.; M. O. Alzate, “Clasificación de Arritmias Cardíacas usando Transformada Waveleth - tesispregrado.pdf,” 2003.; A. D. E. Maquina and C. O. N. Interfaz, “Mediante Aprendizaje De Máquina Con Interfaz aUsuario Model of Dynamic Classification of Arrhythmias Cardiac By,” Leonardo, vol. 16, pp. 86–95, 2006.; A. Behrad and K. Faez, “New method for QRS-wave recognition in ECG using MART neuralnetwork,” ANZIIS 2001 - Proc. 7th Aust. New Zeal. Intell. Inf. Syst. Conf., no. November, pp. 291–296, 2001, doi:10.1109/ANZIIS.2001.974093.; M. Mitrokhin, A. Kuzmin, N. Mitrokhina, S. Zakharov, and M. Rovnyagin, “Deep learningapproach for QRS wave detection in ECG monitoring,” 11th IEEE Int. Conf. Appl. Inf. Commun. Technol. AICT 2017 - Proc., pp. 1–3, 2019, doi:10.1109/ICAICT.2017.8687235.; I. A. Tarmizi, S. S. N. A. S. Hassan, U. K. Ngah, and W. P. W. Ibrahim, “A journal of realpeak recognition of electrocardiogram (ECG) signals using neural network,” 2012 2nd Int. Conf. Digit. Inf. Commun. Technol. its Appl. DICTAP 2012, pp. 504–510, 2012, doi:10.1109/DICTAP.2012.6215429.; M. Llamedo and J. P. Martínez, “Clasificación de ECG basada en Características de Escala, Dirección y Ritmo,” Caseib 2009, pp. 2–5, 2009.; E. D. A. Botter, C. L. Nascimento, and T. Yoneyama, “A neural network with asymmetricbasis functions for feature extraction of ECG P waves,” IEEE Trans. Neural Networks, vol. 12, no. 5, pp. 1252–1255, 2001, doi:10.1109/72.950154.; S. H. El-Khafif and M. A. El-Brawany, “Artificial Neural Network-Based Automated ECGSignal Classifier,” ISRN Biomed. Eng., vol. 2013, pp. 1–6, 2013, doi:10.1155/2013/261917.; N. Maglaveras, T. Stamkopoulos, K. Diamantaras, C. Pappas, and M. Strintzis, “ECGpattern recognition and classification using non-linear transformations and neural networks: A review,” Int. J. Med. Inform., vol. 52, no. 1–3, pp. 191–208, 1998, doi:10.1016/S1386-5056(98)00138-5.; C. Rose-Gómez and M. Serna-Encinas, “Procesamiento del Electrocardiograma para laDetección de Cardiopatías,” Researchgate.Net, no. May, pp. 3–6, 2015, [Online]. Available: http://enc2014.cicese.mx/Memorias/paper_19.pdf%5Cnhttps://www.researchgate.net/profile/Cesar_Rose/publication/277324231_Procesamiento_del_Electrocardiograma_para_la_Deteccion_de_Cardiopatias/links/5567b77d08aeab77721eac2b.pdf.; S. Jiménez Serrano, “Clasificación automática de registros ECG para la detección deFibrilación Auricular y otros ritmos cardíacos,” 2018, [Online]. Available: https://riunet.upv.es:443/handle/10251/111113.; S. G. Artis, R. G. Mark, and G. B. Moody, “Detection of atrial fibrillation using artificial neuralnetworks,” Comput. Cardiol., pp. 173–176, 1992, doi:10.1109/cic.1991.169073.; J. Wang and W. Lu, “A method of electrocardiogram classification based on neural network,”Chinese J. Biomed. Eng., vol. 14, no. 4, pp. 306–311, 1995.; M. Hammad, A. Maher, K. Wang, F. Jiang, and M. Amrani, “Detection of abnormal heartconditions based on characteristics of ECG signals,” Meas. J. Int. Meas. Confed., vol. 125, pp. 634–644, 2018, doi:10.1016/j.measurement.2018.05.033.; T. H. Chen, Z. Yu, L. Q. Han, P. Y. Guo, and X. Y. He, “The sorting method of ECG signalsbased on neural network,” 2nd Int. Conf. Bioinforma. Biomed. Eng. iCBBE 2008, pp. 543–546, 2008, doi:10.1109/ICBBE.2008.132.; Taylor GJ. 150 Practice ECGs: Interpretation and Review. Blackwell Science, 2002. ISBN0-632-04623-6.; Committee on Engineering Education, "Educating the Engineer of 2020: AdaptingEngineering Education to New the Century", NAE, pp. 1-209, 2010. Available at: http://www.nap.edu/catalog/11338.html.; World Health Organization, “World health statistics overview 2019: monitoring health for theSDGs, sustainable development goals”, Geneva: World Health Organization; pp. 1-28, 2019 (WHO/DAD/2019.1). License: CC BY-NC-SA 3.0 IGO.; World Health Organization, “Human resources for medical devices, the role of biomedicalengineers”. Geneva: World Health Organization; pp.: 1-240, 2017. License: CCBY-NC- SA 3.0 IGO.; J. Sappey and S. Relf, “Digital Technology Education and its Impact on Traditional AcademicLists and Practice”. J. Univ. Teach. & Lear. Pract. 7(1), 7(3), 2007.; J. Candle-Valdés, “The challenges of the Cuban new university”. Paper presented at thePedagogy 2007, Havana, Cuba, pp. 1-14, feb. 2007.; K. M. Galotti, et al., “To New Way of Assessing Ways of Knowing: The Attitudes TowardsThinking and Learning Survey (ATTLS)”. Sex Lists, 40(9/10), 745-766, 1999.; Ministerio de Educación Superior, Documento Ejecutivo Plan de Estudio: IngenieríaBiomédica, MES, La Habana, Cuba, págs. 1-10, 15 julio, 2017.; T. T. Bekele, “Motivation and Satisfaction in Internet-Supported Learning Environments: ToReview”. Educ. Tech. & Soc., 13(2), 116-127, 2009.; S. N. Karagiannis, “The Conflicts Between Science Research and Teaching in HigherEducation: An Academic's Perspective”. J. Teach. and Lear. Higher Educ., 21(1), 75-83, 2010.; R. Garrote and T. Pettersson. “The use of learning management systems: A LongitudinalCase Study”. Eleed, 8. 2011.; R. Hernández-Sampieri y otros, “Metodología de la Investigación. 6ta Ed., Ed. McGraw-HillEducation. México D. F., págs. 1- 634, 2014.; R. N. Strickland, Image-Processing Techniques for Tumor Detection, Boca Raton, Florida: CRC Press, 2002.; J. Thirumaran y S. Shylaja, «Medical Image Processing – An Introduction,» International Journal of Science and Research (IJSR), vol. 4, nº 11, pp. 1197-1199., 2015.; F. Ballester y J. M. Udías, «Física Nuclear y Medicina,» Rev Esp Fís, vol. 22, nº 1, pp. 29- 36, 2008.; P. Mildenberger, M. Eichelberg y E. Martin, «Introduction to the DICOM standard,» European Radiology, vol. 12, p. 920–927, 2002.; C. E. J. Kahn, J. A. Carrino, M. J. Flynn, D. J. Peck y S. C. Horii, «DICOM and Radiology: Past, Present, and Future,» TECHNOLOGY TALK, vol. 4, nº 9, pp. 652-657, 2007.; A. P. Bhagat y M. Atique, «Medical images: Formats, compression techniques and DICOM image retrieval a survey,» 2012 International Conference on Devices, Circuits and Systems (ICDCS), pp. 172-176, 2012.; D. P. Hanson y R. A. Robb, «Chapter 45 - Three-Dimensional Visualization in Medicine and Biology,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 755-784.; El Hospital, Reconstrucción 3D de la anatomía humana a partir de imágenes médicas obtenidas por ayuda diagnóstica, 2016.; J. M. Selman R., «Aplicaciones clínicas del procesamiento digital,» Revista Médica Clínica Las Condes, vol. 15, nº 2, 2004.; M. Solaiyappan, «Chapter 44 - Visualization Pathways in Biomedicine,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 729-753.; J. Rogowska, «Chapter 5 - Overview and Fundamentals of Medical Image Segmentation,» de Handbook of Medical Image Processing and Analysis (Second Edition), 2009, pp. 73- 90.; A. Escobar Díaz y L. A. Calderón, «Modelo tridimensional de extremidad inferior basado en imágenes de resonancia magnética,» Visión electrónica, vol. 3, nº 1, pp. 4-15, 2009.; DICOM Library & medDream, «Dicom Library (Modality CT),» 2011. [En línea]. Available: https://www.dicomlibrary.com/.; L. Atanelov, S. A. Stiens, and M. A. Young, “History of physical medicine and rehabilitationand its ethical dimensions”, AMA journal of ethics, vol. 17, no. 6, pp. 568–574, 2015. DOI:10.1001/journalofethics.2015.17.6.mhst1-1506 URL: https://journalofethics.ama-assn.org/article/history-physical-medicine-and-rehabilitation-and-its-ethical-dimensions/2015-06; M. C. Garcia and T. Vieira, “Surface electromyography: Why, when and how to use it”,Revista andaluza de medicina del deporte, vol. 4, no. 1, pp.17–28, 2011. URL: https://www.elsevier.es/es-revista-revista-andaluza-medicina-del-deporte-284-articulo-surface-electromyography-why-when-how-X1888754611201253.; J. C. Guerrero Pupo, I. Amell Muñoz, and R. Cañedo Andalia, “Tecnología, tecnologíamédica y tecnología de la salud: algunas consideraciones básicas”, Acimed, vol. 12, no. 4, pp. 1–1, 2004. URL: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1024-94352004000400007.; J. A. A. Londoño, E. C. Bravo, and J. F. C. García, “Aplicación de tecnologías derehabilitación robótica en niños con lesión del miembro superior”, Revista Salud UIS, vol. 49, no. 1, pp. 103–114, 2017. DOI: http://dx.doi.org/10.18273/revsal.v49n1-2017010 URL: http://www.scielo.org.co/scielo.php?pid=S012108072017000100103&script=sci_abstract&tlng=es.; F. Salvuci and R. Kohanoff, Tecnologías de rehabilitación. Wiley-Interscience, 2016.; A. Merlo and I. Campanini, “Technical aspects of surface electromyography for clinicians”,The open rehabilitation journal, vol. 3, no. 1, 2010. DOI:10.2174/1874943701003010098 URL: https://benthamopen.com/ABSTRACT/TOREHJ-3-98.; F. J. Juan, “Utilidad de la electromiografía de superficie en rehabilitación” URL:https://www.researchgate.net/profile/Francisco_Juan-Garcia/publication/316588275_UTILIDAD_DE_LA_ELECTROMIOGRAFIA_DE_SUPERFICIE_EN_REHABILITACION/links/5905b86c4585152d2e957860/UTILIDAD-DE-LA-ELECTROMIOGRAFIA-DE-SUPERFICIE-EN-REHABILITACION.pdf.; J. W. Meklenburg, S. K. Patrick, and S. D. Jung, “Surface electromyogram simulator formyoelectric prosthesis testing,” 2010. URL: https://digitalcommons.wpi.edu/mqp-all/1402/.; Merletti Roberto, and Dario Farina. Surface electromyography: physiology, engineering, andapplications. Piscataway, NJ: IEEE Press, 2016, online. ISBN: 9781119082934, DOI:10.1002/9781119082934.; E. Guzmán, G. Méndez, “Electromiografía en las Ciencias de la Rehabilitación”, SaludUninorte, Vol 3, no. 3, pp 753-765, 2018.; W. A. Marrison, “Apparatus for converting radiant energy to electromechanical energy”, U.S.,Patent 2919358, Dec. 29, 1959. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/e7/ce/c2/f8074398301da9/US2919358.pdf.; D. M. Chapin, C. S. Fuller and G. L. Pearson, “Solar energy converting apparatus”, U.S.,Patent US2780765, Feb. 5, 1957. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/36/ee/af/d21dacd3884160/US2780765.pdf.; H. E. Hall, “Solar motor”, U.S., Patent US3296469, Ene. 3, 1967. [En línea]. Disponible en:https://patentimages.storage.googleapis.com/7e/58/b3/09cf657161e51f/US3296469.pdf.; B. Sepp, “Rotating advertising device”, U.S., Patent US3325930, Ene. 20, 1967. [En línea].Disponible en: https://patentimages.storage.googleapis.com/2e/14/de/57d7f191d20af2/US3325930.pdf.; Y. Nakamats, “Apparatus for converting radiant energy such as light or heat directly intoturning force”, Japón, Patent US4634343, Ene. 6, 1987. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/78/4e/a0/414270d9bad0e0/US4634343.pdf.; H. Izawa, “Solar Energy Motor”, Japan. Patent 4751413, Jun. 14, 1988. [En línea]. Disponibleen: https://patentimages.storage.googleapis.com/3f/8b/a3/9e59494a100d1e/US4751413.pdf.; G. J. Shea, “Solar energy magnetic resonance motor”, U.S., Patent US5408167, Abr. 18,1995. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/77/c4/f7/c12b523e12bfdc/US5408167.pdf.; A. Coty, “Automatically switched photovoltaic motor”, Francia, Patent WO2010082007A3,Jul. 22, 2010. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/36/8f/25/4c5399bdb634a4/WO2010082007A3.pdf.; W. Amrhein, H. Mitterhofer, E. Marth, G. Bramerdorfer, “Aufbau eines Mendocino-Motors”,Ene 2018 [En línea]. Disponible en: http://www.bis0uhr.de/projekte/magnet/projektseminar.pdf.; T. Kornher, M. Noebels, J. Roeller, S. Schwieger, F. Weller, “Mendocino-Motor”, Feb 2018[En línea]. Disponible en: https://ap.physik.uni-konstanz.de/projektpraktikum/PP2011/Bericht_Mendocinomotor.pdf.; Z. Novák, M. Hofreiter. “Mendocino motor and a different approaches to its control”,Proceedings of 15th International Conference MECHATRONIKA, Prague, pp. 1-6, 2012. [En línea]. Disponible en: https://ieeexplore.ieee.org/document/6415075.; C.M. Estupiñán, J.P. Puerto-Reyes, M. A. Beltrán, “Desarrollo de un motor mendocinocomo herramienta de enseñanza en la aplicación de energías renovables y generación de alternativas energéticas”, Revista Loggin, vol. 1, no. 1, pp. 78-89, 2017.; K. Berger, et al, “Solar Electric Motor on Superconducting Bearings: Design and Tests inLiquid Nitrogen" en IEEE sobre aplicaciones de superconductividad, vol. 27, no. 4, pp. 1-5, Jun. 2017, https://doi.org/10.1109/TASC.2016.2642140.; Fawzi Boufatah. “Réalisation d’un moteur à énergie solaire sur paliers supraconducteurs”,2016, hal-01824246. [En línea]. Disponible en: https://hal.univ-lorraine.fr/hal-01824246/document.; W. K. Lane, “Light emitting unit for continuous light production”, U.S., PatentUS20130141900A1, Jun. 6, 2013. [En línea]. Disponible en: https://patentimages.storage.googleapis.com/f6/89/60/242f9861427fb1/US20130141900A1.pdf.; Supermagnete, “Anillo imán”, Nov, 2019. [En línea]. Disponible en: https://www.supermagnete.de/eng/ring-magnets-neodymium/ring-magnet-25mm-4.2mm-5mm_R-25-04-05-N.; Supermagnete, “Disco magnético autoadhesivo” noviembre de 2019. [En línea]. Disponibleen: https://www.supermagnete.de/eng/adhesive-magnets-neodymium/disc-magnet-self-adhesive-25mm-2mm_S-25-02-FOAM?group=discs.; Supermagnete, “Bloque imán” diciembre de 2019. [En línea]. Disponible en: https://www.supermagnete.de/eng/block-magnets-neodymium/block-magnet-40mm-20mm-10mm_Q-40-20-10-N.; H. Polo, A. Valencia, J. Roldan, J.Diaz, “Evaluación de la seguridad estructural de unsistema de seguimiento solar en Colombia”, Colombia, Universidad Distrital Francisco José de Caldas, Oct. 06, 2013. [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/5522.; D. Gomez, J. Leal, H. Montaña, A. Sanchez, “Detección de posición a partir de la mediciónde un campo magnético”, Colombia, Universidad Distrital Francisco José de Caldas, Ene. 01, 2013. [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/4397.; A. Nataraj and B. Ramasamy, "Modeling and FEA analysis of axial flux PMG for low speedwind turbine applications," 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), pp. 1-5, Kollam, 2017. doi:10.1109/TAPENERGY.2017.8397290.; M. Carrillo, C. Claudio y A. Mayorga, “Caracterización de un generador de flujo axial paraaplicaciones en energía eólica,” Revista de Ciencia y Tecnología, INGENIUS, N°19, pp. 19-28, 2018. https://doi.org/10.17163/ings.n19.2018.02.; S. S. Laxminarayan, M. Singh, A. H. Saifee and A. Mital, “Design, Modeling and Simulationof Variable Speed Axial Flux Permanent Magnet Wind Generator”, ELSEVIER, Sustainable Energy Technologies and Assessments, India, 2017. https://doi.org/10.1016/j.seta.2017.01.004.; G. Ahmad and U. Amin, “Design, Construction and Study of Small-Scale Vertical Axis WindTurbine based on a Magnetically Levitated Axial Flux Permanent Magnet Generator”, ELSEVIER, Renewable Energy, 2016. https://doi.org/10.1016/j.renene.2016.08.027.; M. Castillo García, “Diseño Electromagnético de un Generador Eléctrico para Turbina Eólicade 100 kW”, trabajo de fin de grado, Universidad Politécnica de Madrid, Madrid, España, 2017. http://oa.upm.es/49261/1/TFG_MONTANA_CASTILLO_GARCIA.pdf.; C. F. González Velázquez, “Optimización de Banco de Pruebas y Sistema de Monitoreo deAerogenerador de Baja Potencia”, trabajo de fin de tecnólogo, Centro de Ingeniería y Desarrollo Industrial, Santiago de Querétaro, 2017. http://cidesi.repositorioinstitucional.mx/jspui/handle/1024/269.; J. Kappatou, G. Zalokostas and D. Spytatos, “3-D FEM Analysis, Prototyping and Tests ofan Axial Flux Permanent-Magnet Wind Generator,” Energies, Greece, 2017. https://doi.org/10.3390/en10091269.; R. D. Chavan and V. N. Bapat, "The study of different topologies of Axial Flux PermanentMagnet generator," IEEE, 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), pp. 202-206, Pune, 2016. doi:10.1109/ICACDOT.2016.7877579.; T. Asefi, J. Faiz and M. A. Khan, “Design of Dual Rotor Axial Flux Permanent MagnetGenerators with Ferrite and Rare-Earth Magnets”, IEEE, 18th International Power Electronics and Motion Control Conference (PEMC), Budapest, 2018. doi:10.1109/EPEPEMC.2018.8522004.; Yicheng Chen, Pragasen Pillay and A. Khan, "PM wind generator comparison of differenttopologies," IEEE; Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting., pp. 1405-1412 vol.3, Seattle, WA, USA, 2004. doi:10.1109/IAS.2004.1348606.; R. Rusmana, A. A. Melkias, N. Nurrohman and I. M. W. Kastawan, “Voltage GenerationCharacteristics of an Axial Flux Permanent Magnet (AFPM) Generator”, IOP Conference Series: Materials Science and Engineering, ICIEVE, Indonesia, 2019. doi:10.1088/1757-899X/830/4/042019; I. M. W. Kastawan and Rusmana, “Voltage Generation of Three-Phase Double SidedInternal Stator Axial Flux Permanent Magnet (AFPM) Generator”, IOP Conference Series: Materials Science and Engineering, 1st Annual Applied Science and Engineering Conference, Indonesia, 2017, doi:10.1088/1757-899X/180/1/012105.; H. Gör and E. Kurt, “Preliminary Studies of a New Permanent Magnet Generator (PMG)with the Axial and Radial Flux Morphology”, ELSEVIER, ScienceDirect, Turkey, 2016. https://doi.org/10.1016/j.ijhydene.2015.12.195.; H. Gor and E. Kurt, “Waveform Characteristics and Losses of a New Double Sided Axialand Radial Flux Generator”, ELSEVIER, ScienceDirect, Turkey, 2015. https://doi.org/10.1016/j.ijhydene.2015.12.172.; A. Habib, H. Che, N. Rahim, M. Tousizadeh and E. Sulaiman, “A fully coreless Multi-StatorMulti-Rotor (MSMR) AFPM generator with combination of conventional and Halbach magnet arrays,” Alexandria Engineering Journal, vol n. 59, Issue 2, pp 589-600, April 2020. https://doi.org/10.1016/j.aej.2020.01.039.; N. Georgiev, “Study of Three-Phase Axial Flux Generators”, IEEE, 20th InternationalSymposium on Electrical Apparatus and Technologies (SIELA), Bourgas, 2018. doi:10.1109/SIELA.2018.8447093.; E. Celik, H. Gör, N. Öztürk and E. Kurt, “Application of Artificial Neural Network to EstimatePower Generation and Efficiency of a New Axial Flux Permanent Magnet Synchronous Generator”, ELSEVIER, ScienceDirect, Turkey, 2017. https://doi.org/10.1016/j.ijhydene.2017.01.168.; M. R. Minaz and M. Celebi, “Design and Analysis of a New Axial Flux Coreless PMSG withThree Rotors and Double Stators”, ELSEVIER, Results in Physics, Turkey, 2016. https://doi.org/10.1016/j.rinp.2016.10.026.; M. Dranca, M. Chirca and S. Breban, “Comparative Design Analysis of Axial FluxPermanent Magnet Direct-Drive Wind Generators”, IEEE, The 11st International Symposium on Advanced Topics in Electrical Engineering, Technical University of Cluj-Napoca, Romania, 2019. doi:10.1109/ATEE.2019.8724928.; N. E. Lastra, “Diseño y Construcción de un Generador de Flujo Axial con ImanesPermanentes de Bajo Costo para Aplicaciones Eólicas”, ResearchGate, 2019, https://www.researchgate.net/publication/336071436_Diseno_y_Construccion_de_un_Generador_de_Flujo_Axial_con_Imanes_Permanentes_de_Bajo_Costo_para_Aplicaciones_Eolicas.; A. Rasekh, P. Sergeant and L. Vierendeels, “Fully Predictive Heat Transfer CoefficientModeling of an Axial Flux Permanent Magnet Synchronous Machine with Geometrical Parameters of the Magnets”, ELSEVIER, Applied Thermal Engineering, Ghent University, Belgium, 2016. https://doi.org/10.1016/j.applthermaleng.2016.09.019.; M. Irfan, R. F. Ariyanto, L. Syafaah, A. Faruq and N. Subeki, “Stator Slotted Design of AxialFlux Permanent Magnet Generator for Low-Speed Turbine”, IOP Conference Series: Materials Science and Engineering, ICEAT, Indonesia, 2020. doi:10.1088/1757-899X/821/1/012027.; H. Polinder, “2 - Principles of electrical design of permanent magnet generators for directdrive renewable energy systems,” Woodhead Publishing Limited, Delft University of Technology, pp. 30-50, The Netherlands, 2013. doi:10.1533/9780857097491.1.30.; V. N. Antipov, A. D. Grozov and A. V. Ivanova, “Design and Analysis of a New Axial FluxPermanent Magnet Synchronous Generator for Wind”, IOP Conference Series: Materials Science and Engineering, International Scientific Electric Power Conference, Russia, 2019. doi:10.1016/j.rinp.2016.10.026.; M.M. Radulescu, S. Breban and M. Chirca, “Novel topologies of low-speed axial-fluxpermanent- magnet micro-wind generator,” The 18 th National Conference on Electrical Drives, CNAE 2016, Acta Electrotechnica, vol. 57, n° 3-4, Special Issue, 2016. doi:10.4283/JMAG.2014.19.3.273.; B. J. Chalmers and E. Spooner, "An axial-flux permanent-magnet generator for a gearlesswind energy system," in IEEE Transactions on Energy Conversion, vol. 14, no. 2, pp. 251-257, June 1999. doi:10.1109/60.766991.; A. R. Dehghanzadeh, V. Behjat and M. R. Banaei, “Dynamic Modeling of Wind TurbineBased Axial Flux Permanent Magnetic Synchronous Generator Connected to the Grid with Switch Reduced Converter”, ELSEVIER, Ain Shams Engineering Journal, Azarbaijan Shahid Madani University, Iran, 2015. https://doi.org/10.1016/j.asej.2015.11.002.; N. Radwan-Praglowska, D. Borkowski and T. Wegiel, "Model of coreless axial fluxpermanent magnet generator," 2017 International Symposium on Electrical Machines (SME), pp. 1-6, Naleczow, 2017. doi:10.1109/ISEM.2017.7993568.; S. Khan, S. Amin and S. S. Hussain Bukhari, “Design and Comparative PerformanceAnalysis of Inner Rotor and Inner Stator Axial Flux Permanent Magnet Synchronous Generator for Wind Turbine Applications”, IEEE, International Conference on Computing-iCoMET, Sukkur IBA University, Pakistan, 2019. doi:10.1109/ICOMET.2019.8673537.; L. Wei, T. Nakamura and K. Imai, “Development and Optimization of Low-Speed and High-Efficiency Permanent Magnet Generator for Micro Hydro-Electrical Generation System”, ELSEVIER, Renewable Energy, Kyoto University, Japan, 2019. https://doi.org/10.1016/j.renene.2019.09.049.; M. Ardestani, N. Arish and H. Yaghobi, “A New HTS Dual Stator Linear Permanent MagnetVernier Machine with Halbach Array for Wave Energy Conversion”, ELSEVIER, Physyca C: Superconductivity and its Applications, Semman University, Iran, 2019. https://doi.org/10.1016/j.physc.2019.1353593.; P. Khatri and X. Wang, “Comprehensive Review of a Linear electrical Generator for OceanWave Energy Conversion”, IET Renewable Power Generation, IET, Vol. 14, Lss. 6, pp. 949-958, February, 2020. doi:10.1049/iet-rpg.2019.0624.; O. S. Muñoz Muñoz, “Dimensionamiento electromagnético de un Generador Lineal para laConversión de Energía Undimotriz de Acuerdo a las Características del Océano Pacífico Colombiano”, trabajo de fin de grado, Universidad del Valle, Colombia, 2020.; C. García Saiz, “Diseño, Dimensionado y Simulación de un Generador Lineal para elDesarrollo de una Boya de Generación de Energía Undimotriz”, trabajo de fin de grado, Universidad de Cantabria, España, 2015. https://repositorio.unican.es/xmlui/handle/10902/7332.; A. García Villalmanzo, “Diseño de un Motor Lineal de Reluctancia Autoconmutado conImanes Permanentes”, trabajo de fin de grado, Universidad Rovira I Virgili, Tarragona, 2017. http://deeea.urv.cat/public/PROPOSTES/pub/pdf/2459pub.pdf.; A. Shiri and A. Shoulaie, “End Effect Braking Force Reduction in High-Speed Single-SidedLinear Induction Machine”, ELSEVIER, Energy Conversion and Management, Iran University of Science and Technology, Iran, 2012. https://doi.org/10.1016/j.enconman.2011.11.014.; X. Chen, S. Zheng, J. Li, G. T. Ma and F. Yen, “A Linear Induction Motor with a CoatedConductor Superconducting Secondary”, ELSEVIER, Physyca C: Superconductivity and its Applications, Southwest Jiaotong University, China, 2017. https://doi.org/10.1016/j.physc.2018.04.002.; SS. Rathore, S. Mishra, M. K. Paswan and Sanjay, “A Review on Design and Developmentof Free Piston Linear Generators in Hybrid Vehicles”, IOP Conference Series: Materials Science and Engineering, ICCEMME, India, 2019. doi:10.1088/1757-899X/691/1/012053.; Y. Gao, S. Shao, H. Zou, M. Tang, H. Xu and C. Tian, “A Fully Floating System for WaveEnergy Converter with Direct-Driven Linear Generator”, ELSEVIER, Energy, Beijing, China, 2015. https://doi.org/10.1016/j.energy.2015.11.072.; J. F. Fortes, L. M. Ferraz and I. E. Chabu, “Optimized Double Sided Linear Generator forWave Energy in Sao Paulo’s Coast”, 7th International Conference on Ocean Energy (ICOE), Polytechnic School of University of Sao Paulo, France, 2018. https://www.icoe-conference.com/publication/optimized-double-sided-linear-generator-for-wave-energy-in-sao-paulo-s-coast/.; V. Boscaino, G. Cipriani, V. Di Dio, V. Franzitta and M. Trapanense, “Experimental Testand Simulations on a Linear Generator-Based Prototype of a Wave Energy Conversion System Designed with a Reliability-Oriented Approach”, MDPI, Sustainability, University or Palermo, 2017. doi:10.3390/su9010098.; O. Farrok, M. R. Islam, Y. G. Guo and J. G. Zhu, “Design and Analysis of a NovelLightweight Translator Permanent Magnet Linear Generator for Oceanic Wave Energy Conversion”, IEEE, 2015. doi:10.1109/TMAG.2017.2713770.; K. Cruz, F. Dator, J. Ong, N. Bumanlag and M. C. Pacis, “Harnessing of Wave Energy usingAxially Magnetized Linear Generator with Data Logger using Gizduino Microcontroller”, IOP Conference Series: Journal of Physics: Conference Series, CEEPE, Mapua University, Philippines, 2019. doi:10.1088/1742-6596/1304/1/012013.; A. Tapia-Hernández, M. Ponce-Silva, N. Mondragón-Escamilla y L. Hernández-González,“Impacto de la Geometría en el Efecto Fin de Generadores Lineales”, Información Tecnológica, Vol.27, No. 4, pp. 133-138, México, Agosto, 2016. http://dx.doi.org/10.4067/S0718-07642016000400014.; P. Naderi, M. Heidary and M. Vahedi, “Performance Analysis of Ladder-Secondary-LinearInduction Motor with Two Different Secondary Types using Magnetic Equivalent Circuit”, ELSEVIER, ISA Transactions, Shahid Beheshti University, Iran, 2020. https://doi.org/10.1016/j.isatra.2020.03.013.; Y. Xu, X. Xue, Y. Wang and M. Ai, “Performance Characteristics of Compressed Air-Driven-Free-Piston Linear Generator (FPLG) System – A Simulation Study”, ELSEVIER, Applied Thermal Engineering, 2019. https://doi.org/10.1016/j.applthermaleng.2019.114013.; J. Xi, Z. Dong, P. Liu and H. Ding, “Modeling and Identification of Iron-less PMLSM EndEffects for Reducing Ultra-Low-Velocity Fluctuations of Ultra-precision Air Bearing Linear Motion Stage”, ELSEVIER, Precision Engineering, Shanghai Jiaotong University, China, 2017. https://doi.org/10.1016/j.precisioneng.2017.01.016.; X. Luo, C. Zhang, S. Wang, E. Zio and X. Wang, “Modeling and Analysis of Mover Gaps inTubular Moving-Magnet Linear Oscillating Motors”, ELSEVIER, Chinese Journal of Aeronautics, Chinese Society of Aeronautics ans Astronautics & Beihang University, China, 2017. https://doi.org/10.1016/j.cja.2017.11.008; K. S. Rama Rao, T. Sunderan and M. Ref’at Adiris, “Performance and Design Optimizationof Two Model Based Wave Energy Permanent Magnet Linear Generators”, ELSEVIER, Renewable Energy, 2016. https://doi.org/10.1016/j.renene.2016.07.019.; M. F. M Naafi, T. Ibrahim, N. M. Nor and M. A. Firdaus bin M. Hamim, “Design and Modellingof a Portable Pico Linear Generator for Wave Energy Conversion System”, Applied Mechanics and Materials, Vol. 785, pp. 300-304, Malaysia, 2015. https://doi.org/10.4028/www.scientific.net/AMM.785.300.; W. Rentería Palacios, “Diseño y Evaluación Electromagnética de un Motor Síncrono Linealde Imanes Permanentes en Disposición Halbach”, trabajo de fin de máster, Universidad Autónoma de Occidente, Colombia, 2018. https://hdl.handle.net/10614/10454.; J. Kim, J. Y. Kim and J. B. Park, “Design and Optimization of a 8kW Linear Generator for aDirect-Drive Point Absorber”, IEEE, Yonsei University, Seoul, Korea, 2013. doi:10.23919/OCEANS.2013.6741125.; W. Li, T.W. Ching and K.T. Chau, “Design and Analysis of a New Parallel-Hybrid-ExcitedLinear Vernier Machine for Oceanic Wave Power Generation”, ELSEVIER, Applied Energy, China, 2017. https://doi.org/10.1016/j.apenergy.2017.09.061.; L. Huang, J. Liu, H. Yu, R. Qu, H. Chen and H. Fang, “Winding Configuration andPerformance Investigation of a Tubular Superconducting Flux-Switching Linear Generator”, IEEE, Transactions on Applied Superconductivity, Vol. 25, No. 3, 2015. doi:10.1109/TASC.2014.2382877.; X. Liu, H. Yu, Z. Shi, T. Xia and M. Hu, “Electromagnetic-Fluid-Thermal Field Calculationand Analysis of a Permanent Magnet Linear Motor”, ELSEVIER, Applied Thermal engineering, Southeast University, China, 2017. https://doi.org/10.1016/j.applthermaleng.2017.10.066.; 288; CREG - Comisión de Regulación de Energía y Gas, «Regulación Aplicable al Biogás,» Comisión de Regulación de Energía y Gas, 2009.; O. Harker, «Presentación del proyecto - Prototipo de Sistema de generación de energía eléctrica a partir de residuos sólidos,» Colciencias, Fusagasugá, 2019.; I. Vera, J. Martínez, M. Estrada y A. Ortiz, «Potencial de generación de biogás y energía eléctrica Parte I: excretas de ganado bovino y porcino,» Ingeniería Investigación y Tecnología, vol. 15, nº 3, pp. 429-436, 2014. Doi: https://doi.org/10.1016/S1405- 7743(14)70352-X.; I. D. B. Sierra, «Actualización del Plan de Gestión Integral de Residuos Sólidos PGIRS de Fusagasugá,» Alcaldía de Fusagasugá, Fusagasugá, 2017.; L. D. Romero, «EL ESPECTADOR,» Tratar las basuras, lucha contrarreloj, 18 Junio 2015. [En línea]. Available: https://www.elespectador.com/noticias/bogota/tratar-basuras-lucha- contrarreloj-articulo-567135. [Último acceso: 13 abril 2020].; J. Niemczewska y G. Kolodziejak, «Landfill Gas Energy Technologies,» Instytut Nafty I Gazu, Cracovia, 2010. Disponible: https://www.globalmethane.org/Data/1022_LFG-Handbook.pdf.; R. Bove y P. Lunghi, «Electric power generation from landfill gas using traditional,» Energy Conversion and Management, vol. 47, p. 11, 2006. Doi: https://doi.org/10.1016/j.enconman.2005.08.017.; G. Blanco, E. Santalla, V. Córdoba y A. Levy, «Generación de electricidad a partir de biogás capturado de residuos sólidos urbanos: Un análisis teórico-práctico,» División de Energía: Banco Interamericano de Desarrollo, Buenos Aires, 2017. Disponible: https://publications.iadb.org/publications/spanish/document/Generación-de-electricidad- a-partir-de-biogás-capturado-de-residuos-sólidos-urbanos-Un-análisis-teórico- práctico.pdf.; Cogenera Mexico, «COGENERA MEXICO,» 2012. [En línea]. Available: http://www.cogeneramexico.org.mx/menu.php?m=77. [Último acceso: 5 Junio 2020].; ICONTEC, «Norma Técnica Colombiana GTC-24 "Gestión Ambiental. Residuos Sólidos. Guía para la separación en la fuente".,» Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), 2009.; Universidad de Cundinamarca, «Anexo 1. Protocolo para el manejo y pretratamiento de los RSO de la Plaza de Mercado del municipio de Fusagasugá.,» Anexos convocatoria Colciencias 829 - 2018 , Fusagasugá , 2020.; A. Andrade, A. Restrepo y J. Tibaquirá, «Estimación de biogás de relleno sanitario, caso de estudio: Colombia,» Entre ciencia e ingeniería, vol. 12, pp. 40-47, 2018. Doi: http://dx.doi.org/10.31908/19098367.3701.; Aqualimpia Engineering , «Aqualimpia,» [En línea]. Available:https://www.aqualimpia.com/biodigestores/biogas-purificacion/. [Último acceso: 22 05 2020].; W. Lema, «DESOTEC Actived Carbon,» 14 05 2014. [En línea]. Available: https://www.desotec.com/es/carbonologia/casos/eliminaci-n-del-sulfuro-de-hidr-geno-en- el-biog-s-parte-1. [Último acceso: 2020].; COLCIENCIAS, «Presentación del proyecto - Prototipo de Sistema de generación de energía eléctrica a partir de residuos sólidos,» Fusagasugá, 2019.; “El papel de la ciencia y la tecnología en la sociedad de conocimiento,” OCyT. https://www.ocyt.org.co/el-papel-de-la-ciencia-y-la-tecnologia-en-la-sociedad-de conocimiento/ (accessed Oct. 27, 2020).; A. Kapoor, S. I. Bhat, S. Shidnal, and A. Mehra, “Implementation of IoT (Internet of Things) and Image processing in smart agriculture,” in 2016 International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), Bengaluru, India, Oct. 2016, pp. 21–26, doi:10.1109/CSITSS.2016.7779434.; J. Zhou, D. Xiao, and M. Zhang, “Feature Correlation Loss in Convolutional Neural Networks for Image Classification,” in 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, Mar. 2019, pp. 219–223, doi:10.1109/ITNEC.2019.8729534.; T. Treebupachatsakul and S. Poomrittigul, “Bacteria Classification using Image Processing and Deep learning,” in 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), JeJu, Korea (South), Jun. 2019, pp. 1–3, doi:10.1109/ITC-CSCC.2019.8793320.; S. Dutta Gupta and A. K. Pattanayak, “Intelligent image analysis (IIA) using artificial neural network (ANN) for non-invasive estimation of chlorophyll content in micropropagated plants of potato,” Vitro Cell. Dev. Biol. - Plant, vol. 53, no. 6, pp. 520–526, Dec. 2017, doi:10.1007/s11627-017-9825-6.; A. M. Moreno-Jiménez, S. Loza-Cornejo, and M. Ortiz-Morales, “Efecto de luz LED sobresemillas de Capsicum annuum L. var. serrano,” vol. 17, no. 3, p. 7, 2017.; A. Rojas, “Flora Urbana Del Área Metropolitana De Bucaramanga,” Innovaciencia Fac.Cienc. Exactas Físicas Nat., vol. 5, no. 1 S1, Dec. 2017, doi:10.15649/2346075X.454.; A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with DeepConvolutional Neural Networks,” in Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–1105.; Y. A. Arévalo Ortega, S. R. Corredor Vargas y G. A. Higuera Castro, «Análisis forense con herramientas de hacking en dispositivos android,» Visión Electrónica, vol. 13, nº 1, pp. 162-177, 2019.; L. iyuan y H. Wenfeng, «Development of Puzzle Game for IOS Platform Based on Unity3D,» de 3rd International Conference on Applied Computing and Information Technology/2nd International Conference on Computational Science and Intelligence (ACIT-CSI), 2015.; A. Lima y E. A. da Costa, «Experimental Approach of the Asymptotic Computational Complexity of Shaders for Mobile Devices with OpenGL ES,» de Brazilian Symposium on Computer Games and Digital Entertainment, 2014.; B. J. Cox, The objective-C environment: past, present, and future, 1987.; G. Bournoutian y A. Orailoglu, «On-device objective-C application optimization framework for high-performance mobile processors,» de Design, Automation & Test in Europe Conference & Exhibition (DATE), 2014.; R. Rawlings, «bjective-C: an object-oriented language for pragmatists,» de Colloquium on Applications of Object-Oriented Programming, 1989.; G. Song, S. Ren, D. Zhang, K. Liu, Y. Sun y X. A. Wang, «Research on War Strategy Games on Mobile Phone based on Cocos2d-JS,» de 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2015.; S. Guozhi, R. Shuxia, Z. Dakun, L. Kunliang, S. Yumeng y A. W. Xu, «Research on War Strategy Games on Mobile Phone,» 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 151-155, 2015.; B. A. Brady, A. K. Jones y I. S. Kourtev, «Efficient CAD development for emerging technologies using Objective-C and Cocoa,» de International Conference on Electronics, Circuits and Systems, 2004, 2004.; C. W. Cho, C. P. Hong, J. C. Piao, Y. K. Lim y S. D. Kim, «Performance optimization of 3D applications by OpenGL ES library hooking in mobile devices,» de 13th International Conference Computer and Information Science (ICIS), 2014 IEEE/ACIS , 2014.; J. C. Piao, C. W. Cho, C. G. Kim, B. Burgstaller y S. D. Kim, «An Adaptive LOD Setting Methodology with OpenGL ES Library on Mobile Devices,» de International Conference on Convergence and Security (ICITCS), 2014.; F. A. Manrique Suarez, L. C. Velásquez Rodríguez y G. M. Tarazona Bermúdez, «Estado del arte sobre aplicaciones móviles: caso de estudio enfocado a estudiantes universitarios en Bogotá, Colombia,» Visión Electrónica, vol. 11, nº 2, pp. 279-288, 2017.; R. Besas, R. O. Atienza, T. Tai y R. Cruz, «An implementation of a structured and highly engaging learning environment on educational games for elementary education,» de IT in Medicine and Education (ITME), 2011.; C. Carter, Q. Mehdi y T. Hartley, «Navigational techniques to improve usability and user experience in RPG games,» de 17th International Conference on Computer Games (CGAMES), 2012.; C. Le Marc, J. P. Mathieu, M. Pallot y S. Richir, «Serious gaming: From learning experience towards User Experience,» de International Technology Management Conference (ICE), 2010.; S. F. Hsiao, S. Y. Li y K. H. Tsao, «Low-power and high-performance design of OpenGL ES 2.0 graphics processing unit for mobile applications,» de International Conference on Digital Signal Processing (DSP) , 2015.; S. F. Hsiao, P. H. Wu, C. S. Wen y L. Y. Chen, «Design of a programmable vertex processor in OpenGL ES 2.0 mobile graphics processing units,» de International Symposium on VLSI Design, Automation, and Test (VLSI-DAT), 2013.; X. Zhao y X. Huang, «A general solution of script-based fragment animation,» de 6th IEEE International ConferenceSoftware Engineering and Service Science (ICSESS), 2015.; L. Wang, «Design and Implementation of Four Arithmetic Operations Learning Games in Primary Mathematics Based on cocos2d-js,» 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE), pp. 595-598, 2018.; M. P. A. Balayan, V. V. B. Conoza, J. M. M. Tolentino, R. C. Solamo y R. P. Feria, «On evaluating skillville: An educational mobile game on visual perception skills. In Information, Intelligence, Systems and Applications,» de The 5th International Conference IISA 2014,, 2014.; B. Cassidy, G. Stringer y M. H. Yap, «Mobile Framework for Cognitive Assessment: Trail Making Test and Reaction Time Test,» de Computer and Information Technology (CIT), 2014.; Y. Lu, W. Gao y F. Wu, «Efficient background video coding with static sprite generation and arbitrary-shape spatial prediction techniques,» Transactions on Circuits and Systems for Video Technology, vol. 13, nº 5, pp. 394-405, 2013.; Cocos2D-x, «ARCHITECTURE OVERVIEW,» [En línea]. Available: http://www.cocos2d-x.org/wiki/Engine_Architecture. [Último acceso: 14 02 2016].; Y. Lu, Y. Liu y S. Dey, «loud mobile 3D display gaming user experience modeling and optimization by asymmetric graphics rendering,» IEEE Journal of Selected Topics in Signal Processing, vol. 9, nº 3, pp. 517-532, 2015.; S. Arefin Riffat, F. Harun y T. Hassan, «An Interactive Tele-Medicine System via Android Application,» Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA), pp. 148-152, 2020.; Y. Liu, H. Dar y R. Sharp, «Mobile Gamer Modelling and Game Performance Preference Measurement,» IEEE Conference on Games (CoG), pp. 632-635, 2020.; J. C. Piao, C. W. Cho, C. G. Kim, B. Burgstaller y S. D. Kim, «An adaptive LOD setting methodology with OpenGL ES library on mobile devices,» de IT Convergence and Security (ICITCS), 2014.; E. C. Chan y B. G. , «Appendix B: Introduction to Objective-C Programming in iPhone,» de Introduction to Wireless Localization: With iPhone SDK Examples, pp. 261-304.; Simulation Study on Duoplasmatron With Optimization of Ion Beam Extraction System S.Park and Y. Kim. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 45, NO. 6, JUNE 2017 955.; Aceleradores de partículas: Modelos para su diseño y la dinámica del haz MODELIZACIÓNAPLICADA A LA INGENIERÍA. R. Strangis. CYCLOTOPE, Houston, Texas, Estados Unidos. Junio 2011.; Presente y futuro de la implantación iónica: se describe la naturaleza, características,ventajas y desventajas de los tratamientos de superficie por implantación iónica; además el actual estado de desarrollo de esta tecnología, sus aplicaciones y las previsiones de su evolución en los próximos años. T. Rodríguez. 1998.; Modificación superficial de un acero AISI SAE 1045 mediante la implantación de iones denitrógeno y titanio. D. V. Salinas, D. Y. Peña y L. F. Chinchilla. Universidad Industrial de Santander UIS. Universidad Pontificia Bolivariana UPB. Julio 2011.; Microcavity engineering by plasma immersion ion implantation, Materials Chemistry andPhysics. P. K. Chu and N. W. Cheung. 57, 1998, 1-16.; A review of recent developments in ion implantation for metallurgical application. Se realizaeste trabajo o proyecto con el objetivo de identificar oportunidades para la aplicación industrial de la implantación iónica. R. Hutchings. 1994.; Experimental investigation on corrosion and hardness of ion implanted AISI 316L stainlesssteel. Materials & design technology. V. Muthukumaran. 2010.; Una mirada a los medios para diagnóstico por imágenes desde la educación médica. L.Esquivel Sosa, Y. Fleites García y Y. Jiménez González. EDUMECENTRO 2018;10(1): ISSN 2077-2874 RNPS 2234 Santa Clara ene.-mar.; La revolución científico-técnica y su impacto en las ciencias médicas. M. Hernández Pino.La Habana: Universidad Virtual de Salud Manuel Fajardo. 6 Sep 2016.; Imágenes Médicas: adquisición, análisis, procesamiento e interpretación. G. Passariello yF.Mora. Eds. Venezuela: Equinoccio, Ediciones de la Universidad Simón Bolívar;1995.; IMÁGENES DIAGNÓSTICAS: CONCEPTOS Y GENERALIDADES DIAGNOSTICIMAGES: CONCEPTS AND GENERALITIES I. R. Raudales Díaz. Rev. Fac. Cienc. Méd. Enero -Junio 2014.; Getting started in clinical radiology from image to diagnosis. G. W. Eastman, C. Wald andJ.Crossin. Germany: Thieme; 2005.; «Organización Mundial de la Salud,» 1 febrero 2018. [En línea]. Available:http://www.who.int/es/newsroom/fact-sheets/detail/cancer.; El Cáncer. J. G. de la Garza Salazar y P. Juárez Sánchez. Universidad Autónoma de NuevoLeón. Centro, Monterrey, Nuevo León, México, C.P. 64000 Primera edición, 2014.; Hadronterapia. J. L. Herranz, E. Herraiz, S. Vicente, J. España, J. L. Cal-Gonzalez y J. M.Udías. Primer Encuentro Complutense para la Divulgación en Física Nuclear y de Partículas [Internet]. gfn; 2008.; Proton Therapy: state of the art and clinical applications. I. López Moranchel and P. I.Maurelos Castell, 1). Centro de Formación Profesional San Juan de Dios, GENUD Toledo Research Group. (Universidad de Castilla-La Mancha). REVISTA OFICIAL DE LA SOCIEDAD ESPAÑOLA DE ENFERMERÍA ONCOLÓGICA. 2019.; Proton Therapy. A. R. Smith. Med Phys. 26 de enero de 2009 [citado 20 de abril de2019];36(2):556-68.; The risk of radiation-induced second cancers in the high to medium dose region: acomparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors. M. Moteabbed, T. I. Yock, H. Paganetti. Phys Medicina Biol [Internet]. 21 de junio de 2014 [citado 20 de abril de 2019];59(12):2883-99. D.; A Sealed-Accelerator-Tube Neutron Generator for Boron Neutron Capture TherapyApplication. K. N. Leung, Y. Lee, J. M. Verbeke, J. Vujic, M. D. Williams, L. K. Wu, N. Zahir. Lawrence Berkeley National Laboratory University of California Berkeley Berkeley USA Nuclear Engineering Department. La jolla, CA septiembre 1998.; Evaluación Preliminar de la Aceleración de D en un Generador de Neutrones D-DCompacto de Alto Flujo. J. A. Cifuentes Parada, Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Física Bogotá D.C., Colombia 2019.; Physics. D. Halliday and R. Resnick. Wiley; Part 2 edition, 1978.; Educational Applets: https://www.falstad.com/vector2de, https://www.falstad.com/vector3de.; M. Sereday, M. Damiano, and S. Lapertosa, “Amputaciones de Miembros Inferiores endiabéticos y no diabéti-cos en el ámbito hospitalario,” Alad(Asociación Larinoamericana de Diabetes), pp. 9–15, 2009, [Online]. Available: http://www.revistaalad.com.ar/pdfs/0905_Amp_de_Miem.pdf.; C. Quintero Quiroz, A. Jaramillo Zapata, M. T. De Ossa Jiménez, and P. A. Villegas Bolaños,“Estudio descriptivo de condiciones del muñón en personas usuarias de prótesis de miembros inferiores,” Rev. Colomb. Médicina Física y Rehabil., vol. 25, no. 2, pp. 94–103, 2018, doi:10.28957/rcmfr.v25n2a1.; L. H. Lugo and G. Desarrollador, “Guía de Práctica Clínica.”; O. Horgan and M. M. A. C. Lachlan, “Psychosocial adjustment to lower-limb amputation : Areview,” 2004, doi:10.1080/09638280410001708869.; B. L. Martín, M. Jesús, and P. Hernández-Rico, “Amputación.”; "Convocatoria para proyectos de Ciencia, Tecnología e Innovación y su contribución a losretos de país- 2018 %7C Convocatoria 808 %7C COLCIENCIAS.” https://www.colciencias.gov.co/convocatorias/investigacion/convocatoria-para-proyectos-ciencia-tecnologia-e-innovacion-y-su-0 (accessed Aug. 04, 2019).; W. L. Childers, R. S. Kistenberg, and R. J. Gregor, “The Biomechanics of Cycling with aTranstibial Amputation: Recommendations for Prosthetic Design and Direction for Future Research,” Prosthet. Orthot. Int., vol. 33, no. 3, pp. 256–271, Sep. 2009, doi:10.1080/03093640903067234.; I. Pinilla Giménez, “Juego serio para terapias de rehabilitación motora y cognitiva conrealidad virtual,” 2017, Accessed: Aug. 29, 2019. [Online]. Available: http://uvadoc.uva.es/handle/10324/23073.; G. Fiedler, J. Akins, R. Cooper, S. Munoz, and R. A. Cooper, “Rehabilitation of People withLower-Limb Amputations,” Curr. Phys. Med. Rehabil. Reports, vol. 2, no. 4, pp. 263–272, Dec. 2014, doi:10.1007/s40141-014-0068-8.; Prodalca, “Rodillo personal trainer con regulador de esfuerzo,” 2019. https://prodalca.com.co/producto/rodillo-personal-trainer-con-regulador-de-esfuerzo/.; C. Sun and Z. Qing, “Design and Construction of a Virtual Bicycle Simulator for EvaluatingSustainable Facilities Design,” Adv. Civ. Eng., vol. 2018, 2018, doi:10.1155/2018/5735820.; T. Instruments and I. Sloa, “Chapter 16 Active Filter Design Techniques Excerpted from OpAmps for Everyone Literature Number: SLOD006A.”; L. Xiong et al., “IMU-based automated vehicle slip angle and attitude estimation aided byvehicle dynamics,” Sensors (Switzerland), vol. 19, no. 8, 2019, doi:10.3390/s19081930.; Arduino Uno Rev3 %7C Arduino Official Store.” https://store.arduino.cc/usa/arduino-uno-rev3.; S. Sanghani, Stumps and Cranks: An Introduction to Amputee Cycling.; M. Ambrož, “Raspberry Pi as a low-cost data acquisition system for human poweredvehicles,” Meas. J. Int. Meas. Confed., vol. 100, pp. 7–18, 2017, doi:10.1016/j.measurement.2016.12.037.; F. Villarreal, “Introducción a los modelos de pronósticos,” Univ. Nac. del Sur, pp. 1–121,2016.; “pySerial 3.0 documentation.” https://pythonhosted.org/pyserial/.; “python-drawnow: MATLAB-like drawnow to easily update a figure.” https://github.com/stsievert/python-drawnow.; J. D. Rairan-Antolines and J. M. Fonseca-Gómez, “Algoritmo para la aproximación de lavelocidad de giro de un eje mediante un encoder incremental,” Ing. y Univ., vol. 17, no. 2, pp. 293–309, 2013.; MinSalud, “33 mil personas al año mueren de Cáncer en Colombia.” https://www.minsalud.gov.co/Paginas/33-mil-personas-al-año-mueren-de-Cáncer-en-Colombia.aspx.; D. Raúl Pefaur, “Imaginología actual del cáncer pulmonar,” Rev. Médica Clínica Las Condes, vol. 24, no. 1, pp. 44–53, 2013, doi: https://doi.org/10.1016/S0716-8640(13)70128-7.; C. R. José Miguel, “Estado actual del tratamiento del cáncer pulmonar,” Rev. Médica Clínica Las Condes, vol. 24, no. 4, pp. 611–625, 2013, doi: https://doi.org/10.1016/S0716-8640(13)70200-1.; Society American Cancer, “Cancer Statistics Center,” 2020. https://cancerstatisticscenter.cancer.org/?_ga=2.68534866.2102841857.1593652002-2027832360.1593652002#!/.; Diariopresente.mx, “Google desarrolla algoritmo que detecta el cáncer de pulmón,” 2018. [Online]. Available: https://www.diariopresente.mx/actualidad/google-desarrolla-algoritmo-que-detecta-el-cancer-de-pulmon/218050.; M. F. Abbod, J. W. F. Catto, D. A. Linkens, and F. C. Hamdy, “Application of ArtificialIntelligence to the Management of Urological Cancer,” J. Urol., vol. 178, no. 4, pp. 1150–1156, 2007, doi: https://doi.org/10.1016/j.juro.2007.05.122.; J. M. Purswani, A. P. Dicker, C. E. Champ, M. Cantor, and N. Ohri, “Big Data From SmallDevices: The Future of Smartphones in Oncology,” Semin. Radiat. Oncol., vol. 29, no. 4, pp. 338–347, 2019, doi: https://doi.org/10.1016/j.semradonc.2019.05.008.; K. Cieślak, “Professional psychological support and psychotherapy methods for oncologypatients. Basic concepts and issues,” Reports Pract. Oncol. Radiother., vol. 18, no. 3, pp. 121–126, 2013, doi: https://doi.org/10.1016/j.rpor.2012.08.002.; H. Contreras, “Teoria de la Computacion para Ingeniería de Sistemas: Un enfoque practico.”Caracas: Saber, Ula. V, 2012, [Online]. Available: https://d1wqtxts1xzle7.cloudfront.net/39872592/tema1.pdf?1447177931=&response-content-disposition=inline%3B+filename%3DTema1.pdf&Expires=1594305464&Signature=Fe86rqeud4Y7osvWzUUhOYTIZCaL-k~pJaar2XxVbujlot-4xV9wYpduKdxkZ5zHaSPhUOCcpH1v0k7Y5shbONvWqbXmdTzdO.; A. GALIPIENSO, M. ISABEL, M. A. CAZORLA QUEVEDO, O. Colomina Pardo, F.ESCOLANO RUIZ, and M. A. LOZANO ORTEGA, Inteligencia artificial: modelos, técnicas y áreas de aplicación. Editorial Paraninfo, 2003.; J. V. González, O. A. V. Arenas, and V. V. González, “Semiología de los signos vitales:Una mirada novedosa a un problema vigente,” Arch. Med., vol. 12, no. 2, pp. 221–240, 2012, [Online]. Available: https://www.redalyc.org/pdf/2738/273825390009.pdf.; Liip.care, “Liip Smart Monitor,” 2019. https://liip.care/es/.; Welchallyn.com, “Equipos de signos vitales,” 2018.; Welchallyn.com, “Equipos de signos vitales,” 2018. https://www.welchallyn.com/content/welchallyn/latam/es/products/categories/patient-monitoring/vital-signs-devices.html#.; Scikit-learn.org, “Scikit-learn machine learning in python,” 2019. https://scikit-learn.org/stable/index.html.; Cancer Treatment Centers of America, “Lung cancer stages,” 2020. https://www.cancercenter.com/cancer-types/lung-cancer/stages.; NIH (Instituto Nacional del Cáncer), “¿Qué es el cancer?,” 2015. https://www.cancer.gov/espanol/cancer/naturaleza/que-es%0A.; Roger S. Pressman. (2010). Ingeniería del Software Un enfoque práctico. Vol. 3, SéptimaEdición. pp. 70.; Castro, F.D. (2008). Metodologia de projeto centrada na casa da qualidade. Tesis deMaestría, universidade federal rio grande do sul, Porto Alegre, Brasil.; Pahl, G., & Beits, W. (2013). Engineering design: a systematic approach. Springer ScienceBusiness Media.; R. De Armas, A. Alfonso, y L. Rojas, “Tomografía local con bases daubechies", VisiónElectrónica, vol. 9, no. 2, pp. 300-311, 2015.; C. H. Caicedo y A. Smida, “Intensidad informacional para la longitudinalidad asistencial ensistemas de salud", Visión Electrónica, vol. 10, no. 1, pp. 83-95, 2016. https://doi.org/10.14483/22484728.11612.; J. R. Torres Castillo, J. S. Pérez Lomelí, E. Camargo Casallas, y M. Ángel PadillaCastañeda, “Dispositivo háptico vibrotáctil inalámbrico para asistencia de actividades motoras", Visión Electrónica, vol. 12, no. 1, pp. 58-64, 2018. https://doi.org/10.14483/22484728.13310.; N. W. S. US Department of Commerce, NOAA, “Your National Weather Service: Evolvingto Build a Weather-Ready Nation,” 2017. https://www.weather.gov/about/wrn (accessed Oct. 17, 2020).; NOAA,“AboutOur Agency %7C National Oceanic and AtmosphericAdministration.” https://www.noaa.gov/about-our-agency (accessed Oct. 17, 2020).; NOAA, “Marina y aviación %7C Administración Nacional Oceánica y Atmosférica,” 2020.https://www.noaa.gov/marine-aviation (accessed Oct. 25, 2020).; N. NESDIS, “About %7C NOAA National Environmental Satellite, Data, and Information Service(NESDIS),” 2019. https://www.nesdis.noaa.gov/content/about (accessed Oct. 25, 2020).; NOAA,“Gráficos %7C Administración Nacional Oceánica yAtmosférica,”2020. https://www.noaa.gov/charting (accessed Oct. 25, 2020).; NOAA,“Educación Administración Nacional Oceánica y Atmosférica,”2019. https://www.noaa.gov/education (accessed Oct. 25, 2020).; N. N. O. and A. A. US Department of Commerce, “National Oceanic and AtmosphericAdministration (NOAA) Staff Directory Page,” 2018.; N. O. and A. A. US Department of Commerce, “NOAA’s National Ocean Service,” 2019.; R. Weiher, “Assessing the Economic & Social Benefits of NOAA Data,” 2008. Accessed:Nov. 19, 2020. [Online]. Available: https://www.oecd.org/sti/ieconomy/40066192.pdf.; H. Kite-Powell, “Estimating Economic Benefits from NOAA PORTS ® Information: A CaseStudy of Houston,” 2007. Accessed: Nov. 19, 2020. [Online]. Available: https://tidesandcurrents.noaa.gov/publications/EstimatingEconomicBenefitsfromNOAAPORTSIn formation_Houston-Galveston.pdf.; NASA, “Órbitas de Satélites,” 2020. https://scool.larc.nasa.gov/Spanish/orbits-sp.html(accessed Oct. 17, 2020).; N. OSPO, “GOES Status - Office of Satellite and Product Operations,” Aug. 15, 2019.https://www.ospo.noaa.gov/Operations/GOES/status.html (accessed Oct. 17, 2020).; N.OSPO, “POES Operational Status- POESStatus- OSPO,”Mar. 22, 2019. https://www.ospo.noaa.gov/Operations/POES/status.html (accessed Oct. 19, 2020).; NOAA, “NOAA Readies GOES-15 and GOES-14 for Orbital Storage %7C NOAA NationalEnvironmental Satellite, Data, and Information Service (NESDIS),” Jan. 29, 2020. https://www.nesdis.noaa.gov/content/noaa-readies-goes-15-and-goes-14-orbital-storage (accessed Oct. 17, 2020).; N. OSPO, “Suomi-NPP Operational Status - Office of Satellite and Product Operations,”Apr. 14, 2016. https://www.ospo.noaa.gov/Operations/SNPP/status.html (accessed Oct. 19, 2020).; X. Zou and X. Tian, “COMPARISON OF ATMS STRIPING NOISE BETWEEN NOAA-20AND S- NPP Xiaolei Zou and Xiaoxu Tian Earth System Science Interdisciplinary Center , University of Maryland , College Park , MD 20740,” IEEE Int. Geosci. Remote Sens. Symp., pp. 3105–3108, 2018, doi:10.1109/IGARSS.2018.8517482.; X. Tian, X. Zou, and N. Sun, “COMPARISON OF RO-ESTIMATED ATMS BIASESBETWEEN NOAA-20 AND S-NPP Earth System Science Interdisciplinary Center , University of Maryland , College Park , MD 20740 Earth Resources Technology ( ERT ), Inc ., Laurel , MD20707 , USA,” IEEE Int. Geosci. Remote Sens. Symp., pp. 3101–3104, 2018, doi:10.1109/IGARSS.2018.8519416.; W. Wang, C. Cao, Y. Bai, S. Blonski, and M. A. Schull, “Assessment of the NOAA S-NPPVIIRS geolocation reprocessing improvements,” Remote Sens., vol. 9, no. 10, 2017, doi:10.3390/rs9100974.; N. NESDIS, “Imágenes del sector: América del Sur - Norte - NOAA / NESDIS / STAR,”2020. https://www.star.nesdis.noaa.gov/GOES/sector.php?sat=G16§or=nsa (accessed Oct. 17, 2020).; S. A. Buehler, V. O. John, A. Kottayil, M. Milz, and P. Eriksson, “Efficient radiative transfersimulations for a broadband infrared radiometer-Combining a weighted mean of representative frequencies approach with frequency selection by simulated annealing,” J. Quant. Spectrosc. Radiat. Transf., vol. 111, no. 4, pp. 602–615, 2010, doi:10.1016/j.jqsrt.2009.10.018.; U.S. DEPARTMENT OF COMERCE, National Oceanic and Atmospheric Adminitration,and and National Environmental Satellite, Data, “National Oceanic and Atmospheric Administration User’s Guide for Building and Operating Environmental Satellite Receiving Stations,” Feb. 2009. Accessed: Oct.17,2020. [Online]. Available: https://noaasis.noaa.gov/NOAASIS/pubs/Users_GuideBuilding_Receive_Stations_March_2009.pdf.; J. Mitola, “The Software Radio Architecture,” Softw. Radio Technol., vol. 33, no. May, pp.26–38, 2009, doi:10.1109/9780470546444.ch1.; V. Dascal, P. Dolea, O. Cristea, and P. Tudor, “Advanced Vhf Ground Station for NoaaWeather Satellite Apt Image Reception,” Acta Tech. Napocensis, vol. 53, no. 3, pp. 1–7, 2012.; C. Bosquez, A. Ramos, and L. Noboa, “System for receiving NOAA meteorological satelliteimages using software defined radio,” Proc. 2016 IEEE ANDESCON, ANDESCON 2016, pp. 0– 3, 2016, doi:10.1109/ANDESCON.2016.7836233.; C. Velasco and C. Tipantuna, “Meteorological picture reception system using softwaredefined radio (SDR),” 2017 IEEE 2nd Ecuador Tech. Chapters Meet. ETCM 2017, vol. 2017-Janua, pp. 1–6, 2017, doi:10.1109/ETCM.2017.8247551.; E. B. Mikkelsen, “The Design of a Low Cost Beacon Receiver System using SoftwareDefined Radio,” Inst. Elektron. og telekommunikasjo, no. July, pp. 1–83, 2009, [Online]. Available: https://hdl.handle.net/11250/2369478.; D. J. M. Peralta, D. S. Dos Santos, A. Tikami, W. A. Dos Santos, and E. W. R. Pereira,“Satellite telemetry and image reception with software defineradio applied to space outreach projects in brazil,” An. Acad. Bras. Cienc., vol. 90, no. 3, pp. 3175–3184, 2018, doi:10.1590/0001- 3765201820170955.; A. G. C. Guerra, A. S. Ferreira, M. Costa, D. Nodar-López, and F. Aguado Agelet,“Integrating small satellite communication in an autonomous vehicle network: A case for oceanography,” Acta Astronaut., vol. 145, no. November 2017, pp. 229–237, 2018, doi:10.1016/j.actaastro.2018.01.022.; J. Lee Min, “Decoding Signals From Weather Satellites Using Software Defined Radio,”Electron.Theses Diss., vol. 3, no. 2, pp. 1–70, 2018, doi:10.18041/2382-3240/saber.2010v5n1.2536.; Icom, “INSTRUCTON MANUAL iPCR1500 iPCR2500,” Screen. Icom, Osaka, pp. 45–49,2006, [Online]. Available: http://www.icomamerica.com/es/products/receivers/pc/pcr1500/default.aspx.; National Instruments, “SPECIFICATIONS USRP-2920,” Jul. 13, 2017. https://www.ni.com/pdf/manuals/375839c.pdf (accessed Oct. 19, 2020).; RTL-SDR, “RTL-SDR Blog V3 Datasheet,” Feb. 2018. Accessed: Oct. 19, 2020. [Online].Available: https://www.rtl-sdr.com/wp-content/uploads/2018/02/RTL-SDR-Blog-V3- Datasheet.pdf.; N. Crisan and L. Cremene, “NOAA Signal Decoding And Image Processing Using GNU-Radio,” Acta Tech. Napocensis, vol. 49, no. 4, pp. 1–5, 2012.; D. Aguirre and P. R. Yanyachi, “Design of a parabolic patch antenna in band L, with doublelayer and air substrate, for weather satellite reception,” 2017 6th Int. Conf. Futur. Gener. Commun. Technol. FGCT 2017, pp. 10–14, 2017, doi:10.1109/FGCT.2017.8103395.; Y. Rafsyam, Z. Indra, E. E. Khairas, Jonifan, and W. A. Karimah, “Design of Double CrossDipole Antenna as NOAA Satellite Signal Receiver for Monitor Cloud Conditions Application,” J.Phys. Conf. Ser., vol. 1364, no. 1, 2019, doi:10.1088/1742-6596/1364/1/012059.; M. Fathurahman, Zulhelman, A. Maulana, and M. Widyawati, “Design and Development ofDipole Antenna for NOAA Satellite Image Acquisition System and Processing,” J. Phys. Conf. Ser., vol. 1364, no. 1, 2019, doi:10.1088/1742-6596/1364/1/012025.; F. P. A. Escobedo, H. R. Alvarez, H. Salazar, C. G. R. Percing, and R. L. J. M. De Oca,“Low cost optimization method of a double cross antenna satellite reception system for the processing and improvement of meteorological satellite signals and images NOAA 15-18-19,” Proc. 2019 IEEE 1st Sustain. Cities Lat. Am. Conf. SCLA 2019, pp. 1–6, 2019, doi:10.1109/SCLA.2019.8905749.; A. E. Quiroz-Olivares, N. I. Vargas-Cuentas, G. W. Zarate Segura, and A. Roman-Gonzalez, “Low-cost and portable ground station for the reception of NOAA satellite images,”Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 5, pp. 450–454, 2019, doi:10.14569/ijacsa.2019.0100557.; M. L. Keefer et al., “Evaluating the NOAA Coastal and Marine Ecological ClassificationStandard in estuarine systems: A Columbia River Estuary case study,” Estuar. Coast. Shelf Sci., vol. 78, no. 1, pp. 89–106, 2008, doi:10.1016/j.ecss.2007.11.020.; A. K. Mitra, P. K. Kundu, A. K. Sharma, and S. K. Roy Bhowmik, “A neural networkapproach for temperature retrieval from AMSU-a measurements onboard NOAA-15 and NOAA-16 satellites and a case study during Gonu cyclone,” Atmosfera, vol. 23, no. 3, pp. 225–239, 2010.; D. J. Schneider and M. J. Pavolonis, “ADVANCES IN VOLCANO MONITORING : THEROLE OF JPSS INSTRUMENTS U . S . Geological Survey-Alaska Volcano Observatory , Anchorage , AK NOAA Cooperative Institute for Meteorological Satellite Studies , Madison , WI,” IEEE Int. Geosci. Remote Sens. Symp., pp. 2798–2801, 2017, doi:10.1109/IGARSS.2017.8127579.; C. Muñoz, P. Acevedo, S. Salvo, G. Fagalde, and F. Vargas, “Detección de incendiosforestales utilizando imágenes NOAA/16-LAC en la Región de la Araucanía, Chile,” Bosque, vol. 28, no. 2, pp. 119–128, 2007, doi:10.4067/s0717-92002007000200004.; L. Carro-Calvo, C. Casanova-Mateo, J. Sanz-Justo, J. L. Casanova-Roque, and S.Salcedo- Sanz, “Efficient prediction of total column ozone based on support vector regression algorithms, numerical models and Suomi-satellite data,” Atmosfera, vol. 30, no. 1, pp. 1–10, 2017, doi:10.20937/ATM.2017.30.01.01.; A. Antón, R. Martínez, M. A. Salas, and A. Torre, “Performance analysis andimplementation of spatial and blind beamforming algorithms for tracking leo satellites with adaptive antenna arrays,” in European Conference on Antennas and Propagation, EuCAP 2009, Proceedings, 2009, pp. 216–220.; S. Soisuvarn, Z. Jelenak, P. S. Chang, Q. Zhu, and G. Sindic-Rancic, “Validation of noaa’snear real-time ascat ocean vector winds,” Int. Geosci. Remote Sens. Symp., vol. 1, no. 1, pp. 118–121, 2008, doi:10.1109/IGARSS.2008.4778807.; A. Huang, L. Gumley, K. Strabala, S. Mindock, R. Garcia, and G. Martin, “COMMUNITYSATELLITE PROCESSING PACKAGE FROM DIRECT BROADCAST : PROVIDING REAL- TIME SATELLITE DATA TO EVERY CORNER OF THE WORLD Space Science and Engineering Center ( SSEC ) Cooperative Institute for Meteorological Studies ( CIMSS ) University of Wisconsin,” IEEE Int. Geosci. Remote Sens. Symp., pp. 5532–5535, 2016, doi:10.1109/IGARSS.2016.7730443.; K. R. Al-Rawi and J. L. Casanova, “APLICACIÓN DE LAS REDES NEURONALES PARAEL CONTROL Y SEGUIMIENTO EN TIEMPO REAL DE LOS INCENDIOS FORESTALES MEDIANTE IMÁGENES NOAA-AVHRR,” in TELEDETECCION. Avances y Aplicaciones.VIII Congreso Nacional de teledeteccion, 1999, no. January, pp. 244–247.; Organización Meteorología Mundial, “IDEAM se fortalece en monitoreo y seguimiento dehuracanes (IDEAM, Columbia) %7C Organización Meteorológica Mundial,” Feb. 07, 2013. https://public.wmo.int/es/media/news-from-members/ideam-se-fortalece-en-monitoreo-y- seguimiento-de-huracanes-ideam-columbia (accessed Oct. 26, 2020). [49] IDEAM, “VISOR DE IMÁGENES SATÉLITALES - IDEAM.” http://www.pronosticosyalertas.gov.co/imagsatelital-portlet/html/imagsatelital/view.jsp (accessed Oct. 26, 2020).; NOAA, “National Oceanic and Atmospheric Administration %7C U.S. Department ofCommerce.” https://www.noaa.gov/ (accessed Oct. 26, 2020). IDEAM, “IDEAM - IDEAM.” http://www.ideam.gov.co/ (accessed Oct. 26, 2020).; J. S. M. G, J. E. Ar, and M. L. Su, “Comparacion De Herramientas De Software Para LaCoordinacion Internacional Del Roe En La Orbita Geoestacionaria,” Visión Electrónica algo más que un estado sólido, vol. 9, no. 1, pp. 5–12, 2016, doi:10.14483/22484728.11009.; Google Cloud, “Weather, climate big data from NOAA now in cloud %7C Google Cloud Blog,”Dec.19, 2019. https://cloud.google.com/blog/products/data-analytics/weather-climate-big-data-from-noaa-now-in-cloud (accessed Oct. 26, 2020).; Amazon Web Services, “Registry of Open Data on AWS,” Dec. 19, 2019.https://registry.opendata.aws/collab/noaa/ (accessed Oct. 26, 2020).; NOAA, “Cloud platforms unleash full potential of NOAA’s environmental data %7C NationalOceanic and Atmospheric Administration,” Dec. 19, 2019. https://www.noaa.gov/media-release/cloud- platforms-unleash-full-potential-of-noaa-s-environmental-data (accessed Oct. 26, 2020).; J. A. Niño, L. Y. Martínez y F. H. Fernández “Mano robótica como alternativa para laenseñanza de conceptos de programación en Arduino”, Revista Colombiana de Tecnologías de Avanzada, vol. 2, no. 28, pp. 132 - 139, may 2016.; C. Flores-Vázquez, A. Rojas y K. Trejo, “Operación remota de un robot móvil usando unteléfono inteligente” INGENIUS, núm. 17, 2017.; A. Cerón, “Sistemas robóticos teleoperados” Ciencia e Ingeniería Neogranadiana, no. 15,pp. 62-72, 2005.; A. M. Rivera, L. A. O’Farril, C. Miguélez, P. Martínez y I. O. Benítez “Caracterización del ez-robot para su utilización en la robótica educativa”, Serie Científica de la Universidad de las Ciencias Informáticas, vol. 12, no. 11, pp. 73 - 80, nov 2019.; M. G. da Silva, C. S. González “PequeBot: Propuesta de un Sistema Ludificado de RobóticaEducativa para la Educación Infantil”, Actas del V Congreso Internacional de Videojuegos y Educación (CIVE'17), 2017.; A. Marroquín, A. Gómez y A. Paz “Design and implementation of Explorer Mobile Robotcontrolled remotely using IoT Technology”, 2017.; R. Batista, " Diseño e implementación de un sistema de iluminación inteligente de interiores”, tesis Eng., Universidad Tecnológica de La Habana “José A. Echeverría” CUJAE, La Habana, Cuba, 2019.; S. Companioni, "Procesamiento de imágenes, obtenidas por un vehículo autónomo, para elreconocimiento de daños en cultivos ”, tesis Eng, Universidad Tecnológica de La Habana “José A.Echeverría” CUJAE, La Habana, Cuba, 2020.; J. A. Licona, “Diseño y desarrollo de un robotmóvil a bajo costo para niños: EcateBot”, thesisEng, Universidad Autónoma del estado de México, México D.F, México, 2019.; R. A. Moreno, Desarrollo de aplicaciones para Android usando MIT App Inventor 2, 1eraed. Bogotá: Autoedición, 2016.; L. A. Velazco, "Diseño de un sistema de control basado en linealización por realimentaciónpara robot móvil tipo Ackerman con velocidad variable y movimiento en doble sentido describiendo trayectorias óptimas " thesis MSc, Pontificia Universidad Católica del Perú, Lima, Perú, 2019.; C. Vázquez, "Framework de comunicaciones para robótica educativa, distributiva ycolaborativa” thesis Eng, Universidad de Extremadura, Badajoz, España, 2019.; L. Rodríguez, "Diseño e implementación de una Estación Meteorológica para la agriculturabasada en Arduino", thesis Eng, Universidad Tecnológica de La Habana “José A. Echeverría” CUJAE, La Habana, Cuba, 2019.; D. Higuera, J. Guzmán, A. Rojas “Implementando las metodologías steam y abp en laenseñanza de la física mediante Arduino”, III Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y Móvil AmITIC, pp 133 – 137, 2019.; J.M. Nova, " Diseño y desarrollo de una aplicación para monitorear la concentración deCO y CH4 en dispositivos móviles Android". thesis Eng, Universidad Pontificia Bolivariana, Bucaramanga, Colombia, 2018.; ECDRUM. “Circuito – inversión de giro de un motor de CD con relés”, 2018, [Online]Available at http: //ecdrumdownload.blogspot.com. “Manual de la GoPro H9”, 2017, [Online] Available at http: //www.google.com.; R. a. markets, «Research and Markets,» 2020.[En línea]. Available: https://www.globenewswire.com/news-release/2020/03/18/2002434/0/en/IoT-in-the-Global-Retail-Market-2020-2025-Analyzed-by-Platform-Hardware-Service-Application-and-Region.html. [Último acceso: 4 7 2020].; H. T. a. S. Dustdar, «Principles for Engineering IoT Cloud Systems,» IEEE Cloud Computing, vol. II, nº 2, pp. 68-76, 2015.; A. Rahmani, N. K. Thanigaivelan, T. N. Gia, J. Granados, B. Negash, P. Liljeberg y H. Tenhunen, «Smart e-Health Gateway :,» Consumer Communications and Networking Conference (CCNC), 12th Annual IEEE, pp. 826-834, 2015.; P. Desai, A. Sheth y P. Anantharam, «Semantic Gateway as a Service Architecture for IoT Interoperability,» 2015 IEEE International Conference on Mobile Services, pp. 313-319, 2015.; A. A. Sánchez Martín, E. González Guerrero y L. E. Barreto Santamaría, «Prospective integration between Environmental Intelligence (AMI), Data Analytics (DA), and Internet of Things (IoT),» 2019 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI ), pp. 1-6, 2019.; I. A. M. M. J.-M. R. J.-C. T. M. Berrouyne, «A Model-Driven Approach to Unravel the Interoperability Problem of the Internet of Things,» de Barolli, L., Amato, F., Moscato, F., Enokido, T., & Takizawa, M. (Eds.). (2020). Advanced Information Networking and Applications. Advances in Intelligent Systems and Computing. doi:10.1007/978-3-030-44041-1 , Caserta, Italia, 2020.; D. Yacchirema y C. E. Palau Salvador, «Smart IoT Gateway for Heterogeneous Devices Interoperability,» IEEE Latin America Transactions, vol. 14, nº 8, pp. 3900-3906, 2016.; C. Dergarabedian, «La fuerte apuesta de Samsung a la Internet de las cosas para simplificar la vida cotidiana de los usuarios,» iProfesional, 10 Enero 2018.; OpenIoT Consortium, «Open Source cloud solution for the Internet of Things,» OpenIoT, 1 Septiembre 2019. [En línea]. Available: http://www.openiot.eu/. [Último acceso: 02Marzo 2020].; E. González Guerrero, L. E. Barreto Santamaría y A. A. Sánchez Martín, «Integrated Model AmI-IoT-DA for Care of Elderly People,» de Advances in Computing. CCC 2018, Bogotá, 2018.; N. Al-Oudat, A. Aljaafreh, M. Saleh y M. Alaqtash, «IoT-Based Home and Community Energy Management System in Jordan,» Tafila Technical University, vol. CLX, pp. 142-148, 2019.; F. Herrera Araújo, M. A. Ardila Lara, E. Gutiérrez Gil y D. Herrera Téllez, «ODS en Colombia: Los retos para 2030,» Programa de las Naciones Unidas para el Desarrollo -PNUD-, Bogotá, 2018.; M. Unis, A. Nettsträter, F. Iml, J. Stefa, C. S. D. Suni, A. Salinas y U. Sapienza, «Internet of Things-Architecture IoT-A Final architectural reference model for the IoT,» 2013.; F. Leiva, «La agricultura de precisión: una producción más sostenible y competitiva con visión futurista,» VIII Congreso de la Sociedad Colombiana de Fitomejoramiento y Producción de Cultivos, vol. 93, nº 997-1006, p. 7, 2003.; F. A. Urbano Molano, «Wireless Sensor Networks Applied to Optimization in Precision Agriculture for Coffee Crops in Colombia,» Journal de Ciencia e Ingenier´ıa, vol. 5, nº 1, pp. 46-52, 2013.; IERC, «IoT Semantic Interoperability:Research Challenges, Best,» 2011.; M. MARJANI, F. NASARUDDIN, A. GANI, A. KARIM, I. A. TARGIO HASHEM, A. SIDDIQA y . I. YAQOOB, «Big IoT Data Analytics: Architecture, Opportunities, and Open Research Challenges,» IEEE Access, vol. V, nº 2, p. 15, 2017.; W. Ruíz Martínez , Y. Díaz Gutiérrez, R. Ferro Escobar y L. Pallares, «Application of the Internet of Things through a Network of Wireless Sensors ina Coffee Crop for Monitoring and Control its Environmental Variables,» TecnoLógicas, vol. 22, nº 46, pp. 2-17, 2019.; C. A. Barry, «Choosing Qualitative Data Analysis Software: Atlas/ti and Nudist Compared,» Sociological Research Online, vol. III, nº 3, p. 16–28, 1998.; J. Macias, H. Pinilla, W. Castellanos y J. D. Alvarado, «Sistema de monitoreo de variables ambientales usando IOT,» Tech Fest, 2019.; J. Macías, H. Pinilla, W. Castellanos, J. D. Alvarado y A. Sánchez, «DISEÑO E IMPLEMENTACIÓN DE UN GATEWAY IOT MULTIPROTOCOLO,» 14° CONGRESO INTERNACIONAL DE ELECTRÓNICA, CONTROL Y TELECOMUNICACIONES, vol. 13, pp. 179-198, 2019.; A. A. Sánchez Martín, L. E. Barreto Santamaría, J. J. Ochoa Ortiz y S. E. Villanueva Navarro, «EMULADOR PARA DESARROLLO DE PROYECTOS IOT Y ANALITICAS DE DATOS,» de XII Congreso Internacional de Electrónica, Control y Telecomunicaciones, Bogota, 2019.; allmeteo, «Agro IoT Weather Sensor: AN AFFORDABLE SOLUTION FOR DISTRIBUTED WEATHER MONITORING FOR AGRICULTURE, FARMING & WINE YARDS.,» BARANI DESIGN Technologies s.r.o., 2018. [En línea]. Available: https://www.allmeteo.com/agriculture-iot-weather-station. [Último acceso: 02 03 2020].; LEMKEN, «LEMKEN: The Agrovision Company,» LEMKEN , 2020. [En línea]. Available: https://smartfarming.lemken.com/en/. [Último acceso: 02 03 2020].; RIGADO, «Cascade IoT Gateway: Edge Bluetooth® connectivity & secure data processing,» RIGADO, 2016-2020. [En línea]. Available: https://www.rigado.com/cascade-iot-gateway/. [Último acceso: 02 03 2020].; NXP Semiconductors, «IoT Gateway Solution: Complete development platform that brings together the building blocks for secure, production-ready IoT systems,» NXP Semiconductors, 2006-2020. [En línea]. Available: https://www.nxp.com/design/designs/iot-gateway-solution:IOT-GATEWAY-SOLUTION.[Último acceso: 02 03 2020].; Google, Google Big Query Analytics, United States of America : John Wiley & Sons, Inc., 2014.; P. P. Ray, «A survey of IoT cloud platforms,» Future Computing and Informatics Journal, vol. 1, nº 1-2, pp. 35-46, 2016.; J. C. Najar-Pacheco, J. A. Bohada-Jaime y W. Y. Rojas-Moreno, «Vulnerabilidades en el internet de las cosas,» Visión Electrónica, vol. 13, nº 2, pp. 312-321, 2019.; K. Husenovic, I. Bedi, and S. Maddens, Sentando las bases para la 5G: Oportunidades ydesafíos. ITU, 2018 [Online]. Available: https://www.itu.int/dms_pub/itu-d/opb/pref/D-PREF-BB.5G_01-2018-PDF-S.pdf; GSMA, “Study on Socio-Economic Benefits of 5G Services Provided in mmWave Bands.”Reportes GSMA, 2018 [Online]. Available: https://www.gsma.com/spectrum/wp-content/uploads/2019/10/mmWave-5G-benefits.pdf.; 5G Américas, Identificación de habilitadores para redes 4G y 5G en América Latina. 2020[Online]. Available: https://brechacero.com/wp-content/uploads/2020/04/WP-Identificaci%C3%B3n-de-habilitadores-para-la-implementaci%C3%B3n-de-redes-4G-y-5G-en-Am%C3%A9rica-Latina.pdf.; GSMA, The Mobile Economy. GSM Association, 2020 [Online]. Available:https://www.gsma.com/mobileeconomy/wpcontent/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf.; N. Vyakaranam and S. Dilip Krishna, “5G: Network As A Service - How 5G enables thetelecom operators to lease out their network,” 22-Mar-2018. [Online]. Available: https://netmanias.com/en/?m=view&id=blog&no=13311. [Accessed: 20-Nov-2020].; J. C. Martínez, J de J. Rugeles y E. P. Estupiñán. “Análisis de ocupación espectral bandaGSM 850 en Bogotá”. Visión Electrónica, algo más que un estado sólido, Vol. 12, No. 1, 5-13, enero-junio 2018. https://doi.org/10.14483/22484728.14801.; Ericsson, “5G architecture next mobile technology %7C Whitepaper,” 01-Jan-2017. [Online].Available: https://www.ericsson.com/en/reports-and-papers/white-papers/5g-systems--enabling-the-transformation-of-industry-and-society. [Accessed: 18-Nov-2020].; H. Ekström, “Non-standalone and Standalone: two paths to 5G,” 2019. [Online]. Available:https://www.ericsson.com/en/blog/2019/7/standalone-and-non-standalone-5g-nr-two-5g tracks. [Accessed: 16-Oct-2020].; 3 GPP, “Release 15 Description,” 3rd Generation Partnership Project (3GPP), 2019 [Online]Available:https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3389.; L. Casaccia, “Propelling 5G forward: A closer look at 3GPP Release 16.” 07-Jul-2020[Online]. Available: https://www.qualcomm.com/news/onq/2020/07/07/propelling-5g-forward-closer-look-3gpp-release-16. [Accessed: 12-Oct-2020].; M. Clark, C. Vanoli, and A. Smith, Abrir sendas hacia 5G. ITU News Magazine, 2017[Online]. Available: https://www.itu.int/en/itunews/Documents/2017/2017-02/2017_ITUNews02-es.pdf.; GSMA, “Espectro 5G Postura de la GSMA sobre política pública,” GSMA, 2018 [Online].Available: https://www.gsma.com/latinamerica/wp-content/uploads/2019/03/5G-Spectrum-Positions-SPA.pdf. [Accessed: 05-Oct-2020].; 5G Américas, Análisis de las recomendaciones de espectro de la UIT en América Latina.White Papers 5G Américas, 2019, p. 6-21 [Online]. Available: https://brechacero.com/wp-content/uploads/2019/08/ES-Analisis-de-las-Recomendaciones-de-Espectro-de-la-UIT-en-America-Latina-2019-vf.pdf.; 5G Américas, Espectro para 5G: Banda 3,5 GHZ en América Latina. 2019 [Online].Available: https://brechacero.com/wp-content/uploads/2019/06/3.5-GHz-esp-ok.pdf.; Poder Legislativo, "Ley No. 14.235," Centro De Información Oficial, Ago 3, 1974.; Council of State, "ACT of 2004 No.151," Official Gazette of the Republic of Suriname, 2004.; QoSi, “Etude de la qualité d’expérience des opérateurs mobiles en Guyane Francaise,”Publicaciones QoSi, Francia, 2019 [Online]. Available: https://www.5gmark.com/news/2019/Barometre_4Gmark_Guyane_2019.pdf. [Accessed: 17-Jul-2020].; F. Staff. (Jul 8,). Claro, de Carlos Slim, iniciará la carrera del 5G en Brasil. Available:https://www.forbes.com.mx/tecnologia-claro-slim-5g-brasil/.; Telesur. (s.f.). 5G - Beyond Connectivity. Available: https://www.telesur.sr/5g/.; NOKIA. (Apr 10,). ANTEL and Nokia make the first 5G call on a commercial network inLatin America. Available: https://www.nokia.com/about-us/news/releases/2019/04/10/antel-and-nokia-make-the-first-5g-call-on-a-commercial-network-in-latin-america/.; ENACOM, "LEY ARGENTINA DIGITAL," Boletín Oficial De La Republica De Argentina,Dec 19, 2014.; Secretaría de Tecnologías de la Información, "Documento base sobre la identificación dedesafíos y necesidades de Espectro Radioeléctrico en Argentina," Boletin Oficial De La Republica De Argentina, pp. 1-36, 2019.; Asamblea Legislativa Plurinacional, "Ley General de Telecomunicaciones, Tecnologías dela Información y Comunicación" Gaceta Oficial De Bolivia, Ago 8, 2011.; Agencia Boliviana Espacial, "Satélite TUPAC KATARI," 2019.; Poder Legislativo, "Ley No. 13.879," Diario Oficial De La Unión, vol. 1, Oct 4, 2019.; ANATEL, “Anatel aprova consulta pública para implementar o 5G,” 06-Feb-2020. [Online].Available: https://www.anatel.gov.br/institucional/component/content/article/171-manchete/2491-anatel-aprova-consulta-publica-para-licitar-faixas-de-frequencias-para-o-5g. [Accessed: 20-May-2020].; SUBTEL, "CONSULTA PÚBLICA SOBRE PLAN NACIONAL 5G PARA CHILE," 2018.; SUBTEL. (Jan 14,). Consulta Pública 5G: Gobierno licitará cuatro bandas para generarmayor competencia y eficiencia espectral en el mercado móvil. Available: https://www.subtel.gob.cl/consulta-publica-5g-gobierno-licitara-cuatro-bandas-para-generar-mayor-competencia-y-eficiencia-espectral-en-el-mercado-movil/.; MINTIC, Plan 5G Colombia. Colombia: Planes Nacionales del MINTIC, 2019.; 5G Américas, “Temas en Regulación de Telecomunicaciones: Ecuador,” Publicaciones 5GAméricas, 2019 [Online]. Available: https://brechacero.com/white-papers/. [Accessed: 26-Jul-2020].; PUC, "ACT NO. 18- TELECOMMUNICATIONS ACT," The Official Gazette, Ago 5, 2016.; F. D'Almeida and D. Margot, La Evolución De Las Telecomunicaciones Móviles EnAmérica Latina Y El Caribe. (Publicaciones BID ed.) 20182.; Poder Legislativo, "LEY No. 642 DE TELECOMUNICACIONES," Gaceta Oficial De LaRepública Del Paraguay, 1995.; J. M. Perrotta, "Conatel pone fecha al 5G en Paraguay para después de 2024,"TeleSemana.Com, Jun 11, 2020. Available: http://www.telesemana.com/blog/2020/06/11/conatel-pone-fecha-al-5g-en-paraguay-para-despues-de-2024/.; OSIPTEL, "Reporte estadístico" Publicaciones OSIPTEL, Perú, Abril. 2020.; J. O. Prats Cabrera and P. Puig Gabarró, La gobernanza de las telecomunicaciones: Haciala economía digital. 2017, pp. 49–51 [Online]. Available: https://publications.iadb.org/es/node/14083.; LEY ORGÁNICA DE TELECOMUNICACIONES, "LEY ORGÁNICA DE TELECOMUNICACIONES," Gaceta Oficial De Venezuela, Feb 7, 2011.; N. Larocca, "Venezuela presenta una penetración 4G que la región alcanzó en 2016," Mar1, 2019. Available: http://www.telesemana.com/blog/2019/03/01/venezuela-presenta-una-penetracion-4g-que-la-region-alcanzo-en-2016/.; ARCEP, La régulation de l’Arcep au service des territoires connectés. 2020 [Online].Available: https://www.arcep.fr/collectivites/larcep-et-les-territoires.htm.; J. E. Garcia Orjuela, “Descripcion planta de tratamiento de agua - Icononzo, Tolima,” J.Chem. Inf. Model., 2014.; Gobernación del Tolima, “Estadísticas 2011-2014,” BMC Public Health, vol. 5, no. 1, pp.1–8, 2017.; J. E. Garcia Orjuela, “Propuesta de reducción de cargas contaminantes en el municipiode Icononzo, Tolima.” 2018.; Gobernación del Tolima, “Municipio de Icononzo,” 2019. [Online]. Available:https://www.tolima.gov.co/publicaciones/21123/municipio-de-icononzo/. [Accessed: 26-Apr-2020].; "Clima promedio en Icononzo, Colombia, durante todo el año - Weather Spark.” [Online].Available: https://es.weatherspark.com/y/23362/Clima-promedio-en-Icononzo-Colombia-durante-todo-el-año. [Accessed: 26-Apr-2020].; “Ósmosis Inversa %7C SEFILTRA %7C Expertos en purificación de fluidos.” [Online]. Available:https://www.sefiltra.com/productos/osmosis-inversa/. [Accessed: 21-Nov-2020].; S. L. Sanderson, E. Roberts, J. Lineburg, and H. Brooks, “Fish mouths as engineeringstructures for vortical cross-step filtration,” Nat. Commun., vol. 7, Mar. 2016.; “Las barbas de las ballenas.” [Online]. Available: https://universomarino.com/2011/02/04/las-barbas-de-las-ballenas/. [Accessed: 26-Apr-2020].; "PROCEDIMIENTO PARA LA OBTENCIÓN DE M ICROPIBRAS DE QUERATINA APARTIR DE RESIDUOS GANADEROS’ DESCRIPCIÓN Objeto de la Invención,” Jul. 2006.; R. D. E. Estudios and E. N. Psicolox, “Plumas: Implicancia ambiental y uso en la industriaagropecuaria,” vol. 21, no. 3, pp. 225–237, 2013.; I. E. Roca Girón, “Estudio de las propiedades y aplicaciones industriales del polietilenode alta densidad (PEAD),” J. Chem. Inf. Model., vol. 12 Suppl 1, no. 9, pp. 1–29, 2005.; 12]“Filtración (II): selección del equipo de filtrado %7C iAgua.” [Online]. Available:https://www.iagua.es/blogs/miguel-angel-monge-redondo/filtracion-ii-seleccion-equipo-filtrado. [Accessed: 26-Apr-2020].; ATDI, «5G: A revolution in evolution, even in 2017,» de RadioExpo, 2017.; MinTic, «Boletin trimestral de las Tic: Cifras Segundo Trimestre de 2019,» Ministerio de Tecnologías de la Información y las Comunicaciones , 2020.; CRC, «Reporte de industria sector TIC 2016,» Comisión de regulación de las comunicaciones, 2017.; Gupta , A., & Jha , R., «A Survey of 5G Network: Architecture and Emerging Technologies,» IEEE Access, pp. 1206-1032, 2015.; K. E. Requena, D. M. Rozo y J. E. Arévalo, «Radiopropagation simulations comparison in millimeter waves frequencies for fifth generation (5G) mobile networks,» Actas de Ingeniería, pp. 97-105, 2017.; A. Durán Barrado, «Estudio y caracterización del canal y de la propagación en ondas milimétricas, orientada a su utilización en redes de comunicaciones móviles 5g.,» ETSIT UPM, 2017.; K. E. REQUENA Barrera y D. M. Rozo Moreno, «Análisis de desempeño de la propagación de señales en redes móviles de quinta generación (5g) en bandas de frecuencias de ondas milimétricas (mmwaves) empleando la herramienta de simulación ics telecom,» FUAC, 2017.; J. E. Arévalo Peña & R. A. González Bustamante, «Radiopropagation Performance Analysis Simulations ofMassive MIMO Configurations in 28 GHz,» CEUR-WS, p. 4, 2018.; P. Missud, «Extrayendo Clutter de imagenes Multiespectrales de Landsat 8,» ATDI, 2013.; Google,«Google Maps,» Google, 01 07 2018. [En línea].Available: https://www.google.com/maps. [Último acceso: 21 10 2020].; ITU, «Recomendación UIT-R P.526,» ITU, 2018.; IDEAM, «ideam.gov.co,» 31 05 2002. [En línea]. Available:https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.526-14-201801-I!!PDF-S.pdf.; M. Montoya Rendon, P. Zapata Saldarriaga & M. Correa Ochoa, «Contaminación ambiental por PM10 dentro y fuera del domicilio y capacidad respiratoria en Puerto Nare, Colombia,» salud pública, pp. 113-115, 2013.; CRC, «Áreas de cobertura del servicio,» Comisión de Regulación de Comunicaciones, 20 03 2009. [En línea]. Available: https://www.crcom.gov.co/es/pagina/reas-de-cobertura- del-servicio. [Último acceso: 21 10 2020].; ITU, «Guidelines for evaluation of radio interface technologies for IMT-2020,» ITU, 2017.; ITU, «UIT-R M.1073-1,» ITU, 1997.; Camino L. García. (2016). Enseñar con TIC: Nuevas y renovadas metodologías para laenseñanza superior. © 2016, CINEP/IPC. pp 26-27.; Charles Kadushin. (diciembre 2013). Comprender las redes sociales. Teorías, conceptosy hallazgos. Primera Edición. Moltalbán, 8. 28014 Madrid. pp. 93-95.; Roger S. Pressman. (2010). Ingeniería del Software Un enfoque práctico. Vol. 3, SéptimaEdición. pp. 70 Sitios web.; ICFES. (2019) Resultados de las pruebas ICFES. http://www2.icfesinteractivo.gov.co/resultadossaber2016web/pages/publicacionResultados/agregados/saber11/agregadosSecretarias.jsf#Noback button.; Juan Carlos Mejía Llanos (21 de marzo, 2019) Estadísticas de redes sociales 2019:USUARIOS DE FACEBOOK, TWITTER, INSTAGRAM, YOUTUBE, LINKEDIN, WHATSAPP Y OTROS. https://www.juancmejia.com/marketing-digital/estadisticas-de-redessocialesusuarios-de-facebook-instagram-linkedin-twitter-whatsapp-y-otrosinfografia/#Informe_detallado_usuarios_redes_sociales_WeAreSocial_y_Hootsuite (5 de mayo de 2019).; Psicología-Onlie (20 de agosto 2018) Teorías del aprendizaje según Brunner.https://www.psicologia-online.com/teorias-del-aprendizaje-segun-bruner-2605.html.; Revista Médica Clínica Las Condes (enero-febrero, 2015) Impacto de las redes socialese internet en la adolescencia: aspectos positivos y negativos. https://www.sciencedirect.com/science/article/pii/S0716864015000048#bib0005.; TeleMedellin (28 de septiembre, 2018) Preocupación por déficit de ingenieros enColombia. https://telemedellin.tv/deficit-ingenieros-colombia/284852/.; UNESCO (21 de septiembre, 2017) SERVICIO DE PRENSA: 617 millones de niños yadolescentes no están recibiendo conocimientos mínimos en lectura y matemática. http://www.unesco.org/new/es/mediaservices/singleview/news/617_million_children_and_adolescents_not_getting_the_minimum/.; Walter, L., Gallegos, Arias, & Huerta, Adriana Oblitas. (2014). Aprendizaje pordescubrimiento vs. Aprendizaje significativo: Un experimento en el curso de historia de la psicología. Boletim - Academia Paulista de Psicologia, 34(87), 455-471. http://pepsic.bvsalud.org/scielo.php?script=sci_arttext&pid=S1415711X2014000200010&lng=pt&tlng=es.Artículos.; L. A. Luengas, G. Sánchez, y S. M. Cárdenas, “Nuevas herramientas pedagógicas:laboratorio virtual", Visión Electrónica, vol. 9, no. 2, pp. 277-284,2015. https://doi.org/10.14483/22484728.11034.; M. Vergel Ortega, O. L. Rincón Leal, y L. A. Jaimes Contreras, “Prototipos electrónicosen el desarrollo de pensamientos formales", Visión Electrónica, vol. 9, no. 2, pp. 182-193, 2015. https://doi.org/10.14483/22484728.11026.; J. F. Pastrán Beltrán y F. Pinzón Herrera, “Software libre: una estrategia para aprendera factorizar ", Visión Electrónica, vol. 9, no. 1, pp. 139-148,2015. https://doi.org/10.14483/22484728.11024.; R. López Gonzalez, “Genealogía de cambio conceptual en la enseñanza de la ciencia",Visión Electrónica, vol. 1, no. 1, pp. 88-92, 2008. https://doi.org/10.14483/22484728.255.; F. P. Rodriguez, A. R. Torres, y H. Vacca, “Estudio con análisis por elementos finitos desistemas análogos circuitales en física", Visión Electrónica, vol. 6, no. 1, pp. 98-103, 2012. https://doi.org/10.14483/22484728.3750.; R. Lopez, “La propedéutica y el discurso sobre las tecnologías", Visión Electrónica, vol.7, no. 1, pp. 178-187, 2013. https://doi.org/10.14483/22484728.4399.; Arquitectura, L., Negocios, A. De, & Salimbeni, S. (2017). La Arquitectura Empresarial y elAnálisis de Negocios.; Basyarudin. (2018). Диф нарушениямиNo Title. Высшей Нервной Деятельности, 2, 227–249.; Clavijo, S., & Vera, A. (2013). Inversion en infraestructura.7–14.; CoronApp, la aplicación para que conocer la evolución del coronavirus - Rumble. (n.d.).Retrieved May 8, 2020, from https://rumble.com/embed/ubedx.v6h0k3/?rel=0.; Dashboard Coronavirus COVID-19 (Mobile). (n.d.). Retrieved May 8, 2020, from https://www.arcgis.com/apps/opsdashboard/index.html#/85320e2ea5424dfaaa75ae62e5c06e61.; Dussan, H., & Garzon, K. (2017). DIAGNÓSTICO PARA LA CREACIÓN DE UN MODELO BAJO LA ARQUITECTURA ORGANIZACIONAL TOGAF APLICADO EN LAS DEPENDENCIAS TIC DE LA UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS. 1–126.; Gasto en investigación y desarrollo (% del PIB) %7C Data. (n.d.). etrieved May 8, 2020, from https://datos.bancomundial.org/indicador/GB.XPD.RSDV.GD.ZS?name_desc=false&view=map.; Gobernanza Territorial, Identificación De Fortalezas, Áreas De. (2013).; González Campo, C. H., & Lozano Oviedo, J. (2020). Propuesta para la definición de la arquitectura empresarial. Dimensión Empresarial, 18((1)). https://doi.org/10.15665/dem.v18i(1).2109 Palacios-Urgilés, F. G., & Campoverde-Molina, M. A. (2019).; Análisis de la arquitectura empresarial como oportunidad de mejora en las microempresas de la ciudad de Cuenca. Dominio de Las Ciencias, 5(3), 487. https://doi.org/10.23857/dc.v5i3.949.; Ministerio de Tecnologías de la Información y las Comunicaciones. (2016). G . GEN . 03 . Guía General de un Proceso de Arquitectura Empresarial. 1–41. Retrieved from http://www.mintic.gov.co/arquitecturati/630/articles- 9435_Guia_Proceso.pdf.; PIB-real segundo trimestre de 2019 y revisión de pronósticos. (n.d.). Retrieved May 8, 2020,from https://www.larepublica.co/analisis/sergio-clavijo- 500041/pib-real-segundo-trimestre-de-2019-y-revision- de-pronosticos-2900103 PND. (2018). Bases del Plan Nacional de Desarrollo.; Presupuesto y estados financieros. (n.d.). Retrieved May 10, 2020, fromhttps://www.dane.gov.co/index.php/servicios-al-ciudadano/tramites/transparencia-y-acceso-a-la- informacion-publica/presupuesto-general- asignado#presupuesto-general.; Saboya, N., Loaiza, O., & Lévano, D. (2018). Diseño de un modelo de arquitecturaempresarial para publicaciones científicas basado en adm - Togaf 9.0. Retrieved May 10, 2020, from https://www.redalyc.org/jatsRepo/4676/467655911004/ html/index.html.; Carlo Batini y Monica Scannapieco, DATA AND INFORMATION QUALITY, I.Switzerland: Springer International Publishing, 2016.; C. Sammut y G. I. Webb, Eds., Encyclopedia of Machine Learning and Data Mining.Boston, MA: Springer US, 2017.; «Who we are - Eurostat». https://ec.europa.eu/eurostat/about/who-we-are (accedidoago. 23, 2020).; B. G. Grow y 2020 January 24, «Data Quality Predictions for 2020», Transforming Datawith Intelligence. https://tdwi.org/articles/2020/01/24/diq-all-data-quality-predictions-for- 2020.aspx (accedido ago. 21, 2020).; T. C. Redman, «Bad Data Costs the U.S. $3 Trillion Per Year», Harvard BusinessReview, sep. 22, 2016.; B. G. Grow y 2018 July 6, «Reducing the Impact of Bad Data on Your Business»,Transforming Data with Intelligence. https://tdwi.org/articles/2018/07/06/diq-all-reducing-the-impact-of-bad- data.aspx (accedido ago. 21, 2020).; B. G. Grow y 2019 May 3, «Data Quality Best Practices for Today’s Data- DrivenOrganization», Transforming Data with Intelligence. https://tdwi.org/articles/2019/05/03/diq-all-data-quality-best-practices-for- data-driven-organizations.aspx (accedido ago. 23, 2020).; C. W. Fisher y B. R. Kingma, «Criticality of data quality as exemplified in two disasters»,Inf. Manage., vol. 39, n.o 2, pp. 109-116, dic. 2001, doi:10.1016/S0378-7206(01)00083-0.; crodwflower, «2016 DATA SCIENCE REPORT», 2016.; S. Lohr, «For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights», The NewYork Times, ago. 17, 2014.; «ISO 9000:2015(en), Quality management systems — Fundamentals and vocabulary».https://www.iso.org/obp/ui/#iso:std:45481:en (accedido ago. 23, 2020).; C. Batini y M. Scannapieco, «Data Quality Dimensions», en Data and Information Quality,Springer, Cham, 2016, pp. 21-51.; «NORMAS ISO 25000». https://iso25000.com/index.php/normas-iso-25000 (accedidomar. 23, 2019).; C. Batini y M. Scannapieco, «Activities for Information Quality», en Data and InformationQuality, Springer, Cham, 2016, pp. 155-175.; C. Batini y M. Scannapieco, «Object Identification», en Data and Information Quality,Springer, Cham, 2016, pp. 177-215.; Tejada S, Knoblock C, Minton S, Learning object identification rules for informationintegration. 2001.; 2014 January 21, «New Techniques Detect Anomalies in Big Data», Transforming Datawith Intelligence. https://tdwi.org/articles/2014/01/21/detecting-big-data-anomalies.aspx (accedido ago. 26, 2020).; J. Taylor, «Clean your data with unsupervised machine learning», Towards Data Science,dic. 01, 2018. https://towardsdatascience.com/clean-your- data-with-unsupervised-machine-learning-8491af733595 (accedido mar. 17, 2019).; I. Taleb, H. T. E. Kassabi, M. A. Serhani, R. Dssouli, y C. Bouhaddioui.; I. Taleb, H. T. E. Kassabi, M. A. Serhani, R. Dssouli, y C. Bouhaddioui, «Big Data Quality: A Quality Dimensions Evaluation», en 2016 Intl IEEE Conferences on Ubiquitous Intelligence Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), jul. 2016, pp. 759-765, doi:10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0122.; H. Liu, T. K. A. Kumar, y J. P. Thomas, «Cleaning Framework for Big Data -Object Identification and Linkage», en 2015 IEEE International Congress on Big Data, jun.2015, pp. 215-221, doi:10.1109/BigDataCongress.2015.38.; «LEILA - Librería de calidad de datos — documentación de LEILA - 0.1». https://ucd-dnp.github.io/leila/ (accedido ago. 27, 2020).; H. Müller y J.-C. Freytag, «Problems, Methods, and Challenges in Comprehensive DataCleansing», p. 23.; «Google Colaboratory». https://colab.research.google.com/notebooks/welcome.ipynb?hl=es-419 (accedido jun. 29, 2020).; hrasheed-msft, «¿Qué es Azure HDInsight?» https://docs.microsoft.com/es- es/azure/hdinsight/hdinsight-overview (accedido abr. 27, 2020).; S. F. Fernández, J. M. C. Sánchez, A. Córdoba, y A. C. Largo, Estadística Descriptiva.ESIC Editorial, 2002.; F. Sidi, P. H. Shariat Panahy, L. S. Affendey, M. A. Jabar, H. Ibrahim, y A. Mustapha, «Dataquality: A survey of data quality dimensions», en 2012 International Conference on Information Retrieval Knowledge Management, mar. 2012, pp. 300-304,doi:10.1109/InfRKM.2012.6204995.; J. Wang, C. Zhang, X. Wu, H. Qi and J. Wang, «SVM-OD: A New SVM Algorithm forOutlier Detection - Google Académico», presentado en Proc. ICDM’03 Workshop Foundations and New Directions of Data Mining, 2003, Accedido: ago. 24, 2020. [En línea]. Disponible en: https://scholar.google.com/scholar?hl=es&as_sdt=0,5&q=SVM- OD%3A+A+New+SVM+Algorithm+for+Outlier+Detection&btnG=.; «Factores que afectan el peso y la salud %7C NIDDK», National Institute of Diabetes andDigestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/informacion-de-la- salud/control-de-peso/informacion-sobre-sobrepeso-obesidad- adultos/factores-afectan (accedido may 16, 2020).; Lean Yu, Shouyang Wang, y K. K. Lai, «An integrated data preparation scheme for neuralnetwork data analysis», IEEE Trans. Knowl. Data Eng., vol. 18, n.o 2, pp. 217-230, feb. 2006, doi:10.1109/TKDE.2006.22.; Sumithra V.S,Subu Surendran, «A Review of Various Linear and Non LinearDimensionality Reduction Techniques», Int. J. Comput. Sci. Inf. Technol., vol. 6.; D. Chicco y G. Jurman, «The advantages of the Matthews correlation coefficient (MCC)over F1 score and accuracy in binary classification evaluation», BMC Genomics, vol. 21, n.o 1, p.6, ene. 2020, doi:10.1186/s12864-019-6413-7.; Katrakazas, E. Michelaraki, M. Sekadakis, and G. Yannis, “A descriptive analysis of the effect of the COVID-19 pandemic on driving behavior and road safety,” Transp. Res. Interdiscip. Perspect., vol. 7, 2020, doi:10.1016/j.trip.2020.100186.; P. Pereira and J. Pais, “Main flexible pavement and mix design methods in Europe andchallenges for the development of an European method,” J. Traffic Transp. Eng. (English Ed., vol. 4, no. 4, pp. 316–346, 2017, doi:10.1016/j.jtte.2017.06.001.; A. P. Singh, A. Sharma, R. Mishra, M. Wagle, and A. K. Sarkar, “Pavement conditionassessment using soft computing techniques,” Int. J. Pavement Res. Technol., 2018.; Z. Zhang, Q. Liu, Q. Wu, H. Xu, P. Liu, and M. Oeser, “Damage evolution of asphalt mixtureunder freeze-thaw cyclic loading from a mechanical perspective,” Int. J. Fatigue, vol. 142, no. June 2020, pp. 1–9, 2021, doi:10.1016/j.ijfatigue.2020.105923.; K. B. Bai Kamara, E. Ganjian, and M. Khorami, “The effect of quarry waste dust andreclaimed asphalt filler in hydraulically bound mixtures containing plasterboard gypsum and GGBS,” J. Clean. Prod., vol. 279, 2021, doi:10.1016/j.jclepro.2020.123584.; D. M. Kusumawardani and Y. D. Wong, “The influence of aggregate shape properties onaggregate packing in porous asphalt mixture (PAM),” Constr. Build. Mater., vol. 255, 2020, doi:10.1016/j.conbuildmat.2020.119379.; T. M. Al Rousan, “Characterization of aggregate shape properties using a computerautomated system,” Texas A&M University, 2004.; C. García-González, J. Yepes, and M. A. Franesqui, “Geomechanical characterization ofvolcanic aggregates for paving construction applications and correlation with the rock properties,” Transp. Geotech., vol. 24, no. January, 2020, doi:10.1016/j.trgeo.2020.100383.; J. Hu and P. Stroeven, “Shape characterization of concrete aggregate,” Image Anal. Stereol.,vol. 25, no. 1, pp. 43–53, 2006, doi:10.5566/ias.v25.p43-53.; T. Roussillon, H. Piégay, I. Sivignon, L. Tougne, and F. Lavigne, “Automatic computationof pebble roundness using digital imagery and discrete geometry,” Comput. Geosci., vol. 35, no. 10, pp. 1992–2000, 2009, doi:10.1016/j.cageo.2009.01.013.; J. Zhang, X. Yang, W. Li, S. Zhang, and Y. Jia, “Automatic detection of moisture damagesin asphalt pavements from GPR data with deep CNN and IRS method,” Autom. Constr., vol. 113, no. September 2019, 2020, doi:10.1016/j.autcon.2020.103119.; L. Pei et al., “Pavement aggregate shape classification based on extreme gradientboosting,” Constr. Build. Mater., vol. 256, 2020, doi:10.1016/j.conbuildmat.2020.119356.; K. A. Ghuzlan, M. T. Obaidat, and M. M. Alawneh, “Cellular-phone-based computer visionsystem to extract shape properties of coarse aggregate for asphalt mixtures,” Eng. Sci. Technol. an Int. J., vol. 22, no. 3, pp. 767–776, 2019, doi:10.1016/j.jestch.2019.02.003.; J. Kim, B. S. Park, S. I. Woo, and Y. T. Choi, “Evaluation of ballasted-track condition basedon aggregate-shape characterization,” Constr. Build. Mater., vol. 232, 2020, doi:10.1016/j.conbuildmat.2019.117082.; O. J. Reyes-ortiz, M. Mejía, and J. S. Useche-Castelblanco, “Aggregate segmentation ofasphaltic mixes using digital image,” Bull. Polish Acad. Sci. Tech. Sci., vol. 67, no. 2, pp. 279–287, 2019.; S. M. E. Harb, N. Ashidi, M. Isa, and S. A. Salamah, “Improved image magnificationalgorithm based on Otsu,” Comput. Electr. Eng. J., vol. 46, pp. 338–355, 2015.; J. V. C. I. R, C. Sha, J. Hou, and H. Cui, “A robust 2D Otsu ’ s thresholding method in imagesegmentation q,” J. Vis. Commun. Image R. J., vol. 41, pp. 339–351, 2016.; O. J. Reyes-Ortiz, M. Mejia, and J. S. Useche-Castelblanco, “Digital image analysis appliedin asphalt mixtures for sieve size curve reconstruction and aggregate distribution homogeneity,” Int. J. Pavement Res. Technol., 2020, doi:10.1007/s42947-020-0315-6.; S. Yu, S. Jia, and C. Xu, “Convolutional neural networks for hyperspectral imageclassification,” Neurocomputing, vol. 219, pp. 88–98, 2017.; V. C. Janoo, “Quantification of shape, angularity, and surface texture of base coursematerials,” 1998.; E. Masad, T. M. Al Rousan, J. Button, and D. Little, Test Methods for CharacterizingAggregate Shape, Texture, and Angularity. United States of America, 2007.; E. dos S. Silva et al., “Evaluation of macro and micronutrient elements content from softdrinks using principal component analysis and Kohonen self-organizing maps,” Food Chem., vol. 273, no. May 2018, pp. 9–14, 2019, doi:10.1016/j.foodchem.2018.06.021.; B. Yang, S. Yang, J. Zhang, and D. Li, “Optimizing random searches on three-dimensionallattices,” Phys. A Stat. Mech. its Appl., vol. 501, pp. 120–125, Jul. 2018, doi:10.1016/J.PHYSA.2018.02.100.; Diego Heras, “Clasificador de imágenes de frutas basado en inteligencia artificial”, KillkanaTécnica, Vol. 1, no. 2, pp. 21-30, 2017.; SicTransCore Latinoamérica, Sic TransCore Sistemas de Identificación y control vehicular,2019. [Online]. Disponible en: https://www.sictranscore.com/.; V. M. Arévalo, J. González, G. Ambrosio, La Librería De Visión Artificial Opencv AplicaciónA La Docencia E Investigación, Dep.Sis. y Aut. Universidad de Málaga, España. [Online]. Disponible en: http://mapir.isa.uma.es/varevalo/drafts/arevalo2004lva1.pdf.; Bastián Nicolás Carvajal Ahumada, Reconocimiento Fotográfico De Patentes, Facultad deIngeniería, Pontificia Universidad Católica De Valparaíso, Valparaíso, Ciudad de Chile, 2018.; Guerra Monterroza, E. J. (2008). Reconocimiento de primitivas 3D, usando autocorrelación yANFIS. Visión electrónica, 1(1), 56-61. https://doi.org/10.14483/22484728.251.; Giraldo Ramos, F. N., Gonzalez, F., & Camargo Casallas, E. (2011). “Algoritmos deprocesamiento de imágenes satelitales con transformada Hough. Visión electrónica, 5(2), 26-41. https://doi.org/10.14483/22484728.3568.; Jiménez Moreno, R., Martínez Baquero, J. E., & Rodríguez Umaña, L. A. (2018). Sistemaautomático de clasificación de peces. Visión electrónica, 12(2), 258-264.https://doi.org/10.14483/22484728.14265.; A. Daneels and W. Salter, “WHAT IS SCADA?,” in International Conference on Accelerator and Large Experimental Physics Control Systems, 1999, pp. 339–343, Accessed: Sep. 20, 2019. [Online]. Available: http://cds.cern.ch/record/532624/files/mc1i01.pdf.; Wikipedia, “Distributed control system,” 2019. https://en.wikipedia.org/wiki/Distributed_control_system (accessed Sep. 29, 2019).; R. Hunzinger, Scada fundamentals and applications in the IoT, 1st ed. Wiley Telecom, 2017.; S. Ray, Y. Jin, and A. Raychowdhury, “The Changing Computing Paradigm with Internet of Things: A Tutorial Introduction,” IEEE Des. Test, vol. 33, no. 2, pp. 76–96, 2016, doi:10.1109/MDAT.2016.2526612.; A. Bhatia, Z. Yusuf, D. Ritter, and N. Hunke, “Who Will Win the IoT Platform Wars?,” BCG Perspect., p. 6, 2017, [Online]. Available: https://image-src.bcg.com/Images/BCG-Who-Will-Win-the-IoT-Platform-Wars-June-2017_2_tcm58-162424.pdf.; L. Doron and Netafim, “The core results of the FIGARO project: the Platform,” in InternationalFIGARO Conference, 19 September 2016, Brussels, Belgium, 2016, [Online]. Available: http://www.figaro-irrigation.net/fileadmin/user_upload/figaro/docs/Lior_2_NET_FIGARO_project_summary.pdf.; A. (Eastern P. Chalimov, “IoT in Agriculture: 5 Technology Use Cases for Smart Farming(and 4 Challenges to Consider),” 2018. https://easternpeak.com/blog/iot-in-agriculture-5-technology-use-cases-for-smart-farming-and-4-challenges-to-consider/ (accessed Mar. 21, 2020).; L. Xiamen Ursalink Technology Co., “IoT-based Smart Irrigation,” 2019.https://www.ursalink.com/en/solution/agriculture/smart-irrigation (accessed May 30, 2020).; O. Pandithurai, S. Aishwarya, B. Aparna, and K. Kavitha, “Agro-tech: A digital model formonitoring soil and crops using internet of things (IOT),” ICONSTEM 2017 - Proc. 3rd IEEE Int. Conf. Sci. Technol. Eng. Manag., vol. 2018-Janua, pp. 342–346, 2018, doi:10.1109/ICONSTEM.2017.8261306.; A. N. Nassar A.S., Montasser A.H., “Smart Aquaponics System for Industrial Internet ofThings (IIoT),” Proc. Int. Conf. Adv. Intell. Syst. Informatics, vol. 639, no. 1, pp. 855–864, 2018, doi:10.1007/978-3-319-64861-3.; R. Nageswara Rao and B. Sridhar, “IoT based smart crop-field monitoring and automationirrigation system,” Proc. 2nd Int. Conf. Inven. Syst. Control. ICISC 2018, no. Icisc, pp. 478–483, 2018, doi:10.1109/ICISC.2018.8399118.; S. Bakalis et al., “Perspectives from CO+RE: How COVID-19 changed our food systemsand food security paradigms,” Curr. Res. Food Sci., vol. 3, pp. 166–172, 2020, doi:10.1016/j.crfs.2020.05.003.; J. M. Talavera et al., “Review of IoT applications in agro-industrial and environmental fields,”Comput. Electron. Agric., vol. 142, no. 118, pp. 283–297, 2017, doi:10.1016/j.compag.2017.09.015.; Wikipedia, “Druckschalter,” Wikipedia, 2013. https://de.wikipedia.org/wiki/Druckschalter#/media/Datei:Druckschalter_PSD_30.jpg (accessed Jun. 30, 2020).; P. IoT, “PARTICLE IoT-BORON,” 2019. https://docs.particle.io/datasheets/cellular/boron-datasheet/ (accessed Oct. 19, 2019).; The ThingsBoard Authors, “Smart farming and smart agriculture solutions,” ThingsBoard.io,2020. https://thingsboard.io/smart-farming/ (accessed Jun. 20, 2020).; A. Joseph Fernando, “How Africa Is Promoting Agricultural Innovations and Technologiesamidst the COVID-19 Pandemic,” Mol. Plant, vol. 13, no. 10, pp. 1345–1346, 2020, doi:10.1016/j.molp.2020.08.003.; E. Vargas, A. Guillermo Correa, P. C. souza, N. Rodrigues de Baptestini, F. Machado Zaidan y I. Ramos, "Avaliação da homogeneidade da expansão dos grãos de café torrados" de VIII Simpósio de Pesquisa dos Cafés do Brasil, novembro 2013.; Giraldo Cerón, A. F. "Tan cerca y tan lejos de la agricultura 4.0 en Colombia". Revista Universidad EAFIT, 55(175), 78-85.2020.; O. L. Ocampo López y L. M. Álvarez Herrera, «Tendencia de la producción y el consumo del café en Colombia,» Apuntes del CENES, vol. 36, nº 64, pp. 139-165, julio -diciembre 2017.; G. I. Puerta Quintero, Investigador Científico III y Centro Nacional deInvestigaciones, «COMPOSICIÓN QUÍMICA DE UNA TAZA DE CAFÉ,» Ciencia, tecnología e innovación para la caficultura colombiana, MANIZALES , 2011.; Samodro, Bayu, et al. "Maintaining the Quality and Aroma of Coffee with Fuzzy Logic Coffee Roasting Machine." IOP Conference Series: Earth and Environmental Science. Vol. 426. No. 1. IOP Publishing, 2020.; Fadri, R. A., et al. "Review of coffee roasting process and formation of acrylamide related to health." Journal of Applied Agricultural Science and Technology 3.1 (2019): 129-145.; Botero Lopez, Santiago, and Muhammad Salman Chaudhry. "Designing an Efficient Supply Chain for Specialty Coffee from Caldas-Colombia." (2020).; Suarez-Peña, Javier Andrés, et al. "Machine Learning for Cup Coffee Quality Prediction from Green and Roasted Coffee Beans Features." Workshop on Engineering Applications. Springer, Cham, 2020.; Putra, Satya Andika, Umi Hanifah, and Mirwan Ardiansyah Karim. "Theoretical study of fluidization and heat transfer on fluidized bed coffee roaster." AIP Conference Proceedings. Vol. 2097. No. 1. AIP Publishing LLC, 2019.; Benitez O, Campo-Ceballos D, «Evaluación de la calidad el café tostado utilizando herramientas de procesamiento digital de imágenes», ACCB, vol. 1, n.º 30, pp. 32-43, dic. 2018.; Meana, Vanessa Rose L., Nazer Sarapeo P. Kimkiman, and Alvin C. Dulay. "Design, Fabrication, and Performance Evaluation of a Batch-Type Fluidized Bed Coffee Roaster for Small-Scale Coffee Growers." Mountain Journal of Science and Interdisciplinary Research (formerly Benguet State University Research Journal) 79.2 (2019): 90-97.; Buesaquillo Imbaquingo, Luis Darío. Sistema de control para mejorar el desempeño de una máquina tostadora de café. BS thesis. 2019.; Abdul. Ghani, Nur Hamizah, et al. "Development of a novel 2D single coffee bean model and comparison with a 3D model under varying heating profiles." Journal ofFood Process Engineering 42.4 (2019).; Campo Ceballos D, et al. "Herramientas de cv para evaluar el color y matiz del café tostado: el color del café tostado y su relación con las propiedades organolépticas".EAE. 68 páginas. 2018.; N. Reddy, N. Maheshwari, D. K. Sahu, y G. K. Ananthasuresh, «Miniature CompliantGrippers With Vision-Based Force Sensing», IEEE Transactions on Robotics, vol. 26, no. 5, pp. 867–877, Oct. 2010.; Barraza, A., Rúa, J., Sosa, J., Yime, E., & Roldan, J. (2015). Modelado dinámico delmanipulador serial Mitsubishi Movemaster RV-M1 usando SolidWorks. Revista de la facultad de Ingenierías Físicas Mecánicas, 49-62.; Benbelkacem, Y., & Mohd-Mokhtar, R. (26-29 de Noviembre de 2012). Explicit kinematicmodel of the Mitsubishi RV-M1 robot arm. IEEE, 404-409. Obtenido de http://ieeexplore.ieee.org/document/6466627/.; Carrasco, B., & Alberto, J. (2015). Integración de un UAV (vehículo aéreo no tripulado)en la plataforma robótica ARGOS.; DARMOUL Saber. Reality for Manufacturing: A Robotic Cell Case Study. Department ofIndustrial Engineering. King Saud University. Saudi Arabia. 7pag. 2015.; Research on Assembly Modeling Process Based on Virtual Manufacturing InteractiveApplication Technology. School of Mechanical and Electronic Engineering. Wuhan University of Technology. Wuhan, China. 5 pág. 2017.; Forero, J., Hurtado, L., & Ruiz, V. (Febrero de 2015). Visión electrónica, Más que unestado sólido. Arquitectura paralela robótica: modelado y simulación con siemens NX. Recuperado el 10 de agosto de 2015, de http://revistas.udistrital.edu.co/ojs/index.php/visele/article/view/11018.; Marcu, C., Lazea, G., Herle, S., Robotin, R., & Tamas, L. (2010 de junio de 25). IEEEexplore Digital Library, 3D graphical simulation of an articulated serial manipulator based on kinematic models. Recuperado el 10 de Agosto de 2017, de http://ieeexplore.ieee.org/abstract/document/5524593/.; Luengas, L. A., Sánchez, G., & Cárdenas, S. M. (2015). Nuevas herramientaspedagógicas: laboratorio virtual. Visión electrónica, 9(2), 277-284.https://revistas.udistrital.edu.co/index.php/visele/article/view/11034.; Luengas, L. A., Rincón López, D. A., & Galeano, K. J. (2010). Realidad virtual noinmersiva: instrumentos electrónicos de aplicación educativa. Visión electrónica, 4(1), 94-105.https://revistas.udistrital.edu.co/index.php/visele/article/view/275.; K. Cacua, O. Amell y L. Olmos, "Estudio comparativo entre las propiedades decombustión de la mezcla biogás-aire normal y biogás-aire enriquecido con oxígeno", Revista Ingeniería e Investigación, vol. 1, pp. 233-241, 2011.; R. Liriano, Aplicación de biofertilizantes como alternativa nutricional, ambiental y económica en la agricultura urbana, España: Universidad de Girona, 2005.; A. Padilla y J. Rivero, "Producción de Biogás y compost a partir de Residuos Orgánicos recolectados del complejo arqueológico Huaca de la Luna", Ciencia y Tecnología, vol. 1, pp. 29-43, 2016.; L. O. González Salcedo y Y. Olaya Arboleda, Fundamentos para el diseño de Biodigestores, Departamento de Ingeniería, 2009.; M. T. Madigan, J. M. Martinko y J. Parker, Biología de los microorganismos, 10 ed, 2004.; A. Pulido y J. Espitia, Diseño e implementación de un sistema de supervisión, monitoreo y control de temperatura, presión y tiempo de proceso en un sistema de digestión anaerobia de biomasa (contenido ruminal bovino) a escala de laboratorio, Bogotá: Universidad Distrital Francisco José de Caldas, 2016.; G. Bastin, "On-line estimation and adaptive control of bioreactors", Elsevier, vol. 1, 2013.; S. Hassam, E. Ficara, A. Leva y J. Harmand, "A generic and systematic procedure to derive a simplified model from the anaerobic digestion model No. 1 (ADM1)", Biochemical Engineering Journal, pp. 99, 193-203, 2015.; E. Ficara, S. Hassam, A. Allegrini, A. Leva, F. Malpei y G. Ferretti, "Anaerobic digestion models: a comparative study. IFAC Proceedings.", vol. 45(2), pp. 1052- 1057, 2012.; J. A. Jiménez, G. Pomboza y J. A. Holgado, «El gesto aplicado al control de dispositivosen,» Jornadas SARTECO, Ecuador, 2017.; O. F. Olivera, J. A. Cuervo, y F. N. Giraldo Ramos, “Sistema de control de posición angularaplicado a dispositivos RF", Visión Electrónica, vol. 5, no. 2, pp. 42-58, 2011.; T. G. Zimmerman, J. Lanier, C. Blanchard, S. Bryson, and Y. Harvill, “A hand gestureinterface device,” ACM SIGCHI Bull., vol. 17, no. SI, pp. 189 192, 1986.; Omega engineering, «Omega ENGINEERING,» es.omega.com, [En línea]. Available:https://es.omega.com/prodinfo/acelerometro.html. [Último acceso: 11 08 2019].; tdk, «Datasheet MPU60XX,» [En línea]. Available: https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf. [Último acceso: 11 08 2020].; Naylamp Mechatronics, «Naylamp Mechatronics,» Naylamp Mechatronics, [En línea].Available:https://naylampmechatronics.com/blog/45_Tutorial-MPU6050-Acelerómetro-y-Giros copio.html. [Último acceso: 11 08 2019].; Arduino, «arduino.cl,» arduino.cl, [En línea]. Available: http://arduino.cl/arduino-nano/.[Último acceso: 15 08 2019].; J. J. M. Fuentes, Fundamentos de radiación y radiocomunicación, Sevilla: Departamentode Teoría de la Señal y Comunicaciones, 2012.; J. Vargas, G. Poveda y V. Martinez, «Dispositivo inalámbrico para el control de,»ESPACIOS, vol. 39, nº 45, p. 9, 2018.; M. A. Arenas, J. M. Palomares, L. Girard, J. Olivares y J. M., «Diseño y Construcciónde un Guante de Datos mediante Sensores de Flexibilidad y acelerómetro,» researchgate, España, 2011.; K. K. Abgaryan and I. S. Kolbin, “Calculation of Heat Transfer in NanosizedHeterostructures,” Russ. Microelectron., vol. 48, no. 8, pp. 559–563, 2019, doi:10.1134/S1063739719080031.; A. R. Shabaan, S. M. El-Metwally, M. M. A. Farghaly, and A. A. Sharawi, “PID and fuzzylogic optimized control for temperature in infant incubators,” 2013 Proc. Int. Conf. Model. Identif. Control. ICMIC 2013, no. Icmic, pp. 53–59, 2013.; D. M. Ovalle M and L. F. Cómbita A., “Teaching basic control concepts with a home-madethermal system,” IEEE Glob. Eng. Educ. Conf. EDUCON, no. April, pp. 739–744, 2014, doi:10.1109/EDUCON.2014.6826176.; S. A. Adnan, A. Muhammad, and Z. Shareef, “Development of a low cost thermalfeedback system for basic control education,” Proc. 14th IEEE Int. Multitopic Conf. 2011, INMIC 2011, pp. 228–232, 2011, doi:10.1109/INMIC.2011.6151478.; R. Urbieta Parrazales, “Diseño, Simulación y Construcci?n de un Control PID Aplicado aun Sistema Térmico,” Polibits, vol. 15, pp. 11–19, 1995, doi:10.17562/pb-15-2.; C. Close, Modeling and Analysis of Dynamic Systems. 2002.; F. Navas, “DISEÑO Y CONSTRUCCION DE CAJA DE TRANSFERENCIA DE CALOR (GUARDED HOT BOX ),” 2007.; J. Bravo, G. López, R. Rodríguez, and F. J. Sabina, “Acerca de la homogeneización ypropiedades efectivas de la ecuación del calor On homogenization and effective properties of the heat equation Resumen,” pp. 149–159, 2013.; E. Significativas, Electrónica : teoría de circuitos y dispositivos electrónicos.; P. E. Allen, Operational amplifiers and linear integrated circuits, vol. 71, no. 9. 2008.; N. Ruangpayoongsak, J. Sumroengrit, & M. Leanglum, “A floating waste scooperrobot on water surface”, In 2017 17th International Conference on Control, Automation and Systems (ICCAS), pp. 1543-1548, IEEE, October 2017.; I Baturone, Robótica: manipuladores y robots móviles. Marcombo, 2005.; P. Jorge-Sanz, "Robots industriales colaborativos: una nueva forma de trabajo",Seguridad y Salud en el trabajo 95, pp. 6-10, 2018.; H. Thomas, S. Bensch. "Understandable robots-what, why, and how." Paladyn,Journal of Behavioral Robotics 9,pp. 110-123. no. 1, 2018.; B. Andrew, E. F. Buffie, and L.F. Zanna. "Robots, growth, and inequality." Finance &Development 53, pp. 10-13, no. 3, 2016.; S. Martínez, A. Carvajal, D. Loza, A. Ibarra, and L. Segura. "Collaborative two-armrobotic torso for the development of an assembly process." In 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), pp. 1-6. IEEE, 2017.; T.I., Getting Started MSP430G2553 Value Line LaunchPad Workshop Series, [Enlínea]. Disponible en: https://training.ti.com/getting-started-msp430g2553-launchpad-part-1.; D. Anderson, G. Constante, and T. Arrigoni. "Arquitetura FPGAs CPLDs da Xilinx."; Creus-Solé, “Instrumentación industrial”, 8va. ed. México: Alfaomega Grupo Editor, 2011.; M. A. Pérez-García, et al., “Instrumentación electrónica”, Madrid: Thomson, 2004.; Manuel, et al., “Instrumentación virtual adquisición, procesado y análisis de señales”,1era ed. Barcelona: UPC, 2001.; O. F. Corredor, et al. “Diseño e implementación de filtros digitales”. Visión electrónica,vol. 3, no. 1, pp. 55-56,2009. https://doi.org/10.14483/22484728.691.; Silicon Labs, “Using microcontrollers in digital signal processing applications”. AN219, Rev. 0.2 8/08. https://www.silabs.com/documents/public/application-notes/an219.pdf.; Hernández y E. Jacinto, “Una nueva metodología en el diseño de filtros digitales FIR sobre FPGA”. Visión electrónica, vol. 3, no. 2, pp. 40-47, 2009. https://doi.org/10.14483/22484728.2834.; V. M. Gómez, et al. “Diagnóstico de rodamientos con vibraciones mecánicas einstrumentos virtuales”. Visión electrónica, vol. 8, no. 2, pp. 107-113, 2014. https://doi.org/10.14483/22484728.9881.; National Instruments, “Strain gauge measurement - A tutorial”, Aplication Note 078, 2018.; J. Horn y G. Gleason, “Weigh Scale Applications for the MCP3551”, AN1030 Microchip, 2006.; F. Quiles-Latorre, et al., “Diseño del interfaz de una balanza electrónica basada en una celda de carga,” en Libro de catas SAAAEI2018, Córdoba, pp. 272-277, 2018.; J. Hernández-Jiménez y M. Fabela-Gallegos, “Diseño y construcción de un prototipo para determinar el peso de vehículos ligeros en movimiento”, 2004.; Rice Lake Weighing Systems, “Load cell and weigh module handbook”, 2017.; OIML, “Metrological regulation of load cells”, OIML R 60-1, 2017.; National Instruments, “User guide and specifications NI USB-6008/6009”, 2007. C. E. Pardo-Beainy, “Instrumentación Virtual, Control y Adquisición de Datos para Unidades de Cuidados Intensivos”, 2007.; G. Tem, “Concurso en Ingeniería de Control 2020,” 2020.; G. G. Slabaugh, “Computing Euler angles from a rotation matrix,” denoted as TRTAImplement. from httpwww starfireresearch comservicesjava3dsamplecodeFlorinE ulers html, vol. 6, no. 2000, pp. 1–6, 1999.; L. Euler, “Formvlae generales pro translatione qvacvnqvve corporvm rigidor,” NoviCommentarii academiae scientiarum Petropolitanae, vol. 20. pp. 189–207, 1776.; D. Entwurf, “Der Entwurf linearer Regelungssysteme im Zustandsraum,” vol. 1, no. 8,1972.; D. D. E. I. Eléctrica and J. P. S. V, “Desarrollo de software para inspección técnica deuna aplicación CPM,” 2017.; S. C. C. Navarrete, “Control avanzado de un sistema de refrigeración,” 2019.; "Measures of controlled system performance.” [Online]. Available: http://www.online-courses.vissim.us/Strathclyde/measures_of_controlled_system_pe.htm. [Accessed: 20-Nov-2020].; Á. Valera Fernández, Modelado y control en el espacio de estados. 2016.; O. A. Esquivel Flores, “Análisis de observabilidad y controlabilidad para sistemasdiferenciaslmente planos. Aplicación a un sistema de oscilaciones de calcio,” p. 107, 2007.; J. Ángel and S. Blanco, “Diseño en el Espacio de Estados,” pp. 1–9, 2017.; https://hdl.handle.net/11349/31383; Universidad Distrital Francisco José de Caldas.
Dostupnost: https://hdl.handle.net/11349/31383
-
7
Autoři: a další
Přispěvatelé: a další
Témata: Systems engineer, Software development, IOT, Monitoring, Water quality, Real time, Drinking water, Public health, Water resources, Environmental monitoring, Desarrollo de Software, Ingeniería de sistemas, Agua potable, Salud pública, Recursos hídricos, Vigilancia ambiental, Internet, Monitoreo, Calidad del agua, Tiempo real
Geografické téma: Colombia, UNAB Campus Bucaramanga
Popis souboru: application/pdf; application/octet-stream
Relation: Ahrend, U., Aleksy, M., Berning, M., Gebhardt, J., Mendoza, F., & Schulz, D. (2021). Sensors as the Basis for Digitalization: New Approaches in Instrumentation, IoT-concepts, and 5G. Internet of Things, 100406. https://doi.org/https://doi.org/10.1016/j.iot.2021.100406; Akhter, F., Siddiquei, H. R., Alahi, M. E. E., & Mukhopadhyay, S. C. (2021). Design and Development of an IoT-enabled Portable Phosphate Detection System in Water for Smart Agriculture. Sensors and Actuators A: Physical, 112861. https://doi.org/https://doi.org/10.1016/j.sna.2021.112861; Al-Turjman, F. (2020). The Cloud in Iot-Enabled Spaces. In CRC Press.; Alahi, M. E. E., Mukhopadhyay, S. C., & Burkitt, L. (2018). Imprinted polymer coated impedimetric nitrate sensor for real- time water quality monitoring. Sensors and Actuators B: Chemical, 259, 753–761. https://doi.org/10.1016/j.snb.2017.12.104; Albano, M., Ferreira, L. L., Pinho, L. M., & Alkhawaja, A. R. (2015). Computer Standards & Interfaces Message-oriented middleware for smart grids. Computer Standards & Interfaces, 38, 133–143. https://doi.org/10.1016/j.csi.2014.08.002; Alcaldía de Bogota. (2021). Documentos para Agua: Agua Para el Consumo Humano.; Algore, M. (2021). Machine Learning With Python: The Definitive Tool to Improve Your Python Programming and Deep Learning to Take You to The Next Level of Coding and Algorithms Optimization.; Alley, E. R. (2006). Water Quality Control Handbook. In Environment (Second). McGraw Hill. https://doi.org/10.1036/0071467602; Amato, A., Cozzolino, G., Maisto, A., & Pelosi, S. (2021). Monitoring Airplanes Faults Through Business Intelligence Tools (pp. 224–234). https://doi.org/10.1007/978-3-030-61105-7_22; Arévalo-Gómez, M. Á., Carrillo-Zambrano, E., Herrera-Quintero, L. F., & Chavarriaga, J. (2018). Water wells monitoring solution in rural zones using IoT approaches and cloud-based real-time databases. Proceedings of the Euro American Conference on Telematics and Information Systems - EATIS ’18, 1–5. https://doi.org/10.1145/3293614.3293659; Arévalo Junco, A. D. (2019). Prototipo de un sistema de monitoreo de calidad del agua subterránea en instalaciones de captación de una localidad rural del municipio de Tibaná-Boyacá. Universidad Piloto de Colombia.; Aspin, A. (2020). Pro Power BI Desktop. Apress. https://doi.org/10.1007/978-14842-5763-0; Aznil Ab Aziz, M., Abas, M. F., Anwar Abu Bashri, M. K., Saad, N. M., & Ariff, M. H. (2019). Evaluating IoT based passive water catchment monitoring system data acquisition and analysis. Bulletin of Electrical Engineering and Informatics, 8(4). https://doi.org/10.11591/eei.v8i4.1583; Badii, M., Guillen, A., Rodríguez, C., Lugo, O., Aguilar, J., & Acuña, M. (2015). Pérdida de Biodiversidad: Causas y Efectos Biodiversity Loss: Causes and Factors. Daena: International Journal of Good Conscience, 10(2), 156–174; Bagali, M. U., & Thangadurai, N. (2021). NavIC/GNSS receiver based integrated transport monitoring system using embedded system. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.11.080; Bahadori, A., & Smith,Bahadori, A., & Smith, S. T. (2016). A. In Dictionary of Environmental Engineering and Wastewater Treatment (pp. 1–37). Springer International Publishing. https://doi.org/10.1007/978-3-319-26261-1_1; Baird, R. B., Rice, E. W., & Posavec, S. (2017). Standard Methods For The Examination Of Water And Wastewater 23th. In Amer Public Health Assn; Balachandar, S., & Chinnaiyan, R. (2020). Reliable pharma cold chain monitoring and analytics through Internet of Things Edge. In Emergence of Pharmaceutical Industry Growth with Industrial IoT Approach (pp. 133–161). Elsevier. https://doi.org/10.1016/B978-0-12-819593-2.00005-4; Bastião Silva, L. A., Costa, C., & Oliveira, J. L. (2013). A common API for delivering services over multi-vendor cloud resources. Journal of Systems and Software, 86(9), 2309–2317. https://doi.org/10.1016/j.jss.2013.04.037; Bastidas, S. E. C., & Plata, R. A. D. (2020). Sistema IoT con UAV y GPR para Identificar Zonas Con Aguas Subterráneas en el Departamento de la GuajiraColombia. Encuentro Internacional de Educación En Ingeniería; Beigi, N. K., Partov, B., & Farokhi, S. (2018). Real-time cloud robotics in practical smart city applications. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 2017-Octob, 1–5. https://doi.org/10.1109/PIMRC.2017.8292655; Boehm, B. (2004). Balancing Agility and Discipline: A Guide for the Perplexed. https://doi.org/10.1007/978-3-540-24675-6_1; Boeker, M., Vach, W., & Motschall, E. (2013). Google Scholar as replacement for systematic literature searches: Good relative recall and precision are not enough. BMC Medical Research Methodology, 13(1). https://doi.org/10.1186/1471-2288-13-131; Boyd, C. E. (2020). Water Quality. Springer International Publishing. https://doi.org/10.1007/978-3-030-23335-8; Burbano Ordoñez, C. Y., & others. (2017). Implementación de una red de sensores inalámbricos LPWAN mediante módulos LoRa para el monitoreo de la calidad del agua en 2 ríos. Universidad Distrital Francisco José de Caldas.; Burgos Galeano, C. A., Lafont Álvarez, K., & Estrada Palencia, P. A. (2018). Análisis comparativo de indicadores de la calidad del agua del rio Sinú municipio de Montería, Córdoba. Modum, 55–64.; Caballero-Flores, R. (2019). Análisis de errores en las medidas. https://digibuo.uniovi.es/dspace/bitstream/handle/10651/52857/ANÁLISIS DE ERRORES EN LA MEDIDA_RCF.pdf?sequence=1; Caho-Rodríguez, C. A., & López-Barrera, E. A. (2017). Determinación del Índice de Calidad de Agua para el sector occidental del humedal Torca-Guaymaral empleando las metodologías UWQI y CWQI. Producción + Limpia, 12(2), 35– 49. https://doi.org/10.22507/pml.v12n; Camacho Botero, L. A. (2020). La paradoja de la disponibilidad de agua de mala calidad en el sector rural colombiano. Revista de Ingeniería, 49(49), 38–51. https://doi.org/10.16924/revinge.49.6; Cao, H., Guo, Z., Wang, S., Cheng, H., & Zhan, C. (2020). Intelligent wide-area water quality monitoring and analysis system exploiting unmanned surface vehicles and ensemble learning. Water (Switzerland), 12(3). https://doi.org/10.3390/w12030681; Carminati, M., Turolla, A., Mezzera, L., Di Mauro, M., Tizzoni, M., Pani, G., Zanetto, F., Foschi, J., & Antonelli, M. (2020). A Self-Powered Wireless Water Quality Sensing Network Enabling Smart Monitoring of Biological and Chemical Stability in Supply Systems. Sensors, 20(4), 1125. https://doi.org/10.3390/s20041125; Carrasco Mantilla, W. (2016). Estado del arte del agua y saneamiento rural en Colombia. Revista de Ingeniería, 0(44), 46. https://doi.org/10.16924/riua.v0i44.923; CEPAL. (2013). Agua para el Siglo XXI para América del Sur. Journal of Chemical Information and Modeling, 53(9), 1689–1699.; Chang, J. F. (2006). Business Process Management Systems. Strategy and Implementation. Taylor & Francis Group; Chen, G., & Kotz, D. (2000). A Survey of Context-Aware Mobile Computing Research. Time, 3755(TR2000-381), 1–16. https://doi.org/10.1.1.140.3131; Chin Roemer, R., & Borchardt, R. (2015). Meaningful Metrics: A 21st Century Librarian’s Guide to Bibliometrics, Altmetrics, and Research Impact. Association of College and Research Libraries; Climent, E., Pelegri-Sebastia, J., Sogorb, T., Talens, J., & Chilo, J. (2017). Development of the MOOSY4 eNose IoT for Sulphur-Based VOC Water Pollution Detection. Sensors, 17(8), 1917. https://doi.org/10.3390/s17081917; Coetzee, L., & Eksteen, J. (2011). The Internet of Things - promise for the future? An introduction. In In IST-Africa Conference Proceedings. IEEE.; Conagua. (2010). Capítulo 3. Usos del Agua. Estadísticas Del Agua En México, Edición 2010, 61–76; Copeland, D. B. (2017). Rails, Angular, Postgres, and Bootstrap: Powerful, Effective, Efficient, Full-Stack Web Development; Cordeiro, L., Mar, C., Valentin, E., Cruz, F., Patrick, D., Barreto, R., & Lucena, V. (2008). An agile development methodology applied to embedded control software under stringent hardware constraints. ACM SIGSOFT Software Engineering Notes, 33(1), 1. https://doi.org/10.1145/1344452.1344459; Cotruvo, J. A. (2018). Drinking water quality and contaminants guidebook. Taylor & Francis; Cressie, N., & Wikle, C. K. (2011). Statistics for Spatio-Temporal Data. John Wiley and Sons; CVS. (2020). Cobertura geográfica Departamento de Córdoba.; DANE. (2018). Censo Nacional de Población y censo nacional de vivienda Vivienda. DANE, Publicacion Para Todos, 66. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-ypoblacion/censo-nacional-de-poblacion-y-vivenda-2018/cuantos-somos; Darwish, M., & Ouda, A. (2015). Evaluation of an OAuth 2 . 0 Protocol Implementation for Web Server Applications. 2015 International Conference and Workshop on Computing and Communication (IEMCON), 2–5.; De Bellis, N. (2009). Bibliometrics and Citation Analysis; from the Science Citation Index to Cybermetrics. The Scarecrow Press, Inc.; De León-Peña, R., & Vargas-Lombardo, M. (2017). OpenID connect and digital identity security. Revista de Iniciación Científica, 3(2), 94–99; Díaz Porras, K. P. (2019). El oro azul y su gestión de pérdidas en Colombia. Módulo Arquitectura CUC, 23(1), 9–22. https://doi.org/10.17981/mod.arq.cuc.23.1.2019.01; Dow, C. (2020). Hands-On Edge Analytics with Azure IoT: Design and Develop IoT Applications with Edge Analytical Solutions Including Azure IoT Edge. Packt Publishing Ltd.; Dürr, C., & Vie, J.-J. (2021). Competitive Programming in Python: 128 Algorithms to Develop your Coding Skills. In Cambridge University Press. https://doi.org/10.1017/9781108591928; Edmondson, V., Cerny, M., Lim, M., Gledson, B., Lockley, S., & Woodward, J. (2018). A smart sewer asset information model to enable an ‘Internet of Things’ for operational wastewater management. Automation in Construction, 91, 193–205. https://doi.org/10.1016/j.autcon.2018.03.003; Ehrenmueller-Jensen, M. (2020). Self-Service AI with Power BI Desktop. In SelfService AI with Power BI Desktop. Apress. https://doi.org/10.1007/978-1-48426231-3; Emerson, S., Choi, Y. K., Hwang, D. Y., Kim, K. S., & Kim, K. H. (2015). An OAuth based authentication mechanism for IoT networks. International Conference on ICT Convergence 2015: Innovations Toward the IoT, 5G, and Smart Media Era, ICTC 2015, 1072–1074. https://doi.org/10.1109/ICTC.2015.7354740; Escobar Roberto, L. A., & Gutierrez Ramirez, N. (2020). Implementación de un sistema electrónico de monitoreo de la calidad del agua para un estanque piscícola. Universidad Distrital Francisco José de Caldas; Espake, P. (2015). Learning Heroku Postgres. Packt Publishing; Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37–54.; Foro Económico Mundial. (2019). Informe de riesgos mundiales 2019 14.a edición.; García, S., Luengo, J., & Herrera, F. (2015). Data Preprocessing in Data Mining. In Intelligent Systems Reference Library (Vol. 72). Springer International Publishing. https://doi.org/10.1007/978-3-319-10247-4; Geetha, S., & Gouthami, S. (2016). Internet of things enabled real time water quality monitoring system. Smart Water, 2(1), 1. https://doi.org/10.1186/s40713-017-0005-y; Gingras, Y. (2016). Bibliometrics and Research Evaluation: Uses and Abuses (History and Foundations of Information Science). The MIT Press.; Global Water. (2019). Water Quality. In Instrumentation Resource Book (pp. 54– 101). http://www.globalw.com/downloads/Catalog/WaterQuality.pdf; Gorchev, H. G., & Ozolins, G. (1984). WHO guidelines for drinking- water quality. WHO Chronicle, 38(3), 104–108.; Goyal, H. R., Ghanshala, K. K., & Sharma, S. (2021a). Flash flood risk management modeling in indian cities using IoT based reinforcement learning. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2021.01.072; Goyal, H. R., Ghanshala, K. K., & Sharma, S. (2021b). Recommendation based rescue operation model for flood victim using smart IoT devices. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.12.959; Greenfeld, D. R., & Greenfeld, A. R. (2020). Django Crash Course.; Greengard, S. (2015). The Internet of Things; Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. https://doi.org/10.1016/j.future.2013.01.010; Gupta, A. (2013). Java EE 7 Essentials: Enterprise Developer Handbook (M. Loukides & M. Blanchette (eds.); First Edit). O’Reilly Media, Inc. https://doi.org/10.1007/978-1-4302-4426-4; Guzmán, B. L., Nava, G., & Díaz, P. (2015). La calidad del agua para consumo humano y su asociación con la morbimortalidad en Colombia, 2008-2012. Biomedica, 35(3), 177–190. https://doi.org/10.7705/biomedica.v35i0.2511; Hakim, W. L., Hasanah, L., Mulyanti, B., & Aminudin, A. (2019). Characterization of turbidity water sensor SEN0189 on the changes of total suspended solids in the water. Journal of Physics: Conference Series, 1280, 022064. https://doi.org/10.1088/1742-6596/1280/2/022064; Havinek, P. (2009). Risk Management of Water Supply and Sanitation Systems (P. Hlavinek, C. Popovska, J. Marsalek, I. Mahrikova, & T. Kukharchyk (eds.)). Springer Netherlands. https://doi.org/10.1007/978-90-481-2365-0; Hill, C. A., Biemer, P. P., Buskirk, T. D., Japec, L., Kirchner, A., Kolenikov, S., & Lyberg, L. E. (2021). Big Data Meets Survey Science: A Collection of Innovative Methods. In Wiley Series in Survey Methodology. Wiley; Hlavinek, P. (2020). Management of Water Quality and Quantity (M. Zelenakova, P. Hlavínek, & A. M. Negm (eds.)). Springer International Publishing. https://doi.org/10.1007/978-3-030-18359-2; Hoyos Botero, C. (2000). Un modelo para investigación documental (Señal Editora (ed.)).; Hu, Z., & Liu, L. (2018). Prediction of water pollution by nutrients based on eutrophication evaluation. Chemical Engineering Transactions, 71, 667–672. https://doi.org/10.3303/CET1871112; IGAC. (2017). Mapas Departamentales Físico Políticos. Instituto Geográfico Agustín Codazzi.; Islam, M., Ashraf, F., Alam, T., Misran, N., & Mat, K. (2018). A Compact Ultrawideband Antenna Based on Hexagonal Split-Ring Resonator for pH Sensor Application. Sensors, 18(9), 2959. https://doi.org/10.3390/s18092959; James, S. (2016). An Introduction to Data Analysis using Aggregation Functions in R. In An Introduction to Data Analysis using Aggregation Functions in R. Springer International Publishing. https://doi.org/10.1007/978-3-319-46762-7; Jia, T., Zhao, X., Wang, Z., Gong, D., & Ding, G. (2016). Model Transformation and Data Migration from Relational Database to MongoDB. 2016 IEEE International Congress on Big Data (BigData Congress), 60–67. https://doi.org/10.1109/BigDataCongress.2016.16; John, V., & Liu, X. (2017). A Survey of Distributed Message Broker Queues; Kachroud, M., Trolard, F., Kefi, M., Jebari, S., & Bourrié, G. (2019). Water quality indices: Challenges and application limits in the literature. Water (Switzerland), 11(2), 1–26. https://doi.org/10.3390/w11020361; Kaur, H., Singh, S. P., Bhatnagar, S., & Solanki, A. (2021). Chapter 10 - Intelligent Smart Home Energy Efficiency Model Using Artificial Intelligence and Internet of Things (G. Kaur, P. Tomar, & M. B. T.-A. I. to S. P. I. of T. I. Tanque (eds.); pp. 183–210). Academic Press. https://doi.org/https://doi.org/10.1016/B978-012-818576-6.00010-1; Kim, H. (2021). Software Engineering in IoT, Big Data, Cloud and Mobile Computing (H. Kim & R. Lee (eds.); Vol. 930). Springer International Publishing. https://doi.org/10.1007/978-3-030-64773-; Kothari, N., Shreemali, J., Chakrabarti, P., & Poddar, S. (2021). Design and implementation of IoT sensor based drinking water quality measurement system. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.12.1142; Lai, C. S., Lai, L. L., & Lai, Q. H. (2021). Smart Grids and Big Data Analytics for Smart Cities. In Smart Grids and Big Data Analytics for Smart Cities. Springer International Publishing. https://doi.org/10.1007/978-3-030-52155-4; Larson, B. (2019). Data Analysis with Microsoft Power BI. McGraw-Hill Education.; Lea, P. (2018). Internet of Things for Architects: Architecting IoT solutions by implementing sensors, communication infrastructure, edge computing, analytics, and security. Packt Publishing; Lea, P. (2020). IoT and Edge Computing for Architects.; Lee, R. (2020). Big Data, Cloud Computing, and Data Science Engineering (R. Lee (ed.); Vol. 844). Springer International Publishing. https://doi.org/10.1007/9783-030-24405-7; Leke, C. A., & Marwala, T. (2019). Deep Learning and Missing Data in Engineering Systems (Vol. 48). Springer International Publishing. https://doi.org/10.1007/978-3-030-01180-2; Lima-Rodrigues, L. M. S., & Rodrigues, D. A. (2020). Agenda 2030. Quaestio - Revista de Estudos Em Educação, 22(3), 721–739. https://doi.org/10.22483/2177-5796.2020v22n3p721-739; Little, R. J. A., & Rubin, D. B. (2019). Statistical Analysis with Missing Data. In Wiley Series in Probability and Statistics. John Wiley & Sons; Livelihoods & Natural Resource Man, International Water & Sanitation C, Centre for Economic and Social Stu, & Watershed Support Services & Activ. (2014). Sustainable Water and Sanitation Services. In Sustainable Water and Sanitation Services: The Life-Cycle Cost Approach to Planning and Management. Routledge. https://doi.org/10.4324/9780203521670; Loucks, D. P., & van Beek, E. (2017). Water resource systems planning and management: An introduction to methods, models, and applications. In Water Resource Systems Planning and Management: An Introduction to Methods, Models, and Applications. https://doi.org/10.1007/978-3-319-44234-1; Ma, H., & Wang, J. (2021). The 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy. In J. MacIntyre, J. Zhao, & X. Ma (Eds.), Advances in Intelligent Systems and Computing (Vol. 1282). Springer International Publishing. https://doi.org/10.1007/978-3-03062743-0; Megargel, A., Shankararaman, V., & Walker, D. K. (2020). Software Engineering in the Era of Cloud Computing (M. Ramachandran & Z. Mahmood (eds.)). Springer International Publishing. https://doi.org/10.1007/978-3-030-33624-0; Melé, A. (2020). Django 3 By Example: Build powerful and reliable Python web applications from scratch (3th ed.). PACKT Publishing; Melendez Gelvez, I., Quijano Parra, A., & Pardo Perez, E. (2015). Actividad genotóxica de aguas antes y despues de clorar en la planta de potabilización Empopamplona. Bistua Revista De La Facultad De Ciencias Basicas, 13(2), 12. https://doi.org/10.24054/01204211.v2.n2.2015.1795; Meneses, H. W. P., García, J. P. M., & Sánchez, M. E. L. (2018). AQUASMART, La Solución Mecatrónica al Manejo de Recursos Hídricos. Encuentro Internacional de Educación En Ingeniería.; Micheli, G. De. (2020). Embedded, Cyber-Physical, and IoT Systems. In S. S. Bhattacharyya, M. Potkonjak, & S. Velipasalar (Eds.), Embedded, CyberPhysical, and IoT Systems. Springer International Publishing. https://doi.org/10.1007/978-3-030-16949-7; Decreto número 1575 de 2007, 14 (2007).; Ministerio de la protección social, & Ministerio de Ambiente, V. y D. T. (2007). Resolución 2115/2007. Gaceta Oficial, 23.; Minteer, A. (2017). Analytics for the Internet of Things (IoT): Intelligent analytics for your intelligent devices. Packt Publishing; Mirzavand, R., Honari, M., Laribi, B., Khorshidi, B., Sadrzadeh, M., & Mousavi, P. (2018). An Unpowered Sensor Node for Real-Time Water Quality Assessment (Humic Acid Detection). Electronics, 7(10), 231. https://doi.org/10.3390/electronics710023; Mishra, V., Kumar, T., Bhalla, K., & Patil, M. M. (2018). SuJAL: Design and Development of IoT-Based Real-Time Lake Monitoring System. 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C), 1–4. https://doi.org/10.1109/CIMCA.2018.8739; Mitsa, T. (2010). Temporal Data Mining. Chapman and Hall/CRC. https://doi.org/10.1201/9781420089776; Molenberghs, G., Fitzmaurice, G., Kenward, M., Tsiatis, B., & Verbeke, G. (2015). Handbook of Missing Data Methodology. In G. Molenberghs, G. Fitzmaurice, M. G. Kenward, & A. Tsiatis (Eds.), Handbook of Missing Data Methodology. Chapman and Hall/CRC. https://doi.org/10.1201/b17622; Morales García, J., Peñuela Meneses, W., & Leyes Sánchez, M. (2018). Aquasmart, la solución mecatrónica al manejo de recursos hídricos. Encuentro Internacional de Educación En Ingeniería ACOFI, 1–7.; Moreno Arboleda, F. J., Quintero Rendón, J. E., & Rueda Vásquez, R. (2016). Una comparación de rendimiento entre Oracle y MongoDB. Ciencia e Ingeniería Neogranadina, 26(1), 109. https://doi.org/10.18359/rcin.1669; Munirathinam, S. (2021). Drift Detection Analytics for IoT Sensors. Procedia Computer Science, 180, 903–912. https://doi.org/https://doi.org/10.1016/j.procs.2021.01.341; Musa, P., Sugeru, H., & Mufza, H. F. (2019). An intelligent applied Fuzzy Logic to prediction the Parts per Million (PPM) as hydroponic nutrition on the based Internet of Things (IoT). 2019 Fourth International Conference on Informatics and Computing (ICIC), 1–7. https://doi.org/10.1109/ICIC47613.2019.8985712; Naqvi, S., Yfantidou, S., & Zimányi, E. (2017). Advanced Databases. Time Series Databases and InfluxDB. In Universite libre de Bruxelles.; Norris, D. J. (2020). Machine Learning with the Raspberry Pi: Experiments with Data and Computer Vision. Apress. https://doi.org/10.1007/978-1-4842-5174-4; Núñez-Blanco, Y., Ramírez-Cerpa, E., & Sánchez-Comas, A. (2020). Revisión de sistemas de telemetría en ríos: propuesta para el río Magdalena, Barranquilla, Colombia. Tecnología y Ciencias Del Agua, 11(5), 298–343. https://doi.org/10.24850/j-tyca-2020-05-08; Ojha, A. (2020). Sensors in Water Pollutants Monitoring: Role of Material (D. Pooja, P. Kumar, P. Singh, & S. Patil (eds.)). Springer Singapore. https://doi.org/10.1007/978-981-15-0671-0; OMS. (2006). Guidelines for drinking- water qualit; OMS, O. M. D. L. S., & UNICEF, F. de las N. U. para la I. (2017). Progresos en materia de agua potable, saneamiento e higiene. In Organización Mundial de la Salud.; Organización Mundial de La Salud. (2011). Guías para la calidad del agua de consumo humano. Organización Mundial de La Salud, 4, 608.; Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLOS Medicine, 18(3), e1003583. https://doi.org/10.1371/journal.pmed.1003583; Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., MayoWilson, E., McDonald, S., … McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ, 372, n160. https://doi.org/10.1136/bmj.n160; Parameswari, M., & Moses, M. B. (2018). Online measurement of water quality and reporting system using prominent rule controller based on aqua care-IOT. Design Automation for Embedded Systems, 22(1–2), 25–44. https://doi.org/10.1007/s10617-017-9187-7; Particle. (2020). Quick Start: ARGON. Particle.Io.; Pilicita Garrido, A., Borja López, Y., & Gutiérrez Constante, G. (2020). Rendimiento de MariaDB y PostgreSQL. Revista Científica y Tecnológica UPSE, 7(2), 09– 16. https://doi.org/10.26423/rctu.v7i2.538; Poongodi, T., Rathee, A., Indrakumari, R., & Suresh, P. (2020). Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm. In S.-L. Peng, S. Pal, & L. Huang (Eds.), Intelligent Systems Reference Library. Springer International Publishing. https://doi.org/10.1007/978-3-030-33596-0; Poza Luján, J. L. (2012). Proposed smart control distributed architecture based on service quality policies. Doctoral thesis. Universidad Politécnica de Valencia; Prashanth, D. S., Patel, G., & Bharathi, B. (2017). Research and development of a mobile based women safety application with real-time database and datastream network. 2017 International Conference on Circuit ,Power and Computing Technologies (ICCPCT), 1–5. https://doi.org/10.1109/ICCPCT.2017.8074261; Programa de las Naciones Unidas para el Desarrollo. (2015). Objetivos de Desarrollo del Milenio. In Humanismo y Trabajo Social: Vols 5 (93-101).; Puig, V., Ocampo-Martínez, C., Pérez, R., Cembrano, G., Quevedo, J., & Escobet, T. (Eds.). (2017). Real-time Monitoring and Operational Control of DrinkingWater Systems. Springer International Publishing. https://doi.org/10.1007/9783-319-50751-4; Quintana Fajardo, B. F., & Sarabia Caffroni, J. J. (2018). Arquitectura para el sistema de monitoreo de la calidad del agua de los caños y lagos internos del Distrito de Cartagena de Indias soportada en tecnologías de internet de las cosas. Universidad de Cartagena; Rad, R. (2018). Power BI Service Content. In Pro Power BI Architecture (pp. 29– 57). Apress. https://doi.org/10.1007/978-1-4842-4015-1_3; Raghuvanshi, A., & Singh, U. K. (2020). Internet of Things for smart cities- security issues and challenges. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.10.849; Rajanna, R. R., Natarajan, S., & Vittal, P. R. (2018). An IoT Wi-Fi Connected Sensor For Real Time Heart Rate Variability Monitoring. 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C), 1–4. https://doi.org/10.1109/CIMCA.2018.8739323; Ratnaparkhi, S., Khan, S., Arya, C., Khapre, S., Singh, P., Diwakar, M., & Shankar, A. (2020). Smart agriculture sensors in IOT: A review. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.138; Ray, P. P., Dash, D., & De, D. (2019). Internet of things-based real-time model study on e-healthcare: Device, message service and dew computing. Computer Networks, 149, 226–239. https://doi.org/10.1016/j.comnet.2018.12.006; Asamblea General de las Naciones Unidas, Naciones Unidas 3 (2010).; Rethlefsen, M. L., Kirtley, S., Waffenschmidt, S., Ayala, A. P., Moher, D., Page, M. J., & Koffel, J. B. (2021). PRISMA-S: an extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Systematic Reviews, 10(1), 39. https://doi.org/10.1186/s13643-020-01542-z; Rey Graña, C., & Ramil Diaz, M. (2011). Series temporales. Introduccion a La Estadistica Descriptiva. Segunda Edicion, 85–105. https://doi.org/10.4272/978-84-9745-167-3.ch4; Rojo-Nieto, E., & Montoto, T. (2017). Basuras marinas, plásticos y microplásticos orígenes, impactos y consecuencias de una amenaza global. Ecologistas en Acción; Rondero, C., & Font, V. (2015). Articulación de la complejidad matemática de la media aritmética. Ensenanza de Las Ciencias, 33(2), 29–49. https://doi.org/10.5565/rev/ensciencias.1386; Ruiz, C. A., Salazar, D. M., & Rodríguez González, N. (2020). La prestación de los servicios de agua potable y saneamiento básico en Colombia análisis y prospectiva. In Investigaciones y productos CID; Ruiz, C. A., Salazar, D. M., & Rodríguez, N. (2020). The provision of drinking water and basic sanitation services in Colombia: analysis and prospective. Documentos FCE-CID Escuela de Economía, 34, 1–86. www.fce.unal.edu.co/centro-editorial/documentos.html; Ruiz Peláez, J. G., & Rodríguez Malagón, M. N. (2015). Población y muestra. Epidemiología Clínica: Investigación Clínica Aplicada, 62–66.; Russo, C., Ramón, H., Alonso, N., Cicerchia, B., Esnaola, L., & Tessore, J. P. (2015). Tratamiento Masivo de Datos Utilizando Técnicas de Machine Learning Resumen Contexto Introducción. 131–134; Samaranayake, P., Ramanathan, K., & Laosirihongthong, T. (2017). Implementing industry 4.0 — A technological readiness perspective. 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 529–533. https://doi.org/10.1109/IEEM.2017.8289947; Saravanan, K., Anusuya, E., Kumar, R., & Son, L. H. (2018). Real-time water quality monitoring using Internet of Things in SCADA. Environmental Monitoring and Assessment, 190(9). https://doi.org/10.1007/s10661-018-6914x; Schwaber, K. (2004). Agile Project Management with Scrum (Vol. 7, Issue CMM). https://doi.org/10.1201/9781420084191-c2; Seamark, P., & Martens, T. (2019). Pro Dax with Power Bi: Business Intelligence with Powerpivot and SQL Server Analysis Services Tabular. Apress. https://doi.org/10.1007/978-1-4842-4897-3; Sebastian, A. (2020). Smart Systems and IoT: Innovations in Computing. In A. K. Somani, R. S. Shekhawat, A. Mundra, S. Srivastava, & V. K. Verma (Eds.), Smart Innovation, Systems and Technologies. Springer Singapore. https://doi.org/10.1007/978-981-13-8406-6; Serpanos, D., & Wolf, M. (2018). Internet-of-Things (IoT) Systems. In Internet-ofThings (IoT) Systems. Springer International Publishing. https://doi.org/10.1007/978-3-319-69715-4; Serrano Castaño, C. E. (2002). Modelo integral para el profesional en ingeniería (Universidad del Cauca (Ed.)).; Shaw, P. (2013). Postgres Succinctly. In Syncfusion Inc; Sierra, C. A. (2011). Calidad del Agua. Evaluación y diagnóstico. In Journal of Chemical Information and Modeling. https://repository.udem.edu.co/handle/11407/2568; Siow, E., Tiropanis, T., & Hall, W. (2018). Analytics for the Internet of Things. ACM Computing Surveys, 51(4), 1–36. https://doi.org/10.1145/3204947; Spandana, K., & Rao, V. R. S. (2018). Internet of Things (Iot) Based smart water quality monitoring system. International Journal of Engineering and Technology(UAE), 7(3), 259–262. https://doi.org/10.14419/ijet.v7i3.6.14985; Suresh, A., Nandagopal, M., Pethuru Raj, Neeba, E. A., & Lin, J.-W. (2020). Industrial IoT Application Architectures and Use Cases. Auerbach Publications.; Suseendran, G., & Balaganesh, D. (2021). Smart cattle health monitoring system using IoT sensors. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2021.01.873; Sutradhar, B. C. (2013). ISS-2012 Proceedings Volume On Longitudinal Data Analysis Subject to Measurement Errors, Missing Values, and/or Outliers (B. C. Sutradhar (Ed.); Vol. 211). Springer New York. https://doi.org/10.1007/9781-4614-6871-4; Tanwar, S. (2020). Fog Data Analytics for IoT Applications: Next Generation Process Model with State of the Art Technologies (S. Tanwar (Ed.); Vol. 76). Springer Singapore. https://doi.org/10.1007/978-981-15-6044-6; The Government Office for Science. (2014). The IoT: making the most of the Second Digital Revolution. WordLink, 1–40. https://doi.org/GS/14/1230; Torres Pardo, J. C. (2017). Definition of a Reference Architecture for Information Systems in Ubiquitous Wireless Sensor Networks based on quality of service. Master’s Degree Option Work. Universidad Nacional de Colombia; Tukey, J. W. (1962). The Future of Data Analysis. The annals of mathematical statistics.; UNESCO. (2015). El Crecimiento Insostenible Y La Creciente Demanda Mundial De Agua. Wwdr, 12; UNESCO. (2019). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2019. No dejar a nadie atrás. In Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura; UNESCO. (2020). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2020. In Agua y Cambio Climático; Urrútia, G., & Bonfill, X. (2010). Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Medicina Clínica, 135(11), 507–511. https://doi.org/10.1016/j.medcli.2010.01.015; van Eck, N. J., & Waltman, L. (2011). Text mining and visualization using VOSviewer. Text Mining and Visualization, 1–5.; van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053–1070. https://doi.org/10.1007/s11192-017-2300-7; Vélez, A., & Calvo, G. (1992). La investigación documental. Estado del arte y del conocimiento. Análisis de la investigación en la formación de investigadores. Universidad de la Sabana; Viegas, V., Pereira, J. M. D., Girao, P., Postolache, O., & Salgado, R. (2018). IoT applied to Environmental Monitoring in Oysters’ Farms. 2018 International Symposium in Sensing and Instrumentation in IoT Era (ISSI), 1–5. https://doi.org/10.1109/ISSI.2018.8538136; Vikesland, P. J. (2018). Nanosensors for water quality monitoring. Nature Nanotechnology, 13(8), 651–660. https://doi.org/10.1038/s41565-018-0209-9; Viloria, A., Acuña, G. C., Alcázar Franco, D. J., Hernández-Palma, H., Fuentes, J. P., & Rambal, E. P. (2019). Integration of Data Mining Techniques to PostgreSQL Database Manager System. Procedia Computer Science, 155, 575–580. https://doi.org/10.1016/j.procs.2019.08.080; Wade, R. (2020). Advanced Analytics in Power BI with R and Python. Apress. https://doi.org/10.1007/978-1-4842-5829-3; Water-quality engineering in natural systems: fate and transport processes in the water environment. (2013). Choice Reviews Online, 50(12), 50-6781-50–6781. https://doi.org/10.5860/choice.50-6781; Weber, R. H., & Weber, R. (2010). Internet of Things. In Development. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-11710-7; Weiser, M. (1991). The computer for the 21st century. Scientific American (International Edition), 265(3), 66–75. https://doi.org/10.1038/scientificamerican0991-94; Wolf, W. H. W. H. (1994). Hardware-software co-design of embedded systems. Proceedings of the IEEE, 82(7), 967–989. https://doi.org/10.1109/5.293155; Wong, B. P., & Kerkez, B. (2016). Real-time environmental sensor data: An application to water quality using web services. Environmental Modelling & Software, 84, 505–517. https://doi.org/10.1016/j.envsoft.2016.07.020; World Health Organization. (2019). Safe water, better health. In Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGO; Wortham, R. H. (2020). Transparency for Robots and Autonomous Systems. The Institution of Engineering and Technology; Yanes, A. R., Martinez, P., & Ahmad, R. (2020). Towards automated aquaponics: A review on monitoring, IoT, and smart systems. Journal of Cleaner Production, 263, 121571. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.121571; Zelenakova, M., Hlavínek, P., & Negm, A. M. (2020). Management of Water Quality and Quantity. Springer International Publishing. https://doi.org/10.1007/978-3-030-18359-2; Ziegler, A. (2014). In-situ Materials Characterization (A. Ziegler, H. Graafsma, X. F. Zhang, & J. W. M. Frenken (Eds.); Vol. 193). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-45152-2; Zimányi, E., Sakr, M., & Lesuisse, A. (2020). MobilityDB: A Mobility Database Based on PostgreSQL and PostGIS. ACM Transactions on Database Systems, 45(4), 1–42. https://doi.org/10.1145/3406534; Zou, Q., Xiong, Q., Li, Q., Yi, H., Yu, Y., & Wu, C. (2020). A water quality prediction method based on the multi-time scale bidirectional long short-term memory network. Environmental Science and Pollution Research, 27(14), 16853– 16864. https://doi.org/10.1007/s11356-020-08087-7; http://hdl.handle.net/20.500.12749/15481; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Dostupnost: https://hdl.handle.net/20.500.12749/15481
-
8
A REVIEW OF DRIVERS AND BARRIERS OF DIGITAL TWIN ADOPTION IN BUILDING PROJECT DEVELOPMENT PROCESSES.
Autoři:
Zdroj: Journal of Information Technology in Construction; 2024, Vol. 29, p141-178, 38p
-
9
Autoři:
Přispěvatelé:
Zdroj: Revista Colombiana de Computación; Vol. 13 Núm. 2 (2012): Revista Colombiana de Computación; 124-140
Témata: Ingeniería del Software, Procesos Software, Métodos Agiles, Arquitectura del Software, Software Engineering, Software Processes, Agile Methods, Software Architecture, Technological innovations, Technological development, Computer's science, Information technology and communication, Research, Innovaciones tecnológicas, Desarrollo tecnológico, Ciencias de la computación, Tecnología de la información y la comunicación, Investigación
Popis souboru: application/pdf
Relation: https://revistas.unab.edu.co/index.php/rcc/article/view/2128/1896; https://revistas.unab.edu.co/index.php/rcc/article/view/2128; Fedesoft. (2011) Noticias TIC. [Online]. Available: http://www.fedesoft.org; P. L. José Hilario Canós and C. Penadés, “Metodologías Agiles en el Desarrollo de Software,” Tech. Rep., 2003.; R. J. Costello and D.-B. Liu, Metrics for Requirements Engineering. Journal of Systems and Software 1995, 1995.; K. Beck and C. Andres, Extreme Programming Explained: Embrace Change (2nd Edition). Addison-Wesley Professional, 2004.; P. C. Pendharkar, Rodger, and J. A., “The Relationship Between Software Development Team Size and Software Development Cost,” Commun. ACM, vol. 52, no. 1, pp. 141–144, Jan. 2009.; R. L. Nord, Tomayko, and J. E., “Software Architecture-Centric Methodsand Agile Development,” IEEE Software, vol. 23, no. 2, pp. 47–53, Mar.2006.; E. Hadar and G. M. Silberman, “Agile architecture Methodology: Long Term Strategy Interleaved with Short Term Practics,” in Companion tothe 23rd ACM SIGPLAN conference on Objectoriented programmingsystems languages and applications, ser. OOPSLA Companion '08.New York, NY, USA: ACM, 2008, pp. 641–652.; O. S. P Abrahamsson and J. Ronkainen, Agile Software Development Methods: Review and Analysis. VTT Electronics, 2002.; A. Kornstadt and J. Sauer, “Tackling Offshore Communication Challenges with Agile Architecture-Centric Development,” in Proceedingsof the Sixth Working IEEE/IFIP Conference on Software Architecture,ser. WICSA '07. Washington, DC, USA: IEEE Computer Society,2007, pp.; P. S. Rolf Njor Jensen, Thomas Maller and G. Tarnehaj, Architectureand Design in eXtreme Programming; Introducing Developer Stories.Lecture Notes in Computer Science, 2006.; D. J. Reifer, F. Maurer, and M. H. Erdogmus, “Scaling Agile Methods,”IEEE Software, vol. 20, no. 4, pp. 12–14, 2003.; L. Layman, L. Williams, and L. Cunningham, “Exploring ExtremeProgramming in Context: An Industrial Case Study,” in Proceedingsof the Agile Development Conference, ser. ADC '04. Washington, DC,USA: IEEE Computer Society, 2004, pp. 32–41.; F. Maurer and S. Martel, “On the Productivity of Agile Software Practices:An Industrial Case study,” International Workshop on Economics-Driven Software Engineering Researh(EDSER, Tech. Rep., 2002.; D. Wells, “Extreme Programming a Gentle Introduction,” 2012. [Online]. Available: http://www.extremeprogramming.org; K. Beck, M. Beedle, A. V. Bennekum, A. Cockburn, and W. Cunningham, Manifesto for Agile Software Development. URL: http://agilemanifesto.org/l, 2009.; R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord,and B. Wood, Attribute-Driven Design (ADD), Version 2.0. SoftwareEngineering Institute, 2006, no.CMU/SEI-2006-TR023.; M. R. Barbacci, R. J. Ellison, A. J. Lattanze, J. A. Stafford, C. B.Weinstock, and W. G. Wood, “Quality Attribute Workshops QAW -Third Edition,” Carnegie Mellon, Technical Report CMU/SEI-2003-TR-016, Oct. 2003.; M. Freddy and H. Julio, “XP/Architecture,” Tech. Rep. IDIS-TR002, 2011.; http://hdl.handle.net/20.500.12749/8919; instname:Universidad Autónoma de Bucaramanga UNAB; repourl:https://repository.unab.edu.co
Dostupnost: https://hdl.handle.net/20.500.12749/8919
-
10
Autoři: a další
Přispěvatelé: a další
Témata: Engineering, Technology management, Maturity model, Smart technologies, Smart-university, Technology adoption, Technological innovations, Technological change, Artificial intelligence, Computer networks, Communications technology, Ingeniería, Innovaciones tecnológicas, Cambio tecnológico, Inteligencia artificial, Redes de computadores, Tecnología de las comunicaciones, Gestión de tecnología, Modelo de madurez, Tecnologías inteligentes, Universidad inteligente, Adopción tecnológica
Geografické téma: Norte de Santander (Colombia), UNAB Campus Bucaramanga
Popis souboru: application/pdf
Relation: [1] C. U. ESPAÑOLAS, Analisis de las TIC en las Universidades Españolas. 2015. doi:10.1017/CBO9781107415324.004; [2] J. S. Rueda-Rueda, D. Rico-Bautista, and É. Flórez-Solano, “Education in ICT: Teaching to use, teaching to protect oneself and teaching to create [Educación en TIC: Enseñar a usar, enseñar a protegerse y enseñar a crear tecnología],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2019, no. 19, pp. 252–264, 2019.; [3] L. V. Glukhova, S. D. Syrotyuk, A. A. Sherstobitova, and S. V. Pavlova, Smart university development evaluation models, vol. 144. Springer Singapore, 2019. doi:10.1007/978-981-13-8260-4_47; [4] D. Rico-bautista, C. D. Guerrero, C. A. Collazos, and G. Maestre-góngora, “Smart University : A vision of technology adoption Universidad inteligente : Una visión de la adopción de la tecnología,” Revista Colombiana de Computación, vol. 22, no. 1, pp. 44–55, 2021, doi:10.29375/25392115.4153; [5] P. Pornphol and T. Tongkeo, “Transformation from a traditional university into a smart university,” Proceedings of the 6th International Conference on Information and Education Technology - ICIET ’18. ACM Press, pp. 144–148, 2018. doi:10.1145/3178158.3178167; [6] I. Staškevičiute and B. Neverauskas, “The intelligent university’s conceptual model,” Engineering Economics, vol. 4, no. 59, pp. 53–58, 2008, doi:10.5755/j01.ee.59.4.11563; [7] D. Rico-Bautista, C. D. Guerrero, C. A. Collazos, and G. Maestre-Gongora, “Maturity model of adoption of Information Technologies for universities: An approach from the Smart University perspective,” in 2021 16th Iberian Conference on Information Systems and Technologies (CISTI), Jun. 2021, pp. 1–6. doi:10.23919/CISTI52073.2021.9476468; [8] L. I. U. Xiong, “A Study on Smart Campus Model in the Era of Big Data,” Advances in Social Science, Education and Humanities Research, vol. 87, no. Icemeet 2016, pp. 919–922, 2017.; [9] D. Rico-Bautista, G. P. Maestre-Góngora, and C. D. Guerrero, “Smart university: Characterization of the current situation of intelligent technologies, based on two case studies [Caracterización de la situación actual de las tecnologías inteligentes para una universidad inteligente en Colombia/latinoamérica],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E27, pp. 484–501, 2020; [10] F. M. Pérez, J. V. B. Martínez, J. M. S. Bernabeu, I. L. Fonseca, and A. Fuster-Guilló, “Smart university: hacia una universidad más abierta.” 2016.; [11] D. Rico-Bautista, Y. Medina-Cárdenas, and C. D. Guerrero, “Smart University: A Review from the Educational and Technological View of Internet of Things,” in International Conference on Information Technology and Systems, ICITS 2019, vol. 918, P. M., F. C., and R. A., Eds. Systems and Informatics Department, Universidad Francisco de Paula Santander Ocaña, Algodonal Campus Vía Acolsure, Ocaña, 546551, Colombia: Springer Verlag, 2019, pp. 427–440. doi:10.1007/978-3-03011890-7_42; [12] J. P. Bakken, V. L. Uskov, S. V. Kuppili, A. V Uskov, N. Golla, and N. Rayala, Smart University: Conceptual Modeling and Systems’ Design, vol. 70. Cham: Springer International Publishing, 2018. doi:10.1007/978-3-319-59454-5.; [13] O. Akhrif, Y. E. B. El Idrissi, and N. Hmina, “Smart university: SOC-based study,” Proceedings of the 3rd International Conference on Smart City Applications - SCA ’18. ACM Press, 2018. doi:10.1145/3286606.3286798; [14] Aqeel-ur-Rehman, A. Z. Abbasi, and Z. A. Shaikh, “Building a Smart University Using RFID Technology,” in 2008 International Conference on Computer Science and Software Engineering, 2008, vol. 5, pp. 641–644. doi:10.1109/CSSE.2008.1528.; [15] K. Sargent, P. Hyland, and S. Sawang, “Factors influencing the adoption of information technology in a construction business,” Construction Economics and Building, vol. 12, no. 2, p. 86, Jun. 2012, doi:10.5130/AJCEB.v12i2.244; [16] S. Karkošková, “Towards Cloud Computing Management Model Based on ITIL Processes,” in Proceedings of the 2nd International Conference on Business and Information Management, Sep. 2018, pp. 1–5. doi:10.1145/3278252.3278265; [17] M. Comuzzi and A. Patel, “How organisations leverage: Big Data: A maturity model,” Industrial Management and Data Systems, vol. 116, no. 8, pp. 1468–1492, 2016, doi:10.1108/IMDS-12-20150495.; [18] N. V Semenova, E. A. Svyatkina, T. G. Pismak, and Z. Y. Polezhaeva, “The Realities of Smart Education in the Contemporary Russian Universities,” in Proceedings of the Internationsl Conference on Electronic Governance and Open Society: Challenges in Eurasia, 2017, pp. 48–52. doi:10.1145/3129757.3129767; [19] A. Fernández Martínez and F. Llorens Largo, Gobierno de las TI para universidades. 2016.; [20] C. Williams, D. Schallmo, K. Lang, and L. Boardman, “Digital Maturity Models for Small and Medium-sized Enterprises: A Systematic Literature Review,” ISPIM Conference Proceedings, no. June, pp. 1–15, 2019; [21] J. Rueda-Rueda, J. Manrique, and J. Cabrera Cruz, Internet de las Cosas en las Instituciones de Educación Superior. 2017.; [22] J. Becker, R. Knackstedt, and J. Pöppelbuß, “Developing Maturity Models for IT Management,” Business & Information Systems Engineering, vol. 1, no. 3, pp. 213–222, 2009, doi:10.1007/s12599009-0044-5.; [23] C. Heinemann and V. L. Uskov, “Smart University: Literature Review and Creative Analysis,” in Smart Universities, Germany: Springer International Publishing, 2018, pp. 11–46. doi:10.1007/978-3-31959454-5_2; [24] P. Rikhardsson and R. Dull, “An exploratory study of the adoption, application and impacts of continuous auditing technologies in small businesses,” International Journal of Accounting Information Systems, vol. 20, pp. 26–37, Apr. 2016, doi:10.1016/j.accinf.2016.01.003; [25] Y. C. Medina-Cárdenas and D. Rico-Bautista, “Strategic alignment under a technology management organizational approach: ITIL & ISO 20000,” Revista Tecnura, vol. 20, no. 1, pp. 82–94, 2016, doi:10.14483/22487638.11681; [26] D. Rico-Bautista et al., “Smart university: Strategic map since the adoption of technology [Universidad inteligente: Mapa estratégico desde la adopción de tecnología].,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E28, pp. 711–724, 2020.; [27] Dewar. Rico-Bautista, Y. Areniz Arévalo, and Y. C. Medina Cárdenas, “Strategic management appropriation: A question of organizational skills,” FACE: Revista de la Facultad de Ciencias Económicas y Empresariales, vol. 15, no. 2, pp. 71–80, Nov. 2015; [28] D. Rico-Bautista et al., “Smart university: Key factors for the adoption of internet of things and big data,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 201, no. 41, pp. 63–79, 2021, doi:10.17013/risti.41.63–79; [29] D. Rico-Bautista, C. A. Collazos, C. D. Guerrero, G. Maestre-Gongora, and Y. Medina-Cárdenas, “Latin American Smart University: Key Factors for a User-Centered Smart Technology Adoption Model,” in Sustainable Intelligent Systems, 2021, pp. 161–173. doi:10.1007/978-981-33-4901-8_1; [30] D. Rico-Bautista, Y. Medina-Cardenas, L. A. Coronel-Rojas, F. Cuesta-Quintero, G. Maestre-Gongora, and C. D. Guerrero, “Smart University: Key Factors for an Artificial Intelligence Adoption Model,” in Advances and Applications in Computer Science, Electronics and Industrial Engineering, vol. 1307, M. v. García, F. Fernández-Peña, and C. Gordón-Gallegos, Eds. Singapore: Springer Singapore, 2021, pp. 153–166. doi:10.1007/978-981-33-4565-2_10.; [31] D. Rico-Bautista, G. Maestre-Gongora, and C. D. Guerrero, “Smart University:IoT adoption model,” in 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), Jul. 2020, pp. 821–826. doi:10.1109/WorldS450073.2020.9210369. [32] D. Rico-Bautista, Y. Medina-Cardenas, Y. Areniz-Arevalo, E.; [32] D. Rico-Bautista, Y. Medina-Cardenas, Y. Areniz-Arevalo, E. Barrientos-Avendano, G. MaestreGongora, and C. D. Guerrero, “Smart University: Big Data adoption model,” in 2020 9th International Conference On Software Process Improvement (CIMPS), Oct. 2020, pp. 52–60. doi:10.1109/CIMPS52057.2020.9390151; [33] O. Akhrif, Y. E. B. El Idrissi, and N. Hmina, “Smart university, a new concept in the Internet of Things,” in Proceedings of the 3rd International Conference on Smart City Applications - SCA ’18, 2018, pp. 1– 6. doi:10.1145/3286606.3286798.; [34] C. de la república de Colombia, “Plan nacional de desarrollo 2014-2018,” 2015.; [35] Consejo Privado de Competitividad, “Informe nacional de competitividad 2017-2018,” p. 271, 2017, doi: ISSN 2016-1430; [36] P. Generales and C. De Calidad, “Modelo de acreditación CNA,” 2006; [37] L. Enrique and O. Silva, “La calidad de la universidad. Más allá de toda ambigüedad,” pp. 1–14, 1997; [38] A. Roa, “Hacia un modelo de aseguramiento de la calidad en la educación superior en Colombia: estándares básicos y acreditación de excelencia,” Educación superior, calidad y acreditación. Alfa Omega Colombiana, Bogotá, pp. 101–107, 2003; [39] Ministerio de Educación Nacional, “Propuesta metodológica para la distribución de recursos Artículo 87 de la Ley 30 de 1992 Vigencia 2013,” p. 6, 2013.; [40] M. Zapata-Ros, “La universidad inteligente La transición de los LMS a los Sistemas Inteligentes de Aprendizaje en Educación Superior The transition from Learning Management Systems (LMS) to Smart Learning Systems (SLS) in Higher Education,” RED. Revista de Educación a Distancia. Núm, vol. 57, no. 10, pp. 31–1, 2018, doi:10.6018/red/57/10; [41] J. Gómez, T. Jimenez, J. Gumbau, and F. Llorens, Universitic 2017 Análisis de las TIC en las Universidades Españolas. 2017; [42] F. Maciá, Smart University. Hacia una universidad más abierta, Primera. 2017.; [43] J. Gómez, T. Jimenez, J. Gumbau, and F. Llorens, “UNIVERSITIC 2016 Análisis de las TIC en las Universidades Españolas,” p. 150, 2016; Universidades Españolas,” p. 150, 2016. [44] ANUIES, Estado actual de las Tecnologías de la Información y las Comunicaciones en las Instituciones de Educación Superior en México. 2017.; [45] R. Padilla, S. Cadena, R. Enríquez, J. Córdova, and F. Lllorens, Estado de las tecnologías de la información y la comunicación en las universidades ecuatorianas. 2017.; [46] F. L. L. Antonio Fernández Martínez, Universitic Latam 2014, no. 1. 2014. doi:10.1007/s13398-0140173-7.2; [47] J. Valls, R. Villers, and G. Duque, Estado Actual de las Tecnologías de la Información y las Comunicaciones en las Instituciones de Educación Superior en México. 2016; [48] A. Whitmore, A. Agarwal, and L. Da Xu, “The Internet of Things—A survey of topics and trends,” Information Systems Frontiers, vol. 17, no. 2, pp. 261–274, 2015, doi:10.1007/s10796-014-9489-2; [49] N. Gershenfeld, R. Krikorian, and D. Cohen, The internet of things, vol. 291, no. 4. 2004. doi:10.1038/scientificamerican1004-76.; [50] C. (Software B. Williams, “Smart Systems,” Cybertalk, no. April, 2016; [51] O. Flauzac, C. Gonzalez, and F. Nolot, “New security architecture for IoT network,” in Procedia Computer Science, 2015, vol. 52, no. 1, pp. 1028–1033. doi:10.1016/j.procs.2015.05.099; [52] G. Maestre-Góngora, “Revisión de literatura sobre ciudades inteligentes: una perspectiva centrada en las TIC,” Ingeniare, vol. 19, no. 19, pp. 137–149, 2016.; [53] G. Perboli, A. De Marco, F. Perfetti, and M. Marone, “A New Taxonomy of Smart City Projects,” Transportation Research Procedia, vol. 3, pp. 470–478, 2014, doi:10.1016/j.trpro.2014.10; [54] L. Muñoz López, D. Proyecto, P. Antón Martínez, and S. Fernández Ciez, “Summary for Policymakers,” in Climate Change 2013 - The Physical Science Basis, Intergovernmental Panel on Climate Change, Ed. Cambridge: Cambridge University Press, 2015, pp. 1–30. doi:10.1017/CBO9781107415324.004.; [55] Y. Atif, S. S. Mathew, and A. Lakas, “Building a smart campus to support ubiquitous learning,” Journal of Ambient Intelligence and Humanized Computing, vol. 6, no. 2, pp. 223–238, 2015, doi:10.1007/s12652-014-0226-y; [56] E. M. Malatji, “The development of a smart campus - African universities point of view,” in 2017 8th International Renewable Energy Congress (IREC), Mar. 2017, pp. 1–5. doi:10.1109/IREC.2017.7926010; [57] A. Adamko, T. Kadek, and M. Kosa, “Intelligent and adaptive services for a smart campus,” in 5th IEEE Conference on Cognitive Infocommunications (CogInfoCom), Nov. 2014, pp. 505–509. doi:10.1109/CogInfoCom.2014.7020509; [58] Y. Khamayseh, W. Mardini, S. Aljawarneh, and M. B. Yassein, “Integration of Wireless Technologies in Smart University Campus Environment,” International Journal of Information and Communication Technology Education, vol. 11, no. 1, pp. 60–74, Jan. 2015, doi:10.4018/ijicte.2015010104.; [59] M. Rohs and J. Bohn, “Entry points into a smart campus environment - overview of the ETHOC system,” in 23rd International Conference on Distributed Computing Systems Workshops, 2003. Proceedings., 2003, pp. 260–266. doi:10.1109/ICDCSW.2003.1203564.; [60] S. Gul, M. Asif, S. Ahmad, M. Yasir, M. Majid, and M. S. A. Malik, “A Survey on role of Internet of Things in education,” IJCSNS International Journal of Computer Science and Network Security, vol. 17, no. 5, pp. 159–165, 2017; [61] L. Banica, E. Burtescu, and F. Enescu, “The impact of internet-of-things in higher education,” Scientific Bulletin-Economic Sciences, vol. 16, no. 1, pp. 53–59, 2017.; [62] D. Galego, C. Giovannella, and Ó. Mealha, “Determination of the Smartness of a University Campus: The Case Study of Aveiro,” Procedia - Social and Behavioral Sciences, vol. 223, pp. 147–152, 2016, doi:10.1016/j.sbspro.2016.05.336.; [63] R. Wendler, “The maturity of maturity model research: A systematic mapping study,” Information and Software Technology, vol. 54, no. 12, pp. 1317–1339, 2012, doi:10.1016/j.infsof.2012.07.007; [64] J. Fraser and S. Plewes, “Applications of a UX Maturity Model to Influencing HF Best Practices in Technology Centric Companies – Lessons from Edison,” Procedia Manufacturing, vol. 3, pp. 626–631, 2015, doi:10.1016/j.promfg.2015.07.285.; [65] J. Poeppelbuss, B. Niehaves, A. Simons, and J. Becker, “Maturity Models in Information Systems Research: Literature Search and Analysis,” Communications of the Association for Information Systems, vol. 29, no. 1, 2011, doi:10.17705/1cais.02927; [66] L. G. Pee and A. Kankanhalli, “A model of organisational knowledge management maturity based on people, process, and technology,” Journal of Information and Knowledge Management, vol. 8, no. 2, pp. 79–99, 2009, doi:10.1142/S0219649209002270; [67] L. Montañez Carrillo and J. P. Lis Gutiérrez, “A propósito de los modelos de madurez de gestión del conocimiento,” Revista Facultad de Ciencias Económicas, vol. 25, no. 2, pp. 63–81, 2017, doi:10.18359/rfce.3069; [68] F. Y. Hernández, R. I. Laguado, and J. P. Rodriguez, “Maturity analysis in project management in Colombian universities,” in Journal of Physics: Conference Series, 2018, vol. 1126, no. 1. doi:10.1088/1742-6596/1126/1/012055; [69] T. de Bruin, M. Rosemann, R. Freeze, and U. Kulkarni, “Understanding the main phases of developing a maturity assessment model,” 2005; [70] L. Lee‐Kelley, D. A. Blackman, and J. P. Hurst, “An exploration of the relationship between learning organisations and the retention of knowledge workers,” The Learning Organization, vol. 14, no. 3, pp. 204–221, Apr. 2007, doi:10.1108/09696470710739390.; [71] P. Jonsson and C. Wohlin, “An evaluation of k-nearest neighbour imputation using likert data,” in 10th International Symposium on Software Metrics, 2004. Proceedings., pp. 108–118. doi:10.1109/METRIC.2004.1357895; [72] J. Martínez Lozano, “Modelo de madurez en el dominio de los proyectos aplicado a organizaciones de gestión de proyectos en Medellín,” Universidad EAFIT, 2015.; [73] E. I. Pérez-Mergarejo, I. I. Pérez-Vergara, and Y. Rodríguez-Ruíz III, “Modelos de madurez y su idoneidad para aplicar en pequeñas y medianas empresas Maturity models and the suitability of its application in small and medium enterprises,” Ingeniería Industrial, vol. XXXV, no. 2, pp. 1815–5936, 2014, doi:10.1016/j.jag.2015.12.005.; [74] S. Marshall, “Change, technology and higher education: Are universities capable of organisational change?,” Australasian Journal of Educational Technology, vol. 26, no. 8, pp. 179–192, 2010, doi:10.14742/ajet.1018.; [75] C. L. Carvajal and A. M. Moreno, “The Maturity of Usability Maturity Models,” no. February, 2018, doi:10.1007/978-3-319-67383-7.; [76] T. C. Lacerda and C. G. von Wangenheim, “Systematic literature review of usability capability/maturity models,” Computer Standards and Interfaces, vol. 55, pp. 1339–1351, 2018, doi:10.1016/j.csi.2017.06.001; [77] J. Becker, B. Niehaves, J. Pöppelbuß, and A. Simons, “Maturity models in IS research,” 18th European Conference on Information Systems, ECIS 2010, 2010; [78] T. De Bruin, R. Freeze, U. Kaulkarni, and M. Rosemann, “Understanding the main phases of developing a maturity assessment model,” Australasian Chapter of the Association for Information Systems, pp. 8– 19, 2005, doi:10.1108/14637151211225225; [79] J. Becker, R. Knackstedt, and J. Pöppelbuß, “Developing maturity models for it management - A procedure model and its application [Entwicklung von reifegradmodellen für das it-management - VorgehensModell und praktische anwendung],” Business and Information Systems Engineering, vol. 51, no. 3, pp. 249–260, 2009, doi:10.1007/s11576-009-0167-9.; [80] J. Vuorio, J. Okkonen, and J. Viteli, “Enhancing user value of educational technology by three layer assessment,” in Proceedings of the 21st International Academic Mindtrek Conference, Sep. 2017, pp. 220–226. doi:10.1145/3131085.3131105.; [81] P. Martins and J. de S. D. Duarte, “Towards a Maturity Model for Higher Education Institutions,” Journal of Spatial and Organisational Dynamics, vol. 1, no. 1, 2013; [82] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “A gap analysis of Internet-of-Things platforms,” Computer Communications, vol. 89–90, 2016, doi:10.1016/j.comcom.2016.03.015; [83] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125–1142, 2017, doi:10.1109/JIOT.2017.2683200.; [84] M. A. Marotta, C. B. Both, J. Rochol, L. Z. Granville, and L. M. R. Tarouco, “Evaluating management architectures for Internet of Things devices,” IFIP Wireless Days, vol. 2015-Janua, no. January, 2015, doi:10.1109/WD.2014.7020811.; [85] T. Ara, P. Gajkumar Shah, and M. Prabhakar, “Internet of Things Architecture and Applications: A Survey,” Indian Journal of Science and Technology; Volume 9, Issue 45, December 2016, 2016.; [86] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: The internet of things architecture, possible applications and key challenges,” in Proceedings - 10th International Conference on Frontiers of Information Technology, FIT 2012, 2012, pp. 257–260. doi:10.1109/FIT.2012.53.; [87] J. I. Rodríguez Molano, C. E. Montenegro marín, J. M. Cueva Lovelle, J. Molano, C. Marin, and J. Cueva, “Introducción al Internet de las Cosas,” Redes de Ingeniería, vol. 6, no. 7, pp. 53–59, 2015, doi:10.14483/udistrital.jour.redes.2016.1.a04.; [88] T. Cao, X. Chen, R. Doss, J. Zhai, L. J. Wise, and Q. Zhao, “RFID ownership transfer protocol based on cloud,” Computer Networks, vol. 105, pp. 47–59, 2016, doi:10.1016/j.comnet.2016.05.017; [89] F. Maciá-Pérez, J. Berná-Martínez, J. Sánchez-Bernabéu, and I. Lorenzo, Smart university: hacia una universidad más abierta. Marcombo, 2016.; [90] S. Downes and C. E.-A. Campbell, “Smart University Utilising the Concept of the Internet of Things (IOT),” in 2018 UKSim-AMSS 20th International Conference on Computer Modelling and Simulation (UKSim), 2018, pp. 145–150. doi:10.1109/uksim.2018.00037.; [91] M. Zapata-ros, “La universidad inteligente La transición de los LMS a los Sistemas Inteligentes de Aprendizaje en Educación Superior The smart university,” vol. 57, no. 10, pp. 1–43, 2018.; [92] Y. S. Mitrofanova, A. A. Sherstobitova, and O. A. Filippova, Modeling the assessment of definition of a smart university infrastructure development level, vol. 144. Springer Singapore, 2019. doi:10.1007/978-981-13-8260-4_50; [93] S. Park and D. Ko, “Design of the Convergence Security Platform for Smart Universities,” vol. 3, no. 2. pp. 3–7, 2015.; [94] X. Cheng and R. Xue, “Construction of Smart Campus System Based on Cloud Computing,” Proceedings of the 2016 6th International Conference on Applied Science, Engineering and Technology (ICASET), vol. 77, no. Icaset, pp. 187–191, 2016, doi:10.2991/icaset-16.2016.37.; [95] A. Ben Rjab and S. Mellouli, “Smart cities in the era of artificial intelligence and internet of things,” no. 1, pp. 1–10, 2018, doi:10.1145/3209281.3209380; [96] S. Alqassemi, Y. K. Ever, and A. V. Rajan, “Maturity Level of Cloud Computing at HCT,” ITT 2017 - Information Technology Trends: Exploring Current Trends in Information Technology, Conference Proceedings, vol. 2018-Janua, no. Itt, pp. 5–8, 2018, doi:10.1109/CTIT.2017.8259558.; [97] C. N. Hung, M. D. Hwang, and Y. C. Liu, “Building a Maturity Model of Information Security Governance for Technological Colleges and Universities in Taiwan,” Applied Mechanics and Materials, vol. 284–287, pp. 3657–3661, 2013, doi:10.4028/www.scientific.net/amm.284-287.3657; [98] B. Sánchez-Torres, J. A. Rodríguez-Rodríguez, D. Rico-Bautista, and C. D. Guerrero, “Smart Campus: Trends in cybersecurity and future development,” Revista Facultad de Ingeniería, vol. 27, no. 47, pp. 93–101, Jan. 2018, doi:10.19053/01211129.v27.n47.2018.7807; [99] D. Rico-Bautista, Y. Medina-Cárdenas, and C. D. Guerrero, “Smart University: A Review from the Educational and Technological View of Internet of Things,” in International Conference on Information Technology and Systems, ICITS 2019, vol. 918, M. Paredes, C. Ferras, and A. Rocha, Eds. Systems and Informatics Department, Universidad Francisco de Paula Santander Ocaña, Algodonal Campus Vía Acolsure, Ocaña, 546551, Colombia: Springer Verlag, 2019, pp. 427–440. doi:10.1007/978-3-030-11890-7_42.; [100] D. Rico-Bautista, G. P. Maestre-Góngora, and C. D. Guerrero, “Smart university: Characterization of the current situation of intelligent technologies, based on two case studies [Caracterización de la situación actual de las tecnologías inteligentes para una universidad inteligente en Colombia/latinoamérica],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E27, pp. 484–501, 2020; [101] M. Ali and A. Majeed, “How Internet-of-Things ( IoT ) Making the University Campuses Smart ?,” pp. 646–648, 2018, doi:10.1109/CCWC.2018.8301774; [102] S. Hipwell, “Developing smart campuses #x2014; A working model,” 2014 International Conference on Intelligent Green Building and Smart Grid (IGBSG), pp. 1–6, 2014, doi:10.1109/IGBSG.2014.6835169.; [103] I. Staskeviciute and B. Neverauskas, “The Intelligent University’s Conceptual Model,” Inzinerine Ekonomika-Engineering Economics, no. 4, pp. 53–58, 2008; [104] J. Green, “The Internet of Things Reference Model,” Internet of Things World Forum, pp. 1–12, 2014; [105] S. Li, L. Da Xu, and S. Zhao, “The internet of things: a survey,” Information Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015, doi:10.1007/s10796-014-9492-7; [106] D. Airehrour, J. Gutierrez, and S. K. Ray, “Secure routing for internet of things: A survey,” Journal of Network and Computer Applications, vol. 66, 2016, doi:10.1016/j.jnca.2016.03.006; [107] Dewar. Rico-Bautista, Y. Medina-Cárdenas, and L. M. Santos Jaimes, “Ipsec de Ipv6 en la universidad de Pamplona,” Scientia Et Technica, vol. 2, no. 39, pp. 320–325, 2008, doi:10.22517/23447214.3239; [108] A. J. Jara, P. Moreno-Sanchez, A. F. Skarmeta, S. Varakliotis, and P. Kirstein, “IPv6 addressing proxy: Mapping native addressing from legacy technologies and devices to the internet of things (IPv6),” Sensors (Switzerland), vol. 13, no. 5, pp. 6687–6712, 2013, doi:10.3390/s130506687; [109] L. M. Santos and D. Rico-Bautista, “IPv6 en la Universidad de Pamplona: Estado del arte,” Scientia Et Technica, vol. XIII, pp. 415–420, 2007.; [110] T. Le Vinh, S. Bouzefrane, J. M. Farinone, A. Attar, and B. P. Kennedy, “Middleware to integrate mobile devices, sensors and cloud computing,” Procedia Computer Science, vol. 52, no. 1, pp. 234– 243, 2015, doi:10.1016/j.procs.2015.05.061.; [111] A. Kotsev, F. Pantisano, S. Schade, and S. Jirka, “Architecture of a service-enabled sensing platform for the environment,” Sensors (Switzerland), vol. 15, no. 2, pp. 4470–4495, 2015, doi:10.3390/s150204470; [112] M. Taneja and A. Davy, “Resource Aware Placement of Data Analytics Platform in Fog Computing,” Procedia Computer Science, vol. 97, pp. 153–156, 2016, doi:10.1016/j.procs.2016.08.295; [113] M. M. Rathore, A. Ahmad, and A. Paul, “Big Data and Internet of Things,” in Proceedings of the 2015 International Conference on Big Data Applications and Services - BigDAS ’15, 2015, vol. 20-23-Octo, pp. 58–65. doi:10.1145/2837060.2837067.; [114] M. Quwaider, M. Al-Alyyoub, and Y. Jararweh, “Cloud Support Data Management Infrastructure for Upcoming Smart Cities,” Procedia Computer Science, vol. 83, pp. 1232–1237, 2016, doi:10.1016/j.procs.2016.04.257.; [115] A. S. Yeole and D. R. Kalbande, “Use of Internet of Things (IoT) in Healthcare,” in Proceedings of the ACM Symposium on Women in Research 2016 - WIR ’16, 2016, vol. 21-22-Marc, pp. 71–76. doi:10.1145/2909067.2909079.; [116] S. V. Zanjal and G. R. Talmale, “Medicine Reminder and Monitoring System for Secure Health Using IOT,” in Physics Procedia, 2016, vol. 78, pp. 471–476. doi:10.1016/j.procs.2016.02.090; [117] D. Rico-Bautista, J. Rueda-Rueda, and S. Alvernia Acevedo, “Las TIC como agente social Una apuesta de la universidad Francisco de Paula Santander Ocaña,” in Simbiosis del aprendizaje con las tecnologías: experiencias innovadoras en el ámbito hispano, 2016, pp. 329–342.; [118] H. Aldowah, S. Ul Rehman, S. Ghazal, and I. Naufal Umar, “Internet of Things in Higher Education: A Study on Future Learning,” Journal of Physics: Conference Series, vol. 892, p. 012017, Sep. 2017, doi:10.1088/1742-6596/892/1/012017; [119] M. Coccoli, P. Maresca, and L. Stanganelli, “The role of big data and cognitive computing in the learning process,” Journal of Visual Languages and Computing, vol. 38, pp. 97–103, 2017, doi:10.1016/j.jvlc.2016.03.002; [120] J. Lobo and Dewar. Rico-Bautista, “Implementación de la seguridad del protocolo de internet versión 6,” Gerencia tecnológica informática, vol. 11, no. 29, pp. 35–46, 2012.; [121] B. Sánchez-Torres, J. A. Rodríguez-Rodríguez, D. W. Rico-Bautista, and C. D. Guerrero, “Smart Campus: Trends in cybersecurity and future development,” Revista Facultad de Ingeniería, vol. 27, no. 47, pp. 93–101, Jan. 2018, doi:10.19053/01211129.v27.n47.2018.7807; [122] Katz. Matías David, “Redes y seguridad,” Alfaomega grupo editor, no. Mexico, p. 87, 2013; [123] B. Aziz, “A formal model and analysis of an IoT protocol,” Ad Hoc Networks, vol. 36, pp. 49–57, Jan. 2016, doi:10.1016/J.ADHOC.2015.05.013; [124] N. Xiong, R. W. Liu, M. Liang, D. Wu, Z. Liu, and H. Wu, “Effective alternating direction optimization methods for sparsity-constrained blind image deblurring,” Sensors (Switzerland), vol. 17, no. 1, 2017, doi:10.3390/s17010174; [125] W. Mujun, “Smart Campus-Based Study on Optimization Model for the Computer Information Processing Technology in Universities and Colleges,” Revista de la Facultad de Ingeniería, vol. 32, no. 15, pp. 524–529, 2017; [126] M. Stočes, J. Vaněk, J. Masner, and J. Pavlík, “Internet of Things (IoT) in Agriculture - Selected Aspects,” Agris on-line Papers in Economics and Informatics, vol. VIII, no. 1, pp. 83–88, 2016, doi:10.7160/aol.2016.080108.; [127] K. Taylor et al., “Farming the Web of Things,” IEEE Intelligent Systems, vol. 28, no. 6, pp. 12–19, 2013, doi:10.1109/MIS.2013.102; [128] T. Arsan, “Smart Systems: From design to implementation of embedded Smart Systems,” in 2016 HONET-ICT, 2016, pp. 59–64. doi:10.1109/HONET.2016.7753420; [129] G. F. Hurlburt, J. Voas, and K. W. Miller, “The Internet of Things: A Reality Check,” IT Professional, vol. 14, no. June, pp. 56–59, 2012, doi:10.1109/MITP.2012.60.; [130] M. Weyrich and C. Ebert, “Reference architectures for the internet of things,” IEEE Software, vol. 33, no. 1, pp. 112–116, 2016, doi:10.1109/MS.2016.20.; [131] K. Dar, A. Taherkordi, H. Baraki, F. Eliassen, and K. Geihs, “A resource oriented integration architecture for the Internet of Things: A business process perspective,” Pervasive and Mobile Computing, vol. 20. pp. 145–159, 2015. doi:10.1016/j.pmcj.2014.11.0; [132] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Communications Surveys and Tutorials, vol. 17, no. 4, 2015, doi:10.1109/COMST.2015.2444095.; [133] D. Gagliardi, L. Schina, M. L. Sarcinella, G. Mangialardi, F. Niglia, and A. Corallo, “Information and communication technologies and public participation: interactive maps and value added for citizens,” Government Information Quarterly, vol. 34, no. 1, pp. 153–166, 2017, doi:10.1016/j.giq.2016.09.002.; [134] L. Tan, Lu Tan, and Neng Wang, “Future internet: The Internet of Things,” 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE), pp. V5-376-V5-380, 2010, doi:10.1109/ICACTE.2010.5579543; [135] European Technology Platform on Smart Systems Integration, Internet of Things in 2020. 2008. doi:10.1007/978-3-319-49736-5_2; [136] I. F. Akyildiz, S. Nie, S. C. Lin, and M. Chandrasekaran, “5G roadmap: 10 key enabling technologies,” Computer Networks, vol. 106, pp. 17–48, 2016, doi:10.1016/j.comnet.2016.06.010; [137] L. Atzori, A. Iera, and G. Morabito, “Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm,” Ad Hoc Networks, vol. 56, pp. 122–140, 2017, doi:10.1016/j.adhoc.2016.12.004; [138] M. Coccoli, A. Guercio, P. Maresca, and L. Stanganelli, “Smarter universities: A vision for the fast changing digital era,” Journal of Visual Languages & Computing, vol. 25, no. 6, pp. 1003–1011, Dec. 2014, doi:10.1016/j.jvlc.2014.09.007; [139] C. Heinemann and V. L. Uskov, Smart Universities, vol. 70. 2018. doi:10.1007/978-3-319-59454-5.; [140] M. Bertolli, G. Roark, S. Urrutia, and F. Chiodi, “Revisión de modelos de madurez en la medición del desempeño,” INGE CUC, vol. 13, no. 1, pp. 70–83, Jan. 2017, doi:10.17981/ingecuc.13.1.2017.07; [141] A. Acevedo, “Modelo de madurez para la transformación digital,” 2018.; [142] F. W. Van Dijk, F. Willem, J. Van Hillegersberg, and M. Daneva, “Van Dijk - Cloud maturity models,” 2017.; [143] D. Duarte and P. V. Martins, “A maturity model for higher education institutions,” CEUR Workshop Proceedings, vol. 731, pp. 25–45, 2011.; [144] F. W. Van Dijk, F. Willem, J. Van Hillegersberg, and M. Daneva, “Van Dijk - Cloud maturity models,” 2017.; [145] B. Henrik, “EVALUATION OF BIG DATA MATURITY MODELS - A BENCH- MARKING STUDY TO SUPPORT BIG DATA MATURITY AS- SESSMENT IN ORGANIZATIONS,” 2015; [146] M. Al-Ruithe and E. Benkhelifa, “Cloud data governance maturity model,” in Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing, Mar. 2017, pp. 1– 10. doi:10.1145/3018896.3036394; [147] I. Mitchell and S. Isherwood, Cloud adoption The definitive guide to a business technology revolution, Fujitsu Se. 2014. doi:10.1145/2554850.2555067; [148] B. White, H. Longenecker, P. Leidig, J. Reynolds, and D. Yarbrough, “Applicability of CMMI to the IS curriculum: a panel discussion,” Proceedings of the Information Systems Education Conference 2003, vol. 20, pp. 2–6, 2003; [149] C. Neuhauser, “A maturity model: Does it provide a path for online course design?,” Journal of Interactive Online Learning, vol. 3, no. 1, pp. 1–17, 2004; [150] I. Keshta, “A model for defining project lifecycle phases: Implementation of CMMI level 2 specific practice,” Journal of King Saud University - Computer and Information Sciences, Nov. 2019, doi:10.1016/j.jksuci.2019.10.013.; [151] E. Thompson et al., “Towards a learning process maturity model,” PhD Workshop 2004, vol. 9/2004, no. definition 3, pp. 8–16, 2004.; [152] S. Mattoon, B. Hensle, and J. Baty, “Cloud Computing Maturity Model Mattoon, S., Hensle, B., & Baty, J. (2011). Cloud Computing Maturity Model Guiding Success with Cloud Capabilities. Computing, (December), 13.Guiding Success with Cloud Capabilities,” Computing, no. December, p. 13, 2011.; [153] P. J. Schmidt, “Proposing a Cloud Computing Capability Maturity Model Proposing a Cloud Computing Capability Maturity Model,” 2015; [154] B. Henrik, “EVALUATION OF BIG DATA MATURITY MODELS - A BENCH- MARKING STUDY TO SUPPORT BIG DATA MATURITY AS- SESSMENT IN ORGANIZATIONS,” 2; [155] C. J. Galeano-Barrera, D. Bellón-Monsalve, S. A. Zabala-Vargas, E. Romero-Riaño, and V. uro-N. Duro-Novoa, “Identificación de los pilares que direccionan a una institución universitaria hacia un smart-campus,” Revista De Investigación, Desarrollo E Innovación, vol. 9, no. 1, pp. 127–145, 2018, doi:10.19053/20278306.v9.n1.2018.8511; [156] M. Coccoli, P. Maresca, L. Stanganelli, and A. Guercio, “An experience of collaboration using a PaaS for the smarter university model,” Journal of Visual Languages and Computing, vol. 31, pp. 275–282, 2015, doi:10.1016/j.jvlc.2015.10.014; [157] L. L. Ching, N. H. A. H. Malim, M. H. Husin, and M. M. Singh, “ICC - Smart university: reservation system with contactless technology,” in Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing - ICC ’17, 2017, p. 9. doi:10.1145/3018896.3018903; [158] W. Filho, J. B. Andrade Guerra, M. Mifsud, and R. Pretorius, Universities as Living Labs for sustainable development: A global perspective, vol. 26. 2017.; [159] O. Akhrif, Y. bouzekri el idrissi, and N. Hmina, “Enabling Smart Collaboration with Smart University Services,” 2019. doi:10.1145/3331453.3361311.; [160] O. Akhrif, C. Benfares, Y. El Bouzekri El Idrissi, and N. Hmina, “Collaborative learning services in the smart university environment,” ACM International Conference Proceeding Series, no. 3, 2019, doi:10.1145/3368756.3369020; [161] A. El Sayed, Š. Suad, Ć. Fuad, and A. Novali, New Technologies, Development and Application II, vol. 76. Cham: Springer International Publishing, 2020. doi:10.1007/978-3-030-18072-0.; [162] P. Pornphol and T. Tongkeo, “Transformation from a traditional university into a smart university,” in Proceedings of the 6th International Conference on Information and Education Technology, Jan. 2018, pp. 144–148. doi:10.1145/3178158.3178167; [163] O. J. Adeyemi, S. I. Popoola, A. A. Atayero, D. G. Afolayan, M. Ariyo, and E. Adetiba, “Exploration of daily Internet data traffic generated in a smart university campus,” Data in Brief, vol. 20, pp. 30–52, Oct. 2018, doi:10.1016/j.dib.2018.07.039; [164] M. V. López Cabrera, E. Hernandez-Rangel, G. P. Mejía Mejía, and J. L. Cerano Fuentes, “Factors that enable the adoption of educational technology in medical schools,” Educacion Medica, vol. 20, no. xx, pp. 3–9, 2019, doi:10.1016/j.edumed.2017.07.006; [165] J. Lin, H. Pu, Y. Li, and J. Lian, “Intelligent Recommendation System for Course Selection in Smart Education,” Procedia Computer Science, vol. 129, pp. 449–453, 2018, doi:10.1016/j.procs.2018.03.023.; [166] R. Bajaj and V. Sharma, “Smart Education with artificial intelligence based determination of learning styles,” Procedia Computer Science, vol. 132, pp. 834–842, 2018, doi:10.1016/j.procs.2018.05.095; [167] S. El Janati, A. Maach, and D. El Ghanami, “SMART education framework for adaptation content presentation,” Procedia Computer Science, vol. 127, pp. 436–443, 2018, doi:10.1016/j.procs.2018.01.141.; [168] P. Fraser, J. Moultrie, and M. Gregory, “The_use_of_maturity_models_grids_as_a_to.” Cambridge, Reino Unido, 2003. doi:10.1109 / IEMC.2002.1038431.; [169] C. M. Christensen, “The Innovator’s Dilemma,” Business, 1997, doi:10.1515/9783110215519.82; [170] C. M. Christensen, “The ongoing process of building a theory of disruption,” Journal of Product Innovation Management. 2006. doi:10.1111/j.1540-5885.2005.00180.x.; [171] M. Kuniavsky, “User Experience and HCI Section 1 : the boundaries of user experience,” HCI Handbook, pp. 1–37; [172] S. S. Rautaray and A. Agrawal, “Vision based hand gesture recognition for human computer interaction: a survey,” Artificial Intelligence Review, vol. 43, no. 1, pp. 1–54, 2012, doi:10.1007/s10462-012-93569.; [173] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and P. Tran-gia, “A Survey on Quality of Experience of HTTP Adaptive Streaming,” Ieee Communication Surveys & Tutorials, vol. 17, no. 1, pp. 469–492, 2015, doi:10.1109/COMST.2014.236094; [174] M. Turk, “Multimodal interaction: A review,” Pattern Recognition Letters, vol. 36, no. 1, pp. 189–195, 2014, doi:10.1016/j.patrec.2013.07.003; [175] H.-S. Yeo, B.-G. Lee, and H. Lim, “Hand tracking and gesture recognition system for human-computer interaction using low-cost hardware,” Multimedia Tools and Applications, vol. 74, no. 8, pp. 2687– 2715, Sep. 2015, doi:10.1007/s11042-013-1501-1; [176] K. Seaborn and D. I. Fels, “Gamification in theory and action: A survey,” International Journal of Human Computer Studies, vol. 74, pp. 14–31, 2015, doi:10.1016/j.ijhcs.2014.09.006.; [177] Y. Mengüç et al., “Wearable soft sensing suit for human gait measurement,” International Journal of Robotics Research, vol. 33, no. 14, pp. 1748–1764, 2014, doi:10.1177/0278364914543793; [178] D. González-Ortega, F. J. Díaz-Pernas, M. Martínez-Zarzuela, and M. Antón-Rodríguez, “A Kinectbased system for cognitive rehabilitation exercises monitoring,” Computer Methods and Programs in Biomedicine, vol. 113, no. 2, pp. 620–631, 2014, doi:10.1016/j.cmpb.2013.10.014; [179] S. Herath, M. Harandi, and F. Porikli, “Going deeper into action recognition: A survey,” Image and Vision Computing, vol. 60, pp. 4–21, Sep. 2017, doi:10.1016/j.imavis.2017.01.010; [180] C. Lallemand, G. Gronier, and V. Koenig, “User experience: A concept without consensus? Exploring practitioners’ perspectives through an international survey,” Computers in Human Behavior, vol. 43, pp. 35–48, Sep. 2015, doi:10.1016/j.chb.2014.10.048.; [181] P. K. Pisharady and M. Saerbeck, “Recent methods and databases in vision-based hand gesture recognition: A review,” Computer Vision and Image Understanding, vol. 141, pp. 152–165, Sep. 2015, doi:10.1016/j.cviu.2015.08.004.; [182] H. Cheng, L. Yang, and Z. Liu, “A Survey on 3D Hand Gesture Recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. PP, no. 99, p. 1, 2015, doi:10.1109/TCSVT.2015.2469551.; [183] P. Tsarouchi, S. Makris, and G. Chryssolouris, “Human – robot interaction review and challenges on task planning and programming,” International Journal of Computer Integrated Manufacturing, vol. 29, no. 8, pp. 916–931, Sep. 2016, doi:10.1080/0951192X.2015.1130251.; [184] J. Lorés and T. Granollers, “Ingeniería de la Usabilidad y de la Accesibilidad aplicada al diseño y desarrollo de sitios web,” no. May, pp. 3–7, 2004.; [185] J. Mariano and G. Romano, “Introducción a la IPO,” Metro, 2008; [186] T. Granollers, “Usability Evaluation with Heuristics . New Proposal from Integrating Two Trusted Sources 2 Combining Common Heuristic Sets,” pp. 1–16, 2018.; [187] L. Muñoz López, P. Antón Martínez, and S. Fernández Ciez, “Estudio y Guía metodológica sobre Ciudades Inteligentes,” 2015; [188] E. Ontiveros, D. Vizcaíno, and V. López Sabaer, Las ciudades del futuro : inteligentes , digitales y sostenibles futuro : inteligentes , digitales y sostenibles. 2016.; [189] E. Del and D. Une, “Norma Española Accesibilidad Universal en las Ciudades Inteligentes,” 2017.; [190] O. Iberoamericano, “Manual Iberoamericano de Indicadores de Educación Superior: Manual de Lima,” p. 88 p., 2016; [191] Ministerio de Modernización Innovación y Tecnología, “La Importancia de un Modelo de Planificación Estratégica para el Desarrollo de Ciudades Inteligentes,” p. 32, 2017; [192] P. Fernández, “Análisis de los factores de influencia en la adopción de herramientas colaborativas basadas en software social. Aplicación a entornos empresariales,” Universidad Politécnica de Madrid, 2015; [193] D. W. Rico-Bautista, “Conceptual framework for smart university,” Journal of Physics: Conference Series, vol. 1409, p. 012009, Nov. 2019, doi:10.1088/1742-6596/1409/1/012009.; [194] J. A. Parra Valencia, C. D. Guerrero, and D. Rico-Bautista, “IOT: una aproximación desde ciudad inteligente a universidad inteligente,” Revista Ingenio, vol. 13, no. 1, pp. 9–20, Jun. 2017, doi:10.22463/2011642X.2128.; [195] F. H. Cerdeira Ferreira and R. Mendes de Araujo, “Campus Inteligentes: Conceitos, aplicações, tecnologias e desafios.,” Relatórios Técnicos do DIA/UNIRIO, vol. 11, no. 1, pp. 4–19, 2018.; [196] D. Rico-Bautista, C. D. Guerrero, Y. Medina-Cárdenas, and A. García-Barreto, “Analysis of the potential value of technology: Case of universidad francisco de paula santander O; [197] D. Rico-Bautista, G. P. Maestre-Góngora, and C. D. Guerrero, “Caracterización de la situación actual de las tecnologías inteligentes para una Universidad inteligente en Colombia/Latinoamérica,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E27, pp. 484–501, 2020.; [198] D. Rico-Bautista et al., “Smart University: Strategic map since the adoption of technology,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E28, pp. 711–724, 2020; [199] D. Rico-Bautista et al., “Smart University: Key Factors for a Cloud Computing Adoption Model,” Lecture Notes in Networks and Systems, vol. 334, pp. 85–93, 2022, doi:10.1007/978-981-16-6369-7_8; [200] M. V. López Cabrera, E. Hernandez-Rangel, G. P. Mejía Mejía, and J. L. Cerano Fuentes, “Factores que facilitan la adopción de tecnología educativa en escuelas de medicina,” Educación Médica, vol. 20, pp. 3–9, Mar. 2019, doi:10.1016/j.edumed.2017.07.006; [202] A. V. Martín García, Á. García del Dujo, and J. M. Muñoz Rodríguez, “Factores determinantes de adopción de blended learning en educación superior. Adaptación del modelo UTAUT*,” Educación XX1, vol. 17, no. 2, May 2014, doi:10.5944/educxx1.17.2.11489; [203] M. Luzardo Briceño, B. E. Sandia Saldivia, A. S. Aguilar Jiménez, M. Macias Martínez, and J. Herrera Díaz, “Factores que influyen en la adopción de las Tecnologías de Información y Comunicación por parte de las universidades. Dimensión Enseñanza-Aprendizaje,” Educere, vol. 21, no. 68, pp. 143–153, 2017; [204] M. Frasquet Deltoro, A. Mollá Descals, and M. Eugenia Ruiz Molina, “Factores determinantes y consecuencias de la adopción del comercio electrónico B2C:una comparativa internacional,” Estudios Gerenciales, vol. 28, no. 123, pp. 101–120, Apr. 2012, doi:10.1016/S0123-5923(12)70207-3.; [205] D. Rico-Bautista et al., “Key Technology Adoption Indicators for Smart Universities: A Preliminary Proposal,” Lecture Notes in Networks and Systems, vol. 333, pp. 651–663, 2022, doi:10.1007/978-98116-6309-3_61.; [206] P. Hernández, R., Fernández, C. y Baptista, Libro Metodología de la Investigación 6ta edición SAMPIERI (PDF) %7C Metodologiaecs. 2014; [207] S. M. Takey and M. M. Carvalho, “Fuzzy front end of systemic innovations: A conceptual framework based on a systematic literature review,” Technological Forecasting and Social Change, vol. 111, pp. 97–109, Oct. 2016, doi:10.1016/j.techfore.2016.06.011; [208] P. Martins and J. de S. D. Duarte, “A Maturity Model for Higher Education Institutions,” Journal of Spatial and Organisational Dynamics , vol. 1, no. 1, 2013.; [209] Z. Liu, Y. Yin, W. Liu, and M. Dunford, “Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis,” Scientometrics, 2015, doi:10.1007/s11192-0141517-y.; [210] J. A. Wise, “The ecological approach to text visualization,” Journal of the American Society for Information Science, 1999, doi:10.1002/(SICI)1097-4571(1999)50:133.0.CO;2-4.; [211] J. E. Meissner, “VantagePoint,” Nursing, 1981, doi:10.1097/00152193-198101000-00010.; [212] L. Leydesdorff and T. Schank, “Dynamic animations of journal maps: Indicators of structural changes and interdisciplinary developments,” Journal of the American Society for Information Science and Technology, 2008, doi:10.1002/asi.20891; [213] “Science of Science (Sci2) Tool,” in Encyclopedia of Social Network Analysis and Mining, 2018. doi:10.1007/978-1-4939-7131-2_101025.; [214] N. J. Van Eck and L. Waltman, “VOSviewer: A computer program for bibliometric mapping,” 2009; [215] “Network Workbench Tool,” in Encyclopedia of Social Network Analysis and Mining, 2014. doi:10.1007/978-1-4614-6170-8_110035; [216] B. Vargas-Quesada and F. de Moya Aragón, Visualizing the structure of science. New York, NY, 2007.; [217] L. A. R. Hoeffner and R. P. Smiraglia, “Visualizing domain coherence: Social informatics as a case study,” 2014. doi:10.7152/acro.v23i1.14261.; [218] K. Fujita, Y. Kajikawa, J. Mori, and I. Sakata, “Detecting research fronts using different types of weighted citation networks,” Journal of Engineering and Technology Management - JET-M, vol. 32, pp. 129–146, 2014, doi:10.1016/j.jengtecman.2013.07.002.; [219] A. Angelakis and K. Galanakis, “A science-based sector in the making: the formation of the biotechnology sector in two regions,” Regional Studies, 2017, doi:10.1080/00343404.2016.1215601.; [220] A. Gaur, B. Scotney, G. Parr, and S. McClean, “Smart city architecture and its applications based on IoT,” in Procedia Computer Science, 2015, vol. 52, no. 1. doi:10.1016/j.procs.2015.05.122.; [221] R. Díaz-Díaz, L. Muñoz, and D. Pérez-González, “Business model analysis of public services operating in the smart city ecosystem: The case of SmartSantander,” Future Generation Computer Systems, 2017, doi:10.1016/j.future.2017.01.032.; [222] A. Sampri, A. Mavragani, and K. P. Tsagarakis, “Evaluating Google Trends as a Tool for Integrating the ‘Smart Health’ Concept in the Smart Cities’ Governance in USA,” Procedia Engineering, vol. 162, pp. 585–592, 2016, doi:10.1016/j.proeng.2016.11.104.; [223] U. Rosati and S. Conti, “What is a Smart City Project? An Urban Model or A Corporate Business Plan?,” Procedia - Social and Behavioral Sciences, vol. 223, pp. 968–973, 2016, doi:10.1016/j.sbspro.2016.05.332.; [224] C. M. et. Al, “Mapping Smart Cities in the EU,” European Parliament, pp. 23–49, 2015.; [225] G. P. Maestre Góngora, “Revisión de literatura sobre ciudades inteligentes: una perspectiva centrada en las TIC,” INGENIARE, no. 19, p. 137, Jul. 2015, doi:10.18041/1909-2458/ingeniare.19.531; [226] X. Nie, “Constructing Smart Campus Based on the Cloud Computing Platform and the Internet of Things,” 2013. doi:10.2991/iccsee.2013.395.; [227] M. Cata, “Smart university, a new concept in the Internet of Things,” in 2015 14th RoEduNet International Conference - Networking in Education and Research (RoEduNet NER), Sep. 2015, pp. 195–197. doi:10.1109/RoEduNet.2015.7311993; [228] V. A. F. Almeida, D. Doneda, and M. Monteiro, “Governance Challenges for the Internet of Things,” IEEE Internet Computing, vol. 19, no. 4, pp. 56–59, Jul. 2015, doi:10.1109/MIC.2015.86; [229] S. Thiel, J. Mitchell, and J. Williams, “Coordination or Collision? The Intersection of Diabetes Care, Cybersecurity, and Cloud-Based Computing,” Journal of Diabetes Science and Technology, vol. 11, no. 2, pp. 195–197, Mar. 2017, doi:10.1177/1932296816676189.; [230] E. Borgia, “The Internet of Things vision: Key features, applications and open issues,” Computer Communications, vol. 54, pp. 1–31, Dec. 2014, doi:10.1016/j.comcom.2014.09.008.; [231] A. Jara, P. Moreno-Sanchez, A. Skarmeta, S. Varakliotis, and P. Kirstein, “IPv6 Addressing Proxy: Mapping Native Addressing from Legacy Technologies and Devices to the Internet of Things (IPv6),” Sensors, vol. 13, no. 5, pp. 6687–6712, May 2013, doi:10.3390/s130506687.; [232] E. Chinkes, Las Tecnologías de la Información y la Comunicación Potenciando la Universidad del Siglo XXI: Claves para una política TIC universitaria, vol. 1. 2015. doi:10.1017/CBO9781107415324.004; [233] E. Chinkes, Potenciando la Universidad del Siglo XXI: Soluciones TIC para pensar la universidad del futuro. 2017; [234] RedCLARA, ACTAS TICAL 2016. 2016; [235] RedCLARA, ACTAS TICAL 2017. 2017; [236] RedCLARA, ACTAS TICAL 2018. 2018.; [237] RedCLARA, ACTAS TICAL 2019. 2019; [238] O. Akhri, Y. El Bouzekri El Idrissi, and N. Hmina, “Enabling smart collaboration with smart university services,” in ACM International Conference Proceeding Series, 2019. doi:10.1145/3331453.3361311.; [239] D. Rico-Bautista et al., “Smart university: Strategic map since the adoption of technology [Universidad inteligente: Mapa estratégico desde la adopción de tecnología],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E28, pp. 711–724, 2020; [240] M. de L. Sigg, J. L. V. Cisneros, S. V. Reyes, and J. A. R. Salcedo, “Explicación de la Adopción de Tecnologías de Información en Pequeñas Empresas Usando el Modelo del Usuario Perezoso: un Caso de Estudio,” Iberian Journal of Information Systems and Technologies, no. e1, pp. 91–104, Mar. 2014, doi:10.4304/risti.e1.91-104.; [241] L. O. S. A. Erasmus et al., “Adopción de las tecnologías infocomunicacionales (TI) en Docentes: actualizando enfoques.,” Revista Electrónica Teoría de la Educación. Educación y Cultura en La Sociedad de la Información., vol. 10, pp. 310–337, 2009; [242] P. Brous, M. Janssen, and P. Herder, “The dual effects of the Internet of Things (IoT): A systematic review of the benefits and risks of IoT adoption by organizations,” International Journal of Information Management, vol. 51, p. 101952, Apr. 2020, doi:10.1016/j.ijinfomgt.2019.05.008.; [243] J. Martín et al., “Review of IoT applications in agro-industrial and environmental fields,” vol. 142, no. 118, pp. 283–297, 2017, doi:10.1016/j.compag.2017.09.015.; [244] A. Abushakra and D. Nikbin, Knowledge Management in Organizations, vol. 1027. Cham: Springer International Publishing, 2019. doi:10.1007/978-3-030-21451-7; [245] D. Mourtzis, E. Vlachou, and N. Milas, “Industrial Big Data as a Result of IoT Adoption in Manufacturing,” Procedia CIRP, vol. 55, pp. 290–295, 2016, doi:10.1016/j.procir.2016.07.038.; [246] I. C. Ehie and M. A. Chilton, “Understanding the influence of IT/OT Convergence on the adoption of Internet of Things (IoT) in manufacturing organizations: An empirical investigation,” Computers in Industry, vol. 115, p. 103166, Feb. 2020, doi:10.1016/j.compind.2019.103166.; [247] L. Amodu, O. Odiboh, S. Usaini, D. Yartey, and T. Ekanem, “Data on security implications of the adoption of Internet of Things by public relations professionals,” Data in Brief, vol. 27, 2019, doi:10.1016/j.dib.2019.104663.; [248] H. Shaikh, M. S. Khan, Z. A. Mahar, M. Anwar, A. Raza, and A. Shah, “A Conceptual Framework for Determining Acceptance of Internet of Things (IoT) in Higher Education Institutions of Pakistan,” in 2019 International Conference on Information Science and Communication Technology (ICISCT), Mar. 2019, pp. 1–5. doi:10.1109/CISCT.2019.8777431.; [249] A. Abushakra and D. Nikbin, Knowledge Management in Organizations, vol. 1027. Cham: Springer International Publishing, 2019. doi:10.1007/978-3-030-21451-7.; [250] M. Mital, V. Chang, P. Choudhary, A. Papa, and A. K. Pani, “Adoption of Internet of Things in India: A test of competing models using a structured equation modeling approach,” Technological Forecasting and Social Change, vol. 136, pp. 339–346, 2018, doi:10.1016/j.techfore.2017.03.001.; [251] S. Lu and Y. P. Singh, “Scie enceDir rect ScienceDirect Analyz zing chal llenges t o Interne et of Thi ings ( IoT T ) adopt tion and ion : An Indian context c diffusi,” 2018, doi:10.1016/j.procs.2017.12.094; [252] Y. Kao, K. Nawata, and C. Huang, “An Exploration and Confirmation of the Factors Influencing Adoption of IoT-Based Wearable Fitness Trackers,” 2019.; [253] Y.-S. Kao, K. Nawata, and C.-Y. Huang, “An Exploration and Confirmation of the Factors Influencing Adoption of IoT-Based Wearable Fitness Trackers,” International Journal of Environmental Research and Public Health, vol. 16, no. 18, p. 3227, Sep. 2019, doi:10.3390/ijerph16183227.; [254] V. Venkatesh, J. Thong, and X. Xu, “Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead,” Journal of the Association for Information Systems, vol. 17, no. 5, pp. 328–376, May 2016, doi:10.17705/1jais.00428; [255] E. González Arza, “Validación de la Teoría Unificada de Aceptación y Uso de la Tecnología UTAUT en castellano en el ámbito de las consultas externas de la Red de Salud Mental de Bizkaia,” Universitat Oberta de Catalunya, 2013.; [256] T. Kr. Aune, H. Gjestland, J. Ø. Haagensen, B. Kittilsen, J. I. Skar, and H. Westengen, “Magnesium Alloys,” in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2003, pp. 1–19. doi:10.1002/14356007.a15_581; [257] P. Palos-Sanchez, A. Reyes-Menendez, and J. R. Saura, “Models of adoption of information technology and cloud computing in organizations,” Informacion Tecnologica, vol. 30, no. 3, pp. 3–12, 2019, doi:10.4067/S0718-07642019000300003; [258] P. Pinheiro, M. Aparicio, and C. Costa, “Adoption of cloud computing systems,” in Proceedings of the International Conference on Information Systems and Design of Communication - ISDOC ’14, 2014, pp. 127–131. doi:10.1145/2618168.2618188; [259] H. Vasudavan, K. Shanmugam, and H. A. Ahmada, “User Perceptions in Adopting Cloud Computing in Autonomous Vehicle,” in Proceedings of the 6th International Conference on Information Technology: IoT and Smart City - ICIT 2018, 2018, pp. 151–156. doi:10.1145/3301551.3301583; [260] F. Nikolopoulos and S. Likothanassis, “Using UTAUT2 for cloud computing technology acceptance modeling,” in Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing, Mar. 2017, no. March, pp. 1–6. doi:10.1145/3018896.3025153; [261] U. Nasir and M. Niazi, “Cloud computing adoption assessment model (CAAM),” in Proceedings of the 12th International Conference on Product Focused Software Development and Process Improvement - Profes ’11, 2011, vol. 44, no. 0, pp. 34–37. doi:10.1145/2181101.2181110.; [262] M. Al-Ruithe, E. Benkhelifa, and K. Hameed, “Current State of Cloud Computing Adoption – An Empirical Study in Major Public Sector Organizations of Saudi Arabia (KSA),” Procedia Computer Science, vol. 110, pp. 378–385, 2017, doi:10.1016/j.procs.2017.06.080; [263] P. Priyadarshinee, R. D. Raut, M. K. Jha, and B. B. Gardas, “Understanding and predicting the determinants of cloud computing adoption: A two staged hybrid SEM - Neural networks approach,” Computers in Human Behavior, vol. 76, pp. 341–362, Nov. 2017, doi:10.1016/j.chb.2017.07.027; [264] K. Njenga, L. Garg, A. K. Bhardwaj, V. Prakash, and S. Bawa, “The cloud computing adoption in higher learning institutions in Kenya: Hindering factors and recommendations for the way forward,” Telematics and Informatics, vol. 38, no. May, pp. 225–246, May 2019, doi:10.1016/j.tele.2018.10.007.; [265] I. Arpaci, “Antecedents and consequences of cloud computing adoption in education to achieve knowledge management,” Computers in Human Behavior, vol. 70, pp. 382–390, May 2017, doi:10.1016/j.chb.2017.01.024; [266] H. M. Sabi, F. E. Uzoka, K. Langmia, and F. N. Njeh, “Conceptualizing a model for adoption of cloud computing in education,” International Journal of Information Management, vol. 36, no. 2, pp. 183– 191, Apr. 2016, doi:10.1016/j.ijinfomgt.2015.11.010; [267] P. Palos-Sanchez, A. Reyes-Menendez, and J. R. Saura, “Modelos de Adopción de Tecnologías de la Información y Cloud Computing en las Organizaciones,” Información tecnológica, vol. 30, no. 3, pp. 3–12, Jun. 2019, doi:10.4067/S0718-07642019000300003; [268] M. Shorfuzzaman, M. S. Hossain, A. Nazir, G. Muhammad, and A. Alamri, “Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment,” Computers in Human Behavior, vol. 92, pp. 578–588, Mar. 2019, doi:10.1016/j.chb.2018.07.002; [269] F. P. S. Surbakti, W. Wang, M. Indulska, and S. Sadiq, “Factors influencing effective use of big data: A research framework,” Information & Management, vol. 57, no. 1, p. 103146, Jan. 2020, doi:10.1016/j.im.2019.02.001; [270] S. Das, “‘The Early Bird Catches the Worm - First Mover Advantage through IoT Adoption for Indian Public Sector Retail Oil Outlets,’” Journal of Global Information Technology Management, vol. 22, no. 4, pp. 280–308, Oct. 2019, doi:10.1080/1097198X.2019.1679588; [271] A. M. Al-Momani, M. A. Mahmoud, and M. S. Ahmad, “A Review of Factors Influencing Customer Acceptance of Internet of Things Services,” International Journal of Information Systems in the Service Sector, vol. 11, no. 1, pp. 54–67, Jan. 2019, doi:10.4018/IJISSS.2019010104; [272] D. Nikbin and A. Abushakra, “Internet of Things Adoption: Empirical Evidence from an Emerging Country,” in Communications in Computer and Information Science, 2019, pp. 348–352. doi:10.1007/978-3-030-21451-7_30; [273] B. Sivathanu, “Adoption of internet of things (IOT) based wearables for healthcare of older adults – a behavioural reasoning theory (BRT) approach,” Journal of Enabling Technologies, vol. 12, no. 4, pp. 169–185, Dec. 2018, doi:10.1108/JET-12-2017-0048; [274] A. M. Al-Momani, M. A. Mahmoud, and M. S. Ahmad, “Factors that Influence the Acceptance of Internet of Things Services by Customers of Telecommunication Companies in Jordan,” Journal of Organizational and End User Computing, vol. 30, no. 4, pp. 51–63, Oct. 2018, doi:10.4018/JOEUC.2018100104.; [275] E. E. Grandon, A. A. Ibarra, S. A. Guzman, P. Ramirez-Correa, and J. Alfaro-Perez, “Internet of Things: Factors that influence its adoption among Chilean SMEs,” in 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Jun. 2018, vol. 2018-June, pp. 1–6. doi:10.23919/CISTI.2018.8399183; [276] M. Tu, “An exploratory study of Internet of Things (IoT) adoption intention in logistics and supply chain management,” The International Journal of Logistics Management, vol. 29, no. 1, pp. 131–151, Feb. 2018, doi:10.1108/IJLM-11-2016-0274; [277] M. Trujillo Suárez, J. J. Aguilar, and C. Neira, “Los métodos más característicos del diseño centrado en el usuario -DCU-, adaptados para el desarrollo de productos materiales,” Iconofacto, vol. 12, no. 19, pp. 215–236, 2016, doi:10.18566/iconofact.v12.n19.a09.; [278] M. Greer and H. S. Harris, “User-Centered Design as a Foundation for Effective Online Writing Instruction,” Computers and Composition, vol. 49, no. 2017, pp. 14–24, 2018, doi:10.1016/j.compcom.2018.05.006; [278] M. Greer and H. S. Harris, “User-Centered Design as a Foundation for Effective Online Writing Instruction,” Computers and Composition, vol. 49, no. 2017, pp. 14–24, 2018, doi:10.1016/j.compcom.2018.05.006.; [279] Y. Han and M. Moghaddam, “Analysis of sentiment expressions for user-centered design,” Expert Systems with Applications, vol. 171, p. 114604, 2021, doi: https://doi.org/10.1016/j.eswa.2021.114604.; [280] T. Xu, Study on user experience design of mobile application interfaces, vol. 1018. Springer International Publishing, 2020. doi:10.1007/978-3-030-25629-6_80; [281] 2019 ISO Standard, “International Standard interactive systems,” Iso 9241-210:2019, vol. 2019, 2019.; [282] O. Ayalon and E. Toch, “User-Centered Privacy-by-Design: Evaluating the Appropriateness of Design Prototypes,” International Journal of Human Computer Studies, vol. 154, no. March, p. 102641, 2021, doi:10.1016/j.ijhcs.2021.102641; [283] M. François, F. Osiurak, A. Fort, P. Crave, and J. Navarro, “Usability and acceptance of truck dashboards designed by drivers: Two participatory design approaches compared to a user-centered design,” International Journal of Industrial Ergonomics, vol. 81, no. November 2019, p. 103073, 2021, doi:10.1016/j.ergon.2020.103073.; [284] A. C. Luis, T. E. M. Elizabeth, F. V. Jesús, R. U. M. Deyanira, and A. S. J., “Interacción HumanoComputadora,” pp. 195–232, 2016; [285] Ideo, “Diseño centrado en las personas,” 2019; [286] P. M. A. Desmet, H. Xue, and S. F. Fokkinga, “The Same Person Is Never the Same: Introducing MoodStimulated Thought/Action Tendencies for User-Centered Design,” She Ji, vol. 5, no. 3, pp. 167–187, 2019, doi:10.1016/j.sheji.2019.07.; [287] L. M. Kopf and J. Huh-Yoo, “A User-Centered Design Approach to Developing a Voice Monitoring System for Disorder Prevention,” Journal of Voice, vol. 3200, 2020, doi:10.1016/j.jvoice.2020.10.015; [288] L. Bu, C. H. Chen, K. K. H. Ng, P. Zheng, G. Dong, and H. Liu, “A user-centric design approach for smart product-service systems using virtual reality: A case study,” Journal of Cleaner Production, vol. 280, p. 124413, 2021, doi:10.1016/j.jclepro.2020.124413; [289] H. Khalajzadeh, T. Verma, A. J. Simmons, J. Grundy, M. Abdelrazek, and J. Hosking, “User-centred tooling for modelling of big data applications,” Proceedings - 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, MODELS-C 2020 - Companion Proceedings, pp. 31–35, 2020, doi:10.1145/3417990.3422004; [290] G. A. García-Mireles, M. Á. Moraga, and F. García, “Development of maturity models: A systematic literature review,” IET Seminar Digest, vol. 2012, no. 1, pp. 279–283, 2012, doi:10.1049/ic.2012.0036; [291] J. Wang and A. Moulden, “AI Trust Score: A User-Centered Approach to Building, Designing, and Measuring the Success of Intelligent Workplace Features,” Conference on Human Factors in Computing Systems - Proceedings, 2021, doi:10.1145/3411763.3443452.; [292] J. Escobar-Pérez and Á. Cuervo-Martínez, “Validez de contenido y juicio de expertos: una aproximación a su utilización,” Avances en medición, vol. 6, no. 1, pp. 27–36, 2008.; [293] G. C. Vázquez González, I. U. Jiménez Macías, and L. G. Juárez Hernández, “Construction-validation of the questionnaire: Maturity of knowledge management to educational innovation in universities,” Apertura, vol. 12, no. 1, Mar. 2020, doi:10.32870/Ap.v12n1.1767.; [294] J. Escobar and Á. Cuervo, “Validez de contenido y juicio de expertos: una aproximación a su utilización,” Polymer, 2008.; [295] J. S. Grant and L. L. Davis, “Selection and use of content experts for instrument development,” Research in Nursing & Health, vol. 20, no. 3, pp. 269–274, 1997, doi:10.1002/(sici)1098240x(199706)20:33.3.co;2-3; [296] R. Skjong and B. H. Wentworth, “Expert judgment and risk perception,” Proceedings of the International Offshore and Polar Engineering Conference, vol. 4, pp. 537–544, 2001.; [297] A. Raza, L. F. Capretz, and F. Ahmed, “An open source usability maturity model (OS-UMM),” Computers in Human Behavior, vol. 28, no. 4, pp. 1109–1121, 2012, doi:10.1016/j.chb.2012.01.018; [298] S. Beecham, T. Hall, C. Britton, M. Cottee, and A. Rainer, “Using an expert panel to validate a requirements process improvement model,” The journal of systems and software, vol. 76, pp. 251–275, 2005, doi:10.1016/j.jss.2004.06.004; [299] C. Shaoyong, T. Yirong, and L. Zhefu, “UNITA : A Reference Model of University IT Architecture,” ICCIS ’16: Proceedings of the 2016 International Conference on Communication and Information Systems, pp. 73–77, 2016, doi:10.1145/3023924.3023949; [300] H. Chaoui and I. Makdoun, “A new secure model for the use of cloud computing in big data analytics,” pp. 1–11, 2018, doi:10.1145/3018896.3018913; [301] S. Chaveesuk, P. Wutthirong, and W. Chaiyasoonthorn, “Cloud Computing Classroom Acceptance Model in Thailand Higher Education’s Institutes,” in Proceedings of the 2018 10th International Conference on Information Management and Engineering - ICIME 2018, 2018, pp. 141–145. doi:10.1145/3285957.3285989; [302] F. Nikolopoulos, “Using UTAUT2 for Cloud Computing Technology Acceptance Modeling,” no. 1995, 2017; [303] B. B. Rad, T. Diaby, and M. E. Rana, “Cloud Computing Adoption,” in Proceedings of the 2017 International Conference on E-commerce, E-Business and E-Government - ICEEG 2017, 2017, no. June, pp. 51–55. doi:10.1145/3108421.3108426; [304] E. H. Steele and I. R. Guzman, “Investigating the Role of Top Management and Institutional Pressures in Cloud Computing Adoption,” pp. 25–26, 2016.; [305] A. M. Shaaban, C. Schmittner, T. Gruber, G. Quirchmayr, and E. Schikuta, “CloudWoT - A Reference Model for Knowledge-based IoT Solutions,” 2018, doi:10.1145/3282373.3282400.; [306] M. Basingab, L. Rabelo, C. Rose, and E. Gutiérrez, “Business Modeling Based on Internet of Things : A Case Study of Predictive Maintenance Software Using ABS Model,” 2017, doi:10.1145/3018896.3018905; [307] M.-C. Vega-Hernández, M.-C. Patino-Alonso, and M.-P. Galindo-Villardón, “Multivariate characterization of university students using the ICT for learning,” Computers & Education, vol. 121, pp. 124–130, Jun. 2018, doi:10.1016/j.compedu.2018.03.004.; [308] u-planner, “U-planner,” 2019; [309] Bizagi, “Bizagi,” 2019; [309] Bizagi, “Bizagi,” 2019.; [310] Analytikus, “Analytikus,”; [311] Y. Medina and Dewar. Rico-Bautista, “Modelo de gestión de servicios para la universidad de Pamplona: ITIL,” Scientia Et Technica, vol. XIV, no. 39, pp. 314–319, 2008; [312] Y. Medina-Cárdenas and D. Rico- Bautista, “Modelo de gestión basado en el ciclo de vida del servicio de la Biblioteca de Infraestructura de Tecnologías de Información ( ITIL ),” Revista Virtual Universidad Católica del Norte, no. 27, pp. 1–21, 2009.; [313] M. V Bueno-Delgado, P. Pavón-Marino, A. De-Gea-García, and A. Dolón-García, “The Smart University Experience: An NFC-Based Ubiquitous Environment,” in 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, 2012, pp. 799–804. doi:10.1109/IMIS.2012.110; [314] O. A. Shvetsova, “Smart education in high school: New perspectives in global world,” in Proceedings of the 2017 International Conference “Quality Management, Transport and Information Security, Information Technologies”, IT and QM and IS 2017, 2017, pp. 688–691. doi:10.1109/ITMQIS.2017.8085917.; [315] T. Savov, V. Terzieva, K. Todorova, and P. Kademova-Katzarova, “CONTEMPORARY TECHNOLOGY SUPPORT FOR EDUCATION,” CBU International Conference Proceedings, vol. 5, pp. 802–806, Sep. 2017, doi:10.12955/cbup.v5.1029.; [316] A. M. Shaaban, C. Schmittner, T. Gruber, G. Quirchmayr, and E. Schikuta, “CloudWoT - A Reference Model for Knowledge-based IoT Solutions,” 2018, doi:10.1145/3282373.3282400.; [317] S. Chen, Y. Tang, and Z. Li, “UNITA: A reference model of university IT architecture,” in ACM International Conference Proceeding Series, 2016, pp. 73–77. doi:10.1145/3023924.3023949; [318] E. Barrientos-Avendaño and Y. Areniz-Arévalo, “Universidad inteligente: Oportunidades y desafíos desde la Industria 4.0,” Revista Ingenio UFPSO, vol. 16, no. 1, 2019, doi:10.22463/2011642X.2343.; [319] E. Barrientos-Avendaño, Y. Areniz-Arevalo, L. A. Coronel-Rojas, F. Cuesta-Quintero, and D. RicoBautista, “Industry foray model 4.0 applied to the food company your gourmet bread sas: Strategy for rebirth in the COVID-19 (SARS-CoV-2) pandemic [Modelo de incursión en la industria 4.0 aplicado a la compañía alimenticia tu pan gourmet sas: estrategia para el rena,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E34, pp. 436–449, 2020.; [320] C. D. Guerrero and D. Rico-Bautista, “Center for excellence and internet acquisition of things: A commitment to competitiveness from alliances between government, academia and productive sector [Centro de excelencia y apropiación en internet de las cosas: Una apuesta a la competitividad desde,” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E28, pp. 615–628, 202; [321] D. Mourtzis, E. Vlachou, and N. Milas, “Industrial Big Data as a Result of IoT Adoption in Manufacturing,” Procedia CIRP, vol. 55, pp. 290–295, 2016, doi:10.1016/j.procir.2016.07.038.; [322] I. C. Ehie and M. A. Chilton, “Understanding the influence of IT/OT Convergence on the adoption of Internet of Things (IoT) in manufacturing organizations: An empirical investigation,” Computers in Industry, vol. 115, p. 103166, Feb. 2020, doi:10.1016/j.compind.2019.103166.; [323] H. Xu, “Application of Cloud Computing Information Processing System in Network Education,” in International Conference on Applications and Techniques in Cyber Intelligence, ATCI 2019, vol. 1017, A. J.H., C. K.-K.R., I. R., X. Z., and A. M., Eds. Dianchi College of Yunnan University, Kunming, 650000, China: Springer Verlag, 2020, pp. 1809–1815. doi:10.1007/978-3-030-25128-4_238; [324] Y. C. Medina Cárdenas, Y. Areniz Arévalo, and D. W. Rico Bautista, Modelo estratégico para la gestión tecnológica en la organización: plan táctico de la calidad (ITIL & ISO 20000), vol. 1. Instituto Tecnológico Metropolitano, 2016. doi:10.22430/9789585414006; [325] Y. Medina-Cárdenas and D. Rico-Bautista, “Model of Administration of Services for the Universidad of Pamplona: ITIL,” Scientia Et Technica Scientia et Technica Año XIV, vol. 14, no. 39, pp. 314–319, 2008; [326] R. D. Raut, P. Priyadarshinee, B. B. Gardas, and M. K. Jha, “Analyzing the factors influencing cloud computing adoption using three stage hybrid SEM-ANN-ISM (SEANIS) approach,” Technological Forecasting and Social Change, vol. 134, no. July 2017, pp. 98–123, Sep. 2018, doi:10.1016/j.techfore.2018.05.020; [327] R. El-Gazzar, E. Hustad, and D. H. Olsen, “Understanding cloud computing adoption issues: A Delphi study approach,” Journal of Systems and Software, vol. 118, pp. 64–84, Aug. 2016, doi:10.1016/j.jss.2016.04.061; [328] J. Cecil, “A Collaborative Manufacturing Approach supporting adoption of IoT Principles in Micro Devices Assembly,” Procedia Manufacturing, vol. 26, pp. 1265–1277, 2018, doi:10.1016/j.promfg.2018.07.141; [329] W. Hao, Z. Huang, and L. Shi, “Research on college students’ ideological and political education and daily performance evaluation model based on big data,” Journal of Advanced Oxidation Technologies, vol. 21, no. 2, 2018, doi:10.26802/jaots.2018.01625; [330] Y. H. Kim and J. Ahn, “A Study on the Application of Big Data to the Korean College Education System,” Procedia Computer Science, vol. 91, no. Itqm 2016, pp. 855–861, 2016, doi:10.1016/j.procs.2016.07.096; [331] T. G. Ramos, J. C. F. Machado, and B. P. V. Cordeiro, “Primary Education Evaluation in Brazil Using Big Data and Cluster Analysis,” Procedia Computer Science, vol. 55, no. Itqm, pp. 1031–1039, 2015, doi:10.1016/j.procs.2015.07.061; [332] R. H. Hamilton and W. A. Sodeman, “The questions we ask: Opportunities and challenges for using big data analytics to strategically manage human capital resources,” Business Horizons, vol. 63, no. 1, pp. 85–95, Jan. 2020, doi:10.1016/j.bushor.2019.10.001; [333] J. Wu, H. Li, L. Liu, and H. Zheng, “Adoption of big data and analytics in mobile healthcare market: An economic perspective,” Electronic Commerce Research and Applications, vol. 22, pp. 24–41, Mar. 2017, doi:10.1016/j.elerap.2017.02.002; [334] Z. Allam and Z. A. Dhunny, “On big data, artificial intelligence and smart cities,” Cities, vol. 89, no. January, pp. 80–91, Jun. 2019, doi:10.1016/j.cities.2019.01.032; [335] M. A. Goralski and T. K. Tan, “Artificial intelligence and sustainable development,” The International Journal of Management Education, vol. 18, no. 1, p. 100330, Mar. 2020, doi:10.1016/j.ijme.2019.100330.; [336] C. R. Deig, A. Kanwar, and R. F. Thompson, “Artificial Intelligence in Radiation Oncology,” Hematology/Oncology Clinics of North America, vol. 33, no. 6, pp. 1095–1104, Dec. 2019, doi:10.1016/j.hoc.2019.08.003; [337] M. Chassignol, A. Khoroshavin, A. Klimova, and A. Bilyatdinova, “Artificial Intelligence trends in education: a narrative overview,” Procedia Computer Science, vol. 136, pp. 16–24, 2018, doi:10.1016/j.procs.2018.08.233; [338] E. Barrientos-Avendaño, L. A. Coronel-Rojas, F. Cuesta-Quintero, and D. Rico-Bautista, “Store-tostore sales management system: Applying artificial intelligence techniques [Sistema de administración de ventas tienda a tienda: Aplicando técnicas de inteligencia artificial],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, vol. 2020, no. E27, pp. 677–689, 2020.; [339] A. Kankanhalli, Y. Charalabidis, and S. Mellouli, “IoT and AI for Smart Government: A Research Agenda,” Government Information Quarterly, vol. 36, no. 2, pp. 304–309, Apr. 2019, doi:10.1016/j.giq.2019.02.003; [340] A. Y. Sheikh and J. I. Fann, “Artificial Intelligence,” Thoracic Surgery Clinics, vol. 29, no. 3, pp. 339– 350, Aug. 2019, doi:10.1016/j.thorsurg.2019.03.011; [341] A. Haleem, M. Javaid, and I. H. Khan, “Current status and applications of Artificial Intelligence (AI) in medical field: An overview,” Current Medicine Research and Practice, vol. 9, no. 6, pp. 231–237, Nov. 2019, doi:10.1016/j.cmrp.2019.11.005; [342] T. Granollers i Saltiveri, “MPIu+a. Una metodología que integra la Ingeniería del Software, la Interacción Persona-Ordenador y la Accesibilidad en el contexto de equipos de desarrollo multidisciplinares,” 2004; [343] U. de Lleida, “Departament de Llenguatges i Sistemes Informàtics Universitat de Lleida Lleida, julio 2004,” Screen, 2004; [344] V. De Freitas, “Model of Maturity in Knowledge Management System, From a Holistic Approach,” Negotium, vol. Revista Ci, pp. 5–31, 2018; [345] F. RICHARDSON and G. LEóN, “Instrumento para determinar el nivel de madurez en la adopción de tecnologías escolar en la educación primaria en escuelas públicas de la República Dominicana,” 2019.; [346] L. C. Ñungo Pinzón, B. Torres González, and J. I. Palacios Osma, “Modelo de nivel de madurez para los procesos de emprendimiento en las pymes colombianas,” Ingeniería Solidaria, vol. 14, no. 26, Dec. 2018, doi:10.16925/in.v14i26.2456.; [347] L. v. Glukhova, S. D. Syrotyuk, A. A. Sherstobitova, and S. v. Pavlova, “Smart University Development Evaluation Models,” in Smart Innovation, Systems and Technologies, vol. 144, Springer Science and Business Media Deutschland GmbH, 2019, pp. 539–549. doi:10.1007/978-981-13-8260-4_47; [348] D. Lee, J. Gu, and H. Jung, “Process maturity models: Classification by application sectors and validities studies,” Journal of Software: Evolution and Process, vol. 31, no. 4, p. e2161, Apr. 2019, doi:10.1002/smr.2161.; [349] S. Beecham, T. Hall, and A. Rainer, “Defining a Requirements Process Improvement Model,” Software Quality Journal, vol. 13, no. 3, pp. 247–279, Sep. 2005, doi:10.1007/s11219-005-1752-9.; [350] U. Benjamín et al., “EVALUACIÓN DE LA MADUREZ DE LOS PRINCIPIOS LEAN EN PROYECTOS DE CONSTRUCCIÓN,” 2016; [351] M. Gina and P. M. Gongora, “FRAMEWORK DE GESTIÓN DE TECNOLOGÍAS DE INFORMACIÓN PARA CIUDADES INTELIGENTES: CASO COLOMBIANO TESIS DOCTORAL,” Barranquilla, 2017.; [352] L. C. Ñungo Pinzón, B. Torres González, and J. I. Palacios Osma, “Modelo de nivel de madurez para los procesos de emprendimiento en las pymes colombianas,” Ingeniería Solidaria, vol. 14, no. 26, 2018, doi:10.16925/in.v14i26.2456; [353] R. Morales Fernandez, J. A. Brieto Rojas, and J. A. Villaseñor Marcial, “CMMI - Capability Maturity Model Integration,” MIPRO 2008 - 31st International Convention Proceedings: Digital Economy - 5th ALADIN, Information Systems Security, Business Intelligence Systems, Local Government and Student Papers, vol. 5, no. Cmmi, pp. 229–234, 2008.; [354] E. Pérez Mergarejo, I. Pérez Vergara, and Y. Rodriguez Ruiz, “Modelos de madurez y su idoneidad para aplicar en pequeñas y medianas empresas / Maturity models and the suitability of its application in small and medium enterprises,” Ingeniería Industrial, vol. XXXV, no. 2, pp. 146–158, 20; [355] R. Galeano, “Diseño Hipermedia centrado en el usuario,” Universidad Pontificia Bolivariana, vol. 2, no. 4, pp. 1–15, 2008; [356] T. Granollers, “Diseño Centrado en el Usuario (DCU). El modelo MPlu+a,” p. 71, 2013; [357] M. Garreta Domingo and E. Mor Pera, “Diseño centrado en el usuario (I). Introducción,” El Profesional de la Informacion, vol. 12, no. 1, pp. 52–54, 2003, doi:10.1076/epri.12.1.52.19713.; [358] L. Perurena Cancio and M. Moráguez Bergues, “Usabilidad de los sitios Web, los métodos y las técnicas para la evaluación,” Usabilidad de los sitios Web, los métodos y las técnicas para la evaluación, vol. 24, no. 2, pp. 176–194, 2013; [359] E. E. Grandon, A. A. Ibarra, S. A. Guzman, P. Ramirez-Correa, and J. Alfaro-Perez, “Internet of Things: Factors that influence its adoption among Chilean SMEs,” in 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Jun. 2018, pp. 1–6. doi:10.23919/CISTI.2018.8399183.; [360] F. Authors, “An exploratory study of Internet of Things ( IoT ) adoption intention in logistics and supply chain management - a mixed research approach,” 2016; [361] P. Brous, M. Janssen, and P. Herder, “The dual effects of the Internet of Things ( IoT ): A systematic review of the benefits and risks of IoT adoption by organizations,” International Journal of Information Management, no. May, pp. 1–17, 2019, doi:10.1016/j.ijinfomgt.2019.05.008; [362] H. Shaikh, Z. A. Mahar, and A. Raza, “A Conceptual Framework for Determining Acceptance of Internet of Things ( IoT ) in Higher Education Institutions of Pakistan,” 2019 International Conference on Information Science and Communication Technology (ICISCT), pp. 1–5, 2019.; [363] M. Mital, P. Choudhary, V. Chang, A. Papa, and A. K. Pani, “Technological Forecasting & Social Change Adoption of Internet of Things in India : A test of competing models using a structured equation modeling approach,” Technological Forecasting & Social Change, pp. 1–8, 2017, doi:10.1016/j.techfore.2017.03.001; [364] S. Kang, H. B. Rn, E. Jung, and H. Hwang, “Survey on the demand for adoption of Internet of Things ( IoT ) -based services in hospitals : Investigation of nurses ’ perception in a tertiary university hospital,” Applied Nursing Research, vol. 47, no. May 2018, pp. 18–23, 2019, doi:10.1016/j.apnr.2019.03.005; [365] F. Authors, “Adoption of internet of things ( IOT ) based wearables for elderly healthcare – a behavioural reasoning theory ( BRT ) approach,” 2018, doi:10.1108/JET-12-2017-0048.; [366] R. BaÅ¡ková, Z. Struková, and M. Kozlovská, “Construction Cost Saving Through Adoption of IoT Applications in Concrete Works,” Lecture Notes in Civil Engineering, vol. 47, pp. 452–459, 2020, doi:10.1007/978-3-030-27011-7_57; [367] Y. Kao, K. Nawata, and C. Huang, “An Exploration and Confirmation of the Factors Influencing Adoption of IoT-Based Wearable Fitness Trackers,” 2019.; [368] M. Mital, P. Choudhary, V. Chang, A. Papa, and A. K. Pani, “Technological Forecasting & Social Change Adoption of Internet of Things in India : A test of competing models using a structured equation modeling approach,” Technological Forecasting & Social Change, pp. 1–8, 2017, doi:10.1016/j.techfore.2017.03.001; [369] M. Fahmideh and D. Zowghi, “An exploration of IoT platform development,” Information Systems, vol. 87, p. 101409, 2020, doi:10.1016/j.is.2019.06.005; [370] S. Kang, H. B. Rn, E. Jung, and H. Hwang, “Survey on the demand for adoption of Internet of Things ( IoT ) -based services in hospitals : Investigation of nurses ’ perception in a tertiary university hospital,” Applied Nursing Research, vol. 47, no. May 2018, pp. 18–23, 2019, doi:10.1016/j.apnr.2019.03.005; [371] M. Al-Emran, S. I. Malik, and M. N. Al-Kabi, “A Survey of Internet of Things (IoT) in Education: Opportunities and Challenges,” Studies in Computational Intelligence, vol. 846, pp. 197–209, 2020, doi:10.1007/978-3-030-24513-9_12; [372] H. Shaikh, Z. A. Mahar, and A. Raza, “A Conceptual Framework for Determining Acceptance of Internet of Things ( IoT ) in Higher Education Institutions of Pakistan,” 2019 International Conference on Information Science and Communication Technology (ICISCT), pp. 1–5, 2019.; [373] R. Scherer, F. Siddiq, and J. Tondeur, “The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education,” Computers and Education, vol. 128, pp. 13–35, 2019, doi:10.1016/j.compedu.2018.09.009.; [374] Y. S. Kao, K. Nawata, and C. Y. Huang, “An exploration and confirmation of the factors influencing adoption of IoT-basedwearable fitness trackers,” International Journal of Environmental Research and Public Health, vol. 16, no. 18, 2019, doi:10.3390/ijerph16183227.; [375] P. K. Paul, “Usability engineering and hci for promoting root-level social computation and informatics practice: A possible academic move in the indian perspective,” International Journal of Asian Business and Information Management, vol. 12, no. 2, pp. 96–109, 2021, doi:10.4018/IJABIM.20210401.oa6; [376] M. A. Castaño González, “Índice de madurez de transformación digital de las empresas Colombianas,” Cintel, pp. 1–36, 2016; [377] P. Pinheiro, M. Aparicio, and C. Costa, “Adoption of cloud computing systems,” in Proceedings of the International Conference on Information Systems and Design of Communication - ISDOC ’14, 2014, pp. 127–131. doi:10.1145/2618168.2618188; [378] H. Xu, International Conference on Applications and Techniques in Cyber Intelligence ATCI 2019, vol. 1017. Cham: Springer International Publishing, 2020. doi:10.1007/978-3-030-25128-4; [379] B. B. Rad, T. Diaby, and M. E. Rana, “Cloud Computing Adoption,” in Proceedings of the 2017 International Conference on E-commerce, E-Business and E-Government - ICEEG 2017, 2017, pp. 51– 55. doi:10.1145/3108421.3108426; [380] B. B. Rad, T. Diaby, and M. E. Rana, “Cloud Computing Adoption,” in Proceedings of the 2017 International Conference on E-commerce, E-Business and E-Government - ICEEG 2017, 2017, pp. 51– 55. doi:10.1145/3108421.3108426; [381] H. Vasudavan, K. Shanmugam, and H. A. Ahmada, “User Perceptions in Adopting Cloud Computing in Autonomous Vehicle,” in Proceedings of the 6th International Conference on Information Technology: IoT and Smart City - ICIT 2018, 2018, pp. 151–156. doi:10.1145/3301551.3301583; [382] D. S. Jat, M. S. Haodom, and A. Peters, “Relevance of Cloud Computing in Namibia,” in Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies - ICTCS ’16, 2016, pp. 1–4. doi:10.1145/2905055.2905301; [383] T. Branco, F. de Sá-Soares, and A. L. Rivero, “Key Issues for the Successful Adoption of Cloud Computing,” Procedia Computer Science, vol. 121, pp. 115–122, 2017, doi:10.1016/j.procs.2017.11.016.; [384] R. D. Raut, P. Priyadarshinee, B. B. Gardas, and M. K. Jha, “Analyzing the factors influencing cloud computing adoption using three stage hybrid SEM-ANN-ISM (SEANIS) approach,” Technological Forecasting and Social Change, vol. 134, no. July 2017, pp. 98–123, Sep. 2018, doi:10.1016/j.techfore.2018.05.020; [385] R. El-Gazzar, E. Hustad, and D. H. Olsen, “Understanding cloud computing adoption issues: A Delphi study approach,” Journal of Systems and Software, vol. 118, pp. 64–84, Aug. 2016, doi:10.1016/j.jss.2016.04.061; [386] D. S. Jat, M. S. Haodom, and A. Peters, “Relevance of Cloud Computing in Namibia,” in Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies - ICTCS ’16, 2016, pp. 1–4. doi:10.1145/2905055.29053; [387] M. Al-Ruithe, E. Benkhelifa, and K. Hameed, “Current State of Cloud Computing Adoption – An Empirical Study in Major Public Sector Organizations of Saudi Arabia (KSA),” Procedia Computer Science, vol. 110, pp. 378–385, 2017, doi:10.1016/j.procs.2017.06.080; [388] O. Sabri, “Measuring is Success Factors of Adopting Cloud Computing from Enterprise Overview,” in Proceedings of the The International Conference on Engineering & MIS 2015 - ICEMIS ’15, 2015, pp. 1–5. doi:10.1145/2832987.2832993; [389] F. Alharbi, A. Atkins, and C. Stanier, “Cloud Computing Adoption Readiness Assessment in Saudi Healthcare Organisations : A Strategic View,” 2017.; [390] U. Nasir and M. Niazi, “Cloud computing adoption assessment model (CAAM),” in Proceedings of the 12th International Conference on Product Focused Software Development and Process Improvement - Profes ’11, 2011, vol. 44, no. 0, pp. 34–37. doi:10.1145/2181101.2181110; [391] J. Cecil, “A Collaborative Manufacturing Approach supporting adoption of IoT Principles in Micro Devices Assembly,” Procedia Manufacturing, vol. 26, pp. 1265–1277, 2018, doi:10.1016/j.promfg.2018.07.141.; [392] R. F. El-gazzar, “An Overview of Cloud Computing Adoption Challenges in the Norwegian Context,” 2014.; [393] R. F. El-gazzar, “An Overview of Cloud Computing Adoption Challenges in the Norwegian Context,” 2014; [394] H. Hassan, “ScienceDirect ScienceDirect Organisational factors affecting cloud computing adoption in small and medium enterprises ( SMEs ) in service sector,” Procedia Computer Science, vol. 121, pp. 976–981, 2017, doi:10.1016/j.procs.2017.11.126; [395] I. Arpaci, “Antecedents and consequences of cloud computing adoption in education to achieve knowledge management,” Computers in Human Behavior, vol. 70, pp. 382–390, May 2017, doi:10.1016/j.chb.2017.01.024; [396] H. M. Sabi, F. E. Uzoka, K. Langmia, and F. N. Njeh, “Conceptualizing a model for adoption of cloud computing in education,” International Journal of Information Management, vol. 36, no. 2, pp. 183– 191, Apr. 2016, doi:10.1016/j.ijinfomgt.2015.11.010; [397] F. Gao and A. Sunyaev, “International Journal of Information Management Context matters : A review of the determinant factors in the decision to adopt cloud computing in healthcare,” International Journal of Information Management, vol. 48, no. February, pp. 120–138, 2019, doi:10.1016/j.ijinfomgt.2019.02.002.; [398] K. Njenga, L. Garg, A. K. Bhardwaj, V. Prakash, and S. Bawa, “The cloud computing adoption in higher learning institutions in Kenya: Hindering factors and recommendations for the way forward,” Telematics and Informatics, vol. 38, no. May, pp. 225–246, May 2019, doi:10.1016/j.tele.2018.10.007; [399] P. Priyadarshinee, R. D. Raut, M. K. Jha, and B. B. Gardas, “Understanding and predicting the determinants of cloud computing adoption: A two staged hybrid SEM - Neural networks approach,” Computers in Human Behavior, vol. 76, pp. 341–362, Nov. 2017, doi:10.1016/j.chb.2017.07.027.; [400] W. Hao, Z. Huang, and L. Shi, “Research on college students’ ideological and political education and daily performance evaluation model based on big data,” Journal of Advanced Oxidation Technologies, vol. 21, no. 2, 2018, doi:10.26802/jaots.2018.01625.; [401] J. Wu, H. Li, L. Liu, and H. Zheng, “Adoption of big data and analytics in mobile healthcare market: An economic perspective,” Electronic Commerce Research and Applications, vol. 22, pp. 24–41, Mar. 2017, doi:10.1016/j.elerap.2017.02.002; [402] Y. H. Kim and J. Ahn, “A Study on the Application of Big Data to the Korean College Education System,” Procedia Computer Science, vol. 91, no. Itqm 2016, pp. 855–861, 2016, doi:10.1016/j.procs.2016.07.096.; [403] M. Shorfuzzaman, M. S. Hossain, A. Nazir, G. Muhammad, and A. Alamri, “Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment,” Computers in Human Behavior, vol. 92, pp. 578–588, Mar. 2019, doi:10.1016/j.chb.2018.07.002; [403] M. Shorfuzzaman, M. S. Hossain, A. Nazir, G. Muhammad, and A. Alamri, “Harnessing the power of big data analytics in the cloud to support learning analytics in mobile learning environment,” Computers in Human Behavior, vol. 92, pp. 578–588, Mar. 2019, doi:10.1016/j.chb.2018.07.002. [404] T. G. Ramos, J. C. F. Machado, and B. P. V. Cordeiro, “Primary Education Evaluation in; [404] T. G. Ramos, J. C. F. Machado, and B. P. V. Cordeiro, “Primary Education Evaluation in Brazil Using Big Data and Cluster Analysis,” Procedia Computer Science, vol. 55, no. Itqm, pp. 1031–1039, 2015, doi:10.1016/j.procs.2015.07.061.; [405] R. H. Hamilton and W. A. Sodeman, “The questions we ask: Opportunities and challenges for using big data analytics to strategically manage human capital resources,” Business Horizons, vol. 63, no. 1, pp. 85–95, Jan. 2020, doi:10.1016/j.bushor.2019.10.001; [406] F. P. S. Surbakti, W. Wang, M. Indulska, and S. Sadiq, “Factors influencing effective use of big data: A research framework,” Information & Management, vol. 57, no. 1, p. 103146, Jan. 2020, doi:10.1016/j.im.2019.02.001; [407] U. D. Kumar, Analytics Education Ms Purvi Tiwari , Research Associates at DCAL , Indian Institute of Management. Elsevier Ltd, 2019. doi:10.1016/j.iimb.2019.10.014; [408] M. Zapata-ros, “La universidad inteligente La transición de los LMS a los Sistemas Inteligentes de Aprendizaje en Educación Superior The smart university,” vol. 57, no. 10, pp. 1–43, 2018.; [409] N. Mehta, A. Pandit, and S. Shukla, “Transforming Healthcare with Big Data Analytics and Artificial Intelligence: A Systematic Mapping Study,” Journal of Biomedical Informatics, p. 103311, 2019, doi:10.1016/j.jbi.2019.103311.; [410] J. A. Carrillo Ruiz et al., “Big Data En Los Entornos De Defensa Y Seguridad,” 2003.; [411] A. S. Leví, “Aproximación al Big Data . Análisis de su posible utilización en la universidad pública,” 2018; [412] Z. Allam and Z. A. Dhunny, “On big data, artificial intelligence and smart cities,” Cities, vol. 89, no. January, pp. 80–91, Jun. 2019, doi:10.1016/j.cities.2019.01.032; [413] M. A. Goralski and T. K. Tan, “Artificial intelligence and sustainable development,” The International Journal of Management Education, vol. 18, no. 1, p. 100330, Mar. 2020, doi:10.1016/j.ijme.2019.100330; [414] C. R. Deig, A. Kanwar, and R. F. Thompson, “Artificial Intelligence in Radiation Oncology,” Hematology/Oncology Clinics of North America, vol. 33, no. 6, pp. 1095–1104, Dec. 2019, doi:10.1016/j.hoc.2019.08.003; [415] M. Chassignol, A. Khoroshavin, A. Klimova, and A. Bilyatdinova, “Artificial Intelligence trends in education: a narrative overview,” Procedia Computer Science, vol. 136, pp. 16–24, 2018, doi:10.1016/j.procs.2018.08.233; [416] R. Bajaj and V. Sharma, “ScienceDirect ScienceDirect Smart Education with artificial intelligence based determination of Smart Education with artificial intelligence learning styles based determination of learning styles,” Procedia Computer Science, vol. 132, pp. 834–842, 2018, doi:10.1016/j.procs.2018.05.095; [417] A. Kankanhalli, Y. Charalabidis, and S. Mellouli, “IoT and AI for Smart Government: A Research Agenda,” Government Information Quarterly, vol. 36, no. 2, pp. 304–309, Apr. 2019, doi:10.1016/j.giq.2019.02.003; [418] A. Y. Sheikh and J. I. Fann, “Artificial Intelligence,” Thoracic Surgery Clinics, vol. 29, no. 3, pp. 339– 350, Aug. 2019, doi:10.1016/j.thorsurg.2019.03.011; [419] A. Blandford, “education : the potential offered by artificial intellige e tech s,” pp. 212–222, 1990; [420] A. Haleem, M. Javaid, and I. H. Khan, “Current status and applications of Artificial Intelligence (AI) in medical field: An overview,” Current Medicine Research and Practice, vol. 9, no. 6, pp. 231–237, Nov. 2019, doi:10.1016/j.cmrp.2019.11.005.; [421] I. y U. Ministerio de Ciencia, “Estrategia Española De I+D+I En Inteligencia Artificial,” p. 48, 2019; [422] J. G. Sierra Llorente, Y. A. Palmezano Córdoba, and B. S. Romero Mora, “CAUSAS QUE DETERMINAN LAS DIFICULTADES DE LA INCORPORACIÓN DE LAS TIC EN LAS AULAS DE CLASES - Causes that determine the difficulties in the onboarding process of ICT in classrooms,” Panorama, vol. 12, no. 22, pp. 31–41, 2018, doi:10.15765/pnrm.v12i22.1064; [423] MINTIC, “Análisis del sector dirección de gobierno digital,” Ministerio de las tecnologías de la información, vol. 57, no. 1, p. 31, 2019.; [424] H. A. Botello Peñaloza, O. E. Contreras Pacheco, and P. Avella. A. Cecilia, “Análisis empresarial de la influencia de las TIC en el desempeño de las empresas de servicios en Colombia,” Panorama, vol. 4, no. 8, pp. 3–15, 2013, doi:10.15765/pnrm.v4i8.57.; [425] M. E. Rojas Salgado, “Los recursos tecnológicos como soporte para la enseñanza de las ciencias naturales - Technological resources as support in natural sciences teaching,” Hamut’Ay, vol. 4, no. 1, p. 85, 2017, doi:10.21503/hamu.v4i1.1403; [426] Universidad Santo Tomás, “Documento Marco Tecnologías de la Información y la Comunicación,” 2015.; [427] F. I. Díazgranados et al., Uso De Recursos Educativos En Educación Superior. 2018. doi:10.2307/j.ctt2050wh0.7; [428] C. Alberto, F. Reboreda, C. Alberto, and F. Reboreda, “UD igital,” 2020; [429] D. Rico-Bautista, C. D. Guerrero, Y. Medina-Cárdenas, and A. García-Barreto, “Analysis of the potential value of technology: Case of universidad francisco de paula santander Ocaña [Análisis del valor potencial de la tecnología: Caso universidad francisco de paula santander Ocaña],” RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao, no. E17, pp. 756–774, 2019; [430] D. Rico-Bautista and Y. Medina-Cárdenas, “Modelo institucional de autoevaluación y mejoramiento continuo: Proceso misional de investigación de la Universidad Francisco de Paula Santander Ocaña (UFPSO). Un caso de éxito,” Revista Iberoamericana CTS, vol. Abril, pp. 1–14, 2; [431] M. Arrieta, M. Sanguino, and C. Lobo, “Diseño de un plan estratégico de tecnologías de información para la Universidad Francisco de Paula Santander Ocaña,” 2015. [; [432] J. F. Rockart, “Chief executives define their own data needs.,” Harvard Business Review, 1979, doi: Article.; [433] M. Arrieta, M. Sanguino, and C. Lobo, “Diseño de un plan estratégico de tecnologías de información para la Universidad Francisco de Paula Santander Ocaña,” 2015.; [434] M. E. Porter, “Competitive Advantage,” Competitive Advantage: Creating and Sustaining Superior Performance. 1985. doi:10.1182/blood-2005-11-4354.; [435] D. S. Hidayat and D. I. Sensuse, “Knowledge Management Model for Smart Campus in Indonesia,” Data, vol. 7, no. 1, p. 7, Jan. 2022, doi:10.3390/data7010007; [436] V. Salazar Solano, J. M. Moreno Dena, I. S. Rojas Rodríguez, and L. A. Islas Olavarrieta, “Nivel de adopción de tecnologías de la información y la comunicación en empresas comercializadoras de mango en Nayarit – México,” Estudios Gerenciales, vol. 34, no. 148, pp. 292–304, Sep. 2018, doi:10.18046/j.estger.2018.148.2639; [437] S. Dalal, D. Khodyakov, R. Srinivasan, S. Straus, and J. Adams, “ExpertLens: A system for eliciting opinions from a large pool of non-collocated experts with diverse knowledge,” Technological Forecasting and Social; [438] S. Beecham, T. Hall, C. Britton, M. Cottee, and A. Rainer, “Using an expert panel to validate a requirements process improvement model,” Journal of Systems and Software, vol. 76, no. 3, pp. 251– 275, Jun. 2005, doi:10.1016/j.jss.2004.06.004.; [439] M. Kopyto, S. Lechler, H. A. von der Gracht, and E. Hartmann, “Potentials of blockchain technology in supply chain management: Long-term judgments of an international expert panel,” Technological Forecasting and Social Change, vol. 161, p. 120330, Dec. 2020, doi:10.1016/j.techfore.2020.120330; [440] L. A. Galicia Alarcón, J. A. Balderrama Trápaga, and R. Edel Navarro, “Content validity by experts judgment: Proposal for; [441] F. Sheikhshoaei, N. Naghshineh, S. Alidousti, M. Nakhoda, and H. Dehdarirad, “Development and validation of a measuring instrument for digital library maturity,” Library & Information Science Research, vol. 43, no. 3, p. 101101, Jul. 2021, doi:10.1016/j.lisr.2021.101101; [442] C. Á. Álvarez, “La relación teoría-práctica en los procesos de enseñanza-aprendizaje Theory-practice relationship in the processes of teaching and learning,” 2012.; [443] J. M. González-Varona, A. López-Paredes, J. Pajares, F. Acebes, and F. Villafáñez, “Aplicabilidad de los Modelos de Madurez de Business Intelligence a PYMES,” Direccion y Organizacion, no. 71, pp. 31–45, Jul. 2020, doi:10.37610/dyo.v0i71.577; [444] C. U. Españolas, “TIC 360o - Transformación Digital en la Universidad,” 2017; [445] L. F. Berdnikova, A. A. Sherstobitova, O. V. Schnaider, N. O. Mikhalenok, and O. E. Medvedeva, Smart university: Assessment models for resources and economic potential, vol. 144. Springer Singapore, 2019. doi:10.1007/978-981-13-8260-4_51; http://hdl.handle.net/20.500.12749/16730; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Dostupnost: https://hdl.handle.net/20.500.12749/16730
-
11
Autoři: a další
Přispěvatelé: a další
Témata: Ontologías, Tesauros, Interfaces navegacionales, Recursos digitales, Repositorios digitales, Búsqueda visual, Web semántica, Representación del conocimiento (Teoría de la información), Ontologies, Thesauri, Navigational Interfaces, Digital Resources
Popis souboru: pdf; application/pdf
Relation: Espacios; Agosti, M., Crivellari, F., Deambrosis, G., Ferro, N., Gäde, M., Petras, V. & Stiller, J. (2009). D2. 1.1–Report on User Preferences and Information Retrieval Scenarios for Multilingual Access in Europeana. EuropeanaConnect, ECP-2008-DILI- 528001. Recuperado de http://www.europeanaconnect.eu/documents/D2.1.1_eConnect_Report_User_Preferences_MLIA_v1.0_20091222.zip; Agrovoc, 2017. Tesauro multilingüe de agricultura. Recuperado de http://aims.fao.org/es/agrovoc; Aitchison, J., Gilchrist, A. & Bawden, D. (2001). Thesaurus construction and use: a practical manual (7th ed). Chicago: Fitzroy Dearborn Publishers; Aitta, M., Kaleva, S. & Kortelainen, T. (2008). Heuristic evaluation applied to library web services. New Library World, 109(1/2), 25-45.; Alva, M., Martínez, A., Suárez, M., Labra, J., Cueva, J. & Sagastegui, H. (2010). Towards the evaluation of usability in educative websites. International Journal of Technology Enhanced Learning, 2(1), 145-161.; Allan, J., Leuski, A., Swan, R. & Byrd, D. (2001). Evaluating combinations of ranked lists and visualizations of inter-document similarity. Information processing & management, 37(3), 435-458.; Allen, R., Obry, P. & Littman, M. (1993). An interface for navigating clustered document sets returned by queries. Paper presented at the Proceedings of the conference on Organizational computing systems, Milpitas, California, United States.; ANSI/NISO. (2005). ANSI/NISO Z39.19 Guidelines for the Construction, Format, and Management of Monolingual Controlled Vocabularies. National Information Standards Organization (Estados Unidos): American National Standards Institute; Arano, S. & Codina, L. (2004). La estructura conceptual de los tesauros en el entorno digital: nuevas esperanzas para viejos problemas. Jornades Catalanes d’Infornació i Documentació, 9, 14.; Armstrong, C., Fenton, R., Lonsdale, R., Stoker, D., Thomas, R. & Urquhart, C. (2001). A study of the use of electronic information systems by higher education students in the UK. Program: electronic library and information systems, 35(3), 241-262.; Aroyo, L., Dolog, P., Houben, G., Kravcik, M., Naeve, A., Nilsson, M. & Wild, F. (2006). Interoperability in personalized adaptive learning. Educational Technology & Society, 9(2), 4-18.; Aula, A. & Käki, M. (2005). Less is more in Web search interfaces for older adults. First Monday, 10(7-4).; Baeza, R. & Castillo, C. (2004). Crawling the infinite Web: five levels are enough. Algorithms and Models for the Web-Graph, 3243, 156-167.; Baker, K. (2006). Learning objects and process interoperability. International Journal on E-Learning, 5(1), 167-172.; Barton, J., Currier, S. & Hey, J. (2003). Building quality assurance into metadata creation: an analysis based on the learning objects and e-prints communities of practice. Paper presented at the Dublin Core Conference: Supporting Communities of Discourse and Practice - Metadata Research and Applications, September 28 - October 2 (2003), Seattle, Washington, USA.; Battista, G., Eades, P., Tamassia, R. & Tollis, I. (1998). Graph drawing: algorithms for the visualization of graphs. Prentice Hall PTR.; Bederson, B., Shneiderman, B. & Wattenberg, M. (2002). Ordered and Quantum Treemaps: Making Effective Use of 2D Space to Display Hierarchies. ACM Transactions on Computer Graphic, 21(4), 833-854.; Benford, S., Snowdon, D., Greenhalgh, C., Ingram, R., Knox, I. & Brown, C. (1995). VR- VIBE: A Virtual Environment for Co-operative Information Re- trieval. Computer Graphics Forum, 14(3), 349-360. doi:10.1111/j.1467-8659.1995.cgf143_0349.x; Bevan, N. & Macleod, M. (1994). Usability measurement in context. Behaviour & Information Technology, 13(1-2), 132-145.; Bizer, C., Heath, T. & Berners-Lee, T. (2009). Linked data-the story so far. International Journal on Semantic Web and Information Systems, 5(3), 1-22.; Blanch, R. & Lecolinet, E. (2007). Browsing Zoomable Treemaps: Structure-Aware Multi- Scale Navigation Techniques. Visualization and Computer Graphics, IEEE Transactions on, 13(6), 1248-1253. doi:10.1109/tvcg.2007.70540; Blocks, D., Binding, C., Cunliffe, D. & Tudhope, D. (2002). Qualitative evaluation of thesaurus-based retrieval. Research and Advanced Technology for Digital Libraries, pp. 346-361, Springer, Heidelberg, Berlin.; Boldi, P., Codenotti, B., Santini, M. & Vigna, S. (2004). Ubicrawler: A scalable fully distributed web crawler. Software: Practice and Experience, 34(8), 711-726.; Booth, P. (1989). An introduction to human-computer interaction. London, UK: Psychology Press.; Boren, T. & Ramey, J. (2000). Thinking aloud: Reconciling theory and practice. Professional Communication, IEEE Transactions on, 43(3), 261-278.; Bostock, M. & Heer, J. (2009). Protovis: A graphical toolkit for visualization. Visualization and Computer Graphics, IEEE Transactions on, 15(6), 1121-1128.; Boulos, M., Warren, J., Gong, J. & Yue, P. (2010). Web GIS in practice VIII: HTML5 and the canvas element for interactive online mapping. International journal of health geographics, 9(1), 14.; Brachman, R. & Schmolze, J. (1985). An overview of the KL-ONE knowledge representation system. Cognitive science, 9(2), 171-216.; Bremm, S., Von Landesberger, T., Hess, M., Schreck, T., Weil, P. & Hamacherk, K. (2011). Interactive visual comparison of multiple trees. Paper presented at the VAST 2011 - IEEE Conference on Visual Analytics Science and Technology 2011, Proceedings, 31-40. doi:10.1109/VAST.2011.6102439; Bruce, T. & Hillmann, D. (2004). The continuum of metadata quality: defining, expressing, exploiting. Chicago, IL: D.Hillman & E.Westbrooks (Eds.).; Bruno, D. & Richmond, H. (2003). The truth about taxonomies. Information management journal, 37(2), 48-52.; Buchanan, S. & Salako, A. (2009). Evaluating the usability and usefulness of a digital library. Library Review, 58(9), 638-651.; Bui, Y. & Park, J. (2006). An assessment of metadata quality: A case study of the national science digital library metadata repository. H. Moukdad (ed.) Proceedings of CAIS/ ACSI 2006 Information Science Revisited: Approaches to Innovation, 13.; Buttenfield, B. (1999). Usability evaluation of digital libraries. Science & Technology Libraries, 17(3-4), 39-59.; Card, S., Mackinlay, J. & Shneiderman, B. (1999). Readings in information visualization: using vision to think. San Francisco, CA: Morgan Kaufmann Publishers Inc.146; Castells, L. (2007). Los protocolos de pensamiento en voz alta como instrumento para analizar el proceso de escritura. Revista española de lingüística aplicada (20), 27- 36.; Castells, P. (2002). Aplicación de técnicas de la web semántica. Universidad Autónoma de Madrid.; Castillo, C. (2005). Effective web crawling. ACM Transactions on Computer Graphic, 39, 55-56.; Castillo, L. (2006). Elaboración de un tesauro de información de actualidad y conversión en red semántica para su empleo en un sistema de recuperación periodístico. Universidad de Valencia: Valencia.; Cavieres Abarca, A., Fredes Mena, S. & Ramírez Novoa, A. (2010). Tesauros y web semántica: diseño metodológico para estructurar contenidos web mediante SKOS-Core. Serie bibliotecología y gestión de información, (57), 1-64.; Cechinel, C., Sánchez, S. & Sicilia, M. (2009). Empirical analysis of errors on humangenerated learning objects metadata. Proceedings Metadata and Semantic Research Third International Conference, Milan, Italy, pp. 60-70.; Cechinel, C., Silva, S., Ochoa, X., Sánchez, S. & Sicilia, M. (2012). Populating Learning Object Repositories with Hidden Internal Quality Information. Paper presented at the Proceedings of the 2nd Workshop on Recommender Systems for Technology Enhanced Learning (RecSysTEL 2012). Manouselis, N., Draschler, H., Verber, K., and Santos, OC (Eds.). Published by CEUR Workshop Proceedings.; Centelles, M. (2005). Taxonomías para la categorización y la organización de la información en sitios web. Hipertext.net.; Cervera, J., López, M., Fernández, C. & Sánchez, S. (2009). Quality metrics in learning objects. Metadata and Semantics, 135-141.; Cleveland, W. (1984). Graphs in scientific publications. Amer. Stat., 38(4).; Cleveland, W., Diaconis, P. & McGill, R. (1982). Variables on scatterplots look more highly correlated when the scales are increased. Defense Technical Information Center.; Clyphan, R. & Sugimoto. (2009). Europeana Semantic Element ESE v3.4.1. Recuperado de http://pro.europeana.eu/web/guest/technical-requirements/.; Cockburn, A. & McKenzie, B. (2000). An evaluation of cone trees. People and Computers XIV—Usability or Else. British Computer Society Conference on Human Computer Interaction, pp. 425-436, Springer, Heidelberg, Berlin.; Codina, L. (2000). Evaluación de recursos digitales en línea: conceptos, indicadores y métodos. Revista española de documentación científica, 23(1), 9-44.; Corcho, O., Fernández, M. & Gómez, A. (2003). Methodologies, tools and languages for building ontologies. Where is their meeting point? Data & knowledge engineering, 46(1), 41-64.; Crockford, D. (2006). The application/json media type for JavaScript Object Notation (JSON).; Cugini, J., Laskowski, S. & Sebrechts, M. (2000). Presenting search results: design, visualization and evaluation. Paper presented at the Proceedings of Information Doors. Where Information Search and Hypertext Link Workshop.; Chen, C. (2004). Information visualization: Beyond the horizon. Springer, 2(16), 316.; Chirita, P., Gavriloaie, R., Ghita, S., Nejdl, W. & Paiu, R. (2005). Activity based metadata for semantic desktop search. The Semantic Web: Research and Applications, pp. 439-454, Springer, Heidelberg, Berlin.; Chrysafiadi, K. & Virvou, M. (2013). A knowledge representation approach using fuzzy cognitive maps for better navigation support in an adaptive learning system. SpringerPlus, 2(1), 81.; Chuanjun, S. (2004). On the Evaluation of the Quality of Digital Collections. The Journal of the Library Science in China, 4.; Davis, P. & Connolly, M. (2007). Institutional repositories: evaluating the reasons for non- use of Cornell University’s installation of DSpace. D-Lib Magazine, 13(3/4).; Davis, R., Shrobe, H. & Szolovits, P. (1993). What is a knowledge representation?. AI magazine, 14(1), 17.; De la Prieta, F. & Gil, A. (2010). A multi-agent system that searches for learning objects in heterogeneous repositories. Trends in Practical Applications of Agents and Multiagent Systems, 355-362.; Design, P. (1998). Visual Thesaurus. Recuperado de http://www.visualthesaurus.com; Dietze, S., Yu, H., Giordano, D., Kaldoudi, E., Dovrolis, N. & Taibi, D. (2012). Linked Education: interlinking educational Resources and the Web of Data. Paper presented at the Proceedings of the 27th Annual ACM Symposium on Applied Computing.; Dinkla, K., Westenberg, M., Timmerman, H., Van Hijum, S. & Van Wijk, J. (2011). Comparison of multiple weighted hierarchies: visual analytics for microbe community profiling. Computer Graphics Forum, 30, 1141-1150.; Dix, A., Janet, E., Abowd, G. & Beale, R. (2003). Human computer interaction. NY: Prentice-Hall, Inc.; Doerr, M., Gradmann, S., Hennicke, S., Isaac, A., Meghini, C. & Van de Sompel, H. (2010). The Europeana Data Model (EDM). Paper presented at the Proceedings of IFLA, Gothenburg, Sweden.; Downes, S. (2007). Models for sustainable open educational resources. Interdisciplinary Journal of Knowledge and Learning Objects, 3.; Draper, G., Livnat, Y. & Riesenfeld, R. (2009). A Survey of Radial Methods for Information Visualization. Visualization and Computer Graphics, IEEE Transactions on, 15(5), 759-776. doi:10.1109/tvcg.2009.23; Dumas, J. & Redish, J. (1999). A practical guide to usability testing. England: Intellect.; Duncan, S. (2009). Patterns of learning object reuse in the Connexions repository. Tesis doctoral. Utah State University, Logan, USA.; Durkin, J. (1994). Expert systems: design and development. New York: Maxwell Macmillan International.; Eades, P. & Sugiyama, K. (1990). How to Draw a Directed Graph J. Information Processing, 13(4), pp. 424-434.; Edwards, J., McCurley, K. & Tomlin, J. (2001). An adaptive model for optimizing performance of an incremental web crawler. WWW Conference, Hong Kong, China.; English, J., Hearst, M., Sinha, R., Swearingen, K. & Lee, K. (2002). Flexible search and navigation using faceted metadata. Technical report, University of Berkeley, School of Information Management and Systems, 2003. Submitted for publication. Europeana, 2017. Europeana REST API. Recuperado de http://labs.europeana. eu/api/introduction.; Europeana. (2017b). Europeana Linked Open Data. Recuperado de http://labs.europeana.eu/api/linked-open-data-introduction.; Fang, X. & Holsapple, C. (2007). An empirical study of web site navigation structures’ impacts on web site usability. Decision Support Systems, 43(2), 476-491.; Fekete, J. (2004). The infovis toolkit. Paper presented at the Information Visualization, 2004. INFOVIS 2004. IEEE Symposium on.; Fekete, J., Hémery, P., Baudel, T. & Wood, J. (2011). Obvious: A meta-toolkit to encapsulate information visualization toolkits—one toolkit to bind them all. Paper presented at the Visual Analytics Science and Technology (VAST), 2011 IEEE Conference on.; Fernández, A. (2011). La construcción de tesauros académicos: un modelo general y un método inductivo con aplicación al “e-learning”. Tesis doctoral. Universidad Complutense de Madrid, Madrid, España.; Fernández, J. (2001). Modelos de Recuperación de Información basados en Redes de Creencia. Tesis doctoral. Universidad de Granada, España.; Flouris, G., Plexousakis, D. & Antoniou, G. (2003). Describing knowledge representation schemes: A formal account. Technical Rep. No. TR-320, Institute of Computer Science—Foundation for Research and Technology—Hellas (ICS-FORTH), Crete, Greece.; Foltz, M. (1997). An information space design rationale.; Fox, E., Gonçalves, M. & Kipp, N. (2002). Handbook on Information Technologies for Education and Training. Digital libraries, pp. 623-641, Springer, Heidelberg, Berlin.; Fox, E., Hix, D., Nowell, L., Brueni, D., Wake, W., Heath, L. & Rao, D. (1999). Users, user interfaces, and objects: Envision, a digital library. Journal of the American Society for Information Science, 44(8), 480-491.; Fox, E. & Logan, E. (2005). An Asian digital libraries perspective. Information processing & management, 41(1), 1-4.; Friesen, N. (2001). What are educational objects?. Interactive learning environments, 9(3), 219-230.; Friesen, N. (2009). Open educational resources: New possibilities for change and sustainability. The International Review of Research in Open and Distance Learning, 10(5).; Frøkjær, E., Hertzum, M. & Hornbæk, K. (2000). Measuring usability: are effectiveness, efficiency, and satisfaction really correlated?. Paper presented at the Proceedings of the SIGCHI conference on Human factors in computing systems.; Fulton, S. & Fulton, J. (2013). HTML5 Canvas: O’Reilly Media. Furnas, G. (1986). Generalized fisheye views (Vol. 17): ACM.; Furnas, G. & Zacks, J. (1994). Multitrees: enriching and reusing hierarchical structure. Paper presented at the Proceedings of the SIGCHI conference on Human factors in computing systems.; Gaona-García, P., Martín, D., Fermoso, A. & Sánchez, S. (2014). A usability study of taxonomy-visualization user interfaces in digital repositories. Journal Online Information review, 38(2).; Gaona-García, P., Sánchez, S. & Gaona, E. (2013). Prototipo informático para extracción de recursos digitales sobre internet. Revista Tecnura, 17, 79-92.; Gaona-García, P., Sánchez, S. & Montenegro, C. (2014). Visualization of information: a proposal to improve the search and access to digital resources in repositories. Ingeniería e investigación, 34(1), 83-89.; Gaona-García, P., Fermoso-García, A. & Sánchez-Alonso, S. (2017). Exploring the Relevance of Europeana Digital Resources: Preliminary Ideas on Europeana Metadata Quality/Exploración de la relevancia de los recursos digitales de Eu- ropeana: ideas preliminares sobre la calidad de los metadatos Europeana. Revista Interamericana de Bibliotecología, 40(1), 59.; Gašević, D., Djurić, D. & Devedzic, V. (2009). Model driven engineering and ontology development. Springerverlag, Berlin, Heidelberg.; Gašević, D. & Hatala, M. (2006). Ontology mappings to improve learning resource search. British Journal of Educational Technology, 37(3), 375-389.; Genesereth, M. & Ketchpel, S. (1994). Software agents. Commun. ACM, 37(7), 48-53, 147.; Gero, J. (1990). Design prototypes: a knowledge representation schema for design. AI magazine, 11(4), 26.; Gilchrist, A. (2003). Thesauri, taxonomies and ontologies–an etymological note. Journal of documentation, 59(1), 7-18; Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen, C. D. & Roberts, J. C. (2011). Visual comparison for information visualization. Information Visualization, 10(4), 289-309.; Gonçalves, M., Moreira, B., Fox, E. & Watson, L. (2007). What is a good digital library? – A quality model for digital libraries. Information Processing & Management, 43(5), 1416-1437. doi:10.1016/j.ipm.2006.11.010.; González, V. & Kobsa, A. (2003). Benefits of information visualization systems for administrative data analysts. Paper presented at the Information Visualization, 2003. IV 2003. Proceedings. Seventh International Conference on.; Graham, M. & Kennedy, J. (2005). Extending taxonomic visualisation to incorporate synonymy and structural markers. Information Visualization, 4(3), 206-223.; Graham, M. & Kennedy, J. (2010). A survey of multiple tree visualisation. Information Visualization, 9(4), 235-252.; Graham, M., Kennedy, J. & Benyon, D. (2000). Towards a methodology for developing visualizations. International Journal of Human-Computer Studies, 53(5), 789- 807.; Granollers, T. (2004). MPIu+ a. Una metodología que integra la Ingeniería del Software, la Interacción Persona-Ordenador y la Accesibilidad en el contexto de equipos de desarrollo multidisciplinares. Tesis doctoral. Universitat de Lleida, España.; Gruber, T. (1993). A translation approach to portable ontology specifications. Knowledge acquisition, 5(2), 199-220.; Guarino, N. & Poli, R. (1995). Formal ontology, conceptual analysis and knowledge representation. International Journal of Human Computer Studies, 43(5), 625-640.; Guha, R., McCool, R. & Miller, E. (2003). Semantic search. Paper presented at the Proceedings of the 12th international conference on World Wide Web.; Harger, J. & Crossno, P. (2012). Comparison of open-source visual analytics toolkits. Paper presented at the Proceedings of the SPIE Conference on Visualization and Data Analysis.; Hargittai, E. (2004). Classifying and coding online actions. Social Science Computer Review, 22(2), 210-227.; Hartson, H., Shivakumar, P. & Pérez, M. (2004). Usability inspection of digital libraries: a case study. Int. J. Digit. Libr. 4(2), 108-123.; Haslhofer, B., & Isaac, A. (2011). Data Europeana. EU: The Europeana Linked Open Data Pilot. Paper presented at the International Conference on Dublin Core and Metadata Applications, 21 - 23 September 2011, The Hague, Netherlands.; Hassan, Y., Martín, F. & Iazza, G. (2004). Diseño web centrado en el usuario: usabilidad y arquitectura de la información. Hipertext.net (2).; Hayati, Z. & Jowkar, T. (2008). Adoption of electronic reference materials in academic libraries of Iran. The International Information & Library Review, 40(1), 52-63.; Herman, I., Melancon, G. & Marshall, M. S. (2000). Graph visualization and navigation in information visualization: A survey. Visualization and Computer Graphics, IEEE Transactions on, 6(1), 24-43. doi:10.1109/2945.841119; Hearst, M. (1995). TileBars: visualization of term distribution information in full text information access. Paper presented at the Proceedings of the SIGCHI conference on Human factors in computing systems.; Hearst, M. (2009). Search user interfaces. New York, NY: Cambridge University Press.; Hearst, M. & Karadi, C. (1997). Cat-a-Cone: an interactive interface for specifying searches and viewing retrieval results using a large category hierarchy. Paper presented at the ACM SIGIR Forum.; Heer, J. & Bostock, M. (2010). Crowdsourcing graphical perception: using mechanical turk to assess visualization design. Proceedings of the 28th International Conference on Human Factors in Computing Systems, pp. 203-212.; Heer, J., Card, S. & Landay, J. (2005). Prefuse: a toolkit for interactive information visualization. Paper presented at the Proceedings of the SIGCHI conference on Human factors in computing systems.; Heer, J., Kong, N. & Agrawala, M. (2009). Sizing the horizon: the effects of chart size and layering on the graphical perception of time series visualizations. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.; Hemmje, M., Kunkel, C. & Willett, A. (1994). LyberWorld, a visualization user interface supporting fulltext retrieval. Paper presented at the Proceedings of the 17th annual international ACM SIGIR conference on Research and development in information retrieval.; Hetzler, E. & Turner, A. (2004). Analysis experiences using information visualization. Computer Graphics and Applications, IEEE, 24(5), 22-26.; Hitchcock, S., Woukeu, A., Brody, T., Carr, L., Hall, W. & Harnad, S. (2003). Evaluating Citebase, an open access Web-based citation-ranked search and impact discovery service. Monograph (Technical Report), University of Southampton, England.; Hodgins, W. & Conner, M. (2000). Everything you ever wanted to know about learning standards but were afraid to ask. Learning in the New Economy e-Magazine (Line Zine).; Hoffman, P., Grinstein, G., Marx, K., Grosse, I. & Stanley, E. (1997). DNA visual and analytic data mining. Paper presented at the Visualization 97´, Proceedings.; Holzschuher, F. & Peinl, R. (2013). Performance of graph query languages: comparison of cypher, gremlin and native access in Neo4j. Paper presented at the Proceedings of the Joint EDBT/ICDT 2013 Workshops.; Howland, J., Jonassen, D. & Marra, R. (2012). Meaningful learning with technology. Pearson Upper Saddle River, NJ.; Huang, M., Liang, J. & Nguyen, Q. (2008). A Usability Study on the Use of Multi-Context Visualization. Paper presented at the CGIV ‘08. Fifth International Conference on Computer Graphics, Imaging and Visualization, 26-28 Aug. 2008.; Hughes, B. (2005). Metadata quality evaluation: Experience from the open language archives community. Digital Libraries: International Collaboration and Cross- Fertilization, 135-148.; ISO. (1985). ISO 5964-1985. Guidelines for the establishment and development of multilingual thesauri. Recuperado de https://www.iso.org/standard/12159.html; ISO. (1998). ISO 9241 Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs) - Part 11. Guidance on Usability. Recuperado de https://www.iso.org/ standard/16883.html; ISO. (2001). ISO/IEC 9126-1:2001 Software product evaluation - Quality characteristics and guidelines for their use.; Jacob, R. & Karn, K. (2003). Eye tracking in human-computer interaction and usability research: Ready to deliver the promises. Mind, 2(3), 4.; Jain, P. & Babbar, P. (2006). Digital libraries initiatives in India. The International Information & Library Review, 38(3), 161-169.; Jeng, J. (2005). Usability assessment of academic digital libraries: Effectiveness, efficiency, satisfaction, and learnability. Libri, 55(2-3), 96-121.; Jeng, J. (2009). What should we take into consideration when we talk about usability? Tsakonas, G. & Papatheodorou, C. (eds.) Evaluation of digital libraries. An insight into useful applications and methods. Oxford: Chandos Publishing, pp. 63–73; Jovanović, J., Gašević, D., Knight, C. & Richards, G. (2007). Ontologies for effective use of context in e-learning settings. Educational Technology & Society, 10(3), 47- 59.; Kani, E., Ghinea, G. & Chen, S. Y. (2006). Digital libraries: what do users want? Online Information Review, 30(4), 395-412.; Keim, D., Mansmann, F., Schneidewind, J. & Schreck, T. (2006). Monitoring network traffic with radial traffic analyzer. Paper presented at the Visual Analytics Science and Technology, 2006 IEEE Symposium On.; Kelty, C., Burrus, C. & Baraniuk, R. (2008). Peer review anew: Three principles and a case study in postpublication quality assurance. Proceedings of the IEEE, 96(6), 1000-1011.; Khoo, M., Kusunoki, D. & MacDonald, C. (2012). Finding Problems: When Digital Library Users Act as Usability Evaluators. Paper presented at the System Science (HICSS), 2012 45th Hawaii International Conference on, 4-7 Jan. 2012.; Kim, H. & Kim, Y. (2008). Usability study of digital institutional repositories. Electronic Library, The, 26(6), 863-881.; Klerkx, J., Duval, E. & Meire, M. (2004). Using information visualization for accessing learning object repositories. 2004. IV 2004. Proceedings. Eighth International Conference on Information Visualisation, London, 465-470. doi:10.1109/ iv.2004.1320185; Klerkx, J., Meire, M., Ternier, S., Verbert, K. & Duval, E. (2005). Information visualisation: towards an extensible framework for accessing learning object repositories. Paper presented at the Proceedings of World Conference on Educational Multimedia, Hypermedia & Telecommunications.; Kobsa, A. (2004). User experiments with tree visualization systems. Paper presented at the Information Visualization, 2004. INFOVIS 2004. IEEE Symposium on.; Komlodi, A., Marchionini, G. & Soergel, D. (2007). Search history support for finding and using information: User interface design recommendations from a user study. Information Processing & Management, 43(1), 10-29. doi:10.1016/j. ipm.2006.05.017; Kruskal, J. & Landwehr, J. (1983). Icicle plots: Better displays for hierarchical clustering. The American Statistician, 37(2), 162-168.; Kumar, V., Nesbit, J. & Han, K. (2005). Rating learning object quality with distributed bayesian belief networks: The why and the how. Paper presented at the Advanced Learning Technologies, 2005. ICALT 2005. Fifth IEEE International Conference on.; Lagoze, C., Van de Sompel, H., Johnston, P., Nelson, M., Sanderson, R. & Warner, S. (2007). Open Archives Initiative Object Reuse and Exchange (OAI-ORE). Technical report, Open Archives Initiative.; Lamping, J., Rao, R. & Pirolli, P. (1995). A focus+ context technique based on hyperbolic geometry for visualizing large hierarchies. Paper presented at the Proceedings of the SIGCHI conference on Human factors in computing systems.; Lamping, L. & Rao, R. (1996). The Hyperbolic Browser: A Focus+Context Technique for Visualizing Large Hierarchies. Journal of Visual Languages and Computing, 7(1), pp. 33-55.; Lee, M., Reilly, R. & Butavicius, M. (2003). An empirical evaluation of Chernoff faces, star glyphs, and spatial visualizations for binary data. Paper presented at the ACM International Conference Proceeding Series.; Lee, M. & Vickers, D. (1998). Psychological approaches to data visualisation: DTIC Document. Departament of Psychology, University of Adelaide, Australia.; Lei, M. (2008). Knowledge organization systems (KOS). Knowledge Organization, 35(2- 3), 160-182.; Lewis, C. (1982). Using the” thinking-aloud” method in cognitive interface design. IBM TJ Watson Research Center.; Li, J., Gasevic, D., Nesbit, J. & Richards, G. (2005). Ontology Mappings Enable Interoperation of Knowledge Domain Taxonomies. Paper presented at the 2nd LORNET international annual conference.; Lidwell, W., Holden, K. & Butler, J. (2010). Universal Principles of Design. 125 Ways to Enhance Usability, Influence Perception, Increase Appeal, Make Better Design Decisions, and Tech Through Design [25 Additional Design Principles]: Rockport publishers.; Liew, C. & Foo, S. (1999). Derivation of interaction environment and information object properties for enhanced integrated access and value-adding to electronic documents. Paper presented at the Aslib Proceedings.; Lin, X. (1997). Map displays for information retrieval. JASIS, 48(1), 40-54.; Lin, Y., Ahn, J., Brusilovsky, P., He, D. & Real, W. (2010). Imagesieve: Exploratory search of museum archives with named entity-based faceted browsing. Proceedings of the American Society for Information Science and Technology, 47(1), 1-10. doi:10.1002/meet.14504701217; Lindberg, D., Humphreys, B. & McCray, A. (1993). The Unified Medical Language System. Methods of information in medicine, 32(4), 281.; Livnat, Y., Agutter, J., Moon, S., Erbacher, R. & Foresti, S. (2005). A visualization paradigm for network intrusion detection. Paper presented at the Information Assuran- ce Workshop, 2005. IAW’05. Proceedings from the Sixth Annual IEEE SMC.; Longmire, W. (2000). A primer on learning objects. Learning Circuits, 1(3).; Lytras, M. & Sicilia, M. (2007). Where is the value in metadata? International Journal of Metadata, Semantics and Ontologies, 2(4), 235-241.; Mackinlay, J. (1991). Search architectures for the automatic design of graphical presentations. ACM Press, New York, 281-292.; Mackinlay, J., Hanrahan, P. & Stolte, C. (2007). Show me: Automatic presentation for visual analysis. Visualization and Computer Graphics, IEEE Transactions on, 13(6), 1137-1144.; Mangold, C. (2007). A survey and classification of semantic search approaches. International Journal of Metadata, Semantics and Ontologies, 2(1), 23-34.; Marchionini, G. (1997). Information seeking in electronic environments. USA: Cambridge University Press; Marchionini, G. (2008). Human–information interaction research and development. Library & amp; Information Science Research, 30(3), 165-174. doi:10.1016/j.lisr.2008.07.001; Marchionini, G. & White, R. (2010). Find what you need, understand what you find. International Journal of Human Computer Interaction, 23(3), 205-237.; Margaryan, A. & Littlejohn, A. (2008). Repositories and communities at cross-purposes: issues in sharing and reuse of digital learning resources. 24, Blackwell Publishing Ltd. Retrieved from http://dx.doi.org/10.1111/j.1365-2729.2007.00267.x (4); Martín-Moncunill, D., Sánchez, S., Gaona, P. & Marianos, N. (2013). Applying visualization techniques to develop interfaces for educational repositories: the case of Organic. Lingua and VOA3R. Paper presented at the Proceedings of the Learning Innova- tions and Quality: The Future of Digital Resources, Rome.; McGreal, R. (2008). A typology of learning object repositories. Handbook on Information Technologies for Education and Training, 5-28.; McKay, D., Shukla, P., Hunt, R. & Cunningham, S. (2004). Enhanced browsing in digital libraries: three new approaches to browsing in Greenstone. International Journal on Digital Libraries, 4(4), 283-297.; Merčun, T. & Žumer, M. (2009). Visualizing FRBR. Libraries in the Digital Age, LIDA 2009, 25-30 May, Dubrovnik and Zadar Croatia, 209-215.; Merčun, T. & Žumer, M. (2010). Visualizing for explorations and discovery. Paper presented at the Proc. of the conf. on Libraries in the Digital Age, Zadar, Croatia.; Merčun, T., Žumer, M. & Aalberg, T. (2012). FrbrVis: An Information Visualization Approach to Presenting FRBR Work Families Theory and Practice of Digital Libraries. In P. Zaphiris, G. Buchanan, E. Rasmussen & F. Loizides (eds.), Theory and Practice of Digital Libraries, Vol. 7489, pp. 504-507, Springer, Berlin, Heidelberg.; Miles, A., Matthews, B., Wilson, M. & Brickley, D. (2005). SKOS core: simple knowledge organisation for the web. Paper presented at the International Conference on Dublin Core and Metadata Applications “Metadata Vocabularies in Practice”, 12-15 September 2005, Leganés - Madrid, Spain.; Mizoguchi, R., Vanwelkenhuysen, J. & Ikeda, M. (1995). Task ontology for reuse of problem solving knowledge. Towards Very Large Knowledge Bases: Knowledge Building & Knowledge Sharing, 46-57.; Moen, W., Stewart, E. & McClure, C. (1997). The role of content analysis in evaluating metadata for the us government information locator service (gils): results from an explora- tory study. GILSMDContentAnalysis.htm.; Mora, M. (2004). Interacción en interfaces de recuperación de información: conceptos, metáforas y visualización. Gijón: Trea.; Morante, M. (2003). Usability guidelines for taxonomy development. Montague Institue Recuperado de http://www.montague.com/abstracts/usability.html; Muelder, C. & Ma, K. (2008). A treemap based method for rapid layout of large graphs. Paper presented at the Visualization Symposium, 2008. PacificVIS ‘08. IEEE Pacific, Tokio.; Muñoz, J., Calvillo, E., Ochoa, C., Santaolaya, R. & Álvarez, F. (2010). Use of Agents to Realize a Federated Searching of Learning Objects. Trends in Practical Applica- tions of Agents and Multiagent Systems, 1-8.; Nakayama, K., Hara, T. & Nishio, S. (2007,). A Thesaurus Construction Method from Large ScaleWeb Dictionaries. Paper presented at the Advanced Information Networking and Applications, 2007. AINA ‘07. 21st International Conference on. 21-23 May 2007.; Nash, S. (2005). Learning objects, learning object repositories, and learning theory. Preliminary best practices for online courses. Interdisc. J. E-Learn. Objects 1(1), 217-228.; Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T. & Swartout, W. (1991). Enabling technology for knowledge sharing. AI magazine, 12(3), 36.; Nicholas, D., Huntington, P. & Jamali, H. (2007). The use, users, and role of abstracts in the digital scholarly environment. The journal of academic librarianship, 33(4), 446- 453.; Nielsen, J. (1994a). Guerrilla HCI: Using discount usability engineering to penetrate the intimidation barrier. Academic Press, Inc.; Nielsen, J. (1994b). Usability engineering. Morgan Kaufmann Publishers Inc., San Francisco, California, USA.; Nielsen, J. (2003). Usability 101: Introduction to usability. Recuperado de http://www.ingenieriasimple.com/usabilidad/IntroToUsability.pdf; Nielsen, J., Snyder, C., Molich, R. & Farrell, S. (2001). E-commerce user experience. Nielsen Norman Group.; Noik, E. (1993). Exploring large hyperdocuments: fisheye views of nested networks. Proceedings of the fifth ACM conference on Hypertext, 192-205.; Norman, D. (2005). Human-centered design considered harmful. Interactions, 12(4), 14- 19.; Norman, D. (2008). Simplicity is not the answer. Interactions, 15(5), 45-46.; Ochoa, X., Cardinaels, K., Meire, M. & Duval, E. (2005). Frameworks for the automatic indexation of learning management systems content into learning object repositories. Paper presented at the Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications 2005.; Ochoa, X. & Duval, E. (2006). Quality Metrics for learning object Metadata. Paper presented at the Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications 2006, 1 March 2006, Orlando, Florida, USA.; Ochoa, X. & Duval, E. (2008). Relevance ranking metrics for learning objects. Learning Technologies, IEEE Transactions on, 1(1), 34-48.; Ochoa, X. & Duval, E. (2009). Quantitative analysis of learning object repositories. Learning Technologies, IEEE Transactions on, 2(3), 226-238.; Pancheshnikov, Y. (2007). Integrating print and digital resources in library collections. Library Collections, Acquisitions, and Technical Services, 31(2), 111-112.; Park, J. (2005). Semantic interoperability across digital image collections: A pilot study on metadata mapping. Proceedings Canadian Association for Information Science (CAIS).; Park, J. (2009). Metadata quality in digital repositories: A survey of the current state of the art. Cataloging & Classification Quarterly, 47(3-4), 213-228.; Pastor, J. (2009). Diseño de un sistema colaborativo para la creación y gestión de tesauros en Internet basado en SKOS. Tesis doctoral. Universidad de Murcia, Murcia, España.; Perallos, A. (2007). Metodología ágil y adaptable al contexto para la evaluación integral y sistemática de la calidad de los sitios web. Tesis doctoral. Universidad de Deusto, Bilbao, España.; Petrelli, D. (2008). On the role of user-centred evaluation in the advancement of interactive information retrieval. Information Processing & Management, 44(1), 22-38. doi:10.1016/j.ipm.2007.01.024; Pirolli, P., Card, S. & Van Der Wege, M. (2001). Visual information foraging in a focus+ context visualization. Paper presented at the Proceedings of the SIGCHI conference on Human factors in computing systems.; Plaisant, C., Grosjean, J. & Bederson, B. (2002). Spacetree: Supporting exploration in large node link tree, design evolution and empirical evaluation. Paper presented at the INFOVIS 2002. IEEE Symposium on Information Visualization, 2002, USA.; Polsani, P. (2006). Use and abuse of reusable learning objects. Journal of Digital information, 3(4).; Polson, P. & Lewis, C. (1990). Theory-based design for easily learned interfaces. Human–Computer Interaction, 5(2-3), 191-220.; Poole, A. & Ball, L. (2006). Eye tracking in HCI and usability research. In C. Ghaoui (Ed.), Encyclopaedia of human-computer interaction (pp. 211-219). Pennsylvania: Idea Group Inc.; Prabha, C. (2007). Shifting from print to electronic journals in ARL university libraries. Serials Review, 33(1), 4-13.; Pullan, M., Watson, M., Kennedy, J., Raguenaud, C. & Hyam, R. (2000). The Prometheus Taxonomic Model: a practical approach to representing multiple classifications. Taxon, 55-75.; Purday, J. (2009). Think culture: Europeana. Eu from concept to construction. The Electronic Library, 27(6), 919-937.; Qing, F. & Ruhua, H. (2008). Evaluating the usability of discipline repositories. Paper presented at the IT in Medicine and Education, 2008. ITME 2008. IEEE International Symposium on.; Reddy, M. & Wang, R. (1995). Estimating data accuracy in a federated database environment. In S. Bhalla (Ed.), Information Systems and Data Management, 1006, 115-134, Springer, Berlin, Heidelberg.; Rehak, D. & Mason, R. (2003). Keeping the learning in learning objects. Reusing online resources: A sustainable approach to e-learning, 20-34.; Reilly, D. & Inkpen, K. (2007). White rooms and morphing don’t mix: setting and the evaluation of visualization techniques. Paper presented at the Proceedings of the SIGCHI conference on Human factors in computing systems.; Ríos Hilario, A., Martín Campo, D. & Ferreras Fernández, T. (2012). Linked data y linked open data: su implantación en una biblioteca digital. El caso de Europeana. Recuperado de http://www.elprofesionaldelainformacion.com/contenidos/2012/mayo/10.html; Roberts, J. (1995). Faculty knowledge about library services at the University of the West Indies. New Library World, 96(2), 14-22.; Robertson, G., Mackinlay, J. & Card, S. (1991). Cone trees: animated 3D visualizations of hierarchical information. Paper presented at the Proceedings of the SIGCHI conference on Human factors in computing systems: Reaching through technology.; Rosch, J.L. & Vogel-Walcutt, J.J. (2013). A review of eye-tracking applications as tools for training. Cognition, technology & work, 15(3), 313-327.; Ruecker, S. (2003). Affordances of prospect for academic users of interpretively-tagged text collections. Doctoral dissertation, University of Alberta, Edmonton.; Ruecker, S., Radzikowska, M. & Sinclair, S. (2011). Visual interface design for digital cultural heritage: A guide to rich-prospect browsing. Ashgate Publishing, Ltd, Farnham, Surrey.; Russell, S., Norvig, P. & Davis, E. (2010). Artificial intelligence: a modern approach. Prentice Hall, Englewood Cliffs, NJ, 3rd edition.; Sánchez, S. & Sicilia, M. (2005). Normative specifications of learning objects and learning processes: towards higher levels of automation in standardized e- learning. International Journal of Instructional Technology and Distance Learning, 2(3), 3-12.; Sánchez, S. & Sicilia, M. (2009). Using an AGROVOC-based ontology for the description of learning resources on organic agriculture. Metadata and Semantic, pp. 481-492, Springer, Berlin, Heidelberg.; Santos, J., Ochoa, X., Parra, G. & Duval, E. (2011). La experiencia de ARIADNE: Creando una red de reutilización de objetos de aprendizaje a través de estándares y especificaciones. IEEE-RITA, 6(3), 112-117.; Sanz, J., Dodero, J. & Sánchez, S. (2009). A preliminary analysis of software engineering metrics-based criteria for the evaluation of learning objects reusability. International Journal of Emerging Technologies in Learning (iJET), 4(2009), 30- 34.; Sanz, J., Dodero, J. & Sánchez, S. (2011). Metrics-based evaluation of learning object reusability. Software Quality Journal, 19(1), 121-140.; Schaffert, S. & Geser, G. (2008). Open educational resources and practices. E-Learning Papers, 7, 1-10.; Schulz, H., Hadlak, S. & Schumann, H. (2011). Point-based visualization for large hierarchies. Visualization and Computer Graphics, IEEE Transactions on, 17(5), 598- 611.; Sebrechts, M., Cugini, J., Laskowski, S., Vasilakis, J. & Miller, M. (1999). Visualization of search results: a comparative evaluation of text, 2D, and 3D interfaces. Paper presented at the Proceedings of the 22nd annual international ACM SIGIR con- ference on Research and development in information retrieval.; Shiri, A. (2008). Metadata-enhanced visual interfaces to digital libraries. Journal of Information Science, 34(6), 763-775.; Shiri, A. & Revie, C. (2005). Usability and user perceptions of a thesaurus-enhanced search interface. Journal of documentation, 61(5), 640-656.; Shiri, A., Revie, C. & Chowdhury, G. (2002). Thesaurus-enhanced search interfaces. Journal of Information Science, 28(2), 111-122.; Shiri, A., Ruecker, S., Doll, L., Bouchard, M. & Fiorentino, C. (2011). An evaluation of thesaurus-enhanced visual interfaces for multilingual digital libraries. Research and Advanced Technology for Digital Libraries, pp. 236-243, Springer, Heidelberg, Berlin.; Shneiderman, B. (1992). Tree visualization with tree-maps: 2-d space-filling approach. ACM Transactions on graphics (TOG), 11(1), 92-99.; Shneiderman, B. (2003). Designing the user interface. Pearson Education India.; Shneiderman, B., Feldman, D., Rose, A. & Grau, X. F. (2000). Visualizing digital library search results with categorical and hierarchical axes. Paper presented at the Proceedings of the fifth ACM conference on Digital libraries, Rugensburg.; Shneiderman, B. & Johnson, B. (1991). Tree-maps: A space-Filling Approach to the Visualization of Hierarchical Information Structures. Proceedings of IEEE Information Visualization, pp. 175-282.; Shneiderman, B. & Plaisant, C. (2005). Designing the user interface 4th edition. Ed: Pearson Addison Wesley, USA.; Shneiderman, B. & Plaisant, C. (2006). Strategies for evaluating information visualization tools: multi-dimensional in-depth long-term case studies. Paper presented at the Proceedings of the 2006 AVI workshop on Beyond time and errors: novel evaluation methods for information visualization.; Shreeves, S., Knutson, E., Stvilia, B., Palmer, C., Twidale, M. & Cole, T. (2005). Is ‘quality’ metadata ‘shareable’ metadata? The implications of local metadata practices for federated collections. In Proceedings of the Association of College and Research Libraries (ACRL) 12th National Conference. Minneapolis, MN.; Shuler, J. (2007). Public Policies and Academic Libraries—The Shape of the Next Digital Divide. The journal of academic librarianship, 33(1), 141-143.; Shuling, W. (2007). Investigation and analysis of current use of electronic resources in university libraries. Library Management, 28(1/2), 72-88.; Sicilia, M. & Garcia, E. (2003). On the concepts of usability and reusability of learning objects. The International Review of Research in Open and Distance Learning, 4(2).; Sicilia, M., Sánchez, S. & Benito, M. (2006). Estado de la cuestión de los objetos y diseños para el aprendizaje y su uso. Technical report, REDAOPA Red Temática de Actividades y Objetos para el Aprendizaje.; Sifer, M. (2003). Exploring web site log data with a multi-classification interface. Paper presented at the Information Visualization, 2003. IV 2003. Proceedings. Seventh International Conference on.; Simkin, D. & Hastie, R. (1987). An information-processing analysis of graph perception. Journal of the American Statistical Association, 82(398), 454-; Smoot, M., Ono, K., Ruscheinski, J., Wang, P. & Ideker, T. (2011). Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27(3), 431-432.; Soergel, D. (1995). The art and architecture thesaurus (AAT): A critical appraisal. Visual Resources, 10(4), 369-400.; Soler, C. & Gil, I. (2010). Possibilities and limitations of thesauri in comparison with other systems of knowledge organization: folksonomies, taxonomies and ontologies. Rev. Interam. Bibliot, 361-377.; Soto, C., Gordo, E. & Sánchez, S. (2007). Semantic learning object repositories. International Journal of Continuing Engineering Education and Life Long Learning, 17(6), 432-446.; Spence, I. (2005). No humble pie: The origins and usage of a statistical chart. Journal of Educational and Behavioral Statistics, 30(4), 353-368.; Spence, I. & Lewandowsky, S. (1991). Displaying proportions and percentages. Applied Cognitive Psychology, 5(1), 61-77.; Stace, C. (1991). Plant taxonomy and biosystematics (2nd edition ed.). UK: Cambridge University Press.; Stafford, A., Shiri, A., Ruecker, S., Bouchard, M., Mehta, P., Anvik, K. & Rossello, X. (2008). Searchling: user-centered evaluation of a visual thesaurus-enhanced interface for bilingual digital libraries. Research and Advanced Technology for Digital Libraries, pp. 117-121, Springer, Heidelberg, Berlin.; Stasko, J., Catrambone, R., Guzdial, M. & McDonald, K. (2000). An evaluation of space- filling information visualizations for depicting hierarchical structures. International Journal of Human-Computer Studies, 53(5), 663-694.; Stawniak, M. (2012). Searching Content Related by Semantics, Space and Time. Interactive 3D Multimedia Content, pp. 223-251, Springer, Heidelberg, Berlin.; Stefaner, M., Dalla Vecchia, E., Condotta, M., Wolpers, M., Specht, M., Apelt, S. & Duval, E. (2007). MACE–enriching architectural learning objects for experience multiplication. Creating New Learning Experiences on a Global Scale, 4753, 322-336.; Stefaner, M. & Muller, B. (2007). Elastic lists for facet browsers. Paper presented at the Database and Expert Systems Applications, 2007. DEXA’07. 18th International Workshop on.; Stefaner, M., Wolpers, M., Memmel, M., Duval, E., Specht, M., Börner, D. & Klemke, R. (2009). MACE: Joint Deliverable “Evaluation of the MACE system”. The MACE Consortium.; Stojanovic, L., Staab, S. & Studer, R. (2001). E-Learning based on the Semantic Web. Paper presented at the WebNe001-World Conference on the WWW and Internet, Orlando, Florida, USA.; Strauch, C., Sites, U. & Kriha, W. (2011). NoSQL databases. Recuperado de http://www. christof-strauch. de/nosqldbs.pdf; Strong, D., Lee, Y. & Wang, R. (1997). Data quality in context. Communications of the ACM, 40(5), 103-110. doi:10.1145/253769.253804; Stuckenschmidt, H., Vdovjak, R., Houben, G. & Broekstra, J. (2004). Index structures and algorithms for querying distributed RDF repositories. Paper presented at the Proceedings of the 13th international conference on World Wide Web.; Sutcliffe, A., Ennis, M. & Hu, J. (2000). Evaluating the effectiveness of visual user interfaces for information retrieval. International Journal of Human-Computer Studies, 53(5), 741-763.; Swan, A. & Carr, L. (2008). Institutions, their repositories and the web. Serials Review, 34(1), 31-35.; Swan, R. & Allan, J. (1998). Aspect windows, 3-D visualizations, and indirect comparisons of information retrieval systems. Paper presented at the Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval.; Tadapak, P., Suebchua, T. & Rungsawang, A. (2010). A machine learning based language specific web site crawler. Paper presented at the Network-Based Information Systems (NBiS), 2010 13th International Conference on.; Tenopir, C. (2003). Use and users of electronic library resources: An overview and analysis of recent research studies. Paper presented at the Council on Library and Information Resources, Washington (2003).; Ternier, S., Verbert, K., Parra, G., Vandeputte, B., Klerkx, J., Duval, E. & Ochoa, X. (2009). The Ariadne Infrastructure for Managing and Storing Metadata. Internet Computing, IEEE, 13(4), 18-25. doi:10.1109/mic.2009.90; Tilkov, S. & Vinoski, S. (2010). Node.js: Using JavaScript to Build High-Performance Network Programs. IEEE Internet Computing, 14(6), 80-83.; Tractinsky, N., Katz, A. & Ikar, D. (2000). What is beautiful is usable. Interacting with computers, 13(2), 127-145.; Tripathy, A. & Patra, P. (2008). A web mining architectural model of distributed crawler for internet searches using pagerank algorithm. Paper presented at the Asia- Pacific Services Computing Conference, 2008. APSCC ‘08. IEEE.; Trust, J. (1988). Art & Architecture Thesaurus (AAT). Recuperado de http://www.getty.edu/research/conducting_research/vocabularies/aat/about.html; Tsakonas, G. & Papatheodorou, C. (2006). Analysing and evaluating usefulness and usability in electronic information services. Journal of Information Science, 32(5), 400-419.; Tsakonas, G. & Papatheodorou, C. (2007). Critical constructs of digital library interaction. Paper presented at the 11th Panhellenic Conference on Informatics, 18-20 May, Πάτρα (GR).; Tsakonas, G. & Papatheodorou, C. (2008). Exploring usefulness and usability in the evaluation of open access digital libraries. Information processing & management, 44(3), 1234-1250.; Tudhope, D., Binding, C., Blocks, D. & Cunliffe, D. (2006). Query expansion via conceptual distance in thesaurus indexed collections. Journal of documentation, 62(4), 509-533.; Tunkelang, D. (2009). Faceted search. Synthesis Lectures on Information Concepts, Retrieval, and Services, 1(1), 1-80.; Uddin, M. & Janecek, P. (2007). Performance and usability testing of multidimensional taxonomy in web site search and navigation. Performance measurement and metrics, 8(1), 18-33.; Ur Rehman, S. & Ramzy, V. (2004). Awareness and use of electronic information resources at the health sciences center of Kuwait University. Library Review, 53(3), 150-156.; Valente, A. (2005). Types and roles of legal ontologies. Law and the Semantic Web: Legal Ontologies, Methodologies, Legal Information Retrieval and Applications, pp. 65-76, Springer, Heidelberg, Berlin.; Vessey, I. & Galletta, D. (1991). Cognitive fit: An empirical study of information acquisition. Information Systems Reseatch, 2(1), 63-84.; Von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., Van Wijk, J., Fekete, J. & Fellner, D. (2011). Visual Analysis of Large Graphs: State-of-the-Art and Future Research Challenges. Computer Graphics Forum, Wiley, 30(6), 1719-1749. Recuperado de http://dx.doi.org/10.1111/j.1467-8659.2011.01898.x (6); Vora, P. (1998). Design/methods & tools: Designing for the web: a survey. Interac- tions, 5(3), 13-30.; W3C, H. (2013). The canvas element (Editor’s Draft 24 July 2013). Recuperado de http://dev.w3.org/html5/spec/Overview.html#the-canvas-element.; Wang, R. & Strong, D. (1996). Beyond accuracy: What data quality means to data consumers. Journal of management information systems, 5-33.; Wang, Z., Chaudhry, A. & Khoo, C. (2008). Using classification schemes and thesauri to build an organizational taxonomy for organizing content and aiding navigation. Journal of documentation, 64(6), 842-876.; Weinberg, B. (1995). Art & Architecture Thesaurus and Guide to Indexing and Cata- loging with the Art & Architecture Thesaurus. Journal of the American Society for Information Science, 46(2), 152-160.; Westerman, S. & Cribbin, T. (2000). Mapping semantic information in virtual space: dimensions, variance and individual differences. International Journal of Human-Computer Studies, 53(5), 765-787.; White, R., Kules, B. & Drucker, S. (2006). Supporting exploratory search, introduc- tion, special issue, communications of the ACM. Communications of the ACM, 49(4), 36-39.; White, R. & Roth, R. (2009). Exploratory Search: Beyond the Query-Response Paradigm. Synthesis Lectures on Information Concepts, Retrieval, and Services, 1(1), 1-98. doi:10.2200/s00174ed1v01y200901icr003; Whitehall, T. (1992). Quality in library and information service: a review. Library Management, 13(5), 23-35.; Whitehall, T. (1995). Value in library and information management: a review. Library Management, 16(4), 3-11.; Wiley, D. (2002a). Connecting learning objects to instructional design theory: A definition, a metaphor and a taxonomy. In The instructional use of learning objects. Bloomington, Indiana, 2830(435), 3–24.; Wiley, D. (2002b). Instructional use of learning objects. Agency for Instructional Technology.; Wilkinson, L. & Wills, G. (2005). The grammar of graphics. Springer Science+ Business Media.; Wise, J. (1999). The ecological approach to text visualization. Journal of the American Society for Information Science, 50(13), 1224-1233.; Wittenburg, K., Das, D., Hill, W. & Stead, L. (1995). Group asynchronous browsing on the World Wide Web. Paper presented at the 4th International WWW Conference, Boston (MA).; Wu, M., Fuller, M. & Wilkinson, R. (2001). Using clustering and classification approaches in interactive retrieval. Information processing & management, 37(3), 459- 484.; Ytow, N., Morse, D. & Roberts, D. (2001). Nomencurator: a nomenclatural history model to handle multiple taxonomic views. Biological journal of the Linnean Society, 73(1), 81-98.; Zhang, X., Liu, J., Li, Y. & Zhang, Y. (2009). How usable are operational digital libraries: a usability evaluation of system interactions. In Proceedings of the 1st ACM SIG- CHI symposium on Engineering interactive computing systems, pp. 177-186, ACM.; Zhong, Y., Luo, Y., Pramanik, S. & Beaman, J. (1999). HICLAS: a taxonomic data- base system for displaying and comparing biological classification and phylogenetic trees. Bioinformatics, 15(2), 149-156.; https://hdl.handle.net/11349/32620; Universidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo Científico
Dostupnost: https://hdl.handle.net/11349/32620
-
12
Autoři: a další
Zdroj: Proceedings, International Conference on Image Processing; 1995, Issue 3, p448-448, 1p
-
13
Autoři: a další
Přispěvatelé: a další
Témata: Robótica, Agentes inteligentes, Inteligencia artificial, Redes neuronales, Automatización, Bioingeniería, Platafomas web, Prótesis, TIC, Procesamiento de datos, Generadores de energía, Energía -- Congresos, conferencias, etc. -- Memorias, Bioingeniería -- Congresos, Sistemas de control inteligente -- Congresos, Procesamiento de señales -- Congresos, Automatización -- Congresos, Desarrollo de prototipos -- Congresos, Ingeniería biomédica -- Congresos, Tecnologías de la información y de la comunicación -- Congresos, Procesamiento digital de imágenes -- Congresos, Redes neuronales (Computadores) -- Congresos, Inteligencia artificial -- Congresos, Robotics, Intelligent agents, Artificial intelligence, Neural networks, Automation, Bioengineering
Popis souboru: pdf; application/pdf
Relation: Congreso Internacional de Electrónica Control y Telecomunicaciones.; Borrero Guerrero, H., Baquero Velasquez, A.E., Barrero, J.F., Côco, D.Z., Risardi, J.C., Magalhães, D.V. and Becker, M., 2014. “Orientation (yaw) fuzzy controller applied to a car-like mobile robot prototype”. In 2014 IEEE 5th Colombian Workshop on Circuits and Systems (CWCAS). pp. 1–6. doi:10.1109/CWCAS.2014.6994603.; Higuti, V.A.H., Guerrero, H.B., Velasquez, A.E.B., Pinto, R., Tinelli, L.M., Magalhães, D.V. and Milori, D., 2015. “Lowcost embedded computer for mobile robot platform based on raspberry board”. In ABCM International Congress of Mechanical Egineering (Cobem2015), Rio de Janeiro, Brazil.; Guerrero, H.B., 2016. Desenvolvimento de um sistema de controle em um robô móvel agrícola em escala reduzida para deslocamento entre fileiras de plantio. Ph.D. thesis, Escola de Engenharia de São Carlos, Universidad de Sao Paulo.; Guerrero, H.B., 2016. Desenvolvimento de um sistema de controle em um robô móvel agrícola em escala reduzida para deslocamento entre fileiras de plantio. Ph.D. tesis, Escola de Engenharia de São Carlos, Universidad de Sao Paulo.; Ni, J., Wang, Y., Li, H. and Du, H., 2022. “Path tracking motion control method of tracked robot based on improved lqr control”. 2022 41st Chinese Control Conference (CCC). doi:10.23919/CCC55666.2022.9902113.; Ben Halima Abid, D., Allagui, N.Y. and Derbel, N., 2017. “Navigation and trajectory tracking of mobile robot based on kinematic pi controller”. In 2017 18th International Conference on Sciences and; Allagui, N.Y., Abid, D.B. and Derbel, N., 2019. “Autonomous navigation of mobile robot with combined fractional order pi and fuzzy logic controllers”. In 2019 16th International Multi-Conference on Systems, Signals Devices (SSD). pp. 78–83. Doi:10.1109/SSD.2019.8893176.; Lentin, J., 2018. “Robot operating system for absolute beginners”. Apress, Berkeley, CA.; Nevludov, I., Sychova, O., Reznichenko, O., Novoselov, S., Mospan, D. and Mospan, V., 2021. “Control system for agricultural robot based on ros”. 2021 IEEE International Conference on Modern Electrical and Energy Systems (MEES). pp. 1–6. doi:10.1109/MEES52427.2021.9598560.; Megalingam, R.K., Nagalla, D., Nigam, K., Gontu, V. and Allada, P.K., 2020. “Pid based locomotion of multi-terrain robot using ros platform”. 2020 Fourth International Conference on Inventive Systems and Control (ICISC). pp. 751–755. doi:10.1109/ICISC47916.2020.9171152.; Alam Bhuiyan, Ifte Khairul. (2017). LiDAR Sensor for Autonomous Vehicle. 10.13140/RG.2.2.16982.34887/1.; Lin, Z., Xiong, Y., Dai, H. and Xia, X., 2017. “An experimental performance evaluation of the orientation accuracy of four nine-axis mems motion sensors”. 2017 5th International Conference on Enterprise Systems (ES). pp. 185–189. doi:10.1109/ES.2017.37.; Henry, B.G., David, Q.Y., Estivent, C.M.J., Arbey, C.C.L., Alexis, C.R.Y. and Andrés, S.R., 2020. “Lidar readings based mobile robot wall-following task using a reactive fuzzy control system - a low-cost experimental approach”. URL https://hemeroteca.unad.edu.co/index.php/memorias/article/view/4201.; Guerrero, H.B., 2016. Desenvolvimento de um sistema de controle em um robô móvel agrícola em escala reduzida para deslocamento entre fileiras de plantio. Ph.D. tesis, Escola de Engenharia de São Carlos, Universidade de Sao Paulo.; S.N. Sivanandam, S. Sumathi. and S.N. Deepa, "Introduction to Fuzzy Logic using MATLAB", Springer-Verlag, Berlin, Germany, 2007.; M. Garcia Sanz and M. Motilva Casado, "Herramientas para el estudio de robots de cinemática paralela: Simulador y prototipo experimental," Revista Iberoamericana de Automática e Informática Industrial, RIAI, vol. 2, no. 2, pp. 73-81, 2005. https://polipapers.upv.es/index.php/RIAI/article/view/8064; A. I. Aureles Cabrera, Robot paralelo tipo STEWART para la rehabilitación de tobillo, Hidalgo, Mexico: Universidad Politécnica de Tulancingo, 2019. http://www.upt.edu.mx/Contenido/Investigacion/Contenido/TESIS/MAC/2019/MAC_T_2 019_01_AAC.pdf; Instituto de Investigación de Seguridad en la Conducción IOWA, «Simulador NADS - 1,» Univesidad de Iowa, 2023. [En línea]. Available: https://dsri.uiowa.edu/nads-1. [Último acceso: 02 2023].; SIMAERO, "AIRBUS A340 FFS," SIMAERO, 2023. [Online]. Available: https://www.sim.aero/a340/. [Último acceso 02 2023].; O. Altuzarra, Y. San Martín, E. Amezua and A. Hernández, "Motion pattern analysis of parallel kinematic machines: A case study," Robotics and Computer-Integrated Manufacturing, vol. 25, no. 2, pp. 432-440, 2009. https://doi.org/10.1016/j.rcim.2008.01.007; J. Fernandes and A. Selvakumar, "Kinematic and Dynamic Analysis of 3PUU Parallel Manipulator for Medical Applications," Procedia Computer Science, vol. 133, no. 1, pp. 604-611, 2018. https://doi.org/10.1016/j.procs.2018.07.091; I. Ben Hamida, M. Amine Laribi, A. Mlika, L. Romdhane, S. Zeghloul and G. Carbone, "Multi-Objective optimal design of a cable driven parallel robot for rehabilitation tasks," Mechanism and Machine Theory, vol. 156, no. 1, pp. 104-141, 2021. https://doi.org/10.1016/j.mechmachtheory.2020.104141; K. Duarte Barón and C. Borrás Pinilla, «Generalidades de robots paralelos,» Revista visión electrónica, algo más que un estado sólido, vol. 10, nº 1, pp. 1-11, 2016. https://doi.org/10.14483/22484728.11711; K. Duarte Barón, C. Borrás Pinilla and J. J. Gil Pelaez, «Dynamic analysis and simulation of computed torque control of a parallel robot 3SPS - 1U,» de IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellín, Colombia, 2019. https://doi.org/10.1109/CCAC.2019.8921238; C. Gosselin and J. Angeles, "Singularity analysis of closed-loop kinematic chains," IEEE Transactions on Robotics and Automation, vol. 6, no. 3, pp. 281-290, 1990. https://doi.org/10.1109/70.56660; J. Kardos, "Robust Computed Torque Method of Robot Tracking Control," in 22nd International Conference on Process Control (PC19), Strbske Pleso, Slovakia, 2019. https://doi.org/10.1109/PC.2019.8815088; C. Jun and W. Lin, "Track Tracking of Double Joint Robot Based on Sliding Mode Control," in IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE), Dalian, China, 2020. https://doi.org/10.1109/ICISCAE51034.2020.9236895; W. X. Xu, G. Z. Cao, Y. P. Zhang, J. C. Chen, D. P. Tan and Z. Q. Ling, "Adaptive backstepping sliding mode control of lower limb exoskele-ton robot based on combined double power reaching law," in 2th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Baishan, China, 2022. https://doi.org/10.1109/CYBER55403.2022.9907279; X. Chen, H. Chen, Y. Huang and Q. Huang, "Adaptability Control Towards Complex Ground Based on Fuzzy Logic for Humanoid Robots," IEEE Transactions on Fuzzy Systems, vol. 30, no. 6, pp. 1574-1584, 2022. https://doi.org/10.1109/TFUZZ.2022.3167458; D. Li, J. Pan, J. Liu, M. Wang and J. Yu, "Model Predictive Control Based Path Following of an Amphibious Robot," in 0th Chinese Control Conference (CCC), 2021. https://doi.org/10.23919/CCC52363.2021.9549348; Y. Zhang, L. Sol and Y. Zhang, "Research on Algorithm of Humanoid Robot Arm Control System Based on Fuzzy PID Control," in International Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS), Bristol, United Kingdom, 2022. https://doi.org/10.1109/AIARS57204.2022.00082; K. Duarte Barón and C. Borrás Pinilla, Analisis, diseño y simulacion de un control robusto para un robot paralelo de 3 grados de libertad, Bucaramanga, Colombia, Universidad Industrial de Santander, 2019. https://noesis.uis.edu.co/items/c91bc6a4-e228-44f8- 8ab4-33000e9e8688; J. J. Slotine and W. Li, Applied nonlinear control, New Jersey: Prentice Hall, 1991.; S. Iqbal and A. I. Bhatti, "Robust sliding-mode controller design for a stewart platform," in Proceedings of International Bhurban Conference on Applied Sciences, Islamabad, Pakistan, 2007. https://doi.org/10.1109/IBCAST.2007.4379924; C. Zhang and L. Zhang, "Kinematics analysis and workspace investigation of a novel 2- DOF parallel manipulator applied in vehicle driving simulator," Robotics and ComputerIntegrated Manufacturing, vol. 29, no. 2, pp. 113-120, 2013. https://doi.org/10.1016/j.rcim.2012.11.005; Hongwei Gao, Jin An, Chee Kai Chua, David Bourell, Che-Nan Kuo, Dawn T.H. Tan, 3D printed optics and photonics: Processes, materials and applications, Materials Today, 2023, ISSN 1369-7021, https://doi.org/10.1016/j.mattod.2023.06.019; C. Wu, L. Wu, G. Shang and H. Guo, "Application and Research of 3D Printing Technology in the Field of Architecture," 2021 4th International Conference on Electron Device and Mechanical Engineering (ICEDME), Guangzhou, China, 2021, pp. 71-74, https://doi.org/10.1109/ICEDME52809.2021.00024; Jens Oprel, Gerjan Wolterink, Jurnan Schilder, Gijs Krijnen, Novel 3D printed capacitive shear stress sensor, Additive Manufacturing, Volume 73, 2023, 103674, ISSN 2214- 8604, https://doi.org/10.1016/j.addma.2023.103674; Jun Ren, Fan Wu, Erwei Shang, Dongya Li, Yu Liu, 3D printed smart elastomeric foam with force sensing and its integration with robotic gripper, Sensors and Actuators A: Physical, Volume 349, 2023, 113998, ISSN 0924-4247, https://doi.org/10.1016/j.sna.2022.113998; Guo Liang Goh, Wai Yee Yeong, Jannick Altherr, Jingyuan Tan, Domenico Campolo, 3D printing of soft sensors for soft gripper applications, Materials Today: Proceedings, Volume 70, 2022, Pages 224-229, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2022.09.025; W. Zhang, J. Li, H. Liu and G. Jin, "Research on Embedded 3D Printing for Magnetic Soft Robots," 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, 2021, pp. 518-523, https://doi.org/10.1109/NEMS51815.2021.9451436; M. Abouelmajd, A. Bahlaoui, I. Arroub, M. Lagache and S. Belhouideg, "Mechanical Characterization of PLA Used in Manufacturing of 3D Printed Medical Equipment for COVID-19 Pandemic," 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), Kenitra, Morocco, 2020, pp. 1-5, https://doi.org/10.1109/ICECOCS50124.2020.9314444; S. Zhang, G. Xia, X. Hao, Y. Zhang, W. Chen and Z. Zhou, "Design Optimization and Simulation Analysis of Screw Extrusion 3D Printing Screw," 2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), Ma'anshan, China, 2022, pp. 400-404, https://doi.org/10.1109/WCMEIM56910.2022.10021447; B. B. Kanbur, S. Shen, Y. Zhou and F. Duan, "Neural network-integrated multiobjective optimization of the 3D-printed conformal cooling channels," 2020 5th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 2020, pp. 1-6, https://doi.org/10.23919/SpliTech49282.2020.9243730; D. Wang, H. Wang and Y. Wang, "Continuity Path Planning for 3D Printed Lightweight Infill Structures," 2021 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS), Shenyang, China, 2021, pp. 959-962, https://doi.org/10.1109/TOCS53301.2021.9688877; M. H. Ali, G. Yerbolat and S. Amangeldi, "Material Optimization Method in 3D Printing," 2018 IEEE International Conference on Advanced Manufacturing (ICAM), Yunlin, Taiwan, 2018, pp. 365-368, https://doi.org/10.1109/AMCON.2018.8614886; R F. Peng, "Prototyping to Mass Production: Automated CAD Model and G-Code Optimization Framework for Industrial 3D Printing," 2023 9th International Conference on Mechatronics and Robotics Engineering (ICMRE), Shenzhen, China, 2023, pp. 203- 206, https://doi.org/10.1109/ICMRE56789.2023.10106588; Mohit Bhayana, Jaswinder Singh, Ankit Sharma, Manish Gupta, A review on optimized FDM 3D printed Wood/PLA bio composite material characteristics, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.03.029; Aliza Rabinowitz, Paul M. DeSantis, Cemile Basgul, Hannah Spece, Steven M. Kurtz, Taguchi optimization of 3D printed short carbon fiber polyetherketoneketone (CFR PEKK), Journal of the Mechanical Behavior of Biomedical Materials, Volume 145, 2023, 105981, ISSN 1751-6161, https://doi.org/10.1016/j.jmbbm.2023.105981; Mihir Mogra, Ofer Asaf, Aaron Sprecher, Oded Amir, Design optimization of 3D printed concrete elements considering buildability, Engineering Structures, Volume 294, 2023, 116735, ISSN 0141-0296, https://doi.org/10.1016/j.engstruct.2023.116735; C. Wu, C. Dai, G. Fang, Y. -J. Liu and C. C. L. Wang, “General Support-Effective Decomposition for Multi-Directional 3-D Printing”, IEEE Transactions on Automation Science and Engineering, vol. 17, no. 2, pp. 599-610, April 2020, doi: https://doi.org/10.1109/TASE.2019.2938219; L. Cheng and A. To, “Part-scale build orientation optimization for minimizing residual stress and support volume for metal additive manufacturing: Theory and experimental validation,” Computer-Aided Design, vol. 113, pp. 1–23, Aug. 2019, doi: https://doi.org/10.1016/j.cad.2019.03.004; J. Jiang, X. Xu, and J. Stringer, “Optimization of process planning for reducing material waste in extrusion based additive manufacturing,” Robotics and Computer-Integrated Manufacturing, vol. 59, pp. 317–325, Oct. 2019, doi: https://doi.org/10.1016/j.rcim.2019.05.007; George E. P. Box. “Evolutionary Operation: A Method for Increasing Industrial Productivity.” Journal of the Royal Statistical Society. Series C (Applied Statistics) 6, no. 2 (1957): 81–101. https://doi.org/10.2307/2985505; J. C. Guacheta-Alba, S. Gonzalez, D. A. Nunez, M. Mauledoux, O. Aviles, "3D printing part orientation optimization: discrete approximation of support volume". International Journal of Electrical and Computer Engineering, vol 12. pp. 5958-5966, 2022. https://doi.org/10.11591/ijece.v12i6.pp5958-5966; L. Wing-Yue Geoffrey , M. Sharaf and N. Goldie, "Human-Robot Interaction for Rehabilitation Robots," in Robotic Assistive Technologies: Principles and Practice, Boca Raton, CRC Press, Taylor & Francis Group, 2017, pp. 26-27, 40.; C. Bodine, L. Sliker, M. Marquez, C. Clark, B. Burne and J. Sandstrum, "Social Assistive Robots for Children with Complex Disabilities," in Robotic Assitive Tecnologies: Principles and Practice, Boca Raton, CRC Press, Taylor & Francis Group, 2017, pp. 263, 295.; R. Baker, "Gait analysis methods in rehabilitation," J. Neuroeng. Rehabil., vol. 3, p. 4, 2006.; J. C. Pulido, C. Suárez-Mejías, J. C. González, A. Dueñas Ruiz, P. Ferrand Ferri, M. E. Martínez Sahuquillo, C. Echevarría Ruiz De Vargas, P. Infante-Cossio and C. L. Parra Calderón, "A Socially Assistive Robotic Platform for Upper-Limb Rehabilitation," IEEE ROBOTICS & AUTOMATION MAGAZINE, pp. 24-39, 2019.; G. Emre Cemal, C. YuJung and K. ChangHwan , "Imitation of Human Upper-Body Motions by Humanoid Robots," 16th International Conference on Ubiquitous Robots (UR), p. 24, 2019.; K. Darvish, L. Penco, J. Ramos, R. Cisneros, J. Pratt, E. Yoshida, S. Ivaldi and D. Pucci, "Teleoperation of Humanoid Robots: A Survey," Computer Science, pp. 1-21, 202.; J. Valčík, Similarity Models for Human Motion Data, Brno: Masaryk University, 2016.; P. Kopniak, "Motion capture using multiple Kinect controllers," Przeglad. Elektrotechniczny, 91(8), pp. 26-29, 2015.; L. L. Gómez Echeverry, A. M. Jaramillo Henao, M. A. Ruiz Molina, S. . M. Velásquez Restrepo, C. A. Páramo Velásquez and G. J. Silva Bolívar, "Human motion capture and analysis systems: a systematic review," PROSPECTIVA Vol. 16 - No. 2, pp. 24-34, 2018.; N. Ltda., Axis Neuron User Guide.; A. M. Norjasween, F. A. khtar Hanapiah, R. A. Abdul Rahman and H. Yussof, "Emergence of Socially Assistive Robotics in Rehabilitation for Children with Cerebral Palsy: A Review," International Journal of Advanced Robotic Systems, pp. 1-7, 2016.; S. Fojt˚u, "Nao Localization and Navigation Based on Sparse 3D Point Cloud Reconstruction," CZECH TECHNICAL UNIVERSITY IN PRAGUE, Praga, 2011.; Revista de Robots, "ROBOT NAO PARA EMPRESA Y EDUCACIÓN," Revista de Robots, 8 junio 2023. [Online]. Available: https://revistaderobots.com/robots-y-robotica/robot-naocaracteristicas-y-precio/?cn-reloaded=1. [Accessed 2023 junio 24].; University of Wisconsin-Madison, "Biovision BVH," 2023. [Online]. Available: https://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/BVH.html.; B. Lutjens, "perc-neuron-ros-ur10," 2019. [Online]. Available: https://github.com/blutjens/perc_neuron_ros_ur10.; S. Haller, "perception-neuron-ros," 2017. [Online]. Available: https://github.com/smhaller/perception-neuron-ros.; O. Robotics, "Open Robotics," 2019. [Online]. Available: http://wiki.ros.org/nao.; C. Girard, D. Calderón de León, A. Arafat Lemus, V. Ferman and J. Fajardo, "A Motion Mapping System for Humanoids that Provides Immersive Teleprescence Experiences," Universidad Galileo, 2020.; B. M. Lütjens, "Real-Time Teleoperation of Industrial Robots with the Motion Capture System Perception Neuron," TECHNISCHE UNIVERSITÄT MÜNCHEN, Munich, 2017.; I. Almetwally and M. Mallem, "Real-time Tele-operation and Tele-walking of Humanoid Robot Nao using Kinect Depth Camera," IEEE, pp. 1-4, 2013.; C. Gu, L. Weicong, X. He, Z. Lei and Z. Mingming, "IMU-based motion capture system for rehabilitation applications: A systematic review," Biomimetic Intelligence and Robotics, vol. 3, no. 2, pp. 1-13, 2023.; Ministerio de Educación Nacional, «¿Cómo formular e implementar los resultados de aprendizaje?,» 2021. [En línea]. Available: https://www.mineducacion.gov.co/1780/articles-408425_recurso_5.pdf. [Último acceso: 12 septiembre 2023].; NASA, «Los Rovers del Marte,» 23 marzo 2021. [En línea]. Available: https://spaceplace.nasa.gov/mars-rovers/sp/. [Último acceso: 10 septiembre 2023].; J. J. Lugo, «Rover espacial SR-001 diseñado para descubrir nuevos mundos,» 2023. [En línea]. Available: https://ideasdi.com/diseno-transporte/rover-espacial-sr-001/. [Último acceso: 9 septiembre 2023].; TN, «La NASA diseñó un rover que hace rápel para desniveles de otros planetas,» 16 octubre 2020. [En línea]. Available: https://tn.com.ar/tecno/2020/10/16/la-nasadiseno-un-rover-que-hace-rapel-para-desniveles-de-otros-planetas/. [Último acceso: 12 septiembre 2023].; x. m. J. G. y. R. L. Christian Montaleza, «Diseño de un prototipo de robot con geometría Rocker-Bogie,» Enfoque UTE , vol. 13, nº 1, pp. 82-96, 2022.; M. R. H. S. y. M. Santos, «Primera aproximación de diseño de un rover minimalista bio-inspirado,» de XXXVII jornada de automatica, Madrid, 2016.; C. A. L. Talavera, «Diseño de un vehículo a tracción humana para participar en el NASA Human Rover Challenge,» 2022. [En línea]. Available: https://hdl.handle.net/20.500.12404/24409. [Último acceso: 9 septiembre 2023].; D. L. L. y. J. A. A. O. Diana Marcela Hernandez Rincón, «Diseño y construccion de un vehículo autónomo tipo rover -DIDAJO-,» 2005. [En línea]. Available: http://biblioteca.usbbog.edu.co:8080/Biblioteca/BDigital/37506.pdf. [Último acceso: 8 septiembre 2023].; H. . A. Carvajal Pulido, J. D. Bohórquez Guerra y G. Carrasquilla Mercado, «Diseño y construcción de un prototipo a escala de vehículo tipo rover no tripulado para la siembra, fumigación y transporte de productos agrícolas en terrenos irregulares del corregimiento de Berlín Santander,» junio 2021. [En línea]. Available: https://repository.unab.edu.co/handle/20.500.12749/14232. [Último acceso: 5 septiembre 2023].; Pavcowavin, «5 beneficios de usar tuberías PVC en tu casa,» 12 marzo 2021. [En línea]. Available: https://pavcowavin.com.co/blog/beneficios-de-usar-tuberiaspvc#:~:text=Las%20tuber%C3%ADas%20de%20policloruro%20de,como%20aguas %20lluvia%20y%20ventilaci%C3%B3n. [Último acceso: 6 septiembre 2023].; Electrotekmega, «Motor Reductor Faulhaber,» 2023. [En línea]. Available: https://electrotekmega.com/producto/motor-reductor-faulhaber/. [Último acceso: 10 septiembre 2023].; Mvelectronica, «Motorreductor Faulhaber Con Encoder De Velocidad 12v 64:1 120rpm 2342l012cr,» 2023. [En línea]. Available: https://mvelectronica.com/producto/motorreductor-faulhaber-con-encoder-develocidad-12v-64-1-120rpm-2342l012cr. [Último acceso: 2 septiembre 2023].; Arduino.cl, «Arduino Mega 2560,» 2023. [En línea]. Available: https://arduino.cl/producto/arduino-mega2560/#:~:text=Arduino%20Mega%20es%20una%20tarjeta,implementa%20el%20len guaje%20Processing%2FWiring. [Último acceso: 10 septiembre 2023].; Arduino Spain, «Arduino Mega características y specificaciones,» 14 julio 2023. [En línea]. Available: https://arduino-spain.site/arduino-mega/. [Último acceso: 12 septiembre 2023].; Naylampmechatronics, «TUTORIAL DE USO DEL MÓDULO L298N,» 2023. [En línea]. Available: https://naylampmechatronics.com/blog/11_tutorial-de-uso-delmodulo-l298n.html. [Último acceso: 12 septiembre 2023].; Eneka SA, «MÓDULOS COMUNICACIÓN,» 2023. [En línea]. Available: https://www.eneka.com.uy/robotica/modulos-comunicacion/m%C3%B3dulobluetooth-hc05- detail.html#:~:text=Este%20m%C3%B3dulo%20bluetooth%20nos%20permite,opera ci%C3%B3n%20de%20un%20puerto%20serial. [Último acceso: 5 septiembre 2023].; Ambientesoluciones, «PRODUCTOS / BATERÍAS AGM,» 2023. [En línea]. Available: https://www.ambientesoluciones.com/portal/producto/bateria-12v9ah#:~:text=Detalles%3A,y%20descarga%20lenta%20y%20profunda. [Último acceso: 12 septiembre 2023].; Mlstatic, «FL1290,» 2023. [En línea]. Available: https://http2.mlstatic.com/D_NQ_NP_718370-MLA48587476540_122021-O.webp. [Último acceso: 10 septiembre 2023].; Habacuc Flores, «DEVELOPMENT OF A ROVER VEHICLE WITH ROCKER-BOGIE SUSPENSION FOR AGRICULTURAL INSPECTION,» 5 octubre 2016. [En línea]. Available: https://www.youtube.com/watch?v=7B1DlB6RcLQ&t=29s. [Último acceso: 7 septiembre 2023].; F. Cugurullo, "Urban Artificial Intelligence: From Automation to Autonomy in the Smart City," 2020.; Y. Liu, Q. Shi, W. Guo, and W. Liao, "A Real-time, Mobile-object Detection Approach for Unmanned Aerial Vehicle Based Forest Fire Surveillance System," 2020.; P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, "A Review of YOLO Algorithm Developments," 2022.; R. C. U. Chiroma, "Vehicle detection, counting, and classification in traffic videos: A survey," IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 10, pp. 3773-3785, 2021.; M. A. H. Akhand, "Vehicle Recognition from License Plate Number using Deep Learning," arXiv preprint arXiv:1903.09203, 2019.; J. W. Coral López, C. A. Pulgarín Ortiz, S. E. Nope, and A. Barandica, "Identificación de camiones de carga en movimiento por visión artificial," Tesis de pregrado, Escuela de Ingeniería Eléctrica y Electrónica, Universidad del Valle.; Á. Ramajo Ballester, J. González Cepeda, J. M. Armingol Moreno, and A. de la Escalera Hueso, "Reidentificación de camiones mediante técnicas de deep learning," Informe técnico, Laboratorio de Sistemas Inteligentes, Universidad Carlos III de Madrid.; R. A. Gonzalez, R. E. Ferro, and D. Liberona, "Government and governance in intelligent cities, smart transportation study case in Bogotá Colombia," Ain Shams Engineering Journal, vol. 11, no. 1, pp. 25-34, 2020.; Unesco.org. (2023, abril 20). IA por el Planeta: Destacando las innovaciones de IA para la movilidad sostenible y las ciudades inteligentes. [En línea]. Disponible en: https://www.unesco.org/es/articles/ia-por-el-planeta-destacando-las-innovaciones-de-ia-parala-movilidad-sostenible-y-las-ciudades; Redalyc.org. (S/f). [En línea]. Disponible en: https://www.redalyc.org/journal/852/85259689013/html/. Recuperado el 7 de julio de 2023.; Gómez Zapata, C. A. (2019). "Reconocimiento de objetos del hogar, usando redes neuronales convolucionales para personas con discapacidad visual." Revista Científica de Ingeniería y Tecnología, 2(2), 1-10. Disponible en: https://dialnet.unirioja.es/descarga/articulo/7436051.pdf.; Murgui, J., & García-Sánchez, A. J. (2018). "Clasificación y reconocimiento de imágenes con redes neuronales para aplicaciones industriales." Disponible en: https://riunet.upv.es/bitstream/handle/10251/115464/Murgui.pdf?sequence=1; Olabe, X. B. (s/f). "Redes Neuronales Artificiales y Sus Aplicaciones." Disponible en: https://ocw.ehu.eus/pluginfile.php/40137/mod_resource/content/1/redes_neuro/contenidos/pd f/libro-del-curso.pdf. Recuperado el 8 de julio de 2023.; Ortiz, G., & Sánchez, A. I. (2020). "Emprendimiento y tecnologías de la información y la comunicación en Bogotá." Cuadernos de Administración, 36(67), 199-211.; Torres, J., & Acosta, H. (2019). "La innovación en el ecosistema emprendedor de Bogotá." Cuadernos de Administración, 35(64), 251-262.; Uribe, F., & Guzmán, J. (2021). "La colaboración público-privada en el fomento de la innovación en Bogotá: el caso de la identificación de objetos en el contexto vial." Revista Internacional de Gestión y Economía Aplicada, 11(1), 89-101.; Bogotá se destaca como una ciudad innovadora en el CityLab 2021. (2021). [En línea]. Disponible en: https://bogota.gov.co/internacional/bogota-se-destaca-como-una-ciudadinnovadora-en-el-citylab-2021; Ministerio de Transporte y Agencia Nacional de Seguridad Vial adoptan la metodología para establecer velocidad límite y reglamentan los planes de gestión de la velocidad %7C ANSV. (2023). [En línea]. Disponible en: https://ansv.gov.co/es/prensa-comunicados/9955; Parámetros e hiperparámetros en el Machine Learning %7C Codificando Bits. (2023). [En línea]. Disponible en: https://www.codificandobits.com/blog/parametros-hiperparametrosmachine-learning/; ¿Qué es el ajuste de hiperparámetros? - Explicación de los métodos de ajuste de hiperparámetros - AWS. (2023). [En línea]. Disponible en: https://aws.amazon.com/es/whatis/hyperparameter-tuning/; Análisis del flujo vehicular Generalidades. (s/f). [En línea]. Disponible en: https://sjnavarro.files.wordpress.com/2008/08/analisis-de-flujo-vehicular-cal-y-mayor.pdf; "INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO ESCOM “Cálculo del flujo vehicular mediante segmentación de imágenes.” (s/f). [En línea]. Disponible en: https://tesis.ipn.mx/bitstream/handle/123456789/21133/C%C3%A1lculo%20del%20flujo%20v ehicular%20mediante%20segmentaci%C3%B3n%20de%20im%C3%A1genes.pdf?sequence =5&isAllowed=y; Oscar Javier Reyes-Ortiz, Mejia, M., & Juan Sebastián Useche-Castelblanco. (2019). "TÉCNICAS DE INTELIGENCIA ARTIFICIAL UTILIZADAS EN EL PROCESAMIENTO DE IMÁGENES Y SU APLICACIÓN EN EL ANÁLISIS DE PAVIMENTOS." Revista EIA, 16(31), 189–207. Disponible en: https://www.redalyc.org/journal/1492/149258931014/html/; Secretaría Distrital de Movilidad. (2014). Movilidadbogota.gov.co. https://www.movilidadbogota.gov.co/web/; L. Salcedo, "YOLO (You Only Look Once): Detección de Objetos en Tiempo Real," Mi Diario Python, Mi Diario Python, 19 de septiembre de 2018. Disponible en: https://pythondiario.com/2018/09/yolo-you-only-look-once-deteccion-de.html [26] Y. Shao, D. Zhang, H. Chu, X. Zhang, and Y. Rao, "A Review of YOLO Object Detection Based on Deep Learning," 2021.; Konda et al., "Real-Time Traffic Sign Detection and Recognition Using YOLOv3 and OpenCV," 2020.; Bhasin, "Real-time Object Detection with YOLO, OpenCV and Python," 2019.; Suresh et al., "Object Detection with YOLO for Intelligent Traffic Monitoring System," 2020.; S. Siddiqui, "Traffic Sign Detection Using YOLO v3 with OpenCV," 2020.; Propia, "Esquema general de entrenamiento usado para reconocimiento de imágenes con YOLO," [Figura], 2023.; A. Sharma, J. Pathak, M. Prakash, and J. N. Singh, "Object Detection using OpenCV and Python," International Journal of Innovative Research in Computer and Communication Engineering, vol. 8, no. 6, pp. 2736-2741, 2020.; R. Fernandez, "Detección de rostros, caras y ojos con Haar Cascad," Cursos de Programación de 0 a Experto © Garantizados, 10 de enero de 2018. Disponible en: https://unipython.com/deteccion-rostros-caras-ojos-haar-cascad/; Administrador, "Como crear tu propio DETECTOR DE OBJETOS con Haar Cascade %7C Python y OpenCV," omes-va.com, OMES, 29 de julio de 2020. Disponible en: https://omesva.com/como-crear-tu-propio-detector-de-objetos-con-haar-cascade-python-y-opencv/; E. Ángel and J. Ambrogio, "ARTÍCULOS PRESENTADOS A RADI %7C TECNOLOGÍA DE LA INFORMACIÓN Y COMUNICACIÓN." Disponible en: https://confedi.org.ar/wpcontent/uploads/2020/12/Articulo1-RADI16.pdf; Propia, "Esquema general de entrenamiento usado para reconocimiento de imágenes con Haar Cascade," [Figura], 2023.; S. S. Rao, "Vehicle detection and identification using computer vision and deep learning techniques," IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 10, pp. 2827-2836, 2018.; M. E. Gavilán, "Procesamiento de Imágenes y Visión Artificial con MATLAB," MathWorks, 2021.; MathWorks, "Visión Artificial con MATLAB: Detección y seguimiento de objetos," MathWorks, 2013.; Propia, "Esquema general de entrenamiento usado para reconocimiento de imágenes con Visión por computadora sin usar Deep Learning," [Figura], 2023.; A. Jayasree, M. Vari, P. Vishnu, and S. Medimi, "A comparative study of YOLO and Haar Cascade algorithm for helmet and license plate detection of motorcycles," 2022. [En línea]. Disponible en: https://www.diva-portal.org/smash/get/diva2:1707864/FULLTEXT02; J. Lamichhane, J. Aubertot, G. Begg, A. Birch, P. Boonekamp, S. Dachbrodt, J. Grønbech, M. Hovmøller, J. Jensen, L. Jørgensen, J. Kiss, P. Kudsk, A. Moonen, J. Rasplus, M. Sattin, J. Streito, A. Messéan, “Networking of integrated pest management: A powerful approach to address common challenges in agriculture”, J. Crop Protection, vol. 89, no. 1, pp. 139- 151, 2016. Doi: https://doi.org/10.1016/j.cropro.2016.07.011.; S. Azfar, A. Nadeem, A. Basit, “Pest detection and control techniques using wireless sensor network: a review”, J. Entomology and Zoology Studies, vol 3, no. 2, pp. 92-99, Jan. 2015.; J. Pretty, Z. Bharucha, “Integrated pest management for sustainable intensification of agriculture in Asia and Africa”, Insects, vol 6, no. 1, pp. 152-182, Mar. 2015. Doi: https://doi.org/10.3390/insects6010152.; D. Arcega, W. Lee, C. Lu, Y. Wu, P. Shih, S. Chen, J. Chung, T. Lin, “Edge-based wireless imaging system for continuous monitoring of insect pests in a remote outdoor mango orchard”, Computers and Electronics in Agriculture, vol 211, no. 108019, 2023. Doi: https://doi.org/10.1016/j.compag.2023.; H. Zhang, T. Islam, W. Lio, “Integrated pest management programme for cereal blast fungus Magnaporthe oryzae”, J. Integrative Agriculture, vol 21, no. 12, pp. 3420-3433. 2022. Doi: https://doi.org/10.1016/j.jia.2022.08.056.; D. Rustia, L. Chiu, C. Lu, Y. Wu, S. Chen, J. Chung, J. Hsu, T. Lin, “Towards intelligent and integrated pest management through an AIoT-based monitoring system”, Pest. Manage. Sci., vol 78, no. 10, pp. 4288–4302, 2022. Doi: https://doi.org/10.1002/ps.7048.; I. Ahmad and K. Pothuganti, "Smart Field Monitoring using ToxTrac: A Cyber-Physical System Approach in Agriculture", 2020 International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, pp. 723-727, 2020. Doi:10.1109/ICOSEC49089.2020.9215282.; S. Cecchi, S. Spinsante, A. Terenzi, S. Orcioni, “A Smart Sensor-Based Measurement System for Advanced Bee Hive Monitoring”, Sensors, vol 20, no. 2726, pp. 1-20, 2020. Doi: https://doi.org/10.3390/s20092726.; F. Murphy, M. Magno, P. Whelan and E. Vici, "b+WSN: Smart beehive for agriculture, environmental, and honey bee health monitoring — Preliminary results and analysis," 2015 IEEE Sensors Applications Symposium (SAS), Zadar, Croatia, pp. 1-6, 2020. Doi:10.1109/SAS.2015.7133587.; P. Saha, V. Kumar, S. Kathuria, A. Gehlot, V. Pachouri and A. S. Duggal, “Precision Agriculture Using Internet of Things and Wireless Sensor Networks”, 2023 International Conference on Disruptive Technologies (ICDT), Greater Noida, India, pp. 519-522, 2023. Doi:10.1109/ICDT57929.2023.10150678.; R. Singh, R. Berkvens and M. Weyn, “Energy Efficient Wireless Communication for IoT Enabled Greenhouses”, 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India, pp. 885-887, 2020. Doi:10.1109/COMSNETS48256.2020.9027392.; F. Kiani and A. Seyyedabbasi, “Wireless Sensor Network and Internet of Things in Precision Agriculture”, International Journal of Advanced Computer Science and Applications, vol 9, no. 6, pp. 99-103, 2018. Doi: http://dx.doi.org/10.14569/IJACSA.2018.090614.; O. Savale, A. Managave, D. Ambekar, S. Sathe, “Internet of Things in Precision Agriculture using Wireless Sensor Networks”, International Journal Of Advanced Engineering & Innovative Technology, vol 2, no. 3, pp. 1-4, Dec. 2015.; A. Sawant, J. Adinarayana and S. Durbha, “KrishiSense: A semantically aware web enabled wireless sensor network system for precision agriculture applications”, 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, pp. 4090-4093, 2014. Doi:10.1109/IGARSS.2014.6947385.; C. Prakash, L. Singh, A. Gupta, S. Lohan, “Advancements in smart farming: A comprehensive review of IoT, wireless communication, sensors, and hardware for agricultural automation”, Sensors and Actuators A: Physical, vol 362, no. 114605, pp. 1- 25, 2023. Doi: https://doi.org/10.1016/j.sna.2023.114605.; H. Jawad, R. Nordin, S. Gharghan, A. Jawad, M. Ismail, “Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review”, Sensors, vol 17, no. 1781, pp. 1-4, 2017. Doi: https://doi.org/10.3390/s17081781.; E. Avşar, N. Mowla, “Wireless communication protocols in smart agriculture: A review on applications, challenges and future trends”, Ad Hoc Networks, vol 136, no. 102982, pp. 1- 25, 2022. Doi: https://doi.org/10.1016/j.adhoc.2022.102982.; V. Starčević, M. Simić, V. Risojević and Z. Babić, “Integrated video-based bee counting and multi-sensors platform for remote bee yard monitoring”, 21st International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, pp. 1-6, 2022. Doi:10.1109/INFOTEH53737.2022.9751284.; H. Remli, K. Wan, N. Ismail, A. González, J. Corchado, M. Mohamad, “Recent Advancements and Challenges of AIoT Application in Smart Agriculture: A Review”, Sensors, vol 23, no. 7, pp. 1-22, 2023. Doi: https://doi.org/10.3390/s23073752.; S. Qazi, B. Khawaja and Q. U. Farooq, “IoT-Equipped and AI-Enabled Next Generation Smart Agriculture: A Critical Review, Current Challenges and Future Trends”, in IEEE Access, vol 10, pp. 21219-21235, 2022. Doi:10.1109/ACCESS.2022.3152544.; A. AlZubi and K. Galyna, “Artificial Intelligence and Internet of Things for Sustainable Farming and Smart Agriculture”, in IEEE Access, vol 11, pp. 78686-78692, 2023. Doi:10.1109/ACCESS.2023.3298215.; G. Sagar, B. Aastha, K. Laxman, “An introduction of fall armyworm (Spodoptera frugiperda) with management strategies: a review paper”, Nippon Journal of Environmental Science, vol 1, no. 1010, pp. 1-12, 2020. Doi: https://doi.org/10.46266/njes.1010.; C. Nicolas, B. Naila and R. Amar, “Energy efficient Firmware Over The Air Update for TinyML models in LoRaWAN agricultural networks”, 2022 32nd International Telecommunication Networks and Applications Conference (ITNAC), Wellington, New Zealand, pp. 21-27, 2022. Doi:10.1109/ITNAC55475.2022.9998338.; B. Miles, E. Bourennane, S. Boucherkha, S. Chikhi, “A study of LoRaWAN protocol performance for IoT applications in smart agriculture”, Computer Communications, vol. 164, pp. 148-157, 2020. Doi: https://doi.org/10.1016/j.comcom.2020.10.009.; D. Davcev, K. Mitreski, S. Trajkovic, V. Nikolovski and N. Koteli, “IoT agriculture system based on LoRaWAN”, 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS), Imperia, Italy, pp. 1-4, 2018. Doi:10.1109/WFCS.2018.8402368.; J. Tovar, C. Pareja, O. García, L. Gutiérrez, “Performance evaluation of LoRa technology for implementation in rural areas”, Dyna, vol 88, no. 216, pp. 69-78, Feb. 2021. Doi:10.15446/dyna.v88n216.88258.; P. Supanirattisai, K. Pimpin, W. Srituravanich and N. Damrongplasit, “Smart Agriculture Monitoring and Management System using IoT-enabled Devices based on LoRaWAN”, 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), Phuket, Thailand, pp. 679-682, 2022. Doi:10.1109/ITCCSCC55581.2022.9894956.; Y.M. Bar-On, R. Phillips, R. Milo, “The biomass distribution on earth”, Proc. Natl. Acad. Sci. U. S. A. 115, 6506–6511. 2018. https://doi.org/10.1073/pnas.1711842115; A. P. Genoud, J. Torsiello, M. Belson y B.P. Thomas, “Entomological photonic sensors: Estimating insect population density, its uncertainty and temporal resolution from transit data”, Ecological Informatics, 61, 101186, 2021. https://doi.org/10.1016/j.ecoinf.2020.101186; Murciaplaza, 2021. [En línea]. Disponible en https://murciaplaza.com/plagasenfermedades-cultivos-region-provocaron-120-millones-perdidas-2020.; N. Ardila, EL TIEMPO. 2020. [En línea]. Disponible en https://www.eltiempo.com/colombia/otras-ciudades/plaga-de-langostas-cultivosarrasados-en-los-llanos-orientales-por-una-plaga-noticias-hoy-518744; M. Huerga y S. San Juan, “El control de las plagas en la agricultura argentina. Estudio sectorial Agrícola Rural Banco Mundial/Centro de inversiones FAO”, Argentina. 2005; M. Vargas y D. Alvear, “Agricultura limpia: manejo racional de plaguicidas para control de plagas en invernaderos” [en línea]. Disponible en https://biblioteca.inia.cl/handle/123456789/6089; G. A. Holguin, B. L. Lehman, L. A. Hull, V. P. Jones y J. Park, “Electronic traps for automated monitoring of insect populations”. IFAC Proceedings Volumes, 43(26), 49- 54. 2010. https://doi.org/10.3182/20101206-3-JP-3009.00008; I. Rigakis, K. Varikou, A. Nikolakakis, Z. Skarakis, N. Tatlas y I. Potamitis, “The e-funnel trap: Automatic monitoring of lepidoptera; a case study of tomato leaf miner”. Computers and Electronics in Agriculture, 185, 106154. 2021, https://doi.org/10.1016/j.compag.2021.106154; I. Potamitis, I. Rigakis, N. Vidakis, M. Petousis y M. Weber, “Affordable Bimodal Optical Sensors to Spread the Use of Automated Insect Monitoring”. J. Sens. 2018. Article ID 3949415: https://doi.org/10.1155/2018/3949415; M. Weber, M. Geier, I. Potamitis, C. Pruszynski, M. Doyle, A. Rose, M. Geismar y J. Encarnacao. “The BG-counter, the first operative automatic mosquito counting device for online mosquito monitoring: field tests and technical outlook”. AMCA 2017 83rd Annual Meeting, 2017, pp 57.; M. Preti, F. Verheggen, S. Angeli, “Insect pest monitoring with camera-equipped traps: strengths and limitations”. J. Pest. Sci. 2020. https://doi.org/10.1007/s10340-020- 01309-4; N. Flórián, L. Gránicz, V. Gergócs, F. Tóth, M. Dombos, M. “Detecting Soil Microarthropods with a Camera-Supported Trap”. Insects. 11 (244) 2020. https://doi.org/10.3390/insects11040244; A. Gutierrez, A. Ansuategi, L. Susperregi, C. Tubío, I. Ranki ́c, L. Lenˇza, “Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases”. J. Sens. 1–15. 2019, https://doi.org/10.1155/2019/5219471; E. Goldshtein, Y. Cohen, A. Hetzroni, Y. Gazit, D. Timar, L. Rosenfeld y A. Mizrach, “Development of an automatic monitoring trap for Mediterranean fruit fly (Ceratitis capitata) to optimize control applications frequency”. Computers and Electronics in Agriculture, 139, 115-125, 2017. https://doi.org/10.1016/j.compag.2017.04.022; B. Keswani, A. Mohapatra, A. Mohanty, A. Khanna, J. Rodriguez, D. Gupta, V. De Albuquerque, “Adapting weather conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms”. Neural Comput. Appl. 31: 277–292, 2019. https://doi.org/10.1007/s00521-018-3737-1; L. García, L. Parra, J.M. Jimenez, J. Lloret, P. Lorenz, “IoT-Based Smart Irrigation Systems: An Overview on the Recent Trends on Sensors and IoT Systems for Irrigation in Precision Agriculture”. Sensors, 20(4),1042, 2020, https://doi.org/10.3390/s20041042; F.A. Paredes-Sánchez, G. Rivera, V. Bocanegra-García, H. Y. Martínez-Padrón, M. Berrones-Morales, N. Niño-García y V. Herrera-Mayorga. “Advances in control strategies against Spodoptera Frugiperda. A review”. Molecules, 26(18), 5587, 2021. https://doi.org/10.3390/molecules26185587; Ecobertura., Spodoptera frugiperda (Smith) 2023. [En línea]. Disponible en https://ecobertura.es/spodoptera-frugiperda/; Weather Spark., 2023. Average Weather in Villavicencio, Colombia. [En línea]. Disponible en https://weatherspark.com/y/24273/Average-Weather-in-VillavicencioColombia-Year-Round; S. A. Vaca Vargas, “Automated greenhouse, instrumentation and fuzzy logic”, Visión Electrónica, vol. 14, no. 1, pp. 119–127, ene. 2020. https://doi.org/10.14483/22484728.15907; A. M. Molano-Gómez; A. F. Neira-Reyes; L. H. Correa-Salazar; E. Bernal-Alzate, “Topological alternatives for photovoltaic integration in rural areas”, Visión electrónica, vol. 13, no. 1, januaryjune 2019, pp. 24-32.; Wohlers, T. (2020). "Wohlers Report 2020: 3D Printing and Additive Manufacturing State of the Industry." Wohlers Associates, Inc.; McKinsey & Company. (2018). "The next frontiers for additive manufacturing." McKinsey Digital.; Stockholm Environment Institute, J. A. Vega Araújo, M. Muñoz Cabré, y Stockholm Environment Institute, «Energía solar y eólica en Colombia: panorama y resumen de políticas 2022», Stockholm Environment Institute, mar. 2023. doi:10.51414/sei2023.016.; Wohlers, T. (2019). "Wohlers Report 2019: 3D Printing and Additive Manufacturing State of the Industry." Wohlers Associates, Inc.; Chua, C. K., Leong, K. F., & Lim, C. S. (2014). "Rapid Prototyping: Principles and Applications." World Scientific Publishing Company.; Kruth, J. P., Leu, M. C., & Nakagawa, T. (2003). "Progress in additive manufacturing and rapid prototyping." CIRP Annals - Manufacturing Technology, 52(2), 525-540.; Gibson, I., Rosen, D. W., & Stucker, B. (2015). "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing." Springer.; Cooper, R. G. (2019). "Product Leadership: Pathways to Profitable Innovation." Basic Books.; Ulrich, K. T., & Eppinger, S. D. (2015). "Product Design and Development." McGraw-Hill Education.; L. L. Hurtado-Cortés, J. A. Forero-Casallas, y V. E. Ruiz-Rosas, “Tecnologías automatizadas implementadas en la FMS HAS200”, Visión Electrónica, vol. 16, no. 1, jun. 2022.; McGrath, R. G. (2020). "Seeing Around Corners: How to Spot Inflection Points in Business Before They Happen." Houghton Mifflin Harcourt.; H. Beltrán-Cicery, D. Rojas-Sarmiento, y F. Barrera-Prieto, “Implementation of a manufacturing cell in assembly of Hanoi tower”, Visión Electrónica, vol. 16, no. 2, sep. 2022.; A. L. Vargas, "El profesional de mercadeo en tiempos de Inteligencia Artificial," IBM Colombia, 2017. [Online]. Available: https://www.revistapym.com.co/articulos/mercadeo/10851/el-profesional-de-mercadeo-entiempos-de-inteligencia-artificial.; C. F. Villa Gómez, "Mercadeo e Inteligencia Artificial," La República, 2020. [Online]. Available: https://www.larepublica.co/analisis/carlos-fernando-villa-gomez-400403/mercadeoe-inteligencia-artificial-3048716.; "Con el impulso de la Inteligencia Artificial, Colombia podría triplicar su productividad y aumentar su PIB hasta un 6.8%," Microsoft Noticias, 2019. [Online]. Available: https://news.microsoft.com/es-xl/con-el-impulso-de-la-inteligencia-artificial-colombia-podriatriplicar-su-productividad-y-aumentar-su-pib-hasta-un-6-8/; H. Wong, "Avances y Problemas en la Inteligencia Artificial de Colombia 2022," LinkedIn, 2022. [Online]. Available: https://es.linkedin.com/pulse/avances-y-problemas-en-lainteligencia-artificial-de-colombia-wong.; "IA y ChatGPT transformarán las prácticas de mercadeo," Portafolio, 2023. [Online]. Available: https://www.portafolio.co/tendencias/ia-y-chatgpt-transformaran-las-practicas-demercadeo-577916.; P. T. Hernández, "El Marco Ético para la Inteligencia Artificial en Colombia: una oportunidad para implementar proyectos de IA que beneficien a toda la ciudadanía," 2022. [Online]. Available: https://www.ccit.org.co/articulos-tictac/el-marco-etico-para-la-inteligencia-artificialen-colombia-una-oportunidad-para-implementar-proyectos-de-ia-que-beneficien-a-toda-laciudadania/.; "Inteligencia artificial: definición, historia, usos, peligros," DataScientest, 2023. [Online]. Available: https://datascientest.com/es/inteligencia-artificial-definicion.; A. Flores, "Conoce la historia del marketing digital y su evolución hasta el día de hoy," Crehana, 2021. [Online]. Available: https://www.crehana.com/blog/transformaciondigital/historia-del-marketing-digital/.; "Evolución del internet y mercadotecnia digital," Preceden, 2023. [Online]. Available: https://www.preceden.com/timelines/841917-evoluci-n-del-internet-y-mercadotecnia-digital.; "Colombia se adhiere a acuerdo sobre Inteligencia Artificial ante los países de la OCDE," Mintic, 2019. [Online]. Available: https://www.ccb.org.co/Clusteres/Cluster-de-Software-yTI/Noticias/2019/Mayo-2019/Colombia-se-adhiere-a-acuerdo-sobre-Inteligencia-Artificialante-los-paises-de-la-OCDE.; A. de Ignacio, "La Inteligencia Artificial en el marketing digital," 2023. [Online]. Available: https://www.cyberclick.es/numerical-blog/la-inteligencia-artificial-en-el-marketing-digital.; Meisam Mahdavi, Mohammad S. Javadi, João P.S. Catalão, Integrated generationtransmission expansion planning considering power system reliability and optimal maintenance activities, International Journal of Electrical Power & Energy Systems, Volume 145, 2023, 108688, ISSN 0142- 0615,https://doi.org/10.1016/j.ijepes.2022.108688. (https://www.sciencedirect.com/science/article/pii/S0142061522006846); Long Ding, Hong Wang, Kai Kang, Kai Wang, A novel method for SIL verification based on system degradation using reliability block diagram, Reliability Engineering & System Safety, Volume 132, 2014, Pages 36-45, ISSN 0951-8320, https://doi.org/10.1016/j.ress.2014.07.005. (https://www.sciencedirect.com/science/article/pii/S0951832014001604); ISO 55001:2014 Asset Management. Management systems – RequirementsThe British Standards Institution. 2014.; B. Dhilon, “Applied Reliability and Quality Fundamentals, Methods and Procedures, New Jersey: Springer, 2007.; Mohsen Firouzi, Abouzar Samimi, Abolfazl Salami, Reliability evaluation of a composite power system in the presence of renewable generations, Reliability Engineering & System Safety, Volume 222, 2022, 108396, ISSN 0951-8320, https://doi.org/10.1016/j.ress.2022.108396. (https://www.sciencedirect.com/science/article/pii/S0951832022000710); R. Yajun and M. Xiurui, "The reliability evaluation of the power system containing wind farm using the improved state space partition method," 2014 International Conference on Power System Technology, Chengdu, China, 2014, pp. 36-41, doi:10.1109/POWERCON.2014.6993498.; S. Anbazhagan, N. Kumarappan, Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT, Energy Conversion and Management, Volume 78, 2014, Pages 711-719, ISSN 0196-8904, https://doi.org/10.1016/j.enconman.2013.11.031.; Xudong Fan, Xijin Zhang, Xiong Bill Yu, Uncertainty quantification of a deep learning model for failure rate prediction of water distribution networks, Reliability Engineering & System Safety, Volume 236, 2023,109088, ISSN 0951-8320, https://doi.org/10.1016/j.ress.2023.109088. (https://www.sciencedirect.com/science/article/pii/S0951832023000030); Wei Qiu, Qiu Tang, Zhaosheng Teng, Wenxuan Yao, Jun Qiu, Failure rate prediction of electrical meters based on weighted hierarchical Bayesian,Measurement, Volume 142, 2019, Pages 21-29, ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2019.04.062. (https://www.sciencedirect.com/science/article/pii/S026322411930380X; C.Ramírez, “Phyton para finanzas CURSO PRÁCTICO”, Bogotá: Ediciones de la U, pp.223-233,2021.; C.Ramírez, “Phyton para finanzas CURSO PRÁCTICO”, Bogotá: Ediciones de la U, pp.279-311,2021.; J. Stock, “Introducción a la econometría”, Madrid: Pearson educación S.A, pp.373- 411, 2012.; G. Box, “Time Series Analysis Forecasting and Control”, New Jersey: John Wiley & Sons Ltd, pp. 2-43, 2016.; S. Raschka, “Machine Learning con PyTorch y Scikit-Learn”, Madrid: Alphaeditorial, pp.290-307, 2023.; Yanhui CHEN, Mengmeng Ma, Yuye Zou, Forecasting hourly electricity demand with nonparametric functional data analysis,Procedia Computer Science, Volume 214, 2022, Pages 428-436, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2022.11.195. (https://www.sciencedirect.com/science/article/pii/S1877050922019056); Ye Zhu, Shiwen Xie, Yongfang Xie, Xiaofang Chen, Temperature prediction of aluminum reduction cell based on integration of dual attention LSTM for non-stationary subsequence and ARMA for stationary sub-sequences, Control Engineering Practice, Volume 138, 2023,105567, ISSN 0967-0661, https://doi.org/10.1016/j.conengprac.2023.105567. (https://www.sciencedirect.com/science/article/pii/S0967066123001363); Shao, Y., Zhang, D., Chu, H., Zhang, X., & Rao, Y. (2021). A Review of YOLO Object Detection Based on Deep Learning.; Bhasin, S. (2019). Real-time Object Detection with YOLO, OpenCV and Python.; Suresh et al. (2020). Object Detection with YOLO for Intelligent Traffic Monitoring System.; Liu, Y., Shi, Q., Guo, W., & Liao, W. (2020). A Real-time, Mobile-object Detection Approach for Unmanned Aerial Vehicle Based Forest Fire Surveillance System.; Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022). A Review of YOLO Algorithm Developments.; Mauro Tucci, A. B. (s/f). "YOLO-S: A Lightweight and Accurate YOLO-like Network for Small Target Selection in Aerial Imagery".; Sharma, A., Pathak, J., Prakash, M., & Singh, J. N. (2020). Object Detection using OpenCV and Python. International Journal of Innovative Research in Computer and Communication Engineering, 8(6), 2736-2741.; “Procesamiento de Imágenes y Visión Artificial con MATLAB Video,” Mathworks.com, 2021. https://la.mathworks.com/videos/image-processing-and-computer-vision-with-matlab1597884648964.html (accessed Jul. 25, 2023).; Ricardo Alirio Gonzalez, R. Ferro, and Daríoo Liberona, “Government and governance in intelligent cities, smart transportation study case in Bogotá Colombia,” vol. 11, no. 1, pp. 25– 34, Mar. 2020, doi: https://doi.org/10.1016/j.asej.2019.05.002.; Beatriz Elena Pineda, Claudia Helena Muñoz, & Gil, H. (2018). Aspectos relevantes de la movilidad y su relación con el medio ambiente en el Valle de Aburrá: una revisión. Ingeniería Y Desarrollo, 36(2), 489–508. https://www.redalyc.org/journal/852/85259689013/html/; IA por el Planeta: Destacando las innovaciones de IA para la movilidad sostenible y las ciudades inteligentes. (2023). Unesco.org. https://www.unesco.org/es/articles/ia-por-elplaneta-destacando-las-innovaciones-de-ia-para-la-movilidad-sostenible-y-las-ciudades; Gómez Zapata, C. A. (2019). Reconocimiento de objetos del hogar, usando redes neuronales convolucionales para personas con discapacidad visual. Revista Científica de Ingeniería y Tecnología, 2(2), 1-10. https://dialnet.unirioja.es/descarga/articulo/7436051.pdf.; Olabe, X. B. (s/f). REDES NEURONALES ARTIFICIALES Y SUS APLICACIONES. Ehu.eus. Recuperado el 8 de julio de 2023, de URL: https://ocw.ehu.eus/pluginfile.php/40137/mod_resource/content/1/redes_neuro/contenidos/pd f/libro-del-curso.pdf; Murgui, J., & García-Sánchez, A. J. (2018). Clasificación y reconocimiento de imágenes con redes neuronales para aplicaciones industriales. URL: https://riunet.upv.es/bitstream/handle/10251/115464/Murgui.pdf?sequence=1; Ortiz, G., & Sánchez, A. I. (2020). Emprendimiento y tecnologías de la información y la comunicación en Bogotá. Cuadernos de Administración, 36(67), 199-211.; Torres, J., & Acosta, H. (2019). La innovación en el ecosistema emprendedor de Bogotá. Cuadernos de Administración, 35(64), 251-262.; Uribe, F., & Guzmán, J. (2021). La colaboración público-privada en el fomento de la innovación en Bogotá: el caso de la identificación de objetos en el contexto vial. Revista Internacional de Gestión y Economía Aplicada, 11(1), 89-101.; Centro de Investigación de la Universidad Distrital Francisco José de Caldas. (2023). Udistrital.edu.co. https://revistas.udistrital.edu.co/index.php/visele/article/view/18942/18701; Chiroma, R. C. U. (2021). Vehicle detection, counting, and classification in traffic videos: A survey. IEEE Transactions on Intelligent Transportation Systems, 22(10), 3773-3785. [20] Rao, S. S. (2018). Vehicle detection and identification using computer vision and deep learning techniques. IEEE Transactions on Intelligent Transportation Systems, 19(10), 2827- 2836.; Akhand, M. A. H. (2019). Vehicle Recognition from License Plate Number using Deep Learning. arXiv preprint arXiv:1903.09203.; Sandra Milena García Ávila, Cristian Alexander Vega Camacho, José Vicente Cadena López, Ricardo Alirio González Bustamante, Paola Andrea Mateus Abaunza. (2021). Diseño y aplicación de una herramienta para identificar y clasificar motocicletas mediante una red neuronal convolucional. researchgate.net. URL: https://doi.org/ISBN:978-958-53278-6-3; valentynsichkar, “Traffic Signs Detection by YOLO v3, OpenCV, Keras,” Kaggle.com, Apr. 15, 2022. https://www.kaggle.com/code/valentynsichkar/traffic-signs-detection-by-yolo-v3- opencv-keras (accessed Jul. 25, 2023).; Motor Colombia. (2022, February 23). 7.270 muertos en accidentes de tránsito en 2021. Motor Colombia; Motor Colombia. URL: https://www.motor.com.co/industria/7.270-muertos-enaccidentes-de-transito-en-2021-20220124-0001.html; R. Jiménez Moreno, O. Avilés, y D. M. Ovalle, “Red neuronal convolucional para discriminar herramientas en robótica asistencial”, Vis. Electron., vol. 12, no. 2, pp. 208–214, oct. 2018. https://doi.org/10.14483/22484728.13996; L. L. Hurtado-Cortés y J. A. Forero-Casallas, “Identification and fault detection in actuator using NN-NARX”, Vis. Electron., vol. 2, no. 2, pp. 304–312, dic. 2019. https://doi.org/10.14483/22484728.18432; Propia. (2023). Fragmento del conjunto de imágenes de entrenamiento para YOLO [Figura].; Propia. (2023). Matriz de confusión de una capacitación sobre imágenes de Camiones. [Figura].; Propia. (2023). Curva de precisión-confianza para el entrenamiento de imágenes de Camiones. [Figura].; Propia. (2023). Salida "Results.png" sobre el entrenamiento de imágenes de Camiones. [Figura].; Propia. (2023). Salida "Train.png" sobre el entrenamiento de imágenes de Camiones. [Figura].; Propia. (2023). Salida "Val.png" sobre el entrenamiento para Camiones. [Figura]; Propia. (2023). Salida de los gráficos de correlación de etiquetas para el entrenamiento de imágenes de Camiones. [Figura].; Propia. (2023). Esquema de entrenamiento general utilizado para el reconocimiento de imágenes con YOLO. [Figura]; Anagnoste, Sorin. "Robotic Automation Process – The operating system for the digital enterprise" Proceedings of the International Conference on Business Excellence, vol.12, no.1, 2018, pp.54-69. https://doi.org/10.2478/picbe-2018-0007; C. T. Kaya, M. Turkyilmaz, & B. Birol, “Impact of RPA Technologies on Accounting Systems”. Muhasebe ve Finansman Dergisi, pp. 235–250, Apr. 2019, https://doi.org/10.25095/mufad.536083; Morgan.O’ Mara., “How Much Paper is Used in One Day”, Record Nations, blog. https://www.recordnations.com/blog/how-much-paper-is-used-in-one-day/; Thomas Teunissen. Success factors for RPA application in small and medium sized enterprises. University of Twente. From https://essay.utwente.nl/77592/1/Teunissen_BA_EEMCS.pdf; James Barlow. 2023. OCRmyPDF documentation. Read the Docs. From: https://ocrmypdf.readthedocs.io/en/latest/index.html; T Malathi, et al. 2021. An Experimental Performance Analysis on Robotics Process Automation (RPA) With Open Source OCR Engines: Microsoft Ocr And Google Tesseract OCR. IOP Conf. Ser.: Mater. Sci. Eng. 1059 012004. https://doi.org/10.1088/1757-899X/1059/1/012004; Arkadiusz Januszewski et al. 2021. Benefits of and Obstacles to RPA Implementation in Accounting Firms. Procedia Computer Science 192 (2021). 4672–4680. https://doi.org/10.1016/j.procs.2021.09.245; Madakam, Somayya, Holmukhe, Rajesh M., and Jaiswal, Durgesh Kumar. (2019). The Future Digital Work Force: Robotic Process Automation (RPA). JISTEM - Journal of Information Systems and Technology Managements, 16, e201916001.https://doi.org/10.4301/S1807-1775201916001; Ribeiro, J., Lima, R., Paiva, S. (2021). Document Classification in Robotic Process Automation Using Artificial Intelligence—A Preliminary Literature Review. In: Sharma, H., Gupta, M.K., Tomar, G.S., Lipo, W. (eds) Communication and Intelligent Systems. Lecture Notes in Networks and Systems, vol 204. Springer, Singapore. https://doi.org/10.1007/978-981-16-1089-9_18; Leslie Willcocks, John Hindle & Mary Lacity. 2019. Keys to RPA Success - Executive Research Report. Knowledge Capital Partners. From: https://engineering.report/Resources/Whitepapers/9a46b779-a4a1-4188-8a1deb769ba4fbb1_Keys-RPA-Success.pdf; J. C. Diaz, D. Zunino, y G. Nicolino, “Análisis de la extracción de datos personales sin autorización de un dispositivo IoT”, Visión Electrónica, vol. 16, no. 2, dic. 2022.; S. Scheuber, and M. Vanhoy, "Emotional and Neurological Responses to Timbre in Electric Guitar and Voice," Paper 10505, (2021 May.).; J. Stanhope, and P. Weinstein, “The human health effects of singing bowls: A systematic review”, Complementary therapies in medicine, 51, 102412, (2020 Apr.).; C. J. Bless, “Análisis de la actividad EEG durante una sesión de estimulación multisensorial en una sala Snoezelen”, Universidad de Valladolid. Escuela Técnica Superior de Ingenieros de Telecomunicación, 2020.; L. Gong, M. Li, T. Zhang, W. Chen, “EEG emotion recognition using attention-based convolutional transformer neural network”, Biomedical Signal Processing and Control, Vol. 84, 2023.; C. Zeng, W. Lin, N. Li, Y. Wen, Y. Wang, W. Jiang, J. Zhang, H. Zhong, X. Chen, W. Luo, et al. “Electroencephalography (EEG)-Based Neural Emotional Response to the Vegetation Density and Integrated Sound Environment in a Green Space”, Forests, 2021.; S. N. Safder, M. U. Akram, M. N. Dar, A. A. Khan, S. G. Khawaja, A. R. Subhani, I. K. Niazi, S. Gul, “Analysis of EEG signals using deep learning to highlight effects of vibration-based therapy on brain”, Biomedical Signal Processing and Control, Vol. 83, 2023.; A. E. Nieto-Vallejo, O. F. Ramírez-Pérez, L. E. Ballesteros-Arroyave, and A. Aragón, “Design of a Neurofeedback Training System for Meditation Based on EEG Technology”, Revista Facultad de Ingeniería, 30(55), 2021; H.Y. Huang & P.C. Lo (2019) EEG dynamics of experienced Zen meditation practitioners probed by complexity index and spectral measure, Journal of Medical Engineering & Technology, 33:4, 314-321, DOI:10.1080/03091900802602677.; F. Ramos-Argüelles, G. Morales, S. Egozcue, R.M. Pabón, M.T. Alonso, “Técnicas básicas de electroencefalografía: principios y aplicaciones clínicas”, vol. 32, 2009.; J. Zain, “El uso de cuencos tibetanos como recurso vibroacústico en Musicoterapia Receptiva”, XVIII Forum estadual de Musicoterapia, 2012.; A. Ramírez Sánchez, C. Espinosa Calderón, A. F. Herrera Montenegro, E. Espinosa Calderón, A. Ramírez Moyano, “Beneficios de la psicoeducación de entrenamiento en técnicas de relajación en pacientes con ansiedad”, Revista Enfermería Docente, 2014.; M. Tobal, “Actividad Cerebral y Deporte: Un Estudio Mediante Mapas de Actividad Eléctrica Cerebral”, Universidad Complutense de Madrid, 1992.; EMOTIV. (2023, 6 abril). EMOTIV Insight 2 with 5 Channel EEG Headset %7C EMOTIV. https://www.emotiv.com/product/emotiv-insight-5-channel-mobile-brainwear/.; Sánchez, M. A. C. Lozano, M. S. G. (2016). El sonido que sana: Manual práctico de sanación a través del sonido. LA ESFERA DE LOS LIBROS, S.L.; Singing Bowl Tones and Frequencies: Complete Guide (2022). (s. f.). Shanti Bowl. https://www.shantibowl.com/blogs/blog/singing-bowl-tones-and-frequencies-complete-guide; Torrades, S. (2007, 1 noviembre). Estrés y burn out. Definición y prevención %7C Offarm. de:https://www.elsevier.es/es-revista-offarm-4-articulo-estres-burn-out-definicion-prevencion13112896; Domingues Hirsch, C., Devos Barlem, E. L., De Almeida, L. K., Tomaschewski Barlem, J. G., Lerch Lunardi, V., & Marcelino Ramos, A. (2018). Stress triggers in the educational environment from the perspective of nursing students. Texto & Contexto Enfermagem, 27(1), e0370014.; Zárate Depraect, N. E., Soto Decuir, M. G., Castro Castro, M. L., & Quintero Salazar, J. R. (2017). Estrés académico en estudiantes universitarios: Medidas preventivas. Revista de Alta Tecnología y la Sociedad, 9(4), 92-98.; Barlett. (1991). Stereo Microphone Techniques. Stoneham, Massachusetts: Reed Publishing (USA).; Holman, T. (2008). Sourround Sound: Up And Running. Burlington, Massachusets: Elsevier Inc.; Howard, D., & Angus, J. (2000). Acoustics and Psychoacoustics (2nd ed.). Routledge. https://doi.org/10.4324/9780080498522.; Burrough, P. A., & McDonnell, R. A. (1998). Principles of geographical information systems (2a ed.). Clarendon Press.; D. S. Garzón-Ramírez, M. S. Sanabria-Guio, y J. D. Cely-Fajardo, “Geolocation system and vehicular analysis for motorcyclists”, Vis. Electron., vol. 2, no. 1, pp. 95–106, mar. 2019. https://doi.org/10.14483/22484728.18416; Home. (2022, abril 15). Open Geospatial Consortium. https://www.ogc.org; Google. (s/f-b). Google.com. Recuperado el 31 de agosto de 2023, de https://earth.google.com/; Documentation. (s/f). Qgis.org. Recuperado el 15 de septiembre de 2023, de https://www.qgis.org/en/docs/index.html; GDAL — GDAL documentation. (s/f). Gdal.org. Recuperado el 15 de septiembre de 2023, de https://gdal.org/; GIS mapping software, location intelligence & spatial analytics. (s/f). Esri.com. Recuperado el 15 de septiembre de 2023, de https://www.esri.com/enus/home; P. F. Martín-Gómez, J. E. Rangel-Díaz, J. O. Montoya-Gómez, y J. L. RubianoFernández, “Automation of greenhouse pesticide application: design and construction”, Visión Electrónica, vol. 2, no. 1, pp. 129–133, mar. 2019. https://doi.org/10.14483/22484728.18419; F. A. Molina-Guzmán, S. A. Torres-Castillo, G. A. López-Martínez, “Use of wastewater and waste from Colombian pacific for electrical generation”, Visión Electrónica, vol. 16, no. 1, 2022.; B. Smith, A., & Johnson, “Automated Fruit Classification for Quality Control,” J. Agric. Technol., vol. 10, no. 4, pp. 1015–1027, 2018.; C. G. Peñaranda, “ANÁLISIS DE COSTOS DE LA PRODUCCIÓN DE DURAZNO (PRUNUS PÉRSICA) EN LA PROVINCIA DE PAMPLONA (NORTE DE SANTANDER),” Rev. la Fac. Ciencias Económicas y Empres., pp. 145–162, 2012.; 2. Camara de Comercio de Medellín, “HERRAMIENTAS EMPRESARIALESAUTOMATIZACIÓN DE LOS PROCESOS INDUSTRIALES,” 2018. http://herramientas.camaramedellin.com.co/Inicio/Buenaspracticasempresariales/Bibliot ecaProduccónyOperaciones/Automatizaciondelosprocesosindustriales.aspx.; C. García, A. López, and F. Fernández, “Deep Learning-Based Fruit Recognition and Classification System for Precision Agriculture,” Comput. Electron. Agric., vol. 180, p. 105832, 2020.; R. Patel, A. Sharma, and S. Kumar, “Real-time Fruit Recognition and Grading System for Robotic Harvesting,” Comput. Electron. Agric., vol. 157, pp. 306–316, 2019.; M. Megajothi, C. Meenakshi, and R. Rajakumari, “Automation of Fruit Quality Analysis System,” in 2nd International Conference on Applied Soft Computing Techniques C., 2022, pp. 424–425.; W. M. Syahrir, A. Suryanti, and C. Connsynn, “Color grading in Tomato Maturity Estimator using image processing technique,” in 2009 2nd IEEE International Conference on Computer Science and Information Technology, 2009, pp. 276–280, doi:10.1109/ICCSIT.2009.5234497.; Z. Ma, J.-H. Xue, A. Leijon, Z.-H. Tan, Z. Yang, and J. Guo, “Decorrelation of Neutral Vector Variables: Theory and Applications,” IEEE Trans. Neural Networks Learn. Syst., vol. 29, no. 1, pp. 129–143, 2018, doi:10.1109/TNNLS.2016.2616445.; L. Zhang, J. Jia, G. Gui, X. Hao, W. Gao, and M. Wang, “Deep Learning Based Improved Classification System for Designing Tomato Harvesting Robot,” IEEE Access, vol. 6, pp. 67940–67950, 2018, doi:10.1109/ACCESS.2018.2879324.; J. Chen, Z. Liu, H. Wang, A. Núñez, and Z. Han, “Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network,” IEEE Trans. Instrum. Meas, vol. 67, no. 2, pp. 257–269, 2018.; H. Yu, Z.-H. Tan, Z. Ma, R. Martin, and J. Guo, “Spoofing detection in automatic speaker verification systems using DNN classifiers and dynamic acoustic features,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 10, pp. 4633–4644, 2018.; and Y. A. X. Sun, G. Gui, Y. Li, R. P. Liu, “A novel deep neural network with feature reuse for Internet of Things,” IEEE Internet Things.; B. S and U. J, “Deep fruit detection in orchards,” IEEE Int. Conf. Robot. Autom, no. May, pp. 3626–3633, 2017.; Vanguardia, “¿Como Puede la inteligencia artificial mejorar nuestras vidas?,” 2016. http://www.lavanguardia.com/vida/20161218/412710361329/como-puede-lainteligencia-artificial-mejorar-nuestras-vidas.html.; C. Oehninger, “El Impacto de la Robótica y la Automatización del Empleo en Uruguay,” 2018.; R. Terminio and E. Rimbau-Gilabert, “La digitalización del entorno de trabajo: la llegada de la robótica, la automatización y la inteligencia artificial (RAIA) desde el punto de vista de los Informal learning and work View project Creative industry network of entrepreneurs-CINet View project,” no. May, 2018, [Online]. Available: https://www.researchgate.net/publication/325059719.; D. BROUGHAM and J. HAAR, “Employee assessment of their technological redundancy,” Labour y Ind., 2017.; McKinsey And Company, “UN FUTURO QUE FUNCIONA: AUTOMATIZACIÓN, EMPLEO Y PRODUCTIVIDAD,” New York, 2017. doi:10.1787/agr_outlook-2017-3-es; Agua Libre. "Lo que necesitas saber sobre la Telemetría," 2021. Disponible en: https://agualibre.cl/telemetria-2/; D. J. Cardoso Ortegón and J. D. Ramírez Tovar, "Propuesta de un sistema de potabilización de aguas subterráneas, caso de estudio pozo finca el arbolito-ubicado en la vereda Caimanera en el municipio de el Espinal - Tolima teniendo en cuenta la caracterización física, química y microbiológica," Proyecto de grado, Universidad Piloto de Colombia, 2021. Disponible en: http://repository.unipiloto.edu.co/handle/20.500.12277/10116.; A. Jiménez, F. Velásquez, y S. Puente, “Sistema inteligente de prescripción de riego agrícola basado en redes de sensores y modelado de cultivos”, Visión Electrónica, vol. 17, no. 1, feb. 2023.; Digital Senses. "Telemetría y Monitoreo efectivo de Pozos de Agua," Disponible en: https://www.digitalsenses.io/medidores-de-pozos-de-agua/; E. M. González-Clavijo, J. C. Contreras-Niño, y H. J. Eslava-Blanco, “Automatización del vivero Semigar”, Visión Electrónica, vol. 16, no. 1, jun. 2022.; Integra Instrumentación. "Instalación de telemetría para pozos," Disponible en: https://integrainstrumentacion.cl/instalacion-de-telemetria-para-pozos/; F. C. Castañeda-Árias y K. S. Novoa-Roldan, “Remote crops: case study of critical variables”, Visión. Electrónica, vol. 16, no. 1, ene. 2022.; Nettra. "Monitoreo de pozos de extracción de agua subterránea," Disponible en: https://nettra.tech/monitoreo-de-pozos-de-extraccion-de-agua-subterranea/; B. Böttcher, J. Badinger, N. Moriz, and O. Niggemann, “Design of industrial automation systems — Formal requirements in the engineering process,” in 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), 2013, pp. 1–4. doi:10.1109/ETFA.2013.6648148.; N. Papakonstantinou, J. Karttunen, S. Sierla, and V. Vyatkin, “Design to automation continuum for industrial processes: ISO 15926 – IEC 61131 versus an industrial case,” in 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 2019, pp. 1207–1212. doi:10.1109/ETFA.2019.8869325.; J. E. Martinez Baquero, “Diseño y construcción de equipo automatizado para separar mezclas,” Visión Electrónica Más que un estado sólido, vol. 8, no. 2, pp. 87–93, 2014, [Online]. Available: https://revistas.udistrital.edu.co/index.php/visele/article/view/9880; M. A. Monzón Herrera, “Diseño de un sistema dedicado al monitoreo y automatización de parámetros de proceso en una línea de producción de cartones moldeados (Doctoral dissertation).,” Universidad de San Carlos de Guatemala, 2019.; C. M. Bustamante Álvarez, J. E. Martínez Baquero, and C. Torres Gómez, “SCADA System of Physicochemical Variables in a Mixture Separator,” Rev. Inge CUC, vol. 11, no. 1, pp. 85–98, 2015, doi:10.17981/ingecuc.11.1.2015.09.; F. G. Astudillo, “Diseño y simulación de un control automático para una cámara de fermentación de pan por medio de un automáta programable,” ESCUELA POLITÉCNICA NACIONAL, 2010. [Online]. Available: https://bibdigital.epn.edu.ec/handle/15000/2231; P. A. Quinteros, M. C. Zurita, N. C. Zambrano, and L. M. Esthela, “Automatización de los procesos industriales,” J. Bus. Entrep. Stud., vol. 4, no. 2, pp. 123–131, 2020, [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=7888290; F. F. Cando Herrera and G. F. Medina Lescano, “Implementación de un sistema de control y monitoreo de nivel de agua para el sistema de riego Chambo –Guano en la provincia de Chimborazo,” 2021, [Online]. Available: https://www.dspace.espol.edu.ec/bitstream/123456789/56415/1/T-112772 Cando - Medina.pdf; J. D. Murcia Velez and L. F. Chacón Segura, “Diseño de un sistema automático de cultivo hidropónico para forraje verde,” Universidad de La Salle, 2018. [Online]. Available: https://ciencia.lasalle.edu.co/ing_automatizacionF.; P. Radu and L. Gheorghe, “Implementation of an automatic control system of technological process for disinfection of drinking water from treatment plants,” in Proceedings of 2012 IEEE International Conference on Automation, Quality and Testing, Robotics, 2012, pp. 144–149. doi:10.1109/AQTR.2012.6237691.; A. Chiavola, C. Di Marcantonio, M. D’Agostini, S. Leoni, and M. Lazzazzara, “A combined experimental-modeling approach for turbidity removal optimization in a coagulation– flocculation unit of a drinking water treatment plant,” J. Process Control, vol. 130, p. 103068, 2023, doi: https://doi.org/10.1016/j.jprocont.2023.103068.; E. A. Al-Sum, A. Sattar, and M. A. Aziz, “Automation of water treatment plants and its application in power and desalination plants,” Desalination, vol. 92, no. 1–3, 1993, doi:10.1016/0011-9164(93)80087-4.; H. Gulhan et al., “Use of water treatment plant sludge in high-rate activated sludge systems: A techno-economic investigation,” Sci. Total Environ., vol. 901, p. 166431, 2023, doi: https://doi.org/10.1016/j.scitotenv.2023.166431.; A. Ortega Ramírez, L. Cáceres Durán, and L. Castiblanco Molina, “INTRODUCCIÓN AL USO DE COAGULANTES NATURALES EN LOS PROCESOS DE POTABILIZACIÓN DEL AGUA,” Rev. Ambient. Agua, aire y suelo., vol. 11, no. 2, pp. 1–14, 2020, doi: https://doi.org/10.24054/aaas.v11i2.873.; H. A. Díaz Therán, M. Hincapié, L. Montoya, L. Galeano, A. Balaguera, and G. Carvajal, “Evaluación de la sostenibilidad para un sistema individual de potabilización de agua encomunidades rurales a través de la metodología de ACV,” in Encuentro Internacional de Educación en Ingeniería, 2023, 2023, p. 3128. [Online]. Available: 10.26507/paper.3128; R. C. Urban, L. Y. K. Nakada, and R. de L. Isaac, “A system dynamics approach for largescale water treatment plant sludge management: A case study in Brazil,” J. Clean. Prod., vol. 419, p. 138105, 2023, doi: https://doi.org/10.1016/j.jclepro.2023.138105.; N. Unidas, “Objetivo 6: Garantizar la disponibilidad de agua y su gestión sostenible y el saneamiento para todos.,” OBJETIVOS DE DESARROLLO SOSTENIBLE, 2015. https://www.un.org/sustainabledevelopment/es/water-and-sanitation/; C. J. Macuada, A. M. Oddershede, and L. E. Quezada, “DM methodology for automating technology system in water treatment plants,” in 2018 7th International Conference on Computers Communications and Control (ICCCC), 2018, pp. 265–269. doi:10.1109/ICCCC.2018.8390469.; M. Alissa, S. Al-Harahshah, and M. Ibrahim, “Monitoring of Surface Water Quality in King Talal Dam Using GIS: A Case Study,” Iraqi Geol. J., vol. 56, no. 2, pp. 36–47, 2023, doi:10.46717/igj.56.2A.3ms-2023-7-12.; F. Villacís Chimborazo and W. . Zambrano Vélez, “AUTOMATIZACIÓN DEL PROCESO DE TRATAMIENTO DE AGUAS RESIDUALES EN TECNOVA S . A .”,” Universidad Politécnica Salesiana. Ecuador, 2013. [Online]. Available: https://dspace.ups.edu.ec/handle/123456789/4118; M. Portección Social and M. Ambiente Vivienda y Desarrollo Territorial, Resolución 2115 de 2007, vol. 1. 2007, p. 23. [Online]. Available: https://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Legislac ión_del_agua/Resolución_2115.pdf.; Ministerio de Desarrollo Económico, “RAS 2000, Titulo A - Aspectos generales de los sistemas de agua potable y saneamiento básico. Ministerio de Vivienda Ciudad y Territorio Colombia,” Reglam. Técnico Del Sect. Agua Potable Y Saneam. Basico, p. 114, 2000.; G. Corporación Alemana, “Manual para la cloración del agua en sistemas de abastecimiento de agua potable en el ambito rural,” Corporación Alem. para la Coop. Int., p. 91, 2017, [Online]. Available: https://sswm.info/sites/default/files/reference_attachments/GIZ 2017. Manual para la cloración del agua en sistemas de abastecimiento de agua potable.pdf; AGUAVIVA, “Sistema de Acueducto,” 2021. https://www.aguavivaesp.gov.co/acueducto/; Anyasi, T. A., Jideani, A. I. O., & Mchau, G. (2013). Functional properties and postharvest utilization of commercial and noncommercial banana cultivars. Comprehensive Reviews in Food Science and Food Safety, 12(5), 509-522. https://doi.org/10.1111/1541-4337.12025; Al-Dairi, M., Pathare, P. B., Al-Yahyai, R., Jayasuriya, H. P. W., & Al-Attabi, Z. (2023). Postharvest Quality, Technologies, and Strategies to Reduce losses along the supply Chain of Banana: a review. Trends in Food Science and Technology, 134, 177-191. https://doi.org/10.1016/j.tifs.2023.03.003; S. A. Vaca Vargas, O. L. García Navarrete, y M. A. Colorado Gómez, “Diseño y construcción de un sistema acuapónico automatizado para cultivo acuaponico NFT de Carpa Roja y Lechuga Crespa”, Visión Electrónica, vol. 17, no. 1, ene. 2023.; Lidyce, Q. L. (s. f.). Elementos teóricos y prácticos sobre la bioimpedancia eléctrica en salud.http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1025- 02552016000500014; Caicedo-Eraso, J.C., Díaz-Arango, F.O., & Osorio-Alturo, A. (2019). Espectroscopia de impedancia eléctrica aplicada al control de la calidad en la industria alimentaria. http://www.scielo.org.co/pdf/ccta/v21n1/0122-8706-ccta-21-01-00100.pdf; Montes, L.M., Mejía-Gutiérrez, L.F., & Caicedo-Eraso, J.C. (2021). Espectroscopia de impedancia eléctrica, una herramienta para aplicaciones biotecnológicas con Lactobacillus casei ATCC 393. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123- 34752021000100055; Ocampo Hernández, Ó.H., Ruiz Villa, C.A., Aristizábal Botero, W., Olarte Echeverri, G., Gallego, P.A. (2017). Caracterización del tejido columnar del cérvix mediante espectroscopia de impedancia eléctrica y modelado computacional. Biosalud. https://www.semanticscholar.org/paper/216f9823cf95e0f9043636a052f656c4d318eed1; García Bello, J., Batista Luna, T., & Rodríguez de la Cruz, N. (2023). Principios básicos y uso en medicina de la espectroscopia de impedancia. Revista Cubana de Medicina Militar, 52(2), e02302316. Recuperado de https://revmedmilitar.sld.cu/index.php/mil/article/view/2316/1772; Carreño, A., & Gómez, C. (2013). Procesamiento de tejido de cuello uterino para estudio piloto de detección temprana de cáncer cervical basado en espectroscopia de impedancia eléctrica.; N. A. Ramírez-Pérez, L. E. Aparicio-Pico, y C. A. Pérez-Triana, “Medición sobre MRI para diagnóstico de cáncer de próstata”, Visión Electrónica, vol. 14, no. 2, pp. 196–206, jul. 2020. https://doi.org/10.14483/22484728.17965; Li, Yunhua; Cai, Chaozhi; Lee, Kok-Meng; Teng, Fengjian “A novel cascade temperature control system for a high-speed heat-airflow wind tunnel”, IEEE/ASME Transactions on Mechatronics, volumen 18, Issue 4, pages 1310 - 1319, 2013. https://doi:10.1109/TMECH.2013.2262077; Cai, Chaozhi; Li, Yunhua; Dong, Sujun, “Experimental Study on Gas Temperature Control for a High-Speed Heat-Airflow Wind Tunnel”, Journal of Aerospace Engineering, vol. 29, Issue. 6, nov 2016. https://doi.org/10.14483/22487638.6071; J. H. Fresneda-Alarcón, A. Escobar-Diaz, H. Vacca-González, y G. J. Rincón-Aponte, “Modelamiento e implementación de una planta térmica”, Visión Electrónica, vol. 15, no. 1, pp. 94–103, feb. 2021. https://doi.org/10.14483/22484728.17470; J. G. Ascanio-Villabona, B. E. Tarazona-Romero, y C. L. Sandoval, “Study of the behavior of the photovoltaic panel according to the installed surface”, Visión Electrónica, vol. 16, no. 2, dic. 2022.; LIU, Wei; ZHOU, Mengde, “An active damping vibration control system for wind tunnel models”, Chinese Journal of Aeronautics, vol. 32, pp. 2109-2120, sept 2019. https://doi.org/10.1016/j.cja.2019.04.014; Huang, Rui; Zhao, Yonghui; Hu, Haiyan, “Wind-Tunnel tests for active flutter control and closed-loop flutter identification”, AIAA Journal, vol. 54, Issue 7, pp. 2089-2099, 2016. https://doi.org/10.2514/1.J054649; FEEDBACK PT 326 Process Trainer User manual (e-lab) Crowborough, E. Sussex, England, 1999.; FEEDBACK Industry - PT 326 Process Trainer owner guide Crowborough, E. Sussex, England, 1999.; C. B. S. Dutra, F. K. Mendonca, G. C. Sousa, and N. G. Bonacorso, "Retrofitting of a plain table plotter for printed circuit boards prototyping," in Power Electronics Conference, 2009. COBEP '09. Brazilian, 2009, pp. 1027-1032.; K. Salonitis and S. Vatousianos, "Experimental Investigation of the Plasma Arc Cutting Process," Procedia CIRP, vol. 3, pp. 287-292, // 2012.; Lida Pan; Xiangkun Guo; Yan Luan; Hongliang Wang, “Design and realization of cutting simulation function of digital twin system of CNC machine tool”, Procedia Computer Science, vol. 183, pp. 261-266, 2021. https://doi.org/ https://doi.org/10.1016/j.procs.2021.02.057; A.M. Madni, C.C. Madni, S.D. Lucero, “Leveraging digital twin technology in modelbased systems engineering”, Systems, vol. 7, 2019. https://doi.org/ https://doi.org/10.3390/systems7010007; Ran, Meng, “Research on the key Technology of contour error control of machine tool based on digital twin”, ACM International Conference Proceeding Series, pp. 1070- 1075, dec 2022. https://doi.org/10.1145/3584376.3584567; Yu. G. KabaldinL, “Digital Twin for 3D Printing on CNC Machines”, Russian Engineering Research, vol. 39, pp. 848-851, 2019. https:// doiorg.bdigital.udistrital.edu.co/10.3103/S1068798X19100101; Hershberger, R. E., Morales, A. & Siegfried, J. D. Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals. Genet. Med. 12, 655–667 (2010). This review article provides a wide and detailed overview of clinical and genetic issues in specific types of genetic DCM.; Hershberger, R.E.; Hedges, D.J.; Morales, A. Dilated cardiomyopathy: The complexity of a diverse genetic architecture. Nat. Rev. Cardiol. 2013, 10, 531–547.; Antunes M de O, Scudeler TL. Hypertrophic cardiomyopathy. IJC Hear Vasc. 2020;27:100503.; Teekakirikul P, Zhu W, Huang HC, Fung E. Hypertrophic cardiomyopathy: An overview of genetics and management. Biomolecules. 2019;9(12):1–11.; Maron BJ. Clinical Course and Management of Hypertrophic Cardiomyopathy. N Engl J Med. 2018;379(7):655–68.; Maron, B. J. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113, 1807–1816 (2006).; Elliott, P. et al. Classification of the cardiomyopathies: a position statement from the european society of cardiology working group on myocardial and pericardial diseases. Eur. Heart J. 29, 270–276 (2007).; Richardson, P. et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation 93, 841–842 (1996); Rostán, S., Smiliansky, N., & Vaucher, A. (2020). Miocardiopatía por Influenza A H1N1. Reporte de un caso clínico. Revista Uruguaya De Medicina Interna, 5(3), 26-30. https://doi.org/10.26445/05.03.4; Galarza, G., Moreno, J., & Vasquez, G., (2021). Miocardiopatia secundaria a influenza. Revista Médica Vozandes, 32(1), 84-87. DOI:10.48018/rmv.v32.i1.2; Z. Wang, H. Shen, Y. Liu, Y. Cheng, R. Zhang, X. Wang, and A. L. Yuille, “Improving the accuracy of medical diagnosis with causal machine learning,” Nature Communications, vol. 11, no. 1, p. 18310, 2020.; M. M. Ahsan and Z. Siddique, “Machine learning-based heart disease diagnosis: A systematic literature review,” Artificial Intelligence in Medicine, vol. 128, p. 102289, 2022. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0933365722000549; A. Kumar and A. Singla, “Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda,” Journal of Ambient Intelligence and Humanized Computing, vol. 14, no. 7, pp. 1–28, 2022.; U. S. Acharya, S. Kulkarni, and P. Raju, “Artificial intelligence appliedto cardiomyopathies: Is it time for clinical application?” IEEE Access, vol. 10, pp. 16 264–16 282, 2022.; A. Regueiro Gómez, C. B. Busoch Morlán, C. Regueiro Busoch, y R. J. Díaz Martínez, “Biomedical Engineering: experiences in the research formation with MOODLE”, Visión Electrónica, vol. 14, no. 2, pp. 152–158, jul. 2020.; B. Forero, K. Velásquez, R. Hernández, y E. Mejía, “Simulation of transradial prosthesis using Virtual Reality Environment and electrooculography (EOG) signals for grip therapy”, Vis. Electrónica, vol. 16, no. 2, ago. 2022.; D. Sánchez-L., G. Sánchez, y L. A. Luengas-C., “Static postural stability: analysis in time and frequency through the development of a software tool”, Visión Electrónica, vol. 17, no. 1, abr. 2023.; J. L. Gerardo‐Nava, et al. "Transformative Materials to Create 3D Functional Human Tissue Models In Vitro in a Reproducible Manner." Advanced Healthcare Materials (2023): 2301030. doi.org/10.1002/adhm.202301030; C. Vesga-Castro, et al. “Contractile force assessment methods for in vitro skeletal muscle tissues.” eLife vol. 11 e77204. doi:10.7554/eLife.77204; K. Budde, J. Zimmermann, E. Neuhaus, M. Schröder, A. M. Uhrmacher and U. van Rienen, "Requirements for Documenting Electrical Cell Stimulation Experiments for Replicability and Numerical Modeling," 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 2019, pp. 1082-1088, doi:10.1109/EMBC.2019.8856863.; A.M. Kasper, et al. “Mimicking exercise in three-dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation.” Journal of cellular physiology vol. 233,3 (2018): 1985-1998. doi:10.1002/jcp.25840; M. Flaibani, et al. “Muscle differentiation and myotubes alignment is influenced by micropatterned surfaces and exogenous electrical stimulation.” Tissue engineering. Part A vol. 15,9 (2009): 2447-57. doi:10.1089/ten.tea.2008.0301; Fernández‐Costa, Juan M., et al. "Training‐on‐a‐Chip: A Multi‐Organ Device to Study the Effect of Muscle Exercise on Insulin Secretion in Vitro." Advanced Materials Technologies. vol. 8, no 7, p. 2200873 (2023). doi.org/10.1002/admt.202200873; Zhang, Xiaoning, et al. "Complex refractive indices measurements of polymers in visible and near-infrared bands." Applied optics. vol. 59, no 8, p. 2337-2344 (2020). Doi:org/10.1364/AO.383831; J. Fukushima, et al. “Effect of Aspect Ratio on the Permittivity of Graphite Fiber in Microwave Heating.” Materials (Basel, Switzerland) vol. 11,1 169. 22 Jan. 2018, doi:10.3390/ma11010169; K. K. Ravikumar, and K.K. Palanivelu. "Dielectric properties of natural rubber composites filled with graphite." Materials Today: Proceedings 16 (2019): 1338-1343. doi.org/10.1016/j.matpr.2019.05.233; S. Chen. “Dielectric constant measurement of P3HT, polystyrene, and polyethylene”, PhD. thesis., Faculty of Science and Engineering, 2017.; X. Y. Qi, et al. “Enhanced electrical conductivity in polystyrene nanocomposites at ultralow graphene content.” ACS applied materials & interfaces vol. 3,8 (2011): 3130-3. doi:10.1021/am200628c:10; K. Gadonna, et al. "Study of gas heating by a microwave plasma torch." Journal of Modern Physics. vol. 3, no 10, p. 1603. (2012): Doi.org/10.4236/jmp.2012.330198; E. Seran, et al. "What we can learn from measurements of air electric conductivity in 222Rn‐rich atmosphere." Earth and Space Science. vol. 4, no 2, p. 91-106 (2017). doi.org/10.1002/2016EA000241; K. Izdihar, et al. "Structural, mechanical, and dielectric properties of polydimethylsiloxane and silicone elastomer for the fabrication of clinical-grade kidney phantom." Applied Sciences. vol. 11, no 3, p. 1172 (2021). DOI:10.3390/app11031172; A. Müller, M. C. Wapler, and U. Wallrabe. "A quick and accurate method to determine the Poisson's ratio and the coefficient of thermal expansion of PDMS." Soft Matter. vol. 15, no 4, p. 779-784 (2019). DOI:10.1039/C8SM02105H; AZoM.com. (n.d.). Properties: Carbon - Graphite Materials. 2012.; Polystyrene %7C Designerdata. (n.d.). https://designerdata.nl/materials/plastics/thermoplastics/polystyrene; Poisson’s Ratio. (n.d.). https://polymerdatabase.com/polymer%20physics/Poisson%20Table.html; S, Shauheen, et al. “The elastic modulus of Matrigel as determined by atomic force microscopy.” Journal of structural biology. vol. 167, no 3, p. 216-219. doi:10.1016/j.jsb.2009.05.005; J.J. Vaca-González, et al. "Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid–Gelatin injectable hydrogels." Bioelectrochemistry. vol. 134, p. 107536 (2020). doi:10.1016/j.bioelechem.2020.107536; G. Agrawal, et al. “Skeletal muscle-on-a-chip: an in vitro model to evaluate tissue formation and injury.” Lab on a chip vol. 17,20 (2017): 3447-3461. doi:10.1039/c7lc00512a; G.; Renganathan et al., “ETH Library Foot Biomechanics with Emphasis on the Plantar Pressure Sensing: A Review Foot Biomechanics with Emphasis on the Plantar Pressure Sensing: A Review,” in Revolutions in Product Design for Healthcare, D. S. and Innovation, Ed. Singapore: Springer, 2022.; A. K. Buldt, J. J. Allan, K. B. Landorf, and H. B. Menz, “The relationship between foot posture and plantar pressure during walking in adults: A systematic review,” Gait and Posture, vol. 62. 2018, doi:10.1016/j.gaitpost.2018.02.026.; C. Deng, W. Tang, L. Liu, B. Chen, M. Li, and Z. L. Wang, “Self -Powered Insole Plantar Pressure Mapping System,” Adv. Funct. Mater., vol. 28, no. 29, Jul. 2018, doi:10.1002/ADFM.201801606.; J. L. Chen et al., “Plantar Pressure-Based Insole Gait Monitoring Techniques for Diseases Monitoring and Analysis: A Review,” Adv. Mater. Technol., vol. 7, no. 1, p. 2100566, Jan. 2022, doi:10.1002/ADMT.202100566.; Q. Zhang, Y. L. Wang, Y. Xia, X. Wu, T. V. Kirk, and X. D. Chen, “A low-cost and highly integrated sensing insole for plantar pressure measurement,” Sens. Bio-Sensing Res., vol. 26, 2019, doi:10.1016/j.sbsr.2019.100298.; J. F. Hafer, M. W. Lenhoff, J. Song, J. M. Jordan, M. T. Hannan, and H. J. Hillstrom, “Reliability of plantar pressure platforms,” Gait Posture, vol. 38, no. 3, 2013, doi:10.1016/j.gaitpost.2013.01.028.; H. Deepashini, B. Omar, A. Paungmali, N. Amaramalar, H. Ohnmar, and J. Leonard, “An insight into the plantar pressure distribution of the foot in clinical practice: Narrative review,” Polish Annals of Medicine, vol. 21, no. 1. 2014, doi:10.1016/j.poamed.2014.03.003.; K. Hébert-Losier and L. Murray, “Reliability of centre of pressure, plantar pressure, and plantar-flexion isometric strength measures: A systematic review,” Gait and Posture, vol. 75. 2020, doi:10.1016/j.gaitpost.2019.09.027.; P. R. Cavanagh, F. G. Hewitt, and J. E. Perry, “In-shoe plantar pressure measurement: a review,” The Foot, vol. 2, no. 4. 1992, doi:10.1016/0958-2592(92)90047-S.; X. Li, K. Wang, Y. L. Wang, and K. C. Wang, “Plantar pressure measurement system based on piezoelectric sensor: a review,” Sensor Review, vol. 42, no. 2. 2022, doi:10.1108/SR-09-2021-0333.; A. Ciniglio, A. Guiotto, F. Spolaor, and Z. Sawacha, “The design and simulation of a 16- sensors plantar pressure insole layout for different applications: From sports to clinics, a pilot study,” Sensors, vol. 21, no. 4, 2021, doi:10.3390/s21041450.; L. Luengas- Contreras.,and L. Wanumen-Silva. "Modelos computacionales en la posturografía". Tecnura, vol. 26, no. 73, 2022, 30-48. https://doi.org/10.14483/22487638.18060; R. de Fazio, E. Perrone, R. Velázquez, M. De Vittorio, and P. Visconti, “Development of a self-powered piezo-resistive smart insole equipped with low-power ble connectivity for remote gait monitoring,” Sensors, vol. 21, no. 13, 2021, doi:10.3390/s21134539.; H. Muhedinovic and D. Boskovic, “Design of iot solution for velostat footprint pressure sensor system,” in Lecture Notes of the Institute for Computer Sciences, SocialInformatics and Telecommunications Engineering, LNICST, 2016, vol. 187, doi:10.1007/978-3-319-51234-1_30.; AICMA, «Estadísticas de víctimas». Accedido: 26 de octubre de 2023. [En línea]. Disponible en: https://www.accioncontraminas.gov.co/Estadisticas/Paginas/Estadisticasde-Victimas.aspx; G. R. Hurley, R. McKenney, M. Robinson, M. Zadravec, y M. R. Pierrynowski, «The role of the contralateral limb in below-knee amputee gait», Prosthet Orthot Int, vol. 14, n.o 1, Art. n.o 1, abr. 1990, doi:10.3109/03093649009080314.; M. S. Pinzur, «The Effect of Prosthetic Alignment on Relative Limb Loading in Persons with Transtibial Amputation: A Preliminary Report», p. 5, 1995.; R. Gailey, «Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use», The Journal of Rehabilitation Research and Development, vol. 45, n.o 1, Art. n.o 1, dic. 2008, doi:10.1682/JRRD.2006.11.0147.; T. Kobayashi, M. S. Orendurff, y D. A. Boone, «Dynamic alignment of transtibial prostheses through visualization of socket reaction moments», Prosthetics and orthotics international, vol. 39, n.o 6, Art. n.o 6, 2015.; D. A. Boone et al., «Perception of socket alignment perturbations in amputees with transtibial prostheses», The Journal of Rehabilitation Research and Development, vol. 49, n.o 6, Art. n.o 6, 2012, doi:10.1682/JRRD.2011.08.0143.; H. Hashimoto, T. Kobayashi, F. Gao, y M. Kataoka, «A proper sequence of dynamic alignment in transtibial prosthesis: insight through socket reaction moments», Sci Rep, vol. 13, n.o 1, Art. n.o 1, ene. 2023, doi:10.1038/s41598-023-27438-1; S. L. Delp et al., «OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement», IEEE Transactions on Biomedical Engineering, vol. 54, n.o 11, Art. n.o 11, nov. 2007, doi:10.1109/TBME.2007.901024.; F. De Groote, A. L. Kinney, A. V. Rao, y B. J. Fregly, «Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem», Ann Biomed Eng, vol. 44, n.o 10, Art. n.o 10, oct. 2016, doi:10.1007/s10439-016-1591-9.; G. Serrancoli et al., «Subject-Exoskeleton Contact Model Calibration Leads to Accurate Interaction Force Predictions», IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, n.o 8, pp. 1597-1605, ago. 2019, doi:10.1109/TNSRE.2019.2924536.; S. Miller y Y. V. Weddingen, «Modeling Flexible Bodies with Simscape Multibody Software», 2017. Accedido: 10 de agosto de 2023. [En línea]. Disponible en: https://la.mathworks.com/content/dam/mathworks/tag-team/Objects/s/Modeling-FlexibleBodies-Simscape-Multibody-171122.pdf; M. Ackermann y A. J. van den Bogert, «Optimality Principles for Model-Based Prediction of Human Gait», J Biomech, vol. 43, n.o 6, Art. n.o 6, abr. 2010, doi:10.1016/j.jbiomech.2009.12.012.; T. W. Dorn, J. M. Wang, J. L. Hicks, y S. L. Delp, «Predictive Simulation Generates Human Adaptations during Loaded and Inclined Walking», PLOS ONE, vol. 10, n.o 4, Art. n.o 4, abr. 2015, doi:10.1371/journal.pone.0121407.; C. L. Dembia, N. A. Bianco, A. Falisse, J. L. Hicks, y S. L. Delp, «OpenSim Moco: Musculoskeletal optimal control», PLOS Computational Biology, vol. 16, n.o 12, p. e1008493, dic. 2020, doi:10.1371/journal.pcbi.1008493.; L. Nolan, A. Wit, K. Dudziñski, A. Lees, M. Lake, y M. Wychowañski, «Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees», Gait Posture, vol. 17, n.o 2, pp. 142-151, abr. 2003, doi:10.1016/s0966-6362(02)00066-8.; L. Nolan y A. Lees, «The functional demands on the intact limb during walking for active transfemoral and transtibial amputees», Prosthetics & Orthotics International, vol. 24, n.o 2, pp. 117-125, ago. 2000, doi:10.1080/03093640008726534.; W. Herzog, B. M. Nigg, L. J. Read, y E. Olsson, «Asymmetries in ground reaction force patterns in normal human gait», Medicine & Science in Sports & Exercise, vol. 21, n.o 1, p. 110, feb. 1989.; M. Roerdink, S. Roeles, S. C. H. van der Pas, O. Bosboom, y P. J. Beek, «Evaluating asymmetry in prosthetic gait with step-length asymmetry alone is flawed», Gait & Posture, vol. 35, n.o 3, pp. 446-451, mar. 2012, doi:10.1016/j.gaitpost.2011.11.005.; M. Roerdink y P. J. Beek, «Understanding Inconsistent Step-Length Asymmetries Across Hemiplegic Stroke Patients: Impairments and Compensatory Gait», Neurorehabil Neural Repair, vol. 25, n.o 3, pp. 253-258, mar. 2011, doi:10.1177/1545968310380687.; GP Fishwick, “Una introducción a Opensimulator y aplicaciones M&S basadas en agentes de entornos virtuales”, en Simulation Conference (WSC), Actas del invierno de 2009, diciembre de 2009, págs. 177 a 183,64.; Linden Research, Inc. Disponible en: http://lindenlab.com; M. Barbulescu, M. Marinescu, O. Grigoriu, G. Neculoiu, V. Sandulescu e I. Halcu, "GNU,GPL en el estudio de programas del campo de la ingeniería de sistemas", en Roedunet International Conference (RoEduNet), 10 de junio de 2011, pp. 1 –4.; Visor Hippo OpenSim, disponible: http://mjmlabs.com/viewer; Visor RealXtend, disponible: http://realxtend.org; M. Pattal, Y. Li y J. Zeng, “Web 3.0: ¡una verdadera web personal! Más oportunidades y más amenazas”, en Aplicaciones, servicios y tecnologías móviles de próxima generación, 2009. NGMAST '09. Tercera Internacional, Conferencia sobre, septiembre de 2009, pp. 125 –128.; McLeod, S. A; Piaget “Cognitive Theory” (en inglés). Simply Psychology. Consultado el 18 de marzo 2023.; Bronkart, J. P. y otros (1985). Vigotsky aujourd’hui. París: Delachaux & Niestlé. Consultado el 18 de marzo 2023; Bruner, J. (1980). Investigación sobre el desarrollo cognitivo. España: Pablo del Río.; Papert, S., & Harel, I. (2002). Situar el construccionismo. Alajuela: INCAE.; Ausubel, D. P. (2002). Adquisición y retención del conocimiento. Una perspectiva cognitiva. Barcelona: Ed. Paidós.; Athanassopoulos, N. Capítulo 7: Estudio comparativo del desarrollo de las inteligencias múltiples en alumnos que cursan o no estudios de danza en un conservatorio. innovando en educación.; Lave, J. (1991). Situating learning in communities of practice. En H. Resnick, S. Levine, & S. Teasley (Eds.), Perspective on socially shared cognition (pp.63-82). Washington, Estados Unidos: American Psycological Association.; Von Glasersfeld, E. 1984. An introduction to radical constructivism. En: P. Watzlawick. Theinvented reality. New York: Norton, pp. 17-40; MIT Media Lab (2016). Professor Emeritus Seymour Papert, pioneer of constructionist learning, dies at 88. MIT News, en http://news.mit.edu/2016/seymourpapertpioneer-of- constructionist-learning-dies-0801; Desarrollo de una aplicación con PLC Siemens, https://educatia.com.co/programacion-plc-logo-siemens-grafcet-a-ladder/; W. A. Bhat, A. Alzahrani, and M. A. Wani, “Can computer forensic tools be trusted in digital investigations?” Science and Justice, vol. 61, no. 2, pp. 198–203, Mar. 2021, [Online]. Disponible en: 10.1016/j.scijus.2020.10.002.; B. K. Akcam, “Forensic Science International we should give special mention to the observance of secrecy in the automotive industry in case of security relevant systems Digitizing Forensic Laboratories: The Turkish Criminal Police Laboratories Case.”; L. Xu, B. Wang, L. Wang, D. Zhao, X. Han, and S. Yang, “PLC-SEIFF: A programmable logic controller security incident forensics framework based on automatic construction of security constraints,” Computers and Security, vol. 92, May 2020, [Online]. Disponible en: 10.1016/j.cose.2020.101749.; M. I. Cohen, D. Bilby, and G. Caronni, “Distributed forensics and incident response in the enterprise,” in Digital Investigation, 2011, vol. 8, no. SUPPL. [Online]. Disponible en: 10.1016/j.diin.2011.05.012.; C. J. Courtney Mustaphi et al., “Guidelines for reporting and archiving 210Pb sediment chronologies to improve fidelity and extend data lifecycle,” Quaternary Geochronology, vol. 52, pp. 77–87, Jun. 2019, [Online]. Disponible en: 10.1016/j.quageo.2019.04.003.; P. Lutta, M. Sedky, M. Hassan, U. Jayawickrama, and B. Bakhtiari Bastaki, “The complexity of internet of things forensics: A state-of-the-art review,” Forensic Science International: Digital Investigation, vol. 38. Elsevier Ltd, Sep. 01, 2021. [Online]. Disponible en: 10.1016/j.fsidi.2021.301210.; W. Halboob, R. Mahmod, N. I. Udzir, and M. D. T. Abdullah, “Privacy levels for computer forensics: Toward a more efficient privacy-preserving investigation,” in Procedia Computer Science, 2015, vol. 56, no. 1, pp. 370–375. doi:10.1016/j.procs.2015.07.222.; G. Ma, Z. Wang, L. Zou, and Q. Zhang, “Computer forensics model based on evidence ring and evidence chain,” in Procedia Engineering, 2011, vol. 15, pp. 3663–3667.; M. Saadoon, S. H. Siti, H. Sofian, H. H. M. Altarturi, Z. H. Azizul, and N. Nasuha, “Fault tolerance in big data storage and processing systems: A review on challenges and solutions,” Ain Shams Engineering Journal, vol. 13, no. 2. Ain Shams University, Mar. 01, 2022.; D. Closser and E. Bou-Harb, “A live digital forensics approach for quantum mechanical computers,” Forensic Science International: Digital Investigation, vol. 40, p. 301341, Apr. 2022; G. Koorey, S. McMillan, and A. Nicholson, “Incident Management and Network Performance,” in Transportation Research Procedia, 2015, vol. 6, pp. 3–16.; K. Barik, S. Das, K. Konar, B. Chakrabarti Banik, and A. Banerjee, “Exploring user requirements of network forensic tools,” Global Transitions Proceedings, vol. 2, no. 2, pp. 350–354, Nov. 2021.; A. M. Marshall, “Digital forensic tool verification: An evaluation of options for establishing trustworthiness,” Forensic Science International: Digital Investigation, vol. 38, Sep. 2021.; T. Wu, F. Breitinger, and S. O’Shaughnessy, “Digital forensic tools: Recent advances and enhancing the status quo,” Forensic Science International: Digital Investigation, vol. 34, Sep. 2020.; W. A. Bhat, A. AlZahrani, and M. A. Wani, “Can computer forensic tools be trusted in digital investigations?” Science and Justice, vol. 61, no. 2, pp. 198–203, Mar. 2021.; A. Daniel D and S. E. Roslin, “Data validation and integrity verification for trust-based data aggregation protocol in WSN,” Microprocessors and Microsystems, vol. 80. Elsevier B.V., Feb. 01, 2021.; J. Tian and X. Jing, “Cloud data integrity verification scheme for associated tags,” Computers and Security, vol. 95, Aug. 2020.; C. Yang, F. Zhao, X. Tao, and Y. Wang, “Publicly verifiable outsourced data migration scheme supporting efficient integrity checking,” Journal of Network and Computer Applications, vol. 192, Oct. 2021.; Q. Zhao, S. Chen, Z. Liu, T. Baker, and Y. Zhang, “Blockchain-based privacypreserving remote data integrity checking scheme for IoT information systems,” Information Processing and Management, vol. 57, no. 6, Nov. 2020.; K. Porter, R. Nordvik, F. Toolan, and S. Axelsson, “Timestamp prefix carving for filesystem metadata extraction,” Forensic Science International: Digital Investigation, vol. 38, Sep. 2021.; R. Nordvik, K. Porter, F. Toolan, S. Axelsson, and K. Franke, “Generic Metadata Time Carving,” Forensic Science International: Digital Investigation, vol. 33, Jul. 2020.; M. Kiweler, M. Looso, and J. Graumann, “MARMoSET – Extracting Publication-ready Mass Spectrometry Metadata from RAW Files,” Molecular and Cellular Proteomics, vol. 18, no. 8, pp. 1700–1702, 2019.; N. K. Booker, P. Knights, J. D. Gates, and R. E. Clegg, “Applying principal component analysis (PCA) to the selection of forensic analysis methodologies,” Engineering Failure Analysis, vol. 132, Feb. 2022.; J. W. Ma, T. Czerniawski, and F. Leite, “An application of metadata-based image retrieval system for facility management,” Advanced Engineering Informatics, vol. 50, Oct. 2021.; L.E. Aparicio, “Informe Diagnóstico del estado actual de uso de las historias clínicas en hospitales de Bogotá”, 2010.; B. Schneier. Beyind Fear: Thinking Sensibly about Security in an Uncertain World. Copernicus Books, New York, NY, 2003.; R. Campbell, J. Al-Muhtadi, P. Naldurg, G. Sampemane, and M. Mickunas. Towards Security of Privacy for Pervasive Computing. En Proceedings of the International Symposium on Software Security, LNCS 2603, páginas 1-15, Springer-Verlag, 2002.; D. Garlan, D. Siewiprek, A. Smailagic, and P. Steenkiste. Project AURA: Toward Distraction-Free Pervasive Computing. IEEE Pervasive computing, 1(2):22-31, 2002.; M. Ulrich Legacy Systems: Transformation Strategies. Prentice Hall PTR, 2002.; J. H. Saltzer, D. P. Reed, and D.D. Clark. End-to-End Arguments in System Desing. ACM transactions on Computer Systems, 2(4):277-288, 1984.; Presentación del libro “Seguridad: una Introducción” Dr. MANUTA, Giovanni. Consultor y profesor de seguridad Cranfield University. Revista de Seguridad Corporativa. http//: www.seguridadcorporativa.org.; BORGHELLO. Cristian F. Tesis Seguridad Informática: Sus implicaciones e implementación. [En línea]. Junio 2001, (Citado nov., 05, 2004). Disponible en Internet:; FISHER ROYAL P. “Seguridad en los temas informáticos, Madrid; p 85, 1998.; JIMENEZ, José Alfredo. Evolución Seguridad de un Sistema de Información. [en línea]. Noviembre 2001, (Citado mar., 16, 2005). Disponible en Internet:; CALVO, Rafael Fernández. Glosario básico inglés-español para usuarios. [En línea]. Febrero 2000, (Citado mar., 16, 2005). Disponible en Internet:; ARDITA, Julio Cesar. Director de Cybsec S.A. Security System y ex-Hacker. Entrevista personal realizada el día 15 de enero del 2001 en Instalaciones de Cybsec S.A. http//: www.cybsec.com; MERLAT, Máximo. PAZ, Gonzalo. SOSA, Matias. MARTINEZ, Marcelo. Seguridad Informática: Hackers. [En línea]. Julio 2003. (Citado mar., 16, 2005). Disponible en Internet: http.//www.Seguridad InformáticaHackerilustrados_com.htm; KEITHE J. Jones, Superutilidades Hackers. México D.F: Mac Graw Hill, 2003, p. 282-288.; SUÑER, Francisco José. Hacker. [En línea]. Julio 2004. (Citado abr., 15, 2005). Disponible en Internet:< http://www.ciencia-ficcion.com/glosario/hacker.htm>; CANO. Jeimy. V Encuesta Nacional sobre Seguridad Informática en Colombia. [En línea]. Enero 2005, (Citado jul., 25, 2005). Disponible en Internet:; MENDEZ. Carlos E. Metodología Diseño y Desarrollo del Proceso de Investigación. Bogotá: Mc Graw Hill, 2005.; M. Bano, A. Qayyum, R. N. Bin Rais, and S. S. A. Gilani, “Soft-Mesh: A Robust Routing Architecture for Hybrid SDN and Wireless Mesh Networks,” IEEE Access, vol. 9, pp. 87715–87730, 2021, doi:10.1109/ACCESS.2021.3089020.; S. Kemp, “Digital in 2018: World’s internet users pass the 4 billion mark - We Are Social UK,” 2018. https://wearesocial.com/uk/blog/2018/01/global-digital-report-2018/ (accessed Sep. 01, 2023).; Z. Latif, K. Sharif, F. Li, M. Karim, and Y. Wang, “A Comprehensive Survey of Interface Protocols for Software Defined Networks,” 2019.; M. Paliwal and K. K. Nagwanshi, “Effective Flow Table Space Management Using PolicyBased Routing Approach in Hybrid SDN Network,” IEEE Access, vol. 10, pp. 59806– 59820, 2022, doi:10.1109/ACCESS.2022.3180333.; “Management, Control and Data plane - Cisco Community.” https://community.cisco.com/t5/switching/management-control-and-data-plane/tdp/2803553 (accessed Sep. 02, 2023).; “Management, Control, and Data Planes in Network Devices and Systems « ipSpace.net blog,” 2013. https://blog.ipspace.net/2013/08/management-control-and-data-planesin.html (accessed Mar. 12, 2023).; H. Farag, “CCNA-SEC Lec#4 %7C Securing Data Plane – Network-Masters,” 2017. https://networkmasters.wordpress.com/2017/01/27/ccna-sec-lec4-securing-data-plane/ (accessed Mar. 12, 2023).; “Difference Between Data Plane Vs Control Plane - Route XP Private Network Services.” https://www.routexp.com/2020/03/difference-between-data-plane-vs.html (accessed Mar. 12, 2023).; “Cisco SDN: Control Plane e Data Plane - Cisco Community.” https://community.cisco.com/t5/blogs-routing-y-switching/cisco-sdn-control-plane-edata-plane/ba-p/4655704 (accessed Sep. 02, 2023).; M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software defined networking: State of the art and research challenges,” 2014, doi:10.1016/j.comnet.2014.07.004.; C. Chaudet and Y. Haddad, “Wireless software defined networks: Challenges and opportunities,” 2013 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, COMCAS 2013, 2013, doi:10.1109/COMCAS.2013.6685237.; J. F. G. Orrego and J. P. U. Duque, “Throughput and delay evaluation framework integrating SDN and IEEE 802.11s WMN,” 2017 IEEE 9th Latin-American Conference on Communications, LATINCOM 2017, vol. 2017-January, pp. 1–6, Dec. 2017, doi:10.1109/LATINCOM.2017.8240186.; A. Drescher, “A Survey of Software-Defined Wireless Networks”, Accessed: Sep. 02, 2023. [Online]. Available: http://www.cse.wustl.edu/~jain/cse574-14/ftp/sdwn/index.html; D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015, doi:10.1109/JPROC.2014.2371999.; F. D. O. Silva, J. H. D. S. Pereira, P. F. Rosa, and S. T. Kofuji, “Enabling future internet architecture research and experimentation by using software defined networking,” Proceedings - European Workshop on Software Defined Networks, EWSDN 2012, pp. 73–78, 2012, doi:10.1109/EWSDN.2012.24.; E. Haleplidis and S. Salsano, “Overview of RFC7426: SDN Layers and Architecture Terminology - IEEE Software Defined Networks,” 2017. https://sdn.ieee.org/newsletter/september-2017/overview-of-rfc7426-sdn-layers-andarchitecture-terminology (accessed Feb. 18, 2023).; J. Espinoza, “Las API en Ambientes de Controladores de Red — Serie SDN №2 %7C by Jesus Espinoza %7C Medium,” 2021. https://jesuseduardoespinoza.medium.com/las-api-enambientes-de-controladores-de-red-serie-sdn-2-75139f6a10a2 (accessed Mar. 13, 2023).; J. E. Cáceres Guevara and C. A. Casilimas Fajardo, “Arquitectura y funcionamiento de redes definidas por software (SDN),” Repositorio Universidad Distrital Francisco José de Caldas, 2022.; “Open Networking Foundation.” https://opennetworking.org/ (accessed Sep. 07, 2023).; “Overview of Northbound Interfaces - eSight 21.0 Operation Guide 07 - Huawei.” https://support.huawei.com/enterprise/es/doc/EDOC1100208263/8ac892ef/northboundinterfaces (accessed Mar. 13, 2023).; D. J. Ramos Suavita, “Análisis de vulnerabilidades a nivel de seguridad en redes SDN para los planos de control y plano de datos,” Universidad Militar Nueva Granada, 2021, Accessed: Nov. 05, 2022. [Online]. Available: https://repository.unimilitar.edu.co/bitstream/handle/10654/41314/RamosSuavitaDairon Javier2022.pdf?sequence=1&isAllowed=y; L. Zhu, M. M. Karim, K. Sharif, F. Li, X. Du, and M. Guizani, “SDN Controllers: Benchmarking & Performance Evaluation,” Feb. 2019, [Online]. Available: http://arxiv.org/abs/1902.04491; D. Dudhal, “Performance Evaluation of SDN Controllers using Cbench and Iperf %7C by Disha Dudhal %7C Medium,” 2022. https://medium.com/@dishadudhal/performanceevaluation-of-sdn-controllers-using-cbench-and-iperf-e9296f63115c (accessed Apr. 30, 2023).; R. Kumar, M. Atulkar, and N. Kumar, Performance Comparison of Ryu and Floodlight Controllers in Different SDN Topologies. 2019.; R. Ramadhan, N. Armi, R. Magdalena, G. N. Nurkahfi, and M. M. M. Dinata, “QoS Performance of Software Define Network Using Open Network Operating System Controller,” in Proceeding - 2020 International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications, ICRAMET 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 124–128. doi:10.1109/ICRAMET51080.2020.9298662.; M. Z. Abdullah, N. A. Al-Awad, and F. W. Hussein, “Evaluating and Comparing the Performance of Using Multiple Controllers in Software Defined Networks,” Modern Education and Computer Science, vol. 8, pp. 27–34, 2019, doi:10.5815/ijmecs.2019.08.03.; A. Singh, N. Kaur, and H. Kaur, “Extensive performance analysis of OpenDayLight (ODL) and Open Network Operating System (ONOS) SDN controllers,” 2022, doi:10.1016/j.micpro.2022.104715.; “SDN Framework RYU Using OpenFlow 1.3 RYU project team”.; “ONOS - ONOS - Wiki.” https://wiki.onosproject.org/ (accessed Sep. 07, 2023).; H. Facchini, S. Perez, R. Blanchet, B. Roberti, and R. Azcarate, “Experimental performance contrast between SDN and traditional networks,” in 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021, Institute of Electrical and Electronics Engineers Inc., 2021. doi:10.1109/CHILECON54041.2021.9702982.; D. Bombal, “GNS3,” 2015. https://gns3.com/sdn-101-mininet-openflow-and-gns (accessed Sep. 07, 2023).; “OpenFlow.” https://wiki.wireshark.org/OpenFlow (accessed Sep. 08, 2023).; J. Mogul and S. Deering, “RFC 1191 - Path MTU discovery.” https://datatracker.ietf.org/doc/html/rfc1191 (accessed Sep. 07, 2023).; “Rendimiento del servicio de volumen en bloque.” https://docs.oracle.com/esww/iaas/Content/Block/Concepts/blockvolumeperformance.htm (accessed Sep. 07, 2023).; “Data Center Switches – Cisco Nexus - Cisco.” https://www.cisco.com/site/us/en/products/networking/cloud-networkingswitches/index.html (accessed Sep. 07, 2023).; “muestra la memoria virtual del sistema %7C Juniper Networks.” https://www.juniper.net/documentation/mx/es/software/junos/junos-overview/topics/ref/command/show-system-virtual-memory.html (accessed Sep. 07, 2023).; “Why Move to a Modern Network Operating System? White Paper - Cisco.” https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-xrsoftware/white-paper-c11-744829.html (accessed Sep. 04, 2023).; “Software-Defined Networking (SDN) Definition - Open Networking Foundation.” https://opennetworking.org/sdn-definition/ (accessed Sep. 03, 2023).; “threading — Thread-based parallelism — Python 3.11.5 documentation.” https://docs.python.org/3/library/threading.html (accessed Sep. 05, 2023).; 5gamericas, “5gamericas: Statistics - Latin America.” [Online]. Available: http://www.5gamericas.org/en/resources/statistics/statistics-latin-america/.; A. Navarro Cadavid, A. Arteaga, L. Vargas, J. Renteria, and M. Arciniegas, “Spectrum Monitoring System and Benchmarking of Mobile Networks Using Open Software Radios SIMONES,” IEEE Lat. Am. Trans., vol. 13, no. 11, pp. 3592–3597, 2015.; M. Iedema and H. Samra, Getting Started with OpenBTS. 2015.; A. Dubey, D. Vohra, K. Vachhani, and A. Rao, “Demonstration of vulnerabilities in GSM security with USRP B200 and open-source penetration tools,” in Proceedings - AsiaPacific Conference on Communications, APCC 2016, 2016, pp. 496–501.; B. Harmat et al., “The Security Implications of IMSI Catchers,” in International Conference on Security and Management (SAM’15), 2015, pp. 57–62.; Mesud Hadžialić; Mirko Škrbić; Kemal Huseinović; Irvin Kočan; Jasmin Mušović, “An Approach to Analyze Security of GSM Network,” 22nd Telecommun. forum TELFOR 2014, 2014.; S. Ghafoor, K. N. Brown, and C. J. Sreenan, “Experimental evaluation of a software defined radio-based prototype for a disaster response cellular network,” in Proceedings of the 2015 2nd International Conference on Information and Communication Technologies for Disaster Management, ICT-DM 2015, 2016, pp. 57–63.; K. Guevara, M. Rodriguez, N. Gallo, G. Velasco, K. Vasudeva, and I. Guvenc, “UAVbased GSM network for public safety communications,” in Conference Proceedings - IEEE SOUTHEASTCON, 2015, vol. 2015-June, no. June.; T. Di. Putri and T. Juhana, “Mobile-openbts implementation of natural disaster victims search,” in Proceedings - ICWT 2017: 3rd International Conference on Wireless and Telematics 2017, 2018, vol. 2017-July, pp. 149–154.; J. Mpala and G. Van Stam, “Open BTS, a GSM experiment in rural Zambia,” Africomm, Yaounde, Cameroon, pp. 1–9, 2012.; M. Zheleva, A. Paul, D. L. Johnson, and E. Belding, “Kwiizya: Local Cellular Network Services in Remote Areas,” in MobiSys, 2013, July, p. 417.; L. Angrisani, P. Daponte, and M. D'Apuzzo, “A measurement method based on time-frequency representations for testing GSM equipment,” IEEE Trans. Instrum. Meas., vol. 49, no. 5, pp. 1050–1056, 2000.; A. Aiello and D. Grimaldi, “Frequency error measurement in GMSK signals in a multipath propagation environment,” IEEE Trans. Instrum. Meas., vol. 52, no. 3, pp. 938–945, 2003.; K. Paul, “Introduction to GSM and GSM mobile RF transceiver derivation.; Union Internacional de Telecomunicaciones., “Definiciones de sistema radioeléctrico determinado por programas informáticos (RDI) y sistema radioeléctrico cognoscitivo (SRC),” vol. 2152, 2009.; T. ETSI Specification, “Digital cellular telecomm mmunications system (Phase e 2+) (GSM); GSM/EDGE Multiplexing and multiple access on the radio path (3GPP TS 45.0.002 version 13.3.1 Release 13).”; J. M. HUIDOBRO, Comunicaciones móviles: sistemas GSM, UMTS Y LTE, 2012th ed.; ETSI, Digital cellular telecommunications system (Phase 2+); Release independent frequency bands; Implementation guidelines (3GPP TS 05.14 version 7.2.0 Release 1998), vol. 0. 2001, pp. 0–31.; ETSI, Digital cellular telecommunications system (Phase 2+); Radio transmission and reception (3GPP TS 45.005 version 12.4.0 Release 12), vol. 0. 2008, pp. 0–40.; T. Specification, “ETSI TS 145 002,” vol. 0, pp. 0–112, 2014.; T. ETSI Specification, Technical Specification Group GSM/EDGE Radio Access Network; Digital cellular telecommunications system (Phase 2+); Modulation TS 05.04, vol. 0. 2003, pp. 1–28.; 3GPP, 3rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network; Digital cellular telecommunications system (Phase 2+); Radio subsystem synchronization. 1999.; ETSI, Digital cellular telecommunications system (Phase 2 and Phase 2+); Base Station System (BSS) equipment specification; Radio aspects (3GPP TS 11.21 version 8.6.0 Release 1999), vol. 0. 2008, pp. 0–40.; ETSI, EN 300 910 Digital cellular telecommunications system (Phase 2+); Radio transmission and reception (GSM 05.05 version 8.5.1 Release 1999), vol. 1. 1999, pp. 1– 10.; Keysight Technologies, “Understanding GSM/EDGE Transmitter and Receiver Measurements for Base Transceiver Stations and their Components.”; E. No. O. . U. S. A. Gbadamosi A. M. Aibinu, “Towards Independent Measurement of End to End Bit Error Rate in GSM Network,” pp. 1–4, 2014.; R. Communications, “Laboratory works in Radio Communications GSM Transceiver Measurements.” Prentice-Hall Inc, 1995.; T. ETSI Specification, 3GPP TS 05.05 3rd Generation Partnership Project; Technical Specification Group GSM/EDGE Radio Access Network; Radio transmission and reception, vol. 0. 2005.; E. Research, “USRP Hardware Driver and USRP Manual Version: 003.010.001.001-41- g6abf277.” [Online]. Available: http://openbts.org/hardware/.; R. Networks, C. C. Attribution-sharealike, and U. License, “OpenBTS Application Suite,” 2014; Agilent Technologies, “Making the Phase and Frequency Error Measurement.” [Online]. Available: http://literature.cdn.keysight.com/litweb/pdf/ads2001/vsaedgemeas/gsmmeas6.html.; D. Seidl et al., «The multiparameter station at Galeras Volcano (Colombia): concept and realization», Journal of Volcanology and Geothermal Research, vol. 125, n.o 1-2, pp. 1-12, 2003, doi:10.1016/s0377-0273(03)00075-1.; J. M, «Review of electric and magnetic fields accompanying seismic and volcanic activity», U.S. Geological Survey, vol. 18, n.o 5, pp. 441-475, 1997, doi:10.1023/A:1006500408086.; V. Surkov y V. Pilipenko, «Estimate of ULF electromagnetic noise caused by a fluid flow during seismic or volcano activity», Copernicus Publications, vol. 2, n.o 10, pp. 6475-6497, 2014, doi:10.5194/nhessd-2-6475-2014.; Y. Sasai et al., «Magnetic and electric field observations during the 2000 activity of Miyakejima volcano, Central Japan», Earth and Planetary Science Letters, vol. 203, n.o 2, pp. 769-777, 2002, doi:10.1016/S0012-821X(02)00857-9.; M. Valenciano, «Implementación de un radioenlace LPWAN con tecnología LoRa», Tesis, Universidad de Valladolid, Valladolid, 2022. [En línea]. Disponible en: https://uvadoc.uva.es/bitstream/handle/10324/57458/TFGG5892.pdf?sequence=1&isAllowed=y; R. Piyare, A. Murphy, M. Magno, y L. Benini, «On-Demand LoRa: Asynchronous TDMA for EnergyEfficient and Low Latency Communication in IoT», Sensors, vol. 18, n.o 3718, 2018, doi:10.3390/s18113718.; C. Guerrero, «Evaluación de los retardos en redes LoRaWAN multisalto con topología lineal», Tesis, Universidad Politécnica Nacional, Quito Ecuador, 2022.; H. Mahmood Jawad, R. Nordin, S. Kamel Gharghan, A. Mahmood Jawad, y Mahamod Ismail, «Energy-efficient wireless sensor networks for precision agriculture: A review», Sensors, vol. 17, n.o 8, p. 1781, 2017, doi:10.3390/s17081781.; R. Muñoz, «Modelado y evaluación de la eficiencia del estándar SCHC para el transporte de paquetes IP sobre LoRaWAN», Tesis Maestría, Universidad de Chile, Santiago de Chile, 2020. [En línea]. Disponible en: https://repositorio.uchile.cl/bitstream/handle/2250/177977/Modelado-y-evaluacion-de-laeficiencia-del-estandar-SCHC-para-el-transporte-de-paquetes-IP.pdf?sequence=1; W. Yong, L. Minzan, y Z. Man, «Remote-control system for greenhouse based on opensource hardware», IFAC, vol. 52, n.o 30, pp. 178-183, 2019, doi:10.1016/j.ifacol.2019.12.518.; L. Cilleruelo and A. Zubiaga, “Una aproximación a la Educación STEAM. Prácticas educativas en la encrucijada arte, ciencia y tecnología. Jornadas de Psicodidáctica, 18.,” 2014.; M. L. Matute Sánchez and C. R. Contreras Alvarado, “Diseño y desarrollo de un asistente robótico basado en sistemas embebidos y aplicaciones móviles como herramienta de soporte pedagógica para niños de uno a cinco años,” 2019.; E. Systems, “ESP8266EX,” 2023.; K. Arakadakis, P. Charalampidis, A. Makrogiannakis, and A. Fragkiadakis, “Firmware Over-the-air Programming Techniques for IoT Networks-A Survey,” ACM Comput. Surv., vol. 54, no. 9, pp. 1–24, 2022, doi:10.1145/3472292.; I. G. Juan, I. Garc, I. F. Milena, and I. G. Ezequiel, “Gestión de Redes Centralizado desde GNU / Linux,” Cordoba, 2021.; Y. T. Chávez Cujilán and J. M. Espinoza Ortíz, “Desarrollo de una plataforma web para el control y seguimiento de productos terminados en la empresa camaronera ambartex s.a. empleando la metodología kanban,” Universidad de Guayaquil, 2016.; M. docs Web, “Métodos de petición HTTP,” 2023. https://developer.mozilla.org/es/docs/Web/HTTP/Methods.; R. Pereira, C. de Souza, D. Patino, and J. Lata, “Platform for Distance Learning of Microcontrollers and Internet of Things; [Plataforma De Enseñanza a Distancia De Microcontroladores E Internet De Las Cosas],” Ingenius, vol. 2022, no. 28, pp. 53 – 62, 2022, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85144095611&doi=10.17163%2Fings.n28.2022.05&partnerID=40&md5=cc9fd40b5b28 c66ac89ebf8f68ab3275.; M. Garduno-Aparicio, J. Rodriguez-Resendiz, G. Macias-Bobadilla, and S. Thenozhi, “A Multidisciplinary Industrial Robot Approach for Teaching Mechatronics-Related Courses,” IEEE Trans. Educ., vol. 61, no. 1, pp. 55–62, 2018, doi:10.1109/TE.2017.2741446.; P. Jacko et al., “Remote IoT Education Laboratory for Microcontrollers Based on the STM32 Chips,” Sensors, vol. 22, no. 4, 2022, doi:10.3390/s22041440.; Ð. Mijailović, A. Ðorđdević, M. Stefanovic, D. Vidojević, A. Gazizulina, and D. Projović, “A cloud-based with microcontroller platforms system designed to educate students within digitalization and the industry 4.0 paradigm,” Sustain., vol. 13, no. 22, 2021, doi:10.3390/su132212396.; J. Vega D, “Soporte para gestión remota ota sobre una picocelda GSM / GPRS OverThe-Air management on a GSM / GPRS picocell Graduado en Ingeniería de Tecnologías de Telecomunicación,” Universidad de Cantabria, 2014.; J. Molnár et al., “Weather Station IoT Educational Model Using Cloud Services,” JUCS - J. Univers. Comput. Sci., vol. 26, no. 11, pp. 1495–1512, Nov. 28AD, [Online]. Available: https://doi.org/10.3897/jucs.2020.079.; O. Velihorskyi, I. Nesterov, and M. Khomenko, “Remote Debugging of Embedded Systems in Stm32Cubemonitor,” pp. 22–25, 2020, doi:10.35598/mcfpga.2020.007.; G. Zhabelova, M. Vesterlund, S. Eschmann, Y. Berezovskaya, V. Vyatkin, and D. Flieller, “A Comprehensive Model of Data Center: From CPU to Cooling Tower,” IEEE Access, vol. 6, pp. 61254–61266, 2018, doi:10.1109/ACCESS.2018.2875623.; I. Marín, “un enfoque de neurociencia sobre la participación de los estudiantes en las clases de microcontroladores durante la pandemia covid19,” in 14a Conferencia Internacional Anual de Educación, Investigación e Innovación Actas JA - ICERI2021, pp. 5776-5783 urgencias-, doi:10.21125/iceri.2021.1303 Año anual - 2021.; S. P. De Araujo and L. Dias Souza, “STEAM Education y el Diseño de los modelos de aprendizaje MOE, TAS y COM,” i+Diseño. Rev. Científico-Académica Int. Innovación, Investig. y Desarro. en Diseño, vol. 17, pp. 23–34, 2022, doi:10.24310/idiseno.2022.v17i.15683.; E. Flores, “Ingenieria de Software,” 2021. https://ingenieriadesoftware.mex.tl/52666_Presentacion.html.; E. Inga, J. Inga, and A. Ortega, “Novel approach sizing and routing of wireless sensor networks for applications in smart cities,” Sensors, vol. 21, no. 14, pp. 1–17, 2021, doi:10.3390/s21144692.; T. Vince et al., “IoT implementation in remote measuring laboratory VMLab analyses,” J. Univers. Comput. Sci., vol. 26, no. 11, pp. 1402–1421, 2020, doi:10.3897/jucs.2020.074.; I. Olarte C and L. A. Rodriguez Umaña, “diseño de arquitectura estándar para la adquisición y transmisión de datos integrados en la automatización de cultivos acuaponicos,” Universidad Cooperativa de Colombia, 2022.; J. I. Vega Luna, F. J. Sánchez-Rangel, G. Salgado-Guzmán, J. F. Cosme-Aceves, V. N. Tapia-Vargas, and M. A. Lagos-Acosta, “Red de monitorización para automatizar el sistema de enfriamiento de un centro de datos,” Ingenius, no. 24, pp. 87–96, 2020, doi:10.17163/ings.n24.2020.09.; M. Rodríguez, S. Zafra y S. Ortega, «La revisión sistemática de la literatura científica y la necesidad de visualizar los resultados de las investigaciones.,» Revista Logos, Ciencia & Tecnología, vol. 7, nº 1, pp. 101-103, 2015.; M. Salcido, A. del Toro, N. Medina, F. RamÍrez, M. Gacia, A. Briceño y J. Jiménez, «Revisión sistemática: el más alto nivel de evidencia,» Orthotips AMOT, vol. 17, nº 4, pp. 217-22%7C, 2021.; B. Moreno, M. Muñoz, J. Cuellar, S. Domancic y J. Villanueva, «Revisiones Sistemáticas: definición y nociones básicas.,» Revista clínica de periodoncia, implantología y rehabilitación oral, vol. 11, nº 3, pp. 184-186, 2018.; C. Ierandi, L. Orihuela, I. Jurado, Á. Rodríguez Del Nozal y A. Tapia, «Revisión sistemática de la literatura en ingeniería de sistemas. Caso práctico: técnicas de estimación distribuida de sistemas ciberfísicos.,» Actas de las XXXVIII Jornadas de Automática, pp. 84-91, 2017.; H. García, «Conceptos fundamentales de las revisiones sistemáticas/metaanálisis.,» Urología colombiana, vol. 24, nº 1, pp. 28-34, 2015.; O. Beltrán, «Revisiones sistemáticas de la literatura.,» Revista colombiana de gastroenterología., vol. 20, nº 1, pp. 60-69, 2005.; C. Manterola, P. Astudillo, E. Arias y N. Claros, «Revisiones sistemáticas de la literatura. Qué se debe saber acerca de ellas.,» Cirugía española, vol. 91, nº 3, pp. 149-155, 2023.; L. Letelier, J. Manríquez y G. Rada, «Revisiones sistemáticas y metaanálisis:¿ son la mejor evidencia?,» Revista médica de Chile, vol. 133, nº 2, pp. 246-249, 2005.; OpenAI, «ChatGPT (Versión del 16 de octubre de 2023),» 2023. [En línea]. Available: https://chat.openai.com/.; G. Guevara, A. Verdesoto, S. Guevara y E. González, «Las Tecnologías de la Información y la Comunicación en la educación universitaria,» Revista Científica de Investigación actualización del mundo de las Ciencias, vol. 3, nº 3, pp. 409-422, 2019.; J. Cobo, «El concepto de tecnologías de la información. Benchmarking sobre las definiciones de las TIC en la sociedad del conocimiento.,» Revista de Estudios de Comunicación, vol. 14, nº 27, pp. 295-318, 2009.; Z. L. C. A. P. G. L. V. C. &. D. C. M. B. Aliaga, «Software educativo para favorecer la aprehensión de los contenidos de ingeniería de software,» Revista de Investigación en Tecnologías de la Información, pp. 5(9), 63-69., 2017.; B. Gros, El ordenador invisible. Hacia la apropiación del ordenador en la enseñanza, Barcelona, España: Editorial Gedisa, 2000.; S. Kumar, «Knowledge of software education,» Global Research Journal of Educaion, pp. 1-2, 2022.; H. Rosario N, «TIC EN AMBIENTES EDUCATIVOS,» Comunidad y Salud, vol. 5, nº 2, 2007.; ] U. IIEP, «Tecnologías de la información y la comunicación (TICs) en la educación,» IIEP Learning Portal, 22 Marzo 2023. [En línea]. Available: https://learningportal.iiep.unesco.org/es/fichas-praticas/mejorar-elaprendizaje/tecnologias-de-la-informacion-y-la-comunicacion-tics-en-la. [Último acceso: 5 Octubre 2023].; D. Correa y F. Pérez, «Los modelos pedagógicos: trayectos históricos,» Debates por la Historia., pp. 125-154, 2022.; B. Joyce y M. Weil, Los modelos de enseñanza., Madrid, España: Editorial Anaya, 1985.; F. García, «Los modelos didácticos como instrumento de análisis y de intervención en la realidad educativa.,» García Pérez, F. F. (2000). Los modelos didácticos como instrumento de análiBiblio 3w: Revista Bibliográfica de Geografía y Ciencias Sociales., pp. 1-12, 2000.; V. Niño, Metodología de la investigación. Diseño y ejecución., Bogotá, Colombia: Ediciones de la U, 2011.; G. Fidias, El proyecto de Investigación. Introducción a la metodología científica., Caracas, Venezuela: Editorial Episteme, CA., 2006.; L. Larriba, «La investigación de los modelos didácticos y de las estrategias de enseñanza.,» Enseñanza., pp. 73-88, 2001.; N. Romero y J. Moncada, «Modelo didáctico para la enseñanzade la educación ambiental en la Educación Superior Venezolana,» Revista de Pedagogía, pp. 443-476, 2007.; A. Brolpito, Digital Skills and Competence, and Digital and Online Learning., European Training Foundation., 2018.; O. Najar, «Tecnologías de la información y la comunicación aplicadas a la educación,» Praxis y Saber, vol. 7, nº 14, pp. 9-16, 2016.; E. Kispeter, What digital skills do adults need to succeed in the workplace now and in the next 10 years., Warwick Institute for Employement Research., 2018.; A. Gargallo, «La integración de las TIC en los procesos educativos y organizativos.,» Educar em Revista., vol. 34, nº 69, pp. 325-339, 2018.; J. Cabrero, Tecnología educativa. Diseño y utilización de medios en la enseñanza., Barcelona, España: Editorial Paidos, 2001.; L. Alvarez, Modelos de gestión, Bogotá: Fundación Universitaria del Área Andina, 2017.; T. Huertas, E. Suárez, M. Salgado, L. Jadán y B. Jiménez, «Diseño de un modelo de gestión. Base científica y práctica para su elaboración.,» Revista Universidad y Sociedad, 12(1), 165-177., vol. 12, nº 1, pp. 165-177, 2020.; L. Reginato, C. Pereira y R. Guerreiro, «Una investigacion sobre las caracteristicas del modelo de gestion: un estudio de caso.,» Reginato, L., Pereira, C. A., & Guerreiro, R. (2009). Una investigacion sobre las cara Iberoamerican journal of industrial engineering, vol. 1, nº 1, pp. 24-45, 2009.; L. Angulo, Gestión de ptoyectos. Bajo el enfoque del PMBOK, Lima: Editorial Macro, 215.; A. López y D. Lankenau, Administración de proyectos. La clave para la coordinación efectiva de actividades y recursos, México: Pearson, 2017.; R. Terrazas, «Modelo conceptual para la gestión de proyectos.,» Perspectivas, vol. 24, pp. 165-188, 2009.; A. Narvaez y R. Esperanza, «Modelos para la Gestión de Proyectos.,» Informador Técnico, vol. 71, pp. 53-58, 2007.; U. IIEP, «Tecnologías de la información y la comunicación (TICs) en la educación,» IIEP Learning Portal, 22 Marzo 2023. [En línea]. Available: https://learningportal.iiep.unesco.org/es/fichas-praticas/mejorar-elaprendizaje/tecnologias-de-la-informacion-y-la-comunicacion-tics-en-la. [Último acceso: 5 Octubre 2023].; J. A. Pineda Acero, «Diseño de proyectos educativos mediados por TIC: un marco de referencia,» Opción, vol. 32, nº 10, pp. 479-499, 2016.; UNESCO, Herramientas para la gestión de proyectos educativos con TIC, Buenos Aires: UNESCO, 2007.; E. H. Legresti, «Proyecto de incorporación de las TICs como herramienta de aprendizaje,» 2019.; D. &. C. S. L. Alan Neill, Procesos y fundamentos de la investigación científica. , 53(9)., Macha, Ecuador: Ediciones UTMACH, 2018.; A. Carli, La Ciencia como herramienta. Guía para la investigación y la realización de informes, monografías y tesis científicas., Buenos Aires: Editorial Biblos, 2008.; P. Suárez, Metodología de la investigación. Diseño y técnicas, Bogotá, Colombia: Orión Editores Ltda., 2004.; M. Medina, La investigación aplicada a proyectos. Identificación del proyecto y formulación de la investigación., Bogotá, Colombia: Ediciones Ántropos Ltda., 2007.; Aplicación y uso de drones: https://edu.gcfglobal.org/es/cultura-tecnologica/quees-un-dron-y-cuales-son-sus-usos/1/; Como funciona el Mapeo a partir de drones? : https://ts2.space/es/como-funcionael-sistema-de-mapeo-3d-de-un-dron/; Duarte, J. F., Galindo Gómez, S. F., Rodríguez Pupo, S., PayánDurán, L. F., & Velásquez-Rodrígue, C. E. (2022). Paso a paso para desarrollar innovaciones sociales. Documento Técnico del PCIS.; Hoyos Montoya, E. A., & de Souza Bías, E. (2021). [Título del artículo]. Recuperado dehttps://doi.org/10.22490/25394088.5609; UN (2022). Objetivos de Desarrollo Sosteninle Tomado de: https://www.un.org/sustainabledevelopment/es/waterand-sanitation/; MEN( 2022) titulado ORIENTACIONES CURRICULARES PARA EL ÁREA DETECNOLOGÍA E INFORMÁTICA EN LA EDUCACIÓN BÁSICA Y MEDIA https://www.colombiaaprende.edu.co/sites/default/files/files_public/2022- 11/Orientaciones_Curricures_Tecnologia.pdf; Secretaría de Ambiente. Bogotá está mejorando y en el Día Mundial de los Humedales reafirma su compromiso con estos ecosistemas. https://www.ambientebogota.gov.co/ (2022).; Cuellar, Y., Pérez, L. Modelado multitemporal y simulación de la dinámica compleja en humedales urbanos: el caso de Bogotá, Colombia. Representante científico 13 , 9374 (2023).https://doi.org/10.1038/s41598-023-36600-8; Ramsar. "Humedales urbanos: tierras preciadas, no terrenos baldíos ". https://www.ramsar.org/resources/publications (2018).; Das, N. y Mehrotra, S. Humedales en contextos urbanos: un caso de Bhoj Wetland. En 2021 Simposio internacional de geociencia y teledetección del IEEE IGARSS (págs. 6972-6975). IEEE(2021).; Van der Hammen, T. Los humedales de la Sabana: origen, evolución, degradación y restauración. en Los humedales de Bogotá y la Sabana, Conservación Internacional 19–51(2003).; Ramsar (2021). " Transformar la agricultura para sostener a las personas y mantener los humedales”. Tomado de: https://www.ramsar.org/sites/default/files/documents/library/rpb6_agriculture_s. pdf; Espínola Pérez, A. M. (2014). Clasificación de Imágenes de Satélite mediante AutómatasCelulares (Tesis doctoral). Universidad de Almería. Dirigida por Dr. D. Luis F. Iribarne Martínez, Dra. Dña. Rosa M. Ayala Palenzuela, y Dr. D. José Antonio Piedra Fernández.; He, W., Chen, S., Liu, X., & Chen, J. (2008). Water quality monitoring in a slightly-pollutedinland water body through remote sensing — Case study of the Guanting Reservoir in Beijing, China. Frontiers of Environmental Science & Engineering in China, 2, 163–171.; Carbonell Carrera, C., & Bermejo Asensio, L. A. (2017). Augmented reality as a digital teaching environment to develop spatial thinking. Cartography and Geographic Information Science, 44(3), 259-270. https://doi.org/10.1080/15230406.2016.1145556; Cuellar, Y., & Perez, L. (2023). Multitemporal modeling and simulation of the complex dynamics in urban wetlands: the case of Bogota, Colombia. Scientific Reports, 13, 9374.; Carbonell Carrera, C., & Bermejo Asensio, L. A. (2017). Augmented reality as a digital teachingenvironment to develop spatial thinking. Cartography and Geographic Information Science, 44(3), 259-270. https://doi.org/10.1080/15230406.2016.1145556; Alikhani, S., Nummi, P. & Ojala, A. Humedales urbanos: una revisión de los valores ecológicosy culturales. Agua 13 , 3301 (2021).; H. Mohapatra and S. I. Hosain, “Intermodal dispersion free few-mode (quadruple mode) fiber: A theoretical modelling,” Opt Commun, vol. 305, pp. 267–270, 2013, doi:10.1016/j.optcom.2013.05.018.; J. Tu, K. Long, and K. Saitoh, “Design and optimization of 3-mode×12-core dual-ring structured few-mode multi-core fiber,” Opt Commun, vol. 381, pp. 30–36, 2016, doi:10.1016/j.optcom.2016.06.049.; H. Zhu, Z. Cao, and Q. Shen, “Construction of the refractive index profiles for few-mode planar optical waveguides,” Opt Commun, vol. 260, no. 2, pp. 542–547, 2006, doi:10.1016/j.optcom.2005.11.011.; G. F. Fibers, H. Mohapatra, and S. I. Hosain, “Variational Approximations for LP l 1 Modes,” vol. 26, no. 4, pp. 372–375, 2014.; F. Ferreira, D. Fonseca, and H. Silva, “Design of few-mode fibers with up to 12 modes and low differential mode delay,” International Conference on Transparent Optical Networks, vol. 32, no. 3, pp. 353–360, 2014, doi:10.1109/ICTON.2014.6876696.; A. Rjeb, H. Seleem, H. Fathallah, and M. Machhout, “Design of 12 OAM-Graded index few mode fi bers for next generation short haul interconnect transmission,” Optical Fiber Technology, vol. 55, no. October 2019, p. 102148, 2020, doi:10.1016/j.yofte.2020.102148.; H. Kubota and T. Morioka, “Few-mode optical fiber for mode-division multiplexing,” Optical Fiber Technology, vol. 17, no. 5, pp. 490–494, 2011, doi:10.1016/j.yofte.2011.06.011.; J. Zhang and L. Mao, “Integrating multiple transportation modes into measures of spatial food accessibility,” J Transp Health, vol. 13, no. March, pp. 1–11, 2019, doi:10.1016/j.jth.2019.03.001.; A. E. Zhukov, V. A. Burdin, and A. V Bourdine, “Design of silica optical fibers with enlarged core diameter for a few-mode fiber optic links of onboard and industrial multiGigabit networks,” Procedia Eng, vol. 201, pp. 105–116, 2017, doi:10.1016/j.proeng.2017.09.675.; W. Jin et al., “Few-mode and large-mode-area fiber with circularly distributed cores,” Opt Commun, vol. 387, no. July 2016, pp. 79–83, 2017, doi:10.1016/j.optcom.2016.11.016.; J. Han and C. Qu, “Characterization of distributed mode crosstalk in few-mode fiber links with low MIMO complexity,” Physical Communication, vol. 25, pp. 310–314, 2017, doi:10.1016/j.phycom.2017.02.002.; S. Wei-Hua, X. Chuan-Xiang, and Y. Jing, “A new type of Few-mode Photonic Crystal Fiber with nearly-zero flattened Dispersion properties,” ICOCN 2017 - 16th International Conference on Optical Communications and Networks, vol. 2017-Novem, pp. 16–18, 2017, doi:10.1109/icocn.2017.8374406.; R. Miyazaki, M. Ohashi, H. Kubota, Y. Miyoshi, and N. Shibata, “Chromatic dispersion measurement of the high order mode in a few-mode fiber using an interferometric technique and a mode converter,” 2017 Opto-Electronics and Communications Conference, OECC 2017 and Photonics Global Conference, PGC 2017, vol. 2017- Novem, pp. 1–3, 2017, doi:10.1109/OECC.2017.8114866.; A. Marcos Aparicio, “Cable submarino, conexión DWDM entre continentes,” Sistema de Gestión de incidencias Open Source, 2017, [Online]. Available: http://oa.upm.es/48560/1/PFC_ANA_ISABEL_MARCOS_APARICIO.pdf; G. P. (Govind P. ) Agrawal, Fiber-optic communication systems. Wiley-Interscience, 2002.; S. Matthew, Elementos de electromagnetismo. 2009. doi: 10: 0-8400-5444-0.; D. Pozar, “Microwave Engineering 2nd Ed David Pozar,” pp. 1–736, 2008, [Online]. Available: papers2://publication/uuid/74B11176-09A2-4077-9BDE-1E89002D0735; R. Neri Vela and L. H. Porragas Beltrán, Líneas de transmisión, vol. 3, no. 2. 2012. doi:10.25009/uv.1998.124.; D. Gloge and E. A. J. Marcatili, “Multimode Theory of Graded-Core Fibers,” 1973.; M. Carmen. España Booquera, Comunicaciones ópticas : conceptos esenciales y resolución de ejercicios. Díaz de Santos, 2005. Accessed: Sep. 25, 2023. [Online]. Available: https://www.academia.edu/33300228/MAR%C3%8DA_CARMEN_ESPA%C3%91A_B OQUERA_COMUNICACIONES_%C3%93PTICAS_Conceptos_esenciales_y_resoluci %C3%B3n_de_ejercicios; K. Gomez, L. Goratti, F. Granelli, y T. Rasheed, «A Comparative Study of Scheduling Disciplines in 5G Systems for Emergency Communications», presentado en 1st International Conference on 5G for Ubiquitous Connectivity, Levi, Finland, 2014. doi:10.4108/icst.5gu.2014.257987.; K. Pedersen, G. Pocovi, J. Steiner, y A. Maeder, «Agile 5G Scheduler for Improved E2E Performance and Flexibility for Different Network Implementations», IEEE Commun. Mag., vol. 56, n.o 3, pp. 210-217, mar. 2018, doi:10.1109/MCOM.2017.1700517.; A. Akhtar y H. Arslan, «Downlink resource allocation and packet scheduling in multinumerology wireless systems», en 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Barcelona, abr. 2018, pp. 362-367. doi:10.1109/WCNCW.2018.8369012.; K. I. Pedersen, M. Niparko, J. Steiner, J. Oszmianski, L. Mudolo, y S. R. Khosravirad, «System Level Analysis of Dynamic User-Centric Scheduling for a Flexible 5G Design», en 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, dic. 2016, pp. 1-6. doi:10.1109/GLOCOM.2016.7842312.; S. A. AlQahtani and M. Alhassany, “Comparing different LTE scheduling schemes,” in 2013 9th international wireless communications and mobile computing conference (IWCMC), 2013, pp. 264–269.; T. Dikamba, “Downlink scheduling in 3GPP long term evolution (LTE),” 2011.; S. V. S. Prakash and M. Visali, “On demand SINR based scheduling algorithm (ODSSA) for mobile uplink communication in LTE networks,” in 2015 International Conference on Signal Processing and Communication Engineering Systems, 2015, pp. 453–457.; G. Muñoz, I. H. Solana, and M. Ángela, “Gestión de Recursos Radio en Redes Móviles Celulares Basadas en Tecnología OFDMA para la Provisión de QoS y Control de la Interferencia.”; C. So-In, R. Jain, y A. K. Tamimi, “A Deficit Round Robin with Fragmentation scheduler for IEEE 802.16e Mobile WiMAX”, en IEEE Sarnoff Symposium, 2009. SARNOFF ’09, 2009, pp. 1–7.; H. Fattah y C. Leung, “An Improved Round Robin Packet Scheduler for Wireless Networks”, International Journal of Wireless Information Networks, vol. 11, pp. 41–54, 2004.; J. Vihriala et al., «Numerology and frame structure for 5G radio access», en 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications; N. Siasi, A. Jaesim, A. Aldalbahi, y N. Ghani, «Link Failure Recovery in NFV for 5G and Beyond», en 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona, Spain, oct. 2019, pp. 144-148. doi:10.1109/WiMOB.2019.8923413.; D.-H. Kim, B.-H. Ryu, y C.-G. Kang, «Packet Scheduling Algorithm Considering a Minimum Bit Rate for Non-realtime Traffic in an OFDMA/FDD-Based Mobile Internet Access System», ETRI J., vol. 26, n.o 1, pp. 48-52, feb. 2004, doi:10.4218/etrij.04.0203.0005.; M. Yan, G. Feng, J. Zhou, Y. Sun, y Y.-C. Liang, «Intelligent Resource Scheduling for 5G Radio Access Network Slicing», IEEE Trans. Veh. Technol., vol. 68, n.o 8, pp. 7691- 7703, ago. 2019, doi:10.1109/TVT.2019.2922668.; A. A. Esswie y K. I. Pedersen, «Opportunistic Spatial Preemptive Scheduling for URLLC and eMBB Coexistence in Multi-User 5G Networks», IEEE Access, vol. 6, pp. 38451-38463, 2018, doi:10.1109/ACCESS.2018.2854292.; R. B. Abreu, G. Pocovi, T. H. Jacobsen, M. Centenaro, K. I. Pedersen, y T. E. Kolding, «Scheduling Enhancements and Performance Evaluation of Downlink 5G TimeSensitive Communications», IEEE Access, vol. 8, pp. 128106-128115, 2020, doi:10.1109/ACCESS.2020.3008598.; Z. Gu et al., «Knowledge-Assisted Deep Reinforcement Learning in 5G Scheduler Design: From Theoretical Framework to Implementation», ArXiv200908346 Cs Eess, feb. 2021, Accedido: feb. 06, 2021. [En línea]. Disponible en: http://arxiv.org/abs/2009.08346; Khaira, M. S., & Borkar, N. Y., «U.S. Patent No. 5,357,512. Washington, DC: U.S. Patent and Trademark Office.» 1994.; C. J. Katila, C. Buratti, M. D. Abrignani, y R. Verdone, «Neighbors-Aware Proportional Fair scheduling for future wireless networks with mixed MAC protocols», EURASIP J. Wirel. Commun. Netw., vol. 2017, n.o 1, p. 93, dic. 2017, doi:10.1186/s13638-017- 0875-6.; Humaira Rashid Khan, Fahd Sikandar Khan, Ahmed Shuja Syed, Javeed Akhtar, Chapter 27 - Nano-inks and their applications in packaging industries, Editor(s): Ram K. Gupta, Tuan Anh Nguyen, In Micro and Nano Technologies, Smart Multifunctional Nano-inks, Elsevier, 2023, Pages 687-698, ISBN 9780323911450, https://doi.org/10.1016/B978-0-323-91145-0.00015-3.; Muhammad Ifaz Shahriar Chowdhury, Yashdi Saif Autul, Sazedur Rahman, Md Enamul Hoque, 11 - Polymer nanocomposites for automotive applications, Editor(s): Md Enamul Hoque, Kumar Ramar, Ahmed Sharif, In Woodhead Publishing in Materials, Advanced Polymer Nanocomposites, Woodhead Publishing, 2022, Pages 267-317, ISBN 9780128244920, https://doi.org/10.1016/B978-0-12-824492-0.00010-6.; Harpreet Singh, Kirandeep Kaur, Role of nanotechnology in research fields: Medical sciences, military & tribology- A review on recent advancements, grand challenges and perspectives, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.02.061. (https://www.sciencedirect.com/science/article/pii/S2214785323005783); Priyanshi Saini, Kamalesu, Lalita, Manikanika, Review on nanotechnology “Impact on the food services industry”, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.04.377.; Aloysius F. Hepp, Jerry D. Harris, Allen W. Apblett, Andrew R. Barron, Chapter 17 - Commercialization of single-source precursors: Applications, intellectual property, and technology transfer, Editor(s): Allen W. Apblett, Andrew R. Barron, Aloysius F. Hepp, Nanomaterials via Single-Source Precursors, Elsevier, 2022, Pages 563-600, ISBN 9780128203408, https://doi.org/10.1016/B978-0-12-820340-8.00008-3.; Arkadiy Larionov, Yulia Larionova, Ludmila Selivanova, Regional Peculiarities of Energy Saving Development During the Exploitation of Housing and Underground Housing and Utility Sector Objects, Procedia Engineering, Volume 165, 2016, Pages 1229-1232, ISSN 1877-7058, https://doi.org/10.1016/j.proeng.2016.11.844.; Mahendra L. Shelar, Vinod B. Suryawanshi, Experimental investigation and characterization of the tensile and flexural properties of amine functionalized graphene enhanced nanocomposite prepregs, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.06.371.; A. B. Shivshambhu Kumar, "Potential applications of nanomaterials in oil and gas well cementing: Current status, challenges and prospects," Journal of Petroleum Science and Engineering, vol. 213, pp. 1-18, 2022.; L. Ivanov, O. Borisova and S. R. Miminova, "The inventions in nanotechnologies as practical solutions. Part I.," Nanotekhnologii v Stroitel'stve, vol. 11, no. 1, pp. 91-101, 2019.; F. A. Shilar, S. V. Ganachari y V. B. Patil, “Advancement of nano-based construction materials-A review”, Construction and Building Materials, vol. 359, pp. 1-41, 2022; M. Luna, J.J. Delgado, T. Montini, L.M.L. Almoraima Gil, P. Fornasiero and M.J. Mosquera, "Photocatalytic TiO2 nanosheets-SiO2 coatings on concrete and limestone: An enhancement of de-polluting and self-cleaning properties by nanoparticle design," Construction and Building Materials, vol. 338, pp. 1-13, 2022.; Z. Wang, Q. Yu, P. Feng and H. Brouwers, "Variation of self-cleaning performance of nano-TiO2 modified mortar caused by carbonation: From hydrates to carbonates," Cement and Concrete Research, vol. 158, pp. 1-15, 2022.; A. A. Firoozi, M. Naji, M. Dithinde and A. A. Firoozi, "A Review: Influence of Potential Nanomaterials for Civil Engineering Projects," Iranian Journal of Science and Technology, Transactions of Civil Engineering, vol. 45, p. 2057–2068, 2020.; A. A. Alizadehmojarad, X. Zhou, A. G. Beyene, K. E., Chacon, Y. Sung, R. Pinals, L. Vuković, "Binding Affinity and Conformational Preferences Influence Kinetic Stability of Short Oligonucleotides on Carbon Nanotubes," Advanced Materials Interfaces, vol. 7, no. 15, p. 2000353, 2020.; J. Tang, X. Wang, J. Zhang, J. Wang, W. Yin, D.S. Li, and T. Wu, "A chalcogenide-cluster-based semiconducting nanotube array with oriented photoconductive behavior," Nature Communications, vol. 12, no. 1, p. 4275, 2021.; A. S. Dahlan, "Smart and Functional Materials Based Nanomaterials in Construction Styles in Nano-Architecture," Silicon, vol. 11, pp. 1949-1953, 2019.; A. Adesina, "Overview of Workability and Mechanical Performance of Cement-Based Composites Incorporating Nanomaterials," Silicon, vol. 14, pp. 135-144, 2020.; A. M. Onaizi, G. F. Huseien, N. H. A. S. Lim, M. Amran and M. Samadi, "Effect of nanomaterials inclusion on sustainability of cement-based concretes: A comprehensive review," Construction and Building Materials, vol. 306, pp. 1-20, 2021.; A. Z. Aljenbaz y Ç. Çağnan, “Evaluation of Nanomaterials for Building Production within the Context of Sustainability”, European Journal of Sustainable Development, vol. 9, pp. 53-65, 2020.; P. D. Bonilla Nieto, J. S. Carrillo Sanabria, y J. R. Camargo López, “Solar energy manager with PSOC5LP”, Vis. Electron., vol. 13, n.º 1, pp. 112–122, ene. 2019. https://doi.org/10.14483/22484728.14426; D. J. Arcila Perozo, L. Y. López López, y K. S. Novoa Roldán, ”Robotic system based on ant behavior for optimizing shortest path finding”, Vis. Electron., vol. 17, n.º 1, abr. 2023.; Yener, S. C., & Mutlu, R. (2018). A microcontroller-based ECG signal generator design utilizing microcontroller PWM output and experimental ECG data. 2018 Electric Electronics, Computer Science, Biomedical Engineering’s’ Meeting, EBBT 2018, 1-4. https://doi.org/10.1109/EBBT.2018.8391465; Rangayyan, R. M. (2002). BIOMEDICAL SIGNAL ANALYSIS A Case-Study Approach.; León, F., Rodríguez Lozano, F. J., Cubero Fernández, A., Palomares, J. M., & Olivares, J. (2019). SysGpr: Sistema de generación de señales sintéticas pseudo-realistas. Revista Iberoamericana De Automática, 16 (3), 369-379.; Anowarul Fattah, S. (2012). Identifying the Motor Neuron Disease in EMG Signal Using Time and Frequency Domain Features with Comparison. Signal & Image Processing: An International Journal, 3 (2), 99-114. https://doi.org/10.5121/sipij.2012.3207; De Luca, C. J. (1979). Physiology and Mathematics of Myoelectric Signals. IEEE Transactions on Biomedical Engineering, BME-26 (6), 313-325. https://doi.org/10.1109/TBME.1979.326534; Selvan, V. A. (2011). Single-fiber EMG: A review. Ann Indian Acad Neurol.; Wu, J., Li, X., Liu, W., & Jane Wang, Z. (2019). SEMG Signal Processing Methods: A Review. Journal of Physics: Conference Series, 1237 (3). https://doi.org/10.1088/1742- 6596/1237/ 3/032008; Widodo, A., Puspitaningayu, P., Anifah, L., & Firmansyah, R. (2018). An ArdiunoSimulink Based ECG Waveform Generator. 2018 2nd Borneo International Conference on Ap- plied Mathematics and Engineering, BICAME 2018, 338-342. https://doi.org/10.1109/ BICAME45512.2018.1570504879; DALCAME. (2005). Electromiografía. http ://www.dalcame.com/emg.html#.X4o6m9BKjIV (accessed: 16.10.2020).; López Chávez, H. I. (2020). Detección de la LRD en el ritmo cardiaco. APUNTES DE CLASE. Mahabalagiri, A. K., Ahmed, K., & Schlereth, F. (2011). A novel approach for simulation, measurement and representation of surface EMG (sEMG) signals. Conference Record - Asilomar Conference on Signals, Systems and Computers, 476- 480. https://doi.org/10.1109/ACSSC.2011.6190045; Ruiz Rubio, R. (1999). Aplicaciones de las señales electromiográficas. http://www.encuentros.uma.es/encuentros53/aplicaciones.%20html#:∼:%20text=Las% 5C%20se%5C%C3%5C%B1ales%5C%20EMG%5C%20tienen%5C%20una%5C%20f recuencia%5C%20que%5C%20oscila%5C%20entre%5C%2050,ser%5C%20menor% 5C%20de%5C%20300%5C%20Hz. (accessed: 16.10.2020).; Tabernig, C., Acevedo, R., & Fernández, J. (2007). INFLUENCIA DE LA FATIGA MUSCULAR EN LA SEÑAL ELECTROMIOGRÁFICA DE MÚSCULOS ESTIMULADOS ELÉCTRICAMENTE. Revista EIA, 111-119.; Alvarés Osorio, L. (2007). Acondicionamiento de señales bioeléctricas. https://www.coursehero.com/file/p3rjpjoo/2-Tipos-de-se%5C%C3%5C%B1alesbioel%5C%C3%5C%A9ctricas-6-nervous-system-a-trav%5C%C3%5C%A9s-demotor-end-plates/(accessed: 16.10.2020).; Mcgill, K. C., Lateva, Z. C., & Marateb, H. R. (2005). EMGLAB. http://emglab.net/emglab/index.php; Nikolic, M. (2001). Detailed Analysis of Clinical Electromyography Signals EMG Decomposition, Findings and Firing Pattern Analysis in Controls and Patients with Myopathy and Amy- trophic Lateral Sclerosis [Tesis doctoral, Faculty of Health Science, University of Copenhagen].; Téllez, M., Mejía, J., López, H., & Hernández, C. (2020). Random Number Generator with LongRange Dependence and Multifractal Behavior Based on Memristor. Electronics, 9 (10). https://doi.org/10.3390/electronics9101607; Initial J. Barrios., Tratamiento del sindrome del tunel carpiano. estudio de un caso clinico, Available online: https://mbfisioterapia.wordpress.com/tag/tunel-carpiano/, 2012, (accessed on 27-08-2023).; Diego A. B. V. and Ferro R. E, Estudio de modelos propuestos para el nervio mediano sano y con síndrome de túnel carpiano. Available online: https://revistas.udistrital.edu.co/index.php/NoriaIE/article/view/16353/15643 , 2019, (accessed on 28-08-2023).; L. L. A., Síndrome del túnel del carpo, Available online: https://www.medigraphic.com/pdfs/orthotips/ot-2014/ot141g.pdf , 2014, (accessed on 28-08-2023). Revista Orthotips.; R. D. G. F and D. F, Síndrome del túnel carpiano carpal tunnel syndrome,Revista Habanera de Ciencias Médicas, vol. 13, pp. 728–741, 2014. [Online]. Available: http://scielo.sld.cu; M. E. D. Alguacil, A. C. Millán, R. L. Sánchez, A. M. Sánchez, M. F. Arrondo, and I. C. Hernández, Revisión bibliográfica síndrome del túnel carpiano. intervención enfermera. Available online: https://revistasanitariadeinvestigacion.com/revision-bibliograficasindrome-del-tunel-carpiano-intervencion-enfermera/ , 2022, (accessed on 29-08- 2023).; J. O. G, Síndrome de túnel carpiano y accidente de tráfico. https://www.peritajemedicoforense.com/OJEDA.htm#:∼:text=El%20S%C3%ADndrome %20de%20T%C3%%20BAnel%20Carpiano,a%20traumatismo%20sobre%20la%20mu %C3%B1eca, 2001, (accessed on 29-08-2023).; M. B. Tejedor, J. A. Cervera, R. G. Lahiguera, and A. L. Ferreres, Análisis de factores de riesgo laborales y no laborales en síndrome de túnel carpiano (stc) mediante análisis bivariante y multivariante, https://scielo.isciii.es/scielo.php?script=sci arttext&pid=S1132-62552016000300004, 2016, (accessed on 01-09-2023). Valencia. Revista Scielo.; A. M. R., Síndrome del túnel carpiano. revisión no sistemática de la literatura. https://revistas.unisanitas.edu.co/index.php/rms/article/view/436, 2019, (accessed on 01-09-2023). Revista Médica Sanitas.; G. C. G. P., A. F. G. E., and E. A. G. A., Síndrome del túnel del carpo. Revista morfología. https://revistas.unal.edu.co/index.php/morfolia/article/view/10857#:∼:text=El%20S%C 3%ADndrome%20del%20T%C3%BAnel%20de,causas%20locales,%20regionale s%20y%20sist%C3%A9micas., 2009, (accessed on 02-09-2023). Universidad Nacional de Colombia.; Y. A. M. M., L. V. C. S., and M. A. T. S., Prevalencia de signos y síntomas de síndrome del túnel carpiano y sus factores asociados, en empleados administrativos de la universidad santo tomás sede floridablanca, durante el semestre del 2016. https://repository.usta.edu.co/bitstream/handle/11634/10218/YohannaMirandaLizethcala-%202017.pdf?sequence=1&isAllowed=y, 2017, (accessed on 23-09-2023). Universidad Santo Tomás.; U. M. Vázquez, I. D. C. Carrera, A. Alonso-Calvete, and Y. González-González, Eficacia del kinesiotape en el síndrome del túnel carpiano. una revisión sistemática, https://scielo.isciii.es/scielo.php?pid=S1132- 62552022000100011&script=sciarttext&tlng=pt, 2022, accedido 6-09-2023.; E. Cabrera, “El coeficiente de correlacion de los rangos de spearman caracterizacion,”http://scielo.sld.cu/pdf/rhcm/v8n2/rhcm17209.pdf, 2009, accedido 8- 09-2023.; IBM, “Estadísticos de tablas cruzadas,” https://www.ibm.com/docs/es/spss-statistics/ saas?topic=crosstabs-statistics, 2021, accedido 8-09-2023.; H. L. J. Diego, E. C. Franklin, R. J. E, C. R. J. Gerardo, T. S. C. Andrés, A. T. M. Karina, C. S. S. Milena, and B. P. V. José, “Sobre el uso adecuado del coeficiente de correlación de pearson: definición, propiedades y suposiciones,” https://www.redalyc.org/journal/559/55963207025/55963207025.pdf, 2018, accedido 8- 09-2023.; S. I. M. Orlando, “Coeficiente de correlación; coeficiente de correlación de spearman; estadística; coeficiente de correlación por rangos,” http://repositorio.utn.edu.ec/handle/123456789/768, 2011, accedido 15-09-2023.; B. M.H., A. G. O.P, L. Serrato, and J. A. Garnica, “Correlación no-paramétrica y su aplicación en la investigaciones científica non-parametric correlation and its application in scientific research,” http://www.spentamexico.org/v9-n2/A5.9(2)31-40.pdf, 2014, accedido 15-09-2023.; NCAN National Center for Adaptative Neurotechnologies, Documentation 2nd Wadsworth BCI Dataset (P300 Evoked Potentials) Data Acquired Using BCI2000 P3 Speller Paradigm, 1, 2002.; M.S.S.T.N.H Yağan-Mussellim-Arslan-Çakar-Alp-Ozkan, "A new benchmark dataset for P300 ERP-based BCI applications", Digital Signal Processing, vol. 135, pp. 1-11, April 2023.https://doi.org/10.1016/j.dsp.2023.103950.; L. E. A. G. P. Korczowski-Ostaschenko-Andreev-Cattan-Coelho Rodrigues, et al. Brain Invaders calibration-less P300-based BCI using dry EEG electrodes Dataset, (bi2014a). [Research Report] GIPSA-lab. 2019. ffhal-02171575f; A. M. E. D. D. C. R. M. T. L. M. Gramfort-Luessi-Larson-Engemann-StrohmeierBrodbeck-Goj-Jas-Brooks-Parkkonen-Hämäläinen. MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience, 7(267):1–13, 2013. doi:10.3389/fnins.2013.00267.; Haghighatpanah, N., Amirfattahi, R., Abootalebi, V., & Nazari, B. (2012). A two stage single trial P300 detection algorithm based on independent component analysis and wavelet transforms. 2012 19th Iranian Conference of Biomedical Engineering (ICBME), 324-329.; Neda Haghighatpanah, Rasoul Amirfattahi, Vahid Abootalebi, and Behzad Nazari. A single channel-single trial p300 detection algorithm. In 2013 21st Iranian Conference on Electrical Engineering (ICEE), pages 1–5, 2013; S. K. Haider, A. Jiang, M. A. Jamshed, H. Pervaiz and S. Mumtaz, "Performance Enhancement in P300 ERP Single Trial by Machine Learning Adaptive Denoising Mechanism," in IEEE Networking Letters, vol. 1, no. 1, pp. 26-29, March 2019, doi:10.1109/LNET.2018.2883859.; Praveen Kumar Shukla, Rahul Kumar Chaurasiya, and Shrish Verma. Performance improvement of p300-based home appliances control classification using convolution neural network. Biomedical Signal Processing and Control, 63, 1 2021.; Samima, S., Sarma, M., Samanta, D. et al. Estimation and quantification of vigilance using ERPs and eye blink rate with a fuzzy model-based approach. Cogn Tech Work 21, 517–533 (2019). https://doi.org/10.1007/s10111-018-0533-8; A. Boudjella, M. Y. Boudjella and B. Bachir, "Epileptic Disease Prediction Using Graphic User Interface–Machine Learning Algorithm," 2022 7th International Conference on Image and Signal Processing and their Applications (ISPA), Mostaganem, Algeria, 2022, pp. 1-8, doi:10.1109/ISPA54004.2022.9786366.; Heras, J. M. (2019, noviembre 17). Precision, Recall, F1, Accuracy en clasificación. [Online] Iartificial.net. Available at https://www.iartificial.net/precision-recall-f1- accuracy-en-clasificacion/; C. F. Blanco-D ́ıaz, C. D. Guerrero-Méndez, and A. F. Ruiz-Olaya. Enhancing p300 detection using a band-selective filter bank for a visual p300 speller. IRBM, 44, 6 2023; E Solis-Escalante, G Gabriel Gentiletti, and O Yanez-Suarez. Single trial p300 detection based on the empirical mode decomposition. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 1157– 1160, 2006.; C. F. Blanco-D ́ıaz, C. D. Guerrero-M ́endez, and A. F. Ruiz-Olaya. Enhancing p300 detection using a band-selective filter bank for a visual p300 speller. IRBM, 44, 6 2023; R. A. Neira- Ricouz, " Fotografia Aerea", Tesis Ing, Universidad Austral de Chile, Valdivia, Chile, 2005.; D. I. Gómez, R. Castrillón, " Reconocimiento Automático De Ganado Bovino A Partir De Imágenes Aéreas Tomadas Con Drones: Un enfoque exploratorio", III Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y Móvil, 32-39, Pereira Colombia, 2019.; Airdroneview, 4 julio 2014, “Historia de la fotografía aérea”[Blog], [Online]. Recuperado de: https://airdroneview.com/2014/07/04/historia-de-la-fotografia-aerea/ .; F. Fernández García, " Fotografía aérea histórica e historia de la fotografía aérea en España”, Revista ERIA, Departamento de Geografía. Universidad de Oviedo, España, pp . 217-240, 2015.; M. Blanco Pérez. (2021). Fotografía aérea con tecnología drone. Tipología y aplicaciones. Discursos Fotograficos, 16(29), pp.76–101. https://doi.org/10.5433/1984-7939.2020v16n29p76; FJT Historia, medicina y otras artes, marzo 2016, “Las primeras fotografías aéreas de la Historia”[Blog],[Online]. Recuperado de: https://franciscojaviertostado.com/2016/03/14/las-primeras-fotografias-aereas-de-lahistoria/.; A Berrondo UrruzolaD. I, "Detección de carreteras en imágenes de reconocimiento remoto mediante deep", Grado en Ingeniería Informática Computación, Univeridad del pais vasco, Facultad de informatica, 2020.; A. Yasin Yiğit, A. Kocatepe, " Automatic road detection from orthophoto images", mersin photogrametri journal, 2(1); 10-17, e ISSN 2687-654X, 2020 .; Chaki, N., Shaikh, S.H., Saeed, K. (2014). A Comprehensive Survey on Image Binarization Techniques. In: Exploring Image Binarization Techniques. Studies in Computational Intelligence, vol 560. Springer, New Delhi. https://doi.org/10.1007/978- 81-322-1907-1_2; RAE, diccionario real academia de la lengua española, actualización 2022, “consulta del termino correlación”[Online]. Recuperado de: https://dle.rae.es/correlaci%C3%B3n?m=form; Máxima formación, julio 2020, “¿Qué Es La Correlación Estadística Y Cómo Interpretarla?”, [Blog], [Online]. Recuperado de: https://dle.rae.es/correlaci%C3%B3n?m=form; P. Sinha, B. Horgan, R. Ewing, E. Rampe, M. Lapotre, M. Nachon, M. Thorpe, A. Rudolph, C. Bedford, K. Maso2, E. Champion, P. Gray, E. Reid, M. Faragalli, “Decorrelation stretches(dcs) of visible images as a tool for sedimentary provenance investigationson earth and mars”, NTRS - NASA Technical Reports Server, March 16, 2020; Farrand, W. H., J. F. Bell III, J. R. Johnson, M. S. Rice, B. L. Jolliff, and R. E. Arvidson (2014), “Observations of rock spectral classes by the Opportunity rover’s Pancam on northern Cape York and on Matijevic Hill, Endeavour Crater, Mars”, J. Geophys. Res. Planets, 119, 2349–2369, doi:10.1002/2014JE00464.; M. Peikari, A. L. Martel, "Automatic cell detection and segmentation from H and E stained pathology slides using colorspace decorrelation stretching", Proc. SPIE 9791, Medical Imaging 2016: Digital Pathology, 979114 (23 March 2016); https://doi.org/10.1117/12.2216507; D. Hema1, S. Kannan. “Interactive Color Image Segmentation using HSV Color Space”, Science and Technology Journal, Vol. 7 Issue: 1 ISSN: 2321-3388, 2020; The MathWorks Inc,“Image Processing Toolbox For Use with MATLAB®”, decorstretch function, Version 3, User's Guide, https://www.mathworks.com/help/images/ref/decorrstretch.html.; T. Gevers, J. Weijer, H Stokman, “Color Image Processing: Chapter Color Feature Detection”. Social Science Computing Review, 1 st ed. England. edit. CRC Press, pp. 22, 2006. eBook ISBN9781315221526.; The MathWorks Inc,“Image Processing Toolbox For Use with MATLAB®”, imfill function, Version 3, User's Guide, https://la.mathworks.com/help/images/ref/imfill.html?searchHighlight=imfill&s_tid=srch title_support_results_1_imfill.; The MathWorks Inc,“Image Processing Toolbox For Use with MATLAB®”, bwareadopen function, Version 3, User's Guide. https://la.mathworks.com/help/images/ref/bwareaopen.html?searchHighlight=bwareao pen&s_tid=srchtitle_support_results_1_bwareaopen; Shutterstock,” Imágenes libres de regalías de Maldivas”, [Online]. Recuperado de: https://www.shutterstock.com/es/search/maldivas; National Geographic, “Vista aérea del complejo arqueoastronómico de Chankillo, en Perú”. Foto: Ministerio de Cultura de Perú, [Online]. Recuperado de: https://historia.nationalgeographic.com.es/a/chankillo-observatorio-solar-mas-antiguoamerica_19020; M. Franzese and A. Iuliano, “Hidden Markov models,” in Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Elsevier, 2018, pp. 753–762. Doi:10.1016/B978-0-12-809633-8.20488-3.; B.-J. Yoon, “Hidden Markov Models and their Applications in Biological Sequence Analysis,” Cur Genomics, vol. 10, no. 6, pp. 402–415, Sep. 2009, Doi:10.2174/138920209789177575.; P. C. Chang, J. J. Lin, J. C. Hsieh, and J. Weng, “Myocardial infarction classification with multilead ECG using hidden Markov models and Gaussian mixture models,” Applied Soft Computing Journal, vol. 12, no. 10, pp. 3165–3175, Oct. 2012, Doi:10.1016/j.asoc.2012.06.004.; T. Navarrete, “Detección de anomalías en la carga de un procesador utilizando modelos ocultos de Markov.,” Tesis de maestría, Instituto tecnológico de Morelia, Morelia, Michoacán, pp. 1, 2007. Accessed: Sep. 11, 2023. [Online]. Available: http://www.asiat.com.mx/tomas/tesismaestria/micrositio/node2.html; Ö. Yavuz, M. Calp, and H. Erkengel, “Prediction of breast cancer using machine learning algorithms on different datasets,” Ingenieria Solidaria, vol. 19, no. 1, pp. 1–32, Jun. 2023, doi:10.16925/2357-6014.2023.01.08.; DANE, “Estadísticas vitales (EEVV),” pp. 1, 2023. Accessed: Sep. 11, 2023. [Online]. Available: https://www.dane.gov.co/files/investigaciones/poblacion/pre_estadisticasvitales_IIItrim_2022p r.pdf; W. Gersch, P. Lilly, and E. Dong, “PVC Detection by the Heart-Beat Interval Data-Markov Chain Approach,” COMPUTERS AND BIOMEDICAL RESEARCH, vol. 8, pp. 370–378, 1975, Doi: https://doi.org/10.1016/0010-4809(75)90013-0.; A. H. Kadish et al., “ACC/AHA clinical competence statement on electrocardiography and ambulatory electrocardiography. A report of the ACC/AHA/ACP-ASIM Task Force on Clinical Competence (ACC/AHA Committee to Develop a Clinical Competence Statement on Electrocardiography and Ambulatory Electrocardiography),” J Am Coll Cardio, vol. 38, no. 7, pp. 2091–2100, 2001, Doi:10.1016/s0735-1097(01)01680-1.; R. V. Andreão, B. Dorizzi, and J. Boudy, “ECG signal analysis through hidden Markov models,” IEEE Trans Biomed Eng, vol. 53, no. 8, pp. 1541–1549, Aug. 2006, doi:10.1109/TBME.2006.877103.; M. H. Crawford et al., “ACC/AHA guidelines for ambulatory electrocardiography: Executive summary and recommendations: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the Guidelines for Ambulatory Electrocardiography): Developed in Collaboration with the North American Society for Pacing and Electrophysiology,” Circulation, vol. 100, no. 8. Lippincott Williams and Wilkins, pp. 886–893, Aug. 24, 1999. Doi:10.1161/01.CIR.100.8.886.; Sayed Khaled, A. Khalaf, and Y. Kadah, “Arrhythmia classification based on novel distance series transform of phase space trajectories,” Annu Int Conf IEEE Eng Med Biol Soc, pp. 5195– 8, 2015, Doi:10.1109/EMBC.2015.7319562.; M. Alvarez and R. Henao, “Combinacion de ppca y hmm para la identificación de infarto agudo de miocardio,” Scientia Et Technica, vol. 3, no. 32, pp. 139–144, 2006, doi: https://doi.org/10.22517/23447214.6253.; P. Laguna, A. Mark, A. Goldberg, and B. Moody, “A Database for Evaluation of Algorithms for Measurement of QT and Other Waveform Intervals in the ECG,” Compute Cardiol, pp. 673–76, 1997, Doi:10.1109/CIC.1997.648140.; A. L. Goldberger et al., “Physio Bank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals.,” Circulation, vol. 101, no. 23, pp. 1–6, 2000, Doi:10.1161/01.cir.101.23.e215.; G. Moody and R. Mark, “The impact of the MIT-BIH Arrhythmia Database,” IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 3, pp. 45–50, 2001, Doi:10.1109/51.932724.; A. Taddei et al., “The European ST-T database: standard for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography,” Eur Heart J, vol. 13, no. 9, pp. 1164– 1172, 1992, Doi:10.1093/oxfordjournals.eurheartj.a060332.; R. Bousseljot, D. Kreiseler, and A. Schnabel, “Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet,” Biomedizinische Technik, vol. 40, pp. 317–318, 1995, Doi: https://doi.org/10.1515/bmte.1995.40.s1.317.; F. Nolle, J. Badura, R. Catlett, H. Bowser, and M. Sketch, “CREI-GARD, a new concept in computerized arrhythmia monitoring systems,” Computers in Cardiology , pp. 515–518, 1987.; W. T. Cheng and K. L. Chan, “Classification of electrocardiogram using hidden Markov models,” Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. , vol. 20, no. 1, pp. 143–46, 1998, Doi:10.1109/IEMBS.1998.745850.; D. V. Filho and A. M. Cavalcanti, “MODELO PARA ANÁLISE DE ARRITMIAS CARDÍACAS USANDO CADEIAS DE MARKOV,” Proceedings of the XII SIBGRAPI , pp. 101–104, 1999, Accessed: Sep. 11, 2023. [Online]. Available: http://www.din.uem.br/sbpo/sbpo2005/pdf/arq0174.pdf; V. Kalidas and L. S. Tamil, “Detection of atrial fibrillation using discrete-state Markov models and Random Forests,” Compute Biol Med, vol. 113, pp. 1–14, Oct. 2019, Doi:10.1016/j.compbiomed.2019.103386.; P. Cheng and X. Dong, “Life-threatening ventricular arrhythmia detection with personalized features,” IEEE Access, vol. 5, pp. 14195–14203, Jul. 2017, Doi:10.1109/ACCESS.2017.2723258.; F. Nilsson, M. Stridh, and L. Sörnmo, “Frequency Tracking of Atrial Fibrillation using Hidden Markov Models,” Conf Proc IEEE Eng Med Biol Soc., pp. 1406–9, 2006, Doi:10.1109/IEMBS.2006.259677.; J. Oliveira, C. Sousa, and M. Coimbra, “Coupled hidden Markov model for automatic ECG and PCG segmentation,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, pp. 1023–27, 2017, Doi:10.1109/ICASSP.2017.7952311.; S. Petrutiu, A. V. Sahakian, and S. Swiryn, “Abrupt changes in fibrillatory wave characteristics at the termination of paroxysmal atrial fibrillation in humans,” Europace, vol. 9, no. 7, pp. 466– 470, Jul. 2007, Doi:10.1093/europace/eum096.; M. A F Pimentel, M. D. Santos, D. B. Springer, and G. D. Clifford, “Heart beat detection in multimodal physiological data using a hidden semi-Markov model and signal quality indices,” Physio Meas, vol. 36, no. 8, pp. 1717–1727, Aug. 2015, Doi:10.1088/0967-3334/36/8/1717.; A. K. Sangaiah, M. Arumugam, and G. Bin Bian, “An intelligent learning approach for improving ECG signal classification and arrhythmia analysis,” Artif Intell Med, vol. 103, pp. 1–14, Mar. 2020, Doi:10.1016/j.artmed.2019.101788.; H. Kwok, J. Coult, J. Blackwood, N. Sotoodehnia, P. Kudenchuk, and T. Rea, “A method for continuous rhythm classification and early detection of ventricular fibrillation during CPR,” Resuscitation, pp. 90–97, 2022, Doi:10.1016/j.resuscitation.2022.05.019.; L. A. Levin et al., “A cost-effectiveness analysis of screening for silent atrial fibrillation after ischaemic stroke,” Europace, vol. 17, no. 2, pp. 207–214, Dec. 2014, Doi:10.1093/europace/euu213.; G. H. Tison, J. Zhang, F. N. Delling, and R. C. Deo, “Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery,” Circ Cardiovasc Qual Outcomes, vol. 12, no. 9, pp. 1–12, Sep. 2019, Doi:10.1161/CIRCOUTCOMES.118.005289.; W. H. Tang, W. H. Ho, and Y. J. Chen, “Retrieving hidden atrial repolarization waves from standard surface ECGs,” Biomed Eng Online, vol. 17, pp. 1–11, Nov. 2018, Doi:10.1186/s12938-018-0576-3.; M. Altuve, G. Carrault, A. Beuchée, P. Pladys, and A. I. Hernández, “Online apnea–bradycardia detection based on hidden semi-Markov models,” Med Biol Eng Compute, vol. 53, no. 1, pp. 1– 13, Jan. 2015, Doi:10.1007/s11517-014-1207-1.; S. Masoudi and et al., “Early detection of apnea-bradycardia episodes in preterm infants based on coupled hidden Markov model,” IEEE International Symposium on Signal Processing and Information Technology, Athens, Greece, pp. 243–48, 2013, Doi:10.1109/ISSPIT.2013.6781887.; N. Montazeri Ghahjaverestan, M. B. Shamsollahi, D. Ge, A. Beuchée, and A. I. Hernández, “Apnea bradycardia detection based on new coupled hidden semi Markov model,” Med Biol Eng Comput, pp. 1–11, 2020, Doi:10.1007/s11517-020-02277-8.; A. Sadoughi, M. B. Shamsollahi, E. Fatemizadeh, A. Beuchée, A. I. Hernández, and N. Montazeri Ghahjaverestan, “Detection of Apnea Bradycardia from ECG Signals of Preterm Infants Using Layered Hidden Markov Model,” Ann Biomed Eng, vol. 49, no. 9, pp. 2159–2169, Sep. 2021, Doi:10.1007/s10439-021-02732-z.; E. D. Übeyli, “Combining recurrent neural networks with eigenvector methods for classification of ECG beats,” Digital Signal Processing: A Review Journal, vol. 19, no. 2, pp. 320–329, 2009, Doi:10.1016/j.dsp.2008.09.002.; C. Zhang, G. Wang, J. Zhao, P. Gao, J. Lin, and H. Yang, “Patient-specific ECG classification based on recurrent neural networks and clustering technique,” 2017 13th IASTED International Conference on Biomedical Engineering (BioMed), Innsbruck, Austria, pp. 63–67, 2017, Doi:10.2316/P.2017.852-029.; Z. Xiong, M. K. Stiles, and J. Zhao, “Robust ECG signal classification for detection of atrial fibrillation using a novel neural network,” in Computing in Cardiology, IEEE Computer Society, 2017, pp. 1–4. Doi:10.22489/CinC.2017.066-138; M. Liam and F. Precioso, “Atrial fibrillation detection and ECG classification based on convolutional recurrent neural network,” in Computing in Cardiology, IEEE Computer Society, 2017, pp. 1–4. Doi:10.22489/CinC.2017.171-325.; Y. C. Chang, S. H. Wu, L. M. Tseng, H. L. Chao, and C. H. Ko, “AF Detection by Exploiting the Spectral and Temporal Characteristics of ECG Signals with the LSTM Model,” in Computing in Cardiology, IEEE Computer Society, Sep. 2018, pp. 1–4. Doi:10.22489/CinC.2018.266.; H. W. Lui and K. L. Chow, “Multiclass classification of myocardial infarction with convolutional and recurrent neural networks for portable ECG devices,” Inform Med Unlocked, vol. 13, pp. 26–33, Jan. 2018, Doi:10.1016/j.imu.2018.08.002.; G. D. Clifford et al., “AF classification from a short single lead ECG recording: The PhysioNet/computing in cardiology challenge 2017,” in Computing in Cardiology, IEEE Computer Society, 2017, pp. 1–4. Doi:10.22489/CinC.2017.065-469.; S. Singh, S. K. Pandey, U. Pawar, and R. R. Janghel, “Classification of ECG Arrhythmia using Recurrent Neural Networks,” Procedia Compute Sci, vol. 132, pp. 1290–1297, 2018, Doi:10.1016/j.procs.2018.05.045.; Li X, Qi X, Chen Z, Hou Y, Yang Y, and Liang Q, “Affective Stress Rating Method Based on Improved Hidden Markov Model,” Chinese, vol. 33, no. 3, pp. 533–538, 2016.; C. Ying, Z. Xin, and C. Wenxi, “Automatic sleep staging based on ECG signals using hidden Markov models,” Annu Int Conf IEEE Eng Med Biol Soc ., pp. 530–3, 2015, Doi:10.1109/EMBC.2015.7318416.; F. Sandberg, M. Stridh, and L. Sörnmo, “Frequency tracking of atrial fibrillation using hidden Markov models,” IEEE Trans Biomed Eng, vol. 55, no. 2, pp. 502–511, Feb. 2008, Doi:10.1109/TBME.2007.905488.; L. Rincón, “Introducción a los procesos estocásticos,” UNAM, México, pp. 120-180, 2011. [Online]. Available: http://www.matematicas.unam.mx/lars; A. Alaa, S. Hu, and M. Schaar, “Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis,” International Conference on Machine Learning , pp. 60–69, 2017, Doi: https://doi.org/10.48550/arXiv.1705.05267.; J. Bilmes, “A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models,” International computer science institute, vol. 4, no. 510, p. 126, 1998, Accessed: Sep. 11, 2023. [Online]. Available: https://f.hubspotusercontent40.net/hubfs/8111846/Unicon_October2020/pdf/bilmes-emalgorithm.pdf; L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989, Doi:10.1109/5.18626.; A. Cohen, “Hidden Markov models in biomedical signal processing,” Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Biomedical Engineering Towards the Year 2000 and Beyond, vol. 3, pp. 1145–50, 1998, Doi:10.1109/IEMBS.1998.747073; Al-Hamadi, H., Gawanmeh, A., & Al-Qutayri, M. (2016). An automatic ECG generator for testing and evaluating ECG sensor algorithms. Proceeding of 2015 10th International Design and Test Symposium, IDT 2015, 78-83. https://doi.org/10.1109/IDT.2015.7396740; Yener, S. C., & Mutlu, R. (2018). A microcontroller-based ECG signal generator design utilizing microcontroller PWM output and experimental ECG data. 2018 ElectricElectronics, Computer Science, Biomedical Engineering’s’ Meeting, EBBT 2018, 1-4. https://doi.org/10.1109/EBBT.2018.8391465; Bear, M., Connors, B., & Paradiso, M. (2016). Neuroscience: Exploring the Brain. Wolters Kluwer. https://books.google.com.co/books?id=vVz4oAEACAAJ; López Chávez, H. I. (2020). Detección de la LRD en el ritmo cardiaco. APUNTES DE CLASE.; Park, K., & Willinger, W. (2000). Self-Similar Network Traffic and Performance Evaluation (1st). John Wiley & Sons, Inc.; Orozco, S. L., Cerda Villafaña, G., Cervantes, G. A., & Cisneros, M. T. (2010). Analysis of LRD Series with Time-Varying Hurst Parameter Análisis de Series LRD con Parámetro de Hurst Variante en el Tiempo. 13 (3), 295-312. http://www.fimee.ugto.mx/profesores/sledesma/documentos/; Ceballos, R. F., & Largo, F. F. (2018). On The Estimation of the Hurst Exponent Using Adjusted Rescaled Range Analysis, Detrended Fluctuation Analysis and Variance Time Plot: A Case of Exponential Distribution; Pujolle, G., Perros, H., Fdida, S., Korner, U., & Stavrakakis, I. (2000). Networking 2000 Broad- band Communications, High Performance Networking, and Performance of Communication Networks: IFIP-TC6/European Commission International Conference Paris, France, May 14–19, 2000 Proceedings. https://doi.org/10.1007/3-540-45551-5; Sheluhin, O., Smolskiy, S., & Osin, A. (2007). Self-Similar Processes in Telecommunications. John Wiley &; Sons, Inc.; Simonsen, I., Hansen, A., & Nes, O. M. (1998). Determination of the Hurst exponent by use of wavelet transforms. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 58 (3), 2779-2787. https://doi.org/10.1103/PhysRevE.58.2779; R. A. Robayo Salazar, P. E. Mattey Centeno, Y. F. Silva Urrego, D. M. Burgos Galindo y S. Delvasto Arjona, «Los residuos de la construcción y demolición en la ciudad de Cali: un análisis hacia su gestión, manejo y aprovechamiento,» Tecnura, vol. 19, nº 44, pp. 157-170, 2015.; Observatorio Ambiental de Bogotá, «Observatorio Ambiental de Bogotá,» 30 Julio 2023. [En línea]. Available: https://oab.ambientebogota.gov.co/residuos-de-construccion-ydemolicion/. [Último acceso: septiembre 2023].; Invías, «Normas y especificaciones 2012 invías,» 2012. [En línea]. Available: https://www.umv.gov.co/sisgestion2019/Documentos/APOYO/GLAB/GLAB-DE003_V1_Normas_Invias_Seccion_400-13.pdf. [Último acceso: septiembre 2023].; Normas técnicas Colombianas, «Concretos, especificaciones de los agragados para concreto NTC 174,» p. 5, 2000. [En línea]. Available: https://www.emcali.com.co/documents/148832/183512/NTC+174+de+2000.pdf/. [Último acceso: Septiembre 2023].; J. L. Rojas Ramírez y J. E. Berrío Mutiz, «Elaboración de concreto a partir de material de escombros de concreto,» Quindío - Colombia, 2019.; B. E. García Velásquez y L. M. Díaz Morales, «Proyecto de investigación evaluación de la resistencia a la compresión del concreto utilizando el cuesco proveniente de los residuos de fruto fresco de la palma africana y el concreto de residuos de construcción y demolición en obras civiles (rcd),» Villavicencio, 2019.; S. Peña Muñoz, J. F. Terán Puerta, J. A. Molina Sánchez, H. D. Cañola, A. BuilesJaramillo y . J. Ubany Zuluaga, «Evaluación de las propiedades de residuos de construcción y demolición de concreto,» Cuaderno, vol. 10, nº 1, pp. 79-90, 2018.; L. Perez Hernández, J. Gomez Chimento, A. Contreras Bravo y Padilla RuizLiseth, «Resistencia a la compresión del concreto,» Researchgate, Octubre 2018.; L. León Consuegra y M. Hernández Puentes, «Comparación de los valores de resistencia a compresión del hormigón a la edad de 7 y 28 días.,» Revista de Arquitectura e Ingeniería, vol. 10, nº 1, pp. 1-9, 2016.; À. Alegre Arias, «Hormigones en masa con áridos reciclados procedentes de rcd para su uso en la fabricación de bloques de defensa portuarios.,» Barcelona, 2012.; G. Bossini, M. G. Nuñez Cáceres y H. D. Anaya, «Influencia de agregados reciclados provenientes de (RCD) en hormigón,» de IX Jornadas de ciencias y tecnologías de facultades de ingeniería del NOA, Santiago del Estero, 2018.; C. J. Zega, «Hormigones reciclados: caracterización de los agregados gruesos reciclados,» (Tesis de maestría), p. 28, 2008.; E. Pavón, M. Etxeberria y I. Martínez, «Propiedades del hormigón de árido reciclado fabricado con adiciones, activa e inerte,» Revista de la construcción, vol. 10, nº 3, pp. 4- 15, 2011.; S. P. Muñoz Perez, D. M. Diaz Sanchez, E. E. Gamarra Capuñay y J. A. Chaname Bustamante , «La influencoa de los RCD en reemplazo de los agregados para la elaboración del concreto: una revisión literaria,» Ecuadorian Science Journal, vol. 5, nº 2, pp. 107-120, 2021.; C. A. Pacheco Bustos, L. G. Fuentes Pumarejo, É. H. Sánchez Cotte y H. A. Rondón Quintana, «Residuos de construcción y demolición (RCD), una perspectiva de aprovechamiento para la ciudad de barranquilla desde su modelo de gestión,» Ingeniería y Desarrollo, vol. 35, nº 2, pp. 533-555, 2017.; IEEE, IEEE Standard for Information technology—Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, vol. 2020. 2016. [Online]. Available: http://www.ieee.org/web/aboutus/whatis/policies/p9- 26.html.%0Ahttps://standards.ieee.org/standard/802_11ax-2021.html; “El nuevo 802.11ah conoce todo sobre Wi-Fi HaLow" :: Tecnocompras.” https://tecnocompras6.webnode.com.co/news/el-nuevo-802-11ah-conoce-todo-sobrewi-fi-halow/ (accessed Mar. 23, 2023).; Guías de Laboratorio para el estudio de señales Wi-Fi con el Equipo ANRITSU MS2830A de la Universidad Distrital Francisco José de Caldas, Manuel Fernando Cañas Soto, Brayan Alexander Estupiñan Avellaneda, José David Cely Callejas UDFJC 2023; M. Viseras, “Diseño De Una Guia De Prácticas De Laboratorio De Acuerdo Con Las Orientaciones Del Eees,” Enseñanza las Ciencias, Número Extra VIII Congr. Int. sobre Investig. en Didáctica las Ciencias, no. 1, pp. 1228–1233, 2009, [Online]. Available: https://pt.scribd.com/document/320878666/DISENO-DE-UNA-GUIA-DEPRACTICAS-DE-LABORATORIO-DE-ACUERDO-CON-LAS-ORIENTACIONESDEL-EEES; A. Alilla, A. Di Carlofelice, M. Faccio, I. Lucresi, and P. Tognolatti, “Software-defined satellite ranging measurements using laboratory signal analyzer,” 2014 IEEE Int. Work. Metrol. Aerospace, Metroaerosp. 2014 - Proc., pp. 332–336, 2014, doi:10.1109/METROAEROSPACE.2014.6865944.; P. Brochure, “Signal Analyzer,” SpringerReference, 2011, doi:10.1007/springerreference_24743.; A. Torres, “Ubiquiti airFiber – ¿Qué es BER (tasa de error de bit) en los radios airFiber? %7C Base de Conocimiento,” Ubiquiti. https://soporte.syscom.mx/es/articles/1439450- ubiquiti-airfiber-que-es-ber-tasa-de-error-de-bit-en-los-radios-airfiber (accessed Jul. 19, 2022).; O. Hernandez Cruz, “Diagrama de constelacion y modulaciones digitales avanzadas - Omar Hernández Cruz 17110937 Diagrama - StuDocu,” Universidad TecMilenio, 2021. https://www.studocu.com/es-mx/document/universidad-tecmilenio/ingenieria-decontrol/diagrama-de-constelacion-y-modulaciones-digitales-avanzadas/12619514 (accessed Jul. 19, 2022).; “Diagrama de constelación %7C PROMAX,” PROMAX, 2017. https://www.promax.es/esp/noticias/516/diagrama-de-constelacion/ (accessed Jul. 19, 2022).; Tektronix, “What Are Vector Network Analyzers %7C VNAs Explained %7C Tektronix.” https://www.tek.com/en/documents/primer/what-vector-network-analyzer-and-howdoes-it-work (accessed Jul. 19, 2022).; Tektronix, “Signal Generator %7C Tektronix.” https://www.tek.com/en/products/signalgenerators (accessed Jul. 19, 2022).; “Modelo pedagógico de la Facultad de Comunicaciones de la Universidad de Antioquia,” Feb. 2016. https://www.udea.edu.co/wps/wcm/connect/udea/fcc26266- 11ae-42c5-87abd8025d2bec9/MODELO+PEDAGÓGICO.pdf?MOD=AJPERES&CVID=lsLGwgF (accessed Aug. 05, 2022).; D. Noreña, “EL CONCEPTO DE PEDAGOGÍA EN LA OBRA PEDAGÓGICA DE RAFAEL FLÓREZ OCHOA ,” Univ. ANTIOQUIA Fac. Educ. Dep. Educ. Av. Maest. EN Educ. ÉNFASIS EN Form. Maest. , 2007, Accessed: Aug. 05, 2022. [Online]. Available: http://ayura.udea.edu.co:8080/jspui/bitstream/123456789/624/1/AA0384.pdf; M. Rosales, “Proceso evaluativo: evaluación sumativa, evaluación formativa y Assesment su impacto en la educación actual”; L. A. N. M. A. N. Committee, IEEE Std 802.11-2007: IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks-Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY, vol. 2020. 2007. [Online]. Available: http://scholar.google.com/scholar?q=related:K_aQPLd0dskJ:scholar.google.com/&hl= en&num=30&as_sdt=0,5%5Cnpapers3://publication/uuid/E731D645-DF33-45B5- 8882-A665213EA9D8; Anritsu MU181020A PPG 12.5Gb/s, “Anritsu corporation,” Analyzer, vol. 2, [Online]. Available: http://downloadfile.anritsu.com/Files/en-AU/Manuals/OperationManual/mu181020a_b_opm_e_17_0.pdf?f4739ea0f83b43ad1015d3937dbcf8be3aec 8f5de0897d0d745727bbd0217d9fa6b870ff705096c9d9cc39a9b064dd864b08e68938f 9ab5b245ce1c65ef3fe95eedc18d74c3ebd6bb939613a825ffb7; “Qué bandas de frecuencias WiFi hay: Explicación 2.4 GHz, 5 GHz y 6 GHz.” https://www.redeszone.net/tutoriales/redes-wifi/bandas-frecuencias-wi-fi/ (accessed Mar. 23, 2023).; F. G. Landa Barra, “Huella de carbono del transporte urbano para un plan de reducción de gases de efecto invernadero Puno 2021,” Repositorio Institucional - UCV, 2022, Accessed: Nov. 14, 2022. [Online]. https://repositorio.ucv.edu.pe/handle/20.500.12692/88703; S. Ankathi, Z. Lu, G. G. Zaimes, T. Hawkins, Y. Gan, and M. Wang, “Greenhouse gas emissions from the global transportation of crude oil: Current status and mitigation potential,” J Ind Ecol, 2022. https://doi.org/10.1111/jiec.13262; P. D. Faustino M. G., P. D. Florez S. Elkin, and M. Sc Guerrero G. G., “Mercados de energía en Colombia, una introducción,” 2021, Accessed: Nov. 14, 2022. [Online]. https://www.unipamplona.edu.co/unipamplona/portalIG/home_10/recursos/2021/documentos/ 19072021/mercados_energia.pdf.; A. Fernando et al., “Modelo de negocio para la implementación de estaciones de carga para vehículos eléctricos, en la empresa Biored energy,” 2020, Accessed: Nov. 26, 2022. [Online]. https://repository.udistrital.edu.co/handle/11349/28048.; Catagnia Chicaiza, L. D. (2020). Estimación de costos de energía eléctrica para la recarga de vehículos eléctricos basado en la óptima respuesta de la demanda (Bachelor's thesis). http://dspace.ups.edu.ec/handle/123456789/19333.; C. D. C. , Acosta Blanquiceth, J. M. , Chumbe Macana, J. F. , Ortigoza Ulloa, S. D. Palencia Pulido, and Sarmiento Baquero, “Estudio de factibilidad de la instalación de puntos de recarga para vehículos eléctricos en la ciudad de Bogotá,” 2021. https://hdl.handle.net/10882/11290; M. M. Rodríguez, “Impacto. Diseño de estaciones de carga eléctrica sostenible para vehículos eléctricos en Bogotá.,” 2021, Accessed: Nov. 26, 2022. [Online]. Available: http://repositorio.uan.edu.co/handle/123456789/1639.; Departamento Administrativo Nacional de Estadística, url: https://www.dane.gov.co.; Departamento Administrativo Nacional de Estadística https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-ypoblacion/proyecciones-de-poblacion.; Secretaría Distrital de Movilidad. https://www.movilidadbogota.gov.co/; Datos abiertos Bogotá. http://www.ideca.gov.co/recursos/glosario/datos-abiertos/.; Datos abiertos Bogotá. https://datosabiertos.bogota.gov.co/.; OpenStreetMap. https://www.openstreetmap.org/; F. C. Arias, “Estadística Espacial: Fundamentos y aplicación con Sistemas de Información Geográfica,” Revista Cartográfica, no. 105, 2022, doi:10.35424/rcarto.i105.1388. https://doi.org/10.35424/rcarto.i105.1388; V. Gómez Rubio, “Una introducción a la estadística espacial,” Boletín de Estadística e Investigación Operativa, vol. 38, 2022. https://www.seio.es/beio/una-introduccion-a-la-estadistica-espacial/; A. Rangel, A. Sánchez Ipia, W. Siabato, and J. Cely, “Geoestadística aplicada a estudios de contaminación ambiental,” UD y la Geomática, vol. 7 No.2, 2002. https://dialnet.unirioja.es/servlet/articulo?codigo=4797355.; D. Pascual, F. Pla, and S. Sánchez, “Algoritmos de agrupamiento,” Unpublished, 2007. https://repositorio.uci.cu/jspui/handle/123456789/7202; S. Wang, L. Sun, J. Rong, and Z. Yang, “Transit traffic analysis zone delineating method based on Thiessen polygon,” Sustainability (Switzerland), vol. 6, no. 4, 2014, doi:10.3390/su6041821. https://doi.org/10.3390/su6041821; “Geometría computacional,” http://asignatura.us.es/fgcitig/contenidos/gctem3ma.htm.; G. C. Henriques, “Arquitetura algorítmica: Técnicas, processos e fundamentos,” ENANPARQ IV Encontro da Associação Nacional de Pesquisa e Pós-Graduação em Arquitetura e Urbanismo, vol. 1, no. Sessão temática: projeto digital e fabricação na arquitetura, 2016.DOI:10.13140/RG.2.1.3479.3209; L. Jáuregui Álvarez and C. Vázquez Martínez, “MODELO DE NEGOCIO PARA LA GESTIÓN DE PUNTOS DE RECARGA Y ESTACIONAMIENTO NOCTURNO DE TURISMOS ELÉCTRICOS.” https://oa.upm.es/63478/; J. D. Gallo-Sanabria, P. A. Mozuca-Tamayo and R. I. Rincón-Fonseca, “Autonomous trajectory following for an UAV based on computer vision”, Visión electrónica, algo más que un estado sólido, vol. 14, no. 1, 2020; F. Campos Archila, V. Pinzón Saavedra, y F. Robayo Betancourt, “Fuzzy control of quadrotor Ar. Drone 2.0 in a controlled environment”, Vis. Electron., vol. 13, n.º 1, pp. 39–49, feb. 2019.; ] “Generación Eléctrica - Qué es, cómo se produce, renovables”. Concepto. Accedido el 27 de septiembre de 2023. https://concepto.de/generacion-electrica/; A. Gutierres. “Energías renovables: energías para un futuro más seguro”. Organizacion de las Naciones Unidas. Accedido el 1 de septiembre de 2023. https://www.un.org/es/climatechange/raising-ambition/renewable-energy; ] “Datos sobre producción eléctrica %7C Estadísticas mundiales sobre electricidad %7C Enerdata”. Estadísticas energéticas mundiales %7C Enerdata. Accedido el 27 de septiembre de 2023. https://datos.enerdata.net/electricidad/estadisticas-mundiales-produccion-electricidad.html; M. a. tamayo rincon, “PANORAMA ACTUAL DE LA GENERACIÓN HIDRÁULICA EN COLOMBIA Y ANTIOQUIA ANTE EL CRECIMIENTO DE LA DEMANDA DE ENERGÍA”, monografia, Univ. Antioquia, Medellin, 2022.; J. Rosero, L. Morales y D. Pozo, “Fuentes de Generación de Energía Eléctrica Convencional y Renovable a Nivel Mundial”, Rev. Politec., vol. 32, n.º 2, p. 13, 2013.; Malagón, E., 2020. La Hidroelectricidad, La Mayor Fuente De Energía Sostenible. ¡Aquí Te Decimos Por Qué! - Energía Para El Futuro. [Online] Energía para el futuro. Available at: [Accessed 21 October 2020].; Khan, A. A., & Khan, M. R. (2015). A simple and economical design of micro-hydro power generation system. 2015 Power Generation Systems and Renewable Energy Technologies, PGSRET 2015. https://doi.org/10.1109/PGSRET.2015.7312183; Ferro, L. M. C., Gato, L. M. C., & Falcão, A. F. O. (2011). Design of the rotor blades of a mini hydraulic bulb-turbine. Renewable Energy, 36(9), 2395–2403. https://doi.org/10.1016/j.renene.2011.01.037; E. R. Oviedo Ocaña, “Las Hidroeléctricas: efectos en los ecosistemas y en la salud ambiental”, Rev. Univ. Ind. Santander., vol. 50, n.º 3, 2018.; E. Sierra Vargas, A. F. Sierra Alarcon y C. A. Guerrero Fajardo. “Pequeñas y microcentrales hidroeléctricas: alternativa real de generación eléctrica. %7C Informador Técnico”. Revistas SENA. Accedido el 27 de septiembre de 2023. https://revistas.sena.edu.co/index.php/inf_tec/article/view/22/3439#info; Villarreal, J. L. S., Avalos, P. G., Galvan Gonzalez, S. R., & Dominguez Mota, F. J. (2019). Estimate electrical potential of municipal wastewater through a micro-hydroelectric plant. 2018 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2018, Ropec. https://doi.org/10.1109/ROPEC.2018.8661411; Qusay F. Hassan, "An Overview of Enabling Technologies for the Internet of Things," in Internet of Things A to Z: Technologies and Applications, IEEE, 2018, pp.77-112, doi:10.1002/9781119456735.ch3.; Hernandez Sampieri, R., Baptista Lucio, M. d. P., & Fernandez Collado, C. (2014). Metodologia de la investigacion (6a ed.). McGRAW-HILL / INTERAMERICANA EDITORES, S.A. DE C.V.; C M, S., Honnasiddaiah, R., Hindasageri, V., & Madav, V. (2021). Studies on application of vertical axis hydro turbine for sustainable power generation in irrigation channels with different bed slopes. Renewable Energy, 163, 845–857. https://doi.org/10.1016/j.renene.2020.09.015; Elbatran, A. H., Yaakob, O. B., Ahmed, Y. M., & Jalal, M. R. (2015). Novel approach of bidirectional diffuser-augmented channels system for enhancing hydrokinetic power generation in channels. Renewable Energy, 83, 809–819. https://doi.org/10.1016/j.renene.2015.05.038; Lucas D. Spies, E. A. T., Laboratorio. (2015). Diseño y Fabricación de una Turbina Eólica de Eje Vertical Impulsada por Drag. Revista Tecnología y Ciencia, 319–328.; Acevedo L, Lopez J, Sanchez S, (2008) Diseño de una turbina Banki para la recolección de aguas y generación de energía en una propiedad agrícola. Universidad tecnológica de Pereira, ingeniería mecatronica: http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/5770/62124A174.pdf;jsessionid=5 662092429514C805182C7EA731C6F45?sequence=1; Laboratorio de máquinas hidráulicas. (Universidad) (1923). Unidad 6 Turbina De Flujo Transversal O Michell Banki.2, 1–25. https://luiscalderonf.files.wordpress.com/2012/01/turbina-m-banki.pdf; Alfonso, C., & Gutiérrez, P. (2008). La turbina Mochell-Banki y su presencia en Colombia. Avances En Recursos Hidráulicos, 17, 33–42.; Bangi, V. K. T., Chaudhary, Y., Guduru, R. K., Aung, K. T., & Reddy, G. N. (2017). Preliminary investigation on generation of electricity using micro wind turbines placed on a car. International Journal of Renewable Energy Development, 6(1), 75–81. https://doi.org/10.14710/ijred.6.1.75-81; Ochoa, Y., Rodríguez, J., & Martínez, F. (2017). Sistema de regulación y control de carga para aerogenerador de baja potencia. Universidad Distrital Francisco José de Caldas - Facultad Tecnológica.; Hidrotu (empresa) "la turbina hidráulica del bulbo 0.1MW-10MW/la turbina del agua con descarga grande y el agua baja dirigen" Hoja técnica turbina de bulbo hidráulico., Spanish.hydrotu.com, 2020. [Online]. Available: http://spanish.hydrotu.com/china-; La_turbina_hidr_ulica_del_bulbo_0_1mw_10mw_la_turbina_del_agua_con_descarga_gra nde_y_el_agua_baja_di-295887.html. [Accessed: 08- Nov- 2020].; imagen turbina bulbo hidraulico- https://equipo2fae.wordpress.com/turbinas-kaplam/; Turbinas Kaplan. (2012). Recuperado 28 de diciembre de 2020, de EQUIPO2FAE website: https://equipo2fae.wordpress.com/turbinas-kaplam/; ] Vargas, J. A., Clavijo, F. V., & Torres Gómez, C. (2016). Desarrollo del prototipo de un hidrogenerador eléctrico como alternativa de generación de energía limpia en zonas rurales Development of the prototype of an electric hydro generator as an alternative for generating clean energy in rural areas. Ingeniare, 12(20), 91–101.; Naoe, N., Imazawa, A., Takehisa, K., & Nakamura, S. (2018). Bridge structure type micro hydropower-generating system and local region implementation. 2017 International Conference on Electrical, Electronics and System Engineering, ICEESE 2017, 2018-January, 78–83. https://doi.org/10.1109/ICEESE.2017.8298392; Plata, A. (2012). Diseño y desarrollo de un pico-generador hidroeléctrico para producción preindustrial. Universidad de Los Andes, 76.; Delgado Flores, A. F. (2016). Construcción de un convertidor CC-CC tipo reductor orientado a la enseñanza. Universidad Tecnológica de Pereira, 42.; Probe, M., & IoT, E. (2019). Power Consumption Measurements for IoT Applications Application Note. Rohde-Schwarz, 1–16.; Pane, D. N., Fikri, M. EL, & Ritonga, H. M. (2018). Análisis del consumo de energía promedio en dispositivos IoT de baja potencia con Blockchain como solución de seguridad. Journal of Chemical Information and Modeling, 53(9), 1689–1699.; Rose Karen, Eldridge Scott, C. L. (2015). LA INTERNET DE LAS COSAS-UNA BREVE RESEÑA. Internet Society, 83. https://doi.org/10.1007/978-0-85729-103-5_5; Kim, M., Lee, J., Kim, Y., & Song, Y. H. (2018). An analysis of energy consumption under various memory mappings for FRAM-based IoT devices. IEEE World Forum on Internet of Things, WF-IoT 2018 - Proceedings, 2018-January, 574–579. https://doi.org/10.1109/WFIoT.2018.8355212; Bonilla-Fabela Isaias Tavizon-Salazar Arturo Morales-Escobar Melisa Guajardo Muñoz Luz Tania & Laines-Alamina Cristina Isabel, “ISSN: 2448-5101 Año 2 Número 1 Julio 2015 - Junio 2016 2313 IOT, EL INTERNET DE LAS COSAS Y LA INNOVACIÓN DE SUS APLICACIONES”, Trabajo de grado, UANL Sch. Busines, Mexico, 2016.; S. Et. al., “Internet of Things (IoT): A Review”, Turkish J. Comput. Math. Educ. (TURCOMAT), vol. 12, n.º 2, pp. 521–526, abril de 2021. Accedido el 27 de septiembre de 2023, https://doi.org/10.17762/turcomat.v12i2.871; ] J. Flores Zermeño y E. G. Cosio Franco, “Aplicaciones, Enfoques y Tendencias del Internet de las Cosas (IoT): Revisión Sistemática de la Literatura”, Academia J., vol. 13, n.º 9, p. 9, 2021.; C. Chuquimarca, “Análisis comparativo entre arquitecturas de sistemas IoT”, RITI J., vol. 10, n.º 21, p. 16, 2021.; Anonimo. “¿Qué son los sensores IoT y para qué sirven? ¡Descúbrelo! %7C Tokio”. Tokio School. Accedido el 27 de septiembre de 2023, https://www.tokioschool.com/noticias/sensores-IoT/; F. D. Acevedo Garcés, "Diseño de una instalación solar fotovoltaica con capacidad para 3 kilovatios," Universidad Nacional Abierta y a Distancia Colombia, 2016.; M. Caro and R. Alejandro, "Dilemas éticos en la ingeniería," Retrieved 11 de 10 de 2021, from http://repositorio.uchile.cl/handle/2250/113296, 2012.; P. A. Castiblanco F. Luz A., "Trabajo de campo Sistema de Generación," En P. A. Castiblanco F. Luz A., Madrid, Cundinamarca, Cundinamarca, 2021.; T. D. Corcobado, "Instalaciones Solares Fotovoltaicas ciclo formativo de grado medio," Mc Graw Hill, Madrid, España, 2010.; Ministerio de Energía, "Energías Renovables no convencionales," En M. d. Energía. https://www.minenergia.gov.co/energias-renovables-no-convencionales, 2021.; J. Gómez Ramírez, "La energía solar fotovoltaica en Colombia: potenciales, antecedentes y perspectivas," Bogotá, 2017.; C. Guerrero, "Proyecto de Factibilidad para uso de Paneles Solares en Generación Fotovoltaica de Electricidad en el Complejo Habitacional “San Antonio” de Riobamba (Bachelor's thesis)," Riobamba, Ecuador, Ecuador, 2013.; I. S. JORGE, "Instalación y mantenimiento de sistemas solares fotovoltaicos. Capítulo 1, tema 1-2: La célula fotovoltaica. {En línea}. https://311cie.files.wordpress.com/2014/09/tema-1-2-la-celula-fotovoltaica.pdf," 2016.; P. &.-P. Marín-Cots, "En un entorno de 15 minutos: hacia la Ciudad de Proximidad, y su relación con el Covid-19 y la Crisis Climática, el caso de Málaga," Málaga, España, 2020.; Ministerio de Minas y Energía, "Ley 143 de 1994," En i. d. Régimen para la generación. Bogotá. https://www.minenergia.gov.co/documents/10180/667537/Ley_143_1994.pdf, 1994.; Monsolar, "Catálogo de productos," https://www.monsolar.com/bateria-gel-victron12v-165ah.html, 2023.; NASA, "Power Data Access View," https://power.larc.nasa.gov/data-access-viewer/, 2023.; G. C. Orrego, "Serie 3 Solera SE19 ORREGO G. CESAR A. Madrid Cundinamarca," 2019; R. Ortega, "Energías Renovables," Paraninfo, 2000.; UPME-Ideam, "Proyecciones de precios de los energéticos para generación eléctrica enero 2014 – diciembre 2037,"http://www.sipg.gov.co/sipg/documentos/precios_combustibles/Termicas_Marzo_ 2014. pdf, 2014.; WWF, "Glosario ambiental : Acuerdo de París," En WWF, París, Francia. https://www.wwf.org.co/?334976/Glosario-ambiental--Sabes-que-se-pacto-en-elAcuerdo-deParis#:~:text=Colombia%20en%20el%20Acuerdo%20de,de%20emisiones%20nac ionales%20de%202010, 2016.; (n.d.), «Buildings – Analysis - IEA,» 17 Abril 2023. [En línea]. Available: https://www.iea.org/reports/buildings.; C. t. d. l. e. e. España, « Seguridad estructural,» Documento básico SE., España, 2019.; F. Nemry, A. Uihlein, M. Colodel, C. Wetzel, A. Braune, B. Wittstock, I. Hasan, J. Kreißig, N. Gallon, S. Niemeier y Y. Frech, «Options to reduce the environmental impacts of residential buildings in the European Union—Potential and costs,» Energy Build, vol. 42, pp. 976-984, 2010.; Z. Ma, P. Cooper, D. Darly y L. Ledo, «Existing building retrofits: Methodology and stateof-the-art,» Energy Build, pp. 889-902, 2012.; reco2st, «reco2st,» programa de Investigación e Innovación Horizonte 2020 de la Unión Europea, 2020. [En línea]. Available: https://reco2st.eu/innovation/technologies/. [Último acceso: 14 11 2022].; C. o. B. S. Engineers, « Energy Efficiency in Buildings: CIBSE Guide F,» Chartered Institution of Building Services Engineers, 2004.; Objetivos y metas de desarrollo sostenible, «17 objetivos para transformar nuestro mundo,» NACIONES UNIDAS, 2017. [En línea]. Available: https://www.un.org/sustainabledevelopment/es/sustainable-development-goals/. [Último acceso: Noviembre 2022].; M. Santamouris y K. Vasilakopoulou, «Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation,» Electronics and Energy, vol. 1, 2021.; n.d, «Energy Efficiency 2019 – Analysis - IEA,» 17 Abril 2023. [En línea]. Available: https://www.iea.org/reports/energy-efficiency-2019.; L. Biardeau, L. Davis, P. Gertler y C. Wolfram, «Heat exposure and global air conditioning,» Nat Sustain, vol. 3, p. 25–28, 2020.; MITMA, «Documento Básico HS Salubiridad,» Ministerio de Transporte, Movilidad y Agenda Urbana, 2022.; J. Pradillo, ENFRIAMIENTO ADIABÁTICO INDIRECTO MEDIANTE CICL0 DE MAISOTSENKO Y APLICACIONES, wolf, 2015.; F. Rabadán, Evaluación de medidas de eficiencia energética en el, Sevilla: Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, 2021.; ABECE, «teoria sobre climatización adiabática,» Enero 2021. [En línea]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://asociacionbioclimatica.es/wpcontent/uploads/2021/01/TECNOLOGIAS-ADIABA%CC%81TICAS.pdf. [Último acceso: Noviembre 2022].; J. M. Arroyo and F. J. Fernández, “A genetic algorithm for power system vulnerability analysis under multiple contingencies,” Stud. Comput. Intell., vol. 482, pp. 41–68, 2013, doi:10.1007/978-3-642-37838-6_2.; D. K. Mishra, M. J. Ghadi, A. Azizivahed, L. Li, and J. Zhang, “A review on resilience studies in active distribution systems,” Renew. Sustain. Energy Rev., vol. 135, no. March 2020, 2021, doi:10.1016/j.rser.2020.110201.; J. Colombi, John M.; Miller, Michael E.; Schneider, Michael; McGrogan, Jason; Long, David S.; Plaga, “Towards Affordably Adaptable and Effective Systems,” Syst. Eng., vol. 14, no. 3, pp. 305–326, 2012, doi:10.1002/sys.; B. De Ataque and R. D. L. Sistemas, “A Bilevel Attacker-Defender Model for Enhancing Power Systems Resilience with Distributed Generation,” Sci. Tech., vol. 25, no. 4, pp. 540–547, 2020, doi:10.22517/23447214.23721.; P. H. Corredor and M. E. Ruiz, “Mitigating the Impact of Terrorist Activity on Colombia’s Power System,” IEEE Power Energy Mag., vol. 9, no. 2, pp. 59–66, 2011.; S. Cai, Y. Xie, Q. Wu, and Z. Xiang, “Robust MPC-based microgrid scheduling for resilience enhancement of distribution system,” Int. J. Electr. Power Energy Syst., vol. 121, no. April, p. 106068, 2020, doi:10.1016/j.ijepes.2020.106068.; S. N. Emenike and G. Falcone, “A review on energy supply chain resilience through optimization,” Renew. Sustain. Energy Rev., vol. 134, no. September, p. 110088, 2020, doi:10.1016/j.rser.2020.110088.; Z. Wan, Y. Mahajan, B. W. Kang, T. J. Moore, and J. H. Cho, “A Survey on Centrality Metrics and Their Network Resilience Analysis,” IEEE Access, vol. 9, pp. 104773–104819, 2021, doi:10.1109/ACCESS.2021.3094196.; L. Lotero and R. G. Hurtado, “Vulnerabilidad De Redes Complejas Y Una Revisión De La Literatura Vulnerability of Complex Networks and Urban Transportation Applications : a Literature Review,” Rev. EIA, vol. 11, no. 11, pp. 67–78, 2015.; T. Conferencia, M. D. E. Las, and R. D. E. Desastres, “Tercera Conferencia Mundial de las Naciones Unidas sobre la Reducción del Riesgo de Desastres,” 2015.; D. Sage, P. Fussey, and A. Dainty, “Securing and scaling resilient futures: neoliberalization, infrastructure, and topologies of power,” Environ. Plan. D Soc. Sp., vol. 33, no. 3, pp. 494–511, 2015, doi:10.1068/d14154p.; J. Pilatásig Lasluisa, “Resiliencia de Sistemas Eléctricos de Potencia mediante la Conmutación de Líneas de Transmisión – Estado del arte,” I+D Tecnológico, vol. 16, no. 2, 2020, doi:10.33412/idt.v16.2.2834.; B. M. Qu, T. Ding, L. Huang, and X. Wu, “Toward a Global Green Smart Microgrid,” pp. 55–69, 2020.; T. Khalili, A. Bidram, and M. J. Reno, “Impact study of demand response program on the resilience of dynamic clustered distribution systems,” IET Gener. Transm. Distrib., vol. 14, no. 22, pp. 5230–5238, 2020, doi:10.1049/iet-gtd.2020.0068.; J. Wu, H. Z. Deng, Y. J. Tan, and D. Z. Zhu, “Vulnerability of complex networks under intentional attack with incomplete information,” J. Phys. A Math. Theor., vol. 40, no. 11, pp. 2665–2671, 2007, doi:10.1088/1751-8113/40/11/005.; M. Azeroual, T. Lamhamdi, H. El Moussaoui, and H. El Markhi, “Simulation tools for a smart grid and energy management for microgrid with wind power using multi-agent system,” Wind Eng., vol. 44, no. 6, pp. 661–672, 2020, doi:10.1177/0309524X19862755.; Y. Wang et al., “Coordinating multiple sources for service restoration to enhance resilience of distribution systems,” IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 5781–5793, 2019, doi:10.1109/TSG.2019.2891515.; Q. Shi et al., “Network reconfiguration and distributed energy resource scheduling for improved distribution system resilience,” Int. J. Electr. Power Energy Syst., vol. 124, no. March 2020, p. 106355, 2021, doi:10.1016/j.ijepes.2020.106355.; K. Eshghi, B. K. Johnson, and C. G. Rieger, “Metrics required for power system resilient operations and protection,” Proc. - 2016 Resil. Week, RWS 2016, pp. 200–203, 2016, doi:10.1109/RWEEK.2016.7573333.; C. Ji, Y. Wei, and H. V. Poor, “Resilience of Energy Infrastructure and Services: Modeling, Data Analytics, and Metrics,” Proc. IEEE, vol. 105, no. 7, pp. 1354–1366, 2017, doi:10.1109/JPROC.2017.2698262.; D. J. M. Palacios, E. R. Trujillo, and J. M. López-Lezama, “Vulnerability analysis to maximize the resilience of power systems considering demand response and distributed generation,” Electron., vol. 10, no. 12, pp. 1–22, 2021, doi:10.3390/electronics10121498.; M. Bruneau et al., “A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities,” Earthq. Spectra, vol. 19, no. 4, pp. 733–752, 2003, doi:10.1193/1.1623497.; K. S. A. Sedzro, A. J. Lamadrid, and L. F. Zuluaga, “Allocation of Resources Using a Microgrid Formation Approach for Resilient Electric Grids,” IEEE Trans. Power Syst., vol. 33, no. 3, pp. 2633–2643, 2018, doi:10.1109/TPWRS.2017.2746622.; L. Yang, Y. Xu, H. Sun, M. Chow, and J. Zhou, “A multiagent system based optimal load restoration strategy in distribution systems,” Int. J. Electr. Power Energy Syst., vol. 124, no. May 2020, p. 106314, 2021, doi:10.1016/j.ijepes.2020.106314.; «Logra energía eólica a nivel mundial 1 TW de capacidad instalada», Energía Hoy. Accedido: 22 de agosto de 2023. [En línea]. Disponible en: https://energiahoy.com/2023/06/16/logra-energia-eolica-a-nivel-mundial-1-tw-de-capacidadinstalada/; P. M. Medina, «Colombia es uno de los países de la OCDE que más energía renovable genera», infobae. Accedido: 16 de agosto de 2023. [En línea]. Disponible en: https://www.infobae.com/colombia/2023/02/15/colombia-es-uno-de-los-paises-de-la-ocdeque-mas-energia-renovable-genera/; «Vista de Generador lineal para un generador eólico de baja potencia, selección, diseño y simulación en comsol multiphysic». Accedido: 16 de agosto de 2023. [En línea]. Disponible en: https://revistas.udistrital.edu.co/index.php/vinculos/article/view/18620/17571; Mohan Ned, Undeland Tore, Robbins William, ELECTRONICA DE POTENCIA: Convertidores, aplicaciones y diseño, 3.a ed. Mc Graw Hill, 2009.; «Simscape Electrical». Accedido: 21 de julio de 2023. [En línea]. Disponible en: https://la.mathworks.com/products/simscape-electrical.html; M. H. Rashid, Electrónica de Potencia, 2.a ed. PRENTICE HALL HISPANOAMERICANA, S.A, 1993.; «Introducción a la identificación de sistemas», TÉCNICA INDUSTRIAL. Accedido: 24 de agosto de 2023. [En línea]. Disponible en: https://www.tecnicaindustrial.es/introduccion-a-laidentificacion-de-sistemas/; «System Identification Toolbox». Accedido: 24 de agosto de 2023. [En línea]. Disponible en: https://la.mathworks.com/products/sysid.html; L. J. Marín y V. M. Alfaro, «Sintonización de controladores por ubicación de polos y ceros», 2007.; S. C, «CONTROLADOR PI - Asignación de Polos [FÁCIL - Aprende]», Control Automático Educación. Accedido: 24 de agosto de 2023. [En línea]. Disponible en: https://controlautomaticoeducacion.com/control-realimentado/controlador-pi-por-asignacionde-polos/; «CONTROLADOR PI - Asignación de Polos [FÁCIL - Aprende]». Accedido: 24 de agosto de 2023. [En línea]. Disponible en: https://controlautomaticoeducacion.com/controlrealimentado/controlador-pi-por-asignacion-de-polos/; S. C, « Control Fuzzy - Mamdani - Simulink - [agosto, 2023 ]», Control Automático Educación. Accedido: 24 de agosto de 2023. [En línea]. Disponible en: https://controlautomaticoeducacion.com/control-realimentado/control-fuzzy-mamdanisimulink/; Agencia Internacional de Energía (AIE), "Perspectivas de tecnología energética 2020", AIE, 2020.; MA Ortega-Vázquez, MV Salas y KE Yeager, "Recursos energéticos distribuidos y su integración en el sistema de energía eléctrica", Proc. IEEE, vol. 99, núm. 1, págs. 28–39, enero de 2011.; N. Hatziargyriou, H. Asano, R. Iravani y C. Marnay, "Microgrids", IEEE Power Energy Mag., vol. 5, núm. 4, págs. 78–94, julio de 2007.; R. Pérez-García, F. González-Longatt y S. Carneiro, "Review of Distributed Energy Resources Integration in the IEEE Standards", en 2020 IEEE PES Transmission & Distribution Conference and Exposition (T&D), 2020; AS Al-Mohammed, RMO Al-Mohammed y M. Al- Mansoori, "Impacto de los recursos energéticos distribuidos en la calidad de la energía en las redes inteligentes: una revisión integral", Energías, vol. 13, núm. 7, pág. 1580, 2020.; S. A. Abbas, S. F. Hasan, D. R. Shin, “Analyzing the Integration of Distributed Generation into Smartgrids,” College of Information and Communications Engineering. Sungkyunkwan University. IEEE, 2015); G. Gross, J. Heinemann y F. Siefert, "Integración de energías renovables y su impacto en las operaciones de red",en 2010 IEEE PES Innovative Smart Grid Technologies, 2010.; K. Wang, Z. Xu y H. Wang, "Estándar IEEE y su aplicación en la regulación de microrredes", en 2012 Tercera Conferencia Internacional sobre Control Inteligente y Procesamiento de Información, 2012.; HY Kim, YS Cho y SS Kim, "Una revisión de la investigación sobre modelado y análisis de microrredes", Renew. Sostener. Energía Rev., vol. 59, págs. 1634-1640, 2016.; SR Mohanty, SN Singh y A. Kishor, "Una revisión de los métodos de detección de islas para la generación distribuida", Renew. Sostener. Energía Rev., vol. 13, núm. 8, págs. 1801- 1818, 2009.; ] F. Katiraei, MR Iravani y PW Lehn, "Operación autónoma de microredes durante y después del proceso de aislamiento", IEEE Trans. Entrega de energía, vol. 20, núm. 1, págs. 248-257.; M. Stadler et al., "Asignación y envío óptimos de recursos de energía distribuida: una revisión", IEEE Trans. Sistema de energía, vol. 22, núm. 1, págs. 107-116, 2007.; P. Palensky y D. Dietrich, "Gestión del lado de la demanda: respuesta a la demanda, sistemas de energía y cargas inteligentes", IEEE Trans. Indiana Informática, vol. 7, núm. 3, págs. 381-388, 2011.; CA Silva, SJ Rider y CS Yim, "Sistemas de almacenamiento de energía eléctrica: un análisis comparativo del costo del ciclo de vida", Renew. Sostener. Energía Rev., vol. 14, núm. 9, págs. 2717-2726, 2010.; E. Muljadi, CP Butterfield, A. Ellis y J. Meiman, "EnergyStorage for Stabilization of Wind Power", IEEE Trans. Solicitud de Indiana, vol. 37, núm. 1, págs. 272-280, 2001.; L. Zhong, X. Fang, J. Chen y Z. Zhang, "Regulación de carga de recursos energéticos distribuidos mediante controlpredictivo de modelos", en 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015.; P. Deane, G. O'Gallachoir y B. Ó. Gallachóir, "Revisión tecnoeconómica de una planta de almacenamiento de energía hidráulica por bombeo nueva y existente", Renovar. Sostener. Energía Rev., vol. 14, núm. 4, págs. 1293-1302, 2010.; E. Marín y P. Gómez, “Criterios e indicadores para la evaluación de la sostenibilidad de los sistemas energéticos”, Energía, vol. 32, núm. 12, págs. 2173-2181, 2007.; NK Roy, MT Naayagi y AM Ismail, "Análisis tecnoeconómico del sistema híbrido de almacenamiento deenergía para una planta de energía fotovoltaica independiente",Renew. Sostener. Energía Rev., vol. 69, págs. 1246-1256, 2017.; EG Talbi y K. Chekired, "Análisis económico y técnico de un sistema híbrido compuesto por paneles fotovoltaicos y baterías para un consumidor doméstico en Argelia", Energy Convers. Gestionar., vol. 47, núm. 18-19, págs. 3396-3409, 2006.; S. Deng, S. Zhong, Y. Fan y J. Du, "Operación óptima del almacenamiento de energía integrado y electrodomésticos inteligentes en microrredes considerando la respuesta a la demanda", IEEE Trans. Red inteligente, vol. 7, núm. 6, págs. 2831-2841, 2016.; https://hdl.handle.net/11349/40350
Dostupnost: https://hdl.handle.net/11349/40350
-
14
Autoři:
Zdroj: CISTI (Iberian Conference on Information Systems & Technologies / Conferência Ibérica de Sistemas e Tecnologias de Informação) Proceedings; 2014, Vol. 1, p1007-1012, 6p
-
15
Autoři: a další
Přispěvatelé: a další
Témata: Industrial automation, Industrial engineering, Technological change, Automatic control, Automatic machinery, Nanotechnology, Bibliographic research, High technology, Factories, Automatización industrial, Ingeniería industrial, Cambio tecnológico, Control automático, Maquinaria automática, Alta tecnología, Fábricas, Nanotecnología, Investigación bibliográfica
Geografické téma: Colombia
Popis souboru: application/pdf
Relation: Teik-Cheng Lim. (2011) Nanosensors Theory and Applications in Industry, Healthcare and Defense. Boca Raton: Taylor and Francis Group, LLC. T. Pradeep. (2008) Nano: The Essentials Understanding Nanoscience and Nanotechnology. New York: McGraw-Hill.; Ahmed Busnaina. (2007) Nanomanfacturing Handbook. Boca Raton: Taylor and Francis Group, LLC.; Renzo Tomellini (2004) La nanotecnología. Innovaciones para el mundo del mañana. Luxemburgo: Comisión Europea; http://www.ijitee.org/attachments/File/v3i4/D1199093413.pdf; http://www.nano.gov/you/nanotechnology-benefits; http://blogs.creamoselfuturo.com/nano-tecnologia/; http://www.ehu.eus/sgi/software-de-calculo/siesta#informacingeneral; Fundación Española para la Ciencia y la Tecnología, FECYT (2009) NANOCIENCIA Y NANOTECNOLOGÍA Entre la ciencia ficción del presente y la tecnología del futuro. España: Fundación Española para la Ciencia y la Tecnología.; http://www.idepa.es/sites/web/idepaweb/Repositorios/galeria_descargas_idepa/AplicacionesIndustriales_Nanotecnologia.pdf; http://www.euroresidentes.com/futuro/nanotecnologia/diccionario/nanomateriales.htm; http://catarina.udlap.mx/u_dl_a/tales/documentos/leip/vega_m_d/indice.html PABLO R. HERNÁNDEZ RODRÍGUEZ Bioelectrónica, Departamento de Ingeniería Eléctrica, CINVESTAV IPN, México; Martinez, Pau & Marín, Pedro. “Diseño y estudio de una máquina de electrospinning”. Tomado de la red en Abril de 2017. Disponible en Internet: https://upcommons.upc.edu/pfc/bitstream/2099.1/7123/4/03_Mem%C3%B2ria.pdf; Jaimes Moreno, Edgar Mauricio. “Electroestimulador inteligente y sistema de clonación artificial de sensores de movimiento y control adaptativo-predictivo, por 143 143 acupuntura con agujas-electrodos y transmisión inalámbrica, evaluado en un diseño de prototipo construido”. Universidad Autónoma de Bucaramanga. 2009.; Siti Fatimah Abd Rahman, Nor Azah Yusof, Uda Hashim, M. Nuzaihan Md Nor. “Design and Fabrication of Silicon Nanowire based Sensor”. Institute of Advanced Technology, Universiti Putra Malaysia. 2013.; Rodriguez Pacheco, Jorge Humberto. “Prototipo automatizado para la implementacion de la técnica “electrospinning” en aplicaciones farmacológicas”. Universidad Autónoma de Bucaramanga. 2010.; Asgar, Z., Kodakara, S., & Lilja, D. (2005). Fault-tolerant image processing using stochastic logic (Tech. Rep.). Retrieved from http://www.zasgar.net/zain/publications/publications.php; Bryant, R., & Chen, Y. (1995). Verification of arithmetic circuits with binary moment diagrams. In Proceedings of the 32nd Design Automation Conference (DAC ’95), San Francisco (pp.535-541).; DeHon, A. (2005). Nanowire-based programmable architectures. ACM Journal on Emerging Technologies in Computing Systems, 1(2), 109–162. doi:10.1145/1084748.1084750; FENA. (2006). Mission statement. Retrieved from http://www.fena.org; Qian, W, Backes, J, Riedel, M. (2009). The synthesis of stochastic Circuits for Nanoscale Computation; [ADAM 94] ADAMI, C., Learning and complexity in genetic auto¬adaptive systems. California Institute of Technology, 1994.; [ADEL 95] ADELI, H., Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems. John Wiley and Sons, Inc, 1995; S. A. Pérez. 2002. “Diseño de Sistemas Digitales con VHDL”. Ed. Thomson. Neil H. E. Weste and Kamran Eshraghian. Principles of CMOS VLSI Design. Addison-Wesley, 2nd edition, 1994; Xilinx Inc., 2100 Logic Drive, San Jose, CA 95124. The Programmable Gate ArrayData Book, 1991.; National Acdemy of Science. Panel on Scientific and Medical Aspects of Human Cloning. August 7, 2001; Vera, F. (2006). “Sistema Electrónico de clonación Artificial de un Sensor de Viscocidad Basado en Hardware Evolutivo.” Universidad de Pamplona; WINTER, D. A. Biomechanics and Motor Control of Human Movement. Warterloo: Warterloo Press, 1991.; Pedro Carlos Russi. Estudo De Um Modelo Dinâmico Para Avaliação Física Do Corpo Humano. Faculdade de Engenharia de Guaratinguetá da Universidade Estadual Paulista. Sao Paulo. Brasil; Sistema electrónico de clonacion artificial de un sensor de viscosidad basado en hardware evolutivo. Fredy Vera Perez trabajo de grado para optar por el título de ingeniero electrónico. Universidad de Pamplona. 2006; Muñoz Antonio F. Sensorica e instrumentación, Mecánica de Alta precisión. . Pueblo y educación. 1997; Maneiro Malavé Ninoska. Algoritmos genéticos aplicados al problema cuadrático de asignación de facilidades. Departamento de Investigación Operativa, Escuela de Ingeniería Industrial, Universidad de Carabobo, Valencia. Venezuela. Febrero 2002; Faustino, A, Muñoz, Mariela. (2010). “Algoritmos y Sistemas Genéticos Aplicados en sistema de control en Tiempo Real Obtenido por Clonación Artificial para Prótesis Mecatrónica de Piel Artificial con Nanopartículas.”. Universidad Autónoma de Bucaramanga y Universidad del Cauca, Colombia; Beneficios de la Nanotecnología: Presentación. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/nanotecnologia_benecios.html; Caro Bejarano, José (2012). Los riesgos mundiales en el 2012 según el foro económico mundial. ieee.es. Tomado de la red en Abril de 2015. URL: http://www.ieee.es/Galerias/chero/docs_informativos/2012/DIEEEI06-2012_ForoEconomicoMundial_RiesgosGlobales2012_MJCaro_v2.pdf; García Díaz, J. (2006). Normalización sobre Nanotecnologías. AENOR, p. 26-28. Tomado de la red en Abril de 2015. URL: http://www.nanospain.org/les/Working%20Groups/NanoSpain_WGIndustrial_Normalizacion.pdf; José Luis Carrillo Aguado. Cómo es la Nanotecnología según la FDA. Perdiositasenlinea.org. Tomado de la red en Abril de 2015. URL: 145 145 http://www.periodistasenlinea.org/modules.php?op=modload&name=News&le=article&sid=23516; Marquez, J. (2008). Nanobioética, nanobiopolítica y nanotecnología. Revista Salud Uninorte. 24 (1), 140-157. Tomado de la red en Abril de 2015. URL: http://rcienticas.uninorte.edu.co/index.php/salud/article/view/3824/2435; Organización de las Naciones Unidas para la Agricultura y la Alimentación y Organización mundial de la salud. Reunión Conjunta FAO/OMS de Expertos acerca de la aplicación de la nanotecnología en los sectores alimentario y agropecuario: posibles consecuencias para la inocuidad de los alimentos. Informe. Consultado en http://www.fao.org/docrep/015/i1434s/i1434s00.pdf; Panorama y perspectivas de la nanotecnología. Revista Virtual Pro, Agosto 2009 (91), pp17-18. Tomado de la red en Abril de 2015. URL: http://www.revistavirtualpro.com/revista/index.php?ed=2009-08-01&pag=17; Riesgos de la Nanotecnología. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/riesgos_nanotecnologia.htm; Creus Sole, A. “Instrumentación Industrial”. 7 ed., México: Alfaomega, 2005; Delgado, A. Inteligencia Artificial y Minirobots. Ecoe Ediciones, 1998; Ghosh, A. N. R. Pal, and S. K. Pal, "Self-organization for object extraction using a multilayer neural network and fuzziness measures," IEEE Transactions on Fuzzy Systems, vol. 1, pp. 54-58, 1993.; CARDENAS, J., Diseño Geométrico de Carreteras, Primera Edición, Ecoe Ediciones, 2011.; CARREÑO, Y., Investigación de Sistemas de Control Inteligente del Tráfico Vehicular y Desarrollo de Instrumentación de Alta Precisión de Parámetros Asociados al Monitoreo, Mando y Control Automáticos de Carreteras Urbanas. Programa Jóvenes Investigadores e Innovadores "Virginia Gutiérrez de Pineda Colciencias, Colombia 2011; MONTEJO, A., Ingeniería de Pavimentos. Fundamentos, Estudios Básicos y Diseño, Tercera Edición, Tomo 1, Universidad Católica de Colombia, 2010; C. J. Lin, C. H. Chen, and C. T. Lin, "Efficient self-evolving evolutionary learning for neurofuzzy inference systems," IEEE Transactions on Fuzzy Systems, vol. 16, pp. 1476- 1490, 2008.; D. Goldberg. Genetics Algorithms in Search, Optimization and Machine Learning. Massachusetts: Addison-Wesley Reading, 1983; D. Nauck, F. Klawonn, and R. Kruse, "Foundations of neuro-fuzzy systems," Chichester,U.K.: Wiley, 1997.; D. Valdez, “Automatización en el área de bodega en una empresa de correo y mensajería para lograr una mayor productividad”. M.S. tesis, Universidad De San Carlos De Guatemala, Guatemala, 2005; F. E. Cellier, Continuous System Modeling. New York, 1991; F. Munoz, “Sistemas de control inteligentes de la planta de viscorreduccion basados en la clonacion artificial de un sensor de viscosidad y parámetros asociados”; G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B. Rosen, "Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps," IEEE Transactions on Neural Networks, vol. 3, pp. 698-713, 1992; H. Boudouda, H. Seridi H. Akdag. “The Fuzzy Possibilistic C-Means Classifier”, Asian Journal of Infomation Technology, Vol. 4, no 11, pp. 981-985, 2005.; H. Ishibuchi, M. Nii, and T. Murata, "Linguistic rule extraction from neural networks and genetic-algorithm-based rule selection," in IEEE International Conference on Neural Networks - Conference Proceedings, Houston, TX, USA, 1997, pp. 2390-2395.; H. R. Berenji and P. Khedkar, "Learning and tuning fuzzy logic controllers through reinforcements," IEEE Transactions on Neural Networks, vol. 3, pp. 724-740, 1992.; H. Takagi, N. Suzuki, T. Koda, and Y. Kojima, "Neural networks designed on approximate reasoning architecture and their applications," IEEE Transactions on Neural http://www.unipamplona.edu.co/unipamplona/hermesoft/portalIG/home_2/recursos/investigacion/contenidos/01102007/sistemas_control_inteligente.jsp. [Consultado 20 Marzo 2013].; I. Lache, F. Muñoz, “Investigación de nuevos prototipos de sensores y sistema de control por clonación artificial, basados en técnicas de inteligencia artificial” [En línea]. Disponible: http://ivanovichlache.googlepages.com/PaperPamILS.doc [Consultado 3 Febrero 2013; J. Castro, J. Padilla y E. Romero, “Metodología para realizar una automatización utilizando PLC,” Impulso, Revista De Electrónica, Eléctrica Y Sistemas Computacionales, Departamento de Eléctrica y Electrónica del Instituto Tecnológico de Sonora, vol. 1, nro. 1, pp. 18-21, 2005; J. J. Buckley and Y. Hayashi, "Fuzzy neural networks: A survey," Fuzzy Sets andSystems, vol. 66, pp. 1-13, 1994.; J. J. Hopfield and D. W. Tank, "'Neural' computation of decisions in optimization problems," Biological Cybernetics, vol. 52, pp. 141-152, 1985.; J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities," Proceedings of the National Academy of Sciences of the United States of America, vol. 79, pp. 2554-2558, 1982.; J. M. Keller and D. J. Hunt, "Incorporating fuzzy membership functions into the perceptron algorithm," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-7, pp. 693-699, 1985; J. M. Keller and H. Tahani, "Implementation of conjunctive and disjunctive fuzzy logic rules with neural networks," International Journal of Approximate Reasoning, vol. 6, pp.221-240, 1992.; J. M. Keller, R. Krishnapuram, and F. C.-H. Rhee, "Evidence aggregation networks for fuzzy logic inference," IEEE Transactions on Neural Networks, vol. 3, pp. 761-769,1992; J. Rissanen, "Modeling by shortest data description," Automatica, vol. 14, pp. 465-471, 1978; J.-S. R. Jang, "ANFIS: adaptive-network-based fuzzy inference system," IEEE Transactions on Systems, Man and Cybernetics, vol. 23, pp. 665-685, 1993; J.S.R. Jang, N. Gulley, Natick. Fuzzy Logic Toolbox. MS, Mathworks, 2000; K. J. Aström and P. Eykhoff, "System identification-A survey," Automatica, vol. 7, pp. 123-162, 1971; K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop, "Neural networks for control systems - A survey," Automatica, vol. 28, pp. 1083-1112, 1992; K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks," IEEE Transactions on Neural Networks, vol. 1, pp. 4-27, 1990.; L. Ljung and Z.-D. Yuan, "Asymptotic Properties of Black-Box Identification of Transfer Functions," IEEE Transactions on Automatic Control, vol. AC-30, pp. 514-530, 1985.; L. Ljung, "System Identification: Theory for the User.," New Jersey: Prentice-Hall, 1999.; L.-X. Wang and J. M. Mendel, "Fuzzy basis functions, universal approximation, and orthogonal least-squares learning," IEEE Transactions on Neural Networks, vol. 3, pp. 807-814, 1992; Muñoz Mariela, Muñoz F, (2010). Diseño De Un Sistema De Control Basado en Clonación Artificial, ISSN: 1692-7257 Revista Tecnologías Avanzada Universidad de Pamplona, Colombia; N. K. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction," IEEE Transactions on Fuzzy Systems, vol. 10, pp. 144-154, 2002; N. K. Sinha and B. Kuszta, Modeling and identification of dynamic systems: Springer,1983. Networks, vol. 3, pp. 752-760, 1992; P. Angelov P. Filev, “An approach to online identification of Takagi-Sugeno fuzzy models”, IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(1), pp. 484-498, 2004.; P. Eykhoff, "System Identification," John Wiley, 1974; Q. Song and N. K. Kasabov, "NFI: A neuro-fuzzy inference method for transductive reasoning," IEEE Transactions on Fuzzy Systems, vol. 13, pp. 799-808, 2005; Q. Song and N. Kasabov, "TWNFI - a transductive neuro-fuzzy inference system with weighted data normalization for personalized modeling," Neural Networks, vol. 19, pp. 1591-1596, 2006; R. Babuska, Fuzzy Modeling for Control: Kluwer Academic Publishers, 1998; R. Haber and H. Unbehauen, "Structure identification of nonlinear dynamic systems - Asurvey on input/output approaches," Automatica, vol. 26, pp. 651-677, 1990.; R. J. Oentaryo, M. Pasquier, and C. Quek, "GenSoFNN-Yager: A novel brain-inspired generic self-organizing neuro-fuzzy system realizing Yager inference," Expert Systems with Applications, vol. 35, pp. 1825-1840; R. Johansson, "System Modeling and Identification," in Information and System Sciences New Jersey: Prentice Hall, 1993; S. C. Lee and E. T. Lee, "Fuzzy neural networks," Mathematical Biosciences, vol. 23, pp. 151-177, 1975; S. K. Pal and S. Mitra, "Multilayer perceptron, fuzzy sets, and classification," IEEE Transactions on Neural Networks, vol. 3, pp. 683-697, 1992; S. Mitra and S. K. Pal, "Fuzzy multi-layer perceptron, inferencing and rule generation," IEEE Transactions on Neural Networks, vol. 6, pp. 51-63, 19; S. Mitra and Y. Hayashi, "Neuro-fuzzy rule generation: survey in soft computing framework," IEEE Transactions on Neural Networks, vol. 11, pp. 748-768, 2000.; S. Mitra, "Fuzzy MLP based expert system for medical diagnosis," Fuzzy Sets and Systems, vol. 65, pp. 285-296, 1994; S.J. Derby, “Design of Automatic Machinery”, New York: Marcel Dekker, 2005; T. Calonge, L. Alonso, and R. Ralha, "Transputer implementations of a multilayer perceptron used for speech-recognition task," Microcomputer Applications, vol. 16, pp.64-69, 1997.; T. Kohonen, "The self-organizing map," Proceedings of the IEEE, vol. 78, pp. 1464-1480, 1990; T. Söderström and P. Stoica, "System Identification," New York: Prentice Hall, 1989.; U.K.: Wiley, 1997.; W. A. Farag, V. H. Quintana, and G. Lambert-Torres, "A genetic-based neuro-fuzzy approach for modeling and control of dynamical systems," IEEE Transactions on Neural Networks, vol. 9, pp. 756-767, 1998; W. L. Tung and C. Quek, "eFSM - A novel online neural-fuzzy semantic memory model," IEEE Transactions on Neural Networks, vol. 21, pp. 136-157, 2010.; Y. Hayashi, J. J. Buckley, and E. Czogala, "Fuzzy neural network with fuzzy signals and weights," International Journal of Intelligent Systems, vol. 8, pp. 527-537, 1993; Automatización de las vías, carreteras e inteligencia de automoviles – Pölliita Fänii http://pollitafannimecatronica.wordpress.com/2011/12/08/automatizacion-de-las-vias-carreteras-e-inteligencia-de-automoviles; Carreteras, Análisis de Tráfico – Vaisala http://es.vaisala.com/sp/roads/applications/trafficanalysis/Pages/default.as; La DGT trabaja en un proyecto para instaurar en España sistemas inteligentes de comunicación entre el vehículo y la vía – Lukor 150 150 http://www.lukor.com/ordenadores/11012301.htm; Sistemas inteligentes de transporte ¿Realidad o Ficción? – Circula Seguro http://www.circulaseguro.com/vehiculos-y-tecnologia/sistemas-inteligentes-de-transporte-ficcion-o-realidad; Sistemas inteligentes de transporte http://www.google.com.co/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&ved=0CFEQFjAH&url=http%3A%2F%2Fwww.iies.es%2Fattachment%2F115765%2F&ei=yS5GUfTzLIrW0gGF3YDIBw&usg=AFQjCNF2RLjXUUjDjor9B-xqi5tlblePbw&bvm=bv.43828540,d.eWU&cad=rja; CICNetwork – Ciencia y Tecnología http://www.cicnetwork.es/upload/pdf/revistas/CN1.p; BARROSO OLIVEIA, Luis Manuel. Automatização e controlo de um sistema de electrospinning [en línea]. Universidade do Minho, Escola de Engenharia. Octubre de 2011. Disponible en Internet: https://repositorium.sdum.uminho.pt/bitstream/1822/16498/1/pg16155_TESE_MEM.pdf; DUQUE SÁNCHEZ, Lina Marcela; RODRÍGUEZ, Leonardo y LÓPEZ, Marcos. Electrospinning: La Era de las Nanofibras [en línea]. En: Revista Iberoamericana de Polímeros Volumen 14(1), Enero de 2013; Siti Fatimah Abd Rahman, Nor Azah Yusof, Uda Hashim, M. Nuzaihan Md Nor. “Design and Fabrication of Silicon Nanowire based Sensor”. Institute of Advanced Technology, Universiti Putra Malaysia. 2013; Qian, W, Backes, J, Riedel, M. (2009). The synthesis of stochastic Circuits for Nanoscale Computation.; Rodríguez Pacheco, Jorge Humberto. “Prototipo automatizado para la implementacion de la técnica “electrospinning” en aplicaciones farmacológicas”. Universidad Autónoma de Bucaramanga. 2010.; MANTILLA, Oscar Alberto. Diseño y Construcción de un Prototipo Electro-mecánico para la Implementación de la Técnica " Electrospinning " en Aplicaciones Farmacológicas. Junio de 2006.; Jie Chen y Hua Li, “Design Methodology for Hardware-efficient Fault-tolerant Nanoscale Circuits”, en IEEE International Symposium on Circuits and Systems’ 2006; USERO, Rafael y SUÁREZ, Natalia. Electrospinning de poliesteramidas Biodegradables [en línea]. 2010. [Citado 3 feb 2016] Disponible en Internet; MUÑOZ, A.F., Aplicación de los algoritmos genéticos en la identificación y control de bioprocesos por clonación artificial. IEEE Transactions on Systems, Man, and Cybernetic V 19 No. 2 58-76, 1998; MUÑOZ, A.F., Tecnología de clonación artificial on-line de sensores y controladores. Oficina Internacional de Invenciones, Patentes y Marcas, República de Cuba. Registros No. 7-789735, 2000; ADAMI, C., Learning and complexity in genetic auto¬adaptive systems. California Institute of Technology, 1994; ADELI, H., Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems. John Wiley and Sons, Inc, 1995.; Vera, F. “Sistema Electrónico de clonación Artificial de un Sensor de Viscocidad Basado en Hardware Evolutivo.” Universidad de Pamplona. 2006; Faustino, A, Muñoz, Mariela. (2010). “Algoritmos y Sistemas Genéticos Aplicados en sistema de control en Tiempo Real Obtenido por Clonación Artificial para Prótesis Mecatrónica de Piel Artificial con Nanopartículas.”. Universidad Autónoma de Bucaramanga y Universidad del Cauca, Colombia.; Beneficios de la Nanotecnología: Presentación. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/nanotecnologia_bene¬cios.htm; Caro Bejarano, José (2012). Los riesgos mundiales en el 2012 según el foro económico mundial. ieee.es. Tomado de la red en abril de 2015. URL: http://www.ieee.es/Galerias/-chero/docs_informativos/2012/DIEEEI06-2012_ForoEconomicoMundial_RiesgosGlobales2012_MJCaro_v2.pdf; García Díaz, J. (2006). Normalización sobre Nanotecnologías. AENOR, p. 26-28. Tomado de la red en Abril de 2015. URL: http://www.nanospain.org/-les/Working%20Groups/NanoSpain_WGIndustrial_Normalizacion.pdf; José Luis Carrillo Aguado. Cómo es la Nanotecnología según la FDA. Perdiositasenlinea.org. Tomado de la red en abril de 2015. URL: http://www.periodistasenlinea.org/modules.php?op=modload&name=News&-le=article&sid=23516; Marquez, J. (2008). Nanobioética, nanobiopolítica y nanotecnología. Revista Salud Uninorte. 24 (1), 140-157. Tomado de la red en Abril de 2015. URL: http://rcienti-cas.uninorte.edu.co/index.php/salud/article/view/3824/2435; Ingeniería en Nanotecnología. Upb. Tomado de la red en Mayo 17 de 2015. URL: http://www.upb.edu.co/portal/page?_pageid=1054,53529575&_dad=portal&_schema=PORTAL; GALVIS, Dalya Julieth. Sistema de electroestimulación por tecnología de fabricación de electrohilado. Noviembre de 2014; GAMBOA, Wilsón., MANTILLA, O., CASTILLO, V., Producción de micro y nano fibras a partir de la técnica “Electrospinning” para aplicaciones farmacológicas. Agosto, 2007, vol. 053, 1-4; J. Chen, J. Mundy, Y. Bai, S. Chan, P. Petrica, y R. I. Bahar, “A probabilistic approach to nano-computing,” En Proceedings of the Second Workshop on Non-Silicon Computing, San Diego, CA, Junio 2003.; K. N. Patel, I. L. Markov, y J. P. Hayes, “Evaluating circuit reliability under probabilistic gate-level fault models,” en IEEE International Workshop on Logic and Synthesis, 2003.; MODELAJE Y SIMULACION MULTIFISICA DE UN SENSOR DE GAS DE Sno2 EN COVENTORWARE™. Andrés Felipe Méndez Jiménez, Alba Ávila Bernal. Departamento de Ingeniería Eléctrica y Electrónica, Universidad de los Andes. Bogota, Colombia. Noviembre de 2005; MEMORIAS I SEMINARIO INTERNACIONAL DE NANOTECNOLOGÍA UDES 2011.; HERSEL U., DAHMEN C., KESSLER H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. Vol. 24, 2003, p. 4385-4415; DOSHI, Jayesh., RENEKER, Darrell H. Electrospinning process and applications of electrospun fibers: Journal of Electrostatic. Agosto, 1995, vol. 35. 151-160.; J.S.R Jang y Sun C.T(1993) Funcional Equivalence Berween Radial Basis Funtion Networks and Fuzzy Inference Systems. IEEE Transactions on Neuronal Networks.; K.F. Man and K.S. Tang Genetic Algorithms for Control and Signal Processing Department of Electronic Engineering City University of Hong Kong; Haber and H. Unbehauen, "Structure identification of nonlinear dynamic systems – A survey on input/output approaches," Automatica, vol. 26, pp. 651-677, 1990; Delgado Alberto Rule Based System with DNA Chip Proceedings of the 2003 IEEE International Symposium on Intelligent Control Houston, Texas October 5-8, 2003; D. Frenkel, B. Smit, Understanding Molecular Simulations software SIESTA: from algorithms to applications, Academic Press (1996; Huifei Rao, Jie Chen, Changhong Yu, Woon Tiong and others Ensemble Dependent Matrix Methodology for Probabilistic-Based Fault-tolerant Nanoscale Circuit Design; Muñoz Antonio F NUEVOS MÉTODOS Y PROCEDIMIENTOS DE ALTA PRECISIÓN APLICADO A PAVIMENTOS Y VÍA CERTIFICADO DE REGISTRO DE SOPORTE LÓGICO – SOFTWARE TÉCNICAS DE INTELIGENCIA ARTIFICIAL BASADOS EN ALGORITMOS GEN ÉTICOS PARA DETERMINAR EL DESEMPEÑO A PARTIR DE LOS PARÁMETROS DE COMPORTAMIENTO Libro - Tomo – Partida 13-40-467 Fecha Registro 03-Feb-2014; Durakbasa et PUC Río Brasil CERTIFICADO DE DERECHO DE AUTOR Registro 0410263/CA Fuzzy Logic Measurement Nanosystems d; Entrenamientos. “Fitness y electroestimulación”. Tomado de la red en Agosto de 2014. URL: http://www.entrenamientos.org/entrenamiento-fisico/item/70-fitness-y-electroestimulacion; Entrenamientos. “Entrenamiento físico y electroestimulación”. Tomado de la red en Agosto de 2014. URL: http://www.entrenamientos.org/entrenamiento-fisico/item/47-electroestimulacion; Martinez, Pau & Marín, Pedro. “Diseño y estudio de una máquina de electrospinning”. Tomado de la red en Agosto Septiembre de 2014. URL: https://upcommons.upc.edu/pfc/bitstream/2099.1/7123/4/03_Mem%C3%B2ria.pdf; Jaimes Moreno, Edgar Mauricio. “Electroestimulador inteligente y sistema de clonación artificial de sensores de movimiento y control adaptativo-predictivo, por acupuntura con agujas-electrodos y transmisión inalámbrica, evaluado en un diseño de prototipo construido”. Universidad Autónoma de Bucaramanga. 2009; Rodriguez Pacheco, Jorge Humberto. “Prototipo automatizado para la implementacion de la técnica “electrospinning” en aplicaciones farmacológicas”. Universidad Autónoma de Bucaramanga. 2010; FENA. (2006). Mission statement. Retrieved from http://www.fena.org Qian, W, Backes, J, Riedel, M. (2009). The synthesis of stochastic Circuits for Nanoscale Computation.; MUÑOZ, A.F., Aplicación de los algoritmos genéticos en la identificación y control de bioprocesos por clonación artificial. IEEE Transactions on Systems, Man, and Cybernetic V 19 No. 2 58-76, 19; MUÑOZ, A.F., Equipo de control genético de la composición en medios continuos on-line. Oficina Internacional de Invenciones, Patentes y Marcas, República de Cuba. Registros No. 7-789734, 2001; ADELI, H., Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems. John Wiley and Sons, Inc, 1995; Vera, F. (2006). “Sistema Electrónico de clonación Artificial de un Sensor de Viscocidad Basado en Hardware Evolutivo.” Universidad de Pamplona. WINTER, D. A. Biomechanics and Motor Control of Human Movement. Warterloo: Warterloo Press, 1991.; Maneiro Malavé Ninoska. Algoritmos genéticos aplicados al problema cuadrático de asignación de facilidades. Departamento de Investigación Operativa, Escuela de Ingeniería Industrial, Universidad de Carabobo, Valencia. Venezuela. Febrero 2; Faustino, A, Muñoz, Mariela. (2010). “Algoritmos y Sistemas Genéticos Aplicados en sistema de control en Tiempo Real Obtenido por Clonación Artificial para Prótesis Mecatrónica de Piel Artificial con Nanopartículas.”. Universidad Autónoma de Bucaramanga y Universidad del Cauca, Colomb; Beneficios de la Nanotecnología: Presentación. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/nanotecnologia_benecios.htm; García Díaz, J. (2006). Normalización sobre Nanotecnologías. AENOR, p. 26-28. Tomado de la red en Abril de 2015. URL: 157 157 http://www.nanospain.org/les/Working%20Groups/NanoSpain_WGIndustrial_Normalizacion.pdf; José Luis Carrillo Aguado. Cómo es la Nanotecnología según la FDA. Perdiositasenlinea.org. Tomado de la red en Abril de 2015. URL: http://www.periodistasenlinea.org/modules.php?op=modload&name=News&le=article&sid=23516; Panorama y perspectivas de la nanotecnología. Revista Virtual Pro, Agosto 2009 (91), pp17-18. Tomado de la red en Abril de 2015. URL: http://www.revistavirtualpro.com/revista/index.php?ed=2009-08-01&pag=17 Riesgos de la Nanotecnología. Euro Residentes. Tomado de la red en Abril de 2015. URL: http://www.euroresidentes.com/futuro/nanotecnologia/nanotecnologia_responsable/riesgos_nanotecnologia.htm; D. Olea, S.S. Alexandre, P. Amo-Ochoa, A. Guijarro, F. de Jesús, J.M. Soler, P.J. de Pablo, F. Zamora, J. Gómez Herrero, Advanced Materials 2005, 17, 1761-176; “Assembling of Dimeric Entities of Cd(II) with 6-Mercaptopurine to Afford One dimensional Coordination Polymers: Synthesis and Scanning Probe Microscopy Characterization”. P. Amo-Ochoa, M.I. Rodríguez-Tapiador, O. Castillo, D. Olea, A. Guijarro, S.S. Alexandre, J. Gómez-Herrero, F. Zamora, Inorganic Chemistry 2006, 45, 7642-7650.; “Electrical Conductivity in Platinum-Dimer Columns”. A. Guijarro, O. Castillo, A. Calzolari, P. J. Sanz Miguel, C. J. Gómez-García, R. di Felice, F. Zamora, Inorganic Chemistry 2008, 47, 9736-9738.; “Organization of Cordination Polymers on Surfaces by Direct Sublimation”. L. Welte, U. García-Couceiro, O. Castillo, D. Olea, C. Polop, A. Guijarro, A. Luque, J.; M. Gómez-Rodríguez, J. Gómez Herrero, F. Zamora, Advanced Materials 2009, 21, 2025-2028.; “Nanofibers generated by spontaneous self-assembly on surfaces of individual bimetallic building blocks”. R. Mas-Ballesté, R. Gonzalez-Prieto, A. Guijarro, M. A. Fernández, F. Zamora, Dalton Transactions 2009, Submitted; “MMX as conductors from single crystals to nanostructures”. A. Guijarro, O. Castillo, L. Welte, A. Calzolari, P. J. Sanz Miguel, C. J. Gómez-García, D. Olea, R. di Felice, J. Gómez-Herrero, F. Zamora, Journal of the American Chemical Society 2009, Subm; Ozin, G.; Arsenault, A. C. “Nanochemistry, A Chemical Aproach to Nanomaterials” RSC Publishing, 2005; página web http://www.intel.com, marzo 2009. 3 (a) Gates, B. D. Chem. Rev. 2005, 105, 1171-1196 (b) Barth, J. V. Nature 2005, 437,671-679.; Bibliografía Software Molecular workbench Charles Xie. SPORE, Science Prize for Online Resources in Education; http://www.sciencemag.org/site/special/spore/; Pryor. R. W. Multiphysics Modeling Using COMSOL: A First Principles Approach (Jones and Bartlett Publishers, Sudbury, MA, 2009).; Bridson, C. R. Batty, Science 330, 1756 (2010). Abstract/FREE Full Text; Finkelstein N. D. et al., Phys. Rev. Spec. Top. Phys. Educ. Res. 1, 010103 (2005). CrossRef; Klahr,L. M. Triona, C. Williams, J. Res. Sci. Teach. 44, 183 (2007). CrossRefWeb of Scie; Leach A. R., Molecular Modeling: Principles and Applications (Pearson Education, Upper Saddle River, NJ, ed.2, 2001). D. C. Rappaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, Cambridge,1997; N. Watanabe, M. Tsukada, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62, (2 Pt B), 2914 (2000). CrossRefPubMed; R. Feynman, J. Microelectromech. Syst. 1, 60 (1992). CrossRef; W. H. Schmidt, C. C. McKnight, S. A. Raizen , A Splintered Vision: An Investigation of U.S. Science and Mathematics Education (Kluwer Academic Press, Boston, MA, 1997).; National Research Council, Conceptual Framework for New Science Education Standards, update 7,March 2011; http://www7.nationalacademies.org/bose/Standards_Framework_Homepage.html. Y. B. Kafai, Games Cult. 1, 36 (2006).; William Humphrey, Andrew Dalke, and Klaus Schulten. VMD - Visual Molecular Dynamics. J. Mol. Graphics, 14:33-38, 199; Rajeev Sharma, Michael Zeller, Vladimir I. Pavlovic, Thomas S. Huang, Zion Lo, Stephen Chu, Yunxin Zhao, James C. Phillips, and Klaus Schulten. Speech/gesture interface to a visual-computing environment. IEEE Comp. Graph. App., 20:29-37, 2000.; Simon Cross, Michelle M. Kuttell, John E. Stone, and James E. Gain. Visualization of cyclic and multi-branched molecules with VMD. J. Mol. Graph. Model., 28:131-139, 2009.; John E. Stone, Axel Kohlmeyer, Kirby L. Vandivort, and Klaus Schulten. Immersive molecular visualization and interactive modeling with commodity hardware. Lect. Notes in Comp. Sci., 6454:382-393, 2010.; John E. Stone, Kirby L. Vandivort, and Klaus Schulten. Immersive out-of-core visualization of large-size and long-timescale molecular dynamics trajectories. Lect. Notes in Comp. Sci., 6939:1-12, 2011.; John E. Stone, William R. Sherman, and Klaus Schulten. Immersive molecular visualization with omnidirectional stereoscopic ray tracing and remote rendering. 2016 IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW), pages 1048-1057, 2016; Michael Zeller, James C. Phillips, Andrew Dalke, William Humphrey, Klaus Schulten, Rajeev Sharma, T. S. Huang, V. I. Pavlovic, Y. Zhao, Z. Lo, and S. Chu. A visual computing environment for very large scale biomolecular modeling. In Proceedings of the 1997 IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP), pages 3-12. IEEE Computer Society Press, 1997; John E. Stone, Justin Gullingsrud, Paul Grayson, and Klaus Schulten. A system for interactive molecular dynamics simulation. In John F. Hughes and Carlo H. Séquin, editors, 2001 ACM Symposium on Interactive 3D Graphics, pages 191-194, New York, 2001. ACM SIGGRAPH.; Matthieu Chavent, Tyler Reddy, Joseph Goose, Anna Caroline E. Dahl, John E. Stone, Bruno Jobard, and Mark S.P. Sansom. Methodologies for the analysis of instantaneous lipid diffusion in MD simulations of 161 161 large membrane systems. Faraday Discuss., 169:455-475, 2014.; Benjamin G. Levine, John E. Stone, and Axel Kohlmeyer. Fast analysis of molecular dynamics trajectories with graphics processing units-radial distribution function histogramming. J. Comp. Phys., 230:3556-3569, 2011.; John Stone and Mark Underwood. Rendering of numerical flow simulations using MPI. In Second MPI Developer's Conference, pages 138-141. IEEE Computer Society Technical Committee on Distributed Processing, IEEE Computer Society Press, 1996.; John E. Stone. An Efficient Library for Parallel Ray Tracing and Animation. Master's thesis, Computer Science Department, University of Missouri-Rolla, April 1998.; John E. Stone, Barry Isralewitz, and Klaus Schulten. Early experiences scaling VMD molecular visualization and analysis jobs on Blue Waters. In Extreme Scaling Workshop (XSW), 2013, pages 43-50, Aug. 2013; I. Wald, G. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers, J. Gunther, and P. Navratil. OSPRay - a CPU ray tracing framework for scientific visualization. IEEE Transactions on Visualization and Computer Graphics, 23(1):1-1, 20; John E. Stone, James C. Phillips, Peter L. Freddolino, David J. Hardy, Leonardo G. Trabuco, and Klaus Schulten. Accelerating molecular modeling applications with graphics processors. J. Comp. Chem., 28:2618-2640, 2007.; John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone, and James C. Phillips. GPU computing. Proc. IEEE, 96:879-899, 2008; Christopher I. Rodrigues, David J. Hardy, John E. Stone, Klaus Schulten, and Wen-mei W. Hwu. GPU acceleration of cutoff pair potentials for molecular modeling applications. In CF'08: Proceedings of the 2008 conference on Computing Frontiers, pages 273-282, New York, NY, USA, 2008. AC; David J. Hardy, John E. Stone, and Klaus Schulten. Multilevel summation of electrostatic potentials using graphics processing units. J. Paral. Comp., 35:164-177, 2009.; Volodymyr Kindratenko, Jeremy Enos, Guochun Shi, Michael Showerman, Galen Arnold, John E. Stone, James Phillips, and Wen-mei Hwu. GPU clusters for high performance computing. In Cluster Computing and Workshops, 2009. CLUSTER '09. IEEE International Conference on, pages 1-8, 2009; John E. Stone, David J. Hardy, Ivan S. Ufimtsev, and Klaus Schulten. GPU-accelerated molecular modeling coming of age. J. Mol. Graph. Model., 29:116-125, 2010; John E. Stone, David Gohara, and Guochun Shi. OpenCL: A parallel programming standard for heterogeneous computing systems. Comput. in Sci. and Eng., 12:66-73, 2010.; Jeremy Enos, Craig Steffen, Joshi Fullop, Michael Showerman, Guochun Shi, Kenneth Esler, Volodymyr Kindratenko, John E. Stone, and James C. Phillips. Quantifying the impact of GPUs on performance and energy efficiency in HPC clusters. In International Conference on Green Computing, pages 317-324, 2010.; John E. Stone, David J. Hardy, Barry Isralewitz, and Klaus Schulten. GPU algorithms for molecular modeling. In Jack Dongarra, David A. Bader, and Jakub Kurzak, editors, Scientific Computing with Multicore and Accelerators, chapter 16, pages 351-371. Chapman & Hall/CRC Press, 2011; David J. Hardy, Zhe Wu, James C. Phillips, John E. Stone, Robert D. Skeel, and Klaus Schulten. Multilevel summation method for electrostatic force evaluation. J. Chem. Theor. Comp., 11:766-779, 201; John E. Stone, Ryan McGreevy, Barry Isralewitz, and Klaus Schulten. GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting. Faraday Discuss., 169:265-283, 2014; Abhishek Singharoy, Ivan Teo, Ryan McGreevy, John E. Stone, Jianhua Zhao, and Klaus Schulten. Molecular dynamics-based refinement and validation with Resolution Exchange MDFF for sub-5 Å cryo-electron microscopy maps. eLife, 10.7554/eLife.16105, 2016. (66 pages).; John E. Stone, Juan R. Perilla, C. Keith Cassidy, and Klaus Schulten. GPU-accelerated molecular dynamics clustering analysis with OpenACC. In Robert Farber, editor, Parallel Programming with OpenACC, pages 215-240. Morgan Kaufmann, Cambridge, MA, 2016; John E. Stone, Jan Saam, David J. Hardy, Kirby L. Vandivort, Wen-mei W. Hwu, and Klaus Schulten. High performance computation and interactive display of molecular orbitals on GPUs and multi-core CPUs. In Proceedings of the 2nd Workshop on General-Purpose Processing on Graphics Processing Units, ACM International Conference Proceeding Series, volume 383, pages 9-18, New York, NY, USA, 2009. ACM.; John E. Stone, David J. Hardy, Jan Saam, Kirby L. Vandivort, and Klaus Schulten. GPU-accelerated computation and interactive display of molecular orbitals. In Wen-mei Hwu, editor, GPU Computing Gems, chapter 1, pages 5-18. Morgan Kaufmann Publishers, 2011; John E. Stone, Michael J. Hallock, James C. Phillips, Joseph R. Peterson, Zaida Luthey-Schulten, and Klaus Schulten. Evaluation of emerging energy-efficient heterogeneous computing platforms for biomolecular and cellular simulation workloads. 2016 IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW), pages 89-100, 2016.; John E. Stone, Antti-Pekka Hynninen, James C. Phillips, and Klaus Schulten. Early experiences porting the NAMD and VMD molecular simulation and analysis software to GPU-accelerated OpenPOWER platforms. Lect. Notes in Comp. Sci., 9945:188-206, 2016; Michael Krone, John E. Stone, Thomas Ertl, and Klaus Schulten. Fast visualization of Gaussian density surfaces for molecular dynamics and particle system trajectories. In EuroVis - Short Papers 2012, pages 67-71, 2012; Elijah Roberts, John E. Stone, and Zaida Luthey-Schulten. Lattice microbes: High-performance stochastic simulation method for the reaction-diffusion master equation. J. Comp. Chem., 34:245-255, 2013.; Structures et fonctions des molécules biologiques. Utilisations pédagogiques des visualisations tridimensionnelles avec Rasmol. J. Barrère, J-Y Dupont and N. Salamé. INRP, 1997, 128 pages.; Surprising similarities in structure comparison. Jean-François Gilbrat, Thomas Madej, and Stephen H. Bryant. Current Opinion in Structural Biology 6:377-385, 1996. A review of early results of searcing for similarities in structure, regardless of sequence similarities. Describes the Vector Alignment Search Tool (VAST) provided by the US National Center for Biotechnology Information; GlaxoWellcome and MDL become entangled in the Web, by John Hodgson, Nature Biotechnology 14:690, June 1996. This article concerning RasMol and Chime is full of errors. See the editorial comment; A Dynamic Look at Structures: WWW-Entrez and the Molecular Modeling Database, by Christopher W. V. Hogue, Hitomi Ohkawa and Stephen H. Bryant. Trends in Biochemical Sciences, 21:226-9, 1996. All PDB files have been converted to the WWW-Entrez format ASN.1. This format can handle a broader range of 3D structural information, including for example models from electron microscopy. WWW-Entrez links 3D structural information with GenBank sequences and MEDLINE abstracts. Related structures can be identified. Kinemage animations are generated automatically to reveal information buried in PDB files, such as thermal factors, disordered zones, and multiple NMR models.; RasMol: Biomolecular graphics for all, by Roger A. Sayle and E. James Milner-White, Trends in Biochemical Sciences 20(Sept):374-376, 1995. RasMol was first widely distributed via the Internet in June, 1993, but this is the original paper publication describing RasMol; Hyperactive Molecules and the World-Wide-Web Information System, by Omer Casher, Gudge K. Chandramohan, Martin J. Hargreaves, Christopher Leach, Peter Murray-Rust, Henry S. Rzepa, Roger A. Sayle and Benjamin J. Whitaker. J. Chem. Soc., Perkin Trans. 2, 1995, 7. This paper proposes sharing chemical data too bulky for journal publication via World Wide Web. To accomplish this, it introduces various new chemical MIME (Multipurpose Internet Mail Extension) types, including chemical/x-csml for the Chemical Structure Markup Language which can be understood by RasMol; Software for viewing biomolecules in three dimensions on the Internet, by Alvaro Sanchez-Ferrer, Estrella Nunez-Delicado, and Roque Bru, Trends in Biochemical Sciences 20(July):286-288, 1995.Compares RasMol 2.5, pdVwin, Pkin_2_4/Mage_2_4, Hyperchem 3; Utilisations pédagogiques des visualisations tridimensionelles de molécules en biologie, by J. Barrère, J.-Y. Dupont, and N. Salamé, in Images numériques dan l'enseignement des sciences, Journées d'études CNAM, June 1995, J. C. Le Touzé and N. Salamé, eds., Institut Nationale de Recherche Pédagogique, pp. 87-93. A brief introduction to the use of RasMol for educational molecular visualization of DNA and proteins, touching on hemoglobin and the active site of carboxypeptidase. Illustrated.; Kinemages: make your own molecules for teaching, by Charles W. Sokolik, Trends in Biochemical Sciences 20(March):122-4, 1995; Kinemages -- simple macromolecular graphics for interactive teaching and publication, by David C. Richardson and Jane S. Richardson, Trends in Biochemical Sciences 19(March):135-8, 1994.; CPK models are very informative during the process of putting them together, but the completed models all look alike. Computer versions of CPK models have successfully imitated their appearance and most of their disadvantages (the fact that the inside is completely hidden, and the difficulty of identifying an atom or group), without, so far, imitating the real virtue of CPK's, which is the physical "feel" for the bumps, constraints, and degrees of freedom one obtains by manipulating them.; The Kinemage: A tool for scientific communication, by David C. Richardson, and Jane S. Richardson, Protein Science 1:3-9, 1992; Feynman. R, There’s Plenty of Room at the Bottom, American Physical Society, 1959. H.D. Gilbert, Miniaturization Reinhold Publishing Corp, N.Y, 1961,282. http://www.zyvex.com/nanotech/feynman.html. 2 N. Taniguchi, “On the Basic Concept of Nanotechnology”, Proc.Intl.Conf.Prod.Eng, Tokyo 1974, 18. 3 T. Theis, D. Parr, P. Binks, J. Ying, K. E.; Drexler, E. Schepers, K. Mullis, C. Bai, J. J. Boland, R. Langer, P. Dobson, C. N. R. Rao, M. Ferrari, , Nat.Nanotech. 2006,1,8. 4 J. J. Ramsden, Nanotechnology: An Introduction, Elsevier, Amsterdam, 2011. 5 (a) G. Binnig, H. Rohrer, IBM Journal of Research and Development 1986,30,355. (b) G.; Binnig, H. Rohrer, Rev. Mod. Phys. 1987, 59,615. 6 D. Eigler, E. Schweizer, Nature 1990,344,.524. 7 167 167 http://researcher.watson.ibm.com/researcher/view_group.php?id=4245 8 (a) C. P. Poole Jr., F. J.; Owens, Introduction To Nanotechnology, John Wiley & Sons, New Yersey, 2003. (b) R. Kelsall, I. W. Hamley, M. Geoghegan, Nanoscale Science and Technology, John Wiley & Sons, UK, 2005. 9 (a) M. Pagliaro, Nano-Age: How Nanotechnology Changes our Future, Wiley-VCH, Weinheim 2010 (b) J. J. Ramsden, Applied Nanotechnology. The Conversion of Research Results to Products, Elsevier, Amsterdam, 2014; V.V. Pokropivny, V.V. Skorokhod, Mater.Sci.Eng.C 2007,27,990. (b) K. Ariga, M. Li, G. J. Richards, J. P. Hill, J. Nanosci.Nanotechnol.2011,11,1. 11 (a) M. Wautelet, Eur. J. Phys. 2001; E. Roduner, Chem. Soc. Rev. 2006, 35, 583. (c) G. Hodes, Adv. Mater. 2007, 19, 639. 12 C. Baia, M. Liub, Nano Today 2012,7,258. 13 (a) B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, G. M. Whitesides, Chem. Rev. 2005, 105, 1171. (b) M. J. Köhler, W. Fritzsche, Nanotechnology: An Introduction to Nanostructuring Techniques, 2nd Ed., Wiley-VCH, Weinheim, 2007.; The Royal Society & The Royal Academy of Engineering, Nanoscience and nanotechnologies: opportunities and uncertainties, London, 2004 (http://www.nanotec.org.uk/finalReport.htm).; T. Ito, S. Okazaki, Nature 2000,406,1027.; Basnar, I. Willner, Small 2009,5,28; G. Cao, Nanostructures and nanomaterials, Imperial College Press, London, UK, 2009.; Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, J. N. Coleman, Science 2013,340,1420; http://hdl.handle.net/20.500.12749/7272; reponame:Repositorio Institucional UNAB; repourl:https://repository.unab.edu.co
Dostupnost: https://hdl.handle.net/20.500.12749/7272
-
16
Autoři: Curiel Carías, Ernesto C.
Zdroj: Arbor; Vol. 182 No. 718 (2006); 179-188 ; Arbor; Vol. 182 Núm. 718 (2006); 179-188 ; 1988-303X ; 0210-1963 ; 10.3989/arbor.2006.i718
Témata: Artificial systems, Living systems, Organization, Buildings, Sistemas artificiales, Sistemas biológicos, Organización, Edificaciones
Popis souboru: application/pdf
Relation: https://arbor.revistas.csic.es/index.php/arbor/article/view/21/21; Acurero, G. (1987): Filosofía de la biología. Caracas. Fondo Editorial Acta Científica. Ashby, W. R. (1963): An Introduction to cybernetic. New York. Wiley.; Bertalanffy, L. (1981): Teoría General de los Sistemas. Madrid. Fondo de Cultura Económica.; Brooks, R. A. (1991): How to build complete creatures rather than isolated cognitive simulators. Architectures for Intelligence, ed. K. van Lehn, Lawrence Erlbaum Associates, pp. 225-239.; Capra, F. (1998): La trama de la vida. Una nueva perspectiva de los sistemas vivos. Barcelona. Anagrama.; Churchman, C. W. (1968): The Systems Approach. New York. Delacorte.; Curiel Carías, E. C. (2000a): “Inconsequence of scientific knowledge in the field of design: Building in tropical coasts”. Interciencias, 25 (7), pp. 346-350.; Curiel Carías, E.C. (2000b): “La tesis del tercer mundo en la comprensión de la teoría general de los sistemas”. Tribuna del Investigador, 7 (1), pp. 60-76.; Curiel Carías, E. C. (2000c): Elementos para el diseño de edificaciones en paisajes de riberas. Caracas. Ediciones Biblioteca FAU-UCV.; Curiel Carías, E. C. (2003): “Design in the integration of natural and artificial systems”. Interciencia, 28 (8), pp. 482-486.; Curiel Carías, E. C. (2005a): The building concept in hybrid systems constitution (Kiron system). Building & Environment (Ed. Elsevier), Vol. 40, Issue 9, pp. 1235-1243.; Curiel Carías, E. C. (2005b): The building’s function in the containment and organization of activities in the Kiron system. Proceeding of the Fifth International Conference on Ecosystems and Sustainable Development ECOSUD 2005. Ed. by Tiezzi, E., Brebbia, C.A. Jørgensen, S.E., Almorza Gomar, D. WIT Press, Southampton, Boston, pp. 267-278.; Goldsmith, E. (1972): “Bringing the chaos in order”. The Ecologist, September, pp. 11-18.; Hillier, b. & Leaman, a. (1972): A new approach to architectural research. Ribaj, December, pp. 15-30.; Járos, G. (2000): “Living Systems Theory of James Grier Miller and Teleonics”. Systems Research and Behavioral Science, 17, pp. 289-300. doi:10.1002/(SICI)1099-1743(200005/06)17:33.0.CO;2-Z; Langton, C. G. (1992): Preface. Proceeding of the Artificial Life II. SFI Studies in the Sciences of Complexity, eds. C. G. Langton, C. Taylor, J. D. Farmer & S. Rasmussen, Addison-Wesley: Redwood City, Vol. X, pp. xiii-xviii.; Laszlo, E. (1972): The systems view of the world. New York. G. Braziller.; Le Corbusier (1973): Mensaje a los estudiantes de arquitectura. Buenos Aires. Ediciones Infinito.; Lovelock, J. (1995): “GAIA, Un modelo para la dinámica planetaria y celular”. GAIA Implicaciones de la nueva biología, ed. W. I. Thompson. Barcelona. Kairós, pp. 80-94.; Margulis, L. (2000): Symbiotic planet: A new look at evolution. New York. Basic Books.; Maturana, H. (1995): “Todo lo dice un observador”. GAIA Implicaciones de la nueva biología, ed. W. I. Thompson. Barcelona. Kairós, pp. 63-79.; Mikulecky, D. C. (2000): “Robert Rosen: The Well-Posed Question and its Answer –Why Are Organisms Different from Machines?”. Systems Research and Behavioral Science, 17, pp. 419-432. doi:10.1002/1099-1743(200009/10)17:53.0.CO;2-D; Miller, J. G. (1978): Living Systems. New York. Mc Graw-Hill.; Mosterin, J. (2000): Apuntes del Seminario de Filosofía En búsqueda de una cosmovisión a la altura de nuestro tiempo. Escuela de Filosofía. Universidad Central de Venezuela.; Odum, H. T. (1994): Ecological and general systems: An introduction to systems ecology. Colorado. University Press.; Pérez, C. (1986): Las nuevas tecnologías: una visión de conjunto. Ominami, C. editor. La tercera Revolución Industrial. Buenos Aires. Grupo Editor Latinoamericano.; Prigoguin, I. (1990): El orden nació del caos. Los verdaderos pensadores de nuestro tiempo. Ed. G. Sorman. Barcelona. Seix Barral, pp. 37-45.; Ruiz-Mirazo, K. y Moreno, A. (2001): Artificial life. An epistemologic study. Departamento de Lógica y Filosofía de la Ciencia, Universidad del País Vasco.; Simon, H. A. (1973): Las ciencias de lo artificial. Barcelona. Ediciones ATE.; Smith, R. L. & Smith, T. M. (2002): Elements of ecology. California. Benjamín/Cummings.; Steadman, P. (1982): Arquitectura y naturaleza. Madrid. Blume.; Tedeschi, E. (1972): Teoría de la arquitectura. Buenos Aires. Ediciones Nueva Visión.; Van Gigch, J. P. (1998): Teoría General de Sistemas. México. Trillas.; Villee, C. A. (1995): Biología. México. McGraw-Hill.; https://arbor.revistas.csic.es/index.php/arbor/article/view/21
-
17
Autoři:
Přispěvatelé:
Témata: 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación, PLANIFICACION EMPRESARIAL, ESTRATEGIAS PARA EL DESARROLLO, Bussiness planning, Development strategies, Lenguaje de requisitos orientado a metas, Ingeniería de requisitos orientada a metas, Modelado de metas, Alineación estratégica, Alineación negocio/TI, Goal-oriented Requirement Language, Goal-oriented requirements engineering, Goal modeling, Strategic Alignment, Business/IT Alignment
Popis souboru: x, 73 páginas; application/pdf
Relation: ISO/IEC and IEEE, Eds., “ISO/IEC/IEEE International Standard \- Systems and software engineering \- Life cycle processes \- Requirements engineering,” ISO/IEC/IEEE 29148:2011(E), pp. 1–94, Dec. 2011, doi:10.1109/IEEESTD.2011.6146379.; P. Bourque and R.E. Fairley, eds, Guide to the Software Engineering Body of Knowledge, Version 3.0. IEEE Computer Society, 2014. [Online]. Available: www.swebok.org; K. Wiegers and J. Beatty, Software Requirements, 3 edition. Microsoft Press, 2013.; I. Sommerville, Software Engineering, 9th edition. Boston: Pearson, 2010.; I. Alexander and L. Beus-Dukic, Discovering Requirements: How to Specify Products and Services. John Wiley & Sons, 2009.; R. D. A. (EIC) BKCASE Editorial Board, Ed., Guide to the Systems Engineering Body of Knowledge (SEBoK) — Guide to the Systems Engineering Body of Knowledge (SEBoK), version 1.8, year= 2017. [Online]. Available: http://sebokwiki.org/w/index.php?title=Guide_to_the_Systems_Engineering_Body_of_Kn owledge_(SEBoK)&oldid=52784; B. Lawrence, K. Wiegers, and C. Ebert, “The Top Risk of Requirements Engineering,” IEEE Software, vol. 18, no. 6, pp. 62–63, Nov. 2001, doi:10.1109/52.965804.; B. H. Reich and I. Benbasat, “Factors That Influence the Social Dimension of Alignment Between Business and Information Technology Objectives,” MIS Quarterly, vol. 24, no. 1, pp. 81–113, Mar. 2000.; J. N. Luftman, Competing in the Information Age: Align in the Sand, 2nd ed. Oxford University Press, USA, 2003. Accessed: Sep. 21, 2017. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=31A71F38F0CCD97AFA6578B8079BE173; M. Daneva, D. Damian, A. Marchetto, and O. Pastor, “Empirical research methodologies and studies in Requirements Engineering: How far did we come?,” The Journal of Systems & Software, vol. 95, pp. 1–9, Sep. 2014, doi:10.1016/j.jss.2014.06.035.; “Does Goal-Oriented Requirements Engineering Achieve Its Goal?,” 2017 IEEE 25th International Requirements Engineering Conference (RE), Requirements Engineering Conference (RE), 2017 IEEE 25th International, RE, p. 174, 2017, doi:10.1109/RE.2017.40.; M. A. Khan, “Understanding a Co-Evolution Model of Business and IT for Dynamic Business Process Requirements,” International Journal of Advanced Computer Science and Applications (IJACSA), vol. 7, no. 2, 2016, doi:10.14569/IJACSA.2016.070248.; M. A. Khan and E. A. Hezzam, “Towards the effectiveness of a co-evolutionary framework in information systems organizations,” Journal of Computers, vol. 12, no. 6, pp. 521–527, Nov. 2017.; S. J. Bleistein, K. Cox, and J. Verner, “Strategic Alignment in Requirements Analysis for Organizational IT: An Integrated Approach,” in Proceedings of the 2005 ACM Symposium on Applied Computing, New York, NY, USA, 2005, pp. 1300–1307. doi:10.1145/1066677.1066972.; S. J. Bleistein, K. Cox, J. Verner, and K. T. Phalp, “B-SCP: A requirements analysis framework for validating strategic alignment of organizational IT based on strategy, context, and process,” Information and Software Technology, vol. 48, no. 9, pp. 846–868, Sep. 2006, doi:10.1016/j.infsof.2005.12.001.; C. Veres, J. Sampson, S. j. Bleistein, K. Cox, and J. Verner, “Using Semantic Technologies to Enhance a Requirements Engineering Approach for Alignment of IT with Business Strategy,” 2009 International Conference on Complex, Intelligent & Software Intensive Systems, p. 469, Jan. 2009.; S. N. Singh and C. Woo, “Investigating business-IT alignment through multi-disciplinary goal concepts,” Requirements Eng, vol. 14, no. 3, pp. 177–207, Jul. 2009, doi:10.1007/s00766-009-0081-0.; W. r. ( 1 ) Boswell and J. w. ( 2 ) Boudreau, “How leading companies create, measure and achieve strategic results through ‘line of sight,’” Management Decision, vol. 39, no. 10, pp. 851–860, 01 2001, doi:10.1108/EUM0000000006525.; K. Decreus, M. Snoeck, and G. Poels, “Practical Challenges for Methods Transforming i* Goal Models into Business Process Models,” in 2009 17th IEEE International Requirements Engineering Conference, Aug. 2009, pp. 15–23. doi:10.1109/RE.2009.25.; V. E. C. Serrano and H. D. Amaya, “Motivational assessment framework: An approach of alignment strategic-operational,” in 2016 IEEE 11th Colombian Computing Conference (CCC), Sep. 2016, pp. 1–8. doi:10.1109/ColumbianCC.2016.7750773.; V. E. Collazos Serrano, Framework de evaluación de la efectividad de los modelos estratégicos del negocio basados en los estándares BMM (Business Motivation Model) y BPMN (Business Process Model and Notation). 2016.; “BMM.” http://www.omg.org/spec/BMM/ (accessed Sep. 07, 2017).; “VMOST Analysis %7C BAwiki.” http://bawiki.com/wiki/techniques/vmost-analysis/ (accessed Jul. 03, 2018).; J. Horkoff et al., “Taking goal models downstream: A systematic roadmap,” 2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS), p. 1, Jan. 2014.; J. Horkoff et al., “Goal-Oriented Requirements Engineering: A Systematic Literature Map,” 2016 IEEE 24th International Requirements Engineering Conference (RE), p. 106, Jan. 2016.; J. Horkoff et al., “Using Goal Models Downstream: A Systematic Roadmap and Literature Review,” International Journal of Information System Modeling and Design, vol. 6, no. 2, pp. 1–42, Apr. 2015, doi:10.4018/IJISMD.2015040101.; J. Horkoff et al., “Goal-oriented requirements engineering: an extended systematic mapping study,” Requirements Engineering, pp. 1–28, 14 2017, doi:10.1007/s00766-017-0280-z.; J. Luftman, K. Lyytinen, and T. ben Zvi, “Enhancing the measurement of information technology (IT) business alignment and its influence on company performance,” J Inf Technol, vol. 32, no. 1, pp. 26–46, Mar. 2017, doi:10.1057/jit.2015.23.; “QS World University Rankings 2019,” Top Universities, May 29, 2018. https://www.topuniversities.com/university-rankings/world-university-rankings/2019 (accessed Nov. 02, 2018).; J. vom Brocke and M. Rosemann (eds.), Handbook on Business Process Management 2: Strategic Alignment, Governance, People and Culture, 2nd ed. Springer-Verlag Berlin Heidelberg, 2015. Accessed: Aug. 28, 2017. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=73eb085953b98d12df94b60ea17ec07a; J. C. Henderson and N. Venkatraman, “Strategic alignment: leveraging information technology for transforming organizations,” IBM Systems Journal, no. 1, p. 4, 1993.; E. C. Souza Cardoso, “Strategic Reasoning for Enterprise Architectures: The SIENA Modeling Framework,” phd, University of Trento, 2018. Accessed: Aug. 13, 2018. [Online]. Available: http://eprints-phd.biblio.unitn.it/2811/; M. Zhang, H. Chen, and A. Luo, “A Systematic Review of Business-IT Alignment Research With Enterprise Architecture,” IEEE Access, vol. 6, pp. 18933–18944, 2018, doi:10.1109/ACCESS.2018.2819185.; A. Ilmudeen, Y. Bao, and I. M. Alharbi, “How does business-IT strategic alignment dimension impact on organizational performance measures: Conjecture and empirical analysis,”Journal of Ent Info Management, vol. 32, no. 3, pp. 457–476, May 2019, doi:10.1108/JEIM-09-2018-0197.; R. Beffers and B. de Waal, “Enhancing the Strategic Alignment Model: The Contribution of BiSL,” Proceedings of the European Conference on Management, Leadership & Governance, p. 18, Jan. 2018.; F. Dalpiaz, X. Franch, and J. Horkoff, “iStar 2.0 Language Guide,” arXiv:1605.07767 [cs], May 2016, Accessed: Sep. 25, 2018. [Online]. Available: http://arxiv.org/abs/1605.07767; “Z.150 : User Requirements Notation (URN) - Language requirements and framework.” https://www.itu.int/rec/T-REC-Z.150/en (accessed Oct. 29, 2020).; “Z.151: User Requirements Notation (URN) - Language definition.”https://www.itu.int/rec/T-REC-Z.151-201210-I/en (accessed Jan. 05, 2018).; “About the Business Motivation Model Specification Version 1.3.”https://www.omg.org/spec/BMM/1.3/ (accessed Oct. 04, 2018).; L. Liu and E. Yu, “From Requirements to Architectural Design –Using Goals and Scenarios,” undefined, 2001. /paper/From-Requirements-to-Architectural-Design-%E2%80%93Using-Liu-Yu/f1e50b5cf3304c5079d2b05c806db24ba67a7383 (accessed Nov. 25, 2020).; O. Akhigbe et al., Creating Quantitative Goal Models: Governmental Experience. 2014, p. 473. doi:10.1007/978-3-319-12206-9_40.; S. Alwidian, D. Amyot, and G. Babin, Evaluating the Potential of Technology in Justice Systems Using Goal Modeling. 2017, p. 202. doi:10.1007/978-3-319-59041-7_11.; S. Ghanavati, D. Amyot, L. Peyton, A. Siena, A. Perini, and A. Susi, “Integrating business strategies with requirement models of legal compliance,” IJEB, vol. 8, pp. 260–280, Jan. 2010, doi:10.1504/IJEB.2010.034171.; J. Horkoff and E. Yu, Evaluating Goal Achievement in Enterprise Modeling -- An Interactive Procedure and Experiences, vol. 39. 2009, p. 160. doi:10.1007/978-3-642-05352-8_12.; J. Horkoff, “Iterative, Interactive Analysis of Agent-goal Models for Early Requirements Engineering,” Thesis, 2012. Accessed: Feb. 21, 2019. [Online]. Available: https://tspace.library.utoronto.ca/handle/1807/32307; R. Samavi, E. Yu, and T. Topaloglou, “Strategic Reasoning about Business Models: A Conceptual Modeling Approach,” Information Systems and e-Business Management, vol. 7, no. 2, pp. 171–198, Mar. 2009.; M. Weiss and D. Amyot, “Business Model Design and Evolution,” Oct. 2007, doi:10.1142/9789812770318_0013.; E. S. K. Yu, “Towards modelling and reasoning support for early-phase requirements engineering,” in Proceedings of ISRE ’97: 3rd IEEE International Symposium on Requirements Engineering, Jan. 1997, pp. 226–235. doi:10.1109/ISRE.1997.566873.; A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information systems research,” MIS Q., vol. 28, no. 1, pp. 75–105, Mar. 2004.; K. Piirainen, R. A. Gonzalez, and G. Kolfschoten, “Quo Vadis, Design Science? – A Survey of Literature,” in Global Perspectives on Design Science Research, vol. 6105, R. Winter, J. L. Zhao, and S. Aier, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 93–108. Accessed: Apr. 06, 2013. [Online]. Available: https://www.zotero.org/ragonzalez/items/46DKCRHQ; P. Johannesson and E. Perjons, An Introduction to Design Science, 2014th ed. Springer, 2014. Accessed: Mar. 21, 2018. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=835bc443d1dd771f90709cba23fea298; S. Gregor and A. R. Hevner, “Positioning and Presenting Design Science Research for Maximum Impact,” MIS Quarterly, vol. 37, no. 2, pp. 337-A6, Jun. 2013.; K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A Design Science Research Methodology for Information Systems Research,” Journal of Management Information Systems, vol. 24, no. 3, pp. 45–77, Dec. 2007, doi:10.2753/MIS0742-1222240302.; R. Malhotra, Empirical Research in Software Engineering: Concepts, Analysis, and Applications. Chapman and Hall/CRC, 2016.; R. Gonzalez and H. Sol, Validation and design science research in information systems. IGI Global, 2012.; A. Cleven, P. Gubler, and K. M. Hüner, “Design alternatives for the evaluation of design science research artifacts,” in Proceedings of the 4th International Conference on Design Science Research in Information Systems and Technology - DESRIST ’09, Philadelphia, Pennsylvania, 2009, p. 1. doi:10.1145/1555619.1555645.; K. Peffers, M. Rothenberger, T. Tuunanen, and R. Vaezi, “Design Science Research Evaluation,” in Design Science Research in Information Systems. Advances in Theory and Practice, 2012, pp. 398–410.; V. Venkatesh, M. G. Morris, G. B. Davis, and F. D. Davis, “User acceptance of information technology: Toward a unified view,” MIS quarterly, pp. 425–478, 2003.; A. Osterwalder and Y. Pigneur, Business model generation: A handbook for visionaries, game changers, and challengers, 1st ed. Wiley, 2010. Accessed: May 26, 2020. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=e277c7b0216c5e5e02c189465de5cf54; R. S. Kaplan and D. P. Norton, The Balanced Scorecard: Translating Strategy into Action, 1st ed. Harvard Business Press, 1996. Accessed: Mar. 05, 2018. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=F056C8253F21ACD37A981B52C2F551AD; E. Croci, The Board of Directors: Corporate Governance and the Effect on Firm Value, 1st ed. Springer International Publishing,Palgrave Pivot, 2018. Accessed: Jul. 02, 2020. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=9a04eb284fcf2ad40a4da10adf7f3e06; M. Minciullo, Corporate Governance and Sustainability: The Role of the Board of Directors, 1st ed. Springer International Publishing; Palgrave Macmillan, 2019. Accessed: Jul. 02, 2020. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=24b2c1797325f62547c60f25ed7f178b; “BPMN Specification - Business Process Model and Notation.” http://www.bpmn.org/ (accessed Mar. 09, 2018).; “The TOGAF® Standard, Version 9.2.” https://pubs.opengroup.org/architecture/togaf92-doc/arch/ (accessed Apr. 29, 2020).; Y. E. Chan and B. H. Reich, “IT alignment: what have we learned?,” J Inf Technol, vol. 22, no. 4, pp. 297–315, Dec. 2007, doi:10.1057/palgrave.jit.2000109.; B. H. Reich and I. Benbasat, “Measuring the Linkage Between Business and Information Technology Objectives,” MIS Quarterly, vol. 20, no. 1, pp. 55–81, Mar. 1996.; J. N. Luftman, Competing in the Information Age: Strategic Alignment in Practice, 1st ed. New York, NY, USA: Oxford University Press, Inc., 1996.; M. N. Majstorović, “Business and It Alignment,” Military Technical Courier / Vojnotehnicki Glasnik, vol. 64, no. 2, pp. 496–512, Apr. 2016, doi:10.5937/vojtehg64-9263.; https://themeforest.net/user/dan_fisher, “OMG %7C Object Management Group.” https://www.omg.org/ (accessed May 12, 2020).; S. Tilley and H. J. Rosenblatt, Systems Analysis and Design, 11th ed. Course Technology, 2016. Accessed: May 26, 2020. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=28e4e376c76dae6caf8a3581e1527517; F. R. David and F. R. David, Strategic Management: A Competitive Advantage Approach, Concepts, Sixteenth edition. Pearson, 2016. Accessed: Oct. 26, 2021. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=F8A96B2DC3C7C3E16192C33129B2D446; B. Schwenker, T. Wulf (auth.), B. Schwenker, and T. Wulf (eds.), Scenario-based Strategic Planning: Developing Strategies in an Uncertain World, 1st ed. Gabler Verlag, 2013. Accessed: Jun. 19, 2018. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=6067eae160eb084e61817bca782b2a7d; “FF0001-01-free-business-model-canvas-1.jpg (1280×720).” https://cdn2.slidemodel.com/wp-content/uploads/FF0001-01-free-business-model-canvas-1.jpg (accessed Mar. 08, 2022).; M. Nair, Essentials of balanced scorecard, 1st ed. John Wiley & Sons, 2004. Accessed: Jun. 18, 2020. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=9f466fd1cee1bfa1b31b182e52520fef; S. Anand, Execution excellence : making strategy work using the balanced scorecard. 2016. Accessed: Jun. 01, 2020. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=AF358CD3D91B161DC71B9549872A28A5; R. S. Kaplan, Alignment : using the balanced scorecard to create corporate synergies. Harvard Business School Press, 2006.; I. G. Institute, Board Briefing for IT Governance, 2nd Edition. Information Systems Audit and Control Association, 2003. [Online]. Available: https://books.google.com.co/books?id=MpD2PAAACAAJ; S. D. Haes and W. V. Grembergen (auth.), Enterprise Governance of Information Technology: Achieving Alignment and Value, Featuring COBIT 5, 2nd ed. Springer International Publishing, 2015. Accessed: Aug. 28, 2017. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=17ba4fd7c3293d3d50c5336304ed7520; R. R. Moeller(auth.), Executive’s Guide to IT Governance: Improving Systems Processes with Service Management, COBIT, and ITIL. John Wiley & Sons, Inc. All rights reserved., 2013. Accessed: Jun. 27, 2018. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=fab8cb81e3cb771ed64b5939e2bb04db; V. Raval, Corporate Governance: A Pragmatic Guide for Auditors, Directors, Investors, and Accountants, 1st ed. Auerbach Publications, 2020. Accessed: Jul. 02, 2020. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=B3F25AFED0AA91FFA9569D45FA07C1F4; B. Vagadia (auth.), Enterprise Governance: Driving Enterprise Performance Through Strategic Alignment, 1st ed. Springer-Verlag Berlin Heidelberg, 2014. Accessed: Aug. 28, 2017. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=21e7b08ee3e8fa7c684535b335742c76; ISACA, COBIT 2019 Framework: Governance and Management Objectives. Isaca, 2018. Accessed: Jun. 01, 2020. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=55AFCE9E31A08E5DD0E799D37BE98092; “Welcome to COSO.” https://www.coso.org/Pages/default.aspx (accessed Aug. 04, 2020); R. R. Moeller, COSO Enterprise Risk Management: Establishing Effective Governance, Risk, and Compliance Processes, 2nd Edition. John Wiley & Sons, 2011. Accessed: Jun. 01, 2020. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=40b3bff6311b7089528a25d681b900de; S. O. Idowu, C. Sitnikov, and L. Moratis, ISO 26000 - A Standardized View on Corporate Social Responsibility, 1st ed. Springer International Publishing, 2019. Accessed: Jul. 02, 2020. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=039e7c885912d257c918dc7679ad4bb5; ISO, ISO/IEC 27000:2012, Information security management systems — Overview and vocabulary. 2012. Accessed: Jun. 01, 2020. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=2ce830d4a19cbb7de4bc78674365e38a; International standard ISO/IEC 38500:2008 Information technology -- Governance of IT for the organization, 1st Edition. ISO, 2008. [Online]. Available: 149000/220c76fe8595e002f8ef2bfb3cfa5458; A. Calder, ISO/IEC 38500 : a pocket guide, Second edition. 2019. Accessed: Jul. 14, 2020. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=ADD305C8BF45F9AD88B5871F5987056E; Isaca, COBIT 5: Enabling Processes. Isaca, 2012. Accessed: Jun. 27, 2018. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=f4588cc6b3706eba4a04d75d80e1840c; Isaca, COBIT 5: Enabling Information. Isaca, 2013. Accessed: Jun. 27, 2018. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=7b03a7a1516b0f00cf55c5d0f7b27555; ISACA, COBIT 5 Implementation. ISACA, 2012. Accessed: Jun. 27, 2018. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=941ff703dd9c18b73b32bc38e58d182a; M. Dumas, M. L. Rosa, J. Mendling, and H. Reijers, Fundamentals of Business Process Management, 2013 edition. New York: Springer, 2013.; K. C. Laudon and J. P. Laudon, Management Information Systems: Managing the Digital Firm, 15th ed. Pearson, 2017. Accessed: May 23, 2020. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=24df36bc0eeaa6d90b890101daeec894; AXELOS, ITIL Foundation (4th edition). Stationery Office Books (TSO), 2019. Accessed: Jun. 01, 2020. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=50d91ffa1f7d059f997858164364e664; “PRINCE2,” AXELOS. https://www.axelos.com/best-practice-solutions/prince2 (accessed Jun. 08, 2020).; PMI Project Management Body of Knowledge PMBoK, 6th ed. PMI, 2017. Accessed: Jun. 01, 2020. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=a49f674ec1acf789d9246dfac1ffb8c4; P. M. Institute, Requirements Management: A Practice Guide. Newtown Square, Pennsylvania: Project Management Institute, 2016.; M. Lankhorst (auth.), Enterprise Architecture at Work: Modelling, Communication and Analysis, 4th ed. Springer-Verlag Berlin Heidelberg, 2017. Accessed: Aug. 13, 2018. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=d3666526eb22305553fc8ae9e3c370a2; M. S. (auth.), Building Digital Ecosystem Architectures: A Guide to Enterprise Architecting Digital Technologies in the Digital Enterprise. Palgrave Macmillan UK, 2016. Accessed: Apr. 03, 2017. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=a1d009eb2663dc06a7331bcb1f5a5318; “ISO/IEC/IEEE Systems and software engineering – Architecture description,” ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000), pp. 1–46, Dec. 2011, doi:10.1109/IEEESTD.2011.6129467.; L. Urbaczewski and S. Mrdalj, “A comparison of enterprise architecture frameworks,” Issues in Information Systems, vol. 7, no. 2, pp. 18–23, 2006.; “TOGAF ADM Tutorial.” https://www.visual-paradigm.com/guide/togaf/togaf-adm-tutorial/ (accessed Jun. 28, 2020).; P. Desfray and G. Raymond, Modeling Enterprise Architecture with TOGAF. A Practical Guide Using UML and BPMN, 1st ed. Elsevier Inc, Morgan Kaufmann, 2014. Accessed: Apr. 03, 2017. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=10f57e42fb9db52dfe9b823d87d9afe6; E. S. Yu, “Social Modeling and i*,” in Conceptual Modeling: Foundations and Applications: Essays in Honor of John Mylopoulos, A. T. Borgida, V. K. Chaudhri, P. Giorgini, and E. S. Yu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 99–121. doi:10.1007/978-3-642-02463-4_7.; “iStar-tutorial-online.pdf,” Dropbox. https://www.dropbox.com/s/4l2k4tbywb8wekk/iStar-tutorial-online.pdf?dl=0 (accessed Sep. 25, 2018).; J. Mylopoulos, L. Chung, and B. Nixon, “Representing and using nonfunctional requirements: a process-oriented approach,” IEEE Transactions on Software Engineering, vol. 18, no. 6, pp. 483–497, Jun. 1992, doi:10.1109/32.142871.; L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos (auth.), Non-Functional Requirements in Software Engineering, 1st ed. Springer US, 2000. Accessed: Feb. 19, 2019. [Online]. Available: http://gen.lib.rus.ec/book/index.php?md5=5caa9f123b43c5607ad46847a10183e1; P. Giorgini, M. Kolp, J. Mylopoulos, and M. Pistore, “The Tropos Methodology,” in Methodologies and Software Engineering for Agent Systems: The Agent-Oriented Software Engineering Handbook, F. Bergenti, M.-P. Gleizes, and F. Zambonelli, Eds. Boston, MA: Springer US, 2004, pp. 89–106. doi:10.1007/1-4020-8058-1_7.; E. Gonçalves, J. Castro, J. Araújo, and T. Heineck, “A Systematic Literature Review of iStar extensions,” Journal of Systems and Software, vol. 137, pp. 1–33, Mar. 2018, doi:10.1016/j.jss.2017.11.023.; D. Amyot, G. Mussbacher, S. Ghanavati, and J. Kealey, GRL Modeling and Analysis with jUCMNav. 2011, p. 162.; “Amyot Daniel,” Engineering. https://engineering.uottawa.ca/people/amyot-daniel (accessed Dec. 17, 2020).; Y. Fan, A. a. Anda, and D. Amyot, An arithmetic semantics for grl goal models with function generation, vol. 11150 LNCS. Springer Verlag, 2018.; D. Amyot, S. Ghanavati, G. Mussbacher, L. Peyton, J. Horkoff, and E. Yu, “Evaluating goal models within the goal-oriented requirement language,” International Journal of Intelligent Systems, vol. 25, no. 8, pp. 841–877, 01 2010, doi:10.1002/int.20433.; J. Horkoff and E. Yu, “Interactive goal model analysis for early requirements engineering,” Requirements Engineering, vol. 21, no. 1, pp. 29–61, Mar. 2016, doi:10.1007/s00766-014-0209-8.; E. Foundation, “Eclipse Downloads %7C The Eclipse Foundation.” https://www.eclipse.org/downloads/ (accessed Jan. 16, 2021).; “WebHome < ProjetSEG < Foswiki.” http://jucmnav.softwareengineering.ca/foswiki/ProjetSEG/WebHome (accessed Feb. 19, 2019).; D. Amyot et al., “Towards Advanced Goal Model Analysis with jUCMNav,” in Advances in Conceptual Modeling, Berlin, Heidelberg, 2012, pp. 201–210. doi:10.1007/978-3-642-33999-8_25.; D. Amyot, R. Rashidi-Tabrizi, G. Mussbacher, J. Kealey, E. Tremblay, and J. Horkoff, “Improved GRL Modeling and Analysis with jUCMNav 5,” vol. 978, p. 3, 2013.; J. Horkoff et al., “Goal-oriented requirements engineering: an extended systematic mapping study,” Requirements Eng, vol. 24, no. 2, pp. 133–160, Jun. 2019, doi:10.1007/s00766-017-0280-z.; J. Horkoff and E. Yu, “Comparison and evaluation of goal-oriented satisfaction analysis techniques,” Requirements Engineering, vol. 18, no. 3, pp. 199–222, Sep. 2013, doi:10.1007/s00766-011-0143-y.; J. M. Horkoff, “USING i* MODELS FOR EVALUATION,” Master Thesis, University of Toronto, Department of Computer Science, 2006. [Online]. Available: http://www.cs.utoronto.ca/~jenhork/MScThesis/Thesis.pdf; J. Horkoff et al., “Strategic business modeling: representation and reasoning,” Software & Systems Modeling, vol. 13, no. 3, pp. 1015–1041, Jul. 2014, doi:10.1007/s10270-012-0290-8.; J. Hassine and D. Amyot, “An empirical approach toward the resolution of conflicts in goal-oriented models,” Software & Systems Modeling, vol. 16, no. 1, pp. 279–306, Feb. 2017, doi:10.1007/s10270-015-0460-6.; J. Hassine and D. Amyot, “A questionnaire-based survey methodology for systematically validating goal-oriented models,” Requirements Engineering, vol. 21, Feb. 2015, doi:10.1007/s00766-015-0221-7.; D. Amyot, “Introduction to the User Requirements Notation: learning by example,” Computer Networks, vol. 42, no. 3, pp. 285–301, Jun. 2003, doi:10.1016/S1389-1286(03)00244-5.; J. Horkoff and E. Yu, “Evaluating Goal Achievement in Enterprise Modeling – An Interactive Procedure and Experiences,” in The Practice of Enterprise Modeling, Berlin, Heidelberg, 2009, pp. 145–160. doi:10.1007/978-3-642-05352-8_12; E. Yu, M. Strohmaier, and X. Deng, “Exploring Intentional Modeling and Analysis for Enterprise Architecture,” in 2006 10th IEEE International Enterprise Distributed Object Computing Conference Workshops (EDOCW’06), Oct. 2006, pp. 32–32. doi:10.1109/EDOCW.2006.36.; “Historia - Institucional - Pontificia Universidad Javeriana.” https://www.javeriana.edu.co/institucional/historia (accessed Jul. 13, 2021).; “Organigrama - Institucional - Pontificia Universidad Javeriana.” https://www.javeriana.edu.co/institucional/organigrama (accessed Jul. 13, 2021).; “Cifras - Institucional - Pontificia Universidad Javeriana.” https://www.javeriana.edu.co/institucional/cifras (accessed Jul. 13, 2021).; “Planeación universitaria - Institucional - Pontificia Universidad Javeriana.” https://www.javeriana.edu.co/institucional/planeacion-universitaria (accessed Jul. 13, 2021).; “Elementos de la Planeación 2016-2021.” Accessed: Jul. 30, 2021. [Online]. Available: https://www.javeriana.edu.co/recursosdb/813229/884636/ELEMENTOS+PLANEACION+2016-2021.pdf/ff784fb4-9b6a-82c7-ef36-2dc667e39441?t=1605198532429; “Laudato si’ (24 May 2015) %7C Francis.” https://www.vatican.va/content/francesco/en/encyclicals/documents/papa-francesco_20150524_enciclica-laudato-si.html (accessed Sep. 15, 2021).; R. Baskerville, A. Baiyere, S. Gregor, A. Hevner, and M. Rossi, “Design Science Research Contributions: Finding a Balance between Artifact and Theory,” Journal of the Association for Information Systems, vol. 19, no. 5, pp. 358–376, May 2018, doi:10.17705/1jais.00495.; F. D. Davis, “Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology,” MIS Quarterly, vol. 13, no. 3, pp. 319–340, Sep. 1989, doi:10.2307/249008.; S. Jauk, D. Kramer, A. Avian, A. Berghold, W. Leodolter, and S. Schulz, “Technology Acceptance of a Machine Learning Algorithm Predicting Delirium in a Clinical Setting: a Mixed-Methods Study,” J Med Syst, vol. 45, no. 4, p. 48, Mar. 2021, doi:10.1007/s10916-021-01727-6.; “Z.151 : User Requirements Notation (URN) - Language definition.” https://www.itu.int/rec/T-REC-Z.151/en (accessed Oct. 29, 2020).; P. Ajibade, “Technology Acceptance Model Limitations and Criticisms: Exploring the Practical Applications and Use in Technology-related Studies, Mixed-method, and Qualitative Researches,” p. 14.; G. Mussbacher, S. Ghanavati, and D. Amyot, “Modeling and Analysis of URN Goals and Scenarios with jUCMNav,” in 2009 17th IEEE International Requirements Engineering Conference, Aug. 2009, pp. 383–384. doi:10.1109/RE.2009.56.; D. Marosin, M. van Zee, and S. Ghanavati, “Formalizing and Modeling Enterprise Architecture (EA) Principles with Goal-Oriented Requirements Language (GRL),” in Advanced Information Systems Engineering, 2016, pp. 205–220.; F. Dalpiaz, E. Cardoso, G. Canobbio, P. Giorgini, and J. Mylopoulos, “Social specifications of business processes with Azzurra,” 2015 IEEE 9th International Conference on Research Challenges in Information Science (RCIS), p. 7, Jan. 2015.; A. Babar, K. Cox, V. Tosic, S. Bleistein, and J. Verner, “Integrating B-SCP and MAP to manage the evolution of strategic IT requirements,” Information and Software Technology, vol. 50, pp. 815–831, Jan. 2008, doi:10.1016/j.infsof.2007.11.005.; J. Hassine and D. Amyot, “An empirical approach toward the resolution of conflicts in goal-oriented models,” Software & Systems Modeling, vol. 16, no. 1, 2017, doi:10.1007/s10270-015-0460-6.; J. Hassine, D. Kroumi, and D. Amyot, “A Game-theoretic approach to analyze interacting actors in GRL goal models,” Requirements Eng, Apr. 2021, doi:10.1007/s00766-021-00349-1.; H. Mintzberg, J. Lampel, and B. Ahlstrand, Strategy Safari: A Guided Tour Through The Wilds of Strategic Management, 6th edition. New York, NY: Free Press, 2005.; E. Gonçalves, J. Castro, J. Araújo, and T. Heineck, “A Systematic Literature Review of iStar extensions,” The Journal of Systems & Software, vol. 137, pp. 1–33, Mar. 2018, doi:10.1016/j.jss.2017.11.023.; https://repositorio.unal.edu.co/handle/unal/81557; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.co/
-
18
Autoři:
Zdroj: Chungará (Arica), Volume: 49, Issue: 4, Pages: 529-554, Published: DEC 2017
Témata: Veneer Analysis, período Formativo, proceso de construcción, Formative Period, patrones arquitectónicos, Architectural Patterns, 0601 history and archaeology, análisis de paramentos, 06 humanities and the arts, Construction Processes
Popis souboru: text/html
Přístupová URL adresa: https://scielo.conicyt.cl/pdf/chungara/v49n4/0717-7356-chungara-00106.pdf
https://dialnet.unirioja.es/servlet/articulo?codigo=7387844
https://www.scielo.cl/pdf/chungara/v49n4/0717-7356-chungara-00106.pdf
https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0717-73562017000400529
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-73562017000400529
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-73562017000400529&lng=en&tlng=en -
19
Autoři: a další
Přispěvatelé: a další
Zdroj: RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
Universitat Politècnica de València (UPV)
instnameTémata: Gestión empresarial, ORGANIZACION DE EMPRESAS, Consulta en la Biblioteca ETSI Industriales, Ingeniero Industrial-Enginyer Industrial
Popis souboru: application/pdf
-
20
Autoři: a další
Přispěvatelé: a další
Témata: Development of computer programs, Information storage systems, Information retrieval systems, Electronic data processing, Systems engineering, Investigations, Analysis, Development of multi-agent systems, Electronic notebooks, Investigative processes, Desarrollo de programas para computador, Sistemas de almacenamiento de información, Sistemas de recuperación de información, Procesamiento electrónico de datos, Ingeniería de sistemas, Investigaciones, Análisis, Desarrollo de sistemas multiagentes, Ingenias, Cuadernos electrónicos, Procesos investigativos
Geografické téma: Bucaramanga (Colombia), UNAB Campus Bucaramanga
Popis souboru: application/pdf; application/octet-stream
Relation: Casas Castañeda, Sara Lucía, Albornoz Balaguera, Carlos Alberto, Barrera Sanabria, Gareth (2005). Aplicación de la metodología de desarrollo ingenia y técnicas de web semántica en la implementación de un cuaderno electrónico de investigaciones. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB; BARRERA Sanabria Gareth, Rodríguez Buitrago Carolina. Aplicación de una metodología orientada a agentes en la implantación de un sistema de reserva de vuelos. Universidad Autónoma de Bucaramanga. Facultad de Ingeniería de Sistemas, 2001; BRAY, J. Paoli, C. M. Sperberg-McQueen, Nore Markup Language (XML) 1.0 (Second Edition). Disponible en: http://www.w3.org/TR/REC-xml.html W3C Recommendation 6 October 2000.; CASAS Castañeda Casas Castañeda Norma Judith, Quintanilla Diana Patricia. Tesis Diseño e implementación de un prototipo de comercio electrónico utilizando un paradigma orientado a agentes. Universidad Autónoma de Bucaramanga. Facultad de Ingeniería de Sistemas, 2002; CASTELFRANCHI, C. Guarantees for autonomy. En : Cognitive Agent Architecture. (1995). Citado por : IGLESIAS FERNÁNDEZ, Carlos Ángel. Definición de una metodología para el desarrollo de sistemas multiagente. España, 1998, 321 p. Tesis (Doctoral). Universidad Politécnica de Madrid. Departamento de Ingeniería de Sistemas Telemáticos.; CONNOLLY, F. van Harmelen, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein. DAML+OIL Reference Description. W3C Note 18 December 2001. Disponible en http://www.w3.org/TR/daml+oil-reference.; DEAN, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Language 1.0 Reference W3C Working Draft 29 July 2002. Disponible en http://www.w3.org/TR/owl-ref.; DECKER, S. Keith:Environment Centered Analysis and Design of Coordination Mechanisms. Informe. Department of Computer Science, University of Massachusetts. 1995; DIAZ Silva José Fabián, Murillo Anderson. Diseño e implementación de un prototipo de mercado virtual utilizando la tecnología de agentes. Universidad Autónoma de Bucaramanga. Facultad de Ingeniería de Sistemas, 2003.; ELLIOTTE Rusty Harold. XML Bible 3ra edición isbn: 076454986-3 February 2004; EURESCOM. MESSAGE: Methodology for engineering systems of software agents. Initial methodology. Technical Report P907-D1, EURESCOM. January 2000; EURESCOM. MESSAGE: Methodology for engineering systems of software agents (Final). Technical Report P907-TI1, EURESCOM. December 2001; FERBER, J. y Gutknecht, O.: A Meta-Model for the Analysis and Design of Organizations in Multi-Agent Systems. Actas de conferencia. Proceedings of the Third International Conference on Multi-Agent Systems (ICMAS98), IEEE CS Press. 1998.; GALLIERS, J. A theoretical framework for computer models of cooperative dialogue, acknowledging multiagent conflict. Tesis (PhD). Open University Uk. Citado por : IGLESIAS FERNÁNDEZ, Carlos Ángel. Definición de una metodología para el desarrollo de sistemas multiagente. 321 p. Tesis (Doctoral). Universidad Politécnica de Madrid. Departamento de Ingeniería de Sistemas Telemáticos. España, julio 1998; GARCIA Juan Carlos. Buscadores inteligentes de información basados en la tecnología de agentes móviles. Universidad Autónoma de Bucaramanga. Facultad de Ingeniería de Sistemas, 2001.; GEIST, Al. Design of The DOE2000 Electronic Notebook : The Electronic Notebook Architecture. Berkeley California. December 1997; GILBERT, N. 1-85728-305-8, UCL Press, London, Artificial Societies: the Computer Simulation of Social Life. February 1995; GOMEZ, J. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial. No.18, pp. 51-63. ISSN: 1137-3601. © AEPIA (http://www.aepia.dsic.upv.es/). Metodologías para el desarrollo de Sistemas multi-agente Jorge J. Gómez Sanz 2003; GUTTMAN, R. H. y A. G. Moukas The Knowledge Engineering Review, Cambridge University Press, 0269-8889, Editado por Simons Parsons y Adele E. Howe, "Agent-mediated electronic commerce: a survey", , 1998, 147-159.; HYACINTH, Nwana. Software agents: An overview [online]. Disponible en: http://labs.bt.com/proyects/agents/publish/papers/review.html [cited 25 august 2004]; IBM Agent Building and Learning Environment (ABLE). [online] Available from World Wide Web: [cited 15 february 2004]; IGLESIAS Fernández, Carlos Ángel et al. Analysis and design of multiagent systems using MAS – CommonKADS. Valladolid, España. (1999); 15 p.; JENNINGS, J. International Journal of Cooperative Information Systems, World Scientific Publishing Co., 0218-8430, Editado por M. P. Papazoglou, "Agent-based busines process management.", N. R. April 1996.; D’INVERNO, Mark y Michael Luck, 3-540-41975-6, Springer, Understanding Agent Systems. March 2001; JACOBSON, I., Booch, G. y Rumbaugh, J.: El Proceso Unificado de Desarrollo de Software. Libro completo. Addison Wesley. 303-3792000. January 2000; MALONE, T. W. and Crowston, K., The Interdisciplinary Study of Coordination, ACM Computing Survey, vol. 26, no. 1, pp. 87-119, Mar.1994; MARTINEZ Eduardo, Prieto William y Freddy Pico. Prototipo de aplicación de comercio electrónico utilizando la metodología Gaia al desarrollo de software orientado a agentes. Universidad Autónoma de Bucaramanga. Facultad de Ingeniería de Sistemas, 2002.; MYERS, James D., Elena S. Mendoza , Bonnie Hoopes. A collaborative electronic laboratory notebook , Pacific Northwest, National Laboratory PO Box 999 Richland, WA 99352 USA; MONTAGÚ Castro, María Clemencia, Vargas Mayorga, Jorge Leonardo. Tesis Aplicación de la metodología ingenias en la implentación de un prototipo de Supply Chain Manageme. Universidad Autónoma de Bucaramanga. Facultad de Ingeniería de Sistemas, 2004; NEWELL, A. and Simons, H. A., GPS: A program that simulates Human Thought, en Computers and Thought. Mc Graw Hill, 1963.; O. LASSILLA, O., R. R. Swick. Resource Description Framework (RDF) Model and Syntax Specification. W3C Recommendation 22 February 1999. Available at http://www.w3.org/TR/REC-rdf-syntax.; PERRY, Bruce W. Java Servlet & JSP Cookbook . Publisher : O'Reilly Pub Date : January 2004 ISBN : 0-596-00572-5 Pages : 746; RAO, A y M. Georgeff. Principles of Knowledge Representation and Reasoning: Proceedings of the Third International Conference, Morgan Kaufmann, San Mateo, 1-55860-262-3, Editado por B. Nebel, C. Rich, y W. Swartout, "An abstract architecture for rational agents, 1992.; RICH, E. y Knight, K.: Artificial Intelligence. Libro completo. McGraw-Hill. 1990; ROSENSCHEIN, J and GENESERETH, M. Deals among rational agents. En : Proceedings of the ninth International join conference on artificial intelligent. (1985); RUSELL, S. y Norvig, P: Artificial Intelligence: a modern approach. Libro completo. Prentice Hall. 1995.; SYCARA, K., Klusch, M., idof, S., and Lu, J., Dynamic Service Matchmaking among Agents in Open Information Environments, Journal ACM SIGMOD Record, Special Issue on Semantic Interoperability in Global Information Systems, 1999; TIMBERNERS-LEE, J. Hendler, O Lassila. Fascinating facts about Tim Berners-Lee inventor of the World Wide Web. The Semantic Web 12-589-6587-AK25, http://www.ideafinder.com/history/inventors/berners-lee.htm Scientific American, May 2001; WAGNER G. Agent-Oriented Analysis and Design of Organizational Information Systems. In Proc. of Fourth IEEE International Baltic Workshop on Databases and Information Systems, Vilnius (Lithua-nia), May 2000.; Wim Coulier: Belgacom Project Leader & Responsible for Dissemination. Disponible en: http://www.eurescom.de/~public-webspace/P900-series/P907 May 23, 2000; WHITAKER, R.:Self-Organization, Autopoiesis, and Enterprises. ACM SIGGROUP. http://www.acm.org/siggroup/auto/Main.html; WOOLDRIDGE, Michael et al. 0-471-49691-X, Agent – oriented software engineering for Internet applications. An introduction to Multiagent Systems October 2002.; WOOLDRIDGE and N. R. Jennings. Agent theories, architectures, and languages: A survey. In M. Wooldridge and N. R. Jennings, editors, Intelligent Agents: Theories, Architectures, and Languages (LNAI Volume 890), Springer-Verlag: Heidelberg, Germany, Jan. 1995.; Workflow Management Coalition:The Workflow Management Coalition Specification: Workflow Management Coalition Terminology & Glossary. Informe. 1999; http://hdl.handle.net/20.500.12749/1325; reponame:Repositorio Institucional UNAB
Dostupnost: https://hdl.handle.net/20.500.12749/1325
Nájsť tento článok vo Web of Science
Full Text Finder